
11
Randomness and Π0

1-Classes

11.1 Martin-Löf Randomness

In this chapter, we explore some of the relationships between Π0
1 classes,

algorithmic randomness, and computably dominated degrees.
Let µ be the Lebesgue measure on Cantor space, with which we assume

the reader is familiar. For completeness, we define the measure of an open
class A ⊆ 2ω. Let A ⊂ 2<ω be any set with A = [[A]] which is prefix-free
(i.e., if σ ∈ A and τ ≺ σ then τ /∈ A). Alternatively, let A could be the
class of strings σ such that Jσ K ⊆ A and σ is minimal with respect to this
property. Such an A can be seen to exist for example as follows. Since A
is open, its complement is closed and hence is equal to [T ] for some tree
T ⊆ 2<ω (which is not necessarily computable). Then A can be taken to
consist of all elements of T whose predecessors all belong to T . Now the
measure of A is defined as

µ(A) =
∑
σ∈A

2−|σ|.

the Lebesgue measure on Cantor space has all the same properties we
are familiar with from the Lebesgue measure on the real line. Recall that
a sequence of c.e. sets A0, A1, . . . is uniformly c.e. (abbreviated u.c.e.) if
there exists a computable function f such that An = Wf(n) for all n.
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Definition 11.1.1.

1. A sequence A0,A1, . . . of subclasses of 2ω is uniformly (lightface) Σ0
1

if there exists a u.c.e. sequence A0, A1, . . . of subsets of 2<ω such that
An = JAn K for all n.

2. A Martin-Löf (ML) test is a uniformly Σ0
1 sequence A0,A1, . . . of

subclasses of 2ω such that µ(An) ≤ 2−n for all n.

3. A set X ∈ 2ω fails a Martin-Löf test A0,A1, . . . if X ∈
⋂
n∈ω An.

Otherwise, X passes the test.

4. A set X ∈ 2ω is Martin-Löf random (ML-random) if it passes every
Martin-Löf test.

The key point here is that the ML test must be effective in two ways.
The sequence {An}n∈ω must be uniformly c.e., and it must converge com-
putably fast in measure to 0. The intuition is that a non-ML-random set
X is “caught” by an infinite sequence {An}n∈ω which reveals some of its
information even though the measure of

⋂
n{An} is effectively 0. For ex-

ample, if the set X is computable then it is non-ML-random because it
fails the ML test in which An = JX � n K. Schnorr proved that a set is
ML-random iff it is 1-random, a closely related concept, so one may use
the terms interchangeably.

11.2 A Π0
1 Class of ML-Randoms

A Martin-Löf test A0,A1, . . . is called universal if
⋂
n∈ω An ⊇

⋂
n∈ω Bn for

every other Martin-Löf test B0,B1, . . .. Thus, if X passes a universal test,
it must pass every test, and hence⋂

n∈ω
An = { X ∈ 2ω : X is not ML-random }.

This is a (lightface) Π0
2 class and therefore an effective analogue of the (bold-

face) Π0
2 classes (i.e., Gδ classes) such as those we studied in Chapter 8,

and which we shall study in the Banach-Mazur theorem in Chapter 14.
The following theorem is thus useful when trying to show that a given

set is not ML-random.

Theorem 11.2.1 (Martin-Löf, 1966). There exists a universal Martin-Löf
test.

Proof. Let {V 0
n }n∈ω, {V 1

n }n∈ω, . . . be an effective listing of all uniformly
c.e. subsets of 2<ω. Let Ben = JV en K where we stop enumerating if the
measure exceeds 2−n. Then {Ben}n∈ω for e ∈ ω lists all ML tests. Define
An = Bee+n+1. Then the {An} are uniformly c.e. and µ(An) ≤ 2−n.

µ(An) = Σe µ(Ben+e+1) ≤ Σe 2−n+e+1 = 2−n.
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Therefore, {An}n∈ω is a universal ML test.

Notice that this implies that the class of ML-randoms has measure 1.
Indeed, each member of a universal Martin-Löf test U0, U1, . . . is an open
set covering {X ∈ 2ω : X is not ML-random}, implying that

µ({X ∈ 2ω : X is not ML-random}) ≤ µ(Un) ≤ 2−n

for all n. Essentially the same argument, in reverse, yields the following:

Corollary 11.2.2. (F. Stephan) There is a nonempty Π0
1 class all of whose

elements are ML-random.

Proof. Let U0, U1, . . . be a universal Martin-Löf test. For every n > 0, Un
is a proper Σ0

1 subclass of 2ω, implying that Un is a nonempty Π0
1 class. By

the definition of a universal Martin-Löf test,

Un ⊆
⋃
n∈ω

Un =
⋂
n∈ω

Un = {X ∈ 2ω : X is ML-random},

as desired.

From this and the various basis theorems in Chapter 9, we can conclude
that there are ML-random sets which are of c.e. degree, hyperimmune-free
(computably dominated), low, even superlow, and of PA degree. However,
any set which is ML-random and of PA degree must be of degree ≥ 0′.

11.3 Π0
1 Classes and Measure

Given the measure-theoretic definition of ML-randomness, it is natural to
ask about the measure of Π0

1 classes containing ML-randoms. The following
theorem gives a full answer to this question.

Theorem 11.3.1. Let C be a Π0
1 class. If µ(C) = 0, then C contains no

ML-random sets.

Proof. Suppose C has measure 0. Let T ⊆ 2<ω be a tree such that C = [T ],
and for each n ∈ ω, let An = [[{σ ∈ T : |σ| = n}]]. Then A0,A1, . . . is a
nested sequence of open classes whose intersection is the measure 0 class
C, so it must be that limn µ(An) = 0. As the sequence {An}n∈ω is given
by a strong array of finite sets of strings, the map n 7→ µ(An) ∈ Q, the
rationals, is computable. Therefore, we can find a computable function p
such that µ(Ap(n)) ≤ 2−n for all n. Now since A0,A1, . . . is uniformly Σ0

1,
Ap(0),Ap(1), . . . is a Martin-Löf test. But for all f ∈ C, f ∈

⋂
n∈ω Ap(n), so

f is not ML-random.

Note that we can view this as a generalization of the remark earlier that
any computable set is not ML-random beginning with a similar sequence
defined by strings of length n.
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Theorem 11.3.2 (Kucera). Let C be a Π0
1 class. If µ(C) > 0, then every

ML-random set computes a member of C.

Proof. Suppose C has positive measure and let X be a ML-random set. Let
V0 be a prefix-free c.e. subset of 2<ω such that C = [[V0]]. For each n ∈ ω,
let Vn+1 = [[{σ̂τ : σ ∈ Vn & τ ∈ V0}, and let An = [[Vn]]. Notice that for
all n, Vn is prefix-free since V0 is, so we have

µ(An+1) =
∑
σ∈Vn+1

2−|σ|

=
∑
σ∈Vn

∑
τ∈V0

2−|στ |

=
∑
σ∈Vn

2−|σ|
∑
τ∈V0

2−|τ |

= µ(An)µ(A0).

It follows that µ(An) = µ(A0)n+1 = µ(C)n+1, and hence that limn µ(An) =
0 because µ(C) = 1− µ(C) < 1. Since A0,A1, . . . is uniformly Σ0

1, and the
measures µ(An) converge to zero faster than the (computable) function
p(n) = qn, where q > µ(A0) is rational, there is some subsequence of the
sequence {An} which is a Martin-Löf test. Since X is ML-random, it is
not in the intersection of this test, so X /∈ An for some least n. If n = 0,
then X /∈ C and hence X ∈ C. If n > 0, since X ∈ An−1, we can choose
σ ∈ Vn−1 such that σ ≺ X. Since no τ ∈ V0 can satisfy σ̂τ ≺ X, it follows
that Y = {x − |σ| : x ∈ X & x ≥ |σ|} /∈ A0 as X = σ̂Y . Thus, Y ∈ C,
which, since Y ≡T X, completes the proof.

We saw in Chapter 9 that the PA degrees are precisely those which, for
every nonempty Π0

1 class, bound the degree of a member of that class. The
preceding theorem can be seen as saying that the degrees of ML-random
sets are precisely the analogues of PA degrees with respect to Π0

1 classes of
positive measure. This is a surprising fact because, in most other settings,
the PA degrees and degrees of ML-random sets behave very differently. It
is fact that if a set X is both ML-random and of PA degree, then X ≥T ∅′
although we do not prove it.

11.4 Randomness and Computable Domination

We conclude by looking at applications of some of the ideas from com-
putable domination to two other notions studied in the area of algorithmic
randomness. We begin with the following.

Definition 11.4.1. [Terwijn and Zambella] (i) A setX is computably trace-
able if there is a computable function p such that, for each f ≤T X, there
is a computable function h with |Dh(n)| ≤ p(n) and f(n) ∈ Dh(n) for all n.
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(ii) A set X is c.e. traceable if there is a computable function p such that,
for each f ≤T X, there is a computable function h with |Wh(n)| ≤ p(n)
and f(n) ∈Wh(n) for all n.

The idea of computably traceable is that there is for any function f ≤T X
a strong array of “boxes” Dh(n) such that the value f(n) lies in box Dh(n).
In addition, there is a single computable function p(n) which uniformly
bounds the size of the boxes over all such f . The idea of c.e. traceable is
the same except with a weak array Wh(n) in place of a strong array. This
is the analogous change in weakening h-simple to hh-simple by replacing a
strong array by a weak one.

Clearly, every computably traceable set is c.e. traceable, and it can be
shown that this implication is strict (see Downey and Hirschfeldt [2010]).
On the other hand, the following theorem shows that the reverse implication
is true if we restrict ourselves to sets of computably dominated degree.

Theorem 11.4.2 (Kjos-Hanssen, Nies, and Stephan, 2005). If X is a set
of computably dominated degree, then X is c.e. traceable if and only if it is
computably traceable.

Proof. Let X be a c.e. traceable set of computably dominated degree, and
let p be a bound as in Definition 11.4.1 (ii). Given f ≤T X, let h0 be a
computable function with |Wh0(n)| ≤ p(n) and f(n) ∈ Wh0(n) for all n.
Define a function g by

g(n) = (µs)[ f(n) ∈Wh0(n),s ],

so that g is total and X-computable. By Theorem 5.6.2 (ii), there exists
a computable function h1 with h1(n) ≥ g(n) for all n. If we define h by
letting h(n) be the canonical index of the finite set Wh0(n),h1(n), we have

|Dh(n)| = |Wh0(n),h1(n)| ≤ |Wh0(n)| ≤ p(n)

and f(n) ∈Wh0(n),h1(n) = Dh(n). Hence, X is computably traceable.

We obtain a similar result by looking at the following notion of ran-
domness due to Kurtz. In view of Theorem 11.3.1 (i), it is implied by
ML-randomness, and, as above, it can be shown that this implication is
strict.

Definition 11.4.3. A Kurtz test is an effective sequence of clopen classes
{An}n∈ω such that

(∀n)[ µ(An) < 2−n ].

A set X is Kurtz random or weakly 1-random if it passes every Kurtz test.

Kurtz tests are equivalent to Π0
1 classes of measure 0 in a uniform

way. Therefore, a set X is weakly 1-random iff X avoids all Π0
1 classes

of measure 0 iff X is contained in every Σ0
1 class of measure 1.
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Theorem 11.4.4 (Nies, Stephan, and Terwijn, 2005). If X is a set of
computably dominated degree, then X is ML-random if and only if it is
weakly 1-random.

Proof. Let X be a set of computably dominated degree which is not
1-random. Let A0,A1, . . . be a Martin-Löf test which X does not pass,
and let f be a computable function such that An = JWf(n) K for all n.
Define a function g by

g(n) = (µs)(∃σ ≺ X)[ σ ∈Wf(e),s ],

noting that since X ∈ JWf(n) K for all n, g is total and X-computable. By
Theorem 5.6.2 (ii), there exists a computable function h with h(n) ≥ g(n)
for all n. Define

C =
⋂
n∈ω

Wf(n), h(n).

Therefore, C is a Π0
1 class with X ∈ C and

µ(C) ≤ µ([[Wf(n),h(n)]]) ≤ µ(Sn) = 2−n

for all n. Hence, C is a Σ0
1 class of measure 1 not containing X, so X is not

weakly 1-random.

It follows by a result of Kurtz (see [Downey and Hirschfeldt 2010]), that
every hyperimmune degree contains a set which is weakly 1-random but
not 1-random. Thus, the degrees separating these two randomness notions
are precisely the hyperimmune degrees.
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