8 Open and Closed Classes

8.1 Open Classes in Cantor Space

Using ordinal notation identify the ordinal 2 with the set of smaller ordinals $\{0,1\}$. Identify set $A \subseteq \omega$ with its characteristic function $f : \omega \to \{0,1\}$ and represent the set of these functions as 2^{ω} . Use the conventions of the Notation section, especially the numbering σ_y of strings $\sigma \in 2^{<\omega}$. We use the notation on trees of §3.7 and sometimes use Convention 4.1.1 of dropping the superscript 0 in defining arithmetic classes. We now deal with *classes* $A \subseteq 2^{\omega}$, i.e., second-order objects, rather than just first-order objects like sets $A \subseteq \omega$.^{[1](#page-0-0)}

Definition 8.1.1. (i) Cantor space is 2^{ω} with the following topology (collection of open classes). For every $\sigma \in 2^{<\omega}$ define the *basic clopen class* (closed and open class)

(8.1)
$$
\llbracket \sigma \rrbracket = \{ f : f \in 2^{\omega} \& \sigma \prec f \}.
$$

The *open* classes of Cantor space are unions of basic clopen classes.^{[2](#page-0-1)}

¹Some material from the chapters in Part II was modified from that in the paper by Diamondstone, Dzhafarov, and Soare [2011].

²The classes $\llbracket \sigma \rrbracket$ are called *clopen* because they are both closed and open. Cantor space and Baire space are both *separable*. They have a countable base of open classes as above. Therefore, every open class is a union of countably many basic open classes. Although these are classes they are often called *open sets*, viewing the objects as reals.

[©] Springer-Verlag Berlin Heidelberg 2016

R.I. Soare, *Turing Computability*, Theory and Applications of Computability, DOI 10.1007/978-3-642-31933-4_ 8

(ii) A set $A \subseteq 2^{\langle \omega \rangle}$ is an open representation of the open class

(8.2)
$$
\llbracket A \rrbracket = \bigcup_{\sigma \in A} \llbracket \sigma \rrbracket.
$$

(We may assume A is closed upwards, i.e., $\sigma \in A$ and $\sigma \prec \tau$ implies $\tau \in A$.)^{[3](#page-1-0)}

(iii) A class A is effectively open (computably open) if $A = \llbracket A \rrbracket$ for a computable set $A \subseteq \omega$. (See Theorem [8.1.2](#page-1-1) (i).)

(iv) A class A is (lightface) Σ_1^0 (abbreviated (lightface) Σ_1) if there is a computable R such that

(8.3)
$$
\mathcal{A} = \{ f : (\exists x) R(f \upharpoonright x) \}.
$$

(v) A class A is (boldface) Σ_1^0 if [\(8.3\)](#page-1-2) holds with R replaced by R^X computable in some $X \subseteq \omega$. In this case we say \mathcal{A} is $\Sigma_1^{0,X}$ or simply Σ_1^X .

Theorem 8.1.2 (Effectively Open Classes). Let $A \subseteq 2^{\omega}$.

(i) If $\mathcal{A} = \llbracket A \rrbracket$ with A c.e., then $\mathcal{A} = \llbracket B \rrbracket$ for some computable set $B \subseteq \omega$.

(*ii*) A is effectively open if $\mathcal A$ is (lightface) Σ_1^0 .

(iii) A is open iff A is (boldface) Σ_1^0 .

Proof. (i) Let $\mathcal{A} = \|A\|$ with A c.e. and upward closed. Let $A = \bigcup_{s} A_s$ for a computable enumeration $\{A_s\}_{s\in\omega}$. Define a computable set B with $\mathcal{A} = \llbracket B \rrbracket$ as follows. At stage s, for every σ with $|\sigma| = s$ put σ into B if $(\exists \rho \preceq \sigma) [\rho \in A_s],$ and put σ into \overline{B} otherwise. If $\sigma \in A$, then $\sigma \in A_s$ for some s, and every $\tau \succeq \sigma$ with $|\tau| \geq s$ is put into B. Hence $\llbracket \sigma \rrbracket \subseteq \llbracket B \rrbracket$. Therefore, $\llbracket A \rrbracket \subseteq \llbracket B \rrbracket$. Clearly, $B \subseteq A$ since A is upward closed. Therefore, $\llbracket B \rrbracket \subseteq \llbracket A \rrbracket.$

(ii) Let A be effectively open. Then $A = \llbracket B \rrbracket$ for some B computable. Define $R(\sigma)$ iff $\sigma \in B$. Now $f \in \mathcal{A}$ iff $(\exists x) R(f \upharpoonright x)$. Hence, \mathcal{A} is Σ_1^0 . Conversely, assume $\mathcal A$ is Σ_1^0 via a computable R satisfying [\(8.3\)](#page-1-2). Define $A = {\sigma : R(\sigma)}$. Then $\mathcal{A} = \llbracket A \rrbracket$.

 \Box

(iii) Relativize the proof of (ii) to a set $X \subseteq \omega$.

8.2 Closed Classes in Cantor Space

Recall the tree notation defined in §3.7.

³If $\sigma \in A$ and $\sigma \prec \tau$ but $\tau \notin A$ we may add τ to A without changing $[[A]]$.

Definition 8.2.1. (i) A tree $T \subseteq 2^{<\omega}$ is a set closed under initial segments, i.e., $\sigma \in T$ and $\tau \prec \sigma$ imply $\tau \in T$. (By our canonical coding of strings $\sigma \in 2^{<\omega}$ we may think of T as a subset of ω .) The set of *infinite paths* through T is

(8.4)
$$
[T] = \{ f : (\forall n) [f \, | \, n \in T \} \}.
$$

(ii) A class $C \subseteq 2^{\omega}$ is *(lightface)* Π_1^0 if there is a computable relation $R(x)$ such that

(8.5)
$$
\mathcal{C} = \{ f : (\forall x) R(f \upharpoonright x) \}.
$$

A class C is (boldface) Π^0 if [\(8.5](#page-2-0)) holds for R^X computable in some $X \subseteq \omega$. This is also written $\Pi_1^{0,X}$ and is abbreviated Π_1^X .

(iii) A class $C \subseteq 2^{\omega}$ is effectively closed (computably closed) if its complement is effectively open. A set $\mathcal{C} \subseteq 2^{\omega}$ is *closed* if its complement is open.

Theorem 8.2.2 (Effectively Closed Sets and Computable Trees). Fix $C \subseteq 2^{\omega}$. TFAE:

- (i) $C = [T]$ for some computable tree T;
- (*ii*) $\mathcal C$ *is effectively closed*;
- (iii) C is a Π_1^0 class.

Corollary 8.2.3 (Closed Sets and Trees). Fix $C \subseteq 2^{\omega}$. The following are equivalent (TFAE):

- (i) $C = [T]$ for some tree T;
- (ii) C is closed:
- (iii) C is a (boldface) Π_1^0 class.

Proof. Relativize the proof of Theorem [8.2.2](#page-2-1) to $X \subseteq \omega$.

 \Box

Remark 8.2.4. (Representing Closed Classes). The most convenient way of representing open and closed classes is with trees. If $\mathcal C$ is closed we choose a tree T such that $\mathcal{C} = [T]$. Define $A = \omega - T$. Then T is downward closed, A is upward closed, as sets of strings, and A defines the open set $||A|| =$ $2^{\omega} - T = \overline{\mathcal{C}}$. Note that the representations A and T are complementary in ω and the open and closed classes $\llbracket A \rrbracket$ and $\llbracket T \rrbracket$ are complementary in 2^{ω} . The only difference between the effective case and general case is whether the tree T is computable or only computable in some set X .

We may imagine a path $f \in 2^{\omega}$ trying to climb the tree T without passing through a node $\sigma \in A$. If f succeeds, then $f \in \mathcal{C} = [T]$. However, if $f \succ \sigma$ for even one node $\sigma \in A$, then f falls off the tree forever and $f \notin \mathcal{C}$.

8.3 The Compactness Theorem

Particularly useful features of Cantor space are the well-known Compactness Theorem and the Effective Compactness Theorem [8.5.1,](#page-4-0) both of which lead to the study of one of our main topics, Π_1^0 classes.

Theorem 8.3.1 (Compactness Theorem). The following easy and wellknown properties hold for Cantor Space 2^{ω} . The term "compactness" refers to any of them, but particularly to (iv).

(i) (Weak König's Lemma, WKL). If $T \subseteq 2^{<\omega}$ is an infinite tree, then $[T] \neq \emptyset$.

(ii) If $T_0 \supseteq T_1 \ldots$ is a decreasing sequence of trees with $|T_n| \neq \emptyset$ for every n, and intersection $T_{\omega} = \cap_{n \in \omega} T_n$, then $[T_{\omega}] \neq \emptyset$.

(iii) If $\{C_i\}_{i\in\omega}$ is a countable family of closed sets such that $\bigcap_{i\in F} C_i \neq \emptyset$ for every finite set $F \subseteq \omega$, then $\cap_{i \in \omega} C_i \neq \emptyset$ also.

(iv) (Finite subcover). Any open cover $\llbracket A \rrbracket = 2^{\omega}$ has a finite open subcover $F \subseteq A$ such that $\llbracket F \rrbracket = 2^{\omega}$.

Proof. (i) Let T be infinite. We construct a sequence of nodes $\sigma_0 \prec \sigma_1 \ldots$ such that $f = \bigcup_{n \in \omega} \sigma_n$ and $f \in [T]$. Define a node σ to be *large* if there are infinitely many $\tau \succ \sigma$ such that $\tau \in T$. Define $\sigma_0 = \emptyset$, which is large. Given σ_n large, one of σ_n ^{$\hat{ }$} and σ_n ^{$\hat{ }$}1 must be large by the pigeon-hole principle. (This fails for Baire space ω^{ω} , where there may be infinitely many possible successors none of which is large.) Let $\sigma_{n+1} = \sigma_n$ ^o if it is large and $\sigma_{n+1} = \sigma_n$ ¹ otherwise.

(ii) Build a new tree S by putting σ of length n into S if $\sigma \in \bigcap_{i \leq n} T_i$ (which is also a tree). Note that S is infinite because $[T_n] \neq \emptyset$ for every n. By König's Lemma (i) there exists $f \in [S]$, but $[S] = [T_\omega]$.

(iii) Define $\widehat{C}_i = \bigcap_{j\leq i} C_j$. Hence, $\widehat{C}_0 \supseteq \widehat{C}_1 \dots$ is a decreasing sequence of nonempty closed sets. Choose a decreasing sequence of computable trees $T_0 \supseteq T_1 \ldots$ such that $[T_i] = C_i$ and apply (ii).

(iv) Suppose $\llbracket A \rrbracket$ is an open cover of 2^{ω} but $\llbracket F \rrbracket \not\supseteq 2^{\omega}$ for any finite
subset $F \subset A$ Honce the closed set $[T_{\alpha}] = 2^{\omega} - \llbracket F \rrbracket$ is poperative for all subset $F \subset A$. Hence, the closed set $[T_F] = 2^{\omega} - [F]$ is nonempty for all $F \subseteq A$. Therefore, $C = \bigcap_{F \subset A} [T_F] \neq \emptyset$ by (iii), but $C = 2^{\omega} - [A] \neq \emptyset$.
Hence $[A] \preceq 2^{\omega}$ Hence, $\llbracket A \rrbracket \ncong 2^{\omega}$.

8.4 Notation for Trees

Recall the notation in §3.7 for a tree $T \subseteq 2^{<\omega}$:

$$
T_{\sigma} = \{ \tau \in T : \sigma \preceq \tau \quad \text{or} \quad \tau \prec \sigma \};
$$

$$
T^{\text{ext}} = \{ \sigma \in T : (\exists f \succ \sigma) [f \in [T]] \}.
$$

A path $f \in [T]$ is *isolated* if $(\exists \sigma)[T_{\sigma}] = \{f\}$. We say that σ *isolates* f because $\llbracket \sigma \rrbracket \cap [T] = \{f\}$ and we call σ an atom. If f is isolated we say it has Cantor-Bendixson rank 0. If f is not isolated, then f is a *limit point* and has rank ≥ 1 . (See Definition [8.7.5](#page-7-0) and surrounding exercises for Cantor-Bendixson rank.)

8.5 Effective Compactness Theorem

For a *computable* tree $T \subseteq 2^{\langle \omega \rangle}$ we can establish the following effective analogues of the Compactness Theorem [8.3.1](#page-3-0).

Theorem 8.5.1 (Effective Compactness Theorem). Let $T \subseteq 2^{<\omega}$ be a computable tree.

(i) T^{ext} is a Π_1^0 set. Hence, $\overline{T}^{\text{ext}}$ is Σ_1^0 , $\overline{T}^{\text{ext}} \leq_m \emptyset'$, and $T^{\text{ext}} \leq_T \emptyset'$. (ii) (Kreisel Basis Theorem) $[T] \neq \emptyset \implies$ $^{\prime}\rangle$ [$f \in [T]$]. (This was generalized in the Low Basis Theorem 3.7.2.)

(iii) If $f \in [T]$ is the lexicographically least member, then f has c.e. degree.

(iv) If $f \in [T]$ is isolated, then f is computable. If $[T]$ is finite, then all paths are isolated and therefore computable.

(v) Given an open cover $\llbracket A \rrbracket = 2^{\omega}$ with A c.e. there is finite subset $F \subseteq A$ such that $\llbracket F \rrbracket = 2^{\omega}$ and a canonical index for F can be found uniformly in a c.e. index for A.

Proof. (i) The formal definition of T^{ext} in (3.22) has one function quantifier, and it is in Σ_1^1 form. Indeed is this the best we can do for Baire space ω^{ω} . However, for Cantor space 2^{ω} we can use the Compactness Theorem [8.3.1](#page-3-0) (i) to reduce it to one arithmetical quantifier.

(8.6) $\sigma \in \overline{T^{\text{ext}}} \iff T_{\sigma}$ is finite $\iff (\exists n)(\forall \tau \succ \sigma)_{|\tau|=n} [\tau \notin T].$

This is a Σ_1^0 condition because the second quantifier on τ is bounded by $|\tau| = n$ and acts like a finite disjunction. (See Theorem 4.1.4 (vi).)

(ii) Now use a \emptyset' oracle to choose $f \in [T]$ such that $f = \bigcup_n \sigma_n$. Given $\sigma_n \in T^{\text{ext}}$, let $\sigma_{n+1} = \sigma_n \hat{\ }0$ if $\sigma_n \hat{\ }0 \in T^{\text{ext}}$, and $\sigma_n \hat{\ }1$ otherwise.

(iii) (This gives a stronger conclusion than (ii).) Let f be the lexicographically least member of $[T]$, i.e., in the dictionary ordering \lt_L on the alphabet $\{0, 1\}$. (Think of the tree T as growing downwards and $\sigma \leq_L f$ as denoting that σ is to the left of f lexicographically.) Define the following c.e. set of nodes $M \subseteq \overline{T^{\text{ext}}}$ such that $M \equiv_T f$:

$$
M = \{ \sigma : (\forall \tau)_{|\tau| = |\sigma|} [\ [\ \tau \in T \ \& \ \tau \leq_L \sigma \] \implies \tau \in \overline{T^{\text{ext}}} \] \}
$$

(We just wait until σ and all its predecessors of length $|\sigma|$ have appeared nonextendible. Then we put σ into M. In this way we enumerate all nodes $\tau \leq L$ f. Therefore, f determines a *left c.e* set, one where when σ is enumerated, all later strings τ enumerated satisfy $\sigma \leq_L \tau$.)

(iv) Choose $\sigma \in T$ with $[T_{\sigma}] = \{f\}$. To compute f assume we have computed $\tau = f \upharpoonright n$. Exactly one of $\tau \hat{ }$ 0 and $\tau \hat{ }$ 1 is extendible. Enumerate T^{ext} until one of these nodes appears and take the other one.

(v) Assume $[[A]] = 2^{\omega}$ with A c.e. Enumerate A until a finite set $F \subseteq A$ is found with $\llbracket F \rrbracket = 2^{\omega}$ by the Compactness Theorem (iv). We can search until we find it. until we find it.

Remark 8.5.2. Note that the *conclusions* in the Effective Compactness Theorem [8.5.1](#page-4-0) have various levels of effectiveness even though the *hypothe*ses are all effective. In (v) if $\llbracket A \rrbracket$ covers 2^{ω} then the passage from A to F is *computable* because we simply enumerate A until F appears (as with any Σ_1 process). However, if $\llbracket A \rrbracket$ fails to cover 2^{ω} then the complementary closed class $[T] = 2^{\omega} - [A]$ is nonempty. Then (ii) gives a path $f \in [T]$ with $f \leq_T \emptyset'$ and (iii) even produces a path of c.e. degree, but neither produces a *computable* path f because, given an extendible string $\sigma \prec f$, the process for the proof of König's Lemma in Theorem $8.3.1$ (i) does not computably determine whether to extend to σ ^{$\hat{}$} or σ ^{$\hat{}$}1. In Theorem 9.3.2 we shall construct a computable tree with paths but no computable paths.

8.6 Dense Open Subsets of Cantor Space

The following important notion of *dense sets* will be developed more later.

Definition 8.6.1. Let S be Cantor space 2^{ω} .

(i) A set $A \subseteq S$ is dense if $(\forall \sigma) (\exists f \succ \sigma) \mid f \in A$.

(ii) An open set $A \subseteq S$ is dense open if

(8.7)
$$
(\forall \tau)(\exists \sigma \succeq \tau)(\forall f \succ \sigma) [f \in \mathcal{A}].
$$

(iii) A class $\mathcal{B} \subseteq \mathcal{S}$ is G_{δ} , i.e., boldface Π_2^0 , if $\mathcal{B} = \bigcap_i \mathcal{A}_i$, a countable intersection of open sets A_i .

To be *dense* A must contain a point f in every basic open set $\llbracket \sigma \rrbracket$. To be dense open A must contain an entire basic open set $\llbracket \tau \rrbracket \subset \llbracket \sigma \rrbracket$ for every basic open set $\llbracket \sigma \rrbracket$. Notice that a set is dense open iff it is both dense and open.

After open and closed sets, much attention has been paid in point set topology to G_{δ} sets. If the sets A_i are *dense open* sets, then they have special significance. In §14.1.3 we shall explore Banach-Mazur games for finding a point $f \in \bigcap_i \mathcal{A}_i$ where the \mathcal{A}_i are *dense open* sets. This is the paradigm for the *finite extension* constructions in Chapter 6, where we used the method to construct sets and degrees meeting an infinite sequence of "requirements." Meeting a requirement R_i amounts to meeting the corresponding dense open set A_i .

8.7 Exercises

Exercise 8.7.1. We use the notation and definitions of $\S 8.1$, including the open representation A of $\llbracket A \rrbracket$ and the closed representation $T = A$ of the closed set $[T] = 2^{\omega} - [A]$, and we use the tree notation of §3.7 on the Low Basis Theorem.

(i) Define the open representation A to be the set of strings σ containing at least two 0's, and let $T = A$. Describe the paths $f \in [T]$. Which are the limit points and which are the isolated ones?

(ii) Next define the open representation A to be the set of strings σ containing at least three 0's, and let $T = A$. Describe the paths $f \in [T]$. (See Exercise [8.7.9](#page-8-0) for the Cantor-Bendixson rank of these points, which gives much deeper insight into the structure of $[T]$ when three 0's are replaced by $n \space 0$'s.)

Exercise 8.7.2. Prove that if T is computable and $[T]$ has exactly one limit point f, then $f \leq_T \emptyset''$.

Exercise 8.7.3. Prove that there is a computable tree $T \subset 2^{<\omega}$ such that [T] contains a unique limit point $f \equiv_{\mathrm{T}} \emptyset''$.

Exercise 8.7.4. (i) Define

(8.8) $\Gamma(T) = \{ \sigma : \text{ card } (|T_{\sigma}|) < \infty \},$

i.e., the nodes σ with only finitely many paths $f \in [T]$ with $f \succ \sigma$.

(ii) If $T = T^{\text{ext}}$, define the set of *splitting nodes*,

(8.9) $S(T) = {\sigma : (\exists \rho \in T)(\exists \tau \in T) [\sigma \prec \rho \& \sigma \prec \tau \& \rho | \tau] },$

the nodes σ which split in T in the sense that some ρ and τ split σ , where $\rho | \tau$ denotes that $(\exists x) | \rho(x) \downarrow \neq \tau(x) \downarrow$.

- (i) Prove that if $\sigma \in \Gamma(T)$ and $f \in [T_{\sigma}]$ then f is isolated.
- (ii) Prove that if $f \in [T]$ is not isolated then every $\sigma \prec f$ lies in $S(T)$.
- (iii) Prove that $\mathcal{S}(T)$ is Σ_1 in T and hence $\mathcal{S}(T) \leq_T T'$.

Definition 8.7.5. (Cantor-Bendixson Derivative for tree T). Fix a tree T. For $\sigma \in T$ define the *Cantor-Bendixson rank* $r(\sigma)$ of σ relative to T.

 $D^{0}(T) = T.$

 $D^{\alpha+1}(T) = D^{\alpha}(T) - \Gamma(D^{\alpha}(T))$ $D^{\alpha+1}(T) = D^{\alpha}(T) - \Gamma(D^{\alpha}(T))$ $D^{\alpha+1}(T) = D^{\alpha}(T) - \Gamma(D^{\alpha}(T))$ for Γ defined in ([8.8\)](#page-6-0).

 $D^{\lambda}(T) = \bigcap \{ D^{\alpha}(T) : \alpha < \lambda \}$ for λ a limit ordinal.

$$
r(\sigma) = (\mu \alpha) [\sigma \in D^{\alpha}(T) - D^{\alpha+1}(T)].
$$

If there is no such α , define $r(\sigma) = \infty$.

Definition 8.7.6. (Cantor-Bendixson derivative for closed set \mathcal{A}). If \mathcal{A} is a closed set, choose a tree T such that $[T] = C$ and let $r(\sigma)$ be the rank above for tree T. If $r(\sigma) = \alpha$ and σ isolates f in $D^{\alpha}(T)$, then define $r(f) = \alpha$. If there is no such α then define $r(f) = \infty$.

The derivative of a closed set $\mathcal C$ is the set of all points which are not isolated points of \mathcal{C} , and we are iterating this derivative. Note that derivative of a closed set is closed.

Exercise 8.7.7. Prove that Definition [8.7.6](#page-7-1) for the Cantor-Bendixson derivative of a closed set does not depend on the choice of the tree such that $[T] = C$. Take any two trees T_1 and T_2 such that $[T_1] = [T_2] = C$ and prove that the tree derivative of Definition [8.7.5](#page-7-0) gives the same rank in both trees for any $f \in \mathcal{C}$. Hint. Keep applying the fact that $T_1^{\text{ext}} = T_2^{\text{ext}}$.

Exercise 8.7.8. (i) Prove that $D^{\alpha}(T)$ is a tree and hence $[D^{\alpha}(T)]$ is closed subset of $\mathcal{A} = [T]$.

(ii) Show that there is an ordinal β such that $D^{\beta}(T) = D^{\alpha}(T)$ for all $\alpha > \beta$. Define $D^{\infty}(T) = D^{\beta}(T)$. Prove that there is an $\alpha < \omega_1$ such that $D^{\alpha}(T) = D^{\infty}(T)$. We call $D^{\infty}(T)$ and $[D^{\infty}(T)]$ the perfect kernel.

(iii) Prove that either $D^{\infty}(T) = \emptyset$ or else $D^{\infty}(T)$ is a perfect tree, namely every $\sigma \in D^{\infty}(T)$ splits as defined above. In this case $D^{\infty}(T)$ has 2^{\aleph_0} many infinite paths.

(iv) Let β be as in (ii). Prove that $[D^{\alpha}(T)] - [D^{\alpha+1}(T)]$ is countable for every $\alpha < \beta$. Therefore, $\cup_{\alpha < \beta}[D^{\alpha}(T)]$ is countable, namely $[T] - [D^{\infty}(T)]$ is countable.

Exercise 8.7.9. Define the open representation A as in Exercise [8.7.1](#page-6-1) and define $T = \overline{A}$.

(i) Analyze the Cantor-Bendixson rank of all points $f \in [T]$.

(ii) How does the rank change if we define A to be all strings having at least $n \frac{0}{s}$?

(iii) Define a computable tree T such that [T] has a point of rank ω .