11 Randomness and Π_1^0 -Classes

11.1 Martin-Löf Randomness

In this chapter, we explore some of the relationships between Π_1^0 classes, algorithmic randomness, and computably dominated degrees.

Let μ be the Lebesgue measure on Cantor space, with which we assume the reader is familiar. For completeness, we define the measure of an open class $A \subseteq 2^{\omega}$. Let $A \subset 2^{<\omega}$ be any set with $A = [A]$ which is prefix-free (i.e., if $\sigma \in A$ and $\tau \prec \sigma$ then $\tau \notin A$). Alternatively, let A could be the class of strings σ such that $\llbracket \sigma \rrbracket \subseteq A$ and σ is minimal with respect to this property. Such an A can be seen to exist for example as follows. Since A is open, its complement is closed and hence is equal to $[T]$ for some tree $T \subseteq 2^{\lt \omega}$ (which is not necessarily computable). Then A can be taken to consist of all elements of \overline{T} whose predecessors all belong to T. Now the measure of A is defined as

$$
\mu(\mathcal{A}) = \sum_{\sigma \in A} 2^{-|\sigma|}.
$$

the Lebesgue measure on Cantor space has all the same properties we are familiar with from the Lebesgue measure on the real line. Recall that a sequence of c.e. sets A_0, A_1, \ldots is uniformly c.e. (abbreviated u.c.e.) if there exists a computable function f such that $A_n = W_{f(n)}$ for all n.

© Springer-Verlag Berlin Heidelberg 2016

R.I. Soare, *Turing Computability*, Theory and Applications of Computability, DOI 10.1007/978-3-642-31933-4_ 11

Definition 11.1.1.

- 1. A sequence A_0, A_1, \ldots of subclasses of 2^{ω} is uniformly (lightface) Σ_1^0 if there exists a u.c.e. sequence A_0, A_1, \ldots of subsets of $2^{<\omega}$ such that $\mathcal{A}_n = \llbracket A_n \rrbracket$ for all n.
- 2. A *Martin-Löf* (*ML*) test is a uniformly Σ_1^0 sequence $\mathcal{A}_0, \mathcal{A}_1, \ldots$ of subclasses of 2^{ω} such that $\mu(A_n) \leq 2^{-n}$ for all *n*.
- 3. A set $X \in 2^{\omega}$ fails a Martin-Löf test $\mathcal{A}_0, \mathcal{A}_1, \ldots$ if $X \in \bigcap_{n \in \omega} \mathcal{A}_n$. Otherwise, X passes the test.
- 4. A set $X \in 2^{\omega}$ is *Martin-Löf random (ML-random)* if it passes every Martin-Löf test.

The key point here is that the ML test must be effective in two ways. The sequence $\{\mathcal{A}_n\}_{n\in\omega}$ must be uniformly c.e., and it must converge computably fast in measure to 0. The intuition is that a non-ML-random set X is "caught" by an infinite sequence $\{\mathcal{A}_n\}_{n\in\omega}$ which reveals some of its information even though the measure of $\bigcap_n {\{\mathcal{A}_n\}}$ is effectively 0. For example, if the set X is computable then it is non-ML-random because it fails the ML test in which $\mathcal{A}_n = \llbracket X \mid n \rrbracket$. Schnorr proved that a set is ML-random iff it is 1-random, a closely related concept, so one may use the terms interchangeably.

11.2 A Π_1^0 Class of ML-Randoms

A Martin-Löf test $\mathcal{A}_0, \mathcal{A}_1, \ldots$ is called *universal* if $\bigcap_{n \in \omega} \mathcal{A}_n \supseteq \bigcap_{n \in \omega} \mathcal{B}_n$ for every other Martin-Löf test $\mathcal{B}_0, \mathcal{B}_1, \ldots$ Thus, if X passes a universal test, it must pass every test, and hence

$$
\bigcap_{n\in\omega}\mathcal{A}_n = \{ X \in 2^{\omega} : X \text{ is not ML-random } \}.
$$

This is a (lightface) Π_2^0 class and therefore an effective analogue of the (boldface) Π_2^0 classes (i.e., G_δ classes) such as those we studied in Chapter 8, and which we shall study in the Banach-Mazur theorem in Chapter 14.

The following theorem is thus useful when trying to show that a given set is not ML-random.

Theorem 11.2.1 (Martin-Löf, 1966). There exists a universal Martin-Löf test.

Proof. Let $\{V_n^0\}_{n\in\omega}, \{V_n^1\}_{n\in\omega}, \dots$ be an effective listing of all uniformly c.e. subsets of $2^{<\omega}$. Let $\mathcal{B}_n^e = \llbracket V_n^e \rrbracket$ where we stop enumerating if the mosque oxeoods 2^{-n} . Then $f\mathcal{B}^e$ for $e \in \omega$ lists all MI tosts. Define measure exceeds 2^{-n} . Then $\{\mathcal{B}_n^e\}_{n \in \omega}$ for $e \in \omega$ lists all ML tests. Define $\mathcal{A}_n = \mathcal{B}_{e+n+1}^e$. Then the $\{\mathcal{A}_n\}$ are uniformly c.e. and $\mu(\mathcal{A}_n) \leq 2^{-n}$.

$$
\mu(\mathcal{A}_n) = \Sigma_e \ \mu(\mathcal{B}_{n+e+1}^e) \leq \Sigma_e \ 2^{-n+e+1} = 2^{-n}.
$$

Therefore, $\{\mathcal{A}_n\}_{n\in\omega}$ is a universal ML test.

Notice that this implies that the class of ML-randoms has measure 1. Indeed, each member of a universal Martin-Löf test U_0, U_1, \ldots is an open set covering $\{X \in 2^{\omega} : X \text{ is not ML-random}\},$ implying that

 $\mu({X \in 2^{\omega}: X \text{ is not ML-random}}) \leq \mu(U_n) \leq 2^{-n}$

for all n . Essentially the same argument, in reverse, yields the following:

Corollary 11.2.2. (*F. Stephan*) There is a nonempty Π_1^0 class all of whose elements are ML-random.

Proof. Let U_0, U_1, \ldots be a universal Martin-Löf test. For every $n > 0, U_n$ is a proper Σ_1^0 subclass of 2^ω , implying that $\overline{U_n}$ is a nonempty Π_1^0 class. By the definition of a universal Martin-Löf test,

$$
\overline{U}_n \subseteq \bigcup_{n \in \omega} \overline{U_n} = \overline{\bigcap_{n \in \omega} U_n} = \{ X \in 2^{\omega} : X \text{ is ML-random} \},
$$

as desired.

From this and the various basis theorems in Chapter 9, we can conclude that there are ML-random sets which are of c.e. degree, hyperimmune-free (computably dominated), low, even superlow, and of PA degree. However, any set which is ML-random and of PA degree must be of degree $\geq 0'$.

11.3 Π^0_1 Classes and Measure

Given the measure-theoretic definition of ML-randomness, it is natural to ask about the measure of Π^0_1 classes containing ML-randoms. The following theorem gives a full answer to this question.

Theorem 11.3.1. Let C be a Π_1^0 class. If $\mu(\mathcal{C}) = 0$, then C contains no ML-random sets.

Proof. Suppose C has measure 0. Let $T \subseteq 2^{<\omega}$ be a tree such that $C = [T]$, and for each $n \in \omega$, let $\mathcal{A}_n = [\{\sigma \in T : |\sigma| = n\}]$. Then $\mathcal{A}_0, \mathcal{A}_1, \dots$ is a nested sequence of open classes whose intersection is the measure 0 class C, so it must be that $\lim_{n} \mu(A_n) = 0$. As the sequence $\{A_n\}_{n \in \omega}$ is given by a strong array of finite sets of strings, the map $n \mapsto \mu(\mathcal{A}_n) \in \mathbb{Q}$, the rationals, is computable. Therefore, we can find a computable function p such that $\mu(A_{p(n)}) \leq 2^{-n}$ for all *n*. Now since A_0, A_1, \ldots is uniformly Σ_1^0 , $\mathcal{A}_{p(0)}, \mathcal{A}_{p(1)}, \ldots$ is a Martin-Löf test. But for all $f \in \mathcal{C}, f \in \bigcap_{n \in \omega} \mathcal{A}_{p(n)}$, so f is not ML-random. \Box

Note that we can view this as a generalization of the remark earlier that any computable set is not ML-random beginning with a similar sequence defined by strings of length n .

 \Box

Theorem 11.3.2 (Kucera). Let C be a Π_1^0 class. If $\mu(\mathcal{C}) > 0$, then every ML-random set computes a member of C.

Proof. Suppose $\mathcal C$ has positive measure and let X be a ML-random set. Let V_0 be a prefix-free c.e. subset of $2^{<\omega}$ such that $\overline{\mathcal{C}} = \mathcal{V}_0$. For each $n \in \omega$, let $V_{n+1} = \llbracket \{\sigma \, \hat{\ } \tau : \sigma \in V_n \ \& \ \tau \in V_0 \}$, and let $\mathcal{A}_n = \llbracket V_n \rrbracket$. Notice that for all n, V_n is prefix-free since V_0 is, so we have

$$
\mu(\mathcal{A}_{n+1}) = \sum_{\sigma \in V_{n+1}} 2^{-|\sigma|}
$$

=
$$
\sum_{\sigma \in V_n} \sum_{\tau \in V_0} 2^{-|\sigma \tau|}
$$

=
$$
\sum_{\sigma \in V_n} 2^{-|\sigma|} \sum_{\tau \in V_0} 2^{-|\tau|}
$$

=
$$
\mu(\mathcal{A}_n)\mu(\mathcal{A}_0).
$$

It follows that $\mu(A_n) = \mu(A_0)^{n+1} = \mu(\overline{\mathcal{C}})^{n+1}$, and hence that $\lim_n \mu(A_n) =$ 0 because $\mu(\overline{C}) = 1 - \mu(C) < 1$. Since $\mathcal{A}_0, \mathcal{A}_1, \dots$ is uniformly Σ_1^0 , and the measures $\mu(\mathcal{A}_n)$ converge to zero faster than the (computable) function $p(n) = q^n$, where $q > \mu(\mathcal{A}_0)$ is rational, there is some subsequence of the sequence $\{\mathcal{A}_n\}$ which is a Martin-Löf test. Since X is ML-random, it is not in the intersection of this test, so $X \notin \mathcal{A}_n$ for some least n. If $n = 0$, then $X \notin \overline{\mathcal{C}}$ and hence $X \in \mathcal{C}$. If $n > 0$, since $X \in \mathcal{A}_{n-1}$, we can choose $\sigma \in V_{n-1}$ such that $\sigma \prec X$. Since no $\tau \in V_0$ can satisfy $\sigma \hat{\tau} \prec X$, it follows that $Y = \{x - |\sigma| : x \in X \& x \geq |\sigma| \} \notin \mathcal{A}_0$ as $X = \sigma^{\sim} Y$. Thus, $Y \in \mathcal{C}$, which, since $Y \equiv_T X$, completes the proof. which, since $Y \equiv_T X$, completes the proof.

We saw in Chapter 9 that the PA degrees are precisely those which, for every nonempty Π_1^0 class, bound the degree of a member of that class. The preceding theorem can be seen as saying that the degrees of ML-random sets are precisely the analogues of PA degrees with respect to Π^0_1 classes of positive measure. This is a surprising fact because, in most other settings, the PA degrees and degrees of ML-random sets behave very differently. It is fact that if a set X is both ML-random and of PA degree, then $X \geq_T \emptyset'$ although we do not prove it.

11.4 Randomness and Computable Domination

We conclude by looking at applications of some of the ideas from computable domination to two other notions studied in the area of algorithmic randomness. We begin with the following.

Definition 11.4.1. [Terwijn and Zambella] (i) A set X is *computably traceable* if there is a computable function p such that, for each $f \leq_T X$, there is a computable function h with $|D_{h(n)}| \leq p(n)$ and $f(n) \in D_{h(n)}$ for all n.

(ii) A set X is c.e. traceable if there is a computable function p such that, for each $f \leq_T X$, there is a computable function h with $|W_{h(n)}| \leq p(n)$ and $f(n) \in W_{h(n)}$ for all *n*.

The idea of computably traceable is that there is for any function $f \leq_T X$ a strong array of "boxes" $D_{h(n)}$ such that the value $f(n)$ lies in box $D_{h(n)}$. In addition, there is a single computable function $p(n)$ which uniformly bounds the size of the boxes over all such f . The idea of c.e. traceable is the same except with a weak array $W_{h(n)}$ in place of a strong array. This is the analogous change in weakening h-simple to hh-simple by replacing a strong array by a weak one.

Clearly, every computably traceable set is c.e. traceable, and it can be shown that this implication is strict (see Downey and Hirschfeldt [2010]). On the other hand, the following theorem shows that the reverse implication is true if we restrict ourselves to sets of computably dominated degree.

Theorem 11.4.2 (Kjos-Hanssen, Nies, and Stephan, 2005). If X is a set of computably dominated degree, then X is c.e. traceable if and only if it is computably traceable.

Proof. Let X be a c.e. traceable set of computably dominated degree, and let p be a bound as in Definition [11.4.1](#page-3-0) (ii). Given $f \leq_T X$, let h_0 be a computable function with $|W_{h_0(n)}| \leq p(n)$ and $f(n) \in W_{h_0(n)}$ for all n. Define a function g by

$$
g(n) = (\mu s) [f(n) \in W_{h_0(n),s}],
$$

so that g is total and X-computable. By Theorem 5.6.2 (ii), there exists a computable function h_1 with $h_1(n) \ge g(n)$ for all n. If we define h by letting $h(n)$ be the canonical index of the finite set $W_{h_0(n),h_1(n)}$, we have

$$
|D_{h(n)}| = |W_{h_0(n),h_1(n)}| \le |W_{h_0(n)}| \le p(n)
$$

and $f(n) \in W_{h_0(n),h_1(n)} = D_{h(n)}$. Hence, X is computably traceable. \Box

We obtain a similar result by looking at the following notion of randomness due to Kurtz. In view of Theorem [11.3.1](#page-2-0) (i), it is implied by ML-randomness, and, as above, it can be shown that this implication is strict.

Definition 11.4.3. A Kurtz test is an effective sequence of clopen classes ${A_n}_{n\in\omega}$ such that

$$
(\forall n)[\mu(\mathcal{A}_n) < 2^{-n}].
$$

A set X is Kurtz random or weakly 1-random if it passes every Kurtz test.

Kurtz tests are equivalent to Π_1^0 classes of measure 0 in a uniform way. Therefore, a set X is weakly 1-random iff X avoids all Π_1^0 classes of measure 0 iff X is contained in every Σ_1^0 class of measure 1.

Theorem 11.4.4 (Nies, Stephan, and Terwijn, 2005). If X is a set of computably dominated degree, then X is ML-random if and only if it is weakly 1-random.

Proof. Let X be a set of computably dominated degree which is not 1-random. Let $\mathcal{A}_0, \mathcal{A}_1, \ldots$ be a Martin-Löf test which X does not pass, and let f be a computable function such that $\mathcal{A}_n = \llbracket W_{f(n)} \rrbracket$ for all n. Define a function q by

$$
g(n) = (\mu s)(\exists \sigma \prec X)[\sigma \in W_{f(e),s}],
$$

noting that since $X \in \llbracket W_{f(n)} \rrbracket$ for all n, g is total and X-computable. By Theorem 5.6.2 (ii), there exists a computable function h with $h(n) \ge g(n)$ for all n . Define

$$
\mathcal{C} = \bigcap_{n \in \omega} W_{f(n),h(n)}.
$$

Therefore, \mathcal{C} is a Π_1^0 class with $X \in \mathcal{C}$ and

$$
\mu(\mathcal{C}) \le \mu([\llbracket W_{f(n),h(n)} \rrbracket) \le \mu(S_n) = 2^{-n}
$$

for all *n*. Hence, \overline{C} is a Σ_1^0 class of measure 1 not containing X, so X is not weakly 1-random. \Box

It follows by a result of Kurtz (see [Downey and Hirschfeldt 2010]), that every hyperimmune degree contains a set which is weakly 1-random but not 1-random. Thus, the degrees separating these two randomness notions are *precisely* the hyperimmune degrees.