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Peano Arithmetic and Π0

1-Classes

10.1 Logical Background

One of the earliest purposes of computability theory was the study of log-
ical systems and theories. We consider theories in a computable language:
one which is countable, and whose function, relation, and constant sym-
bols and their arities are effectively given. We also assume that languages
come equipped with an effective coding for formulas and sentences in the
languages, i.e., a Gödel numbering, and identify sets of formulas with the
corresponding set of Gödel numbers. We can then speak of the Turing
degree of a theory in a computable language. Here we will examine the
language L = {+, ·, <, 0, 1} of arithmetic, and theories extending PA, the
theory of Peano arithmetic.

Definition 10.1.1. Let DPA be the set of (Turing) degrees of complete
consistent extensions of Peano arithmetic; such a degree is called a PA
degree.

The following is surely the best known theorem in mathematical logic.

Theorem 10.1.2 (Gödel, 1931; Rosser, 1936).

1. The theory of Peano arithmetic is incomplete.

2. Furthermore, any consistent computably axiomatizable extension of
PA is also incomplete.

Corollary 10.1.3. 0 /∈ DPA.
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Thus, there is no complete consistent extension of PA which is com-
putable. However, there are many ways to extend PA to a complete theory,
and we can think of them as paths on a computable tree. We identify
a completion of Peano Arithmetic with the set of Gödel numbers of its
sentences.

10.2 Π0
1 Classes and Completions of Theories

Theorem 10.2.1. There exists a Π0
1 class whose members are precisely

the completions of Peano Arithmetic. Thus, DPA is the degree spectrum of
a Π0

1 class.

Proof. (Sketch). Fix a bijective Gödel numbering G : ω → SentL for
sentences of arithmetic. Given σ ∈ 2<ω, we identify σ with the sentence

θ(σ) =
∧

σ(i)=1

G(i) &
∧

σ(j)=0

¬G(j).

We say that a sentence θ “appears to be consistent at stage t” if there is
no derivation of ¬θ from the first t axioms of PA in fewer than t lines.
Since there are finitely many such derivations, the relation R(σ, t) = “θ(σ)
appears to be consistent at stage t” is computable. Therefore, the class

C = { f ∈ 2ω : (∀n)(∀t < n)R(f � t, n) }

is a Π0
1 class. Some f is an element of this class if and only if the cor-

responding set of sentences G({n : f(n) = 1}) is a complete consistent
extension of PA.

Remark 10.2.2. This theorem follows from an analysis of Lindenbaum’s
Lemma. Note that no special properties of PA were used, beyond the fact
that it is a computably axiomatizable theory in a computable language.
Therefore, the same theorem applies to all such theories.

Lindenbaum’s Lemma says that a consistent theory T has a complete
consistent extension. This follows by the Compactness Theorem.

We defined a PA degree as a degree of a completion of Peano Arithmetic.
From this definition, it may be surprising that the class of degrees is closed
upwards. This is true, however, and to demonstrate it we need an impor-
tant fact arising from Gödel’s incompleteness theorem: the proof actually
constructs a “Gödel sentence” which is independent of the axioms.

Theorem 10.2.3 (Gödel’s Incompleteness Theorem, effective version).

From a description of a consistent, computably axiomatizable theory T ex-
tending PA, we can effectively find a sentence, called the Gödel-Rosser
sentence of T , which is independent of T .
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10.3 Equivalent Properties of PA Degrees

The PA degrees arise naturally in a variety of contexts, especially those
relating to trees and weak König’s lemma. This is because the PA degrees
are exactly those degrees which can achieve weak König’s lemma by finding
paths through trees. For this reason, there are several equivalent properties
which all serve to define the PA degrees. We shall highlight a few of these
properties.

Definition 10.3.1. A function f : ω → ω is diagonally noncomputable
(d.n.c.) if, for all e, if ϕe(e)↓ , then f(e) 6= ϕe(e).

Recall that up to Turing degree this is equivalent to f being fixed point
free by Exercise 5.4.5.

Definition 10.3.2. A function is n-valued if f(e) < n for each e ∈ ω.

The term “diagonally noncomputable” derives from the particular way
that d.n.c. functions are noncomputable. We see that if f is d.n.c., f cannot
be computable, because then f would be ϕe for some e, but f and ϕe
differ on argument e; thus d.n.c. functions diagonalize against the list of all
(partial) computable functions. We will be primarily interested in 2-valued
d.n.c. functions.

Theorem 10.3.3 (Scott, 1962; Jockusch and Soare, 1972b; Solovay,
unpublished). 1

For a Turing degree d, the following are equivalent:
(i) d is the degree of a complete consistent extension of Peano

arithmetic.
(ii) d computes a complete consistent extension of Peano arithmetic.
(iii) d computes a 2-valued d.n.c. function.
(iv) Every partial computable 2-valued function has a total d-computable

2-valued extension.
(v) Every nonempty Π0

1 class has a member of degree at most d.
(vi) Every computably inseparable pair has a separating set of degree at

most d.

Proof. (i) =⇒ (ii). This implication is trivial.

(ii) =⇒ (iii). Let d compute a complete consistent extension T of PA,
and let f be the (partial computable) diagonal function f(e) = ϕe(e). By
results of Gödel and Kleene, there is a formula ψ representing f , in the

1In 1962 Scott proved the equivalence of conditions (i) and (v). In 1972b Jockusch

and Soare proved the equivalence of conditions (ii) and (vi); the equivalence with (iii)
and (iv) is also implicit in their work. Jockusch and Soare left the equivalence of (i) and

(ii) as an open question, which was answered by Solovay (unpublished).
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sense that

f(x)↓= y ⇐⇒ PA ` ψ(x, y), and

f(x)↓ 6= y ⇐⇒ PA ` ¬ψ(x, y).

Since PA ` ψ(x, y) implies that ψ(x, y) ∈ T , and T is complete and
d-computable, the function

f̂(e) =

{
1 ψ(e, 0) ∈ T
0 ¬ψ(e, 0) ∈ T

is a d-computable 2-valued d.n.c. function.

(iii) =⇒ (iv). Suppose g is a 2-valued d.n.c. function, and let f be a partial

computable 2-valued function. There is a computable function f̂ such that
f(x) = ϕf̂(x)(f̂(x)) for all x. Then 1 − (g ◦ f̂) is a total d-computable

2-valued function extending f .

(iv) =⇒ (v). Let P be a nonempty Π0
1 class, and T a computable tree

with P = [T ]. Fix a computable bijection h : ω → 2<ω. Let f be the
function

f(e) =


0

h(e) ∈ T and there is a level l such that h(e)̂0

has a descendent at level l in T , but h(e)̂1 does not

1
h(e) ∈ T and there is a level l such that h(e)̂1

has a descendent at level l in T , but h(e)̂0 does not.

This function f is partial computable, since to compute f(e) one simply
searches for a level l such that one case or the other holds. If h(e) ∈ T is
extendible, then either both h(e)̂0 and h(e)̂1 are extendible, in which

case f(e) ↑ , or only one is, so f(e) ↓ , and h(e)̂f(e) is extendible. Let f̂

be a 2-valued d-computable extension of f . Then using f̂ , we can find an
element of [T ] as follows: starting with any string σ ∈ T ext, apply f̂ ◦ h−1
to get either 0 or 1, which we can append to σ to get a longer string still
in T ext. Starting with the empty string, we can iterate this process to get
an infinite d-computable path through [T ], i.e., an element of P.

(v) =⇒ (vi). If A,B is a computably inseparable pair, the class of
separating sets is a Π0

1 class by Theorem 9.3.2. If property (v) holds, this
has a d-computable member.

(vi) =⇒ (i). Fix some order of L-sentences, and some order for generating
proofs. Let A be the set of pairs (F,ψ), where F is a finite set of L-sentences
and ψ is an L-sentence, such that a proof of a contradiction is found from
PA ∪ F ∪ {ψ} before (if ever) finding a proof of a contradiction from PA∪
F ∪ {¬ψ}. Similarly, let B be the set of pairs (F,ψ), such that a proof of
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contradiction is found from PA∪F ∪{¬ψ} before (if ever) finding one from
PA∪F ∪{ψ}. Clearly A and B are disjoint c.e. sets. Suppose the pair A,B
has a d-computable separating set C. Let D ∈ d. We shall construct a
completion T of PA, of degree d, in stages, along with a bijective function
g : ω → SentL, also defined in stages. At stage n we shall determine g(n),
and decide whether g(n) ∈ T . Define the set of sentences,

Fn = (T ∩ g[0 . . . n− 1]) ∪ {¬ψ : ψ ∈ g[0 . . . n− 1] \ T}.

In other words, Fn keeps track of every sentence we decided by the begin-
ning of stage n. It contains those sentences we have declared to be in T ,
together with the negations of those sentences we have declared not to be
in T . At stage n, do the following:

1. If n is even, let g(n) be the Gödel sentence of PA ∪ Fn. If n is odd, let
g(n) be the first L-sentence not yet in the range of g.

2. If n = 2s is even, consider whether s is an element of D. If s ∈ D, then
g(n) ∈ T ; otherwise, g(n) /∈ T .

3. If n is odd, consider the pair (Fn, g(n)). If this pair is in C, then g(n) /∈ T ;
otherwise, g(n) ∈ T .

We shall show that T is a complete consistent extension of PA, of degree
d. Assume (for the sake of induction) that Fn is consistent with PA. (Since
F0 = ∅, it is consistent with PA.) Note that Fn+1 is either Fn∪{g(n)} or else
Fn∪{¬g(n)}. Since Fn is consistent with PA, at least one of Fn∪{g(n)} and
Fn∪{¬g(n)}must be consistent with PA. Furthermore, if n is even, both are
consistent since g(n) is the Gödel sentence for PA∪Fn. If both are consistent
with PA, then clearly Fn+1 is as well. Suppose instead only one of the two is
consistent (so we know n is odd). If only Fn∪{g(n)} is consistent with PA,
then a proof of contradiction will be found from PA∪Fn ∪{¬g(n)} before
finding one from PA∪Fn∪{g(n)}, so (Fn, g(n)) ∈ B. Thus (Fn, g(n)) /∈ C;
by the construction, g(n) ∈ T , and Fn+1 is consistent with PA. Similarly,
if only Fn ∧ ¬g(n) is consistent with PA, then the construction goes the
opposite way and again Fn+1 is consistent with PA. By induction, Fn is
consistent with PA for all n, so T =

⋃
n Fn is consistent with PA. Since Fn

decides g(0) . . . g(n−1), T is complete. Therefore, T is a complete consistent
extension of PA.

In order to show that T has degree d, we first show that g ≤T T . To
see this, note that g(n) is either the first L-sentence which is not one of
g(0) . . . g(n− 1), if n is odd, or else g(n) is the Gödel sentence of PA ∪ Fn,
where Fn is determined entirely by T and the values g(0) . . . g(n−1). Thus
g(n) can be computed from n, g(0) . . . g(n − 1), and T , so g ≤T T . From
the construction, we see that s ∈ D if and only if g(2s) ∈ T , so we have
D ≤T g⊕ T ≤T T . However, the entire construction was d-computable, so
T ∈ d.
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