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Basis Theorems

9.1 Bases and Nonbases for Π0
1-Classes

The main theme of this chapter is this: Given a nonempty Π0
1 class C what

are the Turing degrees of members f ∈ C?

Definition 9.1.1. A nonempty Π0
1 class C is special if it contains no

computable member.

It follows that if T ⊆ 2<ω is a computable tree such that [T ] is spe-
cial, then T ext must be a perfect tree, meaning that every σ ∈ T ext

admits incompatible extensions in T ext because any isolated path would
be computable. Therefore, every special Π0

1 class has 2ℵ0 members.

Definition 9.1.2. (i) Let D ⊆ 2ω be a class of sets. We call D a basis for
Π0

1 classes if every nonempty Π0
1 class has a member f ∈ D.

(ii) Let D be the corresponding class of Turing degrees of sets X ∈ D.
Then D is a basis for Π0

1 classes if D is. Otherwise, we call D a nonbasis.
(iii) We call D an antibasis if whenever a Π0

1 class contains a member
of every degree in d ∈ D, it contains a member of every degree d.
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176 9. Basis Theorems

9.2 Previous Basis Theorems for Π0
1-Classes

In §3.7 the Low Basis Theorem and exercises included some of the fol-
lowing basis theorems which we now list again. By the Kreisel Basis
Theorem 8.5.1 (ii) we can always find f ≤T ∅′. In 1960 Shoenfield improved
the Kreisel Basis Theorem to f strictly below ∅′, namely f <T ∅′.

Theorem 9.2.1 (Kreisel-Shoenfield Basis Theorem). Every nonempty Π0
1

class C has a member f <T ∅′.

Proof. Given a Π0
1 class C, Shoenfield considered the Π0

1 class D of all 〈f, g〉
such that f ∈ C and

(∀e)[ Φfe (e)↓ =⇒ Φfe (e) 6= g(e) ].

He then applied Kreisel’s result to D.

The previous Low Basis Theorem 3.7.2 substantially generalized these
results by Kreisel and Shoenfield and will itself be generalized below.

Theorem 9.2.2 (Low Basis Theorem). The low sets form a basis for Π0
1.

Theorem 9.2.3. The sets of c.e. degree form a basis for Π0
1.

We proved this in the Effective Compactness Theorem 8.5.1 (iii). We
shall see that it is false for the sets of incomplete c.e. degree.

9.3 Nonbasis Theorems for Π0
1-Classes

Definition 9.3.1. If A and B are disjoint sets, then S is a separating set
if A ⊆ S and B ∩ S = ∅.

Theorem 9.3.2. (i) If We and Wi are disjoint c.e. sets, then the class of
separating sets is a Π0

1-class.

(ii) There is a nonempty Π0
1-class with no computable members.

Proof. (i) Define a computable tree T with [T ] the class of separating sets
of We and Wi. For σ with |σ| = s, put σ in T if ∀x < |σ|

x ∈We,s =⇒ σ(x) = 1 . & . x ∈Wi,s =⇒ σ(x) = 0.

Hence, f ∈ [T ] iff

(∀x)[x ∈We =⇒ f(x) = 1 . & . x ∈Wi =⇒ f(x) = 0 ].

(ii) Let We and Wi be disjoint c.e. sets which are computably inseparable
as defined in Exercise 1.6.26.
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Corollary 9.3.3. The class of computable sets is not a basis for Π0
1 classes

(i.e., {0} is a nonbasis).

We can generalize the preceding corollary as follows.

Theorem 9.3.4 (Jockusch and Soare, 1972a, Theorem 4). The class of
sets of incomplete c.e. degree is not a basis for Π0

1 classes (i.e., the class of
c.e. degrees d < 0′ is a nonbasis).

Proof. Let A be the Post simple set of Theorem 5.2.3. Then A and every
infinite subset S ⊆ A is effectively immune via f(x) = 2x + 1, and there-
fore is not of incomplete c.e. degree by Exercise 5.4.6. Furthermore, A is
computably bounded by f(x) = 2x and therefore A is not hyperimmune
by Theorem 5.3.3. Let {Fx}x∈ω be a disjoint strong array witnessing that
A is not hyperimmune. Define the Π0

1 class

C = { S : S ∩A = ∅ & (∀x)[ Fx ∩ S 6= ∅ ]}.

This produces a nonempty Π0
1 class C containing only infinite subsets of A

and therefore having no members of incomplete c.e. degree.

Note that C has no c.e. members and no members of incomplete c.e.
degree.

9.4 The Super Low Basis Theorem (SLBT)

The proof of the Low Basis Theorem 3.7.2 gives even more information
about the jump f ′ than was explicitly claimed, but explaining it requires
some definitions.

Definition 9.4.1. A set A ≤T ∅′ is super low if A′ ≤tt ∅′ or equivalently
if A′ is ω-c.e. by Theorem 3.8.8.

Theorem 9.4.2 (Super Low Basis Theorem (SLBT)). Every nonempty Π0
1

class C ⊆ 2ω has a member A which is super low and indeed A′ is 2e+1-c.e.

We now give what was historically the first proof of the SLBT from
c. 1969, by Jockusch and Soare. This unpublished result was subsequently
obtained independently by others.

Proof. We construct a computable a sequence of strings {σs}s∈ω such that
A := lims σs is super low. Fix a computable tree T with [T ] = C. Define
the computable tree,

(9.1) Ue,s = { σ : Φσe, s (e)↑ }

Let T0, s = T for all s. For every s given Te,s: (1) define Te+1, s = Te, s∩Ue,s,
the e-black strings, if the latter contains a string σ of length s; and (2) define
Te+1, s = Te, s, the e-white strings, otherwise.
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To visualize this e-strategy, fix e and the previous tree Te,s. Begin by
playing the e-black strategy of choosing σs to be e-black if possible until
for some n all nodes of length n are e-white. In other words, try to outrun
letting Φσe (e)↓ as long as possible. This may involve many changes in σs but
no change in the e-black strategy. During this phase nest the i-strategies
within the e-strategy for all i > e.

If ever there is a stage when there is an n such that all strings of length
n are e-white, then make one change of e-strategy from e-black to e-white.
Thereafter, the e-strategy exerts no influence on the i-strategies for i > e.
To prove that this construction succeeds define the following computable
function.

ĝ(e, s) :=

 1 if Φσs
e,s(e)↓ ;

0 otherwise.

Clearly, ĝ(e, s) is computable. Fix e and assume by induction that g(j) =
lims ĝ(j, s) for all j < e and that g(j) = A′(j). Now the e-strategy begins in
the e-black case and σs 6= σs+1 only if σs becomes e-white. If this happens
finitely often, then the final σs is e-black and lims ĝ(e, s) = 0 = A′(e). If it
happens infinitely often, then the e-white nodes cover Te. By compactness
there is a finite subcover and therefore an n when all strings of length n
are e-white. At this point we change once from the e-black to the e-white
strategy. Thereafter, σs never changes, ĝ(e, s) = g(e) = A′(e).

Furthermore, assume by induction that for e − 1 there are at most 2e

stages when ĝ(e − 1, s) 6= ĝ(e − 1, s + 1). The e-strategy adds one more
to each so that there are at most 2e+1 stages when ĝ(e, s) 6= ĝ(e, s + 1).
(This is the same injury pattern as for the Friedberg-Muchnik finite injury
construction.)

9.5 The Computably Dominated Basis Theorem

The key idea in the next theorem is to use a ∅′′ oracle to build a member f
of a given Π0

1 class with the property that we can decide whether Φfe is total
or not at a definite stage of the construction. This differs from the proof
of the Low Basis Theorem, where we needed only a ∅′ oracle to similarly
decide whether Φfe (e) converges or not. In both cases, however, we use the
same technique (known as forcing with Π0

1 classes) of continually pruning
an infinite computable tree while preserving certain desired properties.

Recall that a function f is computably dominated (hyperimmune-free) if
every function h ≡T f is dominated by some computable function g. (See
also Definition 5.6.1.)
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Theorem 9.5.1 (Computably Dominated Basis Theorem, Jockusch and
Soare, 1972b). Every nonempty Π0

1 class has a member f which is low2

and computably dominated.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such

that C = [T ]. We build a sequence of infinite computable trees

T = T0 ⊇ T1 ⊇ · · ·

as follows. Given Te, define for each x ∈ ω the set

Ue,x = {σ ∈ Te : Φσe,|σ|(x) ↑},

noting that this is a computable subtree of Te whose index as such can
be found effectively from e, x, and an index for Te. Now ∅′′ can determine
whether any of these subtrees is infinite, since this amounts to answering
the following Σ0

2 question:

(∃x)(∀n)(∃σ)|σ|=n [ σ ∈ Ue,x ]?

If so, let Te+1 = Ue,x for the least x such that Ue,x is infinite, and otherwise
let Te+1 = Te. In the former case, Φfe (x) ↑ for all f ∈ [Te+1], so Φfe is not
total, and in the latter, Φfe (y)↓ for all y and all f ∈ [Te+1], so Φfe is total.

As usual, take f ∈ ∩ e∈ω [Te ]. Then ∅′′ can compute the set Totf of
all e ∈ ω such that Φfe is total, and hence also f ′′ ≡T Totf , because the
above construction was ∅′′-effective. Therefore, whether or not e ∈ Totf was
decided during the construction at a finite stage. Hence, f is low2. To show
that f is computably dominated, let h be an f -computable function and fix
e such that h = Φfe . In particular, Φfe is total, so during the construction
it must have been that Ue,x was finite for all x. Hence, for every x, there
must exist an n such that Φσe,|σ|(x) ↓ for all σ ∈ Te of length n; let nx be
the least such n for a given x. Since Te is computable, we can effectively
find nx for every x, meaning that the function

g(x) = max{Φσe,|σ|(x) : |σ| = nx ∧ σ ∈ Te}

is computable. Note that g bounds h.

Note that if C is a special Π0
1 class, i.e., one with no computable members,

then the above theorem yields a low2 nonlow1 member f ∈ C, because no
noncomputable, computably dominated f can be computable in ∅′, let alone
be low, as we saw in Theorem 5.6.7.

9.6 Low Antibasis Theorem

For the purposes of the following theorem, we will say that a set S ⊆ 2<ω

is isomorphic to 2<ω provided there is a bijection g : 2<ω → S such that
for all σ, τ ∈ 2<ω, σ � τ if and only if g(σ) � g(τ). Notice that if a
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tree T has a subset isomorphic to 2<ω via a computable such bijection,
then [T ] has a member of every degree. Indeed, for every real X, we have
Y = ∪n g(X �n) ∈ [T ]. Clearly, Y ≤T X, while to compute X(n) from Y
for a given n we search for a σ ∈ 2<ω until we find one of length greater
than n with g(σ) ⊂ Y , and then σ(n) = X(n).

Theorem 9.6.1 (Low Antibasis Theorem, Kent and Lewis, 2009). Every
Π0

1 class that has a member of every nonzero low degree has one of every
degree.
Proof. 1 Fix a nonempty Π0

1 class C not containing a member of every
degree and let T ⊆ 2<ω be a computable tree such that C = [T ]. We define
a noncomputable low set A such that for all e ∈ ω,

(9.2) ΦAe = h ∈ 2ω =⇒ [ h ≤T ∅ ∨ h 6∈ [T ] ].

In particular, [T ] has no member h ≡T A. We obtain A as ∪sσs where
σ0 � σ1 � · · · are built in a ∅′-construction. Write Φρe = τ if

(∀x < |τ |)[ Φρe(x)↓ = τ(x) ].

Let σ0 = ∅. At stage s+1 we are given σs.

Stage s+1 = 3e. Let n = |σ|. Using ∅′, define σs+1 � σs such that
σs+1(n) 6= ϕe(n).

Stage s+1 = 3e+1. Ask ∅′ whether there exists ρ � σs such that Φρe(e)
converges. If so, define σs+1 to be the least such ρ, and define σs+1 = σs
otherwise.

Stage s+1 = 3e+2. There are two cases.

Case 1. There exist strings α � σs and τ such that Φαe = τ and τ /∈ T .
In this case let σs+1 be the least such α.

Case 2. Otherwise. In this case it follows that if ΦAe = h total, then
h ∈ [T ]. We proceed as follows. For a given σ define the c.e. set

Vσ = {〈α, β〉 : [σ ≺ α, β]

& (∃ρ)(∃τ)[ Φαe = ρ & Φβe = τ ]

& (∃x < min{|ρ|, |τ |)}[ ρ(x)↓ 6= τ(x)↓ ]}.

(We say that 〈α, β〉 form an e-splitting of σ.) Using ∅′ we search for a σ � σs
such that Vσ = ∅. We claim that this search must succeed, and we define
σs+1 = σ for the least such σ found.

1This proof is due to Dzhafarov and Soare with comments by Jockusch.
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Suppose the claim is false. We shall contradict the assumption that [T ]
does not have a member of every degree. Define a map h : 2<ω 7→ 2<ω as
follows. Let h(∅) = σs+1. Having defined h(σ) for some σ, search com-
putably for the least member 〈α, β〉 of the nonempty c.e. set Vσ. Then
define h(σ̂0) = α and h(σ̂1) = β. Now define g : 2<ω 7→ T by letting

g(σ) = Φ
h(σ)
e for all σ. Since Case 1 does not hold, it is clear that g(σ) ∈ T .

Therefore, g defines an isomorphic copy of 2<ω in T , contrary to hypothesis.
The first two types of stages guarantee that A = ∪sσs is a low

noncomputable set. It remains to prove the following lemma.

Lemma 9.6.2. If ΦAe = h is total, then h is computable or h /∈ [T ].

Proof. If Case 1 held at Stage s+1 = 3e+2, then h would not be in [T ]. So
suppose Case 2 held. By construction, σs+1 � A was such that Vσs+1

= ∅.
In other words, there are no e-splittings above σs+1. Thus, to compute h(n)
find the first α � σs+1 such that Φαe (n) ↓ . Now Φαe (n) = ΦAe (n) = h(n),
else there would have been an e-splitting above σs.

Corollary 9.6.3. If C is a nonempty Π0
1 class which does not have a

member of every degree, then there are infinitely many low degrees with
no members in C.

Proof. Combine the proof of this theorem with Exercise 6.3.7, where we
avoided the cone above a nonzero low degree and repeat for infinitely many
low degrees uniformly below 0′.

There are two notable features of the proof of the Low Antibasis The-
orem 9.6.1. As in Exercise 6.3.7 we do not try to force the functional to
be undefined. We merely look for e-splittings, which is a Σ1 process, and
then apply Lemma 9.6.2 if we cannot find them. Second, we do not actually
build the computable bijection g but we threaten to. This is analogous to
constructing a simple set A below a noncomputable c.e. set C where we
threatened to build a computable characteristic function g = C. We did
not build all of g but enough of g to force C to permit elements to enter A.

9.7 Proper Lown Basis Theorem

The following generalization of the Low Basis Theorem says that, up to
degree, the restriction of the jump operator to any special Π0

1 class is sur-
jective. The trick used for pushing the jump of the member up to the desired
set is like the one used in the standard proof of the Friedberg Completeness
Criterion.

The following theorem was stated with proof by Jockush and Soare in
1972 after Theorem 2.1 and later by Cenzer in 1999.
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Theorem 9.7.1. For every set A ≥T ∅′, every special Π0
1 class has a

member f satisfying f ⊕ ∅′ ≡T f ′ ≡T A.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω

such that C = [T ]. We build a sequence of infinite computable trees
T = T0 ⊇ T1 ⊇ · · · as follows. Let Te be given. If e is even, define Te+1 from
Te as in the proof of the Low Basis Theorem. If e is odd, say e = 2i + 1,
note that T ext

e must be perfect since C is special, so ∅′ can find the smallest
extendible nodes σ, τ ∈ Te such that σ(x) = 0 and τ(x) = 1 for some x.
Let Te+1 consist of all the nodes in Te comparable with σ or τ , depending
on whether A(i) = 0 or A(i) = 1, respectively.

Take f ∈ ∩ e∈ω [Te ]. If e is even, Te+1 can be obtained from Te com-
putably in ∅′, and hence both f ⊕ ∅′-effectively and A-effectively because
A ≥T ∅′. If e is odd, say e = 2i + 1, then to obtain Te+1 from Te we need
an oracle for ∅′ to find the extendible nodes σ and τ and the position x
on which they disagree, and then an oracle for A since we need to know
A(i). But in this case, i ∈ A iff f(x) = 1, so an oracle for f suffices to
determine whether to let Te+1 consist of the nodes comparable with σ or
the nodes comparable with τ . Since f ′ is decided during the construction,
we consequently have that f ⊕ ∅′ ≤T f ′ ≤T A ≤T f ⊕ ∅′, as desired.


	9 Basis Theorems
	9.1 Bases and Nonbases for  Π01-Classes
	9.2 Previous Basis Theorems for Π01-Classes
	9.3 Nonbasis Theorems for 01-Classes
	9.4 The Super Low Basis Theorem (SLBT)
	9.5 The Computably Dominated Basis Theorem
	9.6 Low Antibasis Theorem
	9.7 Proper Lown Basis Theorem


