
4
The Arithmetical Hierarchy

4.1 Levels in the Arithmetical Hierarchy

In addition to the notions of computability and relative computability,
the Kleene arithmetical hierarchy is one of the fundamental concepts of
computability theory. In §2.1 we showed that a set A is c.e. iff it has the
syntactical form Σ0

1 defined with a string of existential quantifiers. Now we
define the more general notion of Σ0

n with n alternating blocks of quanti-
fiers. We prove that ∅(n) ∈ Σ0

n −Σ0
n−1 for n > 1. Therefore, the Σ0

n classes
do not collapse, but rather form a hierarchy called the arithmetical hierar-
chy because these classes are definable in arithmetic. The relativized form
of the hierarchy enables us to define several important special classes of sets
and degrees called highn and lown, some of whose properties we develop
now, and more later. The arithmetical hierarchy was introduced in Kleene’s
paper [Kleene 1943] and was developed in Kleene’s book [Kleene 1952].

Convention 4.1.1. We now define the Σ0
n and Π0

n sets, where the super-
script 0 indicates that we are counting number quantifiers, not function
quantifiers as in Σ1

1. We rarely mention function quantifiers until Part II on
open and closed classes in Cantor space. Therefore, in Part I Chapters 1–7
we usually drop the superscript 0 from Σ0

n, Π0
n, and ∆0

n, and abbreviate
these by Σn, Πn, and ∆n. Particularly in the relativized case, we write ΣAn
rather than Σ0,A

n .

© Springer-Verlag Berlin Heidelberg 2016
R.I. Soare, Turing Computability, Theory and Applications of Computability,
DOI 10.1007/978-3-642-31933-4_

79

4

80 4. The Arithmetical Hierarchy

Definition 4.1.2. (i) A set B is in Σ0 (Π0, ∆0) iff B is computable. As in
Definition 2.3.1, a ∆0-index for B is an index e such that ϕe = χ

B
. (Indices

for Σn and Πn sets will be given in Definition 4.2.4.)

(ii) For n ≥ 1, B is in Σn (written B ∈ Σn) if there is a computable
relation R(x, y1, y2, . . . , yn) such that

x ∈ B ⇐⇒ (∃y1) (∀y2) (∃y3) · · · (Qyn)R(x, y1, y2, . . . , yn),

where Q is ∃ for n odd, and ∀ for n even.

(iii) Likewise, B is Πn (B ∈ Πn) if

x ∈ B ⇐⇒ (∀y1) (∃y2) (∀y3) · · · (Qyn)R(x, y1, y2, . . . , yn),

where Q is ∃ or ∀ according to whether n is even or odd.

(iv) Similarly, B is ∆n (B ∈ ∆n) if B ∈ Σn and B ∈ Πn.

(v) B is arithmetical if B ∈
⋃
n(Σ0

n ∪Π0
n).

Note that B is arithmetical iff B can be obtained from a computable
relation by finitely many applications of projection and complementation.
(See Exercise 4.1.10.)

Definition 4.1.3. Fix a set A. If we replace everywhere “computable” in
Definition 4.1.2 by “A-computable” then we have the definition of B being
Σn in A (written B ∈ ΣAn), B being Πn in A (B ∈ ΠA

n), B ∈ ∆A
n , and B

being arithmetical in A.

4.1.1 Quantifier Manipulation

We say that a formula is Σn (Πn) if it is Σn (Πn) as a relation of its free
variables. We assume familiarity with the usual rules of quantifier manipu-
lation from elementary logic for converting a formula to an equivalent one
in prenex normal form, consisting of a string of quantifiers (prefix) followed
by a formula with no quantifiers (matrix), which will in our case be a com-
putable relation. Using these rules we can show the following facts, which
will be frequently used to prove that a particular set is in Σn or Πn. The only
nontrivial fact is (vi), concerning bounded quantifiers. A bounded quantifier
is one of the form (Qx ≤ y)F , which abbreviates (∀x) [x ≤ y =⇒ F] if
Q is ∀, and (∃x) [x ≤ y & F] if Q is ∃. Part (vi) asserts that bounded
quantifiers may be moved to the right past ordinary quantifiers and thus
may be ignored in counting quantifier complexity.

Theorem 4.1.4. (i) A ∈ Σn ⇐⇒ A ∈ Πn;

(ii) A ∈ Σn(or Πn) =⇒ (∀m > n) [A ∈ Σm ∩Πm];

4.1. Levels in the Arithmetical Hierarchy 81

(iii) A,B ∈ Σn(Πn) =⇒ A ∪B, A ∩B ∈ Σn(Πn);

(iv) [R ∈ Σn & n > 0 & A = {x : (∃y)R(x, y) }] =⇒ A ∈ Σn;

(v) [B ≤m A & A ∈ Σn] =⇒ B ∈ Σn;

(vi) If R ∈ Σn(Πn), and A and B are defined by

〈x, y〉 ∈ A ⇐⇒ (∀z < y)R(x, y, z),

〈x, y〉 ∈ B ⇐⇒ (∃z < y)R(x, y, z),

then A,B ∈ Σn(Πn).

Proof. (i) If A = { x : (∃y1) (∀y2) · · · R(x,−→y) }, then

A = { x : (∀y1) (∃y2) · · · ¬R(x,−→y) }.

(ii) For example, if A = {x : (∃y1) (∀y2)R(x, y1, y2) }, then

A = {x : (∃y1) (∀y2) (∃y3) [R(x, y1, y2) & y3 = y3] }.

(iii) Let A = {x : (∃y1) (∀y2) · · · R(x,−→y) }, and

B = {x : (∃z1) (∀z2) · · · S(x,−→z) }.

Then

x ∈ A ∪B ⇐⇒ (∃y1) (∀y2) · · · R(x,−→y) ∨ (∃z1) (∀z2) · · · S(x,−→z),

⇐⇒ (∃y1) (∃z1) (∀y2) (∀z2) · · · [R(x,−→y) ∨ S(x,−→z)],

⇐⇒ (∃u1) (∀u2) · · · [R(x, (u1)0, (u2)0, . . .) ∨ S(x, (u1)1, (u2)1, . . .)],

where (u)0 is the prime power coding as in the Notation section. Likewise,
this holds for A ∩B.

(iv) Immediate by quantifier contraction, as in (iii).

(v) Let A = {x : (∃y1) (∀y2) · · · R(x,−→y) } and B ≤m A via f . Then

B = {x : (∃y1) (∀y2) · · · R(f(x),−→y) }.

(vi) The proof is by induction on n. If n = 0, then A and B are clearly
computable. Fix n > 0, suppose R ∈ Σn and assume (vi) for all m < n.
Then B ∈ Σn by (iv). Now there exists S ∈ Πn−1 such that

〈x, y〉 ∈ A ⇐⇒ (∀z < y) R(x, y, z),

⇐⇒ (∀z < y) (∃u) S(x, y, z, u),

82 4. The Arithmetical Hierarchy

⇐⇒ (∃σ) (∀z < y) S(x, y, z, σ(z)),

where σ ranges over ω<ω. Now (∀z < y) S ∈ Πn−1 by the inductive hy-
pothesis, so A ∈ Σn. The case R ∈ Πn follows from the case R ∈ Σn
by (i).

4.1.2 Placing a Set in Σn or Πn

Proposition 4.1.5. Fin ∈ Σ2.

Proof.

x ∈ Fin ⇐⇒ Wx is finite
⇐⇒ (∃s) (∀t) [t ≤ s ∨ Wx,t = Wx,s].

The bracketed relation of x, s, t is clearly computable.

Proposition 4.1.6. Cof ∈ Σ3.

Proof.

x ∈ Cof ⇐⇒ W x is finite
⇐⇒ (∃y) (∀z) [z ≤ y ∨ z ∈Wx]
⇐⇒ (∃y)(∀z)(∃s) [z ≤ y ∨ z ∈Wx,s].

Since the final prefix depends only on the type and relative position of
the quantifier symbols and sentential connectives, we frequently abbreviate
these calculations by replacing previously identified predicates with strings
of quantifiers indicating the classes to which they belong.

Proposition 4.1.7. { 〈x, y〉 : Wx ⊆Wy } ∈ Π2.

Proof.

Wx ⊆Wy ⇐⇒ (∀z) [z ∈Wx =⇒ z ∈Wy]

⇐⇒ (∀z) [z /∈Wx ∨ z ∈Wy]

⇐⇒ (∀z) [∀ ∨ ∃]

⇐⇒ ∀∀∃ [. . .]

⇐⇒ ∀∃ [. . .].

Corollary 4.1.8 (Classification of Tot). (i) { 〈x, y〉 : Wx = Wy } ∈ Π2.

(ii) Tot = { y : Wy = ω } ∈ Π2.

Proof. (i) follows by Proposition 4.1.7 and Theorem 4.1.4 (iii), and (ii)
follows from Proposition 4.1.7 with Wx = ω.

4.2. ?? Post’s Theorem and the Hierarchy Theorem 83

Corollary 4.1.9. Rec ∈ Σ3. (Rec := {e : We ≡T ∅} in Definition 1.6.15.)

Proof.

x ∈ Rec ⇐⇒ Wx is computable (i.e., recursive)

⇐⇒ (∃y) [Wx = W y]

⇐⇒ (∃y) [Wx ∩Wy = ∅ & Wx ∪Wy = ω]

⇐⇒ ∃ [∀ & ∀ ∃] by Corollary 4.1.8

⇐⇒ ∃∀∃ [. . .].

4.1.3 Exercises

Exercise 4.1.10. Prove that A is arithmetical, i.e., that A ∈
⋃
n(Σn∪Πn),

iff A can be obtained from a computable relation by a finite number of
applications of projection and complementation.

Exercise 4.1.11. Prove that Ext ∈ Σ3 for Ext as defined in Defini-
tion 1.6.15.

Exercise 4.1.12. Prove that

{〈x, y〉 : Wx and Wy are computably separable} ∈ Σ3.

(Recall from Remark 2.4.15 and Exercise 1.6.26 that Wx and Wy are com-
putably separable if Wx ⊆ R and Wy ⊆ R for some computable set R, and
Wx and Wy are computably inseparable otherwise.)

Exercise 4.1.13. Define A ⊆∗ B if A − B is finite, i.e., if A ⊆ B except
for at most finitely many elements. Define A =∗ B if A ⊆∗ B and B ⊆∗ A.
Prove that the following are two sets are Σ3:

{〈x, y〉 : Wx ⊆∗ Wy};

{〈x, y〉 : Wx =∗ Wy}.

Exercise 4.1.14. Show that {x : Wx is creative } ∈ Σ3.

4.2 ?? Post’s Theorem and the Hierarchy Theorem

Definition 4.2.1. A set A is Σn-complete (Πn-complete) if A ∈ Σn(Πn)
and B ≤1 A for every B ∈ Σn(Πn). (By Exercises 4.2.6 and 4.2.7 it makes
no difference whether we use “B ≤m A” or “B ≤1 A” in the definition of
Σn–complete and Πn-complete.)

84 4. The Arithmetical Hierarchy

Note that A is Σ1-complete iff A is 1-complete as defined in Defini-
tion 2.4.1. Hence, K is Σ1-complete and K is Π1-complete. The following
fundamental theorem relates the jump hierarchy of degrees from §3.4 to
the arithmetical hierarchy.

4.2.1 Post’s Theorem Relating Σn to ∅(n)

Theorem 4.2.2 (Post’s Theorem). For every n ≥ 0,

(i) B ∈ Σn+1 ⇐⇒ B is c.e. in some Πn set
⇐⇒ B is c.e. in some Σn set

by Theorem 3.4.3 (vii).

(ii) ∅(n) is Σn-complete for n > 0;

(iii) B ∈ Σn+1 ⇐⇒ B is c.e. in ∅(n);

(iv) B ∈ ∆n+1 ⇐⇒ B ≤T ∅(n).

Proof. (i) (=⇒). Let B ∈ Σn+1. Then x ∈ B ⇐⇒ (∃y)R(x, y) for some
R ∈ Πn. Hence B is Σ1 in R and therefore c.e. in R by Theorem 3.3.16.

(i) (⇐=). Suppose B is c.e. in some Πn set C. Then for some e,

x ∈ B ⇐⇒ x ∈WC
e

x ∈ B ⇐⇒ (∃s) (∃σ) [σ ≺ C & x ∈Wσ
e,s].

Clearly, x ∈Wσ
e,s is computable by Oracle Graph Theorem 3.3.8. Hence,

by Theorem 4.1.4 (iv) it suffices to show that σ ≺ C is Σn+1. Now

σ ≺ C ⇐⇒ (∀y < lh(σ)) [σ(y) = C(y)]

⇐⇒ (∀y < lh(σ)) [[σ(y) = 1 & y ∈ C] ∨ [σ(y) = 0 and y /∈ C]]

⇐⇒ (∀y < lh(σ)) [Πn ∨ Σn]

because C ∈ Πn. Hence, σ ≺ C is Σn+1 by Theorem 4.1.4 (ii), (iii), and
(vi).

(ii) This is proved by induction on n and is clear for n = 1. Fix n ≥ 1 and

assume ∅(n) is Σn-complete. Hence ∅(n) is Πn-complete. Now

B ∈ Σn+1 ⇐⇒ B is c.e. in some Σn set by (i)

⇐⇒ B is c.e. in ∅(n) by inductive hypothesis

⇐⇒ B ≤1 ∅(n+1) by the Jump Theorem 3.4.3 (iii).

Hence, ∅(n+1) is Σn+1-complete.

4.2. ?? Post’s Theorem and the Hierarchy Theorem 85

(iii) Now ∅(n) is Πn-complete for n > 0 by (ii), and (i) and (ii) imply (iii).

(iv)

B ∈ ∆n+1 ⇐⇒ B,B ∈ Σn+1,

⇐⇒ B,B are c.e. in ∅(n), by (iii),

⇐⇒ B ≤T ∅(n).

Corollary 4.2.3 (Hierarchy Theorem). (∀n > 0)[∆n ⊂ Σn & ∆n ⊂
Πn]. Clearly, ∆n ⊆ Σn. The content here is that Σn 6⊆ ∆n.

Proof. ∅(n) ∈ Σn−Πn, by Post’s Theorem 4.2.2 (ii) and (iv), and the Jump

Theorem 3.4.3 (ii). Likewise, ∅(n) ∈ Πn − Σn.

Definition 4.2.4. (Σn and Πn Indices).

(i) By Definition 2.1.4, e is a Σ1-index for B if B = We, and we also say
that e is a Π1-index for B.

(ii) For n > 0, by Theorem 4.2.2 (iii), B ∈ Σn iff B ≤1 ∅(n), say via ϕe.
Then e is a Σn-index for B and a Πn-index for B.

(iii) As in Definition 2.3.1 and Definition 4.1.2 (i), a ∆0-index for B is an
index e such that ϕe = χ

B
. For n ≥ 1, a ∆n-index for B is a pair 〈e, i〉

where e is a Σn index for B and i is a Πn index for B. (These definitions
relativize to an oracle A.)

4.2.2 Exercises

Exercise 4.2.5. In the Limit Lemma 3.6.2, prove that we can pass ef-
fectively from an index for any one characterization (i), (ii), or (iii) to
any other. An index for (i) is an e such that ϕe(s, x) = As(x) and
A(x) = limsAs(x); An index for (ii) is a ∆2-index for A. An index for
(iii) is an e such that A = ΦKe .

Exercise 4.2.6. Prove that if B ≤m A and A = ∅(n) for n ≥ 1 then
B ≤1 A. Hint. Use the Padding Lemma 1.5.2. An alternative proof is to
show that B ∈ Σn and hence B is c.e. in ∅(n−1) by Post’s Theorem 4.2.2.
Therefore, we can apply the Jump Theorem 3.4.3.

Exercise 4.2.7. Prove that if B = ∅(n) for n ≥ 1, and B ≤m A, then
B ≤1 A. Hint. Use the method of Theorem 2.3.9. (By Exercise 4.2.7, in
order to prove that A is Σn-complete it suffices to prove that ∅(n) ≤m A
rather than proving ∅(n) ≤1 A.)

86 4. The Arithmetical Hierarchy

4.3 ? Σn-Complete Sets and Πn-Complete Sets

We have shown that ∅(n) is Σn-complete for all n. (Following Conven-
tion 4.1.1 we normally drop the superscript 0 from now on.) However,
there are other Σn-complete sets with natural definitions which will be
useful in later applications. For example, we know that K, K0 and K1

are all Σ1-complete and we shall now show that Fin is Σ2-complete and
Cof and Rec are Σ3-complete. Once we have classified a set A as being in
Σn by the method of §4.1, we attempt to show that the classification is
the best possible by proving that B ≤1 A for some known Σn-complete
set B, thus showing that A is Σn-complete. Recall from Definition 2.4.9
that (A,B) ≤m (C,D) via f computable if f(A) ⊆ C, f(B) ⊆ D, and
f(A ∪B) ⊆ C ∪D. We write “≤1” if f is 1:1.

Definition 4.3.1. For n ≥ 1 define (Σn,Πn) ≤m (C,D) if (A,A) ≤m (C,D)
for some Σn-complete set A, and similarly for ≤1 in place of ≤m. In this
case we also write Σn ≤m C and Πn ≤m D. (By the same remark as that
in Definition 4.2.1, it makes no difference whether we write “≤m” or “≤1”
here.)

(This notation seems strange because Σn and Πn are classes not sets.
It is justified because if (Σn,Πn) ≤m (C,D) then (A,A) ≤m (C,D) and
(B,B) ≤m (C,D) for any Σn set A and Πn set B.)

4.3.1 Classifying Σ2 and Π2 Sets: Fin, Inf, and Tot

Theorem 4.3.2. (Σ2,Π2) ≤1 (Fin, Tot). Therefore, Fin is Σ2-complete,
Inf and Tot are Π2-complete, and Inf ≡1 Tot. Hence, Inf and Tot are
computably isomorphic, written Inf ≡ Tot.

Proof. By Proposition 4.1.5 and Corollary 4.1.8, Fin ∈ Σ2 (so Inf ∈ Π2)
and Tot ∈ Π2. Fix A ∈ Σ2. Therefore, A ∈ Π2, and there is a computable
relation R such that

x ∈ A ⇐⇒ (∀y)(∃z)R(x, y, z).

Using the s-m-n Theorem 1.5.5, define a 1:1 computable function f by

ϕf(x)(u) =

{
0 if (∀y ≤ u) (∃z)R(x, y, z);

↑ otherwise.

Now

x ∈ A =⇒ Wf(x) = ω =⇒ f(x) ∈ Tot, but

x ∈ A =⇒ Wf(x) is finite =⇒ f(x) ∈ Fin.

4.3. ? Σn-Complete Sets and Πn-Complete Sets 87

4.3.2 Constructions with Movable Markers

Most of the definitions of c.e. sets so far have been static in the sense of
§2.6.2, but from now on we often give dynamic definitions. For example,
we may define a c.e. set B by a construction using a computable sequence
of stages s where Bs represents the set of elements enumerated in B by the
end of stage s and B = ∪ sBs. To construct B we concentrate on the stage s
approximation to the complement B because these are the only elements
over which we still have control. Those already in B are irretrievable. Given
Bs, define the element bsy for y ∈ ω as follows:

(4.1) B = b0 < b1 < b2 < . . . & Bs = bs0 < bs1 < bs2 < . . .

To define Bs it is often useful to imagine a sequence of markers {Γy}y∈ω
such that the marker Γy is associated with element bsy at the end of stage s.
Now bsy ≤ bs+1

y . Therefore, we may imagine marker Γy as moving upwards
and being associated with a nondecreasing (possibly finite) sequence of
elements {bsy}s∈ω among the integers. Hence, the name movable markers is
used in the literature.1

The advantage of concentrating on the marker Γy rather than the element
z = bsy it is currently resting on is that for applications we may have
an additional c.e. kicking set Vy which is coordinated with the marker
Γy. Whenever Vy receives a new element, the current position of Γy is
enumerated in B. Hence, Γy comes to a limit and by exists iff Vy is finite.
Therefore, B is infinite iff every Vy is finite. We have already implicitly
used this method for y = 0 in Exercise 2.5.3 to prove that Inf ≤1 Cof. We
now illustrate the movable marker method in the following Theorem 4.3.3
but with a movable marker for every y not only for y = 0.

4.3.3 Classifying Cof as Σ3-Complete

Theorem 4.3.3. Cof is Σ3-complete.

Proof. Fix A ∈ Σ3. Now for some relation R ∈ Π2, x ∈ A iff (∃y)R(x, y).
Since R ∈ Π2 there is a computable function g by Theorem 4.3.2 such that
R(x, y) iff Wg(x,y) is infinite. Therefore,

(4.2) x ∈ A ⇐⇒ (∃y) [Wg(x,y) is infinite].

1For more sophisticated applications, it is better to think of the markers as fixed

boxes or windows sometimes arranged in some geometrical pattern, such as a matrix, a
tree, or simply a line as here, through which the integers move downwards. From this
point of view the boxes are fixed and the integers are moving among them, but we still
have box Γy associated with a nondecreasing sequence of elements {bsy}s∈ω .

88 4. The Arithmetical Hierarchy

We shall define a c.e. set Bx uniformly in x such that x ∈ A iff Bx is cofinite.
Fix x. For notational convenience we drop the superscript x. We enumerate
B = ∪s∈ω Bs by stages s in the following computable construction. Use the
notation of §4.3.2 and (4.1). We think of Wg(x,y) as a kicking set so that
each new element entering Wg(x,y) “kicks” the marker Γy and forces it to
move once more.

Stage s = 0. Set B0 = ∅.

Stage s+ 1. Let Bs = {bs0 < bs1 < · · · < bsy < · · · }. For each y ≤ s such that
Wg(x,y), s 6= Wg(x,y), s+1, enumerate bsy in Bs+1. If no such y exists, define
Bs+1 = Bs. This ends the construction.

Case 1. x ∈ A. By (4.2), choose the least y such that Wg(x,y) is infinite.
Now marker Γy is moved infinitely often. Therefore, lims b

s
y = ∞, and

|B| ≤ y.

Case 2. x 6∈ A. By induction, fix y, and choose s such that Wg(x,y), s =
Wg(x,y) and, for all z < y such that bsz = bz. Now Γy never moves again after

s. Hence, every marker comes to rest on B, which is therefore infinite.

4.3.4 Classifying Rec as Σ3-Complete

Definition 4.3.4. (i) Cpl = {x : Wx ≡T K }, indices of complete c.e.
sets.

(ii) Rec = {x : Wx ≡T ∅}, indices of computable (recursive) sets.

Theorem 4.3.5. (Σ3,Π3) ≤1 (Cof, Cpl), and (Σ3,Π3) ≤1 (Rec,Cpl).

Corollary 4.3.6 (Rogers). Rec is Σ3-complete.

Proof. By Corollary 4.1.9 and Theorem 4.3.5 because Cof ⊆ Rec and
because Rec ∩ Cpl = ∅.

Proof. (Theorem 4.3.5). Let A be Σ3. We define a c.e. set Bx uniformly
in x such that

(4.3) x ∈ A ⇐⇒ (∃y) [Wg(x,y) is infinite] ⇐⇒ Bx is cofinite,

(4.4) x 6∈ A =⇒ Bx ≡T K.

Fix x. For notational convenience we can drop the x. Let {Ks}s∈ω be a
computable enumeration of K. The construction is now exactly the same
as that of Theorem 4.3.3 except that at Stage s+ 1 we replace the second
sentence by the following:

“For each y ≤ s such that either Wg(x,y),s 6= Wg(x,y), s+1

or y ∈ Ks+1 −Ks, enumerate bsy in Bs+1.”

4.3. ? Σn-Complete Sets and Πn-Complete Sets 89

Now if x ∈ A then some Wg(x,y) is infinite and it causes B to be finite
as before. If x 6∈ A then the extra clause generates at most one extra move
for marker Γy. Therefore, all markers move finitely often and B is infinite.
The extra coding ensures that K ≤T B. Choose a stage s such that marker
Γy has settled on bsy by the end of stage s. Then y ∈ K iff y ∈ Ks because
if y enters K at some stage t > s then marker Γy must move at stage t,
which it cannot.

Remark 4.3.7. Theorem 4.3.5 also implies the previous Theorem 4.3.3
that Cof is Σ3-complete, and it shows that (Π3,Σ3) ≤m (Cpl,Cpl). This
does not imply that Cpl is Π3-complete. It says exactly that Cpl is Π3-
hard, namely that a Π3-complete set is m-reducible to it. Indeed Cpl is
Σ4-complete.

Remark 4.3.8. An alternative coding is to move the markers to prove that
if x ∈ A, then B dominates all p.c. functions and therefore K ≤T B by
Theorem 4.5.4 (ii). In Theorem 4.3.5 we have two strategies. The primary
strategy S1 uses Wg(x,y) to show that if x ∈ A then B is finite. If x ∈ A,

this primary strategy guarantees only that B is infinite. In this case we can
simultaneously play the secondary strategy S2, which ensures B ≡T K. In
the Π3 case, where B is infinite, we can code various other properties into
B. For example, in Chapter 5 Exercise 5.2.10 we prove that {e : We simple}
is Π3-complete.

One may imagine that the Π3 alternative on B is an expert woods-
man who goes through the forest chopping down only certain trees to
code information. If the Σ3 alternative holds, then the logging company
comes through, cutting all the trees and erasing any coding done by the
woodsman.

In Exercise 4.3.12 we shall prove that Ext is Σ3-complete by defining a
p.c. function ϕf(x) and having a strategy S2 for marker Γy which guarantees
that ϕf(x) is not extendible to a total function ϕy and that indeed Γy
bounds a counterexample z. In Exercise 5.2.10, the markers Γy, y < e,
allow some bsy ∈We to enter B to achieve B∩We 6= ∅, so Bx will be simple
(see §5.2). The only restriction on the secondary strategy S2 is that it must
cause the marker Γy to move at most finitely often so as not to accidentally
cause B to be finite even though x 6∈ A which is the Π3 case.

4.3.5 Σ3-Representation Theorems

The following are probably the most useful characterizations for approxi-
mating a Σ3 set A, i.e., for “guessing” whether x ∈ A, and should be viewed
as refinements of (4.2).

90 4. The Arithmetical Hierarchy

Theorem 4.3.9 (First Σ3-Representation Theorem). If A ∈ Σ3 then there
is a computable function g such that

(4.5) x ∈ A ⇐⇒ (∀∞ y) [Wg(x,y) = ω] and

(4.6) x ∈ A ⇐⇒ (∀ y) [Wg(x,y) is finite].

Proof. Since A ∈ Σ3, let A ≤1 Cof via f using Theorem 4.3.3. Define g by

z ∈Wg(x,y) ⇐⇒ (∀u) [y ≤ u ≤ z =⇒ u ∈Wf(x)]. Hence,

x ∈ A =⇒ Wf(x) cofinite =⇒ (∃y)(∀z ≥ y) [z ∈Wf(x)]

=⇒ (∃y) (∀z ≥ y) [Wg(x,z) = ω]; and

x ∈ A =⇒ Wf(x) coinfinite =⇒ (∀y) (∃z ≥ y) [z /∈Wf(x)]

=⇒ (∀y) [Wg(x,y) finite].

Remark 4.3.10. (Guessing About a Σ3 Set A). To “guess” about mem-
bership in a Σ2 set A, we have a computable function f such that x ∈ A
iff Wf(x) is finite. For a Σ3 set A, Theorem 4.3.9 is the two-dimensional

analogue where Wg(x,y) is viewed as the yth row of a matrix. If x ∈ A, then
almost all rows are ω, and the others are finite. If x 6∈ A then all rows are
finite. The next corollary says that in the first case we may redefine the
matrix so that there is a unique row which is infinite and that row is ω.

Theorem 4.3.11 (Second Σ3-Representation Theorem-Uniqueness). If
A ∈ Σ3 then there is a computable function h such that the following lines
hold:

(4.7) x ∈ A ⇐⇒ (∃ ! y) [Wh(x,y) = ω & (∀z 6= y)[Wh(x,z) =∗ ∅]],

(4.8) x ∈ A ⇐⇒ (∀y) [Wh(x,y) =∗ ∅],

where (∃ ! y)R(y) denotes that there exists a unique y such that R(y).

Proof. A is Σ3. Choose g(x, y) satisfying (4.5) and (4.6). Define

f(x, y, s) = y + Σz<y |Wg(x,z), s |.

(Think of f(x, y, s) as the position at the end of stage s of a movable marker
Γxy which moves along the h rows trying to represent row Wg(x,y) on some
h row but which is bumped whenever an element appears in some Wg(x,z)

for some z < y.)

Stage s+ 1. Let z = f(x, y, s). Enumerate in Wh(x,z) all w ∈Wg(x,y), s.

4.4. Relativized Hierarchy: Lown and Highn Sets 91

Verification.

Case 1. x ∈ A. Choose the least y such that Wg(x,y) = ω. Then z =
lims f(x, y, s) exists, and Wh(x,z) = Wg(x,y) = ω. Also, lims f(x, v, s) =∞
for all v > y and hence Wh(x,u) is finite for all u > z.

Case 2. x 6∈ A. For each z there are at most finitely many y such that
lims f(x, y, s) = z because of the clause “y+” in the definition of f(x, y, s).
But each g row Wg(x,y) is finite. Hence, every h row Wh(x,z) is finite.

4.3.6 Exercises

Exercise 4.3.12. � Prove that (Σ3,Π3) ≤1 (Cof, Ext) and hence that Ext
is Σ3-complete. Hint. Use the notation and method of Theorem 4.3.3 to
construct ϕf(x) such that if x ∈ A, then f(x) ∈ Cof ⊂ Ext, and if x /∈ A,

then f(x) ∈ Ext.

Exercise 4.3.13. Show {〈x, y〉 : Wx and Wy are computably separable}
is Σ3-complete. Hint. Make ϕf(x) of Exercise 4.3.12 take values ⊆ { 0, 1 }.

Exercise 4.3.14. Prove that {〈x, y〉 : Wx ⊆∗ Wy} and {〈x, y〉 : Wx =∗

Wy} are each Σ3-complete.

Exercise 4.3.15. Show that if A is a c.e. set, then Gm(A) ∈ Σ3 where

Gm(A) := { x : Wx ≡m A }.

Exercise 4.3.16. � (Lerman). Let ζ (zeta) denote the order type of the
integers Z (both positive and negative in their natural order). Hence, ζ has
order type ω∗ + ω. A ζ-representation for a set A ⊆ ω is a linear ordering

LζA = ζ + ao + ζ + a1 + . . . ,

where A = {a0, a1, . . .} is not necessarily in increasing order and possibly
with repetitions.

(i) Prove that if LζA is a computable linear ordering, i.e., the < relation on
it is computable, then A ∈ Σ3.

(ii)� Prove that if A ∈ Σ3 then there is a computable ordering L of order

type LζA.

4.4 Relativized Hierarchy: Lown and Highn Sets

Definition 4.4.1. The definition of ΣAn (ΠA
n) is the same as Definition 4.1.2

for Σn (Πn) except that the matrix R is A-computable instead of com-

92 4. The Arithmetical Hierarchy

putable. If a = deg(A), we use the notation Σa
n in place of ΣAn since the

class ΣAn is independent of the particular representative A ∈ a.

Everything in this chapter can be relativized to an arbitrary set A with
virtually the same proofs, and with ΣAn , ΠA

n and A(n) in place of Σn, Πn

and ∅(n), respectively.

4.4.1 Relativized Post’s Theorem

Theorem 4.4.2 (Relativized Post’s Theorem). For every n ≥ 0,

(i) A(n) is ΣAn -complete if n > 0;

(ii) B ∈ ΣAn+1 ⇐⇒ B is c.e. in A(n);

(iii) B ≤T A
(n) ⇐⇒ B ∈ ∆A

n+1 := ΣAn+1 ∩ ΠA
n+1;

(iv) B ≤T A
(n+1) ⇐⇒ (∃f ≤T A(n)) [B(x) = lims f(x, s)].

Define FinA, TotA, and CofA as before but with WA
e in place of We.

The proofs in §4.3 relativize to A and establish that FinA is ΣA2 -complete,
TotA is ΠA

2 -complete, and CofA and RecA are ΣA3 -complete, where RecA

is the set of e’s such that WA
e is A-computable (A-recursive). Hence, if

a = deg(A), then a′ = deg(A′), a′′ = deg(FinA), and a′′′ = deg(CofA).

4.4.2 Lown and Highn Sets

In Definition 3.6.6 we introduced the low and high sets as those sets A ≤T ∅′
whose jump A′ has the lowest value ∅′ and highest value ∅′′. In Defini-
tion 3.4.2 (ii) we also defined the nth jump A(n) by iterating the jump n
times, where A(0) = A, A(1) = A′ and A(n+1) = (A(n))′. If A ≤T ∅′, then
by iterating the Jump Theorem 3.4.3 we know ∅(n) ≤T A

(n) ≤T ∅(n+1).

Definition 4.4.3. Fix a set A ≤T ∅′.

(i) A is lown if A(n) ≡T ∅(n), the lowest possible value.

(ii) A is highn if A(n) ≡T ∅(n+1), the highest possible value.

(iii) Let D denote the ∆2 degrees and C the c.e. degrees. A Turing degree
d ∈ D is lown or highn according to whether it contains a lown or highn set,
since this property is degree invariant. For every n ≥ 0, define the following
subclasses of D:

Hn = { d : d ∈ D & d(n) = 0(n+1) }

Ln = { d : d ∈ D & d(n) = 0(n) }.

(iv) A set or degree which is not lown or highn for any n is intermediate.

4.4. Relativized Hierarchy: Lown and Highn Sets 93

Clearly, Ln ⊆ Ln+1 and Hn ⊆ Hn+1 for every n. Even restricted from
D to C there is an intermediate c.e. degree and that the classes are strictly
increasing,

(∀n) [Ln ⊂ Ln+1 & Hn ⊂ Hn+1].

Often we replace the ∆2 degrees D by the c.e. degrees C and use the same
low/high notation, Ln/Hn, as above. Which one is intended will be clear
from the context.

4.4.3 Common Jump Classes of Degrees

The most common jump classes of degrees are the following, with their
complements (some of which are not given). In §4.7 we relate several of
these classes to domination and escape properties.

H0 = {0′} the complete degree

L0 = {0} the degree of ∅

L1 = {d ∈ D : d′ = 0′} low1

L2 = {d ∈ D : d′′ = 0′′} low2

L2 = {d ∈ D : d′′ > 0′′} nonlow2

H1 = {d ∈ D : d′ = 0′′} high1

H1 = {d ∈ D : d′ < 0′′} nonhigh1.

4.4.4 Syntactic Properties of Highn and Lown Sets

We now develop a syntactic characterization of high and low in terms of
arithmetical quantifiers. This is often useful in applying the hypothesis of
high or low.

Theorem 4.4.4 (High Theorem). For any set A ⊆ ω TFAE:

(i) A is high (i.e., ∅′′ ≤T A′, whether A ≤T ∅′ or not);

(ii) Σ2 ⊆ ∆A
2 ;

(iii) Σ2 ⊆ ΠA
2 ;

(iv) ∅(2) ≤1 A
(2) (i.e., Tot ≤1 FinA).

94 4. The Arithmetical Hierarchy

Proof.

A is high ⇐⇒ ∅′′ ≤T A′

⇐⇒ ∅′′ ∈ ∆A
2 by Post’s Theorem 4.4.2

⇐⇒ Σ2 ⊆ ∆A
2 because ∅′′ is Σ2-complete

⇐⇒ Σ2 ⊆ ΠA
2 because Σ2 ⊆ ΣA2 trivially

⇐⇒ ∅(2) ≤1 A(2) because A(2) is ΠA
2 -complete

⇐⇒ Tot ≤1 FinA because ∅(2) ≡1 Tot.

Theorem 4.4.5 (Low Theorem). For any set A ⊆ ω TFAE:

(i) A is low (i.e., A′ ≤T ∅′);

(ii) ΣA1 ⊆ ∆2,

(iii) ΣA1 ⊆ Π2;

(iv) A′ ≤1 ∅(2) (i.e., iff KA
1 ≤1 Tot).

Proof.

A is low ⇐⇒ A′ ≤T ∅′

⇐⇒ A′ ∈ ∆2 by Post’s Theorem 4.2.2

⇐⇒ ΣA1 ⊆ ∆2 because A′ is ΣA1 -complete

⇐⇒ ΣA1 ⊆ Π2 because ΣA1 ⊆ Σ∅
′

1 = Σ2

⇐⇒ A′ ≤1 ∅(2) because ∅(2) is Π2-complete.

4.4.5 Exercises

Exercise 4.4.6. State and prove classifications for high2 and low2 similar
to those in Theorems 4.4.4 and 4.4.5 for high1 and low1.

4.5 ? Domination and Escaping Domination

Recall the Definition 3.5.1 of the quantifiers (∀∞x) and (∃∞x), and
Definition 3.5.2 of domination and escape, which we now repeat and extend.

Definition 4.5.1. (i) A function g dominates f , denoted by f <∗ g, if

(4.9) (∀∞x) [f(x) < g(x)].

A partial function θ(x) dominates a partial function ψ(x) if

(∀∞x) [ψ(x)↓ =⇒ ψ(x) < θ(x)↓].

4.5. ? Domination and Escaping Domination 95

(ii) A function f escapes (domination by) g if f 6<∗ g, i.e., if

(4.10) (∃∞x) [g(x) ≤ f(x)].

(iii) A function g majorizes f , denoted by f < g, if

(4.11) (∀x) [f(x) < g(x)].

(iv) Functions f and g are almost equal, denoted by f =∗ g, if

(∀∞x) [g(x) = f(x)].

(v) A class C of functions is closed under finite differences if

[g ∈ C & g =∗ h] =⇒ h ∈ C.

Proposition 4.5.2. Let C be a class of functions closed under finite dif-
ferences, such as the computable functions or the A-computable functions
for some A. Then for every f ,

(∃g ∈ C) [g >∗ f] ⇐⇒ (∃h ∈ C) [h > f].

Proof. One direction is obvious. For the other direction, assume g >∗ f ,
and find h =∗ g such that h > f .

By Proposition 4.5.2, given such a C and g ∈ C with g >∗ f , we shall
assume that g > f . In particular, if we have a computable g >∗ f then we
shall assume we have computable g > f .2

4.5.1 Domination Properties

Definition 4.5.3. Let {As}s∈ω be a computable enumeration of c.e. set
A.

(i) The stage function is the partial computable function

θA(x) =

{
(µs) [x ∈ As] if x ∈ A

undefined otherwise.

(ii) The least modulus as in (3.17) of Definition 3.5.4 is

mA(x) = (µs) [As �� x = A�� x].

Note that θA(x) is partial but partial computable, while mA(x) is total but
not computable (unless A is computable).

2Dominate and majorize are very similar. We normally prefer dominate because by

Proposition 4.5.2 if a computable function g dominates f then a computable function h
majorizes f . The negation of dominate is escape which gives a rich structure of nonlow2

degrees in §4.5 and §4.6, but the negation of “g majorizes f” is simply (∃x) [f(x) ≥ g(x)],
which is not useful.

96 4. The Arithmetical Hierarchy

Theorem 4.5.4 (Domination Properties). Let {As}s∈ω be an enumera-
tion of a c.e. set A and f a total function.

(i) If f dominates θA(x) then A ≤T f .

(ii) For any D ≤T ∅′,

D ≡T ∅′ ⇐⇒ (∃f ≤T D)[f dominates every partial computable function].

(iii) If f dominates mA(x) then A ≤T f .

(iv) If {Bs}s∈ω is an enumeration of a c.e. set B and mA(x) dominates
the least modulus function mB(x), then B ≤T A.

Proof. (i) (∀∞x) [x ∈ A ⇐⇒ x ∈ Af(x)].

(ii) (⇐=) By (i) because f dominates θK(x).

(ii) (=⇒) Build f ≤T ∅′ by using ∅′ to determine for a given input x
which ϕe(x) converge for e ≤ x. Then define f(x) to exceed all these values.

(iii) (∀∞x) [x ∈ A ⇐⇒ x ∈ Af(x)].

(iv) (∀∞x) [x ∈ B ⇐⇒ x ∈ BmA(x)].

These are only the simplest facts about domination. In §4.5.2 and
throughout the book we develop many more domination properties, and
extend (ii) to an elegant characterization by Martin in Theorem 4.5.6 of
functions which dominate all total computable functions. Escape proper-
ties are more subtle, but in Theorem 4.6.2 we characterize functions which
escape ∅′-computable functions and we use these in computable model
theory.

4.5.2 Martin’s High Domination Theorem

The first few levels of the high/low degree hierarchy, especially the high1,
low1, and low2 degrees and their complements, have many important ap-
plications. In addition to the syntactic characterization of high degrees
in Theorem 4.4.4, we now give the very useful characterization (Theo-
rem 4.5.6) by Martin in terms of dominating functions. The following
characterization of high degrees gives useful characterizations in §4.7 and
§4.8 for uniform enumerations of the computable functions and properties
of those ∆2 sets which are low2 or nonlow2. Later we consider low2 and
nonlow2 sets. We now extend the domination notions from Definition 3.5.2.

Definition 4.5.5. f is dominant if f dominates every (total) computable
function; an infinite set A = {a0 < a1 < · · · } is dominant if its principal

4.5. ? Domination and Escaping Domination 97

function pA dominates every (total) computable function, where pA(n) =
an.

Theorem 4.5.6 (High Domination Theorem, Martin, 1966b). A set A is
high (∅′′ ≤T A

′) iff there is a dominant function f ≤T A.

Proof. By Theorem 4.3.2 we know that Tot ≡T ∅′′. Hence, by the
Limit Lemma 3.6.8 relativized to A, we have ∅′′ ≤T A′ iff there is
an A-computable {0, 1}-valued function g(e, s) such that lims g(e, s) =
Tot(e) := χ

Tot
(e).

(=⇒). Assume ∅′′ ≤T A′. Given g(e, s) as above we define a dominant
function f ≤T A as follows:

Stage s. (To define f(s)). For all e ≤ s define t(e) and f(s) as follows:

t(e) = (µt > s) [g(e, t) = 0 ∨ (∀x ≤ s) [ϕe,t(x)↓]],

f(s) = max{ t(e) : e ≤ s }.

Note that t(e) exists because if ϕe is not total, then limt g(e, t) = 0. If ϕe
is total, then limt g(e, t) = 1, and therefore f(s) > ϕe(s) for a.e. s. (Recall
by Definition 1.6.17 that if ϕe,t(x) = y then e, x, y < t.)

(⇐=). Assume f ≤T A is dominant. Define an A-computable function
g(e, s) such that lims g(e, s) = Tot(e) as follows:

(4.12) g(e, s) =

1 if (∀z ≤ s) [ϕe,f(s)(z)↓];

0 otherwise.

Note that if ϕe is total, then so is θe(y) = (µs) (∀z ≤ y) [ϕe,s(z)↓]. Thus,
f(y) dominates θe(y). Therefore, g(e, s) = 1 for a.e. s. If ϕe is not total,
then ϕe(y) and θe(y) diverge for some y, and g(e, s) = 0 for all s ≥ y.

4.5.3 Exercises

Exercise 4.5.7. Give another proof of Martin’s Theorem 4.5.6. Hint. As-
sume A′ ≥T ∅′′. Using Theorem 4.4.4 (iv) fix a computable function g such
that ϕe is total iff WA

g(e) is finite. Use an A-computable construction to

define f ≤T A. To define f(s) first wait for all e ≤ s until either ϕe(s)↓ or
WA
g(e) receives a new element.

Exercise 4.5.8. Let A be coinfinite, nonhigh, and c.e. Prove that A has
a computable enumeration {As}s∈ω that is diagonally correct, that is,
(∃∞s) [ass = as], where As = {as0 < as1 < · · · } and A = {a0 < a1 < · · · }.

98 4. The Arithmetical Hierarchy

4.6 Characterizing Nonlow2 Sets A ≤T ∅′

Fix A ≤T ∅′ and relativize the previous proof to the cone {B : A ≤T B}
with base A in place of ∅ and with ∅′ ≥T A as a set in this cone. We obtain
the following useful escape property characterizing nonlow2 sets A ≤T ∅′.

Theorem 4.6.1 (Relativized Domination Theorem, Martin, 1966b). Fix
A ≤T ∅′. Then A′′ ≤T ∅′′ (i.e., A is low2) if and only if there is a function
g ≤T ∅′ which dominates every total function f ≤T A.

Proof. Fix A ≤T ∅′. Relativize Martin’s Theorem 4.5.6 to the cone of sets
{X : X ≥T A}. Now A is low2 (A′′ ≡T ∅′′) iff ∅′, viewed as a member of
this cone, is high in the cone, namely iff one jump of ∅′, that is, ∅′′, reaches
A′′ in Turing degree, because A′′ is the double jump of the base A of the
cone. By Martin’s Theorem 4.5.6 this occurs iff there is a function g ≤T ∅′
which is dominant relative to A-computable functions, so that g dominates
every total function f ≤T A.

Corollary 4.6.2 (Nonlow2 Escape Theorem). Fix A ≤T ∅′. Then A is
nonlow2 (A′′ > ∅′′) iff for every function g ≤T ∅′ there is a function f ≤T A
which escapes g in the sense of (4.10), i.e.,
(4.13)

(Nonlow2 Escape) (∀g ≤T ∅′) (∃f ≤T A) (∃∞x) [g(x) ≤ f(x)].

Proof. This is the contrapositive of Theorem 4.6.1.

We have stated (4.13) separately for the sake of the list of properties in
Theorem 4.7.1.

4.6.1 Exercises

Exercise 4.6.3.�� (Csima, Hirschfeldt, Knight, Soare, 2004). Identify
a string σy with its code number y. A set A satisfies the isolated path
property if for every computable tree T ⊆ 2<ω with no terminal nodes and
with isolated paths dense,

(∃g ≤T A) (∀σ ∈ T) [gσ ∈ [Tσ] & gσ is isolated],

i.e., for every x ∈ T , gσ = λy [g(σ, y)] is a path extending σ, which is an
isolated path of the closed set [T]. Prove that every nonlow2 set A ≤T 0′

satisfies the isolated path property.

Exercise 4.6.4.�� (Csima, Hirschfeldt, Knight, Soare, 2004). A set A
satisfies the tree property if for every computable tree T ⊆ 2<ω with no
terminal nodes, and every uniformly ∆2 sequence of subsets {Si}i∈ω all
dense in [T],

(∃g ≤T A) (∀σ ∈ T) (∀i) (∃τ ∈ Si) [σ ≺ gσ & τ ≺ gσ & gσ ∈ [T]].

Prove that every nonlow2 set A ≤ 0′ satisfies the tree property.

4.7 Domination, Escape, and Classes of Degrees

Martin’s Theorem 4.5.6 gave a remarkable connection between high degrees
H1 and dominant functions, and the Nonlow2 Escape Theorem 4.6.2 pro-
duced an escape characterization for L2 degrees. Now we summarize the
previous properties in the following Theorem 4.7.1.

Recall the Definition 4.5.1 of dominate and escape and the common
jump classes in §4.4.3. The contrapositive of Martin’s High Domination
Theorem 4.5.6 is

(4.14) A′ 6≥T ∅′′ ⇐⇒ (∀g ≤T A)(∃f ≤ ∅) (∃∞x) [g(x) ≤ f(x)].

In this case we say “f escapes g.” We say that a set A satisfying the right-
hand side has the escape property. Martin’s equation (4.14) says that the
degrees satisfying the escape property are exactly the nonhigh1 degrees.

However, this definition does not require that we be able to uniformly
find an index i with ϕi = f given an index e with g = ΦAe . Roughly, if we can
uniformly find i from e, then the A satisfies the Uniform Escape Property
(UEP). We now summarize the domination and escape characterizations
so far. (The redundancy of these properties is intensional, e.g., our stating
a property on one line and its negation on the next, so that we can later
refer to a specific property by its line number here, because we intend to
further develop both domination and escape.)

Theorem 4.7.1. Fix a degree d ≤ 0′.

(i) d = 0′ ⇐⇒ (∃g ≤ d)[g dominates all p.c. functions].

(ii) d < 0′ ⇐⇒ (∀g ≤ d)(∃ θ p.c.)[θ escapes g].

(iii) d ∈ H1 ⇐⇒ (∃g ≤ d)(∀f ≤ 0)[g dominates f].

(iv) d ∈ H1 ⇐⇒ (∀g ≤ d)(∃f ≤ 0)[f escapes g].

(v) d ∈ L2 ⇐⇒ (∃g ≤ 0′)(∀f ≤ d)[g dominates f].

(vi) d ∈ L2 ⇐⇒ (∀g ≤ 0′)(∃f ≤ d)[f escapes g].

Proof. Theorem 4.5.4 (ii) establishes (i) and (ii), Martin’s Domination The-
orem 4.5.6 establishes (iii) and (iv), the NonLow2 Escape Theorem 4.6.2
proves (v) and (vi).

4.8 Uniform Enumerations of Functions and Sets

Theorem 4.8.2 will relate nicely to the previous Martin Theorem 4.5.6 on
dominant functions and high degrees. Also, the notions we now introduce in
Definition 4.8.1 have proved useful in other areas of computability theory,
computable model theory, and models of arithmetic.

994.8. Uniform Enumerations of Functions and Sets

100 4. The Arithmetical Hierarchy

Definition 4.8.1. (i) If f(x, y) is a binary function then

(4.15) fy denotes λx [f(x, y)].

As in analytic geometry, we imagine a two-dimensional plane with hori-
zontal coordinate x and vertical coordinate y. We view λx, y [f(x, y)] as
specifying a matrix with entry f(x, y) at the location (x, y). For vertical
coordinate y ∈ ω we view fy as the yth row according to our notation
(4.15).

(ii) Let C be a class of (unary) functions and a be a degree. Then C is called
a-uniform (a-subuniform) if there is a binary function f(x, y) of degree ≤ a
such that

C = { fy }y∈ω (respectively, C ⊆ { fy }y∈ω).

Therefore, f uniformly lists the rows { fy }y∈ω. In the uniform case these
are exactly the rows of C. In the subuniform case C may be a proper subclass
of these rows.

4.8.1 Limits of Functions

Given f(x, y) as in (4.15), we may need to take limits in both the x and y
directions. For example, if {Ay}y∈ω is a uniformly computable sequence of
computable sets then the vertical limit B(x) = limy Ay(x) is a ∆2 set as in
the Limit Lemma 3.6.2. Now suppose that Ay = Wf(y) where f(x) is the
computable function in the proof of Theorem 4.3.2. Hence, Wf(y) is finite
if Wy is finite and Wf(y) = ω otherwise. Define C(y) = limxAy(x). Now

C(y) = limxAy(x) = Tot(y).

Hence, C ′ ≥T 0′′, a useful fact in many infinite injury constructions such as
the Thickness Lemma, because any set D thick in A also satisfies D′ ≥T 0′′.

4.8.2 A-uniform Enumeration of the Computable Functions

The next useful characterization follows from Martin’s Theorem 4.5.6.

Theorem 4.8.2 (Jockusch, 1972a). If d is any degree, then statements
(i)–(iv) are equivalent:

(i) d′ ≥ 0′′

(ii) the computable functions are d-uniform;

(iii) the computable functions are d-subuniform;

(iv) the computable sets are d-uniform.

4.8. Uniform Enumerations of Functions and Sets 101

If d is c.e., then (i)–(iv) are each equivalent to

(v) the computable sets are d-subuniform.

Proof. The implications (ii) =⇒ (iii), (ii) =⇒ (iv), and (iv) =⇒ (v) are
immediate.

(i) =⇒ (ii). By Martin’s Theorem 4.5.6 choose a dominant function g of
degree ≤ d. Define f(〈e, i〉, x) = ϕe,i+g(x)(x) if ϕe,i+g(y)(y) ↓ for all y ≤ x
and f(〈e, i〉, x) = 0 otherwise. Now either f〈e,i〉 = ϕe is a total function, or
f〈e,i〉 is finitely nonzero. In either case f〈e,i〉 is computable. If ϕe is total
then g(x) dominates θ(x) = (µs)[ϕe,s(x) ↓], so ϕe = f〈e,i〉 for some i.

(iii) =⇒ (i). Let f(e, x) be a function of degree ≤ d such that every
computable function is an fe. Define g(x) = max{fe(x) : e ≤ x}. Then g is
dominant, so d′ ≥ 0′′ by Martin’s Theorem 4.5.6.

(iv) =⇒ (i). By Theorem 4.3.2 and Exercise 4.3.12 we have

(Tot,Tot) ≤m (Tot,Ext)

via some computable function g. Assume f has degree ≤ d and that the
fe’s are exactly the computable characteristic functions. Then for all e,

e ∈ Tot ⇐⇒ (∃i) [fi extends ϕg(e)]

⇐⇒ (∃i) (∀x) (∀y) (∀s) [ϕg(e), s (x) = y =⇒ fi(x) = y].

Thus, Tot ∈ ΣA2 . But Tot ∈ Π2 ⊆ ΠA
2 . Therefore, Tot ∈ ∆A

2 . Hence, 0′′ ≤ d′

by the Relativized Post’s Theorem 4.4.2.

(v) =⇒ (i). (The following resembles the proof that the computable func-
tions are not uniformly computable.) Assume that d is c.e. but (i) is false
and f(e, x) is any function of degree ≤ d. We must construct a {0, 1}-valued
computable function h 6= fe for all e. Since deg(f) ≤ 0′ there is a com-

putable function f̂(e, x, s) such that f(e, x) = lims f̂(e, x, s) and a modulus

function m(e, x) for f̂ which has degree ≤ d by the Modulus Lemma 3.6.3.
Let p(x) = max{m(e, 〈e, x〉) : e ≤ x}. Since deg(p) ≤ d and (i) fails,
there is a computable function q(x) which p(x) fails to dominate. Define

h(〈e, x〉) = 1 .− f̂(e, 〈e, x〉, q(x)). Then h is a computable function and
h(〈e, x〉) 6= fe(〈e, x〉) whenever x ≥ e and q(x) ≥ p(x). (Exercise 4.9.6 on
Π0

1-classes shows that the hypothesis d c.e. is necessary for this part.)

Corollary 4.8.3 (Jockusch). If d < 0′ is c.e. then the class of c.e. sets
of degree ≤ d is not d-uniform.

Proof. If d is a counterexample, then the computable sets are d-
subuniform. Therefore, d′ = 0′′ by (v) =⇒ (i) of Theorem 4.8.2. However,

102 4. The Arithmetical Hierarchy

since the c.e. sets of degree ≤ d are d-uniform, they are 0′-uniform and so
d′′ = 0′′ by a later result.

4.9 � Characterizing Low2 Sets A ≤T ∅′

Definition 4.9.1. The 0′-uniform property of A asserts:

(4.16) U(A) : (∃f ≤T ∅′) [{ Y : Y ≤T A } = { fe }e∈ω],

where fe = λx [f(x, e)] as in (4.15) and is viewed as the eth row of the
matrix with characteristic function f(x, e). (We identify a set Y with its
characteristic function χ

Y
.)

The uniformity property U(A) asserts that there is a ∅′-computable
matrix f ≤T ∅′ whose rows { fe }e∈ω are exactly the sets Y ≤T A.

Theorem 4.9.2. If A ≤T 0′ is low 2 then U(A) holds, i.e., the
A-computable functions (and hence also A-computable sets) are 0′-uniform.

Proof. Let A be low2 i.e., A′′ ≤T ∅′′. Hence, TotA ≤T ∅′′. Let ĝ(e, s) be a
∅′-computable function whose limit g(e) = lims ĝ(e, s) is the characteristic
function of TotA. Now, using a ∅′ oracle, find for every e and x

(µt > x) [ΦAe,t(x)↓ ∨ ĝ(e, t) = 0].

If the first case holds, define h(x, e) = ΦAe,t(x), and in the second case define
h(x, e) = 0. This produces h ≤T ∅′. Let ω<ω be {τi}i∈ω. Define f ≤T ∅′ by

f(x, 〈e, i〉) =

{
τi(x) if x < |τi| ;

h(x, e) if x ≥ |τi| .

For every e, if ΦAe is total, then ΦAe =∗ he and ΦAe = f〈e,i〉 for some i.

Corollary 4.9.3. If X ≤T 0′ is low 2, then there is a computable function
f̂(x, y, s) such that the limit f(x, y) = lims f̂(x, y, s) exists for all x and y,
and

(4.17) {Y : Y ≤T X} = { fy : y ∈ ω }.

Proof. Apply Theorem 4.9.2 to see that f(x, y) ≤T ∅′ exists and apply the

Limit Lemma 3.6.2 to derive f̂(x, y, s).

For a fixed low2 set X, we can think of f(x, y) as a ∅′-matrix with rows
{ fy }y∈ω, which is approximated at every stage s in our computable con-

struction by λx y [f̂(x, y, s)], and which in the limit correctly gives (4.17).
We can often use the dynamic matrix approximation

{ λ e y [f̂(e, y, s)] }s∈ω

4.9. � Characterizing Low2 Sets A ≤T ∅′ 103

to show that a low2 set resembles a computable set.

Proposition 4.9.4. Set A satisfies U(A) iff A ≤T 0′ and A is low2.

Proof. (⇐=). Apply Theorem 4.9.2.

(=⇒). If f is a computable function satisfying (4.17) then Y = A itself is
one of the rows fy for some y, but f ≤T 0′, so A ≤T 0′. Using f ≤T 0′

we can define a 0′-function which dominates every A-computable function.
Now A′′ ≤T 0′′ by Theorem 4.6.1.

4.9.1 Exercises

Exercise 4.9.5. Give another proof of Theorem 4.9.2 using domination.
Hint. If A is low2 then ∅′ is high over A. Relativize Theorem 4.8.2 to A,
replacing ∅ by A and A by ∅′. By Theorem 4.6.1, choose a ∅′-function g
which dominates every total A-computable function ΦAe . Since A ≤T ∅′ we
can ∅′-computably define:

f(〈e, i〉, x) =

{
ΦAe, i+g(x)(x) if (∀y ≤ x)[ΦAe, i+g(y)(y)↓]

0 otherwise.

Either f〈e,i〉 = ΦAe is a total function, or f〈e,i〉 is finitely nonzero. If ΦAe is
total then g(x) dominates c(x) = (µs) [ΦAe,s(x)↓].

Exercise 4.9.6. [Jockusch] Show that the hypothesis d c.e. in the proof of
(v) =⇒ (i) of Theorem 4.8.2 was necessary by proving that there is a (non-
c.e.) degree d such that d′ = 0′ and the computable sets are d-subuniform.
Hint. Apply the Low Basis Theorem 3.7.2 to the Π0

1 class C ⊆ 2ω defined
by

f ∈ C ⇐⇒ rng(f) ⊆ { 0, 1 } &

(∀e) (∀x) [ϕe(x)↓ =⇒ f(〈e, x〉) = min{ 1, ϕe(x) }]

to obtain some f ∈ C of low degree.

104 4. The Arithmetical Hierarchy

Cpl ≡ ∅(4)

Rec ≡ Cof ≡ ∅(3)

Fin ≡ ∅′′

K = ∅′

∅(4)

∅(3) ≡ Cof

∅′′ ≡ Tot ≡ Inf

∅′

∆3

= sets computable in ∅′′

∆2

= sets computable in ∅′

∆0 = ∆1

= computable sets

c.e. sets co-c.e. sets
Σ1

Σ2

Σ3

Σ4

Π1

Π2

Π3

Figure 4.1. Arithmetical hierarchy of sets of integers

4.9. � Characterizing Low2 Sets A ≤T ∅′ 105

0

0′

...

...

c.e. degrees

L1

L2

L3

H1

H2

H3

Figure 4.2. High and low degrees

	4 The Arithmetical Hierarchy
	4.1 Levels in the Arithmetical Hierarchy
	4.1.1 Quantifier Manipulation
	4.1.2 Placing a Set in Σn or Πn
	4.1.3 Exercises

	4.2 ** Post's Theorem and the Hierarchy Theorem
	4.2.1 Post's Theorem Relating n to (n)
	4.2.2 Exercises

	4.3 * Σn-Complete Sets and Πn-Complete Sets
	4.3.1 Classifying 2 and 2 Sets: Fin, Inf, and Tot
	4.3.2 Constructions with Movable Markers
	4.3.3 Classifying Cof as Σ3-Complete
	4.3.4 Classifying Rec as Σ3-Complete
	4.3.5 Σ3-Representation Theorems
	4.3.6 Exercises

	4.4 Relativized Hierarchy: Lown and Highn Sets
	4.4.1 Relativized Post's Theorem
	4.4.2 Lown and Highn Sets
	4.4.3 Common Jump Classes of Degrees
	4.4.4 Syntactic Properties of Highn and Lown Sets
	4.4.5 Exercises

	4.5 * Domination and Escaping Domination
	4.5.1 Domination Properties
	4.5.2 Martin's High Domination Theorem
	4.5.3 Exercises

	4.6 Characterizing Nonlow2 Sets A ≤Tθ'
	4.6.1 Exercises

	4.7 Domination, Escape, and Classes of Degrees
	4.8 Uniform Enumerations of Functions and Sets
	4.8.1 Limits of Functions
	4.8.2 A-uniform Enumeration of the Computable Functions

	4.9 Characterizing Low2 Sets A T'
	4.9.1 Exercises

