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Preface

Origins of cable-driven parallel robots lie in the late 1980s when first concepts of
cranes, parallel kinematic manipulators, and cable-driven robotic devices were
combined in the United States and in Japan.

Researchers all over the world started to work on these special robotic systems,
most of them having a strong background in parallel kinematics: in contrast to
conventional parallel and serial manipulators, cable-driven parallel robots promise
a couple of unique advantages over other kinematic concepts. Cable robots allow
for significant improvements in the size of the workspace, the maximum payload,
and the dynamic capacities due to their superior efficiency in transmitting forces
through cables. The research on cable robots led to a number of challenging
scientific questions in the field of kinematics, statics, dynamics, control, and
design. Due to the lack of a dedicated forum on cable robots, active researchers
published their results, widely dispersed, in a broad range of robotic conferences
and journals. Meanwhile, the number of contributions in this field was rapidly
growing.

Recently, projects have started transferring the cable robot technology into
practical application, e.g., in the fields of industrial large-scale material handling,
intralogistics, and physiotherapy.

For the very first time, leading experts from three continents gather during the
First International Conference on Cable-Driven Parallel Robots in Stuttgart,
Germany. The conference allows the cable robot community to exchange ideas
and to create new connections between active researchers around the world. The
conference was organized under the patronage of International Federation for the
Promotion of Mechanism and Machine Science (IFToMM).

Within this book, some of the most renowned experts present the state of the
art, including both summarizing contributions as well as latest research results in
key areas such as workspace, design, and control. The papers in this book cover
classical topics such as motion planning, kinematics, dynamics, control, as well as
design and their implications on cable robots. At the same time, practical issues
such as components for cable robots, calibration, and prototyping are presented,
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summarizing experiences from the increasing number of applications and
prototypes.

We are most grateful for the authors for their outstanding contributions, for the
reviewers for their critical but valuable feedback, and for the great support of the
scientific committee that turned this conference into success. We would also like to
extend our thanks to the staff at Springer for their support and patience during the
preparation of the manuscripts.

Tobias Bruckmann
Andreas Pott

Editors
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Introduction of the Honorary Chair

In the early 1990s, when we started cable-driven robot research at the Chair of
Mechatronics at the University of Duisburg-Essen (formerly Gerhard-Mercator-
University -GH- Duisburg), we were a very small community. Fascinated by the
idea of manipulating objects through a simple system of connected wires, we were
inspired by the theoretical challenges put forth in spite of the simplicity of the
elementary mechanical setup based on cables and winches, as well as by the broad
spectrum of applications deemed possible. Especially its application in the field of
stage technology made us dream of the ‘‘flying carpet’’. In cooperation with Krupp
Industrietechnik—a former German high-tech company—the first general con-
cepts were laid out.

Nevertheless, nearly all research groups in the field of cable-driven robots
focused on fundamental research funded by the state, and I would like to take this
opportunity to thank the involved national and international funding organizations.
World-wide, this has enabled the work which forms now the basis for the material
presented in this conference and the accompanying book, reflecting the know-how
and experience gathered from 25 years of research.

I am happy and proud to see that cable robots are mature enough now and ready
to be proven in a number of upcoming application projects.

Besides several well-known experts, in this still new field, I am delighted to
meet and welcome the newer colleagues from all over the world who have
significantly contributed to the success of this conference. I am very optimistic that
this conference will act as a foundation to integrate them into existing and newly
created networks to cultivate and foster the scientific exchange.

I believe that this conference is the beginning of a new chapter in cable robots
research and I am wishing all contributors a fruitful and memorable time at the
‘‘First International Conference on Cable-Driven Parallel Robots’’ 2012!

Manfred Hiller
Honorary Chair
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Part I
Motion Planning



Global Planning of Dynamically Feasible
Trajectories for Three-DOF Spatial
Cable-Suspended Parallel Robots

Clément Gosselin

Abstract This paper addresses the dynamic trajectory planning of three-DOF spatial
cable-suspended parallel robots. Based on a dynamic model of the suspended robot,
a set of algebraic inequalities is obtained that represents the constraints on the cable
tensions. Dynamic feasibility is then established using interval arithmetics on the
latter inequalities in order to obtain global conditions on the trajectory parameters
that can guarantee that the cable tensions remain positive throughout the trajectory.
Such conditions are obtained for a variety of parametric trajectories. When periodic
functions are used in the design of the trajectories, it is shown that special frequencies
arise that are akin to natural frequencies of pendulum-type systems. These special
frequencies can be used in practice to greatly simplify the trajectory planning. An
experimental implementation on a three-dof cable-suspended prototype is presented.
As demonstrated, the proposed trajectory planning approach can be used to plan
dynamic trajectories that go beyond the static workspace of the mechanism, thereby
opening novel applications and possibilities for cable-suspended robots.

1 Introduction

The dynamics of cable-driven parallel mechanisms has been a topic of interest since
the introduction of the first designs. Indeed, cable-driven parallel mechanisms have
the potential to produce very fast motions and the control of such motions requires a
proper understanding of the dynamics of the mechanical system. In fully constrained
cable-driven systems such as those presented in [13, 15, 22] (and many others), a
dynamic model is highly relevant. In such mechanisms, very high speed motions can
be generated due to the wrench closure property.

C. Gosselin (B)
Département de Génie Mécanique, Université Laval, 1065 Avenue de la Médecine,
Québec, QC G1V 0A6, Canada
e-mail: gosselin@gmc.ulaval.ca

T. Bruckmann and A. Pott (eds.), Cable-Driven Parallel Robots, 3
Mechanisms and Machine Science 12, DOI: 10.1007/978-3-642-31988-4_1,
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4 C. Gosselin

The dynamic modelling of fully constrained cable-driven parallel mechanisms
was addressed in several publications. For instance, in [5, 7, 8], and [19], dynamic
models are proposed for mechanisms with more cables than degrees of freedom. One
important issue in this context is the optimization of the distribution of the tensions
among the cables. This issue is investigated in more detail in [4, 9] and [16].

As opposed to fully constrained cable-driven parallel mechanisms, cable-
suspended mechanisms use an external force—typically gravity—to maintain their
cables in tension. They are not redundantly actuated, i.e., they include at most as
many actuators as degrees of freedom. Cable-suspended parallel robots have been
proposed in the literature as potential candidates for applications that require very
large workspaces or as mechanisms that can provide effective payload to mass ratios.
One of the first cable-suspended mechanisms that was built is the Robocrane [1],
developed by NIST almost two decades ago. This six-degree-of-freedom robot was
intended for crane-type operations in which the pose of the payload can be fully con-
trolled. Other cable-suspended mechanisms have also been studied and prototypes
were built to validate their performance (see for instance [10] and [20]).

Although cable-suspended mechanisms have been mostly considered as quasi-
static devices, their dynamics has also been studied. Dynamic models of such mech-
anisms have been proposed for instance in [17, 24] and they have been used in the
control of the devices. Closely related architectures are also studied in [3, 18] and
others.

Many of the cable-suspended parallel mechanisms proposed or built in the past
were designed to work in static or quasi-static conditions. The workspace of these
devices can be determined based on the static equilibrium of the moving platform. The
static workspace is defined as the set of platform poses for which static equilibrium
can be obtained while maintaining tension in all cables. Techniques to determine
the static workspace of cable-suspended robots were proposed in the literature, for
instance in [21].

Cable-suspended robots can also be envisoned as dynamically controllable devices.
In [6, 14, 23] and [25] dynamically controlled (pendulum-like) cable-suspended
robots were proposed. By dynamically controlling the robots, their workspace can
be extended beyond the static workspace and the notion of dynamic workspace [2]
arises. The dynamic workspace is defined as the set of poses that the platform can
reach with at least one kinematic state (position, velocity and acceleration). In other
words, the platform can reach points beyond the static workspace with a controlled
kinematic state (e.g. a zero velocity but non-zero acceleration).

The pendulum-like robots proposed in [6, 14, 23] and [25] are underactuated, i.e.,
they include fewer actuators than degrees of freedom. Therefore, the trajectory of
their end-effector cannot be controlled exactly since the dynamics of the uncontrolled
degree(s) of freedom must be accounted for. The techniques proposed in the latter
references focus on the determination of actuator inputs that are capable of producing
point-to-point motion between prescribed poses. Such techniques require the on-line
numerical integration of the differential equation associated with the pendulum-like
dynamics.
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In [12], a fully actuated planar two-degree-of-freedom (2-dof) robot suspended on
two cables was considered and global conditions were obtained for the feasibility of
families of dynamic trajectories. In this paper, the same approach is applied to a spatial
three-dof cable-suspended parallel mechanism. Families of Cartesian trajectories are
prescribed globally in parametric form. Because the robot is not underactuated, it
is possible to solve the dynamic model for the cable forces, for a given Cartesian
trajectory (inverse dynamics). Based on the expressions of the cable forces, a set
of inequalities that represent the constraints associated with the unilaterality of the
forces in the cables of the robot is obtained, similarly to what was presented in
[20]. By substituting the parametric form of the Cartesian trajectories into these
inequalities, conditions on the global parameters of the trajectories are obtained
that guarantee feasibility. It is shown that special frequencies akin to the natural
frequency of pendulum-like systems can be used to better exploit cable-suspended
robots. Means of transitioning smoothly between parametric trajectories are also
developed. Finally, example trajectories are presented and an experimental validation
is performed using a prototype.

Cable-suspended parallel robots that have the ability to operate beyond their static
workspace could be used in applications where a large workspace is required and
where the footprint to workspace ratio is smaller than one due to obstacles or other
limitations.

2 Robot Architecture

A spatial three-degree-of-freedom (3-dof) cable-suspended robot is represented
schematically in Fig. 1. The robot consists of three actuated spools mounted on a
fixed structure which are used to control the extension of three cables. The cables are
attached to a common end-effector which is considered as a point mass. By control-
ling the extension of the cables, the position of the point mass in a three-dimensional
space can be controlled. The robot includes three actuators and three degrees of
freedom and is therefore fully actuated. However, because cables can only work in
tension (they cannot push), constraints must be imposed on the Cartesian trajectory
prescribed at the end-effector in order to ensure that a given trajectory is feasible,
i.e, that it does not require compression forces in the cables. The static workspace
of the robot, i.e., the portion of the Cartesian space in which the end-effector can be
brought to rest, is limited by the footprint of the robot. The latter workspace is in fact
a prism of vertical axis and triangular section corresponding to the triangle defined
by the projection of the cable attachment points onto a horizontal plane. However,
by exploiting the dynamics of the cable-suspended robot, it is possible to produce
trajectories that extend beyond the boundaries of the static workspace. Also, when
dynamic trajectories are performed, the static workspace no longer defines the feasi-
ble workspace and the concept of dynamic workspace must be used [2]. Therefore,
the unilaterality constraints associated with the forces in the cables are introduced
using the dynamic model of the robot.
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Fig. 1 Spatial three-degree-
of-freedom cable-suspended
robot

3 Kinematic and Dynamic Modelling

A fixed reference frame is first defined on the base of the robot, as illustrated in Fig. 1.
The Z axis of the fixed reference frame is pointing downwards, i.e., in the direction
of gravity. The points corresponding to the cable outputs of the spools are assumed
to be fixed—in practice an eyelet or a pulley can be used—and are noted Ai , with
i = 1, 2, 3. The vector connecting the origin of the fixed reference frame to point Ai

is noted ai and the position of the end-effector of mass m with respect to the origin of
the fixed reference frame is noted p = [x, y, z]T . The cable lengths, which are used
as joint coordinates, are respectively noted ρi , i = 1, 2, 3. The inverse kinematic
equations can therefore be simply written as

ρi =
√
(p − ai )T (p − ai ), i = 1, 2, 3. (1)

Since the mass of the cables is neglected, the dynamic model of the robot can be
obtained by writing the force balance on the end-effector, which is considered as a
point mass. One obtains

3∑

i=1

(−Fi (p − ai )

ρi

)
+ mg = mp̈ (2)
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where Fi is the tension in cable i and g is the vector of gravitational acceleration,
namely g = [0, 0, g]T , in which g is the magnitude of the gravitational acceleration.

Equation (2) constitutes a system of three linear equations in three unknowns
(tensions F1, F2 and F3) that can be explicitly solved for F1, F2 and F3 as

f = mM−1(g − p̈) (3)

where f = [F1, F2, F3]T and

M =
[

1

ρ1
(p − a1)

1

ρ2
(p − a2)

1

ρ3
(p − a3)

]
. (4)

In order to obtain dynamically feasible trajectories, it must be ensured that the
above solution yields tensions in the cables, i.e, it must be guaranteed that F1, F2
and F3 are positive throughout the trajectory.

A generic form of the unilaterality constraints is obtained by rearranging the above
equations. Unit vectors along the direction of the cables are first defined as

ei = p − ai

‖ p − ai ‖ = 1

ρi
(p − ai ), i = 1, 2, 3 (5)

where ei is a unit vector in the direction of the i th cable and oriented from the spool
to the end-effector. Equation (2) can then be rewritten as

Mτ = g − p̈ (6)

where
M = [e1 e2 e3] (7)

and

τ = 1

m
f = 1

m
[F1 F2 F3]T (8)

is the vector of cable forces per unit mass of the end-effector. Using this notation,
Eq. (3) can be rewritten as

τ = M−1(g − p̈). (9)

Referring to Eq. (7), the inverse of matrix M can be written as

M−1 = Adj(M)

det(M)
(10)

where Adj(M) is the adjoint matrix of M and det(M) is its determinant. It can readily
be observed that the determinant of M can be written as

det(M) = (e1 × e2)
T e3 (11)
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and that this quantity is always strictly negative as long as the end-effector remains
below the plane defined by the three attachment points A1, A2 and A3. This assump-
tion is used here and therefore it suffices to use the adjoint matrix in order to determine
whether the tensions in the cables are positive. The adjoint matrix can be written as

Adj(M) =
⎡
⎣
(e2 × e3)

T

(e3 × e1)
T

(e1 × e2)
T

⎤
⎦ (12)

and hence the condition corresponding to positive tensions is written as

τ � 0 (13)

where � stands for the componentwise inequality. Based on Eqs. (9) and (12) and
noting that the determinant of M is always negative, the constraints then become

(e2 × e3)
T (p̈ − g) > 0 (14)

(e3 × e1)
T (p̈ − g) > 0 (15)

(e1 × e2)
T (p̈ − g) > 0. (16)

The above inequalities represent the constraints to be satisfied in order to ensure that
the cables are kept under tension. If these conditions are satisfied at all points of
a given trajectory, then it can be guaranteed that the cables will remain under ten-
sion throughout the trajectory. These conditions are necessary and sufficient. Using
Eq. (5), the inequalities can be written directly in terms of the position vector of the
end-effector, which leads to

[
p × (a2 − a3)+ (a2 × a3)

]T
(p̈ − g) > 0 (17)

[
p × (a3 − a1)+ (a3 × a1)

]T
(p̈ − g) > 0 (18)

[
p × (a1 − a2)+ (a1 × a2)

]T
(p̈ − g) > 0. (19)

4 Trajectory Planning

The inequality constraints derived in the preceding section can be used to ensure that
dynamic trajectories are feasible, i.e., that they can be performed while maintaining
the cables under tension. Indeed, trajectories satisfying the tension constraints are
automatically included in the dynamic workspace of the robot, which may extend
beyond its static workspace.

In order to simplify the trajectory planning and to avoid having to consider the
constraints in the control loop, feasible generic trajectories are now defined. Fea-
sible trajectories are obtained by manipulating the inequality constraints to obtain
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conditions on the global trajectory parameters that ensure positive cable tensions. In
other words, the constraints are satisfied by trajectory design, which greatly simpli-
fies the planning and control. To this end, a set of generic periodic trajectories is now
analysed. It should be pointed out that the periodic trajectories defined below corre-
spond to a steady state dynamic motion (e.g. vertical oscillations). In other words,
the transition between the state of rest and a periodic trajectory—or between two
periodic trajectories—is not considered and will be addressed in a separate section.

In order to provide physical insight, a specific robot architecture is used in this
section. In this architecture, the three spools are located on the vertices of a horizontal
equilateral triangle whose centroid is at the origin of the fixed reference frame. The
geometry is therefore defined as

a1 =
[

a

2
,−

√
3a

6
, 0

]T

(20)

a2 =
[
−a

2
,−

√
3a

6
, 0

]T

(21)

a3 =
[

0,

√
3a

3
, 0

]T

(22)

where a is equal to the side of the equilateral triangle. Substituting the above geo-
metric parameters into inequalities (17)–(19), the latter can be rewritten as

√
3zẍ − z ÿ + (z̈ − g)

(
y − √

3x −
√

3

3
a

)
> 0 (23)

−√
3zẍ − z ÿ + (z̈ − g)

(
y + √

3x −
√

3

3
a

)
> 0 (24)

z ÿ + (g − z̈)

(
y +

√
3

6
a

)
> 0. (25)

Parametric periodic trajectories are now defined and substituted into inequalities
(23)–(25). Using interval arithmetics, i.e., the bounds of the trigonometric functions,
conditions on the global trajectory parameters are obtained that ensure dynamic
feasibility.

4.1 Vertical Oscillations

A simple vertical periodic oscillation is first studied. Although this trajectory is
located inside the static workspace, the trajectory must still be planned such that
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inequalities (23)–(25) are satisfied because the trajectory involves non-zero acceler-
ations. A generic periodic trajectory along the Z axis—taking place along a vertical
line passing through the centroid of the base triangle—is designed as follows:

x = y = 0, z = z0 + r sin(ωt), z0 > r (26)

ẋ = ẏ = 0, ż = rω cos(ωt) (27)

ẍ = ÿ = 0, z̈ = −rω2 sin(ωt) (28)

where z0 is the centre of the vertical range of motion, r is one half of the total
vertical range of motion, ω is the frequency of the periodic motion and t is the
time. A complete oscillation is performed if 0 ≤ t ≤ 2π/ω. Substituting the above
trajectory into inequalities (23)–(25) leads to one and the same condition for all three
inequalities, namely

z̈ − g < 0, or − rω2 sin(ωt)− g < 0. (29)

Since one has −1 ≤ sin(ωt) ≤ 1, the above condition is satisfied for the global
trajectory if

rω2 < g. (30)

When inequality (30) is satisfied, the above vertical trajectory can be performed while
maintaining all cables in tension. Therefore, for a given vertical range of motion 2r ,
the frequency ω can be adjusted to satisfy the tension constraints. Similarly, for a
given frequency ω, the maximum feasible range of motion can be determined using
inequality (30). The condition obtained is global and does not need to be verified for
all trajectory points.

4.2 Horizontal Oscillations Along a Straight Line

A periodic horizontal motion along a straight line intersecting the vertical line passing
through the centroid of the base triangle is now considered. The trajectory is designed
as follows:

z = z0, x = r cosα sin(ωt), y = r sin α sin(ωt), z0 > 0 (31)

ż = 0, ẋ = rω cosα cos(ωt), ẏ = rω sin α cos(ωt) (32)

z̈ = 0, ẍ = −rω2 cosα sin(ωt), ÿ = −rω2 sin α sin(ωt) (33)
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where z0 is the elevation of the horizontal trajectory, r is one half of the total hor-
izontal range of motion, ω is the frequency of the periodic motion, α is the angle
corresponding to the direction of the straight line in the horizontal plane and t is the
time. Substituting the above parametric equations into inequalities (23)–(25) leads
to three inequalities that can be written as

Ai sin(ωt)+ Bi > 0, i = 1, 2, 3 (34)

where

A1 = r(z0ω
2 − g)(sin α − √

3 cosα) (35)

A2 = r(z0ω
2 − g)(sin α + √

3 cosα) (36)

A3 = −r(z0ω
2 − g) sin α (37)

B1 = B2 =
√

3

3
ag (38)

B3 =
√

3

6
ag. (39)

Given the bounds on the sine function, the conditions given in Eq. (34) are satisfied
throughout the trajectory if the following conditions are satisfied:

|Ai | < Bi , i = 1, 2, 3. (40)

When inequalities (40) are satisfied, the horizontal trajectory can be performed
while maintaining all cables in tension. Since conditions (40) involve only the geo-
metric parameters of the robot and the global parameters of the trajectory—elevation
z0, amplitude r , horizontal direction α and frequency ω—the parameters can be
adjusted to produce feasible trajectories.

It can also be observed, from Eqs. (35)–(39) that when a frequency of

ωn =
√

g

z0
(41)

is selected, inequalities (40) are always satisfied and arbitrary amplitudes of motion
r can theoretically be produced. This is so because coefficients Bi , i = 1, 2, 3 are
strictly positive quantities and the above frequency makes coefficients Ai , i = 1, 2, 3
equal to zero. This frequency, ωn , can be thought of as a kind of natural frequency
for the robot performing horizontal oscillations. It is remarkable that this frequency
corresponds to the natural frequency of a single cable pendulum of length z0. In
practice, the existence of such a frequency can be exploited in order to maximize
the effectiveness of the robot for lateral motions. Indeed, using this frequency for
periodic horizontal motions guarantees that the cable tensions will always be positive,
for any amplitude of motion r .
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4.3 Circular Trajectories in a Horizontal Plane

Horizontal circular trajectories centred on a point (0, 0, z0) lying on the z axis can
be designed using the following parametric equations:

z = z0, x = r cos(ωt), y = r sin(ωt), z0 > 0 (42)

ż = 0, ẋ = −rω sin(ωt), ẏ = rω cos(ωt) (43)

z̈ = 0, ẍ = −rω2 cos(ωt), ÿ = −rω2 sin(ωt) (44)

where r is the radius of the circle, ω is the frequency of the rotating motion and t is
the time. Substituting the above equations into inequalities (23)–(25) leads to three
inequalities that can be written as

Ci cos(ωt)+ Di sin(ωt)+ Ei > 0, i = 1, 2, 3 (45)

with

C1 = −C2 = √
3r(g − z0ω

2) (46)

C3 = 0 (47)

D1 = D2 = −r(g − z0ω
2) (48)

D3 = r(g − z0ω
2) (49)

E1 = E2 =
√

3

3
ag (50)

E3 =
√

3

6
ag (51)

Clearly, the expressions in Eq. (45) are periodic functions of time. Therefore, in order
to ensure that these expressions are positive definite, it suffices to verify that all their
extrema are positive. The extrema can be found by considering the partial derivatives
of these expressions with respect to t . Substituting the conditions obtained by setting
the partial derivatives to zero in the inequality constraints, a set of twelve conditions
that are independent of time are obtained. The complete derivation is not given here
because of space limitation. However, by inspection of Eqs. (46)–(51) it can be readily
observed that the inequalities of Eq. (45) are automatically satisfied when one has

ω = ωn =
√

g

z0
. (52)

Similarly to what was observed for the straight line trajectories, arbitrarily large
horizontal circles can be traced if the above frequency is used. It is again remarkable
that the special frequency is equal to that of a single cable pendulum. This result
is very useful in practice. Indeed, it makes the trajectory planning of horizontal
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circular motions very simple, if the frequency ωn given above is used. When other
frequencies are needed, then the twelve conditions referred to above can be employed
to determine the combinations of z0, r and ω that lead to feasible trajectories, i.e.,
trajectories that can be performed while maintaining the tension in the cables.

4.4 Circular Trajectories in a Vertical Plane

Trajectories corresponding to circles centred on point (0, 0, z0) and traced in a vertical
plane can be designed using the following parametric equations:

x = r cosβ cos(ωt), y = r sin β cos(ωt), z = z0 + r sin(ωt), z0 > r (53)

ẋ = −rω cosβ sin(ωt), ẏ = −rω sin β sin(ωt), ż = rω cos(ωt) (54)

ẍ = −rω2 cosβ cos(ωt), ÿ = −rω2 sin β cos(ωt) z̈ = −rω2 sin(ωt) (55)

where r is the radius of the circle, ω is the frequency of the rotating motion, β is the
angle defining the orientation of the vertical plane in which the trajectory is embedded
and t is the time. Substituting the above equations into inequalities (23)–(25) leads
to three inequalities that can be written exactly as in Eq. (45) but with

C1 = C2 = r(g − z0ω
2)(

√
3 cosβ − sin β) (56)

C3 = r sin β(g − z0ω
2) (57)

D1 = D2 =
√

3

3
arω2 (58)

D3 =
√

3

6
arω2 (59)

E1 = E2 =
√

3

3
ag (60)

E3 =
√

3

6
ag. (61)

The derivation of the global conditions ensuring the feasibility of this trajectory can
be performed similarly to what was done for the preceding trajectory and a set of
inequalities is obtained. The detailed expressions are not given here because of space
limitations.

Similarly to what was observed above, the special frequency—ωn , defined in
Eq. (52)—appears in the equations. It can be readily shown that if the latter frequency
is used, arbitrarily large vertical circles can be traced as long as they are contained
below the attachment points of the mechanism (spool output points), i.e., as long as
z0 > r .
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4.5 Spatial Trajectories on the Surface of a Cylinder
of Vertical Axis

Trajectories embedded on the surface of a cylinder of vertical axis can be designed
using the following parametric equations:

x = r cos(ω1t), y = r sin(ω1t), z = z0 + h sin(ω2t), z0 > h (62)

ẋ = −rω1 sin(ω1t), ẏ = rω1 cos(ω1t), ż = hω2 cos(ω2t) (63)

ẍ = −rω2
1 cos(ω1t), ÿ = −rω2

1 sin(ω1t) z̈ = −hω2
2 sin(ω2t) (64)

where r is the radius of the cylinder, h is one half of the vertical range of motion,
ω1 is the frequency of the rotating motion, ω2 is the frequency of the vertical oscil-
lation and t is the time. If ω1 > ω2, the resulting trajectory will correspond roughly
to circles going up and down the cylinder whereas if ω2 > ω1, the trajectory will
correspond to a sine wave traced on the vertical cylinder.

Substituting the above equations into inequalities (23)–(25) leads to three inequal-
ities which are not given here because of space limitations. Nevertheless, it can readily
be observed from the expressions obtained that a special frequency for ω1 appears
again in the equations, namely

ω1n =
√

g

z0
. (65)

Then, assuming thatω1 = ω1n and thatω2
2 = kω2

1, it can be shown that the trajectory
will be feasible if the following global condition on the parameters is satisfied:

kh

(
r +

√
3

6
a

)
<

√
3

6
az0 + hr. (66)

4.6 Spatial Spherical Trajectories

Finally, trajectories defined on the surface of a sphere are designed using the following
parametric equations

x = r cos(ω1t) cos(ω2t), y = r sin(ω1t) cos(ω2t), z = z0 + r sin(ω2t) (67)

where r is the radius of the sphere, t is the time andω1 andω2 are frequencies that can
be modulated in order to obtain different types of trajectories. The time derivatives of
the above parametric equations are rather cumbersome and are not given here because
of space limitations. Nevertheless, they are readily obtained through straightforward
differentiation.
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Similarly to what was done for the other trajectories, the above parametric equa-
tions and their time derivatives are substituted into inequalities (23)–(25), which leads
to rather lengthy expressions. However, it can be observed that special conditions on
the frequencies can simplify the conditions greatly. For instance, using

(ω2
1 + ω2

2) = g

z0
and ω2 = kω1 (68)

it can be shown that the trajectory is feasible if the following global condition on the
parameters is satisfied:

ω2
1 <

√
3ag

r
[√

3ak2 + (6 + 6
√

3)z0k + (6 + 6
√

3)rk + (3 + 3
√

3)r
] . (69)

The latter condition can be used to plan spherical trajectories while ensuring that
they are globally feasible.

4.7 Transition Trajectories

The periodic trajectories defined in the preceding subsections do not include points
representing the state of rest, i.e., points of the trajectory where the velocity and
acceleration are both equal to zero. Therefore, in order to start from rest and blend into
one of the proposed periodic motions, transition trajectories are needed. Moreover,
such trajectories can also be used to transit from one generic trajectory to another or
simply to connect different points of the workspace.

The transition trajectories used in this work are obtained by progressively increas-
ing the amplitude of motion—the amplitude of the oscillating motion, or the radius
of the circle, cylinder or sphere—during the first phase of the trajectory, until the
steady-state periodic trajectory is reached. The progressive increase of the amplitude
of the trajectory is obtained using a polynomial. The technique is now briefly demon-
strated for the vertical periodic motion described above. A similar approach is used
for all other types of trajectories. The transition developed here connects an initial
state of rest with the periodic trajectory. It is also possible to use a mirror image of
the transition trajectory to end the periodic motion by connecting it to the state of
rest.

Consider the vertical trajectory described in (26), (27) and (28). The transition
trajectory can be designed as follows:

z = z0 + β sin(ωt) (70)
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in which

β = rU (t), 0 ≤ t < T (71)

β = r, T ≤ t (72)

with
U (t) = 6τ 5 − 15τ 4 + 10τ 3, τ = t

T
(73)

where r and ω are the parameters of the periodic trajectory (chosen to satisfy (30))
and T is the duration of the transition trajectory. When t > T , the periodic trajectory
is used. The polynomial, U (t), introduced here is often used in trajectory planning
to match initial and final positions, velocities and accelerations [11]. Using this
polynomial, the transition trajectory ensures continuity up to the acceleration level,
thereby leading to continuous forces in the cables.

Differentiating (70) twice with respect to time, one obtains

z̈ = −βω2 sin(ωt)+ 2ωr V (t) cos(ωt)

T
+ r W (t) sin(ωt)

T 2 (74)

where

V (t) = 30τ 4 − 60τ 3 + 30τ 2 (75)

W (t) = 120τ 3 − 180τ 2 + 60τ. (76)

Substituting the latter result into (29) then leads to

g + βω2 sin(ωt)− 2ωr V (t) cos(ωt)

T
− r W (t) sin(ωt)

T 2 > 0. (77)

Interval arithmetics can be applied to the expression appearing on the left hand side
of (77) over the interval t ∈ [0, T ] in order to assess its behaviour. Noting that the
sine and cosine functions are bounded in the interval [−1, 1], it is readily found
that the lowest value emin that the above expression can possibly take in the interval
t ∈ [0, T ] is given by

emin = g − rω2 − 15rω

4T
− 10

√
3r

3T 2 . (78)

Referring to (30)—which must be satisfied for the steady-state trajectory to be
feasible—, it is clear that T can always be chosen large enough to ensure that (77) is
satisfied, which demonstrates the feasibility of the proposed transition trajectory. In
practice, however, it may be desirable to determine the minimum value of T that can
be used while satisfying the constraints on the positive cable tensions. To this end, the
time derivative of the expression appearing in inequality (77) is set to zero in order
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Fig. 2 Prototype of a three-
dof spatial cable-suspended
robot

to determine the extrema. The resulting equation can be solved numerically in order
to determine the values of t that correspond to extrema of the function. These values
can then be substituted into (77) in order to determine the smallest value of T that can
be used. Because of the periodic functions appearing in (77), its time derivative will
have infinitely many roots (generally two per period). Therefore, roots can first be
searched for in the interval defined as t ∈ [0, 2π

ω
]. Moreover, good initial guesses are

available by inspection of the intersections between the sine and cosine functions.
The approach described above for the planning of the transition trajectories can

also be applied to the other generic trajectories with similar results.

5 Example Trajectories and Experimental Validation

A prototype of a three-dof spatial cable-suspended robot was built in order to validate
the approach proposed in this paper. The prototype is shown in Fig. 2. The distance
between the cable attachment points on the frame is a = 1.03 m and the mass
of the end-effector is m = 0.196 kg. Three servo-controlled winches are used to
control the length of the cables. Vertical, horizontal, circular, cylindrical and spherical
trajectories were successfully demonstrated with the prototype. Large amplitudes of
motion—bringing the end-effector beyond the static workspace—were produced
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Fig. 3 Three-dimensional representation of the horizontal circular trajectory including the transi-
tion phase

Fig. 4 Cable tensions in Newtons for the example of horizontal circular trajectory, with m =
0.196 kg

using the ‘natural’ frequency, ωn , defined in this paper. Example results are now
presented.
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Fig. 6 Cable tensions in Newtons for the example of spherical trajectory, with m = 0.196 kg

5.1 Horizontal Circular Trajectory

An example of a horizontal circular trajectory is first considered. The following
parameters are chosen: z0 = 2 m and r = 1.2 m (the circle is located beyond the
static workspace). Moreover, the frequency is chosen as ω = ωn = 2.21s−1 and
the transition time is T = 10 s. The resulting motion is illustrated schematically in
Fig. 3, including the transition phase. The tensions in the cables are given in Fig. 4. It
is readily verified that the cable tensions remain positive and continuous at all times.
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5.2 Spherical Trajectory

An example of a spherical trajectory is now shown. The following parameters are
chosen: z0 = 2 m, r = 0.5 m, ω1 = ω1n = 2.21s−1 and ω2 = 0.039s−1 with
a transition time of T = 10 s. The resulting motion is illustrated schematically in
Fig. 5. The tensions in the cables is given in Fig. 6. It is readily verified that the cable
tensions remain positive and continuous at all times. The duration of the trajectory is
180 s but only the first part of the trajectory is shown on the graph of Fig. 6 for better
clarity.

6 Conclusion

In this paper, the performance of dynamically feasible trajectories with a three-dof
spatial cable-suspended robot was investigated. Parametric Cartesian trajectories
were proposed. By substituting these trajectories into the dynamic constraints—the
constraints associated with the unilaterality of the cable forces—global conditions
on the trajectory parameters were obtained. When these inequality conditions are
satisfied, it can be ensured that all cables remain in tension throughout the trajectory.
The advantage of this approach is that the results are global. Hence, there is no
need to verify that the cable constraints are satisfied when performing the trajectory
and no time discretization is necessary. The repertoire of trajectories investigated
in this paper can easily be extended. Moreover, the basic trajectories studied here
can be used as building blocks to construct more complex trajectories. The approach
proposed in this work was validated experimentally on a three-dof prototype and
some sample results are presented in the paper.

Remarkable special frequencies, akin to natural frequencies, were shown to have
interesting properties for several of the periodic motions investigated. By exploit-
ing the dynamic workspace, the approach proposed in this work opens the avenue
for a variety of new applications of cable-suspended robots by allowing them to
work outside of their static workspace. Further experimental investigations and the
application of the technique to six-dof robots is the subject of ongoing work.
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Experimental Validation of a Trajectory
Planning Approach Avoiding Cable Slackness
and Excessive Tension in Underconstrained
Translational Planar Cable-Driven Robots

Alberto Trevisani

Abstract The objective of this paper is providing the first experimental evidence of
the effectiveness of an off-line trajectory planning approach developed to ensure pos-
itive and bounded cable tensions in under constrained planar two-degree-of-freedom
translational cable robots. The hybrid (serial/parallel) topology of the investigated
robot is general enough to ensure wide applicability of the proposed trajectory plan-
ning method, which translates the usual bilateral tensile cable force constraints into
kinematic constraints on the velocity and acceleration of the robot tool center point
along the desired path. Kinematic constraints are computed making use of the robot
dynamic model and can then be incorporated in any trajectory planning algorithm.
In this work a smooth trajectory planning algorithm based on quintic polynomials is
adopted. The experimental setup is presented and the results obtained by applying
the method to two sample paths are discussed.

1 Introduction

One essential requirement that has to be met in cable-direct-driven robots (CDDRs)
is ensuring that tensile cable forces during the motion remain positive and bounded
(i.e. below a maximum permissible tension depending on either the cable physical
features or the actuator size). Such a problem is exacerbated in underconstrained and
cable-suspended robots, where tensioning is provided by gravity (e.g. the Skycam
[1], the RoboCrane [2] and the CSSR in [3]).

Given the importance of avoiding slackness in cables, several works have explic-
itly addressed the problems of predicting cable tensions [4] and workspace bound-
aries [5, 6] or of developing control schemes [7] and trajectory planning strategies
[8] ensuring positive cable tensions during the motion. The techniques proposed to
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date to guarantee positive cable tensions often rely on redundant cables [9]. Such an
approach, however, has major limitations: given the higher number of wires and ac-
tuators, redundant CDDRs usually tend to obstruct the workspace, are more difficult
to design (e.g. cable-interference can be hard to avoid) and more expensive to build
and maintain than non-redundant CDDRs.

In order to overtake these limitations, and to specifically address both bilateral
tensile cable force constraints (i.e. slackness and excessive tension in cables), in [10]
an off-line trajectory planning method has been suggested to a-priori ensure positive
and bounded cable tensions in underconstrained translational planar cable robots.
By making use of dynamics modeling, the method translates the bilateral force con-
straints of the cables into kinematic constraints on the velocity and acceleration of
the tool center point (TCP) along the desired path. Such an approach is here experi-
mentally validated for the first time, by incorporating the kinematic constraints in a
minimum time trajectory planning algorithm based on smooth quintic polynomials,
which are particularly suitable for CDDRs, where the continuity of acceleration pro-
files is of paramount importance to prevent tracking errors and jerky motion due to
cable elasticity. An underconstrained hybrid (serial/parallel) planar two-dof transla-
tional CDDR is studied: such a configuration has some peculiar advantages [10] and
is more general than a purely parallel cable-suspended robot. Contrary to the hybrid
robots presented in [11] and [12] no cable is here directly connected to the links but
they are both connected to the end-effector. Additionally, both the revolute joints of
the serial linkage are passive.

The studied CDDR is discussed in Sect. 2, then in Sects. 3 and 4 the analytical
expressions of cable tensions are computed and employed to get the kinematic con-
straints to be satisfied at the trajectory planning stage. Subsequently, the use of quintic
polynomials is discussed in Sect. 5, while the CDDR prototype and the experimental
results from two different tests are presented in Sects. 6 and 7. Concluding remarks
are finally provided in Sect. 8.

2 The Studied CDDR

The theory presented in this paper is explained and validated experimentally by
applying it to the two-dof CDDR introduced in [10], where cables are combined with
a linkage to produce a lightweight assembly. The CDDR is schematically depicted
in Fig. 1. Table 1 explains the meaning of the symbols adopted in Fig. 1. The CDDR
topology is hybrid, in the sense that the end-effector of the manipulator is driven by
two coplanar cables (parallel topology) and it is also supported by a passive two-link
serial manipulator in order to reduce out of the plane compliance. The end-effector
can therefore translate in a vertical and planar workspace. A subset of the workspace
is the rectangular base polygon shown in Fig. 1. The two driving cables wind around
two motor-actuated pulleys. The studied translational planar two-dof CDDR is hence
underconstrained since cable tensioning at rest can just be provided by gravity. In
consequence of the presence of the passive serial manipulator, static cable tensioning
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Fig. 1 Kinematic scheme of
the planar CDDR with passive
serial-link support
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Table 1 Meaning of the symbols in Fig. 1

{X, Y } Cartesian reference frame with origin at the centroid of the base polygon
{x, y} Coordinates of the tool center point (TCP) of the end-effector
L A, L B Fixed lengths of the base polygon sides
A j Vertices of the base polygon ( j = 1, ..., 4)
Li Length of the i th cable, measured from vertex Ai to the TCP (i = 1, 2)
θi Absolute i th cable angle (i = 1, 2)
βi i th pulley angle (i = 1, 2)
zk Fixed length of the kth link of the serial manipulator (k = 1, 2)
ϕk kth link absolute angle (k = 1, 2)
ϕr

2 Relative angle between link 1 and link 2

is not possible in all the rectangular base polygon, but only in a part of it: the Static
Equilibrium Workspace (SEW, [13]).

The proposed CDDR can approach the objects to manipulate from above, and
leaves a completely unobstructed workspace below the end-effector. Therefore, it
might be suitable for a wide range of industrial manipulations where over-the-belt
mounting is required and also for applications where safe and comfortable man-robot
interaction is needed, as for example in medical rehabilitation.
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3 Computation of Cable Tensions

Cable tensions can be computed through the CDDR dynamic model. A suitable
model has been developed in [10] starting from the one proposed in [9] for a similar
but fully constrained CDDR. Here only the most significant model equations are
recalled, slightly modified in the notation in order to improve clarity. The interested
reader is referred to both the aforementioned references for further details. Henceforth
boldfaced lower-case letters will be used to represent vectors while boldfaced upper-
case letters will be reserved for matrices. The scalars and the entries of vectors and
matrices will instead be denoted with lowercase italic letters.

Let cable elasticity be negligible. The two equilibrium equations for the end-
effector may be stacked in the following matrix form:

fT + fS + pE = Mẍ (1)

where:

• fT is the resultant force exerted by the cables on the end-effector. It can be computed
through the matrix expression fT = Sτ, with τ the vector of the tensions of the
cables and S the pseudostatics Jacobian matrix whose elements are trigonometric
functions of the cable angles [9]. Since the CDDR is underconstrained, S is a square
matrix of order two and the computation of the cable tensions is straightforward;

• fS is the force exerted by the passive serial support on the end-effector, which
varies both in magnitude and direction during the motion;

• pE is the weight force vector applied to the end-effector;
• M is the Cartesian mass matrix of the end-effector;
• ẍ are the Cartesian accelerations of the end-effector (at the TCP).

In [10] it has been proved that when a two-link serial support is employed, it exerts
a reaction force f S which takes the following form:

fS = ISẍ + NS(J
−1
S ẋ)2 + pS (2)

where:

• ẋ and ẍ are the end-effector (TCP) Cartesian velocities and accelerations;
• the elements of the matrices IS and NS depend on the inertial and geometrical

properties of the serial support and on the positions of its links (and hence, in the
end, on the Cartesian position x of the TCP);

• the elements of matrix JS only depend on the lengths and the positions of the links;
• the elements of vector pS account for the position-dependent gravitational effect

introduced by the serial support.

Cable tensions can hence be computed as follows:

τ = S−1
[
(M − IS)ẍ − NS(J

−1
S ẋ)2 − (pS + pE)

]
(3)
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A more compact expression for τ can be obtained by setting B := S−1(M − IS),
C := S−1NS, and d := −S−1(pS + pE):

τ = Bẍ − C
(

J−1
S ẋ

)2 + d (4)

Equation (4) provides a set of two equations explicating the dependence of the
cable tensions on the TCP Cartesian position, velocity and acceleration. Clearly,
in order to get positive and bounded cable tensions, it is necessary that the chosen
trajectory always satisfies the inequality:

0 ≤ Bẍ − C
(

J−1
S ẋ

)2 + d ≤ τmax (5)

where τmax is the vector of the maximum permissible cable tensions.

4 Kinematic Constraints to Trajectory Planning

A useful alternative expression of the inequality in Eq. (5) can be obtained by replac-
ing Cartesian velocities and accelerations with expressions involving the magnitude
and the direction of the velocity vector (which is tangent to the path followed by
TCP) as well as the tangential and centripetal accelerations. Let:

• v and α be respectively the magnitude and the direction of the velocity vector,
• a and γ be respectively the magnitude of the tangential acceleration dv

/
dt , and

the radius of curvature of the path,

there follows that ẋ=
{

v cosα
v sin α

}
and ẍ =

{
a cosα − v2

γ
sin α a sin α + v2

γ
cosα

}T
,

hence, referred to the i th cable (i = 1, 2), Eq. (5) takes the following form:

0 ≤ τi := pi a + (qi
/
γ − ci )v

2 + di ≤ τi max (6)

where:

• ci is the i th row element of vector C
(

J−1
S

{
cosα
sin α

})2

,

• di is the i th row element of vector d,

• pi and qi are the i th row elements of vectors B
{

cosα
sin α

}
and B

{− sin α
cosα

}
.

Based on these definitions:

• di only depends on the robot position. di is the i th cable tension in static conditions,
hence di is always positive in the SEW;

• ci , pi , and qi depend on the robot position and on the velocity vector direction;
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Equation (5) can be translated into four explicit constraints: a lower and an upper
bound for both cable tensions. In turn, cable force constraints can be translated into
kinematic constraints on the velocity and acceleration of the robot TCP along the
path. Two paths typically adopted in industry are addressed here: the straight line
path and the circular path.

4.1 Straight Line Path

In straight line paths, α is constant, the centripetal acceleration is null, and, for each
i th cable (i = 1, 2), the condition 0 ≤ τi can be rewritten in the form pi a ≥ ci v2−di .
Let vlim be the limit TCP velocity along the path (a more descriptive definition of
vlim is provided below). Since di is always positive in the SEW and v is bounded
between 0 and vlim, the maximum values of ci v2 − di only depend on the sign of ci .
Indeed, if ci > 0 max(ci v2 − di ) = ci max(v2)− di = ci v2

lim − di , while if ci ≤ 0
max(ci v2 − di ) = ci min(v2)− di = −di . It is therefore useful to define a function
ui = ui (ci ) only taking two values:

ui (ci ) =
{

ci v2
lim − di if ci > 0

−di if ci ≤ 0
(7)

By means of this new function, the condition 0 ≤ τi , referred to the i th cable,
can be rewritten in the more restrictive form: pi a ≥ ui . If it is possible to choose
an upper bound of the TCP velocity (i.e. vlim, in general not coinciding with the
maximum permissible velocity actually achievable) so that the ui function takes
negative values along the straight line path, the inequality pi a ≥ ui allow getting
positive upper bounds (au

sup) and negative lower bounds (au
in f ) for the acceleration.

As a consequence, as long as v ≤ vlim, it is possible to identify an admissible interval
of the TCP acceleration a (au

in f ≤ a ≤ au
sup) ensuring positive cable tensions along

the whole straight path. The different cases that can be discriminated on the basis of
the sign of pi are reported in Table 2, row 1.

A similar reasoning allows inferring the acceleration bounds introduced by the
constraint on the maximum permissible tension τi ≤ τi max: pi a ≤ ci v2 −di +τi max,
where the sum of the terms −di + τi max is always positive (alternatively, cable
tensions in static conditions would overcome the maximum tensions). The minimum
values of ci v2 − di + τi max only depend on the sign of ci ; it is therefore useful to
introduce the function si = si (ci ) which can only take the following two values:

si (ci ) =
{

ci v2
lim − di + τi max if ci < 0

−di + τi max if ci ≥ 0
(8)

By means of si it is possible to introduce the following more restrictive condition
for permissible tensions: pi a ≤ si . Positive upper bounds (as

sup) and negative lower
bounds (as

in f ) for the TCP acceleration can be computed if si takes positive values
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Table 2 Upper and lower acceleration bounds for positive and bounded cable tensions along a
straight line path

If pi > 0 ⇒ au
in f i = ui

/
ui pi If pi < 0 ⇒ au

sup i = ui
/

pi

au
in f = max(au

in f i ) i = (1, 2) au
sup = min(au

sup i ) i = (1, 2)

If pi < 0 ⇒ as
in f i = si

/
pi If pi > 0 ⇒ as

sup i = si
/

pi

as
in f = max(as

in f i ) i = (1, 2) as
sup = min(as

sup i ) i = (1, 2)
ain f = max(au

in f , as
in f ) asup = min(au

sup, as
sup)

along the straight line path. A suitable vlim value (in general not coinciding with the
one ensuring ui < 0) should be chosen. The different cases that can be discriminated
on the basis of the sign of pi are shown in Table 2, row 2.

In conclusion, once an upper bound vlim is found which ensures both negative ui

and positive si functions, there always exist an upper (asup) and a lower (ain f ) bound
for the acceleration (see Table 2, row 3), guaranteeing that, if the kinematic constraints
ain f ≤ a ≤ asup and v ≤ vlim are satisfied, cable tensions are simultaneously
positive and below the maximum permissible values. In general, asup and ain f are
not constant but vary along the path. They should hence be computed as functions
of a path coordinate (l) by adopting a suitable discretization of the path.

Equations (7) and (8) show that a vlim simultaneously ensuring ui < 0 and si >

0 always exists in the SEW. The choice of vlim has a considerable impact on the
computation of the acceleration bounds and consequently on the minimum traversal
time. An inappropriate choice, may lead to overconservative trajectory planning.
Generally speaking, either a single vlim value holding for the whole SEW (or for a
subset of it) may be used or a different (variable or constant) vlim may be adopted for
each given path. Such a choice is still a matter of investigation and will be addressed
in future works. Admittedly, whichever the choice, as long as ui < 0 and si > 0
positive and bounded tensions are ensured.

4.2 Circular Path

In case of circular paths of the TCP, the seek for kinematic bounds can be done
following an approach almost identical to the one discussed in the previous section.
It is only necessary to apply the reasoning to circular path geometrical and kinematic
parameters: let R be the radius of the path andφ the angular coordinate (0 ≤ φ ≤ 2π),
letα be the direction angle of the velocity vector v, which is now tangent to the circular
path. Hence, α = φ+π/

2 ⇒ φ = α−π/
2, v = Rα̇, a = Rα̈ and Eq. (6) becomes:

0 ≤ τi = pi Rα̈ − R(Rci − qi )α̇
2 + di ≤ τi max (i = 1, 2), which can be split into

two inequalities for each CDDR cable. In particular, by replacing pi R with p∗
i and
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R(Rci − qi ) with c∗
i it is possible to write u∗

i ≤ p∗
i α̈ ≤ s∗

i where

u∗
i =

{
c∗

i α̇
2
lim − di if c∗

i > 0
−di if c∗

i ≤ 0
and s∗

i =
{

c∗
i α̇

2
lim − di + Tmax if c∗

i < 0
−di + Tmax if c∗

i ≥ 0

These definitions of u∗
i and s∗

i should be compared to those in Eqs. (8) and (9): it
is apparent that the considerations made for establishing bilateral constraints on the
acceleration a along a straight line path can be immediately extended to the angular
acceleration α̈. In particular, a limit angular velocity α̇lim needs to be found within
the interval 0 ≤ φ ≤ 2π so that u∗

i < 0 and s∗
i > 0. The dependence of c∗

i on qi

makes it extremely difficult, if not impossible, to find a single α̇lim holding for the
whole SEW, or for a sufficiently wide subset of it. Hence path-specific α̇lim values
should be generally employed.

5 Trajectory Planning with Quintic Polynomials

Let us first denote with l the path coordinate: l̇ and l̈ coincides with respectively v
and a in the case of straight paths, and with α̇ and α̈ in the case of circular paths.
Coherently, henceforth kinematic constraints on velocity and acceleration will be
denoted with the symbols l̇lim, l̈in f , and l̈sup. Any trajectory planning method yield-
ing a trajectory in time l(t)meeting the velocity and acceleration constraints defined
for l̇ and l̈ in either Sect. 4.1 or Sect. 4.2 can assure that cable tensions are always
positive and below the maximum permissible values along the path. Minimun-time
trajectory planning methods should be usually preferred in industrial robotics, since
they allow increasing productivity and minimizing costs. However, since the scope of
this work is proving the effectiveness of the proposed method for avoiding slackness
and excessive tension in cables, a planning method leading to smooth trajectories is
preferred. Quintic polynomial trajectories are adopted for point-to-point planning.
Quintic polynomial trajectories are suitable to CDDR trajectory planning because
they are characterized by continuous velocity, acceleration and jerk profiles. Hence
they are smooth enough not to excite vibrational phenomena induced by cable elas-
ticity. Additionally, minimum-time trajectories can be easily computed. Clearly, the
time computed is not the absolute minimum for a given point-to-point motion [8].

Let us express the path coordinate l through the following polynomial:

l(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + b5t5 (9)

It holds 0 ≤ l ≤ Lt , where Lt is the path length. Let 0 and t f be respectively
the initial and final trajectory time and let impose zero velocity and acceleration at 0
and t f . It is well known that the coefficients satisfying such boundary conditions are:

b0 = 0, b1 = 0, b2 = 0, b3 = 10
(

Lt
/

t3
f

)
, b4 = 15

(
−Lt

/
t4

f

)
and b5 = 6

(
Lt

/
t5

f

)
.

The corresponding trajectory is symmetric with respect to the mean time tm = t f
/

2,
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where the maximum velocity l̇max = 15Lt
/ (

8t f
)

is achieved and the acceleration is
zero. In the first half of the trajectory the acceleration is always positive while in the
second half the acceleration is always negative. As a consequence of the trajectory
symmetry, the maximum acceleration and deceleration are identical in absolute value:

l̈max = 10Lt
/(

t2
f

√
3
)

.

In order to meet both the velocity and the acceleration constraints t f can be chosen

so that l̇max ≤ l̇lim, l̈max ≤ min(min( l̈sup
∣∣ Lt

2
0 ),

∣∣∣∣max( l̈in f
∣∣Lt

Lt
2
)

∣∣∣∣). The minimum travel

time t f can hence be obtained:

t f = max

(√
10Lt

/(
l̈max

√
3
)
, 15Lt

/ (
8l̇max

)
)

(10)

Admittedly, any travel time longer than t f can be adopted without violating the
kinematic constraints: the scaled trajectory l(ts) can be computed by just introducing
the scaled time variable ts defined as ts = t/λ, where λ > 1 is the scaling factor, i.e.
the ratio between the desired travel time td (td > t f ) and t f : λ = td/t f .

6 The Experimental Setup

A picture of the two-cable, two-dof CDDR with passive serial support commissioned
to validate the theory presented above is shown in Fig. 2. The robot is driven by
two Dyneema® cables (Young’s modulus ≈100 GPa, yield stress ≈3 GPa) directly
connected to the free end of the passive serial manipulator. The cables are forced
to pass through the two fixed vertices A1 and A2 (see Fig. 1 and Table 1) at the top
of the base polygon by means of guide pulleys and are wound into screw threads
machined on the drive pulley surfaces. The drive pulleys are directly driven by two
Siemens 1FT6 brushless motors (rated torque 2.15 Nm, maximum torque 10 Nm,
rated speed 3,000 rpm) with Simodrive 611U servodrives. Torque control with analog
interface is the operating mode selected for both the motors. Additionally, TTL 2,048-
line encoder emulation has been chosen to get a direct measurement of motor shaft
position, and hence of the pulley angles βi . The positions of the aluminum links have
instead been measured by two 5,000-line Eltra incremental encoders, one measuring
the absolute rotation of link 1 (ϕ1), the other the relative angle between link 1 and 2
(ϕr

2). The robot trajectory planning and control algorithms have been implemented
in a multitasking controller developed using Simulink models and the XPc target
real time operating system. Measurement Computing PCIM-DDA06/16 and PCI
QUAD/04 boards have been employed to manage signal generation and acquisition.
The trajectory planning strategy implemented in the controller puts into action the
achievements discussed in Sects. 4 and 5, whilst the control algorithm developed is
based on the centralized controller proposed in [9], which makes use of a complete
dynamic model of the CDDR for performing feedback linearization.
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Fig. 2 Prototype of the planar
CDDR

Table 2 collects the chief kinematic and inertial features of the CDDR. L A, L B

and zk , are defined in Table 1, while, coherently with the notation in [10]:

• zGk is the distance of the center of gravity Gk of the kth link (k = 1, 2) from the
origin of vector zk fixed to the link (see Fig. 1)

• mk is the mass of the kth link (k = 1, 2)
• menc2 is the concentrated mass accounting for the presence of the encoder at the

kinematic coupling between link 1 and 2
• I δk is the moment of inertia of the kth link about the orthogonal axis through point δ
• ri is the radius of the i th drive pulley (i = 1, 2)
• Ji is the lumped rotational inertia of the i th drive pulley, also including the moment

of inertia of the rotor and of the brake of the motor
• cvi is the rotational viscous damping coefficient estimated at the i th drive pulley
• M is the mass of the payload (and of the end-effector, if it is present).
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Fig. 3 The load fitted at the
CDDR tip

Fig. 4 The CDDR SEW

In the experiments, a load of mass M has been introduced through a steel disk (see
Fig. 3) pivoting about the thin shaft at the free end of the serial manipulator. The
presence of such a payload makes the SEW take the shape shown in Fig. 4: static
cable tensioning is not possible in all the rectangular workspace but only in the sub
area filled in black.

7 Experimental Results

Two experiments have been carried out. In the first one (T1) the CDDR TCP (assumed
coinciding with the point where cables converge, or, which is the same, with the
intersection point between the axis of the thin shaft at the tip of the serial manipulator
and the plane of motion) is made perform a straight line path in the plane of motion.
In the second experiment (T2) a circular path is executed (Table 3).

Identical maximum permissible tensions τi max have been set for the both the
cables: τi max = 200 N. This is a quite conservative choice coherent with the cable
material properties and the motor deliverable torques.
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Table 3 Physical features of
the CDDR

Parameter Value Units

L A 1.108 m
L B 0.712 m
zk (k = 1, 2) 0.622 m
zG1 0.2741 m
zG2 0.3261 m
m1 2.045 kg
m2 1.793 kg
menc2 0.330 kg
I 0
1 0.23434 kg · m2

I G2
2 0.08005 kg· m2

ri (i = 1,2) 3.8253·10−2 m
Ji (i = 1,2) 6.8414·10−4 kg· m2

cvi (i = 1,2) 0.4·10−4 N· m· s
M 1.977 kg

In both the experiments, the planned TCP Cartesian displacements and velocities
have been compared with the actual TCP displacements and velocities computed by
direct kinematics from the joint displacements measured by the two encoders fitted
on the serial manipulator. Such measurements are not affected by cable elasticity
as would be those based on motor encoder recordings. An accurate tracking of the
desired trajectory by the CDDR TCP is by itself a proof that proper cable tensioning
has been ensured along the whole path. In particular, it is apparent that significant
discrepancies would arise in case one or both cables were slack.

Estimates of cable tensions along the paths have been inferred (and plotted)
from the torque measurements provided by the motor drives. Such estimate con-
firm that cable tensions are safely kept within the desired bounds in both the
experiments.

7.1 Test 1 (T1): Straight Line Path

A straight line path between two generic points in the SEW has been first executed.
The starting point coordinates in the reference frame {X , Y } are (0, −0.554 m).
The ending point coordinates are (0.3, 0.046 m). Hence, the length Lt of the path is
0.6708 m. The limit velocity l̇lim selected to ensure ui < 0 and si > 0 is 1.5 m/s,
from which bilateral constraints l̈in f and l̈sup have been computed as functions of
l. Such kinematic constraints are shown in Fig. 5 (thin lines), where the planned
velocity and acceleration profiles are also plotted (bold lines). The most stringent
constraint is l̈in f (l̈in f = −4.32 m/s2) close to the end of the path (l = 0.626 m).
The minimum traversal time t f achievable with such an l̈in f is 0.95 s. The CDDR
position tracking capability can be evaluated in Fig. 6, where, in the two plots at the
top of the figure, the planned TCP Cartesian displacements are compared with the
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Fig. 5 T1: Velocity and acceleration constraints and planned profiles

Fig. 6 T1: Comparison between planned and actual Cartesian displacements

actual displacements. The resulting tracking errors along each axis are shown in the
two plots at the bottom of Fig. 6. Tracking velocity capabilities can instead be ap-
preciated in Fig. 7, where the planned and actual TCP velocities are plotted. Finally,
the measured motor torques and the estimated cable tensions are shown in Fig. 8,
respectively in the two plots at top and at the bottom of the figure. It is apparent that
all the physical constraints involving cable tensions motor torques are satisfied. As
it was expected the tension in one cable (cable 2) tends to take a minimum value
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Fig. 7 T1: comparison between planned and actual Cartesian velocities

Fig. 8 T1: Numerical and experimental motor torques and cable tensions

close to zero when the TCP approaches the end of the path (see the l̈in f constraint
in Fig. 5): it is intuitive that the upwards motion of the TCP makes the end-effector
deceleration phase much more critical, in terms of cable tensions, than the accelera-
tion phase. Additionally, in Fig. 8 experimental cable tensions and motor torques are
compared with simulated outcomes to prove the accuracy of the underlying dynamic
model.
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Fig. 9 T2: Velocity and acceleration constraints and planned profiles

7.2 Test 2 (T2): Circular Path

The center of the circular path is at point (0.1, −0.1 m) in the reference frame {X,Y }
while the circle radius R is 0.1 m. Hence, the length Lt of the path is 0.6283 m. The
starting point is at (0.25, −0.1 m) and motion direction is counterclockwise.

The limit angular velocity l̇lim selected for the path is 4 rad/s, which is slightly
below the value concurrently satisfying u∗

i < 0 and s∗
i > 0 along the whole path.

The resulting bilateral constraints l̈in f and l̈sup on the angular acceleration α̈ take
the shape shown in Fig. 9 (thin lines). It is apparent that the velocity constraint is the
most stringent one. The minimum traversal time t f achievable with such an l̇lim is
2.94 s, the corresponding velocity and acceleration profiles of the trajectory planned
are shown in Fig. 9 too (bold lines). At the top of Fig. 10 the planned TCP Cartesian
displacements are compared with the actual displacements while tracking errors are
plotted at the bottom of the same figure. Planned and actual TCP velocities are shown
in Fig. 11, while the measured motor torques and the estimated cable tensions are
shown in Fig. 12. Also in this test, the physical constraints in terms of cable tensions
and motor torques are satisfied.

8 Conclusions

Lack of cable redundancy in underconstrained cable-driven robots makes keeping
positive and bounded cable tensions a critical issue. In this paper an approach is
discussed and validated experimentally which translates such requirements into kine-
matic constraints to be met by the TCP trajectory at the planning stage. The computa-
tion of the constraints accounts for robot dynamics: basically, the method leads to the
definition of bounds on the first and second derivatives of the TCP path coordinate.
If the robot trajectory planner allows managing trajectories defined in terms of a
path coordinate and with constraints on both velocity and acceleration, the proposed
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Fig. 10 T2: Comparison between planned and actual Cartesian displacements

Fig. 11 T2: comparison between planned and actual Cartesian velocities

method ensures that cable tensions neither drop to zero nor exceed the maximum
permissible tension during the motion. Clearly, the robot controller must also en-
sure limited tracking error, which is however a conventional specification. Given the
kinematic constrains, minimum time trajectories should be chosen, yet this aspect is
marginally discussed being out of the paper scope.

A two-dof fully actuated hybrid planar cable robot has been used to introduce
many of the aspects of the proposed method; nonetheless, it is believed that the
concepts and the approach can be extended to more general and complex systems.
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Fig. 12 T2: Motor torques and cable tensions
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Time-Energy Optimal Trajectory Planning
of Cable-Suspended Manipulators

Mahdi Bamdad

Abstract This paper addresses the problem of time-energy optimal control of cable
robot with the trajectory planning as the overall mission. The final dynamic equa-
tions were organized in a closed form similar to serial manipulator equations. Thus,
employing the Pontryagin maximum principle, it was verified that the optimal
motions are all bang–bang controls with bounded control torque on the winches. This
consists of minimizing a cost function, considering dynamic equations of motion as
well as bounds on joint torques. Here, the cost function was chosen as a weighted
balance of traveling time and mechanical energy of the actuators. The approaches
of solving concrete optimal control laws based on Two-Point Boundary Value Prob-
lems were provided in this paper and the algorithm was tested in simulation yielding
acceptable results.

1 Introduction

In large scale industries, i.e. material handling, the RoboCrane is known as one of
the earliest works in cable-driven manipulators. Having been developed based on
the Stewart platform parallel link manipulator, it provides precise six degree of free-
dom control of loadsy [1]. In long reach industrial robotics, one wants to generate
a continuous intersection-free motion of the robot manipulator connecting the two
given points of the workspace. The resulting motion along the planned path must be
consistent with the dynamic equations of the system and the other constraints acting
on the mechanical system. Therefore, optimal time-energy has been an important
performance index in industrial application that require saving energy. Nonethe-

M. Bamdad (B)
Mechatronic Research Laboratory, College of Mechanical Engineering,
Shahrood University of Technology, Shahrood, Iran
e-mail: Bamdad@shahroodut.ac.ir

T. Bruckmann and A. Pott (eds.), Cable-Driven Parallel Robots, 41
Mechanisms and Machine Science 12, DOI: 10.1007/978-3-642-31988-4_3,
© Springer-Verlag Berlin Heidelberg 2013



42 M. Bamdad

less, to keep smooth trajectories, trajectory planning should include the energetic
criteria [2].

Amongst all the trajectory planning techniques proposed in the scientific litera-
ture, minimum-time algorithms were the very firsty [3–5]. What has been a multi-
dimensional control problem has turned into a bi-dimensioanl one. The manipula-
tor dynamics is described and input torque/force constraints are taken into account
using parametric functions which represent geometric path constraints to be satis-
fied. Finally, the minimum-time solution for the optimal path tracking problem is
found using phase plane techniques [3–5]. In most of the motions optimization has
focused on minimizing motion time of manipulators, the control inputs are physically
unrealizable due to the typical discontinuities at the switching times [4].

Previous efforts for solving the energy optimization problem include a dynamic
programming search in the state space for point to point motions [7] and for motions
along specified paths [8, 9].

Cable driven manipulator motions are investigated in several dynamical criteria
[10]. Much of this prior work aims to minimize the execution time of a desired
trajectory, which often adversely affects energy efficiency [11–13]. Meanwhile, in
[14] experimental results on a three cable robot show substantial reductions in energy
consumption as compared to linear trajectories.

The time-optimal trajectory-planning is studied on a high-speed cable-based par-
allel manipulators for a given geometrical Path [12] and the results of this technique
are evaluated experimentally. In a relevant study [13], time optimal trajectory tracking
of spatial cable suspended robots is addressed. Both cable tensions and cable veloc-
ities are considered to be limited [13]. The method was similar to that described
in [4] by assuming bang–bang control, also based on the concepts of characteristic
switching points and limit curves.

This paper considers a time-energy cost function. The representative work can be
found for articulated systems moving along specified paths [15]. The cable suspended
manipulators are studied providing a background on dynamic analysis. Consequently,
since [3, 4] ignored the issue of singular control, assuming bang–bang acceleration
along the path, in this work a more general necessary condition for singular con-
trol is given. The state constraints are solved by determining the upper and lower
bounds. Using the Pontryagin’s Minimum Principle (PMP), the optimal trajectory is
shown to be continuous in smooth velocity profiles. The optimal trajectory is com-
puted by numerically solving a two point boundary value problem and the method
is demonstrated numerically for a 6 DOF spatial cable manipulator.

2 Kinematic and Dynamic modeling

In a general model of a cable-suspended with m cables, the motion of the end effector
x = [x, y, z, θx , θy, θz]T can be derived from the Newton–Euler equation [10, 16].
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D(x)ẍ + C(x, ẋ)+ g(x) = −J T T (1)

where D(x) is the inertia matrix, C(x, ẋ) is the vector of velocity terms and g(x)
is the gravity vector. The conventional parallel manipulator Jacobian J is defined
as the matrix that transforms the end-effector velocity in the inertial coordinates to
the joint rates of the actuator. The vector of cable lengths and cable tensions are
q = [l1, l2, . . . , lm]T , T = [T1, T2, . . . , Tm]T respectively.

Let� be the set of the admissible control torques. The optimization problem is to
find the control U ∈ �which limit the motor torques. Here, the optimization method
would take into account the complete system dynamics and all the constraints. The
combined dynamic effects of the motor, the cable pulley and the end effector resulted
in manipulator dynamic modeling.

D(x)ẍ + C(x, ẋ)+ g(x) = 1

r
J T (Uvel − U ) (2)

Uvel = JAβ̈ + CAβ̇

where JA and CA are diagonal matrices with rotational inertia and rotational viscous
damping coefficients [17]. The vector of pulley angles with pulley radii r is denoted
by β. The dynamic equation is organized in a typical closed form

Deq(x)ẍ + Ceq(x, ẋ)+ Geq(x) = −J T U (3)

where

Deq(x) = r D(x)+ 1

r
J T JA J

Ceq(x, ẋ) = rC(x, ẋ)+ 1

r
J T JA

d J
dt

ẋ + 1

r
J T CA J ẋ (4)

Geq(x) = rg(x)

The equations are rewritten as an equivalent system and the state variables repre-
sent the system’s displacements and velocities.

X = [X1 X2]T = [x ẋ]T (5)

Equation (5) can be rewritten in state space form as

Ẋ = [
Ẋ1 Ẋ2

]T = [X2 N (X)+ Z(X)U ]T (6)

where N ∈ Rm and Z ∈ Rm×m.

N (X) = −D−1
eq (x)

(
Ceq(x, ẋ)+ Geq(x)

)
(7)

Z(X) = −D−1
eq (x)J T
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The vector x(s) represents the position and the orientation of the moving frame
along path and s is the path parameter.

x(s) = F (s) = [ f1(s), f2(s), f3(s), f4(s), f5(s), f6(s)]T (8)

A trajectory is completely determined by the initial state of the robot (position and
velocity) and subsequent sequence of accelerations. The velocities and accelerations
as functions of the parameter s and its time derivatives (prime denotes s derivative)
can be obtained as

Ẋ =
[

f ′ṡ f ′′ṡ2 + f ′s̈
]T
, s̈ =

(
dṡ

ds

)
ṡ (9)

The dynamic model is rearranged in the following manner to show along the
path [13].

3 Formulation of Energy Efficient Problem

In order to increase the manipulator performances, it is highly desirable to control the
dynamic system taking into account technological, geometrical and environmental
constraints as well as any other constraints inherent both to the robot design and
to the nature of the task to be executed. The actual DC motor is not a loss-less
transducer, having resistance at the rotor windings, and the commutation mechanism.
The actuator torque as the realistic constraints posed a limitation on motion. The
dynamic equilibrium should be maintained during the whole motion; therefore, there
must only be a positive force in the cables.

In the permanent magnet DC motors, the torque U is in general proportional to
the current I flowing to the rotor windings.

U = KT I (t) (10)

The energy loss associated with executing a trajectory can be found by integrating
the loss over the duration of the trajectory.

E = KT
2 R

∫ t f

t0
‖U (t)‖2∂t (11)

The torque speed characteristic curves of such DC motors may be represented by
linear equation and the bounds on the control input, U−and U+ are

U+ = K1 − K2β̇

U− = −K1 − K2β̇ (12)
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where K1 = [τs1 τs2 · · · τsm]T, K2 = dig [τs1/ω1 · · · τsm/ωm] , τs is the stall torque
and ω is the maximum no load speed [10].

4 Optimality Equations

The Hamiltonian function of the problem is determined and then PMP derive the
optimality conditions. The optimal solution (indicated here by ∗) must satisfy the
following conditions

Ẋ
∗ = ∂H/∂ψ (13)

ψ̇∗ = −∂H/∂X (14)

H(X∗,ψ∗,U∗) ≤ H(X∗,ψ∗, Ū ). (15)

where U∗ is optimal control and Ū is all admissible control and ψ = [
ψT

1 ψT
2

]T

is the vector of costates.
The performance index now looks like

Minimize
U (t)

J0 =
t f∫

t0

L(X,U, t)dt (16)

where
L(X,U, t) = 1 + ε2

(
‖X1‖2

W1
+ ‖X2‖2

W2
+ ‖U‖2

R

)
. (17)

Integrand L (.) is a smooth, differentiable function in the arguments, ||X||2K =
XTKX is the generalized squared norm, W1 and W2 are symmetric, positive semi-
definite (m×m) weighting matrices and R is symmetric, positive definite (m×m)
matrices. The time-energy objective function consists of an ε-weighted combination
of the time. The state departs from the initial conditions and reaches the terminal
conditions at the unspecific terminal time.

The objective function provides the possibility for the designer to decide on the
state priority and torque control efforts by the numerical choice of W1, W2, and R.
These matrices can be used to convert the dimensions of the terms to consistent units
and the Hamiltonian function is defined as

H(X, U,ψ) = L(X,U, t)+ ψT
1 X2 + ψT

2 [N (X)+ Z(X)U ] . (18)

The optimality conditions can be obtained by differentiating the Hamiltonian
function with respect to states, costates and control as follows

[
Ẋ1 Ẋ2

]T = [X2 N(X) + Z(X)U]T (19)
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[
ψ̇1 ψ̇2

]T = − [∂H/∂X1 ∂H/∂X2]T (20)

ε2 RU + Z Tψ2 = 0. (21)

For the cable driven robots there must always be positive torque in the system, so
the lower bound must be greater than zero. Unlike the manipulators that have their
motors work in a symmetric bound, these could be efficient only in the positive bound
of the motor limitation. Control values are limited with upper and lower bounds, so
using Eq. (21) the optimal control is given by

U =

⎧
⎪⎨
⎪⎩

U+ −R−1 Z Tψ2 > U+

− R−1 Z Tψ2
ε2 U− < −R−1 Z Tψ2 < U+.

U− −R−1 Z Tψ2 < U−
(22)

The non-saturating actuator torques governed by the control law shall set the
platform in motion from point-to-point along a prescribe path with minimal time-
energy cost. In this formulation, the differential equations are used to determine
the state and costate variables. The set of differential equations Eqs. (19) and (20),
the control law, and the boundary conditions construct a standard form of Two Point
Boundary Value Problem (TPBVP). The algorithm iterates on the initial values of the
costate until the final boundary conditions are satisfied. The used function produces a
solution that is continuous on workspace area in duration of the motion. The standard
form of TPBVP by MATLAB command is supplied. Bvp4c is a finite difference code
that implements the 3-stage Lobatto IIIa formula. This is a collocation formula and
the collocation polynomial provides a C1-continuous solution that is fourth-order
accurate uniformly in the interval of integration. Mesh selection and error control
are based on the residual of the continuous solution. The collocation technique uses
a mesh of points to divide the interval of integration into subintervals.

The algorithm will be repeated awaiting the desired degree of accuracy in TPBVP
solving:

1

2

∥∥X1(t f )− X1 f
∥∥2

Wp
+ 1

2

∥∥X2(t f )− X2 f
∥∥2

Wv
≤ δ (23)

The component of Wp and Wv can be changed for achieving the relative impor-
tance of position and velocity errors of end effector during the trajectory. The final
error obtained must be less than the desired accuracy δ. The points of the initial mesh
as well as an initial approximation of the solution should be provided. If the solution
does not satisfy the tolerance criteria, the algorithm adapts the mesh and repeats the
procedure.
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Fig. 1 A spatial 6-cable-
suspended manipulator

Table 1 Simulation
parameters for actuators

Value Parameter

Pulley radius r = 5 × 10−2 m
Motor shaft viscous damping coefficient c = 0.02 N.m.s
Lumped actuator rotational inertia J = 10−3 Kg.m2

Stall torque γstall = 410 oz.in
Maximum no-load speed ωm = 3211 rpm

5 Simulation Studies

In this section, a three-dimensional manipulator with six cables is considered. The
end effector is kinematically constrained by maintaining tension in all six support-
ing cables. The suspended movable platform and the overhead support are typi-
cally two equilateral triangles shown in Fig. 1. The penalty matrices are W1 = [0],
W2 = [0] and R = diag(1). The initial and terminal configuration is given
X10 = [−0.1,−0.1, 1.5, 0, 0, 0] and X1 f = [0.1, 0.1, 1.8, 0, 0, 0] respectively, and
the states are constant (X20 = X2 f = [0]).
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Fig. 2 The endpoints of a
specified path
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Fig. 3 The endpoints of a
specified path

−0.1 −0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

s (m)

s⋅  (
m

/s
)

ε=1.00 ε=0.2

ε=0.04

Time Optimal ε=0.005
ε=0.01

The side lengths, base and movable platforms are 0.6 m. Motor is a brush com-
mutated DC motors (Pittman 14207S007). The characteristics of the winches have
been presented in the Table 1.

In the proposed algorithm, desired accuracy is δ = 0.01 and Wp = Wv =
diag(1). The payload attached to movable platform is 22.9 Kg. The motion planning
is applied from point-to-point along a prescribe path illustrated in Fig. 2.

In Fig. 3 the path velocity function of path parameter for various values of ε is
shown. In phase plane, the path velocity at each point along the path increase as ε is
reduced. By reduction to zero, the minimum time velocity profile is reached.

The required torque for all 6 motors to carry the maximum payload is shown in
Fig. 4. The upper limits of motor torque are presented with dashed lines. It can be
shown that decreasing εmakes more required torque and the curves lay on their own
saturation limit.

One of the key points in cable robots is that, the cable forces should always be
positive. Due to optimization procedure, the cable forces for ε = 1.00 is displayed in
Fig. 5. The demonstration of tensionability in results can be used as a proof for con-
straint consistency which leads to the appropriateness of the control motor torques.
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Fig. 4 All Motor torques versus time for ε = 0, 0.01, 0.20, 1.00

6 Conclusion

The motion planning problem for cable-suspended parallel manipulators is investi-
gated via a computational algorithm on the basis of the optimal control approach.
Hence, the optimal traveling time and the minimum mechanical energy of the actu-
ators are considered together. The physical constraints in this optimization matter
include input force/torque constraints. The algorithm in the present work has been
out-lined, which covers the formation of manipulation mechanism functional move-
ments and calculation of driving torques and all relevant energy parameters that are
necessary for the adequate choice of the actuation system.
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Fig. 5 Cable tensions versus
time for ε = 1.00
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The optimal solutions with bang–bang controls are found by solving the corre-
sponding nonlinear TPBVP. The complete form of the obtained nonlinear dynamic
equations of the motion is used, and the procedure is capable to determine the
states, costates, and the switching functions with a high numerical accuracy. The
strategy cause the motors operated with the maximum torques to change direc-
tions at the switching time. In the simulation section the optimal trajectories for a
6-cable spatial manipulator are described in detail. With minimal time-energy cost,
the non-saturating actuator torques governed by control law determines a point-to-
point motion along a prescribe path.
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Navigating the Wrench-Feasible C-Space
of Cable-Driven Hexapods

Oriol Bohigas, Montserrat Manubens and Lluís Ros

Abstract Motion paths of cable-driven hexapods must carefully be planned to
ensure that the lengths and tensions of all cables remain within acceptable limits,
for a given wrench applied to the platform. The cables cannot go slack—to keep the
control of the platform—nor excessively tight—to prevent cable breakage—even in
the presence of bounded perturbations of the wrench. This paper proposes a path
planning method that accommodates such constraints simultaneously. Given two
configurations of the platform, the method attempts to connect them through a path
that, at any point, allows the cables to counteract any wrench lying inside a prede-
fined uncertainty region. The resulting C-space is placed in correspondence with a
smooth manifold, which allows defining a continuation strategy to search this space
systematically from one configuration, until the second configuration is found, or
path non-existence is proved by exhaustion of the search. The approach is illustrated
on the NIST Robocrane hexapod, but it remains applicable to general cable-driven
hexapods, either to navigate their full six-dimensional C-space, or any of its slices.
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1 Introduction

In recent years, cable-driven parallel mechanisms have been increasingly studied and
applied to more and more relevant tasks, such as manipulation of heavy loads [7, 20],
high-precision positioning [18], monitoring of aquatic environments [4, 13], auto-
mated construction of civil structures [5], rescue systems [19], or motion simulators
[28], among others. Their generally simple design, consisting of a moving platform
connected to a fixed base by means of cables that wind up on winches, results in
manipulators with low weight but high load capacity. These advantages, together with
the fact that they can usually achieve larger workspaces than their counterparts with
rigid-limb legs, make cable-driven manipulators very energy-efficient and appropri-
ate to maneuver heavy loads. However, additional constraints apply: their cables can
pull but are unable to push the platform, which obliges to keep the tensions in all
cables positive during normal operation.

The workspace of a cable-driven manipulator is limited by a number of hyper-
surfaces where the control of the manipulator is compromised [29], corresponding
to configurations where the tension of some cable is either zero, for which the cable
goes slack and control of one degree of freedom is lost, or goes to infinity, which
indicates that the mechanism is on a singular configuration and the cable can break. In
practice, it is important to prevent both extreme situations, and ensure that the cables
work within a predefined range of admissible tensions for a given wrench applied
on the platform, subject to bounded perturbations in all directions. Several authors
have proposed strategies for the determination of wrench-feasible workspaces [6,
12, 23, 27, 29, 30], but the problem of planning paths between two configurations in
such spaces has not been intensively studied. Some algorithms exist that try to avoid
the singular configurations where forces tend to infinity, but they are mainly tailored
to classical Stewart platforms with UPS legs [2, 9, 10, 26], and their application
to cable-driven manipulators is not straightforward because they do not account for
the positivity constraint on the leg tensions. Moreover, these algorithms measure
the clearance of the path relative to the singularity locus using the determinant or
the condition number of the Jacobian matrix, which, as noted in [31], lack physical
significance. While some approaches indeed exist for cable-driven manipulators [11,
15, 17], the path they compute is evaluated for feasibility at discrete points only, and
the fulfillment of all constraints along the whole path is not guaranteed.

This paper provides a method for planning paths on the wrench-feasible C-space of
cable-driven hexapods, also called tendon-based Stewart platforms. This C-space is
defined following the spirit of [6], as the one that results from only allowing wrench-
feasible configurations; i.e., those on which the cable tensions remain within the
allowed limits, for any platform wrench belonging to a prescribed six-dimensional
region (Sect. 2). The method relies on defining a system of equations whose solution
manifold corresponds to the wrench-feasible C-space of the hexapod, so that maneu-
vering through such manifold guarantees singularity avoidance at all times, while
maintaining cable tensions and lengths within their allowable bounds (Sect. 3). This
manifold, as well as any of its slices obtained by fixing some of the pose parameters,
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can be proved to be smooth everywhere, which allows defining a systematic higher-
dimension continuation strategy to explore the manifold from a start configuration,
until a path to a goal configuration is found, or path non-existence is proved (Sect. 4).
The approach has been implemented and validated on several experiments (Sect. 5),
and points for future attention have been identified (Sect. 6).

2 Problem Statement

A cable-driven hexapod consists of a moving platform suspended from a fixed base
by means of six cables, winding around independent winches (Fig. 1). When all
cables are in tension, which can be achieved by the action of gravity, their lengths
determine a locally unique pose for the platform, so that it is possible to control the
six degrees of freedom of the platform by actuating the winches.

Let O XY Z and P X ′Y ′Z ′ be fixed and moving reference frames respectively
attached to the base and the platform (Fig. 1). Any configuration of the platform can
be uniquely represented by a pair q = ( p, R) ∈ SE(3), where p = [x, y, z]T is
the position vector of point P in the fixed frame, and R is a 3 × 3 rotation matrix
providing the orientation of P X ′Y ′Z ′ relative to O XY Z . However, the entries of
R are not independent, since they must define an orthogonal matrix of positive
determinant. Such a constraint can be defined in a variety of ways, e.g. by establishing
appropriate dot- and cross-product equations on the columns of R, but more intuitive
representations of the orientation are obtained when three-parameter expressions for
R are adopted. Due to its attractive properties, we will use here the parameterization
provided by tilt-and-torsion angles [16], τ = {φ, θ, σ }, for which

R = Rz(φ) Ry(θ) Rz(σ − φ), (1)

but any other parameterization could be used if desired.
In practice, not all configurations can be reached, because the cable lengths ρi are

constrained to lie within the range (ρi , ρi ) of allowable values, with ρi > 0. Thus,
if ai and bi denote the position vectors of the anchor points Ai and Bi of the i th leg
(Fig. 1), expressed in O XY Z and P X ′Y ′Z ′ respectively, and ui is the vector Bi − Ai

expressed in O XY Z , the configuration will only be valid if it satisfies

p + Rbi − ui − ai = 0, (2)

uT
i ui − ρ2

i = 0, (3)

with
ρi ∈ (ρi , ρi )

for i = 1, . . . , 6.
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Fig. 1 A cable-driven hexa-
pod. The platform is main-
tained under a stable position
due to the action of gravity
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Additionally, any configuration must be wrench-feasible, in the sense that it must
allow the platform to equilibrate any external wrench ŵ acting on it, subject to
lie inside a prescribed six-dimensional region W ⊂ R

6. The significance of W
depends on the particular context of application but, typically, W is determined by the
gravitational wrench ŵ0 acting on the platform, and by bounds on the perturbations
introduced by inertia forces or external agents like the wind, for instance. Specifically,
the wrench-feasibility requirement on a given q implies that for each wrench ŵ ∈ W
there must be a vector

f = [ f1, . . . , f6]T ∈ D = ( f1, f1)× · · · × ( f6, f6)

of cable tensions satisfying
J(q) · f = ŵ,

where J(q) is the 6 × 6 screw Jacobian of the manipulator at q, and ( fi , fi ) is the
range of cable tensions that can be resisted by the i th cable, with fi > 0. Here, ŵ,
ŵ0, and J(q) will be assumed to be given in a frame P XY Z centered in P and
parallel to O XY Z , although any other frame could be assumed if desired, and W
will be a six-dimensional ellipsoid defined as

(ŵ − ŵ0)
T E (ŵ − ŵ0) ≤ 1,

where E is a constant 6 × 6 positive-definite symmetric matrix. In practice, this
ellipsoid can be constructed by propagating known bounds on other variables related
to ŵ, using the tools of an ellipsoidal calculus [24], for example.

Now, let us define the wrench-feasible C-space of the manipulator, C , as the set of
q ∈ SE(3) for which the platform is able to counteract all ŵ ∈ W with ρi ∈ (ρi , ρi )
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and f ∈ D . Given two configurations in C , q1 and q2, the goal of this paper is to
provide an algorithm for computing a path on C connecting them, if one exists, or
to determine path non-existence otherwise. To this end, we next define a system of
equations that are suitable to compute such path using a continuation approach.

3 Equations of the Wrench-Feasible C-Space

Let f 0 be the vector of cable tensions corresponding to a given ŵ0 ∈ W , i.e.,

J(q) · f 0 = ŵ0. (4)

By noting that J(q)( f − f 0) = ŵ − ŵ0, it is easy to see that, for a given q, the set
F (q) of cable tensions f corresponding to all ŵ ∈ W is the ellipsoid given by

( f − f 0)
T B ( f − f 0) ≤ 1,

where B = J(q)T E J(q). This ellipsoid will be bounded in all directions or
unbounded in some, depending on whether det (J(q)) �= 0 or not. However, it
is not difficult to see that J(q) is non-singular for all q ∈ C (Appendix A), so that
F (q) will always be a bounded ellipsoid in our case.

Now, for q to be wrench-feasible, we must have F (q) ⊆ D , which can be checked
as follows. For each i = 1, . . . , 6, let vi ∈ R

6 be a vector satisfying

vT
i B vi = 1

Bivi = 0

}
, (5)

where Bi stands for the matrix B with its i th row removed. Observe that if J(q)
is non-singular, then B and Bi are full row rank, and if the i th component of vi ,
vi,i , is chosen non-negative, then there is exactly one vector vi satisfying Eq. (5).
Using Lagrange multipliers, it can be shown that, for the solutions vi of Eq. (5) with
vi,i ≥ 0, f 0 − vi and f 0 + vi are the vectors in F (q) attaining the smallest and
largest value along the i th coordinate. Hence, when det (J(q)) �= 0, F (q) ⊆ D if,
and only if,

f0,i − vi,i > fi ,

and
f0,i + vi,i < fi ,

for i = 1, . . . , 6. These two conditions are equivalent to imposing

( f0,i − vi,i − fi ) · si = 1, (6)

( fi − f0,i − vi,i ) · ti = 1, (7)
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together with the inequalities si ≥ 0, and ti ≥ 0, where si and ti are newly-defined
auxiliary variables. Looking at the first equation, for instance, it is clear that neither
f0,i −vi,i − fi nor si can be zero, so that for any si ≥ 0, it will always be f0,i −vi,i > fi

as desired. In a similar way, the cable-length constraints ρi ∈ (ρi , ρi ) are equivalent
to imposing

(ρi − ρi ) · (ρi − ρi ) · gi = 1, (8)

in conjunction with the inequality constraint gi ≥ 0 acting on the new variable gi .
At this point, let us consider the system formed by Eqs. (1–8), which we will write

compactly as
F(x) = 0, (9)

where x refers to an nx -vector encompassing all of its variables, and let us distinguish
between the solution set of Eq. (9),

M = {x : F(x) = 0},

and the set

M + = {x ∈ M : vi,i ≥ 0, si ≥ 0, ti ≥ 0, gi ≥ 0, for i = 1, . . . , 6}.

Note that every configuration q ∈ C has a corresponding point x ∈ M + and,
conversely, each point in M + projects down to one q ∈ C . Moreover, any continuous
path in C will also be represented by a continuous path in M + and viceversa, so
that the original problem of computing a wrench-feasible path in C from q1 to q2
can be reduced to that of computing a path in M + connecting points x1 and x2
corresponding to q1 and q2.

Two properties can be exploited regarding the structure of M and M + (Appendix
A), which allow to apply a continuation strategy to connect x1 and x2 using Eq. (9).
It is easy to see, first, that vi,i , si , ti , and gi never vanish on M , so that there does
not exist any path traversing from M + to its complement M \M +. Thus, if x1 and
x2 are chosen with positive values for vi,i , si , ti , and gi , then any continuous path on
M connecting x1 and x2 will entirely lie on M +, and it will correspond to a path
on C therefore. In other words, when trying to connect x1 and x2 by continuation
on M , the positivity constraints on vi,i , si , ti , and gi will be implicitly fulfilled,
and they can be safely neglected. Second, it can be shown that M , and in particular
M +, is a six-dimensional smooth manifold everywhere, so that every point x has a
well-defined tangent space TxM , which facilitates the application of the following
continuation strategy to connect x1 and x2, because no bifurcations, sharpnesses, or
dimension changes will be found when traversing M .
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Fig. 2 The higher-dimensional continuation method applied to a 2-dimensional manifold in R
3

4 Exploring M for a Connecting Path

To determine a path on M connecting two points x1 and x2 we can gradually
construct an atlas of M , i.e., a collection of charts where each chart Ci defines a local
map from a domain Pi ⊂ R

6 to an open set of M around a point xi ∈ M , initially
x1. The atlas will be computed using the higher-dimensional continuation approach
proposed in [14], which defines the local map for chart Ci using Ψi , an orthonormal
basis of Txi M . The map is defined by first selecting a vector ui

j ∈ R
6 of parameters

(Fig. 2, left), which is used to generate a point xi
j ∈ R

nx in the neighborhood of xi ,

using xi
j = xi+Ψi ui

j . Then, a point x j ∈ M corresponding to the projection of xi
j on

M is computed, by solving the system formed by F(x j ) = 0 and Ψ T
i (x j − xi

j ) = 0

using a Newton method initialized at xi
j .

Each point x j is the potential center of a new chart (Fig. 2, right), and a method
due to Henderson can be used to decide where to place the chart centers so as to
ensure a good coverage of the manifold [14]. In his approach, the domain Pi of
chart Ci is initialized as a 6-dimensional hypercube enclosing a ball Bi of radius r ,
both defined in Txi M , as illustrated in Fig. 3, left. A vertex of Pi exterior to Bi ,
with position vector s, is used to generate a point xi

j , with ui
j = α · s/‖s‖, where α

is initialized to r . If the projection of xi
j to M does not converge, or if the new chart

C j at x j is too far or too different from Ci , i.e., if

‖x j − xi
j‖ > ε, or ‖Ψ T

i Ψ j‖ < 1 − ε,

for a given threshold ε, the new chart is discarded and a new attempt of chart gen-
eration is performed with a smaller α, allowing to adapt the size of the area covered
by each chart to the local curvature of the manifold. When C j is valid, it is used to
crop Pi from the intersection between Bi and Ci

j , the projection on Txi M of the

part of the manifold covered by C j . This projection is approximated by a ball Bi
j

of radius r in Txi M , centered at the point given by ui
j , as shown in Fig. 3, right.

The intersection of Bi and Bi
j defines a new face for Pi that eliminates some of its
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Fig. 3 The process of chart construction

vertices (in particular the one given by s) and generates new ones. Symmetrically,
the polytope P j associated with C j is cropped using Ci . When Ci is surrounded by
other charts, Pi becomes a convex polytope included in Bi , and Ci is considered
to be closed, meaning that no further expansion of the atlas needs to be attempted
from that chart. In practice, as M + is unbounded in the directions si , ti , and gi , we
impose an upper bound on these variables in order to ensure the termination of the
atlas expansion. The charts generated outside these bounds are also considered to
be closed. When all charts are closed, the connected component of M containing
the initial point x1 gets fully covered. If a path exists from x1 to x2, x2 must be
included in one of the charts of the atlas and, thus, a solution path can be determined
by searching on the graph implicitly defined by the chart centers and their neigh-
borhood relations. In practice, however, the expansion of the charts is performed
according to an A* search strategy using an admissible heuristic [25], so that the
path is returned as soon as it is found without computing the whole atlas, and it is
guaranteed to be the shortest possible on M . If x2 is not included in any of the charts
in the end, path non-existence is established at the considered value for r . A detailed
analysis of the cost of the algorithm can be found in [21].

5 Experiments

The method has been implemented in C, and run on a MacBook Pro equipped with
a 2.66 GHz Intel Core i7 processor. To verify its performance on a realistic situation,
the geometric parameters of the NIST Robocane manipulator have been used [1]
(Fig. 4). This manipulator follows an octahedral design where both the base and the
platform are equilateral triangles of sides 2b and 2a, respectively. The fixed reference
frame O XY Z is defined with the Z axis pointing downwards, and a mobile reference
frame P X ′Y ′Z ′ is attached to the platform. The coordinates of the vertex points of
the base, expressed in O XY Z , are A1 = (−b,−b

√
3/3, 0), A2 = (b,−b

√
3/3, 0),
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Fig. 4 CAD Model of the cable-driven hexapod under construction at Institut de Robòtica i Infor-
màtica Industrial (IRI), inspired in the NIST Robocrane [1] (courtesy of P. Grosch)

and A3 = (0, 2b
√

3/3, 0), and those of the platform, expressed in P X ′Y ′Z ′, are
B1 = (0,−2a

√
3/3, 0), B2 = (a, a

√
3/3, 0), and B3 = (−a, a

√
3/3, 0).

In all experiments, the platform is required to withstand a weight of m Newtons
applied at a point Pm = ( a

5 ,
a
5 , 0) in P X ′Y ′Z ′. Since the weight always points

downwards, this corresponds to a wrench ŵ0 = [0, 0,m, 0, 0, 0]T that is constant in
a reference frame parallel to O XY Z translating with Pm . For simplicity, the small
variations that may be introduced by inertia forces or external agents are represented
by the ellipsoid W centered in w0 defined by E = 104 · I6, which is a six-dimensional
sphere of radius 10−2, and the forces and lengths for all cables are set to remain
positive but lower than fi = m N and ρi = 5a, respectively.

To illustrate the complexity of the path planning problem, Fig. 5 shows several
slices of the wrench-feasible C-space C of the manipulator, computed in Matlab
using discretization with a = 1, b = 2, and m = 1. The configurations that cannot
be reached due to either cable lengths or forces out of range are represented by the red
and blue areas, respectively, while those corresponding to C are indicated in green.
The figure also shows the singularity curves where det (J(q)) = 0, in red, computed
with the method in [3] under no constraints on the cable tensions or lengths. It can
be observed that the wrench-feasible C-space naturally avoids crossing singularities,
although in some zones this point may not be clear due to the resolution of the
discretization, and to the small size of the figures. The top row of Fig. 5 corresponds
to slices where the point P and the torsion σ are held fixed. In the bottom row, the
whole orientation τ of the platform and one of the coordinates of P are held fixed. As
it can be seen from the figures, the navigation between two configurations of C is not
a trivial task. In particular, evaluating the wrench-feasibility conditions on discrete
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Fig. 5 Slices of the wrench-feasible C-space obtained by discretization. Blue, red and green zones
correspond to configurations where some force is out of range, configurations not attainable due to
cables length, and configurations belonging to the wrench-feasible C-space, respectively

points along a path could result in erroneous paths that, for example, could join points
belonging to different connected components of C . The method presented in this
paper is able to solve such hard planning queries, even when permitting the variation
of all pose parameters. However, due to illustration limitations, the performance of
the method is demonstrated here by means of two experiments where four and three
pose parameters are held fixed.

In the first experiment, we compute two different paths on the top-center slice of
C shown in Fig. 5, where p = [0, 0, 2]T and σ = 35◦. Using the start q1 and goal q2
configurations defined by τ 1 = {−0.5, 0.9, 7

36π} rad and τ 2 = {2, 0.9, 7
36π} rad,

respectively, the resulting path is computed in 20 s. Figure 6, top, shows this path in
red together with the atlas corresponding to the whole connected component of C
accessible from the start configuration (shown as a green mesh), and the re-
gion explored by the algorithm (shaded in grey). In order to evaluate the per-
formance of the method on a more challenging situation, a second path is com-
puted between configurations q3 and q4 given by τ 3 = {0.8,−2.4, 7

36π} rad and
τ 4 = {−2.4, 2.4, 7

36π} rad. In this case the path is computed in 280 s and the re-
gion explored is shaded in green (Fig. 6, top). On both planning queries, note that
the interpolated path between the start and goal configurations would violate some
of the constraints of C , giving rise to uncontrollable motions of the platform, or to
breakage of some of the cables, but the computed paths correctly avoid these sit-
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Fig. 6 Top: Two paths and the areas of C explored to compute them, on the slice of the wrench-
feasible C-space corresponding to p = [0, 0, 2]T and σ = 35◦. Bottom: evolution of the maximum
(green) and minimum (blue) possible tensions for each cable, along the path from q3 to q4

uations. Indeed, an advantageous property of the continuation strategy employed,
which cannot be ensured by methods relying on discretization, is that the computed
path will not jump between distinct connected components of C , even when such
components are close to each other, thus ensuring that the forces on all cables keep
within the prescribed ranges along the whole path. As an example, these forces can
be seen in Fig. 6, bottom, for the path from q3 to q4. The evolution along this path
of the maximum and minimum tensions on each cable are plotted in green and blue,
respectively. Towards the end of the path, some cable may attain a near-zero tension,
but this can be easily avoided if desired, by simply setting a higher value of fi .

On the second experiment, only three pose variables are held fixed, namely x = 0,
y = 0, and σ = 35◦, giving rise to a three-dimensional slice of the wrench-feasible
C-space C . Here, the start and goal configurations, q5 and q6, are given by p5 =
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Fig. 7 A path on a three-dimensional slice of the wrench-feasible C-space with x = 0, y = 0 and
σ = 35◦. The green volume corresponds to the portion of C explored by the algorithm, which is
here visualized by projecting the chart polytopes Pi to the space of z, φ, and θ , and representing
their faces as semi-transparent walls, in order to visualize the computed path in the interior

[0, 0, 1.2]T, τ 5 = {0.8,−2.6, 7
36π} rad and q6 = q4. The resulting path can be

seen in Fig. 7 in red, together with the atlas generated by the algorithm in green. This
case represents a hard planning query and, therefore, the computation time increases
significantly. However, once a partial atlas is computed, all planning queries between
configurations covered by such atlas can be solved in a few milliseconds.

6 Conclusions and Future Work

This paper has presented a path planning method for computing wrench-feasible
paths on cable-driven hexapods, i.e., configuration paths that guarantee the resolv-
ability of a six-dimensional set of wrenches at any point on the path. As a by product,
the method implicitly ensures that the screw Jacobian of the manipulator will be non-
singular along the path, thus allowing a full control of the platform motions at all
times. The method has been tested successfully on several cases of increasing com-
plexity, though only cases where three or four pose variables are held fixed have been
shown due to illustration limitations.

The presented approach allows extensions in several possible ways. For example,
some additional constraints could be considered, like enforcing a certain degree of
positioning accuracy of the platform, or the avoidance of platform collisions (cable-
platform or cable-cable collisions, or even those with the environment). While the
former constraints can in principle be incorporated using dual developments to those
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herein presented, the latter require investigating the possibility of randomizing the
planner, in the spirit of [8] or [22].
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Appendix: Properties of M

This appendix is devoted to the proof of two properties that are essential in order to
apply the continuation strategy described in Sect. 4. The first one is the non-nullity
of si , ti , gi and vi,i , and the second one is the smoothness of the six-dimensional
manifold M . A by-product of the second property is the fact that J(q) is non-singular
for all q ∈ C .

From Eqs. (6–8) it follows directly that si , ti and gi can never be zero on M . The
same property for vi,i can be proved by contradiction. Let us assume that vi,i = 0
for some i . If we consider Eq. (5), then, by replacing Bivi = 0 into vT

i B vi = 1, we
obtain the dot product of two vectors: vT

i , with vi,i = 0, and the vector Bvi , whose
components are all zero except that in position i . The result of this dot product
is 0, which contradicts Eq. (5), as it should be 1. As a result, the set M + and its
complement M \ M + are disconnected.

Let us now prove the smoothness of M . If we can verify that F(x) is a
differentiable function with full rank differential Fx , then the smoothness of M
will follow from the implicit function theorem. By construction, all functions inter-
vening in F(x) are differentiable all over M , and the differential matrix Fx can be
expressed in the following block-triangular form after re-organizing some equations
and variables

,

where empty blocks represent zero-matrices and asterisks indicate non-zero blocks.
Due to the triangular structure of Fx it suffices to verify that the five blocks in

the diagonal are full-rank in order to prove the smoothness of M . The first block is
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Φ y =

⎛
⎜⎜⎝

∗ I9

∗ ∗ −I18

∗ −2L
∗ G

⎞
⎟⎟⎠ ,

which is the differential matrix of the system Φ( y) = 0 formed by Eqs. (1–3) and (8)
with respect to y = (τ , p, R, ui , ρi , gi ). Here L and G are 6 × 6 diagonal matrices
with diagonal elements ρi and (ρi − ρi ) · (ρi − ρi ), respectively. To see that Φ y is
full rank, observe that its last four block-columns comprise a non-singular square
submatrix of maximum size, as its diagonal elements do not vanish over M by virtue
of Eq. (8) and the fact that ρi > 0.

The remaining four diagonal blocks of Fx are the differential matrices of Eqs. (4–
7) with respect to the variables f 0, vi , si and ti , respectively, where the blocks S and
T are 6 × 6 diagonal matrices with elements f0,i − vi,i − fi and fi − f0,i − vi,i ,
respectively. The screw Jacobian J(q) can be shown to be full rank over M by
contradiction. Indeed, if J(qs) were rank deficient for some qs , then so would be
B, and therefore ker B would contain non-zero vectors. In such case, for some i all
solutions of Bivi = 0 would satisfy vi ∈ ker B and, thus, it would be vT

i Bvi = 0,
which contradicts Eq. (5) and, hence, J(q) cannot be rank deficient over M . The
6 × 6 block matrices involving B and Bi can only be rank deficient if vi,i = 0, but
this can never happen as we have already seen. All these blocks are therefore full
rank over M . Finally, it is clear that S and T are also full rank over M , since their
diagonal elements never vanish due to Eqs. (6–7), and this completes the proof of
the smoothness of M and, in particular, that of M +.

It is worth mentioning that not only M and M + are smooth, but also any slice
taken as a combination of the angular and position parameters, τ and p. Indeed,
taking any of these slices implies only the removal of some columns amongst the
first two blocks of Φ y, which does not change the global rank of the differential Fx
corresponding to the considered slice.
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Part II
Force Distribution



A Tension Distribution Method with Improved
Computational Efficiency

Johann Lamaury and Marc Gouttefarde

Abstract This paper introduces a real-time capable tension distribution algorithm
for n degree-of-freedom cable-driven parallel robots (CDPR) actuated by n+2 cables.
It is based on geometric considerations applied to the two-dimensional convex poly-
tope of feasible cable tension distribution. This polytope is defined as the intersection
between the set of inequality constraints on the cable tension values and the affine
space of tension solutions to the mobile platform static or dynamic equilibrium.
The algorithm proposed in this paper is dedicated to n degree-of-freedom CDPR
actuated by n + 2 cables. Indeed, it takes advantage of the two-dimensional nature
of the corresponding feasible tension distribution convex polytope to improve the
computational efficiency of a tension distribution strategy proposed elsewhere. The
fast computation of the polytope vertices and of its barycenter made us successfully
validate the real-time compatibility of the presented algorithm.

1 Introduction

A cable-driven parallel robot (CDPR) mainly consists of a base, a mobile platform
connected in parallel to the base through flexible cables and motorized winches. The
cable lengths can be modified by means of the winches thereby allowing the motion
control of the platform. Contrary to common parallel robot architectures, CDPR
with large to very large workspaces can be designed as cables can be unwound over
great lengths. Moreover, their light weight, fast motion, heavy payload capabilities
and high reconfigurability potential make these robots good candidates for large-
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dimension applications, for example pick-and-place tasks across a manufacturing
plant.

CDPR are generally classified as fully constrained or else under-constrained.
Examples of fully constrained CDPR are the FALCON robot [6], the SEGESTA
[4] and the KNTU [10]. A well-known under-constrained CDPR is the NIST
ROBOCRANE [1]. In both cases, the number of cables driving the mobile plat-
form can be greater than its number of degrees of freedom (DOF). When controlling
such redundantly actuated CDPR, the issue of cable tension distribution is to be dealt
with. Indeed, at any point along a trajectory, there exists an infinity of possible sets
of cable tensions and one generally wants to find a feasible one, possibly satisfying
some optimality criterion. A cable tension vector is feasible when all its components
are contained between minimal and maximal tension values tmin and tmax. The max-
imum tmax is notably given by the maximal admissible cable strain whereas tmin is
usually set as the lowest acceptable tension with the goal of avoiding slack cables
(tmin ≥ 0).

Several methods have been proposed, mainly for fully constrained CDPR, in
order to find (optimal) feasible tension distributions among the infinite number of
possible ones. Fang et al. [4] put forward an optimal tension distribution algorithm
that uses a 1-norm linear programming method (LPM) for configuration with one
degree of redundancy (DOR), i.e. in the case m = n + 1 where m and n are the
number of cables and of DOF, respectively. LPM was also used to solve higher
DOR in [2, 10]. However, LPM does not guarantee the continuity along a given
trajectory which may result in high mechanical loads and vibrations. To avoid them,
quadratic programming methods (QPM) may be used [3, 5] but they are suffering
from non-predictable worst-case runtime as specified in [3]. For suspended CDPR,
Oh and Agrawal [8] proposed to plan the robot trajectory to stay into the feasible
tension space by describing this latter as a set of linear inequalities. Yu et al. [11]
applied QPM for the control of suspended CDPR with redundant cables, coupling
basic tension optimization problem to an active stiffness control scheme.

Nevertheless, all these methods are using optimization procedures, which are most
of the time expensive in terms of computation time and against real-time control con-
straints because of their iterative nature. Consequently, for real-time control needs, a
deterministic non-iterative method is highly preferable. Mikelsons et al. [7] proposed
such a method in which the barycenter of the polytope of feasible tension distrib-
utions is determined. To deal with the case of redundant under-constrained CDPR
(crane-like configuration), the method proposed in [7] has the additional interest
of providing a tension vector contained within the polytope of feasible tension dis-
tributions “far” from the polytope boundaries. However, this method requires the
computation of all the vertices of this polytope which takes a lot of time if a brute
force method, such as the one proposed in [7], is used.

The contribution of this paper is a fast algorithm aiming at a real-time imple-
mentation of the barycentric approach proposed in [7]. The proposed algorithm is
dedicated to CDPR with two DOR, i.e., actuated by m = n+2 cables. Indeed, it takes
advantage of the two-dimensional nature of the corresponding polytope of feasible
tension distributions which is in fact a convex polygon. The idea consists essentially
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in computing a first vertex of this polygon and, then, in finding the others by “mov-
ing” from one vertex to the next one while following the polygon one-dimensional
boundary which is made of straight line segments. Once all the polygon vertices are
determined, the barycenter (centroid) is simply obtained by well-known closed-form
formulas. Therefore, in the case of CDPR with two DOR, this paper complements
[7] by providing an efficient means of implementing the tension distribution strategy
proposed therein.

This paper is organized as follows. Section 2 details the proposed real-time capable
algorithm. A brief description of our prototype is given in Sect. 3. Some preliminary
simulation results are reported in Sect. 4. Finally, conclusions and future works are
addressed in the last section.

2 A Fast Tension Distribution Algorithm

2.1 Mikelsons’ Barycenter Approach

The wrench f applied by the cables on the mobile platform is given by [9]

Wt = f (1)

where W is the wrench matrix and t = [t1, ..., tm]T ∈ R
m is the cable tension vector.

The challenge lies in the cable inability to transmit compressive forces, which means
that t has to remain non-negative. This paper deals with n-DOF CDPR driven by
m = n + 2 cables, i.e., with r = 2 DOR. Consequently, the n × m wrench matrix
W is non-square and, assuming that W has full rank, (1) is equivalent to

t = W+f + Nλ = tp + tn (2)

where W+ is the Moore-Penrose pseudo-inverse of the wrench matrix, N = null(W)

= [k1 k2] is a full rank m×2 matrix and λ = [λ1 λ2]T is an arbitrary 2-dimensional
vector. The two columns of N form a basis of the nullspace of W. tp is the particular
minimum-norm solution of (1) and tn is the homogeneous solution that maps λ to
the nullspace of W.

Let us defineΣ ⊂ R
m the r -dimensional affine space (r = 2 in this paper) of the

solutions to (1)
Σ = {t | Wt = f} (3)

whose points are given by (2). Let us also define Ω ∈ R
m as the m-dimensional

hypercube of feasible cable tensions

Ω = {t | tiε [tmin, tmax] , 1 ≤ i ≤ m} (4)
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Fig. 1 Preimage of � in the plane (λ1, λ2) for the pose [0.9 1.2 1 10 10 20]T (units: meters
and degrees) with a 6.34 kg total mass (XYZ Euler angle convention)

where we assume that the tmin and tmax limiting tension values are the same for the
m cables. The intersection � = Ω ∩Σ of the hypercube Ω and the affine space Σ
is a convex polytope [12]. This feasible tension distribution polytope � represents
the set of tension solutions t to (1) satisfying the inequalities tmin ≤ ti ≤ tmax. The
preimage of � under the affine mapping (N, tp) is also a convex polytope which,
according to (2), is defined by the following set of 2m linear inequalities

tmin − tp ≤ Nλ ≤ tmax − tp (5)

In this paper, since r = 2, the feasible tension distribution convex polytope � is
two-dimensional and its preimage under the affine mapping (N, tp) is thus a convex
polygon.

For example, Fig. 1 shows the preimage of � obtained for a static equilibrium
pose of the mobile platform of ReelAx8, a CDPR prototype briefly described in
Sect. 3. In (5), each of the 2m inequalities defines an halfplane. Each of the 2m lines
bounding these halfplanes corresponds to values of λ for which one of the cable
tension is equal to tmin or to tmax. Figure 1 shows some of these lines together with the
preimage of �.

In order to select a “safe” tension distribution, i.e. one which is far from the
boundaries of the polytope �, Mikelsons et al. [7] proposed to find � barycenter.
Their method consists essentially in computing all the vertices of the preimage of�.
To this end, all the 2 × 2 subsystems of linear equations obtained by selecting two of
the 2m inequalities of (5) are solved. A solution λ of one of these systems is a vertex
if it verifies (5). Once all the vertices of the preimage of � are known, in [7], its
barycenter λc is determined by means of a triangulation. Finally, the barycenter of�
is calculated as the image of λc under the affine mapping (N, tp), i.e., as tp + Nλc.
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The computational burden of the method presented in [7] is thus mainly deter-
mined by the number of non-singular 2 × 2 subsystems of linear equations drawn
from (5). In the case n = 6 and m = 8, there are C2

16 = 120 such subsystems. But,
as noted in [2], since each line of (5) defines two halfplanes bounded by two parallel
lines, the number of non-singular ones is equal to C2

16 − 8 = 112.
The method of Mikelsons et al. provides a continuous tension distribution with

a predictable worst-case runtime. However, because of the high number of linear
systems that must be solved, the computation time is too high to fit our real-time
controller loop time so that we were not able to implement it on our prototype
ReelAx8. Besides, to the best of our knowledge, no real-time implementation of this
method has been reported.

The present paper proposes a strong decrease of the computational time of this
method by finding a first vertex of the convex polytope� and then moving along the
polytope hull in order to determine the other vertices. An efficient implementation of
this idea is discussed in Sect. 2.2. It is dedicated to CDPR with 2 DOR as it requires
the feasible tension distribution convex polytope to be two dimensional. Simulation
results show that the proposed improvement provides a real-time compatibility.

2.2 Detailed Description of the Proposed Algorithm

2.2.1 Initialization

Let us consider the intersection point, represented by the two-dimensional column
vector λi j , between two lines Lib and L jb , {i, j} ∈ {1, . . . ,m}, i �= j . Lib and L jb are
obtained by taking two inequalities among the 2m of (5) and replacing the inequality
signs by equalities. These two lines are thus defined by the following equations

{
bi − tpi = niλi j

b j − tp j = n jλi j
(6)

where each one of bi and b j is equal either to tmin or to tmax depending on which
inequalities are being considered. The two-dimensional line vectors ni and n j denote
the lines i and j of N, respectively. Examples of such Lib and L jb lines and intersec-
tion points λi j can be seen in Fig. 1. Furthermore, λi j is a vertex vi j of the preimage
of � if

tmin − tp ≤ Nλi j ≤ tmax − tp (7)

which means thatλi j is included intoΩ . The algorithm proposed in this paper consists
in first finding a vertex vini t of the preimage of �, which is a convex polygon, and,
then, in moving along one of the two lines Lib or L jb intersecting at vini t until a new
vertex of the polygon is reached. This process continues until it reaches the polygon
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vertex which belongs to the other line intersecting at vini t , i.e, when all the vertices
of the convex polygon have been found.

The first step is thus the calculation of the first vertex vini t . To this end, we are
looking for an intersection point λi j which satisfies the following requirements

⎧
⎨
⎩

bi − tpi = niλi j

b j − tp j = n jλi j

tmin − tp ≤ Nλi j ≤ tmax − tp

(8)

By taking a couple i and j of cables among the C2
m available and taking tmin or tmax

as the value of bi and of b j , the two equalities of (8) are solved (if the corresponding
linear system is not singular), and the resulting vector λi j is the searched vini t vertex
if the two inequalities of the last line of (8) are verified. From a general point of view,
it may be necessary to consider many couples i and j of cables and combinations of
tmin and tmax values before such a first vertex of the polygon can be found. However, in
practice, let us note that the computation of the first vertex vini t should generally not
be an issue since the first point of a trajectory is generally a known (static equilibrium)
mobile platform pose at which the preimage of� is already determined. Indeed, this
first pose is typically either the home starting pose of the CDPR for which all the
computations can be done offline and once and for all, or else the end point of a
previous trajectory for which the preimage of� has been calculated previously. For
any other point of the trajectory at hand, since the preimage of� evolves continuously
in time, the first vertex vinit is easily obtained from the first vertex or any of the other
vertices of preimage of � associated with the previous point of the trajectory.

2.2.2 From One Vertex to the Next One

Once the first vertex vini t is known, the second step consists in moving along one of
the two lines Lib or L jb intersecting at vini t until a new vertex v of the convex polygon
(preimage of �) is found. Let us arbitrarily choose Lib . The points p belonging to
this line are given by

p = vini t + αnT
i⊥ (9)

where α is a scalar and ni · nT
i⊥ = 0, i.e., the line vector ni⊥ is orthogonal to ni and

thus defines the direction of the line Lib . With ni = [a b], there exists two possible
vectors ni⊥ which are ni⊥1 = [b − a] and ni⊥2 = [−b a]. Care must be taken in
the choice between these two possible vectors. Indeed, the goal is to move along
the boundary of the convex polygon and not to follow Lib while moving away from
the polygon. Let us decide that α ≥ 0 in (9) so that ni⊥ must be directed toward the
interior of the polygon in order to move along the polygon boundary. Two cases have
to be distinguished.
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• Case 1: b j = tmin. In this case, moving along line Lib from its intersection point
with line L jb while staying on the polygon boundary requires

tmin − tp j ≤ n j p ⇔ tmin − tp j ≤ n j vini t + αn j nT
i⊥⇔ n j nT

i⊥ ≥ 0
(10)

The last equivalence is true because α ≥ 0 and also because, vini t lying on line
L jb , we have tmin − tp j = n j vini t . Therefore, among the two possible vectors
ni⊥ , the good choice in order to stay on the polygon boundary is the one such that
n j nT

i⊥ ≥ 0.

• Case 2: b j = tmax. In this second case, moving along line Lib from its intersection
point with line L jb while staying on the polygon boundary requires

n j p ≤ tmax − tp j ⇔ n j vini t + αn j nT
i⊥ ≤ tmax − tp j

⇔ n j nT
i⊥ ≤ 0

(11)

since α ≥ 0 and n j vini t = tmax − tp j . This time, among the two possible vectors
ni⊥ , the good choice is the one such that n j nT

i⊥ ≤ 0.

Now that we know along which direction to move along line Lib in order to follow
the polygon boundary from vertex vini t , we aim at finding the other polygon vertex
v belonging to Lib . In fact, this other vertex is the point p in (9) corresponding to the
maximal value of α ≥ 0 such that all the inequalities of (5) are verified. Equivalently,
this maximal value is equal to the smallest α ≥ 0 such that one of the inequalities of
(5) apart from inequalities i and j becomes an equality. Therefore, let us consider
line k of (5), k ∈ {1, . . . ,m}\{i, j}, and let us substitute λ by the point p of Lib given
by (9), i.e.

{
tmin − tpk ≤ nkp ≤ tmax − tpk

p = vini t + αnT
i⊥

(12)

which is equivalent to

tmin − tpk ≤ nkvini t + αnknT
i⊥ ≤ tmax − tpk (13)

Let us assume that none of the two Lkb lines, the two lines bounding the halfplanes
defined by the two inequalities of line k of (5), crosses line Lib at vini t . This amounts
to assuming that

tmin − tpk < nkvini t < tmax − tpk (14)

The particular case in which three lines are crossing at the same point (here lines
Lib , L jb and Lkb crossing at the current vertex) is addressed in Sect. 2.3.

Now, let us consider (13) and (14).
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• If nknT
i⊥ = 0 then ∀α ≥ 0 the inequalities of the system (12) cannot become

equalities (which means that Lib is parallel to the two Lkb lines).
• If nknT

i⊥ > 0 then ∀α ≥ 0,

nkvini t + αnknT
i⊥ ≥ nkvini t > tmin − tpk (15)

Consequently, (13) could only become an equality by its right side when α ≥ 0,
i.e., nkvini t + αnknT

i⊥ = tmax − tpk , which is satisfied by the following value of
α ≥ 0

αk = tmax − tpk − nkvini t

nknT
i⊥

(16)

• If nknT
i⊥ < 0 then ∀α ≥ 0,

nkvini t + αnknT
i⊥ ≤ nkvini t < tmax − tpk (17)

Consequently, (13) could only become an equality by its left side when α ≥ 0,
i.e., nkvini t + αnknT

i⊥ = tmin − tpk , which is satisfied by

αk = tmin − tpk − nkvini t

nknT
i⊥

(18)

As a consequence, the sign sk = Sign(nknT
i⊥) indicates which side of inequality

(13) can become an equality for α ≥ 0. Moreover, since vini t is the intersection
of lines Lib and L jb , the line Lkb must be found for k belonging to the index set
{1, . . . ,m}\{i, j} that leaves 2(m − 2) possibilities (two possible line equations per
line of (5)). By computing sk , the previous analysis allows us to reduce this number
to m − 2 possibilities.

In order to find the next vertex of the polygon, i.e., the second polygon vertex
belonging to Lib , the m αk are thus computed by means of (16) or (18) and the one,
denoted αv, which will determine the next vertex is the smallest, that is

αv = min
k,nk nT

i⊥ �=0

(
bk − tpk − nkvini t

nknT
i⊥

)
(19)

where bk = tmin or tmax despite of the value of sk . The next vertex v is thus given by

v = vini t + αvnT
i⊥ (20)

and the line Llb which crosses Lib at v while supporting the polygon along one of
its edge is the set of point p verifying bl − tpl = nlp where bl = tmax if nlnT

i⊥ > 0

and bl = tmin if nlnT
i⊥ < 0 and
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l = argmin
k,nk nT

i⊥ �=0

(
bk − tpk − nkvini t

nknT
i⊥

)
(21)

Starting from this newly found polygon vertex v, which is the intersection point
between Lib and Llb , and moving along line Llb (in the appropriate direction), the
next polygon vertex is found in exactly the same way as vertex v has been found.
This process continues until the newly found vertex lies on the same line as vini t

(L jb in our example), at which point the research stops since all the vertices of the
convex polygon, preimage of �, have been determined.

2.2.3 The Barycenter Calculation

The final step is the calculation of the barycenter vc of the preimage of � whose
q vertices vp = [vp1 vp2 ]T , p ∈ {1, . . . , q} have just all been determined. The
preimage of � is a convex polygon which is not self-intersecting. Therefore, its
centroid vc = [vc1 vc2 ]T is given by the following well-known formulas

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

vc1 = 1
6A

q−1∑
p=0
(vp1 + v(p+1)1)(vp1 v(p+1)2 − v(p+1)1 vp2)

vc2 = 1
6A

q−1∑
p=0
(vp2 + v(p+1)2)(vp1 v(p+1)2 − v(p+1)1 vp2)

(22)

where A is the area of the polygon given by

A = 1

2

q−1∑

p=0

(vp1 v(p+1)2 − v(p+1)1 vp2) (23)

Finally, the polygon barycenter vc is mapped into R
m in order to find tc = tp+Nvc,

the barycenter of � which is the desired feasible cable tension distribution.
As an example, Fig. 1 shows vc as the dark dot into the polygon. The points

indicated with crosses correspond to some intersection points between lines bounding
the halfplanes defined in (5). The four clear dots are the vertices of the preimage of�.

2.3 Case of Three (Ore More) Concurrent Lines

In the algorithm proposed in Sect. 2.2, let us assume that we have to move from a
vertex vi j to the next one v jk along line j . In order to compute v jk , the algorithm
calculates m − 2 values of α as given by (16) or (18) and retains the minimal one.
If this minimal value of α is obtained for two indices k and l [i.e., both k and l
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Fig. 2 Illustration of the case
of three concurrent lines

verify (21)], it means that the vertex v jk is the intersection of three concurrent lines
(here, lines j , k and l). This particular case is illustrated in Fig. 2. In such a case,
the determination of the vertex v jk is not a problem but care must be taken in the
determination of the next line that will be followed in order to find a new polygon
vertex. Indeed, this next line has to support the polygon along one of its edges and
not only at v jk . As illustrated in Fig. 2, moving from v jk along line l instead of line k
is a bad choice as we then leave the polygon boundary. Consequently, the algorithm
must be able to select the edge supporting line which is either line k or else line l.
As along a trajectory new polygon vertices are generally coming with this particular
case, it should be addressed in order to ensure robustness of the algorithm.

In order to select the appropriate edge supporting line, a simple geometric analysis
can be used. Vector n j is normal to line j and chosen to be directed outward of the
polygon. In our current implementation of the algorithm detailed in Sect. 2.2, as
soon as two equal α are calculated, say αk and αl , the vectors nk and nl are drawn
from lines k and l of N and chosen to be directed outward of the polygon. Then, we
check if nl is included in the cone spanned by n j and nk as shown in Fig. 2. If nl

is strictly included inside this cone, line l supports the polygon at a vertex only. It
is thus discarded and line k is selected as the next line to follow since it is an edge
supporting line of the polygon. This is the case illustrated in Fig. 2. Otherwise, when
nl is not included inside the cone spanned by n j and nk , line l supports the polygon
along one of its edge and it will be the next line followed in the quest of a new vertex.
Note that in the very particular case in which nl and nk are collinear, any of the two
lines k or l can be followed.

Finally, in the cases in which more than three lines, say h > 3 lines, are all concur-
rent at the same vertex of the polygon, the determination of the edge supporting line
to be followed during the next algorithm step can be done by sequentially considering
sets of three lines among the h concurrent ones and, for each such set, discarding
one of the three lines as explained in the previous paragraph.
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Fig. 3 The prototype ReelAx8 in suspended under constrained (a) and fully constrained (b) con-
figurations

Fig. 4 Suspended ReelAx8
basic PID-control scheme

3 ReelAx8 Prototype

The prototype ReelAx8 has 6-DOF and is driven by 8 cables so that it is redun-
dantly actuated with two 2 extra cables (2 DOR). These two extra cables signifi-
cantly improve the ratio between the workspace and the whole robot footprint. The
workspace is defined as the set of feasible static equilibrium mobile platform poses.
A pose is said to be feasible when there exists a set of non-negative cable tensions
satisfying the platform equilibrium and when there are no cable interferences. Two
different configurations have been experimented: suspended and fully constrained,
shown in Fig. 3a and b, respectively.

Let us note that redundantly actuated suspended (under constrained) CDPR have
rarely been studied [8, 11]. However, this configuration may be required in some situ-
ations as all the cable drawing points are located above the workspace. Consequently,
the space located below the mobile platform is free of cables. Suspended CDPR have
thus the potential of operating in presence of human workers and good transits and
are suitable for crane-like applications. ReelAx8 is currently set in its suspended
configuration shown in Fig. 3a. As we have not yet implemented an effective control
scheme able to use tension distribution strategies for this suspended configuration,
the next section gives some preliminary simulation results. Therefore, the real-time
compatibility has been established by executing on the real-time controller the algo-
rithm proposed in Sect. 2.2 in parallel of the basic articular PID control scheme,
shown in Fig. 4, presently in used on ReelAx8.
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Fig. 5 Cable tensions obtained with the proposed algorithm for ReelAx8 in suspended configuration

Fig. 6 Cable tensions obtained with the proposed algorithm for ReelAx8 in fully constrained
configuration

4 Simulation Results

Figure 5 shows the evolution of the tension into the cables, obtained by means of
the algorithm introduced in Sect. 2.2, of the suspended ReelAx8 (Fig. 3a) for a
given trajectory of the mobile platform. The trajectory starts at the platform ref-
erence pose [0 0 0.25 0 0 0]T , goes up to [0.8 (−0.9) 1 0 0 0]T , passes through
[0.9 0.9 1 0 0 0]T and [0 0 1 0 0 45]T , where a non-zero orientation is accom-
plished, and finally returns to the reference pose (units are meters and degrees;
XYZ Euler angle convention is used to define the platform orientation). Figure 6
shows the evolution of the cable tensions of ReelAx8 in fully constrained configu-
ration (Fig. 3b) along the same trajectory. As observed, all cables are tensed along
the whole trajectory and the tension curves are continuous. Let us note that in fully
constrained configuration, the choice of the polytope centroid may results in high
tension values.

In MATLAB simulations along the same trajectory, the use of the brute force
method suggested in [7] which consists in computing all the intersection points
between all the lines drawn from (5) results in an average computation runtime of
1.9152 ms against 0.638 ms with our algorithm. This significant improvement should
make our algorithm suitable for a future real-time use on ReelAx8.
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Fig. 7 Workable part of the constant-orientation static workspace of ReelAx8 without and with a
tension distribution algorithm. a Without any tension distribution. b With the barycenter tension
distribution strategy

Furthermore, in order to apply the proposed method experimentally on ReelAx8,
the currently used basic control scheme has to be improved. Meanwhile, the algorithm
of Sect. 2.2 has been compiled and tested in real-time in parallel of our current control
scheme on a target computer using MATLAB/Simulink language. It appeared to be
real-time compatible with an average Task Execution Time of 0.156 ms.

Let us note that, compared to the basic PID control of Fig. 4, which outputs
negative tension set points in a large part of ReelAx8 workspace, the barycenter
tension distribution strategy should increase the practical workspace of ReelAx8
in suspended configuration from 7.58 to 18.9 m3, i.e. 78.18 % of the overall robot
occupied volume, as shown in Fig. 7b. These values are obtained for the unloaded
platform mass which is of 6.34 kg. The influence of the total mass (loaded platform)
on the workspace volume is depicted in Fig. 8. The maximum cable tension considers
in this figure is 350 N.

5 Conclusions and Future Works

A real-time capable algorithm for tension distribution of cable-driven parallel robots
was presented in this paper. This algorithm efficiently implements the barycenter
approach of [7] which leads to safe and continuous cable tension distribution. Simu-
lation results showed that it is faster than a brute force implementation of the barycen-
ter approach. The proposed algorithm is dedicated to n-DOF parallel robots driven
by n + 2 cables as it takes advantage of the 2-dimensional nature of the polytope of
feasible tension distributions.
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Fig. 8 Influence of the platform and payload total mass on the suspended ReelAx8 workable
workspace volume

We believe that the barycenter cable tension distribution approach is appropriate
to deal with the case of redundantly actuated suspended (under constrained) cable-
driven parallel robots since it provides a tension distribution set point far from the
boundaries of the polytope of feasible tension distributions. However, in the case
of fully constrained robots, using the centroid of this polytope as the desired cable
tension distribution might not be the better choice as it can lead to large cable tensions
and consequently limit the robot workspace and leads to high energy consumption.

The proposed algorithm, tested in real-time on our embedded computer in parallel
of our current basic control scheme, must now be implemented within a suitable
control scheme. The realization of this latter is part of our future works.
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Optimal Force Distribution Based on Slack
Rope Model in the Incompletely
Constrained Cable-Driven Parallel
Mechanism of FAST Telescope

Hui Li, Xinyu Zhang, Rui Yao, Jinghai Sun, Gaofeng Pan and Wenbai Zhu

Abstract This paper addressed the determination of the tension distribution in the
slack steel wires of the incompletely constrained cable-driven parallel mechanism of
FAST telescope. Slack rope hung with piecewise uniform mass is specially investi-
gated. First, the general formulation based on the wrench matrix was derived. Then
the analytical model of slack rope was built to give the quantized relation between
direction and amplitude of tension vector. The wrench matrix is not only platform
pose dependent but influenced by rope geometry. Finally, a performance index based
on minimal tension variance is selected to optimize the tension distribution among
steel wires. Levenberg-Marquardt method is applied to solve the quadratic program
and a discrete-mesh plan is proposed for the whole focal surface. An example of
computation is given to verify the effect of the resolution.

1 Introduction

Cable-driven parallel mechanisms have many important applications over the past
decade. One is verified in the Five-hundred-meter Aperture Spherical radio Tele-
scope (FAST) which is being built in southwest China [1]. The giant telescope has a
relatively light airborne focus cabin carrying the precise expensive feed receivers to
observe stars in the sky. Because of its large size, it is very difficult to build a solid
support structure between the cabin and the ground. Ropes, however, provide the
possibility and further conveniences beyond other means: light weight, very large
ranges of motion and little inertia. The cable-driven parallel mechanism used in the
FAST telescope might be the largest robot over the world, as shown in Fig. 1. As the
mobile platform, the 30-ton focus cabin is supported and driven by 6 parallel steel
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Fig. 1 An overlook of FAST telescope

wires so that it can move in a large calotte, so called focal surface, which is about
206 m in aperture. The 6 steel wires are respectively suspended by 6 steel towers
more than 100 m high and equally spaced on a circle of 600 m in diameter. Each is
driven by a capstan motor with the common tension force reaching tens of tons.

The FAST cable-driven parallel mechanism is a typical incompletely restrained
parallel mechanism (IRPM). The gravity plays as the seventh rope to fully constrain
the 6-degree-of-freedom (6-DOF) mobile platform. More details of explanation are
given in Sect. 3. Furthermore, electric cables or optical fiber cables are also suspended
under each steel wire for the power supply and signal transmission into the cabin,
as shown in Fig. 5 [2]. Their lengths are self-adaptive to the 6 steel wires as the
cabin drifts within the focal surface. The redundant parts of these power/signal lines
therefore have to pile up in middle lines of the steel wires. Obviously in this case the
sagging effect should not be neglected for the 6 steel wires. Besides, as the ropes can
only exert tension forces, the design of the FAST rope system are quite challenging.

One important issue on cable-driven parallel mechanisms is the determination
of workspace, as investigated in quite a few literatures [3–6]. For the FAST cable-
driven parallel mechanism, the required workspace is certain as the focal surface.
The main problem is then to analyze whether or not the focal surface belongs to the
wrench-feasible and controllable workspace. Unfortunately, the former researches
seem inapplicable because the analysis of rope sag is rarely involved. On the other
hand, the FAST IRPM is often redundantly actuated because of the inability of the
ropes to work in compression. For a given wrench on certain position, the rope forces
may not have the unique solution. However, large force variance is not acceptable for
the rope-driving capstans in that the maximal force is often one of calculation bases
in the power layout of electric motors. Thus a reasonable design concept of force
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Fig. 2 Mechanism configuration of FAST IRPM

distribution based on slack rope model is not only the key to evaluate workspace but
also the way to optimize the energy consumption.

This paper first addresses the modelling of slack rope, trying to construct the
mapping relation between rope tension and rope geometry. Based on the results
obtained, static equilibrium model is derived for the focus cabin. Then the paper
devotes to the optimal force distribution among the 6 ropes of the FAST IRPM. This
problem is generally treated in the literature by minimizing the Euclidean norm of the
forces in the ropes. Finally the optimal forces are solved in the whole focal surface. As
the direct consequence the cabin orientations corresponding to these optimal forces
are also analyzed schematically.

2 Mechanism Configuration

2.1 Notation

The kinematic diagram of the FAST IRPM is represented in Fig. 2. The focus cabin
is assumed as the moving rigid platform connected to the base by a set of 6 steel
wires attached to the platform and to a fixed pulley on which the ropes are wound.
By controlling the extension of the ropes, the position and orientation of the platform
can be controlled.

Referring to Fig. 2, a fixed reference frame, noted OXYZ, is attached to the center
of the focal surface and is regarded as the base frame. A moving reference frame,
noted O′X′Y′Z′, is attached on the focus cabin, where the reference point O is
also the center of gravity (COG) to be positioned by the focus cabin. Besides, the
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Fig. 3 3D rotations of the cabin frame and orientation angle

reference frame, noted OXYZ, is parallel to the base frame, but has the same origin
as the frame O′X′Y′Z′. The orientation of the moving frame with respect to the base
frame, represented by the rotation matrix R, describes the cabin pose with respect to
the base of the mechanism. The joint Ci (i = 1, 2, . . . , 6) at which the i th steel wire
enters the spool, is assumed to be fixed on the focus cabin. Furthermore, another
end of the i th steel wire is attached to the point Pi which is assumed to be fixed
relative to the base frame. The i th steel wire then connects point Ci with Pi , both
of which are modeled as spherical joints. Then the vector ri is defined as the radial
vector connecting the origin O′ to the joint Ci . The unit vector Ui represents the
tension direction of the i th steel wire acting on the joint Ci . As the rope curve is
not necessarily straight, Ui is parallel to its tangential direction. Finally the vector G
represents the gravity of the focus cabin, always vertically acting on its COG.

The rotation matrix R includes the information of 3 independent orientation angles
defined as shown in Fig. 3. Here angle θ represents the cabin tilt, ϕ the azimuth angle
and φ the spin angle. The coordinate frame OXYZ first rotates the tilt θ around a hor-
izontal axis perpendicular to the angle ϕ, which yields the interim frame O′X0Y0Z0.
Then it rotates the angle φ around the axis Z , which forms the final frame O′X′Y′Z′.
The rotation matrix R can therefore be written as [7]:

R =
⎡
⎣

SϕSϕ+φ + CθCϕCϕ+φ −SϕCϕ+φ + Cθ Sϕ+φCϕ −SθCϕ
SϕCϕ+φCθ − Sϕ+φCϕ Cθ Sϕ+φSϕ + CϕCϕ+φ −Sθ Sϕ

SθCϕ+φ SθCϕ+φ Cθ

⎤
⎦

T

, (1)

where the symbol C represents the cosine function and S the sine function.
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2.2 Wrench Matrix

When tension is maintained in all ropes, the i th rope exerts a pure force at point Ci

on the mobile platform. The latter force can be written as ti Ui , where ti is the tension
in the i th rope. By definition, ti is always nonnegative. This pure force generates a
moment ri × ti Ui at the COG of the mobile platform and the wrench (force/moment
pair) applied at Ci by the i th rope is therefore ti W i , with wrench W i defined as:

W i =
[

Ui

ri × Ui

]
, (2)

where WCOG denotes the wrench applied at the COG by all 6 ropes of the mecha-
nism and the cabin gravity. Since WCOG is the sum of the rope wrenches ti W i , the
relationship between the tension ti in the ropes and the wrench WCOG can be written
in matrix form as:

W t = WCOG, (3)

with
W = [[W1 W2 . . . W6],WG] , (4)

and
t = [[t1 t2 . . . t6], tG]T , (5)

where t is the vector of rope tensions and W the 6×7 wrench matrix. The superscript
T means transposition of matrix and the subscript G means the gravity of the focus
cabin.

2.3 Modelling of Slack Rope

In the case of the FAST IRPM where rope sag has to be taken into account, the wrench
matrix W is not only platform pose dependent but influenced by rope geometry. In
the mean time rope geometry is in turn influenced by rope tension. Mathematically
this type of mapping relation can be built under the assumption that steel wire should
be perfectly flexible, tension-only and unstretchable material.

Referring to Fig. 4, a separate equilibrium analysis is given for the i th suspension
rope imposed by homogenous vertical load q along the curve. Here the tension vector
Ti of the i th steel wire has a vertical component Vi and horizontal component Hi

respectively. The angle βi forms between the vector Ti and the horizontal plane.
The rope has a horizontal span of ai and vertical height of hi . Let’s set the origin
of the local coordinate frame on the lower endpoint, the plane XOY parallel to the
suspension rope and X axis along the horizontal direction. Then we get the following
differential equation:
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Fig. 4 Equilibrium of sus-
pension rope under the gravity

Tower Top
ai
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Ti
Vi

iβ
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dx

i iT dT+

iT

i idβ β+
iβ

Cable Apex

y′′ = q

Hi

√
1 + (y′)2, (6a)

with
y(0) = 0 and y(ai ) = hi . (6b)

Solving it yields the following hyperbolic cosine curve to exactly describe the rope
curve:

y(x) = Hi

q
cosh

(
qx

Hi
+ Ai

)
+ Bi ; (i = 1, 2, . . . , 6), (7a)

where the constants Ai and Bi are expressed as:

⎧
⎪⎨
⎪⎩

Ai = log

[(
qhi
Hi

+
√(

qhi
Hi

)2 + 4 sinh2
(

qai
2Hi

))/(
exp
(

qai
Hi

)
− 1
)]

Bi = −Hi cosh(Ai )/q

. (7b)

Equation (7a) obviously shows that the i th rope curve is only determined by the
force Hi once load q is known. Differentiating Eq. (7a) with respect to x at 0 yields
a function to describe the variables Hi and βi as:

tan(βi (H)i ) = y′
i (0) = sinh(Ai ). (8)

Here Eq. (8) indicates the relation between the direction of rope tension at the cabin
joint and the rope curve.

The case of FAST IRPM, however, is more complicate due to the redundant length
of power/signal cables hung on steel wire, as shown in Fig. 5. These cables are fixed
on steel wire via equally spaced connectors in the line segment d1, but can slide in
the line segment d2 and d3 as they are on mobile trolleys. The length of line segment



Optimal Force Distribution 93

Fig. 5 Power/signal lines hung under steel wire

Fig. 6 Analytic sketch of steel wire hung with power/signal cables

d1 is always never changed given any cabin position in the focal surface. It keeps
the redundant cables far away from the cabin in order to avoid collision. There is a
minimal and a maximal space between two neighbor trolleys. Once the focus cabin
moves in the focal surface so that the rope length reaches its minimum, the mobile
trolleys are crowded one by one in the minimal space with d3 equal to 0. On the
contrary once the rope length reaches its maximum, the mobile trolleys arrange in
the maximal space with d2 equal to 0 and the lower hung cables are completely
extended, i.e., no accumulation happens.

At analytic convenience the steel wire hung with power/signal cables is simplified
as a combination of 3 similar curves, as shown in Fig. 6 [2]. Here the symbol ‘mg’
represents the linear weight of steel wire, ‘q’ the linear weight of normally stretched
cables, ‘n’ the ratio of the linear density of accumulated cables to that of normally
stretched cables.

Based on the above assumption an approximate length estimation of line segment
d1 comes as follows: {

Smin = S1 + ST
Smax = S1 + n · ST

. (9a)
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Here S1 is the fixed curve length of the segment d1. Smin and Smax are respectively
the minimal and maximal rope lengths wherever the cabin moves in the focal surface.
ST is the sliding length for the mobile cable trolleys. It is only the curve length of
the segment d2 when the total rope length reaches its minimum. Here d3 varnishes
as aforementioned and all redundant power/signal cables are overcrowded on the
segment d2. When the maximum Smax is got, however, the same cables are fully
extended and d2 varnishes. Therefore we get the sliding length of n · ST at Smax.
Equation (9a) can be further written as follows:

d1 ≈ S1 cos(β) =
(

nSmin − Smax

n − 1

)
cos(β). (9b)

Constructing 3 local coordinate frames with their origins located on the left end of
each catenary and their x axes pointing horizontally to the right respectively, we
obtain 3 separate curve segments mathematically expressed as the following:

y j (x) = H

q j
cosh
(q j x

H
+ A j

)
+ B j ( j = 1, 2, 3), (10a)

with
⎧
⎪⎨
⎪⎩

A j = log

[(
q j h j

H +
√(

q j h j
H

)2 + 4 sinh2
(

q j d j
2H

))/(
exp
(

q j d j
H

)
− 1
)]

B j = −H cosh(A j )
/

q j

.

(10b)
Here the 3 linear weights have the relations such as q1 = q3 = q + mg and q2 =
q + n ∗ mg. The symbol h j represents the height of j th curve segment. As the total
curve is regarded continuous and differentiable at least in the first order, the following
boundary conditions exist:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1(d1)+ y2(d2)+ y3(d3) =
3∑

j=1

[
H
q j

cosh
(

q j d j
H + A j

)
+ B j

]
= h

y′
1(d1) = y′

2(0) ⇒ sinh
(

q1d1
H + A1

)
= sinh(A2)

y′
2(d2) = y′

3(0) ⇒ sinh
(

q2d2
H + A2

)
= sinh(A3)

. (11)

Equation (10b) provides the relation between Ai and Bi (i = 1, 2, 3) of 3 curves.
So the combination of Eqs. (10b) and (11) gives 6 independent equations and 6
independent variables. Substituting the 3 curve equations represented by Eq. (10b)
into Eq. (11) and considering the properties of parabolic sine function yield:
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3∑
j=1

[
1

q j
cosh

(
q j d j

H
+ A j

)
− 1

q j
cosh(A j )

]
= h

H
q1d1

H
+ A1 = A2

q2d2

H
+ A2 = A3

. (12)

Equation (12) can further change via elimination of A2 and A3 as follows:

q2 − q1

q1q2
cosh

(
q1d1

H
+ A1

)
+ q3 − q2

q2q3
cosh

(
q1d1 + q2d2

H
+ A1

)

+ 1

q3
cosh

(
q1d1 + q2d2 + q3d3

H
+ A1

)
− 1

q1
cosh(A1) = h

H
. (13)

Solving Eq. (13) for the constant A1 and substituting it into Eq. (8) yield a similar
function of the angle β where the horizontal component of rope tension H is the
only independent variable.

β(H) = a tan [sinh(A1(H))] . (14)

The tension vector of the i th steel wire at the cabin joint can be written as

Ui = cos(βi )
[

cos(αi ) sin(αi ) tan(βi )
]T
, (15)

where the angle α forms between the horizontal projection of steel wire and the
X axis of the global coordinate frame. Substituting Eqs. (14) and (15) into Eqs. (2)
and (3) shows that the wrench matrix W is the function of the 6 horizontal components
of rope tensions.

3 Problem Formulation and Resolution

3.1 Minimization of the Force Variance

In view of static equilibrium, the determination of the tensions in the ropes of the
mechanism can be formulated as follows:

For a given external wrench applied on the platform, −WCOG, find a vector of
positive rope tensions t and pose vector [θ, ϕ, φ]T that satisfies Eq. (3).

Here for the FAST IRPM, the only completely known external wrench is the
gravity-induced WG. The other wrenches are yet dependent on the pose of the
platform because unit vector U may change with joint position as shown in Fig. 2.
Obviously there may be infinitely many solutions according to the above problem.
Therefore, in order to obtain an optimal unique solution, a performance index is
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usually optimized while using the above condition as a constraint. In order to ensure
a balance of force distribution among the 6 steel wires, the force variance is selected.
Mathematically, the problem can then be formulated as follows:

min
t
� = min

t

∥∥t − t̄I
∥∥

2 = min
t

∥∥∥∥∥t − 1

6

6∑

i=1

ti · I

∥∥∥∥∥
2

(16)

subject to Eq. (3) and the following inequality constraints

ti ≥ 0, i = 1, 2, . . . , 6. (17)

Here the symbol I represents the 6-dimension vector and I = [1, 1, . . . , 1]T.

3.2 Optimization of Quadratic Program

Mathematically, the above optimization problem is known as quadratic programming
due to the quadratic nature of the performance index. The unknowns to be optimized
are the 6 rope tensions (Hi , i = 1, 2, . . . , 6) and the rotation matrix R represented
by 3 orientation angles, namely. An efficient iterative algorithm called Levenberg-
Marquardt method [8, 9] is applied for the resolution of this 9-variable quadratic
program. A resolution plan is shown in Fig. 7.

The resolution of this quadratic program can be applied repeatedly to an arbitrary
point of the focal surface. An effective discretization mesh is shown in Fig. 8. Due
to the symmetry of FAST IRPM, only one sixth of the focal surface is considered.
All the triangle vertexes of the mesh are the points where the resolution is done.
These points begin from the center of the focal surface and arrange at equal space
along several latitudinal lines. The resolution process repeats independently at each
position point until all are finished.

However, as the constraints represented by Eq. (3) are actually nonlinear in the
case of FAST IRPM, it should be careful in selecting the initial value for the iterative
computations. An effective proposal is to begin the resolution from the center of
mesh where the cabin has the simplest horizontal orientation and the 6 rope forces
are set equal. Then the next point extends outward one by one along latitudinal line
and the solution of the former point is set as the initial value of the next.
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Fig. 7 Block diagram of the optimization program
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Fig. 8 Geometric parameters of FAST IRPM: a plan view, b cross sectional view

4 Results

4.1 Description of Mechanism Parameters

The optimization results are greatly influenced by a series of geometric parameters
as shown in Fig. 9. Besides, other important parameters are listed in Table 1.
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Fig. 9 Discrete mesh of 1/6 focal surface
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Fig. 10 Distribution of rope tension t2 (N) (at the end P2) on the focal surface

Table 1 Some important parameters in the computation

Symbol Description Value

q1 &q3 Linear weight of steel wire hung with normally stretched cables 176.40 N/m
q2 Linear weight of steel wire hung with accumulated cables 323.89 N/m
n Linear mass ratio of accumulated cables to normally stretched cables 3.15
ri Projection length of the vector ri (i = 1, 2, . . . , 6) in the joint plane 6.40 m
G Total weight of focus cabin 3.0 × 105 N
δ Distance of COG to the joint plane (as shown in Fig. 2) 0.246 m

4.2 Display of Results

The optimal distribution of 6 rope tensions is calculated over the whole focus surface.
Figure 10 draws the case of rope 1 where the colors represent the different tension
values, and yet due to the symmetry we can easily obtain a similar tension distribution
of rope 2, 3, 4, 5 and 6 by simply rotating the figure in counter-clockwise direction
with 60, 120, 180, 240 and 300◦ respectively. The figure shows that the rope tensions
vary continuously and smoothly within a range of about 180–380 KN, which is an
input base for the future design of steel wire and the corresponding capstan motors.

The optimization results then give the variation of 3 orientation angles. Figure 11
draws the change of natural tilt as the cabin moves in the focus surface. The optimal
tilt is almost perfectly axisymmetric in a range of 0–15◦.

When the FAST telescope works, the desired pointing of the focus cabin demands
that the tilt direction and the symmetric axis of the focal surface should be coplanar.
The tilt direction is indicated in the angles ϕ and φ, so the desired pointing actually
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Fig. 11 Distribution of cabin tilt θ (◦) on the focal surface

Fig. 12 Variance of ϕ (◦) (computation value vs. ideal pointing) on the focal surface

requires that the ideal ϕ is always along the radial direction and the ideal φ equal to 0.
Figures 12 and 13 respectively draw the distribution of this kind of variance between
the computation value and the ideal value. Both two figures are almost perfectly
symmetric and they verify that the maximal absolute variance is not more than 1◦.
These facts show that the FAST IRPM has good consistency with the ideal pointing.
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Fig. 13 Variance of φ (◦) (computation value vs. ideal pointing) on the focal surface

5 Conclusion

A kind of incompletely restrained cable-driven parallel mechanism is introduced and
studied on the optimal tension distribution. Due to its huge size, slack-rope model
hung with piecewise uniform mass is specially investigated to build a dual-parameter-
dependent wrench matrix, i.e., both platform pose and rope geometry dependent.
The performance index based on force variance is proposed to optimize the force
distribution among slack ropes. The computation results show good consistency with
the ideal pointing of the telescope.
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Investigation of the Influence of Elastic
Cables on the Force Distribution of a Parallel
Cable-Driven Robot

Werner Kraus, Philipp Miermeister and Andreas Pott

Abstract Cable-driven parallel robots rely on cables instead of rigid links to
manipulate the endeffector in the workspace. The cable force distribution is the result
of cable elongation and the force coupling at the endeffector. In this paper, the
experimental investigation of the force coupling is presented. In the experiment,
the cable length in each individual cable was varied, and the resulting progression
of the force distribution and the deflection were measured. With this approach, the
steady state gain matrix for the transfer function between a delta in cable length and
the resulting changes in the cables forces can be determined. Furthermore, the impact
of the observed force coupling on cable force control is discussed.

Keywords Stiffness · Parallel cable-driven robot · Wire robot · Parallel kinematic

1 Introduction

1.1 Motivation

In the recent years, cable-driven parallel robots have attracted several researchers
due to their positive properties like scalability, high dynamic and a good payload-
weight ratio (see e.g. [3, 5, 6, 8]). A typical control architecture for a cable robot
is presented by Shiqing et al. in [7]. As cables can only transmit pull forces, the

W. Kraus (B) · P. Miermeister · A. Pott
Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
e-mail: Werner.Kraus@ipa.fhg.de

P. Miermeister
e-mail: Philipp.Miermeister@ipa.fhg.de

A. Pott
e-mail: Andreas.Pott@ipa.fhg.de

T. Bruckmann and A. Pott (eds.), Cable-Driven Parallel Robots, 103
Mechanisms and Machine Science 12, DOI: 10.1007/978-3-642-31988-4_7,
© Springer-Verlag Berlin Heidelberg 2013



104 W. Kraus et al.

robot controller must ensure that during operation all cables are under tension. The
cable force is the result of the elongation of the elastic cable. Therefore, the output
of force controllers are cable lengths. As the cables are all connected to the moving
platform, the controlled system is coupled and non-linear. The knowledge of these
dependencies is necessary to design a force controller. For this reason, we discuss in
this paper experimental results which deliver insight to the influence of elastic cables
to the force distribution.

The paper is organized as followed. At first, we briefly introduce in the robot
kinematics, the determination of feasible force distributions and the stiffness analysis.
In the next section, the experimental setup and test procedure is described. Then
the experimental results regarding the progression of the force distribution and the
deflection of the platform are presented. The results are discussed regarding the
requirements to a cable length-based force control.

2 Model of the Cable Robot

2.1 Robots Kinematic

The geometry of the robot is described by proximal anchor points on the robot base
ai and the distal anchor points on the endeffector bi . The index i denotes the cable
number and m is the absolute number of cables. By applying a vector loop as shown
in Fig. 1 the cable vector li follows as

li = ai − r − R bi . (1)

The structure equation

[
u1 · · · um

b1 × u1 · · · bm × um

]

︸ ︷︷ ︸
AT (r,R)

⎡
⎢⎣

f1
...

fm

⎤
⎥⎦

︸ ︷︷ ︸
f

= −
[

fp

τp

]

︸ ︷︷ ︸
w

where ui = li‖li‖−1. (2)

results from the force and torque equilibrium of the robot’s endeffector. The wrench
w consists of external forces fp and torques τp.

2.2 Cable Force Distribution

To compute a force distribution f, which solves the structure equation (Eq. 2) under the
constraint fmin ≤ fi ≤ fmax , the Dykstra alternating projection solution presented
by Hassan and Khajepour is used [4]. The advantage of this approach is, that it
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Fig. 1 Robot kinematic

minimizes the 2-norm of the force distribution and delivers a feasible solution if it
exists. The algorithm starts with a zero force vector. In each iteration, the force vector
f is first projected on the nullspace of AT translated by −A+T w

projA(f) = (I − A+T AT )f − A+T w (3)

where A+T denotes the Moore-Penrose matrix inverse, and afterwards the resulting
force vector is projected on the bounds of the cable forces

projC (f) = [ f 1 · · · f m]T : f i =
⎧
⎨
⎩

fmin, fi < fmin

fi , fmin ≤ fi ≤ fmax

fmax , fi > fmax

. (4)

The algorithm iterates until the two projections converge. The force distribution is
valid, when the two projection converged to the same point. Otherwise there exist
no feasible force distribution.

2.3 Stiffness

The stiffness of cable robots is discussed in detail in [2, 8, 9]. Here we give a short
overview. The Cartesian stiffness matrix Kx describes the linear relation

δw = Kxδx (5)

between an infinitesimal wrench δw and deflection δx. For the analytic expression
for Kx we have to differentiate the structure equation (Eq. 2), which yields to

dw = −∂AT

∂x
dxf − AT df (6)
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where dAT is the derivation of the structure matrix by the generalized coordinates
x = [rx , ry, rz, θx , θy, θz]T . The relation between the incremental cable forces and
an incremental change in cable length for a linear spring model can be expressed by

δf = Klδl (7)

where Kl is the joint space stiffness matrix with the stiffness of each cable on the diag-
onal. Incremental changes in the platform pose δx are transformed to the endeffector
space with

δl = −Aδx. (8)

With Eqs. 5, 7 and 8 one receive from Eq. 6

Kx dx = −∂AT

∂x
f

︸ ︷︷ ︸
Kg

dx + AT KlA︸ ︷︷ ︸
Kc

dx. (9)

This equation shows, that the stiffness is based on two separated effects. The stiffness
Kg results from the change of the Jacobian when deflecting the platform. Beside
geometrical parameters, the height of this part depends on the height of the force
distribution. The second term of Eq. 9 results from cable stiffness.

3 Experimental Evaluation

3.1 Test Setup

The experiments were performed on the cable robot IPAnema 2. The test environment
is shown in Fig. 2. Its geometrical parameters are shown in Table 1. For the force
measurement the robot is equipped with 8 cable force sensors at the endeffector. The
sensors have a resolution of 0.13 N and a measurement range of±2,000 N. The analog
output signal of the force sensors is digitialized and sent via the field bus in real-time
to the PLC. The deflection of the platform is measured with a Leica Laser Tracker.
It can determine the absolute position of the reflector mounted in the center of the
endeffector with an accuracy of ±15 µm+6 µm/m. For the synchronization between
the robot control and the position measurement, the Laser Tracker is triggered by an
output of the robot control.

The cable type is LIROS D-Pro 01505-0250 based on Dyneema SK 75 fibre
(Polyethylene) with a diameter of 2.5 mm. The specific stiffness k′ is 120,000 N.
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Fig. 2 Test environment with cable robot IPAnema 2 and Laser Tracker

Table 1 Robot Geometrical Parameters: base vector ai and platform vector bi

Cable i Base vector ai in [m] Platform vector bi in [m]
x y z x y z

1 [−4.277 2.950 4.604]T [−0.653 0.201 −0.085]T

2 [ 4.335 2.951 4.480]T [0.641 0.196 −0.102]T

3 [ 4.029 −2.736 4.609]T [0.639 −0.052 −0.092]T

4 [−3.967 −2.733 4.737]T [−0.634 −0.117 −0.058]T

5 [−4.346 2.902 0.515]T [−0.759 0.200 0.410]T

6 [ 4.255 2.925 0.372]T [0.763 0.192 0.402]T

7 [ 3.952 −2.766 0.424]T [0.756 −0.014 0.406]T

8 [−4.033 −2.766 0.573]T [−0.750 −0.012 0.423]T

3.2 Test Procedure

The test procedure is shown in the flow diagram in Fig. 3. The positioning of the
endeffector to the four positions is made by a position control based on the inverse
kinematic. For an automated workflow, the following test procedure is completely
implemented in the PLC. Next, a simple force control based on cable lengths is
applied, to receive the desired force distribution. The four force distributions are
precalculated with the Dykstra-algorithm assuming a gravity wrench of −200 N.
The real values are gained from the cable force sensors. Based on this set of cable
lengths the experiment is performed. One after the other cable is tensioned with a
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Fig. 3 Test procedure

stepwidth Δl is 0.5 mm to Δlmax of 15.0 mm and afterward relaxed to the initial
length. As the forward and backward movement (Phase 1 and 2) is logged, one
receive 61 values for the variation of one cable and 488 datasets in total for one
tension niveau. This cycle is performed three times in succession. The first run is
dropped, because it is influenced by settlement of the cables on the drum and leads
to non-repeatable results. To receive insight in the pose-dependency of the force
coupling, four different poses are examined. Their position is listed in Table 2 and
they are visualized in Fig. 4.
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Table 2 Investigated poses and resulting cable lengths in [mm]

Pose x y z l1 l2 l3 l4 l5 l6 l7 l8

P1 −1200 −1000 3000 4736.5 6419.7 5213.4 3243.0 5265.4 6786.2 5631.0 3935.5
P2 0 −1000 3000 5456.3 5539.8 4200.9 4107.0 5903.5 5985.7 4739.8 4649.4
P3 0 0 3000 4837.2 4931.3 4715.0 4631.1 5335.6 5422.4 5205.9 5123.6
P4 0 0 1800 5372.2 5455.2 5279.6 5208.8 4787.3 4877.0 4637.6 4555.0

−5000

0

5000

−2000
0

2000

0

1000

2000

3000

4000

5000

x [mm]y [mm]

z 
[m

m
]

1
2
3
4
5
6
7
8

Winch−No.

P
1 P

2

P
3

P
4

Fig. 4 Deflection of the platform for Δq = 15 mm

3.3 Experimental Results: Force Distribution

The initial force distributions measured with the force sensors are exemplary for
Pose 2 shown in Table 3. The mean forces f are evenly distributed with a distance of
about 50 N.

The force progression is shown in Fig. 5, where based on the tension niveau 4 cable
1 is tensed by 15 mm. Each point marked with a cross represents a measurement and
the straight shows in each case the linearization. It is important to notice, that the
progression of the cable forces is linear. The diagram also reveals that the force in one
single cable influences strongly the other cables. As expected, the cable forces rise in
some cable during in others decrease. For illustration, the pose and the corresponding
stiffness model are visualized in Fig. 6.

This correlation can be expressed generalized for m cables in form of the steady
state gain matrix G
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Table 3 Measured force distribution f and mean force f in pose 2 for the 4 tension niveaus in [N]

Tension niveau f1 f2 f3 f4 f5 f6 f7 f8 f

T1 171.7 176.4 247.5 242.5 41.6 20.5 85.9 64.2 131.3
T2 221.0 229.0 326.9 320.0 72.3 46.8 137.6 114.8 183.5
T3 272.8 281.4 412.1 401.6 104.8 73.5 192.9 168.2 238.4
T4 317.7 327.3 483.6 474.6 132.2 96.9 241.3 213.2 285.8
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Fig. 5 Progression of the force distribution for tension niveau 4 in pose 2 while tensioning cable 1

Fig. 6 Stiffness model of the cable robot

G =

⎡
⎢⎢⎣

∂ f1
∂q1

· · · ∂ f1
∂qm

...
. . .

...
∂ fm
∂q1

· · · ∂ fm
∂qm

⎤
⎥⎥⎦ . (10)

It represents the transfer function between changes in cable lengths Δq and the
corresponding change in cable force Δ f
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Table 4 Steady gain matrix in pose 2 for the tension niveau 4 in [N/mm]

Δq1 Δq2 Δq3 Δq4 Δq5 Δq6 Δq7 Δq8

Δ f1 11.1 −1.6 13.4 2.0 −1.6 6.9 1.1 8.2
Δ f2 −1.2 10.1 2.2 11.3 6.8 −1.5 7.9 1.5
Δ f3 11.0 2.5 15.4 7.0 1.3 6.3 4.4 9.7
Δ f4 2.4 11.5 6.6 14.9 7.3 0.6 9.8 4.5
Δ f5 −1.3 7.6 1.6 8.2 6.4 −2.4 6.5 −0.2
Δ f6 7.3 −1.3 6.4 0.9 −2.6 5.4 −0.5 6.2
Δ f7 1.4 7.9 5.4 10.0 6.1 −0.6 8.1 2.0
Δ f8 8.3 1.4 10.6 4.3 −0.5 5.9 2.2 8.2

Table 5 Comparision between the measured stiffness kmeasured and the cable stiffness kcable in
pose 2 for the tension niveau 4

1 2 3 4 5 6 7 8

kmeasured
[ N

mm

]
11.1 10.1 15.4 14.9 6.4 5.4 8.1 8.2

kcable
[ N

mm

]
22.0 21.7 28.6 29.2 20.3 20.0 25.3 25.8

kmeasured
kcable

[%] 50.6 46.8 53.8 50.8 31.4 27.0 31.8 31.9

Δ f = G(x, f )Δq. (11)

This matrix can be evaluated from the experiment, as the entries are the slope of
interpolated straights from the progression of the force distribution. Exemplary, the
steady state matrix for the highest tension niveau in pose 2 is shown in Table 4. The
diagonal entries can be interpreted as the stiffness of each cable under consideration,
that the platform has also a stiffness. If the platform is fixed, the gain matrix is a
diagonal matrix corresponding to Kl . The force coupling is expressed by the non-
diagonal entries of the gain matrix. The measured values reveal that the interaction
between the cables is significant. For example, a change in the length of cable 1
causes approximately the same change in cable force in cable 3.

The effect of the force coupling can also be seen, when comparing the cable
stiffness kcable,i = k′

li
with the measured stiffness kmeasured as shown in Table 5. It

also reveals, that the proportion between the two sizes depends strongly on the cable.
To evaluate the pose-dependency of the gain matrix, the range for each element

over the four poses is determined according to

Δgi, j = max(gi, j (x = P1 : P4, f = T2))− min(gi, j (x = P1 : P4, f = T2)).

(12)
The result is shown in Table 6. It reveals, that both the diagonal and non-diagonal
entries underly a significant dependency on the pose.

The gain matrix depends also on the tension niveau. For illustration, the diagonal
entries of the gain matrix for the four tension niveaus shown in Table 7. The compari-
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Table 6 Range of the gain matrix over all 4 poses for tension niveau 2 [N/mm]

Δq1 Δq2 Δq3 Δq4 Δq5 Δq6 Δq7 Δq8

Δ f1 3.1 4.9 3.0 8.7 2.8 2.8 0.6 0.3
Δ f2 5.1 4.1 4.7 3.2 2.8 2.8 1.8 3.6
Δ f3 3.1 4.5 5.5 9.1 0.3 2.0 3.4 1.5
Δ f4 8.6 3.2 9.4 6.8 0.9 0.6 1.6 7.0
Δ f5 3.9 2.9 2.1 0.6 5.9 5.3 4.4 4.4
Δ f6 2.7 3.9 1.9 0.6 6.0 4.8 5.1 4.5
Δ f7 2.3 2.1 3.9 1.5 4.8 4.2 3.7 4.5
Δ f8 0.4 1.2 1.9 7.5 4.2 4.9 4.0 3.1

Table 7 Diagonal elements of the gain matrix for the 4 tension niveaus in pose 2 [N/mm]

Δq1 Δq2 Δq3 Δq4 Δq5 Δq6 Δq7 Δq8

T1 9.0 8.4 13.0 12.8 4.5 4.3 6.8 6.2
T2 10.2 9.4 14.2 13.7 5.6 4.8 7.3 7.2
T3 10.8 9.9 14.8 14.4 6.1 5.2 7.8 7.8
T4 11.1 10.1 15.4 14.9 6.4 5.4 8.1 8.2

Table 8 Deflection of the platform in mm for Δqi = 15 mm in winch i

Tension niveau |Δr|1 |Δr|2 |Δr|3 |Δr|4 |Δr|5 |Δr|6 |Δr|7 |Δr|8 |Δr|
T1 6.707 7.138 7.830 7.794 4.454 3.270 6.223 6.001 6.177
T2 6.536 6.700 7.851 7.823 3.803 3.465 6.229 6.316 6.090
T3 6.483 6.581 7.791 7.783 3.553 3.412 6.286 6.241 6.016
T4 6.512 6.618 7.762 7.702 3.730 3.461 6.148 6.100 6.004
Δr 6.560 6.759 7.808 7.776 3.885 3.402 6.222 6.165 6.072
σ 0.101 0.258 0.040 0.052 0.394 0.091 0.056 0.141

son reveals, that the effective stiffness rises proportional with the tension niveau. The
coupling between cable length and force has therefore a progressive characteristic.

3.4 Experimental Results: Deflection of the Endeffector

During the experiment also the deflection of the endeffector is measured. Exemplary
for pose 2 the resulting deflection for a change in cable length of 15 mm are visualized
in Fig. 7. The length of the deflection for the four tension niveaus is listed in Table 8.
The size of the deflection depends mainly on the considered cable. For example
cable 6 is relative long and has therefore a small cable stiffness, what results in a litte
deflection of the platform. The relation between the stiffness of the cable and the
stiffness of the anchor point seems to be constant for different tension niveaus. The
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Fig. 7 Deflection of the platform for Δq = 15 mm

Table 9 Relative Gain Array Λ(s) for tension niveau 4 in pose 2

−21.0 4.7 −8.8 1.2 −7.1 39.3 0.1 −7.4
14.3 −239.3 −14.3 62.3 186.2 −39.2 25.8 5.2
−40.8 −22.3 −36.4 19.0 11.9 43.8 4.0 21.8
14.6 146.6 24.8 −35.5 −106.1 −8.5 −23.4 −11.5
−8.6 100.0 5.3 −29.4 −85.7 33.0 −13.9 0.4
−18.6 9.6 −16.6 1.5 −20.1 35.8 −0.7 10.2
−1.7 −22.1 −4.7 3.1 12.6 −1.3 13.4 1.6
62.8 23.9 51.7 −21.2 9.3 −101.9 −4.3 −19.3

standard deviation for the deflection regarding the tension niveaus is smaller than
0.394 mm.

4 Discussions

4.1 Effects on Force Control

The performed investigation showed, that one single cable force significantly
affects the whole force distribution. This coupling has to be taken into account while
controlling the cable force based on changes in cable lengths. For decoupling, a
typical approach is based on the singular value decomposition. Based on the static
gain matrix G the relative gain array (RGA)Λ(s) yields with a element-by-element
multiplication (×) to

Λ(s) = G(s)× (G(s)T )−1 (13)
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which gives a scaling- and controller-independent insight in the behaviour of the
controlled system [1]. The RGA for tension niveau 4 in pose 2 (Gain matrix in
Table 4) is shown in Table 9. The matrix is far away from the identity matrix, what
confirmes the strong coupling. The transformation of the system into a single input
single output system is therefore not feasible and has to be handled as multivariable
control problem.

4.2 Outlook

The measurement of the endeffector’s deflection is actual conducted with a Laser
Tracker, which can only capture the position of one single point, but not the orien-
tation of the endeffector. For more detailled investigation on the deflection, it would
be desirable to repeat the experiments with a 6-DOF measurement system. Another
approach could be to repeat the same experiment with different measured points on
the platform. The received data would allow to extract also the change in orientation.

The received measurement results showed, that the force coupling has a strong
influence on the system behaviour and should be included into the force controller.
Therefore, a simulation model has to be developed and verified. In the next step,
a computationally efficient implementation should be found to enable an adaptive
controller.

5 Conclusions

In this paper, a brief introduction into the stiffness analysis for cable robots is given.
Then the experimental setup for the investigation of the force coupling is described.
Subsequently, the measurement results were presented and discussed regarding the
properties of the force distribution and the deflection of the endeffector under the
change in length of one cable. After that, the effects of the gained insight of the force
coupling on the force control are considered.
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IPAnema: A family of Cable-Driven Parallel
Robots for Industrial Applications

Andreas Pott, Hendrick Mütherich, Werner Kraus, Valentine Schmidt,
Philipp Miermeister and Alexander Verl

Abstract Nowadays there are very little robot systems in operation in the field
of medium to large-scale handling and assembly mostly due to lack of repetitive
processes or shortcomings in programming and configuring such robots. In this paper
we introduce a family of cable-driven parallel robot called IPAnema that are designed
for industrial processes. We address the system architecture, key components such
as winches and controller, as well as design tools. Furthermore, some experimental
data from the evaluation are presented to illustrate the performance of cable robots.

1 Introduction

Industrial robots were successfully applied to a number of industrial processes includ-
ing handling, welding, and assembly. After decades of research on serial industrial
robots it seems that the major potential for performance improvement are exhausted.
Is seems that only limited gains in the robot performance can be expected from
further optimization of the mechanical construction, the drive-trains, and controllers.
Contrary, cable-driven parallel robots promise to increase the three performance—
criteria payload, workspace, and dynamics—by one to two orders of magnitude
compared to industrial robots. Furthermore, these performance criteria are mostly
decoupled in the design. The key components in the design of cable robots are its
winches. The maximum size of the workspace is primary given by the capacity of the
winch’s drum. Tiny winches can have a stroke of some millimeters while industrial
large scale winches can coil several kilometers of cable. The product of dynamic
performance and payload follows from the power of the actuator as well as from the
chosen gearboxes. Industrial grade components are widely available. The range of
electrical motors starts below one Watt and ends in the scale of Megawatt. Effective
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forces in the cables can range from below one Newton up to several tons as is rou-
tinely done in conventional crane applications. Summing up one can observe that
payload, dynamics performance, and size of the workspace can all be designed in a
range of at least six orders of magnitude—a dimension that cannot be achieved with
other kind of robotic systems.

So far, although cable robots are hardly used in practical applications there are
a number of prototypes. In the following an overview of active research centers is
given. As far as possible the targeted application and related literature is presented.
Clearly, the overview is concise but omits details due to limited space here. The first
prototypes were develop in the United States and in Japan. As early as 1989 the
RoboCrane system at NIST was presented and it seems to be the first prototype. It
was evaluated for large-scale handling [1, 5]. Later Kawamura’s Falcon was design
for fast pick-and-place [10] and Tadokoro developed a mobile cable robot system
for rescue after earthquakes [13, 27].

With the turn of the century the research on cable robots broadened. Lafourcade
applied the ultra-light structure of a cable robot for motion generation in wind tunnels
[11, 12]. A lightweight prototype named Segesta was developed at the University
of Duisburg-Essen, Germany [4, 6, 9, 28] as a research system for kinematics,
control, and design studies. At the same time the under-constraint robot Cablev was
developed as scaled prototype for handling and automated cranes at the University of
Rostock, Germany [8, 14]. A bit later the robot String-Man was used at Fraunhofer
IPK (Berlin, Germany) for gait-rehabilitation with focus on force control and safety
considerations [25, 26]. At INRIA in France, the robot family Marionet includes a
small size prototype for high-speed applications, a portable crane for rescue, and
components for person assistance [15]. There were a couple of recent work from
Canada where Otis developed a locomotion system [17, 18]. A motion simulator for
sport devices was developed at the ETH Zurich, Switzerland [24, 29, 30]. In China
researchers are planning to built the world largest cable robot for positioning of the
reflector of the telescope FAST [3]. In Iran the KNTU cable robots were studied [2].
Beside these many other prototypes have been developed that we cannot name here.

Since 2006 our group at Fraunhofer IPA develops a family of robots named
IPAnema for medium to large-scale inspection, handling, and assembly operations
[21, 23]. A major goal of the ongoing research projects is the development of a cable
robot based on industrial grade components. On the one hand, this approach shall
lead to high robustness and reliability of the system by making use of state-of-the-
art components for motors, amplifiers, and control components. On the other hand,
these field-tested components put large restriction on the development of control
algorithms since advanced numerical methods are difficult to integrate into a mostly
closed real-time system, and refactoring algorithms that have been easily developed
in scientific tools such as Matlab/Simulink, Maple, or Mathematica can hardly be
implemented in robot controllers and PLC due the lack of numerical libraries and
real-time constraints. Therefore, our applied research aims at finding acceptable
compromises between mathematical complexity that can often be found in literature
and ways of implementation on robust, dependable but relatively simple controller
hardware.
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Fig. 1 System structure for the cable robot IPAnema

This paper presents the basic technology used for the cable robot family IPAnema
[20, 22]. The rest of the paper is structured as follows. The system architecture and
majors components of the IPAnema system family is introduced in Sect. 2. In Sect. 3
we present our test-beds that are currently used for experimental evaluations, where
some experimental results are examined in Sect. 4. The papers closes with some
conclusions and outlook.

2 Cable-Driven Parallel Robot IPAnema

In this section we give an overview of the IPAnema system family. The IPAnema
family consists of three types of cable-robots. Firstly, we have a modular spatial
cable robot with currently up to eight winches. Secondly, a medium-size planar
robot is composed of four linear direct driven allowing for a 2-D motion. Finally,
a passive cable system is built from six cable-length sensors allowing to measure
the position of the mobile platform with the encoders. In the following sections the
system architecture of the IPAnema cable robot family is given and an overview of
the components is presented (Fig. 1).

2.1 System Architecture

The development of a robust control system architecture presents neither new insights
nor can it be solved with reasonable research budgets. The manufacturer of the
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NC-controller used for the IPAnema robots estimate around 100 person-years of
development efforts to make the NC-controller software industrial grade. Therefore,
this existing structure was adapted as basis for the controller architecture. The motors
in the winches are connected through a SERCOS or EtherCAT interface and set-point
values are currently transferred with a cycle time of 2 ms to the amplifiers. The bus
system and the NC-kernel can probably achieve a cycle frequency of up to 10 kHz
where some of the currently used cable-robot specific control algorithms are not yet
fast enough to provide the data in such small time slots.

The control system and the drive amplifiers can command either position, veloc-
ity, or torque set values for the motors. The low level force and current control loops
are embedded in standard amplifiers. The controllers show excellent performance
in terms of position accuracy which is for a machine tool typically below 10 µm.
The kernel of the control system is implemented into a PC-based real-time oper-
ating system. By use of an industrial PC two important design goals are achieved.
Firstly, the reliability and availability of the control system is adequate for indus-
trial applications. Secondly, the control system is nearly as fast as current desktop
computers.

A software PLC is coupled to the NC-kernel in full cycle time. One of the major
challenges in the development of the controller system is to integrate the kinematic
transformation. For path generation it is necessary to calculate the set-point values for
the cable length from given Cartesian coordinates in real-time and to allow supervi-
sion and correction of the generated set-point values. The Cartesian coordinates of the
mobile platform are generated from a NC-program written in G-Code (DIN 66025).
At the same time, the actual values measured by multi-turn absolute encoders inside
the winches have to be transformed into the current pose of the end-effector. The
latter transformation is by far the more complicated one: for our robot it involves
solving an over-constrained nonlinear system of equations. Other robot design with
fewer cable that degrees-of-freedom might need to solve constrained optimization
problems. The existing implementation [23] allows to perform that task in real-time
within 1 ms. To ensure the reliable operation of the cable robot system, the tension
in the cables is monitored. This is done in two different ways: firstly, tension can be
estimated from the current in the motors. This kind of measurement is integrated into
the motors. However, a more accurate measurement is received from forces sensors
which are integrated into proximate or distal anchor points of the cables.

2.2 Design of Winches

The mechanical design of the current winches is derived from crane winches. How-
ever, some additional requirements have to be taken into account to control and
operate cable-driven parallel robots. The first requirement for permanent operation
of cable robots, without excessive wear of the cables, is maintaining the bend radius
experienced by the cables. This must be significantly larger than the the diameter
of the cables. Secondly, the direction of the cables changes continuously during
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Fig. 2 Concept for servo-
controlled winch for cable
robot IPAnema motor

gearbox

drum
cable
guide

operation of the cable robot. Therefore, it is necessary to include an omnidirectional
guidance pulley into the winch. The concept of the winches is shown in Fig. 2.

A synchronous servo motor IndraDyn S with integrated multi-turn absolute
encoders by Bosch-Rexroth is coupled to a planetary gearbox with transmission
ratio of i = 3 or i = 12. This drive train is connected to a drum with a diameter
d = 100 m that can store a cable length of up to lmax = 6 m. The power train is
connected to an additional gearing that moves a cable guidance in parallel to the
drum. Due to equal pitch of the drum and the spindle the relative direction of the
coiled cable is constant allowing for reliable coiling and uncoiling of the cable. This
is especially important since the velocities and accelerations of the cables are very
high for cable robots.

The guidance includes a pulley that redirects the cable in parallel to the axis
of the motor. At the end of the guidance another pulley mechanism allows for an
omnidirectional redirection of the cable into the inner workspace of the cable robot.

Currently, a new winch generation is under development to extend the maximum
feasible cable length lmax greatly, as well as the maximum cable forces fmax (Fig. 3).
Beside the improvement of the technical parameters the new winch is designed for
lower production costs due to less components and simpler manufacturing technol-
ogy. Furthermore, it is possible to integrate a force sensors and a redundant brake.
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Fig. 3 Concept for new servo-controlled winch with integrated force sensing: (1) transmission
belt, (2) guiding pulley, (3) drum, (4) linear guiding, (5) spooling unit, (6) force sensor, (7) guiding
pulley, (8) spindle, (9) planetary gearbox, (10) servo motor

2.3 Control Software and Kinematic Transformation

The control system of the cable robot consists of closed-loop position control algo-
rithms which are integrated into the axis modules for each winches. On the position
level, state-of-the-art servo-controller from Bosch-Rexroth are used to execute the
motion commands which are sent through the SERCOS bus by the NC-kernel. The
cascaded closed-loop position and current control for each servo motor can be tuned
individually within the framework of the servo-controller.

The NC-kernel runs within the real-time extension RTX of the Windows XP
operating systems. The NC-kernel interprets robot programs written in G-Code and
generates smooth trajectories according to the G-Code program in world coordinates.
To translate the desired motion of the mobile platform to cable lengths and then to
set values of the servo motors, a kinematic transformation is used [21]. In addition,
the measured cable length is read from the absolute encoders of the winches in order
to estimate the current position of the mobile platform. The latter is done by a real-
time capable forward transformation. Since most cable robots are over-constrained
with respect to forward kinematics an approach based on minimizing the energy is
used. The kinematic code solves the optimization problem with sufficient accuracy
in real-time [21].

For interfacing with standard industrial equipment, a programmable logic con-
troller (CoDeSys PLC by 3S-Smart Software Solutions) is coupled with the
NC-kernel through a shared memory interface. The data exchange is performed
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Table 1 IPAnema 1 geometrical parameters: platform vectors b and base vectors a

Cable i Base vector ai Platform vector bi

1 [−1.8, 1.5, 2.0]T [−0.1, 0.1, 0.0]T

2 [1.8, 1.5, 2.0]T [0.1, 0.1, 0.0]T

3 [1.8,−1.5, 2.0]T [0.1,−0.1, 0.0]T

4 [−1.8,−1.5, 2.0]T [−0.1,−0.1, 0.0]T

5 [−2.0, 1.3, 0.0]T [−0.1, 0.1, 0.2]T

6 [2.0, 1.3, 0.0]T [0.1, 0.1, 0.2]T

7 [2.0,−1.3, 0.0]T [0.1,−0.1, 0.2]T

8 [−2.0,−1.3, 0.0]T [−0.1,−0.1, 0.2]T

at every interpolation cycle time of 2 ms. The integration of additional sensor data,
i.e. the cable forces read from the force sensors are processed in the PLC. Further-
more, the PLC can interface with additional IT-infrastructure such as a manufacturing
execution system.

The user interface of the robot consists of two main components. Firstly, a touch-
screen with a graphical user interface (GUI), which is implemented in the Win-
dows XP operating system and allows for visualization of complex data structures.
Secondly, a control panel is integrated to provide hardware buttons to switch opera-
tions modes, unlock the drives, and provide an emergency stop button. A non real-
time data exchange is possible between the GUI and the NC-kernel where the latency
of the Windows system is in average smaller than the 60 Hz refresh rate of the monitor.
The data exchange between the user interface and the NC-kernel is realized through a
TCP/IP channel. The control panel is coupled with the SERCOS bus allowing direct
interaction with the NC-kernel and the PLC.

2.4 Dynamics Simulation

A mechatronic, multi-physics simulation of the cable robot dynamics is presented in
another paper [16]. The cable robot is a mechatronic system consisting of a mechan-
ical part and an electrical part (Fig. 4). The mechanical parts includes the mobile
platform that is connected by m cables to the winches. The electrical part consists
of m servo motors and position controllers. The governing numerical control is not
further modeled. Instead, we refer to Sect. 2.3 for the details. Its generated set-point
position signal θi with i = 1, . . . ,m is used as reference signal for the cascaded
controller.

The dynamic behavior of the subsystems of a cable robot can be described by
ordinary differential equations (ODEs) of first or second order. For simulation and
numerical integration the equivalent state space representation is obtained by trans-
forming the high order differential equations into a system of first order ordinary dif-
ferential equations. The overall system structure with its forward dynamics, inverse

http://dx.doi.org/10.1007/978-3-642-31988-4_2
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Fig. 4 Structure and interfaces of the mechatronic model for a cable-driven parallel robot

Fig. 5 Design tool for cable robots. Left Constant orientation workspace study for IPAnema 2 for
a handling application. Right IPAnema robot: Interference between cables (red region around the
machine frame) only occurs outside the workspace (round region in the center)

kinematics, and the modeled subsystems with their associated input and output quan-
tities is shown in Fig. 4. The model was developed using the Matlab/Simulink tool-
chain. The resulting model was then implemented into the controller real time system
RTX for validation. When considering the architecture as presented above the sim-
ulation of the robot dynamics can be exchanged with the real robot hardware for
testing purpose (see Fig. 4). This hardware-in-the-loop simulation is used to verify
and evaluate large-scale robots as well as to design the control system. Especially,
the design of the force control of the cable robots is largely simplified if it can be
optimized with a simulation model.
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2.5 Design Tools

For cable-driven parallel robots the workspace of the robot and its geometry are
coupled in a complicated and non-intuitive way. Therefore, a sophisticated design
approach is needed to construct a cable robot with pre-described properties. The most
important criterion for the workspace is controllability, i.e. the ability of the robot to
create positive forces in the cables. In the literature, there are different criteria to check
whether a pose of the robot belongs to the workspace [7, 22, 28]. Here, the algorithms
for feasible workspace determination [28] and optimal closed-form force distribution
[20, 22] are integrated into the interactive planning tool WireCenter (Fig. 5). The tool
can calculate the hull of the workspace quickly, allowing for manual optimization of
robot geometry. Furthermore, the robot geometry is checked for interference between
cables following the geometric approach [19]. The region of cable interference for
the current design of the IPAnema 1 system is depicted in Fig. 5. It can be seen that
no intersection between the region of interference and the workspace occurs. Note,
that the upper and lower cables are crossed in the workspace, i.e. the upper winches
are connected to the lower platform level and the lower winches are connected to
a higher platform level. This design allows for improved stiffness and reduction of
cable-environment collisions. Still no cable-cable collisions occur inside the machine
frame and thus inside the workspace of the robot.

3 IPAnema System Family Demonstrators

3.1 Spatial Cable Robot IPAnema 1

Based on the IPAnema winch design two generations of cable robots were developed
in the last years. The first generation was built from an aluminum frame with the
geometric parameters as given in Table 1 and is depicted in Fig. 6. The IPAnema 1
setup used the winches with gearboxes with a transmission ratio of i = 3. Therefore,
the payload of the robot was in the range of up to 3 kg with a maximum velocity
vmax = 10 m/s and a maximum acceleration amax = 100 m/s2.

3.2 Robot and End-Effector Design for IPAnema 2

When moving from the first to the second generation, the robots property to be
quickly reconfigurable was proven. In less than one week the experimental setup
was disassembled and the the new robot design was put into operation. By changing
the gearboxes from i = 3 to i = 12, and using the second generation machine frame
and mobile platform all relevant robot properties were changed: The workspace and
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Fig. 6 Cable-driven parallel robot IPAnema 1 and IPAnema 2

Table 2 IPAnema 2 geometrical parameters: platform vectors b and base vectors a

Cable i Base vector ai Platform vector bi

1 [−4.0, 3.0, 5.0]T [−0.65, 0.125, 0.25]T

2 [4.0, 3.0, 5.0]T [0.65, 0.125, 0.25]T

3 [4.0,−3.0, 5.0]T [0.65,−0.125, 0.25]T

4 [−4.0,−3.0, 5.0]T [−0.65,−0.125, 0.25]T

5 [−4.0, 3.0, 1.0]T [−0.75, 0.100, 0.75]T

6 [4.0, 3.0, 1.0]T [0.75, 0.100, 0.75]T

7 [4.0,−3.0, 1.0]T [0.75,−0.100, 0.75]T

8 [−4.0,−3.0, 1.0]T [−0.75,−0.100, 0.75]T

x- x+
y+ y-

Fig. 7 2D IPAnema 2. Left Kinematic concept for the decoupled motion of the mobile platform.
Right prototype with orthogonal cable arrangement

payload were increased by factors of ten, where the velocity and acceleration were
decreased by a factor of four. Cables, controllers, and winches are left unchanged.

The robot frame has a size of 8 × 6 × 5 m and the end-effector was designed to
match the footprint of the collector modules. The design parameter of the IPAnema 2
system are given in Table 2. A gripper system is integrated with end-effector to handle
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the collectors and to perform the required assembly by installing the collectors into
the pylons.

3.3 Planar Cable Robot 2-D IPAnema 2

In a couple of applications such as warehousing a robotic systems is needed that
performs a planar motion. For that purpose the 2-D IPAnema 2 system was designed
using four linear direct drives to actuate the platform (Fig. 7). The open space in the
robot frame has a width of 4 m and a height of 2 m. All four linear actuators are
placed in the lower part of the frame and the cables are guided by pulleys through
the frame structure. This compact layout allows for flexible design of the rest of
the frame. Furthermore, the center of gravity is close to the floor giving the robot
a solid stability. Two arrangements for the cables are possible. In the conventional
design the cable are guided around four winches that are placed in the corners of
the machine frame. This kind of design was largely studied as planar robot. In the
second design the pulleys are located on trolleys that can move along a linear guiding
on the inner side of the robots frame. In this setting two pairs of the motors operate
antagonistic by generating one translational degree-of-freedom at the end-effector.
The trolleys are connected to the motors by additional cables such that the vertical
trolley movement is mechanically coupled to the end-effector motion. Thus, one
receives a cable-driven parallel robots with decoupled Cartesian motion.

For the orthogonal arrangement of the cables the kinematic transformation
becomes trivial since the kinematic Jacobian of the robot is isotropic in any tensed
configuration. The motion of the actuator is mapped one by one to the horizontal or
vertical motion of the platform. To improve the motion of the platform we apply a
force control to the pairs of actuators which is also very simple since the motor pairs
are each directly coupled. The orthogonal robot design has a rectangular workspace
allowing to the cable robot to reach the very corners of the robot frame. Therefore,
the robot has an excellent ratio when comparing the workspace to the overall robot
size. This shape of the workspace is highly favorable for warehousing applications.

3.4 IPAnema 2 Measurement Device

A cable-based 6-D pose measurement systems completes the IPAnema system family.
The measurement system was build from industry standard cable length measurement
sensors that were arranged on a simple planar frame. The drums are equipped with
passive springs to keep tension on the cables and with optical absolute encoders
with a position accuracy of around 0.05 mm and a maximum cable length of lmax =
7.5 m. The length measurement can be taken from the encoders with a frequency
of 1 kHz. The embedded IPC records and evaluates the measured length in a PLC.
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Fig. 8 IPAnema 2 Measure-
ment Device: Cable sensor
based 6-D-pose measurement
system applied to measure the
pose of an industrial robot: (1)
base with winch arrangement,
(2) cable length sensors, (3)
mobile platform, (4) embed-
ded IPC with real-time pose
estimation

The CoDeSys PLC by S3 is one of our target hardware platform that have to run the
forward kinematic codes as presented in [21] (Fig. 8).

4 Performance and Results

The demonstrator system IPAnema 1 is depicted in Fig. 6. The hardware of the robot
was used for experimental evaluation of the system. Due to space limitations in this
paper, we can only report a selection of measurements that were recorded using the
IPAnema system.

4.1 Repeatability

Here, we focus on some tests according the norm ISO 9283, which describes perfor-
mance criteria for robots and which are important to evaluate if the robot’s technique
is adequate for assembly operations. The measurements were performed using a
Leica Absolute Laser Tracker AT901-MR with a certified absolute accuracy of less
than 10 µm.

As an example, the definition of the position repeatability is shown in Fig. 9.
Similar definitions are detailed in ISO 9283 for the path repeatability and for the dis-
tance repeatability. Following the evaluation procedure given in the norm 30 single
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Fig. 9 Definition of the
position repeatability
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measurements were taken at different velocities of the robot (v1 = 0.5 m/s, v2 =
2.5 m/s, v3 = 5 m/s). The pose repeatability was found to be smaller than rPose =
0.75 mm for all velocities where it largely depends on the nominal velocity. Inter-
estingly, it was found that the best values could be achieved with highest velocity of
the cable robot where a repeatability better than r (3)Pose = 0.35 mm was determined.
For the distance repeatability a value better than rDis = 0.2 mm was determined. For
distance repeatability we measured better values at lower velocities were good values
of less than r (1)Dis = 0.06 mm were measured for v1. Finally the path repeatability was
investigated and the experiment yields a value than rPath = 0.5 mm. Again, the best
values were measured for v1 where the repeatability was r (1)Path = 0.17 mm.

The experimental evaluation of the cable robot yields encouraging results to
underline that the cable robot technology seems capable of performing the required
assembly operations. It is expected that additional efforts in terms of calibration and
improvements on the kinematic model can further increase the performance of the
robot.

4.2 Stiffness Evaluation

In the following we present some experimental data for the cable robot IPAnema 1,
which parameters are listed in Table 1. In the experimental setup, cables made from
Dyneema were used. The diameter of the cables was d = 1.5 mm. The platform
was moved to the measurement positions p. Then an additional cable was connected
to a mass element of m = 10 kg by means of a pulley. Therefore, a static forces
f = gm was exerted on the mobile platform. For each measurement position p the
pulley was located so that the force acts along each coordinate axis, both in positive
and negative direction. For the measurement positions 4–7, it was not possible to
fix the pulley above the platform. Therefore, in these cases only five rather than six
forces were exerted on the platform. The Cartesian displacement δr of the platform
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Table 3 Experimental determination of the stiffness and compliance matrix for the IPAnema 1
prototype

Position r (mm) Compliance matrix C (µm/N) Stiffness matrix K (N/µm)

1

⎛
⎝

0
0

1500

⎞
⎠

⎛
⎝

7.28 1.08 −0.69
−0.07 9.33 0.00
0.37 0.00 24.70

⎞
⎠

⎛
⎝

0.137 −0.015 0.003
0.001 0.107 0.000

−0.002 0.000 0.040

⎞
⎠

2

⎛
⎝

0
0

500

⎞
⎠

⎛
⎝

6.88 1.17 −0.62
−0.08 12.05 0.16
0.70 1.42 22.10

⎞
⎠

⎛
⎝

0.144 −0.014 0.004
0.001 0.082 −0.000

−0.004 −0.004 0.045

⎞
⎠

3

⎛
⎝

0
0

1000

⎞
⎠

⎛
⎝

6.57 1.19 −1.03
−0.05 9.81 −0.11
−0.28 1.70 22.31

⎞
⎠

⎛
⎝

0.152 −0.019 0.006
0.000 0.101 0.000
0.001 −0.008 0.044

⎞
⎠

4

⎛
⎝

−1200
0

1000

⎞
⎠

⎛
⎝

10.89 7.92 −1.71
−0.55 15.91 −0.36
−4.30 −0.26 20.49

⎞
⎠

⎛
⎝

0.092 −0.045 0.006
0.003 0.061 0.001
0.019 −0.008 0.050

⎞
⎠

5

⎛
⎝

−800
−300
600

⎞
⎠

⎛
⎝

7.04 2.17 −0.66
−2.38 12.59 0.29
−1.27 0.57 21.92

⎞
⎠

⎛
⎝

0.134 −0.023 0.004
0.025 0.075 −0.000
0.007 −0.003 0.045

⎞
⎠

6

⎛
⎝

−800
−600
1400

⎞
⎠

⎛
⎝

7.56 0.15 −0.74
−4.52 11.24 2.04
−2.00 2.14 21.77

⎞
⎠

⎛
⎝

0.131 −0.002 0.004
0.051 0.089 −0.006
0.007 −0.009 0.047

⎞
⎠

7

⎛
⎝

0
−900
1000

⎞
⎠

⎛
⎝

6.43 0.47 0.36
0.64 13.79 3.03
0.19 2.78 20.06

⎞
⎠

⎛
⎝

0.156 −0.004 −0.002
−0.007 0.075 −0.011
−0.000 −0.010 0.051

⎞
⎠

For seven poses of the platform the translational stiffness was determined by applying a load to the
platform. Measurements were taken with and without the load. The load was applied through an
attached cable with a mass element as counter weight. The Euclidian displacement of the platform
was measured with a laser tracker with a very high accuracy

was measured using the same a Leica Absolute Tracker. For different magnitudes of
the force, different directions, and different displacements the stiffness matrix was
measured. The results of the stiffness determination are shown in Table 3.

5 Conclusions

In this paper we give a brief overview of the state of the art at the Fraunhofer
IPA. We introduce the IPAnema family of cable robots, which are highly versatile.
Furthermore, details on the methods for planning and simulation of the cable robot
were presented. Finally, the cable robot IPAnema was evaluated based on ISO 9283.
The experimental results indicate that the cable robot technology is feasible for
handling and assembly operations.
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A Reconfigurable Robot for Cable-Driven
Parallel Robotic Research and Industrial
Scenario Proofing

Jean-Baptiste Izard, Marc Gouttefarde, Micaël Michelin,
Olivier Tempier and Cedric Baradat

Abstract Picturing the interest of research institutions and industrial actors, the
list of research and demonstration parallel cable-driven robot prototypes is growing
by the day. LIRMM and Tecnalia have decided to put knowledge in common in
order to develop novel concepts for cable-driven parallel robotics and demonstrate
its capabilities in industrial tasks. We have developed together a reconfigurable cable
robot for this purpose. The robot main characteristics, e.g. footprint, mobile platform
geometry and drawing point layout can be modified at will, making it particularly
suitable for studying in good conditions new configurations or novel control laws, as
well as any scenario suggested by our partners. The present paper first provides an
overview of the robot. Afterwards, a more specific view on the different components
and the capabilities of reconfiguration are presented, as well as examples of layouts
meant for various research and industrial projects.

1 Introduction: Previous Art

The different scientific developments that occurred in the past years in cable-driven
parallel robotics have brought today the introduction of these concepts in factories,
civil work sites, buildings and warehouses just a step away. Scientific developments
are still underway, e.g. on the control of cable-driven parallel robots in crane-like
configurations, a promising branch of parallel cable-driven robotics in terms of appli-
cations. One of the major limitations to transposing cable-driven robots to industry
is however them being accepted for carrying out real world applications. Parallel
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cable-driven robot reconfigurability is probably a key to this issue especially when
various tasks are assigned to the robot.

Since the development of the FALCON [1] and of the Robocrane [2], which were
among the first proofs of operability with good performances for fast manipulations,
numerous contributors have developed various options for operation of cable-driven
parallel robots. Applications requiring movements in a large workspace for crane-
like applications [2], emergency deployable robots [3, 4], giant telescopes [5], aerial
cameras [6, 7], service robotics [4] and positioning and measuring systems in wind
tunnels [8] may be cited. Several others parallel cable-driven robots for research have
been developed, e.g. the SEGESTA [9] and IPAnema [10].

Each of the aforementioned applications has specific requirements, which lead
to different parallel cable robot configurations. At LIRMM and Tecnalia, we have
considered the recent constraints in academic research that urged to develop new
technical concepts, such as specific control laws and cable models, and on the other
hand the pressing need by potential end users of cable-driven robots to have at their
disposal a parallel cable-driven robot prototype. The main goal is to test differ-
ent scenarios and different robot configurations: different operational spaces (e.g.
planar, spatial, with different numbers of degrees of freedom), various platform con-
figurations (flat, single point, spatial), different cable layouts (crane-type suspended
configurations, fully constrained designs) and different constraints on the design due
to the objectives of the scenario at hand. As a result, we have carried out research on
choosing the optimal configuration for a specific scenario, but we also developed a
parallel cable-driven prototype that is easily reconfigurable. This prototype is called
ReelAx. The purpose of this paper is to describe the main components of ReelAx
and the various configurations that have been tested so far.

2 Specifications

Geometry specifications are based on the positions of the cable output points, which
are the points at which the cable are drawn out from the base frame, and the attachment
points, where the cables are attached to the mobile platform. The first geometrical
requirement of ReelAx is reconfigurability. It should be possible to easily modify
the positions of the output points and of the attachment points, and also the cable
connection between them.. In addition, the different elements of the cable robots
should be easily transported. The maximum number of cables is 8.

The size of the maximum workspace of the robot is limited by the total length of
each cable. This length has been set at 6.6 m to be able to cross the diagonal of a 4 m
edge cube, and thus in order to be able to sweep through a workspace larger than
that of most serial robot. The height of the output points shall be up to 3 m above the
ground.

The platform maximum load is 25 kg. It has been decided that the cables should
be able to resist the full weight of the platform each with some margin, that lead to
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Fig. 1 Left general view of the suspended ReelAx6 configuration with three posts and six cables.
Right view of a single post

a maximum tensile force in the cable of 300 N. Typical mobile platform velocities
imply cable length modification speeds up to 1.5 m/s.

The cable routing between the drum and the output point should include a force
sensor in a way that cable tension can be measured. In addition, in order to avoid
any perturbation on the geometrical model of the robot, the routing path of the cable
should be of the same length whatever the length of cable reeled in.

3 ReelAx Design Description

3.1 General Layout

A base frame must be built in order to assemble the various components of the cable-
driven robot. This structure has to withstand the forces applied by the components
which are due to the loading of the cables, whose sum is equal to the weight of the
platform and the dynamic forces it undergoes. In the case of the robot ReelAx, the
structure is composed of up to 4 steel posts that are 3 m high, with 2 cables being
attached to each post (Fig. 1).

With these 4 posts, the reconfigurability is typically carried out in three steps:

• The first one is the selection of the number and of the positions of the posts around
the workspace. It sets the horizontal dimensions of the maximal workspace and
the number of cables.
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• Second, the position of each post output points are configured, moving a block
which redirects the cable. Indeed, each output point block can be clamped
anywhere on the post, and the user is free to set the horizontal spacing between
the output points (within a limited range).

• Third, the platform is designed to have the dimensions that are required by the
application at hand, and built on purpose with standard interfaces for cables.

The winches are placed at the bottom of the posts. They cannot be moved. The
cable goes out of the winch at the same position whatever the angular position of the
drum and is then directed towards a vertical pulley, which deflects it to the output
point block with a constant 90◦ angle. The vertical pulley is fitted with a force sensor
that measures the effort on the pulley, thanks to the constant angle between the in
and out portions of the cable in the pulley.

The robot is controlled using a MathWorks xPC Target based controller. As a
result, control laws are designed using MATLAB and Simulink. The robot controller
is connected to the posts using a real-time Ethernet bus, based on EtherCAT protocol,
to which the drives of the motors are connected as well. Using this protocol, the posts
can be up to 100 m apart from each other. Each post is equipped with one AccurET
drive from ETEL Motion Technology that is able to control the two winches of the
post. These latter are actuated by brushless direct-drive servo motors. Each drive also
gathers the outputs of the force sensors to send them to the controller. Between each
post run the power line and an emergency stop signal pair as well.

During an initialization phase, the cable tensions are brought to levels set by the
user using a basic force control loop on the winches. The controller switches to a
position or to a hybrid force/position feedback control loop once the cable lengths
are initialized. The tensions in the cables should be high enough for the cables to
be straight. During the initialization, it may be necessary to fix the platform to the
ground or, in case of fully constrained configuration, to a collapsible stand (if the
platform mass is too low, for example). Let us note that this initialization phase may
be simplified if absolute multi-turn encoders are used. It is not currently the case for
ReelAx which uses incremental encoders.

As the first reconfiguration step implies moving the posts, it should not be carried
out very frequently since the posts must be either attached to the ground or attached
to ballast at its base.

The two other reconfiguration steps can be more easily carried out, and will be
used extensively as illustrated in the last section of this paper, in which the different
configurations that have been tested with ReelAx are presented.

3.2 Winches

The main constraint on the design of the winches was to be able to reel in and
out the cable without modifying the position of the point at which the cable is
drawn out from the drum. In order to fulfill this requirement, the winches have been



A Reconfigurable Robot for Cable-Driven Parallel Robotic Research 139

Fig. 2 Views of the first version of the winches. Right is a cut CAD view, with the drum part in
red, the cylindrical bearings in blue, the screw nut in green and other turning parts in grey

designed with a drum having a combined translational and rotational movement so
that, when the cable is wound or unwound on the drum, its exit point is kept at the
same position. Several kinematic solutions have been studied, all of them using a
screw/nut joint to generate the combined translational-rotational movement of the
drum from the rotation of the motor. The solution has been chosen in order to optimize
the compactness of the winch, regarding both the length of the winch with respect
of that of the drum and the diameter of the drum. Simplicity of realization was also
a concern that led to the actual design of the winch.

As shown in Fig. 2, the mechanism set in motion by the direct-drive motor uses two
shafts on which sits the drum by means of two cylindrical bearings. The drum both
sits on these bearings and on the nut of a ball screw, the screw being fixed to the main
frame of the mechanism. As a result, the rotational motion of the motor is transmitted
to the drum through the two shafts and cylindrical bearings, this rotational motion
being transformed in a combined translational-rotational motion by the screw/nut
joint.

Given the maximal tension in the cable of 300 N, the different parts have been
dimensioned. Using a ball screw with a restrained cost implies a quite large nut,
which forces the diameter of the drum up to 65 mm. Given this diameter, the motor
should run at 440 rpm with a torque up to 10 Nm, preferably in direct drive: The
ETEL Motion Technology direct-drive motor RTMB-140-070 has been selected.
This motor has the advantage of having a hollow shaft so that the screw can run
across the whole mechanism and the motor. 300 N corresponds to the maximum
recommended tension in a Ø1 mm steel wire with 1780 MPa tensile strength (50 %
of the breaking load), therefore the pitch of the screw has been set at 2 mm. The
maximum cable diameter that may be used in ReelAx will therefore be Ø2 mm,
made of steel or other cable material such as Dyneema. With a 63 mm long drum,
this corresponds to more than 6 m of cable that can be reeled in.

As shown in Fig. 3, a second version of the winch has been designed based on the
experience of the first one. Indeed, the juxtaposition of the two sets of cylindrical ball
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Fig. 3 Left CAD view of the final version of the winches; Right close-up on the cut view of the
drum (same color coding as in Fig. 2)

bearings and the ball screw leads to an overconstrained design that induces internal
forces in the mechanism and additional friction. In the second version, one of the rods
is fitted with a pair of bronze bushings, while the other is held by a pair of rollers on
the pulling side of the drum and a PTFE cushion on the other side, with a clearance
of 0.5 mm. Using smaller rods, this could have led to smaller drums; however, we
chose to keep the same drum outer diameter than the previous design in order not to
change the speed and torque of the motor for a given tension and speed at the level
of the cable. The ball screw has been replaced by a smaller screw with a low-friction
Haydon-Kerk nut. In this second version of the winches, a notable difference is that
the screw does not run through the whole mechanism. It is held on the side of the
motor only. Misalignment is therefore compensated for by the flexibility of the screw
induced by the long cantilever arm between the nut and the screw holding position
(at least 170 mm) and the screw small diameter (Ø3.3 mm). These nuts also exist in
1 and 0.5 mm pitch, which would allow reeling in longer cables if needed in future
applications, with the constraint of using smaller cables. In addition, changing the
screw pitch in the assembly requires little investment.

Moreover, a current loss brake system has been set in place for all of the winches.
In addition, considering the poor behavior of Dyneema cables under stress (creeping,
low breaking force when loaded for several hours) and in order to test the effect of
sagging cables, the cables have been replaced by steel cables with a diameter of 1 mm
and a breaking load of 600 N.

3.3 Output Blocks: Cable Exit Points

The output blocks shown in Fig. 4 have been designed with the following objectives:
to provide a wide range of possibilities for the positioning of the output points for
reconfigurability, to ensure that the positions of the output points do not change over
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Fig. 4 Left to right CAD view of the output blocks, with orange lines showing the axes of rotation
set by the user; two different configurations of the output blocks

time and to maintain the cable routing steady whatever the position and orientation
of the robot mobile platform.

The reconfigurability constraint has been addressed by designing a generic output
block that may be placed wherever it is needed on the post. In order to fix it, milled
plates have been designed with an array of holes for placing and maintaining in place
the output block. On each post, it is possible either to place the two pulleys on the
same plate, thereby positioning the two output points at the same height separated
by a distance from 75 to 300 mm (central picture in Fig. 4), or else to place them on
different plates that may be clamped anywhere along the post, up to 3 m high (right
picture in Fig. 4).

In each output block, the cable first comes in contact with a freewheeling pulley.
This pulley is fixed on a part which can be turned around an axis materialized by the
vertical part of the cable coming from the drum. The orientation of this rotating part
is set by the user and held in place by a set of screws. The cable is then redirected
toward any point in the workspace by means of an eyelet. This latter is a part having
a pseudosphere shape obtained by revolving a portion of circle around its tangent,
the tangent being the axis of the cable coming from the pulley. The cable sits and
slides on this pseudosphere shaped part when pulled. The output point is considered
to be where the axis of the cable and the circle generating the pseudosphere intersect
(Fig. 5). In order to optimize the output point position, the user can set the eyelet
towards the centre of the workspace by means of a user defined rotation about a
horizontal axis as shown in the (left part of Fig. 4).

In order to have a strictly constant output point from which the length of the
cable can be computed using the distance between this point and the attachment
point on the mobile platform, the last part should feature a pseudosphere generated
by a circle with a null radius. This is obviously not possible as it would severely
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Fig. 5 Cut CAD view of the eyelet in the pulley assembly showing the elements of the eyelet

damage the cable when it runs on the eyelet. The radius has been set at 10 times the
maximum cable diameter which is equal to 2 mm (corresponding to the pitch of the
winch screw) that is to 20 mm. The maximum deflection angle is of 60◦. With this
design, the error between the distance separating the attachment point and the output
point (taken as the cable length in the control law) and the actual cable length is
3.5 mm error on the cable length when the attachment point distance to the eyelet is
400 mm (the typical dimension of a platform) and the deflection of the cable at 60◦
from the revolution axis the pseudosphere. The error is less than 1.5 mm when this
angle is 45◦ at the same conditions, which may happen when the workspace is square
or rectangular with the posts at the corners.

Calibration of the position of the output points has been done using a laser tracker
system. A specifically designed part, featuring cavities with magnets for placing the
laser tracker target, is placed on the eyelet during the measures. This part is shown
in Fig. 5.

4 Tested Configurations

4.1 ReelAx6: 6 Cable Suspended Triangle Configuration

The first tested configuration of the reconfigurable robot ReeAx was a suspended
underconstrained configuration with 6 cables and 3 posts called ReelAx6 (Fig. 6). The
mobile platform having 6 degrees of freedom (DOF), the robot was not redundantly
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Fig. 6 ReelAx6 global view (left) and the three tested configurations (right)

actuated. The posts are placed at the vertices of an equilateral triangle measuring
3 m on each side. Its original purpose was to compare several typical geometries of
parallel kinematic machines in the case of a parallel cable-driven parallel robot with
a triangular footprint and a planar platform.

ReelAx6 used the first version of the winch design (Fig. 2) and the cables were
Dyneema cables. The controller was very basic allowing us only to provide waypoints
to each motor. To coordinate the movements of the winches, the trajectory was thus
separated into several small continuous parts.

4.2 ReelAx 2D Paint: Redundant Fully Constrained
Planar 2-DOF

The first reconfiguration of ReelAx occurred for a joint experimentation with the
Ecole des Beaux-Arts, during which art students were to use new technologies to
carry out creative art. The goal of the experiment was to reproduce famous paintings
using a parallel cable-driven robot, which led us to change the design of ReelAx6 into
a planar fully constrained design. The mobile platform was working in the vertical
plane delimited by two posts from the ReelAx6 configuration (Fig. 7).
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Fig. 7 View of the 2D paint configuration during operation. Right pictures show works painted
using the robot, inspired by original works by Mondrian and Jasper Johns

Paint was delivered to the platform through an umbilical, and the operation of the
paint spray gun was carried out remotely by the user.

In order to deal with the redundancy using the drives that, at this time, were not
able to carry out torque control on the motors, the bottom cables have been attached
to the mobile platform using springs. The flexibility thereby added allowed the use
of the same basic control strategy as in ReelAx6.

4.3 Media-TIC: Redundant Fully-Constrained 6-DOF

ReelAx has also been reconfigured with an additional post and two winches in order to
deal with redundantly actuated parallel cable robots. Cables are now steel cables, and
the two added winches have been designed with the new version shown in Fig. 3.

The corresponding cable robot prototype has been called ReelAx8. The goal of
the first studied configuration was to validate the ReelAx8 design with control laws
that have been developed in the state of the art. The configuration chosen for these
primary tests was a fully constrained 8 cable configuration (Fig. 8).

The goal of this research was also to validate the control laws foreseen to be
used in a parallel cable-driven robot to be installed on the facade of an emblematic
building of the city of Barcelona in Spain, the Media-TIC building. This project is
currently in waiting for the construction permits to carry on the installation of the
robot.

The control law that has been selected for its simplicity was developed by
Lafourcade [11] for the SACSO robot, integrates two control parameters: the geo-
metric target position, for following the trajectory, and the desired mean tension in
the cables. In the case of the Media-TIC robot, the energy consumed is provided
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Fig. 8 Left the ReelAx8 fully-constrained configuration under testing. Right artist view of the
Media-TIC building with a parallel cable-driven robot installed on one of its facades

by windmills: the mean tension parameter is therefore used to increase the lateral
stiffness of the robot when wind is blowing to resist effects of gusts, which also
increases the energy consumption. When wind is low, the energy consumption has
to be decreased and the lateral stiffness is lower.

4.4 ReelAx8: CoGiRo

In the framework of the CoGiRo ANR project [12], an example of application has
been suggested for the design of a parallel cable robot prototype, namely the trans-
portation of loads over about 10 m, with optimization of the design to have the
best robustness to non-centered loads. This leads us to the ReelAx8–CoGiRo design
shown in Fig. 9 [13]. The robot overall occupied space measures 4 × 3 × 3 m3 (L ×
l × h), while its platform is a cube measuring 400 mm in edge, weighting 6.2 kg. It
is actuated with Ø1 mm steel cables.

This ReelAx8 design has since been used to perform preliminary tests, notably of
control laws, in prevision of the large size CoGiRo prototype shown in the bottom
image of Fig. 9.

The final design of the CoGiRo prototype is a 16 m long, 12 m large, 6 m high
cable-driven parallel robot, which should be able to lift a 500 kg payload at 2 m
above the ground within a 10 × 8 m2 rectangle. It is actuated by Ø4 mm cables, and
features a self-supporting frame made of aluminium truss elements. The robot mobile
platform is a cube measuring 1 m on the side. This design can cope with payload
off-centered by 0.275 m, which is the best performance among 20738 configurations
studied.
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Fig. 9 Top ReelAx8 in a suspended redundantly actuated configuration (8 cables, 6 DOF), a prepa-
ration for the CoGiRo prototype shown in the bottom CAD image

4.5 ReelAx8 Light

A specific test on ReelAx8 related to the research topics of the ANR project CoGiRo
has been carried out by changing the platform and checking the corresponding mod-
ifications of the robot. The main modification was to use a very light platform, in
order to enhance the effects of sagging. It was made of balsa wood, and weights only
160 g, while the weight of all the cables deployed at the test position was around
140 g (Fig. 10). As a reminder, the weight of the platform in the original version of
ReelAx8 was 6.2 kg.

The test carried out both with the normal and the light platform was to measure the
local stiffness of the robot by pulling with a calibrated force on the platform in various
directions and measuring the induced displacements in the same directions. Further
work includes the development of a cable model including the effect of sagging in
order to correlate with these results, based on the measurement of the sagging curve
of a single cable.
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Fig. 10 Views of the ReelAx8 robot with very the light platform. The right picture shows a view
in the line of sight between an attachment point and the corresponding output point, showing the
sagging of the cable

5 Conclusion

This paper presented the LIRMM-Tecnalia reconfigurable parallel cable-driven robot
called ReelAx. The robot main characteristics, e.g. footprint, mobile platform geom-
etry and drawing point layout can be modified, making it particularly suitable for
studying new configurations or novel control laws as well as various application sce-
narios. The main components of ReelAx were presented in some technical details
together with the various configurations of ReelAx tested so far.

Ongoing and future works are mainly focused on the ReelAx8–CoGiRo
suspended redundantly-actuated configuration. The control of such a redundant
under- constrained parallel cable-driven robot configuration is a challenging task.
We thus plan to test various control schemes and to compare their performances and
relative advantages. We also plan to make ReelAx8 perform pick-and-place tasks
across its large workspace by embedding a gripper onto its mobile platform.
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Integration of a Parallel Cable-Driven Robot
on an Existing Building Façade

Jean-Baptiste Izard, Marc Gouttefarde, Cedric Baradat, David Culla
and Damien Sallé

Abstract In order to use a cable-driven parallel robot to inspect an existing surface,
a straightforward solution consists in fixing the robot components on this surface.
In most cases, however, there are conditions that limit these fixations, for example
structural reasons since the frame of the surface has probably not been specifically
calculated to withstand the forces generated by the parallel cable-driven robot. In the
particular case of inspection of the façade of a building, civil engineering specifica-
tions apply, which may drastically reduce the engineering possibilities from the point
of view of the parallel cable-driven robot designers. This paper introduces a detailed
example of implementation of a parallel cable-driven robot on the Media-TIC build-
ing located in Barcelona in Spain. In this highly technological building, the main
façade parallel cable-driven robot in intended to work as a sensor for monitoring the
environment, but also as an interface between the building and its occupiers. The
various constraints—due to normative, structural and aesthetic reasons—that were
tackled are described in the paper, along with the elected detailed design of the robot
that complies with these constraints.

1 Introduction and Previous Art

Parallel cable-driven robots are well-known to have a potentially very large workspace
since very long cable lengths can easily be wound on winch drums. This advan-
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tageous unusual property enables large-scale applications such the one consisting
in setting up a parallel cable-driven robot on the façade of a building. During the
construction phase of the building, as a temporary tool clamped to the structure of
the building, it would be possible to safely and accurately manipulate large windows
and panels to install them on the façade, with full control of the rotational degrees
of freedom. Moreover, on the finished building, a vertical parallel cable-driven robot
gliding on its façade would be able to perform remote visual inspection or cleaning.
It may be used as a dynamic local weather station, measuring illumination at different
positions on the façade to mitigate sun shade systems, but also pollution and CO2
levels. In addition, a vertical façade cable-driven robot may also be useful for pest
bird scaring and to serve as a dynamic interface with the building’s intelligence for
the public.

Installation of such a device must respond to particular specifications as they
are fixed to a structure that is not necessarily originally purposed to that use. The
sidewalk below the façade may also have to be kept free from being impaired, which
leads to extra caution when designing the robot in order to avoid failure that could
cause harm to nearby pedestrians.

Cable-driven camera systems for sport and entertainment, such as the SkyCam [1]
and SpyderCam [2] systems, are typical examples of possible integration of a parallel
cable-driven robot on an existing structure, which is not specifically equipped for
such an installation. In these particular cases, the drawing points for the 4 cables
supporting the camera tilt and pan system are strapped to the building roof main
structure as high as achievable above the winches. This solution is suitable due to
the low forces that generate these systems as compared to structural forces in the
building. Being in action above the public, these systems are designed with very high
security factor, from 8 to 12.

The MARIONET-Crane developed by INRIA [3, 4] as a demonstrator of a search
and rescue robot is an example similar to the SkyCam and SpiderCam systems, as it is
installed on structures that are not meant for that use. However, MARIONET-Crane
has more degrees of freedom as it uses 6 cables. The winches are installed around
the intervention site, typically on overlooking buildings, and held in place by ballast
weight.

SkyCam, SpyderCam and MARIONET-Crane solutions are typically fitted for
horizontal low height workspaces, in suspended under-constrained configurations.
In the case of a vertical façade parallel cable-driven robot, the most drastic constraint
is to reach as much of the façade surface as achievable, including high height. The
robot must also be able to counteract forces perpendicular to the façade, even though
the footprint of the robot along this direction is required to be much smaller than the
dimensions of the building. In other words, transversal stiffness is a major issue.

Overconstrained planar cable-driven robot designs with 3 or 4 cables have been
suggested in the state of art as well, which is the typical design needed for moving a
platform across a surface [5]. This fully constrained design has been chosen for sev-
eral research prototypes later on [6–8]. When running on a plane in two dimensions,
these designs run on a flat horizontal surface, with gravity supplying the necessary
stability on the transversal axis; when the surface is vertical, a device forces the plat-
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Fig. 1 Views of the Media-TIC building. Left: SE and SW façades; Right: SE and NE façades.
Credits: José Miguel Hernandez, Iwan Baan

form on the surface to solve the stiffness issue. In the specific issue of the Media-TIC
building, the façade is too fragile and irregular for the platform to run on it, making
the overconstrained planar design unfitted with this application.

In the present paper, we discuss the different specifications that have been set
to a low-profile façade parallel cable-driven robot intended to be installed on the
Media-TIC building in Barcelona, Spain. The elected design is then introduced.

1.1 Presentation of the Media-TIC Building

Owned by El Consorci, running the Zona Franca in Barcelona, the Media-TIC
building has been designed by the Cloud9 architect agency under the direction of
Enric Ruiz-Geli. It is a highly technological building, with a strong focus on new
technologies and concepts for achieving zero energy building at reasonable cost.
The building itself will run as an incubator for SMEs on new media technologies
and TICs. It is placed in an area under the control of 22@Barcelona project by the
city of Barcelona. This project features specific incentives for installing pilot tests
of innovative solutions to be run within the district, through the 22@Urban Lab.

It is first characterized by an innovative structural design. The main structure of
the building is a large steel gantry, covered with glass and ETFE cushions. Instead
of being built from the ground to the top, the floors are hanged to the gantry, which
liberates space both at the floors, where there is no pillar but simply cables, and at
the lobby, which operates as a very wide open volume. The whole structure has been
covered with a bioluminescent paint that gives it a faint glow in the night.

This gantry and hung design, enhanced by the beams running a pattern on the
south-eastern façade that is driven by the strain due to the wind, give the whole
structure a distributed aspect. This focus on distribution has been declined by the
architect in every system of the building, from structure to energy and sensors (Figs. 1
and 2).
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Fig. 2 Left: View of the gantry during construction. It is still visible on the NE façade. Right up:
inside view of one of the floors. Right bottom: inside view of the lobby. Credits: Cloud9, Iwan Baan,
Luis Ros

Indeed, the whole building is fitted with sensors, for example presence sensors that
light the way of occupiers along their path. In addition, the south-eastern façade is
fitted with 104 multilayer ETFE cushions, meant for mitigating sunlight, controlled
by a pneumatic system based on a light flux sensor, based on an Arduino platform
addressable by Ethernet that is individual for each cushion. This results in a dynamic
control of the façade. On the other hand, the south-western façade is protected by
another series of ETFE cushions, filled with oil mist in order to decrease heat brought
by sunlight. Both of these technologies have been patented for the purpose of the
Media-TIC building, and have resulted in a 20 % increase of the energy efficiency of
the building.

The Media-TIC building makes extensive use of the highly effective urban heat
and cooling system set in place in the 22@ district. Solar panels on the roof are a final
asset to make the building 60 % more efficient in CO2 emissions than the average
building in Barcelona.

Granular sensor and control throughout the building, as well as different heat
mitigation systems and different sources of energy, are some other different ways for
the architect to stick to the concept of a “distributed building”.

2 Specification

Tecnalia got in contact with the architect cabinet, Cloud9, in order to install a vertical
fully constrained cable-driven parallel robot on the south-eastern façade as illustrated
in Fig. 3 As it was important not to distort the aesthetics and concepts of the building
just as much as making the robot safe for the public and the building, the specifications
include both safety and dimensioning constraints on the one hand and aesthetic
constraints on the other hand.
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Fig. 3 Previews of the Media-TIC building with the cable-driven robot

2.1 Tasks

The main application for which the first drafts of the robot have been designed for is
to be used as a weather station monitoring CO2 level, pollution level, temperature,
humidity and light level, and as an interface between the public and the building
itself. The goal according to the architect was to prove the building’s intelligence, by
showing data such as energy consumption of the building and data from the weather
station sensors.

In addition to these tasks, the robot is foreseen to be used for visual inspection of
the façade using a camera. It also proved valuable to the operator of the building that
the functioning of the robot would effectively scare bird pests that could degrade the
façade.

2.2 Workspace Limits

The limits of the workspace have been set accordingly to the tasks to be carried out.
It has been agreed that the robot’s interface task should be carried out at the building’s
terraces spread across the façade. The workspace should therefore include positions
in front of each terrace, except the ones situated at the top floor since the tensions in
the robot’s cables are expected to rise dramatically at these positions.

In addition, every structure that holds the auxiliary systems of the robot has to
fit within the building’s dedicated volume, which is 37 m high by 43 m wide, and
protruding out of the façade by at most 5 m.
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Fig. 4 Desired workspace of the parallel cable-driven robot on the layout of the Media-TIC façade

As a result, the workspace has been set to be 33 m wide centered on the build-
ing’s width by 26 m high, starting 5 m above the ground as depicted in Fig. 4 The
robot mobile platform should be able to keep a constant orientation throughout the
workspace while carrying its payload.

2.3 Building Related Constraints

In order for the building to support the forces applied by the parallel cable-driven
robot, the posts to which are attached the pulleys driving the cables to the nacelle
(mobile platform) should be fixed to the main frame of the building’s gantry. They
may be attached by clamping, welding or drilling holes in the gantry for screws.
Considering the forces that will support the posts and their direction (in mean directed
towards the middle of the workspace), they should be fixed at the points where
horizontal and vertical beams of the gantry are fixed together. The exact validation
of the structure of the posts will be carried out by the same civil engineering company
that dimensioned the Media-TIC gantry.

The winches should be placed somewhere where it is out of reach of the public,
preferably on the façade to avoid long cable circulation around the building. In order
to facilitate the integration of the control electronics of the robot, they should all be
placed at the same position.
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The robot should withstand the same wind figures than the building itself, which
is a peak wind at 160 km/h, generating up to 1,3 kN of load on 1 m2 of surface
of the building. Considering that the forces on the nacelle and the cables will be
considerably high in such a wind, it has been agreed that the robot will not operate
when wind is higher than 50 km/h, which is the case 5 % of the year, resulting in
a set wind load of 140 N/m2. It should therefore withstand this wind speed when
operating, and wind speed up to 160 km/h when at rest.

A cradle should be built somewhere on the façade to fix the robot’s nacelle when
it is not operating. This nacelle cradle will have to support the loading of the robot
when at rest, such as wind load. It will also be used for robot initialization.

Finally, it is important that the robot comply with the safety constraints of the
building. Indeed, there are 4 ETFE triangular cushions on the façade that serve
as smoke vents, opening wide to ensure correct ventilation of the escape stairs of
the building during a fire alarm event. These smoke vents protrude from the façade
surface by 3 m It takes 3 s for the smoke vents to reach their open position. During such
an event, the robot should be able to go back safely to its cradle without interfering
with the smoke vents.

2.4 Norms

Since the robot will be built above the public footway in front of the building, we
chose to comply with restrictive standards according to DIN 5692: Entertainment
technology—Flying systems. This standard requires a security factor of 10 in struc-
tural system of the robot, force sensors monitoring continuously the tensile forces
in the cables and a routine in the control loop that stops the robot when a maximum
force is reached, and finally a double brake system on the winches.

2.5 Aesthetic and Conceptual Integration to the Building

The parallel kinematics principles on which a parallel cable-driven robot operates are
related to the distribution principle put forward by the architect during the conception
of the Media-TIC building. Such features proved to be a major asset for the architect
to accept the design and seize it to integrate it fully to his building. Fitting to the
main principles that directed the design of Media-TIC is indeed an important step
when dealing with building with such a level of conceptual design.

It is just as much important to avoid that the robot has a bad visual impact on
the façade, especially because the south-eastern façade on which it is installed is the
most visible. In this respect, a parallel cable-driven robot has inherent advantages
since the façade is run across by cables which have a low visual impact.

Since the building aims at being self-sufficient in energy, it is important for the
robot to share this characteristic to fit with the rest of the building. On Media-TIC, this
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translates into additional wind generators that have to be installed. These wind gen-
erators will provide the power needed for the robot, knowing that its speed will have
to be different depending on how much energy has been harvested with the windmills
in order to match with their actual production. The nacelle, which is equipped with
electronic equipment (cameras, lighting, screen, wireless communications, etc.), will
also be equipped with solar panels in order to compensate for its consumption.

In order to keep a low visual impact at the level of the terraces, it has been chosen
that the interface between the robot and the public should be a soft interface. The
typical example would be sending text messages to the robot to have it come to one
specific terrace, or to carry out a path on the façade, or to send specific information
about the building.

On the other hand, the architect has put forward the fact that the elements of the
robot—nacelle, posts and structure—should not be hidden by choosing elements
visually similar to those of the building structure: different colors and patterns from
the ones used for the building should be chosen for these elements.

3 Technical Description of the Elected Design

3.1 General Layout

In order to keep out from the cushions covering the façade, the pulley’s positions
have been set at 1 and 5 m away from the façade. There are two cables at each of
the four corners of the workspace. The centre point of the robot nacelle will move
nominally 3 m away from the façade.

As mentioned above, the main concern being the lateral stiffness of the robot
against wind to avoid that the nacelle hits the building when a wind gust occurs,
a fully constrained design has been chosen. As explained later on, a state of the
art control law will allow changing the robot stiffness and power consumption in
function of the wind by modulating inner constraints in the robot (Fig. 5).

The layout of the fixing points of the cables on the nacelle has been chosen accord-
ingly to this constraint. The robot’s nacelle precise design has not yet been defined,
as there are still theoretical developments and tests underway to choose the best con-
figuration when dealing with this constraint. The goal is to find a good compromise
between having a reasonably high stiffness in all directions (and especially in the
critical building transverse direction) and at the same time avoiding cable interfer-
ences in the workspace. The first simulations and the test on the real prototype have
been carried out with a parallelepiped platform with a cable at each vertex. Another
configuration featuring two cables attached at each vertex of a tetrahedron has been
successfully tested in the simulations program. In addition, the pulley’s positions
will be designed so that they may be placed in different positions on the beam once
the robot has been built.



Integration of a Parallel Cable-Driven Robot on an Existing Building Façade 157

Fig. 5 General CAD view of the parallel cable-driven robot on the Media-TIC façade. Colored
boxes indicate the position of the different subsystems. Nacelle is shown in parked position

Fig. 6 CAD view of the preliminary designs of the nacelles. Right figure shows the parallelepiped
nacelle, left figure shows the tetrahedron nacelle. Front panel cables are attached to the back drawing
points, while back panel cable are to the front drawing points

Figure 5 shows the arrangement of cables on the platform that have been studied
so far. The nacelle dimensions have been selected to keep a low profile against wind
transversal to the façade. Fixing points are 2 m away on the horizontal axis parallel to
the façade, 1 m away on the vertical axis and 1.5 m wide on the horizontal transverse
axis. In the nacelle, a 0.5 m diameter cylinder will include all the hardware (Fig. 6).

The issue with the smoke vents has been dealt with using the following strategy.
When a fire alarm occurs, the centre point of the nacelle slides outward to the building
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by 1.5 m, letting it avoid the smoke vents by 0.5 m. The deployment of the smoke vent
takes 3 s: considering the winch speeds, the robot is able to reach the safe position
before the smoke vents are deployed. The nacelle is then moved and docked safely
to its cradle once the smoke vents are opened.

The cradle of the nacelle will be positioned at one of the balconies of the building.
In order to dock to it, the nacelle will have to slide closer to the façade, the position
of the cradle has therefore been set in function of the position of the elements of the
façade in the way, in particular the smoke vents. The cradle itself will be able to open
and close to leave way for the nacelle when the robot operates.

3.2 Dimensioning

Considering the different systems to be carried in the nacelle, its mass has been
evaluated at maximum 200 kg. Primary calculations taking into account platform
mass, cable mass and wind load on both the platform and the cable lead to consider
10 kN as the maximum force in each cable and a steel cable diameter of 12 mm (with a
10x security factor against breaking) to reach every point in the workspace considered
in the specification section. The cable construction is standard 6x36 construction
with a metallic 7x7 core, and therefore generates rotation when pulled, but shows
low torsional stiffness as well.

The resulting wrench transmitted from the posts to the structure has been evaluated
at maximum 50 kNm of torque and 63 kN of force for each of the posts.

Nacelle speed has been set to 1.5 m/s in order to limit issues on the winches due to
high cable linear speed. As a result, the motor power needed for each cable is 15 kW.
At most, the installation will have to be supplied 30 kW at a time, which means the
windmills will have to generate power at their nominal level of 3 kW for 10 hours
before 1 hour of operation at full current can be carried out.

3.3 Control Scheme

A control architecture that is able to take into account the actuation redundancy has
been set up, tested and validated through simulation. Its validation took place when
it has been successfully implemented on a real robot prototype.

The objective of this control law is to take into account the redundancy during
the movements of the robot to prevent any cable from sagging under low tension.
A hybrid position / force control law has been set up, based on research carried out by
Lafourcade [9]. It consists in synthesizing a command of the cable tension integrating
two parts: one generating movement of the nacelle, τ range, and another one making
sure that all the cables are under tension during movement, τkernel. The first part
generating movement can be obtained by a control law in the operational space or
in the joint space. The second part, ensuring tension in every cable, is derived by
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Fig. 7 Implementation of the control law with τ range being generated in the operational space

projecting a mean desired cable tension on the kernel of the matrix JT
m linking the

cable tensions with the external wrench applied to the nacelle.
Preliminary results in stiffness estimation of fully constrained parallel cable-

driven robots suggest that, with the layout of the Media-TIC robot, its transverse
stiffness is directly linked to the mean cable tension. As a result, the control law set
in place may be used to increase the stiffness of the parallel cable-driven robot during
days when wind is blowing, with a tradeoff on the total power required for operation.
During days with low wind, the robot will operate with a lower mean cable tension.
This will lead to a lower transversal stiffness and a lower energy consumption for a
given nacelle speed, in line with the concept of Media-TIC (Fig. 7).

3.4 Robot Subsystems

4 Winches

Winch motors have been chosen among the B&R motor range to deliver the appropri-
ate power. The 8LSA85 motor has been chosen, featuring up to 72 Nm at 2,000 rpm,
and 94 Nm at stall. It drives the 292 mm primary diameter drum with a reduction
ratio of 1:16, which leads to a maximum cable speed of 1,9 m/s.

In addition to the constraint of having a security factor of 10, in order to comply
with the DIN 56921 standards, the winches must be equipped with two current loss
brakes, one of which being connected directly on the drum. One of these brakes is
included in the 8LSA85 motor. The second brake is a double rotor elevator brake
rated at 800 Nm for each rotor.

The length of cable reeled in and out is monitored via the rotation of the spool
using an absolute rotary position sensor. In addition, the winch is fitted with limit
switches. In order to avoid unreeling the cable when applying negative tensions in
the cable, rollers are maintaining the cable in place on the drum using springs.

Winches are powered using the ACOPOSmulti range from B&R, both gathering
data from the sensors and driving the motors, linked together and to a central field
computer featuring the control loop through a POWERLINK field bus.
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Fig. 8 CAD view of a winch

Fig. 9 Arrangement of the winches on the roof of the building

Finally, the drums are enclosed in boxes to prevent weather damage, since they
are installed in open air on the roof of the building. They are placed so that there is
no interference between the different cables and the winches (Figs. 8 and 9).

5 Cable Circulation

With the winches on the roof of the building, the cables must be directed from there
to the positions of the pulleys at the four corners of the façade. The circulation must
also include a force sensing system, giving the tension in each cable. The force sensor
will be a shear stress sensor placed on the last fixed pulley of the circulation. Stress
sensors will be monitored using B&R X67 hardware specially designed for remotely
placed sensors, addressed via POWERLINK.

The upper beams, supporting the pulleys for the cables attached to the nacelle by
the top, redirect all the cables from the winches to the pulleys and to the lower beams.
Force sensors for the upper cables are placed on the pulley directing the cable from
the drum to the winches. The fixed pulleys for the lower cables are not instrumented.
Cable tendons are placed to limit the bending of the beam under load.
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Fig. 10 Upper beam arrangements of the different pulleys. Up: arrangement of the upper left beam,
upper right beam being symmetric. Down: circulation of cable between the winches and the upper
right beam

The lower beams direct the cables from the upper beams to the output pulleys.
The fixed pulleys on the lower beams are equipped with force sensors. Once again,
cable tendons are fixed between the beam and the structure of the building to avoid
unacceptable bending of the beams (Figs. 10 and 11).

As shown in Fig. 12, the output pulleys are assembled on a bearing whose axis
is collinear to the axis of the cable coming from the fixed pulleys. The cable runs
through one of the bearings. Here we are taking advantage of the low stiffness of
the cable, due to the 6x36+7x7 construction, which might not be possible with a
non-rotating cable. The pulley orientation is determined by the direction on which
the cable pulls. The cable is kept in place in the pulley by rods at the exit of the
pulley.

The block in itself is clamped to the beam. It will allow keeping on with the
optimal configuration determination through simulations and tests, and constructing
the most optimal configuration when the robot will be ready for start-up.
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Fig. 11 Lower left beam. Lower right beam is symmetric

6 Nacelle

As explained above in this paper, the detailed configuration of the nacelle has not yet
been chosen. However, the global shape of the platform has been determined with
the goal of limiting the force due to the pressure of the wind. The nacelle will also
feature several electronic hardware items, such as a computer with GPRS connection,
batteries, lightings, screen, speakers, weather sensors and cameras partly powered by
solar panels. The nacelle cradle will allow recharging the batteries when the nacelle
is docked. All of these items are housed in a 50 cm diameter cylinder and fixed on a
central axis, to which will be fixed as well the structural beams holding the cables.

7 Conclusion

This paper presented the implementation of a parallel cable-driven robot on the
façade of the Media-TIC building located in the city of Barcelona, Spain. This robot
is intended to work as a sensor for monitoring the environment and also as an inter-
face between the building and its occupiers and visitors. Various constraints, due to
normative, structural and aesthetic reasons, were described along with the elected
detailed design of the robot that complies with them. One of the main technical issues
is to design a parallel cable-driven robot with a lateral stiffness sufficient to withstand
forces due to the wind. Here, this has been achieved by means of an appropriate lay-
out of the cables in a fully constrained configuration. Besides, the selected control
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Fig. 12 Close view of the swiveling output pulley

Fig. 13 View of the internal arrangement of the nacelle. Credits: Cloud9

law is able to modify the robot stiffness with a tradeoff between stiffness and energy
consumption.

The robot has not yet been realized nor installed on the building façade. Indeed, we
are still currently waiting for the construction permits to carry on with the installation
of the robot.
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Use of Passively Guided Deflection Units
and Energy-Storing Elements to Increase
the Application Range of Wire Robots

Joachim von Zitzewitz, Lisa Fehlberg, Tobias Bruckmann
and Heike Vallery

Abstract Since few years, wire robots are making their way into industrial applica-
tion. Besides the continuation of research in the fields of kinematics and dynamics
modeling, control, workspace analysis, and design, new challenges like robustness,
energy efficiency and maturity arise due to practical requirements. This holds espe-
cially true for the actuation and deflection components of the system. In the past, a
wide range of actuation and deflection concepts were presented. Within this contri-
bution, at first known ideas of deflection concepts are reviewed and compared. In
the following, a new deflection concept using passively guided skids is presented
which homogenizes the load capabilities of a wire robot over its workspace. Subse-
quently, new approaches optimizing the energy consumption based on the installation
of counterweights and pre-stressed springs are discussed. Using those passive ele-
ments, not only static pre-tension can be generated but, in the case of using springs,
also dynamic motions can be boosted by using the eigenmotions of the oscillator
consisting of the end effector and the attached springs. The paper describes both
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the theoretical background as well as simulation results for eigenmotion utilization
showing that the concept is capable of drastically reducing wire forces generated by
the active components, i.e. the motors, for a given task.

1 Introduction

Wire robotics is a re-emerging research field in robotics: A large number of prototypes
was presented in the last decade of the past century. Apparently, only a small number
of these prototypes have made their way to practical applications. Possible reasons
are manifold, reaching from the difficult controllability up to the comparably low
precision induced by the uni-laterally constraining and inherently elastic wires, which
replace the stiff conventional robot arms.

During the last five to eight years, a renaissance of practical applications can
be found, most of which were proceeded by an extensive theoretical preparative
work. In more recent research projects, the focus is increasingly put on a major
advantage of wire robots: their easy reconfigurability. This property emerges from
the modular usability of the three main components of a wire robot: the actuation
unit, the deflection unit, and the wire.

A large variety of these three components has been presented in the literature,
wherein especially the deflection units are mainly used as modular components.
These units, which guide the wire from the actuation unit into the workspace, are
no longer considered as units mounted to a fixed position, meaning, that the robot
has a permanent configuration. Rather, their number as well as their position have
become adaptable in order to configure the robot for different tasks [1, 2]. The proper
robot configuration (i.e., the arrangement of the deflection units and the platform
connection points) influences the workspace size as well as the achievable end-
effector dynamics and wrench considerably.

These two parameters, workspace size and end-effector wrench, depend on a
second variable: the dimensioning of the actuation unit. In contrast to rigid-linked
robots, an increase in actuator power does not only influence the producible end-
effector wrench but also the workspace size: This property emerges from the fact
that, in case of fully constrained, over-actuated wire robots, a minimum pre-tension
has to be maintained in all wires. At the borders of the workspace, the maintenance
of this pre-tension in certain wires requires high counter forces in other wires which
is often the main limitation of the workspace.

Within this paper, extended concepts for the modular use of the two above-
mentioned components, actuation units and deflection units, are elaborated while
investigations on proper wires are subject to future research. For the deflection units,
a review on their different utilization in known wire robots is presented. Subsequently,
a new concept is presented which is supposed to close a gap in wire robotics as it
allows to keep the wire forces homogeneous over large workspace areas.

The concept for the robot actuation is extended to passive units which are used
to relieve the active units, i.e. the motors. After summarizing a recent application
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Fig. 1 Current concepts for deflection units: actuated drum and fixed deflection unit (left); linear
actuation unit and wire with constant length (middle); actuated drum and actuated deflection unit
(right)

involving counterweights, new concepts for the integration of springs are presented.
These springs can either be used to relieve the motors in general or their characteristics
are optimized for single tasks or trajectories.

Both concepts remarkably increase the usability of wire robots and, thereby,
extend their applicability for new groups of applications.

2 Use of Deflection Units: Review and New Concept

In the following sections, the term deflection unit is referring to the device which
guides the wire into the workspace.

Various designs for deflection units has been presented in the literature: sim-
ple rings or holes (made from low friction materials, e.g. ceramics) [3, 4] guiding
the wires into the workspace are preferred to facilitate kinematic calculations, but
they bare the disadvantage of higher friction and, as a consequence, increased wear
compared to other solutions. Swivel castors are the logical option to overcome this
problem; they are implemented in several wire robots, e.g. the IPAnema [5]. Their
geometrical description can be found in the literature [6]. Further designs involving
static pulleys and/or rollers have been presented over the past years [7, 8].

However, the following section will not focus on design issues of the proper
deflection unit. Rather, the different use of deflection units within the actuation con-
cept of wire robots, independent of their design, will be discussed, as this aspect has
a major influence on the properties and capabilities of the robots.
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2.1 Fixed Deflection Units

In most cases, deflection units are mounted to a fixed point (Fig. 1, left). They guide
the wire from this point into the workspace where its free end is connected to the end
effector. In certain concepts, the position of the deflection unit can be freely chosen
along the frame structure of the wire robot in order to make the robot more versatile
and adaptable to different tasks [1, 2].

This concept is the mechanically most simple and probably the best investigated
solution. A major disadvantage is the limited workspace with heterogeneous, pose
dependent load capabilities.

2.2 Actuated Deflection Units with Constant Wire Lengths

In a concept presented by Maeda et al. [9], reinterpreted by Bruckmann et al. [10],
actuation units changing the wire lengths are completely omitted. Instead, wires with
constant lengths are connected to linear actuators (Fig. 1, middle).

Also this concept has the advantage of mechanical simplicity, especially concern-
ing the wire guidance. Furthermore, this arrangement turned out to be more energy
efficient compared to rotary actuators with drums, as the actuation units only have to
exert the component of the wire force tangential to the linear unit [10]. However, the
required linear drives are often mechanically complex modules. They introduce large
friction—potentially leading to control problems—and the choice of commercially
available types is much smaller compared to rotary motors. As a further disadvantage,
the highly limited workspace of this option has to be mentioned.

2.3 Actuated Deflection Units

Normally, the change of the wire lengths or the position of the deflection points
determine the pose of the end effector. However, also the combination of both has
been applied in one project [4] to manoeuver a tablet horizontally in space: In order
to fully define the pose of an inertial body hanging on wires, at least six wires are
required. When omitting wires, the body’s position is no longer fully defined unless
other actuated degrees of freedom are integrated. In the application mentioned before,
the drive trains enables both the change of wire length by actuated winch units and
the active positioning of the deflection unit. As this solution requires less wires,
collision with other wires and objects inside the workspace become less probable.

A similar concept has been applied recently to address the collision problem [2]:
In an interactive application with a human user standing inside the robot’s workspace,
the free ends of two actuated wires (variable lengths l1 and l2) were connected to a
third wire with a constant length l3 at the point P (Fig. 2). The free end of the third
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P

l1 l2

l3

Fig. 2 Two actuated wires manipulating the deflection point of a third wire

wire was connected to the end effector grasped by a human subject. The change
of the two active wire lengths resulted in a movement of P. This movement was
used to avoid collision between the third wire and the subject. The point P could be
interpreted as an actuated deflection point with a more complex movement range.
Alternatively, a pulley could be mounted at the end of one active wire, deflecting the
second wire.

The concept of movable deflection points could also be applied to an over-actuated
wire robot in order to increase the workspace size of the robot. However, this solution
is the mechanically most complex version compared to the other concepts presented
above.

2.4 New Concept: Passively Guided Deflection Units

All concepts mentioned above have one clear disadvantage: their load capabilities
vary strongly depending on the end-effector pose inside the workspace. This results
from the increasingly inhomogeneous distribution of wire force vectors when the
end effector is moved away from its central pose towards the outer workspace zones.
This disadvantage can be compensated by actuated deflection points as they were
presented in Sect. 2.3, but this solution is costly due to its high mechanical complexity.

We suggest a new concept where the deflection units are neither fixed nor actuated;
instead, they move passively, while being connected to each other, and potentially
subjected to additional passive constraints.

In an exemplary planar case, a single force vector acts on a moving attachment
point at an object or human W (Fig. 3). Two winches are used, and two deflection
units (pulleys) are combined and constitute a trolley running on a linear guide. To
minimize the mass mT of this trolley, given that distances between deflection units
could be large, the units can be mounted on two separate carts that are connected by a
cable. This is possible because the force between carts will always be tensile. A single
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Fig. 3 Inter-connected passive deflection units enlarge the achievable workspace; the object or
human subject is connected at point W

wire of length lC connects the node to the attachment point W on the moving object
or human. A configuration similar to this, but extended to the three-dimensional case,
is currently being realized in an overhead support device for gait training.

We now assume that the endpoint W moves along a given trajectory w =
(xW , yW )

T , with yW > 0, and that the force acting on W is to be controlled. This
force is defined by its magnitude FC and the angle ϕC . In the chosen Cartesian
coordinate system, y points downward and x points to the right, in direction of the
rail.

Geometry defines how the wire angles ϕA, ϕB , ϕC , and the trolley position xT are
related:

(yW − lC cosϕC ) tan ϕA + lC sin ϕC = xW − xT (1)

(yW − lC cosϕC )(tan ϕA + tan ϕB) = d. (2)

Force equilibrium on the node defines the relationships between the wire forces
FA, FB, FC , and the angles:

− FA sin ϕA + FB sin ϕB = −FC sin ϕC . (3)

FA cosϕA + FB cosϕB = FC cosϕC (4)

Given a current trolley position xT and wire forces FA and FB , the algebraic
Eqs. (1–4) define the magnitude FC and the angle ϕC of the output force vector (as
well as the angles ϕA and ϕB).



Use of Passively Guided Deflection Units 173

The inverse problem, as necessary for control purposes, is to find appropriate
reference wire forces F̂A and F̂B in function of a reference force F̂C at the endpoint,
and a reference angle ϕ̂C . The winches can then be used to track the desired wire
forces F̂A and F̂B .

If the deflection units were fixed, as in classical configurations, the solution would
be found easily using the same equations, but the direction of the realizable output
force would be constrained by the relationship

xW − xT − d < yW tan ϕ̂C < xW − xT (5)

with fixed xT . The range of possible angles thus depends strongly on the position
of W and on the distance d between deflection units. Increasing the workspace by
increasing d would automatically lead to higher wire forces FA and FB , which is
undesirable.

The movable deflection units solve this issue and allow almost arbitrary positions
xW of the endpoint along the x direction, only constrained by space limitations in
the building or by maximum allowable wire length. However, the control task of
commanding appropriate wire forces is less straightforward, because of the under-
actuated nature of the system. The trolley moves under the influence of the wire
forces, according to the equation of motion:

mT ẍT = −FA + FB + FC sin ϕC . (6)

One simple solution, which is efficient for low trolley mass, is to control based on
static equilibrium: For constant wire forces FA and FB , the trolley will approach its
equilibrium position, defined by the left side of (6) being equal to zero. Then, an
additional algebraic relationship for the reference forces results:

F̂A − F̂B = F̂C sin ϕ̂C . (7)

This equation, combined with (1–4), with forces replaced by reference forces, allows
the realization of a simple controller without static error: The system of five algebraic
equations can be solved for F̂A and F̂B (and angles, and trolley position), given only
F̂C and ϕ̂C . For the equations to be solvable with non-negative forces, the commanded
angle can theoretically take any value within the interval −π/2 < ϕ̂C < π/2. The
smaller the mass of the movable deflection units is, the faster the trolley will approach
its static equilibrium.

3 Combining Motors and Passive, Energy-Storing Elements

Apart from the deflection concept, the way how the wires are tensed has a considerable
influence on the capabilities of a wire robot. In common wire robots, the wire tension
is applied by all sorts of actuators. The most common type of actuators are electrical
motors of both, rotary and linear type.
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Fig. 4 The Somnomat, an
actuated bed platform for sleep
research: Counterweights on
additional wires (highlighted
as dashed lines) partially
compensate the high platform
weight

Independent from the actuation concept, the active unit always exerts unidirec-
tional torques or forces, as wires represent unilateral constraints. As a consequence,
only half of the actuator’s power spectrum is utilized in common wire robots.

This section presents possibilities how to overcome these shortcomings and how
to increase the wrench of wire robots by using passive energy-storing elements.

3.1 Use of Single Springs or Counterweights

The minimum requirement for an end effector to work in n degrees of freedom
without end-effector wrenches is to have at least n + 1 wires attached to it [11, 12].
However, one of these wires could be tensed by a passive energy-storing element. In
the literature, applications can be found where an active actuation unit is replaced by a
spring [13, 14]. The pre-tension of this spring determines the producible end-effector
wrench.

A further challenge in robotic handling applications is the often high gravitational
load induced by the proper robot structure as well as the end-effector load. While
the structural load is usually negligible in wire robots, the end-effector load can
significantly limit the robot’s range of motion.

An example is the Somnomat, a tendon-driven platform with six degrees of
freedom used for sleep research [15]. In the Somnomat, motorized drums were
used as actuation units. These motorized drums are parts of a modular wire-robot
concepts [2] and were by far too small-dimensioned to lift or even move the total
platform weight of 140 kg. By attaching wires connected to counterweights which
partially compensate the high platform weight, the application became realizable
with the minimal number of seven actuation units (Fig. 4).
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Fig. 5 Pre-tensing of the
actuation unit with an inertial
mass directly connected to the
drum

3.2 Constant Pre-Tension of Actuation Units

As pointed out in the introduction of this section, the power spectrum of actuators
is not fully exploited in wire robots, because the actuators only pull on the wires. In
addition, the actuation units have to produce a minimum pre-tension Fpre in each wire
when the system is over-actuated. This pre-tension does not contribute to any force
or torque at the end-effector and, therefore, further diminishes the robot’s wrench
for a given actuator size.

This shortcoming can be compensated by pre-tensing the actuator—and therefore
the wire—with the force:

Fpre,const = Fpre + Fact,max (8)

with Fact,max as the maximum static force the actuator can produce. Due to this pre-
tension, the static load capabilities of the actuator is more than doubled. An option
to realize this pre-tension is to attach a passive, energy-storing element directly to
the actuated drum (Fig. 5). The drum length hardly has to be extended for this, as
one wire is unwound when the other one is wound on.

To minimize the maximal motor torques, Fpre,const could also be set to a value
between the minimal and the maximal actuator torque required for a specific task on
each actuator:

Fpre,const = Ftask,min + Ftask,max − Ftask,min

2
(9)
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3.3 Energy Minimization—Utilization of Eigenmotions

In the preceding sections, passive elements were used to increase the overall load
capacities of wire robots. In the following section, we want to highlight how the
dimensioning of these elements can be further fine-tuned dependent on the task to
be realized.

3.3.1 Idea

An approach to minimize the energy consumption of a robot is to add passive elements
to the robotic structure such that the eigenmotion of the robotic structure is close to
the desired task-specific trajectory. The utilization of eigenmotions of course implies
that the robot is transformed into an oscillator by adding elastic elements such as
springs to the structure. Examples in the literature have shown that the integration
of roughly-dimensioned springs can already release active units for tasks within a
specific frequency spectrum [16].

The idea of utilizing the robot’s eigenmotions has been presented by Uemura et al.
[17]. They present the idea of attaching springs with adjustable stiffness to the axes of
a serial robot. The spring stiffness and its equilibrium angle were adjusted such that
the robot’s eigenmotions were close to a previously specified trajectory describing
a periodic movement. This idea is transferred herein to wire robots in the following
paragraphs.

A cyclic trajectory of the robot’s end effector in task space coordinates is described
by the n-dimensional vector x(t). When neglecting frictional effects and the motor
inertia, the following wrench has to be produced by the actuators to move an end
effector along x(t):

wE E = M · ẍ (10)

with M as the n-dimensional inertia matrix of the end effector.
Assuming that a number of m ∈ N springs with adjustable spring constant ki and

the initial length l0,i , i = 1, 2, . . . ,m, are attached serially to the actuation unit, the
wrench ws produced by these springs can be described by

ws = AT · [k1 · (l1 − l0,1) . . . km · (lm − l0,m)]T (11)

with A as the pose-dependent structure matrix of the wire robot and with li , ki , and
l0,i as the actual length, the spring constant, and the unloaded length of the i-th
spring, respectively.

Under the given assumptions, the actuator has to produce the following wrench
wa to move the end effector along x:

wa = wE E − ws (12)
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Fig. 6 Assembly of a planar
wire robot with deflection
points A1...3 and point mass
m moving along a cyclic
trajectory (grey)
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The goal is to tense the springs in such a way that the required actuator power is
minimized for the given task. In other words, the oscillator consisting of the end
effector and the springs should be dimensioned such that the eigenmotion of the end
effector supports the desired cyclic movement optimally. Knowing the trajectory
in advance, this dimensioning can be done off-line and is not critical concerning
calculation time. According to [17], this is reached by minimizing the following
expression

J (k, l0) =
∫ (i+1)·T

i ·T
wT

a wadt (13)

with k = [k1, k2, . . . , km] and l0 = [l0,1, l0,2, . . . , l0,m].

3.3.2 Example

The utilization of the eigenmotions in a wire robot will be demonstrated on a planar
wire robot (Fig. 6).

Three wires are attached to a point-shaped end effector with a mass of m = 1 kg.
The deflection points of the wires, A1, A2, A3, form an equilateral triangle. The
position vectors of these points are denoted by a1 = [0, 0], a2 = [10, 0], and
a3 = [5, 8.66]. The coordinate system is located in A1.

In a first step, the purely passive spring system is considered. Therefore, the
wires are replaced by springs with adjustable stiffnesses k1, k2, k3 and relaxed spring
lengths l0,1, l0,2, l0,3. Practically, this can be realized by a clock spring tensing a winch
which coils the wires. The sum vector of wire forces caused by the springs is Fpre =
Fpre1 e1 + · · · + Fprem em with an absolute value of Fpre and ei , i = 1, 2, · · · ,m, as
the unit vectors in direction of the wires.

Now, ki and l0,i should be chosen such that the springs optimally support an
end-effector movement along a predefined cyclic trajectory, meaning that (13) is
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minimized. The following trajectory definition was chosen, describing a periodic
movement, consisting of two superimposed movements: A basic elliptic movement
with a frequency f1 and amplitudes a and b, and a second superimposed oscillation
with the eightfold frequency f2 and an amplitude of 1 % of a:

x(t) =
[

a0 + a cos(φ) cos(2π f1t)− b sin(φ) sin(2π f1t)+ a
100 cos(φ) cos(2π f2t)

b0 + a sin(φ) cos(2π f1t)+ b cos(φ) sin(2π f1t)+ a
100 sin(φ) cos(2π f2t).

]

(14)

The basic elliptic trajectory is rotated byφ. The center point of the equilateral triangle
formed by deflection points Ai , i = 1, 2, 3, does not coincide with the center point
[a0, b0] of the ellipse. In this example, the following parameters are used: f1 =
0.5 Hz, f2 = 4 Hz, a0 = 5.7 m, b0 = 3.5 m, a = 3 m, b = 1.2 m, φ = 14.5 deg.

Neglecting frictional effects and the inertia of the drums and motors, wa can be
calculated for this system as follows:

wa(t) = mẍ(t)︸ ︷︷ ︸
wE E

− AT (x(t))[ k1(l1(t)− l0,1) k2(l2(t)− l0,2) k3(l3(t)− l0,3) ]T

︸ ︷︷ ︸
wS

(15)
where m and ẍ(t) are given and the structure matrix AT can be calculated by

AT (x(t)) = [e1(t) e2(t) e3(t)] (16)

with

vi (t) = ai − x(t) vector of the wire i

li (t) = ‖vi (t)‖2 length of the wire i

ei (t) = vi (t)

li (t)
unit vector of the wire i

for i = 1, . . . , 3.
For the evaluation of (13), the expression wT

a wa(t) can be calculated as

wT
a wa(t) = s1(t)− 2ms2(t)+ s3(t) (17)

with

s1(t) = m2 ‖ẍ(t)‖2
2

s2(t) =
3∑

i=1

ẍ(t)T ei (t) ki (li (t)− l0,i )︸ ︷︷ ︸
:=Fprei (t)

(18)
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s3(t) =
3∑

i=1

[(
ei (t)

T
[

Fprei
(t)

0

])2

+
(

ei (t)
T

[
0

Fprei
(t)

])2
]

+2[e1(t)
T e2(t)+ e1(t)

T e3(t)+ e2(t)
T e3(t)]

where only the passive system is assumed.
Discretizing t with a sampling rate of 0.001s the value of J (k, l0) for the evaluation

of (13) can be calculated e.g. by using trapezium rule with iT = 0 and iT + T = 2.
The objective function of the optimization is defined by J (k, l0).

The optimization of the spring parameters ki and l0,i , i = 1, 2, 3, can be performed
by minimizing J (k, l0), e.g. with the MATLAB® function fmincon given the
following boundary conditions:

0 ≤ ki ≤ ∞, i = 1, 2, 3

1 ≤ l0,i ≤ min
0≤t≤2

(li (t)), i = 1, 2, 3 (19)

Fprei
(t) ≥ 5 i = 1, 2, 3

ensuring only positive spring constants, positive spring forces defined by a positive
difference (li(t) − li,0) for any 0 ≤ t ≤ 2, a minimal spring length of 1m, and a
predefined minimum wire force of 5 N at any time. The optimization is started using
the initial value x0 = [1.5 4.8 16 2 2 2] for k and l0 fulfilling the defined boundary
conditions. It converges delivering the following parameters

kopt = [kopt1kopt2 kopt3] = [2.68 2.91 4.38] (20)

l0opt = [lopt0,1lopt0,2lopt0,3] = [1.91 1 1]. (21)

Using these values, the forces of the hereby defined springs can be calculated as

Fpre,opt (t) =
3∑

i=1

Fpre,opti
(t)ei (t) (22)

with
Fpre,opti

(t) = kiopt (li (t)− l0,iopt ), i = 1, 2, 3. (23)

Looking at the magnitude of the spring forces Fpre,opti
for each spring over one cycle

(Fig. 7), it can be observed that the prescribed minimal wire force is maintained in
all wires.

The resulting force produced by the just dimensioned springs Fpre,opt counteract
the inertial forces caused by the low frequent platform movement while the high
frequent inertial forces cannot be compensated (Fig. 8).

To discuss the quality of the optimization result, first a purely active system
is modeled where only actuators have to keep the platform on the desired cyclic
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Fig. 8 Inertial force of the platform (dashed line) and inverted sum of forces produced by the
springs (solid line) in x- and y-direction

trajectory. The following equation describes the dynamic system neglecting friction
and actuator masses:

AT (x(t))Fact (t) = mẍ(t). (24)

Here, the unknown forces Fact have to be determined for any t ∈ [0, 2]. Since
this system is underdetermined but has to maintain the wire force limits, again an
optimization problem with boundary conditions can be specified. A quadratic opti-
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Fig. 9 Required actuator force without springs (solid line) and with springs (dashed line) (FMi :
force produced by the motor placed at point Ai , i = 1 . . . 3)

mization criterion is chosen which warrants continuity of the single wire forces [12]:

min ‖Fact‖2

subject to

AT Fact = mẍ(t)

Fmin ≤ Fact ≤ Fmax (25)

where Fact ∈ R
m denotes the m tendon forces to be optimized. As for the springs,

the minimal wire force Fmin was set to 5 N, an upper bound Fmax was not set.
Finally, the hybrid system combining the springs and the active system is modeled

and allows the evaluation of the effects of the springs. Therefore, the required actuator
forces of the purely active system Fact are compared to the actuator forces of the
hybrid system Fdi f f which can be calculated by

Fdi f f (t) = Fact (t)− Fpre,opt (26)

It can be observed that the springs considerably reduce the amount of required
actuator force by factors between 2.8 (motor 2) and 4.4 (motor 1) (Fig. 9). In the
hybrid system, all motors apply positive and negative forces.
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4 Conclusion and Outlook

Wire robots are probably the most suitable robotic subgroup to be used as modular,
reconfigurable systems. The advantage of this modularity is the relatively simple
adaptability to other tasks. This advantage can be further increased by utilizing
different kinds of deflection concepts as well as the integration of passive elements
in parallel or serial to the actuators.

Regarding the choice of the deflection concept for a given task, clear design rules
can hardly be given. If a task cannot be realized with the minimum number of wires
required for the given number of degrees of freedom, the increase of the number
of used wires might already be sufficient, while the deficits of certain concepts
disqualify them in advance for other tasks. The herein presented approach of using
passively guided deflection units nicely demonstrates these aspects: The given task
could probably be realized with other deflection concepts. However, these concepts
would require more powerful actuation units and/or a larger frame, e.g. in case of
fixed deflection units, which might not be feasible under given circumstances.

As for the wire deflection, several approaches exist to extend the actuation con-
cepts and, thereby, the range of realizable applications. For example, the use of
passive, energy-storing elements in the actuation concept does not only compensate
in certain cases for the disadvantageous use of uni-directionally loaded motors in
classical wire robots. Furthermore, these elements can relieve the motors from static
and dynamic end-effector load. Simple applications have already proven the feasi-
bility and advantages of using counterweights or springs in wire robots. The more
sophisticated, task-specific methods such as the eigenmotion approach presented in
this paper have a large impact on the energy consumption and load capabilities of a
robot. In the presented example, we had to add a secondary, high-frequent oscillation
to the basic elliptic movement to be able to demonstrate the effects of the additional
springs: Despite the arbitrary position of the trajectory in the workspace, the oscilla-
tor, i.e. the combination of the springs and the end effector, could almost optimally
follow the cyclic trajectory without any interference of the motors. In a next step,
the load induced by the proper motor inertia and frictional effects will be integrated
into the eigenmotion approach.

The third basic component of wire robots has not been discussed within this
paper: The proper wire. In the literature, its choice is commonly explained with the
need for types with a maximum load-to-weight ratio. Model-based compensation is
normally applied to deal with unavoidable effects like elongation due to elasticity.
In contrast, the utilization e.g. of these elastic effects for different control modes has
not been discussed yet. In this context, over-actuated wire robots are a unique robotic
subgroup: The adjustable pre-tension of wire robots allows to change the properties
of the robot in a wide range, from an elastic to a comparatively stiff structure. This
adaptability does not require any hardware adaptation but might allow to operate a
given wire robot in different, complementary control modes, from sensitive force
control to precise position control. This research field, combined with the presented
options for deflection units and actuation units might considerably widen the task
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spectrum for wire robots and, thus, allow to occupy some of the numerous application
niches where rigid-link robotics comes to its limits.

Acknowledgments The authors would like to thank Prof. Robert Riener for supporting this project.
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Use of High Strength Fibre Ropes in Multi-Rope
Kinematic Robot Systems

Jens C. Weis, Björn Ernst and Karl-Heinz Wehking

Abstract High strength fibre ropes are facing a strongly increasing interest for rope
driven applications. Basic characteristics such as strength are already competitive or
even outperforming wire ropes; however other limitations still prevent their full reli-
able industrial use. One particular application where the advantages of high strength
fibre ropes do have an extraordinary important effect on the usability of the appli-
cation is the use in robot systems with multi-rope kinematics. Basic requirements
of these systems are (among others) high accuracy paired with a high efficiency,
which means high process velocities as well as high accelerations and decelerations.
Many tests have already been conducted to simulate a wide range of load settings—
however up to date testing of fibre ropes in high speed usage is still mostly missing.
This article describes the state of the art of high strength fibre rope usage in mater-
ial handling, discusses advantages and disadvantages of these ropes and points out
the most important challenges for research and improvement of rope driven robot
systems.

1 Introduction

At present high strength fibre ropes are already used as high efficient suspension
elements and are therefore a good choice for a wide range of applications, such as
manufacturing processes or materials handling processes. Conventional materials
handling systems driven by wire ropes are coming to their limits with regards to
high process speeds and minimisation of process times, so there is a significant
trend towards establishment of high strength fibre ropes in these applications where
low weight, high strength and low inertia are basic prerequisites. Analyses focusing
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on behaviour of high strength fibre ropes at high dynamic usage are not available
up to today, so obviously there is demand to research on their dynamic resistance.
Fast loading, changing loads, load oscillations and the influences on related rope
characteristics (e.g. bending fatigue) also need to be analysed and for later use in
practice.

One example from the field of materials handling processes are robot systems
which are born by multi-rope kinematics. For an effective and economic use of these
systems high accelerations and velocities (i.e. low process times) are mandatory. As
these robot systems also need a high positioning precision it is obvious that focusing
on these applications allows development of basic fundamentals regarding the design
of configurable large-scale rope kinematics for rope-born robots as well as for further
rope applications.

2 High Strength Fibre Rope Research

2.1 State of Research

Standards for design and testing of high strength fibre ropes in service are available
at present and even partially defined in different national and international standards
[1–4]. However, to date almost all of these are dealing with basics only and most of
them have been developed for maritime use and are limited to this scope only. These
standards usually address testing of the ultimate break load UBL, possible weight
and modulus test methods as well as handling suggestions, but they do not cover
lifetime estimations or prediction methods. Additional influences which might result
from high-dynamic usage (e.g. additional friction, heat buildup and wear) are so far
not considered and are therefore usually taken into account by using high safety
factors which are based on experience.

Since there are so many different fields of applications for high strength fibre
ropes, it seems generally not possible to define one material or construction which
would suit every application so a variety of rope materials and rope constructions is
usually suitable to meet the specific needs of a particular application [5]. Regarding
the application of robot systems with multi-rope kinematics this situation results
in excessive experimental work in order to obtain reliable data about the long-term
behaviour of the ropes used under combined loading and with respect to highly
dynamic influences as well as to define reliable and safe discard criteria. Figure 1
gives a schematic overview on the current state of high strength fibre rope research
with respect to different deterioration mechanisms and system parameters of high
strength fibre ropes [6]. As can be seen (among others) is that the influence of velocity
and acceleration on rope life is almost fully unknown.

It can be summarized that—despite multiple research and industrial based efforts—
to date there is a lack of knowledge in the field of fibre rope technology. Many
challenges and questions still remain to be solved and answered.
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Fig. 1 Damaging mechanisms and system parameters at running fibre ropes (analog [6])

2.2 High Strength Fibre Ropes

High strength fibre ropes comprise different characteristics depending on their basic
material(s), their construction and their manufacturing processes.

Typical characteristics of high strength fibre ropes include small diameter, low
specific weight, low stretch, torque balance (depending on construction) with good
bend-over-sheave fatigue life as well as outstanding tension-tension fatigue life.
Table 1 additionally gives a general understanding of the material properties of dif-
ferent synthetic fibres [7]. Regarding the physical properties and the material char-
acteristics shown in Table 1 especially high strength fibre ropes might seem to be
of excellent suitability for the intended use in robot systems with multi-rope kine-
matics. Compared to wire ropes one of the main advantages of high strength fibre
ropes may be seen in the fact that these show no need of (re-)lubrication and may
therefore be used in many applications where this requirement is essential. The main
disadvantages of high strength fibre ropes (compared to wire ropes) may at the time
be seen in a low sensitivity against high temperatures, low lateral stiffness and a lack
of standardised discard criteria.
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Fig. 2 Prototype of the rope-driven robot [8]

Fig. 3 HMPE fibre rope as used in the rope-driven robot (scaled)

2.3 Robot Systems with Multi-Rope Kinematics

Figure 2 shows the prototype of a multi-rope robot system built up at ‘Fraunhofer
Institute of Manufacturing, Engineering and Automation IPA’ [8]. In this system the
‘rope drive’ comprises of eight similar winches which control eight suspension high
strength fibre ropes which are connected to a picker. Coming from the winch, each
rope passes two deflection sheaves and is then connected to the picker via a special
end termination. When passing over the winch and the sheaves each of these ropes
is paid out, bent, deflected and twisted in different angles and directions; thus, due
to alternating payloads carried by the picker as well as these different angles and
directions each rope obviously faces different loadings.

In the prototype shown at Fig. 2 high strength fibre ropes which consist of ultrahigh
molecular weight polyethylene (UHMWPE) and a twelve braid strand construction
with a nominal diameter of 2.5 mm and a minimum break load (MBL) of 5.8 kN were
selected, see Fig. 3.

In this development stage the primary goal was the initial determination of the
functionality of the system; testings did not include fatigue life testing (i.e. bending
fatigue) of the used high strength fibre ropes.

3 High Strength Fibre Rope Testing

3.1 General

In the following chapters several possibilities and exemplary results of high strength
fibre rope tests coming from so called ‘running applications’ conducted at the Institute
of Mechanical Handling and Logistics (IFT) are described and summarized. The
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questions raised with regards to dynamic behavior and fatigue life characteristics of
the high strength fibre ropes as they will occur in service of the described robot system
(bending fatigue life, deterioration of UBL, tension- tension fatigue life, accelerations
and velocities) have not been answered and quantified before. As described above
these parameters are significant with regards to positioning accuracy of the picker
and minimization of picking time as well as safety and economical service of the
system (i.e. availability), which directly depends upon the proper functionality of all
of the used high strength fibre ropes [9]. Thus, multiple tests are to be conducted
before a high strength fibre rope may be approved for use in a particular application,
especially if high safety against partial or complete failure of the system is required.
Therefore, attention should be paid to the following [10]:

• specific strength and specific weight,
• bending fatigue life (cyclic bend over sheave performance CBOS),
• abrasion resistance,
• cutting performance,
• actuator performance (i.e. spooling behaviour, traction characteristics, etc),
• temperature and environmental boundary conditions,
• rope end terminations,
• discard criteria ,
• inspection intervals and inspection procedures.

3.2 Standard Cyclic Bend Over Sheave Testing (CBOS)

Analyses of the static strength behaviour of high strength fibre ropes are to date state
of research (see Sect. 2.3). If high strength fibre ropes are not only tensile loaded, but
bent over sheaves additionally or are stored on winches they are usually bent from
straight state to bent state and back to straight state cyclically. When undergoing this
bending process the single fibres and strands of the rope face alternating loadings
regarding tension stress, bending stress and lateral pressure.

The determination and prediction of the lifetime of running high strength fibre
ropes is limited to specific use in the industrial fields of lifting applications, offshore
technology and mining [11]. Contributions determining the influences of the mul-
tiple, superposed stresses in the strands and fibres have been conducted by several
authors but predominantly in the field of maritime applications, see e.g. Hobbs [12]
and van Leeuwen [13]. Next to the stresses a use of high strength fibre ropes in ‘run-
ning’ applications is only possible because the strands and fibres move relatively
against each other. Obviously, these relative movements between fibres and strands
are constrained by friction and therefore lead to different types of surface wear.

Due to this surface wear of strands and fibres even an explicit appraisal of single
fibre stresses would not provide reliable information regarding the lifetime of the
strand (and the rope) to be expected in a specific application, even with defined load
scenarios.

http://dx.doi.org/10.1007/978-3-642-31988-4_2
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Fig. 4 CBOS testing machine
for small rope diameters at
the Institute of Mechani-
cal Handling and Logistics,
Stuttgart (IFT)

So today, the lifetime of high strength fibre ropes can be only determined with good
precision in cyclic bend over sheave testing (CBOS). Figure 4 shows a typical CBOS
test rig for the determination of the rope lifetime (i.e. bending cycles) under defined
loading and bending conditions. This bending fatigue machine consists of a driven
steel made deflection sheave and a changeable test sheave. It performs an oscillating
movement with a predetermined stroke so the test rope changes from straight to bent
and back to a straight state. The rope is therefore loaded by homogeneous bending
cycles. The rope force is induced by a constant weight which is directly connected
to the test sheave.

Systematic testing of running high strength fibre ropes at IFT started in 1997.
In these CBOS tests the bending fatigue life characteristics and other behaviour
relevant for the use of these ropes in practical service were investigated [14–17].
The results of the CBOS testings performed with a high strength fibre rope are
displayed in Fig. 5 in a double logarithmic diagram [17]. The abscissa (x-axis) gives
the specific (i.e. diameter-related) rope force, the ordinate (y-axis) the number of
bending cycles until breakage. As can be seen, the bending fatigue life of the rope is
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reduced significantly if the rope force is increased at a constant D/d ratio. Figure 5
also gives the number of bending cycles to breakage of wire ropes which are known
for their good bending fatigue life. It can be seen that at a comparably small D/d
ratio of ten the bending fatigue life of the tested high strength fibre rope outperforms
both wire rope constructions remarkably; this shows the general pertinence of high
strength fibre ropes for use in running applications under certain conditions.

As can be seen from the diagram, if the specific rope force exceeds approximately
300 N/mm2 the bending fatigue life until breakage of the rope is decreased dispropor-
tionally high. In the field of wire ropes this area, where the fatigue caused breakage
of the rope turns into a forced rupture, is usually called ‘Donandt- point’ [18].

The CBOS test results gained at constant (low) speeds are fundamental data
for later comparisons regarding additional influences such as high dynamics and
parametric dimensioning of rope drives and rope drive components such as sheaves
and winches. With a sufficient data basis of CBOS tests lifetime diagrams for several
kinds of high strength fibre rope may be generated (compare Fig. 5).

3.3 Analysis Methods

The number of bending cycles to breakage and to the point of discard both depend
on multiple parameters (i.e. rope load, D/d ratio, groove design, coating etc.). An
appropriate method to analyse experimental bending fatigue test results and to gain a
usable approach for the lifetime prediction is by use of multiple regression analyses.
This method has proven to be very effective yet accurate and is widely established
in the field of wire ropes.

For the high strength fibre ropes used in the robot system described above no
dimensioning references (based on statistically determined large-scale studies as
available in the field of wire ropes) are available. Based on single CBOS test series
a lifetime formula based on multiple regression analysis for the determination of the
number of bending cycles until breakage of the rope for small and medium diameter-
related loads was generated, see Eq. 1 [14, 16]

lgN = b0 + b1lg
Sd2

0

d2S0
+ b2lg

D

d
+ b3

Sd2
0

d2S0
lg

D

d
(1)

The estimated average number of bending cycles until breakage N is be calculated
as function of the applied load S and the D/d ratio of rope and sheave. The unified
load S0 and the unified diameter d0 are used to keep the equation non-dimensional
in the sense of bending cycles until breakage of the rope. The regression coefficients
bi derive from the regression analysis of the experimental CBOS test results.

The results of the multiple regression analyses should be compared to the exper-
imental results and analysed subsequently with statistical means. In wire rope
research, the subsequent analysis of the performed regression calculations by means
of coefficient of determination and standard deviation has proven to be effective [18].
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Fig. 5 Bending fatigue life of high strength fibre ropes and wire ropes [13]

The coefficient of determination describes the quality of the regression approach
which was used for the analysis of the experimental test results, the standard devi-
ation is used to analyse the degree of scatter of the experimental test results with
regards to the chosen regression approach. In wire rope research, the logarithmic
Gaussian distribution has proven to describe the failure probability of wire ropes
with high accuracy [18].

3.4 Influence of High Accelerations and Velocity on Bending
Fatigue Life

High accelerations and velocities of ropes in running applications are at present
known only for steel wire ropes used in catapult systems (e.g. in fair rides such as
[19] or on military aircraft carriers) but have not been quantified before. Sloan [20]
exemplarily monitored the influence of the test speed during CBOS testing on the
bending fatigue life of high strength fibre ropes. It can clearly be seen that an increase
in cycling speed results in a significant decrease of the bending fatigue life of the
tested high strength fibre rope, see Fig. 6.

With regards to the multi-rope robot system discussed above, an increase in
velocity (i.e. decrease of process time) will also increase friction and wear. Taking
into account the inertia of the picker, high tensile stresses and bending stresses in the
ropes and significant rope elongations will make sophisticated controlling necessary
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Fig. 6 Influence of test speed
on the lifetime of a fibre
rope [20]

in order to realize the required positioning accuracy of the picker. It is obvious that
accelerations and velocities exert significant influence on the fatigue life of the used
fibre ropes; this should be taken into account as early as possible, ideally already in
the planning stage of the system with regards to reliability, availability and economic
usage. Further research which focuses specifically on the suspension elements with
regards to dynamic influences is recommended.

3.5 Major Trends

In the last years remarkable improvements in the bending performance of high
strength fibre ropes in running applications where gained. Compared to steel wire
ropes the bending performance at small D/d ratios is even better than for steel wire
ropes [10]. IFT continuously tests bending fatigue life of high strength rope construc-
tions in systematic CBOS testing series. Figure 7 exemplarily describes the trends
of improvement of bending fatigue life of HMPE- fibre ropes (d = 8 mm) from 2007
to 2012. A remarkable increase of the bending fatigue life (i.e. bending cycles until
breakage)—even for small D/d—ratios can be found.

Currently there are many efforts to optimize fibre rope constructions for use in
running applications (e.g. [21, 22]). For example, a research project at the University
of Chemnitz (Germany) called ’InnoZug’ is at the time generating experimental,
scientific knowledge on lifetime and wear mechanisms of non-coated high strength
fibre ropes of several materials and constructions [23]; another research project at
the University of Aachen (Germany) called ‘Smart Rope’ aims to develop a rope
monitoring system which is capable of communicating the state of degradation of
the rope in service [24]. The storage of fibre ropes on drums in single layer spooling
is currently state of research [25], but as was found at the University of Clausthal



Use of High Strength Fibre Ropes in Multi-Rope Kinematic Robot Systems 195

0

20.000

40.000

60.000

80.000

100.000

120.000
B

en
di

ng
 c

yc
le

s 
N

11,05 13,54 20,31 27,08 33,85
Rope load as percentageof the minimum breaking load [%]

CBOS tests at high strength fiber ropes with HMPE fibers

D/d = 10 (2007)

D/d = 10 (2012)

D/d = 20 (2007)

D/d = 20 (2012)

Fig. 7 Improvement of CBOS fatigue life from 2007 to 2012

(Germany) that there are specific requirements of the storage unit (i.e. winch) to be
taken into account while used with fibre or fibre-cored rope constructions because of
their low lateral stiffness [26]. A research project performed at IFT which investigates
the usability of high strength fibre ropes for lifting in automated rack feeders is
currently in its final phase. Within this research the focus is laid on the lifetime of
the high strength fibre ropes with special interest on the elements of the rope drive
(sheaves, winch, end terminations) with the goal to replace wire ropes the benefit of
smaller engines, drive trains and outer dimensions of the systems.

Bending fatigue testing (especially CBOS testing) has shown to be the fundamen-
tal basis for validation of the choice of the right high strength fibre rope. Depending
on the intended application, other influences need to be addressed and validated
additionally (tension-tension testing, etc).

4 New Test Rig for Bending Fatigue Testing at High
Accelerations

As described above high process accelerations/decelerations and velocities of the
picker in the robot system result in bending and tension-tension loading of the used
high strength fibre ropes.

In the first stage the primary focus was laid on the bending fatigue life of the
high strength fibre ropes used in the system. As discussed, tension-tension fatigue
life of the ropes needs to be addressed as well. Furthermore, high frictional loadings
occur at the sheaves and winches between ropes and grooves. These cause premature
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deterioration of the surfaces of the ropes which result in reductions of the ultimate
break loads and premature levels of discard.

Figure 8 shows one of the winches as they are used in the robot system [8]. Each
of the eight winches of the robot system consists of rope drum, drive chain, spooling
helper and a special rope deflection sheave. The rope is spooled in single layer and
guided via a customized deflection kinematic.

To evaluate the overall behaviour of the high strength fibre rope in the system
the mere simulation of the spooling behaviour is not sufficient. For a precise deter-
mination of these (and other) mechanisms a new test rig was found to be necessary
which is developed at IFT, see Fig. 9. In this test rig four winches for storage of
the rope are attached at the upper end. The high strength fibre ropes run from the
winches over a deflection sheave and back to the top where they are fixed via special
end terminations, resulting in a double reeving. A test weight which is guided by
slide bearings provides a constant, defined rope load during testing. As can be seen
from the drawing, four high strength fibre ropes may be tested simultaneously for
sufficient analyses of combined parameters.

Further details are included in order to make the test rig as versatile as possible
regarding variation of test conditions and test parameters. Due to its design and
dimensioning accelerations up to 10 m/s2 may be realized which is approximately five
times higher than accelerations in conventional lifting applications. For realization of
these accelerations a minimum overall height of ten meters was found to be necessary.
The test rig characteristics are summarized as following:

• variable load carrier for simulation of high tensile loads
• variable stroke / lifting height
• high modularity of the test rig components
• parallel testing of multiple ropes
• automatic visual monitoring of the rope condition
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Fig. 9 Test rig for testing of accelerated high strength fibre ropes (schematic)

5 Summary

At present numerous endeavors are noticeable to establish lightweight high strength
fibre ropes in running rope applications which comprise highly dynamic charac-
teristics, such as in manufacturing processes and materials handling processes. Of
course multiple other material handling applications can be found, but the robot
system with multi-rope kinematics as described above seems one of the most poten-
tial applications for use of high strength fibre ropes. On the first prototype of this
system multiple functional tests were conducted. However, additional expertise and
experimental data of the fatigue life of the used high strength fibre ropes used in
this application need to be gathered. This data and expertise is determined by means
of fundamental experimental research—bending fatigue testing and tension-tension
fatigue testing have proven to be adequate means to gain experience with regards
to long term characteristics such as bending fatigue life, tension-tension fatigue life
and resistance to high-dynamic influences of running high strength fibre ropes.

Wear has to be seen as crucial factor regarding the bending fatigue life of the
high strength fibre ropes. Precise analysis methods of the actual fibre rope condition
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in service are mandatory for safe and reliable definition of service intervals and to
guarantee a sufficient positioning accuracy required by the system over its lifetime.

In order to determine their long-term performance under high accelerations a
new test rig is built. With this test rig basic fundamental approaches are analysed and
quantified. Based on the experimental results gained thorough analyses are conducted
to determine further parameters such as friction behaviour, wear, temperature as well
as influence of contaminants etc. under laboratory conditions.

Furthermore, application-specific deterioration parameters are to be identified
and reliable indicators for a safe level of discard are to be defined. Thus, sufficient
recommendations for dimensioning and scaling regarding economic and ecological
aspects may be defined and a sufficient lifetime and availability in service of the
system may be achieved. The rope drive elements such as sheaves and winches for
storage of rope, deflection systems and end terminations are optimised.

The long term goal of the basic and fundamental research work described is to
establish high strength fibre ropes also in other rope drive applications as a substitute
of steel wire ropes or to make the realization of new rope drives and systems possible.

References

1. Recommended Practice for Design and Analysis of Stationkeeping Systems for Floating Struc-
tures, API RP 2SK, 2nd Edn, December 1996.

2. Fibre ropes - High modulus polyethylene - 8-strand braided ropes, 12-strand braided ropes and
covered ropes. ISO 10325, 2009.

3. Faserseile: Beschreibung, Auswahl und Bemessung. VDI 2500, 1990.
4. Fibre ropes - Determination of certain physical and mechanical properties ISO 2307, 2005.
5. Simeon Whitehill, A.: Handbook of oceanographic winch, wire and cable technology. 3rd Edn,

Chapter 3 High Strength Fibre Ropes. OCE 9942973, 2001.
6. Heinze, T.: Dimensionieren je nach Einsatzfall. In: Hebezeuge und Fördermittel 51 Nr.6 (2011).
7. Winter, S., Finckh-Jung, A., Wehking, K.-H.: Research and development of a new termination

for high-tensile fibre ropes. In: Proceedings of the OIPEEC Conference: Safe use of ropes.
College Station, Texas, USA 165–180 (2012).

8. Pott, A.: Cable-driven parallel robot for automated handling of components in all dimensions.
In: Fraunhofer Institute for Manufacturing Engineering and Automation. Brochure 300/354e,
Stuttgart (2010).

9. Uhlmann, E., Kraft, M., Tonn, N.: Entwicklung von Werkzeugmaschinen mit Parallelkinematik
unter Verwendung von Seilantrieben. In: Modellbildung, Simulation und Optimierung, S.37-
62.

10. Smeets, P.: Latest developments in high performance running fiber ropes with Dyneema. In:
Contribution at the 4th Stuttgart Ropedays. Stuttgart (2012).

11. Vogel, W., Wehking, K.-H.: Neuartige Maschinenelemente in der Fördertechnik und Logistik -
Hochfeste, laufende Faserseile. E-journal der Wissenschaftlichen Gesellschaft für Technische
Logistik WGTL, 2004.

12. Hobbs, R.E., Burgoyne, C.J.: Bending fatigue in high strength fibre ropes. Int. J. Fatigue 13(2),
174–180 (1991)

13. van Leeuwen, J.H.: Bending fatigue behaviour of twaron aramid ropes. Proceedings of the
MTS Conference, In (1990)

14. Vogel, W.: Hochfestes Faserseil beim Lauf über Seilrollen. Draht 42, 11, 814–818 (1991).
englisch. WIRE 42, 5, S.455-458 (1992).



Use of High Strength Fibre Ropes in Multi-Rope Kinematic Robot Systems 199

15. Wehking, K.-H.: Endurance of high-strength fibre ropes running over Pulleys. OIPEEC Round
Table, Reading September, In (1997)

16. Vogel, W.: Dauerbiegeversuche an gedrehten und geflochtenen Faserseilen aus hochfesten
Polyethelenfasern. Euroseil Nr. 1, 440–442 (1999)

17. Smeets, P.J.H.M., Vlasblom, M.P., Weis, J. C.: Latest improvements in HMPE rope design for
steel wire rope applications. In: Proceedings of the OIPEEC Conference: / 3rd International
Stuttgart Ropedays (Innovative ropes and rope applications). Stuttgart, 99–113 (2009).

18. Feyrer, K.: Drahtseile - Bemessung, Betrieb, Sicherheit, 2nd edn. Springer Verlag, Berlin (2000)
19. High Speed Rollercoasters (10.05.2010):http://www.intaminworldwide.com/
20. Sloan, F., Nye, R., Liggett, T.: Improving Bend-over-Sheave Fatigue in fiber Ropes. Sea Tech-

nology, July (2004)
21. Bosman, R.: Entwicklung von laufenden Seilen mit Dyneema. Fachkolloquium InnoZug,

Chemnitz (2010)
22. Sloan, F.: Damage mechanisms in synthetic fibre ropes. In: Proceedings of the OIPEEC Confer-

ence, : / 3rd International Stuttgart Ropedays (Innovative ropes and rope applications). Stuttgart
259–271(2009)

23. BMBF Forschungsprojekt InnoZug (10.05.2010): http://www.innozug.de
24. BMBF Forschungsprojekt Smart Rope (10.05.2010): http://www.mstonline.de/foerderung/

projektliste/detail_html?vb_nr=V3TEX038
25. Lohrengel, A.: Einflüsse der Seileigenschaften von Kunststoffseilen auf die Trommel. Fachkol-

loquium InnoZug, Chemnitz (2010)
26. Dietz, P.; Schwarzer, T.: Die Eigenschaften neuer Seilkonstruktionen zur Realisierung von

Leichtbauseiltrieben. Institutsmitteilung Nr. 32, IMW, Clausthal- Zellerfeld (2007).

http://www.intaminworldwide.com/
http://www.innozug.de
http://www.mstonline.de/foerderung/projektliste/detail_html?vb_nr=V3TEX038
http://www.mstonline.de/foerderung/projektliste/detail_html?vb_nr=V3TEX038


Workspace Improvement of Two-Link
Cable-Driven Mechanisms with Spring Cable

Amir Taghavi, Saeed Behzadipour, Navid Khalilinasab and Hassen Zohoor

Abstract The idea of multi-body cable-driven mechanisms is an extension of the
original cable robots where the moving platform is replaced by a multi-body. Cables
with variable lengths are attached between the fixed base and the links of the multi-
body to provide the motion. There are possible applications for such mechanisms
where complex motions as well as low moving inertia are required. One of the main
challenges with such mechanisms is the high chance of interference between the
cables or between the cables and the links of the multi-body mechanism. This can
further reduce the usable workspace. In this article, the idea of adding passive cables
in series with springs (spring cable) to improve the workspace is investigated. The
spring cables can be added between the multi-body and ground or between the links.
The idea is applied to a two-link planar multi-body cable-driven mechanism. The
wrench feasible workspace (WFW) is found using the interval analysis. The WFW
is shown to improve both in shape and volume.
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1 Introduction

Cable driven robots are mechanisms in which the end-effector is moved by controlling
the lengths of the cables connected to it. The cable robots are appealing because of
their structural simplicity, high stiffness, and high exerted wrench-to-weight ratio
and easiness of reconfiguration. Their main drawback is their small workspace and
interference of cables, so one of their key issues is their optimal design for a desired
workspace and given constraints [1].

A cable driven parallel manipulator, according to its number of cables (m) and
the degrees of freedom of the end-effector (n), are classified as follows [2]:

IRPMs: Incompletely Restrained Positioning Mechanisms, in which the number
of cables is less than or equal to the number of the DOFs, namely,

m ≤ n

IRPMs robots rely on the presence of gravity or another ballast force to determine
the resulting pose of the end-effector.

CRPMs: Completely Restrained Positioning Mechanisms, in which there is an
extra cable, i.e.:

m = n + 1

RRPMs: Redundantly Restrained Positioning Mechanisms, in which there are
more than one extra cable:

m > n + 1

Since IRPMs use less number of cables and actuators, the probability of cable
interference as well as the production cost is lowered. However, in these robots,
the volume of workspace and the magnitude of the externally applied wrench of
the robot are limited by the ballast force. In contrast with IRPMs, RRPMs have
larger workspace but the interference of cables and production cost become more
challenging.

With such classification, a number of different definitions for the workspace of
such robots are introduced and studied in the literature. One of the early works is for
the one of the NIST ROBOCRANE [3], Which is a realization of a Gough–Stewart
platform parallel manipulator while prismatic actuators are replaced by cables.
Verhoeven and Hiller [4] used “controllable workspace” defined as “the set of poses
in which the robot can maintain equilibrium against all external wrenches”. The sta-
tically reachable workspace is defined by Agrawal and coworkers [5] as the set of
poses of the mobile platform for which the cables can balance the weight of both the
platform and the payload with tension forces only. This is of particular interest for
IRPMs, which rely on gravity to keep the cables taut. Dynamic workspace analysis
has been introduced by Gosselin and Barrette [6] in which the motion of a moving
platform is incorporated into a set of wrenches called a pseudopyramid. A more
practical workspace definition is wrench feasible workspace (WFW) which is the set
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Fig. 1 Schematic of multi-
body cable-driven robot

of all poses in which a specified range of external wrenches can be generated using
a limited range of cable tensions [7, 8]. Wrench Closure Workspace (WCW) is a
special case of WFW when both cable tension and the wrench sets are unbounded
[9, 10]. The force closure workspace is the very special case of a WFW whose
required set of wrenches is the whole space of wrenches and the only constraint on
the cable tensions is nonnegativity [11]. Another definition that is in the literature
is tensionable workspace. A pose of cable-driven mechanism belongs to tensionable
workspace when it can generate any arbitrary external force/moment while maintain-
ing tensile forces in all cables [12]. One can see that WCW, tensionable workspace,
controllable workspace and force closure workspace are equivalent. They are merely
dependent on the kinematics of the manipulator rather than the external loading,
static or dynamic equilibrium or cable properties.

In another classification of cable robots, they are classified as single-body and
multi-body cable-driven robots. In single-body cable-driven robots, all cables are
attached to a rigid end-effector while in multi-body cable-driven robots; cables are
attached to different links of a multi-body. An example is shown in Fig. 1, where a
typical serial multi-body is driven by cables.

A possible application for multi-body cable robots is a reconfigurable robotic cell
to be used for physical rehabilitation purposes. Using this concept, the human limbs
are considered as multi-body systems which will be driven by cables attached to
them using proper brace and shells. The cell can be easily reconfigured by changing
the cable locations to provide the desired motion for the intended body part.

Determination of the workspace of cable-driven multi-body systems, due to the
existence of inter-link constraints, is a problem of higher complexity. As a result,
the literature on this subject is yet to be developed. Yang and coworkers proposed a
kinematic design of a 7-DOF cable-driven humanoid arm with 14 cables [13]. They
used force-closure method in multi-finger grasping to investigate the workspace.
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Recently, two systematic approaches have been reported to determine the WCW of
multi-body cable-driven mechanisms. One of them is based on Lagrange’s approach
in equilibrium analysis of multibody system [14] and the other one uses reciprocal
screw theory [15]. They used the notion of generalized forces and Lagrange’s method
to eliminate the constraint forces/moments from the equilibrium equations.

In multi-body cable driven mechanisms the higher probability of interference
between the cables or between the cables and the links of the multi-body and therefore
smaller usable workspace is a major challenge. For example, in using cable robots in
physical rehabilitation, the interference of the cables with each other or the patient’s
body significantly reduces the usable workspace of the robot. As a result, solutions
need to be developed to improve the quality and size of their workspace before these
mechanisms can find real applications.

One possible solution which is investigated in this paper is adding springs in
between the links. Intuitively, it is expected that such springs help in keeping cables
taut resulting in larger workspace. Also they are not expected to cause much inter-
ference with the cables as they stay close to the links of the multi-body.

In this paper the conceptual solution of adding springs to improve the WFW
of a two-link cable-driven mechanism is investigated. In the following sections, a
mathematical framework is developed to incorporate the springs and formulate the
equilibrium of the mechanism for any number of links, cables, and spring cable. The
determination of the WFW is then performed using interval analysis.

2 Kinetostatic Modeling of Cable Robots Without Spring

It is known that the workspace of cable robots is obtained from kinematics and equi-
librium due to the cable tension condition. In this section, we review the kinetostatic
modeling of single-body cable robot and its extension to multi-body systems.

A popular formulation of the equilibrium in single-body cable robots has the
following form:

Aτ = b (1)

where τ is a column vector containing the cable tensions, A is the structure matrix
in the form of:

Am×n =
[

u1 . . . um

r1 × u1 . . . rm × um

]

where ui and ri are unit direction vectors of the i th cable and the corresponding
moment arm on the end-effector, respectively. Column vector b consists of external
wrenches and inertia terms exerted on the end-effector. A given configuration of the
robot (A) and loading (b) will satisfy the equilibrium and can be realized only if
there is a solution for τ in which all cable tensions are nonnegative and remain in
the permissible range.
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In order to extend this formulation to multi-body cable robots, we need to handle
the internal joint reaction forces properly. In Newtonian method for instance, the
size of matrix A becomes very large which is due to presence of all internal reaction
forces/moments. In Lagrange’s method, on the other hand, as long as the multi-body
is a serial chain, the internal reaction forces/moments are eliminated and hence A
will have the minimum size.

The general form of Lagrange’s equation, if the Lagrangian can be expressed in
terms of a minimal set of generalized coordinates, is:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi , i = 1, ..., n (2)

where L is the Lagrangian, n is the degrees of freedom of the multi-body system,
and qi , Qi are the generalized coordinates and generalized forces, respectively.

In a multi-body cable-driven mechanism, the contribution of cables to the dynam-
ics is modeled as point forces applied to the links (i.e. the inertia and elastic stiff-
ness of the cables are neglected). Therefore, Qi ’s in Eq. (2) are divided into two
parts: Qi = Qc

i + Qr
i , where Qc

i is the part pertaining to the cable forces, and Qr
i

includes all other generalized external forces/moments. The latter part together with
the terms in the left hand side of Lagrange’s equation can be incorporated in a vector
named BL :

BL =

⎡
⎢⎢⎢⎢⎣

d
dt (

∂L

∂q̇1
)− ∂L

∂q1
− Qr

1

...

d
dt (

∂L

∂q̇DO F
)− ∂L

∂qDO F
− Qr

DO F

⎤
⎥⎥⎥⎥⎦

(3)

In order to use the Lagrange’s formulation, the cable forces need to be presented
in generalized coordinates. Suppose that r j is the position vector of the connection
point of the j th cable to the multi-body, expressed in the fixed Cartesian frame.
According to Lagrange’s method, one can express Qc

i in terms of the cable forces
as:

Qc
i =

m∑

j=1

(t j u j · ∂r j

∂qi
) (4)

Which can be then arranged in a matrix form as:

Qc
i =

⎡
⎢⎢⎢⎢⎢⎣

u1 · ∂r1

∂q1
. . . un · ∂rm

∂q1
...

. . .
...

u1 · ∂r1

∂qdof
. . . un · ∂rm

∂qdof

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

t1
...

tm

⎤
⎥⎦ (5)

Now, AL and τL are defined according to Eq. (5) as:
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AL =

⎡
⎢⎢⎢⎢⎢⎣

u1 · ∂r1

∂q1
. . . un · ∂rm

∂q1
...

. . .
...

u1 · ∂r1

∂qdof
. . . un · ∂rm

∂qdof

⎤
⎥⎥⎥⎥⎥⎦

(6)

And:

τL =
⎡
⎢⎣

t1
...

tm

⎤
⎥⎦

Consequently, the general equilibrium equations of the system given in Eq. (2),
can be written in the following form:

ALτL = BL (7)

where BL was defined in Eq. (15) and includes all the external forces (other than
cables) as well as the inertia effects. Note that the left hand of Eq. (7) is a linear com-
bination of the columns of AL by the cable tensions. The columns of AL , according to
Eq. (6), can be perceived as the cable wrenches expressed in the space of generalized
coordinates.

3 Kinetostatic Modeling of Cable Robots with Spring

Spring cable in this work refers to cables that act similar to a spring. Therefore they
provide a tensile force proportional to their displacement.

In multi-body cable-driven robots, spring cables can be attached between the fixed
ground and one of the links. They can also connect one link to another. As mentioned
above, the idea here is to investigate if they can provide an affordable solution for
workspace improvement without adding redundant actuators. Using cable springs
between links also decreases the probability of interference of cables with each other
and the environment.

In order to model spring cables, we consider them as linear axial springs with a
stiffness constant K . The generated force will then become:

Fs = K us (8)

where Fs is the force vector of spring cable and us is the elongation vector of the
spring defined as:

us = (l − l0)u (9)
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where u is the unit direction vector of the spring cable. l and l0 are the current and
initial lengths of the spring cable, respectively.

Note that the wrenches of spring cables on cable-driven robots are determined
by the configuration of the robot. Hence they are treated here as external wrench.
Therefore in Newtonian approach the external wrench matrix is defined as follows:

b = [
Wreq

] −
[

Fs

rs × Fs

]
(10)

In order to incorporate spring cables in our Lagrangian formulation, one needs to
present the potential energy of the springs in terms of the generalized coordinates.
Using linear axial spring model, the potential energy of a spring cable is:

V = 1

2
kuT

s us (11)

where k is the stiffness coefficient of the spring. And:

L = T − V (12)

As mentioned above in Eq. (3), the wrench matrix, BL , is dependent on the deriv-
atives of the Lagrangian with respect to the generalized coordinate, so the elongation
vector of spring cables must be expressed in terms of the generalized coordinates.
This is possible since the end point of the spring cables are either on the ground and
hence known or belong to the multi-body which can be determined using the forward
kinematics of the multi-body.

It is clear that adding spring cables to a cable-driven mechanism does not change
its WCW since the spring cables provide a bounded force. However they do change
the WFW by providing bounded cable wrenches through the springs. Therefore, their
impact on the WFW can be modified and optimized through the geometry and the
spring coefficient which will be investigated in the following.

4 Method

As mentioned above, we need to use WFW definition. There are various analytical
and numerical methods for determination of WFW in the literature. The numeri-
cal methods suffer from the discretization error as they can only handle a meshed
workspace. The analytical methods are appropriate for particular types of robots and
kinematics. The interval analysis method, on the other hand, provides a solution
which is general and applicable to any kinematics and addresses the discretization
problem as well. In this method an n-dimensional vector x is considered that denotes
the pose of the end-effector. If we replace any real component of this vector with
an interval, then we have a box denoted by [x]. Two sufficient conditions are then
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Table 1 Parameters of single
point cable-driven mechanism

τmin τmax [bT ] K L0

1N 900 N ([−20,20]N,[−20,20]N) 200 N/m 0.1 m

Fig. 2 A point driven by
cables. A spring cable (red)
is added to compare the
workspaces

evaluated: a sufficient condition for a box of poses to be fully inside the WFW and
a sufficient condition for a box of poses to be fully outside the WFW. If these two
sufficient conditions aren’t satisfied, the box is bisected [16]. The interval analysis
method as documented well in the literature, eliminates the need for discrete mesh-
ing and therefore provide a sufficiently accurate determinations of the workspace
borders. It has been also used for the design of the cable robots to fulfill a desired
workspace [17, 18].

5 Results

In this section, the above formulation is implemented on a two-link planar cable-
driven mechanism to show the impact of spring cable on the workspace. In our
implantation, we used interval arithmetic of the INTLAB. The computation times
have been obtained on a DELL XPS PC (Core 2 Duo CPU T9300, 2.50 GHz).
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Fig. 3 Workspace of a point driven by cables with (blue) and without (red) a spring cable

Table 2 Parameter values of multi-body mechanism

Length of Location of Location of Location of Location of
link 1 winch 1 winch 2 winch 3 spring on ground

1 m (0,3) (1.5,-3) (1.5,3) (0,3)
d1 d2 d3 ds1 ds2 K

0.6m 0.3 m 0.8 m 0.5 m 0.5 m 100 N/m

The effects of a spring cable are intuitively understood in simple systems such
as a point driven by cables on a plane. Such a point needs three cables to be fully
constrained (Fig. 2). Adding a single spring cable as shown in red in the same figure
has a significant impact on the workspace. For typical parameters shown in Table 1,
the WFW of the mechanism is shown with and without cables in Fig. 3.

As seen in Fig. 3, the spring cable almost doubles the WFW of the mechanism as
expected.

As for multi-body cable-driven mechanisms, there are two options for adding
spring cables. One choice is to attach spring cables between the fixed ground and
one of the links and the other one is that spring cable connects one link to another.

First, let us consider the case that the spring cable is attached between the fixed
ground and link 2 as depicted in Fig. 4. Typical values were used for the parameters
of mechanism as shown in Table 2.

The WFW of the mechanism with and without the spring cable are found through
interval analysis and depicted in Figs. 5, 6 respectively. It is evident from the figures
that the workspace is improved. The workspace has increased in terms of volume by
83 % compared to the one without the spring cable. Also it is seen that the workspace
is more continuous, which is a critical aspect for robotic applications. The possibility
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Fig. 4 Schematic of a two-
link mechanism with a spring
cable that is attached to ground

Fig. 5 Workspace of the two-
link cable-driven mechanism
without any spring cable

of interference, however, will increase when a spring cable is present between the
mechanism and ground.

The interference problem becomes less apparent if the spring cable doesn’t con-
nect to the ground and instead goes from one link to another. A typical example is
depicted in Fig. 7.

The WFW of this mechanism is seen in Fig. 8. In terms of the workspace volume,
this mechanism shows an increase of 25 % with respect to the original mechanism.
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Fig. 6 Workspace of the two-
link cable-driven mechanism
with a spring cable attached to
ground

Fig. 7 Schematic of a two-
link mechanism with a spring
cable that is attached between
the links
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Fig. 8 Workspace of the two-
link cable-driven mechanism
with a spring cable attached
between the links

However it is about 46 % lower than the one of the previous case where the spring
cable connects to the ground, the probability of cable interference, on the other hand,
is decreased from the previous case. It is also interesting to note that although the
workspace has some discontinuity, it consists of larger continuous parts.

6 Conclusions

In this work, a formulation is presented to study the workspace of multi-body cable-
driven mechanisms with spring cables. The method was then applied to a two-link
serial mechanism to investigate the impact of the spring cable on the size and shape
of the workspace.

Two cases were considered: in the first one, a spring cable was attached between a
link and the ground, in the second case, the spring cable was added between the two
links. It is apparent that the second case has a lower possibility of cable interference.
It was shown that both cases provide a more continuous workspace which is favorable
for robotic application. The first case provides a larger workspace volume however
it seems that the actual workspace (considering the cable interference) becomes
smaller.

Based on the early results of this study, it seems adding spring cables between the
links in a multi-body cable-driven mechanism has higher potentials to improve the
WFW of such mechanisms. In future works, the idea will be further developed for
spatial and more general mechanisms.
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The Constant-Orientation Dimensional
Synthesis of Planar Cable-Driven Parallel
Mechanisms Through Convex Relaxations

Kaveh Azizian and Philippe Cardou

Abstract The wrench-closure workspace (WCW) of cable-driven parallel mecha-
nisms is the set of poses for which any wrench can be produced at the end-effector by a
set of positive cable tensions. In this paper, we tackle the dimensional synthesis prob-
lem of finding a geometry for a planar cable-driven parallel mechanism (PCDPM)
whose constant orientation wrench closure workspace (COWCW) contains a pre-
scribed workspace. To this end, we first introduce a linear program to verify whether
a given pose is inside or outside the WCW of a given PCDPM. The relaxation of this
linear program over a box leads to a nonlinear feasibility problem that can only be
satisfied when this box is completely inside the COWCW. We extend this feasibility
problem to find a PCDPM geometry whose COWCWs include a given set of boxes.
These multiple boxes may represent an estimate of the prescribed workspace, which
may be obtained through interval analysis. Finally, we introduce a nonlinear program
through which the PCDPM geometry is changed while maximizing the scaling factor
of the prescribed set of boxes. When the optimum scaling factor is greater or equal
to one, the COWCW of the resulting PCDPM contains the set of boxes. Otherwise,
the COWCW generally offers a good coverage of the set of boxes.

1 Introduction

A planar parallel cable driven mechanism (PCDPM) generally consists of a moving
platform (MP) and a fixed frame, which are connected with multiple cables. Each
cable is wound around an actuated reel fixed to the base, and is attached to the
moving platform at its other end. The cables and the moving platform are assumed to
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be contained in the same plane. The actuated reels control the position and orientation
of the moving platform in this plane by controlling the lengths of their corresponding
cables.

Since the cables can be wound onto reels over long lengths, the workspace of a
cable-driven mechanism can be larger than that of a conventional parallel mechanism.
This is only a potential advantage, however, as the workspace of a PCDPM is further
limited by the inability of cables to push on the moving platform. Indeed, there
generally exist many poses inside this workspace for which the cables cannot balance
all applied wrenches, because at least one of them would have to push on the platform.
More formally, the wrench-closure workspace (WCW) is the set of poses for which
all applied wrenches are feasible. An applied wrench is said to be feasible if it can
be balanced by a set of a non-negative cable tensions. This is a special case of the
wrench-feasible workspace (WFW), which is the set of poses of the moving platform
for which the cables can balance any wrench of a given set of wrenches, such that
the tension in each cable remains within a prescribed range.

The WCW of cable-driven parallel mechanisms has been studied in several
research works. A necessary condition for the WCW to be non empty is that the
number of cables be greater than the number of degrees of freedoms of the moving
platform [1, 2]. This condition is necessary to avoid negative tensions in the cables.
For cable-driven parallel mechanisms with more cables than the numbers of degrees
of freedom of their moving platforms, the WCW depends only on the geometry of
the mechanism, i.e, the locations of the attachment points on the fixed frame and on
the moving platform.

Many existing works deal with the limitation of the workspace of parallel cable-
driven robots induced by the unilateral nature of the forces applied by the cables
on the mobile platform. Most of them propose methods allowing to determine the
workspace of these robots, for instance, by means of a discretization method [3]
or by a symbolic method [4]. Fattah and Agrawal [5] propose a methodology to
calculate the workspace of redundant and non redundant planar cable driven robots
by means of a discretization method. In their method, tensions in the cables are
calculated and conditions are obtained to verify whether a reference point on the
moving platform is reachable with positive tensions. Riechel and Ebert-Uphoff [6]
present a means for analytically deriving the WFW for the case of a point-mass end-
effector and analyze the characteristics and trends of the WFW. Some others apply
the Antipodal theorem to calculate the WCW of PCDPMs [7]. All these works deal
with the analysis of cable-driven parallel mechanism workspace. Very few of them
tackle the difficult design problem of finding a cable-driven parallel mechanism from
a prescribed workspace, i.e., the synthesis problem.

Gouteffarde et al. [8] propose an interval-analysis based approach to finding boxes
guaranteed to be fully inside or fully outside of the WFW. The proposed approach
can be applied to verify whether a given prescribed workspace is fully included in the
WFW of a given cable driven mechanism. This is a valuable tool for the dimensional
synthesis of cable driven robots, but because of its computational cost, we do not
know of its application to such problems.
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Hay and Snyman [9] investigated the synthesis of parallel cable-driven manipu-
lators. They define the dexterous workspace of a PCDPM as the intersection of all
constant orientation workspaces in a given set of rotation angles, while cable ten-
sions are constrained to lie within a given set and cable lengths are greater than a
given minimum. Their main goal is to maximize the area of the dexterous workspace
for a given range of rotation angles by finding the locations of fixed points of the
robot along a fixed rectangular frame. They begin with a randomly chosen PCDPM
design and maximize the area of its dexterous workspace by varying its geometry.
In this manner, they find a locally optimum configuration of the fixed points of the
robot, while the locations of the attachment points on the platform have already been
assumed. Therefore, this locally-optimum robot design corresponds to a dexterous
workspace of maximum area, but not for a prescribed workspace.

In this paper, we seek to obtain the geometry of a PCDPM for a prescribed
workspace. The main goal of this paper is to devise an efficient method for the
dimensional synthesis of planar cable-driven parallel mechanisms. In order to achieve
this goal, we first recall the kinetostatic model of a fully-constrained PCDPM and
formally define its WCW in the following section. In Sect. 3, we introduce a linear
program to verify whether a given pose is inside or outside of the WCW of a PCDPM.
In Sect. 4, we modify this linear program to obtain a sufficient condition for a given
box to lie inside the WCW. The developed linear program is then turned into a
nonlinear non-convex feasibility problem representing the dimensional synthesis of
PCDPMs in Sect. 5. In the same section, this feasibility problem is turned into a
nonlinear program by introducing a scaling factor of the prescribed workspace as the
objective function to be maximized. We illustrate the proposed formulations with
synthesis examples throughout Sect. 5.

To this end, we resort to convex relaxations, a technique that has become popular
in some fields of applied science, e.g. [10] and [11] , but has received less attention
from the robotics community. Porta et al. [12] are among the only researchers who
have used this technique for the analysis of robots, to the best of our knowledge.

2 Kinetostatic Model

Before searching for the geometry of a planar cable-driven parallel mechanism
(PCDPM) for a prescribed wrench-closure workspace (WCW), we have to set up a
precise mathematical description of the geometry of such a robot, and of its wrench-
closure workspace. Such a PCDPM is schematically shown in Fig. 1. It consists
of a moving platform (MP) that is connected by m cables to m fixed points Ai ,
i = 1, . . . ,m. Cable i is attached to the MP at Bi , and winds at Ai around an actu-
ated reel. In order to analyze the motion of the MP, we have to consider two frames:
the reference frame A , which is fixed to the base, and the moving frame B, which
is attached to a reference point of the MP. The angle φ rotates frame A onto frame
B. We use the following notation for the analysis of a generic PCDPM:
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Fig. 1 Sketch of an m-cable
PCDPM

• Vector ai ∈ R
2 represents the position of the actuator Ai in the fixed frame A ;

• Vector bi ∈ R
2 is a constant vector and represents the position of the attachment

point Bi of the i th cable in frame B;
• Vector p ∈ R

2, which is expressed in A , represents the position of the reference
point P with respect to point O;

• Vector ci points from Bi to Ai , and supports the i th cable.

Vector ci representing the i th cable is obtained as

ci = ai − p − Qbi . (1)

where, Q is the rotation matrix taking the fixed frame onto the moving frame, and
can be expressed as

Q = 12×2 cosφ + E sin φ, (2)

where, E =
[

0 −1
1 0

]
and 12×2 ∈ R

2×2 is the 2 × 2 identity matrix. The wrench

applied at P , the origin of the moving frame, by the i th cable is vi = [ fT
i ni ]T ,where

fi and ni are the force and moment about P produced by the i th cable, respectively.
Since the exerted force is parallel to its corresponding cable and its related moment
is perpendicular to the plane, their mathematical expressions are

fi = ti
li

ci , ni = det(
[

Qbi
ti
li

ci

]
). (3)

where li and ti are the length of cable i and the tension in that cable, respectively.
If we assume that points Ai and Bi do not coincide, then the wrench applied to the
platform by cable i is (ti/ li )wi , with wi defined as
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wi = [
cT

i cT
i EQbi

]T
. (4)

Regarding the orientation angle as a constant, Eq. (4) shows that wi is a func-
tion of the geometric parameters of the mechanism alone. We define the wrench
matrix and tension vector of the mechanism as W = [

w1 w2 . . . wm
]

and t =[
t1/ l1 t2/ l2 . . . tm/ lm

]T
, respectively. Defining

di ≡ ai − Qbi , i = 1, . . . ,m, D ≡ [
d1 . . . dm

] ∈ R
2×m,

f ≡ [
bT

1 QT ET a1 . . . bT
mQT ET am

]T ∈ R
m, B ≡ [

b1 . . . bm
] ∈ R

2×m, (5)

we can rewrite W as

W ≡
[

D − p1T
m

fT − pT EQB

]
∈ R

3×m . (6)

We will use this compact expression of the wrench matrix to find a formulation for
the synthesis problem of PCDPMs in the following sections.

The static equilibrium of the moving platform may be expressed as

Wt + wP = 03, (7)

in which wP is the wrench applied on the MP, with its force acting at P , and is
equivalent to the system of external forces and moments. These external loads may
include gravity forces, for example. We can now define the WCW of PCDPMs as
follows.

Definition 1 The Wrench-Closure Workspace (WCW)
The WCW of planar cable-driven parallel mechanisms is formally defined as the set
of poses for which

∀wP ∈ R
3, ∃t ∈ R

m | t � 0m and Wt + wP = 03,

where the symbol � denotes the componentwise strict inequality and 03 is the three-
dimensional zero vector. In words, this workspace is the set of PCDPM postures for
which any external load applied to the MP can be balanced by a set of positive cable
tensions.

3 Verifying Whether a Pose Lies in the WCW of a PCDPM

In order to find a valid tension vector t for a given pose, we need to solve the
linear system of equations given by Eq. (7). To this end, let us recall the Theorem 1
introduced in [13] in order to determine whether a given pose is inside the WCW of
the mechanism.
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Theorem 1 Primal WCW Membership Condition [13, 14]
A given pose is inside the WCW of a PCDPM if and only if there exists a set of cable
tensions such that

rank(W) = 3,

Wt = 03, t � 0m . (8)

According to Theorem 1, the WCW of a PCDPM can be computed by solving the
feasibility problem (8) for each pose of the MP, a result previously obtained in [13].
Therefore, the WCW of a PCDPM is the set of poses for which Eq. (8) is satisfied.
We may as well use Stiemke’s theorem [15] to verify whether a given pose is inside
or outside the WCW. We recall this theorem as follows.

Theorem 2 Dual WCW Membership Condition [4]
A pose is outside the WCW of a PCDPM if and only if there exists a small-
displacement screw λ ∈ R

3 such that

WT λ � 0m, WT λ �= 0m . (9)

We can now introduce the following feasibility problem to calculate the WCW of a
PCDPM:

WT λ � 0m, 1T
mWT λ = 1. (10)

where 1m = [
1 1 · · · 1

]T ∈ R
m . Indeed, problems (9) and (10) are equivalent,

since under the constraint WT λ � 0m having 1T
mWT λ = 1 is equivalent to having

WT λ �= 0m . Hence, if problem (10) admits a feasible solution then the given pose is
outside of the WCW and if it does not then the pose is inside. Hence, this equation
can be used to estimate the WCW of a given PCDPM by discretizing the examined
region. This linear feasibility problem is the corner stone to the proposed formulation
of the dimensional synthesis of PCDPMs.

4 Verifying Whether a Box Lies in the Constan-Orientation
WCW

The formulations developed in the previous sections provide us with the proper tools
to address our main concern: the dimensional synthesis of PCDPMs. We wish to
determine whether a given small box lies completely inside the constant-orientation
WCW of a given PCDPM. To this end, notice that the problem (10) can be turned
into a phase-one problem as in the following Lemma.

Lemma 1 Linear Program WCW Membership Condition
Consider the linear program 1

1 Because of space constraints, the proof will be provided upon request.
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δ∗ = maximize δ,

subject to WT λ � 0m,

1T
mWT λ ≥ δ,

over λ and δ.

(11)

Then, we have

δ∗ =
{

+∞ if the pose lies outside the WCW,

0 otherwise.
(12)

Consider now a box B with lower-left and upper-right corners p and p, respec-

tively, i.e., B = {p ∈ R
2 : p � p � p}. In order to find a necessary condition for B

to be outside of the COWCW, we substitute Eq. (6) in problem (11), we let p in the
decision variables of the problem, and we constrain it inside B. This leads to

maximize δ,
subject to 0m � DTμ− 1mpTμ+ fμ0 − BT QT ET pμ0,

δ ≤ 1T
mDTμ− mpTμ+ 1T

mfμ0 − 1T
mBT QT ET pμ0,

p � p � p,

(13)

where λ ≡ [μT μ0]T . Considering p, the operation-point position as an optimiza-
tion variable, while the MP orientation Q remains constant, we obtain a nonlinear
optimization problem. This problem provides us with a tool to find a necessary con-
dition for a box to be outside of the COWCW, i.e., a condition that is necessarily met
by any box B outside the COWCW, but that may also be met by some boxes that
are partly or completely inside this workspace. The approach consists in relaxing the
constraints of problem (13), which makes it easier for a pose to be excluded from the
COWCW. To this end, let us define the variables ν ≡ μ0p and η ≡ diag(μ)p, which
represent the bilinear terms in Eq. (13), when considering p, μ and μ0 as decision
variables. For the sake of this analysis, let us assume that the signs of μ0 and μ
are known in advance, and label them σ0 ≡ sgn(μ0) and σ ≡ sgn(μ), where sgn()
represents the signum function. Knowing the signs of μ0 and μ, we can generate the
following bounds on ν and η:

σ0pμ0 � σ0ν � σ0pμ0, diag(σ )diag(p)μ � diag(σ )η � diag(σ )diag(p)μ.
(14)

When treating σ0 and σ as constants, the set formed by Eq. (14) represents a con-
vex polyhedron, which approximates the non-convex surfaces of Eq. (4). Therefore,
replacing the latter with the former, we obtain a convex relaxation of Eq. (4). This
approximation converges to the exact relationship as the size of boxB becomes infini-
tesimal. This approach is called the reformulation-linearization technique (RLT), and
was originally proposed by Sherali and Tuncbilek [16]. Hence, the relaxed form of
problem (13) is
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maximize δ,

subject to DTμ− 1m1T
2 η + fμ0 − BT QT ET ν � 0m,

1T
mDTμ− m1T

2 η + 1T
mfμ0 − 1T

mBT QT ET ν ≥ δ,

σ0pμ0 � σ0ν � σ0pμ0,

diag(σ )diag(p)μ � diag(σ )η � diag(σ )diag(p)μ,
σ0 = sgn(μ0), σ = sgn(μ)

(15)

The only non-convex constraints in problem (15) are the last two equalities. How-
ever, these equalities yield exactly eight possible combinations of σ0 and σ , which
are the solutions to

σ 2
0 = 1 and diag(σ )2 = 12×2. (16)

Let us label these solutions σ0, j and σ j , j = 1, . . . , 8. As a result, the solution to
problem (15) is the maximum of the outcomes of the eight resulting linear programs.
This leads to Lemma 2.

Lemma 2 Linear Sufficient Conditions for a Box to Lie Inside the COWCW
Consider the eight distinct linear programs

maximize δ j ,

subjectto G jξ j � 0m+9,

over ξ j ,

(17)

j = 1, . . . , 8 where

G j ≡
[

gT 1
RT

j 0m+24

]
∈ R

(m+9)×8, g ≡ [−1T
mAT −1T

mf 1T
mBT QT ET m1T

2

]T ∈ R
7,

R j ≡

⎡
⎢⎢⎢⎢⎣

−DT −f BT QT ET 1m1T
2

02×2 σ0, j p −σ0, j 12×2 02

02×2 −σ0, j p σ0, j 12×2 02
diag(σ j )diag(p) 02 02×2 −diag(σ j )

−diag(σ j )diag(p) 02 02×2 diag(σ j )

⎤
⎥⎥⎥⎥⎦

T

∈ R
7×(m+8), and

ξ j ≡
[
μT

j μ0, j ν
T
j η

T
j δ j

]T ∈ R
8. Then, the given box B = {p ∈ R

2 : p � p � p}
is fully inside the COWCW if all of the problems (17), j = 1, . . . , 8, yield zero.2

Figure 2 shows an example of the effect of the proposed convex relaxation on the
estimated COWCW. The parameters of the considered PCDPM are given in Table 1,
and the corresponding geometry appears in the foreground of Fig. 2. This example is
drawn from Stump and Kumar [4]. We calculate the real constant-orientation wrench-
closure workspace (COWCW) of this mechanism for φ = 0.02 rad by discretising
the examined region into several points and solving problem (10) for each of them.
Upon partitioning the plane into boxes instead of points and solving the relaxed
problem (17) for each box, we obtain a contracted COWCW. In this figure the real
COWCW is represented by a cloud of points, while the contracted COWCW is the

2 The proof was omitted because of space constraints.
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Fig. 2 Contracted and real
COWCW of a PCDPM

Table 1 Geometric
parameters of the assumed
PCDPM

i 1 2 3 4

aT
i [0 0] [6 0] [6 5] [0 5]

bT
i [−.5 − .5] [.5 − .5] [.5 .5] [−.5 .5]

negative of the area covered with boxes. As can be seen from this figure, relaxing
the constraints results in an underestimation of the COWCW. In this example, we
used square boxes with edge lengths of 0.1. Smaller boxes would have lead to a
better estimate of the COWCW, as the convex relaxation (14) then forms a tighter
approximation of (4).

As they were obtained in problem (17) the inequality constraints can always be
satisfied by choosing ξ j = 08. For the purpose of later assembling them, we would
like these constraints to be feasible only if a given box is fully inside the WCW. To
this end, we compute the Lagrange dual [17] of problem (17) and eliminate one of the
decision variables by substitution of one of the constraints. This leads to following
feasibility problem.

satisfy R j y j + g = 07, y j � 0m+8, j = 1, . . . , 8, (18)

over y j ∈ R
m+8, which represents the vector of Lagrange multipliers.

Problem (18) is equivalent to its primal problems (17) but it is feasible when
problem (17) yields zero ∀J ∈ {1, . . . , 8}, and infeasible when problem (17) is
unbounded for any J ∈ {1, . . . , 8}. This is the primal-dual relationship occurs in
linear programming [18]. Equation (18) may now be regarded as a single feasibility
problem of 56 linear equations into 8m + 64 non-negative variables and we can turn
our attention to the synthesis problem.
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5 A Formulation for the Problem of Synthesizing a PCDPM

Problems (18) serve as a building brick to formulate the dimensional synthesis of
PCDPMs. Suppose we are interested in finding a PCDPM geometry whose constant-
orientation WCW contains a given box B. In order to solve this problem we introduce
the nonlinear feasibility problem

satisfy R j y j + g = 07, j = 1, . . . , 8,
y j � 0m+8, j = 1, . . . , 8,
a � ai � a, b � bi � b, i = 1, . . . ,m,

over y j ∈ R
m+8, ai ∈ R

2, bi ∈ R
2.

(19)

Here, a, a, b and b are lower and upper bounds on the positions of the base and MP
attachments points, which would otherwise be drawn to infinity during the solution
process. Problem (19) is a nonlinear feasibility problem with 12m +64 variables and
56 equality constraints. If it exists, the associated solution yields a PCDPM geometry
whose COWCW is guaranteed to include the prescribed box B. On the other hand,
the absence of a solution to this problem does not imply that there is no possible
PCDPM geometry containing B. Hence, this method lacks practicality, since failing
to obtain a feasible solution does not provide any information regarding a good but
not perfect geometry. For this reason introducing an objective function is thought to
be more attractive to the designer. This is the main concern of the next section.

5.1 A Nonlinear Program for the Constant-Orientations
Dimensional Synthesis of PCDPMs

Suppose we are given a box and we want to find the geometry of a PCDPM whose
COWCW includes this box. Evidently, if we use a scaled version of this box in
problem (19) and can find a geometry of a PCDPM whose COWCW allows for a
scaling factor above one, then the original problem is solved. Quite naturally, the idea
is to consider the scaling factor as an objective to be maximized. If, at the optimum
point this factor is smaller than one, then the designer is left with the best infeasible
solution.

This scaling process is depicted in Fig. 3 for a prescribed box. The box B′ with
dashed lines is the scaled image of the smaller one with solid lines. The scaling
factor is s and the scaling point is C . From this figure we can obtain the lower-left
and upper-right coordinates of the scaled box B′ as

p′ = pc + s(p − pc) and p′ = pc + s(p − pc), (20)

where p and p are the lower-left and upper-right coordinates of the original box B.
Vector pc and scalar s represent the position of the scaling point C and the scaling
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Fig. 3 A scaled box and its
corresponding parameters

pc

factor, respectively. If we consider the centroid of the box as the scaling point, then
pc = 1

2 (p + p).
We now turn the feasibility problem (19) into a nonlinear program where R′

j

is obtained by substituting p′ and p′ for p and p, respectively, in the expression
of R j given in problem (17). Moreover, to ensure that p′ and p′ remain the lower
left and upper-right corners of the scaled box, we constrain the scaling factor s to
non-negative real numbers.

maximize s
subject to R′

j y j + g = 07,

p′ − pc − s(p − pc) = 02,

p′ − pc − s(p − pc) = 02,

a � ai � a, b � bi � b, i = 1, . . . ,m,
y j � 0m+8, j = 1, . . . , 8, s ≥ 0,

over y j ∈ R
m+8, ai ∈ R

2, bi ∈ R
2, s ∈ R.

(21)

We illustrate this formulation with a synthesis example in the following section.

Example I: Constant Orientation WCW for a Given Box

Figure 4 shows an illustrative example of the results obtained through the solution
of problem (21) or, more accurately, through the computation of one of its local
optima. The assumed upper and lower bounds for the geometry of the mechanism
and the lower-left and upper-right coordinates of the given box that need to be inside
of the constant orientation WCW for the rotation angle φ = 0 are given in Table 2.
The number of cables is set to m = 4, which is the minimum for a WCW to exist.
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Fig. 4 Geometry obtained for
a PCDPM with four cables
and constant orientation for a
given box

Table 2 Assumed
parameters aT aT bT b

T
pT

k
pT

k

[0 0] [6 5] [−.5 − .5] [.5 .5] [3 2.5] [3.5 3]

In order to reach a local optimum, we need to begin with an initial guess on the
decision variables. We consider the values reported in Table 1 as this initial guess of
the PCDPM geometry, while we choose y j,0 = 0m+8, j = 1, . . . , 8, and s0 = 0 for
the remaining variables. The prescribed box which is to be magnified while remaining
fully in the COWCW appears in solid black lines and the scaled box is in dashed
red lines. A local optimum to problem (21) is geometry are shown in Table 3. This
PCDPM design was computed by using the fmincon function of Matlab 7.6.0 R2008a
with its default active-set algorithm. This algorithm solves nonlinear programs by
sequential quadratic programming (SQP). For this example, it takes 12.52 s to obtain
the result by using a desktop computer equipped with an Intel(R) Core(TM)2 CPU
6400 @ 2.13 GHz, and 4 GB RAM. Figure 5a and b show respectively the evolution
of the scaling factor and the geometry of the robot from the initial guess to the final
local optimum. The optimum value of the scaling factor is s∗ = 4.6298 ≥ 1, which
means that the scaled box and the original box are both inside the resulting COWCW.
This may be verified from Fig. 4, where the scaled box is drawn in thick dashed lines,
while the original box is in solid lines. The corresponding COWCW also appears on
this figure, and is seen to contain the scaled box, as required. Notice that we applied
the method proposed in [4] with the algorithm proposed in [19] in order to calculate
the WCW, which is represented by the grey region in the figure.

In the foregoing examples, we assumed a constant orientation angle to perform
the dimensional synthesis of PCDPMs. Although one may think of applications, e.g.,
in haptics [20], where the MP should undergo pure translations while being able to
apply moments, in general, the MP is required to rotate and translate in the plane.
Therefore, we have to investigate the synthesis problem for different orientations as
well. This is the topic of the next section.
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Table 3 Obtained geometry

i 1 2 3 4

aT
i [2.2339 0.0000] [3.6406 0.0000] [6.0000 3.7216] [0.0000 4.6358]

bT
i [0.5000 − 0.1669] [−0.2600 0.1097] [−0.0277 − 0.0008] [0.0434 0.0102]
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Fig. 5 Variations of optimization variables during the solving procedure. a Scaling factor. b Geom-
etry of the robot

5.2 The Dimensional Synthesis of PCDPMs for Different MP
Orientations

We show that formulation (21) can be developed to find the geometry of a PCDPM
whose WCW includes a given box for different orientation angles. In order to solve
such a problem, we discretize along the φ axis, i.e., we combine the nonlinear
programs (21) defined for a set of fixed orientation angles. Evidently, this increases
the number of constraints and variables. More precisely, if the number of the fixed
orientation angles is n, then the nonlinear program representing the dimensional
synthesis problem is

maximize s
subject to Rk, j yk, j + gk = 07,

p′
k
− pc − s(p

k
− pc) = 02,

p′
k − pc − s(pk − pc) = 02,

a � ai � a, b � bi � b, i = 1, . . . ,m,
s ≥ 0,
yk, j � 0m+8, j = 1, . . . , 8, k = 1, . . . , n,

over yk, j ∈ R
m+8, ai ∈ R

2, bi ∈ R
2, s ∈ R.

(22)

Notice that to construct the matrix Rk, j and vector gk we must substitute the corre-
sponding orientation angle φk in Eq. (17). Problem (22) is a nonlinear, non-convex
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Table 4 Obtained geometry for different orientation angles

i 1 2 3 4

aT
i [0.0000 0.0000] [5.1281 0.0000] [6.0000 5.0000] [0.0000 5.0000]

bT
i [0.3729 − 0.5000] [−0.2570 − 0.1436] [−0.1238 − 0.1244] [0.1690 0.3179]

scaled box B′
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COWCW
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Fig. 6 Geometry and COWCWs obtained for a PCDPM with four cables for the prescribed box.
a Geometry obtained with COWCW for φ = 0. b COWCWs with the prescribed and the resulting
scaled boxes

program with (8m +64)n+4m +1 variables, 60n equality, and (8m +64)n+8m +1
inequality constraints. We illustrate the results with the following example.

Example II: A Prescribed Box at Different Orientations

Suppose we have a given box with the same coordinates as in Example I. We seek a
PCDPM whose three constant-orientation wrench-closure workspaces correspond-
ing respectively to φ1 = −π

6 , φ2 = 0 and φ3 = π
6 , include this box. We set the

lower and upper bounds on the geometry to the values given in Table 2 and the initial
guess is the same as the one displayed in Fig. 4. We use the “trust-region-reflective”
algorithm of Matlab to solve the problem (22), which is called through the fmin-
con command. This is a gradient based method which is generally faster than other
methods, provided that the derivatives are specified by the user. Using the machine
mentioned in Example I, fmincon yields s∗ = 4.3568 and the obtained geometry
is shown in Table 4 after a computation time of 161.3 s. This geometry and the cor-
responding constant orientation WCW for φ = 0 are depicted in Fig. 6a. Figure 6b
shows the COWCWs corresponding to the chosen values of φ, the prescribed boxes,
and their scaled version. One can easily verify that all of these COWCWs include
the scaled version of the given box. In this section and the previous one, we devel-
oped formulations to find the geometry of a PCDPM whose WCW includes a given
box. The proposed approach can be used to synthesize PCDPMs for non-rectangular
prescribed workspaces which are approximated by multiple boxes. Such an approx-
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imation is obtainable through the interval analysis [21]. However, we are forced to
omit the corresponding example because of space constraints.

6 Conclusions

A method for the constant-orientation dimensional synthesis of planar parallel cable
driven mechanisms (PCDPMs) was proposed. To achieve this goal, an optimization
problem was first introduced to verify whether a given pose is inside the wrench
closure workspace (WCW) of a given PCDPM. We then relaxed this problem over a
box in the workspace, which lead us to a sufficient condition for this box to be inside
the constant-orientation WCW of a given PCDPM. These mathematical conditions
allowed the formulation of a nonlinear program in which the scale of the prescribed
workspace is maximized while being constrained inside the COWCW of the PCDPM.
The robot geometry being included in the decision variables of the nonlinear program,
this optimization problem is thus a tool for the dimensional synthesis of PCDPMs.
The value of the scaling factor at the optimum indicates whether the prescribed box
is inside the constant orientation WCW. It was shown that the proposed approach
can be applied to prescribed workspaces that cover several fixed orientations.

A natural sequence of this work is the extension of the proposed method to three-
dimensional boxes covering the x, y and φ dimensions of a PCDPM workspace.
We would also like to devise a method for globally solving the resulting nonlinear
optimization problem. To this end, we are contemplating the use of a branch-and-
bound technique. Extending the proposed method may provide a formulation for the
dimensional synthesis of spatial CDPMs as well. Finally, our intuition is that the
same approach could be applied to the dimensional synthesis of conventional rigid-
link mechanisms. All these ideas will be topics of further reports.
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Feasible Kinematic Sensitivity in Cable Robots
Based on Interval Analysis

Seyed Ahmad Khalilpour, Azadeh Zarif Loloei, Hamid D. Taghirad and
Mehdi Tale Masouleh

Abstract The kinematic sensitivity has been recently proposed as a unit-consistent
performance index to circumvent several shortcomings of some notorious indices
such as dexterity. This paper presents a systematic interval approach for computing
an index by which two important kinematic properties, namely feasible workspace
and kinematic sensitivity, are blended into each other. The proposed index may be
used to efficiently design different parallel mechanisms, and cable driven robots.
By this measure, and for parallel manipulators, it is possible to visualize constant
orientation workspace of the mechanism where the kinematic sensitivity is less than
a desired value considered by the designer. For cable driven redundant robots, the
controllable workspace is combined with the desired kinematic sensitivity property,
to determine the so-called feasible kinematic sensitivity workspace of the robot.
Three case studies are considered for the development of the idea and verification of
the results, through which a conventional planar parallel manipulator, a redundant
one and a cable driven robot is examined in detail. Finally, the paper provides some
hints for the optimum design of the mechanisms under study by introducing the
concept of minimum feasible kinematic sensitivity covering the whole workspace.
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1 Introduction

Cable driven redundant parallel manipulators (CDRPMs) consist of a moving plat-
form which is connected by the means of actuated cables to the base. Redundancy
is an inherent requirement for CDRPMs due to the fact that cables can only pull but
cannot push the moving platform. Thus, in a non-singular posture, the moving plat-
form can perform n Degree-Of-Freedom (DOF) provided that at least n + 1 cables
are used. CDRPMs are special design of parallel manipulators (PMs) that heritage
the advantages of PMs such as high acceleration and high load carrying capability
and at the same time, have alleviated some of their shortcomings, such as restricted
workspace. Due to the several eminent features of CDRPMs, they have stimulated the
interest of many researchers and they are becoming the state-of-the-art in many real
applications, such as telescope [1], haptic interface [2], motion trackers [3], rescue
robotics [4], metrology [5], rehabilitation [6], sport training [7], heavy load trans-
portation [8] and surgery [9]. However there are still some gap to fill in the kinematic
properties of such mechanisms, such as workspace and kinematic sensitivity, which
is the concerns of this paper.

The workspace of CDRPM are investigated upon different perspectives and differ-
ent types of workspace are proposed in the literature. In short, four different types of
workspace have been introduced: (1) Wrench feasible workspace [10], (2) Dynamic
workspace [11], (3) Static workspace [12] and (4) Controllable workspace [13]. In
this paper, more emphasis is placed on the controllable workspace which represents
the most general feasible workspace. Controllable workspace pertains at finding the
set of poses (position and orientation) of the moving platform in which any wrench
can be generated by the moving platform while cables are all in tension.

Extensive presence of singular points in PMs and the challenge to obtain and
avoid them is one of the major drawbacks of this kind of mechanisms. In the design
of PMs, usually kinematics performance indices are used to reduce the singulari-
ties and to improve the performance of the mechanism under study. Most popular
indices are Yoshikawa manipulability [14] and the dexterity indices [15], which entail
some limits and as stated in [16], seems to have not drawn a consensus among the
robotics community. The latter problem relies on the impossibility to define a sin-
gle invariant metric for the special Euclidean group, i.e., the Jacobian matrices are
nonhomogeneous. To circumvent the latter problem, recently two different indices
named point-displacement and rotational kinematic sensitivities are proposed which
their meaning is thought to be clear and definite to the designer of a robotic manip-
ulator [17]. These indices provide tight upper bounds on the magnitudes of the
end-effector rotations and point-displacements, respectively under a unit-magnitude
array of actuated-joint displacement [18].

The kinematic analysis requires a suitable framework in order to propose a proper
and systematic method. The mathematical framework of this paper is based on
interval analysis [19], using the intlab package [20]. There are host of advantages
relevant to using interval analysis as an alternative numerical method in order to
obtain practically competent results for the analysis of kinematic properties of
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robotics mechanical systems [21]. In this paper. our interest toward applying interval
analysis to the kinematic analysis can be summarized as follows [22]: (1) In contrast
to many other intelligent mathematical tools which would result in a lengthy compu-
tation process and may converge to a local optimum, interval analysis is not a black
box, since it requires to combine heuristics and numerical concepts to make it more
effective, (2) It allows to find all the solutions with inequalities within a given search
space [23, 24] (3) For two and three-dimensional problems one can see the evolution
of the solutions and to monitor the procedure in order to have better insight into the
problem, (4) It allows to take into account uncertainties in the model of the robot
and (5) For the problem in which infinity norm are involved, interval analysis may
solve the problem more efficiently rather than other methods since infinity norm is a
non-analytical function and consequently mathematical operations are not tractable.

This paper aims at introducing a more practical workspace for the CDRPMs in
which the kinematic sensitivity is also taken into account while computing the con-
trollable workspace. To this end, upon blending these two concepts, a new workspace
is introduced which is referred to as Feasible Kinematic Sensitivity (FKS) and can
be also regarded as a performance index. FKS pertains at finding a part of control-
lable workspace in which the kinematic sensitivity is less that a desired value. As it
is the case for kinematic sensitivity and controllable workspace, the mathematical
framework to obtain the FKS of a given PM is based on interval analysis and, to do
so, a systematic approach is proposed.

The remainder of this paper is organized as follows. First, interval analysis is
reviewed and the general concepts are introduced. Then based on the work pre-
sented in [18], the general idea of kinematic sensitivity is reviewed. The paper fol-
lows by exploring the concept of kinematic sensitivity by means of interval analysis
upon proposing some systematic algorithms where it is applied to 3-RPR PM and
4-RPR redundant PM. Then the interval formulation of the controllable workspace
is investigated for 3-DOFs CDRPMs with four cables. As the central subject of this
paper, FKS workspace is introduced and examined for the case studies. Finally, the
paper concludes with some remarks to provide some insight to the optimum synthesis
of CDRPMs.

2 Background Materials

2.1 Interval Analysis

Interval analysis is amongst the numerical methods proposed in the literature that
allows to safely solve the problem, and to obtain a guaranteed result. The basic
principles of interval analysis are simple, where efficient implementation requires a
high expertise level. In interval analysis, one deals with intervals of numbers instead
of the numbers themselves [19]:

[x] = [x, x] = {x |x ∈ R, x ≤ x ≤ x} (1)
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where x is the left endpoint and x is the right endpoint of the interval. By an
n-dimensional interval vector, we mean an ordered n-tuple of intervals:

X = (X1, . . . , Xn) (2)

In interval analysis all variables are independently investigated [25]. Thus the output
range of interval function could be wider than the function span, but certainly the
answer region lies within the output range. Therefore applying interval analysis has
its own difficulties, but on the other hand the answer it gives is guaranteed, meaning
that negligible errors that result from mathematical operations such as rounding and
estimation, are not present. In this paper, interval analysis is not introduced in detail,
since it is beyond the scope of this study and reader are referred to [25, 26] for a more
comprehensive detail. It should be noted that all the interval algorithms proposed in
this paper are implemented in Matlab which uses the INTLAB package supporting
interval calculations.

2.2 Kinematic Sensitivity Indices

Kinematic sensitivity is defined as the maximum error that occurs in the Cartesian
workspace as a result of bounded errors in the joint space (‖ρ‖ ≤ 1). In order to
obtain consistent unit indices, two indices have been defined in [16]:

σrc, f ≡ max‖ρ‖c=1
‖φ‖ f and σpc, f ≡ max‖ρ‖c=1

‖p‖ f (3)

in which, ρ ∈ R
n represents small actuator displacements and x = [p,φ] stands for

the pose of the end-effector. Moreover, c = {2,∞} and f = {2,∞} are respectively
the types of norm for which the constraint and the objective are expressed. From
the results obtained from [18], it can be inferred that two situations may correctly
represent the kinematic sensitivity, which will be used for the purposes of this paper:
(1) The constraint and objective functions are both expressed using ∞-norms (c =
f = ∞) and (2) The constraint and objective functions are expressed respectively
with ∞ and 2-norms (c = ∞, f = 2).

3 Investigation of Kinematic Sensitivity of Non-redundant
Planar Parallel Mechanisms

This section is devoted entirely to an overview on the computation of the kinematic
sensitivity of non-redundant planar PM based on the results reported in [17, 18, 27]
and, as a case study, the so-called 3-RPR is considered.1 As pointed out previously,

1 Here and throughout this paper, R and P stands respectively for a revolute and prismatic joint
where the underlined joint is actuated.
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Fig. 1 A 3-RPR parallel
manipulator. Taken from [18]

the two different situations explained above, i.e., (c = f = ∞ and c = ∞ and
f = 2), are considered for computing the kinematic sensitivity. Although the con-
cepts presented in this section is to the majority of intents and purposes the same as
the one presented in [18], it provides for the first time, the framework to compute the
kinematic sensitivity by using interval analysis. More specifically, the main objective
of this section is to lay down the essential for the rest of the paper by introducing an
interval-based algorithm which leads to obtain a region within the workspace of the
mechanism, referred to as feasible kinematic sensitivity workspace, where the kine-
matic sensitivity is less than a given value, σd . It is worth noting that the computation
of the constant-orientation workspace, reachable area of the moving platform for a
given orientation of the moving platform and given stroke of actuator, is integrated
in the proposed algorithm. As a geometrical point of view, the constant-orientation
workspace of a 3-RPR PM can be made equivalent to the intersection of six circles,
arisen from the minimum and maximum stroke of the prismatic actuators. This can
be readily obtained using interval analysis and due to its simplicity, the details of
such calculations are skipped in this paper. Furthermore, here and throughout this
paper, for the sake of brevity, the constant-orientation workspace is referred to as
workspace.

Figure 1 represents schematically a 3-RPR PM performing
3-DOF where the pose of the end-effector is denoted by (x, y,φ). Both fixed and
moving platforms are considered as equilateral triangles that are encompassed by
circles with radius 1 and 5, respectively, where the center of each triangle is coinci-
dence on the circumambient circles centers. As it will be discussed latter on, from the
results presented in [28] having equilateral triangles for the fixed base and moving
platform results in a circle for the singularity curve which considerably optimizes
the singularity-free workspace and is a definite asset in the practice. The Jacobian
matrix, K, with respect to the pose of the mechanism, (x, y,φ), may be written in
an interval form, [K], as:
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Table 1 Pseudo-code for the calculation of the interval vertices of the polyhedron in a non-
redundant parallel manipulator

[K] = K([x], [y], [φ]), K =
⎡
⎣

n1x and n1y (b1 × n1) · k
n2x and n2y (b2 × n2) · k
n3x and n3y (b3 × n3) · k

⎤
⎦ (4)

In the above, bi , i = 1, 2, 3, denotes the position vector of point Bi in the fixed
frame, and the unit vector along the i th prismatic joint direction is denoted by
ni = [nix , niy , 0]T . For a more comprehensive information regarding the kinematic
properties of these kind of PMs, readers are referred to [18, 27].

3.1 Kinematic Sensitivity with ∞-norms on Constraint
and Objective Function

In this case, since dealing with c = ∞ for the constraint, the constraint inequality
‖ρ‖∞ ≤ 1 can be replaced by ‖Kx‖∞ ≤ 1, from the Jacobian relation. Inequality
‖Kx‖∞ ≤ 1 stands for a polyhedron with 2n vertices in R

n where n represents
the DOF of the PMs under study. The first step toward calculating the kinematic
sensitivity for both ∞– or 2–norm consists of obtaining the vertices of the latter
polyhedron, which can be done by solving the inequality [K − KT ] ≤ 1. By using
interval formulation of the Jacobian matrix, the intervals in which each vertices of
the polyhedron is bounded, can be computed. Therefore the combination of all the
interval vertices leads to interval formulation of the polyhedron. From the fact that
the polyhedrons are symmetric with respect to the origin, calculation of half of them
is sufficient. The pseudo-codes given in Table 1, provides the logic in changing the
intervals of these vertices. Note that, the function verifylss([A], [B]) in the
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pseudo-codes given in Table 1 is a function of intlab toolbox that solves the system
of equations [A].[X ] = [B], in which [A] and [B] are interval matrices and [X ] is a
interval vector.

In the case of a 3-RPR PM, the number of vertices of the hexahedron is 23 = 8
and because of being symmetric the calculation of four vertices is sufficient. As a
geometric stand point, in this case, using interval analysis to calculate the kinematic
sensitivity can be made equivalent to the map of the vertices to a cube that their
dimensions in all the Cartesian directions are equal to the width of the calculated
interval of the corresponding vertex. Re-formulating the relations obtained in [18] for
the point-displacement and rotational kinematic sensitivities, when c = f = ∞, for
a given position in the specified interval in the direction of the pose of the mechanism,
leads to the following for the maximum point-displacement and rotational kinematic
sensitivities:

max σp∞,∞ = max
i=1,...,4

(mag([Xi ]),mag([Yi ])) (5)

max σφ∞,∞ = max
i=1,...,4

(mag([φi ])) (6)

where mag(·), for its interval argument, computes the distance of the farthest point
in the interval from the coordinates origin. Furthermore, Xi ,Yi ,φi constitute the
elements of the vectors [Vertices(t)] obtained from the pseudo-code presented in
Table 1. Similarly, the minimum kinematic sensitivity of the inner points of the inter-
val is also calculated by:

min σp∞,∞ = max
i=1,...,4

(mig([Xi ]),mig([Yi ])) (7)

min σφ∞,∞ = max
i=1,...,4

(mig([φi ])) (8)

where mig(·), for its interval argument, stands for the distance of the nearest point
in the interval from the coordinates origin.

Table 2 provides the pseudo-code describing the interval formulation to obtain
the maximum and minimum kinematic sensitivity, Eqs. (5–8), where [xt ] and [yt ]
stands for the workspace of the mechanism, L in and Lout represent the desired and
undesired intervals of the workspace regarding to the criteria fixed for the kinematic
sensitivity, σd , respectively. Moreover, Lneg involves the bound intervals, calculated
according to the ε value. If the maximum value of kinematic sensitivity in the related
interval is less than the desired value, σd , the interval is certainly inside the desired
region and the function feasible ([V ],σd) will return a value as one. Moreover, if
the minimum value of kinematic sensitivity in the related interval is certainly more
than the desired value, the interval is out of the desired region and the function out
([V ],σd) will be activated. In the case that the workspace of the end-effector is not
sufficiently small for the kinematic sensitivity of the points to have a similar behavior,
the region should be split up into two intervals, in such a way that for the new intervals
one of the functions feasible([V ],σd) or out([V ],σd) becomes active. The interval
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Table 2 The proposed pseudo-code for the calculations of minimum and maximum kinematic
sensitivity in the workspace

Fig. 2 Point-displacement
FKS, the inside (green) region,
of a 3-RPR PM with c = f =
∞ and σd = 0.35 for φ = 45.
The dashed lines represent the
boundary of the workspace

bisecting sequence pursues to the points that the remained intervals becomes small
enough with respect to ε.

Figures 2 and 3 represent respectively the point-displacement and rotational kine-
matic sensitivity upon applying Eq. (5–8) and the pseudo-code presented in Table 2
for a given orientation of the moving platform, φ = π

4 . In the latter figures, the
inside (green) region indicates a region that the 3-RPR PM of Fig. 1 has a kinematic
sensitivity less than 0.35 and the outside (red) region corresponds to the region with
kinematic sensitivity greater than 0.35. As it can be observed from the forgoing fig-
ures, the outside (red) region is separated by the dark (blue) boxes from the inside
(green) one which means that interval analysis was not able to reach to a conclusion
for these boxes. These boxes represent the boundary of the FKS and it could be small
as possible upon increasing the iteration. From the results obtained in [28], since the
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Fig. 3 Rotational FKS, the
inside (green) region, of a
3-RPR PM with c = f = ∞
and σd = 0.35 for φ = 45.
The dashed lines represent the
boundary of the workspace

fixed and moving frame are equilateral, it can be also confirmed that the singularity
curve is a circle centers at (0, 0) with a radius of 4.3507 for the 3-RPR PM under
study. As it can deduced form Fig. 3, the green region is inside the singularity cir-
cle and consequently is singularity-free. This leads to have a conservative but safer
constant-orientation workspace which is singularity-free.

3.2 Kinematic Sensitivity with ∞ norm for the Constraint
and 2-norm for the Objective Function

As aforementioned, for the calculation of the maximum and minimum of the kine-
matic sensitivity for this case, i.e., c = 2 and f = ∞, one should find the vertices of
the polyhedron which was fully described in the previous section. From the results
presented in [18], the kinematic sensitivity for c = 2 and f = ∞ in the interval form
can be formulated as follows:

max σp∞,2 = max
i=1,...,4

(mag(
√

Xi
2 + Yi

2)) (9)

min σp∞,2 = max
i=1,...,4

(mig(
√

Xi
2 + Yi

2)) (10)

In this specific PM where the mechanisms performs only one rotational DOF
then the rotational kinematic sensitivity with ∞ and two-norm are identical. Figure 4
illustrates the point-displacement FKS, where σd is less than 0.35 (Fig. 5).
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Fig. 4 Point displacement
FKS, the inside (green) region,
of a 3-RPR PM with c = ∞,
f = 2 and σd = 0.35 for
φ = 45. The dashed lines
represent the boundary of the
workspace

Fig. 5 A 4-RPR planar
CDRPM

4 Investigation of Kinematic Sensitivity of Redundant Robots

From the study conducted in [18], it reveals that when computing the kinematic
sensitivity for redundant PM with respect to the ∞-norm constraint, the number of
hyperplanes increases and further confines polyhedral of constraint which is sought
at the outset. In fact appending redundant rows to the Jacobian matrix of the mech-
anism, will result into omission of farther vertices of constraint polyhedron and the
mechanism kinematic sensitivity reduces significantly. The latter implies avoiding
singular configurations within the workspace which can be regarded as a must for the
design of a PMs. Using the pseudo-code of Table 3, one can determine the interval
vertices of the hyperplanes in a redundant state. Once the interval vertices are gen-
erated with respect to the latter pseudo-code, the calculation of kinematic sensitivity
is accomplished in a maneuver akin to the non-redundant PM explained in Sect. 3.
The output of this function (interval vertices) are valid when the product of the rest
of the Jacobian matrix rows and the computed vertices vector, is a subset of interval
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Table 3 The Pseudo-code for the calculations of interval vertices of polyhedron of constraint in a
redundant robot

Fig. 6 Point-displacement
FKS, the inside (green) region,
of a 4-RPR PM with c = f =
∞ and σd = 0.35 for φ = π

6 .
The dashed lines represent the
boundary of the workspace

[−1, 1]. For the reason of dependency in interval analysis, the latter multiplication
may result in an interval which could be wider than actual interval. Thus instead of
multiplying the intervals, it is recommended to multiply the midpoints of the inter-
vals in order to validate the computed vertices. In the pseudo-code of Table 3, n and
m represent respectively number of active joints and number of DOFs in the robot
workspace.
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Fig. 7 Rotational FKS, the
inside (green) region, of a
4-RPR PM with c = f = ∞
and σd = 0.35 for φ = π

6 .
The dashed lines represent the
boundary of the workspace

Fig. 8 Point-displacement
FKS, the inside (green) region,
of a 4-RPR with c = ∞ and
f = 2 and σd = 0.3 with
φ = π

6 . The dashed lines
represent the boundary of the
workspace

Figures 6, 7 and 8 represent respectively point-displacement and rotational FKS of
a redundant PM, in which the fixed and moving attachment points lie respectively on
squares encompassed by circles 1 and 5 m. The inside green region has a kinematic
sensitivity less than 0.3, σd = 0.3. It should be noted that, considering σd = 0.35,
similar to the previous section, leads to cover the whole workspace. From the latter,
it can be concluded that in order to benefit from the the whole workspace, the kine-
matic sensitivity of the mechanisms under study should be equal to σd = 0.35. The
foregoing statement relates the workspace and design parameters to the kinematic
sensitivity, a performance index, which open some avenues toward the optimum
design of PMs.

5 Feasible Kinematic Sensitivity in CDRPMs

The unidirectional constraint imposed by cables causes the workspace analysis of
CDRPMs to be always a crucial step in the design. As aforementioned, among sev-
eral types of workspace introduced in the literature for CDRPMs, the controllable
workspace is considered in this paper [13]. For the controllable workspace analy-
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Table 4 The proposed pseudo-code for the calculations of FKS controllable workspace of CDRPMs

sis, the analytic method proposed in [29] is used. In this method, a set of external
wrenches is introduced and called fundamental wrenches which provides a physical
interpretation of controllable workspace. Moreover, an analytical method is devel-
oped to determine the controllable workspace of redundant CDRPMs based on the
so-called fundamental wrenches. The proposed method is generally applicable to
any cable manipulators with any redundant cables as long as its Jacobian matrix is of
full rank. The set of fundamental wrenches for a cable manipulator with one degree
of redundancy refers to a set of n + 1 vectors; each of them is equal to an opposite
direction of column vector of Jacobian transpose as [29]:

A = −JT = [A1|A2|...|An+1]n×(n+1), w f = −Ai , i = 1, ..., n + 1 (11)

In which A and J denote the structural and Jacobian matrix, respectively, and w f

is the fundamental wrench vector. According to the proposed theorem in [29], the
controllable workspace can be obtained when all the determinant of the following
matrix are positive.

�i j = det[A1...A j−1 − wi A j+1...Ai−1Ai+1...An+1], i = 1, ..., n + 1, i �= j
(12)

In the pseudo-code given in Table 5, the combination method to obtain the FKS
controllable workspace is shown. The approach is similar to the interval formula-
tion of kinematic sensitivity in redundant manipulator, however, the constraint of
controllable workspace is added at each iteration (Table 4).
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Table 5 Computation time for the calculation of various kinematic sensitivity indices, for all cases
c = 2

Robot type Kinematic sensitivity Norm of f ε Search area Computation time (s)

3-RPR Point-displacement ∞ 0.05 6.25 764
3-RPR Rotational ∞ 0.05 6.25 418
3-RPR Point-displacement 2 0.05 6.25 1348
4-RPR Point-displacement ∞ 0.05 6.25 815
4-RPR Rotational ∞ 0.05 6.25 513
4-RPR Point-displacement 2 0.05 6.25 1128
CDRPM Feasible kinematic sensitivity ∞ 0.1 25.0 1783

Fig. 9 Controllable
workspace, the green
region, of a planar CDRPM
with 4 cables

In Fig. 9, the inside (green) region illustrates the controllable workspace, while in
Fig. 10, the inside (green) region represents the FKS workspace. In fact, this region
is produced from blending controllable workspace and the area that has desired
kinematic sensitivity, i.e. σd = 0.3. As it can be clearly seen from these figures, the
interval analysis approach is capable to effectively combine two required kinematics
characteristics in order to determine a suitable workspace for the robot. The volume
of FKS may be used as a suitable measure for optimal design of such manipulators. In
order to compare the computational cost of different methods, Table 4 summarizes the
required time to calculate all the cases explained in the paper which are performed
on a laptop computer with Core i7 CPU and 1.6 GHz clock time. From Table 5 it
can be concluded that, due to the high computational time, FKS is more suitable for
analyzing a given structure. Thus the computational time associated to FKS would be
a major deterrent for optimization purposes. Current research is conducted to develop
a suitable index for such optimization routine, and to reduce the computational cost.
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Fig. 10 FKS, the green
region, of a 4-RPR CDRPM
with c = ∞ and f = 2 and
σd = 0.3 with φ = π

6

6 Conclusions

This paper proposed a framework for the computation of feasible kinematic sensitiv-
ity, a more practical constant-orientation workspace in which the kinematic sensitiv-
ity is less than a given value, by means of interval analysis. The feasible kinematic
sensitivity for both point-displacement and rotation motion was explored. From
the previous studies conducted on kinematic sensitivity, a judicious combina-
tion of the norms were used to express accurately the function and constraint
expressions of the optimization problem corresponding to the kinematic sensi-
tivity analysis. For the workspace of planar parallel mechanisms the constant-
orientation workspace was used, while in the case of cable driven parallel manip-
ulators, the controllable workspace was considered. As it is discussed in the paper,
for a given design, a minimum feasible kinematic sensitivity value can be asso-
ciated for which it can cover the whole workspace. Thus, ongoing works of this
study includes to use of the minimum feasible kinematic sensitivity, set by the
designer, as an optimization criteria to the end of optimum synthesis of the mecha-
nism for which the minimum feasible kinematic sensitivity is known.
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Solving the Direct Geometrico-Static
Problem of 3-3 Cable-Driven Parallel Robots
by Interval Analysis: Preliminary Results

Alessandro Berti, Jean-Pierre Merlet and Marco Carricato

Abstract This paper studies the direct geometrico-static analysis of under-
constrained cable-driven parallel robots with 3 cables. The task consists in find-
ing all equilibrium configurations of the end-effector when the cable lengths are
assigned. An interval-analysis-based procedure is proposed to numerically find the
real solutions of the problem for a robot of generic geometry. Three equation sets
obtained by different approaches are implemented in the problem-solving algorithm
and a comparison between the main merits and drawbacks of each one of them is
reported.

1 Introduction

Cable-driven parallel robots (CDPRs) employ cables in place of rigid-body extensible
legs in order to control the end-effector pose. CDPRs strengthen classic advantages
characterizing closed-chain architectures versus serial ones, like reduced mass and
inertia, a larger payload to robot weight ratio, high dynamic performances, etc., while
providing peculiar advantages, such as a larger workspace, reduced manufacturing
and maintenance costs, ease of assembly and disassembly, high transportability, and
superior modularity and reconfigurability.
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A CDPR is fully-constrained if the pose of the end-effector is completely deter-
mined when actuators are locked and, thus, all cable lengths are assigned. A CDPR
is, instead, under-constrained if the end-effector preserves some degrees of freedom
(dofs) once actuators are locked [2, 16]. This occurs either when the end-effector is
controlled by a number of cables n smaller than the number of dofs that it possesses
with respect to the base or when some cables become slack in a fully-constrained
robot. The use of CDPRs with a limited number of cables is justified in several
applications (such as, for instance, rescue, service or rehabilitation operations [14,
18, 19]), in which the task to be performed requires a limited number of controlled
freedoms (only n dofs may be governed by n cables) or a limitation of dexterity
is acceptable in order to decrease complexity, cost, set-up time, likelihood of cable
interference, etc. Furthermore, a theoretically fully-constrained CDPR may oper-
ate, in appreciable parts of its geometric workspace, as an under-constrained robot,
namely when a full restraint of the end-effector may not be achieved because it
would require a negative tension in one or more cables. Even though the above con-
siderations motivate a careful study of under-constrained CDPRs, little research was
conducted on them [1–7, 10, 15, 21].

A major challenge in the kinetostatic analysis of under-constrained CDPRs comes
from the fact that, when the cable lengths are assigned, the end-effector is still mov-
able, so that the actual configuration is determined by the applied forces. Accordingly,
loop-closure and mechanical-equilibrium equations must be simultaneously solved
and displacement analyses, which are aimed at determining the overall robot con-
figuration when a set of n variables is assigned, become geometrico-static problems
[2]. These are considerably more complex than displacement analyses of rigid-link
parallel manipulators [11].

Only recently Carricato and Merlet [2] proposed a general methodology for the
kinematic, static and stability analysis of general under-constrained n-n CDPRs,
i.e. manipulators in which a fixed base and a mobile platform are connected to each
other by n cables, with n ≤ 5 and with cable exit points on the base and anchor points
on the platform being distinct. A successful implementation of this methodology,
based on exact-arithmetic elimination procedures, allowed the direct geometrico-
static problem (DGP) of the 3-3 CDPR to be solved [3]. A least-degree univariate
polynomial in the ideal generated by the equations governing the problem was found
and the DGP of the 3-3 CDPR was proven to admit at the most 156 solutions in the
complex field. However, the approach used in [3] has the following drawbacks.

• Elimination by exact-arithmetic-based procedures requires equations with rational
coefficients. However, when geometrical parameters are approximated by rationals
having large integer denominators and numerators, the size of the coefficients
may become extremely large and very difficult to manage. In addition, solving
high-order polynomials in a reliable way may be difficult, as the calculation of
coefficients is very sensitive to numerical errors.

• It is not possible to incorporate constraints on the unknowns, so that all roots
(both complex and real, regardless of the tension sign) must be calculated and
then post-processed in order to discard unfeasible ones.
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Effective alternatives are provided by approaches based on floating-point arith-
metic, such as homotopy continuation or interval analysis. In this paper, a method
based on interval analysis is proposed. This computing technique was shown to be
very efficient in solving the direct kinematics of rigid-link parallel robots [12], but
its efficiency is strictly related to the heuristics incorporated in the problem-solving
algorithm. The computation time for a given problem may vary from a few seconds,
if the right heuristics are adopted, to several hours with a poor implementation.

This paper is organized as follows. Section 2 provides basic notions of interval
analysis. Section 3 presents the geometrico-static model of the 3-3 CDPR and it
discusses three different formulations of the equations governing the DGP. Section 4
describes the structure of the code and the procedures incorporated therein. Section 5
presents the results obtained from case studies. Section 6 draws some conclusions.

2 Interval Analysis

A short introduction to interval analysis is presented in the following. More infor-
mations may be found in [9, 17].

The real interval X = [
x, x

]
is defined as the set of real numbers y such that

x ≤ y ≤ x . The width of the interval is x − x and its mid-point is
(
x + x

)
/2. An

interval vector X, also called a box, is a list of intervals. The mid-point of a box is
the vector whose components are the mid-points of its interval components.

If f (x) is a function in n unknowns, with x = [x1, x2, . . . , xn], and B =
[X1, X2, . . . , Xn] is a box comprising an interval for each unknown, an interval
evaluation F (B) of f over B is an interval

[
F, F

]
such that, for any x ∈ B,

F ≤ f (x) ≤ F . There are many ways to implement an interval evaluation of a
function but the simplest one is the natural evaluation, in which each arithmetic
operation and elementary mathematical function is substituted by an interval equiv-
alent. For example, if f (x) = x2 − 2x + 1 and X = [4, 5], the natural evaluation of
f over X is:

f ([4, 5]) = [4, 5]2 − 2 [4, 5] + 1 = [16, 25] − [8, 10] + [1, 1] = [7, 18] (1)

It is worth emphasizing that the bounds provided by the natural evaluation of f
are not exact: the upper (lower) bound may be larger (lower) than the actual max-
imum (minimum) of the function image, namely f (B) = { f (x)|x ∈ B} ⊆ F (B).
Ordinarily, the overestimation decreases with the width of the box over which f is
evaluated, and there are cases and methods that allow one to get bounds as tight as
possible.

The following properties hold:

• if 0 /∈ [
F, F

]
, then there is no value of x such that f (x) = 0 (Property A);
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• the bounds of F are exactly the minimum and the maximum of f (B) when
f may be expressed so as to contain a single occurrence of each unknown
xi (i = 1, . . . , n) (Property B);

• interval evaluation may be implemented on a computer in a ‘guaranteed’ way, by
taking into account numerical round-off errors;

• interval arithmetic is not restricted to algebraic functions, but it may be used for
all mathematical functions of engineering relevance.

The structure of a generic interval-analysis-based algorithm to solve a system of
n equations in n unknowns is as follows. Let B1 = [X1, X2, . . . , Xn] be a box and
f = [ f1 (x) , f2 (x) , . . . , fn (x)] = 0 a vector equation to be solved within B1. L is
a list of boxes, initially set as L = {B1}. An index i , initialized to 1, indicates which
box Bi in L is currently being processed, while N denotes the number of boxes in L.
S is another list, initially empty, storing the solutions. The interval evaluation of f j

over Bi is denoted as Fj (Bi ), with j = 1, . . . , n. A key component of the algorithm
is the evaluation operator E , which takes a box Bi as an input and it returns:

• 1, if both the width of Fj (Bi ) is smaller than a given threshold ε and Fj (Bi )

includes 0 for any j ; in this case, Bi is deemed a solution and it is stored in S;
• −1, if Fj (Bi ) does not include 0 for at least one j ;
• 0, otherwise.

Another key component is the filter operator F , which takes a box as an input and
it returns:

• −1, if there is no solution in the input box;
• a box smaller than the input one, if the filter determines that the removed part of

the input box cannot contain a solution;
• the input box, otherwise.

The overall algorithm proceeds along the following steps:

1: i = 1, L = {B1} , S = {} , N = 1;
2: if i > N , then return S;
3: if F (Bi ) = −1, then i = i + 1, go to 2, else Bi = F (Bi );
4: compute E (Bi )

a) if E (Bi ) = −1, then i = i + 1, go to 2;
b) if E (Bi ) = 1, then add Bi to S, i = i + 1, go to 2;
c) if E (Bi ) = 0, select a variable xk and bisect Xk in the middle point, create

two new boxes B′
i and B′′

i from Bi , replace Bi with
{
B′

i ,B′′
i

}
in L, N = N+1,

i = i + 1, go to 2.

The above algorithm always terminates, since the size of a box always decreases
after a bisection. Provided that the new boxes emerging from a bisection are put at
the top of the list, there is usually no problem of memory storage. The efficiency
of the algorithm mainly depends on the effectiveness of the operators E and F , and
thus on the heuristics adopted to implement them. In Sect. 4, some important tools
of interval analysis are presented, which drastically reduce the computation time.
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Fig. 1 Geometric model of a cable driven parallel robot with three cables

3 Geometrico-Static Model

A mobile platform is connected to a fixed base by 3 cables. The i th cable (i = 1, 2, 3)
exits from the base at point Ai and it is connected to the platform at point Bi (Fig. 1).
The platform is acted upon by a force of constant magnitude Q applied at point G,
e.g. the platform weight acting through its center of mass. This force is described
as a 0-pitch wrench QLe , where Le is the normalized Plücker vector of its line of
action.

Oxyz is a Cartesian coordinate frame attached to the base in O , whereas O ′x ′y′z′
is a Cartesian frame appended to the moving platform in O ′. Without loss of gen-
erality, the coordinate frames are chosen in such a way that O ≡ A1, O ′ ≡ B1,
the z axis is directed as Le, point A2 lies in plane xz and point B2 lies in plane x ′z′.
By this choice, the position vectors of points A1, A2, A3, B1, B2, B3 and G in Oxyz
and of points B1, B2, B3 and G in O ′x ′y′z′ may be respectively expressed as

a1 = [0, 0, 0]T , a2 = [a2x , 0, a2z]T , a3 = [a3x , a3y, a3z]T ,

b1 = [x1, y1, z1]T , b2 = [x2, y2, z2]T , b3 = [x3, y3, z3]T , g = [gx , gy, gz]T ,

b′
1 = [0, 0, 0]T , b′

2 = [b′
2x , 0, b′

2z]T , b′
3 = [b′

3x , b′
3y, b′

3z]T , g′ = [g′
x , g′

y, g′
z]T ,

(2)
with ai j , b′

i j and g′
j (i = 1, 2, 3; j = x, y, z) being known geometric parameters and

xi , yi , zi (i = 1, 2, 3) and g j ( j = x, y, z) being variables describing the platform
pose.
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3.1 Fundamental Geometric and Static Equations

If ρi is the assigned length of the i th cable (taken as strictly positive), when all cables
are active (i.e. in tension) the set of geometrical constraints imposed on the platform
comprises 3 relations, namely

‖bi − ai‖2 = ρ2
i , i = 1, 2, 3. (3)

Since the platform has 6 dofs, its pose is ultimately determined by mechanical
equilibrium. The normalized Plücker vector of the line associated with the i th cable
is Li/ρi , where, in axis coordinates, Li = [(ai − bi ); pi × (ai − bi )] and pi is any
vector from an arbitrarily-chosen reference point P (called, for brevity, moment pole)
to the cable line. Accordingly, the wrench exerted by the i th cable on the platform
is (τi/ρi )Li , with τi being a positive scalar representing the intensity of the cable
tensile force. Static equilibrium may then be expressed as

[L1 L2 L3 Le]︸ ︷︷ ︸
M(P)

⎡
⎢⎢⎣

τ1/ρ1
τ2/ρ2
τ3/ρ3

Q

⎤
⎥⎥⎦ = 0, (4)

with τi ≥ 0, i = 1, 2, 3.
When a direct geometrico-static problem (DGP) is solved, the cable lengths are

assigned. Accordingly, Eqs. (3) and (4) form a coupled system of 9 relations whose
unknowns are the platform-pose variables, grouped in the array X, and the cable ten-
sions, grouped in the array τ . The efficiency of the interval-analysis-based problem-
solving algorithm is strictly related to the complexity of these relations. In particular,
the occurrences of the same variable in each equation should be limited as much
as possible (Property B). In this perspective, the most suitable choice of the para-
meterization of the platform pose and of the formulation of the static constraints is
extremely important. These issues are discussed in the following sections.

3.2 Parameterization of the Platform Pose

The platform pose X is described by 9 variables, namely the components of the
position vectors b1, b2 and b3 in the Oxyz frame (Fig. 1). These variables are not
independent, but they must satisfy the following geometrical constraints:

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − ‖b′

2‖2 = 0

(x3 − x1)
2 + (y3 − y1)

2 + (z3 − z1)
2 − ‖b′

3‖2 = 0 (5)

(x3 − x2)
2 + (y3 − y2)

2 + (z3 − z2)
2 − ‖b′

3 − b′
2‖2 = 0 .
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By this parameterization, the relationships in Eq. (3) assume the form

x2
1 + y2

1 + z2
1 − ρ2

1 = 0

(x2 − a2x )
2 + y2

2 + (z2 − a2z)
2 − ρ2

2 = 0 (6)

(x3 − a3x )
2 + (

y3 − a3y
)2 + (z3 − a3z)

2 − ρ2
3 = 0

and the position vector of G in Oxyz may be expressed as

g = b1 + α(b2 − b1)+ β(b3 − b1)+ γ [(b2 − b1)× (b3 − b1)] , (7)

where α, β and γ are known constants obtained by solving the system

α b′
2 + β b′

3 + γ
(
b′

2 × b′
3

) − g′ = 0 . (8)

Accordingly, by choosing O as the moment pole, matrix M(P) in Eq. (4) may be
explicitly written as

M (O) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 − a2x x3 − a3x 0
y1 y2 y3 − a3y 0
z1 z2 − a2z z3 − a3z −1
0 −a2z y2 a3yz3 − a3z y3 −gy

0 a2z x2 − a2x z2 a3z x3 − a3x z3 gx

0 a2x y2 a3x y3 − a3y x3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

and static equations become

x1
τ1

ρ1
+ (x2 − a2x )

τ2

ρ2
+ (x3 − a3x )

τ3

ρ3
= 0 (10a)

y1
τ1

ρ1
+ y2

τ2

ρ2
+ (

y3 − a3y
) τ3

ρ3
= 0 (10b)

z1
τ1

ρ1
+ (z2 − a2z)

τ2

ρ2
+ (z3 − a3z)

τ3

ρ3
− Q = 0 (10c)

−a2z y2
τ2

ρ2
+ (

a3yz3 − a3z y3
) τ3

ρ3
− Qgy = 0 (10d)

(a2z x2 − a2x z2)
τ2

ρ2
+ (a3z x3 − a3x z3)

τ3

ρ3
+ Qgx = 0 (10e)

a2x y2
τ2

ρ2
+ (

a3x y3 − a3y x3
) τ3

ρ3
= 0 (10f)

Equations (5), (6) and (10) form a square system of 12 scalar relations in the 12
variables grouped in the array

Y = [XT , τ T ]T = [x1, y1, z1, x2, y2, z2, x3, y3, z3, τ1, τ2, τ3]T . (11)
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The polynomial relations in Eqs. (5) and (6) have degree 2 in X, whereas the relations
in Eq. (10) have degree 2 in X, degree 1 in τ and total degree 2 in Y.

The described parameterization of the platform pose, which uses 9 variables, is
redundant, since a minimal representation is achieved by only 6 variables (cf. [3]).
However, the redundant parameterization is preferred here, since it yields simpler
lower-order polynomials, which prove to be stabler and more efficient when interval
analysis methods are implemented to solve them. In fact, by property B (Sect. 2),
using simpler expressions is valuable even at the price of introducing a larger number
of variables, in order to limit overestimation in interval evaluation.

3.3 Formulation of the Static Constraints

The DGP requires simultaneously solving the relations emerging from both the geo-
metrical and the static constraints. According to Sect. 3.2, these constraints may be
set up as a system of 12 equations having Y as unknown, namely Eqs. (5), (6) and
(10). These equations are implemented in the first solution routine (called R1).

The number of unknowns may be decreased by eliminating cable tensions. By
observing that Eq. (10) is linear in τ1, τ2 and τ3, 3 linearly independent relationships
may be selected within the system, say (10a), (10d) and (10e), and solved for the
tensions. The expressions this way calculated may be substituted back into Eqs. (10b),
(10c), (10f), thus forming a system of 3 equations in X only, namely Eqs. (10b′), (10c′)
and (10f′). The system implemented in the second solution routine (R2) comprises
these relationships, together with Eqs. (5) and (6). The resulting system comprises 9
equations in 9 unknowns (i.e. X).

An alternative, more elaborated, strategy to eliminate cable tensions, presented in
[3], may be designed by observing that Eq. (4) admits a solution only if

rank [M(P)] ≤ 3 . (12)

Hence, by setting all 4×4 minors of M(P) equal to zero and by conveniently changing
the moment pole, a large set of linearly independent relations only comprising the
platform-pose variables may be derived, i.e.

pk (X) = 0, k = 1 . . . Np, (13)

where Np is an integer significantly larger than the number NX of variables contained
in X. For the DGP to admit a solution, the above equations must be dependent, though
in a non-linear way. When complemented with Eqs. (5) and (6), Eq. (13) allows the
pose X to be directly solved. The price paid for the elimination of cable tensions is
that the polynomials comprised in Eq. (13) are much more involved than those in
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Eq. (10). In particular, they have a higher degree, more terms and more complicated
coefficients. A partial simplification is obtained as follows [3].

Since the moment vector of the first column of M (O) is zero (Eq. 9), setting
det M j456,1234 (O) = 01, for j = 1 . . . 3, yields

[x1, y1, z1]T det M456,234(O) = (b1 − a1) det M456,234(O) = 0 . (14)

Since (b1 − a1) may not vanish by assumption (ρ1 	= 0), Eq. (14) provides

det M456,234 (O) = 0 . (15)

Two analogous equations may be obtained by conveniently changing the moment
pole, namely

det M456,134 (A2) = 0, (16)

det M456,124 (A3) = 0. (17)

The system of equations implemented in the third solution routine (R3) is formed
by Eqs. (5), (6) and (15)–(17).

Interval-analysis methods require each variable to be comprised between a lower
and an upper bound. In the equation set implemented in R1, cable tensions appear
as unknowns, so that lower and upper bounds for τ1, τ2 and τ3 may be conve-
niently specified. In particular, the lower bound may be conveniently set equal to
0, to avoid solutions with negative cable tension. The upper bound may be chosen,
instead, on the basis of the maximum tensile strength of the cables. Conversely,
in the equation sets implemented in R2 and R3, cable tensions do not appear as
unknowns and they cannot be directly bounded. As a consequence, R2 and R3 find
all solutions contained in a purely geometrical search domain and then they iso-
late those with properly-bounded cable tensions by a suitable test added in the filter
operator F .

4 The Problem-Solving Algorithm

The problem-solving code was developed by using the C++ library ALIAS [13],
which contains interval-analysis-based algorithms developed by the INRIA team
COPRIN.

1 The notation Mhi j,klm(O) denotes the block matrix obtained from rows h, i and j , and columns
k, l and m, of M(O).
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4.1 Code Structure

The structure outlined hereafter is common to all routines R1, R2 and R3 and it
follows the scheme presented in Sect. 2.

The main procedure initially retrieves, from convenient text files, the geometric
data of the manipulator, the search domain and the configuration parameters of the
ALIAS functions incorporated into the code. The operations successively performed
by the algorithm may be resumed as follows. At the generic i th step, a first filter
F1, which implements the 2B method (described in Sect. 4.4.1), tries to shrink, or
even eliminate, the current box Bi . After that, the evaluation operator E tests if Bi

may contain solutions or not. If the test is negative, the box is discarded. If the test
is positive and the width of the box is smaller than a given threshold ε, Bi is deemed
to be a solution and it is added to the solution list S. If the test is positive, but the
width of the box is larger than ε, another filter F2, which implements the 3B method
(described in Sect. 4.4.2), is applied to further contract the box and then Bi is bisected.
The adopted bisecting strategy consists in splitting the variable having the largest
width.

4.2 Domain Initialization

The first step of the code consists in initializing the search domain. The starting
intervals for the unknowns in X may be easily determined by observing that b1,
b2 and b3 have to lie inside the spheres centered, respectively, in A1, A2 and A3
and having radii ρ1, ρ2 and ρ3. For R1, initial bounds for cable tensions may be
established as explained in Sect. 3.3.

4.3 Evaluation Operator

The evaluation operator E is implemented by means of the ALIAS procedure
Solve_General_Gradient_Interval (SGGI). If the Jacobian matrix of
the system to be solved exists and it may be computed, SGGI improves interval
evaluation of functions by conveniently using gradients and by taking advantage of
possible monotonicities [9]. SGGI also uses Moore theorem [17] to determine if a
unique solution exists in a given box, in which case Krawczyk method is applied to
compute the solution [13]. In addition, the inflation method [13] is used to increase
the width of the box in which the computed solution remains unique, thus working
as a filter for neighboring boxes.
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4.4 Filtering Operators

The performances of the algorithm largely depend on the filter operators F1 and F2.
Their basic operation is described hereafter.

4.4.1 Filter F1: the 2B Method

The 2B filter consists in rewriting each equation as the equality of two terms, thus
determining if the interval evaluations of both terms are consistent and, if not, using
consistency to improve the width of the interval for one or more unknowns.

Let, for instance, the equation x2 −2x +1 = 0 be considered. By introducing the
new variable X = x2, the original equation may be re-written as X = 2x − 1. Now,
let

[
u, u

]
be the interval evaluation of 2x − 1. If u > 0, then the inverse function

of X indicates that x should lie in
[
−√

u,
√

u
]

and, by this information, the current

interval of x may be updated. If u > 0, the inverse function of X shows that x should
lie outside

[−√
u,

√
u
]
: if the range of x is included in this interval, then there is no

solution to the equation in the current box.
This process may be repeated for each unknown in the equation and for a number

of runs depending on the rate of contraction obtained for each interval.

4.4.2 Filter F2: the 3B Method

By this approach, the range X j =
[
x j , x j

]
for one variable x j in a given box Bi is

replaced by
[
x j , x j + δ

]
, where δ is an arbitrary small number, while the ranges for

the other variables remain unchanged. Then, the algorithm tests whether, for the new
ranges, the system may have some solution, either by using the 2B method and/or by
evaluating the equations. If the answer is negative, the range for x j in the box Bi is

changed to
[
x j + δ, x j

]
. The process is then repeated on the new range, but the width

of the test interval is now doubled, i.e. the algorithm tests the interval
[
x j , x j + 2δ

]
.

The process is repeated until the no-solution test is no longer satisfied. Within the
3B filter, the 2B method may also be applied to update the range for all unknowns.

The same process may be repeated on the right side of the interval, by trying to
decrease the upper bound of X j (in this case, the interval test is

[
x j − δ, x j

]
).

4.5 Parallel Implementation

Most interval-analysis-based algorithms are appropriate for a distributed implemen-
tation. Indeed, processing a given box does not generally depend on the processing
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of the other boxes in the list. The implementation may be as follows. A master com-
puter manages the list and it sends a box to a slave computer. The slave executes
the algorithm, by performing a few bisections. Then, it returns the remaining boxes
to the master and it waits for a new box to process. Such a scheme may be easily
implemented in a network of workstations. The decrease of computation time will
be, in general, less than proportional to the number of slaves, due to the overhead of
the data transmission between the master and the slaves.

This approach may also take advantage of modern multi-core CPU architectures.
By following this scheme and by using POSIX thread libraries, a distributed imple-
mentation of the DGP code was prepared and used on a single workstation with a
multi-core CPU. In the first step, an instance of E generates a few boxes and it stores
them in the list L. Then, a number of threads equal to the number of CPUs is created,
with each one taking a box from L. A local instance of E performs an assigned num-
ber of bisections and it appends the generated boxes to L. The solutions found, if
any, are appended to the solution list S. Even though implementing this algorithm on
a single machine is not as effective as a distributed implementation over a computer
network, the results are quite good. In the following, the routines incorporating the
parallel-computing scheme are denoted by an asterisk (*).

4.6 Routine Configuration

The main configuration parameters of each routine are reported hereafter.
R1:

• The equations to be solved are Eqs. (5), (6) and (10a)–(10f).
• The 2B filter is applied to Eqs. (5), (6), (10a)–(10c) and (10f).
• The 3B filter is applied to all equations of the system.
• Positive-tension configurations are found by suitably configuring the initial search

domain.

R2:

• The equations to be solved are Eqs. (5), (6) and Eqs. (10b′), (10c′) and (10f′).
• The 2B filter is applied to Eqs. (5), (6) and (10b′). Applying the 2B filter to the

other equations appears to be inconvenient in terms of computation time.
• The 3B filter is applied only to Eqs. (5) and (6), since Eqs. (10b′), (10c′) and (10f′)

are too complex and they would excessively raise the computational burden.
• Positive-tension configurations are obtained by introducing, in filter F1, a simpli-

fication procedure that calculates tensions from Eqs. (10a), (10d) and (10e) and
discards the boxes in which positive tensions do not appear.

R3:

• The equations to be solved are Eqs. (5), (6) and (15)–(17).
• The 2B filter is applied to Eqs. (5), (6) and (15).
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Table 1 Geometric parameters, search domain and solutions for Example 1

Data a2 = [10, 0, 0]T a3 = [0, 12, 0]T (ρ1, ρ2, ρ3) = [7.5, 10.0, 9.5]Q = 1
b′

2 = [1.41, 0, 0]T b′
3 = [0.71, 0.71, 1]T g′ = [0.71, 0.71, 0]T

Search domain x1 y1 z1 x2 y2 z2 x3 y3 z3 τ1 τ2 τ3

−7.5 −7.5 −7.5 0 −10 −10 −9.5 2.5 −9.5 0 0 0
7.5 7.5 7.5 20 10 10 9.5 21.5 9.5 2 2 2

Results x1 y1 z1 x2 y2 z2 x3 y3 z3 τ1 τ2 τ3

1.682 3.674 6.318 2.800 4.126 5.580 1.933 5.060 6.193 0.546 0.326 0.550
1.379 4.481 5.854 2.623 3.904 5.507 1.535 3.834 4.606 0.684 0.305 0.614
2.787 4.995 4.851 3.511 6.151 4.478 4.200 4.959 4.800 0.289 0.787 0.912
3.515 4.063 5.233 2.475 3.244 5.732 2.260 4.630 5.553 0.526 0.511 0.581
3.603 5.329 3.857 2.233 4.976 3.863 3.224 3.968 3.916 0.590 0.783 0.956
1.344 3.471 6.511 2.397 3.329 5.578 1.359 4.259 5.337 0.676 0.251 0.486

• The 3B filter is applied to Eqs. (5) and (6).
• Positive-tension configurations are obtained as in R2.

5 Discussion of Results

5.1 Performances and Possible Improvements

Extensive numerical investigation was performed to test the efficiency and robustness
of the code, as well as to show the performances of the different routines that were
implemented. Two meaningful examples are reported in Sect. 5.2.

R1 is the only routine that offers the possibility to specify cable-tension bounds in
the initial search domain. It is particularly stable, even though not particularly fast. R2
is usually faster than R1, mainly because of the reduced number of unknowns incor-
porated in the static-equation formalization. However, the system of equations on
which R2 relies often become ‘nearly’ singular and this produces very high compu-
tation times, making this routine unreliable. Choosing different sets of relationships
in Eqs. (10) to calculate cable tensions does not seem to improve the routine perfor-
mances. R3 is stable and reliable. For ordinary robot geometries, such that the base
is larger than the platform and cable lengths position the platform well within the
workspace, R3 is usually faster than R1, whereas when the base and the platform
have similar dimensions R1 is more efficient than R3.

A number of possible improvements may be conceived in order to enhance the
efficiency of the code. In particular, the evaluation operator E may be improved by
using Kantorovitch theorem [20] instead of Moore’s one, to verify if a single solution
exists in a given box. Kantorovitch theorem should speed up computation, especially
for simple equations such as those implemented in R1. Furthermore, the 2B filter
F1 may be enhanced by introducing additional tests based on larger sets of relations
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Table 3 Computation times
for Example 1

Routine R1 R2 R3 R1* R2* R3*
Example 1 202 97 101 136 66 72

Table 4 Computation times
for Example 2

Routine R1 R2 R3 R1* R2* R3*
Example 2 21 – 63 15 – 47

chosen from the minors of matrix M (cf. Eq. 9). Indeed, when dealing with interval
analysis, additional equations may allow lower computation times to be attained,
as they enrich the set of available tests that may be used to exclude portions of the
domain from the solution search. Another possible improvement may be obtained
by using Rohn extremal test [8] in order to check if M is rank-deficient or not. This
variants will be implemented in an upgraded version of the code. This will also be
able to filter stable equilibrium configurations among the admissible ones (cf. [2]).

5.2 Examples

The results reported in the following examples were obtained by a personal com-
puter Toshiba® with processor Intel® Core i7 CPU M620, 2.67 GHz, equipped with
2 cores and 4 threads. All lengths are expressed in meters and the load applied on
the platform is in newtons. For both examples, the threshold ε defined in Sect. 4.1 is
set equal to 0.001, whereas the parameter δ of the 3B filter discussed in Sect. 4.4.2
is set equal to 0.01. The geometric parameters, the search domains and the solutions
found are reported in Tables 1 and 2, whereas Tables 3 and 4 list the computation
times (in seconds) required by the tested routines. In Example 1, drawn from [3]
the base is considerably larger than the platform, as it is likely to occur in practice,
whereas in Example 2 the dimensions of the two links are almost the same, so that
(at the equilibrium) the cables are almost parallel. Although the latter example has
little practical interest, it emphasizes that, when the system of equations adopted in
R2 approaches a singularity, computation time increases exponentially. Equilibrium
configurations found for Example 1 are shown in Fig. 2.

6 Conclusions

This paper applied interval-analysis methods to solve the direct geometrico-static
problem of cable-driven parallel robots with 3 cables. The task consists in finding all
equilibrium configurations of the end-effector when the cable lengths are assigned.
The problem is challenging, since loop-closure and equilibrium equations must be
solved simultaneously.
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Fig. 2 Solutions of Example 1

The algorithm searches for all real solutions within a predetermined domain,
whose frontier is computed so as to ensure that all possible solutions are enclosed
within. The domain is subdivided into regions. An evaluation operator verifies if
a region contains a solution, whereas some filter operators exclude portions which
cannot contain roots. Regions whose assessment is uncertain are bisected and further
assessed. The code is able to discard solutions in which one or more cables are subject
to negative tensile forces.

Interval analysis requires great experience to be implemented with success and
choosing the right heuristics has a dramatic impact on the effectiveness of this tool.
The evaluation operator adopted in the current version performs a sharper inter-
val evaluation of functions by using gradients and by taking into account possible
monotonicities. The filter operators are based on the 2B and 3B consistency methods,
which significantly reduce the number of boxes processed and, thus, the computation
time. Interval analysis has a structure that is appropriate for parallel implementation.
Accordingly, a distributed version of the algorithm was presented that takes advan-
tage of modern multi-core CPUs. Finally, three equation sets emerging from different
formalizations of the static equilibrium were implemented and a comparison between
their main advantages and disadvantages was reported.

The results obtained by the numerical experimentation conducted so far are
promising. The code is robust and reliable, and it is able to find all solutions of the
problem for a generic geometry within a few minutes. The code has wide margins of
improvement, by enhancing the implemented heuristics. In this perspective, a num-
ber of refinements were identified that should significantly enhance the computation
efficiency and that will be implemented in an upgraded version of the code.
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Direct Geometrico-Static Analysis
of Under-Constrained Cable-Driven
Parallel Robots with 4 Cables

Marco Carricato and Ghasem Abbasnejad

Abstract This paper studies the direct geometrico-static problem of under-
constrained parallel robots suspended by 4 cables. The task consists in determin-
ing the end-effector pose and the cable tensions when the cable lengths are assigned.
The problem is challenging, because kinematics and statics are coupled and they
must be solved simultaneously. An effective elimination procedure is presented that
provides the complete solution set, thus proving that, when all cables are in tension,
216 potential solutions exists in the complex field. A least-degree univariate poly-
nomial free of spurious factors is obtained in the ideal governing the problem and
solutions are numerically computed via both an eigenvalue formulation and homo-
topy continuation. Equilibrium configurations with slack cables are also considered.

1 Introduction

Cable-driven parallel robots (CDPRs) employ cables in place of rigid-body extensible
legs in order to control the end-effector pose. A CDPR is fully-constrained if the end-
effector pose is completely determined when actuators are locked and, thus, all cable
lengths are assigned. Conversely, a CDPR is under-constrained if the end-effector
preserves some freedoms once actuators are locked. This occurs either when the end-
effector is controlled by a number of cables smaller than the number of degrees of
freedom (dofs) that it possesses with respect to the base or when some cables become
slack in a fully-constrained robot [9]. The use of CDPRs with a limited number of
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cables is justified in several applications, in which the task to be performed requires
a limited number of controlled freedoms (only n dofs may be governed by n cables)
or a limitation of dexterity is acceptable in order to decrease complexity, cost, set-up
time, likelihood of cable interference, etc. While a rich literature exists for fully-
constrained CDPRs (see, for instance, [2, 4, 6, 7, 9, 10, 16, 20, 21, 23, 25, 26, 33,
34, 36, 38, 39], little research was conducted on under-constrained robots [1, 11,
12, 18, 22, 24, 30, 41].

A major challenge in the kinetostatic analysis of under-constrained CDPRs con-
sists in the intrinsic coupling between kinematics and statics [31]. Indeed, while in
a fully-constrained CDPR the pose of the end-effector is exclusively determined by
the geometrical constraints imposed by cable lengths, in an under-constrained robot,
when the actuators are locked and the cable lengths are assigned, the end-effector is
still movable, so that the actual pose is determined by the applied forces. Accordingly,
loop-closure and mechanical-equilibrium equations must be simultaneously solved
and displacement analyses become geometrico-static problems [9]. These are signif-
icantly more complex than displacement analyses of fully-constrained manipulators
and their solution is a pending challenge in current kinematics [27].

By taking advantage of the methodology presented in [9], this paper studies the
direct geometrico-static problem (DGP) of 4-4 CDPRs (the inverse problem is pre-
sented in [8]). The locution 4-4 CDPR denotes a parallel robot in which a fixed base
and a mobile platform are connected to each other by 4 cables, with cable exit points
on the base and anchor points on the platform being distinct. Cables are treated as
inextensible and massless, and the platform is acted upon by a constant force, e.g.
gravity. The aim of the DGP is to determine the platform pose and the cable ten-
sions, when the cable lengths are assigned. The following issues, which are classic
challenges in robot analysis [35], are specifically dealt with:

1. determination of the number of solutions in the (zero-dimensional) algebraic
variety defined by the problem polynomial equations;

2. reduction of the problem to a single equation in one unknown;
3. numerical computation of the solution set;
4. identification of a specific geometry providing the maximal number of distinct

real-valued solutions.

In all numerical examples presented in the text, measures are given in SI units.

2 Geometrico-Static Model

A mobile platform is connected to a fixed base by 4 cables (Fig. 1). The i th cable
exits from the base at point Ai and it is connected to the mobile platform at point
Bi . The cable length is ρi , with ρi > 0. Oxyz is a Cartesian coordinate frame
fixed to the base, with i, j and k being unit vectors along the coordinate axes and k
being oriented along the downward vertical. Gx ′y′z′ is a Cartesian frame attached
to the end-effector, with i′, j′ and k′ being the corresponding unit vectors along the
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(a) (b)

Fig. 1 A cable-driven parallel robot with 4 cables: a geometric model; b static model

coordinate axes. Without loss of generality, O is chosen to coincide with A1 and G
is assumed to be the platform center of mass. The platform posture is described by
X = [xT ;ΦT ]T , where x = [x, y, z]T is the position vector of G in the fixed frame
and Φ is the array grouping the variables parameterizing the platform orientation
with respect to Oxyz. If Rodrigues parameters are adopted, i.e. Φ = [e1, e2, e3]T ,
the rotation matrix R between the mobile and the fixed frame is

R(Φ) = I3 + 2(Φ̃ + Φ̃Φ̃)/(1 + e2
1 + e2

2 + e2
3), (1)

where Φ̃ denotes the skew-symmetric matrix associated with the operator Φ×. For
the sake of brevity, the following symbols are also introduced:

ai = Ai − O, ri = Bi − G = R(Φ)bi , si = Bi − Ai = x + ri − ai ,

where bi is the position vector of Bi in Gx ′y′z′.
The platform is acted upon by the vertical gravity force Qk, applied at G. This

force is described as a 0-pitch wrench QLe, where Le is the normalized Plücker
vector of its line of action. The normalized Plücker vector of the line associated with
the i th cable is Li/ρi , where, in axis coordinates, Li = −[si ; pi × si ] and pi is any
vector from an arbitrarily-chosen reference point P (called for brevity moment pole)
to the cable line. So, the wrench exerted by the i th cable on the platform is (τi/ρi )Li ,
with τi being a positive scalar representing the intensity of the cable tensile force.

When all cables of the robot are in tension, the set C of geometrical constraints
imposed on the platform comprises 4 relations in X, i.e.

||si ||2 = ||x + R (Φ)bi − ai ||2 = ρ2
i , i = 1 . . . 4. (2)
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By subtracting the first relation from both the second and the third one, and by
clearing the denominator 1 + e2

1 + e2
2 + e2

3, the following equations are obtained:

q1 := H200x2 + H020 y2 + H002z2 + H100x + H010 y + H001z + H000 = 0, (3a)

q2 := I100x + I010 y + I001z + I000 = 0, (3b)

q3 := J100x + J010 y + J001z + J000 = 0, (3c)

q4 := K100x + K010 y + K001z + K000 = 0, (3d)

where all coefficients Hkmn , Ikmn , Jkmn and Kkmn are quadratic functions in Φ.
As only 4 geometrical restraints are enforced, the platform preserves 2 dofs, with

its pose being determined by static equilibrium. This may be written as

4∑

i=1

τi

ρi
Li + QLe = [

L1 L2 L3 L4 Le
]

︸ ︷︷ ︸
M(P)

⎡
⎢⎢⎢⎢⎣

(τ1/ρ1)

(τ2/ρ2)

(τ3/ρ3)

(τ4/ρ4)

Q

⎤
⎥⎥⎥⎥⎦

= 0, (4)

where τi ≥ 0, i = 1 . . . 4, and M(P) is a 6 × 5 matrix depending on the moment
pole P , other than on the platform pose. By setting Li = − [si ; (Bi − P)× si ] and
Le = [k; (G − P)× k], M(P) has the form

M(P) =
[ −s1 −s2 −s3 −s4 k
(P − B1)× s1 (P − B2)× s2 (P − B3)× s3 (P − B4)× s4 (G − P)× k

]
.

(5)
After clearing denominators, the polynomials involved in Eq. (4) have total degree 3
in X and degree 1 in τ .

Equations (3)–(4) amount to 10 scalar relations in 10 variables, namely x, Φ and
τi , i = 1 . . . 4. Cable tensions may be eliminated from the set of unknowns by the
approach proposed in [9]. Indeed, Eq. (4) holds only if

rank [M(P)] ≤ 4, (6)

namely if L1, L2, L3, L4 and Le are linearly dependent. By setting all 5 × 5
minors of M(P) equal to zero and by conveniently varying P , a large set of linearly
independent relations that do not contain cable tensions may be obtained, i.e.

pk (X) = 0, k = 1 . . . Np, (7)

where Np is an integer significantly greater than two (two is the number of relations
that must be joined to Eq. (3) in order to obtain a square system of 6 equations in X).
For the DGP to admit a solution, the relations in Eq. (7) must be dependent, though
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in a non-linear way. Formulating equilibrium constraints via Eq. (7) is particularly
beneficial when variable-elimination strategies are pursued that take advantage of
the abundance of linearly independent relations that this approach provides, such as
methods based on Groebner bases or Sylvester’s dialytic approach [10, 11].

When P ≡ A1, all equations emerging by setting the 5 × 5 minors of M equal to
zero, namely1

p1 := det M23456(A1) = 0, (8a)

p2 := det M13456(A1) = 0, (8b)

p3 := det M12456(A1) = 0, (8c)

p4 := det M12356(A1) = 0, (8d)

p5 := det M12346(A1) = 0, (8e)

p6 := det M12345(A1) = 0, (8f)

are linearly independent. Conversely, the relations obtained by letting P ≡ Ai ,
i = 2 . . . 4, are linearly dependent on those in Eq. (8), so that they may be discarded.
Nine additional linearly independent equations may be obtained by letting P ≡ Bi ,
i = 1 . . . 4, i.e.

p7 := det M23456(B1) = 0, (9a)

p8 := det M13456(B1) = 0, (9b)

p9 := det M12456(B1) = 0, (9c)

p10 := det M23456(B2) = 0, (9d)

p11 := det M13456(B2) = 0, (9e)

p12 := det M12456(B2) = 0, (9f)

p13 := det M23456(B3) = 0, (9g)

p14 := det M13456(B4) = 0, (9h)

p15 := det M12456(B5) = 0, (9i)

and two more by letting P ≡ G, i.e.

p16 := det M23456(G) = 0, (10a)

p17 := det M13456(G) = 0. (10b)

All polynomials p j , j = 1 . . . 17, have degree 6 in Φ, degree 3 in x and total
degree 9 in X. No other linearly independent relations in X may be obtained from
the minors of M (P) by varying the moment pole.

1 The notation Mhi jkl (P) denotes the block matrix obtained from rows h, i , j , k and l of M (P).
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3 Problem-Solving Algorithm

Solving the DGP of the 4-4 CDPR requires solving, simultaneously, both the equa-
tions emerging from the geometrical constraints and those inferred from static equi-
librium. As in the case of the robot suspended by 3 cables [10], this problem is sig-
nificantly more complex than the forward kinematics of the general Gough–Stewart
manipulator, a difficult task that attracted the interest of researchers for several years
[28]. The forward kinematics of the Gough–Stewart robot is governed by six equa-
tions analogous to the point-to-point distance relations in Eq. (3), one of which is
equivalent to Eq. (3a) and five more to Eq. (3b)–(3d). Two of the latter equations,
which have degree 3 in X, are replaced, in the 4-4 CDPR, by a set of relations
of degree 9 in X, thus making the problem significantly more complicated. In the
following, the four challenges mentioned at the end of the Introduction are taken on.

3.1 Number of Solutions in the Complex Field

Let 〈J 〉be the ideal generated by the polynomial set J = {q1, q2, q3, q4, p1, . . . , p17}.
As mentioned in Sect. 2, q1, q2, q3 and q4 have, respectively, degree 4, 3, 3 and 3 in
X, whereas all other generators in J have degree 9 in the same variables. In general,
1,576 monomials in X are involved. In order to ease numeric computation via a com-
puter algebra system, namely the Groebner Package provided within the software
Maple15, all geometric parameters of the 4-4 robot are assigned generic rational val-
ues. Accordingly, 〈J 〉 ⊂ Q[X], where Q[X] is the set of all polynomials in X with
coefficients in Q. All Groebner bases are reduced and are computed with respect to
graded reverse lexicographic monomial orders (grevlex, in brief). The lexicographic
monomial order is particularly suitable to solve systems of polynomial equations, for
it provides polynomial sets whose variables may be eliminated successively. How-
ever, the Groebner bases that it produces tend to be very large and thus, even for
problems of moderate complexity, they have little chance to be actually computed.
Conversely, the graded reverse lexicographic order produces bases that are endowed
with no particular structure suitable for elimination purposes, but it provides more
efficient calculations.

In general, a Groebner basis G[J ] of 〈J 〉 with respect to grevlex(X), with variables
ordered so that z> y> x >e1>e2>e3, may be computed in a fairly expedited way.
A key factor for the efficiency of such a computation is the abundance of generators
available in J , which greatly simplifies and speeds up calculation (a feature already
pointed out in [15]). Numerical tests showed that the fastest computation is achieved
by exploiting the first 19 generators in J , i.e. {q1, q2, q3, q4, p1, . . . , p15}. The com-
putation of G[J ] for the exemplifying 4-4 robot whose dimensions are reported in
Table 2 requires roughly 18 min on a PC with a 2.67 GHz Intel Xeon processor and
4 GB of RAM. If only 6 generators are used, computation time is 4 times higher and,
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most important, spurious solutions are introduced in the solution set (this is because
only two minors of M are used out of six).

Once G[J ] is known, the normal set of 〈J 〉 may be easily computed, namely (in
vector format)

N[J ] =
[
1, e3, e2, e1, x, y, z, e2

3, e2e3, . . . , e1e2e2
3x, e1e2e2

3 y
]T
. (11)

Since N[J ] comprises 216 monomials, this is also the number of complex roots
(including multiplicities) in the algebraic variety V of 〈J 〉 [37] and, thus, the order
of the least-degree univariate polynomials comprised in 〈J 〉.

3.2 Least-Degree Univariate Polynomial

A univariate polynomial of degree as high as 216 has, in practice, no use for the actual
calculation of the solutions of the DGP, since its order makes it almost unmanageable
under the numerical point of view. However, the computation of this polynomial
provides a challenging benchmark to test the effectiveness of the elimination method
presented in [10] and, for this reason, it is pursued here. The method encompasses
three steps:

1. first, a Grobner basis G is calculated with respect to an efficient monomial order
(see Sect. 3.1);

2. then, a subset of the original unknowns is eliminated by computing, by way of
the FGLM algorithm [19], a Groebner basis Gl of a suitable elimination ideal
〈Jl〉;

3. finally, a least-degree univariate polynomial devoid of extraneous factors is com-
puted by applying a dialytic elimination similar to that presented in [15] to the
polynomials of Gl .

The above method allowed a 156th-degree univariate polynomial to be successfully
computed in the ideal governing the DGP of the 3-3 CDPR, when other approaches
either failed or proved to be excessively onerous in terms of computational burden.
The DGP of the 4-4 CDPR provides an even harder challenge.

In the following, the techniques at the basis of the second and the third step are
presented and the application of the method to the problem at hand is described.

3.2.1 Computation of Elimination Ideals

If Xl is a list of l variables in X and X\Xl is the (ordered) relative complement of Xl in
X, a monomial order>l on Q[X] is of l-elimination type provided that any monomial
involving a variable in Xl is greater than any monomial in Q[X\Xl ]. If G>l [J ] is a
Groebner basis of 〈J 〉 with respect to>l , then G[Jl ] := G>l [J ]∩Q[X\Xl ] is a basis
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Table 1 Structure of the Groebner bases of the elimination ideals of 〈J 〉
G[Jl ] X\Xl Nl Degrees of the generators No. of monomials with variables in

in X\Xl X\Xl − {w}, w ∈ X\Xl

G[J ] [z, y, x, e1, e2, e3] 195 3(3), 4(5), 5(158), 6(29) 230, 232, 232, 271, 224, 195
G[J1] [y, x, e1, e2, e3] 147 5(36), 6(111) 185, 180, 181, 160, 147
G[J2] [x, e1, e2, e3] 111 5(1), 7(99), 8(11) 127, 127, 117, 111
G[J3] [e1, e2, e3] 61 8(1), 10(60) 66, 61, 61
G[J4] [e2, e3] 21 20(15), 21(6) 22, 21
G[J5] [e3] 1 216(1) –

of the lth elimination ideal 〈Jl〉 := 〈J 〉∩Q[X\Xl ] [14]. The l-elimination monomial
order implemented in Maple is a product order that induces grevlex orders on both
Q[Xl ] and Q[X\Xl ]. The FGLM algorithm [19] may be conveniently used to convert
G[J ] from grevlex (X) to >l , so that G[Jl ] may be readily isolated from G>l [J ].

The structure of G[Jl ] with respect to grevlex (X\Xl), as obtained by the FGLM
algorithm, is illustrated in Table 1 for l = 0 . . . 5. Column 3 reports the number Nl

of generators in G[Jl ], column 4 provides the degree in X\Xl of such generators
(in parentheses, the number of generators having a given degree is specified), and
column 5 reports, for each variable w ∈ X\Xl , the number of monomials in G[Jl ]
having variables in X\Xl − {w}. By computing elimination ideals via the FGLM
algorithm, a least-degree polynomial in one variable may be theoretically obtained.
However, the elimination task is computationally very expensive and time consum-
ing. The ‘deeper’ the elimination process (i.e. the fewer the variables in X\Xl ), the
longer the time necessary to perform the computation and, mainly, the larger the
amount of memory that is required. The latter issue is particularly critical and, even
when the robot geometry is elementary and thus the coefficients of the polynomials
in J simple, the complete elimination is out of reach for an ordinary computer.

3.2.2 Dialytic Elimination

Dhingra et al. [15] presented a method that computes a least-degree univariate poly-
nomial from a Groebner basis without deriving elimination ideals. The method is
based on the identification of a subset H [J ] of G[J ] and a variable w ∈ X such that
the number of generators in H [J ] equals the number of monomials in the variables of
X−{w} appearing in the polynomials of H [J ]. This way, H [J ] (which may coincide
with G[J ]) may be set up as a square system of homogeneous linear equations in
the monomials of X − {w}, whose coefficients only depend on w. A Sylvester-type
eliminant matrix may, thus, be constructed and a resultant in w computed.

For the problem at hand, G[J ] contains 195 generators and, by choosing w = e3
(e3 is the ‘smallest’ variable in the monomial ordering chosen to compute G[J ]),
the number of monomials in X − {e3} is exactly equal to 195 (Table 1). According
to Dhingra et al.’s approach, the resultant in w may thus emerge from the expansion
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of a 195 × 195 eliminant matrix. However, the size of this matrix is too big for the
expansion to be performed (computation time is, in this case, the critical issue).

A feasible alternative emerges by observing that dialytic elimination may be
applied to the Groebner basis of any elimination ideal of 〈J 〉. Indeed, Table 1 shows
that, if w is the smallest variable in X\Xl , G[Jl ] comprises a number of monomials
in X\Xl − {w} which is equal to Nl for all values of l. For instance, the Groebner
basis G[J3] of 〈J 〉 ∩ Q[e1, e2, e3] with respect to grevlex(e1, e2, e3) comprises 61
polynomials (1 of degree 8 in Φ and 60 of degree 10 in Φ), including 61 monomials in
e1 and e2. It follows that, if w is assigned the role of ‘hidden’ variable, the generators
of G[Jl ] may be set to zero in the following form:

T (w)Ew =
(

u∑

k=0

wkBk

)
Ew = 0, (12)

where u is the highest power of w in G[Jl ], Bk is a Nl × Nl numeric matrix, T(w) is
a matrix polynomial of degree u in w, and Ew is a Nl -dimensional vector comprising
all monomials in G[Jl ] having variables in X\Xl − {w}. Accordingly, the desired
resultant, free from extraneous polynomial factors, may be obtained as

det T(w) =
216∑

h=0

Lhwh = 0, (13)

with the coefficients Lh only depending on the input data, i.e. the robot geometry
and the cable lengths.

The advantage gained by applying a dialytic step to a Groebner basis G[Jl ] with
l > 0 emerges from the data presented in Table 2. The table reports, for an exempli-
fying 4-4 CDPR, the CPU time required to compute grevlex bases for the elimination
ideals of 〈J 〉, with l = 0 . . . 5, on the PC mentioned in Sect. 3.1. In particular, the third
column reports the CPU time TG[Jl ] required to obtain G[Jl ] from 〈Jl−1〉∩Q[X\Xl ]
by the FGLM algorithm, whereas the fourth column reports the CPU time T〈J 〉∩Q[e3]
required to calculate 〈J 〉 ∩ Q[e3] by applying dialytic elimination to G[Jl ], for
l = 0 . . . 4. As expected, the higher l is (i.e. the more variables are eliminated), the
more demanding the FGLM elimination proves to be. In particular, the last elimi-
nation ideal cannot be computed, due to excessive memory usage. Conversely, the
computation time of the dialytic step decreases with l, since it depends on the dimen-
sion of T (w). For the example at hand, 〈J 〉∩Q[e3] cannot be computed from G[Jl ],
with l = 0 . . . 2, due to excessive computation time. Instead, a univariate polynomial
in e3 may be successfully computed from either G[J3] or G[J4]. The more ‘efficient’
computation is obtained by eliminating {x, y, z} by the FGLM algorithm and {e1, e2}
by the dialytic step (18 + 237 + 702 + 598 + 348 ≈ 1,900 min).

It emerges from the above result that the hybrid approach presented in [10], which
eliminates a subset of variables by the FGLM algorithm and then applies Dhingra et
al.’s method on the Groebner basis of the corresponding elimination ideal, provides a
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Table 2 Computation time to obtain Groebner bases of the elimination ideals of 〈J 〉 for the robot
with a2 = [9; 0; 1], a3 = [11; 9; 0], a4 = [−2; 8; −1], b1 = [−2; −1; −1], b2 = [1; −2; 0],
b3 = [2; 1; −1], b4 = [0; 2; −1], (ρ1, ρ2, ρ3, ρ4) = (6, 7, 8, 9) and Q = 1

l 〈Jl 〉 TG[Jl ] (min) T〈J 〉∩Q[e3] (min)

0 〈J 〉 18 …
1 〈J 〉 ∩ Q[y, x, e1, e2, e3] 237 …
2 〈J 〉 ∩ Q[x, e1, e2, e3] 702 …
3 〈J 〉 ∩ Q[e1, e2, e3] 598 348
4 〈J 〉 ∩ Q[e2, e3] 1,077 68
5 〈J 〉 ∩ Q[e3] … –

profitable strategy to compute high-order least-degree univariate polynomials. This
strategy may succeed when alternative methods either fail or prove to be too onerous
in terms of computational burden.

3.3 Numerical Computation of the Solution Set

For the numeric solutions of the problem to be actually calculated, several options
may be considered.

3.3.1 Eigenvalue Formulation

One approach, which relies on a prior computation of a Groebner basis, is based on
the properties of the normal set N[J ] of G[J ] [13, 32]. Let the polynomial wηh be
considered, with w ∈ X and with ηh being the hth monomial in N[J ]. If rh is the
remainder on division of wηh by G[J ], rh is a linear combination of monomials in
N[J ], i.e. rh = ∑216

k=1 ahkηk , with ahk being a constant coefficient. Since rh − wηh

belongs to 〈J 〉, it must vanish on V . By assembling all equations of this kind that
may be obtained for h = 1 . . . 216, one has

(A[J,w] − wI)N[J ] = 0, (14)

where A[J,w] = [ahk] is a 216 × 216 numeric matrix called multiplication matrix
for w and I is the 216 × 216 identity matrix. Equation (14) is a linear eigenvalue
problem,2 which may be accurately solved in a fast way. Since the first 7 entries of
N[J ] are 1, e1, e2, e3, x, y, z (see Eq. 11), a unique solution in X emerges from each
eigenvector Nh as

2 The 216th-degree characteristic polynomial associated to the eigenvalue problem (14) provides a
theoretical way to compute the resultant in w. However, under a practical viewpoint, expanding a
216 × 216 matrix is even less effectual than applying Dhingra et al.’s method to G[J ].
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Table 3 Real solutions with nonnegative cable tensions of the DGP of the robot reported in Table 2

No. (e1, e2, e3) (x, y, z) (τ1, τ2, τ3, τ4) Hr

1 −7.8443,−19.3444, 2.2184 4.5660, 3.2683, 0.8375 1.25, 1.54, 0.94, 1.24 <>

2 −24.7302, 0.7581,−1.9562 4.4681, 4.1679, 0.9753 0.84, 1.12, 1.13, 1.29 <>

3 0.0350,−0.0540, 0.1114 4.5175, 3.6961, 5.9635 0.75, 0, 0.62, 0 >

e1,h = Nh,2

Nh,1
, e2,h = Nh,3

Nh,1
, e3,h = Nh,4

Nh,1
, xh = Nh,5

Nh,1
, yh = Nh,6

Nh,1
, zh = Nh,7

Nh,1
.

(15)
For the example reported in Table 2, computing A[J, e3] requires roughly 16s

and calculating its eigenvalues a few tenth of second. Once a robot configuration
is found, cable tensions may be obtained by any subset of 4 linearly independent
relations chosen within Eq. (4). Clearly, a real configuration proves feasible only if
therein cable tensions are nonnegative and the configuration is stable. Stability may
be assessed by way of the reduced Hessian Hr defined in [9]. In this paper, the symbols
>, ≥,<, ≤ and<> denote, respectively, a positive-definite, a positive-semidefinite,
a negative-definite, a negative-semidefinite and an indefinite matrix. For the example
reported in Table 2, only 8 out of the 216 solutions are real and, among them, only
2 have positive tension in all cables. They are listed in the first two rows of Table 3.
Interestingly, no one of them is stable. This means that, when the assigned cable
lengths are fed-in to the robot actuators, the end-effector necessarily moves to a rest
configuration in which some cable is slack. Indeed, further investigation (Sect. 4)
shows that a single feasible configuration exists, in which only two cables are taut.
This configuration is reported in the third row of Table 3.

3.3.2 Homotopy Continuation

An alternative to the method described in Sect. 3.3.1 is provided by homotopy con-
tinuation [37]. If no information is a priori known about the roots of 〈J 〉, the DGP of
the 4–4 robot may be cast, on the basis of the degree of the polynomials contained in
J , into the larger family of all polynomial systems made up by 1 quartic, 3 cubics and
2 equations of degree 9 on X ∈ P

6. By counting solutions at infinity, a general mem-
ber of this family, e.g. Jred = {q1, q2, q3, q4, p4, p5}, has a number of isolated roots
equal to the minimal multi-homogeneous Bezout number [40]. This is also the num-
ber of paths tracked by the homotopy-continuation software used in this paper, i.e.
Bertini [3]. By searching all possible multi-homogenizations, the minimal Bezout
number emerges when X is partitioned as [{x, y, z}, {e1, e2, e3}] and it is equal to
2,160.3 Computation converges in a robust way, but it is slow. This is due to the

3 The partition [{x, y, z}, {e1, e2, e3}] also provides the fastest computation of 〈J 〉 ∩ Q[e3] by the
hybrid elimination approach proposed in Sect. 3.2. This observation confirms the heuristic advanced
in [10] to determine which variables may be most conveniently eliminated by the FGLM procedure
before attempting the final dialytic step.
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complexity of the polynomials emerging from Eq. (6), which have several hundreds
of terms and a considerable degree. For the robot whose geometric parameters are
given in Table 2, Bertini computes the finite solutions of Jred in roughly 100 min.
Furthermore, since only 2 relations are selected within Eq. (7) (e.g. p4 and p5) to
form, together with Eq. (3), a square system of 6 equations in 6 unknowns, only two
minors of M(P) out of six are used and spurious solutions, for which some unused
minors do not vanish, are introduced.

Due to this limitations, the formulation of static equilibrium via Eq. (4) is prefer-
able for the application of homotopy-continuation methods. Indeed, even though
Eqs. (3) and (4) amount to 10 scalar relations in 10 variables, they comprise simpler
lower-order polynomials, which prove to be stabler when numerical methods are
implemented to solve them. In fact, by partitioning variables as [{x}, {Φ}, {τ }] in
order to obtain the best multi-homogenization, Bertini tracks 3,600 paths, but it
converges to the 216 solutions of the example referred to in Table 2 in roughly 9 min.
Computation is, thus, much faster than by the previous formulation and no extra-
neous roots are introduced. This formulation is also advantageous compared with
the eigenproblem reported in Sect. 3.3.1, whose overall performance depends on the
duration of the Groebner-basis computation (based on exact arithmetic). While the
latter time considerably increases with the complexity of the rational coefficients
of the polynomials in J , the time required by homotopy continuation varies in a
far less relevant way, since real-value geometric parameters are directly handled in
floating-point arithmetic.

It is worth emphasizing that all procedures described above are aimed at solving
the DGP of the 4-4 CDPR under the assumption that no information is known about
the number of roots in C

6. Once the latter information is known, however, a more
efficient continuation technique may be used to solve practical cases. Indeed, the
complete family of all DGPs of 4-4 CDPRs lies in a 28-dimensional parameter space,
parametrized by the geometric quantities ai , bi and ρi , i = 1 . . . 4. Accordingly,
when the 216 isolated roots of a generic robot are known, parameter-homotopy
continuation may be applied to find the solutions for any other member of the family
[37]. In this case, only 216 paths need to be tracked and paths corresponding to
solutions at infinity are avoided. By this approach, Bertini converges to the 216
solutions of the example reported in Table 2 in roughly 2.7 min.

Another possibly very efficient approach relies on techniques based on interval
analysis [29]. This method brings about the significant advantage of easily incorpo-
rating constraints on the cable-tension sign in the calculation (there is no need to
compute all possible solutions of the problem, in order to, successively, sort out only
those that are real and for which cable tensions are nonnegative), as well as uncer-
tainties in the parameter values (e.g. due to manufacturing tolerances or measuring
errors), physical bounds on variable ranges (e.g. due to hardware limits and/or user
restraints), additional geometric constraints (e.g. due to interference problems), etc.
Preliminary results concerning the application of interval analysis to the DGP of
under-constrained CDPRs are reported in [5].
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3.4 Number of Real-Valued Solutions and Feasible
Configurations

The 216 solutions computed by the methods presented in Sect. 3.3 may be complex
or real, but only the latter have physical interest. By varying the robot parameters in
R

28, the count of real roots varies. Since there may be roots in the solution set that
always remain complex, the maximal number of real solutions may be smaller than
216. Determining a tight bound for this count is a challenging task.

By a continuation procedure originally proposed by Dietmaier [17] and recently
adapted by the authors to the DGP of under-constrained CDPRs [1], sets of 4-4
CDPR parameters for which the DGP provides at the most 98 real configurations
were found so far. A numerical example is reported in Table 4. For the sake of brevity,
only the 20 real configurations for which no cable tension is negative are listed (rows
1-20). Among these, only 5 are stable and, thus, feasible. The robot also admits
19 equilibrium configurations with one or more slack cables (Sect. 4), but only the
configuration with a single cable in tension is stable. The equilibrium configurations
with slack cables are listed in Table 4 in rows 21-39.

4 Equilibrium Configurations with Unloaded Cables

When cable lengths are assigned as inputs, nothing ensures, a priori, that when the
platform reaches its stable equilibrium pose all cables are under tension. Accordingly,
the final pose may be either a DGP solution for the current 4-4 CDPR or a valid pose
for any one of the m–m CDPRs (with m < 4) that may be derived from the initial
4-4 robot. Accordingly, the overall solution set must be obtained by solving the DGP
for all possible constraint sets {||s j || = ρ j , j ∈ W}, with W ⊆ {1, 2, 3, 4} and
card(W) ≤ 4, and by retaining, for each solution set, only the solutions for which
||sk || < ρk , k ∈ W . In general, this amounts to solving 15 DGPs, namely 1 DGP
with 4 cables in tension, 4 DGPs with 3 cables in tension, 6 DGPs with 2 cables in
tension and 4 DGPs with 1 cable in tension.

The example reported in Table 3 is particularly interesting. In this case, in fact,
even though the robot exhibits a geometry with no apparent special features, it has
a single feasible configuration, with only two cables in tension (i.e. cables 1 and
3). All real solutions with four or three cables in tension prove to be unstable. The
numerical investigation conducted so far showed that cases like this are likely to
occur. This shows the importance of computing the complete solution set of the
DGP, thus including configurations with unloaded cables.
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Table 4 Real solutions with nonnegative cable tensions of the DGP of the robot with a2 =
[−0.76054; 0; 0.90931], a3 = [−0.71646; 0.68047; 0.07970], a4 = [0.02574; 0.70420; 0.87389],
b1 = [16.54820; 0; 0], b2 = [17.16360; 0.77720; 0], b3 = [16.22250; 0.75153; 0.76874],
b4 = [17.38600; 0.09567; 0.81726], (ρ1, ρ2, ρ3, ρ4) = (1; 1.01493; 1.12171; 1.138230) and
Q = 1

No. (e1, e2, e3) (x, y, z) (τ1, τ2, τ3, τ4) Hr

1 2.4620, 0.0475,−0.0432 −16.9518, 0.3857, 1.2564 33.4, 5.0, 11.6, 28.2 <>

2 −2.0125, 1.9489,−5.8751 12.0236, 8.2020,−7.3775 86.8, 10.7, 87.2, 6.7 <>

3 3.4339, 1.7412, 1.2351 −8.6254,−13.1378,−4.6438 110.1, 19.1, 109.6, 0.1 <>
4 0.0738,−0.1895,−1.2345 2.9456, 16.8817,−1.2941 7.5, 14.6, 16.3, 19.7 >

5 −1.6115,−1.8141, 0.4874 −0.6584,−16.1920,−3.9850 30.5, 35.3, 2.6, 14.1 <>

6 18.0137, 31.2651, 7.0149 7.9403,−13.9345,−1.5605 13.7, 2.4, 26.7, 23.4 >

7 −30.8489,−70.8600,−12.4272 10.9162,−11.7819,−1.5808 10.7, 3.3, 26.9, 26.4 <>

8 1.2141,−0.0295,−0.1205 −16.9142, 2.8593, 1.8060 17.2, 12.2, 10.7, 17.4 >

9 −0.5383, 0.3499,−1.1452 0.1154, 16.5864,−2.7129 37.5, 31.3, 14.1, 3.1 <>

10 −0.0318,−0.0510,−0.7501 −5.4425, 16.2821,−1.3011 18.9, 25.7, 6.7, 16.4 <>

11 −0.0278,−0.0559,−0.8455 −3.5374, 16.7826,−1.2996 16.0, 21.9, 8.7, 15.7 >

12 0.0096,−0.0960,−0.9984 −0.7053, 17.1315,−1.3024 11.8, 17.8, 11.7, 16.6 <>

13 0.4639, 0.0205,−0.0400 −17.4454, 1.1046, 0.9309 1.7, 35.8, 31.1, 14.5 <>

14 −0.0400,−1.3814, 2.6631 13.1849,−8.2555,−3.5470 10.2, 30.8, 33.8, 3.4 <>

15 0.0216,−0.3513,−2.5343 11.7477, 12.0239,−1.5488 6.1, 7.2, 29.0, 26.8 <>

16 −19.8826, 49.6758,−38.5605 13.5491, 8.6097,−4.8587 28.1, 3.9, 11.0, 25.3 <>

17 4.2385,−14.6735, 8.9676 14.7575, 6.2950,−4.8534 26.1, 8.1, 6.4, 27.3 <>

18 7.2409,−22.7365, 15.5123 14.5027, 6.8246,−4.8518 25.6, 6.7, 8.2, 25.2 >

19 0.3745,−0.3751,−0.5197 −8.4164, 14.8582,−3.7949 0.3, 93.0, 19.3, 94.8 <>

20 1.7383,−8.0398, 7.1664 15.5137, 2.5875,−4.9518 17.1, 9.7, 11.3, 16.2 <>

21 0.9523, 0.4239, 0.4062 −12.3637,−11.4946, 0.3181 17.5, 32.7, 40.2, 0 <>

22 −19.4314,−11.2612,−2.2585 −8.8424,−13.7747,−3.1139 38.2, 25.6, 24.3, 0 <>

23 −1.3911,−0.9981,−1.3884 −0.6505, 0.0967,−15.7689 0.9, 0.5, 0.1, 0 <>

24 0.7069,−0.9954, 0.6999 0.0593, 0.6494,−15.7714 0.6, 0.1, 0, 0.7 <>

25 −0.4757,−2.4789, 0.7972 11.7905,−8.3803,−7.7523 18.4, 89.9, 0, 90.9 <>

26 1.1059,−0.4337,−0.4269 −12.0838, 12.4460, 0.8943 32.0, 19.8, 0, 40.4 <>

27 −0.6663,−0.9927,−0.6711 −0.6538,−0.0188,−15.7639 0.7, 0.7, 0, 0.1 <>

28 6.0629, 9.1687, 2.9878 6.2292,−14.7313,−1.6233 17.0, 0, 32.0, 25.3 <>

29 1.4778,−1.0031, 1.4794 −0.0563, 0.6494,−15.7795 0.8, 0, 0.1, 0.6 <>

30 0.2912,−0.5223,−1.2952 4.4079, 16.6051,−1.7581 0, 17.6, 26.6, 33.7 <>

31 −1.0000,−0.9928,−0.9928 −0.7603,−0.0000,−15.7806 0.9, 0.7, 0, 0 <>

32 −1.0000,−0.4268,−0.4268 −12.3088,−0.0000,−11.4377 29.4, 28.9, 0, 0 <>

33 89.7786, 2.3211, 93.2252 −0.0681, 0.0647,−16.2418 4.4, 0, 4.2, 0 <>

34 1.0886,−1.0054, 1.0840 0.0267, 0.7293,−15.7880 0.8, 0, 0, 0.7 <>

35 3.6274,−3.6215, 1.3794 0.5191, 14.2028,−9.2843 33.4, 0, 0, 32.9 <>

36 0.2707,−0.2549, 0.9012 −1.6557,−13.8183,−8.3698 0, 34.3, 34.8, 0 <>

37 0.0333,−0.9915,−0.0050 −0.1382, 0.5574,−16.2520 0, 4.0, 0, 4.1 <>

38 −0.7058,−3.8044,−3.8528 14.6876, 1.1730,−7.0336 0, 0, 34.7, 34.3 <>

39 –, –, – −0.7165, 0.6805, 17.4595 0, 0, 1, 0 >
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5 Conclusions

This paper studied the kinematics and statics of under-constrained cable-driven paral-
lel robots with 4 cables, in crane configuration. For such robots, kinematics and statics
are coupled and they must be solved simultaneously. This poses major challenges,
since displacement analysis problems gain remarkable complexity with respect to
those of analogous 6-dof rigid-link robots.

The direct geometrico-static problem (DGP), which aims at determining the plat-
form pose and the cable tensions once the cable lengths are assigned, was effectively
worked out and the complete solution set was determined, including cases in which
not all cables are in tension. Equilibrium configurations with slack cables are par-
ticularly important, since for a given robot they may be feasible (i.e. stable) and the
end-effector may switch across them, due to inertia forces or external disturbances.

By the innovative hybrid elimination method presented in [10], a least-degree
univariate polynomial was numerically obtained in the ideal governing the problem
when the four cables are in tension, thus showing that, in this case, 216 solutions exist
in the complex field. The DGP of the 4-4 CDPR provided a meaningful benchmark
to test the effectiveness of this elimination approach. The potential solutions of the
problem (namely, those obtained before imposing the constraints concerning the
cable-tension sign and stability) were numerically computed by both an eigenvalue
formulation and homotopy continuation. The problem of identifying a general 4-4
robot with the highest number of real equilibrium configurations was also addressed
and preliminary results were reported.
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Implementing Extended Kinematics
of a Cable-Driven Parallel Robot
in Real-Time

Valentin Schmidt and Andreas Pott

Abstract This paper describes the implementation of extended pulley kinematics for
parallel cable robots. An algorithm for the extended kinematics taking into account
cable pulleys is discussed and implemented in real-time. This solution uses an iter-
ative solver which can be computationally costly, depending on convergence. The
convergence was tested for a specific geometry and successfully implemented on the
cable robot IPAnema. Accuracy of both the standard and extended kinematics were
tested according to the ISO 9283 standard. The Absolute accuracy was measured to
be 22.32 mm for the standard and 17.50 mm for the extended kinematics which shows
some improvement. A method for testing accuracy of orientations is also introduced.

1 Introduction

The kinematics of cable robots and indeed all [14] parallel robots have been subject
of research for a number of years. While inverse kinematics are trivial, forward kine-
matics are much more difficult to solve, especially within computational constraints
such as real-time capability. In general, the forward kinematics of parallel robots can
have 40 real solutions [1], which are numerically difficult to compute directly [2].
Other methods, more practical to implement, are thus consistent topics of research.
Some rely on changing geometry [12], others on interval methods [7], and also on
numerical optimization methods [3, 10].

With the increasing research on cable robots, and an ever increasing number
of prototypes, precise information regarding achievable accuracy and methods of
improvement have become more important. While accuracy and repeatability values
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Fig. 1 IPAnema Winch show-
ing the drum and cable guiding
system. As the cable exits the
winch it is passed through a
pulley which also has a verti-
cal hinge. This hinge allows
the pulley to orientate towards
the platform anchor point. In
other words, the anchor point
is always in the same plane as
the pulley

achieved in the past are good, performance can still be improved. Methods include
continuous calibration and inclinometers [4], general geometric calibration [8], and
external sensors such as an expensive non-contact laser scanning system for Cartesian
metrology used by the NIST Robocrane [13].

Robot kinematic models, both forward and inverse kinematics, have a direct
impact on accuracy. Previous implementations [10] have usually assumed perfect
points as base and platform connections. In practice cables are often guided along a
pulley as shown in Fig. 1.

Taking into account of such pulleys in kinematics has been shown in existing
models [9], but such models have yet to be implemented in real-time.

Real-time calculations pose a frequent challenge for forward kinematics especially
when optimization methods are used whose convergence is not guaranteed. Hence
research into convergence and computation time has been conducted [15].

In this paper an algorithm that takes winch pulleys into account is reviewed and
implemented in a real-time environment. To evaluate this implementation experi-
ments into the accuracy and repeatability of the IPAnema robot were performed.
These lead to marginal improvements. An angular variation test which can be applied
to any parallel machine is also introduced to evaluate the accuracy of the two kine-
matic models against each other.

2 Robot Architecture

The algorithms were tested on the cable robot IPAnema, constructed at the labora-
tories of the Fraunhofer IPA. Figure 2 shows the IPAnema cable robot, in the con-
figuration during the experiment. The numbers indicate the winch positions, and the
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Fig. 2 The Robot IPAnema pictured with the Leica LaserTracker

Table 1 Robot geometrical parameters: base vector ai and platform vector bi

Cable i Base vector ai in (m) Platform vector bi in (m)

x y z x y z
1 [−4.277 2.950 4.604]T [−0.653 0.201 −0.085]T

2 [4.335 2.951 4.480]T [0.641 0.196 −0.102]T

3 [4.029 −2.736 4.609]T [0.639 −0.052 −0.092]T

4 [−3.967 −2.733 4.737]T [−0.634 −0.117 −0.058]T

5 [−4.346 2.902 0.515]T [−0.759 0.200 0.410]T

6 [4.255 2.925 0.372]T [0.763 0.192 0.402]T

7 [3.952 −2.766 0.424]T [0.756 −0.014 0.406]T

8 [−4.033 −2.766 0.573]T [−0.750 −0.012 0.423]T

connecting cables are highlighted in red. In this exact configurations the dimensions
(Table 1) were measured.

The dimensions were determined very accurately using a Leica LaserTracker.
With this optical device the absolute position of a reflector can be determined with
an accuracy of ±15 µm + 6 µm/m.
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Fig. 3 Standard kinematik
description

3 Extended Kinematics for Cable Driven Robots

For reference, the basic kinematic algorithms are quickly introduced. On Fig. 3 the
position of anchor points on the base and the robot platform are described by vector ai

and bi respectively, and give the rope vector li for a given pose. The platform vectors
bi are in the coordinate system of the platform which is defined by the Cartesian
vector r and rotation matrix R. Since the length of the cables in the standard kinematic
model is li = ‖li‖2 simple vector algebra yields

ai − r − Rbi = li (1)

‖ai − r − Rbi‖2 = li (2)

for i = 1, . . . ,m.

This suffices for the general computation of inverse kinematics under the assump-
tion that all cable connections are ideal points. This is also the basis for the standard
forward kinematics used in [10]. Here, m functions

Ψi (l, r,R) = (‖ai − r − Rbi‖2)
2 − l2

i (3)

for i = 1, . . . ,m.

are combined to give

φ (l) = min
r,R

m∑

i=0

Ψi (l, r,R) , (4)
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which will minimize r,R for a given length vector l = [l1, . . . , lm]T . In very simple
terms, this is almost equivalent to considering the pre-tensed cables as linear springs
and minimizing their potential energy. Further factors such as cable stiffness need to
be taken into account for this to truly apply, but in principle the approach would be
almost identical.

To solve the forward kinematic problem, a Levenberg-Marquardt (LM) optimiza-
tion algorithm is used which can be found in [5]. This solver minimizes the objective
function φ (l) from (4) by iterative procedure

(
J(l)JT (l)+ μI

)
h = −JT (l)φ(l). (5)

Where μ is a damping parameter, J(l) is the Jacobian of φ(l) in dimension x, y, z
and rotation angles a, b, c

J(l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Ψ1
∂x · · · ∂Ψm

∂x
∂Ψ1
∂y · · · ∂Ψm

∂y
∂Ψ1
∂z · · · ∂Ψm

∂z
∂Ψ1
∂a · · · ∂Ψm

∂a
∂Ψ1
∂b · · · ∂Ψm

∂b
∂Ψ1
∂c · · · ∂Ψm

∂c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(6)

and h is each consecutive step. This does not guarantee a solution, but has shown
good results in practice at very fast computational speeds. The lack of guaranteed
solution is a severe impact on real-time capability. For this reason a maximum number
of iteration steps (currently 100 steps) is implemented. This does not guarantee a
solution, but ensures that there exists a guaranteed maximum computation time. In
practice this maximum has not been reached, and the algorithm runs robustly in real
time.

The extended kinematics takes into account of the pulley mechanism illustrated
in Fig. 1. Where the equation for the length of cable i now reads

li = θi r p + l f i . (7)

Here the angle θi and the direct length from pulley exit point Ci to the platform
anchor point Bi are used to determine total cable length. Bi is needed in the global
coordinate frame simply

Bi = r + Rbi . (8)

There are many ways which can yield the parameters for (7) using basic trigonom-
etry on the triangles formed by points: Mi , Bi , Ci and Ai (origin of coordinate system
KA denoted by vector ai ). The one derived in [11] is applied here.

This evaluation was used in the implementation of both forward and inverse
kinematics, but deviates from the in [11] proposed method, in that it does not use
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transformation matrices to find the necessary lengths but only the vector kAz defined
by the winch coordinate system. This is necessary to fulfill the real-time constraints,
which need the equations to be evaluated as efficiently as possible. Eliminating
evaluation of the angle of rotation of the pulley mechanism around axis kAz and
subsequent matrix evaluations is expected to give faster computations. This is done
by evaluating the vector mi by

mi = ai + rpŵ (9)

where w is a vector from the origin of KA in the direction of Mi which is found by

w = (kAz × (Bi − ai ))× kAz . (10)

Hence
di = ‖Bi − mi‖2 (11)

and bz is the distance from mi to Bi along kAz given by

bz = ‖kAz · (Bi − ai ) ‖2 (12)

which helps to find

l f i =
√

r2
p × b2

z (13)

and finally

θi = arccos
l f i

di
+ arccos

bz

di
. (14)

This gives us all the dimensions needed to evaluate the inverse kinematics for each
cable using Eq. (7).

As the same method is used for the forward kinematics, the extended forward
kinematics simply replacing ‖ai − r −Rbi‖2 in Eq. (4) with the evaluation in Eq. (7)
to give Ψ̃i which yields

φ̃ (l) = min
r,R

m∑

i=0

Ψ̃i
(
l, r,R,kAz, rp

)
. (15)

The initial guess for the LM optimizer is identical to the interval based method
proposed in [10]. The full equation is implemented in the programming language c
results in >50 lines of source code and the analytic Jacobian matrix >150, and is
therefore not provided here (Fig. 4).
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Fig. 4 Kinematics of cable i

4 Validation

4.1 Computation and Convergence

To test real-time capability of this algorithm, it was first simulated on a desktop PC.
This simulation used the geometric parameters measured for the accuracy evaluation,
shown in Table 1.

The radius of the pulley was assumed to be identical for each winch and measured
at rp = 21 mm. The orientation of the winches can be seen in Fig. 2 and was assumed
to be aligned perfectly with the axes. This means winches 1 and 5 were pointing in
the negative x direction, winches 2 and 6 in the positive x direction, and winches 3,
4, 7, and 8 in the negative y direction.

For three different magnitudes of noise (0.1, 0.5 and 1 mm) the simulation was
conducted for 5,000 positions chosen at random in the presumed workspace of the
robot.

The continuous re-evaluation of the Eq. (15) through the LM solver poses the
greatest risk for real-time capability of the algorithm. Depending on the number of
iterations this can involve very many computations. Hence, the number of iterations of
the LM solver is evaluated. Figure 5 shows the number of iterations for each simulated
position. These are slightly worse than the results for the standard kinematics shown
in [10], but are generally very reasonable, rarely exceeding 20 iterations, even for
1 mm noise. A few times the maximum number of iterations of 100 was reached, but
these were most likely poses at the edge or beyond the workspace.

For this comparison it is important to note that convergence is very dependent
on geometry and individual poses. Especially poses with big orientation differences
are often at the edge of the workspace and will increase the number of necessary
iterations.

The average position error of the platform shown in Fig. 6 was almost identical to
that seen for the standard model, and is in the same order of magnitude as the noise
error applied to the cables.

When using the analytically derived Jacobian matrix, the calculations times on
a desktop pc ranged between 80 and 130µs per evaluation. While this does not
guarantee real-time capability, it is a good indication that this algorithm can be run
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Fig. 5 Histograms showing number of iterations for forward kinematics optimizer. a Noise of
0.1 mm, b Noise of 0.5 mm, c Noise of 1 mm

in real-time. The test in practice proved successful, and so accuracy and repeatability
measurements could be made. In fact, so far the algorithm running on the actual robot
experienced no missed steps, when poses and trajectories of the robot were within
the workspace.

4.2 Accuracy and Repeatability

The same LaserTracker used to determine the robot dimensions, was used to measure
the accuracy and repeatability. Both kinematic models were tested in the exact same
environment. Neither LaserTracker or the robot was moved, after the dimensions
(ai ,bi ) were established. The reflector denoting the origin of both the global (at
the platform home position) and the platform coordinate system was not altered
throughout the experiment. This significantly increases the precision of the results
as any systematic errors will be the same for both sets of data. Any calibrating of the
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Fig. 6 Histograms showing number of iterations for forward kinematics optimizer. a Noise of
0.1 mm, b Noise of 0.5 mm, c Noise of 1 mm

LaserTracker would cause inaccuracies, as the measurement of reference points can
add many forms of error to the calculations.

Accuracy and Repeatability were measured according to the ISO 9283 standard.
Hence each pose was measured with 30 repetitions and through the same approach
trajectory. The standard also defines testing conditions, which were adhered to. The
calculations for the can be found in [6]. All poses had the same orientation of a =
b = c = 0.

As expected, the absolute accuracy was improved for the extended kinematic algo-
rithm, but the repeatability stayed very much the same. Table 2 shows the results for
the extended kinematic to be on average an improvement of roughly 21 %. Unfor-
tunately this is lower than was hoped, and for some poses little to no improve-
ment was seen. This indicates that other inaccuracies play an equally important
role. The elasticity in the cables, or the inaccuracies in the drive chain of each
winch would therefore provide an equal positioning error of the same magnitude
≈5 mm.
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Table 2 Absolute position-
ing accuracy of standard and
extended kinematics

Pose in (mm) Standard Extended
kinematics (mm) kinematics (mm)

x y z
[0, −1000, 1000] 11.2867 11.9711

[−800, −1000, 1000] 11.6281 12.4002
[−800, 1000, 1000] 24.5868 17.7851
[800, 1000, 1000] 21.8419 17.8160
[800, −1000, 1000] 12.1822 15.1232

[−800, 1000, 2500] 37.8695 21.6268
[800, 1000, 2500] 35.2317 21.0895
[800, −1000, 2500] 24.0249 21.5672

[−800, −1000, 2500] 21.9880 18.9035
[0, 1000, 1000] 22.5879 16.6677

Average: 22.3228 17.4950

Table 3 Repeatability of
pose for standard and
extended kinematics

Pose in (mm) Standard Extended
kinematics (mm) kinematics (mm)

x y z
[0, −1000, 1000 ] 0.6472 0.8713

[−800, −1000, 1000 ] 0.5530 0.8137
[−800, 1000, 1000 ] 0.7931 0.6726
[800, 1000, 1000 ] 0.7131 0.5677
[800, −1000, 1000 ] 0.4130 0.5095

[−800, 1000, 2500 ] 0.7690 0.4123
[800, 1000, 2500 ] 0.7753 0.4112
[800, −1000, 2500 ] 0.3559 0.3057

[−800, −1000, 2500 ] 0.6080 0.2601
[0, 1000, 1000 ] 0.3076 0.2257

Average: 0.5935 0.5050

4.2.1 Angular Variation Test

Another test that was conducted was on the orientation accuracy. Since the platform
origin was consistently measured, when the platform orientation is changed but the
position x, y, z is not, this origin should not move. This concept is illustrated in Fig. 7
where the origin indicated by the thick dot is identical for four different orientations.
This test can be implemented on any parallel kinematic machine, provided one can
measure the origin about which the platform rotations are defined easily (Table 3).

Thirty different orientations were tested with angles ranging in the ranges
−5◦ < a, b, c < 5◦. Then the same calculations as for repeatability, as in the
previous section, was used to evaluate the discrepancy in position between the
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Fig. 7 Four orientations with the identical origin for the platform coordinate system at pose [0, 0,
1,000]

Table 4 Deviation in
position at a change in
orientation

Standard kinematics Extended kinematics

Average 2.6287 2.1099

different orientations. Table 4 shows that although there is a slight improvement
for the extended kinematics, this is only 0.5 mm and therefore very marginal.

5 Conclusion

This paper presented the successful implementation of extended forward kinematics
taking into account winch pulleys in a real-time system. In addition to providing the
basic algorithm which can be implemented for any given robot structure provided it
is theoretically overconstrained and has a reasonable workspace.

The algorithm is based on a LM optimizer which uses the Jacobian of objective
function φ() the to determine a solution. The successful operation of the IPAnema
robot with this extended kinematic proves the applicability, and real-time capability.

Tests were conducted to investigate the improvement on accuracy through the use
of extended kinematics. As expected absolute accuracy was improved while the rel-
ative accuracy remained similar. While there were measurable improvements, these
were not as good as initially hoped. This means other imprecisions, inaccuracies,
uncertainties in the robot have a similar impact, on the absolute accuracy, as the
pulley mechanism. In addition a novel test was introduced and conducted to inves-
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tigate orientational accuracy. This showed only marginal improvements when using
extended kinematics.

To further improve the accuracy of the cable robot IPAnema, other factors need to
be considered such as the elasticity of the cables. This can be the subject of ongoing
research.
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M. (eds.) Procceedings of the 13th International Symposium Advances in Robot Kinematics.
Springer, Berlin (2012)

12. Thomas, F., Ottaviano, E., Ros, L., Ceccarelli, M. (eds.): Uncertainty model and singularities of
3–2-1 wire-based tracking systems. Kluwer Academic Publishers, Caldes de Malavalla (2002)

13. Williams II, R.L., Snyder, B.M., Albus, J.S., Bostelman, R.V.: Seven-dof cable-suspended robot
with independent metrology (2004)

14. Williams II, R.L.: Planar cable-suspended haptic interface: Design for wrench exertion (1999)
15. Yang, C., Huang, Q., Ogbobe, P., Han, J.: Forward kinematics analysis of parallel robots using

global newton-raphson method. In: Second International Conference on Intelligent Computa-
tion Technology and Automation, 2009. ICICTA’09, vol. 3, pp. 407–410 (2009) doi:10.1109/
ICICTA.2009.564

http://dx.doi.org/10.1109/ROBOT.1998.680740.
http://dx.doi.org/10.1109/ROBOT.1998.680740.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=680740
www.ics.forth.gr/ lourakis/levmar/
www.ics.forth.gr/ lourakis/levmar/
http://dx.doi.org/10.1109/ICICTA.2009.564
http://dx.doi.org/10.1109/ICICTA.2009.564


Part VI
Calibration and Identification



An Identification Methodology for 6-DoF
Cable-Driven Parallel Robots Parameters
Application to the INCA 6D Robot

Ryad Chellal, Edouard Laroche, Loïc Cuvillon and Jacques Gangloff

Abstract This paper proposes a methodology for the identification of the combined
kinematic and dynamic parameters of a 6-Degrees of Freedom (6-DoF) Cable-Driven
Parallel Robots (CDPRs) model. This methodology aims to ensure that the errors on
the kinematic parameters do not affect the performances of the dynamic parameters
estimation step. The proposed methodology has been implemented on a 6-DoF INCA
robot. The identified model fits the system behaviour with good accuracy, and should
then be used for the synthesis and analysis of kinematic and dynamic position / vision
control strategies.

1 Introduction

1.1 Parallel Cable-Driven Robots

The CDPRs are parallel robot manipulators in which the end-effector or also platform
is connected to the base via cables, its movement resulting from the winding and
unwinding of the cables around pulleys actuated by motors.

Compared to serial and parallel conventional manipulator robots actuated by rigid
links, cable-actuated robots benefit from interesting features: they can reach a very
large kinematic workspace, achieve movements at higher speeds due to the low total
mass of the structure in movement, and also provide a modular or adjustable geometry
to satisfy the performances of the performed tasks.

However, for cable-actuated robots, the cables can only exert tensile forces (posi-
tive tensions) [1]. This introduces static constraints in addition to the purely kinematic
constraints present on the rigid link actuated parallel robots.
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(d) (e) (f)

(a) (b) (c)

Fig. 1 Parallel cable-driven robot INCA 6D. a Cubic kinematic workspace (View 1). b Cubic
kinematic workspace (View 2). c Motor (Maxon DC motor 148877) and the CDU/CBU mechanisms.
d Driving/Balancing cables, balancing springs and pulleys. e End-effector. f Infrared camera

This type of robots is used in two major applications depending on the size of the
kinematic workspace on which they operate:

• Applications with a small kinematic workspace: this is typically, the case of haptic
interfaces in virtual reality.

• Applications with a large kinematic workspace: where they are used to move
cameras over long distances, on sites of sport matches or shows.

1.2 Haptic Interface INCA

The INCA robot (Fig. 1), developed by the Haption company,1 is a haptic interface
with force feedback specifically designed to test the manipulation of objects in virtual
reality environments. In the 3D version using 4 cables, only the forces are solicited
for the translational motions. The 6D version with 8 cables considered here, can also
render the moments for the rotational motions.

In the present work, the INCA robot is used as a manipulator to address the
problems of the manipulation of cable-driven robots.

The INCA 6D robot has a 3×3×3 m3 cubic configuration kinematic workspace
(Fig. 1a, b), where each of the 8 motors (Fig. 1c) is placed on one of the 8 vertices of

1 See the website: http://www.haption.com/site/index.php/fr/ for an illustration.

http://www.haption.com/site/index.php/fr/
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the cube. Each of the 8 driving cables is attached from the driving winch of a Cable
Driving Unit (CDU) (mechanism for storing and winding/unwinding the driving
cables (Fig. 1c)) to the end-effector (Fig. 1e) through a pulley which represents the
output point of the driving cable (Fig. 1d).

Each of the 8 balancing cables is attached from the balancing winch of a Cable
Balancing Unit (CBU) (mechanism for storing and winding/unwinding the bal-
ancing cables (Fig. 1c)) to a balancing spring (Fig. 1d) by a pulley, in order to
ensure a pretension in the driving cables when no torques are applied, and also
to maintain a continuous variation of the cable tensions when the motors are
powered.

The sensors available on the system are:

• Interoceptive sensors: 8 optical encoders to measure the angular positions of the
motors, 8 angular potentiometers for initial calibration of the robot pose, and 8
current sensors to measure the effective currents of the motors.

• Exteroceptive sensors: 6 infra-red cameras (Fig. 1f) fixed around the robot, allow
the pose (position and orientation) reconstruction of objects defined by their own
geometry inside the kinematic workspace, that is specified by a system of pas-
sive markers (see Fig. 1e for the end-effector markers). This vision system will
be used soon to perform a visual servoing positioning task with the INCA 6D
robot.

1.3 Problematic and Content of the Paper

This paper proposes a methodology to identify the combined kinematic and dynamic
parameters of a model of 6-DoF CDPRs, that has been validated experimentally on
the INCA robot on its 6D version.

Firstly, we expose the structure of a physical model for the 6-DoF CDPRs based
on plausible assumptions for this type of system.

Secondly, we describe a methodology to identify separately the kinematic and
dynamic parameters, requiring the measurement of the motors angular positions
(measured by optical encoders) and the end-effector pose (provided from a system
of cameras). That methodology should allows us to reject the influence of errors
on the kinematic parameters from the dynamic parameters estimation stage. The
existent methods and their correspondent resolving algorithms to estimate the robot
parameters are briefly introduced.

Finally, the identification results are compared to the experimental data to validate
the proposed identification methodology. Problems that we encountered to improve
the accuracy of the model are also mentioned.
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2 Physical Model

2.1 Modelling Assumptions

We differentiate most of the works that considered linear cables [2–4] from the works
on very long cables size taking into account the geometry of non-linear cables [5–7].

In our case, the model is intended for the synthesis and analysis of control laws to
achieve high bandwidths of the end-effector. So assumptions are necessary in order
to obtain a model of a reasonable complexity:

• Given the size of the INCA 6D robot, it is considered that the cables are massless
to allow them to remain linear, and perfectly stiff or rigid (without elongation).
So inertias and linear spring stiffness of the cables can be ignored. The prob-
lems of vibrations of cable manipulators due to cable flexibilities are investigated
in [8, 9].

• We consider an uniform winding / unwinding of the cables. The potential problems
of the winding / unwinding of cables using the CDU mechanisms were examined
in [3], to minimise the dynamic effect of the cables between the CDU and the
pulley on the system dynamic model.

2.2 Kinematics Modelling

2.2.1 Position Kinematics

A position kinematic mapping function is needed to relate the end-effector pose
Xe = [Pe Φe]T (including the position Pe and orientation Φe) to the motors angular
positions vector θ = [θ1 θ2 . . . θn]T .

The cable length Li = ‖ Oi Ei ‖2 can be calculated by the Euclidean norm between
the position PEi of the moving attachment point Ei of the driving cable i to the end-
effector, and the position POi of the fixed vertex Oi (Fig. 2a):

Li = fi(Xe) = ‖ PEi − POi ‖2 = ‖ Pe + ri − POi ‖2 (1)

in which ri = Oe Ei is the radius vector of the attachment point Ei (Fig. 2a). This
radius expressed in a chosen reference frame Ro can be calculated knowing the
rotation matrix oRe between Ro and the frame attached to the end-effector Re where
the radius eri is constant such as: ori = oRe

eri.
The rotation matrix oRe can be decomposed into three successive pure rotations

Roll-Pitch-Yaw (R-P-Y) [10, 11] of angles (φr, φp, φy) respectively around the prin-
cipal axes (Xo,Yo,Zo) of Ro. Under this minimal representation of the orientation,
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(a) (b)

Fig. 2 Diagrams of the 6-DoF CDPRs. a Kinematics/Statics diagram of the 6-DoF CDPRs.
b Dynamics diagram of the 6-DoF CDPRs with additional CBU of the INCA 6D robot

the relationship between oRe and Φe = [φr φp φy]T is:

oRe =
⎡
⎣

cycp cyspsr − sycr cyspcr + sysr

sycp syspsr − cycr syspcr − cysr

−sp cpsr cpcr

⎤
⎦ (2)

with sk = sin φk and ck = cosφk , k standing for r, p or y.
Defining the reference of the motor position θio = 0 from the initial pose of the

end-effector Xeo = [Peo Φeo]T , that by convention increases / decreases during the
winding/unwinding of the driving cable i around its associate driving winch of radius
rpmi, the motor angular position θi is given by:

θi = −�Li / rpmi = −(Li − Lio) / rpmi (3)

where the initial cable length Lio is deduced by Eq. (1) from the initial pose Xeo.
Hence the Inverse Position Kinematic Model (IPKM) is given by:

θ = fθ (Xe) = −R−1
pm (L − Lo) = −R−1

pm (f (Xe)− f (Xeo)) (4)

with the cables lengths vector L = [L1L2 . . . Ln]T and the diagonal matrix of the
driving winches radius Rpm = diag(rpm1, . . . , rpmn).

2.2.2 Velocity Kinematics

A velocity kinematic mapping allows to relate the end-effector velocity Ve =
[ve we]T (including the linear ve and angular we velocities) to the motors angular

velocities vector θ̇ = [θ̇1 θ̇2 . . . θ̇n]T
.

The time derivative of the Eq. (1), provides the well-know inverse kinematics
Jacobian matrix J defined for conventional parallel robots [12] as follows:
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L̇ = J(Xe) Ve (5)

where L̇ = [L̇1 L̇2 . . . L̇n]T
is the cables translational velocities vector, and the ith

row Ji of the (n × 6) Jacobian matrix is expressed by:

Ji(Xe) = [ui
T (ri × ui)

T ] (6)

with ui = OiEi / ‖ OiEi ‖ the unit direction vector of the ith driving cable (Fig. 2a).
Therefore, we can determine the motors velocities vector θ̇ by taking the time

derivative of the Eq. (4), leading to the Inverse Velocity Kinematic Model (IVKM):

θ̇ = Jθ (Xe) Ve = −R−1
pm J(Xe) Ve (7)

The angular velocity we can be related to the derivative of the chosen orientation
representation Φ̇e, using the Jacobian matrix Jrpy. For instance using the composition
law of the angular velocities such as:

we =
⎡
⎣

cy cp −sy 0
sy cp cy 0
−sy 0 1

⎤
⎦ Φ̇e = Jrpy Φ̇e (8)

2.3 Statics Modelling

The resultant of external wrenches Fe (including the forces fe and moments me) on
the center of mass Oe of the end-effector rigid body of mass Me, are dues to both the
cables tensions Te = [Te1 Te2 . . . Ten]T applied on the end-effector side (Fig. 2a),
and the gravity acceleration G:

Fe = W(Xe) Te + Me G [0 0 − 1 0 0 0]T (9)

where W(Xe) is the wrench Jacobian matrix such as: W(Xe) = −JT (Xe).

2.4 Dynamics Modelling

The CDPRs are mainly composed of 2 kinds of subsystems connected by cables
(Fig. 2b):

• End-effector.
• Actuators (including the motors and the CDU / CBU loads).
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First, we consider the model of each of the 2 subsystems separately, and finally
formulate the CDPR systems dynamics, including the whole of the 2 subsystems
considered.

2.4.1 End-Effector Dynamics

The use of the Newton-Euler dynamics formulation to the end-effector rigid body
subsystem (Fig. 2b), written on the center of mass of the end-effector Oe [10, 11]
gives:

Fe =
[

Me I3×3 O3×3
O3×3 Ie

]
V̇e +

[
O3×1

we × (Ie we)

]
= Ae V̇e + Be (10)

with :

Me mass of the end-effector.
Ie moment of inertia tensor (inertia matrix) of the end-effector with respect to the

center of mass Oe.

The moment of inertia tensor Ie expressed in Ro can be calculated from the constant
moment of inertia tensor eIe expressed in Re knowing the rotation matrix oRe such
as: oIe = oRe

eIe
oRe

T .

2.4.2 Actuators Dynamics

Applying the Newton-Euler or Euler-Lagrange formulations to the ith actuator sub-
system constituted by the lumped motor shaft and the driving/balancing winches
(Fig. 2b), leads to the dynamic equation:

jeqi θ̈i + fveqi
θ̈i + fseqi

sign(θ̈i)+ keqiθi = τmi − rpmi (Tai − Taoi) (11)

where:

jeqi equivalent inertia moment of the ith actuator.
fveqi

, fseqi
equivalent viscous and Coulomb friction coefficients of the ith actuator.

kspi stiffness coefficient of the ith balancing spring connected to the balancing
winch via a balancing cable.

with the equivalent rotational stiffness keqi = kspi rpei
2, rpei being the radius of the

balancing winch, and the cable pretension Taoi = kspr i Loi.
The applied motor torque τmi is proportional to the effective motor current imi

with the electromechanical constant kemi:

τmi = kemi imi (12)
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The global actuators dynamics is obtained by combining the dynamic model of
the n actuators:

Jeq θ̈ + Fveq θ̇ + Fseq sign(θ̇)+ Keq θ = τm − Rpm (Ta − Tao) (13)

where :
⎧
⎪⎪⎨
⎪⎪⎩

Jeq = diag(jeq1, jeq2, . . . , jeqn)

Fveq = diag(fveq1
, fveq2

, . . . , fveqn
)

Fseq = diag(fseq1
, fseq2

, . . . , fseqn
)

Keq = diag(keq1, keq2, . . . , keqn)

{
Ta = [Ta1 Ta2 . . . Tan]T

τm = [τm1 τm2 . . . τmn]T

2.4.3 System Dynamics

We now formulate the overall system dynamics, including the end-effector and the
actuators subsystems dynamics.

Under the assumption that the cables are massless, the tensions applied by the
cables on the end-effector Te and on the actuators Ta are equal:

Te = Ta = T (14)

Combining the relationships of the Eqs. (4), (7), (9), (10), (13) and (14) allows
us to derive the CDPR systems Direct Dynamic Model (DDM) projected in the
operational space:

Mx V̇e + Be + Fvx Ve + Fsx sign(R−1
pm J(Xe) Ve)+ Kx f (Xe)+ Gx = Fev (15)

under the n constraints:
T(τm, θ, θ̇ , θ̈ ) > 0

where the dynamical parameters matrices projected in the operational space are:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mx = Ae + JT (Xe) R−1
pm Jeq R−1

pm J(Xe)

Fvx = JT (Xe) R−1
pm Fveq R−1

pm J(Xe)+ JT (Xe) R−1
pm Jeq R−1

pm J̇(Xe,Ve)

Fsx = JT (Xe) R−1
pm Fseq

Kx = JT (Xe) R−1
pm Keq R−1

pm
Gx = Me G [0 0 − 1 0 0 0]T

and the input term of virtual forces Fev meaning the external forces / moments acting
on the end-effector resulting from the effective applied motors torques vector τm is:

Fev = W(Xe) R−1
pm τm
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3 Parameters Identification

We deal in this section with the problem of the parameters identification of robots,
in order to improve the model accuracy.

Some related works have been done for the rigid links manipulator robots, con-
cerning the kinematic parameters identification, we can mention [13] for the parallel
robots. While the works that focused on the dynamic parameters identification were
largely presented in [14] for the electromechanics systems in general and for the
serial robots particularly, the case of parallel robots is addressed in [15].

Considering that the CDPRs kinematics completely defined by the Eqs. (4) and (7)
is needed to compute the CDPRs dynamics in Eq. (15), the kinematic and dynamic
parameters are definitively coupled into the DDM. In order to avoid the influence
of the errors on the kinematic parameters from the dynamic parameters estimation
stage, we propose to identify these parameters separately in 2 steps described below:

• Step 1: The kinematic parameters are first estimated using the IPKM.
• Step 2: The dynamic parameters are then estimated from the DDM, using the

identified kinematic parameters.

3.1 Kinematic Parameters Identification

In order to obtain an accurate kinematic positioning of the end-effector through the
kinematic workspace, the vector of the kinematic parameters xK to be identified,
can be estimated leading to x̂K by minimising the following kinematic identification
error criterion E(xK ) defined for a number of samples Ns at a sampling time Ts:

E(xK ) =
n∑

i=1

Ns∑

k=1

eik(xk) =
n∑

i=1

Ns∑

k=1

(θik − θ̂ik(xK ))
2

(16)

with:

eik(xK ) = ei(t = k Ts, xK ) kinematic identification error.
θik = θi(t = k Ts) motor position measurements.
θ̂ik(xK ) = θ̂i(t = k Ts, xK ) motor position estimations using the IPKM.

The problem of the minimisation of Eq. (16) criterion is typically a non-linear
least squares optimisation problem, with the objective function E(xK ). This problem
could be solved iteratively using a numerical algorithms such as: gradient descent,
Gauss-Newton or Levenberg-Marquardt in a more common version.
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3.2 Dynamic Parameters Identification

The identification of the dynamical parameters of robots is a difficult problem, since
the dynamic of these Multiple-Input Multiple-Output (MIMO) systems is generally
non-linear and their multiple states are coupled.

An identification methodology for robots have been studied in [14], and can be
classified according to the error chosen as the validation criterion:

• Validation on the input error: which is based on the Inverse Dynamic Model (IDM)
written in a linear form according to the parameters to be identified.

• Validation on the output error: which is based on the DDM.

In order to obtain an accurate dynamic positioning of the end-effector through the
kinematic workspace, the use of the output error validation seems to be an obvious
choice. Hence, the vector of the dynamic parameters xD to be identified, can be
estimated leading to x̂D by minimising the following dynamic identification error
criterion E(̂xK , xD), defined in the operational space in term of end-effector posture:

E(̂xK , xD) =
6∑

i=1

Ns∑

k=1

eik (̂xK , xD) =
6∑

i=1

Ns∑

k=1

(Xeik − X̂eik (̂xK , xD))
2

(17)

or also in the joint space in term of motors positioning:

E(̂xK , xD) =
n∑

i=1

Ns∑

k=1

eik (̂xK , xD) =
n∑

i=1

Ns∑

k=1

(θik − θ̂ik (̂xK , xD))
2

(18)

with:

eik (̂xK , xD) = ei(t = k Ts, x̂K , xD) dynamic identification error.
Xeik = Xei(t = k Ts) end-effector pose measurement.
X̂eik (̂xK , xD) = X̂ei(t = k Ts, x̂K , xD) end-effector pose estimation using the DDM.
θik = θi(t = k Ts) motor position measurements.
θ̂ik (̂xK , xD) = θ̂i(t = k Ts, x̂K , xD) motor position estimations using the DDM

and IPKM.

The problem of the minimisation of Eqs. (17) and (18) criterion is also a non-linear
least squares optimisation problem, with the objective function E(̂xK , xD). This prob-
lem could be solved iteratively using the same algorithms mentioned for the kinematic
parameters estimation. However, the identified vector of the dynamic parameters
resulting from the optimisation problem, requires many integrations of the DDM
over a fairly long time interval and is therefore very demanding in computation time
(Fig. 3).
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(a) (b)

Fig. 3 Parameters identification schemes. a Kinematic parameters identification scheme.
b Dynamic parameters identification scheme with the validation on output error

4 Experimental Results

Here we apply the proposed identification methodology to the INCA 6D cable-driven
parallel robot.

The performance of the identification method is quantified by evaluating the fit
on the outputs.2

4.1 Initial Values of the Parameters

The reference frame Ro is placed at the center of the kinematic workspace (Fig. 4a),
and the frame attached to the end-effector Re is chosen initially parallel with Ro (Re

// Ro, see Fig. 4b).
Each motor is controlled in current and the current loop can be modelled by a

continuous first order transfer function Gi(s) with a time constant τi between the
desired current Id i and the effective motor current Imi:

Gi(s) = Imi(s)

Id i(s)
= 1

1 + τi s

The initial values of the kinematic (see Fig. 4) and dynamic parameters of the
INCA 6D robot, known by design or calculated, are given in the Table 1. The dynamic
parameters related to the actuators are assumed to be identical for each of them. These
parameters have been used in the simulations, and also to initialise the vector of the
estimated parameters during the kinematic and dynamic identification steps.

2 For the ith output of a MIMO system of input vector u (dim(u) = Nu) and output vector y
(dim(u) = Ny) along a set of Ns samples by:

FITi(%) =
(

1 −
∑Ny

i=1

∑Ns
k=1 (yik − ŷik)

2

∑Ny
i=1

∑Ns
k=1 (yik − yi)

2

)
× 100

where ŷ is the estimation of the output vector y and yi the average of the ith output yi.
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(a) (b)

Fig. 4 Kinematic workspace parameters. a Kinematic workspace parameters. b End-effector
parameters

About the Coulomb friction fseq parameter, it is evaluated by powering each motor
separately with a time-ramp signal of desired current, that increases starting from the
initial value Imin = 0 A to the final value Imax = 3 A with a unit slope, while the other
motors are controlled to 0 A. Noting the minimum value of the current that produces a
motion of the end-effector, the Coulomb friction coefficient is then calculated by the
linear relation Eq. (12) between the Coulomb friction torques fseq and motor currents
im using the gain constant kem. The measured values of the Coulomb friction lead
to the ratio τmmax / fseq � 100, where τmmax is the maximum torque that could be
applied by the motors.

4.2 Identification of the Kinematic Parameters

4.2.1 Experimental Data for the Kinematic Identification

In order to evaluate the validity of the kinematic parameters through the entire kine-
matic workspace, we performed 8 different tests. Each of the Test i consists in moving
the end-effector (in an initial pose identical for the 8 tests) on the direction of the ith
motor by applying to it a time-step signal of desired current, of an amplitude I = 1 A,
while the other motors are controlled to 0 A. We noted at the end of each test, the
final rotation angles of the motors, as well as the final pose of the end-effector.

The motors positions are collected at a sample rate Te = 1 ms, and the end-effector
poses at a sample rate Tc = 4 ms.
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Table 1 Initial and estimated
values of the kinematic and
dynamic parameters of the
INCA 6D robot

Kinematic parameters Initial values Estimated values

Lx (m) 2.53 2.50
Ly (m) 2.8 2.75
Lz (m) 3 3.05
a (mm) 41 idem
l (mm) 153 153
θxy (o) 70 63
θxz (o) 24 21.6
rpe (mm) 6 idem
rpm (mm) 17.5 17.5

Dynamic parameters Initial values Estimated values

Me (g) 0.1569 0.2895
eIexx (g·m2) 4.9691 · 10−3 1.4904 · 10−4

eIeyy (g·m2) 6.9127 · 10−3 2.0736 · 10−4

eIezz (g·m2) 6.9127 · 10−3 2.0736 · 10−4

eIexy (g·m2) 0 idem
eIeyz (g·m2) 0 idem
eIexz (g·m2) 0 idem
jeq (g·m2) 2.9110 · 10−5 3.8795 · 10−5

fveq ((N·m)/(rad/s)) 3.1 · 10−3 6.6779 · 10−5

fseq ((N·m)/(rad/s)) 1.8 · 10−3 4.4 · 10−3

ksp (N/m) 16 14.45
kem ((N·m)/A) 60.3 · 10−3 idem
τ (ms) 1.3 idem

4.2.2 Estimated Kinematic Parameters

Applying the kinematic identification scheme presented previously on Fig. 3a,
the kinematic parameters are estimated iteratively using the Levenberg-Marquardt
method solving the non-linear least squares optimisation problem of Eq. (16).

In the Table 1, the achieved estimates of the chosen kinematic parameters to be
identified are given. The kinematic parameters a and rpe were maintained at their
known values, because they are not involved in the kinematics modelling.

The comparison between the angular positions of the motors estimations issued
from the IPKM, and the experimental identification data is shown in the Fig. 5.

In the first column of the Table 2, the corresponding numerical values of the fit on
the motors positions are provided.
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Fig. 5 Experimental and estimated motor position trajectories of the kinematic identification step

4.3 Identification of the Dynamic Parameters

4.3.1 Experimental Data for the Dynamic Identification

The choice of the excitation trajectories is an important point for the identification
procedure. Indeed, the parameters estimation of a model that is structurally identi-
fiable may be impossible to achieve if the data are not rich enough. The excitation
trajectories are constrained to contain both slow (for friction and stiffness) and high
(for inertia) dynamics.

For the particular case of the CDPRs, the trajectories should be also large enough
to avoid a slack behaviour of the cables by maintaining positive cable tensions, and
sufficiently slow not to amplify the vibrations of the cables.

In the case shown, the motor current signals are chosen as decoupled Pseudo-
Random Binary Sequence(s) (PRBS(s)). For the identification trajectory, the low
level Idmin = 0 A and high level Idmax = 1 A of the signals are adjusted to respect
the constraints on the cable tensions. The high frequency of the frequency band [0 -
fmax] was set to fmax = 1 Hz, during a time interval [0–5 s].

A cross validation is performed with different PRBS trajectories of parameters
described in the Table 2, in order to test the influences on the estimates, depend-
ing on the changes in the PRBS signal parameters. Are investigated the changes in:
the frequency band fmax (Val(b)), the current levels Idmin and Idmax (Val(c)), and
both current levels with frequency band (Val(d)). The validation trajectory Val(a)
is the identification trajectory extension taken during [5–10 s]. And the trajectories
of validation Val(e) and Val(f) are used to evaluate the model accuracy in case of
non-negligible cable vibrations observed during the experimentations from this tra-
jectories frequency.
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Table 2 Identification results by evaluating the fit on the motors positions, according to different
parameters of the SBPA excitation trajectories

SBPA Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
parameters ident val(a) val(b) val(c) val(d) val(e) val(f)

Imin (A) 0 0 0 0.5 0.5 0 0.5
Imax (A) 1 1 1 1.5 1.5 1 1.5
fmax (Hz) 1 1 2 1 2 5 5

Motors Kinematic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
ident ident val(a) val(b) val(c) val(d) val(e) val(f)

Motor 1 88.60 91.20 92.55 84.79 86.10 90.15 83.26 82.24
Motor 2 88.19 85.09 88.02 84.79 81.41 86.83 69.92 69.35
Motor 3 85.75 88.22 89.09 82.65 81.55 82.65 80.45 77.88
Motor 4 92.92 93.88 93.39 88.20 85.70 89.14 79.32 74.11
Motor 5 88.90 86.85 84.72 77.91 82.05 82.60 79.90 79.66
Motor 6 84.08 93.62 92.02 87.15 85.39 89.32 81.26 75.88
Motor 7 83.44 90.26 90.46 83.73 85.99 88.82 82.97 81.98
Motor 8 95.08 85.67 87.79 82.09 84.27 86.96 70.91 71.98
Average 88.37 89.35 89.75 83.91 84.06 87.06 78.50 76.64

The motor currents and positions are collected at a sample rate Te = 1 ms. The
motor torques are computed using the linear relationship Eq. (12) from the motor
currents. In order to avoid the noise in the measurements, the motors currents can
also be estimated from the desired currents using the transfer function Gi(s).

4.3.2 Estimated Dynamic Parameters

Applying the dynamic identification scheme presented previously in Fig. 3b (with
c = 1), the dynamic parameters are estimated iteratively using also the Levenberg-
Marquardt method solving the non-linear least squares optimisation problem of
Eq. (18).

In the Table 1, the achieved estimates of the chosen dynamic parameters to be
identified are given. The dynamic parameters kem and τ are maintained at their known
values, which have been confirmed by additional experimentations. The non-diagonal
components of the moment of inertia are set to: eIexy = eIeyz = eIexz = 0 g·m2,
and the diagonal components eIeyy and eIezz are forced to be equal (eIezz = eIeyy),
because of the geometric symmetry of the end-effector.

The comparison between the angular positions of the motors estimations issued
from the DDM and IPKM, and the experimental identification data is shown in the
Fig. 6.

In the second column of the Table 2, the corresponding numerical values of the
fit on the motors positions for the identification trajectory are provided. Whereas the
valued of the fit for the cross-validation trajectories are given in the column 3 to 8.
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Fig. 6 Experimental and estimated motor position trajectories of the dynamic identification step

5 Conclusion and Perspectives

This paper presented a methodology for the identification of the combined kinematic
and dynamic model parameters of a 6-DoF CDPRs, where the kinematic parameters
are first estimated to avoid the influences of the errors on the kinematic parameters
from the step of the dynamic identification.

The method has been successfully experimented on the INCA 6D robot, to reach
an improved inputs-outputs behaviour of the model according to the experimental
data. The proposed methodology provides a good fit on the motors output positions
between the model and experimentations, and the estimated values of both the kine-
matic and dynamic parameters remain close from their initial guessed values, except
for the viscous friction term. The validity of the identified model remains good even
when the cables are subject to non-negligible vibrations, as could be observed on the
validations with higher frequency trajectories.

Our perspectives in this work, are to investigate the dynamic identification step
by the study of the cable flexibilities influences on the modelling. For this, in a close
future, the pose reconstruction task will be available in real-time to be included in the
dynamic identification scheme, where the pose information given by the 6 infra-red
cameras evaluates the model error in term of end-effector posture.

Further works will involve the synthesis and analysis of kinematic and dynamic
position / vision control strategies to achieve high bandwidths and reach a high speed
motions, while maintaining positive tensions in the cables.
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Abstract In this paper the differential kinematics for cable-driven robots is derived
and the use for calibration, system investigation and a force based forward kinematics
is shown. The Jacobians for each part of the kinematic chain are derived with respect
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eration of geometrical quantities, the differential relations between non-geometrical
quantities such as cable stiffness and cable forces are determined. The decomposi-
tion in the most fundamental Jacobians allows to analyse and compute more complex
relations by reassembling the Jacobians as needed. This approach allows more insight
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Fig. 1 Cable-driven parallel robot demonstrator at Fraunhofer IPA

1 Introduction

Cable-driven parallel robots, here simply called cable robots, are parallel kinematic
machines mainly consisting of a platform, cables and winches. The cables connect
the platform to the winches which control the platform pose by changing the cable
length. In recent years, cable robots got lots of attention due to their advantages
over serial kinematic robots and conventional parallel kinematic robots with rigid
links [1, 4]. On the one side, cable robots inherit the properties of parallel kinematic
robots as for instance high stiffness, payload and very good precision. On the other
side, they outperform conventional parallel kinematics with regards to flexibility,
workspace and speed, because the cables allow ultra light weight constructions in
nearly arbitrary large areas. The winches can be easily attached to solid structures as
steel frames or walls and allow to change the robot configuration in a short time. The
applications for cable robots include pick and place tasks, video recording for sport
events as well as virtual reality simulators. It is also possible to invert the principle of
actuation by exchanging the motors with passive positioning sensors which allows
the cable robot to be used as metrology system (Fig. 1).

All the tasks need an accurate robot model in order to provide good results.
The correct model parametrization can be obtained by a calibration procedure. For
an overconstrained cable robot with more than six cables it is possible to use the
redundant information for auto-calibration which allows to avoid expensive external
metrology equipment. A solely kinematic description of cable robots may not be
sufficient for tasks such as auto-calibration, because cable elongation caused by cable
forces is not negligible. The inclusion of cable forces in the robot model demands the
consideration of the system stiffness and the implementation of an extended forward
kinematics that regards cable forces. The calibration, stiffness computation, and
forward kinematics as well as system analysis and controller development demand
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the knowledge of differential relations of geometrical and non-geometrical quantities.
This paper describes the differential kinematics of cable-driven parallel robots as well
as the differential relations of some non-geometrical quantities such as the cable
stiffness and platform mass. The derived relations are used for calibration, stiffness
analysis and the implementation of an extended force based forward kinematics
which regards the cable forces and cable elongation and therefore allows to compute
the platform pose more accurately than a solely geometrical forward kinematics.

At first, the kinematics of the cable robot is described. Then the most basic rela-
tions of the geometrical and force related quantities are derived. Later, the use for
calibration and stiffness analysis is shown and a force based forward kinematics is
implemented.

2 Robot Kinematics

The cable robot consists of m cables connecting the platform to the winches which
in turn are attached to a rigid base. The platform pose is described by the generalized
coordinates

x = [
rT dT

]T
(1)

where r and d refer to the platform position and orientation, respectively. Considering
the base coordinates ai and the cable attachment points at the platform described
by bi , the kinematic loop for a single drive chain reads

li = ai − r − R0P(d)bi , (2)

where li refers to the cable vector and R0P is the rotation matrix between the plat-
form frame KP and the inertial frame K0 shown in Fig. 2. Considering the cables as
massless elements in an ideal tightened state without elongation and sagging it is
possible to compute the actuator variables qθ = [

θ1 · · · θm
]T for a given platform

pose x using the analytically and uniquely solvable inverse kinematics

qθ = h(p, x, x0) = qN(x)− q(x0), (3)

where qN,i (x) = ∥∥lN,i
∥∥

2 denotes the nominal controlled cable length, x0 describes
the initial configuration, and p relates to the system parametrization. The correspond-
ing forward kinematics

x = h−1 = f(p,qθ ) (4)

has to be solved numerically and provides multiple solutions [3]. Both Eqs. (3) and
(4) are fundamental to the solution of various problems such as the development of
controllers. Deriving the actuator variable qθ with respect to the platform pose x and
using the kinetostatic principle one gets the following relation
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Fig. 2 Robot kinematics

dθ(x)
dx

= dq(x)
dx

= Jqx = −AP (5)

therein

AT =
[

(0)u1 · · · (0)um

(0)b1 × (0)u1 · · · (0)bm × (0)um

]
(6)

corresponds to the well known structure matrix AT [6]. The subscript (0) refers to
the coordinate system in which the vector is described. Matrix P depends on the
parametrization of the rotation and expresses the relation between the geometrical
and analytical Jacobian matrix. For quaternions, matrix P can be computed as in [5].

3 Differential Relations of Kinematic Quantities

The kinematic loop of a cable-driven parallel robot as shown in Fig. 2 and the asso-
ciated differential kinematics is used in many algorithms. Especially the differential
relations of the platform pose x with respect to the associated platform vectors b, the
cable vectors l as well as the actuator variables qθ are of interest for many applica-
tions. In the following, the pose related Jacobians for the geometrical quantities are
derived.
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3.1 Pose Related Derivatives of Robot Kinematics

An infinitesimal change of the platform motion can be describe by

δx = [
δr wδ

]T (7)

where δr is the virtual platform displacement and wδ is the angular displacement
vector. The angular displacement vector is similar to the angular velocity vector
when rotation is derived with respect to time. The angular displacement uniquely
describes the infinitesimal rotation of a body and is independent of the underlying
parametrization d of the rotation. The relation between the virtual rotation and a
specific parametrization is given by

wδ = Pδd. (8)

The cable attachment points Bi on the platform are changing with respect to the
inertial frame according to the virtual motion of the platform. Introducing the position
vector rB,i = r + R0Pbi to a single attachment point Bi one can compute the virtual
displacement by

δrB,i = JBx,iδx, (9)

JBx,i = ∂rB,i

∂x
= [

E Jbψ,i
]

T (10)

with
Jbψ,i =(0) −b̃i . (11)

and the transformation matrix

T =
[

E 0
0 P

]
. (12)

The tilde operator in Eq. (11) relates to a screw symmetric matrix which fulfills
relation

b̃u = b × u. (13)

For a kinematic loop where Ai is regraded as fixed point, the derivative of a single
cable vector li with respect to the platform pose x can be computed by

δli = dli
dx
δx = drB,i (x)

dx
δx = JBx,iδx (14)

and therefore the Jacobian reads

Jlx,i = JBx,i . (15)
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In case of a more advanced kinematic model which includes the winch pulley to
compute the cable length, one has to consider the influence of the attachment point
Bi on the pulleys rotation and tilt angle. In the following only the simplified inverse
kinematics model is assumed.

The change in the cable length qi follows from

δqi = li T d
dx li

‖li‖2
δx = uT

i
dli
dx
δx. (16)

where the Jacobian is defined as

Jqx,i = uT
i Jlx,i . (17)

One can see that the change in the cable length qi is the projection of δli on the
cables’ unit vector ui . The derivative of the unit vector itself with respect to x reads

δui = ‖li‖−2
2

(
∂li
∂x

‖li‖2 − li
∂‖li‖2

∂x

)
δx. (18)

Further computation and the use of Eq. (17) yields

δui = q−2
i

(
Jlx,i qi − li ⊗ ui Jlx,i

)
δx. (19)

Separating Jlx,i yields
δui = Jul,i Jlx,iδx (20)

where the 3 × 3 Jacobian Jul describes the mapping δl → δu from the cable vector
to the unit vector with

Jul,i = q−1
i E − q−2

i li ⊗ ui . (21)

Mappings between the geometrical quantities can be described by multiplying the
corresponding Jacobians

δx
JBx→ δrB,i

E→ δli
Jul→ δui . (22)

3.2 Parameter Related Derivatives of Robot Kinematics

Parameter related derivatives are of interest for calibration and system investigation.
The associated Jacobians allow to determine the influence of the parameters on the
robot geometry. The main geometrical parameters are the cable outlet points Ai

described by the vector ai and the cable attachment points at the platform denoted
by the local platform vector bi . For a cable robot with m cables, the kinematic equa-
tions depend on 6m geometrical parameters which are combined in the geometrical



Differential Kinematics for Cable-Driven Parallel Robots 325

parameter vector
pG = [

aT
1 bT

1 · · · aT
m bT

m

]T
. (23)

The derivative of a single cable vector with respect to the geometrical parameters pG
yields

δli = JlpG,iδpG (24)

where

JlpG,i = ∂li
∂pG

= [
03×6(i−1) E3×3 −R0P 03×6(m−i)

]
3×6m . (25)

The derivative of a single unit vector

δui = JupG,iδp (26)

is closely related to the derivative of the cable vector. The corresponding 3 × 6 m
Jacobian can be computed by consideration of Eqs. (25) and (21) so that

JupG,i = ∂ui (li (pG))

∂pG
= ∂ui

∂li

∂li
∂pG

= Jul,i JlpG,i . (27)

The derivative of the cable length with respect to the geometrical parameters pG
yields

δqi = JqpG,iδpG, (28)

where the Jacobian for a single drive chain i reads

JqpG,i = ∂hi

∂pG
= [

01×6(i−1) uT
i −uT

i R0P 01×6(m−i)
]

1×6m . (29)

For the later described force model one has to consider the difference between the
actual cable length and the nominal cable length Δq = q(x) − qN(x0,qθ ) where
Δqi depends on the actual state x and the initial state x0 which both depend on the
parameter set p. The influence of the geometrical parameters on the actual configura-
tion as well as the initial configuration can be regarded by computing the difference
between the current and the initial Jacobian

JΔqpG = ∂(q − qN)

∂pG
= JqpG − JqpG0, (30)

δΔq = JΔqpGδpG. (31)
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4 Force Equations

A solely kinematic model does not regard cable forces and therefore is inaccurate
since the elongation of the cables is not considered in the kinematic equations. A
model that regards the cable forces can be obtained by adding two additional force
equations to the geometrical model.

The first equation (32) describes the static cable behavior by computing the cable
forces with respect to the cable elongation. The second equation (35) describes
the platform wrench resulting form the cable forces and external forces such as
gravitation. Equation (35) can be used to find a static force equilibrium where the
platform is at rest. Here a simplified linear spring model

f = KQ−1Δq(x,qθ ) (32)

is used to describe the cable elasticity where K = diag(k) is the specific stiffness
matrix and Q = diag(q) is a m × m diagonal matrix containing the cable lengths.
Vector

Δq = q(x)− qN(x0,qθ ) (33)

represents the difference between the actual cable length q and the nominal cable
length qN. The nominal cable length is obtained by the solely geometrical robot
model and depends on the initial configuration as well as the current actuator states

qN = q0 + qθ + qθ,off (34)

where qθ,off is an initial cable offset, which allows to define an initial force state with
Δq0 = qθ,off . Taking cable forces into account, the platform can be described as a
free floating body whose static force equilibrium is described by constraint

g(x) = AT(p, x)f(qθ , x)+ wg(x) = 0. (35)

Damping effects are neglected in the cable model, because only the static behavior
is of interest.

4.1 Pose Related Derivatives of the Force Equations

For calibration, force based forwards kinematics and the investigation of the system
stiffness, it is necessary to compute the pose related derivatives of the force equations.
The derivative of Eq. (35) with respect to the platform pose yields

Jgx = dg(x)
dx

= dAT(x)
dx

f(x)+ AT(x)
df(x)

dx
+ dwg(x)

dx
. (36)
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The derivative of the first expression in Eq. (36) reflects the influence of changing
force directions caused by the platform displacement and rotation. The derivative
yields

JAx = d

dx

(
A(x)T

)
f(x) =

m∑

i=1

d

dx

(
vA,i (x)T

)
fi (x) (37)

where vA,i is the i-th column vector of the structure matrix AT. For a single drive
train i one gets

JAx,i = ∂

∂x
(AT

i (x))
[

Jux,i

−ũi Jbx,i + b̃i Jux,i

]
. (38)

The derivative of the force vector yields

Jfx = df(x)
dx

= −KQNQ−2AP (39)

which describes the change of the cable forces caused by the platform displacement
where QN = diag(qN). Deriving the platform wrench yields

Jwx = d

dx
wg(x) = mg

[
0

(− d
dx bg,y

)T ( d
dx bg,x

)T
0
]T

(40)

where the local platform vector bg describes the point of action of the gravitational
force.

5 Application

5.1 Forward Kinematics Under the Consideration
of Cable Forces

For an exclusively kinematic model, forward kinematics is used to compute a valid
pose which fulfills the kinematic constraints (2). Similarly, it is possible to find a
static pose x which fulfills constraint Eq. (35). Finding a static pose from a given
initial pose x̂ with ĝ = g(x̂) �= 0 is a nonlinear optimization problem. For small
deviations Δx it is possible to linearize Eq. (35) around the equilibrium point xeq so
that

g(x +Δx) ≈ g(x)|xeq
+ dg(x)

dx

∣∣∣∣
xeq

Δx. (41)

Introducing the residual function

r(x) = ĝ − g(x), (42)
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Fig. 3 Visualization of the cable forces computed by the force based forward kinematics. a Initial
force distribution. b Force distribution when cable i = 1 was wound up by 5 cm

the static pose fulfilling Eq. (35) can be found by minimizing the objective function

xeq = min
x

(
1

2
r(x)Tr(x)

)
. (43)

Under consideration of linearization (41) and Eq. (42) one gets

r = Δg − JgxΔx. (44)

where the minimal solution can be computed by solving the well known normal
equation

JT
gxJgxΔx = JT

gxΔg. (45)

The force based forward kinematics for instance can be used to investigate the plat-
form behavior with respect to the system stiffness as shown in Figs. 3 and 4. At the
beginning of the simulation, the nominal values for the cable lengths are computed.
Then the force based forward kinematics computes a valid static pose starting from
an initial pose x0. Thereafter, the length of the cable i = 1 is iteratively reduce by
10 cm. The force based forward kinematics is used to compute the new platform pose
and corresponded force distribution during each iteration step.

5.2 Calibration

For calibration it is important to know the differential relations of the geometrical and
non geometrical parameters that are subject to calibration. In general, the calibration
task consists of multiple parts [2]. At first, a kinematic model of the robot has to be
established and those geometrical parameters have to be identified that have the most
influence on the pose error. This goes along with pose selection [7] in order to find
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(a) (b)

Fig. 4 Influence of the changing cable length on the platform position and cable lengths during
pose measurement. a Cable force with respect to changing cable length −Δq1. The bold blue line
indicates cable i = 1. b Platform position error with respect to changing cable length −Δq1

a well conditioned identification matrix which reflects the sensitivity with respect to
parametric errors.
For a solely geometrical calibration, the most influential parameters are the platform
vectors b and the winch position vectors a. The associated parameter vector for a
cable robot with m cables is

pG = [
aT

1 bT
1 · · · aT

m bT
m

]T
. (46)

Since cable robots with m > 6 cables are overconstrained, it is possible to use the
redundant cables for auto-calibration. Six independent cables define the platform
pose while m − 6 dependent cables are used to measure the pose and compare the
measurements. The relation of the associated dependent actuator variables qθ,D and
independent actuator variables qθ,I is described by the forward kinematics

qθ,D = hD(pD, x(pI,qθ,I), x(pI)). (47)

The aim of the calibration procedure is to minimize the error between the model and
the actual robot which is expressed by the residual function

r(p) = qθ,M − qθ,D(p) (48)

where qθ,M relates to the measured actuator variables. The minimal solution for the
associated objective function

popt = min
p
(
1

2
r(p)Tr(p)

︸ ︷︷ ︸
g(p)

). (49)
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can be found by solving the associated least squares problem

JT
qpJqpΔp = JT

qpr (50)

with

Jqp = dr(p)
dp

= dhD(pD, x(pI, θI), x0(pI))

d(pD,pI)
=

[
JqpD −JqxDJ−1

qxIJqpI

]
(51)

and

JqpD = ∂h(pD, x, x0)

∂pD
, JqpI = ∂h(pI, x, x0)

∂pI
(52)

JqxD = ∂h(pD, x, x0)

∂x
, JqxI = ∂h(pI, x, x0)

∂x
. (53)

The inverse of JqxI can be computed only in the sense of least squares when quater-
nions are used to describe the rotation. This can be avoided using relation (17) from
which follows

JqDpI = JqxDJ−1
qxIJqpI = ADA−1

I JqpI. (54)

The influence of the parameter variation on the measured cable length of a selected
pose k can now be expressed using matrix notation

r(p)(k) =
[

J(k)qpD −J(k)qDpI

]
︸ ︷︷ ︸

J(k)H

[
ΔpD
ΔpI

]

︸ ︷︷ ︸
Δp

. (55)

Now, with Eq. (55) one can build the identification matrix and use the Levenberg–
Marquardt or Newton algorithm to find the optimal parameter set popt by minimizing
the objective function g(p) in Eq. (49). The Levenberg–Marquardt algorithm starts
with a first initial guess and then converges to the optimal parameter set as shown
in Fig. 5b. In each step the parameters are adjusted and the robot frame and the
platform geometry are changed as shown in Fig. 5a. The change in the parameter set
causes the platform to move in a new position which can be computed by solving the
forward kinematics in each iteration step. Using a force based forward kinematics as
previously described allows to regard the cable elasticities and to identify the force
related model parameters such as the cable stiffness and platform mass.

5.3 System Stiffness

The system stiffness of a cable-driven parallel robot is relevant for the analysis of the
system behavior and the development of control algorithms. It largely depends on
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(a) (b)

Fig. 5 Robot calibration procedure. a Erroneous robot model (green) and the actual robot frame
(black). b Convergence behavior of the winch position vectors

the current platform position and also can be changed by altering the cable forces.
The cable force vector f depends on the nominal cable length qN which itself is
controlled by the actuator variable qθ as denoted in Eq. (32). Considering that the
cable forces not only depend on the actuator variables but also on the platform pose,
one gets the derivative with respect to the actuator variables by

δf = df(x(qθ ))
dqθ

δqθ =
(
∂f
∂qθ

+ ∂f
∂x

∂x
∂qθ

)
δqθ (56)

Implicit differentiation of force constraint (35) yields

dg(x(qθ ))
dqθ

= ∂g(qθ , x, x0)

∂qθ
+ ∂g(qθ , x, x0)

∂x
∂x
∂qθ

= 0 (57)

and therefore the mapping of the actuator variable qθ on the platform pose x while
staying on the constraint manifold g yields

δx = ∂x
∂qθ

δqθ . (58)

with
∂x
∂qθ

= −∂g(qθ , x)
∂x

−1 ∂g(qθ , x)
∂qθ

. (59)

Now the relation between the cable forces f and the actuator variable qθ can be
described by substituting (59) and (56) resulting in

δf =
(
∂f
∂qθ

− ∂f
∂x
∂g(qθ , x)
∂x

−1 ∂g(qθ , x)
∂qθ

)
δqθ (60)
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Deriving force equation (32) with respect to the actuator variable qθ one gets

J f θ = ∂f
∂qθ

= −KQ−1. (61)

The partial derivative of Eq. (35) yields

⎛
⎜⎜⎜⎝

∂

∂qθ

(
A(x)T

)
f(qθ , x)

︸ ︷︷ ︸
0

+A(x)T
∂f(qθ , x)
∂qθ

⎞
⎟⎟⎟⎠ = A(x)T

∂f(qθ , x)
∂qθ

(62)

where the first part becomes zero since changes in the direction of the cable vector
do not influence the structure matrix and the dependency of x(qθ ) is separately
considered in Eq. (57). Using the matrix notation one can write

δf = Kfqδqθ (63)

where
Kfq =

(
Jfq − JfxJ−1

gx ATJfq

)
(64)

is stiffness matrix in the joint space. The equation can be used for the investigation
of the system stiffness and controller development.

6 Conclusion

In this paper the differential relations between geometrical and non-geometrical
quantities were derived. Then the use for calibration, a force based forward kine-
matics and the investigation of system stiffness was shown. The decomposition of
the kinematic relations allows more insight in the system properties and simplifies
the implementation of algorithms that are making use of the Jacobians, because the
individual components can be reused in different contexts.
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Experimental Performance of Robust PID
Controller on a Planar Cable Robot

Mohammad A. Khosravi and Hamid D. Taghirad

Abstract In this paper dynamic analysis and experimental performance of robust
PID control for fully-constrained cable driven robots are studied in detail. Since in
this class of manipulators cables should remain in tension for all maneuvers through
their whole workspace, feedback control of such robots becomes more challenging
than conventional parallel robots. To ensure that all the cables remain in tension, a
corrective term is used in the proposed PID control scheme. In design of PID control
it is assumed that there exist bounded norm uncertainties in Jacobian matrix and in
all dynamics matrices. Then a robust PID controller is proposed to overcome partial
knowledge of robot, and to guarantee boundedness of tracking errors. Finally, the
effectiveness of the proposed PID algorithm is examined through experiments and it
is shown that the proposed control structure is able to provide suitable performance
in practice.

1 Introduction

Cable driven parallel manipulators (CDPMs) are a special class of parallel robots
in which the rigid extensible links are replaced by actuated cables. In a CDPM
the end-effector is connected to the base by a number of active cables. While the
cables length is changing, the end-effector is manipulated toward the desired position
and orientation. Cable driven robots have some advantages compared to that of
conventional robots. Using cables as an alternative to rigid links enables cable robots
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to be used for very large workspace applications such as large adaptive reflector and
SkyCam [1, 2]. Because of negligible mass and inertia of cables, they are suitable for
high speed applications. Moreover, they can achieve some useful properties such as
transportability and ease of assembly/disassembly, reconfigurability and economical
structure and maintenance [3]. Consequently, CDPMs are exceptionally suitable to
be used in many applications such as, handling of heavy materials [4], high speed
manipulation [5, 6], cleanup of disaster areas [7], rapidly deployable rescue robots,
and access to remote location and working in hazardous environment [8].

Using cables in the structure of the robot, however, introduces new challenges
in the study of CDPMs. Cables can only apply tensile forces, therefore, the cables
must be kept in tension in the whole workspace of the robot [9]. In order to fulfill this
requirement, usually fully constrained structures are considered for a cable robot [7].
This kind of robots is being analyzed in this paper.

In comparison to the large amount of papers reported on the control of conventional
robots, relatively few papers are reported on the control of CDPMs. However, many
control schemes which are developed for serial or parallel robots, may be adapted for
CDPMs. Lyapunov based control [6, 10], computed torque method [10, 11], sliding
mode [12] and PD control [13] are some control algorithms being used in the control
of CDPMs. The goal of this paper is to develop a position control algorithm based
on PID, and verify its robustness against modeling uncertainties. This algorithm is
formulated in task space and uses a corrective term to ensure that all the cables remain
in tension.

The structure of this paper is as follows. In Sect. 2 kinematics and dynamics of
CDPMs are studied in detail. Dynamic equations of actuators are obtained and incor-
porated in overall dynamics of the system. Section 3 describes the control algorithm
of the system and according to upper bounds on dynamical terms, control gains are
tuned such that the robust stability of the system is guaranteed. Finally, to show the
effectiveness of proposed control algorithm experimental results for a planar cable
driven robot are detailed in Sect. 4.

2 Kinematics and Dynamics Analysis

2.1 Kinematics Analysis

Cable driven robot is a closed kinematic chain mechanism whose end-effector is
connected to the base by a number of actuated cables. The kinematics notation of a
general cable driven robot with n cables is shown in Fig. 1. In this figure li denotes
the vector along i’th cable and has the same length as the cable. The length of the i’th
cable is denoted by li . Si denotes the unit vector along the i’th cable from the base to
the end-effector. Ai and Bi denote the attachment points of the i’th cable on the base
and end-effector, respectively. The positions of the attachment points Ai and Bi are
represented by vectors ai ,bi , respectively. Obviously, ai is a constant vector in the
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Fig. 1 Kinematic schematic
of a general CDRPM

base frame Fo and bi is a constant vector in the end-effector frame Fe. The origin
of the end-effector frame Fe is fixed at a reference point P , the end-effector center
of mass, which is used to define the position vector of the end-effector p. Based
on the kinematics notation defined in Fig. 1 the position of the end-effector may be
written as:

p = ai + li − bi (i = 1, 2, · · · , n) (1)

where all vectors are represented in the base frame Fo. As a result

l2
i = [p − ai + bi ]T · [p − ai + bi ] (2)

Differentiate this equation with respect to time, and rewrite it into matrix form as:

L̇ = J̃t (3)

in which,

J̃ =
[

S1 S2 · · · Sn

b1 × S1 b2 × S2 · · · bn × Sn

]T

(4)

and, L̇ = [
l̇1, l̇2, · · · , l̇n

]T
, and t = [

ṗ,ω
]T = [

ṗx , ṗy, ṗz, ωx , ωy, ωz
]T . The

matrix J̃ is the Jacobian matrix corresponding to the general cable robot, ṗ denotes
the velocity vector of point P; ω denotes angular velocity of the end-effector, and
t represents the twist vector in R

6, which consists of the linear and angular velocities
of the end-effector.
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Fig. 2 Dynamics schematic
of a general CDRPM

2.2 Dynamics Analysis

For a typical cable robot the mass of the cables is extremely smaller than that of the
end-effector, and can therefore be neglected. By this assumption the dynamics model
of the robot reduces to that of the end-effector. Based on the dynamics notation given
in Fig. 2, when all the cables are in tension the equations of motion can be derived
using Newton-Euler laws [14].

[
mI 03×3
03×3 IP

] [
p̈
ω̇

]
+

[
03×1
ω × IPω

]
+

[−mg
03×1

]
= −J̃T τ (5)

in which, m denotes mass of the end-effector; IP denotes inertia tensor of the end-
effector about point P in Fo frame; g denotes the gravity acceleration vector; τ =
[τ1, τ2, · · · , τn] denotes the vector of cable forces and τi denotes the cable force
value in the i’th cable.

Consider x = [
x p, yp, z p, α, β, γ

]T as generalized coordinates vector, in which

θ = [
α, β, γ

]T is the vector of Euler angles. With this definition the rotation matrix
Fo RFe can be written in term of roll-pitch-yaw Euler angels,

Fo RFe =
⎡
⎣

cβcγ cγ sαsβ − cαsγ cαcγ sβ + sαsγ
cβsγ cαcγ + sαsβsγ −cγ sα + cαsβsγ
−sβ cβsα cαcβ

⎤
⎦ (6)

where c and s denotes shorthand writings for sin and cos functions, respectively.
Furthermore, the angular velocity of the end-effector can be written as,
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ω = Eθ̇ , θ̇ = [
α̇, β̇, γ̇

]T
(7)

in which,

E =
⎡
⎣

cβcγ −sγ 0
cβsγ cγ 0
−sβ 0 1

⎤
⎦

Thus, one can write,
L̇ = Jẋ (8)

in which,

J = J̃
[

I3×3 03×3
03×3 E

]
(9)

With this notation, the equations of motion can be written in the terms of x. After
some manipulation these equations can be derived in an explicit form as,

M(x)ẍ + C(x, ẋ)ẋ + G(x) = −JT τ (10)

in which,

M(x) =
[

mI3×3 03×3

03×3 ET IP E

]
(11)

C(x, ẋ) =
[

03×3 03×3

03×3 ET IP Ė + ET (Eθ̇)×IP E

]
(12)

G(x) =
[−mg

03×1

]
(13)

2.3 Overall Robot Dynamics

In this section overall dynamics of the cable robot considering actuators dynamics is
obtained. In practice a robot is always experiencing friction and disturbance forces.
Therefore, we can reformulate the manipulator dynamics as

M(x)ẍ + C(x, ẋ)ẋ + G(x)+ Fd ẋ + Fs(ẋ)+ Td = −JT τ (14)

with x as the generalized coordinates vector, τ as the vector of cable forces, Fd as
the coefficient matrix of viscous friction and Fs as a Coulomb friction term. M(x)
denotes the mass matrix, C(x, ẋ) denotes the Coriolis/centripetal matrix, and G(x)
denotes the gravity vector which are defined in previous section. J is the jacobian
matrix of the robot and Td denotes disturbance, which may represent, any modeling
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uncertainty. The robot dynamics may be written as

M(x)ẍ + N(x, ẋ) = −JT τ (15)

where
N(x, ẋ) = C(x, ẋ)ẋ + G(x)+ Fd ẋ + Fs(ẋ)+ Td (16)

It should be noted that the dynamic model is valid only when τ ≥ 0 and J is
nonsingular. On the other hand, the actuators dynamics is represented by

Im q̈ + Dq̇ − rτ = u τ ≥ 0 (17)

in which, q denotes motors angular position vector, Im denotes actuator moments of
inertia matrix, D denotes a diagonal positive definite matrix which represents actuator
viscous friction, r denotes the radius of pulleys, τ denotes the cable tension vector
and u denotes the motor torque vector. As for the position reference, define all q to
be zero when the end-effector centroid is located at the central position. From this
configuration positive angle q will cause a change ΔL in cable lengths, therefore,
we have:

ΔL = rq = L − L0 ⇒ q = r−1(L − L0) (18)

where L0 is the initial length vector at x = 0. Differentiate this equation and use
manipulator Jacobian relation L̇ = Jẋ to write:

q̇ = r−1L̇ = r−1Jẋ , q̈ = r−1Jẍ + r−1J̇ẋ (19)

Use Eqs. (19), (17) and (14) with some manipulations one may reach to:

Meq(x)ẍ + Neq(x, ẋ) = JT u (20)

in which, ⎧
⎪⎨
⎪⎩

Meq(x) = rM(x)+ r−1JT ImJ
Ceq(x, ẋ) = rC(x, ẋ)+ r−1JT Im J̇
Neq(x, ẋ) = rN(x, ẋ)+ r−1JT Im J̇ẋ + r−1JT DJẋ

(21)

In this formulation, actuator dynamics is included and transformed into task space
by Jacobian matrix, which is a projection from cable length space to task space.

3 Robust PID Control of Cable Driven Robot

In this section we propose a robust PID controller based on the nominal model of
the system. In the design procedure of the controller we suppose that the dynamical
matrices such as Meq(x), Ceq(x, ẋ), etc are all uncertain and we have only some



Experimental Performance of RPID Controller on a PCR 343

information about their bounds. Furthermore, we suppose that the end-effector po-
sition x is accurately measured in real time. In contrast, it is assumed that the attach-
ment points are not precisely implemented in practice. Therefore, we have to use an
uncertain jacobian matrix Ĵ obtained from the uncertain installation of the attach-
ment points. The control law is designed based on these bounds and assumptions to
satisfy some robust stability conditions.

Recall dynamic model of the system (20), in presence of uncertainties in all
dynamical terms, it can be shown that [15]:

m ≤ ‖Meq(x)‖ ≤ m ; ‖Ceq(x, ẋ)‖ ≤ ξCeq ‖ẋ‖ (22)

‖Geq(x)‖ ≤ ξgeq ; ‖Fd ẋ + Fs(ẋ)‖ ≤ ξ f 0 + ξ f 1‖ẋ‖ (23)

im1I ≤ Im ≤ im2I ; d1I ≤ D ≤ d2I (24)

in which m,m, ξCeq , ξgeq , ξ f 0, ξ f 1, im1, im2, d1, and d2 are some positive real con-
stants. Moreover, if the disturbances are bounded, for a positive constant ξt one may
write:

‖Td‖ ≤ ξt (25)

Now choose a controller for the system consist of a PID control law and a corrective
term Q, as following:

u = Ĵ†
[

KV ė + KP e + KI

∫ t

0
e(s)ds

]
+ rQ = Ĵ†Ky + rQ (26)

in which,

e = xd − x (27)

K = [KI KP KV ] (28)

y =
[∫ t

0
eT (s)ds eT ėT

]T

(29)

and, Ĵ† denotes the pseudo-inverse of ĴT . In this controller structure the corrective
term Q spans the null space of ĴT and must satisfy

ĴT Q = 0 (30)

The vector Q is used in the control structure to ensure that all cables remain
in tension in the whole workspace. Moreover, this term increases the stiffness of
the system. The estimated matrix ĴT obtained from inaccurate installation of the
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attachment points is assumed to be bounded by:

‖I − JT Ĵ†‖ ≤ δ1 , ‖J − Ĵ‖ ≤ δ2 (31)

By implementation of this control law u, in the system dynamics represented by
(20), the closed loop system error dynamics may be written as:

ẏ = Ay + BΔA (32)

in which,

A =
⎡
⎣

0 I6 0
0 0 I6

−M−1
eq KI −M−1

eq KP −M−1
eq KV

⎤
⎦ , B =

⎡
⎣

0
0

M−1
eq

⎤
⎦ (33)

and
ΔA = Neq(x, ẋ)+ Meq ẍd + (I − JT Ĵ†)u1 + r(ĴT − JT )Q (34)

It is fully elaborated in [15], that the positioning error represented by (32) is
uniformly ultimately bounded (UUB) provided that the control gains are selected
from a suitable feasible set. Furthermore, it is shown that if the control gains
KP ,Kv , and KI are chosen large enough, the feasibility conditions are easily
satisfied. The proof of these conditions are based on Lyapunov stability analy-
sis for the uncertain system. In this paper we leave the theoretical details of the
proposed method, and verify the performance of the closed-loop system through
experiments.

4 Experimental Results

In order to verify the performance of the proposed method, it is applied to a planar
cable robot. This manipulator consists of four actuated limbs and has with three
degrees of freedom (x, y, φ), and is under investigation for high speed and wide
workspace applications in K. N. Toosi University of Technology.

4.1 Experimental Setup

The planar cable robot under investigation is illustrated in Fig. 3, in which the end-
effector mass is considered as m = 2.5 kg with a variation of 1 kg. Actuators are
located on the vertices of a rectangle with dimension of 2.24 × 2.1 m. The block
diagram of the cable robot control hardware configuration is shown in Fig. 4, in
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Fig. 3 The planar cable driven redundant parallel manipulator under investigation for high speed
and wide workspace applications in K. N. Toosi University of Technology
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PCI
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Hardware

L
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Fig. 4 Control Experimental Setup

which a real-time hardware in the loop structure is used for the experiments. The
host computer serves as the user interface and enables the user to edit and modify
the controller in a user friendly environment. This interface is developed in Simulink
toolbox of Matlab to provide suitable environment for evaluation of different control
routines on the system. The target computer is a real time processing computer which
uses QNX operating system and performs real time execution of the control laws and
real time communication with Input/Output channels. RT-LAB software is used as
the main hardware in the loop software and uses Simulink toolbox of Matlab to easily
define the required operations and compile and execute those operations in real time
QNX environment [16]. The interfacing boards between the sensors, actuators and
the target computer are channeled through PCI bus I/O interfaces, and are integrated
with the RT-LAB and Matlab to create a real time control system.
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Fig. 5 Cascade control block diagram

4.2 Control Scheme

To have a good performance in position and orientation tracking, servo drives should
generate the desired tensions in the cables according to the outputs of the proposed
control algorithm. In other words, the servo drives should perform as ideal torque
sources to be able to perform such task. Based on this fact, cascade control scheme is
proposed for the experiments. The cascade control strategy uses two control loops,
called as the outer and the inner loops as shown in Fig. 5.

The main goal of the outer loop which consists of the proposed PID control law
is to control the position and orientation of the end-effector. Inputs of this loop are
the position and orientation errors and its outputs are desired tensions in the cables.
In the inner loop, the desired tensions are compared to actual tensions measured
by force sensors embedded at the end-effector attachment points. TLL500 from
Transducer Techniques is used as suitable force sensors in the experiments due to
their relatively large measurement range and low weight. Since in practice the actual
tensions can never track the desired tensions perfectly, the main purpose of using
cascade scheme in control structure of the robot is to obtain a desirable bandwidth
for the inner loop which is much larger than that for the outer control loop [17].
Notice that to implement the proposed control law it is assumed that the position
of the end-effector is measured in task space. However, in practice and for this
experiments the cable lengths are measured in the joint space, and as shown in Fig. 5,
forward kinematics solution is used to find the position vector x. In practice, a suitable
solution to forward kinematics of the robot is found in real time, by implementation
of sequential quadratic programming routine (CFSQP) as an s-function in Simulink.

4.3 Results

The first set of experiments aims to generate two disjointed linear motions in trans-
lation and rotation. In x direction, it is considered to move the end-effector from
the origin to [0.2, 0, 0]T and in φ direction it is considered to rotate the end-effector
from its central position to [0, 0, π/9]T . Furthermore, a more challenging circular
profile is considered in the next experiments, to track a circular path of 0.2m about
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Fig. 6 Implementation results showing the actual and desired position and orientation of the end-
effector for xd = [0.2, 0, 0]T

the central position. For the first experiment, suppose that the home position for the
end-effector is x = [0, 0, 0]T in SI units and the desired end-effector position and
orientation is xd = [0.2, 0, 0]T . The results of implementation using proposed PID
control (26) in companion to the required Q, which ensures that all the cables are in
tension, are given in Fig. 6. The controller gains are selected in the feasible stabil-
ity region of the system considering modeling uncertainty bounds, as kP = 5000,
kV = 1500, kI = 200. As it is seen in this figure position and orientation outputs
track the desired values very well and the steady state errors are very small and in
order of 10−3, while as it is shown in Fig. 7 all cables are in tension for the whole ma-
neuver. The prescribed uniformly ultimately bounded tracking error for the control
structure is verified in all three directions in this experiment.

In the second experiment, suppose that the desired orientation of the end-effector is
xd = [0, 0, π/9]T , while the same controller gains are considered. The experimental
results are given in Fig. 8. As it is observed, tracking performance is very suitable and
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Fig. 7 Implementation results showing the cables tension for xd = [0.2, 0, 0]T

the position errors in x and y directions are small and in order of 10−3. Furthermore,
as it is shown in Fig. 9, it is observed that all tensions in the cables for this test are
also positive.

For the circular profile, the end-effector is commanded to track a circular path
with radius of 0.2 m in 10 s, while attempting to maintain φ = 0 in all time. The
reference Cartesian positions for this experiment are x = 0.2 cos(0.2π t) and y =
0.2 sin(0.2π t). Figures 10 and 11 show the reference and actual circle and deviation
ofφ from its zero desired value. It can be seen that the proposed PID control scheme is
capable to perform such maneuver, while the absolute positioning errors are relatively
small. As it is seen in Fig. 11, orientation error in this test is very small and in order
of 10−3.

To verify the repeatability of the cable robot another experiment is performed.
Repeatability of the cable robot is considered by repeating performance of a circular
trajectory of the end-effector. In this experiment the trajectory is considered for eight
turns, for a circle with radius of 0.2 m, while attempting to maintain zero orientation.
Figure (12) shows the performance of the robot in this experiment. As it is seen in this
figure the repeatability performance of the robot is far better than absolute positioning
of the end effector. There are some potential sources of error in these experiments
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Fig. 8 Implementation results showing the actual and desired position and orientation of the end-
effector for xd = [0, 0, π/9]T

which are under current improvement. One issue is the friction and backlash in
the gearing transmission of the actuators and other uncertainties that are not taken
into account. Furthermore, as explained before, actual position and orientation of
the end-effector are not directly measured and are computed by forward kinematics
solution. This leads to a finite error in the computations which may lead to the final
positioning error of the system. Furthermore, the elasticity of the cables are simply
neglected in this analysis, which may lead to positioning errors, especially at high
speed maneuvers.

5 Conclusions

This paper addresses the issues of dynamic analysis and control of fully constrained
cable robots. According to limiting characteristics of cables that can only apply
tensile forces, and in order to ensure that all the cables are in tension for all maneuvers
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Fig. 9 Implementation results showing the cables tension for xd = [0, 0, π/9]T

Fig. 10 Implementation
results for a circular trajectory
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Fig. 12 Implementation
results showing the repeata-
bility of the cable robot
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through their whole workspace, a corrective term based on null space of the Jacobian
transpose is used in companion with the proposed PID algorithm. In the design of
proposed PID controller it is assumed that in dynamic equations of cable robot all
terms are uncertain and only some information about their upper bounds is available.
A robust PID controller is proposed to overcome partial knowledge of robot, and
to guarantee boundedness of tracking errors. Finally, to show the effectiveness of
the proposed algorithm several experiments on a three degrees of freedom planar
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cable robot are performed with different desired trajectories and suitable tracking
performance for the closed loop system is reported.
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A Preliminary Study for H∞ Control
of Parallel Cable-Driven Manipulators

Edouard Laroche, Ryad Chellal, Loïc Cuvillon and Jacques Gangloff

Abstract This paper reports preliminary investigations for H∞ control of cable-
driven parallel robot. This methodology specially suits for multi-input multi-output
systems including flexible modes, which is the case of cable robots with flexible
cables. A nonlinear model is first developed accounting for flexible cables for the
case where actuators are speed controlled. A first method based on a rigid model is
proposed as an adaptation for speed-controlled actuators of the well-known Jacobian-
based method. A low-pass filter is tuned in order to increase the reachable bandwidth.
The H∞ controller is derived from a linear dynamic model. One interest is that one
single controller manages both the position of the end-effector and the cable tension.
The simulation results show that improvements are possible in the bandwidth thanks
to the H∞ control.

1 Introduction

Cable-driven parallel robots have several advantages that make them an attractive
solution for several original application field. Thanks to their large operation range,
they allow to move a camera over an operation field such as astadium (see the
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Cablecam company, http://www.cablecam.com/). Their low invasiveness and poten-
tially high safety make then good candidates for interactions with human operators,
such as in medical robotics [1].

When dealing with control, several items must be considered:

• As any parallel manipulator, kinematic constraints must be managed by the control
law.

• Their main default is common with all the flexible manipulators: due to the elonga-
tion of the cables, a control at the joint level cannot ensure an accurate positioning
of the end-effector level. Therefore, some exteroceptive sensor is necessary (see
Dallej et al. for a prospective study of vision-based control of a cable-driven
robot [6]).

Several approaches have been proposed in the literature for the control of cable
robots. To our knowledge, the first approach for handling the cable tension was
proposed by Ming and Higuchi [14]. Zi et al. consider long cables and account
for their geometry to derive a fuzzy controller [22]. You et al. use a backstepping
approach to control a 3-DOF cable robot [20]. Alikhani and Vali use sliding mode
to control a 3 DOF suspended crane and the second Lyapunov approach to show the
stability of the control scheme [2]. Diao and Ma consider a model where the flexible
effects are modeled as equivalent springs and analyses the flexible modes [7] but do
not consider any control solution.

H∞ control methodology has been developed following the works of Zames
and Francis [21]. It is now a standard method that is used in demanding appli-
cations and has become a standard method in aeronautics for attitude control of
satellites, aircrafts or rockets with structural flexibility [17]. This methodology has
been used also in Robotics for the control of flexible arms [3, 5]. To our knowledge
the current paper is the first one to consider H∞ control of cable-driven parallel
robots.

The aim of this paper is to investigate the issue of controlling a cable robot
with high dynamics when the flexible modes are effective. The case of a manipu-
lator with four cables and 3 DOF is considered in simulation, assuming that mea-
surements are available for the end-effector position and the cable tension. This
model is developed in Sect. 2 in addition with an analysis of the evolution of the lin-
earized model with respect to the parameters and the end-effector position. Then, a
method based on the rigid kinematic model, adapted to the case where the actu-
ators are speed-controlled, is proposed and evaluated in Sect. 3. The interest of
using a low-pass filter in order to damp the flexible modes is evaluated. Then, in
Sect. 4, the H∞ control method is introduced and evaluated as an interesting candi-
date in the purpose of handling the flexible modes of the multi-input multi-output
system.

http://www.cablecam.com/
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Table 1 Modeling
assumptions

H1 Each motor block has the same behavior
H2 Rectilinear cables (neglected cable mass)
H3 Cables with elastic deformations
H4 Perfect speed-controlled winders

2 Model

2.1 Description and Assumptions

The cable robot considered herein is the 3 DOF version of the INCA robot by Haption.
It is composed of four cables connected to a single point. Designed as a haptic
interface, this single point is normally connected to a handle held by the operator.
In the current work, the robot is considered as a manipulator intended to move the
end-effector.

Assumptions given in Table 1 are necessary in order to obtain a model with rea-
sonable complexity. As usually done, each winding system is considered to have
the same behavior (assumption H1). Considering the reasonable size of the robot,
the cable mass is considered as sufficiently low so that the cables are considered as
rectilinear (assumption H2). In that sense, our work differs from other works that
account for a non-rectilinear geometry of the cables [12, 13, 22]. Most of the works
consider rigid cables (i.e. without elongation) [15, 19]. In the current research project,
the model is intended to evaluate control laws with high bandwidth. Therefore, it is
necessary to account for flexibilities (assumption H3). Under the assumption of low
cable mass, the cable elongation can be considered as uniform. When considering
the haptic interface, it is natural to control the winder motors in torque, allowing to
compute the required force feedback. For manipulation, it is convenient to implement
local speed control loops at the winder levels. As the flexibility problem is collo-
cated, this control can be easily designed with a very high bandwidth only limited
by the implementation solution. In the current work, this control is assumed to be
perfect, which means that the control signals for positioning the end-effector are the
winder speeds. Naturally, these signals cannot be computed independently as they
must satisfy the kinematic constraints.

2.2 Inverse Rigid Kinematic Model

A schematic view of the INCA and a picture are given in Fig. 1 and the model
parameters are reported in Table 2. The base frame is denoted Rb = (B, �x, �y, �z) and
is the only reference frame used in the paper. The positions of the cable ends at the
winders expressed in the base frame are denoted Ai , i = 1 . . . 4 and the coordinates
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Fig. 1 Cable robot INCA. a Schematic view of the INCA 3DOF. b Picture of the INCA in a 6DOF
version

Table 2 Model parameters Parameter Value

R 50 mm

AT
i

i = 1, . . . , 4
(m)

−1.5 −1.5 −1.5
1.5 −1.5 1.5
1.5 1.5 −1.5
−1.5 1.5 1.5

m 0.1 kg
g 9.8 m.s−2

E 350 · 106 N.m−3

S 1 mm2

of Ai are denoted qi
l , l = 1, 2, 3. The end-effector is considered as a point mass

located at point P with mass m and of coordinates ql , l = 1, 2, 3.
The cable lengths li can be determined as the distance between the points Ai

and P:
li = ‖Ai − P‖ (1)

where ‖·‖ is the Euclidean norm.
For a rigid cable, one has dli

dt = −Rθ̇i where R is the radius of the winding cylinder
and assuming that a positive winding speed reduces the cable length. Remember that
θ̇ is the control signal. The inverse kinematic rigid model allows us to compute θ
from P: θ = θ(P). The corresponding differential inverse kinematic model for the
rigid model writes:

θ̇ = Ji (θ) Ṗ (2)

where Ji (θ) = dθ(P)
dP . Its entry of line k and row l writes:

Ji [k, l] = ∂θk

∂ql
= −ql − qk

l

R lk
(3)
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2.3 Direct Flexible Dynamic Model

2.3.1 Effector

Being assimilated as a mass-point, the dynamic equation of the end-effector is easily
obtained by the first Law of Mechanics:

dVP

dt
= 1

m
F (4)

where VP is the 3D velocity of the end-effector (VP = Ṗ) and F is the sum of the
forces applied to the end-effector.

Among the forces applied to the end-effector, we account for the tension Ti ,
i = 1, . . . , 4 of the cables, for the gravity and for friction, resulting in:

F =
4∑

i=1

Ti si +
⎡
⎣

0
0
−g m

⎤
⎦ − fa VP (5)

where�si = 1
li

−−→
Ai P is the unit vector along the cable, g is the gravity acceleration and

fa is the friction ratio.

2.3.2 Winding System

Remember that each winder is considered to be perfectly controlled in speed. This
enables the rejection of the friction and other perturbation that may impact the open-
loop behavior.

On the INCA interface, cables are made of steel and have a diameter close to 1 mm.
With a nominal length of 2 m, the resulting elongation may exceed several millimeters
and may significantly affect the quality of the positioning if high accuracy at high
bandwidth is required. In the current study, the specific flexibility effects due to the
elongation of the cables are investigated. The idea is to show the limitations for rigid
control laws and the ability of the H∞ control method to handle these flexible modes.

Some works developed for modeling winding processes can be used in order to
write the model for the cable winding [11]. Let us consider the portion of cable
located between points Ai and P . Its length is li varies with P . Let l0i denote the
corresponding no-load length that varies with the winding process. Denoting E the
cable Young modulus Young and S its section, the cable tension is Ti = E Sεi where
the elongation writes:

εi = (li − l0i )/ l0i (6)

Assume that the cable is winded without any possibility to slip with respect to
the wheel. During the winding process, a rotation of angle dθi winds a portion of



358 E. Laroche et al.

stressed cable of length δli = R dθi even if the cable length remains constant as P
is also constant. From (6), the corresponding decrease of the no-load length can be
established: dl0i = δli/(1 + εi ). The relationship between the state variables is then:

dl0i

dt
= R

1 + εi
θ̇i (7)

A very specific feature of winding systems is that the unwinding sequence has a
different model from the winding sequence [11]. Indeed, if the structure of the model
remains the same as (7), the εi must be replaced by the elongation of the stored portion
of the cable. However, modeling the storage of the cable requires refinements that
are considered to have a reduced impact on the dynamics. Therefore, the same model
is considered for winding and unwinding in this study.

2.4 Open-Loop Behavior

The nonlinear model based on the given equations is of order 10: it relies on P
(3 positions), VP (three velocity components) and l0 (four no-load lengths). Let X
denote the state vector:

X = [
x y z ẋ ẏ ż l01 l02 l03 l04

]T

The considered measurements are:

• The vector P = [
x y z

]T of the end-effector position in the base frame. In prac-
tice, some exteroceptive sensor must be used in order to measure P .

• The mean cable tension T = 1
4 (T1 + T2 + T3 + T4). In practice, the cable tension

can be estimated from the actuator currents and an estimation of the inertia and
friction torque.

The measurement vector writes Y = [
x y z T

]T. Remember that the input vector
is θ̇ and has four entries.

The nonlinear model given in Eqs. (4)–(7) can be written into the following general
form:

Ẋ = f(X, θ̇ , Θ) (8)

Y = g(X, θ̇ , Θ) (9)

where Θ is the parameter vector. A nonlinear simulator has been implemented that
will be used in the next sections in order to evaluate the control strategies. The
nonlinear equations has also been derived usingMaple in order to obtained several
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Fig. 2 Frequency behavior of the nominal model (plain line) and of the models obtained with a
increase by ratio 1.4 on E and decrease by ratio 1.4 on m (dash); b decrease by ratio 1.4 on E and
increase by ratio 1.4 on m (dot-dash). a Position part. b Tension part

linearized models:

Ẋ = Ak X + Bk θ̇ (10)

Y = Ck X + Dk θ̇ (11)

where Ak = ∂f
∂X (Xk,O4×1,Θk), Bk = ∂f

∂θ̇
(Xk,O4×1,Θk), Ck = ∂g

∂X (Xk,O4×1,Θk)

and Dk = ∂g
∂θ̇
(Xk,O4×1,Θk). The linearization has been performed for winder

speeds and end-effector velocity equal to zero, and several end-effector positions,
the corresponding no-load lengths being computed accordingly. Details on the state
matrices are skipped for brevity.

The frequency behavior of the linearized models is reported in Figs. 2 and 3. The
nominal model corresponds to the center of the workspace with the nominal values of
the parameters. Its behavior is given in plain in Fig. 2. On the left-hand side are given
the singular values of the transfer between θ̇ and P (i.e. the position part). One can see
that the system exhibits a flexible mode at 60 rad/s. With three outputs and more than
three inputs, the system can exhibit only three different singular values. Actually, only
two distinct values are observed, due to the symmetries. In low frequency, the model
behaves like an integrator with a slope of −20 dB/dec whereas in high frequency, it
behaves like a double integrator with a slope of −40 dB/dec. The tension part of the
model, i.e. the transfer between θ̇ and T is given in the right-hand side. The system
behaves like a pure integrator with a slope of −20 dB/dec.

The evolution of the behavior when parameters E and m varies is also given in
Fig. 2 for the central position of the end-effector. In dash is given the behavior of
the system obtained with an increase of E by a ratio 1.4 and a decrease on m by the
same factor. This result in an increase in the eigen-frequency of the flexible mode
in the position behavior and an increase in the gain for the tension part, which is the
expected evolution. The opposite evolution is observed when considering a decrease
of E and an increase on m.
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Fig. 3 Evolution of the frequency behavior with respect to the position of the end-effector (i/plain
x = y = z = 1 m, ii/dash x = y = −z = 1 m, iii/dot-dash x = −y = −z = 1 m) a Position part.
b Tension part

The evolution of the frequency-behavior has also been investigated when con-
sidering changes in the end-effector position. In the results reported in Fig. 3, three
different positions have been considered by shifting successively x , y and z of ±1 m.
The most impressive change in the behavior is on the tension as the dissymmetry
causes a peak in the frequency response. On the position part, one can see that the
three singular values are now distinct.

3 Control Based on the Rigid Kinematic Model

As the aim of the study is to investigate the flexibility effects on cable robots, it is
worth having a reference approach based on a rigid model.

3.1 Method

It is well known that, due to its parallel structure, the management of the cable tension
require special attention [14]. When the actuators are controlled in torque, the input
space can be decomposed into two subspace:

• In the null space (u ∈ ker(J T
i )), the torques have no effect on the end-effector

motion but only affect the cable tension; therefore, this subspace is used to manage
the cable tension.

• The other dimensions (u /∈ ker(J T
i )) allow to manage the position of the end-

effector.

When considering speed-controlled actuators, the issue slightly differs in nature.
Indeed, the actuator speeds cannot be controlled independently as they must fulfill
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the kinematic constraints. However, the same principle of separation between motion
and tension action applies.

An exponential convergence of P towards a reference Pr is enforced by choosing
Ṗ = kP (Pr − P) where kP is a gain that allows the user to tune the convergence
speed. The rigid kinematic model (2), where Ji dimensions are 3 × 4, can then be
used in order to compute θ̇ accordingly. However, this simple solution does not allow
to manage the tension. This can be done by simply adding to θ̇ some component v
that belongs to the null-space of J T

i , resulting in:

θ̇ = Ji Ṗ + v (12)

where v is any vector in ker(J T
i ). Denoting v1 a unit vector of ker(J T

i ), the tension
can be chosen in order to control the mean tension T to the reference T r with:

v = kT (T
r − T )v1 (13)

where kT is a gain that allows the user to tune the convergence speed. Thanks to the
first-order tension dynamics exhibited in Figs. 2b and 3b, the stability of the control
scheme is guarantied. When the mean tension is perfectly controlled, v vanishes and
the winder speed references satisfy the kinematic constraints.

At the center of the working space, on has v1 = 1
2

[
1 1 1 1

]T. For small dis-
placements around this central position, v1 can be kept constant which is the case in
the results shown herein. In order to reduce the destabilizing effects of the flexible
modes, a first-order low-pass filter 1

1+τ f s is used on the four control signals.

3.2 Results

3.2.1 Nominal Trajectories

A trajectory has been chosen for the evaluation of the performance of the controlled
system (see the dashed lines in Fig. 4a, b). Imagine a cube of width 2A (A = 0.25 m in
the sequel) centered in the workspace. Starting from the center, the trajectory consists
in reaching one vertex (x = y = z = A) in 2 s and then to move along the edges
successively in the x , y and z directions in 2 s each and finally to reach the center of
the workspace in one second. The tension reference is piece-wise continuous, equal
to 100 N before t = 8 s and equal to 110 N afterwards.

The trajectories obtained by simulation of the nominal model starting with a
tension of 100 N, kP = 40 rad/s/m, kT = 2 rad/s/N and τ f = 40 ms are given in
Fig. 4. One can see that both position and tension follow their reference. Notice
that the change of tension reference at t = 8 s is properly followed and do not
introduce any oscillation. Be aware that herein, only feedback action is considered
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Fig. 4 Trajectories for time-domain evaluation. a Reference (dash) and actual position (plain).
b 3D trajectories. c Cable tension (plain) and mean tension (dash). d Control signals (winder
speeds)

for evaluation. The tracking efficiency could be improved by using some feed-forward
action.

3.2.2 Filter Tuning

In order to evaluate the quality of the control, the following indicators are proposed:

Ju is the RMS value of the control signal (more precisely, the RMS value is com-
puted on a vector including the control signal samples of all the motors stacked
in the one unique vector). As a smooth control signal is preferred, this index
should be minimized.

JP is the mean distance between the reference position and its actual value. For
good position tracking, it should be minimized.
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(a) (b)

Fig. 5 Effects of the variations of the controller parameters. a Variation of τ f (kp = 40 rad/s/m).
b Variation of kp (τ f = 40 ms)

JT is the RMS error between the actual tension and its reference value. As the
previous index, it should be minimized.

For kP = 40 rad/s/m and kT = 1 rad/s/N, several simulations have been processed
with different values of τ f , from 10 ms to 1 s, in order to evaluate the influence of the
filter tuning on the system performance. The values of the indicators defined in the
previous subsection are reported in Fig. 5a. One can notice that the performance is
very bad for the low values of τ f , which clearly shows the interest of the filter (τ f = 0
corresponds to remove the filter). Actually, a more accurate look at the simulations
(not included in the paper) shows that the system undergoes severe oscillations for
those values. An optimal value is obtained for τ f ∈ [20−100] ms. Notice that this
optimum has been obtained for given values of the system and controller parameters
and should be recomputed for other values of those parameters.

For a fixed value τ f = 40 ms, the metrics computed for different values of kP

logarithmically spaced in [1−100] rad/s/m are reported in Fig. 5b. As expected, it
appears that when kP increases, Ju increases, JP decreases and JT remains constant.
This observation only holds for kP ≤ 78 rad/s/m. For higher values of kP , the system
becomes unstable.
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Fig. 6 Standard scheme for
H∞ synthesis

K(s)

Ge(s)

u

v ṽ

e

zz̃
Wi(s) Wo(s)

4 H∞ Control

H∞ control methodology allows the synthesis of LTI controllers for MIMO systems.
Among the MIMO methodologies, it generally provides good results when flexible
modes come into play [9, 17].

4.1 H∞ Methodology

The general synthesis scheme for H∞ synthesis is shown in Fig. 6. Given an extended
plant Ge(s) with performance channel ṽ → z̃ and control channel u → e, the issue
is to design the controller K (s) such that the performance channel has a good fre-
quency behavior in the sense that it respects some frequency templates. Assume that
the weighting functions Wi (s) and Wo(s) are diagonal, i.e. Wi (s) = diag{Wik}, k =
1, . . . , nv, and Wo(s) = diag{Wok}, k = 1, . . . , nv, where nv and nz are the dimen-
sions of v and z respectively. Let lft denote the linear fractional transformation.1 If
the H∞ norm2 of the closed-loop system Tzv(s) = Wo(s) · lft(Ge(s), K (s)) · Wi (s)
is less than 1, then for any SISO transfer from input #k ∈ {1, . . . , nv} and output
#l ∈ {1, . . . , nz}, one has:

∣∣Tz̃ṽ( jω)
∣∣ ≤ 1

|Wik( jω)| · |Wol( jω)| (14)

where Tz̃ṽ( jω) = lft(Ge(s), K (s)). The right-hand side of the inequality is the
template.

Given Ge(s), Wi (s) and Wo(s), the computation of K (s) in order to minimize the
H∞ gain of the weighted closed-loop system can be done in several fashions. The
most usual methods compute a full order controller (i.e. K (s) has the same order
than the augmented system Ga(s) = diag{Wo(s), Ine } · Ge(s) · diag{Wi (s), Inu })
as a solution of a convex optimization problem. The synthesis can be done by the
resolution of Riccati [8] or LMI equations [10]. Theses algorithms are available into
continuous and discrete-time versions. A reduction-order step is generally used in
order to get a controller of reasonable order. More recently, the development of non-

1 Let Tzv(s) denote the transfer of the system with input v and output z. The interconnection of
Ge(s) and K (s) presented in Fig. 6 is Tz̃ṽ(s) = lft(Ge(s), K (s)).
2 The H∞ norm ‖G(s)‖∞ of transfer G(s) is the maximum singular value of G( jω) over all the
frequencies ω ∈ R

+. For single-input single-output systems, it reduced to the maximum gain.
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Fig. 7 Two-bloc synthesis
scheme
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K(s) G(s)
+

-

r(t)
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z1(t)

u(t)

y(t)

z2(t)

smooth optimization has been taken into profit for the development of structured and
low-order controllers. Let us mention the HIFOO package [4] and the hinfstruct
function available with recent versions of the Robust Control Toolbox [16]. In the
current work, the Riccati version of the continuous-time full-order synthesis has been
used. In practice, iterations are necessary on the tuning of the weighting functions in
order to get the H∞ norm of the closed-loop close to 1.

4.2 Controller Synthesis

In the current case, the system has four inputs (the four winder speeds) and four
measurements (the three coordinates of the end-effector position and the mean ten-
sion. Let introduce the reference signal r = [

xr yr zr T r
]T. When implementing

the H∞ methodology, the first step consists in selecting the design scheme. The very
usual two-bloc scheme presented in Fig. 7 has been chosen as it manages the most
important features of the closed-loop system.3 By choosing W1(s) such that the tem-
plate 1/W1(s) is a high-pass filter, the output sensitivity function S(s) = Ter (s) is
shaped in order to impose:

• the bandwidth,
• the modulus margin,
• the accuracy.

In order to distinguish between the dynamics in position and tension, W1(s) is chosen
under the following shape: W1(s) = diag{w1P (s) I3,w1T (s)} where w1P (s) is a
SISO weighting functions for tuning the position dynamics whereas w1T (s) shapes
the tension dynamics. The weighting function W2(s) = w2(s) I4 is chosen such
that 1/W2(s) is a low-pass filter, thus forcing the gain of K (s) to decrease in high
frequencies. This “roll-off” effect enforces the robustness to unmodeled dynamics
and ensures a low sensitivity with respect to measurement noise.

After several iterations, the following weighting functions were selected that pro-
vided a closed loop performance close to one and satisfying results: w1P = 0.5s+4

s+0.008 ,

3 The scheme of Fig. 7 is equivalent to the scheme of Fig. 6 by choosing ṽ = r , z̃ = [
eT uT

]T
,

Wi (s) = I4 and Wo(s) = diag{W1(s),W2(s)}.
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w1T = 0.5s+40
s+0.08 , w2(s) =

(
0.005 s+0.05
0.0001 s+1

)2
. The frequency response (singular value)

of the controller is given in Fig. 8 in two parts: on the left-hand side is given the part
that manages the position (first three inputs); on the right-hand side is given the part
that manages the tension (last input). Whereas the position part mainly behaves like a
proportional controller with low-pass filter including some compensation of the flex-
ible modes (close to 100 rad/s), the tension part behaves like a proportional-integral
controller with low-pass filter.

The corresponding closed-loop transfers are given in Fig. 9. One the top plots are
given the sensitivity function Ter = S(s) that behaves like a high-pass filter thanks
to the template 1/W1(s). On the bottom plots are given transfer Tur = K (s) S(s)
where the action of the template 1/W2(s) on the roll-off effect can be seen in high
frequencies.

4.3 Results

The nonlinear model has been simulated with the same reference trajectory as in
Sect. 3. The corresponding trajectories are given in Fig. 10. The metrics (defined in
Sect. 3.2.2) are Ju = 7.42 rad/s, JP = 79.6 mm and JT = 0.82 N. One can notice
that the position and mean tension are properly controlled. The dynamics are sensibly
higher than those obtained with the Jacobian-based approach (see Fig. 4) even if this
latter was tuned in order to attain the fastest dynamics.

The larger dispersion observed in cable tensions (compare Figs. 4c and 10c) are
directly due to the increase of the bandwidth. This drawback can be reduced by
choosing smoother reference trajectories, as proposed by Trevisani [18]. But this
effect is independent from the closed loop behavior which is the topic herein.

5 Conclusion

In this paper, a H∞ controller has been designed for a cable robot and compared with
a more conventional controller that neglects the flexible effects in the robot behavior.
The results have clearly shown that the H∞ methodology allows an improvement
of the highest reachable bandwidth. One strong limitation of the H∞ methodology
is that is leads to a LTI controller that cannot adapt to the evolution of the behavior
with respect to the position. However, the robustness of the designed controller was
sufficient for an evolution in a reasonably large domain (a square of 0.5 m large in
the results exhibited in the paper). For a larger workspace, some gain-scheduling
approach would be necessary in order to adapt the controller behavior.
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Fig. 8 H∞ controller K (s). a Position part (three first inputs). b Tension part (last output)
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Fig. 9 Closed-loop transfer functions (plain) and the corresponding templates (dash). a Position
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Fig. 10 Trajectories with the H∞ controller. a Reference (dash) and actual position (plain). b 3D
trajectories. c Cable tension (plain) and mean tension (dash). d Control signals (roller speeds)
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Trajectory Tracking for a Three-Cable
Suspension Manipulator by Nonlinear
Feedforward and Linear Feedback Control

Christoph Woernle

Abstract The kinematically indeterminate cable suspension manipulator Cablev
moves a payload platform in space by three spatially arranged cables with indepen-
dently controllable winches. As the position of the platform is not fully determined
by the lengths of the cables, undesired sway motions of the payload platform may
occur. To make the payload platform track prescribed translational and rotational
reference trajectories in space, a two-stage control concept is presented. A nonlinear
feedforward control that exploits the flatness property of the system generates control
inputs for the undisturbed motion along reference trajectories. Sway motions caused
by disturbances are actively damped by a linear feedback of measured state variables
enabling an asymptotically stable tracking behaviour. Experimental results from the
prototype system Cablev are shown.

1 Introduction

Cable suspension manipulators support a payload platform in space by several spa-
tially arranged cables with computer-controlled winches. The winches are mounted
either fixed or on movable trolleys. Compared to conventional cranes, not only the
translational motion of the payload can be controlled but also its orientation.

Cable suspension manipulators can be classified with respect to mobility and
statics, see Table 1. The kinematically parallel suspension of a platform by a system
of cables is kinematically determinate if the position of the payload platform is
geometrically defined by the actual lengths of the tense cables. It is kinematically
indeterminate if the platform is (finitely or infinitesimally) movable while the cable
lengths are kept constant. The suspension is statically determinate if the cable forces
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Table 1 Kinematic and static determinateness

K

K

can be calculated by means of the six (static or dynamic) equilibrium conditions for
the platform only, otherwise it is statically indeterminate.

A payload platform suspended by six cables in analogy to a Gough-Stewart plat-
form is kinematically and statically determinate as long as all cables are kept under
tension by the gravity force [1, 4]. With more than six cables the platform is, in
general, kinematically determinate but statically indeterminate. Examples are shown
in [3, 9, 12, 13]. A platform suspended by less than six cables is kinematically
indeterminate. Three-cable suspensions as described in [2, 10, 17] are, in general,
statically determinate. A platform suspension with four parallel cables is statically
indeterminate. Workspaces and singularities are investigated in [15].

In this contribution the kinematically indeterminate cable suspension manipulator
Cablev is described (Fig. 1). It was developed at University of Rostock as a prototype
system to validate control concepts [7, 8, 10]. Its payload platform is supported by
three cables with winches mounted on trolleys that move them on a common gantry.

The design of the cable guidance system allows kinematically defined inclinations
of the cables (Fig. 2). In order to detect the sway motions of the platform, the incli-
nation angle of each cable in one vertical plane is measured by means of a precise
potentiometer. The measurement axes are differently orientated in order to provide
three independent signals. There exists a singular position where the normals of the
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~ 5,80 m

~ 5,30 m

~ 3,00 m

cable

platform

trolleys with 
winches

Fig. 1 Cable suspension manipulator Cablev

winch

potentiometer

cable inclination angle

potentiometer

from winch

to platform

Fig. 2 Cable guidance system with measurement of the cable inclination angles βi in one vertical
plane at each trolley

three measurement axes intersect in a common point that is, however, beyond the
relevant workspace.

Trajectory tracking control of the payload platform is achieved by means of
the concept of flat systems according to [6]. A flat system has the property that
the state variables and the control inputs can be algebraically expressed in terms of
the so-called flat output and a finite number of time derivatives of the flat output. Its
application to kinematically indeterminate manipulators represents a generalization
of computed-torque control. The control forces are algebraically calculated from the
desired trajectories of the payload platform and their time derivatives up to the fourth
order leading to a feedforward control strategy.

As successfully demonstrated by experiments with Cablev, flatness-based feed-
forward control provides exact motions of the platform along desired trajectories as
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long as there are no unknown disturbances, e.g., wind forces, acting on the platform
[7, 8, 10]. To counteract these effects, a feedback of measured actual state-space
variables is needed. For flat systems, trajectory tracking control by exact state-space
linearization with nonlinear state feedback can be achieved according to [5]. This
type of feedback control of Cablev is described in [7, 8]. In this paper a less com-
plex control architecture with linear state feedback is described. It can be applied
under the assumption that the feedforward control already ensures motions in the
neighborhood of the reference trajectory [7].

The contribution is organized as follows. First, the flatness-based feedforward
control of Cablev is briefly reviewed. Based on the linearized equations of motion,
a linear state-space controller is developed. A measurement model that calculates
the actual platform position from measured cable inclination angles is described.
Simulations show the effects of combined nonlinear feedforward and linear feedback
control.

2 Dynamic Model of Cablev

The dynamic model of Cablev is formulated in differential-algebraic form [16]. It
comprises the dynamic differential equations of the drives and the payload platform
and the algebraic constraint equations between the coordinates. The model is used
to derive the feedforward and feedback control laws.

2.1 Coordinates

The independently controllable robot coordinates p ∈ R
7 are the gantry displace-

ment pg0, the trolley displacements pgi , i = 1, 2, 3, and the cable lengths pci , i =
1, 2, 3, (Fig. 3)

p =
[

pg
pc

]
with pg = [

pg0 pg1 pg2 pg3
]T
, pc = [pc1 pc2 pc3 ]T . (1)

The platform coordinates yp ∈ R
6 describe the spatial position and orientation of

the platform-fixed coordinate system Kp relative to the inertial system K0 by, for
example, three Cartesian coordinates rx , ry , rz of the origin of Kp and three Bryan
angles ϕ1, ϕ2, ϕ3,

yp =
[

r
ϕ

]
with r = [

rx ry rz
]T
, ϕ = [ϕ1 ϕ2 ϕ3]T . (2)
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Fig. 3 Coordinates of Cablev [8]

To describe sway motions of the payload platform with three degrees of freedom,
three sway coordinates η are defined as a subset of the platform position vector yp
from (2) according to

η = [rx ry ϕ3]T. (3)

The spatial velocity ṡp of the platform relative to K0 comprises the translational and
angular velocity of Kp (coordinates of ω in Kp),

ṡp =
[

v
ω

]
with v = [

ṙx ṙ y ṙ z
]T
, ω = [

ωx ωy ωz
]T
, (4)

whereby sp are quasi-coordinates defined as differentials only. The relation between
ẏp and ṡp is then given by the kinematical differential equation

[
ṙ
ϕ̇

]
=

[
I 0
0 Hω(ϕ)

] [
v
ω

]

→ ẏp = H( yp) ṡp

(5)

with the identity matrix I . The second row in (5) is the kinematic differential equation
related to the Bryan angles.
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Fig. 4 Geometric constraints
between yp and p [8]

2.2 Implicit Constraints

The coordinates p and yp fulfil implicit constraint equations that are needed at the
position, velocity, and acceleration levels [16].

Position level. Assuming three longitudinally stiff and tense cables, there exist
three implicit constraints between robot coordinates p and platform coordinates yp
according to Fig. 4,

gi ( yp, p) ≡ c2
i ( yp, p)− p2

ci = 0, i = 1, 2, 3, or g( yp, p) = 0. (6)

The cable vectors ci are expressed in K0 by

c1 = r + pT pd1 − ( pg0 ey + pg1 ex ),

c2 = r + pT pd2 − ((pg0 + l2) ey + pg2 ex ), (7)

c3 = r + pT pd3 − ((pg0 − l2) ey + pg3 ex ),

with the distance l2 between the rails and the constant vector coordinates of the
platform-fixed vectors pdi in Kp, the transformation matrix pT (ϕ) from Kp to K0,
and the unit vectors of K0, ex = [1 0 0]T, ey = [0 1 0]T.

Velocity level. For the equations of motion the Jacobian matrices associated to
the constraints (6) are needed. The total time derivatives of (6) are

ġi ≡ 2 cT
i ċi − 2pci ṗci = 0, i = 1, 2, 3 , (8)

with the time derivatives of the cable vectors ċi = ṙ+ ḋi −( ṗg0 ey + ṗgi ex ). With the
angular velocity of the platform ω, the time derivative of the platform-fixed vectors
di is ḋi = ω̃ di , whereby the vector product is written with the Tilde operator,
ω̃ di =̂ω × di . By this, the time derivative of the constraints at the velocity level (8)
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can be written as

ġ ≡ [ Gsv Gsω ]

[
v
ω

]
+ [

Gpg Gpc
] [

ṗg
ṗc

]
= 0

→ Gs( yp, pg) ṡp + Gp( yp, p) ṗ = 0
(9)

with the constraint matrices

Gs = 2

⎡
⎢⎣

cT
1 −cT

1 d̃1

cT
2 −cT

2 d̃2

cT
3 −cT

3 d̃3

⎤
⎥⎦ ∈ R

3,6, (10)

Gp = −2

⎡
⎢⎢⎣

cT
1 ey cT

1 ex 0 0 pc1 0 0

cT
2 ey 0 cT

2 ex 0 0 pc2 0

cT
3 ey 0 0 cT

3 ex 0 0 pc3

⎤
⎥⎥⎦ ∈ R

3,7. (11)

Acceleration level. The total time derivative of the velocity constraints (9) yields
the implicit constraints at the acceleration level

g̈ ≡ Gs s̈p + Gp p̈ + γ = 0 with γ( yp, p, ṡp, ṗ) = Ġs ṡp + Ġp ṗ. (12)

2.3 Kinematic Redundancy and Output Variables

With seven robot coordinates p from (1) and six platform coordinates yp from (2),
the system is kinematically redundant. In addition to yp a seventh output y0 can be
controlled that is here defined as the residual of the implicit control constraint

g0( p) ≡ y0 = pg1 − 1
2 (pg2 + pg3)− b = 0, b = const. (13)

According to Fig. 3, this constraint requires that the intersection point P between the
line through the outer trolleys and the intermediate rail has the constant distance b to
the inner trolley. Thus, the shape of the triangle whose vertices are the three trolleys
is constrained.

The seven outputs y of the system are then composed of the six platform coordi-
nates yp ∈ R

6 from (2) and the additional output y0 from (13),

y =
[

yT
p y0

]T ∈ R
7. (14)
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The outputs at the velocity level are here defined as quasi-coordinates with the plat-
form velocities ṡp ∈ R

6 from (4) and ẏ0,

ṡ =
[

ṡT
p ẏ0

]T ∈ R
7. (15)

2.4 Dynamic Equations

The dynamic equations of Cablev are composed of the equations of the payload plat-
form, the equations of the drive system (gantry, trolleys, winches), and the constraint
equations.

2.4.1 Platform Dynamics

The dynamic platform equations consist of the kinematic differential equation (5),
the constraints (6), and the six kinetic differential equations

[
m I 0

0 Θ

] [
v̇

ω̇

]
=

[
0

−ω̃ Θ ω

]
+

[
f e

τ e

]
+

[
GT

sv

GT
sω

] ⎡
⎢⎣
λ1

λ2

λ3

⎤
⎥⎦

→ Ms s̈p = kc
s(ṡp) + ke

s( yp, ṡp) + GT
s ( yp, pg) λ

(16)

with the constant mass matrix Ms ∈ R
6,6 containing the platform mass m and

the inertia tensor Θ ∈ R
3,3 with respect to the center of gravity Sp represented

in coordinates of Kp, the generalized gyroscopic forces kc
s ∈ R

6, the generalized
applied forces ke

s ∈ R
6 (e.g., gravity force), and the minimal coordinates of the cable

forces λ ∈ R
3 (Lagrange multipliers).

2.4.2 Drive System Dynamics

For the gantry, the trolleys, and the winches, the equations of motion are formulated
in terms of the robot coordinates p,

Mp p̈ = Bp u + GT
p ( yp, p)λ, (17)

with the mass matrix Mp ∈ R
7,7 and the control inputs

u =
[

ug
uc

]
with ug = [

ug0 ug1 ug2 ug3
]T
, uc = [uc1 uc2 uc3 ]T . (18)
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The control inputs are the drive forces of the gantry ug0 and the trolleys ugi , i =
1, 2, 3 and the winch torques uci , i = 1, 2, 3. The constant matrix Bp ∈ R

7,7

in (17) projects u onto the directions of the robot coordinates p. For the dynamic
simulation of Cablev, the kinetic Eq. (16) and (17) and the constraint Eq. (12) yield
the accelerations s̈p and p̈ and the cable force coordinates λ, whereby the positions
and the velocities have to be consistent with the constraints (6) and their first-order
time derivatives (9).

3 Flatness-Based Feedforward Control

Flatness of the considered system means that the control inputs u as well as all
internal variables, like the state variables x or the cable force coordinates λ, can be
algebraically expressed in terms of the control outputs y and the time derivatives of
the outputs up to a finite order. In particular, the system is flat if its dynamics can be

inverted according to
(

dn y
dtn =̂ y(n)

)

u = φu( y, ẏ, . . . , y(α+1)), x = φx ( y, ẏ, . . . , y(α)), (19)

whereby α ∈ N is a finite natural number [6]. This property leads directly to a feed-
forward control law that moves the platform along sufficiently smooth trajectories.
Control of conventional rigid-link manipulators by inverse dynamic algorithms (com-
puted torque) is a special case of flatness-based feedforward control. For Cablev,
the inversion of the system dynamics according to (19) can be done in two steps
that are described next: the so-called generalized inverse kinematics and the inverse
dynamics [8, 10].

3.1 Generalized Inverse Kinematics

In the first step of the system inversion the robot coordinates p̂ are calculated in
terms of the prescribed outputs ŷ from (14) and the output derivatives ˙̂s, ¨̂s from (15).
This can be illustrated as follows: For a given position ŷp and velocity ˙̂sp of the

platform, the robot coordinates p̂ and the cable force coordinates λ̂ are calculated in
such a way that the platform is subjected to the desired acceleration ˙̂sp. Hereby the
maximum value of the vertical downward acceleration ¨̂rz in vector ˙̂sp is the gravity
acceleration g, thus ¨̂rz < g. In the special case of a given rest position of the platform,
thus ŷp with ˙̂sp = ¨̂sp = 0, the variables p̂ and λ̂ are calculated in such a way that
the given position ŷp is a static equilibrium position.

With (16), (6), and (13), a set of ten nonlinear equations is available to calculate
the ten unknowns p̂ ∈ R

7 and λ̂ ∈ R
3 for given ŷ, ˙̂y, ¨̂y:
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(16) : GT
s ( ŷp, p̂g)λ̂ = Ms

¨̂sp − kc
s(

˙̂sp)− ke
s( ŷp,

˙̂sp)

(6) : g( ŷp, p̂) = 0

(13) : g0( p̂) ≡ y0 = 0

⎫
⎪⎬
⎪⎭
. (20)

The platform velocities ˙̂sp and the accelerations ¨̂sp can be expressed in terms of the
output derivatives ˙̂yp and ¨̂yp by means of (5). The numerical solution of (20) by a
Newton-Raphson algorithm yields

p̂ = φ( ŷ, ˙̂s, ¨̂s), λ̂ = φλ( ŷ, ˙̂s, ¨̂s). (21)

A good initial guess for p̂ is available from the preceding time step. The function (21)
is called generalized inverse kinematics as a generalization of the inverse kinematics
transformation for rigid robots.

3.2 Inverse Dynamics

The second step of the system inversion is the calculation of the physical control
forces u in terms of p̂. They are obtained directly by solving (17) with respect to u,
leading to u = u( p̂, ˙̂s, ¨̂s, λ̂). Thus, the first and second order time derivatives of
the generalized inverse kinematics (21) are needed, too. Altogether a feedforward
control law is obtained that calculates u for output trajectories ŷ(t) specified up to
the fourth-order time derivative

u = φu( ŷ, ˙̂s, ¨̂s, ŝ(3), ŝ(4)). (22)

The inverse system model (22) makes the platform track a desired spatial trajec-
tory ŷ(t) under ideal conditions, i.e., exact mechanical model, no disturbance forces,
and consistent initial conditions. However, it is computationally expensive as the
first and second-order derivatives of the generalized inverse kinematics from (21) is
needed according to (22), see Fig. 5.

In practice, the computational amount can be reduced. Cablev is actuated by
electric motors with reduction gears of high ratio that tend to linearize and to decouple
the dynamics of the drive axes. This justifies well the use of individual cascaded axis
controllers that make the actual robot coordinates p follow the sequence of values p̂
calculated by means of the generalized inverse kinematics (21). To further improve
the tracking behaviour, the velocities ˙̂p can be calculated by differentiation of (20)
and added to the velocity inputs vc, vg of the axis controllers. This feedforward
control scheme has been successfully verified by experiments [7, 10].
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Fig. 5 Flatness-based feedforward control for Cablev [8]

4 Feedback Control

For active damping of sway motions of the platform, a feedback of actual state
variables is provided that is superimposed to the previously described feedforward
control. The idea is to achieve sway control by appropriate motions of the four
gantry/trolley coordinates pg but not by changes of the cables lengths pc. A similar
approach was used by Sawodny et al. [14] for trajectory control of an overhead crane.
For controller design a linear state-space model of Cablev with velocity-controlled
axes according to Fig. 5 is derived. It is based on the linearized equations of motion
that describe small motions in the vicinity of an equilibrium position of the platform.
With measured cable inclination angles β̂ in one vertical plane according to Fig. 2, a
kinematic forward transformation calculates the actual platform position yp that are
needed to feed back actual states for path following control.

4.1 Linearized Sway Motion Model

To apply established methods for linear control design, linearized equations of motion
are formulated as ordinary differential equations in terms of small deviations�η of
the sway coordinates defined by (3) from an equilibrium position ηE of the platform.
For that purpose the differential-algebraic equations (5), (6), (16) describing the
sway motion are linearized and transferred into ordinary differential equations by
eliminating the cable force coordinates λ and introducing the independent sway
coordinates �η. The linearized sway dynamics model is then obtained as

Mη �η̈ + Cη �η = B1� pg + B2� p̈g. (23)

The coefficient matrices Mη ∈ R
3,3, Cη ∈ R

3,3, B1 ∈ R
3,4, B2 ∈ R

3,4 are constant
for a certain reference position. The control inputs for the mechanical system are the
reference velocities vg of the axis velocity controllers. The dynamic transfer behavior
from the reference velocities vg to the actual velocities � ṗg of the gantry/trolleys
appearing in (23) is approximated by a first order dynamics,
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T � p̈g +� ṗg = vg, (24)

with time constants T = diag(T1, . . . , T4).
Introducing the state vector

xsway =

⎡
⎢⎢⎣

�η
�η̇
� pg
� ṗg

⎤
⎥⎥⎦ ∈ R

14 with �η =
⎡
⎣
�rx

�ry

�ϕ3

⎤
⎦ ,� pg =

⎡
⎢⎢⎣

�pg1
�pg2
�pg3
�pg4

⎤
⎥⎥⎦ , (25)

the reference velocities vg as inputs and the sway coordinates as outputs, ysway = �η,
Eqs. (23), (24) can be brought into standard state-space form

ẋsway = A xsway + B vg, ysway = C xsway. (26)

4.2 Kinematic Measurement Model

For anti-sway control the actual sway coordinatesη from (3) and their time derivatives
η̇ have to be measured and fed back. According to (2), they are a subset of the
platform coordinates yp that are, however, not measured directly. Instead, the seven
robot coordinates p = [ pg pc]T and the measured cable inclination angles

β = [β1 β2 β3]T (27)

in one vertical plane according to Fig. 2 are available for measuring the platform
position.

With these measured coordinates, the platform coordinates yp are calculated by
kinematic forward transformation. Together with the three non-measured cable incli-
nation angles β in the second vertical plane, nine loop closure conditions are obtained
by cuts at the spherical joints at the platform vertices according to Fig. 6,

hi ( p,β,β, yp) ≡ r Pi (pg0, pgi ,βi ,βi , pci )− r P ′i ( yp) = 0, i = 1, 2, 3. (28)

This is a set of nine nonlinear equations for the calculation of the unknowns yp ∈ R
6

and β ∈ R
3 for known values of p and β, whereby β is not needed in the sequel.

The sway velocities η̇ can be calculated from the time derivative of (28) yielding

a system of nine linear equations for the unknowns ẏp and β̇ for known ṗ and β̇,
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Fig. 6 Kinematic measurement model for Cablev

[
Lp Lβ Lβ L y

]
︸ ︷︷ ︸
L( p, β, β, yp)

⎡
⎢⎢⎣

ṗ
β̇

β̇
ẏp

⎤
⎥⎥⎦ = 0. (29)

4.3 Linear State-Space Controller

The sway dynamics (26) is stabilized by a linear state feedback

v̄g = −R xsway. (30)

applied on the inputs of the individual axis velocity controllers. The structure of
the obtained feedback control with decoupled PI axis controllers is shown in Fig. 7.
Here, the diagonal matrices K c and K g contain the motor constants and gear ratios.

The feedback gain matrix R ∈ R
4,14 in (30) is here determined by LQR design.

Since the linear feedback (30) is only designed for the dynamics of Cablev in the
vicinity of an equilibrium position in the workspace, an increasing decline of the
control behaviour is expected if the platform moves away from this position. Though
simulation results show a good robustness of the controller, the control behavior can
be improved if the feedback gains are calculated in dependency on varying parameters
like the cable length [7, 14]. For trajectory tracking control, the small deviations�η,
�η̇, � pg, � ṗg in xsway are referred to the values of the corresponding variables
from the reference trajectory.
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Fig. 7 Trajectory tracking feedback control for Cablev

5 Experimental Result

As an experimental result, a closed-loop trajectory in the vertical xz-plane in com-
bination with a rotation of the platform with an angle ϕ3 = 30◦ around the vertical
axis is considered in Fig. 8. The platform is at rest in the initial and final positions of
the trajectory. To demonstrate the effect of the trajectory tracking control, the Bryan
angles of the initial platform position deviate by 10◦ each from the reference trajec-
tory. Figure 8a–c shows that the measured actual cable inclination angles βi (t) track
relatively well the values β̂i (t) calculated by the feedforward control. The deviations
between β̂i (t) and βi (t) in the initial phase are caused by the initial values of the
platform being not consistent with the reference trajectory. Figure 8d–f shows the
platform coordinates rx (t), rz(t), and ϕ3(t) that are calculated by means of the mea-
surement model (28) from the measured actual cable inclination angles βi (t) and
from the actual robot coordinates p(t) (not represented here). The corresponding
tracking errors erx (t), erz (t), and eϕ3(t) (right-hand axes) tracking errors of about
4 cm for the horizontal coordinate rx , about 1 cm for the vertical coordinate rz , and
about 2◦ for the rotation angle ϕ3.
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Fig. 8 Experimental result for tracking a spatial trajectory with initial disturbance

6 Conclusion

A trajectory tracking control for the kinematically indeterminate three-cable suspen-
sion manipulator Cablev is theoretically and experimentally presented. It consists of
a flatness-based nonlinear feedforward control and a superimposed linear feedback
control. A critical issue for the trajectory tracking control is a sufficiently precise
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measurement of the actual motion parameters of the platform, especially the velocity
needed for the state-space controller. In the described investigations, the velocity was
obtained by finite differences of the cable inclination sensors (potentiometers) that
underlies several disturbance effects. An improvement can be achieved by platform-
fixed inertial sensors (accelerometers and gyros) that are aided by complementary
position sensors, here the cable inclination angles, as shown in [11].
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Part VIII
Dynamics Modeling



Geometric Stiffness Analysis of Wire Robots:
A Mechanical Approach

Dragoljub Surdilovic, Jelena Radojicic and Jörg Krüger

Abstract This paper presents a mechanical approach for the modelling of wire
robots dynamics considering the effects of structural elasticity. The mechanical wires
represent critical flexible elements of a wire robot that are responsible for elastic
deformations and vibrations of the entire structure. A comprehensive elastodynamic
analysis plays a crucial role in wire-robot synthesis and control. Especially in the
large-span systems, the elastic deformations and vibrations may be characterized
by relatively low frequencies and high amplitudes causing undesirable behaviour.
The paper considers coupled 6D deformations of the common wire-robot platform
in both over- and under-constrained wire robot structures. Special emphasis is on
the geometric stiffness matrix that is dependent on wire tension and which has been
derived following a rigorous mechanical approach analysing the motion of the entire
system and specific components. The geometric stiffness matrix in wire robots plays a
crucial role in stabilization of the wire robot, such as in active stiffening and damping
of unacceptable vibration effects. The decomposition of both spatial elastic wire and
geometric stiffness matrices on virtual elemental springs has been applied to provide a
physical insight and better understanding of the wire robot elastic behaviour. Several
examples illustrate the theoretical analysis.
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1 Introduction

The wire-robots (the term also used: cable driven parallel robots) have been recently
addressed in numerous researches focusing on their advantages for implementing
large spans, fast moving, lightweight and heavy-duty active spatial mechanisms. In
comparison to a more general class of cable robots (e.g. spatial advanced robotized
crane systems), the wire robots, especially the so called over-constrained structures,
offer benefits to apply and control wire over-tension by wire pulling forces and thus
to perform more precise and robust pose and motion control in spite of the external
dynamic perturbations and excitations (e.g. wind, inertia etc.). However, due to the
relatively large dimensions and inevitable elasticity inherent in robot cables, the wire
robots are prone to vibrations. Thereby the common platform can perform complex
coupled 6D oscillations, particularly in case of abrupt motion changes. The motion
planning of wire-robots cannot be similar to that of the convenient industrial robots
performed separately from system dynamic i.e. quasi-static analysis considerations,
such as planning of tension free or wrench feasible working spaces etc. Therefore,
elastodynamic analysis of wire robots becomes essential in trajectory planning, as
well as during system design and control development.

The wire-robot stiffness analysis has been recently the subject of several studies
taking into account the particular features of wire robots. The conventional wire-robot
elasticity i.e. stiffness analysis completely neglects or considers a slight dependence
of the stiffness matrix from the wire tension (pre-stress). The seminal studies on the
wire robot elastic deformations have been performed within ROBOCRANE project
[1]. The applied approach has been based on static analysis and linearized stiffness
matrix computation in both wire and Cartesian space (so called spatial stiffness ma-
trix). Since the nominal length of the wires has been changed due to tension force in-
duced
dilatations (relevant in large-span systems), a slight dependence of the spatial stiff-
ness matrix from the wire tension (less than<0.5 % according [2]) has been reported
when real wire lengths have been considered. A more exact non-linear stiffness
analysis is based on wire robot Jacobian mapping [2]. Diao and Ma [3] have consid-
ered elemental longitudinal and transversal vibrations of elastic wires around quasi-
static platform equilibrium. They have accented the dominance of longitudinal wire
vibration contribution to the platform oscillations over negligible transversal effects
(less than 2 %). The wire-stiffness has been in [4] included in the dynamic mod-
els of the elastic robots, derived using Lagrange-formalisms and introducing addi-
tional lumped wire longitudinal elastic coordinates. Based on this model a simple PD
position plus tension controller including gravity compensation has been synthesized
to ensure stable trajectory tracking.

However, as known from the theory of elasticity, a cable when subjected to large
longitudinal tension expresses an increased transversal stiffness. This type of non-
linear behaviour in elastic structures related to second-order geometry effects due to
deformation and complex load of a body (e.g. buckling effects of thin beam under
axial compression force) has been referred to as geometric-stiffness in static and
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dynamic deformation analysis, or p-delta effect in civil structural engineering [5].
The geometric stiffness matrix depends on the external loads and may be either pos-
itive or even negative definite, increasing or reducing the structural stiffness (e.g.
buckling of rods). In convenient robotic systems the geometric stiffness effects have
been firstly analysed by Chen and Kao [6], which referred this effect to as con-
servative congruence transformation (CCT) between joint and Cartesian stiffness
matrices. The CCT in robotic system with dominate joint-elasticity is related to the
variations of robot Jacobian (Hessian) matrix during infinitesimal elastic displace-
ments and external loads. However, the practical relevance of the CCT in industrial
robotic systems, considering relatively stiff joints (transmissions), considerably rigid
structures and relatively small loads is still not clear.

Studies on parallel robots stiffness matrix analysis have also attracted consider-
able interest [7]. In order to analyse stability of Stewart-Gough platform preloaded by
internal forces, Svinin et al. [8] have initially considered geometric stiffness effects in
parallel robot structures. Motivated by this work Behzadipour and Khajepour [9, 10]
have recently analysed the influence of cable tension on spatial stiffness and sta-
bilization of cable robots. The authors have refereed this effect to as antagonistic
variable stiffness. Similar analysis of a specific wire robot developed for wind-tunel
testing has been reported in [11]. Recently Arsenault [12] has analysed the influence
of wire preloads on increasing stiffness matrix of a planar 3DOF cable-driven robot
based on linearization of the state-equilibrium equations. This model was utilized in
the paper to analyse stability and optimize the robot workspace under cable pre-stress
conditions.

All the above mentioned researches, however, have analysed geometric-stiffness
based on equivalence with parallel robots assuming wires attached at specific points
in the space. Thereby particular wire-robot motion effects occurring in commonly
applied pulley elements (e.g. due to pulley rolling and wire coil) have been neglected.
In this paper we will derive geometric stiffness of a general wire-robot system tak-
ing also into account the pulley motion effects. The stiffness analysis will be based
on both an exact mechanical approach, and the screw-theory [13]. Using the stiff-
ness matrix decomposition, the influence of geometric stiffness on the entire spatial
stiffness and dynamic vibrations will be analysed and illustrated with practical wire-
robots examples. It will be shown that wire-tension, i.e. geometric stiffness plays a
considerable role in stabilization and reduction of undesired vibration effects even
in under-constrained robot structures.

2 Kinematic Analysis

In Fig. 1, a general model of wire-robot with n-wires (i = 1, . . . , n) is given. In a
over-constrained wire-robot structure ensuring 6DOF motion plus wires tension is
n ≥ 7. Using the notion from (Fig. 1), the position of the ith wire platform attachment
point Bi is defined by

pi = ai + Li = p + bi (1)
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Fig. 1 Wire-robot structure

where ai and bi are position vectors of pulley and platform attachment points Ai and
Bi wrt. base and local platform frames respectively, p is the position vector of the
platform reference frame and

Li = −−→
Ai Ci + −−→

Ci Ti + li (2)

where li is the wire-length vector, while Ci and Ti denote centre of the pulley and
wire tangent points (Fig. 1).

Let us analyse the wire motion during an arbitrary platform displacement. In
general the wire performs a complex composite motion that can be decomposed into
transferred motion representing the entire wire plane {Ai Bi Ci Ti } rotation (rolling
motion of the pulley) around the fixed pulley axis ei , and relative motion in the wire
plane. The relative motion consists of relative translation i.e. change of the relative
length in the actual cable direction (due to cable control, i.e. via a winch or linear slider
mechanism that are not presented in the Fig. 1), and a relative rotation of the wire
around the pulley (i.e. point Ti that represents actual pole of the velocity). Based
on this analysis, differentiating (1) twice with respect to time taking into account
vector differentiation rules, the expressions for absolute wire end-point velocities
and accelerations are obtained

vi = ṗi = ωei × Li + ωri × li + ∗
li = vp + ωp × bi (3)

ai = p̈i = εei × Li + εri × li + ωei × (ωei × Li )+ ωei × (ωri × li )+ ωri

× (ωri × li )+ 2(ωei + ωri )× ∗
li + ∗∗

l i = ap + ε p × bi + ωp

× (ωp × bi ) (4)
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Fig. 2 Velocity vectors com-
ponents

where ωei and εei denote pulley rotation velocity and acceleration around ei (Fig. 2),
ωri and εri relative wire rotation velocity and acceleration around wire-plane nor-

mal ni ,
∗
li and

∗∗
l i are linear wire relative velocity and acceleration due to cable

length changes, vp and ωp, ap and ε p are platform linear and angular velocities and
acceleration vectors respectively. Relative velocity components and their directions
are shown in Fig. 2. The projections of the velocity and acceleration vectors (3, 4)
into wire-length vector direction, defined by unit vector li0 = li/li , i.e. scalar mul-
tiplication of these equations by li0 yields the magnitudes of wire linear relative
velocity

∗
l i = [li0T − li0T bi ] tp (5)

where tp = [vp
T ωT

p ]T
is the platform twist vector, while bi denotes skew-

symmetric 3×3 matrix formed from the elements of the vector bi in order to represent
the vector product in the matrix form. Scalar multiplication of (4) by li0 yields the
magnitude of wire relative acceleration

∗∗
l i = ωei

2
[
(�ei × �Li ) · �ni

] [
(�ei × �ni ) · �li0

]
+ ωri

2li

+
[
li0T − li0T bi

]
ṫp − li0Tωpbiωp (6)

where the first two components represent the projections of centrifugal accelera-
tions components (corresponding to the pulley and relative wire rotations), while the
remaining parts define projections of platform tangential and centrifugal accelera-
tions into the wire directions.

The expressions for vectors of angular pulley and wire relative rotations are
obtained by scalar multiplication of (3) by vectors nli = ni × li0 and ni respec-
tively in terms of platform twist vector
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ωei = 1

(�ei × �Li ) · �ni

[
ni

T − ni
T bi

]
tp (7)

ωri = 1

li

[
−li0T ni li0T bi

]
tp (8)

3 Wire-Robot Jacobian and Its Time-Derivative

The relationship between relative wire velocity, defining the cable length variations,
and platform twist vector is defined by the wire-robot Jacobian

∗
l = Jt p (9)

where
∗
l = [∗l1 . . .

∗
l i . . .

∗
l n]

T
and Jacobian matrix J ∈ Rn×6 is

JT =
[

l10 · · · li0 · · · ln0
b1l10 · · · bi li0 · · · bn ln0

]
(10)

The time derivative of wire Jacobian is obtained by differentiating (9) (the same
result is obtained by substituting (7) and (8) in (6))

∗∗
l = Jṫp + J̇tp (11)

where based on (10) is

J̇T =
[

l̇10 · · · l̇i0 · · · l̇n0

ḃ1l10 + b1 l̇10 · · · ḃi li0 + bi l̇i0 · · · ḃn ln0 + bn l̇n0

]
(12)

Taking into account that the time derivatives of the constant intensity vectors li0
and bi (considering an ideal rigid platform) are

l̇i0 = ωei × li0 + ωri × li0

ḃi = ωi × bi (13)

and substituting (7) and (8) yields

J̇ = tp
T ⊗ J = tp

T ⊗ [J1
T . . . Ji

T . . . Jn
T ]T

(14)

where J is a n(6)×1(6)block matrix (numbers outside parenthesis define block matrix
dimension, while within parenthesis the dimension of each block-matrix element
has been given), ⊗ is the Kronecker’s product (each block-element of J is by tp

T



Geometric Stiffness Analysis of Wire Robots 395

multiplied) and the block element Ji ∈ R6×6 has the form

Ji =
[ − 1

li
ni li0li0

T ni + 1
(�ei ×�Li )·�ni

ni li0
T ei

1
li

ni li0 li0
T ni bi − 1

(�ei ×�Li )·�ni
ni li0

T ei bi

− 1
li

bi ni li0 li0
T ni + 1

(�ei ×�Li )·�ni
bi ni li0

T ei
1
li

bi ni li0 li0
T ni bi − 1

(�ei ×�Li )·�ni
bi ni li0

T ei bi + bi li0

]

(15)

4 Structural and Geometric-Stiffness Matrices

The Cartesian spatial stiffness matrix relates the variations of applied forces and
moments (wrench) to the corresponding spatial displacements (twist) rates of change

δw = Kδt

[δFT δMT ]T =
[

Kxx Kxo

Kxo Koo

]
[δxT δoT ]T (16)

where w and t are wrench and twist screw vectors, δF and δM are variations of
Cartesian forces and moments acting on the common platform and δx and δo are
corresponding relative translational and rotational displacements compatible with
the constraints. The mapping between internal wire tension forces, grouped in the
wire tension vector f = [f1 . . . fi . . . fn]T with elemental forces acting along li0
(i = 1, . . . , n), and Cartesian wrench is also defined by the wire-robot Jacobian

w = JT f (17)

In the conventional stiffness modeling approach the Jacobian mapping has been also
utilized to transform the variations of internal wire and external platform forces and
moments

δw = JT δf (18)

Assuming light-weight wires (e.g. high strength dyneema cables) and linear elastic
deformation wire model, the wire tension forces are proportional to the elastic cable
longitudinal displacements

δfi = kiδli = ki/liδli (19)

where k is the specific wire cable axial stiffness for unit length k = E A, E is Young’s
module and A the cable cross-section (for the sake of simplicity the same elastic
characteristics have been adopted for each wire). Replacing the above relationship
between wire length and twist variations yields the spatial wire robot stiffness matrix

K = kJT LJ (20)
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where L = diag(1/li ) ∈ Rn×n . When instead of the nominal wire lengths li ,
the real ones after deformation have been considered l̂i = li + �li , the stiffness
matrix become dependent on the tension since the matrix L takes the form L =
diag((1/li (1 + fi/k)). As mentioned above, this influence of the wire-tension is
commonly negligible and becomes more expressed in systems with large-span.

However, if the changes of the wire-robot structures have been also taken into
account, the correct differentiation of (17) gives external-wrench/wire-tension rela-
tionship in the variational form

δw = JT δf + δJT f (21)

where the variation of the Jacobian describes the structural changes during defor-
mation. Based on (12) the Jacobian variation can be written in a block 1(6) × n(7)
matrix form

δJT = [δJ1
T . . . δJi

T . . . δJn
T ] (22)

with 6 × 1 block elements

δJi
T =

[
δli0

δbi li0 + biδli0

]
(23)

Using the screw derivatives [13] and considering the analysis of the wire motion
composition (3–8), the variation of constant length vectors li0 and bi (assuming a
rigid platform) may be written in the form

δli0 = δoi × li0 = δoei × li0 + δori × li0 = δoei ei × li0 + δori ni × li0
δbi = δop × bi (24)

where based on expressions for angular velocities (7, 8) describing relative angular
variations, the relationships between wire and platform elemental displacements is
obtained in the form

δli0
T = 1

li

[
δxp δop

]
[

ni li0
bi ni li0

]
⊗ li0

T ni + 1

(�ei × �Li ) · �ni

[
δxp δop

]
[

ni
bi ni

]
⊗ li0

T ei

(25)

By this means we can express the Jacobian variations (Hessian) in terms of ele-
mental platform displacement variations. Then (22, 23) can be rewritten in the form

δJi
T = Ji

T δtp (26)

where 6 × 6 matrix has the form
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JT
i =

[ − 1
li

ni li0li0
T ni + 1

(�ei ×�Li )·�ni
ei li0ni

T 1
li

ni li0li0
T ni bi − 1

(�ei ×�Li )·�ni
ei li0ni

T bi

− 1
li

bi ni li0 li0
T ni + 1

(�ei ×�Li )·�ni
bi ei li0ni

T 1
li

bi ni li0li0
T ni bi − 1

(�ei ×�Li )·�ni
bi ei li0ni

T bi + li0bi

]

(27)
which is equivalent to the previously derived block-matrix elements of the Jacobian
time-derivative (14). Finally based on (21) and (22) yields

δJT f = (JT f)δtp =
(

n∑

i=1

JT
i fi

)
δtp (28)

from which taking into account definition of the stiffness follows tension-force de-
pendent wire-robot geometric-stiffness matrix

Kg(f) = JTf =
(

n∑

i=1

JT
i fi

)
(29)

The total stiffness matrix is the sum of the structural and geometric stiffness matrices

K = Ks + Kg = kJT LJ +
n∑

i=1

JT
i fi (30)

Obviously the structural wire stiffness matrix is a symmetric positive semi-definite
(PSD) matrix, while in general the geometric stiffness may be positive or negative-
definite dependent on the robot position and the wire tension. As is well known, in
an over-constrained wire-robot structure (with n > 6 wires) we can realize for the
same external wrench various wire tensions utilizing Jacobian null-space and inverse
force transformation

f = J#T w + λ ⊗ N (31)

where N denotes n × (n − 1) dimensional null-space (kernel) of JT and λ represents
arbitrary wire tension scaling factors. The reachable tension range of the internal
wire forces defines wrench-feasible or wrench-closure wire-robot workspace where
arbitrary external wrenches may be realized within some maximum load. Based on
the above analysis, changing i.e. controlling the wire pre-stress, in general, provides
also the possibility to vary the geometric stiffness matrix. By this means the entire
wire-robot stiffness may be increased and elastic displacements of platform, caused
by external wrenches, can be reduced.

The geometric stiffness matrix (26–29) consists of symmetric and asymmetric
components. The stability of quasi-static force equilibrium of the platform depends
on whether the entire stiffness matrix is PSD or not. That means that geometric
stiffness matrix, i.e. wire pre-stress not only can contribute to increasing the entire
stiffness, but also improving the stability or even destabilizing the platform in some
configuration.
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5 Stiffness Decomposition

In order to analyze the influence and relevance of the geometric-stiffness in wire-
robotic systems it is useful to apply the eigen-screw stiffness matrix decomposi-
tion methodology [14]. According to this approach a general stiffness matrix can
be decomposed into primitive components that may be interpreted as linear and/or
rotational virtual springs (Fig. 3). All these virtual springs provide a possible equiv-
alent physical realization of the wire-robot stiffness in the Cartesian space with the
considered configuration. This decomposition facilitates both a better physical appre-
ciation of the stiffness realization in wire-robotic systems, and a better understanding
of how to adjust the stiffness by means of the above modeled geometric stiffness and
wire-tensions.

The eigen-screws based stiffness matrix decomposition depends in general on the
coordinate frame used to describe the stiffness matrix. The decomposition is based
on the eigen-value matrix decomposition in which each PSD matrix with the rank m
(for the spatial stiffness matrices m ≤ 6) can be decomposed into rank-1 elemental
matrices each of them can be represented in the form

K =
m∑

i=1

Ki =
m∑

i=1

ki vi vi
T (32)

where ki (ki > 0 when K is a PSD matrix) is a constant and vi is so called spring-
wrench. For a rank-1 Ki this decomposition is unique except the sign change. Each
element of the decomposition (32) may be interpreted as a spatial spring consisting
of a linear and torsional spring elements (Fig. 3) associated with the eigenvectors and
eigenvalues of the stiffness matrix.

A modified eigenvalue decomposition of the stiffness matrix referred to as eigen-
screw decomposition has also been proposed in [14]. This decomposition is based
on the screw eigenvalue problem

K�e = λe (33)

which includes a transformation matrix � of screw vectors e. The advantage of the
decomposition (33) is that it is independent of the reference frame and unique.

6 Examples

In order to illustrate possibilities to shape the spatial stiffness matrix and to influence
the elastic deformation, vibration and stability of the wire-robots by means of the
internal pre-stress wire forces, a simple case of 4DOF planar manipulator has been
considered (Fig. 4). This wire-robot structure with relatively large-span (approxi-
mately 30 × 30 m and maximum payload 20 kg) has been actually considered as a
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Fig. 3 Stiffness decomposi-
tion

simple and fast robotic solution for inspections of planar surfaces. As is well known
the main drawbacks of this robot type represent uncontrollable Cartesian DOFs:
translation in the normal y direction to the plane, and rotations around x and z axes.
In an ideal planar case the Jacobian and stiffness matrix have rank-3. For the con-
sidered case and almost central platform position (Fig. 4), assuming minimum wire
tension of 100 N, the structural and geometric-stiffness matrix have been computed
and decomposed on Cartesian eigen-stiffness. The values of structural and geometric
stiffness, as well as eigen-value matrices which columns represent the directions of
the eigen-spring elements in the Cartesian space and corresponding eigen-stiffness
are given in (34). Obviously the structural stiffness equivalent Cartesian springs are
acting only in DOFs within Jacobian rank, while the geometric stiffness matrix has
the full rank and produces the stiffness effects in all directions. When the minimum
tension has been increased from 100 to 1000 N, the structural stiffness remains the
same, while the geometric one becomes considerably larger (35). The effects on
structure stiffening also in critical uncontrollable directions: in plane normal direc-
tion and specially rotational stiffness become more expressed.

f = [240.85 222.55 100 363.35]T

Ks = 104

⎡
⎢⎢⎢⎢⎢⎢⎣

1.026 0 0 0 −0.004 0
0 0 0 0 0 0
0 0 0.966 0 0.003 0
0 0 0 0 0 0

−0.004 0 0.003 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Kg =

⎡
⎢⎢⎢⎢⎢⎢⎣

9.8 0 −2.7 0 2.6 0
0 −28.9 0 3.8 0 0.14

−2.7 0 10.4 0 0.08 0
0 3.8 0 280.3 0 −75.6

2.6 0 0.08 0 593.6 0
0 0.14 0 −75.6 0 293.7

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 4 Planar wire-robot

Vs =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Vg =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −0.7 −0.7 0 0 0
0 0 0 −1 0 0
0 0.7 −0.7 0 0 0
0 0 0 0 0.7 −0.7

−1 0 0 0 0 0
0 0 0 0 0.7 0.7

⎤
⎥⎥⎥⎥⎥⎥⎦

Ksλ = [10257 1 9659 0 0 0] Kgλ = [593.7 12.75 7.4 −29 211 362] (34)

f = [1140.8 2327.3 1000 2468]T

Kg =

⎡
⎢⎢⎢⎢⎢⎢⎣

73 0 −29 0 2 0
0 −216 0 3 0 1

−29 0 78 0 1 0
0 3 0 2104 0 −824
2 0 1 0 4452 0
0 1 0 −824 0 2202

⎤
⎥⎥⎥⎥⎥⎥⎦

Vg =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.7 0.7 0 0 0 0
0 0 0 0 0 1

−0.7 −0.7 0 0 0 0
0 0 0 0.7 −0.7 0
0 0 −1 0 0 0
0 0 0 −0.7 −0.7 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Kgλ = [46.5 104.3 4452.5 2978 1327 −216] (35)

In the next example the influence of geometric stiffness on the vibration of
the planar wire robot on (Fig. 4) has been analyzed. The robot has been posi-
tioned in the same location as in the previous case and the wire forces f =
[240.85 222.55 100 363.35]T (N), which compensate for the platform weight
(25 kg) and ensure the minimum wire pre-tension of 100 N have been realized. The
wire pre-tension has been controlled in the null-space of the planar motion Jacobian
using the robot redundancy (n = 4 wires for 3 DOFs of planar motion). Then a
rectangular external force Fy = 50 N in the uncontrollable y-direction orthogonal to
the motion plane has been simulated for the duration of 3 s. The simulated platform
oscillations in the y direction are presented in (Fig. 5). If the minimum tension is again
increased from 100 to 1000 N, the oscillation behavior (frequency, amplitude) has
been considerably changed (Fig. 6) due to geometric stiffness effects (i.e. stiffening
of the wire robot especially in the lateral direction and reducing deformations due to
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Fig. 5 Oscillation in y-direction caused by an impulse force of 50 N

Fig. 6 Oscillations after increasing wire pre-tension

increased wire tension). Obviously the amplitude of the vibrations has been reduced
by 50 % and (from 0.4 to 0.2 m) and the frequency of vibration has been increased
from approximately 0.16 to 0.4 Hz in the considered simulation experiment after
increasing the pre-tension. Thereby structural stiffness remains unchanged. By higher



402 D. Surdilovic et al.

Fig. 7 STRING-MAN wire-robot

wire tensions the coupling between translational and rotational vibrations become
more complex.

In the third experiment a wire-robot with n = 7 wires (Fig. 7) has been considered.
This robot is referred to as STRING-MAN and has been initially developed to support
posture-balancing and gait rehabilitation [15]. The unique feature of this robot is
that the human patient body is attached to the wires as a common platform. The
compliance and force control, rather than the considered stiffness effects, are essential
for the interaction with a patient (see [15] for more details). In our experiments
the patient (i.e. dummy) has been replaced by a box-like platform (Fig. 7). The
STRING-MAN system provides an over-constrained wire-robot structure, whose
corresponding structural-stiffness has the full rank. However, the initially computed
and experimentally measured geometric stiffness effects have been proven again as
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essential for increasing the entire robot stiffness (Fig. 7) (due to limited space more
detailed results have been omitted).

7 Conclusion

This paper has presented the detailed modeling and analysis of geometric stiffness
effects in general wire-robot systems with pulley elements. The spatial wire-robot
stiffness plays an essential role for the precise realization of desired positions, plan-
ning and tracking of trajectories and stabilization of the common robot platform. In
the conventional robotic structures the geometric stiffness (also referred to as CCT)
depends on external loads and is commonly negligible in comparison to the struc-
tural stiffness of relatively rigid robotic arms and joints. In wire robotic system, how-
ever, the geometric stiffness effects are well expressed and play the crucial role for
increasing the total robot stiffness and pose stabilization. The geometric stiffness in
wire robots is related to the internal wire forces, which can be considerably increased
(controlled) by means of the wires over-tension in the Jacobian null-space regardless
of the external loads.

The derived robot geometric stiffness models can be efficiently utilized for wire-
robot design and motion planning, as well as in real-time computations, e.g. in active
stiffening and vibration suppression and damping algorithms. The on-going work
would be focusing on more comprehensive analysis and experimental testing of the
geometric stiffness for the stabilization/destabilization of wire robots in critical con-
figurations and working conditions. The influence of geometric stiffness on vibration
suppressions is also the topic of current research.
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by means of wire robotic systems.
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Stiffness Analysis of a Planar 2-DoF
Cable-Suspended Mechanism While
Considering Cable Mass

Marc Arsenault

Abstract The mass of the cables is not considered in most existing research on
cable-driven mechanisms (CDM). Moreover, of those papers where cable mass is
considered, few have examined its effects on mechanism stiffness. The research
presented herein seeks to better understand these effects with regards to a planar
two-degree-of-freedom suspended CDM. The mechanism’s stiffness matrix is first
developed and then used to generate mappings of intuitive stiffness indices over the
workspace. The sagging of the cables under their own weight is found to heavily
influence mechanism stiffness. The importance of maintaining a minimum level of
cable tension to minimize the effect of cable sagging on the mechanism’s stiffness
and workspace is also demonstrated.

1 Introduction

A parallel cable-driven mechanism (CDM) is one where an end-effector (EE) is
linked to a base by a set of cables working in parallel. By varying the lengths of the
cables, the pose (i.e., position and orientation) of the EE can be controlled so as to
accomplish the task at hand. Some known attributes of CDMs include the inertial
properties of their moving parts, their potential to operate in very large workspaces,
the ease with which they are built, transported and reconfigured as well as their
relatively low cost. However, CDMs also present some interesting challenges, the
most important of which is the inherent flexibility of the cables. This requires the
cables to be kept taut in order to maintain the rigidity of a CDM.
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Recognizing that cables cannot push on the EE, completely restrained CDMs use
nc > d cables to resist wrenches applied to the EE while maintaining tension in the
cables (nc is the number of cables while d corresponds to the quantity of degrees
of freedom of the space in which the EE is operating, e.g., d = 3 in the plane and
d = 6 in three-dimensional space). Meanwhile, suspended CDMs use nc ≥ d cables
located above the EE where the latter’s weight is assumed to provide the required
tension in the cables.

Much of the fundamental research on CDMs has focused on workspace determi-
nation [4, 12, 13, 23], stiffness modeling [3, 9, 22, 24], synthesis [8] and the effect
of the axial flexibility of cables on kinematics [18]. However, despite the fact that
research on CDMs has been ongoing for at least two decades, most of the existing
literature deals with the case where cable mass is neglected. When this assumption
is made, a cable can be modeled as a straight line segment linking its attachment
points on the EE and base with tension being constant along its length. This sim-
plifies the analysis of CDMs with, for instance, closed-form solutions to the inverse
kinematic and static analyses being readily available. However, while the neglect of
cable mass may often be justified, this is not always the case. Under the effect of
its own weight, a cable will sag and deflect away from the above-mentioned straight
line segment. This can have a significant impact on the performance of CDMs as
well as the complexity of their analysis. Cable sagging is especially prevalent when
the weight of a cable is significant with respect to its tension. Whereas completely
restrained CDMs may theoretically adjust the tension of the cables to minimize the
effects of cable sagging, such is not the case for suspended CDMs. For this reason,
suspended CDMs are susceptible to the effects of cable sag. Some examples of sus-
pended CDM applications where cable sagging may need to be considered include
large cranes [1], reconfigurable search and rescue systems [6], building, inspection
and maintenance systems for large buildings [5, 14] and receiver support systems
for large radio telescopes [19].

Past research involving cables of non-negligible mass has largely been motivated
by the study of structures (e.g., bridges). Closed-form solutions for the profile of a
single cable subjected to varying end conditions have long been available [15]. More
recently, researchers have begun to consider the effect of cable sagging on suspended
CDMs. The inverse kinematic problem (IKP)1 of CDMs while considering cable
mass was shown in [17] to require the numerical solution of a non-linear set of
equations. The errors in the solution of the IKP that stem from neglecting cable
mass were quantified in [20] where the influence of cable weight on cable tension
was also studied. Meanwhile, the effect of cable sagging on mechanism workspace
was analyzed in [16, 21]. The dynamic model of a six-degree-of-freedom suspended
CDM taking cable mass into account was presented in [25]. Finally, a simplified
model of CDMs while considering cable mass was presented in [11] for the case of
inextensible cables where the sagging remains below a specified threshold.

1 The task of computing the cable rest lengths corresponding to a given pose of the EE is referred
to here as the inverse kinematic problem though its solution also requires the consideration of the
mechanism’s static equilibrium equations.
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It is generally desirable for suspended CDMs to resist displacements of their EE
(and payload) under the effect of disturbance forces. The ability to do so is quantified
by the mechanism’s stiffness. When cable mass is non-negligible, the stiffness has
been shown to be strongly influenced by cable sagging [17]. In fact, given a sagging
cable in static equilibrium with one end fixed and the other subjected to an external
force, a small increase in this force will lead to a corresponding displacement of the
free end. Part of the displacement will be due to an extension (or contraction) of
the cable along its length while the other will stem from a decrease (or increase) of
the cable sagging. The stiffness of the cable is thus determined from a combination of
its axial flexibility and the sag-induced flexibility inherent to its curved profile. The
stiffness matrix of a single cable was obtained in [17]. It was then used to compare
the stiffness of suspended CDMs with and without the massless cable assumption
by computing natural frequencies from a linearized dynamic model. A similar cable
stiffness matrix was also used in [7] in the definition of a metric to determine when
cable mass should be considered.

2 Model of the Elastic Catenary

Prior to introducing the mechanism that concerns this work, it is essential to provide
a description of the cable model that is used in its analysis. The cable is assumed to be
homogeneous with axial elasticity and negligible flexural stiffness. These assump-
tions were used in [15] in the development of a model for the elastic catenary, the
latter also having been used, for instance, in [7, 17, 20]. The unstrained cable has
linear density ρ, diameter d, cross-sectional area A, length l0. Moreover, Young’s
modulus for the cable’s material is E and its breaking strength is σmax. The free
body diagram of an elastic catenary is illustrated in Fig. 1a. One end of the cable
is assumed to be fixed (i.e., A). Under the action of a tension force t applied at its
free end B (and a corresponding reaction force t0 at end A), the cable has a strained
length l. In Fig. 1b, the free body diagram of a section of cable extending from end
A to an arbitrary point located a distance s0 along the unstrained cable length or,
equivalently, a distance s along the strained cable length, is shown. The tension in
the cable at this point is represented as ts0 with the direction tangent to the cable
defined by θs0 . A reference frame XcYc is defined with its origin at the fixed end of
the cable (i.e., A) such that the cable is located entirely within the XcYc plane with
the Yc axis vertical. Given c = [cx , cy]T a vector directed from A to B expressed in
the XcYc frame, the Xc axis is chosen so that cx ≥ 0.

Static equilibrium equations applied to the cable yield:

t0x = tx , t0y = ρgl0 − ty (1)

where t0x = t0 cos θ0, t0y = t0 sin θ0, tx = t cos θ and ty = t sin θ . Moreover,
wc = ρgl0 is the weight of the cable and g is the gravitational acceleration. Based
on the existing model for the elastic catenary [15], the coordinates of a point located
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Fig. 1 Free body diagram of an elastic catenary: a entire cable, b element of cable

a distance s0 along the unstrained cable length, expressed in the XcYc frame, are
given by2:

x(s0) = tx s0
k′ + tx

ρg ln

⎧
⎨
⎩

ty−ρg(l0−s0)+
√

t2
x +

[
ty−ρg(l0−s0)

]2

t0−t0y

⎫
⎬
⎭ (2)

y(s0) = ty s0
k′ + ρgs0

k′
( s0

2 − l0
) + 1

ρg

{√
t2
x + [

ty − ρg(l0 − s0)
]2 − t0

}
(3)

where k′ = E A. Setting s0 = l0 in these equations yields:

cx = tx l0
k′ + tx

ρg
ln

(
t + ty

t0 − t0y

)
, cy = tyl0

k′ − ρgl2
0

2k′ + 1

ρg
(t − t0) (4)

It should be recognized in the above equations that, once (1) is considered, the cable
profile equations as well as the components of vector c are expressed only in terms
of the external force applied at B as well as the mechanical properties of the cable.

Aside from having a curved profile, the elastic catenary also has a varying tension
along its length. The tension at a given point in the cable, located at s0, is [15]:

ts0 =
√

t2
x + [

ty − ρg(l0 − s0)
]2 (5)

2 In the interest of brevity, the details regarding the development of the model for the elastic catenary
are not included in this paper.
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It is useful to identify the minimum and maximum tensions along the cable since these
will be used later in the computation of the mechanism’s workspace. The maximum
tension will always occur at the cable’s highest point while the minimum tension
will occur at its lowest point. In order to understand this, one may first observe from
the static equilibrium of the cable (refer to Fig. 1) that the horizontal component
of tension is constant throughout the cable. Meanwhile, the vertical component of
tension will be maximal at the cable’s highest point since the largest portion of the
cable weight is being supported there. Equivalently, a minimum will be attained at the
lowest point since none of the cable weight is being supported there. In determining
the minimum tension, one must consider whether the cable profile droops below the
lowest of its two end points (such as the cable joining A2 and P in Fig. 2). This will
be the case if the vertical component of the cable tension at the lowest cable end, A or
B, is positive. If such drooping occurs, the minimum tension is tx since the tangent
to the cable profile at its lowest point is horizontal. The procedure for determining
the minimum and maximum tensions in a cable is summarized in Algorithm 1. It is
noted that the treatment presented here is slightly more general than in [21], where
it was assumed that the highest point in the cable is always located at the end of the
cable that is attached to ground (i.e., cy ≤ 0). This would only remain the case for
any arbitrary configuration of the mechanism if the attachment points to ground are
all at the same elevation.

One of the main focuses of this paper is the stiffness analysis of a suspended CDM.
The stiffness of a cable can be interpreted here as its ability to resist displacements
of its free end (i.e., B) upon the application of disturbance forces to it. As was
previously mentioned in Sect. 1, the stiffness of a cable with non-negligible mass
will be influenced by its axial flexibility as well as its sag-induced flexibility. This
is represented as a 2 × 2 matrix Kc representing the stiffness of a single cable such
that:

δt = Kcδc (6)

where t = [tx , ty]T . The compliance matrix Cc of a single cable, previously derived
in [17], is first computed by differentiating (4) with respect to tx and ty , i.e.,

Cc =
[

Cc11 Cc12

Cc21 Cc22

]
=

[
∂cx/∂tx ∂cx/∂ty

∂cy/∂tx ∂cy/∂ty

]
(7)
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Fig. 2 Diagram of the planar 2-DoF suspended CDM

where expressions for t0, t , t0x and t0y in terms of tx and ty are first substituted into (4)

from (1) while taking into account the fact that t0 =
√

t2
0x

+ t2
0y

and t =
√

t2
x + t2

y .

The elements of the compliance matrix are thus found as:

Cc11 = l0
k′ + 1

ρg ln
(

t+ty
t0−t0y

)
+ t2

0x
ρg

[
1

t (t+ty)
− 1

t0(t0−t0y )

]
(8)

Cc12 = Cc21 = tx
ρg

(
1
t − 1

t0

)
, Cc22 = l0

k′ + 1
ρg

(
t0y
t0

+ ty
t

)
(9)

The cable’s stiffness matrix may then be obtained as Kc = C−1
c .

3 Kinematic and Static Analysis of the 2-DoF Planar
Suspended CDM

A diagram of the planar two-degree-of-freedom (2-DoF) suspended CDM analyzed
in this work is shown in Fig. 2. It consists of a point mass EE, represented by point
P , that is linked to ground by cables attached to points A1 and A2. By actuating the
rest lengths of these cables (i.e., l01 and l02 ) the position of the EE can be controlled.
Moreover, under the effect of the combined mass of the EE and payload, m, as well
as its own mass, the i th cable has a sagged profile with a strained length li (i = 1, 2).

A reference frame XY is defined as being attached to ground with its origin at O .
Reference frames Xci Yci are also defined for each of the two cables according to the
approach described in Sect. 2 for the XcYc frame of Fig. 1. The positions of Ai and P
in the XY reference frame are given by vectors ai = [aix , aiy ]T and p = [px , py]T

directed from O to Ai and P , respectively.
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3.1 Inverse Kinematic Problem

The IKP of suspended CDMs while considering cable mass has previously been
solved [17, 20]. In the particular case considered here, the mechanism’s IKP consists
of finding the required rest lengths l01 and l02 so that the EE is at the position given
by p. The ends of the i th cable are constrained to Ai and P . Vector ci = [cix , ciy ]T ,
directed from Ai to P and expressed in the Xci Yci reference frame, is computed as:

ci = QT
i (p − ai ) (10)

The rotation matrix bringing the XY frame parallel to the Xci Yci frame is:

Qi =
[

sgn(px − aix ) 0
0 1

]
(11)

where sgn(·) represents the algebraic sign of the argument. Sequentially setting
c = ci for each of the two cables and substituting into (4), a total of four cable profile
equations needing to be satisfied in the solution to the IKP are generated. Ultimately,
these equations are expressed in terms of ti , θi and l0i , where ti and θi , for the i th
cable, are equivalent to t and θ in Fig. 1a. Two additional equations are required
in order to solve for these six unknowns. These arise from the static equilibrium
equations of the mechanism’s EE, i.e.,

Wtc + w = 0 (12)

where w = [0,−mg]T is net wrench applied to the EE by the combined weight of
the EE and payload, tc = [t1, t2]T is a vector containing the tensions of each cable
at P , and W = [−Q1n1,−Q2n2] with ni = [cos θi , sin θi ]T . The task of solving
the IKP of the mechanism thus becomes that of computing a solution to a set of six
non-linear equations in six unknowns. The system of equations can be written as
f(x) = 0 where f is a vector formed by the above-described non-linear equations
and x is a vector containing the six unknowns (i.e., x = [l01, l02 , t1, t2, θ1, θ2]T ). In
addition to satisfying this system of equations, constraints related to the application
as well as to the mechanical properties of the mechanism are also considered. Cable
tensions are limited to tminc ≤ ti ≤ tmaxc while, optionally, cables may also be
prevented from drooping beneath the EE in order to limit interferences with objects
in the mechanism’s workspace. Mathematically, the latter constraint translates to
−π/2 ≤ θi ≤ 0.

In order to solve the IKP, a numerical approach is required and the Newton–
Raphson method was chosen here as it was found to perform acceptably.3 Even
so, additions to the basic form of the Newton–Raphson algorithm were made in
order to improve its performance and increase the probability of it finding a proper

3 It is recognized that other algorithms may be more efficient in solving this problem. However, it
is not an aim of this work to attempt to identify them.
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solution to the mechanism’s IKP. In this light, two continuation schemes were used to
mitigate the issue of providing the algorithm with an initial guess that is sufficiently
close to the solution. In the first continuation scheme, the initial guess x0 was found
from the solution to the IKP (without continuation) for a pose p0 of the EE where
convergence is easy to achieve. The IKP of the mechanism is then solved with the
Newton–Raphson algorithm for poses of the EE that gradually move toward the final
desired pose, i.e.,

p j = p0 +
(

j

N

)
(p − p0), j = 1, 2, . . . , N (13)

where N is the number of steps used in the continuation scheme. The initial guess
for each continuation step is taken as the solution from the prior step. In the second
continuation scheme, the initial guess x0 is obtained from the closed-form solution to
the IKP of the mechanism with its EE at p when cable mass is neglected. The numer-
ical solution to the IKP while considering cable mass is then solved for gradually
increasing values of the cable density, i.e.,

ρ j =
(

j

N

)
ρ, j = 1, 2, . . . , N (14)

where, once again, the initial guess for a given step is taken as the solution to the
previous one. The IKP was programmed to attempt, as necessary, each of these
continuation schemes, in the order they are presented here, first with N = 10 and
then with N = 100, until a solution is found. Both continuation schemes were
deemed desirable since EE poses were encountered for which only one scheme was
successful in solving the IKP.

In addition to the use of continuation schemes, damping was also added to the
Newton–Raphson algorithm. The latter is known to search for an acceptable solution
by iteratively generating (supposedly) better estimates of the true solution as xk+1 =
xk +�xk with

�xk = −J(xk)
−1f(xk) (15)

where J(x) = ∂f(x)/x is the numerically-estimated Jacobian matrix of the non-
linear system of equations. In this work, max

(| fq(x)|
) ≤ ε was used as the stop

criteria where fq(x) is the qth element of f(x) (q = 1, 2, . . . , 6) and max(·) is
the maximum of the values in the argument. Since the Newton–Raphson algorithm
considers only first order terms in its calculation of �xk , it is not necessarily the
case that max

(| fq(xk+1)|
)
< max

(| fq(xk)|
)
. Moreover, the bounds imposed on the

cable tensions as well as the constraint restricting cable drooping may be violated at
a given xk+1. Given a solution estimate xk+1, f(xk+1) is computed along with tmini

and tmaxi (based on Algorithm 1). If max
(| fq(xk+1)|

)
> max

(| fq(xk)|
)

or one of
the constraints is violated, damping is used to compute a new estimate to the IKP
solution as:

xk+1 = xk + η�xk (16)
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where η ≤ 1. This is repeated for a diminishing series of values of η until either all
conditions are met or all values have been attempted (values of η of 1, 0.5, 0.25 and
0.1 were used).

3.2 Workspace Computation

The wrench feasible workspace (WFW), as described in [10], is considered here and
consists of the set of poses of a CDM where it may generate all wrenches within a
required set while maintaining its cables in tension. Additional constraints, such as
cable tensions belonging to a specified range, may also be considered. The required
wrench set is chosen here to consist only of the wrench needed to offset the combined
weight of the EE and payload. As such, a given EE pose is considered to be part of
the WFW in this work if the following conditions are satisfied:

• The mechanism is in static equilibrium (i.e., (12) is satisfied).
• The kinematic constraints related to the cable profile equations are satisfied for

each mechanism cable (i.e., (4) is satisfied).
• The cable tensions remain within the specified range (i.e., tmini ≤ tminc ≤ tmaxi ).
• None of the cables droop below the EE.4

These conditions are the same that are required for a given pose of the EE to admit
a solution to its IKP. The WFW of the mechanism is thus estimated numerically by
discretizing the Cartesian space into a point cloud representing poses of the EE and
verifying, for each pose, whether a solution to the IKP exists. An estimate of the WFW
is thus obtained as a set of points. In Sect. 4, the WFW is represented (for aesthetic
reasons) as an area of the Cartesian space enclosed by a boundary. However, it is
understood that not all points within this area have been verified as being within the
mechanism’s WFW. Notwithstanding, the method used here is deemed acceptable
given the objectives of evaluating the stiffness properties of the mechanism.

3.3 Computation of the Stiffness Matrix and Stiffness Indices

The stiffness matrix of the mechanism, K, relates small disturbances in the force
applied to the EE to corresponding deflections of the latter, i.e., δw = Kδp. In
order to develop an expression for K, one may, referring to (12), rewrite the static
equilibrium of the EE in a given pose as:

w =
2∑

i=1

Qi ti (17)

4 This condition is optional.
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where ti = ti ni is the equivalent of t for the i th cable. Linearization of this equation
yields:

δw =
2∑

i=1

Qiδti (18)

Moreover, substitution of (6), applied to the i th cable, leads to:

δw =
2∑

i=1

Qi Kci δci (19)

Finally, the linearization of (10) yields δci = QT
i δp where ai is observed to be

constant. Taking into account that Kci = C−1
ci

, one finally has:

δw =
( 2∑

i=1

Qi C−1
ci

QT
i

)
δp (20)

and the mechanism’s stiffness matrix is:

K =
2∑

i=1

Qi C−1
ci

QT
i (21)

where Cci for the i th cable is obtained from (7) through (9).
In order to evaluate and compare the stiffness performance of a mechanism in a

given pose, it is useful to define stiffness indices having physical meaning that can
be extracted from the stiffness matrix. Such indices could eventually be used, for
instance, in optimizing the mechanism geometry. In the following, indices quantify-
ing the stiffness of the mechanism along the X and Y axes (see Fig. 2). The stiffness
in the X direction can be useful, for example, in determining the mechanism’s resis-
tance to displacements of its EE due to wind drag. Based on the definition of the
mechanism’s stiffness matrix, one may write:

δ fx = K11δpx + K12δpy, δ fy = K21δpx + K22δpy (22)

where Ki j is the element of K located on the i th row and the j th column. If the stiff-
ness along the X axis is sought, one may imagine applying a small disturbance force
δ fx in that direction with δ fy = 0 and measuring the corresponding deflection δpx .
Setting δ fy = 0 in the second part of (22) allows one to find δpy = −(K21/K22)δpx .
Substituting in the first part of (22), the stiffness in the X axis direction is:

Kx = K11 − K 2
12

K22
(23)
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Fig. 3 Workspace of mechanism with varying constraints and varying EE/payload mass

where the fact that the stiffness matrix is symmetrical is used. Similarly, the stiffness
in the Y axis direction is:

Ky = K22 − K 2
12

K11
(24)

4 Results

It is sought here to investigate the effect of cable sagging on the stiffness of a planar
two-cable 2-DoF suspended CDM. Based on previous works [17, 21], the mechanism
is assumed to use galvanized steel cables with 7 × 19 thread structure and a diameter
of d = 35 mm. These cables have a linear density ρ = 7.5 kg/m, a Young’s modulus
of E = 200 GPa and a maximum admissible stress of σmax = 180 MPa. Using the
latter value as well as a safety factor (SF) of 2, the maximum tension capable of
being applied to the cables is:

tmaxc = σmax A

SF
= σmax

SF
· πd2

4
∼= 87 kN (25)

For its part, the minimum tension to be applied to the cables is set to tminc = 100 N.
The positions of the cable’s attachment points to ground are a1 = [0, 1000]T m and
a2 = [500, 1000]T m. In order to gain a better sense of the stiffness indices that are
computed for the mechanism in a given pose, these will be normalized with respect
to the axial stiffness of a cable having the properties listed above and a rest length
of l0 = 1, 000 m. This yields a nominal stiffness of K0 ≈ 200 kN/m. The stiffness
indices that will be mapped are thus K ′

x = Kx/K0 and K ′
y = Ky/K0.

Prior to analyzing the stiffness of the mechanism, it is interesting to consider the
properties of its workspace. The workspace of the mechanism with m = 5, 000 kg
is plotted for different sets of constraints in Fig. 3a–d. Sample mechanism config-
urations are also shown where cables appear as dash-dotted lines and the EE is
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represented by a black square. When constraints on cable tensions and cable droop-
ing are not applied, Fig. 3a, the mechanism’s workspace is the same as that of an
equivalent mechanism with massless cables.5 That is to say that the workspace cor-
responds to the area beneath the line segment joining A1 and A2. When limits are
applied to the cable tensions, Fig. 3b, the workspace becomes a closed area of the XY
plane delimited by curves where at least one of the cables has reached its maximum
tension.6 As the EE moves upward, the tangents of the cables at the EE (i.e., ni )
generally become increasingly aligned with the X axis and the cable tensions must
increase correspondingly in order to support the EE/payload weight. This remains
possible until at least one of the cables reaches its maximum tension on boundary
[i] (Fig. 3b). Meanwhile, as the EE moves to the left of the horizontal centre of its
workspace (i.e., px = 250 m), n1 becomes increasingly vertical while n2 approaches
the horizontal. Eventually, the Y -component of n2 becomes positive or, equivalently,
the cable droops beneath the EE and is pulling down on the latter. As the EE moves to
the left, the cable attached to A1 must thus support a larger portion of the EE/payload
weight and, eventually, a portion of the other cable’s weight. This increases its ten-
sion until the maximum limit is reached on boundary [ii] (Fig. 3b). As the EE moves
downward, the cable lengths are longer and the actuators have to support the corre-
sponding increase in weight. This explains why the workspace boundaries in Fig. 3b
gradually taper toward px = 250 m line when moving in the negative Y axis direc-
tion. When the constraint preventing cables from drooping below the EE is applied,
Fig. 3c, this removes from the workspace those regions that are furthest away from its
horizontal centre. For example, when the EE is on boundary [iii] (Fig. 3c), n2 is hor-
izontal. Fig. 3d shows the workspace obtained when tension limits and the constraint
preventing cable drooping are considered simultaneously. Finally, Fig. 3e shows the
variation in the workspace when the EE/payload weight is varied: [v] m=100 kg, [vi]
m=1,000 kg, [vii] m=2,500 kg and [viii] m=5,000 kg (no constraint is applied with
regards to cable drooping). Since the tmaxi ≤ tmaxc constraint is responsible for all
workspace boundaries in this case, the workspace size increases as expected as the
EE/payload weight decreases.

When cable mass is not considered, the stiffness of a CDM is a combination of
the axial stiffness of its cables along with a stiffness due to the tension forces in
the cables. For most EE poses of most mechanisms, however, the overall stiffness is
largely dictated by the axial stiffness of the cables (though some exceptions exists
[2]). This is observed in Fig. 4 where mappings of stiffness indices K ′

x and K ′
y are

provided for the case where cable mass is neglected. Though the EE/payload mass,
which has direct implications on the cable tensions, is varied significantly between
Fig. 4a–d, the corresponding change in the mechanism stiffness is relatively small.
One may also observe from these figures that throughout much of the workspace
K ′

x and K ′
y are either close to or greater than unity. This implies that the stiffness in

5 While this holds for the planar 2-DoF suspended CDM, it does not for all suspended CDMs [21].
6 Though the minimum tension constraint (i.e., tminc ) does not constrain the workspace in the cases
discussed here, it has the potential to do so depending on the mechanism geometry and mechanical
properties.
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the respective directions are mostly on the same order of magnitude as K0, the axial
stiffness of a 1,000 m cable having the properties described earlier.

Meanwhile, mappings of K ′
x and K ′

y over the mechanism’s workspace are plotted
while taking cable mass into consideration in Figs. 5 and 6, respectively, for varying
values of the combined EE/payload mass. In comparison to the results obtained
for the case of massless cables, the stiffness of the mechanism is observed to be
lower by approximately two orders of magnitude. This is explained by the sag-
induced flexibility of a cable of non-negligible mass that combines with its axial
flexibility and tension force to determine its overall stiffness. The fact that the sag-
induced flexibility has a potentially considerable impact on cable (and mechanism)
stiffness has previously been demonstrated [17]. Clearly, neglecting cable mass in
such situations would lead to a significant overestimation of the mechanism stiffness.

Looking at Figs. 5 and 6, it may be seen that the stiffness of the mechanism is
proportional to m. In fact, increasing the EE/payload mass leads to an increase in the
cable tensions which reduces cable sagging and sag-induced flexibility. As such, the
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effect of cable tensions on the stiffness of the mechanism is much greater when cable
mass is considered. In a completely restrained CDM, where nc > d, the effect of
varying EE/payload mass on mechanism stiffness could be mitigated by strategically
adjusting the level of prestress so as to maintain the cable tensions above a desired
threshold and thus minimize the effect of sag-induced flexibility. This, however, is
not possible for suspended CDMs.

Observing Fig. 5 leads one to conclude that K ′
x increases with py . This is logical

since having the EE closer to line A1 A2 leads to shorter cable lengths (having higher
axial stiffness), higher cable tensions (for given EE/payload mass) and cables that are
increasingly aligned with the X axis. The stiffness in the X direction also decreases as
the EE moves away from the workspace’s horizontal centre due to increased sagging
in one of the cables (e.g., mechanism configuration shown in Fig. 3b). In the Y -axis
direction, the stiffness also tends to increase with py due to shorter cable lengths and
greater cable tensions. These effects overcome the increasing alignment of the cables
with the Y axis as py is decreased. Finally, although this is not easily visible in Fig. 6,
the stiffness in the Y -axis direction increases at the outer left and right boundaries
of the mechanism workspace. In fact, configurations near to these boundaries have
one cable that is close to vertical. Since vertical cables do not exhibit any cable sag,
this leads to much higher values of K ′

y .
The workspaces considered in the preparation of Figs. 5 and 6 take cable ten-

sion limits into account but do not constrain against cable drooping. However, the
workspace boundaries based on the cable drooping constraint are also shown in grey
in these figures. From these, one can observe that the workspace area decreases sig-
nificantly with m if cable drooping is to be avoided, to the point where the workspace
practically vanishes when m = 100 kg. This has important ramifications for mech-
anisms subjected to significantly varying EE/payload mass (e.g., pick and place
manipulators). In essence, if a mechanism’s cables are sized based on the heavi-
est loads it must carry, then the cables will undergo significant drooping when the
payload is small (e.g., when the mechanism is preparing to pickup its payload).
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5 Conclusion

Despite past research dealing with several different effects of cable mass on the
performance of CDMs, very few works have discussed the implications of cable
sagging on mechanism stiffness. This paper has begun to fill this void through the
stiffness analysis of a planar two-cable 2-DoF suspended CDM. The solution to the
mechanism’s IKP was reviewed and its workspace was estimated numerically while
considering both cable tension limits and cable drooping. The main contribution of
the paper, however, is the development of the mechanism’s stiffness matrix and the
resulting stiffness analysis. The mapping of intuitive stiffness indices throughout
the mechanism workspace allowed for some useful observations to be made. In
particular, the results obtained confirmed the findings of previous researchers in that
there is a significant drop in the stiffness of a mechanism when its cable mass is
considered. This reduction in stiffness is due to the added flexibility of each cable
caused by its sagging. Moreover, though the level of tension in a mechanism’s cables
is known to contribute to its stiffness, this effect is much more pronounced when
cable mass is being considered. In fact, increased tension leads to a reduction in cable
sagging which, as previously mentioned, has a significant impact on stiffness. This
could be taken into consideration in the design of control algorithms for completely
restrained CDMs so as to maintain cable tensions (and thus stiffness) above a given
threshold. For suspended CDMs, however, this implies that stiffness would vary
considerably with payload which could prove challenging for applications such as
pick and place operations. For such applications, changes to the EE/payload mass
also lead to variations in the size of the mechanism workspace when cables are not
permitted to droop below the elevation of the EE. In fact, if cables drooping beneath
the EE are to be avoided, the workspace will eventually degenerate to a curve as
m → 0. One approach to curtail the issues related to the variation of the payload
mass in a suspended CDMs would be to make the mass of the EE sufficiently large
so as to maintain minimum cable tensions at all times. However, this is clearly a
less than ideal scenario since it would reduce the mechanism’s maximum payload
capacity. While there remains much to be learned about the effects of cable mass on
the performance of CDMs, including its effects on mechanism stiffness, it is hoped
that some of the observations made here for a simple mechanism will prove beneficial
in the study of more complex systems.
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A Modeling Method of the Cable Driven
Parallel Manipulator for FAST

Rui Yao, Hui Li and Xinyu Zhang

Abstract A Five Hundred meter Aperture Spherical radio Telescope (FAST) is
being built in China, and a similarity model was set up in Beijing for further study of
FAST. In FAST, A six-cable driven parallel manipulator is adopted as the first level
adjustable feed support system. This paper addresses the complete modeling method
of the six-cable driven parallel manipulator of FAST with cable mass and elastic
deformation. Comparing with the precise catenary modeling equation, modeling and
solution of line equation is easier and quicker, but has modeling error for cable driven
parallel manipulator. Hence, analysis and compensation method of the modeling
error is studied in detail, which encourages the line equation to model and solve the
six-cable driven parallel manipulator accurately. Finally, simulation and experiment
have been done for supporting the modeling and error compensation methods in this
paper.

1 Introduction

China is building a Five-hundred meter Aperture Spherical radio Telescope (FAST)
[1]. Figure 1 shows the conceptualization of the FAST system, where the feed support
system moves over the active reflector. The feed support system of FAST includes two
parts: first-level adjustable feed support system, which is a six-cable driven parallel
manipulator with large span that provides the coarse positioning, and a second-
level adjustable feed support system (A–B rotator and a Stewart platform) that can
compensate the positioning error and achieve the required accuracy. At present, a
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Fig. 1 Conceptual model of the FAST

similarity model of the feed support system is set up in Beijing [2]. Cable driven
parallel manipulator has advantages of simple configuration, high load ability, large
workspace, low price and high speed [3, 4].

For modeling cable driven parallel manipulators with large span, previous
researches did plenty of work on it [5–7]. In order to get highly modeling accuracy,
precise catenary equation is adopted. Comparing with the precise catenary equation,
modeling and solution of simplified catenary equations are easier and quicker, which
are more suitable for real-time calculation and control of cable driven parallel manip-
ulator with large span. However, simplified catenary equations will lead to modeling
error, which may not be accepted in real control [5]. So the modeling error should
be analyzed and compensated in real application. This paper is expected to fill that
gap.

In this paper, complete modeling equations with cable mass and elastic deforma-
tion based on the precise catenary and simplified catenary equations will be set up for
the six-cable driven parallel manipulator in Sect. 2. Then, a modeling compensation
method will be discussed in Sect. 3 to enhance the modeling accuracy of the simpli-
fied modeling method for the six-cable driven parallel manipulator. From experiment,
the simplified modeling method with a compensation equation can satisfy control
accuracy of the six-cable driven parallel manipulator.

2 Modeling of the Six-Cable Driven Parallel Manipulator
with Large Span

For building the FAST, a six-cable driven parallel manipulator is adopted as the first-
level adjustable feed support system, and a similarity model of the six-cable driven
parallel manipulator is set up in Beijing. This section will discuss the modeling
method of the six-cable driven parallel manipulator. Considering cable mass and
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Fig. 2 Precise catenary modeling of a cable

elastic deformation, precise catenary equation and simplified catenary equations are
set up in this section.

2.1 Modeling Equations of Single Cables

2.1.1 Precise Catenary Equation

For setting up a cabl e model with precise catenary equation, the symbols used in Fig. 2
are defined as: l0 is the unstrained length of the cables; Δl the strain of the cable; T
the tension applied to the fixed end of the cable; ρ the unstrained linear density; E the
elastic modulus; A0 the unstrained cross-sectional area; H the horizontal component
of the cable tension vector and V its vertical component. Using the variables and
coordinate system above, we will briefly reproduce Irvines derivation [8] in this
paper.

As shown in Fig. 2 a point along the length of the strained cable can be denoted
by Cartesian coordinate and. To begin with, the cable must satisfy the geometric
constraint: ∑

x = 0 H + d H − H = 0 (1)

∑
z = 0 H

dz

dx
+ d

(
H

dz

dx

)
+ ρgdl0 − H

dz

dx
= 0 (2)

where,
dl

dl0
= T

E A0
+ 1 (3)
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T = H

√
1 +

(
dz

dx

)2

(4)

From dl = dx
√

1 + ( dz
dx

)2
, Eq. 2 can be expressed as:

d

(
H

dz

dx

)
+ ρg

E A0

T + E A0
dl = 0 (5)

Assuming dz
dx = p, Eq. 5 can be written as:

dp

dx
+ ρgE A0

H

√
1 + p2

H
√

1 + p2 + E A0
= 0 (6)

Therefore,

x = − H

ρg
sh−1

(
dz

dx

)
− H2

ρgE A0

dz

dx
+ c (7)

Where,
sh−1(x) = ln

(
x +

√
1 + x2

)
, x ∈ (−∞,+∞) (8)

x = − H

ρg
ln

⎛
⎝ dz

dx
+

√
1 +

(
dz

dx

)2
⎞
⎠ − H2

ρgE A0

dz

dx
+ c (9)

Integrating and applying the boundary conditions as follows:

x = 0, z = 0

x = L , z = h (10)

The length of cable is l, the unstrained length of the cable is l0, andΔl represents
the strain of the cable. The relationship can be expressed as: l = l0 +Δl.

l =
∫ l

0

√
1 +

(
dz

dx

2)
dx (11)

l0 =
∫

1
T

E A0
+ 1

dl (12)
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Fig. 3 Line modeling of a
cable

2.1.2 Line Equation

A line is shown in Fig. 3. A cable under its mass cannot remain straight. The ideal-
ization would be possible if the ends of the cable were subjected to tensions that are
predominantly larger than the effect of the cable mass or the accuracy requirement
is not high.

In Fig. 3, line equation with elastic deformation of a cable can be easily derived
as follows:

l =
(

h2 + L2
)1/2

(13)

T =
(

V 2 + H2
)1/2

(14)

L = l
H

T
(15)

h = l
V

T
(16)

Δl = T l

E A0
(17)

where Δl is elastic deformation of the cable.

2.2 Modeling of the Six-Cable Driven Parallel Manipulator

In Fig. 4, for studying the largest radio telescope FAST, a similarity model of FAST
is set up in Beijing. The related geometric parameters of the six-cable driven parallel
manipulator in the similarity model are given in Table 1 [9].
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Fig. 4 40 m diameter six-cable driven parallel manipulator

Table 1 Geometric parameters of the six-cable driven parallel manipulator

Symbol Quantity Value

ra Radius of the moving platform 0.5 (m)
rb Radius of cable towers distributed circle 20 (m)
h Height of cable tower 18 (m)
d Diameter of cable 8 (mm)
ρ Density of cable 0.5145 (kg/m)
mo Mass of moving platform 213 (kg)
E Youngs modular 1.6 × 1011 (Pa)

In Fig. 5, two coordinates are set up for the six-cable driven parallel manipulator:
an inertial frame � : O − XY Z is located at the center of the reflectors bottom.
Another moving frame �′ : O ′ − X ′Y ′Z ′ is located at the center of the moving
platform. Bi (i = 1, 2, ..., 6) are the connected points of the cables and cable towers,
and A j ( j = 1, 2, 3) are the connected points of the cables and moving platform.

For analyses, the symbols used in this section are defined as: O ′� is the O ′
expressed in the inertial frame; B�

i the vector Bi expressed in the inertial frame; A�
j

the vector A j expressed in the inertial frame; A�′
j the vector A j expressed in the

moving frame; rb the radius of the cable towers distributed circle; ra the radius of
the moving platform; h the height of the cable tower.

According to Fig. 5, the vector of the cables can be expressed as:

B�
i = [rb cos((i − 1)π/3), rb sin((i − 1)π/3), h]T , i = 1, 2, . . . 6 (18)
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Fig. 5 Geometric parameter of the six-cable driven parallel manipulator

A�′
j = [ra cos((4 j − 3)π/6), ra sin((4 j − 3)π/6), 0]T , j = 1, 2, 3 (19)

A�
j = R · A�′

j − O ′� (20)

where R is the coordinate-axis rotation matrix.
Assuming Li = A�

j − B�
i , ui = Li/ ‖Li‖ , r i = A�

j − O ′�, static equilibrium
equation of the six-cable driven parallel manipulator can be written as:

F = JTσ (21)

where σ is the cable tension vector; JT the tension transmission matrix of the cable
driven parallel manipulator; F ∈ Rn the wrench of the moving platform.

σ = [σ1, σ2, . . . , σ6]T (22)

JT =
(

u1 · · · u6
r1 × u1 · · · r6 × u6

)
(23)

According to Eqs. 21–23, initial cable length and cable tension of the six-cable
driven parallel manipulator can be calculated. Putting the initial cable tension into
the two single cable modeling equations, the real cable length and tension can be
calculated by using iterative algorithm. The cable tensions of the six-cable driven
parallel manipulator should satisfy:

6∑

i=1

σi x = 0,
6∑

i=1

σiy = 0,
6∑

i=1

σi z = 0

6∑

i=1

Mix = 0,
6∑

i=1

Miy = 0,
6∑

i=1

Miz = 0 (24)
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where
∑6

i=1 σi x is the tension in X-direction of the six-cable driven parallel manip-
ulator, and

∑6
i=1 Mix is the torque in X-direction of the six-cable driven parallel

manipulator.

3 Modeling Error Analysis and Compensation of the Six-Cable
Driven Parallel Manipulator

3.1 Modeling Error Analysis

When the terminal pose of the moving platform is at O ′ = [
x, y, z, α, β, γ

]T, the
inverse kinematics equation for the six-cable driven parallel manipulator can be
written as:

l = Γ
(
O ′) (25)

where l = (l1, l2, . . . , li ) (i = 1, 2, . . . , 6) represents the cable length.
Therefore, the inverse solutions of the six-cable driven parallel manipulator by

line modeling equation can be written as:

l l = Γl
(
O ′) (26)

where l l are the length of the cable arc calculated by the line modeling equation.
The solutions of the six-cable driven parallel manipulator based on precise cate-

nary can be expressed as:
Θ (l) = O ′ (27)

So, the modeling error vector of the six-cable driven parallel manipulator by line
modeling equation is:

εl = Θ (l l)− O′ (28)

where εl = [
εxl , εyl , εzl , εαl , εβl , εγl

]T are the error vectors of the six-cable driven
parallel manipulator caused by line modeling equation.

For meeting the modeling accuracy requirement of the six-cable driven parallel
manipulator, the error compensation target can be expressed as:

min

⎛
⎝

√∑k
1

(
εx2

line + εy2
line + εz2

line

)

k

⎞
⎠ , k = 1, 2, . . . (29)

The compensation conditions are:

√
εx2

line + εy2
line + εz2

line ≤ ε0 (30)
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Fig. 6 Compensation polynomial coefficients of line equation

where
εline = Θ (ll + εl l )− O ′ (31)

l l = Γl
(
O ′) (32)

εline = (εxline, εyline, εzline, εαline, εβline, εγline)
T (33)

The kinematic control accuracy of the six-cable driven parallel manipulator is
Root Mean Square 10 mm (RMS 10 mm). The maximum allowed modeling error ε0
is given as 1 mm. For meeting the modeling accuracy requirement, a modeling error
compensation polynomial is introduced as Eq. 34.

εll = f (L , H, h) =
(

a1 × L2 − a2 × L − b1 × h2 − b2 × h
)

× 10−6

+
(
−c1 × 10−4 × H2 + c2 × 10−2 × H − d

)
× 10−6 (34)

The compensation polynomial coefficients for the line equation can be optimized
by genetic algorithm in Fig. 6. From Fig. 6, we obtain the expected error result of this
modeling is about RMS 0.78841mm.

Therefore, the compensation polynomial for the line equation is:
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Fig. 7 Required workspace of the six-cable driven parallel manipulator

Fig. 8 Experimental
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Fig. 9 Experimental
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εll =
(

8.3721 × L2 − 3.5328 × L − 9.8747 × h2 − 7.1498 × h
)

× 10−6

+
(
−5.0527 × 10−4 × H2 + 0.0894 × 10−2 × H − 3.2483

)
× 10−6

(35)
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Fig. 11 Total station

3.2 Simulation and Experiment

In Fig. 7, required workspace of the six-cable driven parallel manipulator is presented
as a sphere crown surface for studying the modeling error and error compensation
methods.

For proving the feasibility of the error compensation method of the six-cable
driven parallel manipulator, three experimental trajectories are introduced in Figs. 8,
9, 10. The three experimental trajectories are line, arc and circle respectively.

In Fig. 8, the line trajectory is from G1 = (0, 0, 8.4 m) to G2 = (0, 0, 9.4 m), and
the kinematic velocity is v = 2.3 mm/s.

In Fig. 9, the arc trajectory is from G1 = (0, 0, 8.4 m) to G2 = (2, 0, 8.7 m) with
pose angle from 0◦ to 6◦, and the kinematic velocity is v = 2.5 mm/s.
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Fig. 12 Kinematic control
accuracy of line trajectory
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Fig. 13 Kinematic control
accuracy of arc trajectory
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Figure 10 shows that the center of circle trajectory is at (0, 0, 8.7 m), and the radius
of the circle trajectory is r = 2 m with 6◦ pose angle. The kinematic velocity of the
circle trajectory is v = 6.3 mm/s .

Without kinematic control of the second feed support system, the kinematic con-
trol accuracy of the six-cable driven parallel manipulator can be measured by Total
Station which is shown in Fig. 11.

The kinematic control errors of the six-cable driven parallel manipulator on the
three experimental trajectories are shown in Figs. 12, 13, 14.

From Figs. 12, 13, 14, we know that the kinematic control accuracies of the
six-cable driven parallel manipulator on line, arc and circle trajectories are RMS
1.001 mm, RMS 0.929 mm and RMS 1.703 mm respectively.

According to the kinematic control experiment, the accuracy of the six-cable
driven parallel manipulator can meet the requirement, which proves the simplified
modeling and compensation method in this paper are feasible and accurate.
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Fig. 14 Kinematic control
accuracy of circle trajectory
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4 Conclusions

This paper addressed the modeling method of a six-cable driven parallel manipula-
tor with large span in FAST. Considering the cable mass and elastic deformation,
completely modeling equations are derived in detail based on precise and simplified
catenary equations. The modeling error of the six-cable driven parallel manipulator
caused by simplified catenary equations is analyzed, and a modeling error compensa-
tion method is studied. Taking the similarity model as example, error compensation
polynomial coefficients are optimized by genetic algorithm. Finally, the experiment
result indicates that the modeling and error compensation method in this paper can
satisfy kinematic accuracy.
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Cable Vibration Analysis for Large Workspace
Cable-Driven Parallel Manipulators

Jingli Du, Wen Ding and Hong Bao

Abstract Cable-driven parallel manipulator is one of the best solutions for large
workspace applications. But when long-span cables are involved the effect of cable
vibration on the positioning precision of the end-effector should be carefully evalu-
ated since these cables are prone to vibration, degrading the performance of manipula-
tors. In this paper a dynamic model of cable-driven parallel manipulators is presented
where each cable is divided into several elements to account for cable vibration. A
simple linear cable element is presented where nodal force is related to both nodal
position and element length to involve the effect of cable length variation. Numeri-
cal examples are presented to demonstrate the effect of cable vibration. The results
show that it is necessary to take into consideration cable dynamics for manipulators
operating at high speed and vibration of cables can shorten their corresponding chord
length.

Keywords Cable-driven manipulator · Cable vibration · Finite element method ·
Dynamics

1 Introduction

Cable-driven parallel manipulators (CDPMs) possess nearly all the merits of con-
ventional parallel manipulators and have several advantages [1]: (1) the minimum
moving inertia, (2) the potential large workspace, (3) to be less expensive and easier
to build, transport, and reconfigure. Therefore, CDPMs have found their applications
in many fields, such as material handling, haptics, multi-dimensional cranes and high
speed manipulation.
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For applications where extremely large workspace is demanded, CDPMs seem
to be one of the best solutions due to their large workspace, low construction cost
and ease of construction. Traditional manipulators with serial or parallel structures
are impractical for these applications since the required workspace is far larger than
what the traditional manipulators can provide.

Many difficult problems are faced in the mechanical design of CDPMs since
cables can only apply tensile forces. CDPMs must work in such a state that all cables
are tensioned, and their structure will collapse as soon as cables lose their tension.
Nowadays, many efforts on the control of CDPMs lay the emphasis on guarantee-
ing cables work in tension [2, 3]. Nevertheless, few works focus on the dynamic
characteristics of cables themselves and their effect on the operation precision of the
end-effector. However, it can be easily understood that cables’ dynamics is significant
to the operation precision for these large workspace applications. It is pointed out in
[4] that vibration of cables and, as a result, that of the end-effector were observed
during very slow movements of a CDPM with the dimension 50 m.

Though the effect of cable dynamics on CDPMs does not attract enough atten-
tion, dynamic characteristics of cables have been widely researched in other fields.
Wang and Luo developed a closed-form solution for rigid-body motions of two-
dimensional traveling cables with a nonlinear geometrical constraint, which showed
that the rigid-body motions of cables were always stable [5]. Terumichi et al. stud-
ied the nonstationary vibration of a string with time-varying length, whose end was
attached to a mass-spring system [6]. This model could be employed to analytically
study the dynamics of elevators. Wang et al. investigated three dimensional under-
water vibrations of a geometrically nonlinear cable with time-dependent length [7].
These researches emphasized the influence of cables’ axial motion due to the varia-
tion of cable length on their dynamic behaviors.

Zhang et al. investigated coupled dynamics between flexible cables and rigid
end-effector in cable-driven manipulators. They assumed cables were massless and
the longitudinal vibration about their desired configuration was accounted for [8].
Meunier et al. presented a cable model where cables were modeled as lumped masses
connected with spring and damper elements [9]. This model works well. However,
change of cable length was added only to the first element of each cable, which
bounded the cable length. Du et al. presented a dynamic model for CDPMs where
cable length varies slowly [4]. This model could be further simplified. For CDPMs
in many large workspace applications, deployable and retractable velocity of cable
length is not very rapid; therefore, cables’ axial motion has negligible effect on their
vibration. In this case a simpler model can be employed.

In this paper we present a very simple dynamic model of CDPMs which can
effectively describe the dynamic behaviors of cables and can be efficiently solved. In
the model each cable is divided into the same count of linear elements, whose stiffness
matrices are computed easily. The model can be directly employed to further research
vibration suppression and trajectory tracking performance of control strategies.
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Fig. 1 A linear cable element
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2 Finite Elements for Cables

In many applications cables are treated as linear elements that can only be tensioned
but not compressed. Here this commonly used linear element is modified in a nature
way where element length is also considered as a variable to account for cable length
variation. Illustrated in Fig. 1 is a tensioned linear element with modulus of elasticity
E , cross section area A and unstressed length l, which is a one-dimensional element.
A local frame Ocxc yczc is attached to the element with the xc axis aligning with
it. The element is subjected to tensile forces T at nodes 1 and 2 directed along the
xc axis. Nodes 1 and 2 are located at xc

1 and xc
2 on the xc axis of the local element

frame, respectively.
The relationship between tensile force and nodal position plus element length can

be easily obtained as follow:

T = E A

l
(xc

2 − xc
1 − l) (1)

Here nodal position instead of nodal displacement is employed in (1) to facilitate
the description of cable configuration during movement of CDPMs. Thus, the nodal
force can be expressed as

{
f c
1x = −T = E A

l (x
c
1 − xc

2 + l)

f c
2x = T = − E A

l (x
c
1 − xc

2 + l)
(2)

Equation (2) is rewritten in matrix form

f c = kc
c xc + kc

sl (3)

where
f c = [

f c
1x f c

2x

]T
, xc = [

xc
1 xc

2

]T
,



440 J. Du et al.

kc
c = E Ac

l

[
1 −1
−1 1

]
, kc

s = E Ac

l

[
1
−1

]
(4)

and

c =
{

1 for xc
2 − xc

1 > l
0 otherwise

(5)

is introduced to account for the fact that cable can only be tensioned but not com-
pressed. EA/l is the stiffness coefficient of the element which varies with element
length. However, this stiffness coefficient is independent of nodal position, and under
the assumption that all elements belonging to the same cable of CDPMs are of the
same length these elements are of the same stiffness coefficient. This assumption is
practically significant since all elements for the same cable being of the same length
can facilitate the dynamics analysis of CDPMs. Thus, for given cable lengths during
the movement of CDPMs stiffness coefficients can be easily determined.

In order to achieve the dynamics equations of CDPMs, the stiffness Eq. (3) must
be transformed into the global frame. Denote the nodal position of nodes 1 and 2 by
x1 = [x1 y1 z1]T and x2 = [x2 y2 z2]T in the global frame, respectively, and
introduce the transformation matrix

T =
[

cx cy cz 0 0 0
0 0 0 cx cy cz

]
(6)

where cx = (x2 − x1)/d, cy = (y2 − y1)/d, cz = (z2 − z1)/d, and d = ||x2 − x1||
is the stressed element length. And then, the global matrices for kc

c and kc
s can be

obtained as follows
kc = T T kc

cT , ks = T T kc
s (7)

Thus, (3) can be written in the global frame as

f = kc x + ksl (8)

where f is the vector of nodal force, and x the vector of nodal position in the global
frame.

The subscript j indicating cable number is omitted in the above equations, and it
is understood that these equations are applicable to all cables in CDPMs.

3 Dynamics Equation of CDPMs

Using the linear element derived in the above section, we can investigate the dynamic
behaviour of CDPMs, especially, the influence of cable vibration on the position
precision of the end-effector. In this paper only dynamics of CDPMs with pure
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Fig. 2 Spatial discretization
of a cable in CDPMs
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translational DOFs, namely the end-effector is reduced to a mass point, is investigated
since we focus on the dynamics of cables.

All cables are divided into the same count of elements for simplicity, say n ele-
ments, as shown in Fig. 2. For each cable, the node 0 is fixed at the anchor point
and the node n is attached on the end-effector, and all elements are of the same
unstressed length, which is l(t) = Lc(t)/n where Lc(t) is the time-varying length of
the corresponding cable.

All cables connect to a common node where the end-effector locates. The global
nodal force can be obtained by using a standard assembling procedure of the finite
element method with the element stiffness equation in (8):

F =
∑

kc x +
∑

ks L = K c X + K s L (9)

where � is the assembly operator of the finite element method, and F, X and L
represent the nodal force, nodal position and element length of the cables in CDPMs,
respectively.

We suppose the gravity of cables is negligible compared with their tensions, thus
the dynamics equation of cables of CDPMs is readily written as

Mc Ẍ + F = Mc Ẍ + K c X + K s L = Q (10)

where Q is external load on cable nodes resulted from the reaction force of anchor
points and the end-effector. The damping item is not accounted for. The mass matrix
Mc also varies with element length, here a lumped mass matrix is used and it is easy
to compute.
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4 Solution of Dynamics Equation

4.1 Initial State of CDPMs

To numerically solve the dynamics equation of CDPMs their initial configuration
needs to be determined beforehand. We assume CDPMs start to move from a static
state. Therefore, the static analysis of CDPMs is presented here briefly. In this process,
each cable is treated as a linear spring which can only be tensioned. The static equation
of CDPMs constrained with m cables can be expressed as

G = −J T τ (11)

where τ = [τ1, τ2, . . . , τm] is the vector of cable tension to resist external load,
and G is the vector of gravity term of the end-effector including payloads. J is the
Jacobian matrix defined as

J T = [u1,u2, · · · ,um] (12)

in which u j ( j = 1, 2, . . .,m) is the unit vector along the j th cable directed from the
end-effector to the anchor node.

The solution to (11) depends on the number of cables. In the case where the cable
number is more than the DOFs of the end-effector, (11) is an underdetermined system
of equations and has an infinite number of solutions if JT J is invertible. In this case,
the general solution to cable tensions can be written as

τ = τ 0 + N (JT )s (13)

in which τ 0 is the minimal norm solution of (11) derived using the pseudo inverse
of matrix JT and is expressed as

τ 0 = −J(J T J)−1G, (14)

N (JT ) is the null space of JT and s is an undetermined vector of the dimension
m–Rank(J T ). For τ > 0 CDPMs can rest with a given pose. Properly choosing s
can easily make τ > 0 or further satisfy other requirements.

With given position of the end-effector, cable length can be obtained as the distance
between its two ends, which is denoted by d j , and the corresponding unstressed cable
length is

Lcj = d j
/
(1 + τ j

/
E A) (15)

where τ j is the cable tension of the j th cable, and all cables are assumed to be of the
same modulus of elasticity E and cross section area A.
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During simulation all elements belonging to the j th cable are supposed to be of the
same unstressed length, in the initial state, this length is li j = Lcj/n, ( j = 1, 2, . . . ,
m; i = 1, 2, . . . , n).

4.2 Numerical Solution of Dynamics Equation

With the initial configuration of CDPMs obtained, a time integration with equal
step size �t is employed to solve the dynamics equation. For a given cable length
variation we can compute the corresponding element length, which is described as
L(k) = L(k ·�t). The integration is achieved as follows:

(1) At the instant t = 0, each cable of CDPMs is meshed into n elements. With
the external load G and the position of the end-effector given, obtain the nodal
position X(0), nodal velocity Ẋ(k) = 0 and cable tension τ (0), and matrices
K (0)

c , K (0)
s . Set k = 0.

(2) Compute the nodal force using (9) according to the current nodal position and
element length: F(k) = K (k)

c X(k) + K (k)
s L(k).

(3) Solve the nodal acceleration Ẍ(k)using (10).
(4) Update the nodal velocity and nodal position: Ẋ(k+1) = Ẋ(k) + Ẍ(k)�t ,

X(k+1) = X(k) + Ẋ (k)�t .
(5) Update the element length L(k+1) =L ((k + 1) ·�t).
(6) Compute K (k+1)

c , K (k+1)
s according to the updated nodal position and element

length.
(7) Set k = k+1, and go to (2) until reach the upper time boundary.

The accumulation operation in step 4 needs to be implemented using a numerical
integration method, such as the common fourth-order Runge–Kutta method.

5 Numerical Examples

Dynamic behaviors of a typical CDPM are simulated to investigate the effect of
cable vibration on the position precision of the end-effector. Shown in Fig. 3 is a 4–3
CDPM where 4 long cables move the end-effector to translate in its workspace, which
serves as the prototype of a cable-driven robot camera. The dimensions are a = 40 m,
b = 30 m and h = 10 m. The end-effector is reduced to a point with the mass 20.0 kg.
All the cables are of the same parameters: section area A = 5.37 × 10−6 m2, mass
per unit length ρ = 4.56 × 10−2 kg/m, modulus of elasticity E = 28.0 GPa.

In this simulation the end-effector is demanded to track the following trajectory

x = R cos(2π t
/

T ), y = R sin(2π t
/

T ), z = 5 (16)
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Fig. 3 A typical CDPM for large workspace application

Fig. 4 Cable length variation
for the trajectory with the
duration T = 20 s
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with different velocities where R = 10 m and T is the duration to finish the trajectory.
The dynamic behaviors for T = 10, 20, and 40 s are simulated and the corre-

sponding velocities are 6.283, 3.142 and 1.571 m/s, respectively. A nondimensional
time τ = t/T is introduced to facilitate the comparison among these results. The
cable length variation to complete this trajectory for T = 20 s and the corresponding
cable tension variation are shown in Figs. 4 and 5, respectively. Both the cable length
and cable tension vary with time continuously and smoothly.

When the dynamic behavior of cables is taken into account the vibrations of
the end-effector around its desired position corresponding to different velocities are
shown in Fig. 6. We can see that small-amplitude high-frequency vibrations of the
end-effector exist around its desired position when it moves with low velocities. The
vibration amplitude increases with the increasing operation velocity. Furthermore,
when the end-effector’s velocity increases to a certain extent its vibration amplitude
is very significant, however, its frequency decreases.
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Fig. 5 Cable tension variation
for the trajectory with the
duration T = 20 s
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The maximal amplitude of the vibration ((�x2+�y2+�z2)1/2) is approximately
0.08 m when the operation velocity v = 1.571 m/s (T = 40 s). This shows that
the cable vibration effect is relatively small when the manipulator moves slowly.
However we find that this assumption holds only if there is no position error of
the end-effector at the initial instant and the length of cables changes slowly and
smoothly. Otherwise, the vibration of the manipulator can be observed obviously
and it attenuates very slowly due to the low damp of cables.

The maximal vibration amplitude increases to 0.4 m for v = 3.142 m/s (T = 20 s).
We can see that the amplitude increases rapidly with the operation velocity, not in a
linearly way. The end-effector undergoes a large-amplitude low-frequency vibration
when v = 6.283 m/s (T = 10 s). The vibration characteristic of the end-effector with
high operation velocity differs from that with low velocity. The vibration amplitude
is too large for the manipulator to work with this operation velocity.

Note also from the end-effector’s vibration in z axis shown in Fig. 6 that the end-
effector vibrates above its desired position. This phenomenon is very obvious when
the operation velocity is high. This is because that cable vibrations shorten the chord
length of cables, namely the distance between cable ends. This shortening effect
is more significant when cables vibrate with increasing amplitude. Chord length
variation with respect to its desired length for cable 1 is shown in Fig. 7. When the
end-effector operates at high speed cables’ chord length is significantly less than
their desired length due to the vibration of cables.

Vibrations of the midpoint of cable 1 around its desired position during the move-
ment of the end-effector for T = 20 s are shown in Fig. 8. The vibration ampli-
tudes increase with the increasing operation speed of the end-effector. These vibra-
tions change the corresponding cable tension and chord length. For CDPMs of large
workspace and operating at high velocity the effect of cable vibration needs to be
carefully considered to guarantee acceptable position precision.

The tension of cable 1 acted on the end-effector during the motion for different
velocities is shown in Fig. 9 and tensions of other cables vary in the similar form.
When the manipulator operates at low velocity, cable tension vibrates around its
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Fig. 6 Vibrations of the
end-effector with different
operation velocities
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desired value, and cables are in tension state in almost all the movement. With the
increasing operation velocity, cable tension vibrates more severely, and cables are in
slack state with more time, and the manipulator is under-constrained with cables in
these states.
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Fig. 7 Chord length variation of cable 1 for different operation velocities
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Fig. 8 Midpoint vibration of cable 1 for T = 20 s

6 Conclusions

This paper addresses dynamic modeling of CDPMs for large workspace applications.
In these manipulators cables are prone to vibration even manipulators operate at very
low velocity, degrading the positioning precision of the end-effector. Many factors
can cause these vibrations, such as initial position or velocity of the end-effector, wind
disturbance, speed reducer backlash, and friction of cables around fixed pulleys. For
these applications, modeling the dynamics of cables is of practical significance.

The dynamic model proposed here for large CDPMs is very simple; however, can
imitate cable vibration effectively, which can be readily utilized to estimate the effect
of cable vibrations on the positioning precision of the end-effector. Furthermore,
for its simplicity, this model can be easily utilized in control design of CDPMs to
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Fig. 9 Tensions in cable 1 for
different operation velocities
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eliminate these vibrations, guaranteeing smooth motion of the manipulator with high
positioning precision.

In practice, only first two or three vibration modes of cables need to be involved in
control design for vibration suppression; therefore, each cable only needs be divided
into several nodes, leading to an acceptable model scale.

It is noted that in this dynamic model the effect of cable’s axial velocity, namely
the derivative of cable length with respect to time, is not fully taken into account.
Indeed, all terms involving cable’s axial velocity are omitted, thus, the dynamics of
the manipulator reduces to a structural vibration problem with a moving equilibrium
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position, which is applicable to CDPMs where cable length changes not very rapidly.
Cable damping effect is not involved in these simulations, which will be included in
further analysis.
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