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Randomness and I19-Classes

11.1 Martin-Lof Randomness

In this chapter, we explore some of the relationships between I} classes,
algorithmic randomness, and computably dominated degrees.

Let p be the Lebesgue measure on Cantor space, with which we assume
the reader is familiar. For completeness, we define the measure of an open
class A C 2¢. Let A C 2<% be any set with A = [A] which is prefix-free
(i.e, if 0 € A and 7 < o then 7 ¢ A). Alternatively, let A could be the
class of strings o such that [o] C A and o is minimal with respect to this
property. Such an A can be seen to exist for example as follows. Since .4
is open, its complement is closed and hence is equal to [T for some tree
T C 2<% (which is not necessarily computable). Then A can be taken to
consist of all elements of T whose predecessors all belong to T. Now the
measure of A is defined as

pA) = 27l

og€EA

the Lebesgue measure on Cantor space has all the same properties we
are familiar with from the Lebesgue measure on the real line. Recall that
a sequence of c.e. sets Ag, A1, ... is uniformly c.e. (abbreviated u.c.e.) if
there exists a computable function f such that A, = Wy, for all n.
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Definition 11.1.1.

1. A sequence Ay, A1, ... of subclasses of 2¢ is uniformly (lightface) ¥9
if there exists a u.c.e. sequence Ay, A1, ... of subsets of 2<“ such that
A, =[A,] for all n.

2. A Martin-Léf (ML) test is a uniformly 9 sequence Ag, Ai, ... of
subclasses of 2 such that pu(A,) <27 for all n.

3. Aset X € 2¢ fails a Martin-Lof test Ao, Ay,... if X € (), An
Otherwise, X passes the test.

4. A set X € 2% is Martin-Lof random (ML-random) if it passes every
Martin-Lof test.

The key point here is that the ML test must be effective in two ways.
The sequence { Ay, }necw must be uniformly c.e., and it must converge com-
putably fast in measure to 0. The intuition is that a non-ML-random set
X is “caught” by an infinite sequence {A;,}ne, which reveals some of its
information even though the measure of (1, {A,} is effectively 0. For ex-
ample, if the set X is computable then it is non-ML-random because it
fails the ML test in which A,, = [X | n]. Schnorr proved that a set is
ML-random iff it is 1-random, a closely related concept, so one may use
the terms interchangeably.

11.2 A TIY Class of ML-Randoms

A Martin-Lof test Ao, Ay, ... is called universal if (), o, An 2 (e, Bn for
every other Martin-Lof test By, By, . ... Thus, if X passes a universal test,
it must pass every test, and hence

ﬂ A, = { X €2¥ : X is not ML-random }.

new

This is a (lightface) II9 class and therefore an effective analogue of the (bold-
face) TI9 classes (i.e., G4 classes) such as those we studied in Chapter 8,
and which we shall study in the Banach-Mazur theorem in Chapter 14.

The following theorem is thus useful when trying to show that a given
set is not ML-random.

Theorem 11.2.1 (Martin-Lof, 1966). There exists a universal Martin-Lof
test.

Proof. Let {V. }new, {Viibnew, ... be an effective listing of all uniformly
c.e. subsets of 2<%, Let BS = [V,¢] where we stop enumerating if the
measure exceeds 27", Then {B¢},c. for e € w lists all ML tests. Define
An = B¢, 1. Then the {A,} are uniformly c.e. and pu(A,) < 27",

p(A) = Bo p(BSyoyy) < B, 270D = 9,
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Therefore, { A, } ey is a universal ML test. O

Notice that this implies that the class of ML-randoms has measure 1.
Indeed, each member of a universal Martin-Lof test Uy, Uy, ... is an open
set covering {X € 2¢ : X is not ML-random}, implying that

uw({X € 2¥: X is not ML-random}) < wu(U,) < 27"
for all n. Essentially the same argument, in reverse, yields the following:

Corollary 11.2.2. (F. Stephan) There is a nonempty 11§ class all of whose
elements are ML-random.

Proof. Let Uy, Uy, ... be a universal Martin-Lof test. For every n > 0, Uy,
is a proper XY subclass of 2, implying that U,, is a nonempty I1{ class. By
the definition of a universal Martin-Lof test,

Un C |JUn=()Un={X€2?: X is ML-random},

new new

as desired. 0

From this and the various basis theorems in Chapter 9, we can conclude
that there are ML-random sets which are of c.e. degree, hyperimmune-free
(computably dominated), low, even superlow, and of PA degree. However,
any set which is ML-random and of PA degree must be of degree > 0’.

11.3 1I{ Classes and Measure

Given the measure-theoretic definition of ML-randomness, it is natural to
ask about the measure of I1{ classes containing ML-randoms. The following
theorem gives a full answer to this question.

Theorem 11.3.1. Let C be a 119 class. If u(C) = 0, then C contains no
ML-random sets.

Proof. Suppose C has measure 0. Let T' C 2<“ be a tree such that C = [T],
and for each n € w, let A, = [{o € T : |o| = n}]. Then Ay, A;,... is a
nested sequence of open classes whose intersection is the measure 0 class
C, so it must be that lim,, pu(A,) = 0. As the sequence {A,}new is given
by a strong array of finite sets of strings, the map n — u(A,) € Q, the
rationals, is computable. Therefore, we can find a computable function p
such that p(Appy) < 27" for all n. Now since Ag, Ay, ... is uniformly 9,
Ap(0), Ap(1), - - - is a Martin-Lof test. But for all f € C, f € (,c., Apn), 5O
f is not ML-random. U

new

Note that we can view this as a generalization of the remark earlier that
any computable set is not ML-random beginning with a similar sequence
defined by strings of length n.
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Theorem 11.3.2 (Kucera). Let C be a 11 class. If u(C) > 0, then every
ML-random set computes a member of C.

Proof. Suppose C has positive measure and let X be a ML-random set. Let
Vo be a prefix-free c.e. subset of 2<% such that C = [Vp]. For each n € w,
let Voyr=[{c"7:0€V, & 7€V}, and let A, = [V,]. Notice that for
all n, V,, is prefix-free since Vj is, so we have

pdns) = Toer, 2"
= Zaevn ZTEVD 27 o7l
ZG‘GVn 2_‘0‘ ZTEVU 2_|T|
= p(An)p(Ao).

It follows that pu(A,) = u(Ag)" ™! = u(C)"*!, and hence that lim,, u(A,) =
0 because p(C) =1 — u(C) < 1. Since Ag, Ay, . .. is uniformly X9, and the
measures p(A,) converge to zero faster than the (computable) function
p(n) = ¢", where ¢ > u(Ag) is rational, there is some subsequence of the
sequence {A,} which is a Martin-Lof test. Since X is ML-random, it is
not in the intersection of this test, so X ¢ A,, for some least n. If n = 0,
then X ¢ C and hence X € C. If n > 0, since X € A, _1, we can choose
o € V,_1 such that ¢ < X. Since no 7 € Vj can satisfy 6”7 < X, it follows
that Y ={z —Jo|:x € X & z>|o|} ¢ Apas X =0 Y. Thus, Y € C,
which, since Y =7 X, completes the proof. O

We saw in Chapter 9 that the PA degrees are precisely those which, for
every nonempty I19 class, bound the degree of a member of that class. The
preceding theorem can be seen as saying that the degrees of ML-random
sets are precisely the analogues of PA degrees with respect to II{ classes of
positive measure. This is a surprising fact because, in most other settings,
the PA degrees and degrees of ML-random sets behave very differently. It
is fact that if a set X is both ML-random and of PA degree, then X >1 @/
although we do not prove it.

11.4 Randomness and Computable Domination

We conclude by looking at applications of some of the ideas from com-
putable domination to two other notions studied in the area of algorithmic
randomness. We begin with the following.

Definition 11.4.1. [Terwijn and Zambella] (i) A set X is computably trace-
able if there is a computable function p such that, for each f <7 X, there
is a computable function h with |Dj )| < p(n) and f(n) € Dy for all n.
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(ii) A set X is c.e. traceable if there is a computable function p such that,
for each f <7 X, there is a computable function h with [Wj,,)| < p(n)
and f(n) € Wy for all n.

The idea of computably traceable is that there is for any function f <t X
a strong array of “boxes” Dj,(, such that the value f(n) lies in box Dj, .
In addition, there is a single computable function p(n) which uniformly
bounds the size of the boxes over all such f. The idea of c.e. traceable is
the same except with a weak array W,(,) in place of a strong array. This
is the analogous change in weakening h-simple to hh-simple by replacing a
strong array by a weak one.

Clearly, every computably traceable set is c.e. traceable, and it can be
shown that this implication is strict (see Downey and Hirschfeldt [2010]).
On the other hand, the following theorem shows that the reverse implication
is true if we restrict ourselves to sets of computably dominated degree.

Theorem 11.4.2 (Kjos-Hanssen, Nies, and Stephan, 2005). If X is a set
of computably dominated degree, then X is c.e. traceable if and only if it is
computably traceable.

Proof. Let X be a c.e. traceable set of computably dominated degree, and
let p be a bound as in Definition 11.4.1 (ii). Given f <p X, let hy be a
computable function with [Wj | < p(n) and f(n) € Wi, for all n.
Define a function g by

g9(n) = (us)[ f(n) € Why(n).s ],

so that ¢ is total and X-computable. By Theorem 5.6.2 (ii), there exists
a computable function hy with hi(n) > g(n) for all n. If we define h by
letting h(n) be the canonical index of the finite set Wi (5),n,(n), We have

[Diiny| = Whom),ha ()| < Whomy| < p(n)
and f(n) € Who(n),hi(n) = Dh(n)- Hence, X is computably traceable. O

We obtain a similar result by looking at the following notion of ran-
domness due to Kurtz. In view of Theorem 11.3.1 (i), it is implied by
ML-randomness, and, as above, it can be shown that this implication is
strict.

Definition 11.4.3. A Kurtz test is an effective sequence of clopen classes
{Apn}new such that

(V)| u(A,) < 27" 1.
A set X is Kurtz random or weakly 1-random if it passes every Kurtz test.

Kurtz tests are equivalent to IIY classes of measure 0 in a uniform
way. Therefore, a set X is weakly 1-random iff X avoids all TIY classes
of measure 0 iff X is contained in every ¢ class of measure 1.
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Theorem 11.4.4 (Nies, Stephan, and Terwijn, 2005). If X is a set of
computably dominated degree, then X is ML-random if and only if it is
weakly 1-random.

Proof. Let X be a set of computably dominated degree which is not
l-random. Let Ag, A1,... be a Martin-Lof test which X does not pass,
and let f be a computable function such that A, = [Wy,) ] for all n.
Define a function g by

g(n) = (ps)(Fo < X)[ 0 € Wiy s |,

noting that since X € [ Wy, ] for all n, g is total and X-computable. By
Theorem 5.6.2 (ii), there exists a computable function h with h(n) > g(n)
for all n. Define

C= ) W), hin)-
new

Therefore, C is a I} class with X € C and
#(€) < p([Wsmy.nm]) < 1(Sn) =27"

for all n. Hence, C is a X2y class of measure 1 not containing X, so X is not
weakly 1-random. O

It follows by a result of Kurtz (see [Downey and Hirschfeldt 2010]), that
every hyperimmune degree contains a set which is weakly 1-random but
not 1-random. Thus, the degrees separating these two randomness notions
are precisely the hyperimmune degrees.
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