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Oracle Constructions and Forcing

6.1 ? Kleene-Post Finite Extensions

We have seen in Chapter 5 how Post tried to solve Post’s Problem 5.1.1 by
defining c.e. sets A with ever thinner complements. Post himself did not live
to see the refutation of this approach by [Friedberg 1958], who constructed
a maximal set with the thinnest complement of all, and the construction
of a complete maximal set by Yates, which refuted Post’s approach. Post
moved on to understand full Turing reducibility in [Post 1944]. He gave an
excellent intuitive description of one set being Turing reducible to another.

From 1944 until his death in 1954 Post worked to understand Turing re-
ducibility and decision problems for c.e. sets. Post in [Post 1944] page 289
introduced and later defined in [Post 1948] degrees of unsolvability (Turing
degrees,) as we have presented in Definition 3.4.1. Post thought carefully
about the properties of Turing reducibility and wrote extensive notes. Just
before his death in 1954 he gave his notes to Kleene, who revised and
expanded them and published them as [Kleene and Post 1954]. This fun-
damental paper clarified the properties of a Turing reduction, including the
Use Principle 3.3.9, and used it to construct sets of incomparable degree
below ∅′, as in Theorem 6.1.1. The paper did not directly address Post’s
Problem, because it was for ∆2 sets, not Σ1 sets, but it laid the indispens-
able foundation for the later solution by Friedberg and Muchnik, presented
in Chapter 7, who added a computable approximation to the Kleene-Post
method to obtain Turing incomparable Σ1 sets.

© Springer-Verlag Berlin Heidelberg 2016 
R.I. Soare, Turing Computability, Theory and Applications of Computability,  
DOI 10.1007/978-3-642-31933-4_

131 

6 



132 6. Oracle Constructions and Forcing

The first major contribution in [Kleene and Post 1954] is the finite ex-
tension oracle construction. Here we fix some oracle X, such as X = ∅′
or X = ∅′′, and build a set A ≤T X by an X-computable construction of
finite initial segments {σs}s∈ω of A with σs ≺ σs+1 . For example, given
σs, index e, and argument x, we can ask the ∅′-question,

(∃ρ � σs)(∃y)(∃t) [ Φ ρ
e,t (x)↓ = y ]?

If so, we can define σs+1 = ρ, which guarantees that ΦAe (x) = y for every
A � σs+1 by the Use Principle 3.3.9. If not, then ΦAe (x) diverges for every
A � σs and we can define σs+1 � σs in any fashion.

By the finite extension of σs+1 � σs we have decided (forced) Turing com-
putability properties of an infinite set A � σs+1 not yet fully constructed.
In §6.3 on generic sets we study the general case of forcing conditions which
are finite initial segments. In §6.5 on least upper bounds we consider infinite
matrices as forcing conditions.

Theorem 6.1.1 (Kleene-Post, 1954). There exist sets A, B ≤T ∅′ such
that A |T B ( i.e., A 6≤T B and B 6≤T A.) Therefore, ∅ <T A, B <T ∅′.

Proof. We shall construct functions χ
A

and χ
B

in stages s so χ
A

= ∪ sσs
and χ

B
= ∪ sτs, where σs and τs are the finite strings constructed by the

end of stage s. Since the construction of σs and τs at stage s is computable
in ∅′, the sequences {σs}s∈ω and {τs}s∈ω are ∅′-computable sequences.
Therefore, A,B ≤T ∅′. It suffices to meet, for each e, the requirements:

(6.1) Re : A 6= ΦBe & Se : B 6= ΦAe

to ensure that A 6≤T B and B 6≤T A. Hence, A |T B.

Stage s = 0. Define σ0 = τ0 = ∅.

Stage s+ 1 = 2e+ 1. (We satisfy Re.) Given σs, τs ∈ 2<ω of length ≥ s.
Let n = |σs| = (µx) [ x /∈ dom(σs) ]. Using a ∅′-oracle we test whether

(6.2) (∃t) (∃ρ) [ ρ � τs & Φρe,t (n)↓ ].

Note that ρ � τs is computable as a relation of strings ρ and τs. The
second clause of (6.2) is computable by the Oracle Graph Theorem 3.3.8 (i).
Therefore, (6.2) is a Σ1 statement and can be decided computably in ∅′.

Case 1. Suppose (6.2) is satisfied. The matrix of (6.2) is computable. Find
the least pair 〈ρ, t〉 satisfying that matrix. Define τs+1 = ρ and σs+1(n) =
1 .− Φρe,t(n) so that σs+1(n) 6= Φρe,t(n).

Case 2. Suppose (6.2) fails. Then define σs+1 = σŝ0 and τs+1 = τŝ0.

In either case, |σs+1|, |τs+1| ≥ s+1. Therefore, χ
A

= ∪sσs and χ
B

= ∪sτs
are defined on all arguments. In either case, if f � σs+1 and g � τs+1 then
f(n) 6= Φge(n) by the Use Principle Theorem 3.3.9.
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Stage s+ 1 = 2e+ 2. (We satisfy Se.) Proceed exactly as above but with
the roles of σs and τs replaced by τs and σs, mutatis mutandis.

Theorem 6.1.2 (Relativized Version). For any degree c, there are degrees
a, b such that c ≤ a,b and a,b ≤ c′ and a | b.

Proof. Fix a set C ∈ c. Relativize the above proof to C, using a C ′-oracle
to build sets A and B such that (A⊕ C) |T (B ⊕ C) and A,B ≤T C ′. In
place of (6.2) we use a C ′-oracle to test whether

(6.3) (∃t) (∃τ1) (∃τ2) [ τ1 � τs & τ2 ≺ C & Φτ1⊕τ2e,t (n)↓ ],

where τ1⊕τ2 is defined to be the shortest string ρ ∈ 2<ω such that ρ(2x) =
τ1(x) and ρ(2x + 1) = τ2(x). The obvious modification of Cases 1 and 2
ensures that A 6= ΦB⊕Ce . At stage 2e+2 we ensure that B 6= ΦA⊕Ce . Finally,
let a = deg(A⊕ C) and b = deg(B ⊕ C).

Definition 6.1.3. A countable sequence of sets {Ai}i∈ω is computably
independent if for each i, Ai 6≤T ⊕{Aj : j 6= i}, where the infinite join is
defined as in Exercise 3.4.7.

6.1.1 Exercises

Exercise 6.1.4. Modify the proof of Theorem 6.1.1 to build an indepen-
dent sequence {Aj}j∈ω of sets each computable in ∅′ (indeed, ⊕jAj ≤T ∅′).
Hint. Use a finite extension ∅′-computable construction to build at stage s
strings {ρsj}s∈ω such that if Aj = ∪sρsj then we meet for each e and i the
requirement

R〈e,i〉 : Ai 6= Φ⊕{Aj : j 6=i }
e .

At stage s = 0, set ρ0j = ∅ for all j. At stage s + 1 = 〈e, i〉 + 1 we meet
requirement R〈e,i〉 as follows. Given { ρsj }j∈ω, only finitely many of which
are nonempty, let n = |ρsi |, and use a ∅′-oracle to test whether there exist
m and (a code number for) a finite sequence of strings σ0, σ1, . . . , σk such
that

(6.4) Φ⊕{σj : j 6=i }
e (n)↓ = m & (∀j ≤ k) [ j 6= i =⇒ ρsj ≺ σj ].

Now according to whether or not (6.4) holds proceed as in Theorem 6.1.1
Case 1 (letting ρs+1

i (n) = 1 .− m, and ρs+1
j = σj for j 6= i), or as in Case 2

otherwise. (Be sure to make each Ai total.)

Exercise 6.1.5. A partially ordered set P = (P,≤P) is countably universal
if every countable partially ordered set is order isomorphic to a subordering
of P. Prove that there is a computable partial ordering ≤R of ω which is
countably universal. Hint. This can be done either by considering a com-
putably presented atomless Boolean algebra, or by a direct construction
where at stage s + 1, given a finite set Ps of elements in ≤R, one obtains
Ps+1 by adding a new point for each possible order type over Ps. A Boolean
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algebra B = ({ bi }i∈ω;≤,∨,∧, ′) is computably presented if there exist a
computable relation P (i, j) and computable functions f , g and h such that
P (i, j) holds iff bi ≤ bj , and such that bf(i,j) = bi ∨ bj , bg(i,j) = bi ∧ bj , and
bh(i) = b′i.

Exercise 6.1.6. Show that for a countable partially ordered set P = 〈P,≤P〉
there is a 1:1 order-preserving map from P into D(≤ 0′), the degrees ≤ 0′.
Hint. By Exercise 6.1.5 we may assume P = ω and ≤P is a computable
relation. Let {Ai }i∈ω be as in Exercise 6.1.4. Define f : ω → D(≤ 0′) by
f(i) = ai = deg(⊕Aj : j ≤P i). Show that if i ≤P j then ai ≤ aj (by
definition and the fact that ≤P is computable), and if i 6≤P j then ai 6≤ aj
(by the computable independence of {Ai }i∈ω).

Exercise 6.1.7. Prove that there are 2ℵ0 mutually incomparable degrees.
Hint. Recall Definition 8.2.1 of a tree T ⊆ 2<ω and its associated trees in
Definition 3.7.1. Construct a tree T ⊆ 2<ω such that f |T g for every pair
f, g ∈ [T ] with f 6= g. Let T = ∪eTe where tree Te+1 ⊃ Te and Te+1 is
defined by induction as follows. Let T0 = { ∅ }, the tree with the empty
node (root) as its only member. Given Te define Le to be the leaves of tree
Te, namely

Le = { σ : σ ∈ Te & (∀τ � σ) [ τ /∈ Te ] }.

Next define the successors to leaves,

Se = { σ̂0 : σ ∈ Le } ∪ { σ̂1 : σ ∈ Le }.

Suppose Se = { ρi : i ≤ 2e+1 }. Fix i , j ≤ 2e+1, i 6= j. Use the method
of Theorem 6.1.1 to replace ρi and ρj by strings σ � ρi, τ � ρj satisfying

(6.5) (∀f � σ) (∀g � τ) [ Φfe 6= g & Φge 6= f ].

Repeat this procedure for all i, j ≤ 2e+1 with i 6= j.

6.2 Minimal Pairs and Avoiding Cones

Definition 6.2.1. Degrees a and b form a minimal pair if a, b > 0 and

(6.6) (∀c) [ [ c ≤ a & c ≤ b ] =⇒ c = 0 ].

Minimal pairs have played an important role in computability theory.
Later we shall construct a minimal pair of computably enumerable degrees.
In §6.5 we shall modify the minimal pair construction to find an exact
pair of degrees for an ascending sequence of degrees as defined in Defini-
tion 6.5.2. To simplify the notation now and later we introduce a useful
remark of Posner which allows us to replace pairs of indices by a single
index.

Remark 6.2.2 (Posner). For all sets A and B with A 6= B and all i
and j, there exists e such that ΦAe = ΦAi and ΦBe = ΦBj .
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Proof. Since A 6= B they differ on some element n, say n ∈ A−B. Define
the Turing reduction ΦXe for any X by

ΦXe (y) =

 ΦXi (y) if n ∈ X;

ΦXj (y) otherwise.

Theorem 6.2.3. There is a minimal pair of degrees a, b < 0′.

Corollary 6.2.4 (Theorem 6.1.1). There exist a, b < 0′ with a | b.

Proof. If a, b is a minimal pair then a | b. If a ≤ b then a∧b = a > 0.

Proof of Theorem 6.2.3. It suffices to construct sets A and B unequal and
computable in ∅′ satisfying for all e the following requirements.

(6.7) Ne : ΦAe = ΦBe total =⇒ (∃g ≤T ∅) [ g = ΦAe ].

(6.8) Pe : A 6= ϕe and B 6= ϕe.

We shall use a ∅ ′-oracle construction to build increasing sequences of
strings, {σs}s∈ω and {τs}s∈ω, and then define A = ∪sσs and B = ∪sτs.
Define σ0 = ∅ and τ0 = ∅.

Stage s + 1 = 2e + 1. (Satisfy Pe for A and B.) Given σs and τs
let x = |σs| = (µy)[σs(y) ↑ ]. Ask ∅′ whether ϕe(x) ↓ . If so, define
σs+1(x) = 1 .− ϕe(x) and otherwise define σs+1(x) = 0. Do likewise to
ensure that τs+1 and ϕe are not compatible.

Stage s+ 1 = 2e+ 2. (Satisfy Ne.) Ask ∅′ the Σ1 question,

(6.9) (∃ρ � σs) (∃ν � τs) (∃x) [ Φρe(x) ↓ 6= Φνe (x)↓ ]?

If so, define σs+1 = ρ and τs+1 = ν. If not, define σs+1 = σŝ0 and
τs+1 = τŝ0.

Lemma 6.2.5. (∀e) [ ΦAe = ΦBe = f total =⇒ f is computable ].

Proof. Assume ΦAe = ΦBe = f is total. At stage s+1 = 2e+2, equation (6.9)
could not have held, else ΦAe 6= ΦBe . Hence, for any x we can choose ρ � σs
such that Φρe(x) ↓ = y by the Use Principle 3.3.9 because ΦAe is total. Now
any other ξ � σs for which Φξe(x) ↓ = z must have y = z, else one of y and
z must form a disagreement with Φνe (x) for some ν ≺ B, contrary to our
hypothesis that (6.9) fails. Therefore, f(x) = y even though we may not
have ρ ≺ f . Since searching for the first such string ρ, which must exist, is
a computable procedure, we know that f is computable.

So far the degrees we have constructed, such as 0(n) or degrees below 0′,
are comparable to 0′. We now show how to construct a degree a incompara-
ble with a given degree b > 0. To achieve this, a must avoid the lower cone
of degrees {d : d ≤ b } and the upper cone {d : d ≥ b }. The strategy for
accomplishing the latter (which we play on the even stages) will be used
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in this chapter, and will be refined and often used in constructions of c.e.
degrees, such as in the Sacks Splitting Theorem in Chapter 7.

Theorem 6.2.6 (Avoiding Cones). For every degree b > 0 there exists a
degree a < b′ such that a | b.

Proof. Fix B ∈ b. Construct f , the characteristic function of A, by
a B′-computable finite extension construction, f = ∪sσs, to meet the
requirements Re and Se of Theorem 6.1.1.

Stage s = 0. Set σ0 = ∅.

Stage s + 1 = 2e + 1. (Satisfy Re : A 6= ΦBe .) Let n = |σs|. With a
B′-oracle determine whether ΦBe (n) converges, i.e., whether 〈n, e〉 ∈ KB

0 ≡
B′. If so, define σs+1(n) = 1 .− ΦBe (n). If not, define σs+1(n) = 0.

Stage s+1 = 2e+2. (Satisfy Se : B 6= ΦAe .) Given σs, first ∅′-computably
test whether the following equation holds:

(6.10) (∃σ)(∃τ)(∃x)(∃y)(∃z)(∃t)

[ σs ≺ σ, τ & Φσe,t(x)↓ = y 6= z = Φτe,t(x)↓ ].

If so, one of the values y or z must differ from B(x). Let σs+1 be the
first σ � σs such that Φσe (x)↓ 6= B(x) for some x. (This is B′-computable
because B ⊕ ∅′ ≤T B′.) If (6.10) fails, we let σs+1 = σŝ 0. In this case,
we claim that for any f � σs if Φfe = g is total, then g is computable
(and hence Φfe 6= B because ∅ <T B). To compute g(x), enumerate Ge of
the Oracle Graph Theorem 3.3.8 (ii) until the first σ � σs is found such
that Φσe (x) converges. Now g(x) = Φfe (x) = Φσe (x), because otherwise for
some τ , σs � τ ≺ f , Φτe (x)↓ 6= Φσe (x), thereby satisfying (6.10).

6.2.1 Exercises

Exercise 6.2.7. Construct an infinite sequence of degrees an ≤ 0′,
n ∈ ω, which pairwise form minimal pairs. Hint. Build noncomputable sets
{An}n∈ω meeting for all i, j, and all m 6= n,

N〈m,n,i,j〉 : ΦAm
i = ΦAn

j = f total . =⇒ . f is computable.

Exercise 6.2.8. (i) Fix a degree c > 0. Build a degree b which forms a
minimal pair with c.

(ii) Given nonzero degrees {cn}n∈ω, find a sequence of degrees {ai}i∈ω
each of which is incomparable with cn for every n and which pairwise form
minimal pairs.
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6.3 ? Generic Sets

In the two preceding sections we constructed a sequence of finite functions
σs � σs+1 so that σs+1 (and indeed all τ � σs+1) met a particular require-
ment. The generic construction in this section encompasses all the previous
examples. Recall that in the Notation section we gave an effective index y
to each string σy ∈ 2<ω and we identify the string σy with its index y. Like-
wise, we identify a c.e. set of strings Ve ⊆ 2<ω with the corresponding c.e.
set of integers and use the same notation, Ve. Definition 2.6.1 defined u.c.e.
and s.c.e arrays of c.e. sets. Generic sets were studied by [Jockusch 1980].

6.3.1 1-Generic Sets

Definition 6.3.1. Let V = {Ve}e∈ω be a u.c.e. sequence of c.e. sets
Ve ⊆ 2<ω as in Definition 2.6.1, with strings identified with their indices.

(i) We say f ∈ 2ω forces Ve if it satisfies the forcing requirement,

(6.11) Fe : (∃σ ≺ f) [ σ ∈ Ve ∨ (∀ρ � σ) [ ρ 6∈ Ve ] ].

If σ satisfies the matrix of Fe we say that σ forces Fe (written σ 
 Fe) and
any f � σ also forces Fe (written f 
 Fe).

(ii) We say f is generic with respect to V = {Ve}e∈ω (written V-generic)
if f forces Ve for every e ∈ ω.

(iii) We say f is 1-generic if it is generic with respect to {We}e∈ω. (The
term “1-generic” refers to the fact that f is deciding Σ1 statements.)

If the f satisfies the first clause σ ∈ Ve of the matrix in (6.11), then
we say f is e-white and otherwise f is e-black. For every e the 1-generic
function f must be either e-black or e-white.

The point about a 1-generic set is that it is amorphous and difficult to
describe. For example, it cannot be computable or even c.e. However, we
can construct a 1-generic ∆2 set.

6.3.2 Forcing the Jump

Occasionally, we build f as the characteristic function of a set A and we
wish to control the jump A′. (At a finite stage we decide whether e ∈ A′.)
We can accomplish this by meeting for all e the following requirement called
forcing the jump ΦAe (e):

(6.12) Je : (∃σ ≺ A) [ Φσe (e) ↓ ∨ (∀τ � σ) [ Φτe (e) ↑ ] ].



138 6. Oracle Constructions and Forcing

Theorem 6.3.2 (Jockusch-Posner). A set A is 1-generic iff A forces the
jump, i.e., satisfies every jump requirement {Je}e∈ω of (6.12).

Proof. (=⇒). Define Wh(e) = {σ : Φσe (e) ↓ }. Now A forces Wh(e).
Therefore, A forces the jump ΦAe (e), i.e., satisfies the requirement Je.

(⇐=). Define a computable function f(e) by

Φσf(e)(z) =

{
1 if (∃s ≤ |σ|) (∃τ � σ) [ τ ∈We,s ],

undefined otherwise.

If A meets requirement Jf(e) of (6.12), then we can clearly see that A forces
Ve = {σ : Φσf(e)(f(e))↓ } and A forces We.

6.3.3 Doing Many Constructions at Once

In the preceding sections we constructed sets with several different prop-
erties: incomparable with another, half of a minimal pair, and avoiding a
cone. If we now construct a 1-generic set A, then A automatically has all
these properties because each property corresponds to a dense set and a
1-generic set meets every dense set of strings. Dense sets, comeager sets,
and Banach-Mazur games are explained in Chapter 14. The Banach-Mazur
games described there are very similar to the finite extension strategies
presented in this chapter.

In Theorem 14.2.1 we shall consider finite extension arguments in the
general setting of the Finite Extension Paradigm which subsumes them.
This does not cover the coding argument for the Friedberg Completeness
Criterion in Theorem 6.4.1 below. However, we extend our paradigm anal-
ysis to the Finite Extension Coding Paradigm in Theorem 14.2.2 which
covers these examples.

6.3.4 Exercises

Exercise 6.3.3. Construct a 1-generic set A ≤T ∅′. Hint. Use a ∅′-oracle
and finite extension construction as in the Kleene-Post Theorem 6.1.1 to
meet all the jump requirements Je in (6.12).

Exercise 6.3.4. (Jockusch-Posner) Prove that if a set A is 1-generic, then
A⊕ ∅′ ≡T A

′. Prove that there is a nonzero low degree.

Exercise 6.3.5. (Jockusch-Posner) Assume A is 1-generic.

(i) Prove that A is immune. Hint. Let Z be a c.e. subset of A. Define
Ve = {σ : (∃x ∈ Z) [σ(x) = 0] } and use Fe of (6.11) to prove that Z is
finite.

(ii) Prove that A is hyperimmune.
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(iii) Prove that there is no noncomputable c.e. set Z ≤T A. Hint. Assume
Z = ΦAi and define

Ve = { σ : (∃x) [ Φσi (x) = 0 & x ∈ Z ] },

and apply requirement Fe of (6.11) to show that Z is c.e.

(iv) Prove that A0 and A1 are Turing incomparable where A0(x) = A(2x)
and A1(x) = A(2x+ 1). Hint. To see that A0 6= ΦA1

e consider the c.e. set
of strings

Ve = { σ : (∃x) [ Φσ1
e (x)↓ 6= σ0(x) ] }

where σ0(x) = σ(2x) and σ1(x) = σ(2x+ 1).

(v) Prove that there are sets Bi ≤T A, i ∈ ω, such that for every i, we
have Bi 6≤T ⊕{Bj : j 6= i }.

Exercise 6.3.6. (Shoenfield) Show there is a set A ≤T ∅′ which does not
have c.e. degree.

Exercise 6.3.7. Given B such that ∅ <T B ≤T ∅′ find a low set A such
that A 6≥T B. Hint. Use a ∅′-construction to build A = ∪sσs. For each e
designate some stage s at which you: (1) force A 6= ϕe; (2) make A satisfy
the lowness requirement for Φe; and (3) look for e-splittings, ρ, τ extending
σs and some x such that Φρe(x)↓ 6= Φτe (x)↓ . If you do not find them, then
either ΦAe is not total or is computable.

Exercise 6.3.8. (i) Let {An}n∈ω be a sequence of sets uniformly com-
putable in ∅′, i.e., there is a ∅′-computable function g such that for all x
and n, g(n, x) = An(x). Prove that there is a set B ≤T ∅′ such that
(∀n) [ B 6≡T An ]. Hint. Ensure that B is noncomputable and for each e
and n, if ΦBe = An, then An is computable.

(ii) Give another proof of Exercise 6.3.6.

(iii) Show there is a degree d ≤ 0′ which is not n-c.e. and not even ω-c.e.

6.4 ? Inverting the Jump

Note that for any degree a, 0 ≤ a and hence 0′ ≤ a′, i.e., any jump is
above 0′. Hence, the jump, viewed as a map on degrees, has range contained
in {b : b ≥ 0′}. The next theorem asserts that this map is onto the set
{b : b ≥ 0′}. A degree a is called complete if a ≥ 0′. Hence, the result also
gives a criterion for a being complete.

Theorem 6.4.1 (Friedberg Completeness Criterion). For every degree
b ≥ 0′ there is a degree a such that a′ = a ∪ 0′ = b.
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Proof. Fix B ∈ b. We shall construct f, the characteristic function of A,
by finite initial segments {σs}s∈ω using a B-computable finite extension
construction.

Stage s = 0. Set σ0 = ∅.

Stage s + 1 = 2e + 1. (We decide whether e ∈ A′.) We meet the forcing
the jump requirement Je of (6.12). If A meets Je we say that A forces the
jump on argument e. Given σs, use a ∅′-oracle to test whether

(6.13) (∃σ) (∃t) [ σs ≺ σ & Φσe,t(e)↓ ].

(Note that the matrix is computable. Therefore, (6.13) is a Σ1 condition
and is computable in ∅′.) If (6.13) is satisfied, let σs+1 be the first such σ
in the standard enumeration of Ge of the Oracle Graph Theorem 3.3.8. If
not, set σs+1 = σs.

Stage s+1 = 2e+2. (We code B(e) into A.) Let n = |σs|. Define σs+1(n) =
B(e). (This completes the construction.)

Now f = ∪sσs is total since |σ2e| ≥ e. Let A = {x : f(x) = 1}, and
a = deg(A). The construction is B-computable because at odd stages we
use a ∅′-oracle, at even stages we use a B-oracle, and ∅′ ≤T B. Since
A ⊕ ∅′ ≤T A′ for any A, to prove A′ ≡T B ≡T A ⊕ ∅′ it suffices to prove
the following two lemmas.

Lemma 6.4.2. A′ ≤T B.

Lemma 6.4.3. B ≤T A⊕ ∅′.

Proof of Lemma 6.4.2. Since the construction is B-computable, the se-
quence {σs}s∈ω is B-computable. To decide whether e ∈ A′, B-computably
determine using ∅′ ≤T B whether (6.13) holds for σ2e. If so, e ∈ A′, and
otherwise e /∈ A′ because no σ � σs has Φσe (e) defined.

Proof of Lemma 6.4.3. We show {σs}s∈ω is an (A⊕ ∅′)-computable se-
quence. This suffices because B(e) is the last value of σ2e+2. The proof is
by induction on s. Given {σs : s ≤ 2e}, use a ∅′-oracle to compute σ2e+1.
If n = |σ2e+1| then σ2e+2 = σ2e+1̂A(n), so σ2e+2 is computed from σ2e+1

using an A-oracle.
This completes the proof of Theorem 6.4.1.

Theorem 6.4.4 (Relativized Friedberg Completeness Criterion).
For every degree c,

F1(c) : (∀b) [ b ≥ c′ =⇒ (∃a) [ a ≥ c & a′ = a ∪ c′ = b ] ].

Proof. Do the proof of Theorem 6.4.1 with c and c′ in place of 0 and 0′.
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Corollary 6.4.5. For every n ≥ 1, and every degree c,

Fn(c) : (∀b) [ b ≥ c(n) =⇒ (∃a) [ a ≥ c & a(n) = a ∪ c(n) = b ] ].

Proof. To prove (∀c)Fn(c) holds for all n ≥ 1, use induction on n and the
fact that Fn+1(c) follows from Fn(c) and F1(c(n)).

Although Theorem 6.4.1 demonstrates a pleasant property of the jump
operator, it also demonstrates an unpleasant property, namely that the
jump as a map on degrees is not 1:1. To see this, apply Theorem 6.4.1 with
b = 0′′ to obtain a such that a′ = a ∪ 0′ = 0′′. Clearly, a | 0′, yet they
have the same jump. It is also possible to have a < b and a′ = b′. (It is
easy to see that the jump is 1:1 on sets.)

6.4.1 Exercises

Exercise 6.4.6. [Jockusch-Shore, 1983] Prove that for any i ∈ ω and any
B such that ∅′ ≤T B there exists A such that

A⊕WA
i ≡T A⊕ ∅′ ≡T B.

Note that Theorem 6.4.1 is a special case of this setting where i is defined
by WX

i = X ′. Hint. Do the proof of Theorem 6.4.1 but in (6.12) replace
Φρe(e)↓ by e ∈W ρ

i for ρ = σ or τ . (Note that this construction is uniform
in B and in any j such that ΦBj = ∅′.)

Exercise 6.4.7. Prove that

(∀b ≥ 0′) (∃a0) (∃a1) [ a0 | a1 & a′0 = a0 ∪ 0′ = b = a1 ∪ 0′ = a′1 ].

Hint. Combine the constructions of Theorems 6.1.1 and 6.4.1 to handle
four types of requirements, the two types from Theorem 6.1.1 and the two
from Theorem 6.4.1. As in that theorem at stage 2e + 2, code B(e) into
both of A0 and A1.

6.5 Upper and Lower Bounds for Degrees

Every nonempty finite set of degrees has a least upper bound (lub). In this
section we show that this is false for greatest lower bounds (glb’s). Hence,
the degrees do not form a lattice, but merely an upper semi-lattice.

Definition 6.5.1. (i) For any set A define the ω-jump of A,

A(ω) = { 〈x, n〉 : x ∈ A(n) }.

In Exercise 6.5.9 we show that this is well-defined on degrees. Therefore,
we can define the induced ω-jump on degrees a(ω) = deg(A(ω)) for A ∈ a.
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(ii) An infinite sequence of degrees {an}n∈ω is ascending if an ≤ an+1

for all n and strictly ascending if an < an+1 for all n. For example,
0,0(1),0(2), . . . is strictly ascending, and 0(ω) is a natural upper bound
for the sequence, although by the next theorem the sequence has no lub.

Definition 6.5.2. If {an}n∈ω is an ascending sequence of degrees then
upper bounds b and c are an exact pair for the sequence if for every degree
d,

[ d ≤ b & d ≤ c ] =⇒ (∃n) [ d ≤ an ].

Theorem 6.5.3 (Kleene-Post-Spector). For every ascending sequence of
degrees, {an}n∈ω, namely an ≤ an+1, there exist upper bounds band c
which form an exact pair for the sequence.

Corollary 6.5.4. No infinite strictly ascending sequence of degrees, i.e.,
an < an+1, has a least upper bound.

Corollary 6.5.5. There are degrees b and c with no greatest lower bound.

Before proving Theorem 6.5.3 we make some definitions and introduce
some new notation.

Definition 6.5.6. For any set A ⊆ ω define the y-section of A,

(6.14) A[y] = {〈x, z〉 : 〈x, z〉 ∈ A & z = y} and

(6.15) A[<y] =
⋃
{A[z] : z < y }.

(Using the pairing function we can identify A with a subset of ω × ω and
view A[y] as the yth row of A. We use the square bracket notation A[y] to
distinguish from the yth jump A(y).)

Definition 6.5.7. (i) Given sets A and B, for every y the thickness
requirement for y states

(6.16) Ty : A[y] =∗ B[y]

where X =∗ Y denotes that (X − Y ) ∪ (Y −X) is finite.

(ii) A subset A ⊆ B is a thick subset of B, written A ⊆thick B, if Ty is
satisfied for all y.

Thick subsets will be very useful here and in later constructions of
c.e. sets and degrees, such as the thickness lemma and infinite injury
constructions.

Definition 6.5.8. Partial functions θ, ψ are compatible, which we write as
compat(θ, ψ), if they have a common extension, i.e., if there is no x for which
θ(x) and ψ(x) are defined and unequal. Otherwise, they are incompatible.
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Proof of Theorem 6.5.3. Choose Ay ∈ ay for each y and then define
A = {〈x, y〉 : x ∈ Ay}, so that 〈x, y〉 ∈ A[y] iff x ∈ Ay. We shall construct
characteristic functions f and g of sets B and C which are thick in A (so
that Ay ≡T B

[y] ≤T B, and likewise for C). This ensures that b = deg(B)
and c = deg(C) are upper bounds for {an }n∈ω. For all y we must meet
the thickness requirements,

TBy : B[y] =∗ A[y],

TCy : C [y] =∗ A[y].

We must also meet, for all e and i, the exact pair requirements,

R〈e,i〉 : ΦBe = ΦCi total =⇒ (∃y) [ ΦBe ≤T Ay ]

by looking for “e-splittings” as we did in proving Theorem 6.2.3.
Let σs, τs, Bs, and Cs be the portions of f , g, B, and C defined by the

end of stage s of the following construction.

Stage s = 0. Set σ0 = τ0 = ∅.

Stage s+ 1. Assume that σs and τs are defined on ω[<s] and assume that:

(6.17) (∀y < s) [ B[y]
s =∗ C [y]

s =∗ A[y] ]; and

(6.18) (dom(σs)− ω[<s]) =∗ ∅ =∗ (dom(τs)− ω[<s]).

Step 1. (Satisfy R〈e,i〉 for s = 〈e, i〉.) If

(∃σ) (∃τ) (∃x) (∃t) [ compat(σ, σs) & compat(τ, τs)(6.19)

& Φσe,t(x)↓ 6= Φτi,t(x)↓ ],

then let σ and τ be the first such strings and extend σs to f̂ = σs ∪ σ
and τs to ĝ = τs ∪ τ . Otherwise, let f̂ = σs, and ĝ = τs. Note that
σs ≡T A[<s] ≡T τs by (6.17) and (6.18). Hence, compat(σ, σs) is an A[<s]-
computable relation on σ. (Note that for s > 0, Step 1 requires an A′s−1 ≡T

(A[<s])′ oracle.)

Step 2. (Satisfy TBs and TCs .)

Let σs+1 = f̂ on dom(f̂). On all x ∈ ω[s]−dom(f̂) define σs+1(x) = A(x).
Let τs+1 = ĝ on dom(ĝ) and τs+1(x) = A(x) for all x ∈ ω[s] − dom(ĝ). By

(6.18), σs (and hence f̂) is already defined on at most finitely many elements

of ω[s], and similarly for τs, so B
[s]
s+1 =∗ A[s] =∗ C

[s]
s+1, and f and g are now

defined on ω[≤s]. This ends the construction.
If (6.19) holds, then ΦBe 6= ΦCi . If (6.19) fails and ΦBe = ΦCi = h is total,

then for s = 〈e, i〉 we shall show that h ≤T A
[<s]. Notice that A[<s] ≤T As
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because

A[<s] ≡T A[0] ⊕ · · · ⊕A[s−1] ≡T A0 ⊕ · · · ⊕As−1 ≤T As.

To A[<s]-computably determine h(x), find the first string σ in some enu-
meration of {σ : Φσe (x)↓} such that compat(σ, σs) and set h(x) = Φσe (x).
Now h(x) = Φfe (x), or else for some σ′ ≺ f , compat(σ′, σs) holds and
Φσ

′

e (x)↓ = y 6= Φσe (x), so (6.19) holds for either σ or σ′ and for any τ ≺ C
such that Φτi (x) converges.

6.5.1 Exercises

Exercise 6.5.9. Let the ω-jump A(ω) be defined as in Definition 6.5.1.
Prove that if A ≡T B, then A(ω) ≡T B

(ω). Hint. To show thatB(ω) ≤T A
(ω)

we must prove that Bn ≤T A(ω) uniformly in n. Apply the Jump
Theorem 3.4.3 (vi) to show that B(n) ≡T A

(n) uniformly in n.

Exercise 6.5.10. Show that the proof of Theorem 6.5.3 automatically
produces sets B and C computable in ⊕{A′y }y∈ω.

Exercise 6.5.11. Show that in the proof of Theorem 6.5.3 if B is any
upper bound for the Ay sets then we can modify Steps 1 and 2 to construct
C such that B and C satisfy the same requirements as before.

Exercise 6.5.12. Let I be a countable ideal contained in the Turing
degrees D. Prove that there exist degrees b, c such that for all a ∈ D,

a ∈ I ⇐⇒ [ a ≤ b & a ≤ c ].

We call b and c an exact pair for the ideal I as in Definition 6.5.2, and
“ideal” is defined in the Notation section.

Exercise 6.5.13. � (K. Lange). Fix an infinite computable tree T ⊆ 2<ω.
Fix a set A = {An}n∈ω ⊆ [T ] of computable paths through T (not
necessarily closed) but dense in T in the sense that

(∀σ ∈ T )(∃An � σ)[ An ∈ A ].

For some degree d, a d-basis forA is a sequence of paths X = {Bn}n∈ω ⊆
[T ] and a function f ≤T d such that ϕf(n) = Bn, i.e., d can uniformly com-
pute a ∆0-index for every path in A, viewed as a row in the d-computable
matrix B = ⊕nBn.

(i) If the set A of isolated paths of T is dense in T , prove that A has a
0′-basis.

(ii) Prove that if A has a 0′-basis X = {An}n∈ω, then there is a sequence
{Bn}n∈ω such that B = ⊕nBn is low and the collection of paths {Bn}n∈ω
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equals the collection of paths {An}n∈ω, although the sequences may not
be the same.

Hint for (ii). Given a 0′-basis X = {An}n∈ω, use a 0′-construction to
build another basis Y = {Bn}n∈ω having the same rows {An} as X but
perhaps in a different order. Simultaneously, force the jump of the matrix
B = ⊕nBn so that B is low. Search only through strings σ such that
(∀j ≤ |σ|)[σ[j] ∈ T ], where σ[j](x) = σ(〈x, j〉). Now extend these σ[j] on
the B side by 0-effectively choosing some row on the A side extending σ[j]

and filling this row in on the B side.

Remark 6.5.14. Note that if A ≤T ∅′ and S = A′ then S ≥T ∅′ and S
is c.e. in ∅′. Therefore, the jump map takes the degrees a ≤ 0′ into the
degrees c.e. in and above 0′. The next theorem proves that this map is
onto.

Exercise 6.5.15. � (Shoenfield Jump Inversion Theorem). Fix S such
that ∅′ ≤T S and S is c.e. in ∅′, namely such that S is c.e. in and above
(c.e.a.) in ∅′. Construct A ≤T ∅′ such that A′ ≡T S. Hint. Define a
∅′-sequence {σs}s∈ω of {0, 1}-valued partial functions such that σs � σs+1

and lims σs = χ
A

. We ensure that S ≤T A′ by arranging that for all y,
limx A(〈x, y〉) = χ

S
(y). We ensure A′ ≤T S by forcing the jump ΦAe (e).

Fix a ∅′-computable enumeration {Ss }s∈ω of S such that |Ss+1 − Ss| = 1.
Let σ0 = ∅. The following is a ∅′-construction.

Stage s+ 1. Assume that if y ∈ Ss then σs(〈x, y〉) = 1 for almost every x,
and otherwise σs(〈x, y〉)↓ for at most finitely many x and σs(〈x, y〉)↑ for
all other x.

Step 1. Now σs+1 has a computable domain and is computable on its do-
main. Hence, we can ∅′-computably test for each e ≤ s which has not yet
been forced in A′ whether

(∃t) (∃σ) [compat(σ, σs) & Φσe,t(e)↓(6.20)

& (∀y < e) (∀x) [ 〈x, y〉 /∈ dom(σs) =⇒ σ(〈x, y〉) = 0 ] ].

If so, choose the least e and the least corresponding string σ. Define τs+1 =
σs ∪ σ and say that e is forced into A′. Otherwise, define τs+1 = σs.

Step 2. Enumerate the next element z ∈ Ss+1 − Ss. Define

σs+1(〈x, y〉) =
τs+1(〈x, y〉) if 〈x, y〉 ∈ dom(τs+1);

1 if y = z and 〈x, y〉 /∈ dom(τs+1);

0 if y /∈ Ss+1, 〈x, y〉 ≤ s, 〈x, y〉 /∈ dom(τs+1).

The last clause is to ensure that if y /∈ S then limx A(〈x, y〉) = 0. To see
that A′ ≤T S, fix e, assume that membership of i ∈ A′ has been decided
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for all i < e, and find s such that Ss �e = S �e. Show that if e has not been
forced into A′ by stage s, then e 6∈ A′, i.e., it has been forced out of A′.
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