8 Open and Closed Classes

8.1 Open Classes in Cantor Space

Using ordinal notation identify the ordinal 2 with the set of smaller ordinals $\{0, 1\}$. Identify set $A \subseteq \omega$ with its characteristic function $f : \omega \to \{0, 1\}$ and represent the set of these functions as 2^{ω} . Use the conventions of the Notation section, especially the numbering σ_y of strings $\sigma \in 2^{<\omega}$. We use the notation on trees of §3.7 and sometimes use Convention 4.1.1 of dropping the superscript 0 in defining arithmetic classes. We now deal with classes $\mathcal{A} \subseteq 2^{\omega}$, i.e., second-order objects, rather than just first-order objects like sets $A \subseteq \omega$.¹

Definition 8.1.1. (i) Cantor space is 2^{ω} with the following topology (collection of open classes). For every $\sigma \in 2^{<\omega}$ define the basic clopen class (closed and open class)

(8.1) $\llbracket \sigma \rrbracket = \{ f : f \in 2^{\omega} \& \sigma \prec f \}.$

The open classes of Cantor space are unions of basic clopen classes.²

¹Some material from the chapters in Part II was modified from that in the paper by Diamondstone, Dzhafarov, and Soare [2011].

²The classes $\llbracket \sigma \rrbracket$ are called *clopen* because they are both closed and open. Cantor space and Baire space are both *separable*. They have a countable base of open classes as above. Therefore, every open class is a union of *countably* many basic open classes. Although these are classes they are often called *open sets*, viewing the objects as reals.

R.I. Soare, *Turing Computability*, Theory and Applications of Computability, DOI 10.1007/978-3-642-31933-4_8

(ii) A set $A \subseteq 2^{<\omega}$ is an open representation of the open class

(8.2)
$$\llbracket A \rrbracket = \bigcup_{\sigma \in A} \llbracket \sigma \rrbracket$$

(We may assume A is closed *upwards*, i.e., $\sigma \in A$ and $\sigma \prec \tau$ implies $\tau \in A$.)³

(iii) A class \mathcal{A} is effectively open (computably open) if $\mathcal{A} = \llbracket A \rrbracket$ for a computable set $A \subseteq \omega$. (See Theorem 8.1.2 (i).)

(iv) A class \mathcal{A} is *(lightface)* Σ_1^0 (abbreviated *(lightface)* Σ_1) if there is a computable R such that

(8.3)
$$\mathcal{A} = \{ f : (\exists x) R(f \upharpoonright x) \}$$

(v) A class \mathcal{A} is *(boldface)* Σ_1^0 if (8.3) holds with R replaced by R^X computable in some $X \subseteq \omega$. In this case we say \mathcal{A} is $\Sigma_1^{0,X}$ or simply Σ_1^X .

Theorem 8.1.2 (Effectively Open Classes). Let $\mathcal{A} \subseteq 2^{\omega}$.

(i) If $\mathcal{A} = \llbracket A \rrbracket$ with A c.e., then $\mathcal{A} = \llbracket B \rrbracket$ for some computable set $B \subseteq \omega$.

(ii) \mathcal{A} is effectively open iff \mathcal{A} is (lightface) Σ_1^0 .

(*iii*) \mathcal{A} is open iff \mathcal{A} is (boldface) Σ_1^0 .

Proof. (i) Let $\mathcal{A} = \llbracket A \rrbracket$ with A c.e. and upward closed. Let $A = \bigcup_s A_s$ for a computable enumeration $\{A_s\}_{s \in \omega}$. Define a computable set B with $\mathcal{A} = \llbracket B \rrbracket$ as follows. At stage s, for every σ with $|\sigma| = s$ put σ into B if $(\exists \rho \preceq \sigma) [\rho \in A_s]$, and put σ into \overline{B} otherwise. If $\sigma \in A$, then $\sigma \in A_s$ for some s, and every $\tau \succeq \sigma$ with $|\tau| \ge s$ is put into B. Hence $\llbracket \sigma \rrbracket \subseteq \llbracket B \rrbracket$. Therefore, $\llbracket A \rrbracket \subseteq \llbracket B \rrbracket$. Clearly, $B \subseteq A$ since A is upward closed. Therefore, $\llbracket B \rrbracket \subseteq \llbracket A \rrbracket$.

(ii) Let \mathcal{A} be effectively open. Then $\mathcal{A} = \llbracket B \rrbracket$ for some B computable. Define $R(\sigma)$ iff $\sigma \in B$. Now $f \in \mathcal{A}$ iff $(\exists x) R(f \upharpoonright x)$. Hence, \mathcal{A} is Σ_1^0 . Conversely, assume \mathcal{A} is Σ_1^0 via a computable R satisfying (8.3). Define $A = \{\sigma : R(\sigma)\}$. Then $\mathcal{A} = \llbracket A \rrbracket$.

(iii) Relativize the proof of (ii) to a set $X \subseteq \omega$.

8.2 Closed Classes in Cantor Space

Recall the tree notation defined in $\S3.7$.

³If $\sigma \in A$ and $\sigma \prec \tau$ but $\tau \notin A$ we may add τ to A without changing [A].

Definition 8.2.1. (i) A tree $T \subseteq 2^{<\omega}$ is a set closed under initial segments, i.e., $\sigma \in T$ and $\tau \prec \sigma$ imply $\tau \in T$. (By our canonical coding of strings $\sigma \in 2^{<\omega}$ we may think of T as a subset of ω .) The set of *infinite paths* through T is

$$[T] = \{ f : (\forall n) [f \upharpoonright n \in T] \}.$$

(ii) A class $C \subseteq 2^{\omega}$ is *(lightface)* Π_1^0 if there is a computable relation R(x) such that

(8.5)
$$\mathcal{C} = \{ f : (\forall x) R(f \upharpoonright x) \}.$$

A class C is *(boldface)* Π_1^0 if (8.5) holds for R^X computable in some $X \subseteq \omega$. This is also written $\Pi_1^{0,X}$ and is abbreviated Π_1^X .

(iii) A class $\mathcal{C} \subseteq 2^{\omega}$ is effectively closed (computably closed) if its complement is effectively open. A set $\mathcal{C} \subseteq 2^{\omega}$ is closed if its complement is open.

Theorem 8.2.2 (Effectively Closed Sets and Computable Trees). *Fix* $C \subseteq 2^{\omega}$. *TFAE:*

- (i) C = [T] for some computable tree T;
- (ii) C is effectively closed;
- (iii) C is a Π^0_1 class.

Corollary 8.2.3 (Closed Sets and Trees). Fix $C \subseteq 2^{\omega}$. The following are equivalent (TFAE):

- (i) C = [T] for some tree T;
- (ii) C is closed;
- (iii) C is a (boldface) Π_1^0 class.

Proof. Relativize the proof of Theorem 8.2.2 to $X \subseteq \omega$.

Remark 8.2.4. (Representing Closed Classes). The most convenient way of representing open and closed classes is with trees. If C is closed we choose a tree T such that C = [T]. Define $A = \omega - T$. Then T is downward closed, A is upward closed, as sets of strings, and A defines the open set $[\![A]\!] = 2^{\omega} - [T] = \overline{C}$. Note that the representations A and T are complementary in ω and the open and closed classes $[\![A]\!]$ and [T] are complementary in 2^{ω} . The only difference between the effective case and general case is whether the tree T is computable or only computable in some set X.

We may imagine a path $f \in 2^{\omega}$ trying to climb the tree T without passing through a node $\sigma \in A$. If f succeeds, then $f \in \mathcal{C} = [T]$. However, if $f \succ \sigma$ for even one node $\sigma \in A$, then f falls off the tree forever and $f \notin \mathcal{C}$.

8.3 The Compactness Theorem

Particularly useful features of Cantor space are the well-known Compactness Theorem and the Effective Compactness Theorem 8.5.1, both of which lead to the study of one of our main topics, Π_1^0 classes.

Theorem 8.3.1 (Compactness Theorem). The following easy and wellknown properties hold for Cantor Space 2^{ω} . The term "compactness" refers to any of them, but particularly to (iv).

(i) (Weak König's Lemma, WKL). If $T \subseteq 2^{<\omega}$ is an infinite tree, then $[T] \neq \emptyset$.

(ii) If $T_0 \supseteq T_1 \dots$ is a decreasing sequence of trees with $[T_n] \neq \emptyset$ for every n, and intersection $T_{\omega} = \bigcap_{n \in \omega} T_n$, then $[T_{\omega}] \neq \emptyset$.

(iii) If $\{C_i\}_{i \in \omega}$ is a countable family of closed sets such that $\bigcap_{i \in F} C_i \neq \emptyset$ for every finite set $F \subseteq \omega$, then $\bigcap_{i \in \omega} C_i \neq \emptyset$ also.

(iv) (Finite subcover). Any open cover $\llbracket A \rrbracket = 2^{\omega}$ has a finite open subcover $F \subseteq A$ such that $\llbracket F \rrbracket = 2^{\omega}$.

Proof. (i) Let T be infinite. We construct a sequence of nodes $\sigma_0 \prec \sigma_1 \ldots$ such that $f = \bigcup_{n \in \omega} \sigma_n$ and $f \in [T]$. Define a node σ to be *large* if there are infinitely many $\tau \succ \sigma$ such that $\tau \in T$. Define $\sigma_0 = \emptyset$, which is large. Given σ_n large, one of $\sigma_n \circ 0$ and $\sigma_n \circ 1$ must be large by the pigeon-hole principle. (This fails for Baire space ω^{ω} , where there may be infinitely many possible successors none of which is large.) Let $\sigma_{n+1} = \sigma_n \circ 0$ if it is large and $\sigma_{n+1} = \sigma_n \circ 1$ otherwise.

(ii) Build a new tree S by putting σ of length n into S if $\sigma \in \bigcap_{i \leq n} T_i$ (which is also a tree). Note that S is infinite because $[T_n] \neq \emptyset$ for every n. By König's Lemma (i) there exists $f \in [S]$, but $[S] = [T_{\omega}]$.

(iii) Define $\widehat{\mathcal{C}}_i = \bigcap_{j \leq i} \mathcal{C}_j$. Hence, $\widehat{\mathcal{C}}_0 \supseteq \widehat{\mathcal{C}}_1 \dots$ is a decreasing sequence of nonempty closed sets. Choose a decreasing sequence of computable trees $T_0 \supseteq T_1 \dots$ such that $[T_i] = \widehat{\mathcal{C}}_i$ and apply (ii).

(iv) Suppose $\llbracket A \rrbracket$ is an open cover of 2^{ω} but $\llbracket F \rrbracket \not\supseteq 2^{\omega}$ for any finite subset $F \subset A$. Hence, the closed set $[T_F] = 2^{\omega} - \llbracket F \rrbracket$ is nonempty for all $F \subseteq A$. Therefore, $\mathcal{C} = \bigcap_{F \subset A} [T_F] \neq \emptyset$ by (iii), but $\mathcal{C} = 2^{\omega} - \llbracket A \rrbracket \neq \emptyset$. Hence, $\llbracket A \rrbracket \not\supseteq 2^{\omega}$.

8.4 Notation for Trees

Recall the notation in §3.7 for a tree $T \subseteq 2^{<\omega}$:

$$T_{\sigma} = \{ \tau \in T : \sigma \preceq \tau \quad \text{or} \quad \tau \prec \sigma \};$$
$$T^{\text{ext}} = \{ \sigma \in T : (\exists f \succ \sigma) [f \in [T]] \}.$$

A path $f \in [T]$ is isolated if $(\exists \sigma)[[T_{\sigma}] = \{f\}]$. We say that σ isolates f because $[\![\sigma]\!] \cap [T] = \{f\}$ and we call σ an atom. If f is isolated we say it has Cantor-Bendixson rank 0. If f is not isolated, then f is a limit point and has rank ≥ 1 . (See Definition 8.7.5 and surrounding exercises for Cantor-Bendixson rank.)

8.5 Effective Compactness Theorem

For a *computable* tree $T \subseteq 2^{<\omega}$ we can establish the following effective analogues of the Compactness Theorem 8.3.1.

Theorem 8.5.1 (Effective Compactness Theorem). Let $T \subseteq 2^{<\omega}$ be a computable tree.

(i) T^{ext} is a Π_1^0 set. Hence, $\overline{T^{\text{ext}}}$ is Σ_1^0 , $\overline{T^{\text{ext}}} \leq_{\mathrm{m}} \emptyset'$, and $T^{\text{ext}} \leq_{\mathrm{T}} \emptyset'$. (ii) (Kreisel Basis Theorem) $[T] \neq \emptyset \implies (\exists f \leq_{\mathrm{T}} \emptyset') [f \in [T]]$. (This was generalized in the Low Basis Theorem 3.7.2.)

(iii) If $f \in [T]$ is the lexicographically least member, then f has c.e. degree.

(iv) If $f \in [T]$ is isolated, then f is computable. If [T] is finite, then all paths are isolated and therefore computable.

(v) Given an open cover $\llbracket A \rrbracket = 2^{\omega}$ with A c.e. there is finite subset $F \subseteq A$ such that $\llbracket F \rrbracket = 2^{\omega}$ and a canonical index for F can be found uniformly in a c.e. index for A.

Proof. (i) The formal definition of T^{ext} in (3.22) has one function quantifier, and it is in Σ_1^1 form. Indeed is this the best we can do for Baire space ω^{ω} . However, for Cantor space 2^{ω} we can use the Compactness Theorem 8.3.1 (i) to reduce it to one arithmetical quantifier.

 $(8.6) \ \sigma \in \overline{T^{\text{ext}}} \iff T_{\sigma} \text{ is finite } \iff (\exists n)(\forall \tau \succ \sigma)_{|\tau|=n} [\tau \notin T].$

This is a Σ_1^0 condition because the second quantifier on τ is bounded by $|\tau| = n$ and acts like a finite disjunction. (See Theorem 4.1.4 (vi).)

(ii) Now use a \emptyset' oracle to choose $f \in [T]$ such that $f = \bigcup_n \sigma_n$. Given $\sigma_n \in T^{\text{ext}}$, let $\sigma_{n+1} = \sigma_n \circ 0$ if $\sigma_n \circ 0 \in T^{\text{ext}}$, and $\sigma_n \circ 1$ otherwise.

(iii) (This gives a stronger conclusion than (ii).) Let f be the lexicographically least member of [T], i.e., in the dictionary ordering \leq_L on the alphabet $\{0, 1\}$. (Think of the tree T as growing downwards and $\sigma \leq_L f$ as denoting that σ is to the left of f lexicographically.) Define the following c.e. set of nodes $M \subseteq \overline{T^{\text{ext}}}$ such that $M \equiv_{\mathrm{T}} f$:

$$M = \{ \sigma : (\forall \tau)_{|\tau| = |\sigma|} [[\tau \in T \& \tau \leq_L \sigma] \implies \tau \in \overline{T^{\text{ext}}}] \}$$

(We just wait until σ and all its predecessors of length $|\sigma|$ have appeared nonextendible. Then we put σ into M. In this way we enumerate all nodes $\tau <_L f$. Therefore, f determines a *left c.e* set, one where when σ is enumerated, all later strings τ enumerated satisfy $\sigma \leq_L \tau$.)

(iv) Choose $\sigma \in T$ with $[T_{\sigma}] = \{f\}$. To compute f assume we have computed $\tau = f \upharpoonright n$. Exactly one of τ^{0} and τ^{1} is extendible. Enumerate $\overline{T^{\text{ext}}}$ until one of these nodes appears and take the other one.

(v) Assume $\llbracket A \rrbracket = 2^{\omega}$ with A c.e. Enumerate A until a finite set $F \subseteq A$ is found with $\llbracket F \rrbracket = 2^{\omega}$ by the Compactness Theorem (iv). We can search until we find it.

Remark 8.5.2. Note that the *conclusions* in the Effective Compactness Theorem 8.5.1 have various levels of effectiveness even though the *hypothe*ses are all effective. In (v) if $\llbracket A \rrbracket$ covers 2^{ω} then the passage from A to F is computable because we simply enumerate A until F appears (as with any Σ_1 process). However, if $\llbracket A \rrbracket$ fails to cover 2^{ω} then the complementary closed class $[T] = 2^{\omega} - \llbracket A \rrbracket$ is nonempty. Then (ii) gives a path $f \in [T]$ with $f \leq_{\mathrm{T}} \emptyset'$ and (iii) even produces a path of c.e. degree, but neither produces a computable path f because, given an extendible string $\sigma \prec f$, the process for the proof of König's Lemma in Theorem 8.3.1 (i) does not computably determine whether to extend to σ^{-0} or σ^{-1} . In Theorem 9.3.2 we shall construct a computable tree with paths but no computable paths.

8.6 Dense Open Subsets of Cantor Space

The following important notion of *dense sets* will be developed more later.

Definition 8.6.1. Let S be Cantor space 2^{ω} .

(i) A set $\mathcal{A} \subseteq \mathcal{S}$ is *dense* if $(\forall \sigma) (\exists f \succ \sigma) [f \in \mathcal{A}]$.

(ii) An open set $\mathcal{A} \subseteq \mathcal{S}$ is dense open if

(8.7)
$$(\forall \tau)(\exists \sigma \succeq \tau)(\forall f \succ \sigma) [f \in \mathcal{A}].$$

(iii) A class $\mathcal{B} \subseteq \mathcal{S}$ is G_{δ} , i.e., boldface Π_2^0 , if $\mathcal{B} = \bigcap_i \mathcal{A}_i$, a countable intersection of open sets \mathcal{A}_i .

To be dense \mathcal{A} must contain a point f in every basic open set $\llbracket \sigma \rrbracket$. To be dense open \mathcal{A} must contain an *entire basic open set* $\llbracket \tau \rrbracket \subseteq \llbracket \sigma \rrbracket$ for every basic open set $\llbracket \sigma \rrbracket$. Notice that a set is dense open iff it is both dense and open.

After open and closed sets, much attention has been paid in point set topology to G_{δ} sets. If the sets \mathcal{A}_i are *dense open* sets, then they have special significance. In §14.1.3 we shall explore Banach-Mazur games for finding a point $f \in \bigcap_i \mathcal{A}_i$ where the \mathcal{A}_i are *dense open* sets. This is the paradigm for the *finite extension* constructions in Chapter 6, where we used the method to construct sets and degrees meeting an infinite sequence of "requirements." Meeting a requirement R_i amounts to meeting the corresponding dense open set \mathcal{A}_i .

8.7 Exercises

Exercise 8.7.1. We use the notation and definitions of §8.1, including the open representation A of $\llbracket A \rrbracket$ and the closed representation $T = \overline{A}$ of the closed set $[T] = 2^{\omega} - \llbracket A \rrbracket$, and we use the tree notation of §3.7 on the Low Basis Theorem.

(i) Define the open representation A to be the set of strings σ containing at least *two* 0's, and let $T = \overline{A}$. Describe the paths $f \in [T]$. Which are the limit points and which are the isolated ones?

(ii) Next define the open representation A to be the set of strings σ containing at least *three* 0's, and let $T = \overline{A}$. Describe the paths $f \in [T]$. (See Exercise 8.7.9 for the Cantor-Bendixson rank of these points, which gives much deeper insight into the structure of [T] when three 0's are replaced by n 0's.)

Exercise 8.7.2. Prove that if T is computable and [T] has exactly one limit point f, then $f \leq_{\mathrm{T}} \emptyset''$.

Exercise 8.7.3. Prove that there is a computable tree $T \subset 2^{<\omega}$ such that [T] contains a unique limit point $f \equiv_{\mathrm{T}} \emptyset''$.

Exercise 8.7.4. (i) Define

(8.8) $\Gamma(T) = \{ \sigma : \operatorname{card} ([T_{\sigma}]) < \infty \},\$

i.e., the nodes σ with only finitely many paths $f \in [T]$ with $f \succ \sigma$.

(ii) If $T = T^{\text{ext}}$, define the set of *splitting nodes*,

 $(8.9) \qquad \mathcal{S}(T) = \{ \sigma : (\exists \rho \in T) (\exists \tau \in T) [\sigma \prec \rho \& \sigma \prec \tau \& \rho | \tau] \},\$

the nodes σ which *split* in T in the sense that some ρ and τ split σ , where $\rho \mid \tau$ denotes that $(\exists x) [\rho(x) \downarrow \neq \tau(x) \downarrow]$.

- (i) Prove that if $\sigma \in \Gamma(T)$ and $f \in [T_{\sigma}]$ then f is isolated.
- (ii) Prove that if $f \in [T]$ is not isolated then every $\sigma \prec f$ lies in S(T).
- (iii) Prove that $\mathcal{S}(T)$ is Σ_1 in T and hence $\mathcal{S}(T) \leq_{\mathrm{T}} T'$.

Definition 8.7.5. (Cantor-Bendixson Derivative for tree T). Fix a tree T. For $\sigma \in T$ define the *Cantor-Bendixson rank* $r(\sigma)$ of σ relative to T.

 $D^0(T) = T.$

 $D^{\alpha+1}(T) = D^{\alpha}(T) - \Gamma(D^{\alpha}(T))$ for Γ defined in (8.8).

 $D^{\lambda}(T) = \bigcap \{ D^{\alpha}(T) : \alpha < \lambda \}$ for λ a limit ordinal.

$$r(\sigma) = (\mu\alpha) [\ \sigma \in D^{\alpha}(T) - D^{\alpha+1}(T) \].$$

If there is no such α , define $r(\sigma) = \infty$.

Definition 8.7.6. (Cantor-Bendixson derivative for closed set \mathcal{A}). If \mathcal{A} is a closed set, choose a tree T such that $[T] = \mathcal{C}$ and let $r(\sigma)$ be the rank above for tree T. If $r(\sigma) = \alpha$ and σ isolates f in $D^{\alpha}(T)$, then define $r(f) = \alpha$. If there is no such α then define $r(f) = \infty$.

The derivative of a closed set C is the set of all points which are not isolated points of C, and we are iterating this derivative. Note that derivative of a closed set is closed.

Exercise 8.7.7. Prove that Definition 8.7.6 for the Cantor-Bendixson derivative of a closed set does not depend on the choice of the tree such that [T] = C. Take any two trees T_1 and T_2 such that $[T_1] = [T_2] = C$ and prove that the tree derivative of Definition 8.7.5 gives the same rank in both trees for any $f \in C$. *Hint.* Keep applying the fact that $T_1^{\text{ext}} = T_2^{\text{ext}}$.

Exercise 8.7.8. \diamond (i) Prove that $D^{\alpha}(T)$ is a tree and hence $[D^{\alpha}(T)]$ is closed subset of $\mathcal{A} = [T]$.

(ii) Show that there is an ordinal β such that $D^{\beta}(T) = D^{\alpha}(T)$ for all $\alpha > \beta$. Define $D^{\infty}(T) = D^{\beta}(T)$. Prove that there is an $\alpha < \omega_1$ such that $D^{\alpha}(T) = D^{\infty}(T)$. We call $D^{\infty}(T)$ and $[D^{\infty}(T)]$ the *perfect kernel*.

(iii) Prove that either $D^{\infty}(T) = \emptyset$ or else $D^{\infty}(T)$ is a perfect tree, namely every $\sigma \in D^{\infty}(T)$ splits as defined above. In this case $D^{\infty}(T)$ has 2^{\aleph_0} many infinite paths.

(iv) Let β be as in (ii). Prove that $[D^{\alpha}(T)] - [D^{\alpha+1}(T)]$ is countable for every $\alpha < \beta$. Therefore, $\bigcup_{\alpha < \beta} [D^{\alpha}(T)]$ is countable, namely $[T] - [D^{\infty}(T)]$ is countable.

Exercise 8.7.9. Define the open representation A as in Exercise 8.7.1 and define $T = \overline{A}$.

(i) Analyze the Cantor-Bendixson rank of all points $f \in [T]$.

(ii) How does the rank change if we define A to be all strings having at least n 0's?

(iii) Define a computable tree T such that [T] has a point of rank ω .