

Lecture Notes in Computer Science 7259
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Howon Kim (Ed.)

Information Security
and Cryptology –
ICISC 2011
14th International Conference
Seoul, Korea, November 30 – December 2, 2011
Revised Selected Papers

13

Volume Editor

Howon Kim
Pusan National University
(A06) 6503 School of Computer Science
and Engineering
San-30, JangJeon-Dong, GeumJeong-Gu
Busan, 609-735, South Korea
E-mail: howonkim@pusan.ac.kr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31911-2 e-ISBN 978-3-642-31912-9
DOI 10.1007/978-3-642-31912-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012941979

CR Subject Classification (1998): E.3, K.6.5, C.2, D.4.6, G.2.1, E.4, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

ICISC 2011, the 14th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during November 30 – December 2, 2011.
It was organized by the Korea Institute of Information Security and Cryptology
(KIISC).

The aim of this conference was to create a forum for the dissemination of the
latest results in research, development, and applications in the field of informa-
tion security, and cryptology. The conference received 126 submissions from 29
countries, covering all areas of information security and cryptology. The review
and selection processes were carried out in two stages by the Program Committee
(PC) of 52 prominent experts via the Springer OCS. First, each paper was blind
reviewed by at least three PC members. Second, for resolving conflicts on each
reviewer’s decision, individual review reports were revealed to PC members, and
detailed interactive discussion on each paper followed. Through this process, the
PC finally selected 32 papers from 10 countries.

The acceptance rate was 25.4%. For the LNCS proceedings, the authors of
selected papers had a few weeks to prepare for their final versions based on the
comments received from the reviewers. The conference featured two invited talks
delivered by Thomas Peyrin from Nanyang Technological University and Atsuko
Miyaji from Japan Advanced Institute of Science and Technology.

Many people have contributed to the organization of ICISC 2011 and the
preparation of this volume. We would like to thank all the authors who submitted
papers to this conference. We are deeply grateful to all 52 members of the PC.
It was a truly nice experience to work with such talented and hard-working
researchers. We wish to thank all the external reviewers for assisting the PC in
their particular areas of expertise.

Finally, we would like to thank all the participants of the conference who made
this event an intellectually stimulating one through their active contribution and
all Organizing Committee members who nicely managed the conference.

November 2011 Howon Kim

ICISC 2011 Organization

General Chair

Heung-Youl Youm Soon-Chun-Hyang University, Korea

Organizing Chair

Sang-Choon Kim Kangwon National University, Korea

Program Chair

Howon Kim Pusan National University, Korea

Steering Committee

Man Young Rhee Kyunghee University, Korea
Pil Joong Lee Pohang University, Korea
Dongho Won Sungkyunkwan University, Korea
Ju Seok Song Yonsei University, Korea
Koji Nakao National Institute of Information and

Communications Technology, Japan

Program Committee

Joonsang Baek KUSTAR, UAE
Alex Biryukov University of Luxembourg, Luxembourg
Jung Hee Cheon Seoul National University, Korea
Dooho Choi ETRI, Korea
Yongwha Chung Korea University, Korea
Frëdëric Cuppens Telecom Bretagne, France
Paolo D’Arco University of Salerno, Italy
Bart De Decker K.U. Leuven, Belgium
David Galindo University of Luxembourg, Luxembourg
Louis Granboulan EADS Innovation Works, France
Matthew Green Johns Hopkins University, USA
Johann Großschädl University of Luxembourg, Luxembourg
JaeCheol Ha Hoseo University, Korea
Dong-Guk Han Kookmin University, Korea
Martin Hell Lund University, Sweden
Seokhie Hong Korea University, Korea
Jin Hong Seoul National University, Korea

VIII ICISC 2011 Organization

Jung Yeon Hwang ETRI, Korea
David Jao University of Waterloo, Canada
Ju-Sung Kang Kookmin University, Korea
Ji Hye Kim Seoul National University, Korea
Seungjoo Kim Korea University, Korea
Taekyoung Kwon Sejong University, Korea
Im-Yeong Lee Soonchunyang University, Korea
Mun-Kyu Lee Inha University, Korea
Pil Joong Lee POSTECH, Korea
Mark Manulis TU Darmstadt and CASED, Germany
Keith Martin University of London, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Atsuko Miyaji JAIST, Japan
Jose A. Montenegro Universidad de Malaga, Spain
Kirill Morozov Kyushu University, Japan
David Naccache ENS DI, France
Rolf Oppliger eSECURITY Technologies, Switzerland
Omkant Pandey Microsoft, USA and India
Raphael C.-W. Phan Loughborough University, UK
Bimal Roy Indian Statistical Institute, India
Ahmad-Reza Sadeghi Technische Universität Darmstadt, Germany
Kouichi Sakurai Kyushu University, Japan
Palash Sarkar Indian Statistical Institute, India
Kyung-Ah Shim NIMS, Korea
Sang-Uk Shin Pukyong National University, Korea
Rainer Steinwandt Florida Atlantic University, USA
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Yukiyasu Tsunoo NEC Corp., Japan
Jorge Villar Universitat Politecnica de Catalunya, Spain
Rijmen Vincent Katholieke University Leuven
Jeong Hyun Yi Soongsil University, Korea
Dae Hyun Yum POSTECH, Korea
Jianying Zhou Institute for Infocomm Research, Singapore
Jehong Park ETRI, Korea

Sponsored by

National Security Research Institute (NSRI)
Electronics and Telecommunications Research Institute (ETRI)
Korea Internet & Security Agency (KISA)
Ministry of Public Administration and Security (MOPAS)

Table of Contents

Hash Function I

Improved Integral Analysis on Tweaked Lesamnta . 1
Yu Sasaki and Kazumaro Aoki

Analysis of Trivium Using Compressed Right Hand Side Equations 18
Thorsten Ernst Schilling and H̊avard Raddum

Cryptanalysis of Round-Reduced HAS-160 . 33
Florian Mendel, Tomislav Nad, and Martin Schläffer

Side Channel Analysis I

An Efficient Method for Eliminating Random Delays in Power Traces
of Embedded Software . 48

Daehyun Strobel and Christof Paar

An Efficient Leakage Characterization Method for Profiled Power
Analysis Attacks . 61

Hailong Zhang, Yongbin Zhou, and Dengguo Feng

Correcting Errors in Private Keys Obtained from Cold Boot Attacks . . . 74
Hyung Tae Lee, HongTae Kim, Yoo-Jin Baek, and Jung Hee Cheon

Public Key Cryptography

Strong Security Notions for Timed-Release Public-Key Encryption
Revisited . 88

Ryo Kikuchi, Atsushi Fujioka, Yoshiaki Okamoto, and Taiichi Saito

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 109
Song Luo, Qingni Shen, and Zhong Chen

Network and Mobile Security

Detecting Parasite P2P Botnet in eMule-like Networks through
Quasi-periodicity Recognition . 127

Yong Qiao, Yuexiang Yang, Jie He, Bo Liu, and Yingzhi Zeng

AutoDunt: Dynamic Latent Dependence Analysis for Detection of Zero
Day Vulnerability . 140

Kai Chen, Yifeng Lian, and Yingjun Zhang

X Table of Contents

Digital Signature

Weaknesses in Current RSA Signature Schemes . 155
Juliane Krämer, Dmitry Nedospasov, and Jean-Pierre Seifert

Back Propagation Neural Network Based Leakage Characterization
for Practical Security Analysis of Cryptographic Implementations 169

Shuguo Yang, Yongbin Zhou, Jiye Liu, and Danyang Chen

Side Channel Analysis II

A Revocable Group Signature Scheme with the Property of Hiding
the Number of Revoked Users . 186

Keita Emura, Atsuko Miyaji, and Kazumasa Omote

Generic Constructions for Verifiable Signcryption . 204
Laila El Aimani

Non-delegatable Strong Designated Verifier Signature on Elliptic
Curves . 219

Haibo Tian, Xiaofeng Chen, Zhengtao Jiang, and Yusong Du

Cryptanalysis

An Improved Known Plaintext Attack on PKZIP Encryption
Algorithm . 235

Kyung Chul Jeong, Dong Hoon Lee, and Daewan Han

Synthetic Linear Analysis: Improved Attacks on CubeHash
and Rabbit . 248

Yi Lu, Serge Vaudenay, Willi Meier, Liping Ding, and
Jianchun Jiang

On the Resistance of Boolean Functions against Fast Algebraic
Attacks . 261

Yusong Du, Fangguo Zhang, and Meicheng Liu

CCA Secure IB-KEM from the Computational Bilinear Diffie-Hellman
Assumption in the Standard Model . 275

Yu Chen, Liqun Chen, and Zongyang Zhang

Efficient Implementation

Design, Implementation, and Evaluation of a Vehicular Hardware
Security Module . 302

Marko Wolf and Timo Gendrullis

Table of Contents XI

Efficient Modular Exponentiation-Based Puzzles for Denial-of-Service
Protection . 319

Jothi Rangasamy, Douglas Stebila, Lakshmi Kuppusamy,
Colin Boyd, and Juan Gonzalez Nieto

Implementing Information-Theoretically Secure Oblivious Transfer
from Packet Reordering . 332

Paolo Palmieri and Olivier Pereira

Hash Function II

Compression Functions Using a Dedicated Blockcipher for Lightweight
Hashing . 346

Shoichi Hirose, Hidenori Kuwakado, and Hirotaka Yoshida

Biclique Attack on the Full HIGHT . 365
Deukjo Hong, Bonwook Koo, and Daesung Kwon

Preimage Attacks on Step-Reduced SM3 Hash Function 375
Jian Zou, Wenling Wu, Shuang Wu, Bozhan Su, and Le Dong

Cryptographic Application

Breaking a 3D-Based CAPTCHA Scheme . 391
Vu Duc Nguyen, Yang-Wai Chow, and Willy Susilo

Multi-User Keyword Search Scheme for Secure Data Sharing
with Fine-Grained Access Control . 406

Fangming Zhao, Takashi Nishide, and Kouichi Sakurai

Reaction Attack on Outsourced Computing with Fully Homomorphic
Encryption Schemes . 419

Zhenfei Zhang, Thomas Plantard, and Willy Susilo

A Blind Digital Image Watermarking Method Based on the Dual-Tree
Complex Discrete Wavelet Transform and Interval Arithmetic 437

Teruya Minamoto and Ryuji Ohura

Cryptographic Protocol

On the Communication Complexity of Reliable and Secure Message
Transmission in Asynchronous Networks . 450

Ashish Choudhury and Arpita Patra

XII Table of Contents

Two-Party Round-Optimal Session-Policy Attribute-Based
Authenticated Key Exchange without Random Oracles 467

Kazuki Yoneyama

Sufficient Condition for Identity-Based Authenticated Key Exchange
Resilient to Leakage of Secret Keys . 490

Atsushi Fujioka and Koutarou Suzuki

Author Index . 511

Improved Integral Analysis

on Tweaked Lesamnta

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

{sasaki.yu,aoki.kazumaro}@lab.ntt.co.jp

Abstract. In this paper, we show a known-key (middletext) distin-
guisher on the internal block cipher of tweaked Lesamnta reduced to 31
(out of 32) rounds, which is one of the hash functions submitted to the
SHA-3 competition. Moreover, we present a distinguisher for full internal
block cipher of Lesamnta with stronger assumption. Although Lesamnta
was not chosen for the second round, for its tweaked version, all previous
cryptanalysis can work no more than 24 rounds. We search for a new
integral characteristic for the internal block cipher, and discover a 19-
round integral characteristic for forward direction. We then search for an
integral characteristic for backward direction, and the characteristics can
be combined to full rounds with some assumption. The distinguisher for
the internal block cipher of Lesamnta-256 requires 2192 query complexity
and negligible memory. This is the best attack on Lesamnta compression
function and its internal block cipher after the tweak.

Keywords: integral attack, middletext distinguisher, known-key,
chosen-key, Lesamnta, hash, SHA-3.

1 Introduction

Hash functions are one of the most basic primitives used in many applications.
After the discovery of real collision pairs for MD5 and collision attacks for SHA-1
by Wang et al. [1,2], cryptographers are seeking for secure and efficient hash
functions. Based on these backgrounds, NIST started the SHA-3 competition
which determines a new hash function standard [3].

In October 2008, 51 algorithms were accepted by NIST as the first round can-
didates for the SHA-3 competition. In August 2009, 15 algorithms were chosen
for the second round, and in December 2010, 5 algorithms were chosen for the
third round. Lesamnta, which was proposed by Hirose et al. [4], is one of the
first round candidates but was not chosen for the second round.

Although it has already been out of the SHA-3 competition, Lesamnta has var-
ious interesting properties such as the efficiency in the hardware implementation
and the security. In fact, Lesamnta-LW [5], which is a successor of Lesamnta
and was proposed at ICISC 2010, has been designed and published recently.
Therefore, even if the analysis on Lesamnta does not give any impact to the

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 1–17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 Y. Sasaki and K. Aoki

SHA-3 competition, Lesamnta is still an interesting and useful research target.
We believe that its security evaluation will contribute to the future hash function
design.

Lesamnta has a narrow-pipe Merkle-Damg̊ard structure and its compression
function consists of an internal block-cipher with the Matyas-Meyer-Oseas mode
[6, Algorithm 9.41]. The internal block-cipher uses a generalized Feistel structure
with 4 branches, and consists of 32 rounds. Lesamnta has a provable security
from several viewpoints. Most of the case, the provable security including the
security proof of MMO mode is based on the ideal behavior of the internal block-
cipher. Therefore, analyzing the internal block-cipher and discovering non-ideal
properties1 is an important work to know the security margin of the tweaked
version of Lesamnta.

For the original version of Lesamnta, Bouillaguet et al. found a distinguish-
ing attack on the full-rounds of the internal block-cipher and a pseudo-collision
attack on the full-rounds of Lesamnta [7]. After that, designers of Lesamnta
proposed a tweak [8] which made these attacks invalid. Several attacks can still
work for the tweaked version of Lesamnta. For example, collision and preimage
attacks for 16 rounds of Lesamnta proposed by Mendel in the submission docu-
ment [4] can still work. The current best attack is the one using the cancellation
property proposed by Bouillaguet et al. [9] which finds collisions and preimages
for 24 rounds of Lesamnta. Moreover, the full version of the paper proposes a
key-recovery attack on the internal block-cipher reduced to 21 rounds using an
integral characteristic with the cancellation property [10].

The integral attack2, which is the main object we study in this paper, is a
cryptanalytic technique for symmetric-key primitives proposed by Daemen et
al. [11]. Then, Knudsen and Rijmen applied the integral attack for AES [12,13]
in the known-key attack model [14]. They showed that integral characteristics
in the forward direction and the backward direction can be combined together
in the known-key model. Afterwards, Minier et al. proposed the middletext dis-
tinguisher to formalize a part of known-key model [15]. Their middletext dis-
tinguisher is easy to understand the known-key attack with combined integral
characteristics.

The designers of Lesamnta evaluated its security against the integral attack
[4, Sect. 12.6.3]. They showed a 19-round integral characteristic (in forward
direction) for the internal block-cipher of Lesamnta, and demonstrated a 20-
round key-recovery attack in the secret-key model with a complexity of 2253.7

decryptions. However, Bouillaguet et al. showed that their integral characteristic
was flawed [10]. In the submission document, the designers also evaluated the
resistance against known-key attacks [4, Sect. 12.6.4], and showed that 12 rounds
could be distinguished in the known-key setting.

1 Actually, the security proof may be fixed without the ideal property of the inter-
nal block cipher and with the discovered non-ideal property. However, we cannot
determine whether or not the target is secure until a new proof is made.

2 The integral attack is sometimes referred to as Square attack, saturation attack,
or multi-set analysis.

Improved Integral Analysis on Tweaked Lesamnta 3

Table 1. Summary of attacks for tweaked version of Lesamnta-256

Attack Rounds Attack setting Complexity/Query Ref.

Collision 24 Comp. Func. 2112 [9]
Second Pre. 24 Comp. Func. 2240 [9]
Integral KR 20† Internal BC (secret-key) 2253.7 [4]
Integral KR 21 Internal BC (secret-key) 2192 [10]

Integral Dist. 31 Internal BC (middletext) 2192 Ours

Integral Dist. 32(Full) Internal BC
(middletext with 64-bit

key restriction)
2192 Ours

†: The impacts of the correction for the integral characteristic is not considered.
Pre, KR, Dist., Comp. Func., and BC represent Preimage, Key Recovery, Distinguisher,
Compression Function, and Block-Cipher, respectively.
For all attacks, the above complexity/query is for Lesamnta-256. They can also be
applied to Lesamnta-512 with additional complexity/query.

Our Contributions

In this paper, we investigate the security of the internal block-cipher for the
tweaked version of Lesamnta. We first search for a longest integral
characteristic for the forward and the backward directions, because the inte-
gral characteristic described in [4] is flawed and [10] only showed the good
integral characteristic with cancellation property and there is no known good
integral characteristic for the backward direction. We find a 19-round integral
characteristic for the forward direction and 15-round integral characteristic for
the backward direction, and find that the best combination of the forward and
backward directions can reach 31 rounds. This can be turned into a middletext
distinguisher for the internal block-cipher of Lesamnta with 2192 query complex-
ity and negligible memory. Moreover, we point out that the above characteristic
can be extended to 32 rounds by assuming an equality between two specific
subkeys. We then consider the key schedule function of Lesamnta and explain
how to choose the key satisfying this condition. This can be used as a full-round
distinguisher with 64-bit relation of the key with 2192 query complexity and
negligible memory. The summary of the attacks is shown in Table 1.

Lesamnta has a provable security in the ideal-cipher model. Therefore, al-
though this attack does not threat the security of the Lesamnta hash function,
these security proofs are needed to be updated.

Paper Outline

This paper is organized as follows. In Sect. 2, the specification of Lesamnta is
given. In Sect. 3, several related works are explained shortly. In Sect. 4, we search
for new integral characteristics with a machine experiment. In Sect. 5, our new
integral characteristic for the 31-round middletext distinguisher is described. In
Sect. 6, we extend the attack to a full-round chosen-key distinguisher. Finally,
in Sect. 7, we conclude this paper.

4 Y. Sasaki and K. Aoki

Fig. 1. Round function of Lesamnta

2 Specification of Lesamnta

Lesamnta [4] is a hash function which takes almost arbitrary length message as
input and computes 224, 256, 384, and 512-bit strings as output. The main differ-
ence between Lesamnta-224/-256 and Lesamnta-384/-512 is the word-size, and
Lesamnta-224 (resp. -384) and Lesamnta-256 (resp. -512) use the same internal
block-cipher. Hence, in this paper, we mainly discuss only Lesamnta-256.

Lesamnta uses a Merkle-Damg̊ard structure. For Lesamnta-256, the input
message M is padded to a multiple of 256 bits, and divided into 256-bit blocks
M0‖M1‖ · · · ‖MN−1. Then, the compression function CF : {0, 1}256×{0, 1}256 →
{0, 1}256 is iteratively computed as follows;

Hi+1 ← CF(Hi,Mi) for i = 0, 1, . . . , N − 1,

where H0 is the initial value defined in the specification. Finally, HN is output
as the hash value of M .

The input to the compression function CF is a 256-bit chaining variable Hi

and 256-bit message block Mi. The compression function is composed of the
Matyas-Meyer-Oseas mode with an internal block-cipher EK . The output Hi+1

is computed as Hi+1 ← EHi(Mi)⊕Mi.
The internal block-cipher EK has a 4-branch generalized Feistel structure as

shown in Fig. 1. First, a key generation function takes a 256-bit chaining variable
Hi as input and computes 64-bit subkeys kj , where 0 ≤ j ≤ 31. By using 64-bit
variables Xj,0, Xj,1, Xj,2, and Xj,3, the output of EK is computed as follows;

(X0,0, X0,1, X0,2, X0,3) ← Mi,

(Xj+1,0, Xj+1,1, Xj+1,2, Xj+1,3) ← (F (Xj,2 ⊕ kj)⊕Xj,3, Xj,0, Xj,1, Xj,2)

for 0 ≤ j ≤ 31.

F is a 64-bit permutation motivated by the AES-design. Because our attacks do
not look inside F except for the property that F is a permutation, we omit its
description.

Improved Integral Analysis on Tweaked Lesamnta 5

The key generation function uses almost the same round function as the
data encryption part. By using 64-bit variables Yj,0, Yj,1, Yj,2, and Yj,3, subkeys
k0, k1, . . . , k31 are computed as follows;

(Y0,0, Y0,1, Y0,2, Y0,3) ← Hi,

Repeat the followings for 0 ≤ j ≤ 31 :

kj ← Yj,0,

(Yj+1,0, Yj+1,1, Yj+1,2, Yj+1,3) ← (F (Yj,2 ⊕ Cj)⊕ Yj,3, Yj,0, Yj,1, Yj,2).

Cj is a pre-defined constant. Note that the tweak for Lesamnta made by the
designers [8] only changes the value of Cj . Because our attacks do not depend
on the value of Cj , our attacks can work for both of the original and tweaked
versions of Lesamnta.

3 Related Work

3.1 Integral Attack

The integral attack is a cryptanalytic technique for symmetric-key primitives,
which was first proposed by Daemen et al. to evaluate the security of the Square
cipher [11]. The crucial idea of the integral attack is to collect a set of plaintexts
which contains all possible values for some bytes and has a constant value for the
other bytes. All plaintexts in the set are passed to the encryption oracle, and an
attacker computes the XOR of all corresponding ciphertexts. If the encryption
procedure does not mix the text well, several bytes of the XOR of the ciphertexts
always become 0. We call this characteristic integral characteristic.

The application of the integral attack to AES is widely known. AES is a 16-
byte block-cipher. The attacker collects 256 plaintexts where the first byte varies
from 0 to 255 and the other 15 bytes are fixed to some constant, e.g. 0. After all
256 plaintexts are encrypted by 3.5-rounds, the XOR of the corresponding 256
ciphertexts always becomes 0 in all bytes.

Note that the same attack can be performed in the decryption direction.

3.2 Integral Attack in the Known-Key Setting

Known-key attack is a framework proposed by Knudsen and Rijmen [14] to
evaluate the security of block-ciphers. Although the formalization of the known-
key attack is still an open problem, the intuition of this model is as follows;

A secret key is randomly chosen and given to attackers. Attackers aim to
detect a certain property of a random instance of the block cipher, where
the same property cannot be observed for a random permutation.

For the confidentiality use of block ciphers, the secret key should be kept secret,
and an attacker does not know the value of the secret key in advance. However,
a block cipher can be used to construct hash functions such as Davies-Meyer

6 Y. Sasaki and K. Aoki

Byte A stands for “Active”, which means all possible values are included and are used
exactly the same number of times in the set of texts.
Byte B stands for “Balanced”, which means the XOR of all texts in the set is 0.
Byte C stands for “Constant”, which means the value is fixed to a constant for all
texts in the set.

Fig. 2. Integral attack on AES in the known-key setting [14]

construction. In such a case, attackers can sometimes know and even specify the
secret key as one of the message blocks to find unpleasant properties such as the
collision. Hence, we should analyze the block cipher with the known-key setting.

Knudsen and Rijmen showed that, in the known-key model, the integral char-
acteristic in the encryption and the decryption directions can be combined to-
gether. They proposed a known-key attack on 7-round AES with this concept.
In this attack, they prepared the 3-round integral characteristic in backward and
4-round integral characteristic in forward as shown in Fig. 2. The attacker col-
lects 256 texts for the internal state and computes the XOR of the corresponding
plaintexts and ciphertexts. In 7-round AES, the result always becomes 03.

After the publication of [14], the known-key attack combining two integral
characteristics was formalized by Minier et al. as an n-limited non-adaptive cho-
sen middletexts distinguisher (NA-CMA) [15, Algorithm 1]. In this framework,
the oracle O implements either a random permutation or a random instantiation
of the target block-cipher. The goal of the distinguisher is to decide which is im-
plemented in O. The distinguisher first determines the acceptance region A(n)

which is the set of the plaintexts and ciphertexts determined by considering the
biased property of the target cipher. For example, A(n) for the above known-key
distinguisher on AES should be any set of 256 plaintexts whose XOR is 0 and
any set of 256 ciphertexts whose XOR is 0. The distinguisher then chooses or
computes a set of texts for some intermediate state and input them to O and
obtain the oracle’s output. Finally, the attack checks if the obtained output is in
A(n) or not. The detailed procedure of NA-CMA by [15] is given in Appendix A.

3 Knudsen and Rijmen suggest to use more strong property: confirm that the number
of occurrence of the value of each byte of plaintexts and ciphertexts is the same.

Improved Integral Analysis on Tweaked Lesamnta 7

The security of a pseudo-random permutation is usually defined as follows.

Definition 1. For a pseudo-random permutation EK parameterized by K ∈ K,
an advantage of distinguisher D is defined as follows.

AdvD =
∣∣∣Pr[DEK ,E−1

K → 1 | K ∈U K]− Pr[Dπ,π−1 → 1 | π ∈U P]
∣∣∣ ,

where x ∈U X means that x is uniformly chosen from set X, and P is the set
of all permutations on the text space.

Definition 2. A pseudo-random permutation EK (K ∈ K) is secure if AdvD is
negligible for any distinguisher D.

From the above definition, we can say that Ek is not secure even if we only show
an example of a distinguisher whose advantage is not negligible.

3.3 Previous Integral Attack and Known-Key Attack on Lesamnta

The designers of Lesamnta evaluated its security against integral attack [4,
Sect. 12.6.3]. They showed the 19-round integral characteristic. However, Bouil-
laguet et al. pointed out that their integral characteristic would not work, and
they proposed a 20-round integral characteristic with the cancellation property,
and mount a key-recovery attack on 22-round internal block-cipher of Lesamnta
with the complexity of 2192 encryptions.

The designers of Lesamnta also evaluated the resistance against known-key
attacks [4, Sect. 12.6.4]. They considered a differential cryptanalysis, and con-
structed a known-key distinguisher for Lesamnta-256 reduced to 12 rounds.

3.4 Chosen-Key Attack

The concept of the known-key attack can be extended to the chosen-key attack.
Similar to the known-key attack, the formalization of the chosen-key attack is
also an open problem. Examples of papers discussing the chosen-key attack are
[16,17,18].

4 New Integral Characteristics for Lesamnta

4.1 Existing Integral Characteristics

The submission document [4] showed a 19-round integral characteristic. Bouil-
laguet et al. showed the flaw in the integral characteristic. To show the flaw,
they used complicated formulae, because the 19-round integral characteristic
uses multi-active-words.

Bouillaguet et al. also proposed a new integral characteristic. However the new
integral characteristic was intended to be used with the cancellation property,
and it seems difficult to be used for the middletext distinguisher, though the
integral characteristic is long.

As a result, we do not know the longest integral characteristic for the forward
direction, and we do not have any knowledge of the integral characteristic for
the backward direction.

8 Y. Sasaki and K. Aoki

Table 2. New integral characteristic

Round Inputs

0 C A A A
1 A C A A
2 A A C A
3 A A A C
4 A A A A
5 A A A A
6 A A A A
7 A A A A
8 A A A A
9 A A A A

10 A A A A
11 A A A A
12 A A A A
13 B A A A
14 B B A A
15 B B B A
16 ? B B B
17 ? ? B B
18 ? ? ? B

4.2 Experiment and New Integral Characteristic

This section tries to find the best integral characteristic for the internal block-
cipher of Lesamnta in the forward and backward directions. As shown by Bouil-
laguet et al., a simple analysis method intended to activate one word may cause
an error of the characteristic, and formulae analysis is complicated, and we may
miss an optimal characteristic. We decide to use computer experiments to find
good integral characteristics. This strategy has a possibility to detect wrong
characteristic, but its probability is quite low.

Because computing 2192 texts for Lesamnta is infeasible, we consider the small
experiment. First, we reduce the word size to 8 bits. Then, the block-size becomes
32 bits and computing all values for 3 words cost 224 computations. Second, we
replace the F function with a single S-box computation. Third, we replace the
subkey in each round with the S-box output whose input is a round number.
The algorithm of our experiment, which checks the integral characteristic up to
R rounds is shown in Fig. 3. When the algorithm in Fig. 3 is implemented we
prepare temporary variables Tu,0 for line 8, where 0 ≤ u ≤ R. Tu,0 are initialized
to 0. Every time Xu,0 is computed, we compute Tu,0 ← Tu,0 ⊕Xu,0 to update
the current XOR-sum of Xu,0. If Tu,0 = 0 after 224 iterations, we know that the
variable is balanced. Because Xu,1, Xu,2, and Xu,3 are just a copy of previously
computed value, only updating Xu,0 is enough. Note that the XOR of 224 results
may happen to become 0, i.e. result in a balanced word with a probability of 2−8.
To avoid this event, we ran the algorithm several times with changing the S-box,
sub-key, or value for the constant word, and check that balanced words are always

Improved Integral Analysis on Tweaked Lesamnta 9

1. Set X0,0 ← C for some constant C; and initialize XOR-sum;
2. FOR all possible 224 values of (X0,1, X0,2, X0,3) {
3. FOR round = 0 to R − 1 {
4. X(round+1),0 = Xround,3 ⊕ S(Xround,2 ⊕ S(round));
5. X(round+1),1 = Xround,0;
6. X(round+1),2 = Xround,1;
7. X(round+1),3 = Xround,2;
8. Update the XOR-sum of X(round+1),0;
9. } //END of FOR

10. } //END of FOR

Fig. 3. Algorithm in our experiment

balanced for any S-box, sub-key, and constant number. Also note that to check if
each word is active or not, counting the number of the occurrence of each value
is necessary. Actually, we counted it in our experiment. Because investigating
the active words is irrelevant to our attack and the algorithm becomes more
complicated than Fig. 3, we omit its description.

As a result of the experiment, we obtain the new integral characteristic which
is shown in Table 2. The most important difference from the previous character-
istic is that the integral characteristic only can work up to 18 rounds. Note that
this will give some impact to the 20-round secret key attack in [4]. Intuitively,
the number of attacked rounds will decrease by 1 round. However, we will not
discuss details because the open-key approach explained in the following sections
can attack much more rounds.

5 Known-Key Attack on 31-Round Block-Cipher of
Tweaked Lesamnta

As [14] showed, the integral characteristics in the forward direction and the back-
ward direction can be combined together. Therefore, we search for the backward
integral characteristic with the new approach explained in Sect. 4. Because the
algorithm for the backward search is very similar to the one in Fig. 3, we omit
its description.

[14] combined the most effective independent characteristics for the forward
and backward directions. On the other hand, we cannot combine the most ef-
fective ones because our characteristic in Table 2 has already activated three
words, and thus cannot combine the backward characteristic which activates the
constant word. That is, the positions of the active words at the combining state
must be identical between the forward and backward characteristics. We search
for the best characteristic satisfying this condition. The result is described in
Table 3.

As shown in Table 3, if we collect 2192 texts whose the left most word is fixed
to some constant and the right three words take all possibilities, we will have
one balanced word after 18-round encryption and 13-round decryption.

10 Y. Sasaki and K. Aoki

Table 3. 31-round characteristic for
known-key attack

Round Total State
in each round

direction

13 0 B ? ? ?
12 1 A B ? ?
11 2 A A B ?
10 3 A A A B
9 4 A A A A
8 5 A A A A
7 6 A A A A
6 7 A A A A
5 8 A A A A
4 9 A A A A
3 10 A A A A
2 11 A A A A
1 12 A A A A

0 13 C A A A

1 14 A C A A
2 15 A A C A
3 16 A A A C
4 17 A A A A
5 18 A A A A
6 19 A A A A
7 20 A A A A
8 21 A A A A
9 22 A A A A

10 23 A A A A
11 24 A A A A
12 25 A A A A
13 26 B A A A
14 27 B B A A
15 28 B B B A
16 29 ? B B B
17 30 ? ? B B
18 31 ? ? ? B

Table 4. 32-round characteristic for
chosen-key attack

Round Total State Condition
in each round

direction

14 0 B ? ? ?
13 1 B B ? ?
12 2 A B B ?
11 3 A A B B
10 4 A A A B
9 5 A A A A k5 = k13
8 6 A A A A
7 7 A A A A
6 8 A A A A
5 9 A A A A
4 10 A A A A
3 11 A A A A
2 12 A A A A
1 13 A A A A

0 14 C A A A

1 15 A C A A
2 16 A A C A
3 17 A A A C
4 18 A A A A
5 19 A A A A
6 20 A A A A
7 21 A A A A
8 22 A A A A
9 23 A A A A

10 24 A A A A
11 25 A A A A
12 26 A A A A
13 27 B A A A
14 28 B B A A
15 29 B B B A
16 30 ? B B B
17 31 ? ? B B
18 32 ? ? ? B

We can mount the 31-round middletext distinguisher with this characteristic.
The property we distinguish is a partial zero-sum, namely, the distinguisher
collects a set of 2192 plaintexts whose XOR is 0 regarding the left most word
(X0,0) and the XOR of the corresponding 2192 ciphertexts is also 0 regarding
the right most word (X31,3). If we rephrase it for the context of NA-CMA [15],
the acceptance region A(n) is any set of 2192 plaintexts whose XOR is (0, ∗, ∗, ∗)
and any set of 2192 ciphertexts whose XOR is (∗, ∗, ∗, 0), where ∗ represents an
arbitrary value.

Improved Integral Analysis on Tweaked Lesamnta 11

The distinguishing procedure is the same as NA-CMA. The 2192 middletexts
are chosen as the leftmost word is fixed constant and other words take all values,
and the belonging confirmation of the acceptable set can be realized by the
examination of XOR of all plaintexts as (∗, ∗, ∗, 0) and XOR of all ciphertexts
as (0, ∗, ∗, ∗).

For the ideal cipher, the best way to achieve this data set is making exactly
2192 queries so that the XOR of the left most word becomes 0, and check that
the XOR of the ciphertexts are 0 in the right most word. Because the XOR of the
ciphertexts behaves truly random in the last query, the probability for satisfying⊕2192

i=1 X31,3 = 0 is 2−64. On the other hand, for 31-round internal block-cipher of
Lesamnta, by starting 2192 texts from the middle state, we can obtain the set of
2192 plaintexts and ciphertexts which achieves the property with probability 1.
Hence, the distinguisher obtains a significant advantage, 1− 2−64.

Remark 1. Even if the case for ideal cipher, we can make an element in the ac-
ceptable set with high probability if we allow one more query to the oracle for

the distinguisher, since
(
2192+1
2192

)
= 2192 +1 and the restriction on the acceptable

set is 128 bits in total. The advantage of this case is almost 0, and it is negligible.
Followed by Definition 2, we only need to show one distinguisher whose advan-
tage is not negligible to say that a block cipher is not secure. As the above, we
showed an example of a distinguisher whose advantage is significant, when we
restrict to use exactly 2192 queries. We can conclude that 31-round block cipher
of tweaked Lesamnta is not secure followed by Definition 2.

Remark 2. Aumasson et al. pointed out that the zero-sum property can be con-
verted to an existential forgery attack against the prefix-MAC construction [19,
Section 3.1].

6 Chosen-Key Attack on Full-Round Block-Cipher
of Tweaked Lesamnta

6.1 32-Round Integral Characteristic and Analysis for the Key
Schedule

The 31-round integral characteristic explained in Sect. 5 can be extended to 32-
rounds by assuming an equality between two subkeys. In details, the backward
characteristic is extended by one more round under the condition k5 = k13. We
confirmed this fact by the experiment. In Step 4 of the backward version of the
algorithm in Fig. 3, we replace S(round) with some constant value for rounds
1 and 9. The discovered 32-round characteristic is shown in Table 4. Compare
Table 4 with Table 3, the condition k5 = k13 makes one more B state in 11th
round of the backward direction. For those who wants to verify the experiment,
we show the code of the experiment written in the C-language in Appendix B.

In order to search for a key satisfying this condition, we analyze the key
schedule function of Lesamnta. The computations for obtaining k5 to k13 are
shown in Fig. 4. Note that in the key schedule function of Lesamnta, if a 256-bit

12 Y. Sasaki and K. Aoki

Fig. 4. Key schedule function for obtaining k5 to k13

internal state is fixed, the original key value is uniquely computed by inverting
the round function. Therefore, the goal is searching for a 256-bit internal state
which produces the same k5 and k13. This can be achieved by using the idea
of the cancellation property [9]. Also note that, different from the known-key
attack in Sect. 5, we need to use the property that the inversion of F is easily
computed.

k5 = Y8,3 = F (Y9,3 ⊕ C8)⊕ Y9,0, (1)

k13 = Y13,0 = F (Y12,2 ⊕ C12)⊕ Y12,3, (2)

Because Y9,0 = Y12,3, the condition to achieve the goal (k5 = k13) is expressed
as

Y9,3 ⊕ C8 = Y12,2 ⊕ C12. (3)

Because Y12,2 = Y10,0 = F (Y9,2 ⊕ C9) ⊕ Y9,3, the condition Eq. (3) is expressed
as

F (Y9,2 ⊕ C9) = C8 ⊕ C12, (4)

which is,

Y9,2 = F−1(C8 ⊕ C12)⊕ C9, (5)

Improved Integral Analysis on Tweaked Lesamnta 13

In the end, to obtain the key satisfying k5 = k13, we first compute Y9,2 with
Eq. (5) and randomly choose values of Y9,0, Y9,1, and Y9,3. Then we invert the
round function and the resulting (Y0,0, Y0,1, Y0,2, Y0,3) is a desired key. Note that
the complexity for choosing a key is almost one key schedule computation.

6.2 Chosen-Key Distinguisher and Its Impact

Mounting the chosen-key distinguisher with 32-round characteristic can be done
by the same manner as the known-key distinguisher in Sect. 5. The property we
discuss in this distinguisher is a partial zero-sum. The distinguisher computes
a key and collects a set of 2192 plaintexts whose XOR is 0 regarding the left
most word (X0,0) and the XOR of the corresponding 2192 ciphertexts is also 0
regarding the right most word (X32,3). Because the partial zero-sum property is
satisfied with probability 1, we can distinguish the full-round Lesamnta block-
cipher from the ideal cipher.

According to the designer’s document [4, Sect. 11], the security proof of
Lesamnta is based on the work by Black et al. in 2002 [20], which showed that the
security bound of the MMO mode in terms of the preimage resistance is 2q/2n

under the ideal cipher model. This represents the upper-bound of distinguisher’s
advantage after making q queries for n-bit output. Because our distinguisher
succeeds with probability 1 with q = 2192 queries, the internal block-cipher of
Lesamnta cannot achieve the security bound of 2q/2n.

Note that our chosen-key distinguisher can be regarded as a known-key attack
for a weak-key. The attack works against any key satisfying k5 = k13, which is
satisfied with probability of 2−64 for a randomly chosen key. The number of such
weak-keys is 2256 · 2−64 = 2192.

7 Concluding Remarks

In this paper, we revisited the integral attack on Lesamnta after the tweak.We did
the experiment on the small variant of the same generalized Feistel structure, and
discovered that the 19-roundcharacteristic seemsoptimal for the forwarddirection.

We then searched for the integral characteristic suitable for the known-key
attack under the framework of the middletext distinguisher. As a result, we found
the 31-round characteristic that could be turned into the known-key attack on
31-round internal block-cipher of Lesamnta with 2192 query complexity and a
negligible memory.

In addition, we discovered that the 31-round characteristic could be extended
by one more round by assuming an equality between two specific subkeys.We then
analyzed the key schedule function of Lesamnta, and showed that finding keys sat-
isfying this condition was possible with complexity of one key schedule function
computation. In the end, we successfully achieved the chosen-key distinguisher on
the full-round internal block-cipher of Lesamnta. This attack does not threat the
security of the Lesamnta hash function immediately, but invalidates some security
proof made on Lesamnta. As far as we know, this is the first result that shows the
non-ideal property of the full-round Lesamnta block-cipher after the tweak.

14 Y. Sasaki and K. Aoki

Although it has already been out of the SHA-3 competition, Lesamnta still
has various interesting properties. Our results except for the full-round analy-
sis of Lesamnta-256 can also be applied to reduced Lesamnta-LW and type-I
generalized Feistel network, since we do not use any detailed property of the
round function. Even if the analysis on Lesamnta does not give impact to the
competition, we believe that its security evaluation will contribute to the future
hash function design.

References

1. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

2. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

3. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy: Federal Register vol. 72, No. 212/Friday, November 2, 2007/Notices (2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

4. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 proposal: Lesamnta. Lesamnta home
page (2009), Document version 1.0.1,
http://www.hitachi.com/rd/yrl/crypto/lesamnta/ (January 15, 2009)

5. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: A
Lightweight 256-Bit Hash Function for Hardware and Low-End Devices: Lesamnta-
LW. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 151–168.
Springer, Heidelberg (2011)

6. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press (1997)

7. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Another Look at Com-
plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347–364. Springer, Heidelberg (2010)

8. Hirose, S., Kuwakado, H., Yoshida, H.: A minor change to Lesamnta — Change of
round constants — Lesamnta home page (2009),
http://www.hitachi.com/rd/yrl/crypto/lesamnta/ (July 18, 2009)

9. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Attacks on Hash Func-
tions Based on Generalized Feistel: Application to Reduced-Round Lesamnta and
SHAvite-3512 . In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 18–35. Springer, Heidelberg (2011)

10. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Attacks on hash
functions based on generalized Feistel - application to reduced-round Lesam-
nta and SHAvite-3512 . Cryptology ePrint Archive, Report 2009/634 (2009),
http://eprint.iacr.org/2009/634 (Full version of [9])

11. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

12. Daemen, J., Rijmen, V.: The design of Rijndeal: AES – the Advanced Encryption
Standard (AES). Springer (2002)

13. U.S. Department of Commerce, National Institute of Standards and Technology:
Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal
Information Processing Standards Publication 197) (2001)

14. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.hitachi.com/rd/yrl/crypto/lesamnta/
http://www.hitachi.com/rd/yrl/crypto/lesamnta/
http://eprint.iacr.org/2009/634

Improved Integral Analysis on Tweaked Lesamnta 15

15. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for Ciphers and Known Key
Attack against Rijndael with Large Blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)

16. Biryukov, A., Nikolić, I.: A new security analysis of AES-128. In: Rump session of
CRYPTO 2009 (2009), http://rump2009.cr.yp.to/

17. Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Character-
istics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and
Others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

18. Nikolić, I., Pieprzyk, J., Soko�lowski, P., Steinfeld, R.: Known and Chosen Key
Differential Distinguishers for Block Ciphers. In: Rhee, K.-H., Nyang, D. (eds.)
ICISC 2010. LNCS, vol. 6829, pp. 29–48. Springer, Heidelberg (2011)

19. Aumasson, J.-P., Käsper, E., Knudsen, L.R., Matusiewicz, K., Ødeg̊ard, R., Peyrin,
T., Schläffer, M.: Distinguishers for the Compression Function and Output Trans-
formation of Hamsi-256. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 87–103. Springer, Heidelberg (2010)

20. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

A Formalization of Known-Key Integral Attack [15]

In this section, we cite the formalization of the known-key integral attack by
[15, Algorithm. 1]. It defines an n-limited non-adaptive chosen middletexts dis-
tinguisher (NA-CMA). In this framework, the oracle O implements either a
random permutation or a random instantiation of the target block-cipher. The
goal of the distinguisher is to decide which is implemented in the oracle O. The
core of the distinguisher is the acceptance region A(n): it defines the set of input
and output values (P,C) = (P1, · · · , Pn, C1, · · · , Cn) which lead to output 0 (i.e.
it decides that the oracle implements a random permutation) or 1 (i.e. it decides
that the oracle implements a random instantiation of the target block-cipher).

Algorithm 1. An n-limited generic non-adaptive chosen middletexts
distinguisher (NA-CMA)

Parameters: a complexity n, an acceptance set A(n)

Oracle: an oracle O implementing internal functions f1 (resp. f2) of permu-
tation c that process input middletexts to the plaintext (resp. ciphertext)

Compute some middletexts M = (M1, · · · ,Mn)
Query P = (P1, · · · , Pn) = (f1(M1), · · · , f1(Mn)) and C = (C1, · · · , Cn) =

(f2(M1), · · · , f2(Mn)) to O
if (P,C) ∈ A(n) then

Output 1
else

Output 0
end if

http://rump2009.cr.yp.to/

16 Y. Sasaki and K. Aoki

B Code of the Experiment for the Chosen-Key Attack

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* S Box data values */

static int Sdata[256] = {

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,

0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,

0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,

0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,

0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,

0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,

0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,

0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,

0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,

0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,

0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,

0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,

0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,

0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,

0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,

0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,

0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,};

int main()

{

unsigned int H[24];

int round;

int sum[24];

Improved Integral Analysis on Tweaked Lesamnta 17

int n;

H[0]=0;

for(n=0;n<68;n++){

sum[n]=0;

}

for(H[2]=0;H[2]<256;H[2]++){

for(H[1]=0;H[1]<256;H[1]++){

for(H[3]=0;H[3]<256;H[3]++){

H[4]=H[0]^Sdata[H[3]^Sdata[0]]; sum[4]^=H[4];

/* Set k[0]=k[8] */

H[5]=H[1]^Sdata[H[4]^Sdata[5]]; sum[5]^=H[5];

H[6]=H[2]^Sdata[H[5]^Sdata[6]]; sum[6]^=H[6];

H[7]=H[3]^Sdata[H[6]^Sdata[7]]; sum[7]^=H[7];

H[8]=H[4]^Sdata[H[7]^Sdata[8]]; sum[8]^=H[8];

H[9]=H[5]^Sdata[H[8]^Sdata[9]]; sum[9]^=H[9];

H[10]=H[6]^Sdata[H[9]^Sdata[10]]; sum[10]^=H[10];

H[11]=H[7]^Sdata[H[10]^Sdata[11]]; sum[11]^=H[11];

H[12]=H[8]^Sdata[H[11]^Sdata[0]]; sum[12]^=H[12];

/* Set k[0]=k[8] */

H[13]=H[9]^Sdata[H[12]^Sdata[13]]; sum[13]^=H[13];

H[14]=H[10]^Sdata[H[13]^Sdata[14]]; sum[14]^=H[14];

H[15]=H[11]^Sdata[H[14]^Sdata[15]]; sum[15]^=H[15];

H[16]=H[12]^Sdata[H[15]^Sdata[16]]; sum[16]^=H[16];

H[17]=H[13]^Sdata[H[16]^Sdata[17]]; sum[17]^=H[17];

H[18]=H[14]^Sdata[H[17]^Sdata[18]]; sum[18]^=H[18];

H[19]=H[15]^Sdata[H[18]^Sdata[19]]; sum[19]^=H[19];

H[20]=H[16]^Sdata[H[19]^Sdata[20]]; sum[20]^=H[20];

H[21]=H[17]^Sdata[H[20]^Sdata[21]]; sum[21]^=H[21];

H[22]=H[18]^Sdata[H[21]^Sdata[22]]; sum[22]^=H[22];

H[23]=H[19]^Sdata[H[22]^Sdata[23]]; sum[23]^=H[23];

H[24]=H[20]^Sdata[H[23]^Sdata[24]]; sum[24]^=H[24];

}

}

}

for(round=20;round>=0;round--){

printf("Round%02d: %02x %02x %02x %02x\n",

round,sum[round],sum[round+1],sum[round+2],sum[round+3]);

}

return(0);

}

Analysis of Trivium

Using Compressed Right Hand Side Equations

Thorsten Ernst Schilling and H̊avard Raddum

Selmer Center, University of Bergen
{thorsten.schilling,havard.raddum}@ii.uib.no

Abstract. We study a new representation of non-linear multivariate
equations for algebraic cryptanalysis. Using a combination of multiple
right hand side equations and binary decision diagrams, our new repre-
sentation allows a very efficient conjunction of a large number of separate
equations. We apply our new technique to the stream cipher Trivium

and variants of Trivium reduced in size. By merging all equations into
one single constraint, manageable in size and processing time, we get a
representation of the Trivium cipher as one single equation.

Keywords: multivariate equation system, BDD, algebraic cryptanaly-
sis, Trivium.

1 Introduction

In this paper we present a new way of representing multivariate equations over
GF (2) and their application in algebraic cryptanalysis of the stream cipher
Trivium.

In algebraic cryptanalysis one creates an equation system of the cipher being
analyzed and tries to solve it. The solution will reveal the key or some other
secret information. Solving the system representing a cipher in time faster than
exhaustive search will be a valid attack on the cipher.

There exist several ways to represent such a system, e.g., ANF, CNF [1] or
MRHS [2]. Along these representations different families of algorithms to solve
equation systems have been proposed, e.g., Gröbner Basis like algorithms [3],
XL [4] SAT-solving [1] and Gluing/Agreeing algorithms [5,2,6].

For the stream cipher Trivium, which has an especially simple structure, one
can easily construct an equation system describing its inner state constraints
using some known keystream bits. Attempts at solving this system have never-
theless been unsuccessful. While reduced versions of Trivium could be broken
[1], there is no attack better than brute-force known for the full version.

Previous methods describe the Trivium-equation system as a set of non-
linear constraints, which have to be true in conjunction. One can simplify those
equation systems by joining several constraints into a single new one. Unfor-
tunately the conjunction operation usually leads to exponentially big objects,
which quickly become too big for today’s computers.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 18–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysis of Trivium Using Compressed Right Hand Side Equations 19

In this paper we present a new way of representing the constraints given by
a non-linear equation system. This representation allows all equations in the
Trivium-equation system to be merged into one single equation. The process
of merging equations has asymptotically exponential complexity, but using our
new technique we are nevertheless still able to complete it in practice, with an
actual complexity far lower than the O(280)-bound for Trivium.

The paper is organized as follows. In Section 2 we explain the Multiple Right
Hand Side equation representation and Binary Decision Diagrams as well as
some operations on both constructions. The cipher Trivium is also briefly de-
scribed. Section 3 introduces Compressed Right Hand Side equations and shows
how a solution to such equations can be found. In Section 4 we present our
experimental results and explain how to reduce the Trivium equation system
to a single Compressed Right Hand Side equation. Section 5 concludes the pa-
per. The appendix contains examples for several of the used constructions and
algorithms.

2 Preliminaries

2.1 Multiple Right Hand Side Equation Systems

The Multiple Right Hand Side (MRHS) representation [2,5] is an efficient way to
represent equations containing much inherent linearity. Equation systems com-
ing from cryptographic primitives are well suited for MRHS representation, since
cryptographic algorithms are usually built using both linear and non-linear com-
ponents.

A MRHS equation is a linear system with, as the name suggests, multiple
right hand sides. We write one MRHS equation as Ax = B, where A and B
are matrices with the same number of rows, and x is a vector of variables. Any
assignment of x such that Ax equals some column in B satisfies the equation.

We construct a system of MRHS equations from a cryptographic primitive
as follows. First we assign variable names to the bits of cipher states at several
places in the encryption process. The assignment of variables should be done
such that the bits of the input and output of any non-linear component can
be written as linear combinations of variables. Then we construct one MRHS
equation Ax = B for each non-linear component f . The rows of A are the input
and output linear combinations of f . Finally, we list all possible inputs to f ,
with their corresponding outputs. Each input/output pair becomes a column in
B. An example of this can be found in the appendix.

Following this procedure we can construct a system of MRHS equations

A1x = B1, . . . , Amx = Bm

for any cryptographic primitive that uses relatively small non-linear components.
For a given solution to the system, there is exactly one column in each Bi

corresponding to this solution. We say such a column is correct. If the system has
a unique solution, there is only one correct right hand side in each Bi. Solving

20 T.E. Schilling and H. Raddum

MRHS equation systems means identifying columns in the Bi that cannot be
correct, and delete them.

Several techniques for solving MRHS systems exist. One of them is called
gluing and is used in this paper. Gluing means to merge two equations into one,
making sure that only solutions that satisfy both original equations are carried
over into the new (glued) equation.

Gluing two equations reduces the number of equations by one. The process of
gluing can be repeated, packing all initial equations into one MRHS equation.
The resulting equation is nothing more than a system of linear equations, and
can easily be solved. The solution we find will necessarily satisfy all the original
initial MRHS equations, so this strategy will solve the system in question.

The problem we face when applying the technique of gluing in practice, is that
the number of right hand sides in glued equations tends to increase exponentially.
Only when there are just a few equations remaining, with large A-matrices, will
the restrictions on potential solutions be so limiting that the number of possible
right hand sides rapidly decreases. As we shall see, however, the problem of
exponential growth in the number of right hand sides may be circumvented
using binary decision diagrams.

2.2 Binary Decision Diagrams

In this section we will introduce binary decision diagrams (BDDs). A BDD is
a directed acyclic graph used to represent a set of binary vectors or a Boolean
formula. They are mostly used in design and verification systems and were intro-
duced by S.B. Akers [7]. Later implementations and refinements led to a broad
interest in the computer science community as BDDs allow the manipulation of
large propositional formulae [8,9] in compressed form. Sometimes they are used
as an alternative to guess-and-verify solvers of propositional problems since they
enable one to keep track of all satisfying assignments at once and offer polyno-
mial time algorithms to count the number of solutions of a propositional problem
given in the form of a BDD.

The use of BBDs in cryptanalysis for LFSRs was proposed by Krause [10] and
successfully applied to Grain with NLFSRs by Stegemann [11].

Definition 1 (Binary Decision Diagram). A binary decision diagram is
a pair D = (G,L) where G = (V,E) is a directed acyclic graph, and L =
(l0, l1, . . . , lr−1, ε) is an ordered set of variables.

The vertices of G are V = {v0, v1, . . . , vs−1}∪{
,⊥} where all vi denote inner
vertices and contain exactly one root vertice with no incoming edges. Every inner
vertex v has exactly two outgoing edges, which we call the 1-edge and the 0-edge.
We call
 and ⊥ terminal vertices, they have no outgoing edges. Every vertex v
is associated with a variable, denoted L(v), and for all edges (u, v) we have L(u)
appearing before L(v) in L. We always have L(
) = L(⊥) = ε.

We denote with G(v) the subgraph of G rooted at v, i.e., the graph consisting
of vertices and edges along all directed paths originating at v. For any pair of
vertices u,w it holds that if G(u) = G(w) then u = w.

Analysis of Trivium Using Compressed Right Hand Side Equations 21

There exist other definitions of BDDs which do or do not include the order L
or the reducedness property of unequal subgraphs. The definition above is also
known as a reduced ordered BDD and is canonical [9]. We denote the number
of vertices in a binary decision diagram D by B(D) = |G|. The size of a BDD
depends heavily on the order L. Finding the optimal ordering to minimize B(D)
is an NP -hard problem [9].

In Definition 1 L induces a partial order of the vertices. We visualize a BDD
by drawing it from top to bottom, with vertices of the same order on the same
line, and we say that these vertices are at the same level. There is only one root
vertex and it must necessarily associated with the first variable in L. This node
associated with l0 is drawn on top, and the nodes
 and ⊥ are drawn on the
bottom. An example of a BDD can be found in the appendix.

Definition 2 (Accepted Inputs of a BDD). In a BDD D every path from
the root vertex to the terminal vertex
 is called an accepted input of D.

Since every inner node is associated with a variable, we can regard every edge
as a variable assignment. To find a variable assignment (or vector) which is
accepted by the BDD, we start with an empty vector of length |L|. Following a
path from the root vertex to
 we visit at most one node at each level.

Whenever we go from v through a 1-edge, we say that L(v) is assigned to 1,
and L(v) = 0 whenever we go via a 0-edge. A path that ends up in
 gives us
one accepted input in terms of variable assignments. Likewise, a path from the
root vertex to ⊥ gives us a rejected input to a specific BDD. By traversing all
paths to
 we can build the set of all vectors which are accepted by the BDD.

If a path from the root to
 jumps a level, i.e. the assignment to a variable
lk is undefined since the path does not contain a vertex v with L(v) = lk,
both assignments to this variable are accepted and we get two different variable
assignments. If an accepted input jumps r levels in total we get 2r different
satisfying assignments from this path. An example of accepted inputs of a BDD
can be found in the appendix.

AND-Operation on BDDs. As shown above, we can use BDDs to represent the
set of vectors that satisfy a Boolean equation. By the nature of our equation
systems, we need a way to merge solution sets from different equations. Below
is a simple recursive algorithm which does this. A more general version of the
algorithm can be found in [12].

Let D and D′ be two BDDs with v0 as the root of D and u0 the root of D′.
The conjunction of D and D′ into a new BDD E is done as follows.

First we need to define an ordering on the union of variables from D and D′.
Next, we set the root node of E at the top level, and label it (v0u0). Then we
perform Algorithm 1, which will fill in nodes and edges in E , from top to bottom.

The paths in the BDD that results after merging D and D′ using Algorithm 1
will correspond to vectors that satisfy both Boolean equations related to D
and D′. One feature of the conjunction of two BDDs is that all nodes in the new

22 T.E. Schilling and H. Raddum

Algorithm 1. Merging BDDs D and D′ into E
while ∃ a node (vu) in E without outgoing edges do

Let ve be child of v in D through e-edge
Let ue be child of u in D′ through e-edge
if L(v) = L(u) then � v and u are at the same level

Insert (v0u0) at level min{L(v0), L(u0)} with 0-edge from (vu).
Insert (v1u1) at level min{L(v1), L(u1)} with 1-edge from (vu).

end if
if L(v) < L(u) then � v is higher up than u

Insert (v0u) at level min{L(v0), L(u)} with 0-edge from (vu).
Insert (v1u) at level min{L(v1), L(u)} with 1-edge from (vu).

end if
if L(v) > L(u) then � u is higher up than v

Insert (vu0) at level min{L(v), L(u0)} with 0-edge from (vu).
Insert (vu1) at level min{L(v), L(u1)} with 1-edge from (vu).

end if
end while

BDD can be labelled with (vu) where v and u come from the two orginal BDDs.
It is then not hard to see that the following upper bound holds

B(E) ≤ B(D)B(D′). (1)

We will use this fact later in the paper. For a more detailed description and
analysis of operations on BDDs one might consult [12,9,8]. An example of the
AND-operation on BDDs can be found in the appendix.

2.3 Trivium

Trivium [13] is a synchronous stream cipher and part of the ECRYPT Stream
Cipher Project portfolio for hardware stream ciphers. It consists of three con-
nected non-linear feedback shift registers (NLFSR) of lengths 93, 84 and 111.
These are all clocked once for each key stream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key bits, 80
bits of IV, and 128 constant bits. The cipher is clocked 1152 times before actual
keystream generation starts. The generation of keystream bits and updating the
registers is very simple. The pseudo-code in [13] is a good and compact description
of the whole process of generating keystream as shown in Algorithm 2.

Here zi is the key streambit, and the registers are filled with the bits s1, . . . , s288
before clocking.

For algebraic cryptanalysis purposes one can create four equations for every
clock; three defining the inner state change of the registers and one relating the
inner state to the key stream bit. Solving this equation system in time less than
trying all 280 keys is considered a valid attack on the cipher.

Small Scale Trivium. For our experiments we considered small scale versions of
Trivium. While reduced versions of a cipher sometimes dismiss some structural

Analysis of Trivium Using Compressed Right Hand Side Equations 23

Algorithm 2. Trivium Pseudo-Code

for i = 1 to N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

zi ← t1 + t2 + t3 � Keystream bit

t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s93)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

component of the full scale cipher, e.g. Bivium [1], we try to keep our reduced
versions as close to Trivium as possible.

We scale with respect to the number of bits in the state. When we speak about
Trivium-N , we are speaking about a cipher with N bits of internal state, that
is, scaled down by a factor α = N/288. The lengths of the two first registers will
be 93α and 84α, rounded to the nearest integers. The length of the last register
will be what remains to get N as the total number of state bits (either �111α

or �111α�).

In the full Trivium, the three top positons in each register are all used as tap
positions. This property is also carried over to all the scaled versions. For the
tap positions appearing elsewhere in the registers, we simply scale their indices
with α. For example, as 66 is used as a tap position in the full Trivium, for
Trivium-N the corresponding tap position will be 66α, rounded to the nearest
integer, with the following exception: Tap positions that are close to each other
in the full Trivium may get the same indices in some Trivium-N if α is small
enough. When this happens, we reduce the tap position of the smaller index by
one, thus ensuring that all tap positions in Trivium-N are distinct. The equation
systems representing Trivium-N and Trivium will then have similar structures.

3 Compressed Right Hand Side Equation Systems

With MRHS equations a clear separation between the linear and the non-linear
part of an equation was introduced. Overall it yielded a much smaller repre-
sentation for equations typical in algebraic cryptanalysis. Nevertheless, solving
MRHS equations has been limited to relatively small-scale examples because of
the problem with a big number of right hand sides.

It was shown in [7] that representing Boolean equations as BDDs is canonical
with respect to the ordering of variables. This way of recording sets of assign-
ments gives us the advantage that we may have a moderate number of nodes in

24 T.E. Schilling and H. Raddum

a BDD, but very many paths from the root leading to
. Rather than writing
out all satisfying assignments, or a truth table for a Boolean equation, only a
BDD is retained in memory. However, when experimenting with equations from
certain ciphers, BDDs may also become too big to keep in computer memory
[11].

By combining the MRHS and BDD approaches, we get a new way to handle
large equation systems in algebraic cryptanalysis. We call this representation of
equations Compressed Right Hand Sides (CRHS) equations.

Definition 3 (CRHS). A compressed right hand side equation is written as
Ax = D, where A is a k × n-matrix with rows l0, . . . , lk−1 and D is a BDD
with variable ordering (from top to bottom) l0, . . . , lk−1. Any assignment to x
such that Ax is a vector corresponding to an accepted input in D, is a satisfying
assignment.

An easy example of a CRHS equation can be found in the appendix.

CRHS Gluing. If we are given two Boolean equations f1(X1) = 0, f2(X2) = 0
and we want to find vectors in variables X1 ∪X2 which satisfy both equations
simultanously we can do this by investigating their individual satisfying vectors
at common variables. If two vectors have the same values at common variable
indices we have found a vector which satisfies both equations. This operation is
part of the Gluing operation described in Section 2.1.

If we are given two CRHS equations [C1]x = D1, [C2]x = D2 and we want to
compute their common solutions we use a similar technique called CRHS Gluing.
The result of gluing both equations above is[

C1

C2

]
x = D1 ∧ D2.

Any assignment of x such that

[
C1

C2

]
x is an accepted input in the conjunction

D1∧D2 gives a solution to both initial equations simultanously. Like the Gluing
operation on MRHS equations the right hand side BDD contains all possible
combinations of vectors from the original equations. The difference is that sat-
isfying vectors are no longer explicit in the computer memory, but are recorded
in a compressed format, namely as paths in the BDD.

It is easy to output all possible vectors from the paths in a BDD. There also
exists an easy polynomial-time (in the number of nodes) algorithm to count the
number of accepted inputs to a BDD. An example of CRHS-gluing can be found
in the appendix.

3.1 Dependencies among Linear Combinations

The left hand side in a CRHS equation is equal to the left hand side in a MRHS
equation, namely a set of linear combinations {l0, . . . , lk−1} in the variables of
the system. If we glue several CRHS equations together, it might happen that

Analysis of Trivium Using Compressed Right Hand Side Equations 25

the resulting left hand side matrix in the glued equation does not have full
rank, that is, the set of linear combinations in the left hand side contains linear
dependencies.

The BDD on the right hand side treats the li as variables, and is oblivious
to the constraint that some of them should sum to zero or one. Therefore, an
accepted input in the BDD may or may not satisfy the linear dependencies
known to the left hand side. These paths should be taken out of the BDD in
order to not produce false solutions.

The straight-forward way to remove paths that do not satisfy some linear
dependency is to use the AND-operation. The number of nodes in the BDD
representing a linear equation g(l0, . . . , lk−1) is two times the number terms in
g. It is then easy to construct the BDD for any g, and combine it with the BDD
in the equation using the AND-operation. This will remove all false solutions.

4 Experimental Results

While exploring the possibilities of CRHS equations we used a software library
called Cudd [14]. The Cudd software library implements various types of BDDs
and algorithms/operations which can be performed on BDDs. The code base is
optimized and usable on a personal computer even for very big BDDs.

We used Cudd together with C++ code and developed a program capable of
reading different equation systems representing scaled Triviums and then gluing
the equations together.

It was crucial in the experiments to find out the size of the resulting CRHS
equation when gluing many of them together. This number is important to
determine in order to evaluate the feasability of our method. Theoretically the
size of the final CRHS equation C is upper bounded by

B(C) ≤ B(c0) · B(c1) · . . . · B(cr−1)

when gluing CRHS equations c0, c1, . . . , cr−1 into C. This value is exponential in
the number of nodes and might lead to infeasible sizes of BDDs, even for quite
small versions of Trivium. However, our experiments showed that the size of the
BDD for the glued CRHS equations was far smaller than the upper bound, and
stayed manageable. Thus we are indeed, in contrast to MRHS equation systems,
able to glue all equations in large CRHS equation systems together. For MRHS
equation systems, gluing all equations together will reveal the solutions to the
system. As we explain below, it is more complicated for CRHS equation systems,
due to false solutions in the right hand side BDD.

In the experiments reported below, we created CRHS equation systems rep-
resenting Trivium-N for various values of N . Then we glued all equations into
one single big CRHS equation. We examined different aspects of the equation
systems, which can tell us something about their solvability with our method.
For several small scale versions we measured the following properties:

26 T.E. Schilling and H. Raddum

Value Description
n # of variables = # of initial CRHS equations
k # of different linear combinations of variables
B # vertices in BDD in final equation
lc # of linear constraints for solution
Sol. # paths in final BDD
Mem. Memory consumption in MB

Table 1. Experimental results

N n k B lc Sol. Mem.

35 85 173 218.86 88 285.67 87
40 94 191 220.57 97 293.77 182
45 106 215 221.68 109 2106.60 358
50 115 233 221.15 118 2115.60 258
55 127 257 221.55 130 2127.60 329
60 138 282 222.34 144 2140.35 560
65 148 299 222.66 151 2148.60 687
70 160 323 222.42 163 2160.49 588
75 171 349 222.78 178 2173.83 742

Initial equations have 4 nodes in the BDD, so we see from Table 1 that the
size of the BDD after gluing all equations together is far from the theoretical
upper bound. However, the growth of B is exponential just with a very small
constant. It is worth to notice that B is not strictly increasing with N . We also
see that the expected number of paths that satisfy all constraints given by lc is
between 2−4 and 2−2.

A point worth mentioning is that the exponential upper bound for gluing
CRHS equations together is tight, in general. There are equations that will
achieve the bound when glued together. Equation systems coming from ciphers
tend to be very sparse, in the sense that each initial equation contain few vari-
ables, and each variable only appears in a few equations. This is also the case for
Trivium. Two equations that do not share any variables have a linear size when
glued together. As shown in (5), the gluing in this case is basically putting one
BDD on top of the other. This may explain why it is particularly easy to glue
together CRHS equations coming from scaled versions of Trivium.

Full Trivium. So what about N = 288? For full Trivium our computer ran out
of memory before finishing gluing all equations together. On the other hand, we
were able to glue 404 of the 666 initial equations together, producing a CRHS
equation C1 of size 222.9. Then we glued the remaining initial equations into C2,
of size 224.8. By using the upper bound (1) for merging two BDDs, we have then
demonstrated that the single CRHS equation representing the full Trivium has a
size smaller than 247.7. The true size of the BDD for the full Trivium is probably
a lot smaller than 247.7, given that the upper bound we use has proved to be

Analysis of Trivium Using Compressed Right Hand Side Equations 27

very loose for the systems we study. In any case, we know that the size of the
CRHS equation representing the full Trivium is quite far from the 280-bound for
a valid attack.

4.1 Solving Attempts

If a single CRHS equation gave a solution as readily as a MRHS equation, we
would be done, and have an algebraic attack on Trivium with complexity much
smaller than the O(280)-bound for exhaustive search. As noted above, we can not
deduce a solution straight from the CRHS equation, since we have eventually to
find a path in the BDD that satisfies a number of linear constraints. For scaled
Triviums, we have of course tried the straight-forward approach mentioned in
Section 3.1. Gluing BDDs representing linear constraints onto the BDD of the
cipher CRHS equation unfortunately makes the size grow too large very rapidly.

Another solving method we have tried works as follows. Let the set of linear
constraints to be satisfied be contained in a matrix LC. We set LC at the (single)
top node in the BDD, and will propagate the matrix through the whole BDD
according to Algorithm 3.

Algorithm 3. Propagating linear constraints through BDD with k levels.

for i = 0 to k do
for every node a at level i do

if a contains matrix then
Build matrix M of linear constraints present in all matrices in a
if li = 0 is consistent with M then

Send M |li=0 through 0-edge
end if
if li = 1 is consistent with M then

Send M |li=1 through 1-edge
end if

end if
end for

end for

What we are bascally doing is to fix the value of li in LC to 0 or 1 when passing
LC through a 0- or 1-edge out of a node at level i. If the linear constraints of
LC would become inconsistent by sending it across an edge, the matrix is not
propagated in that direction. Nodes receiving more than one LC-matrix will
only keep linear constraints present in all matrices.

A node containing a matrix could be interpreted as saying “Any path below
me must satisfy the linear constraints in my matrix.” We hope that the matrix
ending up in the
-node will contain some other linear constraints than the ones
we started with. If this is the case, we can repeat Algorithm 3 with increasingly
large LC.

In small examples (that can be checked by hand) the method of propagating
the linear constraints through the BDD works, but for Trivium-35 it did not,

28 T.E. Schilling and H. Raddum

as there were no new linear constraints in the matrix arriving at the bottom.
What we did see for Trivium-35 however, was that there is a significant amount
of nodes at levels 113− 138 in the BDD that did not receive any matrices (due
to inconsistencies). At some levels almost half of the nodes were empty. We
learn from this that there is no path satisfying the linear constraints in LC that
can pass through these nodes, and so they can be deleted. Hence we can use
Algorithm 3 to prune the BDD, and reduce its size.

5 Conclusion and Further Work

In this paper we have introduced a new way of representing algebraic equations,
and shown its advantages compared to previously known representations. With
the CRHS representation it is possible to merge many more equations together,
than what is possible by other approaches. Building the CRHS equation system
for Trivium, we have shown that Trivium may be described by a single CRHS
equation with a BDD of size 247.7 nodes, at most.

We have not yet been able to solve big CRHS equation systems, due to the
many false solutions appearing in the right hand side BDD. The problem that
needs to be solved is: How do we efficiently find a path in a BDD that
satisfies a set of linear constraints? The method of matrix propagation helps
in reducing the size of the BDD, and may be an approach worth pursuing. This
is a topic for further research.

Finally, we should keep in mind that the operation of merging equations in
a system is a process with exponential complexity. This is also true for CRHS
equations, but for systems representing versions of Trivium we can do full merg-
ing anyway, because of the structure of the system. Solving non-linear equation
systems is NP-hard in general, so we cannot hope to have a solving algorithm
without any exponential step in it. Gluing all equations together is an exponen-
tial step, and full gluing normally solves the system. We can then speculate that
after gluing all initial equations into one, we have overcome the exponential step
and that the remaining problem for finding a solution can be solved efficiently.
It is not clear that the problem of finding a path in a BDD subject to a set
of linear constraints must have exponential complexity in the number of nodes.
Further investigation into this question is needed.

References

1. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007),
http://www.ecrypt.eu.org/stream

2. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations. De-
signs, Codes and Cryptography 49(1), 147–160 (2008)

3. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

http://www.ecrypt.eu.org/stream

Analysis of Trivium Using Compressed Right Hand Side Equations 29

4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

5. Raddum, H.: MRHS Equation Systems. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 232–245. Springer, Heidelberg (2007)

6. Semaev, I.: Sparse algebraic equations over finite fields. SIAM Journal on Com-
puting 39(2), 388–409 (2009)

7. Akers, S.: Binary decision diagrams. IEEE Transactions on Computers 27(6), 509–
516 (1978)

8. Somenzi, F.: Binary decision diagrams. In: Calculational System Design. NATO
Science Series F: Computer and Systems Sciences, vol. 173, pp. 303–366. IOS Press
(1999)

9. Knuth, D.: The Art of Computer Programming. vol. 4, Fascicles 0-4, The Art of
Computer Programming. Addison Wesley (PEAR) (2009)

10. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg
(2002)

11. Stegemann, D.: Extended BDD-Based Cryptanalysis of Keystream Generators. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 17–35.
Springer, Heidelberg (2007)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

13. Cannière, C.D., Preneel, B.: Trivium specifications. ECRYPT Stream Cipher
Project (2005)

14. Somenzi, F.: CUDD: CU Decision Diagram Package (2009),
http://vlsi.colorado.edu/~fabio/CUDD/

Appendix

Example 1 (MRHS). The basic non-linear component in Trivium is the bitwise
multiplication found in the function updating the registers. The new bit (x6)
coming into a register at some point is related to the old ones (x1, . . . , x5) by

x1 · x2 + x3 + x4 + x5 = x6.

The multiplication is the non-linear component, with inputs x1 and x2, and
a single linear combination as output, namely x3 + x4 + x5 + x6. There are
four different inputs to this function, hence there will be four columns in the
B-matrix. The corresponding MRHS equation is

⎡⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 1

⎤⎦
⎛⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎣0 1 0 1
0 0 1 1
0 0 0 1

⎤⎦ . (2)

Example 2 (BDD). Figure 1 shows an example BDD. The vertex v0 is the root.
Solid lines indicate 1-edges and dashed lines indicate 0-edges. In this example
the order is (l0, l1, l2) as indicated to the left.

http://vlsi.colorado.edu/~fabio/CUDD/

30 T.E. Schilling and H. Raddum

v0

v1 v2

v3

⊥ �

l0

l1

l2

Fig. 1. Example BDD

Example 3 (Accepted Inputs). The accepted inputs for the BDD in Figure 1 are
the vectors (l0, l1, l2):

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(1, 0, 1) .

One can see that (0, 0, 0) and (0, 0, 1) are on the same path from v0 to
. On
that path no node associated with l2 is visited, so l2 can be assigned both values.

A Boolean equation may be characterized by its set of satisfying assignments.
Building a BDD whose accepted inputs match the set of satisfying assignments,
gives us another representation of the same equation. For example, the Boolean
equation corresponding to the BDD in Figure 1 is l0l1 + l0l2 + l1l2 + l0 + l1 = 0.

Example 4 (AND operation). The top half of Fig. 2 shows the BDDs of two
Boolean functions. The left BDD shows l0+ l1+ l2 = 0, the right BDD represents
l0l1 + l2 = 0. Both BDDs share the same order of variables, and the resulting
BDD of their conjunction after reduction is shown below the two original BDDs.

Example 5 (CRHS). We write equation (2) from Example 1 as a CRHS equation
by converting the right hand side into a BDD.

Instead of writing out the left hand matrix of equation (2), we write down the
corresponding linear combinations, and give them the names l0, l1, l2.

⎡⎣x1 = l0
x2 = l1
x3 + x4 + x5 + x6 = l2

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

 ⊥

v0

v1

v2 v3

(3)

Analysis of Trivium Using Compressed Right Hand Side Equations 31

l0 v0 w0

l1 v1 v2 w1

l2 v3 v4 w2 w3

� ⊥ ⊥ �

v0 ∧ w0l0

l1

l2

v2 ∧ w3

v3 ∧ w3

�⊥

Fig. 2. AND-operation example

The right hand side of the CRHS equation is a compressed version of the right
hand side in a MRHS equation. Every accepted input in the graph of the CRHS
equation stands for one right hand side of the corresponding MRHS equation.
The example above contains the edge (v0, v3). This edge is jumping over a level,
i.e. every path through this edge does not contain any vertex at level l1. That
means that for a path containing the edge (v0, v3), the variable l1 can take
any value. The path 〈v0, v3,
〉 thus contains two vectors for (l0, l1, l2), namely
(0, 0, 0) and (0, 1, 0).

Example 6 (CRHS Gluing). The following two equations are similar to equations
in a Trivium equation system. In fact, the right hand sides of the following are
taken from a full scale Trivium equation system. The left hand matrices have
been shortened.

32 T.E. Schilling and H. Raddum

⎡
⎣x1 = l0
x2 = l1
x3 + x4 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

u0

u1

u2 u3

,

⎡
⎣x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l3

l4

l5

� ⊥

v0

v1

v2 v3

(4)

The gluing of the equations above is

⎡⎢⎢⎢⎢⎢⎢⎣
x1 = l0
x2 = l1
x3 + x4 = l2
x4 = l3
x5 = l4
x6 + x7 = l5

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

l3

l4

l5

w0

w1

w2 w3

w4

w5

w6 w7

, (5)

where ⊥-paths in this last graph are omitted for better readability. Note that
omitting these paths does not decrease the overall number of vertices. The re-
sulting equation has 8 nodes where the corredsponding MRHS equation would
have 16 right hand sides.

Cryptanalysis of Round-Reduced HAS-160

Florian Mendel, Tomislav Nad, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Tomislav.Nad@iaik.tugraz.at

Abstract. HAS-160 is an iterated cryptographic hash function that is
standardized by the Korean government and widely used in Korea. In
this paper, we present a semi-free-start collision for 65 (out of 80) steps of
HAS-160 with practical complexity. The basic attack strategy is to con-
struct a long differential characteristic by connecting two short ones by
a complex third characteristic. The short characteristics are constructed
using techniques from coding theory. To connect them, we are using an
automatic search algorithm for the connecting characteristic utilizing the
nonlinearity of the step function.

Keywords: differential attack, hash function, coding theory, collision.

1 Introduction

In the last years research in cryptanalysis of hash function has made significant
progress. Weaknesses have been shown in many commonly used hash functions
as SHA-1 [19] and MD5 [18]. These breakthrough results in the cryptanalysis of
hash functions were the motivation for intensive research in this field. Especially,
in the ongoing SHA-3 [12] competition several new design strategies and attack
techniques have been proposed. However, it also draws the attention away from
currently used hash function standards, whereas it is important to analyze these
standards to achieve a better understanding of the security margin in critical
applications like e-commerce and e-government systems. In this paper, we focus
on the hash function HAS-160. It is standardized by the Korean government
(TTAS.KO-12.0011/R1) [17] and hence widely used in Korea. It is an iterated
cryptographic hash function that produces a 160-bit hash value. The design of
HAS-160 is similar to SHA-1 and MD5.

In [22], Yun et al. applied the techniques invented by Wang et al. in the crypt-
analysis of MD5 and SHA-1 to the HAS-160 hash function. They show that a
collision can be found for HAS-160 reduced to 45 steps with a complexity of
about 212. This attack was later extended by Cho et al. [3] to HAS-160 reduced
to 53 steps. The attack has a complexity of about 255 53-step HAS-160 computa-
tions. Mendel and Rijmen [10] improved the attack and reduced the complexity
to 235 and presented an actual colliding message pair for HAS-160 reduced to
53 steps. Furthermore, they presented a theoretical attack on 59 steps. Finally,
preimage attacks on 52 steps by Sasaki and Aoki [16] and on 68 steps by Hong

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 33–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 F. Mendel, T. Nad, and M. Schläffer

et al. [6] have been presented. Both attacks have only theoretical complexity and
are only slightly faster than the generic attack which has complexity 2160.

In this paper, we combine different techniques to construct a semi-free start col-
lision for 65 (out of 80) steps of HAS-160 with practical complexity. A semi-free-
start collision is a collision attack where the adversary can choose the value of the
initial value (IV). The basic idea of our attack is similar to the attack on a DES
based hash function by Rijmen and Preneel [15] and to the recent attack on the
SHA-3 candidate Skein by Yu et al. [21]. The idea is to construct a long differen-
tial characteristic by connecting two short ones by a complex third characteristic.
We show how this idea can be applied on HAS-160 resulting in a semi-free start
collision. Furthermore, we present an actual colliding message pair and IV fulfill-
ing all conditions of the differential characteristics. This is so far the best attack
in terms of number of steps on HAS-160 with practical complexity.

The remainder of this paper is structured as follows. A description of the
hash function is given in Section 2. In Section 3 we describe the basic attack
strategy. In Section 4 the search for two short differential characteristics and the
determination of a good position for the connection is explained. In Section 5 we
connect the short characteristics and present the final differential path. Finally,
we present a colliding message pair in Section 5.3 and conclude in Section 6.

2 Description of HAS-160

HAS-160 is an iterative hash function that processes 512-bit input message
blocks, operates on 32-bit words and produces a 160-bit hash value. The de-
sign of HAS-160 is similar to the design principles of MD5 and SHA-1. In the
following, we briefly describe the hash function. It basically consists of two parts:
message expansion and state update transformation. A detailed description of
the HAS-160 hash function is given in [17].

Message Expansion. The message expansion of HAS-160 is a permutation of
20 expanded message words Wi in each round. The 20 expanded message words
Wi used in each round are constructed from the 16 input message words mi as
shown in Table 1.

For the ordering of the expanded message wordsWi the permutation in Table 2
is used.

Table 1. Message expansion of HAS-160

Round 1 Round 2 Round 3 Round 4

W0 m0 m0 m0 m0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
W15 m15 m15 m15 m15

W16 W0 ⊕ W1 ⊕ W2 ⊕ W3 W3 ⊕ W6 ⊕ W9 ⊕ W12 W12 ⊕ W5 ⊕ W14 ⊕ W7 W7 ⊕ W2 ⊕ W13 ⊕ W8

W17 W4 ⊕ W5 ⊕ W6 ⊕ W7 W15 ⊕ W2 ⊕ W5 ⊕ W8 W0 ⊕ W9 ⊕ W2 ⊕ W11 W3 ⊕ W14 ⊕ W9 ⊕ W4

W18 W8 ⊕ W9 ⊕ W10 ⊕ W11 W11 ⊕ W14 ⊕ W1 ⊕ W4 W4 ⊕ W13 ⊕ W6 ⊕ W15 W15 ⊕ W10 ⊕ W5 ⊕ W0

W19 W12 ⊕ W13 ⊕ W14 ⊕ W15 W7 ⊕ W10 ⊕ W13 ⊕ W0 W8 ⊕ W1 ⊕ W10 ⊕ W3 W11 ⊕ W6 ⊕ W1 ⊕ W12

Cryptanalysis of Round-Reduced HAS-160 35

Table 2. Permutation of the message words

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round 1 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15

Round 2 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0

Round 3 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3

Round 4 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12

State Update Transformation. The state update transformation of HAS-
160 starts from a (fixed) initial value IV of five 32-bit registers and updates
them in 4 rounds of 20 steps each. Figure 1 shows one step of the state update
transformation of the hash function.

Ai+1

Ai

Bi+1

Bi

Ci+1

Ci

Di+1

Di

Ei+1

Ei

Kj

Wi

f

≪ S2

≪ S1

Fig. 1. The step function of HAS-160

Note that the function f is different in each round: f0 is used in the first
round, f1 is used in round 2 and round 4, and f2 is used in round 3.

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

f1(x, y, z) = x⊕ y ⊕ z

f2(x, y, z) = (x ∨ ¬z)⊕ y

A step constant Kj ∈ {0, 5a827999, 6ed9eba1, 8f1bbcdc} is added in every step
and is different for each round. While rotation value s2 ∈ {10, 17, 25, 30} is
different in each round of the hash function, the rotation value s1 is different in
each step of a round. The rotation value s1 for each step of a round is given in
Table 3.

Table 3. Permutation of the message words

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

36 F. Mendel, T. Nad, and M. Schläffer

After the last step of the state update transformation, the initial value and
the output values of the last step are combined, resulting in the final value of
one iteration known as Davies-Meyer hash construction (feed forward). The feed
forward is a word-wise modular addition of the IV and the output of the state
update transformation. The result is the final hash value or the initial value for
the next message block.

2.1 Alternative Description of HAS-160

As one can see in the description of the step update transformation (see Figure 1)
only the state variable Ai is updated in each step. The values of the other state
variables are defined by Ai. Therefore, we can redefine the state update such
that only one state variable is used.

Ai+1 =Ai−4 ≫ s2 +Ai ≪ s1+

f(Ai−1, Ai−2 ≫ s2, Ai−3 ≫ s2)+

Kj +Wi

(1)

Note that s2 need to be adapted accordingly if the update uses A’s between two
rounds. The chaining values are represented by A0, A−1, A−2, A−3, A−4.

3 Basic Attack Strategy

In this section, we briefly describe the attack strategy to construct a semi-free
start collision for 65 steps of HAS-160. A similar attack was done on a DES
based hash function by Rijmen and Preneel [15] and recently on Skein by Yu
et al. [21]. The main idea is to construct a long differential characteristic by
connecting two short ones. First, proper differences in the expanded message
words need to be chosen, such that they result in two short linear characteristics
with low Hamming weight and hence hold with high probability. Second, we
connect the two short differential characteristics by a third one. This one can have
low probability, since we can use message modification to fulfill the conditions.
Figure 2 illustrates the strategy.

The attack can be summarized as follows:

1. Choose an optimal position for the connection and find two differential char-
acteristics, which hold with high probability.

2. Find a connecting differential characteristic.
3. Find inputs fulfilling the conditions and use message modification to improve

the attack complexity.

To find two good characteristics and to determine an optimal position, we use
a linearized model of the hash function. Finding a characteristic in a linearized
hash function is not difficult. However, we aim for characteristics with high
probability such that the available freedom can be used for the connection. The

Cryptanalysis of Round-Reduced HAS-160 37

MEconnection

linear

linear

Fig. 2. Basic attack strategy. Differences occur only in the parts with background color.

probability that the linear characteristic holds in the original hash function is
related to the Hamming weight of the characteristic. In general, a differential
characteristic with low Hamming weight has a higher probability than one with a
high Hamming weight. Finding a characteristic with high probability (low Ham-
ming weight) is related to finding a low weight word in linear codes. Therefore,
we use a probabilistic algorithm from coding theory to find good characteris-
tics. It has been shown in the past, for instance the cryptanalysis of SHA-0 [2],
SHA-1 [13], EnRUPT [7] or SIMD [8] that this technique works well for finding
differential characteristics with low Hamming weight.

We are constructing different linear codes for different positions and lengths
of the connecting part to determine the optimal choice. Afterwards, we use an
automatic search technique to find a connecting differential characteristic. Fi-
nally, we use message modification, introduced by Wang et al. in [20], to find
inputs fulfilling all conditions.

4 Finding Two Short Characteristics

As mentioned before the problem of finding characteristics for a linearized hash
function which hold with high probability for the original function is related
to coding theory [8,13,14]. In order to find such characteristics for HAS-160 we
need to linearize the hash function.

4.1 Linearization of HAS-160

Since the message expansion is already linear, only the step update transforma-
tion has to be linearized. The nonlinear parts of this function are the modular
additions and the Boolean functions f0 and f2 (f1 is linear). In the attack, we

38 F. Mendel, T. Nad, and M. Schläffer

replace all modular addition by XORs. For the Boolean functions we tried sev-
eral different linearizations. However, the following variant turned out to be the
best. The function f0 (IF) is replaced by the 0-function, i.e. we block each input
difference in f0. This has probability 1/2 in most cases (cf. [4]). One can see
that there is exactly one input difference for f0 where the output difference is
always one. In that case we discard the characteristic. f2 is approximated by its
second input. which holds with probability higher than 1/2. In summary we get
the following approximation for the Boolean functions:

f ′
0(x, y, z) = 0

f ′
2(x, y, z) = y

4.2 Construction of the Generator Matrix

In this section we explain the standard approach to find collision producing
characteristics for a linearized hash function. As observed by Rijmen and Oswald
[14], all differential characteristics for a linearized hash function can be seen as
the codewords of a linear code. Our goal is to find codewords with low Hamming
weight, i.e. characteristics with high probability. Therefore, we have to include
all intermediate chaining values where differences could decrease the success
probability in the linear code. Based on the alternative description of HAS-160
(see Section 2.1) we include only Ai in the linear code, since the other state
variables do not add any additional information to the code. This decreases the
length of the code significantly and therefore also the running time of the search
algorithm.

Let ΔAi ∈ {0, 1}32 be the difference vector of the chaining value Ai in bit
representation at step i. Then the vector

cw := (ΔA1, · · · , ΔAn), (2)

where cw ∈ {0, 1}n·32, represents the differences in the chaining value Ai after
each step of n steps of HAS-160. cw is one codeword of the linear code and
therefore a differential characteristic. To construct the generator matrix for the
linear code, we proceed as follows:

1. Compute cwj with the input difference ΔM = ej , where ej ∈ {0, 1}512
is the j-th unit vector and ΔM the difference of the message block in bit
representation.

2. Repeat the computation for j = 1, . . . , 512.

The resulting generator matrix of the linear code representing linearized HAS-
160 is defined in the following way:

G512×n·32 :=

⎛⎜⎝ cw1

...
cw512

⎞⎟⎠ . (3)

Cryptanalysis of Round-Reduced HAS-160 39

Since we are aiming for a collision in the last step, we need to apply code shorten-
ing on the last 160 bits, i.e. ensuring that all code words are zero in the last 160
bits. This reduces the dimension and length of the code to 352 and (n ·32−160),
respectively.

Using this matrix one can search for low Hamming weight codewords over all
n steps. As explained in Section 3 we are looking for two short characteristics,
which will be connected later. Therefore, we need to modify the linear code to
include this requirement.

Modification. The easiest way to define a linear code for both characteristics
simultaneously and ensuring that both use the same expanded message, is the
following. Firstly, ignore t steps in the middle. Hence, we change the vector (2)
to:

cw := (ΔA1, · · · , ΔAl, ΔAl+t+1, · · · , ΔAn). (4)

At the beginning of the second characteristic (after step l+t), the state variables
can have any difference, since the differences in the steps before are yet undefined.
Therefore, we need to add the information to the code that after step l + t all
differences are possible. Hence, we add the chaining variables at step l+ t+1 to
the linear code. The construction of the generator matrix changes to:

1. Compute cwj with the input difference ΔM = ej , where ej ∈ {0, 1}512
is the j-th unit vector and ΔM the difference of the message block in bit
representation.

2. Repeat the computation for j = 1, . . . , 512.
3. Compute cw512+k as follows:

(a) Set ΔM = 0 and cws = ek, where ek ∈ {0, 1}160 is the k-th unit vector
and

cws = (ΔAl+t−3, ΔAl+t−2, ΔAl+t−1, ΔAl+t, ΔAl+t+1).

(b) Compute ΔAi for (l+ t+1) < i ≤ n with cws and ΔM as input. Hence,
we get following codeword:

cw512+k := (ΔA1 = 0, · · · , ΔAl = 0, cws, ΔAl+t+2, · · · , ΔAn).

4. Repeat the computation for k = 1, . . . , 160.

Note that ΔBl+t+1 = ΔAl+t, ΔCl+t+1 = ΔAl+t−1, ΔDl+t+1 = ΔAl+t−2 and
ΔEl+t+1 = ΔAl+t−3 and therefore all possible chaining values after step l + t
are included in the code. The resulting generator matrix is

G672×(n−t+4)·32 :=

⎛⎜⎝ cw1

...
cw672

⎞⎟⎠ . (5)

Again code shorting is applied to ensure that all codewords result in a collision
after n steps.

40 F. Mendel, T. Nad, and M. Schläffer

Determining l, t and n. There exist several possible choices for the parameters
l, t and n of the linear code. First of all we limit t ≤ 21. The reason for this
is simple. We have 21 words (16 message words and 5 IV words) which can
be choosen freely and hence can be used for message modification to fulfill all
conditions in the connecting part which is usually the most expensive part of
the attack. However, we aimed for a smaller t to reduce the search space for the
connecting part as well.

For the search we constructed generator matrices for 21 ≤ l ≤ (n − 21) and
t = 21. If we have found two characteristics with high probability we reduce t.

4.3 Searching for Low Hamming Weight Codewords

We use the publicly available CodingTool Library [11] which contains all tools
needed to search for codewords with low Hamming weight. It implements the
probabilistic algorithm from Canteaut and Chabaud [1] to search for codewords
with low Hamming weight. This iterative algorithm basically looks for small
Hamming weight codewords in a smaller code. Such a codeword is considered as
a good candidate for a low Hamming weight codeword for the whole code. The
algorithm randomly selects σ columns of it and splits the selection in two sub-
matrices of equal size. By computing all linear combination of p rows (usually
2 or 3) for each sub-matrix and storing their weight, the algorithm searches for
a collision of both weights which allow to search for codewords of 2p. Then two
randomly selected columns are interchanged, followed by one Gaussian elimina-
tion step. This procedure is repeated until a sufficiently small Hamming weight
is found. With this tool we can find good characteristics for different choices of
l and t in few seconds on a standard PC. In Table 4 we present the best (lowest
Hamming weight) characteristics we have found for different parameters. As one
can see after 65 steps the Hamming weight is getting too high such that we
cannot find a characteristic and conforming inputs with practical complexity.

Note that decreasing t always increases the Hamming weight, since more state
variables with differences are included in the linear code. Furthermore, the Ham-
ming weight in Table 4 includes only differences in A. To estimate the probability

Table 4. Results for the low weight search

n l t Hamming weight

53 18 21 3

60 18 21 3

65 18 21 3

66 19 21 25

67 18 21 25

68 18 21 72

69 18 21 72

70 18 21 119

75 19 21 123

80 19 21 247

Cryptanalysis of Round-Reduced HAS-160 41

one has to take the differences in all state variables into account. Therefore, the
probability for the linear characteristic can be roughly estimated by four times
the Hamming weight of A.

Using this general approach we can cover the whole (linear) search space and
allow arbitrary differences in the message words. However, it turned out that the
best characteristics we have found are indeed the trivial ones which have only
few differences in the message words and only a one bit difference per message
word.

4.4 Short Differential Characteristics

To describe the differential characteristics we use generalized conditions which
are explained in Section 5.1. We have found several different characteristics,
depending on the choice of l and t. In Table 8 of Appendix A we present two
short characteristics, where t is kept small. To improve readability, we used the
alternative description of HAS-160 (see Section 2.1)

5 Finding Connecting Characteristics

In this section, we show how one can find a connecting differential characteristic
which is the most expensive part in our attack. The main idea to find a connect-
ing characteristic is to use the nonlinearity of the step update function. Con-
structing such complex characteristics is a difficult task. In [5], De Cannière and
Rechberger proposed a new method to find complex characteristics for SHA-1 in
an efficient way. In their concept they allow characteristics to impose arbitrary
conditions on the pairs of bits (referred to as generalized conditions). Based on
this they presented an efficient probabilistic search algorithm. Recently, Mendel
et al.[9] extended this technique and applied it successfully on SHA-2. The basic
idea of the search algorithm is to randomly pick a bit position and impose a
zero-difference. Afterwards, it is calculated how this condition propagates. This
is repeated until an inconsistency is found or all unrestricted bits are eliminated.

5.1 Generalized Conditions

To describe the search algorithm in more detail we first repeat the notation
of generalized conditions which was introduced in [5]. Inspired by signed-bit
differences, generalized conditions for differences take all 16 possible conditions
on a pair of bits into account. Table 5 lists all these possible conditions and
introduces notations for the various cases.
For example, all pairs of 8-bit words X and X∗ that satisfy

{(X,X∗) ∈ {0, 1}8 × {0, 1}8 |X7 ·X∗
7 = 0, Xi = X∗

i for 1 ≤ i ≤ 5, X0 �= X∗
0},

can be conveniently written in the form

∇X = [7?-----x].

42 F. Mendel, T. Nad, and M. Schläffer

Table 5. Notation for possible generalized conditions on a pair of bits [5]

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
- - - -

(Xi, X
∗
i) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

5.2 Application to HAS-160

Due to the similarities of HAS-160 to SHA-1 the adaption of the above concept
can be done in a straightforward manner and can be used to find the connecting
characteristic. For more details see [5,9]. We proceed as follow:

1. Pick a random unrestricted bit (?) or an unsigned difference (x).
2. Impose a zero-difference (-) or randomly a sign (u or n), respectively.
3. Check how the new condition propagates.
4. If an inconsistency occurs jump back to the point where the last sign was

imposed and make a different decision.
5. Repeat this until all unrestricted bits are eliminated

Using a small number of unrestricted words reduces the search space and run-
ning time of the algorithm significantly. Therefore, we reduced this number by
extending the two short linear characteristics linearly. Since there are only few
differences at the end of the first linear characteristic and at the beginning of
the second linear characteristic, we can extend them forward and backward re-
spectively, without increasing the Hamming weight too much. In fact for the
characteristic in Table 8 in Appendix A we extended the linear characteristics
linearly forward by two and backwards by ten steps. Table 6 shows the starting

Table 6. Steps free of conditions at the beginning of the search algorithm

step ∇A ∇W
...

...
...

20 x------------------x--x--------- --------------------------------

21 ???????????????????????????????? --------------------------------

22 ???????????????????????????????? --------------------------------

23 ???????????????????????????????? --------------------------------

24 ???????????????????????????????? --------------------------------

25 ???????????????????????????????? x-------------------------------

26 -x-x------x---x-xxx--x-------x-- --------------------------------

...
...

...

Cryptanalysis of Round-Reduced HAS-160 43

point of the search algorithm using the notation of generalized conditions leaving
only five words unrestricted.

Applying the above algorithm on this starting point the algorithm converges
already after an hour (on a standard PC) to a complete characteristic for 65
steps. Determining the complexity of the probabilistic algorithm in general is
still an open problem. Among others it depends on the hash function, search
strategy, start characteristic and implementation. The complete characteristic
is given in Table 8 of Appendix A. Note that with this approach we can find
several different characteristics.

5.3 Finding a Message Pair

Almost all of the differences in the characteristic of Table 8 in Appendix A are
within 21 steps. Since we can choose up to 21 words (16 message and 5 IV)
freely we can use message modification to find efficiently inputs which fulfill
all the conditions of the characteristic. The conditions for the characteristic are
listed in Table 9 in Appendix A. The resulting colliding message pair and IV is
given in Table 7.

Table 7. A colliding message pair and IV for HAS-160

IV ed3c8ca6 38127dc3 bcf7b374 264eeb2b 73be1247

M
467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3ea04
9603f6ca 252c37eb 3a1d6197 479ca8d1 badbe3d9 4e23c48c c52a6189 53f1ea06

M ′ 467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3ea04
9603f6ca 252c37eb 3a1d6197 479ca8d1 3adbe3d9 4e23c48c 452a6189 53f1ea06

ΔM
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 80000000 00000000 80000000 00000000

h 4b0a28ae bc82dbb1 a4805bfd cd226435 7cb7eb52

h′ 4b0a28ae bc82dbb1 a4805bfd cd226435 7cb7eb52

6 Conclusions

The progress in the cryptanalysis of hash functions in the last years shows that
the security of existing standards need to be reevaluated. Therefore, we analyze
in this paper the Korean hash function standard (TTAS.KO-12.0011/R1) HAS-
160. The main idea of our attack is to construct two short linear differential
characteristics which hold with high probability and connect them by a com-
plex third characteristic by using the nonlinearity of the state update function.
We use techniques from coding theory to search efficiently for the short char-
acteristics and simultaneously determine an optimal position and length of the
connecting characteristic. In a second step we use an automatic search algorithm
to find a connecting characteristic taking the nonlinearity of the state update
into account.

44 F. Mendel, T. Nad, and M. Schläffer

We present a semi-free-start collision for 65 (out of 80) steps HAS-160 with
practical complexity. Extending the attack to more rounds seems to be difficult.
One can always extend the size of the connecting part, but this also increases
the complexity of finding the connecting characteristic, which running time is
hard to estimate. If we limit the length of the connecting part to 21 steps, then
the best short characteristics we can find with probability below the generic
complexity of a collision attack, are for up to 65 steps.

Even though we only present a semi-free-start collision, it is a step forward
in the analysis of HAS-160. This is so far the best known attack with practical
complexity in terms of attacked steps for HAS-160.

Acknowledgments. The work in this paper has been supported by the Eu-
ropean Commission under contract ICT-2007-216646 (ECRYPT II) and by the
Austrian Science Fund (FWF, project P21936).

References

1. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367–
378 (1998)

2. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

3. Cho, H.-S., Park, S., Sung, S.H., Yun, A.: Collision Search Attack for 53-Step
HAS-160. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 286–
295. Springer, Heidelberg (2006)

4. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
Universität Bochum (May 2005),
http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf

5. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

6. Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

7. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 246–259. Springer, Heidelberg (2009)

8. Mendel, F., Nad, T.: A Distinguisher for the Compression Function of SIMD-512.
In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 219–232.
Springer, Heidelberg (2009)

9. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

10. Mendel, F., Rijmen, V.: Colliding Message Pair for 53-Step HAS-160. In: Nam, K.-
H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 324–334. Springer, Heidelberg
(2007)

11. Nad, T.: The CodingTool Library. Workshop on Tools for Cryptanalysis 2010
(2010),
http://www.iaik.tugraz.at/content/research/krypto/codingtool/

http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.iaik.tugraz.at/content/research/krypto/codingtool/

Cryptanalysis of Round-Reduced HAS-160 45

12. National Institute of Standards and Technology. Cryptographic Hash Algorithm
Competition (November 2007),
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

13. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-
lision Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005.
LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

14. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

15. Rijmen, V., Preneel, B.: Improved Characteristics for Differential Cryptanalysis of
Hash Functions Based on Block Ciphers. In: Preneel, B. (ed.) FSE 1994. LNCS,
vol. 1008, pp. 242–248. Springer, Heidelberg (1995)

16. Sasaki, Y., Aoki, K.: A Preimage Attack for 52-Step HAS-160. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 302–317. Springer, Heidelberg (2009)

17. Telecommunications Technology Association. Hash Function Standard Part 2:
Hash Function Algorithm Standard (HAS-160), TTAS.KO-12.0011/R1 (2008)

18. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

19. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

20. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

21. Yu, H., Chen, J., Ketingjia, Wang, X.: Near-Collision Attack on the Step-Reduced
Compression Function of Skein-256. Cryptology ePrint Archive, Report 2011/148
(2011)

22. Yun, A., Sung, S.H., Park, S., Chang, D., Hong, S., Cho, H.-S.: Finding Collision
on 45-Step HAS-160. In: Won, D., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 146–155. Springer, Heidelberg (2006)

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

46 F. Mendel, T. Nad, and M. Schläffer

A Characteristic

Table 8. Characteristic for 65 steps HAS-160 using generalized conditions. The rows
with darkgray background represent the connecting part. The rows with lightgray
background represent the two linear characteristics. All conditions can be fulfilled using
message modification.

step ∇A ∇W
-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 --------------------------------
...

...
...

16 -------------------------------- --------------------------------

17 u------------------------------- x-------------------------------

18 ------------------u------------- --------------------------------

19 n------------u------------------ x-------------------------------

20 u------------------u--u--------- --------------------------------

21 -------n-uuuuuu--u----n----u---- --------------------------------

22 u--n---uu-nu---uu---nn--------uu --------------------------------

23 --n-n-nnnu-n-u--nu------nu------ --------------------------------

24 uuun-nu--u-u----n-n-unnuuuuuuu-n --------------------------------

25 --n----uu---uu-un-u-----nu-n-n-- x-------------------------------

26 -n-n------n---n-uun--u-------n-- --------------------------------

27 -unu------u-n---uu---u-n-u-u---n --------------------------------

28 --n---u---u---u--u-n---u-----u-n --------------------------------

29 --------n---u--------n-------u-n --------------------------------

30 --u-----n-u----------u---------- --------------------------------

31 --n-------n----------------n-n-- --------------------------------

32 --------------n--------------n-- --------------------------------

33 ----------n--------------------- x-------------------------------

34 ----------n------------------u-- --------------------------------

35 -----------------------------u-- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --------------------------------

39 -------------------------n------ --------------------------------

40 -------------------------------- --------------------------------

41 -------------------------------- --------------------------------

42 -------------------------------- x-------------------------------

43 -------------------------------- --------------------------------

44 -------------------------------- x-------------------------------

45 -------------------------------- --------------------------------
...

...
...

65 -------------------------------- --------------------------------

Cryptanalysis of Round-Reduced HAS-160 47

Table 9. Set of conditions for the semi-free-start collision for 65 steps

step set of conditions #

16 A16,3 = 0, A16,21 = A15,21 2

17 A17,3 = 1, A17,31 = 1 2

18 A18,9 = 1, A18,13 = 1, A18,8 	= A17,8 3

19 A19,18 = 1, A19,31 = 0, A19,23 	= A17,13, A19,27 	= A18,2, A19,9 	= A18,31, A19,24 = A18,31 6

20 A20,9 = 1, A20,12 = 1, A20,31 = 1, A20,16 	= A18,6, A20,3 = A18,25, A20,0 	= A19,0, A20,1 = A19,1, A20,2 = A19,2,
A20,3 = A19,3, A20,4 = A19,4, A20,5 = A19,5, A20,23 	= A19,6, A20,7 = A19,7, A20,19 = A19,19, A20,24 = A19,24,
A20,29 	= A19,29

16

21 A21,4 = 1, A21,9 = 0, A21,14 = 1, A21,17 = 1, A21,18 = 1, A21,19 = 1, A21,20 = 1, A21,21 = 1, A21,22 = 1,
A21,24 = 0, A21,26 	= A19,9, A21,29 = A19,12, A21,3 	= A20,3, A21,6 	= A20,6, A21,7 	= A20,7, A21,11 	= A20,11,
A21,15 	= A20,15, A21,16 	= A20,16, A21,3 	= A20,18, A21,25 	= A20,25, A21,26 = A20,26, A21,30 = A20,30

22

22 A22,0 = 1, A22,1 = 1, A22,10 = 0, A22,11 = 0, A22,15 = 1, A22,16 = 1, A22,20 = 1, A22,21 = 0, A22,23 = 1,
A22,24 = 1, A22,28 = 0, A22,31 = 1, A22,2 = A20,17, A22,3 = A20,18, A22,4 	= A20,19, A22,5 	= A20,20, A22,6 = A20,21,
A22,7 	= A20,22, A22,9 = A20,24, A22,3 	= A21,3, A22,5 = A21,5, A22,6 	= A21,6, A22,7 = A21,7, A22,8 = A21,8,
A22,12 	= A21,12, A22,29 	= A21,12, A22,29 = A21,29, A22,30 = A21,30

28

23 A23,6 = 1, A23,7 = 0, A23,14 = 1, A23,15 = 0, A23,18 = 1, A23,20 = 0, A23,22 = 1, A23,23 = 0, A23,24 = 0, A23,25 =
0, A23,27 = 0, A23,29 = 0, A23,17 = A21,0, A23,28 	= A21,11, A23,0 	= A21,15, A23,1 	= A21,16, A23,8 = A21,23,
A23,13 = A21,28, A23,16 = A21,31, A23,3 = A22,3, A23,21 	= A22,4, A23,5 = A22,5, A23,8 = A22,8, A23,9 	= A22,9,
A23,26 = A22,9, A23,12 	= A22,12, A23,13 	= A22,13, A23,2 = A22,17, A23,17 	= A22,17, A23,3 = A22,18, A23,4 	= A22,19,
A23,19 	= A22,19, A23,26 	= A22,26, A23,30 	= A22,30

34

24 A24,0 = 0, A24,2 = 1, A24,3 = 1, A24,4 = 1, A24,5 = 1, A24,6 = 1, A24,7 = 1, A24,8 = 1, A24,9 = 0, A24,10 = 0,
A24,11 = 1, A24,13 = 0, A24,15 = 0, A24,20 = 1, A24,22 = 1, A24,25 = 1, A24,26 = 0, A24,28 = 0, A24,29 = 1,
A24,30 = 1, A24,31 = 1, A24,23 = A22,6, A24,24 	= A22,7, A24,12 = A22,27, A24,14 = A22,29, A24,17 	= A23,0,
A24,1 	= A23,1, A24,18 	= A23,1, A24,27 = A23,10, A24,12 	= A23,12, A24,1 = A23,16, A24,17 	= A23,17, A24,19 = A23,19,
A24,21 = A23,21, A24,16 	= A23,31

35

25 A25,2 = 0, A25,4 = 0, A25,6 = 1, A25,7 = 0, A25,13 = 1, A25,15 = 0, A25,16 = 1, A25,18 = 1, A25,19 = 1, A25,23 = 1,
A25,24 = 1, A25,29 = 0, A25,17 	= A23,0, A25,20 = A23,3, A25,21 = A23,4, A25,22 	= A23,5, A25,25 	= A23,8, A25,26 	=
A23,9, A25,27 = A23,10, A25,28 = A23,11, A25,30 = A23,13, A25,11 = A23,26, A25,17 = A24,17, A25,3 = A24,18,
A25,8 = A24,23, A25,9 = A24,24, A25,12 = A24,27

27

26 A26,2 = 0, A26,10 = 1, A26,13 = 0, A26,14 = 1, A26,15 = 1, A26,17 = 0, A26,21 = 0, A26,28 = 0, A26,30 = 0,
A26,1 = A24,16, A26,3 = A24,18, A26,4 	= A24,19, A26,8 = A24,23, A26,9 = A24,24, A26,20 	= A25,3, A26,22 	= A25,5,
A26,25 	= A25,8, A26,26 = A25,9, A26,27 = A25,10, A26,11 = A25,11, A26,12 = A25,12, A26,5 = A25,20, A26,7 = A25,22,
A26,25 	= A25,25, A26,11 = A25,26, A26,16 	= A25,31

26

27 A27,0 = 0, A27,4 = 1, A27,6 = 1, A27,8 = 0, A27,10 = 1, A27,14 = 1, A27,15 = 1, A27,19 = 0, A27,21 = 1, A27,28 = 1,
A27,29 = 0, A27,30 = 1, A27,27 	= A25,10, A27,2 = A25,17, A27,13 = A25,28, A27,23 	= A26,6, A27,24 = A26,7,
A27,12 	= A26,12, A27,1 	= A26,16, A27,3 	= A26,18, A27,23 = A26,23, A27,9 = A26,24, A27,27 	= A26,27

23

28 A28,0 = 0, A28,2 = 1, A28,8 = 1, A28,12 = 0, A28,14 = 1, A28,17 = 1, A28,21 = 1, A28,25 = 1, A28,29 = 0,
A28,23 = A26,6, A28,4 = A26,19, A28,19 	= A27,2, A28,30 	= A27,13

13

29 A29,0 = 0, A29,2 = 1, A29,10 = 0, A29,19 = 1, A29,23 = 0, A29,29 = A27,12, A29,4 	= A28,4, A29,21 	= A28,4,
A29,6 = A28,6, A29,27 	= A28,10, A29,4 = A28,19, A29,13 = A28,28, A29,15 = A28,30

13

30 A30,10 = 1, A30,21 = 1, A30,23 = 0, A30,29 = 1, A30,27 = A28,10, A30,4 = A28,19, A30,8 	= A28,23, A30,4 = A29,4,
A30,25 = A29,8, A30,12 	= A29,12, A30,2 	= A29,17, A30,17 = A29,17, A30,6 	= A29,21, A30,14 	= A29,29

14

31 A31,2 = 0, A31,4 = 0, A31,21 = 0, A31,29 = 0, A31,6 	= A29,21, A31,14 = A29,29, A31,0 	= A30,0, A31,17 	= A30,0,
A31,19 	= A30,2, A31,17 	= A30,17

10

32 A32,2 = 0, A32,17 = 0, A32,19 = A30,2, A32,21 = A30,4, A32,27 = A31,10, A32,8 	= A31,23 6

33 A33,21 = 0, A33,2 	= A31,17, A33,4 	= A32,4, A33,6 = A32,21, A33,14 = A32,29 5

34 A34,2 = 1, A34,21 = 0, A34,6 	= A32,21, A34,19 	= A33,2, A34,17 = A33,17 5

35 A35,2 = 1, A35,19 = A33,2 2

36 A36,6 	= A35,21 1

37 A37,21 = 0, A37,19 	= A36,2 2

39 A39,6 = 0 1

41 A41,31 = 1 1

An Efficient Method for Eliminating Random
Delays in Power Traces of Embedded Software

Daehyun Strobel and Christof Paar

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany
{strobel,cpaar}@crypto.rub.de

Abstract. Generating random delays in embedded software is a com-
mon countermeasure to complicate side channel attacks. The idea is to
insert dummy operations with varying lengths at different moments in
time. This creates a non-predictable offset of the attacking point in the
time dimension. Since the success of, e.g., a correlation power analysis
(CPA) attack is largely affected by the alignment of the power traces, the
adversary is forced to apply additional large computations or to record
a huge amount of power traces to achieve acceptable results.

In this paper, we present a new efficient method to identify random
delays in power measurements. Our approach does not depend on how
the random delays are generated. Plain uniform delays can be removed
as well as Benoit-Tunstall [11] or improved floating mean delays [4]. The
procedure can be divided into three steps. The first step is to convert
the power trace into a string depending on the Hamming weights of the
opcodes. After this, the patterns of the dummy operations are identified.
The last step is to use a string matching algorithm to find these patterns
and to align the power traces.

We have started our analysis with two microcontrollers, an Atmel
AVR ATmega8 and a Microchip PIC16F54. For our practical evaluation,
we have focused on the ATmega8. However, the results can be applied
to many other microcontrollers with a similar architecture.

Keywords: Side channel analysis, random delays, alignment of power
traces, embedded devices.

1 Introduction

Although there is a wide range of modern ciphers that allow very high levels
of security, their implementations in real systems can often be broken due to
their susceptibility to side channel attacks. In recent years, the side channel
community spent a lot of work on practical countermeasures. In this paper,
we will focus on a hiding countermeasure which is often adopted on embedded
devices and combined with additional masking methods. The idea of hiding is
to hinder the adversary to assign instruction operands and intermediate values
to the power consumption. This is realized either by additional noise in the
frequency domain or by randomized shiftings of operations in the time dimension.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 48–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Efficient Method for Eliminating Random Delays in Power Traces 49

We will concentrate on the second case, namely on the insertion of random delays
during the execution of the algorithm.

An adversary who is faced with the problem of mounting a correlation power
analysis (CPA) attack against a hiding protected implementation has mainly
three possibilities [7]: alignment of the power traces, preprocessing of the power
traces or simply retrieving a large set of measurements. While preprocessing
techniques like integration or convolution of power traces and fast Fourier trans-
formation may increase the success of an attack, acquiring a large set of mea-
surements is not feasible in many cases. The alignment of the power traces is
in fact the most promising method, since a correct alignment directly influences
the effect of the countermeasure.

1.1 Alignment Techniques

There are some alignment techniques we would like to mention before we begin
with our proposal. A generic approach is carried out in two steps [7]:

First, a characteristic pattern is selected which is (nearby) the attacking point
and has to be aligned. This is in fact a challenging task. The attacker usually
has no information about the time period that contains the relevant data for
his attack. Hence, it is difficult to find the right pattern that is close enough to
the attacking point such that no delays are between them. In the second step,
this pattern has to be found in other traces mainly by using pattern matching
algorithms. This can be, e.g., by stepwise computing the Euclidean distances
or correlation coefficients between trace and pattern. The problems that may
encounter with this approach are also discussed by Mangard et al. in [7] and
include, e.g., the uniqueness of the selected pattern or intermediate results that
are processed in the pattern and cause a variation in the power consumption.

Another alignment technique was proposed by Woudenberg et al. in [12]. In
this paper, fast dynamic time warping (FastDTW) is used to find the optimal
alignment between two power traces in linear time and space complexity. Fast-
DTW, first introduced in [9], produces a warp path between time series which
leads to an alignment with the minimum distance. Woudenberg et al. applied
this algorithm to power traces to circumvent misalignment produced by random
process interrupts or an unstable clock. The time complexity to align two power
traces with length T is given by O(T).

At CARDIS 2011, Muijrers et al. introduced a method called RAM (Rapid
Alignment Method) [8]. It is based on algorithms that are mostly applied for
object recognition in images. In a direct comparison with elastic alignment, it
achieves similar results in less time (about factor 0.2).

1.2 Our Contribution

In this paper, we present an efficient method to detect and eliminate random
delays in power traces. Instead of applying pattern matching algorithms on raw
traces, we first apply a mapping of the power consumption of each instruction
cycle to the Hamming weight of the processed instruction. This allows us to

50 D. Strobel and C. Paar

use efficient string matching techniques to identify and detect random delays.
We evaluate our proposal on an AES-128 implementation with the improved
floating mean countermeasure introduced at CHES 2010. After the application
of our approach, we mount a CPA attack [3] and get comparable results to an
attack on an unprotected implementation.

The main target device is an 8-bit microcontroller Atmel AVR ATmega8. To
show that our proposal is not constrained to this specific device, we partially
extend our analysis to a second microcontroller, the Microchip PIC16F54.

1.3 Structure of This Paper

We begin with a short description of the two microcontrollers with a focus on
their prefetching and execution process in Sect. 2. Our approach of removing
the misalignment is introduced in three steps in Sect. 3: mapping the power
consumption to strings, identifying random delays and detecting them in strings.
Finally, practical results on an ATmega8 are given in Sect. 4.

2 The Pipelining Concept of ATmega8 and PIC16F54

This section gives us important background information about the two devices
Atmel AVR ATmega8 and Microchip PIC16F54. Both devices are 8-bit micro-
controllers which use the Harvard architecture, i.e., the instruction memory and
the data memory are physically separated and accessed via different buses. In
contrast to the von Neumann architecture where instructions and data are shar-
ing one bus system, an instruction is fetched from the flash memory while another
one is executed. This basic pipelining concept is depicted in Fig. 1 and is used
by both microcontrollers to maximize the performance. In Sect. 3, we will see
that the prefetching mechanism leaks an essential information that we exploit
for our approach.

Fig. 1. Parallel instruction fetches and executions for an ATmega8 [1]

Please note that Fig. 1 can only be applied to instructions that are executed in
one instruction cycle. For any other instruction, especially for program branches,
the successive instruction in the execution flow need not necessarily be the next
one in the program memory. An example is given by the following sequence:

An Efficient Method for Eliminating Random Delays in Power Traces 51

CP R4,R10 ; compare registers R4 and R10
BREQ SUB ; branch if equal
ADD R4,R10
...

SUB:
AND R4,R11

While CP is being executed, BREQ SUB is fetched into the instruction register.
In the next cycle, ADD R4,R10 is fetched and, if the two registers match, the
program counter is changed due to the branch instruction. Hence, the previously
fetched instruction is discarded and another cycle is needed to fetch the correct
instruction AND R4,R10.

The instructions are stored as 12-bit (PIC16F54) or 16-bit (ATmega8) opcodes
in the program memory. If we mention the Hamming weight of an instruction,
we always refer to one complete opcode including the associated registers and
literals, respectively. According to the instruction set of the ATmega8 ADD, e.g.,
is defined by the opcode 0000 11rd dddd rrrr, with the 5-bit description of
the source register r and the destination register d. Hence, the opcode for ADD
R4,R10 is 0000 1100 0100 1010 resulting in the Hamming weight 5.

The length of the opcode is not the only difference between the two micro-
controllers concerning their instruction sets. The main differences that have to
be considered for our approach are given in Tab. 1.

Table 1. Comparison of the AVR Atmega8 and Microchip PIC16F54 instruction sets

Atmega8 PIC16F54
Number of instructions 130 33
Opcode length 16 bits1 12 bits
Execution cycles (# clocks) mostly 1, up to 4 4 or 82

3 Removing Random Delays

Within this section, we give an efficient solution to remove random delays. For
this purpose, we reduce the power consumption of one instruction, which may
have thousands of sampling points, to only one value that is independent of
the processed data. This leads to a string with the length of the number of
performed instructions. The strings of several executions are then analyzed to
identify the random delays. Afterwards we use the generalized Bayer-Moore-
Horspool algorithm [10] to detect the random delays.

1 Most of the 130 instructions have a length of 16 bits. However, there are four in-
structions for accessing the program memory that can also be described by a 32-bit
opcode which are fetched in two clock cycles. For the rest of this paper we will only
focus on 16-bit opcodes.

2 Only if the program counter is changed by the instruction.

52 D. Strobel and C. Paar

The final step after the detection of the random delays is to find the correct
positions in the power traces and to remove the dummy operations. Because
every clock cycle of the target devices is clearly distinguishable, this last step is
rather trivial and is not discussed in this paper.

3.1 Conversion of Power Traces to Strings

As mentioned in Sect. 2, our target devices use a pipelining concept that prefetches
every instruction on a separated bus during the execution of the predecessor. A
closer look at the power traces reveals that the Hamming weight of the opcode has
a characteristic impact on the power consumption. Figures 2 and 3 show the differ-
ent Hamming weights in contrast to each other at a clock rate of 1MHz. For both
figures, a number of different instructions and operands were chosen randomly.
All traces are single traces that have not been averaged.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

x 10
4

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [ns]

V
ol

ta
ge

 [m
V

]

T1 T2 T3 T4

HW12

HW0
HW1

.

.

.

Fig. 2. Power traces of PIC16F54 opcodes with Hamming weight 0 (lowermost) to 12
(uppermost)

One can clearly recognize that the different voltage levels are related to the
Hamming weights of the opcodes, especially in the second and third clock cycle
(PIC16F54) and just before the rising to the second peak (ATmega8). While for
the PIC16F54 a smaller Hamming weight leads to a lower power consumption,
for the ATmega8 it is the other way round. These voltage levels seem to be
hardly influenced by the executed instruction nor by the processed operands.
Hence, these time intervals are well-suited to map the power consumption of one
instruction cycle to one Hamming weight value. As a result we get a string of
Hamming weights in chronological order of the prefetched opcodes. For instance,
the instructions

INC R1 ; 1001 0100 0001 0011
ADD R4,R1 ; 0000 1100 0100 0001
CP R4,R6 ; 0001 0100 0100 0110

An Efficient Method for Eliminating Random Delays in Power Traces 53

100 200 300 400 500 600 700 800 900 1000

−150

−100

−50

0

50

Time [ns]

V
ol

ta
ge

 [m
V

]

T1

HW1
HW0

HW15
..
.

Fig. 3. Power traces of ATmega8 opcodes with Hamming weights 0 (uppermost) to 15
(lowermost). There exist no 16-bit instruction with a Hamming weight of 16.

are mapped to the string 6, 4, 5. Note that the Hamming weights do not depend
on the values that are stored in R1, R4 and R6.

For the rest of the paper, the point of measurement that leaks the Hamming
weight of the prefetched opcode is referred to as index voltage.

3.2 Identification of Random Delays

There are two ways for a random delay implementation. The first is to choose
fixed points in the execution flow, where a subroutine for the generation of dummy
instructions is called. The advantage of this approach is that the programmer can
choose the exact points in time when the misalignment should take place. This can
be, e.g., right in front of S-box substitutions. In contrast to this, the second method
uses an the interrupt service routine which is triggered by a timer overflow or an
external signal. In addition to the random lengths of the delays, another random
parameter can be used to trigger the execution of a callback subroutine.

The identification of random delays depends on the implementation and is
discussed in the following.

Fixed Calls to the Subroutine (or In-Line Implementations). Let us
assume a set of strings which include random delays at fixed points in time. If
the random delays of all strings are of equal length, the corresponding power
traces are aligned and nothing has to be done. Different lengths can easily be
recognized by comparing the strings. The expected subroutine typically consists
of an initialization where the length of the random delay is set, a variable number
of loops and the return instruction. A mismatch between the strings occurs
at the point where the return instruction of the shortest delay collides with
unfinished loops. The alignment step can then be accomplished by locating the
return instructions and cutting the loops to an equal length. Note that it is not
necessary to completely eliminate the random delays.

54 D. Strobel and C. Paar

Interrupt Service Routine. When using interrupts, the overhead per delay
is higher than for the first method. Some reasons are, e.g., disabling interrupts,
temporarily storing intermediate values, resetting the timer, etc. A comparison
between strings will lead to a mismatch directly at the first call of a subroutine.
The end of the delay can be detected by a string search after the regular execution
flow. In this scenario, the complete interrupt has to be removed to align the power
traces.

3.3 Efficient String Matching for Detecting Random Delays

This part of the section describes different string matching algorithms and figures
out the most suitable one for detecting random delays. Before we start, we
introduce the following notations: Let s be the string of length n, e.g., derived
from the computations proposed in Sect. 3.1, and p a pattern of length m. Each
character si of the string s, with i ∈ {1, 2, 3, . . . , n}, and pj of the pattern p,
with j ∈ {1, 2, 3, . . . , m}, is taken from the alphabet Σ. In our example, s and p
are strings composed of Hamming weights. Hence, Σ = {0, 1, 2, 3, . . . , l}, where
l is the number of bits of the opcode, e.g., l = 16 in case of the ATmega8.

According to Sect. 3.2, either the delay loop or the interrupt has to be de-
tected. This is done by a string matching algorithm which tests if a pattern is
included in a string and at which positions it occurs. A naive approach is to
write the pattern below the string, compare the characters and shift the pattern
by one position to the right, every time a mismatch occurs. As one can imagine,
this is not very efficient. If the mismatch occurs at the last character pm, the
previous positions have to be checked again. For the naive approach, the worst
case runtime is Θ((n−m + 1)m).

In the remaining part of this section, we describe more efficient string match-
ing algorithms. First of all, we present the Boyer-Moore algorithm which serves
as basis for the sophisticated generalized Boyer-Moore-Horspool algorithm.

Boyer-Moore Algorithm. In 1977, Boyer and Moore presented a fast string
matching algorithm with the complexity of O(n) (see Alg. 1).

After aligning p1 to a character si, the comparison is done from right to left,
i.e., we start with si+m and pm. If a mismatch occurs at position si+j and pj ,
respectively, the Boyer-Moore algorithm uses two heuristics to avoid frequent
one by one shifts:

1. Bad character heuristic: Find the rightmost character, let’s say pl, in p that
matches with si+j . Shift the pattern p by j − l positions, but at least one
position, to the right. If si+j does not occur in p, the pattern is shifted by j
positions.

2. Good suffix heuristic: Move the pattern to the right, until the suffix si+j+1 . . .
si+m matches to a part of the pattern. If this part does not occur in p, shift
the pattern by m positions.

At every mismatch, the algorithm chooses the larger shift of both heuristics (line
14). The tables Γ1 and Γ2 are preprocessings of the two heuristics and consist

An Efficient Method for Eliminating Random Delays in Power Traces 55

Algorithm 1. Boyer-Moore algorithm based on [5]
Input : string s, length n of s, pattern p, length m of p, bad character table

Γ1, good suffix table Γ2

Output: vector pos containing all positions of matchings
1 begin
2 cnt← 1
3 i← 0
4 while i ≤ n−m do
5 j ← m
6 while j > 0 and si+j = pj do
7 j ← j − 1
8 end
9 if j = 0 then

10 pos(cnt)← i
11 cnt← cnt + 1
12 i← i + 1

13 else
14 i← i + max[j − Γ1(si+j), Γ2(j)]
15 end
16 end
17 end

of the number of shifts depending on the position of the mismatch. We skip
the description of the good suffix table Γ2 and only give an algorithm for the
generation of the bad character table Γ1 (see Alg. 2). Every character of the
alphabet Σ is assigned the position of the rightmost occurrence in the pattern p.
If a character is not included in the pattern, the entry of the table is set to 0.
For further information, especially for the computation of Γ2, we refer to [2].

Algorithm 2. Precomputation of the bad character table Γ1

Input : pattern p, length m of p, alphabet Σ
Output: bad character table Γ1

1 begin
2 foreach element ε ∈ Σ do
3 Γ1(ε)← 0
4 end
5 for j = 1, . . . , m− 1 do
6 Γ1(pj)← j
7 end
8 end

Boyer-Moore-Horspool Algorithm. A simplification of the Boyer-Moore
algorithm was introduced by Nigel Horspool in 1980 [6]. For patterns that have
no repetitions, the good suffix heuristic does not bring any advantages. Hence,
Horspool proposed the simplified Boyer-Moore algorithm, also known as Boyer-
Moore-Horspool (BMH) algorithm, which only makes use of the bad character
heuristic. In contrast to the original algorithm, the pattern is not aligned to the

56 D. Strobel and C. Paar

mismatched character si+j , but to the rightmost character si+m, to induce larger
shifts. Hence, line 6 of Alg. 2 has to be changed to Γ1(pj)← m− j and line 14
of Alg. 1 to i← i + Γ1(si+m).

Generalized Boyer-Moore-Horspool Algorithm with k Mismatches.
Since we do not expect a fully correct mapping of opcodes to Hamming weights,
a string matching is needed that does not only consider exact string matches,
but also partial matches which include up to a predefined number k of mis-
matches. Tarhio et al. introduced a generalized BMH algorithm that solves the
k mismatches problem in O(nk(k

c + 1
m−k)) on average, where c = |Σ| [10]. Ad-

ditionally, a preprocessing is executed once for every pattern in O(m + kc).
The first step is quite obvious. While the original algorithm stops comparing

after the first mismatch, the generalized BMH algorithm continues until k mis-
matches are exceeded. The following shift is then determined by considering the
rightmost k + 1 string characters si+m−k,. . .,si+m. We shift the pattern to the
right until at least one match occurs in the last k + 1 string characters.

Let us assume k = 0. The procedure is in fact equivalent to the exact string
matching. After a mismatch only the last position si+m is focused and Γ1(si+m)
returns the number of shifts that are necessary to align si+m to a character of the
pattern. If k = 1, we enhance our focus on the last two positions. In addition to Γ1,
another look-up table Γ ′

1 for the position next to last is created. Γ ′
1(si+m−1) then

gives us the number of shifts to align si+m−1.We cannow skip all shifts smaller than
min(Γ ′

1(si+m−1), Γ1(si+m)), because none of the two characters will appear at the
accordingposition in thepattern. Ifwe skipmore thanmin(Γ ′

1(si+m−1), Γ1(si+m)),
probably a valid match is missed. Consequently, for considering kmismatches, k+1
tables have to be generated with c entries each or one (k +1)× c table. An efficient
computation of the (k + 1)× c table is given in [10].

4 Practical Results

We present our practical results by verifying an AES-128 implementation on
an ATmega8 which was clocked with an 1MHz external quartz oscillator. The
power consumption of the device was measured by means of the voltage drop
over a 47Ω shunt resistor inserted on the GND line of the ATmega8.

We extended a standard AES implementation by the improved floating mean
countermeasure proposed by Coron et al. at CHES 2010 [4]. The number of loop
iterations of the delays is defined by random numbers that are transferred to the
microcontroller and stored in the SRAM before every encryption. We chose the
same parameters as proposed by Coron et al.. This includes the insertion of 10
random delays per round and three dummy rounds at the beginning and at the
end of every encryption. In total, before the first S-box byte substitution occurs,
32 random delays were executed.

We computed the correlation coefficients on raw power traces for all key hy-
potheses using the Hamming weight power model to attack the first S-box. Ac-
cording to [4], around 160 000 traces should be required for a successful attack

An Efficient Method for Eliminating Random Delays in Power Traces 57

on an 8-bit AVR Atmel microprocessor. However, although we took the imple-
mentation proposed in their appendix, the correct key was already leaking out
at about 35 000 traces (see Fig. 4), which is much lower than expected but still
a good starting point for our approach.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

0.05

0.1

0.15

0.2

0.25

Number of traces

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 4. CPA attack on an AES-128 implementation with improved floating mean coun-
termeasure. The correct key guess is highlighted.

As mentioned in 3.1, the power consumption right before the rising to the sec-
ond peak of the instruction is highly data independent and is therefore suitable
as index when classifying the instructions to Hamming weights. This is verified
by the histogram in Fig. 5 which shows the distribution of the index voltages.

The intersections between the peaks were used as threshold values for the
classification. In this way, we achieved a nearly perfect mapping of index voltages

−125 −120 −115 −110 −105 −100 −95 −90 −85
0

2

4

6

8

10

12

14

16

x 10
4

Voltage [mV]

F
re

qu
en

cy

Fig. 5. Histogram of the index voltages discussed in Sect. 3.1. It visualizes a total of
1000 executions of AES with improved floating mean countermeasure on an ATmega8.

58 D. Strobel and C. Paar

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

co
ef

fic
ie

nt

Time

(a) (b)

Fig. 6. CPA on 1000 traces of AES-128 (a) with improved floating mean countermea-
sure after alignment and (b) without countermeasure

to Hamming weights. In fact, over 99% of the the mappings were correct, i.e.,
the resulting value matches with the Hamming weight of the prefetched opcode.

We analyzed the set of strings to identify the variable part of the first random
delay as described in Sect. 3.2. In the reference implementation of Coron et
al. it was only a short loop of the pattern 8, 12, 5. This is in fact too short to
detect, especially in presence of faulty mappings to Hamming weights. Hence,
we decided to choose an eight clock cycle pattern of the delay initialization right
before the beginning of the loop. The detection process was performed by the
generalized BMH algorithm with k = 1. Every time a match was found, the
subsequent characters were sought after the loop pattern to remove them in the
corresponding part of the power traces.

In total, over 98% of the delays were found and eliminated. After this prepro-
cessing step, we mounted a CPA attack on the first S-box again. The results are
given in Figs. 6(a) and 7(a). For comparison, Figs. 6(b) and 7(b) show a CPA

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

C
or

re
la

tio
n

co
ef

fic
ie

nt

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

C
or

re
la

tio
n

co
ef

fic
ie

nt

(b)

Fig. 7. Comparison between a CPA attack on AES-128 (a) with improved floating mean
countermeasure after eliminating random delays and (b) without countermeasure. The
traces for wrong key guesses are displayed in gray, for the correct key guess in black.

An Efficient Method for Eliminating Random Delays in Power Traces 59

attack on an AES-128 implementation without any countermeasure encrypting
the same input data.

The correlation coefficient of the correct key guess is a bit lower for the random
delay implementation. However, in both scenarios the correct key is clearly distin-
guishable from wrong key guesses with a CPA attack using only 30 power traces.

5 Conclusion

We have shown that in future discussions about generating random delays in em-
bedded software, the leakage of the instruction prefetch has to be taken into con-
sideration. Many microcontrollers are using a pipelining concept that allows us to
detect the Hamming weight of the prefetched instruction. With this additional in-
formation, we have presented an efficient method to identify and eliminate random
delays after the acquisition of power traces by applying stringmatching algorithms.
Our proposal has been evaluated on an 8-bitmicrocontrollerwith a reference imple-
mentation given in [4]. We have shown that the effect of the countermeasure after
the application of our new method was negligible.

5.1 Discussions

Although we do not have analyzed other countermeasures like dummy rounds
or random order executions, it seems to be not infeasible to detect them as
well. Dummy rounds, e.g., are mostly implemented in a special routine or loop
with unused registers or with registers whose values have to be stored before
accessing the dummy rounds (due to register limitations). In both cases, the
Hamming weight sequence may leak information about executed instructions,
which includes also storing immediate values, branching to a routine or leaving
a loop. The attacker could be able to exploit this leakage to distinguish between
real rounds and dummy rounds. However, it highly depends on the implemen-
tation if this kind of attack is practical or not.

We did not mention that there is one instruction in the Atmega8 instruction
set that does not comply with the model we introduced in Sect. 3.1. The in-
struction LPM Rd,Z loads one byte from the program memory to the register Rd
and does not leak the Hamming weight of the opcode. Instead, the index voltage
depends on intermediate values. Although this did not influence the methods
proposed in this paper, it can be used to complicate the attack by frequent
executions of LPM with random values during the random delay.

References

1. ATMEL. ATmega8 datasheet: 8-bit AVR with 8k bytes in-system programmable
flash

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20,
762–772 (1977)

60 D. Strobel and C. Paar

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Coron, J.-S., Kizhvatov, I.: Analysis and Improvement of the Random Delay Coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New
York (2001)

6. Horspool, R.N.: Practical fast searching in strings. Software Practice and Experi-
ence 10, 501–506 (1980)

7. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer (2007)

8. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: Rapid Alignment
Method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer,
Heidelberg (2011)

9. Salvador, S., Chan, P.: FastDTW: Toward accurate dynamic time warping in linear
time and space. In: KDD Workshop on Mining Temporal and Sequential Data.
ACM (2004)

10. Tarhio, J., Ukkonen, E.: Approximate Boyer-Moore string matching. SIAM J. Com-
put. 22, 243–260 (1993)

11. Tunstall, M., Benoit, O.: Efficient Use of Random Delays in Embedded Software.
In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP
2007. LNCS, vol. 4462, pp. 27–38. Springer, Heidelberg (2007)

12. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving Differential
Power Analysis by Elastic Alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 104–119. Springer, Heidelberg (2011)

An Efficient Leakage Characterization Method

for Profiled Power Analysis Attacks

Hailong Zhang1,2, Yongbin Zhou1, and Dengguo Feng1

1 State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences,

P.O. Box 8718, Beijing 100190, P.R. China
2 Graduate University of Chinese Academy of Sciences,

19A Yuquan Lu, Beijing, 100049, P.R. China
{zhanghl,zyb,feng}@is.iscas.ac.cn

Abstract. In typical Profiled Power Analysis Attacks, like Template
Attack (TA) and Stochastic Model based Power Analysis (SMPA), key-
recovery efficiency is strongly influenced by the accuracy of characteriza-
tion in profiling. In order to accurately characterize signals and noises in
different times, a large number of power traces is usually needed in pro-
filing. However, a large number of power traces is not always available.
In this case, the accuracy of characterization is rapidly degraded, and so
it is with the efficiency of subsequent key-recovery. In light of this, we
present an efficient Covariance Analysis based Characterization Method
(CACM for short) to deal with the problem of more accurate leakage
characterization with less power traces. We perform experimental power
analysis attacks against an AES software implementation on STC89C52
microcontroller, then conduct a comparative study of the effectiveness
of these profiled attacks. The results firmly support the validity and ef-
ficiency of our method.

Keywords: Profiled Power Analysis Attacks, Covariance Analysis
based Characterization Method, Template Attack, Stochastic Model
based Power Analysis.

1 Introduction

Since Kocher first introduced Differential Power Analysis in [KJJ1999] more
than a decade ago, a myriad of practical power analysis attacks have been pro-
posed, including Template Attack (TA)[CRR2003], Correlation Power Analysis
(CPA)[BCO2004], Stochastic Model based Power Analysis (SMPA)[SLP2005],
Mutual Information Analysis (MIA)[GBTP2008], etc. Among these methods,
TA and SMPA belong to one broad category, as they often have a profiling
phase. Therefore, these attacks are referred to as Profiled Power Analysis At-
tacks. In profiled attacks, a reference device similar or identical to the targeted
device is usually assumed to be available for profiling. With the help of certain
reference device, an adversary characterizes the leakage of the targeted device,
and then uses the result of this profiling phase for subsequent key-recovery.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 61–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 H. Zhang, Y. Zhou, and D. Feng

In profiling, noises in different times are assumed to follow multivariate normal
distribution, and a large number of power traces measured from reference de-
vice are needed to accurately characterize signals and noises in different times.
In subsequent key-recovery, the adversary resorts to leakage characterization in-
formation produced in profiling to recover the secret key. At a high level, the
adversary tries to match noises contained in sampled power traces with those of
characterized ones. If the key-hypothesis is correct, the match probability will
be higher.

In fact, characterization accuracy exerts a strong influence on the key-recovery
efficiency. If noises are not accurately characterized, the match probability is
influenced. In this case, the correct key is not easy to distinguish, and the attacker
needs more power traces in key-recovery to recover the correct key. However,
in the attack scenario of profiled attacks, only a few power traces are given
to the attacker in key-recovery. If noises are not accurately characterized in
profiling, the attacker can not successfully recover the correct key. Therefore, in
order to improve the key-recovery efficiency, one feasible way for the attacker
is to characterize noises accurately. For TA and SMPA, this task means a large
number of power traces are needed. After looking up to references about TA
and SMPA, we summarize the number of power traces needed in profiling, and
results are listed in Table 1. Table 1 shows that, to reach an acceptable level of
characterization accuracy, both TA and SMPA need a large number of power
traces.

Table 1. Number of Power Traces Needed by TA and SMPA

Reference Algorithm Platform Attack Method Number of Power Traces

[CRR2002] RC4 - TA 512,000

[SLP2005] AES ATM163 SMPA 4,000

[GLP2006] AES ATM163 TA 230,000

[GLP2006] AES ATM163 SMPA 230,000

[OM2007] AES Microcontroller TA 10,000

[LP2007] AES AT90S8515 SMPA 40,000

Under the assumption that one reference device is available, the attacker can
operate the reference device as many times as possible and sample a large num-
ber of power traces to help accurately characterize signals and noises in different
times. However, in practical scenario, it is not always the case. For example, a
common countermeasure is to limit the number of operations that the attacked
cryptographic device can perform in certain time interval, or that the attacked
cryptographic devices can perform under one key. In these scenarios, the attacker
can only record limited number of power traces. In order to make profiled attacks
still powerful and practical in this scenario, one important technique route is for
the attacker to find feasible approach to characterizing signals and noises more
accurately with limited number of power traces. Motivated by this, we present

An Efficient Leakage Characterization Method 63

Covariance Analysis based Characterization Method (CACM). We have experi-
mentally demonstrated that, compared with TA and SMPA, the attacker with
CACM can use less power traces in profiling to more accurately characterize sig-
nals and noises, which helps to improve the correct key distinguish level and reduce
the number of power traces needed in key-recovery to recover the correct key.

The rest of the paper is organized as follows. In Section 2, we briefly intro-
duce two typical Profiled Power Analysis Attacks. In order to more accurately
characterize signals and noises with less power traces , we give CACM in Section
3. In Section 4, we have experimentally demonstrated the advantage of CACM
over SMPA and TA, in terms of the number of power traces needed in profiling
and in key-recovery, the characterization accuracy for signals and noises, and
the influence of correct key distinguish level. Finally, conclusions are given in
Section 5.

2 Typical Profiled Power Analysis Attacks

TA and SMPA are two typical Profiled Power Analysis Attacks. In this section,
we briefly introduce principles of TA and SMPA.

2.1 Profiling

Template Attack
In TA, the characterization of signals and noises in different times is as follows.
First, for each key hypothesis ki, input the same plaintext p, operate the ref-
erence device M times and measure the corresponding power traces I1, ..., IM .
Then, for the power traces I1, ..., IM that correspond to key hypothesis ki, the
attacker calculates their mean:mi =

1
M

∑M
j=1 Ij to get rid of noises and obtain

signals in different times. Noise at time tx, xε[1, l] can be obtained by subtract-
ing signal from the power consumption: Rj,tx = Ij,tx − mi,tx , jε[1,M]. Finally,
the attacker uses covariance matrix Ci = Cov(Rtx ,Rty)l×l to characterize the
relationship of noises in different times. In this way, for each key hypothesis ki,
the attacker obtains a template which is composed of a mean vector mi and a
covariance matrix Ci.

Stochastic Model based Power Analysis
In SMPA, power consumption at time tx, xε[1, l] can be seen as Itx(p, k) =
htx(p, k) + Rtx , where htx(p, k) is the data-dependent part which depends on
p and k, and Rtx denotes a random variable that is irrelevant to the targeted
intermediate value. In profiling, the attacker knows the key that is used by ref-
erence device. The attacker chooses some mutually independent base functions
g1(p, k), ..., gu(p, k). htx(p, k) can be approximated by a linear combination of
these mutually independent base functions: htx(p, k) =

∑u
j=1 ajgj(p, k). The

choice of base functions relies on the targeted intermediate value. In order to

64 H. Zhang, Y. Zhou, and D. Feng

obtain the coefficient of each base function, the attacker needs to solve the fol-
lowing linear equation⎡⎢⎢⎣

Itx(p1, k)
Itx(p2, k)

....
Itx(pN1 , k)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
g1(p1, k) g2(p1, k) ... gu(p1, k)
g1(p2, k) g2(p2, k) ... gu(p2, k)

...
g1(pN1 , k) g2(pN1 , k) ... gu(pN1 , k)

⎤⎥⎥⎦
⎡⎢⎢⎣

a1
a2
...
au

⎤⎥⎥⎦
The attacker needs N1 power traces in this process. Then, the attacker uses
N2 power traces to calculate the noise at time tx, xε[1, l]: Rj,tx = Itx(pj , k) −
htx(pj , k), jε[1, N2]. Finally, he builds covariance matrix for noises in different
times: C = Cov(Rtx , Rty)l×l. In this way, the attacker characterizes signals and
noises in different times.

2.2 Key-Recovery

In key-recovery, both TA and SMPA use the Maximum Likelihood
Rule(MLR) to distinguish the correct key. If the key hypothesis is correct,
noises contained in the attacked power traces match those of the characterized
ones best. The attacker uses N3 power traces to distinguish the key hypoth-
esis kiε[1, ...,K] that maximizes α(I1, ..., IN3 , ki) =

∏N3

j=1 Probi,j(Rj). For TA,

Probi,j(Rj) =
exp(− 1

2(Ij−mi)
TC−1

i (Ij−mi))√
(2π)l·det(Ci)

; for SMPA, Probi,j(Rj) =

exp(− 1
2(Ij−h(pj ,ki))

TC−1(Ij−h(pj ,ki)))√
(2π)l·det(C)

.

3 Covariance Analysis Based Characterization Method

As two typical Profiled Power Analysis Attacks, both TA and SMPA need a
large number of power traces in profiling to accurately characterize signals and
noises. For TA, in order to accurately characterize signals, the attacker needs to
calculate the mean of a large number of power traces to avoid the influence of
noises; for SMPA, when building the linear equation, the attacker ignores the
influence of noises, which will affect the characterization accuracy. Therefore,
SMPA also needs a large number of power traces to reach a relatively accurate
characterization. In order to characterize signals and noises more accurately
with less power traces, and to improve the key-recovery efficiency, we propose
Covariance Analysis based Characterization Method (CACM).

3.1 Main Idea

In [Hoo2010], Hoogvorst presented Variance Power Analysis (VPA). The idea
of this method is that, if an attacker can accurately characterize noise at single
time, the variance of noise is small; otherwise, the variance of noise is big. The
attacker can use different key hypothesis to characterize noise at single time.

An Efficient Leakage Characterization Method 65

The key hypothesis that makes the variance of noise the smallest is the correct
key.

In profiled attacks, signals and noises in different times have to be character-
ized. Because noises in different times follow multivariate normal distribution,
noise at single time follow gaussian distribution. If the key hypothesis is correct,
noises in different times are characterized accurately, and the covariance of noises
in different times is small; otherwise, noises in different times are characterized
incorrectly, and the covariance of noises in different times is big. The attacker
can characterize signals and noises by analyzing the covariance of noises in dif-
ferent times. Based on these considerations, we present CACM. In this method,
an attacker first has to choose the targeted intermediate value; then, he has to
choose the targeted times. The targeted times correspond to the times when the
targeted intermediate value is being processed. The attacker can characterize
signals and noises in these targeted times.

3.2 Characterization Procedure

The steps to implement CACM are as follows:

1) Randomly generate plaintext pi, iε[1,M] and feed these messages into the
reference device. Measure the power consumption of the device when it is
operating and obtain M power traces;

2) Choose the targeted intermediate value (usually, the S-Box output byte is
chosen as the attacked intermediate value). The targeted times corresponding
to the targeted intermediate value being processed are t1, ..., tl. When the
input plaintext is pi, the power consumption at time tx, xε[1, l] is Ii,tx ;

3) For signal at time tx, define some mutually independent events ej,tx , jε[0, N].
N is the number of events. When event ej,tx occurs, its value is 1; otherwise,
its value is 0. When event ej,tx occurs, its power consumption is Pj,tx . Signal
at time tx is the sum of mutually independent events’ power consumption.
Etx is aM×N matrix, which represents the value ofN events when randomly
input M plaintext;

4) Denote noise at time tx as Ji,tx , iε[1,M]. Covariance of noises in two times
tx and ty, x, yε[1, l] and x ≤ y, can be computed as follows:

Cov(Jtx , Jty) = E[Jtx][Jty]− E[Jtx]E[Jty] (1)

in which

Ji,tx = Ii,tx −
N∑
j=1

(Pj,tx · ej,tx), iε[1,M] (2)

(1) can also be written as:

Cov(Jtx , Jty) = PtxXPT
ty + PtxY1 + PtyY2 + z (3)

66 H. Zhang, Y. Zhou, and D. Feng

in which

X =
1

M

M∑
i=1

(Etx · ET
ty)− (

1

M

M∑
i=1

Etx)(
1

M

M∑
i=1

Ety)
T (4)

Y1 =
1

M

M∑
i=1

Etx · 1

M

M∑
i=1

Ii,ty − 1

M

M∑
i=1

(Ii,ty · Etx) (5)

Y2 =
1

M

M∑
i=1

Ety · 1

M

M∑
i=1

Ii,tx − 1

M

M∑
i=1

(Ii,tx · Ety) (6)

We know that the correct key makes the covariance of noises in two different
times the smallest. In order to obtain the minimum of (3), we can take
partial derivative of (3) with respect to vector Ptx and Pty . When the partial
derivative equals to zero, the covariance of noises in times tx and ty is the
smallest.
Taking partial derivative of (3) with respect to vector Ptx and Pty , and
make the partial derivative equals to zero, we obtain equations (7) and (8)
as follows:

XPT
ty + Y1 = 0 (7)

XPT
tx + Y2 = 0 (8)

Using equations (7) and (8), we obtain Ptx and Pty , that is P
T
tx = −X−1 ·Y2,

PT
ty = −X−1 · Y1. Using (4)-(6), we can obtain the value of X , Y1 and Y2.

Therefore, the value of vector Ptx and Pty can be obtained. With Ptx and
Pty , we can accurately characterize signals in times tx and ty.
For signals in different times t1, ..., tl, we repeat step 4 to accurately charac-
terize signals in these times;

5) Using equation (2) to compute noise Jtx , xε[1, l]. Noise in each time has
to be adjusted so that they follow multivariate normal distribution. For
noise at time tx, we compute its mean mtx and its standard deviation σtx ;

then, for noise Ji,tx , iε[1,M], we adjust its value:Ji,tx =
Ji,tx−mtx

σtx
. When

we have adjusted noise at each time, we can compute the covariance matrix
C = Cov(Jti , Jtj)l×l for noises in different times.

3.3 Summary

In SMPA, in order to characterize signal at single time, an attacker has to
build and solve an linear equation. Under the fact that the attacker ignores
the influence of noise when building linear equation, signal cannot be accurately
characterized. Compared with SMPA, CACM doesn’t ignore the influence of
noises when characterizing signals. Therefore, CACM characterizes signals and
noises more accurately than SMPA.

An Efficient Leakage Characterization Method 67

Compared with TA, CACM has to build only one covariance matrix for noises
in different times. However, in TA, the attacker has to build a template for each
key hypothesis, which means the attacker has to build many covariance matrices.
Therefore, CACM has more samples to characterize noises in different times more
accurately.

We will experimentally demonstrate the abovementioned advantages of CACM
over SMPA and TA. Meanwhile, we note that the method used to select the tar-
geted times is not restricted, and the attacker can use known methods to select
the targeted times.

4 Experiments

In this section, we will experimentally demonstrate the advantage of CACM over
SMPA and TA, in terms of the characterization accuracy for signals and noises
in different times, the minimum number of power traces needed in profiling,
influence of correct key distinguish level and the number of power traces needed
in key-recovery.

We attack AES software implementation on an 8-bit STC89C52 microcon-
troller. The clock frequency of the microcontroller is set 22.1184MHZ. An Agilent
DSA90404A digital oscilloscope is used to sample power traces. The sampling
rate is 100Ms/s. Differential probe of digital oscilloscope is connected at two
ends of a 20Ω resistor in series with the GND line of the microcontroller. We
collect power traces correspond to the 1st round implementation of AES, and
use these power traces to accomplish our experimental analysis. The mean of 100
power traces correspond to the same plaintext and key is calculated to reduce
the influence of noise. We use CPA to find the the targeted times.

First, we show that CACM can also be an attack method, and we compare
CACM with VPA in terms of the characterization accuracy for signal at single
time; second, we analyze the characterization accuracy of TA, SMPA and CACM
for signal at single time when there is limited number of power traces; third,
for each method, we analyze the minimum number of power traces needed in
profiling to accurately characterize signals and noises; finally, we analyze the
correct key distinguish level and the number of power traces needed in key-
recovery influenced by the characterization accuracy in profiling using different
methods.

Experimental results show that, compared with TA and SMPA, CACM needs
less power traces in profiling to more accurately characterize signals and noises
in different times, which helps to improve the correct key distinguish level and
reduce the number of power traces needed in key-recovery to recover the correct
key.

4.1 Comparison with Variance Power Analysis

VPA is an attack method, with which an attacker recovers the correct key by
analyzing the variance of noise at single time. The attacker can characterize

68 H. Zhang, Y. Zhou, and D. Feng

signal in the process of analyzing noise. CACM is a characterization method,
with which an attacker can characterize signals and noises by analyzing the
covariance of noises in different times. The common factor is, in both methods
attackers assume signal at single time is the sum of some mutually independent
events’ power consumption. Attackers can characterize signal at single time by
analyzing noise.

In fact, CACM can also be used to construct practical attacks. An attacker
can recover the correct key by comparing the covariance of noises computed
using different key hypothesis. The key hypothesis that makes the covariance of
noises the smallest is the correct key. In order to demonstrate this fact, we use
100 power traces to recover the correct key. The targeted two times correspond
to the times that the 1st S-Box output byte of AES 1st round being processed.
We choose an event for each bit of S-Box output byte, and each event’s value
equals to the corresponding bit’s value. Experimental result is shown in Figure 1.

0 50 100 150 200 250

2

4

6

8

10

12

x 10
−4

X: 14
Y: 3.868e−005

key hypothesis

V
a
l
u
e

o
f

C
o
v
a
r
i
a
n
c
e

Fig. 1. Covariance of Noises in Two Different Times

Figure 1 clearly shows that the correct key 14 makes the covariance of noises
in two times the smallest. We also experimentally analyzed the characterization
ability of VPA and CACM for signal. The experimental result told us that with
the same number of power traces and the same event choice, CACM and VPA
characterize signal equally accurate. The essential difference lies in the different
characterization object. VPA can only characterize signal in single time, while
CACM is able to characterize signals and noises in different times.

4.2 Evaluation of Characterization Accuracy

In this subsection, we analyze the characterization accuracy of TA, SMPA and
CACM for signal at single time when there is limited number of power traces.
500 power traces are used to characterize signal, and another 100 power traces
are used to evaluate the characterization accuracy of each method. All traces
correspond to the same key and random plaintext. We compute the correlation
coefficient between the characterized signal and measured power consumption.
For CACM, the same event as in 4.1 is chosen; for SMPA, we choose a base

An Efficient Leakage Characterization Method 69

function for each bit of S-Box output described in 4.1, and the value of each
base function is the corresponding bit’s value. The targeted time correspond to
the time that the 1st S-Box output byte of AES 1st round being processed.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

key hypothesis

c
o
r
r
e
l
a
t
i
o
n

c
o
e
f
f
i
c
i
e
n
t

(a) TA

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 14
Y: 0.4367

key hypothesis

c
o
r
r
e
l
a
t
i
o
n

c
o
e
f
f
i
c
i
e
n
t

(b) SMPA

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 14
Y: 0.702

key hypothesis

c
o
r
r
e
l
a
t
i
o
n

c
o
e
f
f
i
c
i
e
n
t

(c) CACM

Fig. 2. Characterization Accuracy of Different Methods

Figure 2 shows that, using 500 power traces, TA cannot accurately charac-
terize signal; using SMPA, when the key hypothesis is correct, the correlation
between the measured power consumption and the characterized signal is 0.4367;
finally, using CACM to characterize signal, when the key hypothesis is correct,
the correlation reaches to 0.7020. Therefore, when the number of power traces
is limited, CACM has the best characterization ability for signal.

4.3 The Minimum Number of Power Traces Needed in Profiling

In this subsection, we analyze the minimum number of power traces needed by
each method to accurately characterize signals and noises. 3000 power traces
are used to characterize signal at single time. Another 100 traces are used to
evaluate the characterization accuracy. All traces correspond to the same key
and random plaintext. For CACM and SMPA, we choose the same event as in
subsection 4.2. The targeted time correspond to the 1st S-Box output byte of
AES 1st round being processed.

Figure 3 shows that, about 2500 power traces are needed by TA to accurately
characterize signal. The correlation between the measured power consumption

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

C
o
r
r
e
l
a
t
i
o
n

C
o
e
f
f
i
c
i
e
n
t

(a) TA

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

C
o
r
r
e
l
a
t
i
o
n

C
o
e
f
f
i
c
i
e
n
t

(b) SMPA

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

C
o
r
r
e
l
a
t
i
o
n

C
o
e
f
f
i
c
i
e
n
t

(c) CACM

Fig. 3. Minimum Number of Power Traces Needed in Profiling

70 H. Zhang, Y. Zhou, and D. Feng

and the characterized signal is 0.8. About 600 power traces are needed by SMPA
to characterize signal. The correlation between the measured power consumption
and the characterized signal is 0.6. About 200 power traces are needed by CACM
to make the correlation between the characterized signal and the measured power
consumption reaches to 0.8. We know that power consumption in single time is
composed of signal and noise, an accurate characterization for signal means an
accurate characterization for noise. Therefore, compared with SMPA and TA,
CACM needs less power traces in profiling to accurately characterize signals and
noises in different times.

4.4 Key-Recovery Efficiency Influenced by Profiling

In this subsection, we evaluate key-recovery efficiency influenced by characteri-
zation accuracy in profiling. First, we evaluate the correct key distinguish level
influenced by characterization accuracy. 300 power traces are used in profiling
and 20 power traces are used in key-recovery. All power traces correspond to the
same key and random plaintext. In profiling, noises at four times correspond to
the 1st S-Box output byte of AES 1st round being processed are characterized.
For SMPA and CACM, we choose the same event as in 4.3. In key-recovery,
we use MLR to recover the correct key. To avoid the exponentiation, we can
compute the inverse of the absolute value of the logarithm of the probability.
From [MOP2007], we know that the correct key makes this statistical value the
highest. Experimental results are shown in Figure 4.

0 50 100 150 200 250

2

3

4

5

6

7

8

9

x 10
−3

key hypothesis

M
a
t
c
h

S
t
a
t
i
s
t
i
c
a
l

V
a
l
u
e

(a) TA

0 50 100 150 200 250
2

3

4

5

6

7

8

9

x 10
−3

X: 14
Y: 0.009921

key hypothesis

M
a
t
c
h

S
t
a
t
i
s
t
i
c
a
l

V
a
l
u
e

(b) SMPA

0 50 100 150 200 250

2

3

4

5

6

7

8

x 10
−3

X: 14
Y: 0.008415

key hypothesis

M
a
t
c
h

S
t
a
t
i
s
t
i
c
a
l

V
a
l
u
e

(c) CACM

Fig. 4. Match statistical values in Key-Recovery

We use the distinguish level which was proposed in [MMPS2009] as the metric
to evaluate the correct key distinguish level influenced by the characterization
accuracy of different methods. This metric is defined as follows: D = Vmax−Vsec

Vmax
.

V = {V1, ..., V|K|} denotes a set of statistical value which is calculated using
certain statistic tool and different key hypothesis. Vmax denotes the largest value
in the set, and Vsec denotes the second largest value in the set. The calculated
correct key distinguish level is shown in Table 2.

Table 2 shows that, TA cannot accurately characterize noises with 300 power
traces. Therefore, TA cannot recover the correct key with 20 power traces. With

An Efficient Leakage Characterization Method 71

Table 2. Distinguish Level of Correct key Using Different Methods

Methods TA SMPA CACM

Distinguish Level - 0.1030 0.4771

300 power traces, SMPA can characterize noises, but not much accurate. There-
fore, although SMPA can recover the correct key with 20 power traces, the correct
key distinguish level is merely 0.1030. Finally, CACM can accurately character-
ize signals and noises with 300 power traces, and the distinguish level of the
correct key reaches to 0.4771, which increases about 37%. Therefore, when the
number of power traces is limited, CACM characterizes noises more accurately
than SMPA and TA, which induces higher distinguish level of the correct key.

Next, we evaluate the number of power traces needed in key-recovery to re-
cover the correct key. In profiling, CACM uses 100 power traces; SMPA uses
1200 power traces; and TA uses 2500 power traces. In key-recovery, different
methods use different number of power traces. We use success rate proposed
in [SMY2009] as the metric to evaluate the number of power traces needed in
key-recovery to successfully recover the correct key. For each number of power
traces, we do 500 tests and calculate the success rate. Experimental results are
shown in Figure 5.

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#traces for key−recovery

s
u
c
c
e
s
s

r
a
t
e

(a) TA

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#traces for key−recovery

s
u
c
c
e
s
s

r
a
t
e

(b) SMPA

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#traces for key−recovery

s
u
c
c
e
s
s

r
a
t
e

(c) CACM

Fig. 5. Success Rates of Distinguishing the Correct Key

We evaluate the number of power traces needed in key-recovery when the
success rate exceeds 90%. We note that, because CACM characterizes signals
and noises in different times more accurately, an attacker with CACM needs less
power traces in key-recovery than TA and SMPA to reach a success rate 90% of
recovering the correct key. The evaluation results are shown in Table 3.

Table 3. Number of Traces Needed in Profiling

Methods TA SMPA CACM

Number of Traces 40 70 7

72 H. Zhang, Y. Zhou, and D. Feng

Table 3 shows that, with TA, when using 2500 power traces in profiling to
characterize signals and noises, about 40 power traces are needed in key-recovery
to reach a success rate 90%. With SMPA, when using 1200 power traces in
profiling to characterize signals and noises, about 70 power traces are needed in
key-recovery to reach a success rate 90%. Finally, with CACM, when using 100
power traces in profiling to characterize signals and noises, only about 7 power
traces are needed in key-recovery to reach a success rate 90%. Experimental
results demonstrated that, because CACM characterizes noises more accurately,
compared with TA and SMPA, attacker with CACM can use less power traces in
key-recovery to successfully recover the correct key, which makes Profiled Power
Analysis Attacks more powerful in practical application.

5 Conclusions

In this paper, we presented Covariance Analysis based Characterization Method
(CACM for short) to deal with the problem of more accurate characterization
with less power traces. We have experimentally demonstrated the advantage of
CACM over TA and SMPA in terms of the characterization accuracy for signals
and noises, and the number of power traces needed in profiling and key-recovery.

We argue that CACM brings two improvements to known profiled attacks.
First, CACM can characterize signals and noises more accurately, which helps
improve the key-recovery efficiency of profiled attacks; second, CACM needs less
power traces in profiling, which relaxes the assumption of profiled attacks and
makes profiled attacks more useful in practical attack scenario.

On the other hand, evaluators can more efficiently evaluate the side channel
leakage of cryptographic devices in practical application, and adopt some coun-
termeasures to help maintain the security of cryptographic devices, which is very
important in practical application.

Acknowledgements. This work is supported in part by the National Nat-
ural Science Foundation of China (No.61073178) and Beijing Natural Science
Foundation (No.4112064). We acknowledge their supports. We also thank the
anonymous reviewers of ICICS2011 and ICISC2011 for their insightful com-
ments. Their comments help to improve this paper.

References

[BCO2004] Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a
Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

[CRR2002] Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28.
Springer, Heidelberg (2003)

[GBTP2008] Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Anal-
ysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 426–442. Springer, Heidelberg (2008)

An Efficient Leakage Characterization Method 73

[GLP2006] Gierlichs, B., Lemke-Rust, K., Paar, C.: Template vs. Stochastic Meth-
ods - A Performance Analysis for Side Chennel Cryptanalysis. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

[Hoo2010] Hoogvorst, P.: The Variance Power Analysis. In: COSADE (2010)
[KJJ1999] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.

(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

[LP2007] Lemke-Rust, K., Paar, C.: Analyzing Side Channel Leakage of Masked
Implementations with Stochastic Methods. In: Biskup, J., López, J. (eds.)
ESORICS 2007. LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg
(2007)

[MMPS2009] Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A Compara-
tive Study of Mutual Information Analysis under a Gaussian Assump-
tion. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932,
pp. 193–205. Springer, Heidelberg (2009)

[MOP2007] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer,
Heidelberg (2007)

[OM2007] Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance Is
Futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256.
Springer, Heidelberg (2006)

[Pro2005] Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg
(2005)

[SKS2009] Standaert, F.-X., Koeune, F., Schindler, W.: How to Compare Profiled
Side-Channel Attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer,
Heidelberg (2009)

[SLP2005] Schindler, W., Lemke-Rust, K., Paar, C.: A Stochastic Model for Differ-
ential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)

[SMY2009] Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for
the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg
(2009)

Correcting Errors in Private Keys

Obtained from Cold Boot Attacks

Hyung Tae Lee1, HongTae Kim1, Yoo-Jin Baek2, and Jung Hee Cheon1

1 ISaC & Dept. of Mathematical Sciences, Seoul National University,
599 Gwanangno, Gwangak-gu, Seoul 151-747, Korea

{htsm1138,kafa46,jhcheon}@snu.ac.kr
2 Samsung Electronics, Nongseo-Dong, Giheung-Gu, Yongin-City,

Gyeonggi-Do 446-711, Korea
yoojin.baek@samsung.com

Abstract. Based on the cold boot attack technique, this paper proposes
a new algorithm to obtain the private key of the discrete logarithm (DL)
based cryptosystems and the standard RSA from its erroneous value.
The proposed algorithm achieves almost the square root complexity of
search space size. More precisely, the private key of the DL based system
with 160-bit key size can be recovered in 243.24 exponentiations while the
complexity of the exhaustive search is 271.95 exponentiations if the error
rate is given by 10%.

In case of the standard RSA with 1024-bit key size, our algorithm can
recover the private key with 249.08 exponentiations if the error rate is
given by 1%. Compared with the efficiency of some algorithms [7,6] to
recover the private key in RSA using Chinese Remainder Theorem, the
recoverable error rate of our algorithm is quite small. However, our algo-
rithm requires only partial information of the private key d while other
algorithms require additional information such as partial information of
factors of the RSA modulus N .

The proposed algorithm can also be used for breaking countermeasure
of differential power analysis attack. In the standard RSA, one uses the
randomized exponent d̃ = d+r ·φ(N) instead of the decryption exponent
d with the random value r. When the size of a random value r is 26-bit,
it can be shown that the randomized exponent can be recovered with
249.30 exponentiations if the error rate is 1%. Finally, we also consider
the breaking countermeasure that splits the decryption exponent d into
d1 and d2 of same size.

Keywords: Cold Boot Attack, Discrete Logarithm, RSA, Side Channel
Attack.

1 Introduction

The cold boot attack [8] is a very sophisticated side channel attack and is based
on the phenomenon that even though the volatile memory is cut off from its
power source, the memory retains its data (some parts of which are erased) for

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 74–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 75

several seconds. More surprisingly, if the temperature is very low, the data of
memory retains for several hours. Using this phenomenon, Halderman et al. [8]
could read erroneous data from the (power-offed) memory and suggested some
algorithms to recover the real data from the erroneous data in block cipher
cryptosystems.

Later, based on the idea of cold boot attacks, Heninger and Shacham [7]
proposed the algorithm to recover the private key from its erroneous value in
RSA cryptosystems using Chinese Remainder Theorem (CRT)1. That is, even
though the private key is known to the attacker with some bits decayed in
a unidirectional way, their algorithm could recover the whole private key in
a reasonable time if the error rate is assumed to be bounded above by some
threshold values. Henecker et al. [6] improved the algorithm to deal with the
case that the errors can occur in a bidirectional way, that is, each bit of the
private key can be flipped with a certain probability. Both algorithms make use
of the specific structure of RSA-CRT, thus they are not directly applied to the
DL based cryptosystems or the standard RSA.

1.1 Our Results

In this paper, we firstly consider cold boot attacks on the DL based cryptosys-
tems and the standard RSA, and propose an algorithm to recover the private key
from its bidirectional erroneous value in these cryptosystems. When the order
of the base group of DL problem (DLP) is q, there is a generic algorithm to
solve a DLP with the square root complexity if the range of exponent is Zq [11].
However, if the range of exponent in DLP is constrained to a random subset H
of Zq and the size of H is less than or equal to

√
q, the complexity of a generic

algorithm for this DLP is almost same with the size of H [10]. We provide a
generic algorithm to recover the private key from bidirectional erroneous key
using the splitting system with additional techniques. The complexity of our
algorithm achieves almost the square root of search space. For example, when
the error rate is 10% in 160-bit DL based cryptosystems, the private key can
be recovered in 271.95 operations2 by exhaustive search, however, our algorithm
takes only 243.24 operations. In case of unidirectional errors, we observed that
one can recover the private key using the method in [4] and the complexity is
reduced to 236.38 operations if the error rate is less than 10%.

The proposed algorithm can be applied to the standard RSA as well as the DL
based cryptosystems. While there are two algorithms [7,6] to recover the private
key in RSA-CRT, there have been no research to recover the private key from
the cold boot attack in the standard RSA. Our algorithm can be applied to the
standard RSA and recover the decryption exponent d in time 249.08 operations if
the error rate is 1% in 1024-bit RSA. Compared with algorithms for RSA-CRT,
our algorithm looks inefficient and the recoverable error rate is quite small. In
the standard RSA, however, since only a faulty value of the decryption exponent

1 Throughout this paper, these cryptosystems are denoted by RSA-CRT.
2 The unit of operations for complexity is an exponentiation or a scalar multiplication.

76 H.T. Lee et al.

d is given without any information of prime factors of the modulus, this result is
reasonable. Moreover, it is practical scenario to obtain an erroneous value whose
error rate is less than 1% [8].

Furthermore, we investigate how the previous countermeasures [9,2,3] against
side channel attacks resist our algorithm. Consider the use of the blind exponent
presented in [9,2], that is, one uses d̃ = d + r · |G| instead of the private key
d where r is a random integer and |G| is the order of the underlying group in
the cryptosystem. A larger blind factor gives better security, however, it causes
the efficiency problem. We estimate the complexity for various blind factors in
order to check the security of this countermeasure. For example, if 26-bit random
number r is used, one can recover the private key in 249.30 operations when the
error rate is 1%. We also consider the security of countermeasure [3] that splits
the private key d into d1 and d2 of same size. When the error rate is 1%, the
private key can be recovered in 279.16 operations in the standard RSA with
1024-bit key size.

1.2 Related Works

There are several researches [7,6] to recover the private key in RSA-CRT. How-
ever, these techniques can not be applied to the DL based cryptosystems since
some additional information such as some bits of factors of the modulus are also
required in these algorithms. In the standard RSA, Fouque et al. [4] proposed
the algorithm to recover the private key when few bits of the private key are
missing. They suggested the use of the splitting system [12], which was suggested
to solve the low Hamming weight DL problem. According to their analysis, one
can recover the private key when the number of missing bits in 1024-bit RSA
is less than or equal to 145 (14.16%) under 280 operations. We can apply their
method to get the private key under the assumption that unidirectional errors
are occurred in cold boot attacks.

2 Splitting System

The Hamming weight of an integer x (denoted by wt(x)) is the number of 1’s in
its binary representation. Let G be a cyclic group of order q with a generator g.
Then the discrete logarithm problem of Hamming weight t (DLP of weight t) is
to find logg y whenever g, y ∈ G are given with wt(logg y) = t.

Let x be an n-bit integer with gx = y and wt(x) = t. In order to solve this
DLP of weight t, Heiman and Odlyzko independently proposed an algorithm [5].
Their idea is to consider the exponent x as x1+x2 with wt(x1) = t1, wt(x2) = t2
and t = t1+t2. Thereafter, they compute gx1 , yg−x2 for all cases and compare the
values gx1 and yg−x2. When we find x1, x2 satisfying the equality gx1 = yg−x2 ,
x1 + x2 becomes the correct value. In this case, the complexity is

(
n
t1

)
+

(
n
t2

)
.

Coppersmith improved Heiman and Odlyzko algorithm through the splitting
system. The splitting system is defined as follows:

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 77

Definition 1. Let n and t be even integers with 0 < t < n. An (n, t)-splitting
system is a pair (X,B) that satisfies the following properties:
1. |X | = n and B is a set of n

2 -subsets of X called blocks.
2. For every Y ⊆ X such that |Y | = t, there exists a block Bi ∈ B such that
|Bi ∩ Y | = t

2 .

An (n, t)-splitting system with N blocks is denoted by (N ;n, t)-splitting system.
The following lemma guarantees the existence of an (n2 ;n, t)-splitting system.

Lemma 1. ([12]) For all even integers n and t with 0 < t < n, there exists an
(n2 ;n, t)-splitting system for Zn.

Stinson generalized Definition 1 to arbitrary integers n, t with 0 < t < n and
extended Lemma 1 to the cases where one or both of n and t are odd [12]. We

can solve the DLP of weight t in n
(n

2
t
2

)
from the lemma.

Since the DL based cryptosystems and RSA cryptosytems in this paper have
the key size of 160-bit and 1024-bit, respectively, we assume the parameter n is
even. To simplify the description of the splitting system, we will use the following
notation. Given a and b with 0 ≤ a, b < � and a �= b, we define

[a, b)� =

{
{a, a+ 1, · · · , b− 1} if a < b,

[a, n)� ∪ [0, b)� if b < a.

Additionally, we denote by A[j] the value of the least significant (j+1)-th bit of
A, and by �a
 and �a� the largest integer b ≤ a and the smallest integer b ≥ a,
respectively.

3 Correcting Errors in Private Key of DL Based
Cryptosystems

The public key pk and private key sk of DL based schemes, such as ElGamal en-
cryption scheme and Schnorr signature scheme, have the form (pk, sk) = (gx, x)
when g is the generator of the base group G and x is an n-bit positive integer less
than the group order q. We assume that through cold boot attacks an adversary
can obtain the erroneous private key x′, some of whose bits are same as that of
the private key x.

We introduce an algorithm to recover the private key from an erroneous pri-
vate key. We also extend our algorithm to the case that the private key is pro-
tected using some countermeasures against previous side channel attacks.

3.1 Basic Algorithm

We first deal with the case that the private key is stored in the memory of a
device without any transformation. Assume that the erroneous private key x′ is
given. Then we can recover the correct private key x using the splitting system.

78 H.T. Lee et al.

Bidirectional Errors. Assume each bit of the private key can be flipped inde-
pendently with error rate δ 3. First one computes the upper bound of error bits,
�nδ
, in the given erroneous private key x′ and executes the following phase with
growing the estimated number of error bits from 0 to �nδ
 as in Algorithm 1.

Algorithm 1. Recovering private key from the erroneous key x′

INPUT: (g, y, x′, n, δ)
OUTPUT: x such that y = gx

for t = 0 to
nδ� do
for i = 0 to
n/2� − 1 do

set B1,i and B2,i to [i, i + n/2)n and [i + n/2, i)n, respectively
set U1,j and U2,j

while possible T1,�’s do
set U1,�

compute gU1,� and store (U1,�, g
U1,�) in the table Tab

end while
while possible T2,m’s do

set U2,m

compute yg−U2,m

find yg−U2,m among gU1,m ’s in Tab

if collision gU1,�∗ = yg−U2,m∗ occurs then
return U1,�∗ + U2,m∗

end if
end while
initialize the table Tab

end for
end for

Fix the number of error bits in x′ by t. Consider n
2 pairs of two blocks

(B1,i, B2,i) such that B1,i = [i, i + n/2)n and B2,i = [i + n/2, i)n for i =
0, · · · , n

2 − 1. Set Uk,i to

Uk,i[j] =

{
x′[j] if j ∈ Bk,i,

0 otherwise

where k = 1, 2 and i = 0, · · · , n
2 − 1. Consider sets T1,�, T2,m ⊂ Bk,i such that

|T1,� ∩ B1,i| = � t
2� and |T2,m ∩ B2,i| = � t

2
 for k = 1, 2, i = 0, · · · , n
2 − 1, and

possible �’s and m’s. Define Uk,� so that

Uk,�[j] =

{
1− Uk,�[j] (mod 2) if j ∈ Tk,�,

Uk,�[j] otherwise.

3 In this paper, it is assumed that δ is the upper bound of error rate.

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 79

From i = 0 to n
2 − 1, one does the followings: for fixed i, one computes gU1,� for

all possible T1,�’s and stores (U1,�, g
U1,�)’s in the table Tab. Thereafter, for all

possible T2,m’s, compute yg−U2,m and compare it with elements gU1,� ’s in the

table Tab. If the collision between gU1,� ’s and yg−U2,m ’s occurs, output U1,�∗ +

U2,m∗ for satisfying gU1,�∗ = yg−U2,m∗ . If collision does not occur, then delete
all data in the table Tab and repeat the above process for the next i.

The following theorem gives the correctness of Algorithm 1.

Theorem 1. When Algorithm 1 is executed with the input (g, y, x′, n, δ), then
it outputs the discrete logarithm x of y if the number of error bits is less than
�nδ
.

Proof. From Lemma 1, there exists j such that the numbers of errors of x′ in
B1,j , B2,j are � t

2�, �
t
2
, respectively. Since, for all cases that the error is less than

�nδ
, we observe all possible (T1,�, T2,m) and (B1,i, B2,i), we can find (T1,�, T2,m)
and (B1,j , B2,j) such that the set of error bits of x′ is same to T1,� ∪ T2,m. For
(U1,�∗ , U2,m∗) corresponded to such (T1,�∗ , T2,m∗) and (B1,j , B2,j), the relation

gU1,�∗ = yg−U2,m∗ is satisfied. Hence the output of Algorithm 1 is to be the
private key x. �

Toy Example. Let G = 〈2〉 be a cyclic subgroup of Z∗
2039 generated by 2 of order

1019. Set the public key y to 1571 and the private key x to 1110101101(2) = 941.
Assume that the erroneous private key x′ is given as 1010110111(2).

With Algorithm 1, when t = 4, B1,2 = [2, 7)10 and B2,2 = [7, 2)10, U1,2 and
U2,2 are to be 0010110000(2) and 1000000111(2), respectively. Then, when T1,� is

{2, 6}, U1,� is 0110100000(2). Hence the value

gU1,� = 20110100000(2) ≡ 645 (mod 2039)

is stored in the table Tab with U1,� = 0110100000(2).

Then, when T2,m is {7, 9}, U2,m is 1000001101(2). Hence one also obtains

y · g−U2,m = 1571 · 2−1000001101(2) ≡ 1571 · 1737 ≡ 645 (mod 2039).

Therefore, Algorithm 1 outputs U1,� + U2,m = 1110101101(2) = 941.

Complexity. The following theorem gives the complexity of Algorithm 1.

Theorem 2. Let n be the private key size and δ be the upper bound of error rate.

Then Algorithm 1 is required less than
∑�nδ�

t=0 n
(n/2
�t/2	

)
complexity and

(n/2
�(�nδ�/2)	

)
storage to recover the private key x.

Proof. In Algorithm 1, there exist n
2 pairs (B1,i, B2,i) of blocks. For each pair,

there are
(n/2
�t/2	

)
candidates of T1,� and

(n/2
�t/2�

)
candidates of T2,m and hence

80 H.T. Lee et al.

one computes
(n/2
�t/2	

)
gU1,� ’s and

(n/2
�t/2�

)
yg−U2,m ’s for each pair. Therefore, the

complexity of Algorithm 1 is

(Complexity of Algorithm 1) =

�nδ�∑
t=0

n

2

((
n/2

�t/2�

)
+

(
n/2

�t/2

))

≤
�nδ�∑
t=0

n

(
n/2

�t/2�

)
.

All gU1,� ’s corresponded to T1,�’s are stored for all T1,�’s and the data stored
in the table Tab are deleted if a pair (B1,i, B2,i) is changed. And the maximum

number of generated gU1,� ’s in each pair is
(n/2
�(�nδ�/2)	

)
when t is �nδ
. Hence the

storage for
(n/2
�(�nδ�/2)	

)
elements is required. �

Remark 1 (Unidirectional Errors). In [8], Halderman et al. observe that errors
are overwhelmingly unidirectional, that is, either 0 → 1 or 1 → 0. In general,
since the private key x is chosen uniformly at random, we can expect that the
numbers of 0’s and 1’s are approximately equal. Hence we can determine the
direction of errors by comparing the number of 0’s and 1’s in the erroneous key
x′. If the number of 1’s is larger than that of 0’s, then the direction of errors might
be 0 → 1 and all 0’s in the erroneous key are correct in this case. Then we obtain
the private key whose some bits are missing and we can recover correct private
key x applying the algorithm in [4]. When n1 bits of the private key are missing

and the error rate δ is given, one recovers the real key within

�nδ�∑
t=0

n1

(
n1/2

�t/2�

)
complexity and

(
n1/2

�(�nδ
/2)�

)
storage using the algorithm in [4].

Table 1. Complexity of exhaustive search, Algorithm 1 and unidirectional case (n =
160)

upper bound of complexity

error rate exhaustive search Algorithm 1 unidirection

0.03 224.69 219.98 217.21

0.05 243.10 228.99 224.65

0.10 271.95 243.24 236.38

In Table 1, we provide the complexity of Algorithm 1 for various upper bounds
of error rate when the private key size n is 160. Also we give more precise
complexity of algorithm in [4] when an unidirectional erroneous key is given
with n1 = n

2 + �nδ
 and compare them with exhaustive search which is the best

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 81

algorithm before our method. In case of exhaustive search, one tries to compute

for all possible cases of an erroneous key and the complexity is
∑�nδ�

t=0

(
n
t

)
when

the error rate is δ.
According to our analysis, when the error rate is 10%, the exhaustive search

can recover the private key in 271.59 operations, but our algorithm takes only
243.24 operations. If we assume unidirectional errors, it is further reduced to
236.38.

Within 280 security, while the exhaustive search can recover the private key
with at most error rate 0.118, our algorithm can recover the private key with
smaller than error rate 0.343. In other words, an erroneous private key which has
54 or less error bits can be recovered within 280 complexity using Algorithm 1
in contrast to that exhaustive search can recover 18 or less error bits.

3.2 Coron and Kocher’s Method [9,2]

There are many methods to randomize the private key x to endure against
differential power analysis. Coron [2] and Kocher [9] independently proposed the
use of x̃ = x + rq instead of the original private key x which is less than the
group order q. Here, r is a randomly chosen integer of size nr-bit. In this case,
since the relation

cx̃ = cx+rq = cx

is satisfied for all c ∈ G, x̃ is available as the private key. However one who knows
x̃ can also decrypt the encrypted message, it is enough to recover the correct x̃
from erroneous private key x̃′.

Assume that the erroneous private key x̃′ is given. Then one may utilize
Algorithm 1 with the input (g, y, x′, n+ nr, δ) to recover the private key x̃ and
the complexity of Algorithm 1 in this case is

�(n+nr)δ�∑
t=0

(n+ nr)

(
(n+ nr)/2

�t/2�

)

with
(

(n+nr)/2
��(n+nr)δ�/2	

)
storage.

Table 2. Lower bound of nr to provide 280 complexity (n = 160)

upper bound of error rate 0.10 0.15 0.20 0.25 0.30

lower bound of nr 155 87 45 24 10

Table 2 shows the lower bound of nr for various upper bounds of error rate,
to be required more than 280 complexity for recovering the private key using our
algorithm when the private key size n is 160. From Table 2, we observe that the
bit size of random number r in Coron and Kocher’s method has to be larger
than or equal to 155 to provide 280 security when the upper bound of error rate

82 H.T. Lee et al.

is 0.10. In this case, since the bit size of modified private key x̃ is to be 315,
the exponentiation using x̃ is roughly two times slower than that using original
160-bit private key x.

3.3 Clavier and Joye’s Method [3]

To randomize the exponent x, Clavier and Joye split it into two parts (x1, x−x1)
for a randomly chosen x1 [3]. Given an element g, gx is performed by computing
g1 = gx1, g2 = gx2 and then g1 · g2, where x2 = x − x1. Suppose we obtained
erroneous values x′

1, x
′
2 of x1, x2 with error rate δ, respectively. Now, we provide

an algorithm for recovering the private keys x1, x2.

Algorithm. Since error rate is given, one computes the upper bound of error bits,
�nδ
, in the given erroneous private keys x′

1, x
′
2. Fix the numbers of error bits

in x′
1, x

′
2 are t1, t2, respectively. We have to check the all 1 ≤ t1, t2 ≤ �nδ
 to

recover the keys x1, x2.

Algorithm 2. Recovering private key from the erroneous keys x′
1, x

′
2

INPUT: (g, y, x′
1, x

′
2, n, δ)

OUTPUT: x such that y = gx

for t1 = 0 to
nδ� do
set x′

1

while possible T1’s do

compute gx
′
1 and store (x′

1, g
x′
1) in the table Tab

end while
end for
for t2 = 1 to
nδ� do

set x′
2

while possible T2’s do

compute yg−x′
2

find yg−x′
2 among gx

′
1 ’s in the table Tab

if collision occurs then
return x′

1 + x′
2

end if
end while

end for

Let x′
1, x

′
2 be the guessing key of x′

1, x
′
2, respectively. Consider sets Ti ⊂ [0, n)n

such that |T1 ∩ [0, n)n| = t1 and |T2 ∩ [0, n)n| = t2 where i = 1, 2. Define x′
i so

that

x′
i[j] =

{
1− x′

i[j] (mod 2) if j ∈ Ti,

x′
i[j] otherwise.

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 83

First, for all possible T1’s (1 ≤ t1 ≤ �nδ
), compute gx
′
1 and store (x′

i, g
x′
i) in

the table Tab. Then, for all possible T2’s (1 ≤ t2 ≤ �nδ
), compute yg−x′
2 and

compare it with elements gx
′
1’s in the table Tab. If the collision occurs, output

x′
1 + x′

2.

Complexity. The complexity of Algorithm 2 is

(complexity of Algorithm 2) =

�nδ�∑
t1=0

(
n

t1

)
+

�nδ�∑
t2=0

(
n

t2

)

=

�nδ�∑
t1=0

2

(
n

t1

)

with

�nδ�∑
t1=0

(
n

t1

)
storage.

In Table 3, we give the complexity of Algorithm 2 to recover the private key
suggested by Clavier and Joye when the private key size n is 160. Table 3 shows
that when the error rate is 5%, the private key can be recovered within 244.10

complexity using Algorithm 2. It is further reduced to 237.05 if errors occur
unidirectional.

Table 3. Complexity of Algorithm 2 and unidirectional case (n = 160)

upper bound of complexity

error rate Algorithm 2 unidirection

0.03 225.69 221.95

0.05 244.10 237.05

0.10 272.95 260.51

Now, we compare Coron and Kocher’s suggestion with Clavier and Joye’s
suggestion. For fair comparison, we assume that square-and-multiply algorithm
is utilized for the exponentiation and the cost for one multiplication in a group
G is same as that of one squaring in G. To compute one exponentiation with an
n′-bit exponent using square-and-multiply algorithm, the expected numbers of
multiplications and squarings are n′/2 and n′, respectively. Clavier and Joye’s
suggestion requires 480 multiplications when the private key size n is 160. This
cost is same when the random number size nr is 160 in case of Coron and
Kocher’s suggestion. Then the recoverable error rate within 280 complexity using
our algorithm is 0.096 in case of Coron and Kocher’s and is 0.118 in case of
Clavier and Joye’s. It shows that Clavier and Joye’s suggestion is more tolerable
than Coron and Kocher’s suggestion against our proposed algorithm.

84 H.T. Lee et al.

4 Applying to RSA Cryptosystem

There have been numerous algorithms to recover the RSA decryption key from
its partial information. One approach is to assume that some contiguous bits of
decryption keys are known [1]. The other is to deal with less restrictive informa-
tion on the private key, but it is assumed that some additional partial information
on prime divisors of the modulus are given. The latter approach [7,6] has been
initiated mainly from the cold boot attack. These results show that if an erro-
neous value of private key (p, q, d, dp, dq) is given in RSA-CRT, one can recover
the whole key with a reasonable probability. These papers assume that the decay
direction of key is unidirectional [7] or bidirectional [6].

In this section, we consider the standard RSA decryption module and propose
an algorithm to recover the private key of RSA cryptosystem from an erroneous
decryption key d. While the attack against the standard RSA in [1] requires
contiguous n

4 least significant bits of the private key d where n is the bit size of
modulus N , our attack assumes random and independent errors. Our algorithm
requires a lot more information than the previous, but it does not have such a
restriction.

Throughout this section, N will be the RSA modulus and the public key
and the private key of the standard RSA cryptosystem will be given as e and
d, respectively. The bit length of the private key will be given as n and it is
assumed that the bit length of the private key d is same as that of N . Let m be
the message and C be the ciphertext.

Standard RSA. Assume that the erroneous private key d′ is given. To recover
the correct private key d using Algorithm 1, one chooses a message m chosen
at random and compute me ≡ C (mod N). Then he gets a pair (C,m) that
satisfies the relation Cd ≡ m (mod N). With input (C,m, d′, n, δ), one executes
Algorithm 1 and then obtains d as the output. In this case, the complexity of

Algorithm 1 is to be

�nδ�∑
t=0

n

(
n/2

�t/2�

)
with

(
n/2

�nδ�/2

)
storage.

Table 4. Complexity of exhaustive search, Algorithm 1 and unidirectional case in
RSA (n = 1024)

upper bound of complexity

error rate exhaustive search Algorithm 1 unidirection

0.003 227.42 227.01 224.04

0.005 243.09 234.42 230.49

0.010 278.16 249.08 243.23

Table 4 provides the complexity of exhaustive search, Algorithm 1 and unidi-
rection for upper bounds of error rate. Similarly with DL based cryptosystems,

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 85

the complexity of exhaustive search is

�nδ�∑
t=0

(
n

t

)
,when the error rate is δ, which

is the same with the number of possible cases of an erroneous key. When n is
1024 and the error rate is 1%, one could recover the private key d from the given
erroneous key d′ within 249.08 while exhaustive search takes 278.16. In the case
of unidirectional errors, the complexity becomes 243.23.

Coron and Kocher’s Method [9,2]. In order to randomize the private key pro-
tecting against differential power analysis, Coron and Kocher proposed the use
of blinding private key d̃ = d + rφ(N) where r is a randomly chosen integer of
size nr-bit. In this case, as in Section 3.2, the private key can be recovered using

Algorithm 1 with input (C,m, d̃′, (n+nr), δ) where C
d̃ = m. And the complexity

of Algorithm 1 is

�(n+nr)δ�∑
t=0

(n+ nr)

(
(n+ nr)/2

�t/2�

)
with

((n+nr)/2
��(n+nr)δ�/2	

)
storage.

Table 5. Lower bound of nr to provide 280 complexity in RSA (n = 1024)

upper bound of error rate 0.005 0.008 0.010 0.015 0.020

lower bound of nr 1976 1101 699 243 26

In Table 5, we provide the value of nr for given upper bounds of error rate to
get the complexity more than 280 complexity. If the upper bound of error rate
is 0.008, we have to choose nr so that nr > 1024.

Clavier and Joye’s Method [3]. In order to randomize the private key d, Clavier
and Joye split it into two parts (d1, d − d1) for a random number d1 where
d1+d2 = d. In this case, we can recover the private keys d1, d2 using Algorithm 2
of Section 3.3, with input (C,m, d′1, d

′
2, n, δ). And the complexity of Algorithm 2

is

�nδ�∑
t=0

2

(
n

t

)
with

�nδ�∑
t=0

(
n

t

)
storage. Their complexities for various error rates

are presented in Table 6.

Table 6. Complexity of exhaustive search, Algorithm 2 and unidirectional case in
RSA (n = 1024)

upper bound of complexity

error rate exhaustive search Algorithm 2 unidirection

0.003 255.83 228.42 225.44

0.005 > 280 244.09 239.15

0.010 > 280 279.16 269.39

86 H.T. Lee et al.

5 Conclusion

In this paper, we proposed the algorithm to recover the private key from its
erroneous value using the splitting system in the DL based cryptosytems and
the standard RSA. We also considered breaking countermeasures of differential
power analysis. Our algorithm achieves almost the square root complexity of the
size of the search space. Considering that the most efficient generic algorithm
to solve DLP has the complexity of the square root of the base group order,
the square root complexity can be considered optimal. It would be interesting
to find the lower bound of the complexity in terms of the size of search space to
recover the private key when its partial information is given.

There have been numerous algorithms to recover the RSA decryption key from
its partial information. However, all the works either require some contiguous
information or additional partial information on prime divisors of the modulus.
Our algorithm requires a lot more information than the previous, but it does
not have those restriction. It would be interesting to apply the previous lattice
techniques to have more efficient algorithms in this case.

Acknowledgements. We thank the anonymous reviewers for useful comments
and discussions. Hyung Tae Lee, HongTae Kim, and Jung Hee Cheon were sup-
ported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MEST) (No. 20110018345).

References

1. Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

2. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

3. Clavier, C., Joye, M.: Universal Exponentiation Algorithm. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer,
Heidelberg (2001)

4. Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power At-
tack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)

5. Heiman, R.: A Note on Discrete Logarithms with Special Structure. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 454–457. Springer, Heidelberg
(1993)

6. Henecka, W., May, A., Meurer, A.: Correcting Errors in RSA Private Keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010)

7. Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key
Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

Correcting Errors in Private Keys Obtained from Cold Boot Attacks 87

8. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

9. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

10. Schnorr, C.-P.: Small Generic Hardcore Subsets for the Discrete Logarithm: Short
Secret DL-keys. Information Processing Letters 79(2), 93–98 (2001)

11. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

12. Stinson, D.R.: Some Baby step Giant step algorithms for the low hamming weight
discrete logarithm problem. Mathematics of Computation 71(237), 379–391 (2002)

Strong Security Notions for Timed-Release

Public-Key Encryption Revisited

Ryo Kikuchi1, Atsushi Fujioka1, Yoshiaki Okamoto2, and Taiichi Saito2

1 NTT Information Sharing Platform Laboratories
{kikuchi.ryo,fujioka.atsushi}@lab.ntt.co.jp

2 Tokyo Denki University
{okamoto@crypt.,taiichi@}c.dendai.ac.jp

Abstract. Timed-release public-key encryption (TRPKE) provides a
mechanism that a ciphertext cannot ordinarily be decrypted, even with
its secret key, before a specific time. TRPKE with pre-open capabil-
ity (TRPKE-PC) provides an additional mechanism where the sender
can permit a receiver to decrypt the ciphertext before that specific time
if necessary. A TRPKE(-PC) scheme should be secure in following as-
pects: against malicious receivers, a time-server, and, only in TRPKE-
PC, against malicious senders. In this paper, we mention that previous
security definitions are incomplete or insufficient, and propose new ones
in all aspects of the above. We also present a generic construction of a
TRPKE-PC scheme. Our construction provides the first TRPKE(-PC)
scheme that is provably secure with respect to the above security defini-
tions, especially against malicious key generations of the time-server.

Keywords: timed-release encryption, malicious time-server, malicious
key generation, strong decryption, generic construction, pre-open
capability.

1 Introduction

Timed-release public-key encryption (TRPKE) was introduced by Chan and
Blake [7] in 2005. Intuitively, TRPKE provides a mechanism whereby a cipher-
text cannot be decrypted until a specific time. In addition to TRPKE, TRPKE
with pre-open capability (TRPKE-PC), introduced by Hwang et al. in 2005 [22],
has more flexibility such that a receiver can decrypt a ciphertext with the support
of the sender even before a specific time. In this paper, we focus on TRPKE-PC
and describe security definitions and syntax of a scheme for TRPKE-PC since
it contains TRPKE.

A TRPKE-PC system consists of three entities: a time-server, sender, and
receiver. The sender encrypts plaintext by using the receiver’s and time-server’s
public keys and designates a time-period T after which the receiver is allowed
to decrypt the ciphertext. At each T , the time-server periodically generates a
time signal sT corresponding to T and broadcasts it to all users including the
receiver. The receiver can decrypt the ciphertext with his/her secret key and

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 88–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 89

sT corresponding to T . This decryption is called time-period decryption and in
TRPKE-PC, the receiver can decrypt in another way called pre-open decryption.
This uses the receiver’s secret key and a pre-open key pok generated together with
the ciphertext. Therefore, the receiver can decrypt the ciphertext independent
of the T if the sender sends pok to the receiver.

The TRPKE(-PC) scheme has many applications for constructing secure pro-
tocols in which information is revealed to users after a specific time. One of
major applications is timed-release commitment in a sealed-bid auction: Bidders
encrypt their bids with a closure time. To confirm bids, an auctioneer decrypts
ciphertexts with a time-signal. Therefore, there is no interaction between bidders
and the auctioneer.

Previous Security Definitions. Security notions for TRPKE are considered
from two aspects against malicious receivers and against a time-server. The for-
mer means that no one can obtain information from the ciphertext without a
corresponding time signal and the latter means no one can obtain information
without the receiver’s secret key. The TRPKE-PC scheme demands another se-
curity notion against senders such that no one can create a tuple of a ciphertext,
time-period, and pre-open key where a plaintext decrypted with time-period
decryption differs from one decrypted with pre-open decryption.

There are many security definitions for TRPKE(-PC), which can be catego-
rized into two aspects: what an adversary issues to the decryption oracle, and if
an adversary can maliciously generate its own keys. We summarize these defini-
tions in Table 1.

Table 1. Previous Security Definitions for TRPKE(-PC)

notion name against dec. query key gen.

Cheon et al. [8]
IND-RTR-CCA2 receiver (usk , T, c) malicious

IND-CCA2 time server (T, c) honest

Cathalo et al. [6]
IND-CTCA receiver (upk , T, c) malicious
IND-CCA time server (T, sT , c) honest

Chow et al. [10]
Type-I receiver (upk , T, c) malicious
Type-II time server (upk , T, c) honest

Dent and Tang [15]
IND-TR-CPAIS receiver no dec. honest
IND-TR-CCATS time server (T, c) honest

Binding sender (T, c) honest

Chow and Yiu [11]
Type-I receiver (upk , T, c) malicious
Type-II time server (upk , T, c) honest
Binding sender (upk , T, c) honest

c is a ciphertext, usk is a user’s secret key, upk is a user’s public key, T is a time
period, sT is the time signal at T , “malicious” means attacker can generate
own keys maliciously and “honest” means attacker cannot do this.

90 R. Kikuchi et al.

Strong Security Notion. Several previous security notions are
indistinguishability-based definitions allowing an adversary to issue a decryption
query including a user’s public key, then a challenger responds with a message
derived from the issued ciphertext. Such a decryption oracle is called a strong
decryption oracle and we call the security definition with such an oracle strong
security. This might seem too strong since an adversary can issue decryption
queries with an adversarial chosen public key; no one knows the corresponding
secret key, even the adversary.

However, it is important to consider such a strong security definition. Many
applications of TRPKE(-PC) involve multiple receivers, and some adversaries
may collude with each other to maliciously generate their keys, e.g., depending
on other keys. It seems natural to assume that an adversary can choose a user’s
key issued to the decryption oracle. Theoretically, it is interesting to consider
whether a scheme that achieves strong security can exist or not.

Furthermore, in some applications of TRPKE(-PC), a strong decryption
oracle makes sense. To explain this, we first discuss the security notion, com-
plete non-malleability, defined by Fischlin [16]. Roughly speaking, complete non-
malleability states that giving a ciphertext to an adversary does not help to
produce a ciphertext of a related message under an adversarial chosen public
key. This security notion is desired, for example, when one uses an encryption
scheme as a commitment, e.g., timed-release commitment in a sealed-bid auction
described in the previous section. Without complete non-malleability, the adver-
sary may produce a related commitment and cheat, i.e., generate a ciphertext
and a public key of plaintext m+ 1 from those of plaintext m.

Recently, Barbosa and Farshim [3] clarified1 the relation between indistin-
guishability with strong decryption and complete non-malleability.2 This means
that indistinguishability under a strong decryption oracle is a convenient for-
malization for establishing that a scheme is completely non-malleable. Therefore,
strong decryption for TRPKE(-PC) is important since complete non-malleability
is worth considering, and satisfying a strong security notion comprises complete
non-malleability.

1.1 Our Contribution

There are many benefits for considering a strong decryption oracle as described
in the previous section, so we focus on the strong security notion. We show
that previous security definitions are incomplete or insufficient. We thus provide
precise or strong security definitions and also propose a generic construction of
a TRPKE-PC scheme that satisfies our definitions in the random oracle model.

Note that we provide new security definitions only in the context of TRPKE-
PC. This is because the security definitions for TRPKE-PC are easily converted
to those for TRPKE.

1 They prove the equivalence for ordinal public-key encryption, and it can be applied
to TRPKE-PC.

2 Though their definition is slightly different from Fischlin’s, the aim is the same.

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 91

Problems with Previous Strong Security Definitions and New Defi-
nitions. We first go with the security against malicious receivers. Several def-
initions were proposed, such as IND-CTCA and Type-I security, but they do
not explain the behavior when an adversary issues an invalid public key or in-
valid ciphertext to a strong decryption oracle. They may work well for a specific
scheme, but become a problem when we consider a general case, e.g., generic
construction. Fujioka et al. [18] recently noticed this ambiguity and avoided it
by adding a restriction in which an adversary cannot issue an invalid public
key. However, this restriction is not realistic. We aim to define a strong security
notion without such a restriction on an adversary.

A strong decryption oracle can be defined in roughly two ways. One is based
on the principle “reply as far as possible”, and the other is based on the principle
“reply only if a query is valid”. They are incomparable with each other since
they assist the adversary with an another aspect: decrypting invalid ciphertexts
under an invalid public key or checking their validity. Our definition uses the
former principle since it is more suitable for a generic construction. The latter
principle may lose generality since it excludes a TRPKE-PC scheme such that
one cannot check the validity of both the public key and ciphertext, e.g., most
RSA-based schemes.

Second, we go with the security against a malicious time-server. As described
in Table 1, honest key generations are assumed with the previous definitions, But
the malicious time-server, which generates its keys maliciously, may break the
TRPKE-PC scheme. In a sealed-bid auction, for example, the time-server with
malicious key generations can see all bids and, if it colludes with a bidder, the
bidder may illegally succeed in the auction. We take Chow and Yiu’s TRPKE-PC
scheme [11], which can be totally broken by a such an adversary, as an example
in Appendix D.

Third, we go with the security against malicious senders in a TRPKE-PC
scheme. The sender knowing nothing about the time-server’s secret key is as-
sumed with the previous definitions. This implies that collusion with the time-
server is beyond the definition. We thus define another strong security definition
called Strong Binding to prevent collusion.

Generic Construction of Strongly Secure TRPKE-PC. We also propose
a generic construction of a TRPKE-PC scheme that first satisfies the above new
security definitions, especially against a malicious time-server with malicious
key generations even in the random oracle model [4]. We use the random ora-
cle since Fischlin [16] claimed that there is no black-box construction which is
complete non-malleable (and is likely secure with the strong decryption oracle)
in the standard model without a trusted setup. There are several schemes (e.g.,
[30,3,13]) that are complete non-malleable or secure with the strong decryption
oracle in the standard model, but they require a trusted setup. On the contrary,
our scheme does not has a trusted setup since our security allows malicious key
generations of the time-server. Therefore, it seems a difficult task to construct
secure schemes w.r.t. our definitions in the standard model.

92 R. Kikuchi et al.

Our construction consists of a public-key encryption (PKE) scheme and an
identity-based encryption (IBE) scheme. It uses a simple approach, a PKE-then-
IBE paradigm. A naive construction of this sort is insecure against a “Decrypt-
then-Encrypt” attack [14,32] since a ciphertext differs from one that is decrypted
partway (i.e., only IBE decryption) and re-encrypted. We prevent such an attack
by encrypting with a second (IBE) scheme deterministically, which is bounded
randomness technique [17]. To enable pre-open functionality, we use an inter-
mediate ciphertext, encrypted with a PKE scheme, as a pre-open key. That
is, we use PKE-then-IBE, not IBE-then-PKE used in Ref. [18]. In the PKE-
then-IBE construction, a receiver can decrypt an intermediate ciphertext while
others cannot decrypt it without the receiver’s secret key; in the IBE-then-PKE
construction, the receiver cannot decrypt the intermediate ciphertext.

We require the property called extensive γ-uniformity from both IBE and
PKE, where γ is negligible. Intuitively, this means the entropy of a ciphertext
for a fixed message is large even if a public key is invalid. If PKE(IBE) is IND-
(ID-)CPA secure, we can easily convert them to satisfy this property. The original
γ-uniformity defined by Fujisaki and Okamoto [19] means the same thing under
uniformly and honestly chosen public keys, and γ-pk-uniformity used in [18]
means the same thing under all valid public keys. We also assumes the collision
resistance of the encryption, which is essential to be secure against a strong
chosen ciphertext attacks. This is trivially guaranteed under a valid public key
thanks to completeness.

Fujioka et al. [18] also proposed a generic construction of TRPKE with IBE-
then-PKE technique and negligible γ-pk-uniformity. Their construction is, how-
ever, proven secure against only a malicious time-server with honest key genera-
tions and, against malicious receivers under the restriction of invalid key queries.
It also does not provide pre-open capability.

1.2 Related Works

Certificateless encryption (CLE) [2,12] is a primitive related toTRPKE.Chowetal.
[10] proposed a method for converting any general CLE scheme, that is, a CLE
scheme with additional properties, into a TRPKE scheme. In the CLE context,
security with strong decryption has been also studied. Chow et al. [10] defined
Type-I and Type-II security, and Au et al. [1] pointed out that a malicious key gen-
eration center (KGC) with malicious key generations may violate the security of
CLE. Hwang et al. [23] proposed a scheme secure against a time-server with mali-
cious key generations, without strong decryption.

Timed-release public-key encryption is also closely related to multiple encryp-
tion. Zhang et al. [32] and Dodis and Katz [14], studied the security of multiple
encryption and how to construct secure schemes from IND-CCA secure compo-
nents. Recently, Fujioka et al. [17] studied the security of multiple encryption
and constructed it from IND-CPA secure schemes.

The notion of complete non-malleability was first defined by Fischlin [16],
and Ventre and Visconti [30] later formalized it in another way and proposed
a complete non-malleable secure scheme with a trusted setup in the standard

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 93

model. Barbosa and Farshim [3] studied and categorized the definition of a strong
decryption oracle, and clarified the relation between a strong decryption oracle
and complete non-malleability.

Very recently, Kawai et al. [24] showed that it is impossible for PKE to re-
duce the security with strong decryption oracle (called IND-SCCA) to any other
weaker security notion under black-box analysis in the standard model. Further-
more, they also showed that even if the encryption system has a setup procedure,
it is also impossible under setup-preserving black-box reductions. These results
indicates the difficulty to construct strongly secure schemes in the standard
model.

Due to space limitation, we describe traditional schemes and give a brief
history of TRPKE and TRPKE-PC in Appendix A.

2 Preliminaries

We review the primitives used as components of our construction and their
security notions.

Notation. Throughout this paper, λ denotes the security parameter and PPT
algorithm denotes a probabilistic polynomial-time algorithm. x ← y means that
x is chosen from y uniformly at random if Y is a finite set; if otherwise, simply
substitute y into x. For probabilistic algorithm A, y ← A(x; r) means that y is
the output of A with input x and randomness r, and if r is picked uniformly at
random, r is omitted as y ← A(x). x||y denotes the concatenation of x and y. A
denotes a space of a, e.g., a space of a message m is denoted as M. |M| denotes
the number of elements that belong to M.

2.1 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms as follows. A
key generation algorithm PKE.KG takes 1λ as input, and outputs a public key
pk and a secret key sk . An encryption algorithm PKE.Enc takes a pk , a message
m and as inputs and outputs a ciphertext ĉ. A decryption algorithm PKE.Dec
takes sk and ciphertext ĉ as inputs and outputs the plaintext m or ⊥. These
algorithms are required to satisfy PKE.Dec(sk ,PKE.Enc(pk ,m)) = m for any
(pk , sk) ← PKE.KG(1λ) and any m. Throughout this paper, we use MPKE, CPKE,
and RPKE to indicate the message space, ciphertext space, and randomness space
of the encryption algorithm respectively.

We use IND-CPA secure PKE in our construction. Due to space limitation,
the definition of IND-CPA security appears in Appendix B.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme consists of the following four algo-
rithms. A setup algorithm IBE.Setup takes 1λ as input and outputs a public

94 R. Kikuchi et al.

parameter params and a master secret key msk . An extract algorithm IBE.Ext
takes params , msk , and an arbitrary string (identity) ID ∈ {0, 1}∗ as inputs and
outputs a decryption key dID. An encryption algorithm IBE.Enc takes params ,
ID, and a message m as inputs and outputs a ciphertext c. A decryption algo-
rithm IBE.Dec takes params , dID, and c as inputs and outputs the message m or
⊥. These algorithms are required to satisfy IBE.Dec(params , dID,
IBE.Enc(params , ID,m)) = m for any m, any (params ,msk) ← IBE.Setup(1λ),
and any dID ← IBE.Ext(params ,msk , ID). Throughout this paper, we use MIBE,
CIBE, and RIBE to indicate the message space, ciphertext space, and randomness
space of the encryption algorithm respectively.

We use IND-ID-CPA secure IBE in our construction. Due to space limitation,
the definition of IND-ID-CPA security appears in Appendix C.

2.3 γ-Uniformity and Collision Resistance of the Encryption

Fujisaki and Okamoto proposed γ-uniformity [19,20], which represents the size
of the entropy for a fixed message in PKE. We denote it as γPKE-uniformity.

We say a PKE scheme is γPKE-uniformity if Pr[∀x ∈ MPKE; ∀y ∈
CPKE; (pk , sk) ← PKE.KG(1λ) : y = PKE.Enc(pk , x)] ≤ γPKE holds. Note that
we consider entropy under a uniformly and honestly chosen public key with γPKE-
uniformity, and all IND-CPA secure PKE schemes have γPKE-uniformity where
γPKE is negligible in λ. Fujioka et al. [18] extended it to γPKE-pk-uniformity, which
aims to represent the size of the entropy under all public keys generated by a key
generation algorithm. We also extends it to a slightly stronger property called ex-
tensive γPKE-uniformity. Roughly speaking, extensive γPKE-uniformity states the
size of the entropy under a public key that is possibly invalid. It is formally de-
scribed as Pr[∀x ∈ MPKE; ∀y; ∀pk : y = PKE.Enc(pk , x)] ≤ γPKE. Our construction
requires extensive γPKE-uniformity where γPKE is negligible in λ. Although an IND-
CPA secure PKE does not generally have extensive γPKE-uniformity where γPKE is
negligible in λ, all IND-CPA secure PKEs can be converted to one that has exten-
sive γPKE-uniformity where γPKE is negligible [20].

Yang et al. extended γ-uniformity to IBE [31] and we denote it as γIBE-
uniformity. We say IBE has γIBE-uniformity if Pr[∀x ∈ MIBE; ∀y ∈ CIBE; ∀ID ∈
{0, 1}∗; (params ,msk) ← IBE.Setup(1λ) : y = IBE.Enc(params , ID, x)] ≤ γIBE

holds. Note that all IND-ID-CPA secure IBE schemes have γIBE-uniformity where
γIBE is negligible. Similar to the PKE scheme, we use extensive γIBE-uniformity,
formally described as Pr[∀x ∈ MIBE; ∀y; ∀ID ∈ {0, 1}∗; ∀params : y =
IBE.Enc(params , ID, x)] ≤ γIBE. Our construction also requires that an IBE
scheme has extensive γIBE-uniformity where γIBE is negligible in λ. Although an
IND-ID-CPA secure IBE does not generally have extensive γIBE-uniformity where
γIBE is negligible, all IND-ID-CPA secure IBEs can be converted to have negligible
extensive γPKE-uniformity, almost the same as that of PKE.

We also require collision resistance of the encryption: for all pk there is
no message pair m0, m1 such that PKE.Enc(pk ,m0) = PKE.Enc(pk ,m1)
for PKE. Also for all params , ID there is no message pair m0, m1 such that

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 95

IBE.Enc(params , ID,m0) = IBE.Enc(params , ID,m1) for IBE.3 This is trivially
fulfilled under a valid public key because of completeness, and seems to be ful-
filled by pudding more random components under an invalid key.

3 Timed-Release Encryption with Pre-open Capability

In this section, we discuss and review the definitions of TRPKE-PC and their
security notions.

3.1 Syntax

A TRPKE-PC scheme is formally defined as a tuple of the below algorithms.

– Setup: A setup algorithm that takes 1λ as input, and outputs a time-server’s
public key tpk and corresponding secret key tsk .

– Release: A release algorithm that takes tpk , tsk , and a time-period T as
inputs and outputs a time signal sT corresponding to T .

– KeyGen: A user key generation algorithm that takes tpk as input, and outputs
a user’s public key upk and corresponding secret key usk .

– Enc: An encryption algorithm that takes tpk , T , upk , and message m as
inputs and outputs the ciphertext CT and corresponding pre-open key pok .

– DecTR: A time-period decryption algorithm that takes tpk , sT , usk , and CT
as inputs and outputs m ∈ M ∪ {⊥}.

– DecPO: A pre-open decryption algorithm that takes tpk , pok , usk , and CT
as inputs and outputs m ∈ M ∪ {⊥}.

Throughout this paper, we use M, C, and R to indicate the message space,
ciphertext space, and randomness space of the encryption algorithm.

These algorithms are required to satisfy DecTR(tpk , sT , usk ,CT) =
DecPO(tpk , pok ,
usk ,CT) = m for any (tpk , tsk) ← Setup(1λ), any (upk , usk) ← KeyGen(tpk),
any T , any m, any (CT , pok) ← Enc(tpk , T, upk ,m), and any sT ←
Release(tsk , T).

3.2 New Security Notions

Security against Malicious Receivers. We define the security notion for
TRPKE-PC against malicious receivers with a precise definition of strong de-
cryption. We call this definition IND-SCCA Security against a Type-I Adversary
(Type-I security) since it is mostly based on Chow and Yiu’s definition [11].

We define the strong decryption oracle with the principle “reply as far as pos-
sible”. The strong decryption oracle responds with a messagem, where (CT , ·) =
Enc(tpk , T, upk ,m); nevertheless, both upk and CT may be invalid. We can also

3 To be exact, it is sufficient for our construction that the equation is not hold with an
overwhelming probability.

96 R. Kikuchi et al.

define it with the principle “reply only if a query is valid”, which responds with
⊥ if one of components of a query is invalid. In our security definition, we use the
former principle, though it could accept an invalid query as mentioned by Barbosa
and Farshim [3], by following reasons. First, these principles empower the adver-
sary in another aspect: The adversary can receive a plaintext of even an invalid
query in the former principle, and the adversary can check the validity of both
the ciphertext and public key in the latter principle. Therefore, we choose one of
these principles. Second, the latter principle loses generality of the construction.
It requires the checkable property of both the ciphertext and public key, so it ex-
cludes TRPKE-PC schemes such that one cannot check the validity. This property
is especially difficult for RSA-based construction.

Of course, one can use the latter principle when constructing a TRPKE-
PC scheme with a checkable property. However, if a TRPKE-PC scheme has
a checkable property, our definition is essentially equal to one with the latter
principle. This is because a TRPKE-PC scheme secure w.r.t. the latter principle
can be also secure w.r.t. ours by checking a validity of a public key in the
encryption and checking a validity of a ciphertext in the decryption.

Fujioka et al. [18] used another approach that restricts the adversary from
issuing a query including invalid components. This definition, however, implies
the adversary is generates its key as honest-but-curious, not malicious.

We formally describe Type-I security for a TRPKE-PC scheme based on the
following Type-I game between a challenger C and an adversary A.

1. C takes a security parameter 1λ, runs the setup algorithms (tpk , tsk) ←
Setup(1λ) and give tpk to A.

2. A is permitted to issue a series of queries to some oracles. (A is allowed
to make adaptive queries here – subsequent queries are made based on the
answers to previous queries.)
– Release queries: A issues a time-period T and receives a corresponding

time signal sT derived from Release(tpk , tsk , T).
– Time-period decryption queries: A issues a tuple of (upk , T,CT). If a

group {m | (CT , ·) = Enc(tpk , T, upk ,m)} is not empty, C responds with

m
$← {m | (CT , ·) = Enc(tpk , T, upk ,m)}. Otherwise, C responds with

⊥.
3. A outputs a user’s public key upk∗, a pair of messages m0,m1, and a time-

period T ∗ that was not issued as a release query. C randomly chooses b ∈
{0, 1}, computes a challenge ciphertext and a pre-open key (CT ∗, pok∗) ←
Enc(tpk , T ∗, upk∗,mb), and gives CT ∗ to A.

4. A is permitted to issue a series of queries similarly. except with the restriction
that no Release query T ∗, no time-period decryption query (upk∗, T ∗,CT ∗)
are allowed.

5. At the end of this game, A outputs a guess b′ ∈ {0, 1}.
Awins aType-I game if b′ = b, and its advantage is definedbyAdvType-I

TRPKE-PC,A(λ) =
|Pr[A wins Type-I game]− 1

2 |.
Definition 1. Atimed-release encryption schemewith pre-open capability isType-
I secure if no PPT adversary A has non-negligible advantage AdvType-I

TRPKE-PC,A(λ).

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 97

Note that an adversary is not allowed to receive a pre-open key corresponding to
a challenge ciphertext nor to issue pre-open decryption queries. The adversary
can choose all user’s public keys in the above game so it is logical that the
adversary has the corresponding user’s secret keys; hence, pre-open decryption
queries are not useful for the adversary. In addition, if we allow the adversary
to access a pre-open decryption oracle, TRPKE-PC schemes that can generate
pok from a ciphertext with a sender’s secret key are excluded.

Security against a Malicious Time-Server. We show a new strong secu-
rity definition for TRPKE-PC against a malicious time-server with malicious
key generations. The security definition is called IND-SCCA against a Type-II+

adversary (Type-II+ security). It is similar to the Type-II security defined in
Ref. [11] except that an adversary can maliciously generate time-server’s key, so
Type-II+ security is a stronger notion.

Previous schemes that are secure with a strong decryption oracle in the stan-
dard model often embed a trapdoor in the time-server’s key. Such schemes are
not secure in our model because an adversary can also embed in the same way.
In other words, previous schemes are secure when the adversary honestly gener-
ates own keys. This is a serious vulnerability since, if the adversary maliciously
generates own keys, it can decrypt a ciphertext without a recognition of other
participants. We take Chow and Yiu’s scheme [11] as an example of the above
insecurity in Appendix D.

As the same to Type-I security, one can define to check the validity in a strong
decryption oracle for TRPKE-PC schemes with checkable property. We do not
give it since it is easily derived from ours.

We formally describe the Type-II+ security for a TRPKE-PC scheme based
on the following Type-II+ game between a challenger C and an adversary A.

1. C takes a security parameter 1λ as input, passes it to A and gets tpk from
A. C computes (upk∗, usk∗) ← KeyGen(tpk) and gives upk∗ to A.

2. A is permitted to issue a series of (adaptive) queries to some oracles.
– Time-period decryption queries: A issues a tuple of (upk , T,CT). If a

group {m | (CT , ·) = Enc(tpk , T, upk ,m)} is not empty, C responds with

m
$← {m | (CT , ·) = Enc(tpk , T, upk ,m)}. Otherwise, C responds with

⊥.
– Pre-open decryption queries: A issues a tuple of (upk , pok ,CT). If a

group {m | (CT , pok) = Enc(tpk , ·, upk ,m)} is not empty, C responds

with m
$←{m | (CT , pok) = Enc(tpk , ·, upk ,m)}. Otherwise, C responds

with ⊥.
3. A outputs a pair of messages m0,m1 and a time-period T ∗. C randomly

chooses b ∈ {0, 1}, computes a challenge ciphertext and a pre-open key
(CT ∗, pok∗) ← Enc(tpk , T ∗, upk∗,mb), and gives (CT ∗, pok∗) to A.

4. A is permitted to issue a series of queries similarly, except with the restric-
tion that no time-period decryption query (upk∗, T ∗,CT ∗) and no pre-open
decryption query (upk∗, pok∗,CT ∗) is allowed.

5. At the end of this game, A outputs a guess b′ ∈ {0, 1}.

98 R. Kikuchi et al.

A wins a Type-II+ game if b′ = b, and its advantage is defined by
AdvType-II+

TRPKE-PC,A(λ) = |Pr[A wins Type-II+ game]− 1
2 |.

Definition 2. A timed-release encryption scheme with pre-open capability
is Type-II+ secure if no PPT adversary A has non-negligible advantage
AdvType-II+

TRPKE-PC,A(λ).

Note that the setup phase often generate system components such as description
of the group. Our construction is secure even in this situation since the construc-
tion is completely separated into a PKE and IBE scheme, and we regards hash
functions as a random oracle. However, this is problematic in some situations,
e.g., generating a user’s key over the group generated by the setup phase. One
can avoid it to restrict the adversary from generating a part of its key, i.e., sys-
tem components. If so, the security is guaranteed as long as these components
is determined honestly, e.g., using the group stated by ISO.

Security against Malicious Senders. In the context of TRPKE-PC, another
security notion called Binding was defined by Dent and Tang [15]. This binding
notion means that an adversary cannot make a tuple of ciphertext, time-period,
and pre-open key where a plaintext that is decrypted with time-period decryp-
tion differs from one decrypted with pre-open decryption.

A previous security definition is considered for only an adversary with a user’s
public key. If an adversary colludes with a time-server and receives its key, the
binding property is no longer guaranteed. We thus define a stronger notion called
Strong Binding.

We formally describe the strong binding property for the TRPKE-PC scheme
based on the following game between a challenger C and an adversary A.

1. C takes a security parameter 1λ as input, passes it to A and gets tpk from
A. C runs (upk∗, usk∗) ← KeyGen(tpk) and gives upk∗ to A.

2. A is permitted to issue a series of (adaptive) queries to some oracles.
– Time-period decryption queries: A issues a tuple of (upk , T,CT). If a

group {m | (CT , ·) = Enc(tpk , T, upk ,m)} is not empty, C responds with

m
$← {m | (CT , ·) = Enc(tpk , T, upk ,m)}. Otherwise, C responds with

⊥.
– Pre-open decryption queries: A issues a tuple of (upk , pok ,CT). If a

group {m | (CT , pok) = Enc(tpk , ·, upk ,m)} is not empty, C responds

with m
$←{m | (CT , pok) = Enc(tpk , ·, upk ,m)}. Otherwise, C responds

with ⊥.
3. At the end of this game, A outputs a ciphertext CT ∗, a time-signal s∗T , and

a pre-open key pok∗.

A wins a strong binding game if ⊥ �= mtr �= mpo �= ⊥, where mtr ←
DecTR(tpk , s

∗
T , usk

∗,CT ∗), and mpo ← DecPO(tpk , pok
∗, usk∗,CT ∗). Its advan-

tage is defined by AdvStrong Binding

TRPKE-PC,A (λ) = Pr[A wins strong binding game].

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 99

Definition 3. A timed-release encryption scheme with pre-open capability has
the strong binding property if no PPT adversary A has non-negligible advantage
AdvStrong Binding

TRPKE-PC,A(λ).

Note that in our definition the adversary outputs a time-signal s∗T , not a time-
period T as defined by Dent and Tang [15]. This is because if the adversary
colludes with the time-server, it is natural that s∗T may be disturbed.

4 Generic Construction of Strong Secure TRPKE-PC

In this section, we explain the general construction of a TRPKE-PC scheme.
A TRPKE-PC scheme derived from the above construction is the first scheme
that satisfies the above strong security definitions, especially against a malicious
time-server with malicious key generations. The proposed construction consists
of an IND-CPA secure PKE and an IND-ID-CPA secure IBE and uses a PKE-
then-IBE technique.

Although we assume with our construction that both PKE and IBE schemes
have negligible extensive γ-uniformity, which can be achieved for all IND-(ID-
)CPA secure schemes. We also assumes collision resistance of the encryption.

Our proposed scheme is described as follows.

– Setup(1λ): Run (params ,msk) ← IBE.Setup(1λ) and choose hash functions
H1 mapping {0, 1}∗ to RPKE and H2 mapping {0, 1}∗ to RIBE. Then set
tpk = (params , H1, H2), tsk = msk and output them.

– Release(tpk , tsk , T): See tpk and tsk as (params , H1, H2) and msk respec-
tively. Run dT ← IBE.Ext(params , tsk , T), set sT = (T, dT), and output sT .

– KeyGen(tpk): Run (pk , sk) ← PKE.KG(1λ), set upk = pk , usk = (pk , sk),
and output (upk , usk).

– Enc(tpk , T, upk ,m): See tpk and upk as (params , H1, H2) and pk respectively.
Compute ĉ ← PKE.Enc(pk ,m||r;H1(pk ,m||r, T)) where r ← R, compute
c = IBE.Enc(
params , T, ĉ;H2(T, ĉ)), set CT = (T, c) and pok = ĉ, and output them.

– DecTR(tpk , sT , usk ,CT): See tpk , sT , usk , and CT as (params , H1, H2),

(T, dT), (pk , sk), and (T̃ , c) respectively. If T = T̃ , compute ĉ ←
IBE.Dec(params , dT , c) and if c = IBE.Enc(params , T, ĉ;H2(T, ĉ)), compute
m||r ← PKE.Dec(sk , ĉ), and if ĉ = PKE.Enc(pk ,m||r;H1(pk ,m||r, T)), out-
put m. Otherwise, output ⊥.

– DecPO(tpk , pok , usk ,CT): See tpk , usk , andCT as (params , H1, H2), (pk , sk),
and (T, c) respectively. If c = IBE.Enc(params , T, pok ;H2(T, pok)), compute
m||r ← PKE.Dec(sk , pok), and if pok = PKE.Enc(pk ,m||r;H1(pk ,m||r, T)),
output m. Otherwise, output ⊥.

We require that |R| is sufficiently large, e.g., R = {0, 1}80.

100 R. Kikuchi et al.

4.1 Security

Due to space limitation, we do not give a precise probability estimation. We will
give it in the full version.

Notice that there are hash oracles H1 and H2 in the proof since our proposed
scheme is secure in the random oracle model.

Theorem 1. Suppose an IBE scheme is IND-ID-CPA secure, a PKE scheme
has extensive γPKE-uniformity where γPKE is negligible and has the collision resis-
tance of the encryption. Our proposed construction is then Type-I secure in the
random oracle model.

Sketch of Proof. Assume that there exists an adversary A that breaks Type-I
security of our proposed scheme. Then we can also construct an adversary B1

that breaks IND-ID-CPA security of the IBE scheme.
On input params , B1 runs as follows.

Setup: B1 takes params as input. Then B1 chooses hash functions H1 and H2,
sets tpk = (params , H1, H2). In addition, B1 generates two lists Th1 = Th2 =
φ, and gives tpk to A.

Hash queries: B1 responds to hash queries while maintaining two query-
answer lists, Th1 and Th2 , in the usual manner except if A issues (T ∗, ĉḃ)
where ḃ ∈ {0, 1}, B1 immediately outputs ḃ as a guess of the IND-ID-CPA
game and halts. An input-output pair is recorded as (input, output) in these
lists.

Release queries: A issues T . B1 passes it to its extraction oracle in the IND-
ID-CPA game and gets dT . Then B1 sets sT = (T, dT) and responds with
it.

Time-period decryption queries: A issues (upk , T,CT = (T̃ , c)). If T �= T̃ ,
B1 immediately responds with ⊥. If not, B1 searches ((T, ĉ), value2) ∈
Th2 such that c = IBE.Enc(params , T, ĉ; value2) holds, and also searches
((upk ,m||r, T), value1) ∈ Th1 such that ĉ = PKE.Enc(upk ,m||r; value1)
holds. If both exist, B1 responds with m. Otherwise, responds with ⊥.

Challenge: A issues (upk∗, T ∗,m0,m1). B1 randomly chooses ri ∈ R and com-
putes ĉi ← PKE.Enc(upk∗,mi||ri;H1(upk

∗,mi||ri, T ∗)) for i ∈ {0, 1}. Next,
B1 issues (ĉ0, ĉ1) to the challenger of the IND-ID-CPA game and receives c∗.
Then B1 sets CT ∗ = (T ∗, c∗) and responds with CT ∗.

Output: Finally, A outputs a guess b′. B1 directly outputs b′.

If the above simulations succeed, the equation b′ = b holds with the probability
AdvType-I

TRPKE-PC,A.
There are four special cases according to the activity of A.

[Case 1]: A issues (upk , T,CT = (T, c)) to the time-period decryption oracle
such that

∣∣{m | (CT , ·) = Enc(tpk , T, upk ,m)}
∣∣ ≥ 2.

[Case 2-1]: A issues (upk , T,CT = (T, c)) to the time-period decryption
oracle where a issued ciphertext is valid and corresonding intermediate ci-
phertext was not issued to the H2 hash oracle: For some r, m, these for-
mulas c = IBE.Enc(params , T, ĉ;H2(T, ĉ)) and (T, ĉ) /∈ Th2 hold where ĉ ←
PKE.Enc(upk ,m||r;H1(upk ,m||r, T)).

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 101

[Case 2-2]: The same event as Case 2-1 occurs except that corresponding inter-
mediate ciphertext was issued to the H2 hash oracle but corresponding plaintext
was not issued to the H1 hash oracle.
[Case 3]: A issues (T ∗, ĉḃ) where ḃ ∈ {0, 1} to the H2 hash oracle.

Case 1 contradicts the collision resistance of the PKE encryption. More precisely,
the collision resistance of the PKE encryption guarantees that if a plaintext is
different, an intermediate cipertext is also different. On the other hand, params
is honestly generated so we use the completeness of the IBE scheme: if an in-
termediate ciphertext is different, a ciphertext is also different. In summary, a
ciphertext does not collide, so the number of elements belonging to the group∣∣{m | (CT , ·) = Enc(tpk , T, upk ,m)}

∣∣ is at most 1. Therefore, the Case 1 does
not occur.

Case 2-1 occurs at most negligible probability. By definition of Case 2-1, a hash
value H2(T, ĉ) is not determined and we assume that H2 is a random oracle.
Therefore Case 2-1 occurs if c = IBE.Enc(params , T, ĉ;R) holds for randomly
picked R ∈ RIBE. Such a probability at most γIBE. Note that the adversary can
choose user’s public key, so we need to assume negligible γPKE-uniformity for any
(possibly invalid) pk .

Case 2-2 occurs with the probability at most γPKE. We do not give the de-
scription since it is almost the same as Case 2-1.

When Case 3 occurs B1 fails to similate the H2 hash oracle since B1 does
not know H2(T

∗, ĉb) and also does not know b. However, the probability that
adversary issues (T ∗, ĉb) is at most to 1/|R| at each query, where b denotes 1− b.
This is because the adversary’s view is independent to ĉb. If the adversary issues
(T ∗, ĉb), B1 wins the IND-ID-CPA game.

Consequently, those whole simulations succeeds in overwhelming probability.
��

Theorem 2. Suppose an IBE scheme has extensive γIBE-uniformity and the
collision resistance of the encryption, and a PKE scheme is IND-CPA secure
with extensive γPKE-uniformity where γIBE and γPKE are negligible. Our proposed
scheme is then Type-II+ secure in the random oracle model.

Sketch of Proof. Assume that there exists an adversary A that breaks Type-II+

security of our proposed scheme. Then we can also construct an adversary B2

that breaks the IND-CPA security of the PKE scheme.
On input pk , B2 runs as follows.

Setup: B2 gives security parameter 1λ to A and gets tpk . B2 generates two lists
Th1 = Th2 = φ, sets upk∗ = pk , and gives upk to A

Hash queries: B2 responds to hash queries while maintaining two query-
answer lists, Th1 and Th2 , in the usual manner except that if A issues
(upk∗,mḃ||rḃ, T ∗) where ḃ ∈ {0, 1} to the H1 hash oracle, B2 immediately

outputs ḃ as a guess of the IND-CPA game and halts. An input-output pair
is recorded as (input, output) in these lists.

Time-period decryption queries: A issues (upk , T,CT = (T̃ , c)). If T �= T̃ ,
B2 immedeately responds with ⊥. If not, B2 searches ((T, ĉ), value2) ∈

102 R. Kikuchi et al.

Th2 such that c = IBE.Enc(params , T, ĉ; value2) and also searches
((upk ,m||r, T), value1) ∈ Th1 such that ĉ = PKE.Enc(upk ,m||r, T ; value1).
If both exist, B2 responds with m. Otherwise, B2 responds with ⊥.

Pre-open decryption queries: A issues (upk , pok ,CT = (T, c)). B2 searches
((T, pok), value2) ∈ Th2 such that c = IBE.Enc(params , T, pok ; value2).
and also searches ((upk ,m||r, T), value1) ∈ Th1 such that pok =
PKE.Enc(upk ,m||r, T ; value1). If both exist, B2 responds with m. Otherwise,
B2 responds with ⊥.

Challenge: A issues (T ∗,m0,m1). B2 randomly chooses r0, r1 ∈ R and issues
(m0||r0,m1||r1) to the challenger in the IND-CPA game. After that, B2 re-
ceives ĉ∗, computes c∗ ← IBE.Enc(params , T ∗, ĉ∗;H2(T

∗, ĉ∗)), and responds
(CT ∗ = (T ∗, c∗), pok∗ = ĉ∗),

Output: Finally, A outputs a guess b′. B2 directly outputs b′.

If above simulations succeed, the equation b′ = b holds with the probability
AdvType-II+

TRPKE-PC,A.
There are seven special cases according to the activity of A.

[Case 1-1]: A issues (upk , T,CT = (T, c)) to the time-period decryption oracle
such that

∣∣{m | (CT , ·) = Enc(tpk , T, upk ,m)}
∣∣ ≥ 2.

[Case 1-2]: A issues (upk , pok ,CT = (T, c)) to the pre-open decryption oracle
such that

∣∣{m | (CT , pok) = Enc(tpk , ·, upk ,m)}
∣∣ ≥ 2.

[Case 2-1]: This case is the same as Case 2-1 in the proof of Type-I security.
[Case 2-2]: The same as Case 2-2 in the proof of Type-I security.
[Case 3-1]:Above cases do not occur andA issues (upk , pok ,CT = (T, c)) to the
pre-open decryption oracle where a issued ciphertext is valid and corresonding
intermediate ciphertext (pre-open key) was not queried to the H2 hash oracle:
For certain r, m, the equations pok = PKE.Enc(upk ,m||r;H1(upk ,m||r, T)), and
c = IBE.Enc(params , T, pok ;
H2(T, pok)) hold and (T, pok) /∈ Th2 .
[Case 3-2]: Above cases do not occur and the same event as Case 3-1 occurs
except that corresponding intermediate ciphertext (pre-open key) was issued to
the H2 hash oracle but corresponding plaintext was not issued to the H1 hash
oracle.
[Case 4]: Above cases do not occur and A issues (upk∗,mḃ||rḃ, T ∗) where ḃ ∈
{0, 1} to the H1 hash oracle.

Cases 1-1 and 1-2 do not occur as almost the same discussions as Case 1 in Type-
I security proof except that pk is generated honestly and params is generated
maliciously. Therefore we needs the collision resistance of the IBE’s encryption.

Cases 2-1 and 2-2 occurs at most negligible probability. These case is the same
as Cases 2-1 and 2-2 in Type-I security except that a params is chosen by the
adversary, so we need extensive γIBE-uniformity.

Cases 3-1 and 3-2 also occurs at most negligible probability since the same as
Cases 2-1 and 2-2.

When Case 4 occurs B2 fails to similate the H1 hash oracle since B2 doesn’t
know H1(upk

∗,mb||rb, T ∗) and also doesn’t know b. However, the probability

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 103

that the adversary issues (upk∗,mb||rb, T ∗), is at most 1/|R| at each query, where

b denotes 1 − b. This is because the adversary’s view is independent to mb||rb.
If the adversary issues (upk∗,mb||rb, T ∗), B1 wins the IND-CPA game.

Consequently, those whole simulations succeeds in overwhelming probability.
��

It should be noted that in the above proof hash functionsH1 andH2 are regarded
as the random oracle in spite of the fact that they are chosen by the adversary.
However, this is not a matter in the theoretical proof in the random oracle model,
and is practically natural since the hash function is typically chosen according
to the standard, as SHA-1.

Theorem 3. Suppose an IBE scheme has the collision resistance of the encryp-
tion. Our proposed scheme then has the strong binding property.

Sketch of Proof. Suppose an adversary A wins the strong binding game with out-
puts (CT ∗ = (T̃ ∗, c∗), s∗T , pok

∗). By the definition of the game, ⊥ �= mtr �=
mpo �= ⊥ holds where mtr ← DecTR(params , s∗T , usk

∗, c∗), and mpo ←
DecPO(params , pok∗, usk∗, c∗). Please notice that in the decryption, our construc-
tion conducts a re-encryption check.

First, ⊥ �= mtr means T = T̃ .
Second, ⊥ �= mtr �= mpo �= ⊥ and the PKE encryption being

injective (notice that upk is generated honestly) mean ĉ∗ �= pok∗ where
pk∗ = upk∗, ĉ∗ = PKE.Enc(pk∗,mtr||rtr;H1(pk ,mtr||rtr, T ∗)), pok∗ =
PKE.Enc(pk∗,mpo||rpo;H1(pk ,mpo||rpo, T ∗)) for some rtr and some rpo.

Third, ĉ∗ �= pok∗ and the IBE encryption has collision resis-
tance of the encryption also mean IBE.Enc(params , T ∗, ĉ∗;H2(T

∗, ĉ∗)) �=
IBE.Enc(params , T ∗, pok∗;H2(T

∗, pok∗)).

Table 2. Scheme Comparison

Generic or concrete Security notion Model

HYL1 [22] concrete IND-TR-CPA−
IS & no estimation & no estimation ROM

HYL2 [22] concrete IND-TR-CCA−
IS & no estimation & no estimation ROM

NMKM [27] generic IND-TR-CPAIS & IND-TR-CCATS & Binding SM
MNM1 [26] generic IND-TR-CPAIS & IND-TR-CCATS & Binding SM
MNM2 [26] generic IND-TR-CPAIS & IND-TR-CCATS & Binding ROM

DT [15] concrete IND-TR-CPAIS & IND-TR-CCATS & Binding ROM
CY [11] concrete Type-I & Type-II & Binding SM

ours generic Type-I & Type-II+ & Strong binding ROM

In the security notion & model columns, the left side is the security against malicious
receivers, the middle is the security against a malicious time-server, and the right is
the security against malicious senders. The compared schemes are ranked lower as the
security notion is strong. Note that IND-TR-CCA−

IS is weaker than IND-TR-CPAIS,
and “no estimation” means there is no adversarial model where the adversary gets a
time-server’s secret key. “ROM” indicates that security is proved in the random oracle
model, and “SM” indicates that security is proved in the standard model.

104 R. Kikuchi et al.

This contradicts to the definition when A wins. So our proposed construction
has the strong binding property. ��

4.2 Comparison

We now compare the existing TRPKE-PC schemes [22,11,15,27,26] in the respect
of the general/concrete construction, security, and model. Our construction sat-
isfies the strongest security, and is generic construction in the random oracle
model.

5 Conclusion

We showed that previous security definitions are incomplete or insufficient.
Therefore, we defined new security definitions. We gave a precise definition of
a strong decryption oracle against malicious receivers, strong security defini-
tion against a malicious time-server cheating under adversarial chosen keys, and
strong security definition against senders cheating even if the adversary colludes
with the time-server.

We also proposed a generic construction of a TRPKE-PC scheme satisfy-
ing stronger security notions. Our proposed construction is the first generic
TRPKE(-PC) construction secure against a malicious time-server with malicious
key generations.

Acknowledgment. We thank Keita Xagawa for useful discussions, and also
thank to the anonymous reviewers for their helpful comments.

References

1. Au, M.H., Chen, J., Liu, J.K., Mu, Y., Wong, D.S., Yang, G.: Malicious KGC
attack in certificateless cryptography. In: Proc. ACM Symposium on Information,
Computer and Communications Security. ACM Press (2007)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Barbosa, M., Farshim, P.: Relations among Notions of Complete Non-malleability:
Indistinguishability Characterisation and Efficient Construction without Random
Oracles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp.
145–163. Springer, Heidelberg (2010)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, New York (1993)

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-Interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 105

7. Chan, A.C.-F., Blake, I.F.: Scalable, Server-Passive, User-Anonymous Timed Re-
lease Public Key Encryption from Bilinear Pairing. In: 25th International Confer-
ence on Distributed Computing Systems, pp. 504–513. IEEE (2005), Full version
of this paper is available at http://eprint.iacr.org/2004/211

8. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006), Full version of this paper is
available at http://eprint.iacr.org/2004/231

9. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably Secure Timed-Release
Public Key Encryption. ACM Trans. Inf. Syst. Secur. 11(2), 1–44 (2008)

10. Chow, S.S.M., Roth, V., Rieffel, E.G.: General Certificateless Encryption and
Timed-Release Encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)

11. Chow, S.S.M., Yiu, S.M.: Timed-Release Encryption Revisited. In: Baek, J., Bao,
F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 38–51. Springer,
Heidelberg (2008)

12. Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Models.
Int. J. Inf. Sec. 7(5), 349–377 (2008)

13. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless Encryption Schemes
Strongly Secure in the Standard Model. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 344–359. Springer, Heidelberg (2008)

14. Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

15. Dent, A.W., Tang, Q.: Revisiting the Security Model for Timed-Release Encryption
with Pre-open Capability. In: Garay, J., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)

16. Fischlin, M.: Completely Non-malleable Schemes. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
779–790. Springer, Heidelberg (2005), Full version of this paper is available at
http://www.cdc.informatik.tu-darmstadt.de/~fischlin/publications/

fischlin.completely-non-malleable.2005.pdf

17. Fujioka, A., Okamoto, Y., Saito, T.: Security of Sequential Multiple Encryption.
In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212,
pp. 20–39. Springer, Heidelberg (2010)

18. Fujioka, A., Okamoto, Y., Saito, T.: Generic Construction of Strongly Secure
Timed-Release Public-Key Encryption. In: Parampalli, U., Hawkes, P. (eds.)
ACISP 2011. LNCS, vol. 6812, pp. 319–336. Springer, Heidelberg (2011)

19. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

20. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

21. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

22. Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-Release Encryption with Pre-open Ca-
pability and Its Application to Certified E-mail System. In: Zhou, J., López, J.,
Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2004/211
http://eprint.iacr.org/2004/231
http://www.cdc.informatik.tu-darmstadt.de/~fischlin/publications/fischlin.completely-non-malleable.2005.pdf
http://www.cdc.informatik.tu-darmstadt.de/~fischlin/publications/fischlin.completely-non-malleable.2005.pdf

106 R. Kikuchi et al.

23. Hwang, Y.H., Liu, J.K., Chow, S.S.M.: Certificateless Public Key Encryption Se-
cure against KGC Attacks in the Standard Model. Journal of Universal Computer
Science, Special Issue on Cryptography in Computer System Security 14(3), 463–
480 (2008)

24. Kawai, Y., Sakai, Y., Kunihiro, N.: On the (Im)possibility Results for Strong Attack
Models for Public Key Cryptsystems. Journal of Internet Services and Information
SecurityJISISj

25. May, T.: Timed-Release Crypto (1993) (manuscript).
26. Matsuda, T., Nakai, Y., Matsuura, K.: Efficient Generic Constructions of Timed-

Release Encryption with Pre-open Capability. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 225–245. Springer, Heidelberg (2010)

27. Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A Generic Construction of
Timed-Release Encryption with Pre-open Capability. In: Takagi, T., Mambo, M.
(eds.) IWSEC 2009. LNCS, vol. 5824, pp. 53–70. Springer, Heidelberg (2009)

28. Paterson, K.G., Quaglia, E.A.: Time-Specific Encryption. In: Garay, J.A., De
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)

29. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technol-
ogy (1996)

30. Ventre, C., Visconti, I.: Completely Non-malleable Encryption Revisited. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg
(2008)

31. Yang, P., Kitagawa, T., Hanaoka, G., Zhang, R., Matsuura, K., Imai, H.: Applying
Fujisaki-Okamoto to Identity-Based Encryption. In: Fossorier, M.P.C., Imai, H.,
Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 183–192. Springer,
Heidelberg (2006)

32. Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the Security of Multiple Encryp-
tion or CCA-security+CCA-security=CCA-security? In: Bao, F., Deng, R., Zhou, J.
(eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374. Springer, Heidelberg (2004)

A More Related Works

Timed-release encryption (TRE) has a mechanism whereby a ciphertext can be
decrypted after a time-period. (We distinguish TRE and TRPKE by whether
a sender specifies a receiver.) There are two approaches to constructing a TRE
scheme. One uses time-lock puzzles [29], in which a receiver has to solve “puzzles”
to decrypt the ciphertext; and it is sufficiently difficult that the receiver cannot
solve it within a specific time. The other uses a trusted agent (i.e., time-server)
that periodically, or as needed, generates time-specific information.

Chan and Blake [7] proposed the first TRPKE scheme, and after that sev-
eral additional functionalities, security aspects, and generalizations have been
introduced. Cheon et al. [8,9] introduced a TRE scheme with authentication.
Cathalo et al. [6] defined a notion of release time confidentiality for TRPKE
and Chow and Yiu [11] defined it for TRPKE-PC. Chow et al. [10] generalized
TRPKE so that a time-period can be hierarchical, and Paterson et al. [28] gen-
eralized TRE for time-specific encryption (TSE), in which a sender can specify a
“interval” of a time-period, such as [Tfrom, Tto], and a receiver can decrypt a ci-
phertext with a time instant key corresponding to a time-period T ∈ [Tfrom, Tto].

Strong Security Notions for Timed-Release Public-Key Encryption Revisited 107

Security notions for TRPKE-PC were first defined by Hwang et al. [22] and
later adjusted by Dent and Tang [15]. Essentially, three security notions were
defined: time-server security, insider security and sender security, respectively
named IND-TR-CCATS, IND-TR-CPAIS and Binding. IND-TR-CCATS security
is defined in an indistinguishability game between a challenger and an adversary
where the adversary can issue a time-period decryption query consisting of a
ciphertext and a time-period to obtain a plaintext and can issue a pre-open
decryption query consisting of a ciphertext and a pre-open key to obtain a cor-
responding plaintext. IND-TR-CPAIS security is similar to IND-TR-CCATS, ex-
cept that the adversary can only issue a release query consisting of a time-period
to obtain corresponding time signal. The Binding notion means that the adver-
sary cannot make a ciphertext, time-period and pre-open key where a plaintext
that is decrypted with time-period decryption differs from one decrypted with
pre-open decryption.

B IND-CPA Security

We describe IND-CPA security [21] for a PKE scheme based on the following
IND-CPA game between a challenger C and an adversary A. At the beginning
of the game, C runs the key generation algorithm (pk , sk) ← PKE.KG(1λ) and
gives the public key pk to A. A gives two messages m0,m1 to C. C randomly
chooses b ∈ {0, 1} and gives a challenge ciphertext ĉ∗ ←Penc(pk ,mb) to A. A
finally outputs a guess b′ ∈ {0, 1}. We define the advantage of A for PKE in the
IND-CPA game as AdvIND-CPA

PKE,A (λ) =| 2Pr[b = b′]− 1 |.

Definition 4. A public-key encryption scheme is IND-CPA secure if no PPT
adversary A has non-negligible advantage AdvIND-CPA

PKE,A (λ).

C IND-ID-CPA Security

We describe the IND-ID-CPA security [5] for an IBE scheme based on the fol-
lowing IND-ID-CPA game between a challenger C and an adversary A. At the
beginning of the game, C takes a security parameter 1λ, runs the setup algorithm
(params ,msk) ← IBE.Setup(1λ), and gives params to A. A gives two messages
m0,m1 and an identity ID∗ to C. Then C randomly chooses b ∈ {0, 1} and gives
a challenge ciphertext c∗ ← IBE.Enc(params , ID∗,mb) to A. A finally outputs a
guess b′ ∈ {0, 1}.

During the game, the adversary A can issue extraction queries ID to the
challenger C to obtain the decryption key dID except the challenge identity ID∗.

We define the advantage of A in the IND-ID-CPA game as
AdvIND-ID-CPA

IBE,A (λ) =| 2Pr[b = b′]− 1 |.

Definition 5. An identity-based encryption is IND-ID-CPA secure if no PPT
adversary A has non-negligible advantage AdvIND-ID-CPA

IBE,A (λ).

108 R. Kikuchi et al.

D Analysis of Chow and Yiu’s Scheme

We show here a previous Type-II secure scheme [11] is vulnerable to a mali-
cious time-server with malicious key generation. We first review how a time-
server’s/user’s public key and a ciphertext are generated in the Chow and Yiu’s
scheme. We describe algorithms only Setup,KeyGen,Enc that are sufficient to
analyze, and omit detail definitions (e.g., the definition of bilinear map) due to
the space limitation.

– Setup(1λ): Let G, GT be two multiplicative groups with a bilinea map ê : G×
G → GT . They are of the same order p, which is a prime and 2λ < p < 2λ+1.
Pick the following components:
• Encryption key: choose two generators g, g2 ← G.
• Master public key: choose an exponent α ← Zp and set g1 = gα.
• Hash key for time-identifier: randomely pick (� + 1) G elements−→

U = (u′, u1, . . . , u�). Let T = t1t2 · · · t�. Define Fu(T) = u′ ∏�
j=1 u

tj
j .

• Hash key for ciphertext validity: randomely pick
−→
V =

(v′, v1, . . . , v�) ∈ G�+1. This vector defines Fv(w) = v′
∏�

j=1 v
bj
j where

w is an �-bits string b1b2 · · · b�.
• Key-derivation function (KDF): K is a KDF such that K : Gt →
{0, 1}n+k+1, in which assuming that the output of K is computationally
indistinguishable from a random distribution when the input comes from
a uniformly distribution. Also assuming an implicit one-to-one mapping
between G and {0, 1}k+1.

Let H be a collision resistance hash function. The output is:
(
params =

(λ, p,G,GT , ê(·, ·), �,H,K, g, g1, g2,
−→
U ,

−→
V),msk = gα2

)
.

– KeyGen(tpk): Pick usk ← Z∗
p and set upk = (gusk , gusk1).

– Enc(tpk , T, upk ,m): See upk as (X,Y), If e(X, g1) = e(g, Y) holds, pick
s ← Zp, set k = K(ê(X, g2)

s), compute CT = (C1, C2, τ, σ) =
(
m ·

ê(Y, g2)
s, (T ||Fu(T)

s)⊕ k, gs, Fv(w)
s
)
where w = H(C1||C2||k||upk) and set

pok = gs1. Otherwise, return ⊥.

We next show how an adversary, i.e., malicious time-server with malicious key
generation, decrypt a ciphertext without a receiver’s secret key.

The adversary generate params as follows. The adversary honestly chooses

H,K, g, g1,
−→
U ,

−→
V . Then the adversary picks x ← Z∗

p, sets g2 = gx and then
publishes params . To decrypt a ciphertext (C1, C2, τ, σ) encrypted with a public
key (X,Y), the adversary computes C1

ê(Y,τ)x .

A distribution of maliciously generated params is identical to honestly gen-
erated one, so no one can detect the malicious key generation. Chow and Yiu
[11] insists that in practice these elements of params can be generated by using
a pseudorandom function with a public seed. If so, we should proof the security
under such condition but they did not: in the proof of Type-I security, a simula-
tor maliciously generates params and embeds a trapdoor in it without a public
seed.

Fully Secure Unidirectional Identity-Based

Proxy Re-encryption�

Song Luo1,3,4, Qingni Shen2,		, and Zhong Chen2,3,4

1 College of Computer Science and Engineering,
Chongqing University of Technology, Chongqing, China

2 School of Software and Microelectronics & MoE Key Lab of Network and
Software Assurance, Peking University, Beijing, China

3 Institute of Software, School of Electronics Engineering and Computer Science,
Peking University

4 Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education

{luosong,shenqn,chen}@infosec.pku.edu.cn

Abstract. Proxy re-encryption (PRE) allows the proxy to translate a ci-
phertext encrypted under Alice’s public key into another ciphertext that
can be decrypted by Bob’s secret key. Identity-based proxy re-encryption
(IB-PRE) is the development of identity-based encryption and proxy
re-encryption, where ciphertexts are transformed from one identity to
another. In this paper, we propose two novel unidirectional identity-
based proxy re-encryption schemes, which are both non-interactive and
proved secure in the standard model. The first scheme is a single-hop
IB-PRE scheme and has master secret security, allows the encryptor to
decide whether the ciphertext can be re-encrypted. The second scheme
is a multi-hop IB-PRE scheme which allows the ciphertext re-encrypted
multiple times but without the size of ciphertext growing linearly as
previous multi-hop IB-PRE schemes.

Keywords: Proxy Re-encryption, Identity-Based Encryption, Single-
hop, Multi-hop.

1 Introduction

The primitive of proxy re-encryption (PRE) is first proposed by Blaze et al. [2]
which involves three parties: Alice, Bob, and a proxy. PRE allows allows Alice
to temporarily delegate the decryption rights to Bob via a proxy, i.e., the proxy
with proper re-encryption key can translate a ciphertext encrypted under Alice’s
public key into another ciphertext that can be decrypted by Bob’s secret key.
Unlike the traditional proxy decryption scheme, PRE doesn’t need users to store
any additional decryption key, in other words, any decryption would be finished

� Supported by National Natural Science Foundation of China (No.60873238,
61073156, 60970135, 60821003, 61170263).

�� Corresponding author.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 109–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 S. Luo, Q. Shen, and Z. Chen

using only his own secret keys. PRE can be used in many scenarios, such as
email forwarding, distributed file system, and the DRM of Apple’s iTunes.

The concept of identity-based encryption (IBE) was first introduced by Shamir
[16]. In an IBE system, arbitrary strings such as e-mail addresses or IP addresses
can be used to form public keys for users. After Boneh and Franklin [5] proposed
a practical identity-base encryption scheme, Green and Ateniese [11] proposed
the first identity-based proxy re-encryption (IB-PRE). It allows the proxy to
convert an encryption under Alice’s identity into the encryption under Bob’s
identity. Due to the simplification of public-key infrastructure in identity-based
framework, IB-PRE schemes are more desirable than non-identity-based ones.

According to the direction of transformation, IB-PRE schemes can be clas-
sified into two types, one is bidirectional, i.e., the proxy can transform from
Alice to Bob and vice versa; the other is unidirectional, i.e., the proxy can only
convert in one direction. Blaze et al. [2] also gave another method to classify IB-
PRE schemes: single-hop, where the ciphertext can be transformed only once;
and multi-hop, where the ciphertext can be transformed from Alice to Bob to
Charlie and so on.

IB-PRE schemes are different from PRE schemes in which there exists a
trusted private key generator (PKG) to generate all secret keys for identities.
If Alice can compute re-encryption keys without the participation of Bob or
PKG, the scheme is called non-interactive, or else called interactive. Obviously,
it would be a hard work if all re-encryption keys are computed by the PKG.
Therefore, it is more desirable to find non-interactive IB-PRE schemes. How-
ever, when generating secret keys, PKG insert the master key to users’ secret
keys. Obviously, re-encryption must involve some information of master key. But
it is always hard to extract the part of master key from secret key to generate
re-encryption, since elements of secret keys are always group elements and hard
to get the discrete log based on a random generator.

Up to now, there are two ways to generate the re-encryption keys. One is
proposed by Green and Ateniese [11]. In Green-Ateniese paradigm, to form a
re-encryption key from Alice to Bob, a token is inserted in Alice’s secret key
and the token is encrypted to Bob, then these two parts form the re-encryption
key. It is non-interactive in the generation of the re-encryption key and the re-
encryption can be multi-hop where the ciphertext can be re-encrypted again
and again. But the drawback of this method is that after one re-encryption, the
encryption of the token would be attached to the ciphertext. So the ciphertext
will grow linearly with the re-encryption times. The other is interactive proposed
by Matsuo [15] in which the re-encryption key is generated by the private key
generator or an extra re-encryption key generator which also owns the master
key. This type of IB-PRE schemes are always single-hop where the re-encrypted
ciphertext cannot be re-encrypted again.

1.1 Our Contribution

We present two novel unidirectional identity-based proxy re-encryption schemes.
The first scheme is a single-hop scheme with master secret security. To make

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 111

this scheme be unidirectional, we present two kinds of ciphertexts, the original
ciphertext is called the second level ciphertext which is nearly the same as Lewko-
Waters IBE scheme’s ciphertext, the transformed ciphertext is called the first
level ciphertext and cannot be re-encrypted more. Our way of generating re-
encryption keys are different from Green-Ateniese and Matsuo. To make the re-
encryption key be generated by the user itself, we introduce non-group elements
containing part information of master keys in user’s secret keys and provide
re-randomization to avoid collusion of proxy and users.

Based on our single-hop scheme, we present a multi-hop scheme in which
the decryption cost and size of ciphertext do not grow linearly with the re-
encryption times. To the best of our knowledge, this scheme is the first unidirec-
tional IB-PRE scheme without growing linearly in the size of ciphertext as the
re-encryption times increasing. Both schemes are non-interactive, which means
the re-encryption key can be generated by Alice without the participation of
Bob or the private key generator. We construct our schemes in composite or-
der groups and use dual system encryption to prove the security of proposed
schemes.

1.2 Related Works

Identity-Based Encryption. The first practical IBE scheme, proposed by
Boneh and Franklin [5], was proven secure in the random oracle model. To remove
random oracles, Canetti, Halevi, and Katz [7] suggested a weaker security notion
for IBE, known as selective identity (selective-ID) security, relative to which
they were able to build an inefficient but secure IBE scheme without using
random oracles. Boneh and Boyen [3] proposed two new efficient selective-ID
secure IBE schemes without random oracles. Later Boneh and Boyen [4], Waters
[20] proposed new IBE schemes with full security. In Eurocrypt’06, Gentry [10]
proposed an efficient identity based encryption with tight security reduction in
the standard model but based on a stronger assumption.

By using dual system encryption, Waters [21] proposed the first fully secure
IBE and HIBE schemes with short parameters under simple assumptions. But
Waters’s HIBE scheme does not have constant ciphertext size. Afterwards, an-
other two fully secure HIBE schemes with constant size ciphertexts were pro-
posed in composite order groups [8, 13].

Identity-Based Proxy Re-encryption. Ateniese et al. [1] presented the first
unidirectional and single-use proxy re-encryption scheme. In 2007, Green and
Ateniese [11] provided the first identity-based proxy re-encryption scheme but
their scheme is secure in the random oracle model. Chu and Tzeng [9] pro-
posed a new multi-hop unidirectional identity-based proxy re-encryption scheme
in the standard model. However, their scheme is not chosen-ciphertext secure,
Shao et al. [17] pointed out that its transformed ciphertext can be modified to
another well-formed transformed ciphertext by anyone. Recently Lai et al. [12]
gave new constructions on IB-PRE based on identity-based mediated encryp-
tion. Luo et al. [14] also gave a new generic IB-PRE construction based on an

112 S. Luo, Q. Shen, and Z. Chen

existing IBE scheme. Wang et al. [18] proposed the first multi-use CCA-secure
unidirectional IB-PRE scheme. All these schemes follow Green-Ateniese token
paradigm, which makes the decryption cost and size of ciphertext grow linearly
with the re-encryption times. In addition, Matsuo [15] proposed a new proxy
re-encryption system for identity-based encryption, but his solution needs a re-
encryption key generator (RKG) to generate re-encryption keys. Wang et al. [19]
followed the route of Matsuo and proposed new secure IB-PRE schemes which
let the PKG take part in generating the re-encryption keys.

1.3 Organization

The remaining paper is organized as follows. In Section 2, we review the defini-
tions related to our proposals. In what follows, we present the single-hop scheme
and its security analysis, and the multi-hop scheme and its security analysis, in
Section 3 and Section 4, respectively. In Section 5 we discuss some extensions of
the two schemes. Finally, we conclude the paper in Section 6.

2 Backgroud

2.1 Multi-hop Identity-Based Proxy Re-encryption

Definition 1. A multi-hop unidirectional IB-PRE scheme consists of the fol-
lowing six algorithms: Setup, KeyGen, ReKeyGen, Enc, ReEnc, and Dec.

Setup(1λ). This algorithm takes the security parameter λ as input and gener-
ates a public key PK, a master secret key MK.

KeyGen(MK, I). This algorithm takes MK and an identity I as input and
generates a secret key SKI associated with I.

ReKeyGen(SKI, I ′). This algorithm takes a secret key SKI and an identity
I ′ as input and generates a re-encryption key RKI→I′.

Enc(PK,M, I). This algorithm takes PK, a message M , and an identity I as
input, and generates a ciphertext CTI .

ReEnc(CTI , RKI→I′). This algorithm takes a a ciphertext CTI encrypted to
I and a re-encryption key RKI→I′ as input, generates a ciphertext CTI′

encrypted to I ′.
Dec(CTI , SKI). This algorithm takes a ciphertext CTI and SKI associated

with I as input and returns the message M or the error symbol ⊥ if CTI is
invalid.

Correctness. A multi-hop unidirectional IB-PRE scheme should satisfy the
following requirements:

1. Dec(Enc(PK,M, I), SKI) = M ;
2. Dec(ReEnc((· · ·ReEnc(Enc(PK,M, I),RKI→I1) · · ·), RKIn−1→In),SKIn)

= M ;

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 113

We describe the game-based security definitions for multi-hop unidirectional IB-
PRE systems as follows.

Definition 2. The security of a multi-hop unidirectional IB-PRE scheme is de-
fined according to the following IND-PrID-ATK game,whereATK ∈ {CPA,CCA}.

Setup. Run the Setup algorithm and give PK to the adversary A.
Phase 1. A makes the following queries.

– Extract(I): A submits an identity I for a KeyGen query, return the
corresponding secret key SKI.

– RKExtract(I, I ′): A submits an identity pair (I, I ′) for a ReKeyGen
query, return the re-encryption key RKI→I′.

If ATK = CCA, A can make the additional queries:

– Reencrypt(CTI , I, I ′): A submits a ciphertext CTI encrypted for I
and an identity I ′ for a ReEnc query, return the re-encrypted ciphertext
CTI′ = ReEnc (CTI , RKI→I′) where RKI→I′ =ReKeyGen(SKI , I ′)
and SKI = KeyGen(MK, I).

– Decrypt(CTI , I): A submits a ciphertext CTI encrypted for I for a
Dec query, return the corresponding plaintext M = Dec(CTI , SKI),
where SKI = KeyGen(MK, I).

Note thatA is not permitted to choose I∗ which will be submitted inChallenge
phase such that trivial decryption is possible using keys extracted during this
phase (e.g., by using extracted re-encryption keys to translate from I∗ to some
identity for which A holds a decryption key).

Challenge. A submits a challenge identity I∗ and two equal length messages
M0,M1 to B. B flips a random coin b and passes the ciphertext CT∗ =
Enc(PK,Mb, I∗) to A.

Phase 2. Phase 1 is repeated with the following restrictions. Let C be a set of
ciphertext/identity pairs, initially containing the single pair 〈I∗,CT∗〉. For
all CT ∈ C and for all RK given to A, let C′ be the set of all possible values
derived via (one or more) consecutive calls to Reencrypt:

– A is not permitted to issue any query Decrypt(CT, I) where 〈CT, I〉 ∈
(C ∩ C′);

– A is not permitted to issue any query Extract(I) or RKExtract(I, I ′)
that would permit trivial decryption of any ciphertext in (C ∩ C′);

– A is not permitted to issue any query Reencrypt(CT, I, I ′) where A
possesses the keys to trivially decrypt ciphertexts under I ′ and 〈CT, I〉 ∈
(C ∩ C′). On successful execution of any re-encrypt query, let CT′ be the
result and add the pair 〈CT′, I ′〉 to the set C.

Guess. A outputs its guess b′ of b.

The advantage of A in this game is defined as AdvA = |Pr[b′ = b]− 1
2 | where the

probability is taken over the random bits used by the challenger and the adver-
sary. We say that a multi-hop unidirectional IB-PRE scheme is IND-PrID-ATK
secure, where ATK ∈ {CPA,CCA}, if no probabilistic polynomial time adversary
A has a non-negligible advantage in winning the IND-PrID-ATK game.

114 S. Luo, Q. Shen, and Z. Chen

2.2 Single-hop Identity-Based Proxy Re-encryption

Single-hop IB-PRE can be viewed as a weaker concept than multi-hop IB-PRE,
in which the ciphertext can be re-encrypted only once or not. According to
the re-encryption time, its ciphertext is divided into two levels: second level
ciphertext and first level ciphertext. A second ciphertext can be re-encrypted
into a first level one (intended for a possibly different receiver) using the suitable
re-encryption key and a first level ciphertext cannot be re-encrypted for another
party. So the algorithms Enc and Dec are divided into two sub-algorithms
Enc2 and Enc1, Dec2 and Dec1, respectively. The other algorithms are similar
to multi-hop IB-PRE schemes. Furthermore, a single-hop unidirectional IB-PRE
scheme should satisfy the following requirements:

1. Dec2(Enc2(PK,M, I), SKI) = M ;
2. Dec1(Enc1(PK,M, I), SKI) = M ;
3. Dec1(ReEnc(Enc2(PK,M, I), RKI→I′), SKI′) = M .

The game-based security definitions for single-hop unidirectional IB-PRE sys-
tems are derived from previous multi-hop IB-PRE systems. Since single-hop uni-
directional IB-PRE system has two level ciphertexts, there are two level securities
called IND-2PrID-CPA(CCA) security and IND-1PrID-CPA(CCA) security.

Definition 3. The security of a single-hop unidirectional IB-PRE scheme at the
second level is defined according to the following IND-2PrID-ATK game, where
ATK ∈ {CPA,CCA}.

Setup. Run the Setup algorithm and give PK to the adversary A.
Phase 1. A makes the following queries.

– Extract(I): A submits an identity I for a KeyGen query, return the
corresponding secret key SKI.

– RKExtract(I, I ′): A submits an identity pair (I, I ′) for a ReKeyGen
query, return the re-encryption key RKI→I′.

If ATK = CCA, A can make the additional queries:
– Reencrypt(CTI , I, I ′): A submits a second level ciphertext CTI en-

crypted for I and an identity I ′ for a ReEnc query, the challenger gives
the adversary the re-encrypted ciphertext CTI′ =ReEnc (CTI , RKI→I′)
where RKI→I′ = ReKeyGen(SKI , I ′) and SKI = KeyGen(MK, I).

– Decrypt(CTI , I): A submits a first level ciphertext CTI encrypted for
I for a Dec1 query, return the corresponding plaintext M = Dec1(CTI ,
SKI), where SKI = KeyGen(MK, I).

Challenge. A submits a challenge identity I∗ and two equal length messages
M0,M1 to B. If the queries
– Extract(I∗); and
– RKExtract(I∗, I ′) and Extract(I ′) for any identity I ′

are never made, then flip a random coin b and pass the ciphertext CT∗ =
Enc2(PK,Mb, I∗) to A.

Phase 2. Phase 1 is repeated with the restriction that A cannot make the fol-
lowing queries:

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 115

– Extract(I∗);
– RKExtract(I∗, I ′) and Extract(I ′) for any identity I ′;
– Reencrypt(CT∗, I∗, I ′) and Extract(I ′) for any identity I ′;
– Decrypt(CTI′ , I ′) for any identityI ′,whereCTI′ =ReEnc(CT∗, I∗, I ′).

Guess. A outputs its guess b′ of b.

The advantage of A in this game is defined as AdvA = |Pr[b′ = b]− 1
2 | where the

probability is taken over the random bits used by the challenger and the adversary.
We say that a single-hop unidirectional IB-PRE scheme is IND-2PrID-ATK
secure, where ATK ∈ {CPA,CCA}, if no probabilistic polynomial time adversary
A has a non-negligible advantage in winning the IND-2PrID-ATK game.

Note that in the Decrypt query, we only provide the first level ciphertext de-
cryption because any second level ciphertext can be re-encrypted to a first level
ciphertext and then be queried for decryption.

Definition 4. The security of a single-hop unidirectional IB-PRE scheme at
the first level is defined according to the following IND-1PrID-ATK game, where
ATK ∈ {CPA,CCA}.

Setup. Run the Setup algorithm and give PK to the adversary A.

Phase 1. A makes the following queries.

– Extract(I): A submits an identity I for a KeyGen query, return the
corresponding secret key SKI.

– RKExtract(I, I ′): A submits an identity pair (I, I ′) for a ReKeyGen
query, return the re-encryption key RKI→I′.

If ATK = CCA, A can make the additional queries:

– Decrypt(CTI , I): A submits a first level ciphertext CTI encrypted to I
for a Dec1 query, return the corresponding plaintext M = Dec1(CTI ,
SKI), where SKI = KeyGen(MK, I).

Challenge. A submits a challenge identity I∗ and two equal length messages
M0,M1 to B. If the query Extract(I∗) is never made, then C flips a random
coin b and passes the ciphertext CT∗ = Enc1(PK,Mb, I∗) to A.

Phase 2. Phase 1 is repeated with the restriction that A cannot make the fol-
lowing queries:

– Extract(I∗);
– Decrypt(CT∗, I∗).

Guess. A outputs its guess b′ of b.

The advantage of A in this game is defined as AdvA = |Pr[b′ = b]− 1
2 | where the

probability is taken over the random bits used by the challenger and the adversary.
We say that a single-hop unidirectional IB-PRE scheme is IND-1PrID-ATK
secure, where ATK ∈ {CPA,CCA}, if no probabilistic polynomial time adversary
A has a non-negligible advantage in winning the IND-1PrID-ATK game.

116 S. Luo, Q. Shen, and Z. Chen

2.3 Master Secret Security

Master secret security is an important property for unidirectional PRE defined
by Ateniese et al. [1]. Roughly speaking, even if the dishonest proxy colludes
with the delegatee, it is still impossible for them to derive the delegator’s secret
key in full.

Definition 5. The master secret security of a single-hop or multi-hop unidirec-
tional IB-PRE scheme is defined according to the following master secret security
game.

Setup. Run the Setup algorithm and give PK to the adversary A.
Phase 1. A makes the following queries.

– Extract(I): A submits an identity I for a KeyGen query, return the
corresponding secret key SKI.

– RKExtract(I, I ′): A submits an identity pair (I, I ′) for a ReKeyGen
query, return the re-encryption key RKI→I′.

Challenge. A submits a challenge identity I∗ and query Extract(I∗) is never
made.

Phase 2. Phase 1 is repeated with the restriction that A cannot make query
Extract(I∗).

Output. A outputs the secret key SKI∗ for the challenge identity I∗.

The advantage of A in this game is defined as AdvA = Pr[A succeeds]. A single-
hop or multi-hop IB-PRE scheme has master secret security if no probabilistic
polynomial time adversary A has a non-negligible advantage in winning the mas-
ter secret security game.

For single-hop unidirectional IB-PRE schemes, it is easy to see that the mas-
ter secret security is implied by the first level plaintext security. We have the
following result.

Lemma 1. For a single-hop unidirectional IB-PRE scheme, the master secret
security is implied by the first level plaintext security. That is, if there exists an
adversary A who can break the master secret security of a single-hop unidirec-
tional IB-PRE scheme E, then there also exists an adversary B who can also
break E’s IND-1PrID-CPA security.

Lemma 1 is obvious, so we omit its proof here.

2.4 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced by Boneh, Goh and Nissim
in [6].

Definition 6. Let G be an algorithm called a bilinear group generator that
takes as input a security parameter λ and outputs a tuple (N = p1p2p3, G,GT , e)
where p1, p2 and p3 are three distinct primes, G and GT are two multiplicative
abelian groups of order N , and e : G×G → GT is an efficiently computable map
(or “pairing”) satisfying the following properties:

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 117

– (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab.
– (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We assume that the group action in G and GT as well as the bilinear map
e are all polynomial time computable in λ. Furthermore, we assume that the
description of G and GT includes a generator of G and GT respectively.

We say that G,GT are bilinear groups if the group operation in G and the
bilinear map e : G×G → GT are both efficiently computable.

We let Gp1 , Gp2 and Gp3 denote the subgroups of order p1, p2 and p3 in G
respectively. There is an important property called “orthogonality” between two
different order subgroups under the bilinear map e, i.e., if g ∈ Gpi and h ∈ Gpj

where i �= j, then e(g, h) = 1. If g1 generates Gp1 , g2 generates Gp2 and g3
generates Gp3 , then every element h of G can be expressed as gx1g

y
2g

z
3 for some

values x, y, z ∈ ZN .

2.5 Complexity Assumptions

We use the notation X
R←− S to express that X is chosen uniformly randomly

from the finite set S.

Assumption 1. Given a bilinear group generator G, we define the following
distribution:

G = (N = p1p2p3, G,GT , e)
R←− G(λ),

g
R←− Gp1 , X3

R←− Gp3 ,
D = (G, g,X3),

T1
R←− Gp1 , T2

R←− Gp1p2 .

We define the advantage of an algorithm A in breaking Assumption 1 to be

AdvA1
A,G(λ) := Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1] .

Definition 7. We say that G satisfies Assumption 1 if AdvA1
A,G(λ) is a negligible

function of λ for any probabilistic polynomial-time algorithm A.

Assumption 2. Given a bilinear group generator G, we define the following
distribution:

G = (N = p1p2p3, G,GT , e)
R←− G(λ),

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− Gp1p3 , T2

R←− G.

We define the advantage of an algorithm A in breaking Assumption 2 to be

AdvA2
A,G(λ) := Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1] .

118 S. Luo, Q. Shen, and Z. Chen

Definition 8. We say that G satisfies Assumption 2 if AdvA2
A,G(λ) is a negligible

function of λ for any probabilistic polynomial-time algorithm A.

Assumption 3. Given a bilinear group generator G, we define the following
distribution:

G = (N = p1p2p3, G,GT , e)
R←− G(λ), α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be

AdvA3
A,G(λ) := Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1] .

Definition 9. We say that G satisfies Assumption 3 if AdvA3
A,G(λ) is a negligible

function of λ for any probabilistic polynomial-time algorithm A.

3 Single-hop IB-PRE Scheme

In this section, we present a single-hop IB-PRE scheme. Our construction is
based on Lewko-Waters IBE scheme [13] with small modification. We use its
ciphertext as the second level ciphertext and add an extra element to make the
re-encryption feasible. The scheme is constructed as follows.

3.1 Construction

Setup(1λ). Given the security parameter λ, this algorithm first gets a bilin-
ear group G of order N = p1p2p3 from G(λ) where p1 and p2 are distinct
primes. Let Gpi denote the subgroup of order pi in G. It then chooses
a, b, c, d, α, β, γ ∈ ZN and g ∈ Gp1 randomly. Next it computes u1 = ga,
h1 = gb, u2 = gc, h2 = gd, w = gβ , and v = gγ . The public parameters are
published as

PK = {N, g, u1, h1, u2, h2, w, v, e(g, g)
α}.

The master secret key MK is {α, β, γ, a, b, c, d} and a generator of Gp3 .
The identity space is ZN and the message space is GT .

KeyGen(MK, I). Given an identity I ∈ ZN , this algorithm chooses r, t, t′,
x, y, z ∈ ZN and R3, R

′
3, R̂3, R̂

′
3 ∈ Gp3 randomly, and computes D1 =

gα(uI
1h1)

rR3, D2 = grR′
3, E1 = c+x

aI+b , E2 = gβx, F1 = d+y
aI+b , F2 = gβy,

Z1 = z
aI+b , Z2 = gβz, K1 = t

β(cI+d) , K2 = gαgt+γt′R̂3, K3 = gt
′
R̂′

3. We

require that the PKG always use the same random value t for I. This can
be accomplished by using a pseudo-random function (PRF) or an internal
log to ensure consistency.

The secret key is SKI = (D1, D2, E1, E2, F1, F2, Z1, Z2,K1,K2,K3).

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 119

ReKeyGen(SKI, I ′). Given a secret key SKI=(D1, D2, E1, E2, F1, F2, Z1, Z2,
K1,K2) for I and an identity I ′ �= I, this algorithm chooses k1, k2 ∈ ZN

randomly and computes rk1 = (E1 + k1 · Z1) · I ′ + (F1 + k2 · Z1), rk2 =
(E2 · Zk1

2)I
′ · (F2 · Zk2

2).
The re-encryption key is RKI→I′ = (rk1, rk2).

Enc2(PK,M, I). To encrypt a message M ∈ GT for an identity I, this algo-
rithm chooses s ∈ ZN randomly and computes C = M · e(g, g)αs, C1 =
(uI

1h1)
s, C2 = gs, C3 = vs.

The second level ciphertext is CTI = (C,C1, C2, C3).
Enc1(PK,M, I). To encrypt a message M ∈ GT for an identity I, this algo-

rithm chooses s ∈ ZN randomly and computes C = M · e(g, g)αs, C′
1 =

e(uI
2h2, w)

s, C2 = gs, C3 = vs.
The first level ciphertext is CTI = (C,C′

1, C2, C3).
ReEnc(CTI , RKI→I′). Given a second level ciphertext CTI = (C,C1, C2, C3)

and a re-encryption key RKI→I′ = (rk1, rk2), this algorithm computes C′
1 =

e(C1, w)
rk1e(C2, rk2)

−1.
The re-encrypted ciphertext is CTI′ = (C,C′

1, C2, C3).
Dec2(CTI , SKI). Let CTI = (C,C1, C2, C3) be a second level ciphertext for

identity I, it can be decrypted as

M = C · e(D2, C1)

e(D1, C2)
.

Dec1(CTI , SKI). Let CTI = (C,C′
1, C2) be a first level ciphertext for identity

I, it can be decrypted as

M = C · (C′
1)

K1 · e(K3, C3)

e(K2, C2)
.

Correctness at Second Level

e(D2, C1)

e(D1, C2)
=

e(grR′
3, (u

I
1h1)

s)

e(gα(uI
1h1)rR3, gs)

= e(g, g)−αs.

Correctness at First Level

(C′
1)

K1 · e(K3, C3)

e(K2, C2)
= e(uI

2h2, w)
s· t

β(cI+d) · e(gt
′
R̂′

3, g
γs)

e(gαgt+γt′R̂3, gs)
= e(g, g)−αs.

3.2 Security

We have the following results for our proposed single-hop IB-PRE scheme.

Theorem 1. If Assumptions 1, 2, 3 hold, then our single-hop IB-PRE scheme
is IND-2PrID-CPA secure.

Theorem 2. If Assumptions 1, 2, 3 hold, then our single-hop IB-PRE scheme
is IND-1PrID-CPA secure.

120 S. Luo, Q. Shen, and Z. Chen

It is easy to get the following result from Lemma 1 and Theorem 2.

Corollary 1. Our single-hop IB-PRE scheme has master secret security.

We use the dual system encryption technique to prove Theorem 1 and Theo-
rem 2. First we define two additional structures: semi-functional keys and semi-
functional ciphertexts. According to the encryption algorithms, there are two
types of semi-functional ciphertext: second level semi-functional ciphertext and
first level semi-functional ciphertext. These will not be used in the real system,
but they will be used in our proof.

Second Level Semi-functional Ciphertext. Let g2 denote a generator of the
subgroup Gp2 . A second level semi-functional ciphertext is created as follows.
The algorithm first runs the Enc2 algorithm to generate a normal second level
ciphertext Ĉ, Ĉ1, Ĉ2, Ĉ3, chooses x, y ∈ ZN randomly and sets C = Ĉ, C1 =
Ĉ1g

xy
2 , C2 = Ĉ2g

y
2 , C3 = Ĉ3g

γy
2 .

First Level Semi-functional Ciphertext. A first level semi-functional ci-
phertext is created as follows. The algorithm first runs the Enc1 algorithm to
generate a normal first level ciphertext Ĉ, Ĉ′

1, Ĉ2, Ĉ3, chooses y ∈ ZN randomly
and sets C = Ĉ, C′

1 = Ĉ′
1, C2 = Ĉ2g

y
2 , C3 = Ĉ3g

γy
2 .

Semi-functional Key. A semi-functional key is created as follows. The algo-
rithm first runs the KeyGen algorithm to generate a normal secret key D̂1, D̂2,
Ê1, Ê2, F̂1, F̂2, Ẑ1, Ẑ2, K̂1, K̂2, K̂3, chooses η, δ, z1, z2 ∈ ZN randomly and sets
D1 = D̂1g

ηz1
2 , D2 = D̂2g

η
2 , E1 = Ê1, E2 = Ê2, F1 = F̂1, F2 = F̂2, Z1 = Ẑ1,

Z2 = Ẑ2, K1 = K̂1, K2 = K̂2g
δz2
2 , K3 = K̂3g

δ
2.

We will prove the security of our system from Assumptions 1, 2, 3 using a
hybrid argument over a sequence of games. We let q denote the number of key
queries made by the attacker. We define these games as follows:

Game2,Real: The IND-2PrID-CPA game defined previously in which the cipher-
text and all the keys are normal.

Game2,Restricted: This is like the real IND-2PrID-CPA game except that the
attacker cannot ask for keys for identities which are equal to the challenge
identity modulo p2.

Game2,i, 0 ≤ i ≤ q: This is like Game2,Restricted except that the challenge ci-
phertext is semi-functional and the first i private key is semi-functional. The
rest of the keys are normal.

Game2,F inal: This is likeGame2,q except that the ciphertext is a semi-functional
encryption of a randommessage, independent of the twomessages provided by
the attacker.

Game1,Real: The IND-1PrID-CPA game defined previously in which the cipher-
text and all the keys are normal.

Game1,Restricted: This is like the real IND-1PrID-CPA game except that the
attacker cannot ask for keys for identities which are equal to the challenge
identity modulo p2.

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 121

Game1,i, 0 ≤ i ≤ q: This is like Game1,Restricted except that the challenge ci-
phertext is semi-functional and the first i private key is semi-functional. The
rest of the keys are normal.

Game1,F inal: This is likeGame1,q except that the ciphertext is a semi-functional
encryption of a randommessage, independent of the twomessages provided by
the attacker.

Game2,Restricted and Game1,Restricted are introduced in our proofs due to the
same reason explained in Lewko-Waters IBE scheme’s proof [13]. We note that
Game2,∗ and Game1,∗ are defined differently due to the two base games IND-
2PrID-CPA game and IND-1PrID-CPA game are different. InGame∗,0 the chal-
lenge ciphertext is semi-functional, but all keys are normal and in Game∗,q
all private keys are semi-functional. We will prove Game2,∗ type games and
Game1,∗ type games are indistinguishable respectively.

Lemma 2. Suppose there exists a polynomial time algorithmAwhereGame2,Real

AdvA− Game2,RestrictedAdvA = ε. Then we can construct a polynomial time al-
gorithm B with advantage ≥ ε

2 in breaking either Assumption 1 or Assumption 2.

Proof. With probability ε, A produces identities I and I∗ such that I �= I∗

modulo N and p2 divides I − I∗. Let a = gcd(I − I∗, N) and b = N
a . We have

p2
∣∣ a and a < N . Note that N = p1p2p3, so there are two cases:
1. p1 | b which means a = p2, b = p1p3 or a = p2p3, b = p1.
2. p1 � b which means a = p1p2, b = p3.
At least one of these cases must occur with probability ≥ ε

2 . In case 1, B will
break Assumption 1. Given g,X3, T , B can confirm that it is case 1 by checking
whether gb = 1. Then B can test whether T b = 1. If yes, then T ∈ Gp1 . If not,
then T ∈ Gp1p2 .

In case 2, B will break Assumption 2. Given g,X1X2, X3, Y2Y3, B can con-
firm that it is case 2 by checking whether ga = 1. Then B can test whether
e((Y2Y3)

b, T) = 1. If yes, then T ∈ Gp1p3 . If not, then T ∈ G. ��
Lemma 3. Suppose there exists a polynomial time algorithm A where
Game2,RestrictedAdvA− Game2,0AdvA = ε. Then we can construct a polyno-
mial time algorithm B with advantage ε to Assumption 1.

Proof. B receives g,X3 and T to simulate Game2,Restricted or Game2,0 with A
depending on whether T ∈ Gp1 or T ∈ Gp1p2 .

B sets the public parameters as follows. B chooses random exponents α, β,
γ, a, b, c, d and computes u1 = ga, h1 = gb, u2 = gc, h2 = gd, w = gβ, and
v = gγ . It sends these public parameters N , g, u1, h1, u2, h2, w, v, e(g, g)

α to A.
And B uses X3 as a generator of Gp3 . Note that B has the actual master secret
key, it simply runs the key generation to generate the normal keys to A for any
identity I.

At the challenge phase, A submits two equal-length messages M0,M1 and the
challenge identity I∗ to B. It then flips a coin μ and computes the challenge
ciphertext as follows:

C = Mμe(g, T)
α, C1 = T aI∗+b, C2 = T,C3 = T γ.

122 S. Luo, Q. Shen, and Z. Chen

If T ∈ Gp1 , this is a normal ciphertext. If T ∈ Gp1p2 , then it can be written
as gs1gs22 and the ciphertext is a semi-functional ciphertext with randomness
s = s1, x = aI∗ + b, y = s2.

We can thus conclude that, if T ∈ Gp1 , then B has properly simulated
Game2,Restricted. If T ∈ Gp1p2 , then B has properly simulated Game2,0. Hence,
B can use the output of A to distinguish between these possibilities for T . ��

Lemma 4. Suppose there exists a polynomial time algorithmAwhereGame2,k−1

AdvA− Game2,kAdvA = ε. Then we can construct a polynomial time algorithm
B with advantage ε to Assumption 2.

Proof. B receives g, X1X2, X3, Y2Y3, T to simulate Game2,k−1 or Game2,k
with A depending on whether T ∈ Gp1p3 or T ∈ G.

B sets the public parameters as follows. B chooses random exponents α, β, γ,
a, b, c, d and computes u1 = ga, h1 = gb, u2 = gc, h2 = gd, w = gβ and v = gγ .
And B uses X3 as a generator of Gp3 . It sends these public parameters N , g, u1,
h1, u2, h2, w, v, e(g, g)

α to A.
When A requests the i-th key for Ii where i < k, B returns a semi-functional

key as follows. It chooses ri, r̂i, r̂
′
i, ti, t

′
i, t̂i, t̂

′
i, xi, yi, zi ∈ ZN randomly and com-

putesD1 = gα(uIi

1 h1)
ri(Y2Y3)

r̂i ,D2 = gri(Y2Y3)
r̂′i , E1 = c+xi

aIi+b , E2 = gβxi, F1 =
d+yi

aIi+b , F2 = gβyi, Z1 = zi
aIi+b , Z2 = gβzi , K1 = ti

β(cI+d) , K2 = gαgtigγt
′
i(Y2Y3)

t̂i ,

K3 = gt
′
i(Y2Y3)t̂

′
i .

When i = k, to response the key query for identity Ik, B chooses rk, r
′
k, tk, t

′
k,

t̂k, xk, yk, zk ∈ ZN randomly and computes D1 = gαT rk(aIk+b)X
r′k
3 , D2 = T rk ,

E1 = c+xk

aIk+b , E2 = gβxk , F1 = d+yk

aIk+b , F2 = gβyk , Z1 = zk
aIk+b , Z2 = gβzk ,

K1 = tk
β(cI+d) , K2 = gαgtkT γt̂kX

t′k
3 , K3 = T t̂k . If T ∈ Gp1p3 , this is a normal

key. If T ∈ G, then it is a semi-functional key.
For i > k, we note that B has the actual master secret key, so it only need

to run the key generation algorithm to generate the normal keys to A for any
identity I.

At the challenge phase, A submits two equal-length messages M0,M1 and the
challenge identity I∗ to B. It then flips a coin μ and computes the challenge
semi-functional ciphertext as follows:

C = Mμe(g,X1X2)
α, C1 = (X1X2)

aI∗+b, C2 = X1X2, C3 = (X1X2)
γ .

We can thus conclude that, if T ∈ Gp1p3 , then B has properly simulated
Game2,k−1. If T ∈ G, then B has properly simulated Game2,k. Hence, B can
use the output of A to distinguish between these possibilities for T . ��

Lemma 5. Suppose there exists a polynomial time algorithm A where Game2,q
AdvA− Game2,F inalAdvA = ε. Then we can construct a polynomial time algo-
rithm B with advantage ε to Assumption 3.

Proof. B receives g, gαX2, X3, g
sY2, Z2, T to simulate Game2,q or Game2,F inal

with A depending on whether T = e(g, g)αs or T is a random element of GT .

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 123

B sets the public parameters as follows. B chooses random exponents β, γ, a,
b, c, d and computes u1 = ga, h1 = gb, u2 = gc, h2 = gd, w = gβ and v = gγ .
And B uses X3 as a generator of Gp3 . It sends these public parameters N , g, u1,
h1, u2, h2, w, v, e(g, g

αX2) = e(g, g)α to A. Note that α is unknown to B.
When responding a key query from A for identity Ii, B returns a semi-

functional key as follows. It chooses ri, ti, t̂i, xi, yi, x̂i, wi, w
′
i, ŵi, ŵ

′
i, zi, z

′
i, ẑi,

ẑ′i ∈ ZN randomly and computes D1 = gαX2(u
Ii
1 h1)

riZwi
2 Xzi

3 , D2 = griZ
w′

i
2 X

z′
i

3 ,
E1 = c+xi

aIi+b , E2 = gβxi, F1 = d+yi

aIi+b , F2 = gβyi, Z1 = x̂i

aIi+b , Z2 = gβx̂i ,

K1 = ti
β(cI+d) , K2 = gαX2g

tigγt̂iZŵi
2 X ẑi

3 , K3 = gt̂iZ
ŵ′

i
2 X

ẑ′
i

3 .

At the challenge phase, A submits two equal-length messages M0,M1 and the
challenge identity I∗ to B. It then flips a coin μ and computes the challenge
semi-functional ciphertext as follows:

C = MμT,C1 = (gsY2)
aI∗+b, C2 = gsY2, C3 = (gsY2)

γ .

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext
with message Mμ. If T is a random element of GT , then this is a semi-functional
ciphertext with a random message. Hence, B can use the output of A to distin-
guish between these possibilities for T . ��

Proof of Theorem 1. If Assumptions 1, 2, 3 hold then we have proved by Lemma
2, 3, 4, 5 that the real security game is indistinguishable from Game2,F inal,
in which the value of μ is information-theoretically hidden from the attacker.
So there is no attacker that can obtain non-negligible advantage in winning the
IND-2PrID-CPA game. ��
Proof of Theorem 2 is similar but uses the games Game1,∗, so the concrete proof
is omitted here and provided in the full version of our paper due to similarity
and space limitation.

4 Multi-hop IB-PRE Scheme

Now we construct a multi-hop IB-PRE scheme based on our single-hop IB-PRE
scheme proposed in previous section. We observe that if we set a = c and b = d,
then the first level ciphertext can be re-encrypted using the same re-encryption
key and has the same form. This means from the first level ciphertext, we can
get a new multi-hop IB-PRE scheme. The new scheme is constructed as follows.

4.1 Construction

Setup(1λ). Given the security parameter λ, this algorithm first gets a bilin-
ear group G of order N = p1p2p3 from G(λ) where p1, p2 and p3 are dis-
tinct primes. Let Gpi denote the subgroup of order pi in G. It then chooses
a, b, α, β ∈ ZN and g ∈ Gp1 randomly. Next it computes u = ga, h = gb,
w = gβ and v = gγ . The public parameters are published as

PK = {N, g, u, h, w, v, e(g, g)α},

124 S. Luo, Q. Shen, and Z. Chen

the master secret key is MK = {α, β, γ, a, b} and a generator of Gp3 .
The identity space is ZN and the message space is GT .

KeyGen(MK, I). Given an identity I ∈ ZN , this algorithm chooses t, r, x, y, z ∈
ZN andR3, R

′
3∈Gp3 randomly, and computesD1=

t
β(aI+b) ,D2=gαgt+γrR3,

D3 = grR′
3, E1 = a+x

aI+b , E2 = gβx, F1 = b+y
aI+b , F2 = gβy, Z1 = z

aI+b ,

Z2 = gβz. We also require that the PKG always use the same random value
t for I.
The secret key is SKI = (D1, D2, D3, E1, E2, F1, F2, Z1, Z2).

ReKeyGen(SKI, I ′). Given a secret key SKI = (D1, D2, E1, E2, F1, F2,
Z1, Z2) for I and an identity I ′ �= I, this algorithm chooses k1, k2 ∈ ZN

randomly and computes rk1 = (E1 + k1 · Z1) · I ′ + (F1 + k2 · Z1), rk2 =
(E2 · Zk1

2)I
′ · (F2 · Zk2

2).
The re-encryption key is RKI→I′ = (rk1, rk2).

Enc(PK,M, I). To encrypt a messageM ∈ GT for an identity I, this algorithm
s ∈ ZN randomly and computes C = M ·e(g, g)αs, C1 = e(uIh,w)s, C2 = gs,
C3 = vs.
The ciphertext is CTI = (C,C1, C2, C3).

ReEnc(CTI , RKI→I′). Given a second level ciphertext CTI = (C,C1, C2, C3)
and a re-encryption key RKI→I′ = (rk1, rk2), this algorithm computes C′

1 =
(C1)

rk1 · e(C2, rk2)
−1.

The re-encrypted ciphertext is CTI′ = (C,C′
1, C2, C3).

Dec(CTI , SKI). Let CTI = (C,C1, C2, C3) be a ciphertext for identity I, it
can be decrypted as

M = C · (C1)
D1 · e(D3, C3)

e(D2, C2)
.

The correctness of decryption process is easily observable.

4.2 Security

We have the following result for our proposed multi-hop IB-PRE scheme.

Theorem 3. If Assumptions 1, 2, 3 hold, then our multi-hop IB-PRE scheme
is IND-PrID-CPA secure.

Proof of Theorem 3 is similar to proofs of Theorem 1 and Theorem 2, so we give
the concrete proof in the full version due to similarity and space limitation.

5 Discussion

5.1 Re-encryption Control

In the single-hop proxy re-encryption scheme, we can see that the element C3 =
vs is of no use in the Dec2 algorithm and it is only used in the Dec1 algorithm. If
the encryptor doesn’t provide vs in the second level ciphertext, the second level
decryption is not affected but the decryption of re-encrypted ciphertext cannot
go on. So the encryptor can decide whether the second level ciphertext can be
re-encrypted (in fact he can decide whether the re-encrypted ciphertext can be
decrypted).

Fully Secure Unidirectional Identity-Based Proxy Re-encryption 125

5.2 Transitivity and Transferability

Transitivity means the proxy can redelegate decryption rights. For example,
from RKI1→I2 and RKI2→I3 , he can produce RKI1→I3 . Transferability means
the proxy and a set of delegatees can redelegate decryption rights. For example,
from RKI1→I2 and SKI2 , they can produce RKI1→I3 . Note that the user I2 can
produce the re-encryption key RKI2→I3 , so transferability is implied by transi-
tivity. Our multi-hop scheme has such transitivity that the proxy can produce
RKI1→I3 by RKI1→I2 and RKI2→I3 as follows:

Let RKI1→I2 = (rk1, rk2) and RKI2→I3 = (rk′1, rk
′
2). It computes rk′′1 =

rk1 · rk′1 and rk′′2 = (rk2)
rk′

1 · rk′2. Then RKI2→I3 is (rk′′1 , rk
′′
2).

6 Conclusion

In this paper, we propose two novel unidirectional identity-based proxy re-
encryption schemes, which are both non-interactive and proved secure in the
standard model. The first scheme is a single-hop IB-PRE scheme and has mas-
ter secret security, allows the encryptor to decide whether the ciphertext can be
re-encrypted. The second scheme is a multi-hop IB-PRE scheme which allows
the ciphertext re-encrypted many times but without the cost of ciphertext size
growing linearly as previous multi-hop IB-PRE schemes.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS 2005. The Internet
Society (2005)

2. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible Protocols and Atomic Proxy
Cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
127–144. Springer, Heidelberg (1998)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

7. Canetti, R., Halevi, S., Katz, J.: A Forward-secure Public-key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

126 S. Luo, Q. Shen, and Z. Chen

8. Caro, A.D., Iovino, V., Persiano, G.: Fully secure anonymous hibe and secret-key
anonymous ibe with short ciphertexts. Cryptology ePrint Archive, Report 2010/197
(2010), http://eprint.iacr.org/

9. Chu, C.-K., Tzeng, W.-G.: Identity-Based Proxy Re-encryption Without Random
Oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

10. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

11. Green, M., Ateniese, G.: Identity-Based Proxy Re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

12. Lai, J., Zhu, W., Deng, R., Liu, S., Kou, W.: New constructions for identity-based
unidirectional proxy re-encryption. Journal of Computer Science and Technology,
793–806 (2010)

13. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

14. Luo, S., Hu, J., Chen, Z.: New construction of identity-based proxy re-encryption.
In: Proceedings of the Tenth Annual ACM Workshop on Digital Rights Manage-
ment, DRM 2010, pp. 47–50. ACM, New York (2010)

15. Matsuo, T.: Proxy Re-encryption Systems for Identity-Based Encryption. In: Tak-
agi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 247–267. Springer, Heidelberg (2007)

16. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

17. Shao, J., Cao, Z.: CCA-Secure Proxy Re-encryption without Pairings. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

18. Wang, H., Cao, Z., Wang, L.: Multi-use and unidirectional identity-based proxy
re-encryption schemes. Information Sciences (2010)

19. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New Identity-Based Proxy Re-
encryption Schemes to Prevent Collusion Attacks. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)

20. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

21. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

http://eprint.iacr.org/

Detecting Parasite P2P Botnet in eMule-like Networks
through Quasi-periodicity Recognition

Yong Qiao, Yuexiang Yang, Jie He, Bo Liu, and Yingzhi Zeng

School of Computer, National University of Defense Technology,
Changsha, 410073, China

josayqiao@gmail.com, yyx@nudt.edu.cn, jack.237@163.com,
boliu615@yahoo.com.cn, zengyingzhi@nudt.edu.cn

Abstract. It’s increasingly difficult to detect botnets since the introduction of
P2P communication. The flow characteristics and behaviors can be easily hidden
if an attacker exploits the common P2P applications’ protocol to build the net-
work and communicate. In this paper, we analyze two potential command and
control mechanisms for Parasite P2P Botnet, we then identify the quasi periodi-
cal pattern of the request packets caused by Parasite P2P Botnet sending requests
to search for the Botmaster’s commands in PULL mode. Considering our obser-
vation, a Parasite P2P Botnet detection framework and a mathematical model are
proposed, and two algorithms named Passive Match Algorithm and Active Search
Algorithm are developed. Our experimental results are inspiring and suggest that
our approach is capable of detecting the P2P botnet leeching in eMule-like net-
works.

Keywords: Quasi-periodicity, Parasite P2P Botnet, Pull, eMule, Active Search
Algorithm.

1 Introduction

Botnet, as a special overlay network, is becoming one of the major threats to Internet
security. It’s commonly agreed that botnet is a malicious network constituted by a large
number of compromised hosts which are also known as bots. Bots can be remotely
controlled by a unified command from the Botmaster to launch DDOS attacks, send
out spam messages, and conduct other group malicious activities. Currently, botnets
are usually classified into three categories: centralized IRC-based botnets, distributed
P2P-based botnets, and HTTP-based botnets.

Among those three types of botnets, the most widespread one is the IRC botnet. It
has low complexity, simple structure and high efficiency in launching attacks. How-
ever, considering the congenital “single point of failure” defect brought by the central-
ized control structure, researchers have developed plenty of detection methods for the
widespread IRC botnets [1]. In 2007, the outbreak of the peacomm [2] worm and the
storm botnet [3] in Europe made the world begin to realize the possibility and signifi-
cant threats of P2P botnets. Therefore the P2P botnets have been considered as the most
promising next-generation botnets [4]. A series of P2P Botnets such as Hybrid P2P Bot-
net [5], Super P2P Botnet [6] and Overbot [7] were proposed shortly afterwards.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 127–139, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

128 Y. Qiao et al.

From current point of view in the research communities, a noteworthy phenomenon
is that any P2P botnet based on a private protocol will be inevitably detected because
of its individual flow characteristics or behaviors. So the researchers believe that the
attackers may launch new P2P botnets by using the public P2P protocols and let P2P
botnets leeching into the widely used P2P networks such as eMule or BT network.
Overbot is such a P2P botnet designed to work on eMule or BT network.

In this paper, we propose a detection model to deal with these new challenges. Main
contributions of our paper are shown as follows:

1. We analyze the two potential Command and Control (C&C) mechanisms for Para-
site P2P Botnet and introduce the quasi-periodicity characteristic.

2. We propose a detection framework with a mathematical model based on the quasi
periodical pattern of the request packets caused by Parasite P2P Botnet sending re-
quests to search for the Botmaster’s command, two algorithms called Passive Match
Algorithm (PMA) and Active Search Algorithm (ASA) are developed to implement
the model. During them, ASA can reduce the time complexity significantly.

3. We introduce the approach to identify the search requests from the eMule network
traffic and some features of the packets eMule used to send requests.

2 Related Work

In terms of P2P botnets detection, Gu [8] et al. proposed a detection scheme named
Bothunter to integrate the feedback information about different IDSs and perform a
clustering analysis about the malicious activities. Others [9,10,11] also use the cluster-
ing methods to justify the flow similarities for botnets detection. BotMiner [12], another
tool by Gu, can carry out detection independent of the structure and protocol of the
botnet, which is an advanced method compared with its counterparts. Different from
BotMiner, the proposed model in our research focuses on a specific type of P2P bot-
net which uses PULL mode to communicate and parasitizes in eMule-like networks.
[13,14] use the Honeypots or Honeynet to detect the existing botnets, which fail in
prediction botnets similarly to the one considered in this paper. Similar to our work,
[15,16,17] also take periodic characteristics into account to detect botnets. However,
their focal points and contexts are quite different from ours, we will analyze those dif-
ferences in Section 5.

3 Background and Motivation

3.1 C&C of the Parasite P2P Botnet

Ping W. et al. [4] have pointed out, due to the structures of P2P network have evolved
from early centralized form like Napster [18] to distributed or hybrid form such as
eMule and BT network, current P2P applications are more stable in propagation and
enjoy a higher bandwidth. Therefore, it attracts attacker to build P2P botnet based on
existing P2P networks, which is named as Parasite P2P Botnet in this paper. There are
two potential C&C mechanisms for Parasite P2P Botnet: PUSH mode and PULL mode.

Detecting Parasite P2P Botnet in eMule-like Networks 129

In the PUSH mode, Botmaster needs to send commands to a certain number of bots,
which will propagate these commands to the other bots. Due to the difficulties of using
benign nodes to transmit commands actively in Parasite P2P Botnet, PUSH pattern is
not a feasible choice for Parasite P2P Botnet.

Another C&C mechanism, PULL mode, is the main research object in Parasite P2P
Botnet, which is called Command Publishing/Subscribing mechanism. In this mode,
Botmaster randomly selects one or more bots to publish its commands. Here, this so-
called publishing commands in P2P file-sharing systems is to allow a node to claim
that it has a special shared file. In this way, the other bots could find these commands
by searching for files periodically. If the formats of such search requests are consistent
with the parasitized network, the benign nodes in the parasitized network can provide
requests querying and store services for P2P botnet, which is exactly the same way
as searching for normal resources and provided as the original functions of the benign
nodes. Large-scale P2P application networks such as eMule, possess numerous nodes,
so the commands searching will become efficient and accurate in these networks while
adopting PULL pattern. Subsequently, the PULL mode is very suitable for Parasite P2P
Botnet and more readily to be used by attackers to build such botnet. We assume that
the PULL mode is used by Parasite P2P Botnet in this paper.

3.2 Quasi-periodicity Characteristic

Existing pull-model botnets usually perform periodic searches to look for commands.
For example, Grizzard [2] mentioned in his analysis of Storm that nodes should pe-
riodically search for their own IDs in order to make sure they know the closest nodes
near themselves. In addition, most theoretical P2P botnets proposed are also featured by
search packets which are periodically sent. For instance, Ping W. et al [5], the authors of
the famous Hybrid P2P Botnet, mentioned that both client and server bots actively and
periodically connect to the server bots in their peer lists in order to retrieve commands
issued by their Botmaster. Another example is overbot [7], which illustrates that nodes
issue search requests at regular intervals. According to the analysis of representative
P2P botnets above, we can summarize that it’s universal for PULL model P2P botnets
to send search packets periodically, and we believe that there are two reasons as follows:

1. This feature comes mainly from the unpredictability of the time when Botmaster
send commands and the real-time demand of the bots. For convenience, botnets
often adopt periodical method directly to search for commands punctually.

2. The pre-programmed behavior [16] of bots also leads to the periodic behaviors of
sending search requests.

We note that this periodicity often comes with small fluctuations due to factors like
network latency and packets timeout.It’s not a strict mathematical periodicity, so we
call it the quasi-periodicity feature.

Our detection-model focuses on the Parasite P2P Botnet, which is one of the high
possibility predictive botnets. Based on our analysis of the development of P2P botnets,
this botnet has the following characteristics:

1. This botnet builds C&C channels according to the communication protocol of
eMule.

130 Y. Qiao et al.

2. Bots send quasi-periodic packets to search for commands depending on the search
protocol of eMule.

Here we take eMule1 network as an example to illustrate our idea. Under above assump-
tions, our goal is to distinguish the malicious botnet search requests from benign eMule
search requests automatically. In terms of the periodicity feature, what we need to do is
to search for a periodic subsequence in hybrid ones.

4 Detection Framework

As demonstrated in Figure 1, our Parasite P2P Botnet detection framework is com-
posed of five components: Sequence Collector, Periodicity Recognition Detection Math-
ematical Model, Algorithms, Botnet Traffic Simulator, Parameters Trainer, in which the
Sequence Collector Module will complete the acquisition of the search requests’ se-
quences, then outputs the results to the mathematical model. Two algorithms used to
solve the model which we called PMA and ASA will be introduced in the Algorithms
section. However, before that, we need to use Parameters Trainer module to get the
recommended value of the parameters used in our model. Botnet Traffic Simulator will
be used simultaneously. The last two modules will be explained in Section 5.

Fig. 1. Framework Overview

4.1 Sequence Collector

The procedure of the Sequence Collector shown in Figure 1 is straightforward. Next
we will just introduce the core part about how to analyze the network output packets in
order to decode the hybrid eMule search requests.

1 eMule began to support KAD network which is based on Kademlia protocol since Version
0.42, Because eDonkey, another network in eMule, is based on centralized P2P protocol which
is obviously unsuitable for the construction of a P2P botnet. eMule mentioned in this paper
refers to the KAD network.

Detecting Parasite P2P Botnet in eMule-like Networks 131

From [19] we know, eMule search requests have three action types: KADEM-
LIA FIND VALUE; KDEMLIA STORE; KADEMLIA FIND NODE. However, accord-
ing to [7], KADEMLIA STORE is not suitable for use in P2P botnets commands
transmission, so we will focus on only another two types in the following part. The
manual [20] has introduced the search types corresponding to the two action types in
Table 1. We will not distinguish those different search types here, because all types can
theoretically be used as carriers for P2P botnets to search for commands. With Wire-
shark 1.6, we have done numerous experiments on capturing the eMule search requests,
and we have got a series of features as follows:

– They are all UDP packets;
– The size of each packet is 77 bytes, and the UDP part has 43 bytes;
– The payload part has 35 bytes, including the first three bytes of identifications as

shown in the last column of Table 1. In these identifications, E4 indicates that the
packet is sent by eMule, 21 shows the packet is used to search for requests, 02
and 0B can represent different action types. The rest of the 32 bytes are filled with
encrypted MD4 value of the search contents and recipient’s ID.

Table 1. The search Request’s classification and identifications

Action Type Search Type Identification

StoreFile
FIND VALUE StoreKeyword E4 21 02

StoreNotes
FindBuddy

FIND NODE Node E4 21 0B
NodeComplete

Beside the three features above, we have noticed another interesting phenomenon. eMule
does not put the MD4 values into a UDP packet directly, but changes the sequence of
the MD4 characters as the way followed. Take the string “abc” for example, its MD4
value is a448017a af21d852 5fc10ae8 7aa6729d.

1. The 32 hexadecimal characters are divided into 4 big groups at the first time, for
instance: a448017a/af21d852/5fc10ae8/7aa6729d.

2. Divides each big group into 4 small groups evenly, and reverse the 4 small groups’
order. A case for the first group: a448017a → a4/48/01/7a → 7a/01/48/a4.

3. Recomposes the 32 hexadecimal characters, and the original MD4 value changes
to : 7a0148a4 52d821af e80ac15f 9d72a67a.

With the above knowledge, it is easy to identify and capture various types of search
requests of eMule network.

132 Y. Qiao et al.

4.2 Mathematical Model

Considering the analysis above, the result of the hybrid sequences is represented as Tn.
Our target is to justify whether exists a subsequence of Tn fulfilled formula (1) and (2)
showed below. represents the length limitation of the periodic sequence, α is proposed
to relax the limitation of the periodic interval with the consideration of local volatility
in the periodic sequences, ω can avoid the false judgment when very few parts of the
sequences are lost or deviate from the regular time. We will discuss the recommended
value of the parameters in section 5.

Table 2. The definition and introduction of parameters

Parameters Introduction

Tn={T1,T2,T3,...,Ti,...,Tn},∀i∈(1,n)→
Ti+1>Ti

the ascending time sequence of the
search requests

S={t1,t2,t3,...,tj ,...,tm},j∈(1,m),tj∈Tn S is one of Tn ’s non-empty sequence

ΔS={Δt1,Δt2,Δt3,...,Δtk,...,Δtm−1},Δtk=

tk+1−tk,k∈(1,m−1)

ΔS is S’s difference sequence

Avg=

∑m−1
1

Δtk
|ΔS| =

∑m−1
1

Δtk
m−1

The average value of ΔS

α∈[0,1] The adjustment ratio

ω∈[0,1] The identification ratio

K∈N
+ The minimum length of the periodic

sequence

Target Problem: whether ∃S ⊆ Tn, Satisfies:

|S| ≥ K (1)

∑m−1
1 f(α, k) = { 1 if : Δtk ∈ [Avg(1 − α), Avg(1 + α)];

0 else.

|ΔS| ≥ ω. (2)

4.3 Algorithms

It’s not necessary for us to find out all the periodic sequences satisfied the condi-
tions. One valid periodic sequence is enough to validate whether the hybrid sequence is
anomalous.

Passive Match Algorithm(PMA). A simple method is to traverse through every se-
quence whose length is greater than or equal to K , then judge it by the constraints of
the target function. Set the total length of the hybrid sequence as N , the amount of all
possible subsequences will be:

Num = CK
N + CK+1

N + . . .+ CN
N = 2N − C1

N − C2
N − . . .− CK−1

N − 1 (3)

Detecting Parasite P2P Botnet in eMule-like Networks 133

Compared with N , K is a smaller natural number based on experience. So that the time
complexity is approximately equal to O(2N), which is unacceptable in real context.
It is necessary to design a fast approximation algorithm to replace the passive match
method.

Active Search Algorithm(ASA). This algorithm will not traverse through all possible
sequences passively. It starts from a certain node or a group of nodes, and finds the next
possible node actively in the sequence according to the periodic conditions actively.

Active Search Algorithm (ASA)

Input: Tn, α, ω,K, S

Output: SuccessS: Have Got the periodic sequence if SuccessS 	= ∅
Begin:

SuccessS = ∅;
Foreach Ti ∈ Tn do

S = ∅, t1 = T i;

GetSecondNode:

S = {t1};
If exists the nearest node t2 ahead of t1 in Tn except the nodes

used before in the loop, then:

Add t2 to S

else: goto Begin;

Addnodes:

If existed node tj in Tn that satisfies formula (4),then

Add tj to S;

if S.length ≥ K then:

Return Success = S;

else: goto Addnodes;

else: goto GetSecondNode;

Return SuccessS;

End

The judging rule which determines whether a suitable node exists in the hybrid se-
quence or not is: If the subsequence S = {t1, t2, t3, . . . , tm}(m < K) satisfies all the
periodic conditions but the length condition, then do this:

Define: Avg=

∑m−1
1 Δtk
m

,Δtk = tk+1 − tk, whether ∃tj ⊆ Tn,and satifies:

Avg(1 − α) ≤ tj − tm ≤ Avg(1 + α) (4)

if a satisfied node tj can be found in Tn, then add it to the S, and a new sequence
formed:S = {t1, t2, t3, . . . , tm, tj} ,or else quit the procedure.

134 Y. Qiao et al.

A: Time Complexity analysis
In ASA, the length of a periodic subsequence is gradually increased up to K . So the
max beginning node is T(N−K+1). If Ti is the first node in S, the potential amount
of the second node is (N−K−i+2), and search steps of each progress are (K−1)
at most, so the total steps at this stage will be (N −K − i + 2)(K − 1), and the
total potential steps of all stages will be:

Num = (K − 1)[1 + 2 + . . .+ (N −K + 1)]

= (K − 1) (N−K+1)[1+(N−K+1)]
2

= K−1
2 × [(N −K + 1) + (N −K + 1)2]

(5)

From the formula (5) we can see the time complexity here is O(N2), which reduces
the computation cost effectively compared with the PMA.

B: Complementary Conditions
In ASA, if the current subsequence’s first node is Tm, then the biggest interval of
this subsequence is (TN − Tm). As the max length of the periodic subsequence is
known, so we get a complementary condition:

Δtm ≤ (1 + α)
TN − Tm

K − 1
(Δtm = tm+1 − tm) (6)

The formula above can apply to every judgment step in ASA, which will further
reduce the searching space and the computation costs.

5 Experiment and Analysis

5.1 Datasets

We captured real traffic from campus network, and tracked 100 eMule nodes through
port identification. From the user behavior analysis of eMule, we know that the period
between 18pm and 24pm is the peak of eMule usage, so the datasets used below are all
captured in this period.

Botnet Traffic Simulator: In addition to real traffic collection of eMule, we developed
a P2P botnet traffic simulator, which can periodically send packets in the format of
standard eMule search packets. The simulator can make the period fluctuate in a certain
degree or generate some controllable noise to correspond with real circumstances.

5.2 Determining the Empirical Value of Parameters

Those three parameters are interdependent, thus cannot be determined through separate
experiments. As we have abandonedω in our implementation of ASA, we only consider
the determination of α and K here. According to the initial definition of α and K , we
performed experiments on some possible combinations through crossing and rotating.
Table 3 shows the recommended empirical value range of the two parameters. Because

Detecting Parasite P2P Botnet in eMule-like Networks 135

Table 3. The Parameters’ Range

Parameter Range Unit Counts
α (0− 0.3] 0.02 15
K [5− 20) 1 15

Fig. 2. False Positive ratio(FP) and False Negative ratio (FN)

the value of α lies in a continuous range, it’s impossible to traverse all its value, we
averagely divided the range into 15 pieces of units. As K has 15 possible values, the
total number of potential combinations of the two parameters is 225.

Our experiments have separately collected traffic data from 100 hosts when they
run normal eMule exclusively and when they run malicious periodical program as well
in two days. Thus, we extracted 100 normal sequences containing search requests time
points and another 100 anomalous sequences contain periodical malicious requests time
points from the traffic data. Having known the true role of every node, we test all 225
combinations of α and K , and calculated their False Positive ratio (FP) and False
Negative ratio (FN) shown in Figure 2, with 3 groups of typical values of parameters
are illustrated together.

From Figure 2 we can see that both α and K can affect FP and FN significantly. A
better combination should set formula (7) with the lowest value. Here, we assume that
θ1 = θ2 = 0.5 empirically, in this situation, we just need to get the combinations with
the lowest (FN + FP).

F = θ1 · FN + θ2 · FP (7)

From the experimental results above, we have got the optimal groups of parameters in
Table 4, which convince us that K ∈ [10, 12] and α ∈ [0.18, 0.22] is a suitable range
for the justification of periodic sequences, and we can use them for verification in live
circumstances.

136 Y. Qiao et al.

Table 4. The Parameters’ Range

FN + FP Combinations

0
K = 11, α = 0.22
K = 12, α = 0.22

1%
K = 10, α = 0.18
K = 10, α = 0.2
K = 11, α = 0.2

2%
K = 10, α = 0.22
K = 12, α = 0.2

5.3 Verification and Analysis

Accuracy
We run a test with all the combinations recommended above. A hundred nodes installed
with the eMule clients are involved, 40 P2P botnet traffic simulators were installed on
those nodes randomly. By means of collecting the search requests, we got 100 groups of
requests, and generated 100 sequences by abstracting the times points of the requests’
packets. We use the ASA to justify the sequences. The FP and FN rates were shown
in Figure 3.

We can see from Figure 3 that, none of these combinations can do perfectly to justify
the hosts absolutely right, but they have already fulfilled the detection task successfully
to a great extent and the empirical values of the parameters exhibit a good robustness. In
the future we still need to utilize the ω parameter, which can adjust the sequence when
there is a partial fluctuation appearance.

Comparions
Similar to our work, [15,16,17] take the periodic characteristics into account when de-
tecting botnet. Table 5 gives an analysis of relevant characteristics. In the table, PO in-
dicates objects with periodicity in botnets, DA indicates the detection algorithm, DOC

Fig. 3. The FP/FN with the change of (K,α)

Detecting Parasite P2P Botnet in eMule-like Networks 137

is the degree of vertical-cross confusion2 between periodic sequence and non-periodic
sequence, and CUB indicates whether the method can be used in our work context
without considering the detection effect. According to [17], there is no vertical cross
but horizontal connections between periodic sequence and non-periodic sequence. AR
represents the accuracy of detection when the algorithm is applied to our detection con-
text using certain parameters.

Table 5. Comparision of Four Detection Models∗

PO DA DOC CUB AR
[15] Connection intervals Perceptual intuition none N
[16] Number of packets in C&C Periodogram weak Y 2%
[17] Packet size Sequence Ukkonen none Y 16%
Our Search Request’s intervals ASA strong Y 98%
PO:Periodic Object DA: Detection Algorithm

DOC:Degree of Confusion CUB: can be used here AR: Accuracy Rate

*: Periodogram algorithm used here is under the same parameter definition in [16]

and we define the (φ = 0.75) in algorithms [17] used here, (K = 11, α = 0.18) is defined in ASA

Table 5 also shows the detection effect of [16,17] and ASA when adopt specified
parameters. As we can see, Periodogram algorithm [16] cannot achieve an effective
detection, however, as some sequences here have low DOC. Ukkonen algorithm [17]
is lucky to get a 16% detection accuracy rate here, which is still quite low. The low
detection rate of the two algorithms can be mainly attributed to the huge differences of
contexts, rather than the algorithms themselves. These results further demonstrate that
our ASA algorithm is more suitable and effective in our detection context and the ASA
also can be used to solve the similar problems theoretically.

6 Conclusion and Future Work

A detection framework with a mathematical model based on the quasi-periodicity char-
acteristic is proposed in this paper after analyzing the potential C&C mechanisms in
Parasite P2P Botnet. Two algorithms are proposed to solve the model. We verify the
model and algorithms by doing a series of experiments. Compared with other detection
methods in [8,9,10,11,12,13,14], our research focuses on a special predictive P2P bot-
net, which has been demonstrated as a devastating threat on the security of the future
Internet security. The detection framework we proposed against such botnet is promis-
ing to be one step ahead of the attackers to discover and prevent this upcoming threat.
We will further analyze possible communication modes of P2P botnets in the future,
and provide better detection methods and suppression measures.

2 Vertical-cross refers to situations where several time series get crossed in time domain. For ex-
ample, for two series {1, 3, 5} and {4, 5, 5.5}, a vertical-cross is {1, 3, 4, 5, 5.5}. On the con-
trary, the horizontal-cross refers to time series concatenated end to end: {1, 2, 3} and {4, 5, 7}
connected as {1, 2, 3, 4, 5, 7}.

138 Y. Qiao et al.

Acknowledgment. This work was supported by NSFC under grants NO. 61170286.

References

1. Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection. In: 2009
Third International Conference on Emerging Security Information, Systems and Technolo-
gies, pp. 268–273. IEEE (2009)

2. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B.H., Dagon, D.: Peer-to-peer botnets:
Overview and case study. In: 1st USENIX Workshop on Hot Topics in Understanding Bot-
nets, HostBots 2007 (2007)

3. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and mitigation of
peer-to-peer-based botnets: a case study on storm worm. In: LEET 2008 Proceedings of
the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, p. 9. USENIX
Association (2008)

4. Wang, P., Aslam, B., Zou, C.C.: Peer-to-Peer Botnets: The Next Generation of Botnet At-
tacks. Electrical Engineering, 1–25 (2010)

5. Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet. In: Proceedings
of the First Workshop on Hot Topics in Understanding Botnets, p. 2. USENIX Association
(2007)

6. Vogt, R., Aycock, J., Jacobson, M.: Army of botnets. In: Proceedings of NDSS 2007, Cite-
seer, pp. 111–123 (2007)

7. Starnberger, G., Kruegel, C., Kirda, E.: Overbot: a botnet protocol based on Kademlia. In:
4th Int. Conf. on Security and Privacy in Communication Networks (SecureComm 2008),
pp. 1–9. ACM (2008)

8. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: Detecting malware infec-
tion through ids-driven dialog correlation. In: 16th USENIX Security Symp. (Security 2007),
pp. 167–182. USENIX Association (2007)

9. Kang, J., Song, Y.-Z., Zhang, J.-Y.: Accurate detection of peer-to-peer botnet using Multi-
Stream Fused scheme. Journal of Networks 6, 807–814 (2011)

10. Villamarin-Salomon, R., Brustoloni, J.C.: Bayesian bot detection based on DNS traffic sim-
ilarity. In: 24th Annual ACM Symposium on Applied Computing, pp. 2035–2041. Associa-
tion for Computing Machinery (2009)

11. Huang, Z., Zeng, X., Liu, Y.: Detecting and blocking P2P botnets Through contact tracing
chains. International Journal of Internet Protocol Technology 5, 44–54 (2010)

12. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of network traffic for
protocol and structure independent botnet detection. In: 17th USENIX Security Symp., pp.
139–154. USENIX Association (2008)

13. Freiling, F.C., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause Method-
ology to Prevent Distributed Denial-of-Service Attacks. In: de Capitani di Vimercati, S.,
Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335. Springer,
Heidelberg (2005)

14. Wang, P., Wu, L., Cunningham, R., Zou, C.C.: Honeypot detection in advanced botnet at-
tacks. International Journal of Information and Computer Security 4, 30–51 (2010)

15. Lee, J.S., Jeong, H.C., Park, J.H., Kim, M., Noh, B.-N.: The activity analysis of malicious
http-based botnets using degree of periodic repeatability. In: 2008 International Conference
on Security Technology, pp. 83–86. Inst. of Elec. and Elec. Eng. Computer Society (2008)

16. AsSadhan, B., Moura, J.M.F., Lapsley, D.: Periodic behavior in botnet command and control
channels traffic. In: 2009 IEEE Global Telecommunications Conference. Institute of Electri-
cal and Electronics Engineers Inc. (2009)

Detecting Parasite P2P Botnet in eMule-like Networks 139

17. Ma, X., Guan, X., Tao, J., Zheng, Q., Guo, Y., Liu, L., Zhao, S.: A novel IRC botnet de-
tection method based on packet size sequence. In: 2010 IEEE International Conference on
Communications. Institute of Electrical and Electronics Engineers Inc. (2010)

18. Saroiu, S., Gummadi, K.P., Gribble, S.D.: Measuring and analyzing the characteristics of
Napster and Gnutella hosts. Multimedia Systems 9, 170–184 (2003)

19. eMule 0.47 code, eMule project (2011), http://www.emule-project.net/home/
perl/general.cgi?l=42&rm=download

20. Kernel, H.: Emule Kad protocol Manual (2009),
http://easymule.googlecode.com/files/Emule

http://www.emule-project.net/home/perl/general.cgi?l=42&rm=download
http://www.emule-project.net/home/perl/general.cgi?l=42&rm=download
http://easymule.googlecode.com/files/Emule

AutoDunt: Dynamic Latent Dependence

Analysis for Detection of Zero Day Vulnerability

Kai Chen1, Yifeng Lian1,2, and Yingjun Zhang1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
{chenk,lianyf,yjzhang}@is.iscas.ac.cn

2 National Engineering Research Center for Information Security,
Beijing 100190, China

Abstract. Zero day vulnerabilities have played an important role in cy-
ber security. Since they are unknown to the public and patches are not
available, hackers can use them to attack effectively. Detecting software
vulnerabilities and making patches could protect hosts from attacks that
use these vulnerabilities. But this method cannot prevent all vulnerabil-
ities. Some methods such as address space randomization could defend
against vulnerabilities, but they cannot find them in software to help soft-
ware vendors to generate patches for other hosts. In this paper, we design
and develop a proof-of-concept prototype called AutoDunt (AUTOmati-
cal zero Day vUlNerability deTector), which can detect vulnerable codes
in software by analyzing attacks directly in virtual surroundings. It does
not need any source codes or care about polymorphic/metamorphic shell-
code (even no shellcode). We present a new kind of dependence between
variables called latent dependence and use it to save necessary states
for virtual surrounding replaying. In this way, AutoDunt does not need
to use slicing or taint analysis method to find the vulnerable code in
software, which saves managing time. We verify the effectiveness and
evaluate the efficiency of AutoDunt by testing 81 real exploits and 7
popular applications at the end of this paper.

Keywords: AutoDunt, Latent dependence, Zero day vulnerability, De-
bug, Arbitrary code execution.

1 Introduction

Zero day vulnerabilities play a very important role in cyber security [1,2]. Many
well known cyber security problems, such as worms, zombies and botnets, are
rooted in that. Before a zero day vulnerability is disclosed, attacks based on it
will be almost always effective since there is no patch for it. Moreover, a zero day
vulnerability can usually be popular without being disclosed for many years. For
example in 2008 Microsoft confirmed a vulnerability in Internet Explorer, which
affected some versions that were released in 2001 [3]. This is very dangerous since
hackers can use this vulnerability to attack again and again before its patch is
published. New methods such as return-oriented programming [4] make those
attacks even more difficult to detect.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 140–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

AutoDunt: Dynamic Latent Dependence Analysis 141

People usually defend against zero day attacks in the following three ways.
1) Detecting all vulnerabilities in software and patching them seem to be a
reasonable way [5,6,7]. But vulnerability detection is a challenging task. It is
almost impossible for current detection techniques to find all the vulnerabilities.
Thus, hackers could still use zero day vulnerabilities to attack. 2) Some methods
such as LibSafe [8] and address space randomization [9,10] are used to prevent
attacks without prior knowledge of vulnerabilities. But these methods cannot
protect other hosts that do not use these methods. 3) Some methods such as
Memsherlock [11] can point out the corruption position in software by slicing
source codes [12] or using taint analysis method [13]. These methods usually need
source codes. Unfortunately, not all of the software provide their source codes,
especially the commercial software. It is not easy for them to perform operating
system kernel protection. Moreover, slicing and taint analysis methods are not
efficient since they need to record program execution traces or to instrument lots
of instructions.

In this paper, we have designed and developed an end-to-end approach to au-
tomatically prevent attacks and point vulnerable positions in software by using
attack information without source codes. At a high level, our approach is a four-
step process: saving, detecting, rolling back and re-running. When examining a
software sample, we first load it into our analysis environment. We save some
snapshots of the CPU and memory when the sample is running. When an attack
is detected, we roll back the running thread to a certain saved state. In the end,
we re-run the thread from the checkpoint to find the position of the vulnerabil-
ity. We present a new dependence between variables called latent dependence to
decrease the number of saved states. To explore the feasibility of our approach,
we design and develop a proof-of-concept prototype called AutoDunt and make
several experiments on it. The results show that AutoDunt successfully detects
arbitrary code execution vulnerabilities and points out the right vulnerable po-
sitions in the binary codes even if the attacks are polymorphic/metamorphic.

In summary, this paper makes the following contributions:
– the concept of latent dependence between variables represented by medium

instructions, which is essential to arbitrary code execution vulnerabilities. By
recognizing this type of relationship between variables and saving the states
when medium instructions are executed, we decrease the number of saved states
to about 0.232% of all the running blocks in average.

– an automatic system AutoDunt that performs kernel-level analysis and au-
tomatically points out vulnerable codes in binary programs without any source
codes from zero day attacks. It avoids using slicing and taint analysis methods
to increase managing speed. It does not care about the form of the shellcode
even it is polymorphic/metamorphic.

– a description of how the malicious input exploits the unknown vulnerabil-
ities. By re-running threads from checkpoints in virtual surroundings, we can
replay the whole process of exploiting the vulnerability.

The rest of the paper is organized as follows. In Section 2, we summarize the
work related to ours. In Section 3, we give an overview of our work. In Section 4,

142 K. Chen, Y. Lian, and Y. Zhang

some definitions of latent dependence are shown. We give the implementation in
Section 5 and show our experimental results in Section 6. Finally, we conclude
the paper in Section 7.

2 Related Work

Our work draws on techniques from several areas, including: A) worm detection
and signature generation, B) vulnerability prevention and C) virtual-machine
replaying.

A) Generating worm signatures is an effective way to detect worms. Auto-
graph [14] automatically generates signatures for novel Internet worms that
propagate using TCP transport. Polygraph [15] can produce signatures that
match polymorphic worms. Hamsa [16] enhances the efficiency, accuracy and at-
tack resilience. SigFree [17] can block new and unknown buffer overflow attacks
without signature. All the methods in this class need to analyze TCP traffic.
Thus, if the attack is only performed once, it cannot be detected. Our work uses
host-based method to detect such attacks without any need for network traffic.
Most methods in this class rely on analyzing shellcode to detect attacks. New
techniques such as return-oriented programming [4] make it possible that there
is no shellcode in the malicious payload, which increases the difficulty to detect
attacks.

B) Different methods are proposed to prevent vulnerabilities. Modifications
of OS are made to prevent buffer overflow such as Pax [18], LibSafe [8] and e-
NeXsh [19]. These methods need to re-compile the operating system. Mcgregor
[20] proposed to store return address on the processor that no input can change
any return address. This method needs hardware support. Our method supplies
a cheap solution that we do not need to modify any operating system or hard-
ware. Castro [21] proposed a new approach called data-flow integrity detection to
prevent the system from being attacked. It needs to analyze source codes firstly
and hence cannot handle indirect control flow precisely. Kiriansky etc. presented
program shepherding to monitor control flow transfers to enforce a security pol-
icy [22]. Bhatkar etc. proposed address space randomization to randomize all
code and data objects and their relative distances to protect against memory
error exploits [23]. But it also needs source codes and it can only protect the
software using randomization techniques while AutoDunt could detect the vul-
nerability and alarm other computers even without AutoDunt. Vigilant [24] can
control the spread of worm by automatically generating SCAs. But if the worm is
polymorphic, Vigilante will generate too many SCAs. MemSherlock [11] is very
similar to our work. It can identify unknown memory corruption vulnerabilities
upon the detection of malicious payloads that exploit such vulnerabilities, but
it needs source codes and needs to analyze libraries files in advance. Further-
more, neither Vigilant nor MemSherlock can analyze operating system kernel
while AutoDunt performs a whole-system, fine-grained analysis. Brumley and
Newsome etc. focus on signature generation in their work [25,26] but they do
not care about how to find the vulnerabilities. Panorama [27] and TTAnalyze

AutoDunt: Dynamic Latent Dependence Analysis 143

[28] can detect and analyze malware by capturing its behavior. They aim to
comprehend the behavior and innerworking of unknown samples while our work
aims to protect system and detect vulnerabilities. Most of the methods above
use dynamic taint analysis [13,29], which suffers a lot from high overhead.

C) In our work, we use the method of virtual-machine replay. TTVM [30] is
very similar to AutoDunt from the first view. It also saves the states of operating
system and re-runs the system from checkpoints. Since we aim to find vulner-
abilities while TTVM aims to debug operating system, the time when to save
states differs a lot. TTVM saves the states when processing external inputs while
AutDunt only saves the states related to vulnerabilities. In this way, the number
of AutoDunt’s checkpoints is much less than that of TTVM’s checkpoints. Since
different operating systems may have different input functions, TTVM needs
to know all of them. AutoDunt is based on latent dependence which does not
care about different platforms and operating systems. Moreover, we distinguish
processes and threads to supply more precise results.

3 Overview of AutoDunt

Our approach is a four-step process: saving, detecting, rolling back and re-
running. Figure 1 depicts the overview of AutoDunt. We first build virtual sur-
rounding to load a program and monitor its behavior. In this way, AutoDunt
saves necessary states without any interference with the programs running inside
virtual machine. The next step is to detect the attack. For the sake of simplicity,
in our current proof-of-concept implementation, we only detect arbitrary code
execution vulnerability. However, using the method in Vigilante [24] to detect
other types of vulnerabilities is straightforward. When an attack happens, we
roll back and re-run the system from the saved states to find the vulnerable code.

Fig. 1. An Overview of AutoDunt

Process is not the scheduled unit but the thread is. So we need to distinguish
different threads. System Monitor can extract thread information by using oper-
ating system kernel data structure such as ETHREAD. When the vulnerability
is triggered, eip (instruction pointer) will point to special position in memory

144 K. Chen, Y. Lian, and Y. Zhang

such as stack or heap. Vulnerability Analyzer saves the thread states of the tar-
get program using latent dependence between variables. From the saved states,
AutoDunt points out the vulnerable code in software.

Fig. 2. Design of Vulnerability Analyzer

Figure 2 is the structure of Vulnerability Analyzer, which seems like a time
machine. To re-run the target thread, it is necessary to save its running states.
However, the number of the states may be too large even infinite to save. So
proper states should be chosen by State Choosing Module. State Saving Module
saves the chosen states into the State Repository according to the criteria in
the next section. When an attack happens, State Recovery Module will pick
out suitable state from the State Repository to re-run the target thread for
vulnerability detection. In this way, complex methods such as slicing and taint
analysis can be avoided. What AutoDunt needs to do is to compare the thread’s
states and to re-run the thread from those states.

4 Latent Dependence

In this section, we propose a new kind of dependence between variables in pro-
gram. We also make some conclusions and implement AutoDunt based on them.
Let’s start from an example:

int a = 10 ; char b[10]; int i = 0;

do{cin>>b[i];} while(b[i++] != ‘0’);

In the upper example, the value of a seems not to be changed after the loop.
This can only be guaranteed if the length of the input is less than 10 bytes. Note
that the loop exit condition is that the input value equals ‘0’. So if the input is
not equal to ‘0’ for 10 times, it will overflow buffer b and overwrite a. In this
case, the value of a may not be ‘10’ at the end of the program. So a may be data
dependent on input. This kind of dependence is very special. It cannot be caught
by regular analysis method. We refer to it as latent dependence. We define static
definition set and dynamic definition set first.

Definition 1. [Static Definition Set]: Static definition set of instruction I
includes variable(s) in I whose value(s) will always be changed after I is executed.
It can be referred to as defs(I). For example, in instruction ‘a = b’, defs(I) = a.

AutoDunt: Dynamic Latent Dependence Analysis 145

Definition 2. [Dynamic Definition Set]: Dynamic definition set of instruc-
tion I includes variable(s) whose value(s) will possibly be changed after I is
executed. It can be referred to as defd(I).

Definition 3. [Latent Dependence]: If v ∈ defd(I), then v latent dependent

on use(I). It can be referred to as v
LD(I)−−−−→ use(I). use(I) is the set of variable(s)

that I uses. I can be called medium instruction.

Suppose instruction I is in the form of ‘op opr1, opr2’. op is opcode, and opr1
and opr2 are operands. If defd(I) �= ∅, ‘opr1’ must be a piece of memory
with indirect index. Otherwise, opr1 ∈ defs(I) and defd(I) = ∅. Suppose the

indirect index is ‘r’. There are two situations here: S1) r
DD−−→ input (DD means

data dependence), which means input data could change arbitrary memory lo-

cations in a program. S2) r � DD−−→ input. In this situation, I should be in a loop.
Otherwise, r has a fixed value and defd(I) = ∅.

S1 is not very common since a normal program will not let input data change
arbitrary memory locations. Even if this situation happens, there are some limi-
tations on ‘r’, which is less likely to be a vulnerability. So we focus our attention
on S2. In this situation, we try to identify medium instructions and latent de-
pendence between variables by recognizing loops. There are lots of algorithms to
find loops in programs such as [31]. We use DJ graphs to identify loops [32] in
this paper. In this way, we can get candidate medium instructions easily in static
analysis. But not all the instructions in loops can become medium instructions
even if their left values are with indirect indexes. More limitations should be
added to narrow the scope of candidate medium instructions.

Definition 4. [Super Variable]: The super variable of a variable v is the
continuous objects of the same type which v belongs to. It can be referred to
as sv(v). For example, the super variable of an element in an array is the array
itself.

If an arbitrary code execution vulnerability is triggered in a loop l, there exists
i which meets sv(v(i)) �= sv(v(i+1)). v ∈ defs(I) ∪ defd(I) and sv(v(i)) means
the super variable of v in the ith execution of I in l. This can be used to detect
latent dependence in dynamic analysis. Since we analyze binary codes directly
without source codes, we do not know type information of variables. So it is
difficult to judge whether sv(v(i)) �= sv(v(i+1)).

We generate some rules to distinguish possibly different types. Table 1 shows
those rules. Three classes of marks are used here: read/write mark, loop mark
and memory block mark. Read/write mark indicates that a piece of memory has
been read/written. We distinguish them since they can be used to detect other
types vulnerabilities such as reading uninitialized memory in the future. Loop
mark indicates that a piece of memory is read or written in a loop. Memory
block mark is used to distinguish different blocks of memory. Any two blocks of
memory have different memory block marks.

146 K. Chen, Y. Lian, and Y. Zhang

Table 1. Rules to Distinguish Possibly Different Types

Memory operations: Rules:

Read mem[i] (outside loop) smem[i]← smem[i] + r
Write mem[i] (outside loop) smem[i]← smem[i] + w
Allocate mem[i ∼ j] smem[i ∼ j]← mb
Release mem[i ∼ j] smem[i ∼ j]← ∅
Read/Write mem[i] (inside loop) Check marks in smem[i] and smem[i]← l

In table 1, mem[i] is the piece of memory indexed by i. smem is the shadow
memory of mem. If mem[i] is read/written outside loops, we add read/write
mark ‘r/w’ to smem[i]. When a new block of memory mem[i ∼ j] is allocated,
we set memory block mark ‘mb’ to every piece of memory in smem[i ∼ j]. mb is
different from the memory block mark of smem[i− 1] and that of smem[j + 1].
When a block of memory is released, we clear the marks. When a read/write
operation I in loop l is executed, we can test whether v(i) and v(i+1) have the
same mark (v ∈ defs(I) ∪ defd(I)). If not, we will get v ∈ defd(I). We also add
loop mark ‘l’ to it. We do not set ‘r/w’ to the piece of memory with l. Based on it,
we design and develop a proof-of-concept prototype called AutoDunt. Detailed
implementation will be shown in the next section.

5 Implementation

We choose QEMU [33] as the virtual surrounding because of its efficiency when
compared to previous processor emulators such as Bochs. QEMU works in the
following way. It first picks a basic block of executable codes from the program.
A basic block in a procedure is a sequence of consecutive instructions with a
single entry and a single exit point. Then QEMU translates the codes and runs
it at last. AutoDunt plays as a middleware to analyze the codes and saves the
necessary states of the guest OS. In this way, AutoDunt can be easily integrated
with other virtual surroundings.

5.1 State Saving Module

In order to re-run a thread from a certain checkpoint, proper states should be
saved when the thread is running. In our current implementation, AutoDunt
only saves memory states and CPU states of the running thread, which are
enough for vulnerability detection. Saving the state of every basic block works
well. But most states are unnecessary for vulnerability detection. We use the
results of latent dependence analysis to decrease the number of saved states.
When we find sv(v(i)) �= sv(v(i+1)) in a loop, we save the current state for the
loop (only once). We use QEMU to instrument memory operation codes in table
1 to distinguish possibly different types. Some memory operations are implicit.
For example, PUSH, POP, CALL and RET instructions can change stacks. Since
CALL instruction will write return address in the stack, AutoDunt sets ‘w’ mark

AutoDunt: Dynamic Latent Dependence Analysis 147

to the corresponding memory in smem. In this way, this type of vulnerability
can be detected by latent dependence analysis. Overflowing SEH could also be
detected since the address of exception handling function is marked in smem.
Heap and stack have different kinds of memory allocation operations. Heap is
usually allocated by system call ‘HeapAlloc’ while stack is allocated by any
function call.

When AutoDunt manages nested loops, the states of inner loop may be saved
many times. For example, suppose there are three loops. The outer-most one is
l1, the inner loop of l1 is l2, and the inner loop of l2 is l3. Suppose l1 runs t1
times and l2 runs t2 times. Then the states may be saved t1 × t2 times. Most
of the saved states are unnecessary. So before AutoDunt saves a state, it should
firstly try to identify nested loops and only saves the state once. In this way,
we can avoid saving unnecessary states. Evaluations about the number of saved
states will be shown in Section 6.

Sometimes we do not need to analyze some trusted codes such as system calls
and library functions. This saves a lot time since the number of these codes is
not small. According to experiments in Section 6, we find kernel codes are about
55.6% of the overall codes in average. We define a set of instruction addresses
which do not need to be analyzed. AutoDunt ignores the instructions whose
addresses are in the set.

5.2 State Recovery Module

If a vulnerability is exploited, the vulnerable code can be found by compar-
ing the saved states and re-running the thread. QEMU supplies an interface
‘cpu memory rw debug’ to access virtual memory of guest operating system. So
it is easy to re-run the thread from a saved state. There is no need to re-run every

saved state to perform vulnerability detection. Suppose eip
DD−−→ v

LD−−→ Input
and the value of eip is veip when an attack happens. We choose state si as start-
ing state for vulnerability analysis. si meets the following conditions: the value
of v in si+1 equals to veip and the value of v in si does not equals to veip. si+1

is the next state after si. In this way, we can find the medium instruction that
changes v. This information is valuable for software vendors to generate patches.
By restarting the process from si, we avoid analyzing the codes from program
start point, which improves the overall efficiency, especially when the program
has executed for a long time. We analyzed 81 exploits and found this method
could point out almost all of the vulnerable codes. Detailed results are shown in
Section 6.

5.3 Distinguishing Different Processes and Threads

In windows operating system, different processes have different CR3 values. CR3
is a register in CPU to save the page directory address of current process, which
can be used to distinguish different processes. When using QEMU, it is easy to
read CR3 value in virtual CPU. We can use EPROCESS structure to get process
names. In this way, we can choose the target program to analyze by names.

148 K. Chen, Y. Lian, and Y. Zhang

As different threads have different ID numbers, thread ID can be used to
distinguish them. AutoDunt can get thread ID easily from ETHREAD struc-
ture by using the interface ‘cpu memory rw debug’. Although the structure of
ETHREAD differs in different operating system, it is not a big task to acquire
its structure information. In fact, most rootkits use ETHREAD to get thread id
in the same way.

6 Evaluation

In order to evaluate the effectiveness and efficiency of AutoDunt, we deploy
it with QEMU 0.9.0 and do some evaluations. Our testing computer is one
IBM server which is equipped with two 3GHz Intel Pentium IV processors, 4GB
memory cards and the operating system is Linux 2.6.11.

6.1 Effectiveness

To evaluate the effectiveness of AutoDunt, we test 81 real exploits. 35 of them
are stack buffer overflow exploits, 23 of them are heap overflow exploits, 6 of
them are integer overflow exploits and the rest are format string exploits. Most
of the exploits are from Milw0rm [34] while the rest are collected from Internet.

We first choose MS06-055 (Vulnerability in Vector Markup Language Could
Allow Remote Code Execution) [35] as a case study to illustrate AutoDunt.
We select an unpatched Windows XP SP1 as guest operating system and run
IE on it. Then we load a malicious HTML webpage (MS06-055.htm) which is
shown as the left part of figure 3. AutoDunt successfully points out the medium
instruction when the vulnerability is exploited. The code is ‘MOV [EDI], DX’

(0x6FF3ED1E) which copies malicious input to stack and overwrites the return

address. This instruction is in a loop and eip
LD(MOV [EDI],DX)−−−−−−−−−−−−−−→ Input . Au-

toDunt also figures out the position of input data which changes the value of
eip. To verify its correctness, we change the data at this position from ‘AA’ to
‘MN’ (as shown in the right part of figure 3) and load the webpage again. After
the overflow, eip pointers to 0x004E004D (which is the Unicode form of ‘MN’ in
memory).

Fig. 3. A Malicious Webpage for MS06-055

AutoDunt: Dynamic Latent Dependence Analysis 149

In 81 exploits we have tested, we find AutoDunt could point out 77 right
positions of the vulnerable codes successfully. The rest four vulnerabilities are all
format string ones. Format string vulnerability falls into three categories: denial
of service, reading and writing [36]. The four vulnerabilities are all in category
three, which is the combination of arbitrary code execution attack and arbitrary
function argument attack. We do not implement this kind of detection in our
current prototype. It is not difficult to achieve this by using the method in [24].
Note that there may be some false positives in our system if the target program
modifies the return address in stack itself. This exists in some self-modified codes
and packed binaries. We will manage this problem in the future.

6.2 Obfuscated Shellcode Detection

Obfuscated shellcode usually has different signatures from its original one, which
makes it difficult to detect. So attackers like to obfuscate codes to evade the
detection of antivirus software and firewall [37,38]. In this part, several methods
are chosen to obfuscate the shellcodes of five popular worms (including CodeRed,
Slammer, Blaster, Sasser, MyDoom) to test the robustness of AutoDunt.

Table 2. Obfuscated Shellcode Detection

Obfuscation Result

Code Reordering Yes

Garbage Insertion Yes

Equivalent Code Replacement Yes

Jump Insertions Yes

Code and Data Encapsulation Yes

Register Renaming Yes

Branch function Yes

Opaque Predict Yes

No Shellcodes Yes

Table 2 shows that no obfuscated shellcode could evade the detection of Au-
toDunt. It is easy to understand since AutoDunt does not rely on signatures to
detect shellcode. What AutoDunt cares is the change of super variables. Thus,
no matter how different the shellcode seems, AutoDunt can still detect it and
expose the vulnerable code in software.

6.3 Efficiency

We measured the efficiency of AutoDunt using several popular software in Win-
dows in different ways. Table 3 compares the basic block number of user codes
and kernel codes of several popular applications. It also shows the number of
saved states and their proportion to all blocks. The result shows that AutoDunt
chooses only a few states to save, which increases the efficiency of state saving

150 K. Chen, Y. Lian, and Y. Zhang

and recovery. The peak memory usage of AutoDunt is also recorded. AutoDunt
only saves the changed memory instead of the whole memory of each state, which
saves a lot of memory and time. A comparison of these two methods is shown in
figure 4. The first method is to record the whole memory of user stack in each
state. We do not include heaps and global memory here since the memory usage
is too high for AutoDunt to manage. The other method is to record changed
memory (including stack, heap and all the other global memory). It is obvious
that the memory usage of AutoDunt is extremely low. We also compare the
memory usage between AutoDunt and TTVM [30], which also saves program
states and replays them for program analysis. The memory usage (per second)
of AutoDunt is about 0.5 MB/s while the usage of TTVM is about 4∼7 MB/s
[30]. The travel time to go to a desired point is about 10 seconds for TTVM
while it is less than 1 second for AutoDunt.

To measure the overhead of state saving process, we record the time to open
a document or a mp3 music according to different programs. Figure 5 compares
the running time of those programs in native system and in virtual surroundings
(with and without AutoDunt). The overhead of AutoDunt is about two times as

Table 3. Blocks number, States number and Memory Usage of Different Programs

Microsoft
Word
2003

Acrobat
Reader 7

Media
Player 10

Microsoft
IE 6

Microsoft
Live Mes-
senger 8.1

Outlook
2003

Excel
2003

Block (user) 38251073
(42.108%)

13167959
(68.262%)

16601976
(31.926%)

20316738
(30.115%)

43028837
(62.143%)

36883635
(37.210%)

21935884
(39.350%)

Block (ker-
nel)

52589922
(57.892%)

6122278
(31.738%)

35398642
(68.074%)

47146661
(69.885%)

26212978
(37.857%)

62240349
(62.790%)

33809681
(60.650%)

State Num-
ber

135972
(0.150%)

123907
(0.642%)

179815
(0.346%)

56864
(0.084%)

138585
(0.200%)

125420
(0.127%)

40545
(0.073%)

Memory
(KB)

13,145 16,698 3,408 12,988 10,975 14,647 13,820

Fig. 4. Memory usage of two methods,
one is to save all the memory of user
stack and the other is to save changed
memory

Fig. 5. Several programs’ runtime per-
formance in AutoDunt, QEMU and na-
tive system (Windows)

AutoDunt: Dynamic Latent Dependence Analysis 151

much as QEMU in average. As the performance of AutoDunt depends much on
virtual surroundings, it increases with the improvement of virtual technologies.
Moreover, some other methods [39,40,41] are proposed to decrease the overhead
in dynamic analysis.We may use them in the future implementation of AutoDunt.
Figure 6 and figure 7 show the results of omitting the trusted code and nested loop.
They save as much as 2.95x numbers of states and 3.94x running time in average.

Fig. 6. The number of states with/
without trusted codes and nested loops

Fig. 7. The running time of different
programs with/without trusted codes
and nested loops

7 Conclusion and Future Work

In this paper, we design and develop a proof-of-concept prototype called Auto-
Dunt to detect arbitrary code execution vulnerabilities in software by analyz-
ing attacks directly in virtual surroundings. It could analyze both user codes
and kernel codes without any source codes. It does not care about polymor-
phic/metamorphic shellcode (even no shellcode). We also propose a new kind of
dependence between variables called latent dependence to decrease the number
of saved states for virtual surrounding replaying. In this way, there is no need
to use slicing method or taint analysis method, which increases the efficiency.

AutoDunt is a young system. Finding vulnerable codes greatly relies on at-
tacks detection. In future work, we will enhance the detection part of AutoDunt.
We will also try to decrease the number of saved states and increase the manag-
ing speed further. Moreover, we try to implement AutoDunt in a non-emulated
environment to improve efficiency.

Acknowledgement. This work was supported by the National Natural Science
Foundation of China (Grant No.61100226, No.60970028).

References

1. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks and
defenses for the vulnerability of the decade. In: Foundations of Intrusion Tolerant Sys-
tems (Organically Assured and Survivable Information Systems), pp. 227–237 (2003)

152 K. Chen, Y. Lian, and Y. Zhang

2. Kuperman, B.A., Brodley, C.E., Ozdoganoglu, H., Vijaykumar, T.N., Jalote, A.:
Detection and prevention of stack buffer overflow attacks. Communications of the
ACM 48(11), 50–56 (2005)

3. BBC: Serious security flaw found in ie (2011),
http://news.bbc.co.uk/2/hi/technology/7784908.stm

4. Hund, R., Holz, T., Freiling, F.: Return-oriented rootkits: Bypassing kernel code in-
tegrity protection mechanisms. In: Proceedings of the 18th Conference on USENIX
Security Symposium, pp. 383–398. USENIX Association (2009)

5. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In:
Proceedings of the 31st International Conference on Software Engineering, pp.
474–484. IEEE Computer Society (2009)

6. Bisht, P., Hinrichs, T., Skrupsky, N., Bobrowicz, R., Venkatakrishnan, V.:
Notamper: automatic blackbox detection of parameter tampering opportunities
in web applications. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 607–618. ACM (2010)

7. Avgerinos, T., Cha, S., Hao, B., Brumley, D.: Aeg: Automatic exploit generation.
In: Proceedings of the Network and Distributed System Security Symposium (2011)

8. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack
smashing attacks. In: Proceedings of the USENIX Annual Technical Conference,
pp. 251–262 (2000)

9. Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 298–307. ACM (2004)

10. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (aslp): Towards fine-grained randomization of commodity software. In: 22nd
Annual Computer Security Applications Conference, ACSAC 2006, pp. 339–348.
IEEE (2006)

11. Sezer, E.C., Ning, P., Kil, C., Xu, J.: Memsherlock: An automated debugger for
unknown memory corruption vulnerabilities (2007)

12. Weiser, M.: Programmers use slices when debugging. Communications of the
ACM 25(7), 446–452 (1982)

13. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
12th Annual Network and Distributed System Security Symposium (2005)

14. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature
detection. In: USENIX Security Symposium, vol. 286 (2004)

15. Newsome, J., Karp, B., Song, D.: Polygraph: automatically generating signatures
for polymorphic worms. In: 2005 IEEE Symposium on Security and Privacy, pp.
226–241 (2005)

16. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature gen-
eration for zero-day polymorphic worms with provable attack resilience. In: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy, pp. 32–47 (2006)

17. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow
attack blocker. In: Proceedings of the 15th conference on USENIX Security (2006)

18. PaX.Team: Pax documentation (2003),
http://pax.grsecurity.net/docs/pax.txt

19. Kc, G.S., Keromytis, A.D.: e-nexsh: Achieving an effectively non-executable stack
and heap via system-call policing. In: 21st Annual Computer Security Applications
Conference, pp. 286–302 (2005)

http://news.bbc.co.uk/2/hi/technology/7784908.stm
http://pax.grsecurity.net/docs/pax.txt

AutoDunt: Dynamic Latent Dependence Analysis 153

20. McGregor, J.P., Karig, D.K., Shi, Z., Lee, R.B.: A processor architecture defense
against buffer overflow attacks. In: Proceedings of International Conference on
Information Technology: Research and Education, ITR 2003, pp. 243–250 (2003)

21. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity
(2006)

22. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shep-
herding. In: Proceedings of the 11th USENIX Security Symposium, pp. 191–205
(2002)

23. Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient techniques for comprehensive
protection from memory error exploits. In: Proceedings of the 14th Conference on
USENIX Security Symposium, vol. 14 table of contents, p. 17 (2005)

24. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: end-to-end containment of internet worms. In: Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, pp. 133–147 (2005)

25. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures using
weakest preconditions. In: 20th IEEE Computer Security Foundations Symposium,
pp. 311–325 (2007)

26. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proceedings of the 2006 IEEE Sym-
posium on Security and Privacy, pp. 2–16 (2006)

27. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, pp. 116–127.
ACM, New York (2007)

28. Bayer, U., Kruegel, C., Kirda, E.: Ttanalyze: A tool for analyzing malware. In: 15th
Annual Conference of the European Institute for Computer Antivirus Research,
EICAR (2006)

29. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. In: Proceedings of the 11th International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 85–96 (2004)

30. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-
traveling virtual machines. In: Proceedings of the USENIX 2005 Annual Technical
Conference (2005)

31. Ramalingam, G.: Identifying loops in almost linear time. ACM Transactions on
Programming Languages and Systems (TOPLAS) 21(2), 175–188 (1999)

32. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: Identifying loops using dj graphs. ACM
Transactions on Programming Languages and Systems (TOPLAS) 18(6), 649–658
(1996)

33. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)

34. Milw0rm: milw0rm-exploits: vulnerabilities: videos: papers: shellcode (2008),
http://www.milw0rm.com/

35. Microsoft: Microsoft security bulletin ms06-055 (2006),
http://www.microsoft.com/technet/security/Bulletin/MS06-055.mspx

36. techFAQ: What is a format string vulnerability? (2011),
http://www.tech-faq.com/format-string-vulnerability.shtml

37. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. University of Auckland Technical Report 170 (1997)

http://www.milw0rm.com/
http://www.microsoft.com/technet/security/Bulletin/MS06-055.mspx
http://www.tech-faq.com/format-string-vulnerability.shtml

154 K. Chen, Y. Lian, and Y. Zhang

38. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static
disassembly. In: Proceedings of the 10th ACM Conference on Computer and Com-
munications Security, pp. 290–299 (2003)

39. Ho, A., Fetterman, M., Clark, C., Warfield, A., Hand, S.: Practical taint-based pro-
tection using demand emulation. In: Proceedings of the 2006 EuroSys Conference,
pp. 29–41 (2006)

40. Qin, F., Lu, S., Zhou, Y.: Safemem: exploiting ecc-memory for detecting mem-
ory leaks and memory corruption during production runs. In: 11th International
Symposium on High-Performance Computer Architecture, HPCA-11, pp. 291–302
(2005)

41. Qin, F., Wang, C., Li, Z., Kim, H., Zhou, Y., Wu, Y.: Lift: A low-overhead practical
information flow tracking system for detecting security attacks. In: Proceedings
of the Annual IEEE/ACM International Symposium on Microarchitecture (Micro
2006), Orlando, Florida, USA (December 2006)

Weaknesses in Current RSA Signature Schemes

Juliane Krämer, Dmitry Nedospasov, and Jean-Pierre Seifert

Security in Telecommunications
Technische Universität Berlin and Deutsche Telekom Innovation Laboratories

Germany
{juliane,dmitry,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. This work presents several classes of messages that lead to
data leakage during modular exponentiation. Such messages allow for the
recovery of the entire secret exponent with a single power measurement.
We show that padding schemes as defined by industry standards such as
PKCS#1 and ANSI x9.31 are vulnerable to side-channel attacks since
they meet the characteristics defined by our classes. Though PKCS#1
states that there are no known attacks against RSASSA-PKCS1-v1 5,
the EMSA-PKCS1-v1 5 encoding in fact makes the scheme vulnerable to
side-channel analysis. These attacks were validated against a real-world
smartcard system, the Infineon SLE78, which ran our proof of concept
implementation. Additionally, we introduce methods for the elegant re-
covery of the full RSA private key from blinded RSA CRT exponents.

Keywords: RSA, PKCS#1, ANSI x9.31, Side-Channel Attacks, Simple
Power Analysis, CRT, Exponent Blinding.

1 Introduction

Side-channel attacks exploit information leaked by the physical characteristics of
a cryptosystem [8,9,17]. A common side-channel attack is power analysis. Power
analysis can be categorized into two subcategories, simple power analysis (SPA,
methods requiring few measurements) and differential power analysis (DPA,
methods requiring many measurements) [12]. Since it is commonly impossible
to recover the data being leaked in a single measurement, adversaries are often
forced to perform DPA to recover data in its entirety. In turn, countermeasures,
e.g., blindings, are implemented to counteract the attacks and to thwart DPA.

In this work, we attack the RSA signature process by performing simple power
analysis to recover the potentially blinded secret exponent. We present several
classes of messages that lead to data leakage during modular exponentiation.
Specifically, we show that several properly formatted standardized input mes-
sages, including the message encodings of PKCS#1 [18] and ANSI x9.31 [1],
meet the criteria defined by these classes. Thus, we show that compliance with
industry standards can in fact lead to data leakage, although these standards
are considered to be secure message encodings.

The analysis was performed against our proof of concept (POC) implemen-
tation running on an Infineon smartcard system, which performed ZDN-based

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 155–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 J. Krämer, D. Nedospasov, and J.-P. Seifert

modular multiplication [7]. This setup allowed us to test all classes of input mes-
sages presented in this work. For all classes of input messages, the SPA yielded
the entire private exponent or the entire blinded private exponent that was used
for the signature process.

Recovering a potentially blinded exponent is sufficient to sign messages in
the RSA signature scheme. However, this is not true for RSA CRT. In the case
of RSA CRT, the attacker must instead recover the full private key. Methods
for recovering the full RSA private key have been known since 1978, whereas we
present two specific methods for RSA CRT, with and without exponent blinding.
Since several methods for recovering a secret exponent fail to recover all of the
exponent bits, we present the approach exponent un-blinding, which enables an
attacker to compute the full private key more efficiently in such cases. This
method can cope with more noise, more efficiently than other known methods.

The main contributions of this paper are:

1. Categorization of common vulnerable message classes and the corresponding
attack scenarios.

2. Demonstrating that constant padding makes RSA signature schemes such as
RSASSA-PKCS1-v1 5 and ANSI x9.31 vulnerable to side-channel analysis.

3. Practical validation of the attacks and the proposed attack scenarios against
a proof of concept implementation on an Infineon smartcard system.

4. More efficient methods for recovering the full RSA CRT private key from
blinded private exponents.

The paper is organized as follows: Section 2 presents necessary background in-
formation. In Section 3 we present several common types of input messages and
explain attack vectors and scenarios which arise from certain characteristics of
these messages. We categorize these characteristics into classes of messages which
lead to data leakage. Any valid PKCS#1 and ANSI x9.31 message meets the cri-
teria defined in one of these classes. We then demonstrate these attacks against
an Infineon smartcard system running our POC implementation in Section 4. In
Section 5, novel methods for the recovery of the full private key are explained for
RSA CRT. Finally, we summarize the implications of our research in Section 6.

2 Background

In this section, we first give a brief introduction of the RSA and the RSA CRT
signature scheme. We then explain the square-and-multiply algorithm for mod-
ular exponentiation and the ZDN algorithm for modular multiplication. Finally,
we explain blinding techniques, which are used to thwart statistical attacks.

2.1 RSA CRT

Let (N, e) be the public RSA modulus and exponent, and (p, q, d, ϕ(N)) be the
private key, satisfying N = pq and ed ≡ 1 mod ϕ(N). As the modulus N is
the product of two different primes, the Chinese Remainder Theorem (CRT)

Weaknesses in Current RSA Signature Schemes 157

can be used to speed up the time intensive process of message signing by a
factor of four [13,16]. Instead of computing the RSA signature s = md mod N
with an exponent of the order of n = log2(N) bits (assuming a small e), two
modular exponentiations with n/2-bit exponents are performed. In this setting
and without loss of generality q < p, we precompute dp = d mod (p − 1),
dq = d mod (q − 1) and qinv = q−1 mod p. These constants are also part of the
private key [18]. They are used for the computations

sp = mdp mod p and sq = mdq mod q. (1)

Subsequently, Garner’s algorithm is used to yield the signature s of m:

s = sq + (qinv · (sp − sq) mod p) · q. (2)

2.2 Square-and-Multiply for Modular Exponentiation

A commonly used algorithm for modular exponentiation is the modular square-
and-multiply algorithm, which exploits the binary representation of the exponent,
see Figure 1. The input for this algorithm is (m, d, N) and its output, s =
md mod N , is the signature of m. Let di, i ∈ {0, . . . , l− 1}, denote the ith bit of
d, i.e., d0 is the least significant bit. Thus, l is the bit length of d and we have
l = �log2(d)
 + 1. Performing a modular exponentiation with this algorithm
needs O(log2(d)) operations, i.e., it has logarithmic complexity.

2.3 The ZDN Algorithm for Modular Multiplication

Whithin the square-and-multiply algorithm, modular multiplications are per-
fomed. ZDN-based modular multiplications consist of three major parts, com-
putation of the “look-ahead” multiplication (LABooth) [5,21], computation of
the “look-ahead” reduction (LARed) [5,21], and a subsequent 3-operand addi-
tion, which finally yields the resulting partial product, see Figure 2. LABooth
is optimized to shift across constant bit strings, whereas LARed requires only
several significant bits to compute the reduction. The look-ahead reduction is
designed so that its average reduction is approximately the same as the one of
the look-ahead multiplication.1 Thanks to this high level of optimization, the
three parts are executed in parallel and require just a single clock cycle [5]. The
algorithm ensures that the intermediate result Z fulfills |Z| ≤ 1

3N , hence the
name (two-thirds N is zwei Drittel N in German).

2.4 Blinding Techniques to Thwart Statistical Attacks

Both RSA and RSA CRT are vulnerable to differential side-channel attacks
[8,9,17]. To prevent these statistical side-channel attacks, randomized blinding
is used to disguise intermediate results and to decouple the leaked information

1 Both look-ahead sub-operations are explained in detail in [20,21].

158 J. Krämer, D. Nedospasov, and J.-P. Seifert

1 input: m, d, N

2 output: md mod N

3 k := log2(d) - 1, t := 1

4 while k >= 0

5 // square

6 // ZDN Mod -Mult

7 t = (t · t) mod N

8 if dk = 1 then

9 // multiply

10 // ZDN Mod -Mult

11 t = (t ·m) mod N

12 k := k - 1

13 endwhile

14 return t

Fig. 1. Modular Square-and-Multiply

1 input: t, m, N

2 output: m · t mod N

3 Z := 0, C := m

4 l := log2(t) + 1, c := 0

5 while l > 0 or c > 0 do

6 LABooth(t, &l, &st, &vC)

7 LARed(Z, N , c, &sz, &vN)

8 sC := sZ - st

9 C := C · 2sC

10 Z := Z · 2sZ + vC · C + vN ·N
11 c := c - sC

12 endwhile

13 if Z < 0 then Z := Z + N

14 return Z

Fig. 2. ZDN-Based Modular Multiplication

from the processed data. We explain three different blinding techniques of which
two are vulnerable to our attack. In all cases, the integers r and r1, r2, respec-
tively, are random λ-bit numbers, commonly λ = 32 [22]. A new r is chosen
independently for every operation.

The first of these blinding techniques is called exponent blinding [22]. The
blinded exponent is d′ := d + r · ϕ(N). Due to Euler’s theorem, the following
equation holds true: s = md mod N = md+r·ϕ(N) mod N.2 The same blinding
can be applied to both exponents when using RSA CRT. In this case, the blinded
exponents are d′p = dp + r1 · (p− 1) and d′q = dq + r2 · (q − 1), respectively.

The second blinding technique is called base blinding [9] or message blinding.
Base blinding decouples the side channel leakage from the inputm. For a random
λ-bit integer r its inverse modulo N is calculated, i.e., r · r−1 ≡ 1 mod N .
The blinded message is m′ := re · m. Instead of m, the blinded message is
signed, yielding the blinded signature s′. The blinding is reversed by computing
s = (r−1 ·s′) mod N . Since this form of base blinding includes a computationally
expensive inverse calculation in ZN

∗, it is relatively unattractive for embedded
systems. Alternatively, another form of base blinding can be used. Given two
random λ-bit integers r1, r2 where r1 < r2, the exponentiation can be computed
as follows, s =

[
(r1 ·N +m)d mod (r2 ·N)

]
mod N . This form of base blinding

is far less computationally expensive.

3 SPA-Based Secret Exponent Recovery

In this section, we present several side-channel attacks which obtain the exponent
of a modular exponentiation with a single-trace analysis. Most known methods

2 It is very unlikely that the necessary condition gcd(m,N) = 1 is not fulfilled.

Weaknesses in Current RSA Signature Schemes 159

for recovering exponents rely on statistical analysis [4,8,9,19,23]. As such, these
methods require multiple exponentiations with the same exponent, and thus, can
be prevented by exponent blinding. Instead, we consider approaches that are able
to recover the entire exponent from a single modular exponentiation operation.
These approaches also work whenever exponent blinding is used. First, we recall
several known methods and then we present a list of criteria for the message
that, when met, allow us to recover an exponent in a single trace.

3.1 Known Methods

In 2005, an attack that uses the specific input m = −1, i.e., N − 1 mod N , was
presented [24]. This attack exploits the fact that whenever square-and-multiply
is used, there are just three distinct pairs of operations, which are performed
during exponentiation [14]. Due to the special input message, these distinct
pairs result in three distinct power dissipation states, which can be identified
within the power trace. Therefore, the bit pattern of the private exponent can
be obtained by performing a single-trace SPA [14,24]. The same approach was
extended for RSA CRT.

In 2010, an additional method for recovering secret data via a single-trace
SPA emerged [3]. The authors consider systems, which utilize t-bit multipliers
for performing long integer arithmetic, i.e., t = 32 or t = 64. If one or more t-bit
strings of a message are equal to 0, i.e., 0-strings, the message will lead to data
leakage in the power trace. The authors also describe several possible messages,
which lead to data leakage, such as messages with a low Hamming weight, i.e.,
m = 2x where x ≤ log2(N). The authors mention that multiple constant t-bit
strings, or constant strings that are longer in length, only increase the leakage
even more. We demonstrate in this work that certain aspects of this attack are
also applicable to systems that do not use t-bit multipliers of a certain length t,
and consider systems that perform full length integer multiplication directly.

3.2 Classes of Input Messages

We present several classes of input messages and corresponding attack scenarios
that lead to differences in the power consumption depending on the value of the
exponent bit. As a result, whenever a cryptosystem performs a modular expo-
nentiation with a message from one of these classes, the exponent bit sequence
can be recovered. We validate these claims by performing an SPA against a POC
implementation in Section 4.

Our attacks are based on messages that have constant bit strings, which can
lead to data leakage. Specifically, we focus on two message types. The first class
includes standardized messages, which consist largely of constant padding. In
such cases, the constant padding of the leading bits constitutes a Leading Con-
stant Bit String (LCBS). In the second class of message we consider regions of
the message, which are set or affected by user input. Usually this is a region of
the least significant bits or trailing bits. Hence we refer to this class of message
as Trailing Constant Bit String (TCBS).

160 J. Krämer, D. Nedospasov, and J.-P. Seifert

(a) 2048-bit PKCS#1 encoded message

(b) 2048-bit ANSI x9.31 encoded message

Fig. 3. Figures 3(a) and 3(b) are drawn to scale. The dark gray area of Figure 3(a)
corresponds to the “heavier” Hamming weight of the leading 0xFF of the RSASSA-
PKCS1-v1 5 padding and the lighter gray of Figure 3(b) to the “lighter” Hamming
weight of the leading 0xBB padding of ANSI x9.31.

The message classes described in this section allow us to distinguish between
square and multiply operations. Once we are able to distinguish a square from a
multiply, the bit pattern of the exponent can be recovered from a single power
trace, as is demonstrated in Section 4.

Leading Constant Bit String: The first class of message we consider, is the
Leading Constant Bit String (LCBS). These are messages in which the most sig-
nificant bits consist mostly of constant 0- or 1-strings. LCBS messages are par-
ticularly interesting because many valid messages utilizing non-random padding
schemes constitute LCBS messages. For example, we classify both RSASSA-
PKCS1-v1 5 of PKCS#1 [18] because of the leading 0xFF (111111112), and to
a lesser extent ANSI x9.31 [1] with leading 0xBB(101110112) as LCBS mes-
sages. Thus, attacks that utilize LCBS messages are potentially harder to de-
fend against because such attacks do not necessarily rely on the chosen message
attack model. In such a scenario, the data is leaked by any valid message.
Though PKCS#1 states that there are no known attacks against RSASSA-
PKCS1-v1 5 [18], we demonstrate that the EMSA-PKCS1-v1 5 encoding in fact
makes the scheme vulnerable to side-channel analysis, see Section 4. In the case
of the exemplary 2048-bit PKCS#1 message, over 84% of the message is padding,
see Figure 3(a). In the case of the exemplary 2048-bit ANSI x9.31 message, over
91% of the message is padding, see Figure 3(b).

LCBS messages do not necessarily reduce the workload of the modular re-
duction on systems that do not perform multiplication and reduction in parallel.
However, the consistent structure of the leading 0- or 1-strings ensures a reduced
workload on highly optimized systems implementing algorithms like ZDN [5].

Trailing Constant Bit String: The second class of message we consider is
the Trailing Constant Bit String (TCBS). This is an important classification
because many cryptographic schemes operate on messages that contain only a
relatively small variable region set or affected by user input. In most cases, this

Weaknesses in Current RSA Signature Schemes 161

region is a relatively small portion of the least significant bits and the bulk of
the message consists of padding. However, if an attacker is able to set as little as
5%-10% of the least significant bits by, for example, supplying the specified hash
to the signature scheme directly, then the attacker would be able to recover the
secret data independent of the padding scheme being used. In this scenario, even
if randomized padding is used, a very small region of trailing bits is sufficient to
leak the entire secret data. Note, standards such as PKCS#1 also define multiple
hash algorithms that can be used. Potentially, an attacker could even increase
the region affected by user input to be as large as 512 bits if he is allowed to
provide, for example, SHA-512-based messages instead.

As with LCBS, TCBS messages can be as long as the modulus in bits and, as
such, TCBS messages do not necessarily reduce the workload of the modular re-
duction. This is generally the case whenever multiplication and reduction are not
computed in parallel. However, on highly optimized systems, i.e. those which im-
plement ZDN [5], the constant trailing 0- or 1-strings ensure a reduced workload.

Short Messages: Though of little interest if the implementation enforces pad-
ding, the third class of messages we consider is the short message. Short messages
are messages m " N , where N is the modulus of the modular exponentiation
operation in question. Short messages can be considered LCBS messages with
leading 0-strings. We consider short messages in this work, primarily because
they exploit both the multiplication and reduction step of modular multiplica-
tion and achieve the greatest difference in the power consumption of squares and
multiplies, respectively. This was also validated against our POC implementa-
tion, where padding checks could be disabled, see Section 4. Note that efficient
implementations generally ignore, or shift across any leading 0-strings, which
in conjunction with the relatively low Hamming weight of the entire message
greatly reduces the workload of the multiplication step. Additionally, because of
the short length in bits of the message m, the intermediate result of the mul-
tiplication step of the square-and-multiply algorithm increases by only log2(m)
bits in length prior to reduction. In comparison, during the square operation,
the bit length of the intermediate result approximately doubles. As a result, in
addition to the lower computational workload of the multiplication, such mes-
sages also reduce the computational workload of the modular reduction after a
multiplication and potentially eliminate reduction completely, further lowering
the power consumption of the multiply operation.

4 Proof of Concept

In this section we present the practical evaluation of the classes of messages
described in Section 3 on a real-world system.

The cryptosystem analyzed in this work is an Infineon SLE78-based [7] smart-
card system. The SLE78 features a cryptographic coprocessor known as the
Crypto@2304T, which provides 2304-bit registers and ZDN-based modular mul-
tiplication [5]. In contrast to previous works such as [3], which focus on cryp-
tosystems that use “short” bit length multipliers (i.e. 32 or 64-bit multipliers),

162 J. Krämer, D. Nedospasov, and J.-P. Seifert

the SLE78 performs full-length arithmetic operations by utilizing registers and
logic capable of 1024-bit and 2048-bit modular multiplication. With ZDN-based
modular multiplication, multiplication and reduction are computed in parallel in
multiple iterations of the modular multiplication loop, see Section 2.3. This im-
proves performance and further reduces register length requirements by ensuring
|Z| ≤ 1

3N for the partial product Z and the RSA modulus N .
When used in conjunction with algorithms like square-and-multiply, the high-

ly optimized nature of this modular multiplication introduces additional weak-
nesses. The two important characteristics of ZDN-based modular multiplication,
which were exploited in this work are:

– LABooth ensures that the cryptosystem can shift across 0- (i.e., 00..00) and
1-strings (11..11) as well as 0- and 1-strings with isolated 1’s and 0’s, respec-
tively, i.e., (0..010..0) and (1..101..1).

– LARed ensures that partial products are only actually reduced whenever they
become too large, i.e. |Z| > 1

3N .

By selecting messages, which meet the criteria outlined in Section 3, we exploit
all of these characteristics of the algorithm. However, exploiting even any one
characteristic of the algorithm allows for the recovery of the sequence of square
and multiply operations, and thus, for the recovery of the secret exponent.

The system ran a proof of concept software implementation, which performed
RSA signing. This implementation used square-and-multiply for modular ex-
ponentiation, the ZDN algorithm for modular multiplication, and it performed
exponent blinding, as described in Section 2.2, 2.3 and 2.4. The system did not
enforce padding, which allowed us to test all the message types described in Sec-
tion 3, including short messages. The system was connected to a PC, which ran
the client software, via a standard USB smartcard reader. The client software
allowed us to select input messages and enable or disable additional software
and hardware countermeasures.

Figures 4(a) and 4(c) show the first 3ms of the computation for a common
exponent, but with the different classes of messages introduced in Section 3 as
the input. The modulus of the modular exponentiation was 1024 bits in length
for all the input message classes. For comparison since truly random messages
do not produce data leakage, we provide a trace of a random message in the
extended version of this paper (see [10]).

The data leakage is clearly visible in Figures 4(a), 4(c) and for the short mes-
sage (see [10]). The attacks failed to recover a few of the leading bits depending
on the class of input message, as described in Section 5. The system ran at
32MHz with no current limit and timing jitter enabled. Our experimental setup
allowed us to capture the entire computation at this resolution. The system
current was measured with a LeCroy 7-zi oscilloscope by performing a low-side
shunt measurement over a 10Ω resistor.

Leading Constant Bit String: Figures 4(a) and 4(b) show the data leakage
of the system while processing an LCBS input message. The LCBS message
is the most important message class analyzed in this work, because any valid

Weaknesses in Current RSA Signature Schemes 163

(a) Leading Constant Bit String message (b) Bit sequence of LCBS Message

(c) Trailing Constant Bit String message (d) Bit sequence of TCBS Message

Fig. 4. First 3ms of the exponentiation for LCBS and TCBS input messages. The
system current was measured with a LeCroy 7-Zi digital oscilloscope [11] via low-side
current shunt insertion. Figures 4(b) and 4(d) are a magnification of the time 2ms -
3ms for the respective input message.

RSASSA-PKCS1-v1 5 message is a candidate LCBS message. On systems im-
plementing highly optimized algorithms like ZDN, such as the smartcard system
we analyzed, LCBS messages can also lead to data leakage despite the leading
non-zero padding, i.e., leading 0xFF (111111112) and 0xBB(101110112). With
ZDN, the look-ahead algorithm’s sub-operations, LABooth and LARed, run in
parallel and ensure that the system simply shifts across any leading 0- or 1-
strings, deferring the bulk of the arithmetic operations, see Section 2.3. As a
result, the constant structure of the leading bits of the message ensures a lower
workload and lower power dissipation during the multiply operation. These ef-
fects are clearly visible for the LCBS input message in Figure 4(a). We chose
the message according to the scenario described in Section 3.2, i.e., we used the
constant RSASSA-PKCS1-v1 5 padding and added a random 160-bit string as
hash value. Messages coded in the ANSI x9.31 format resulted in very similar
data leakage.

Trailing Constant Bit String: Figures 4(c) and 4(d) show the data leakage
of the system while processing a TCBS input message. The TCBS message suc-
ceeds in inducing leakage despite the random padding used in the input message.

164 J. Krämer, D. Nedospasov, and J.-P. Seifert

The message consisted completely of random padding except for the least sig-
nificant 160 bits. This illustrates the scenario described in Section 3.2, where
the attacker is able to supply a hash value into the signature scheme directly.
The 160 bits of SHA-1 make up only 16% of the entire message. However, the
look-ahead algorithm’s sub-operations, LABooth and LARed, ensure that the sys-
tem simply shifts across any leading 0- or 1-strings and the trailing constant bit
string of the input message is sufficient to induce leakage on our POC imple-
mentation. Note, our experiments show that a constant bit string consisting of
as little as 5%-10% of the message is sufficient to induce data leakage. Thus,
the attack would also work against 2048-bit RSA and for other common hash
algorithms, such as SHA-256/384/512 or MD2 and MD5, respectively. Each of
these hash functions accounts for at least 6.25% and 12.5% of the entire message,
respectively, depending on whether 1024- or 2048-bit RSA is used.

Short Messages: As already mentioned in Section 3.2, short messages exploit
both parts of parallel modular multiplication algorithms such as ZDN. In con-
trast to the square operation, during the multiply, because of the small value
and low Hamming weight of the short message, the modular multiplication can
be computed very quickly with very few iterations of the LABooth algorithm,
see Section 2.3. In addition, since the intermediate result only grows by very
few bits, reduction may potentially be eliminated entirely. If the partial product
must be reduced, it can be computed with very few iterations of the loop during
ZDN-based modular multiplication, see Figure 2.3. For these reasons the short
message achieves the greatest difference in power consumption between squares
and multiplies on the SLE78.

Potential Countermeasures: Because the attacks presented in this section
require a particular structure, i.e., constant bit strings within the message, base
blinding can defeat such attacks. However, it is worth noting that the “classical”
blinding method as described by [9] actually fails in disrupting the constant bit
string structure within the message. In this case, the message m′ := re · m is
used for the exponentiation instead of m, see Section 2.4. For common values
of λ, i.e., 32-bit randoms, and small exponents, i.e., 3 or 17, the randomization
introduced into the message is actually quite minimal. Additionally, the com-
putation of the blinded message and its inverse becomes increasingly difficult
for increasing λ’s and exponents. For these reasons, an alternative form of base
blinding should be used, which ensures randomization of the entire message,
namely s =

[
(r1 ·N +m)d mod (r2 ·N)

]
mod N .

Exponent blinding could be used to obfuscate the exponent, however, blinded
exponents can also be used to sign messages in the RSA signature scheme. How-
ever, its worth noting that RSA CRT exponents cannot be used to forge signa-
tures, and for this reason we present several methods for recovering the full RSA
private key from potentially blinded exponents in Section 5.

Weaknesses in Current RSA Signature Schemes 165

Techniques that decouple the execution from the data being processed, such
as square-and-multiply-always, were able to prevent our attacks. However, other
DPA countermeasures, such as timing jitter, had no affect in our analysis.

5 Full RSA Private Key Recovery

If an attacker can obtain a CRT exponent, which also might be blinded, he can
not generate valid signatures with it since the CRT computation of signatures
requires both p and q. Thus, the attacker must factorize the modulus N . We
present three methods for the factorization of N of which only the first is known.

Lemma 1. Let N = pq be an RSA modulus, e the public exponent, and d the
private exponent with ed ≡ 1 mod ϕ(N). Let dp = d mod (p − 1) and dq =
d mod (q − 1) be the RSA private CRT exponents. Then given dp or dq, N can
be factorized [2].

Proof. Let m < N be an arbitrary message. Without loss of generality, let dp
be known. Given (N, e) and dp, we can compute c = me mod N and mp =
cdp mod N . Since p | N and dp = d mod (p − 1), m ≡ cdp mod p and mp ≡
cdp mod p. Then p = gcd(N,m−mp) [2].

Lemma 2. Let N = pq be an RSA modulus, e the public exponent, and d the
private exponent with ed ≡ 1 mod ϕ(N). Let dp = d mod (p − 1) and dq =
d mod (q − 1) be the RSA private CRT exponents. Then given a single blinded
private CRT exponent dp

′ = dp + r · (p − 1) or dq
′ = dq + r · (q − 1), r ∈ Z, N

can be factorized.

Proof. Let m < N be an arbitrary message. Without loss of generality, let
dp

′ = dp + r · (p − 1), r ∈ Z, be known. Given (N, e) and dp
′, we can compute

c = me mod N and mp = cdp
′
mod N . Since p | N and dp

′ = d + x · (p− 1) for

some x ∈ Z, m ≡ cdp
′
mod p and mp ≡ cdp

′
mod p. Then p = gcd(N,m−mp).

We propose an elegant method for recovering the full RSA private key from
blinded CRT exponents, which we call exponent un-blinding. This method spares
the expensive modular exponentiations necessary in Lemma 2.

Lemma 3. Let N = pq be an RSA modulus, e the public exponent, and d the
private exponent with ed ≡ 1 mod ϕ(N). Let dp = d mod (p − 1) and dq =
d mod (q − 1) be the RSA CRT private exponents. Then given at least k ≥ 3
blinded exponents dp

′
i = dp + ri · (p − 1) or dq

′
i = dq + ri · (q − 1), ri ∈ N,

i ∈ {1, . . . , k}, N can be factorized.

Proof. Without loss of generality, let k blinded exponents dp
′
i be known. We

calculate the pairwise differences dp
′
i,j = |dp′i − dp

′
j | = |dp + ri · ϕ(p) − (dp +

rj · ϕ(p))| = |ri − rj | · ϕ(p) = ri,j · ϕ(p) = ri,j · (p − 1), since ϕ(p) = p − 1.
Subsequently, we get G = gcd{dp′i,j} = gcd{ri,j} · (p− 1) = g · (p− 1). Thus, we

can test whether g = 1, i.e., if G = p−1, by testing whether N ≡ 0 mod (G+1).
If fulfilled, we have found p and thus know the private key. Otherwise, we test
whether N ≡ 0 mod (G/g + 1) for g = 2, 3, 4

166 J. Krämer, D. Nedospasov, and J.-P. Seifert

Alternatively, if blinded exponents are easily obtainable, we simply obtain an
additional blinded exponent dp

′
k+1 and perform the same calculations again. The

higher k is, the higher is the probability of having a very small g. We provide
experimental results and further information about the success probability in
the extended version of this paper (see [10]).

The main advantage of the exponent un-blinding approach lies in the cheap
computation costs. Many methods to obtain exponents, in fact, do not reveal the
whole exponent [6,15]. This also holds true for an attack using the short message
presented in this work, since such attack cannot distinguish square and multiply
operations during the computation of the first 7 - 8 bits, i.e., before the first
reduction. This means that we cannot determine the value of these bits, apart
from the most significant bit, which is always 1. Thus, an attacker has to test all
the resulting possibilities. The complexity of these computations can be heavily
reduced by applying exponent un-blinding. Although it requires at least three
blinded exponents, the method is very efficient. The efficiency of the algorithm
is two-fold: First, the required computations are cheap, especially compared to
modular exponentiation, which is needed when the method presented in Lemma
2 is used. Second, a false guess for one of the exponents will quickly lead to an
obvious false intermediate result, i.e., G " N/2. Thus, in contrast to the other
methods, exponent un-blinding is able to handle more noise, more efficiently.

6 Conclusion

In this work, we presented two classes of messages that lead to data leakage.
These classes are referred to as leading constant bit string (LCBS) and trailing
constant bit string (TCBS). Valid input messages of common signature schemes,
including PKCS#1 and ANSI x9.31, meet the criteria for these classes. Both
classes and the short message, a specific LCBSmessage, were validated against an
advanced smartcard system from Infineon, which ran our POC implementation
of the RSA signature scheme. In all cases the input messages allowed for the
recovery of the RSA private exponent in a single-trace SPA.

The short message exploits both multiplication and reduction of the modu-
lar multiplication in RSA signing. However, short messages can be prevented
by means such as message length checks or padding. TCBS messages reiterate
the importance of restricting direct user input. Our analysis showed that even
if the most significant 95% of the message bits consist of random padding, if
the attacker is able to set the least significant 5%, he will be able to recover
the secret data. Most importantly, LCBS messages demonstrate that even prop-
erly formatted messages can lead to distinct data leakage because of constant
padding. For these reasons, we consider the constant paddings used by RSASSA-
PKCS1-v1 5 and ANSI x9.31 to present a substantial security risk to modern
cryptosystems that implement highly optimized algorithms, such as ZDN-based
modular multiplication.

Our experimental results show that 0-strings result in far more distinctive
data leakage than 1-strings. For this reason, zero padding should be avoided at

Weaknesses in Current RSA Signature Schemes 167

all costs. In addition to non-constant padding, there are several countermea-
sures that can thwart such attacks, including square-and-multiply-always and a
certain kind of base blinding. The initial reduction of RSA CRT also destroys
any constant bit strings in the input message if the input message is larger than
the modulus of the operation, i.e., larger than one of the prime factors of the
modulus N . For these reasons, unless RSA CRT with initial reduction is used,
we recommend that message blinding always be used on systems that implement
a constant bit string padding scheme, such as the padding schemes of RSASSA-
PKCS1-v1 5 and ANSI x9.31.

Additionally, a specific method for private key recovery when RSA CRT is
used was presented, exponent un-blinding. This is substantially faster than the
known methods if at least three distinct blinded exponents can be obtained.
Most importantly, this method can cope with more noise, more efficiently and
elegantly than any other known method.

In conclusion, this paper demonstrates that even an advanced cryptosystem,
which implements recommended industry standards, can introduce additional
unexpected side-channels. We believe that the claim “no attacks are known
against RSASSA-PKCS1-v1 5” [18] is no longer true.

Acknowledgements. This work was supported by the German Federal Min-
istry of Education and Research, and by the Helmholtz Research School on
Security Technologies.

The authors of this paper would like to thank all of their colleagues for their
support. In particular we would like to thank Collin Mulliner and Christoph
Bayer for their helpful and insightful input while writing the paper. We would
also like to thank LeCroy Europe for their excellent technical support.

References

1. American National Standards Institute: ANSI X9.31-1998: Public Key Cryptog-
raphy Using Reversible Algorithms for the Financial Services Industry (rDSA)
(1998)

2. Campagna, M., Sethi, A.: Key recovery method for CRT implementation of RSA
(2004)

3. Courrège, J.-C., Feix, B., Roussellet, M.: Simple Power Analysis on Exponentiation
Revisited. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 65–79. Springer, Heidelberg (2010)

4. Dhem, J.F., et al.: A Practical Implementation of the Timing Attack. In: Working
Conference on Smart Card Research and Advanced Application, pp. 167–182 (1998)

5. Fischer, W., Seifert, J.-P.: High-Speed Modular Multiplication. In: Okamoto, T.
(ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 264–277. Springer, Heidelberg (2004)

6. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

7. Infineon Technologies AG: Contactless SLE 78 family: Next Generation Security,
http://goo.gl/qbQ30

8. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

http://goo.gl/qbQ30

168 J. Krämer, D. Nedospasov, and J.-P. Seifert

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Krämer, J., Nedospasov, D., Seifert, J.P.: Weaknesses in Current RSA Signature
Schemes, Extended Version (2011), http://goo.gl/bu5MS

11. LeCroy Corporation: WavePro 7 Zi Oscilloscope,
http://www.lecroy.com/Oscilloscope/OscilloscopeSeries.aspx?mseries=39

12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer New York, Inc. (2007)

13. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1997)

14. Miyamoto, A., Homma, N., Aoki, T., Satoh, A.: Enhanced power analysis at-
tack using chosen message against RSA hardware implementations. In: ISCAS,
pp. 3282–3285 (2008)

15. Percival, C.: Cache missing for fun and profit. In: Proc. of BSDCan 2005 (2005)
16. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key

cryptosystem. Electronic Letters 18(21), 905–907 (1982)
17. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and

Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

18. RSA: PKCS #1 v2.1: RSA Cryptography Standard (2002),
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

19. Schindler, W.: A Timing Attack against RSA with the Chinese Remainder The-
orem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124.
Springer, Heidelberg (2000)

20. Sedlak, H.: Konzept und Entwurf eines Public-Key-Code Kryptographie-Prozessors
(1985)

21. Sedlak, H.: The RSA Cryptography Processor. In: Price, W.L., Chaum, D. (eds.)
EUROCRYPT 1987. LNCS, vol. 304, pp. 95–105. Springer, Heidelberg (1988)

22. Shamir, A.: Method and Apparatus for Protecting Public Key Schemes from Tim-
ing and Fault Attacks. US Patent 5991415 (November 23, 1999)

23. Walter, C., Thompson, S.: Distinguishing Exponent Digits by Observing Modular
Subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001)

24. Yen, S.-M., Lien, W.-C., Moon, S.-J., Ha, J.C.: Power Analysis by Exploiting
Chosen Message and Internal Collisions – Vulnerability of Checking Mechanism
for RSA-Decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 183–195. Springer, Heidelberg (2005)

http://goo.gl/bu5MS
http://www.lecroy.com/Oscilloscope/OscilloscopeSeries.aspx?mseries=39
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

Back Propagation Neural Network

Based Leakage Characterization
for Practical Security Analysis

of Cryptographic Implementations

Shuguo Yang1,2, Yongbin Zhou1, Jiye Liu1,2, and Danyang Chen1,3

1 State Key Laboratory of Information Security,
Institute of Software Chinese Academy of Sciences

P.O. Box 8718, Beijing 100190, P.R. China
2 Graduate University of Chinese Academy of Sciences,

19A Yuquan Lu, Beijing, 100049, P.R. China
3 School of Mathematics Sciences, Beijing Normal University,

No.19, XinJieKouWai St., Beijing, 100875, P.R. China
{yangshuguo,zyb,qsgh,chendanyang}@is.iscas.ac.cn

Abstract. Side-channel attacks have posed serious threats to the phys-
ical security of cryptographic implementations. However, the effective-
ness of these attacks strongly depends on the accuracy of underlying
side-channel leakage characterization. Known leakage characterization
models do not always apply into the real scenarios as they are working
on some unrealistic assumptions about the leaking devices. In light of
this, we propose a back propagation neural network based power leakage
characterization attack for cryptographic devices. This attack makes full
use of the intrinsic advantage of neural network in profiling non-linear
mapping relationship as one basic machine learning tool, transforms the
task of leakage profiling into a neural-network-supervised study process.
In addition, two new attacks using this model have also been proposed,
namely BP-CPA and BP-MIA.

In order to justify the validity and accuracy of proposed attacks, we
perform a series of experiments and carry out a detailed comparative
study of them in multiple scenarios, with twelve typical attacks using
mainstream power leakage characterization attacks, the results of which
are measured by quantitative metrics such as SR, GE and DL. It has been
turned out that BP neural network based power leakage characterization
attack can largely improve the effectiveness of the attacks, regardless of
the impact of noise and the limited number of power traces.

Taking CPA only as one example, BP-CPA is 16.5% better than ex-
isting non-linear leakage characterized based attacks with respect to DL,
and is 154% better than original CPA.

Keywords: Back Propagation Neural Network, Leakage Characteriza-
tion, Side Channel Attack, Practical Security, Cryptographic
Implementation.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 169–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 S. Yang et al.

1 Introduction

Power analysis attack takes instantaneous power consumptions of a device to be
its side-channel leakages. In power analysis attack, power leakage model char-
acterizes the correlation between intermediate values and corresponding power
consumptions. The accuracy of power model determines not only whether the
power analysis attack is feasible, but also how complex the attack will be. There-
fore, cryptanalyst usually tries to model power leakages as precisely as possi-
ble before mounting an attack. We performed Hamming Weight(HW for short)
based DPAs[8][2] against one software AES prototype implementation on 8-bit
C51-compatible micro-controllers and have acquired the following two important
observations:

Observation 1: HW-based DPA targeting different bits in one intermediate
value results in DPA peaks with different heights.

Observation 2: HW-based DPA has a very low tolerance for noises.

These observations reflect that traditional HW based linear leakage approaches
are not capable of characterizing the real leakage precisely. [15] also claims that
some simple linear power models are no longer valid as the size of transistors
shrinks, even for standard CMOS circuits.

As of today, several approaches have been proposed to model non-linear power
leakage, e.g. SM(namely stochastic model)[17], VPA(namely variance power
analysis)[14] and BWC(namely bit-wised characterizing)[10]. These three ap-
proaches use combination of independent components to model the power leak-
age. Specifically, SM approach uses basis function on predefined vector subspace,
VPA approach uses predefined events(usually bit-flip event), and BWC uses DPA
peak heights of different bits to approximate the leakage function. All these
non-linear power leakage characterizing approaches are based upon one basic
assumption: the basic vector(SM), events(VPA)or power consumption of each
bit(BWC) are independent from one another. This assumption is commonly
referred to as Bit Independent Leakage Assumption. Unfortunately, this
assumption does not always hold in practice, thanks to the equivalent inductance
among circuits. Of course, this inevitably jeopardize the accuracy of underlying
characterization approaches.

Generally speaking, our work in this paper are motivated by the following two
factors. First of all, traditional linear models could no longer precisely character-
ize the actual power leakage of circuits. Secondly, nearly all existing non-linear
modeling approaches are based upon relatively strong and unrealistic assump-
tion, which would lead to more errors when are used to deal with noisy scenario.

Taking two above-mentioned factors into consideration, we present a new
power leakage modeling approach based on BP neural network. As a supervised
learning method for capturing power leakage, BP neural network based mod-
eling approach does NOT rely on any specific assumptions, thus having better
compatibility and higher precision.

The main contributions of this paper are twofold. On one hand, we proposed
one side-channel leakage modeling approach based upon BP neural network,

Back Propagation Neural Network Based Leakage Characterization 171

which is applicable to non-linear power leakages and does NOT rely on any spe-
cific assumptions. By making use of intrinsic capability of BP neural network to
model arbitrary mapping relationship, the proposed model is capable of profil-
ing power leakages of unknown devices. On the other hand, we have constructed
two new side-channel attacks based on BP neural network, namely BP-CPA
and BP-MIA. The results of a series of experiments show that, BP-CPA shows
compelling effectiveness and strong noise tolerance with respect to three quan-
titative metrics, including Success Rate(SR[2]), Guessing Entropy(GE[18]) and
Distinctive Level(DL[5]).

The rest of this paper is organized as follows. Section 2 briefly introduces
power leakage decomposition, existing attacks for leakage modeling and one
generic leakage function. Section 3 introduces the elementary knowledge of BP
neural network. Section 4 describes our BP Neural Network based leakage char-
acterizing approach, and then proves its soundness, after which two new attacks
are constructed. Section 5 presents a comprehensive and systematic comparison
study of a set of typical attacks, in order to demonstrate the effectiveness of pro-
posed BP neural network based power modeling approach. Section 6 concludes
the whole paper.

2 Preliminaries

Modeling the power leakage is the basis for launching a power analysis attack,
and its accuracy determines the final result of the attack. This section will first
introduce the composition of power trace. Then we will introduce several classic
linear power leakage modeling approaches(e.g HW model, HD model), followed
by non-linear power leakage modeling approaches including BWC, VPA and SM.
Finally, we will provide the formal description of generic power leakage model.

2.1 Power Leakage Decomposition

According to[12], any single point in power traces can be considered to be the
sum of four independent components, namely signal, algorithm noise, electronic
noise and constant. Let P be the overall power consumption, Pop the signal com-
ponent(caused by operations), Pdata the signal component(caused by targeted
intermediate values), Pnoise the electronic noise, and Pconst the constant. Then,
the power leakage decomposition can be represented as shown in Eq.(1).

P = Pop + Pdata + Pconst + Pnoise (1)

where Pdata is regarded as the power leakage. The main purpose of power mod-
eling is to precisely model the mapping between intermediate value and Pdata.

2.2 Linear Power Leakage Modeling

The most representative linear power model is Hamming Weight and Hamming
Distance model. Hamming Weight model assumes that power leakage is pro-
portional to the number of “1” in intermediate value[12]. Similarly, Hamming

172 S. Yang et al.

Distance model assumes that power leakage is proportional to the number of
“1”→“0” or “0”→“1” transition[12]. The relationship between HW and HD
model is given as follow.

HD(v0, v1) = HW (v0 ⊕ v1)

2.3 Nonlinear Power Leakage Modeling

SM. SM approach is, in essence, a two-step attack. In profiling phase, one suit-
able vector subspace is used to approximate the leakage function, while some
basis functions are used to approximate various components of power leak-
ages. Note that the selection of vector subspace mainly relay on experiences
and intuitions. In subsequence analysis phase, minimum distance attack or
maximum likelihood is used to evaluate key candidates.

VPA. VPA approach needs to predefine the events that caused the power con-
sumption, assuming that different events are independent. Then, it calculates
the weight of each event in order to characterize the overall power consump-
tion. For instance, if Bit-flip is selected as the event, VPA is equivalent to
weighted HD model.

BWC. BWC attack assumes that different bits in a intermediate value are
independent from each other, and uses the DPA results of different bits as
the weights.

2.4 Generic Leakage Function

Power leakage model is essentially a mapping from particular intermediate value
to real power consumption. [3] gives the formal definition of power model.

Pdata(v) =α−1 +

n−1∑
i=0

αivi +

n−1∑
i1,i2=0

αi1,i2vi1vi2 + ... +

n−1∑
i1,...,id=0

αi1,i2,···,idvi1vi2 · · · vid
(2)

where Pdata is the signal(caused by targeted intermediate values), v is the in-
termediate value, n is the number of bits of the intermediate value, vi is i

th bit
of the the intermediate value, all the α’s are the parameters which need to be
characterized.

When all αi are equal and the parameters of higher order terms are zero,
Eq.(2) equivalently is HW model. Actually, SM, VPA and BWC consider only
the constant part α−1, and linear part αi. They ignore the higher order terms,
which is due to the assumed bit-wise dependence of intermediate value.

3 Introduction to Back Propagation Neural Network

According to [6][7], artificial neural network is a mathematic model for processing
intelligent information by simulating the connections and activities of neurons.

Back Propagation Neural Network Based Leakage Characterization 173

It is also a computing model composed of numerous nodes and their connections.
Each node has an unique activation function and a bias. Each connection between
two nodes has a weight. These parameters stores the memory of the network.
The output of a network is determined mainly by the activation function and
bias of each node, the weight and mode of each connection, and the topological
structure of the entire network. When all these parameters are determined, the
output is fixed.

Fig. 1. A multi-layer BP neural network

BP neural network is a popular multi-layer network which uses the error back-
propagation algorithm as its learning algorithm (in Fig.1). A BP neural network
works with the followings five steps:

Step 1: Determination of Topological Structure. Specify the number of
nodes in input layer, the number of hidden layers, the number of nodes in each
hidden layer, and the number of nodes in output layer.

Step 2: Initialization of Weights and Biases. Generally, initial values for
weights and biases set to be small random real numbers within [-1,1].

Step 3: Forward Propagation. Forward Propagation goes as follows.

(a) Initially, preprocess input data and transform them into the value scope
of nodes in input layer.

(b) For input node i, set its output to be its input. So Oi = Ii holds.
(c) For each node j not in input layer, compute its input as shown in Eq.3.

Ij =
∑
i

WijOi +Θj (3)

where Wij means the weight of the connection between node i and node
j, Θj is the bias of node j.

174 S. Yang et al.

(d) Compute the output of nodes in hidden or output layer by Oj = f(Ij),
where f is the activation function of node j. BP neural network algorithm
requests that the activation function be a nonconstant, bounded, and
monotone-increasing continuous function. The activation function always
uses the following form.

f(x) =
1

1 + e−x
(4)

Step 4: Back Propagation. We can obtain an output value of the network by
Forward Propagation process. However, there is always a difference between the
actual output and the expected one, and this difference is called error. By back-
propagating the error, we can update all the parameters stored in the network,
including all the weights of connections and all the biases of nodes, thus bringing
the output of the network closer to the expected value. It is the core of the whole
learning algorithm.

This process goes as follows.

(a) For node k in output layer, compute the Errk corresponding

Errk = Ok(1−Ok)(Tk −Ok) (5)

where Ok is the output of node k and Tk is the expected output value
according to the training data.

(b) The error of a hidden layer node j is the weighted sum of all the errors
of the nodes connected to node j in next layer. Compute the error of
node j is shown in Eq.6.

Errj = Oj(1−Oj)
∑
k

ErrkWjk (6)

where Wjk is the weight of the connection between node j and node k in
next layer, and Errk is the error of node k.

(c) Update weights and biases according to the following two equations.

Wij = Wij + L · ErrjOi (7)

Θj = Θj + L · Errj (8)

where L is the learning rate, a constant range from 0 to 1. This constant
is used for adjusting the behavior of the network. It helps avoid getting
stuck at a locally optimum solution and encourages the search for a global
optimum one. The bigger L is, the faster the network converges, and vice
versa. Generally we can set L to 1

t , where t is the number of iterations
during the training process.

Step 5: Termination. Training process will stop either all parameters have
converged, or the number of iterations exceeds its maximum, or the output of
the network meets the desired result.

Back Propagation Neural Network Based Leakage Characterization 175

4 Our BP Neural Network based Leakage Characterizing
Approach

In this section, a detailed description of the proposed approach to side-channel
leakage characterization will be give firstly, with power leakage being a concrete
example. Then we will prove that the BP network can precisely characterize the
general leakage model (in Eq.2). Finally, two new attacks are constructed using
our leakage model.

4.1 BP Neural Network Based Leakage Model

Essentially, BP neural network based leakage model is a BP neural network
well-trained for the mapping from intermediate values to real power consump-
tions. The main steps of building BP Neural Network based leakage model is as
follows.

Step 1: Definition of Topological Structure. The number of nodes in input
layer is related to the bit-width of intermediate value. Each input value of nodes
in input layer is derived from the bit value of the target intermediate value.
We take AES as case of study. The implementation is an unprotected software
implementation of AES, and the target intermediate value is the output of 1st

S-box in 1st AES round. So the size of intermediate value is 8 and we set the
number of nodes in the input layer to be 8. We use only one single hidden layer
with 16 nodes. The output layer contains only one output node.

Step 2: Preparation of Training Data. We use V to denote one
8-bit intermediate value vector. Each element v in V is represented by
v(v0, v1, v2, v3, v4, v5, v6, v7) in binary form. Let R be real power consumption
vector, each element r is according to intermediate value v. So the training set is
pairs of (V ,R). Since the total number of possible intermediate value is 256, so
we only need 256 pairs of (v, r). We can use trace averaging to reduce Gaussian
noise.

First, for each intermediate value v(v0, v1, v2, v3, v4, v5, v6, v7), compute each
component Iv,i of the network input Iv(Iv,0Iv,1Iv,2Iv,3Iv,4Iv,5Iv,6Iv,7) by

Iv,i = GetInputV alue(vi) =

{
1 if vi = 1
−1 if vi = 0

(9)

Then, for each real power consumption r, normalize it into [−1, 1] by

Tr = GetTargetV alue(r) =
r −Min(R)

Max(R)−Min(R)
∗ 2− 1 (10)

When one gets 256 pairs of (Iv, Tr), the training data set is ready.

176 S. Yang et al.

Step 3: Training of BP Neural Network based Leakage Model. Since
the number of training cases is limited, the training process will be iterative.
Whether or not to continue the training epoch mainly relies on the precision
of BP neural network output. We take Pearson Correlation Coefficient γ (in
Eq.11) between network output vector O and real power consumption vector R
to be the standard to judge when to stop training. Training will terminate when
γ > 0.95.

γ = Pearson(X,Y) =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(11)

Training a BP neural network based leakage model is described in Algorithm
1. So far, we get a well-trained BP network to be our new BP neural network
based leakage model.

Input: Intermediate value vector:V , real power consumption vector:R
Output: Trained BP Neural Network:network as the leakage model
Create BP neural network: network (8 nodes in input layer,16 nodes in hidden1

layer,1 node in output layer);
Initialize weights and biases;2

foreach Intermediate value v in V do3

Iv = 0;4

foreach inputnode Iv,i in Iv do5

Iv,i = GetInputValue(vi) (Eq.9);6

end7

end8

foreach realvalue r in R do9

Tr = GetTargetValue(r) (Eq.10);10

end11

γ = 0;12

while γ < 0.95 do13

foreach Iv do14

Ov = Forward-Propagation(network,Iv) ;15

Back-Propagation(network,Ov ,Tv);16

end17

Compute γ = Pearson(O,T) (Eq.11);18

end19

return network;20

Algorithm 1. The BP neural network based leakage model training algorithm

Step 4: Prediction of Hypothetical Leakages. Given an intermediate value,
evaluation of hypothetic leakages by BP neural network based leakage model
could be done by calling Forward-Propagation process of BP neural network.
Algorithm 2 describes this process.

Back Propagation Neural Network Based Leakage Characterization 177

Input: Trained BP Neural Network:network, intermediate value vector:V
Output: The hypothetical leakage vector: H (according to V)
foreach intermediate value v in V do1

Iv = 0;2

foreach inputnode Iv,i in Iv do3

Iv,i = GetInputValue(vi) (Eq.9);4

end5

Hv = Forward-Propagation(network,Iv);6

end7

return H ;8

Algorithm 2. The BP neural network based leakage model prediction algo-
rithm

4.2 Soundness of BP Neural Network for Leakage Characterization

In this subsection, we will prove the soundness of BP BP-Network in charac-
terizing leakage model. We begin with this subsection with the following two
theorems.

Theorem 1 (Weierstrass[9]). Suppose f is a continuous complex-valued func-
tion defined on the real interval [a, b]. For every ε > 0, there exists a polynomial
function p over C such that for all x in [a, b], we have |f(x) − p(x)| < ε, or
equivalently, the supremum norm ||f(x) − p(x)|| < ε. If f is real-valued, the
polynomial function can be taken over R.

Theorem 2 (Universal Approximation[16]). Let ϕ(·) be a nonconstant,
bounded, and monotone-increasing continuous function. Let Im0 denote the m0-
dimensional unit hypercube [0, 1]m0 . The space of continuous function on Im0 is
denoted by C(Im0). Then, given any function f # C(Im0) and ε > 0, there exist
an integer m1 and sets of real constants αi, bi and ωij, where i = 1, ...,m1 and
j = 1, ...,m0 such that we may define

F (x1, · · · , xm0) =

m1∑
i=1

αiϕ(

m0∑
j=1

ωijxj + bi) (12)

as an approximate realization of the function f(·);that is,

|F (x1, · · · , xm0)− f(x1, · · · , xm0)| < ε

for all x1, x2, · · · , xm0 that lie in the input space.

Theorem 2 may be viewed as the natural extension of Weierstrass Theorem.
It can be applied directly to multi-layer neural network[6]. Notice that the ac-
tivation function in Eq.4 of each node in a BP neural network is required to
be a nonconstant, bounded, and monotone-increasing continuous function, so it
meets the condition of function ϕ(·). In fact, Eq.12 describes such a multi-layer
neural network:

178 S. Yang et al.

(a) Network hasm0 input nodes and a single hidden layer which is composed
of m1 nodes. The input of the network is denoted as x1, x2, · · · , xm.

(b) The node in hidden layers has its weights denoted by ω1i, · · · , ωm0i and
a bias denoted by Θi

(c) The output of network is the linear combination of the output of nodes in
hidden layer, and weights of the node in the output layer are α1, · · · , αm1 .

As we can see, Universal Approximation Theorem shows that for computing the
ε uniform approximation of a fixed training set from input x1, x2, · · · , xm0 to
expected output f(x1, · · · , xm0), a single hidden layer is enough. The leakage
characterizing is to map intermediate value to real leakage. In Eq.2, the leakage
function can be represented as a high order polynomial function. Therefor, using
BP neural network to training the relationship between intermediate value and
real leakage is sound and practical.

4.3 Constructions of BP Neural Network Based Attacks

This subsection will briefly introduce two BP neural network based attacks we
constructed, namely BP-CPA and BP-MIA, which are variants of CPA[1][11]
and MIA[4][13][19] respectively. CPA and MIA are two popular and effective
distinguishers, and they use different mathematic tools, i.e. Pearson Correlation
Coefficient and Mutual Information to compare hypothetic power consumption
and real power consumption. In order to construct new attacks, we only need to
replace the original HW model with our BP neural network based leakage model.
Note that performing BP-CPA and BP-MIA requires only one well-trained BP
neural network based leakage model. In this way, CPA-like and MIA-like attacks
can be built over any specific leakage model.

5 Experiments

A series of typical experiments have been conducted to test the reliability of our
new approach. Specially, we performed simulated experiments on a 8-bit soft-
ware implementation of an unprotected AES. The leakage model for simulation
adopted the function in Eqa.2, where d = 3. It means that the function Pdata(v)
has only four terms: one constant, one order term, one quadratic term and one
three order term. These parameters αi1,i2(or αi1,i2,i3) will be set to small random
real numbers when values of corresponding adjacent 2(or 3) bits in the interme-
diate value are 1 simultaneously, otherwise the parameters will be set to 0. This
takes into consideration the interactions between multi-bits themselves in an in-
termediate value. This leakage function describes the superimposed situation of
both linear and non-linear scenarios. Therefore, it is very close to the scenario
of a real device[15].

We divide the considered contexts with different noise levels into three cate-
gories: ideal scenario with a noise level σ � 10, realistic scenario with a noise level
σ ∈ (10, 30), challenging scenario with a noise level σ � 30. Three quantitative
metrics, including SR, GE and DL are used to measure the effectiveness.

Back Propagation Neural Network Based Leakage Characterization 179

Each attack in this section is viewed as a combination of power leakage model
and distinguisher. We considered five power leakage models and four distin-
guishers. The power leakage models are HW, BP, BWC, VPA and SM. And the
distinguishers are CPA, MIA, VPA and SM. Note that all attacks are denoted by
”A-B”, where ”A” denotes power leakage model of the attack and ”B” denotes
its distinguisher. For example, BP-CPA stands for a attack that uses BP neural
network based leakage model and Pearson Correlation Coefficient.

Considering that CPA and MIA are two mainstream distinguishers most
widely used, we take them as two standard distinguishers to evaluate the ef-
fectiveness of different leakage models. The results thus obtained will be reliable
and convincing. All results in this paper are obtained by averaging the results
of 100 times of repeated tests.

The experiments have been preformed from following three aspects: evaluation
and comparison with CPA-like attacks, evaluation and comparison with MIA-like
attacks, evaluation and Comparison with attacks which has a modeling phase.

5.1 Comparison with CPA-like Attacks

This subsection compares 5 CPA-like attacks in three scenarios, including HW-
CPA, BP-CPA, BWC-CPA, VPA-CPA and SM-CPA. Three scenarios are ideal
scenario(σ = 1), realistic scenario(σ = 25) and challenging scenario(σ = 50)
respectively. Additionally, three metrics(SR, GE and DL) are used in our evalu-
ation. The results are showed in Fig.2. As we can see, in all three scenarios, SR
values of tested attacks present the following pattern: HW-CPA < SM-CPA <
BWC-CPA≈ VPA-CPA< BP-CPA. The same results also holds for GE and DL.

Fig. 2. Results of CPA with different leakage models in three scenarios

180 S. Yang et al.

Specifically, in ideal scenario, all attacks except HW-CPA need only 50 traces to
reach 100% SR, while HW-CPA needs 100 traces. In realistic scenario, BP-CPA
needs 250 traces to achieve 100%SR, while BWC-CPA and VPA-CPA need 400
traces. The SM-CPA and HW-CPA have performed a little worse; with 1000
traces they achieve 91% and 57% respectively. In challenging scenario, BP-CPA
needs 800 traces to get SR 100%, while BWC-CPA and VPA-CPA get only 95%
with 1000 traces.

Table 1 shows DLs in three scenarios when trace number is 1000.

Table 1. Distinctive Levels of five CPA-like attacks in three scenarios

N=1000
Ideal(σ = 1) Realistic(σ = 25) Challenging (σ = 50)

DL (*/HW-CPA)% DL (*/HW-CPA)% DL (*/HW-CPA)%

HW-CPA 5.17800841 - 3.01123095 - 2.3206056 -

BP-CPA 10.8724881 209.9743 7.65685814 254.2767 5.3341048 229.8583

BWC-CPA 9.21271198 177.9200 6.51802617 216.4572 4.51194033 194.4294

VPA-CPA 9.33850383 180.3493 6.56984784 218.1781 4.51801854 194.6914

SM-CPA 6.62982683 128.0382 4.11803832 136.7560 2.96579518 127.8026

As Table.1 shows, BP-CPA outperforms other attacks in all three scenarios.
The difference is most significant in realistic scenario, where the DL of BP-
CPA exceeds that of HW-CPA by 154%. The DL of BWC-CPA, VPA-CPA and
SM-CPA is higher than that of HW-CPA 116%, 118% and 37% respectively.
So in terms of DL, BP-CPA is better than the second best CPA-like attacks
16.5%(refer to VPA-CPA).

5.2 Comparison with MIA-like Attacks

This subsection compares 5 MIA-like attacks in three scenarios, including HW-
MIA, BP-MIA, BWC-MIA, VPA-MIA and SM-MIA. Three scenarios are ideal
scenario(σ = 4), realistic scenario(σ = 16) and challenging scenario(σ = 30)
respectively. Additionally, two metrics(SR and GE) are used. The results are
showed in Fig.3. The results are showed in Fig.2. Note: Due to the poor noise
tolerance of MIA-like attacks, we reduce the noise levels of three scenarios respec-
tively. As illustrated in Fig.3, in all three scenarios, SR values of tested attacks
present the following pattern: HW-MIA < SM-MIA < BWC-MIA ≈ VPA-MIA
< BP-MIA. The HW-MIA performs the worst due to an rough leakage model.

In ideal scenario, BP-MIA only needs 150 traces to get 100% SR, while BWC-
MIA and VPA-MIA need 200 traces. In realistic scenario, BP-MIA needs 800
traces to get 100%SR. Meanwhile, it takes 1000 traces for BWC-MIA and VPA-
MIA to reach 82% and 84% respectively.

In challenging scenario, none of attacks achieved any high SR. However, we
can see that BP-MIA still outperforms others significantly.

Back Propagation Neural Network Based Leakage Characterization 181

Fig. 3. Results of MIA with different leakage models in three scenarios

Results show that all MIA-like attacks have a low noise tolerance. Even though
BP-MIA does not performs well in challenging scenario even when the noise level
reduces to σ = 4, BP-MIA is still the best among all MIA-like attacks.

5.3 Comparison among Attacks Using Different Leakage
Characterizations

The results of above experiments have proved that BP-CPA is the best among
CPA-like attacks, and BP-MIA best among MIA-like attacks. The following part

Fig. 4. Results of attacks using different leakage characterization in three scenarios

182 S. Yang et al.

Table 2. Results of 12 Attacks in Three Scenarios

Scenarios Ideal(σ=1) Realistic(σ=30) Challenging(σ=50)

#Trace 50 400 700 1000 50 400 700 1000 50 400 700 1000

CPA

HW-CPA
SR 0 1 1 1 0 0.11 0.32 0.5 0.02 0.05 0.1 0.19
GE 1.25 1 1 1 115.8 44.66 17.9 6.6 97.78 61.57 36.83 22.35
HL 2.591 4.316 4.985 5.178 0.749 1.784 2.417 3.011 0.991 1.44 1.944 2.321

BP-CPA
SR 1 1 1 1 0.19 1 1 1 0.07 0.75 0.96 1
GE 1 1 1 1 22.37 1 1 1 52.34 3.18 1.01 1
HL 6.298 10.54 10.8 10.87 2.221 5.319 6.707 7.657 1.554 3.515 4.459 5.334

BWC-CPA
SR 1 1 1 1 0.12 0.95 1 1 0.04 0.49 0.79 0.95
GE 1 1 1 1 45.06 1.06 1 1 68.06 8.97 2.23 1.05
HL 5.609 8.455 9.058 9.213 1.846 4.368 5.625 6.518 1.399 2.883 3.764 4.512

VPA-CPA
SR 1 1 1 1 0.11 0.95 1 1 0.04 0.47 0.78 0.95
GE 1 1 1 1 45.11 1.04 1 1 69 9.13 2.25 1.03
HL 5.621 8.561 9.179 9.339 1.838 4.403 5.667 6.57 1.397 2.88 3.768 4.518

SM-CPA
SR 1 1 1 1 0.04 0.29 0.66 0.88 0.04 0.1 0.24 0.49
GE 1 1 1 1 98.15 15.25 3.49 1.27 88.56 38.62 18.17 8.15
HL 3.515 5.797 6.488 6.63 1.023 2.546 3.398 4.118 1.128 1.818 2.449 2.966

MIA

HW-MIA
SR 0 0 0 0 0 0 0 0 0 0 0 0
GE 226.9 18.13 167.8 106 122.8 81.31 21.39 6.92 220.2 180.5 120.5 123.2

BP-MIA
SR 0.69 1 1 1 0 0.03 0.31 0.37 0 0 0 0
GE 1.09 1 1 1 121.1 39.42 4.49 4.99 103.9 124.9 93.55 82.04

BWC-MIA
SR 0 1 1 1 0 0.01 0.04 0.05 0 0 0 0
GE 60.23 1 1 1 137 82.96 54.03 35.81 68.52 136.7 113.5 93.5

VPA-MIA
SR 0 1 1 1 0 0 0.02 0.03 0 0 0 0
GE 69.19 1 1 1 51.11 81.5 54.31 36.46 94.68 119.1 117.2 94.76

SM-MIA
SR 0 0 0.01 0.08 0 0.01 0 0 0 0 0 0
GE 203.6 26.28 17.96 3.7 142.5 105.4 50.74 126.6 156.7 157.4 153.3 140.3

VPA
VPA-VPA

SR 1 1 1 1 0.13 0.99 1 1 0.12 0.56 0.79 0.97
GE 1 1 1 1 22.49 1 1 1 42.83 5.06 1.56 1

SM
SM-SM

SR 0 1 1 1 0.02 0.29 0.73 0.93 0 0 0.09 0.22
GE 5.05 1 1 1 100.3 7.44 1.35 1.01 104.6 57.4 30.46 15.29

Back Propagation Neural Network Based Leakage Characterization 183

will compare BP-CPA and BP-MIA with non CPA-like or MIA-like attacks that
use a characterized leakage model.

In this subsection, BP-CPA, BP-MIA, VPA-VPA and SM-SM are compared
under three scenarios, namely ideal scenario(σ = 4), realistic scenario(σ = 16)
and challenging scenario(σ = 32), with SR and GE as metrics. The attack results
are showed in Fig.4. As illustrated in Fig.4,BP-CPA still performs best among
all attacks. In ideal scenario, all attacks can get 100%SR with a small mount of
traces. In realistic scenario, BP-CPA only needs 150 traces to get 100%SR, while
VPA-VPA needs 200 traces and BP-MIA needs 850 traces. However, SM-SM only
gets 87% with 1000 traces. BP-MIA outperforms SM-SM in this scenario.

It is worth noticing that the performance of BP-MIA reduces significantly
from realistic scenario to challenging scenario, while other non-MIA-like attacks
show a better tolerance to the increasing noise.

So far, we have obtained performance data of all 12 attacks in different sce-
narios with different metrics. Due to the limit of space, we only present part of
results in Table.2.

6 Conclusions

In summary, this paper has proposed a new leakage characterizing method based
upon BP neural network. This method makes full use of the intrinsic advantage
of the machine learning method in profiling non-linear mapping relationship,
and does NOT rely on any specific assumptions. Leakage characterizing phase
of BP neural network based leakage model is realized in the training process of
one BP neural network, and hypothetical leakage prediction phase is realized in
the forward propagation process of a well-trained BP neural network.

Two new BP Neural Network based side channel attacks have been proposed,
namely BP-CPA and BP-MIA. They have been validated with a series of sim-
ulated experiments on a 8-bit software implementation of an unprotected AES.
Results show that BP Neural Network based attacks require fewer traces to
reach an acceptable level of success rate, and they outperform other attacks un-
der some harsh conditions. Under consideration by the data, we believe that BP
based model can more accurately characterize correlations (linear as well as non-
linear) between intermediate value and side channel leakages of cryptographic
implementations.

However, we admit that the proposed approach also has some disadvantages.
For example, the training process of a back propagation is inefficient. Each iter-
ation of a pair of intermediate value and real leakage value has to go through the
entire network twice, forward computing the output of every nodes and back-
ward updating parameters of every nodes and connections. As shown in line 13
of Algorithm 1, we used 0.95 as our termination target precision. The γ value
grows rapidly when it is below 0.85, but when it exceeds 0.90 the increasing
speed shrinks quickly. The training process lasts almost several hours to meet
the termination condition. Considering that the training process for each target
device needs to be done only once, we consider it reasonable and acceptable to

184 S. Yang et al.

sacrificed some time penalty in training process for a higher predicting preci-
sion. In the future, we will focus on improving the efficiency, e.g. by changing
the topological structure of network or using a new machine learning algorithm.

Acknowledgements. This work is supported in part by the National Nat-
ural Science Foundation of China (No.61073178) and Beijing Natural Science
Foundation (No.4112064).

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

3. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. Journal Cryptographic Engineering 1(2), 123–144 (2011)

4. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

5. Huang, J., Zhou, Y., Liu, J.: Measuring the effectiveness of dpa attacks - from the
perspective of distinguishers statistical characteristics. In: IEEE ICCSIT 2010, pp.
161–168 (2010)

6. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson (2009)
7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Elseview

Inc. (2006)
8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
9. Weierstrass, K.: Über die analytische Darstellbarkeit sogenannter willkürlicher

Functionen einer reellen Veränderlichen. Sitzungsberichte der Kniglich Preuischen
Akademie der Wissenschaften zu Berlin (1885) II

10. Liu, J., Zhou, Y., Han, Y., Li, J., Yang, S., Feng, D.: How to Characterize Side-
Channel Leakages More Accurately? In: Bao, F., Weng, J. (eds.) ISPEC 2011.
LNCS, vol. 6672, pp. 196–207. Springer, Heidelberg (2011)

11. Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A
Proposition for Correlation Power Analysis Enhancement. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)

12. Mangard, S., Oswald, E., Popp, S.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

13. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidel-
berg (2009)

14. Hoogvorst, P.: The Variance Power Analysis. In: Proceeding of COSADE 2010, pp.
4–9 (2010)

15. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale
Devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

Back Propagation Neural Network Based Leakage Characterization 185

16. Hecht-Nielsen, R.: Kolmogorov’s Mapping Neural Network Existence Theorem.
In: Proceedings of First IEEE International Conference on Neural Networks, San
Diego, CA, pp. 11–14 (1987)

17. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

18. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

19. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

A Revocable Group Signature Scheme

with the Property of Hiding the Number
of Revoked Users

Keita Emura1, Atsuko Miyaji2, and Kazumasa Omote2

1 Center for Highly Dependable Embedded Systems Technology
2 School of Information Science

Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa,
923-1292, Japan

{k-emura,miyaji,omote}@jaist.ac.jp

Abstract. If there are many displaced workers in a company, then a
person who goes for job hunting might not select this company. That is,
the number of members who quit is quite negative information. Similarly,
in revocable group signature schemes, if one knows (or guesses) the num-
ber of revoked users (say r), then one may guess the reason behind such
circumstances, and it may lead to harmful rumors. However, no previous
revocation procedure can achieve to hide r. In this paper, we propose the
first revocable group signature scheme, where r is kept hidden. To handle
these properties, we newly define the security notion called anonymity
w.r.t. the revocation which guarantees the unlinkability of revoked users.

Keywords: Group signature, Revocation, Hiding the Number of Re-
voked Users.

1 Introduction

Imagine that there are many users who have stopped using a service. If this fact
is published, then how would the newcomers feel about this? One may guess the
reason behind such circumstances, and may judge that those users did not find
the service attractive or the service fee is expensive. The same thing may occur
in other cases, e.g., if there are many displaced workers in a company, then a
person who goes for job hunting might not select this company. That is, the
number of members who quit is quite negative information.

Many cryptographic attempts for the revocation of rights of users have been
considered so far, especially, in group signature [12]1, anonymity revocation has

1 The concept of group signature was investigated by Chaum and Heyst [12], and its
typical usage is described as follows: The group manager (GM) issues a membership
certificate to a signer. A signer makes a group signature by using its own membership
certificate. A verifier anonymously verifies whether a signer is a member of a group
or not. In order to handle some special cases (e.g., an anonymous signer behaves
maliciously), GM can identify the actual signer through the open procedure. Since
verifiers do not have to identify individual signers, group signature is a useful and
powerful tool for protecting signers’ privacy.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 186–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Revocable Group Signature Scheme 187

been introduced [7,8,14,25,27,28,31]2. However, the number of revoked users (say
r) is revealed in all previous revocable group signature schemes. As mentioned
previously, the number of revoked users r is quite a negative information. As a
concrete example, we introduce an application of revocable group signature for
outsourcing businesses [20]. By applying group signature, the service authentica-
tion server (outsourcee) has only to verify whether a user is a legitimate member
or not, and does not have to manage the list of identities of users. Therefore,
the risk of leaking the list of identities of users can be minimized, and this is the
merit of using group signature in identity management. After a certain interval,
the service provider charges the users who have already used the service, by using
the opening procedure of group signature. When a user would like to leave the
group, or when a user have not paid, the service provider revokes this user. In
this system, if r is revealed, then one may think that there might be many users
who have stopped using the service, i.e., this service may not be interesting, or
he/she have not paid the service fee, namely, the service fee may be expensive,
and so on.

So, our main target is to propose a revocable group signature scheme with the
property of hiding the number of revoked users r. Then, we need to investigate
the methodology for achieving the following:

1. The size of any value does not depend on r.
2. The costs of any algorithm do not depend on r, except the revocation algo-

rithm executed by GM .
3. Revoked users are unlinkable.

In particular, if revoked users are linkable, then anyone can guess (i.e., not exactly
obtain) r by linking and counting revoked users. Although we assume that an
adversary can obtain the polynomial (of the security parameter) number of group
signatures, this assumption is not unreasonable (actually, the adversary can issue
the polynomial times queries of the signing oracle). In addition, r is also a
polynomial-size value. That is, this guessing attack works given that revoked
users are linkable.

However, no previous revocable signature scheme satisfying all requirements
above has been proposed. For example, in revocable group signatures [7,11,14,31]
(which are based on updating the group public values, e.g., using accumulators),
either the size of public value or the costs of updating membership certificate
depend on r. Nakanishi et al. [27] proposed a novel technique of group signature,
where no costs of the GSign algorithm (or the Verify algorithm also) depend on
r. However, their methodology requires that r signatures are published to make
a group signature, and therefore r is revealed. In [8,13,25,28] (which are verifier-
local revocation (VLR) type group signature), revoked users are linkable. In this
case, anyone can guess r by executing the verification procedure. For the sake
of clarity, we introduce the Nakanishi-Funabiki methodology [28] as follows: let

2 Since a long RSA modulus might lead to certain inefficiency aspects (e.g., long
signatures, heavy complexity costs, and so on), we exclude RSA-based revocable
group signatures (e.g., [29,30]) in this paper.

188 K. Emura, A. Miyaji, and K. Omote

RL = {hx1, hx2 , . . . , hxr} be the revocation list, where xi is the secret value of
revoked user Ui. Note that by adding dummy values, we can easily expand |RL|.
So, we can assume that r is not revealed from the size of RL. But, r is revealed
(or rather, guessed) as follows. Each group signature σ (made by Uj) contains
fxj+β and hβ for some random β and some group elements f and h. If Uj has
been revoked, then there exists hxi such that e(fxj+β, h) = e(hxihβ, f) holds.
By counting such i, one can easily guess r even if RL is expanded by dummy
values. Since each value in RL is linked to a user (i.e., hxi is linked to Ui), even if
values in RL are randomized (e.g., (hxi)ri for some random ri), this connection
between a user and a value in RL is still effective. So, one can easily guess r
even if RL is randomized.

From the above considerations, no previous revocation procedure can be ap-
plied for hiding r. One solution has been proposed in [16], where only the desig-
nated verifier can verify the signature. By preventing the verification of signature
from the third party, r is not revealed from the viewpoint of the third party. How-
ever, this scheme (called anonymous designated verifier signature) is not group
signature any longer. Next, as another methodology, consider the multi group
signature [1] with two groups (valid user group and revoked user group). How-
ever, this attempt does not work, since each user is given his/her membership
certificate (corresponding the group he/she belongs to) in the initial setup phase,
and the revocation procedure is executed after the setup phase.

Our Contribution: In this paper, we propose the first group signature scheme
with the property of hiding the number of revoked users r, by applying attribute-
based group signature (ABGS) [15,18,21,22]. By considering two attributes: (1)
valid group user and (2) the user’s identity, we can realize the property of hiding
r. To handle this property, we newly define the security notion called anonymity
w.r.t. the revocation. As the main difference among our anonymity definition
and previous ones, to guarantee the unlinkability of revoked users, A can issue
the revocation queries against the challenge users.

2 Bilinear Groups and Complexity Assumptions

Definition 1 (Bilinear Groups). Let G1, G2, and GT be cyclic groups with
a prime order p, and G1 = 〈g〉 and G2 = 〈h〉. Let e : G1 × G2 → GT be an
(efficient computable) bilinear map with the following properties: (1) bilinearity:
for all (g, g′) ∈ G2

1 and (h, h′) ∈ G2
2, e(gg

′, h) = e(g, h)e(g′, h) and e(g, hh′) =
e(g, h)e(g, h′) hold, and (2) non-degeneracy : e(g, h) �= 1T , where 1T is the unit
element over GT .

Definition 2 (The Computational Diffie-Hellman (CDH) assumption).
We say that the CDH assumption holds if for all probabilistic polynomial time
(PPT) adversary A, Pr[A(g1, g

a
1 , g

b
1) = gab1] is negligible, where g1 ∈ G1 and

(a, b) ∈ Z2
p.

A Revocable Group Signature Scheme 189

Definition 3 (The Decision Diffie-Hellman (DDH) assumption). We
say that the DDH assumption holds if for all PPT adversary A, |Pr[A(g1, g

′
1, g

x
1 ,

g′1
x
) = 0] − Pr[A(g1, g

′
1, g

x
1 , g

′
1
r
) = 0]| is negligible, where (g1, g

′
1) ∈ G2

1 and
(x, r) ∈ Z2

p with x �= r.

Definition 4 (The Decision Linear (DLIN) assumption [7]). We say that
theDLINassumptionholds if for allPPTadversaryA, |Pr[A(u, v, h, ua, vb, ha+b) =
0]−Pr[A(u, v, h, ua, vb, η)= 0]| is negligible,where (u, v, h, η) ∈ G4

2 and (a, b) ∈ Z2
p.

Definition 5 (The Hidden Strong Diffie-Hellman (HSDH) assump-
tion [9]). We say that �-HSDH assumption holds if for all PPT adversary A,

Pr[A(g1, h, h
ω, (g

1
ω+ci
1 , hxi)i=1,...,�) = (g

1
ω+x

1 , hx) ∧ ∀xi �= x] is negligible, where
(g1, h) ∈ G1 ×G2 and (ω, x, x1, . . . , x�) ∈ Z�+2

p .

Definition 6 (The Strong Diffie-Hellman (SDH) assumption [6]). We

say that q-SDH assumption holds if for all PPT adversary A, Pr[A(g1, h, h
ω, hω2

,

. . . , hωq

) = (g
1

ω+x

1 , x)] is negligible, where (g1, h) ∈ G1 ×G2 and (ω, x) ∈ Z2
p.

Definition 7 (The external Diffie-Hellman (XDH) assumption [14]).
Let (G1,G2,GT) be a bilinear group. We say that the XDH assumption holds if
for all PPT adversary A, the DDH assumption over G1 holds.

3 Definitions of Group Signature

Here, we define the system operations of revocable group signature and security
requirements (anonymity w.r.t. the revocation and traceability) by adapting [27].
Note that our definition follows the static group settings [4]. However, we can
easily handle the dynamic group settings [3] (and non-frameability) by applying
an interactive join algorithm.

Definition 8. System Operations of Group Signature

Setup : This probabilistic setup algorithm takes as input the security parameter
1κ, and returns public parameters params.

KeyGen : This probabilistic key generation algorithm (for GM) takes as input
the maximum number of users N and params, and returns the group public
key gpk, GM’s secret key msk, all user’s secret key {uski}i∈[1,N], and the
initial revocation-dependent value T0.

GSign : This probabilistic signing algorithm (for a user Ui) takes as input gpk,
uski, a signed message M , and a revocation-dependent value (in the period
t) Tt, and returns a group signature σ.

Verify : This deterministic verification algorithm takes as input gpk, M , σ, and
Tt, and returns 1 if σ is a valid group signature, and 0 otherwise.

Revoke : This (potentially) probabilistic revocation algorithm takes as input gpk,
msk, a set of revoked users RLt+1 = {Ui}, and Tt, and returns Tt+1.

190 K. Emura, A. Miyaji, and K. Omote

Open : This deterministic algorithm takes as input msk and a valid pair (M,σ),
and returns the identity of the signer of σ ID. If ID is not a group member,
then the algorithm returns 0.

In the Revoke algorithm, we set RL0 = ∅, and assume that the non-revoked user
in t is {U1, . . . , UN} \RLt. Under this setting, boomerang users (who re-join the
group) are available (i.e., Ui such that Ui ∈ RLt−1 and Ui �∈ RLt). In addition, if
an invalid pair (M,σ) is input to the Open algorithm, then the Open algorithm
easily detect this fact by using the Verify algorithm. So, we exclude this case
from the definition of the Open algorithm.

Next, we define anonymity w.r.t. the revocation and traceability. As the main
difference among our anonymity definition and previous ones, to guarantee the
unlinkability of revoked users,A can issue the revocation queries against the chal-
lenge users. Note that we do not handle the CCA-anonymity, where an adversary
A can issue the open queries. So, we just handle the CPA-anonymity [7] only in
this paper. However, as mentioned by Boneh et al. [7], the CCA-anonymity can
be handled by applying a CCA secure public key encryption for implementing
the open algorithm.

Definition 9 (Anonymity w.r.t. the Revocation)

Setup : The challenger C runs the Setup algorithm and the KeyGen algorithm,
and obtains params, gpk, msk, and all {uski}Ni=1. C gives params and gpk
to A, and sets t = 0, RU0 = ∅, and CU = ∅, where RU0 denotes the (initial)
set of ID’s of revoked users, and CU denotes the set of ID’s of corrupted
users.

Queries : A can issue the following queries:

Revocation : A can request the revocation of users IDi1 , . . . , IDikt+1
for

some constant kt+1 ∈ [1, N]. C uns Tt+1 ← Revoke(msk, {IDi1 ,
. . . , IDikt+1

}, Tt) and adds IDi1 , . . . , IDikt+1
to RUt+1.

Signing : A can request a group signature on a message M for a user Ui

where IDi �∈ CU . C runs σ ← GSign(gpk, uski,M, Tt), where Tt is the
current revocation-dependent value, and gives σ to A.

Corruption : A can request the secret key of a user Ui. C adds IDi to CU ,
and gives uski to A.

Challenge : A sends a message M∗ and two users Ui0 and Ui1 , where
IDi0 , IDi1 �∈ CU . C chooses a bit b ← {0, 1}, and runs σ∗ ←
GSign(gpk, uskib ,M

∗, Tt∗), where Tt∗ is the current revocation-dependent
value, and gives σ∗ to A.

Queries : The same as the previous one (Note that no corruption query for the
challenge users is allowed).

Output : A outputs a guessing bit b′ ∈ {0, 1}.

We say that anonymity holds if for all PPT adversaries A, the advantage

AdvanonA (1κ) := |Pr[b = b′]− 1

2
|

is negligible.

A Revocable Group Signature Scheme 191

There are two types of revocable group signature such that (1) any users can
make a valid group signature, and anyone can distinguish whether a signer has
been revoked or not [8,13,25,28], or (2) no revoked user can make a valid group
signature without breaking traceability [7,11,14,27,31]. We implicitly require the
second type revocable group signature, since clearly anonymity is broken if one
of the challenge users is revoked in a first type scheme. We also require that
the challenger C (that has msk) can break traceability to compute the challenge
group signature σ∗ for the case that a challenger user is revoked. Note that
since msk is used for generating user’s secret keys, obviously any entity with
msk makes an “untraceable” group signature, and this fact does not detract the
security of our group signature.

One may think that the above anonymity definition can be extended that
A can issue the corruption query against the challenge users, as in the Full-
Anonymity [4]. It might be desired that r is not revealed even if revoked users
reveal their secret signing keys, since their signing keys are already meaningless
(i.e., the rights of signing have been expired). For example, if users are not
intentionally revoked (e.g., a user has not paid in the outsourcing businesses
example [20]), then users might reveal their secret signing keys to compromise
the systems. Or, even if users are intentionally revoked (e.g., they feel that this
service is not interesting in the outsourcing businesses example), they might
reveal their secret signing keys as a crime for pleasure. However, even if r is kept
hidden when revoked users reveal their secret signing keys, one can easily guess
r by counting the number of revealed secret keys. So, in our opinion such secret
key leakage resilient property is too strong, and therefore our proposed group
signature does not follow this leakage property. Next, we define traceability.

Definition 10 (Traceability)

Setup : The challenger C runs the Setup algorithm and the KeyGen algorithm,
and obtains params, gpk, msk, and all {uski}Ni=1. C gives params and gpk
to A, and sets t = 0, RU0 = ∅, and CU = ∅, where RU0 denotes the (initial)
set of ID’s of revoked users, and CU denotes the set of ID’s of corrupted
users.

Queries : A can issue the following queries:

Revocation : A can request the revocation of users IDi1 , . . . , IDikt+1
for

some constant kt+1 ∈ [1, N]. C runs Tt+1 ← Revoke(msk, {IDi1 ,
. . . , IDikt+1

}, Tt) and adds IDi1 , . . . , IDikt+1
to RUt+1.

GSigning : A can request a group signature on a message M for a user Ui

where IDi �∈ CU . C runs σ ← GSign(gpk, uski,M, Tt), where Tt is the
current revocation-dependent value, and gives σ to A.

Corruption : A can request the secret key of a user Ui. C adds IDi to CU ,
and gives uski to A.

Opening : A can request to a group signature σ on a message M . C returns
the result of Open(msk,M, σ) to A.

Output : A outputs a past interval t∗ ≤ t for the current interval t, and (M∗, σ∗).

We say that A wins if (1) ∧ (2) ∧ ((3) ∨ (4)) holds, where

192 K. Emura, A. Miyaji, and K. Omote

1. Verify(gpk,M∗, σ∗, Tt∗) = 1

2. A did not obtain σ∗ by making a signing query at M∗.
3. for IDi∗ ← Open(msk,M∗, σ∗), IDi∗ �∈ CU

4. for IDi∗ ← Open(msk,M∗, σ∗), IDi∗ ∈ RUt∗

We say that traceability holds if for all PPT adversaries A, the advantage

AdvtraceA (1κ) := Pr[A wins]

is negligible.

4 Other Cryptographic Tools

In this section, we introduce cryptographic tools applied for our construction.

BBS+ Signature [2,7,19,27]: Let L be the number of signed messages,

and (G1,G2,GT) be a bilinear group. Select g, g1, . . . , gL
$← G1, h

$← G2,
and ω ← Zp, and compute Ω = gω. The signing key is ω and the verifica-
tion key is (p,G1,G2,GT , e, g, g1, . . . , gL+1, h, Ω). For a set of signed messages

(m1, . . . ,mL) ∈ ZL
p , choose r, y

$← Zp, and compute A = (gm1

1 · · · gmL

L grL+1g)
1

ω+y .
For a signature (A, r, y), the verification algorithm output 1 if e(A,Ωhy) =
e(gm1

1 · · · gmL

L grL+1, h) holds. The BBS+ signature scheme satisfies existential
unforgeability against chosen message attack (EUF-CMA)3 under the q-SDH
assumption.

Linear Encryption [7]: A public key is pk = (u, v, h) ∈ G2 such that
uX1 = vX2 = h for X1, X2 ∈ Zp. The corresponding secret key is (X1, X2). For

a plaintext M ∈ G2, choose δ1, δ2
$← Zp, compute a ciphertext C = (F1, F2, F3),

where F1 = M · hδ1,δ2 , F2 = uδ1 , and F3 = vδ2 . C can be decrypted as
M = F1/(F

X1
2 FX2

3). The linear encryption is IND-CPA secure4 under the DLIN
assumption.

Signature Based on Proof of Knowledge: In our group signature, we ap-
ply the conversion of the underlying interactive zero knowledge (ZK) proof into
non-interactive ZK (NIZK) proof by applying the Fiat-Shamir heuristic [17]. We
describe such converted signature based on proof of knowledge (SPK) as SPK{x :
(y, x) ∈ R}(M), where x is the knowledge to be proved,R is a relation (e.g., y = gx

3 First an adversary A is given vk from the challenger C. Then A sends messages to
C and obtains the corresponding signatures. Finally, A outputs a message/signature
pair (M∗, σ∗). We say that A wins if (M∗, σ∗) is valid and A has not sent M∗ as a
signing query. The EUF-CMA security guarantees that the probability Pr[A wins]
is negligible.

4 First an adversary A is given pk from the challenger C. Then A sends the challenge

message (M∗
0 ,M

∗
1) to C, and C chooses μ

$← {0, 1}, and computes the challenge
ciphertext C∗ which is a ciphertext of M∗

μ . A is given C∗, and outputs a bit μ′. The
IND-CPA security guarantees that |Pr[μ = μ′]− 1

2
| is negligible.

A Revocable Group Signature Scheme 193

in the case of the knowledge of the discrete logarithm), andM is a signed message.
The SPK has an extractor of the proved knowledge from two accepting protocol
views whose commitments are the same but challenges are different.

5 Proposed Group Signature Scheme with Hiding of the
Number of Revoked Users

In this section, we propose a group signature scheme hiding the number of re-
voked users by applying ABGS. Before explaining our scheme, we introduce
ABGS as follows:

Attribute-Based Group Signature (ABGS): ABGS [15,18,21,22] is a kind
of group signature, where a user with a set of attributes can prove anonymously
whether he/she has these attributes or not. Anonymity means a verifier cannot
identify who the actual signer is among group members. As a difference from
attribute-based signature [23,24,26,32], there is an opening manager (as in group
signatures) who can identify the actual signer (anonymity revocation), and a ver-
ifier can “explicitly” verify whether a user has these attributes or not [15,21,22].
By applying this explicitly attribute verification, anonymous survey for the col-
lection of attribute statistics is proposed [15]. As one exception, the Fujii et al.
ABGS scheme [18] achieves signer-attribute privacy, where a group signature
does not leak which attributes were used to generate it, except that assigned at-
tributes satisfy a predicate. As another property (applied for our construction),
the dynamic property has been proposed in [15], where the attribute predicate
can be updated without re-issuing the user’s secret keys.

Our Methodology: We consider two attributes: (1) valid group user and (2)
the user’s identity (say Ui), and apply the dynamic property of ABGS [15]
and the signer-attribute privacy of ABGS [18]. Here we explain our method-
ology. Let the initial access tree be represented as in Fig 1:

Valid
Group
User

U1

∧

Valid
Group
User

U2

∧

· · · Valid
Group
User

UN

∧

∨

Fig. 1. Initial Access Tree

Due to the signer-attribute privacy, a user Ui can anonymously prove that
he/she has attributes “valid group user” and “Ui”. Namely, anyone can verify
whether the signer’s attributes satisfy the access tree, without detecting the
actual attribute (i.e., the user’s identity).

194 K. Emura, A. Miyaji, and K. Omote

When a user (say U1) is revoked, the tree structure is changed as in Fig 2.

U1

∧

Valid
Group
User

U2

∧

· · · Valid
Group
User

UN

∧

∨

Fig. 2. Modified Access Tree

Due to the dynamic property of ABGS, this modification can be done without
re-issuing the user’s secret keys. By removing the attribute “valid group user”
from the subtree of U1, we can express the revocation of U1, since U1 cannot
prove that his/her attributes satisfy the current access tree.

In addition, we propose a randomization and dummy attribute technique to
implement the revocation procedure (Fig 3). We apply the Boldyreva multisig-
nature [5], since it is applied for the computation of the membership certificate
in the Fujii et al. ABGS. Let t be the time interval and v denote the attribute
“valid group user”.

Valid
Group
User

Ui

∧

⇐⇒
Public value : g

sv,t,ixi

1 , g
sv,t,i+si
1

User secret key : gsixi
1

Ui

∧

⇐⇒
Public value : g

s′v,t+1,i

1 , g
sv,t+1,i+si
1

User secret key : gsixi
1

(Ui is revoked)

Time interval t

Time interval t + 1

Fig. 3. Our Randomization and Dummy Attribute Technique

For a non-revoked user Ui, GM publishes the dummy value g
sv,t,ixi

1 . Then

Ui can compute g
(sv,t,i+si)xi

1 (= Hi) from dT,t,i = g
sv,t,ixi

1 and Ui’s secret key
Bi = gsixi

1 . Let Ui be revoked in the time interval t+ 1. Then, GM publishes a

randomized dummy value g
s′v,t+1,i

1 (instead of g
sv,t+1,ixi

1), and therefore Ui can-

not compute g(sv,t+1,i+si)xi due to the CDH assumption. Note that (g
sv,t+1,i+si
1 ,

g
sv,t+1,ixi

1) and (g
sv,t+1,i+si
1 , g

s′v,t+1,i

1) are indistinguishable, under the XDH

A Revocable Group Signature Scheme 195

assumption, where the DDH assumption holds in G1. Next, we give our group
signature scheme.

Protocol 1 (Our revocable group signature)

Setup(1κ) : Select a bilinear group (G1,G2,GT) with prime order p, a bilinear

map e : G1 × G2 → GT , g, g1, . . . , g4, g̃
$← G1, h̃

$← G2. Output params =
(p,G1,G2,GT , e,H, g, g1, g2, g3, g4, g̃, h̃)

KeyGen(params,N) : Let (U1, . . . , UN) be all users. Set t = 0. Select ω1, ω2, X1,

X2, x1, . . . , xN , s1, . . . , sN , sv,0,1, . . . , sv,0,N
$← Z∗

p. Compute

– u, v, h ∈ G2 with the condition uX1 = vX2 = h (note that (u, v, h) is
a public key of the linear encryption, and (X1, X2) is the corresponding
secret key),

– Ki,1 = g
1

ω1+xi
1 , Ki,2 = hxi , and Bi = gsixi

1 for all i ∈ [1, N], and

– Ω1 = hω1 and Ω2 = hω2 .

For all i ∈ [1, N], choose sv,0,i, y0,i, r0,i
$← Z∗

p. If sv,0,i + si = 0 mod p, then
choose sv,0,i again until sv,0,i + si �= 0 mod p holds. Set sT,0,i := sv,0,i + si,
and compute

– hT,0,i = g
sT,0,i

1

– A0,i = (g
sT,0,i

1 gt2g
r0,i
3 g4)

1
ω2+y0,i (which is a BBS+ signature for signed

messages (sT,0,i, t)), and

– dT,0,i := g
sv,0,ixi

1 .

Set Sign(sT,0,i, i) = (A0,i, y0,i, r0,i). Output

– gpk = (params,Ω1, Ω2, u, v,H), where H : {0, 1}∗ → Z∗
p is a hash func-

tion which is modeled as a random oracle.

– msk = (X1, X2, s1, . . . , sN , sv,0,1, . . . , sv,0,N , x1, . . . , xN , reg :=
{(Ki,2, i)}Ni=1),

– uski = (Ki,1,Ki,2, Bi) for all i ∈ [1, N], and

– T0 = {(Sign(sT,0,i, i), hT,0,i, dT,0,i)}Ni=1.

GSign(gpk, uski,M, Tt) : Let Ui be a non-revoked user in the current time in-

terval t. That is, for (Sign(sT,t,i, i), hT,t,i, dT,t,i) ∈ Tt, hT,t,i = g
sv,t,i+si
1 :=

g
sT,t,i

1 and dT,t,i = g
sv,t,ixi

1 hold for some unknown exponent sv,t,i ∈ Z∗
p.

Ui chooses r1, r2, . . . , r10, δ1, δ2
$← Z∗

p, sets α = −r1r2, β = −r2r4, β′ =
r5yt,i − r4, γ = r2r6 + r7, γ

′ = r4r8 + r9, and γ′′ = r10yt,i, and computes

Hi = Bi · dT,t,i = g
sixi+sv,t,ixi

1 = hxi

T,t,i,

T1 = Ki,1g̃
r1 , T2 = Ki,2h̃

r2 , T3 = Hig̃
r3 , T4 = hT,t,ig̃

r4 , T5 = At,ig̃
r5 ,

C1 = gr1 g̃r6 , C2=gαg̃r7 , C3=gr2 g̃r8 , C4=gβ g̃r9 , C5=gr10 g̃−r5 , C6=gγ
′′
g̃−r4 ,

F1 = Ki,2h
δ1+δ2 , F2 = uδ1 , and F3 = vδ2 , and

196 K. Emura, A. Miyaji, and K. Omote

V = SPK{(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, yt,i, rt,i, α, β, β′, γ, γ′, γ′′, δ1, δ2) :
e(T1, Ω1T2)

e(g1, h)
= e(g̃, Ω1T2)

r1e(T1, h̃)
r2e(g̃, h̃)α

∧e(T4, T2)

e(T3, h)
=

e(g̃, T2)
r4e(T4, h̃)

r2e(g̃, h̃)β

e(g̃, h)r3

∧ e(T5, Ω2)

e(g4, h)e(T4, h)e(g2, h)t
=

e(g̃, Ω2)
r5e(g3, h)

rt,ie(g̃, h)β
′

e(T5, h)yt,i

∧C1 = gr1 g̃r6 ∧ C2 = gαg̃r7 ∧ C2 = C−r2
1 g̃γ

∧C3 = gr2 g̃r8 ∧ C4 = gβ g̃r9 ∧ C4 = C−r4
3 g̃γ

′

∧C5 = gr10 g̃−r5 ∧ C6 = gγ
′′
g̃−r4 ∧ C6 = C

yt,i

5 g̃β
′

∧T2

F1
=

h̃r2

hδ1+δ2
∧ F2 = uδ1 ∧ F3 = vδ2}(M)

Output σ = (C1, C2, C3, C4, C5, C6, F1, F2, F3, T1, T2, T3, T4, T5, V)5.

Verify(gpk,M, σ, Tt) : Return 1 if σ is a valid group signature6, and 0 otherwise.

Revoke(gpk,msk, {Ui}, Tt) : Let RLt+1 := {Ui} be a set of revoked users. Set

t → t+1. For all i ∈ {i|Ui ∈ RLt+1}, choose s′v,t+1,i
$← Z∗

p. For all i ∈ [1, N],

choose sv,t+1,i, yt+1,i, rt+1,i
$← Z∗

p (until sv,t+1,i + si �= 0 mod p holds), set
sT,t+1,i := sv,t+1,i + si, and compute

hT,t+1,i = gsT,t+1,i ,

At+1,i = (g
sT,t+1,i

1 gt+1
2 g

rt+1,i

3 g4)
1

ω2+yt+1,i ,

and compute dT,t+1,i such that:

dT,t+1,i =

{
g
sv,t+1,ixi

1 (Ui �∈ RLt+1)

g
s′v,t+1,i

1 (Ui ∈ RLt+1)

and set Sign(sT,t+1,i, i) = (At+1,i, yt+1,i, rt+1,i). Output Tt+1 =
{(Sign(sT,t+1,i, i), hT,t+1,i, dT,t+1,i)}Ni=1.

Open(gpk,msk,M, σ) : Compute F1

F
X1
2 F

X2
3

= K, and search i such that

(Ki,2, i) ∈ reg and K = Ki,2. If there is no such i, output 0. Otherwise,
output i.

In our scheme, no public values have size dependent on r, and no costs of the
GSign algorithm (or the Verify algorithm) depend on r or N . In addition, our
scheme satisfies anonymity w.r.t. the revocation which guarantees the unlinka-
bility of revoked users. So, in our scheme, no r is revealed.

5 We give the detailed form of SPK V in the appendix.
6 We give the procedure of the verification algorithm in the appendix.

A Revocable Group Signature Scheme 197

6 Discussion

One drawback of our scheme is that the number of public values depends on
N , since no common attribute can be applied for implementing the revoca-
tion procedure of “each” user. So, one may think that there might be a more
trivial construction (without applying ABGS) if such big-size public value is al-
lowed. For example, as one of the most simple group signature construction, let
gx1 , . . . , gxN be users’ public keys, and GM randomizes these value such that
y1 := (gx1)rGM , . . . , yN := (gxN)rGM , and publishes y := grGM . Each user (say
Ui) proves the knowledge of xi for the relation (grGM)xi using the OR relation
such that SPK{x : yx = y1 ∨ · · · ∨ yx = yN}(M) to hide the identity i ∈ [1, N].
If a user (say Uj) is revoked, then GM publishes a random value Rj (instead
of (gxj)rGM). In this case, the number of revoked users is not revealed under
the DDH assumption, since (g, gxj , grGM , (gxj)rGM) is a DDH tuple. However,
this trivial approach requiresN -dependent signing/verification cost, whereas our
scheme achieves constant proving costs.

As another candidate, Sudarsono et al. [33] proposed an attribute-based
anonymous credential system by applying an efficient pairing-based accumu-
lator proposed by Camenisch et al. [10]. Since the Sudarsono et al. construction
follows AND/OR relations of attributes, a revocable group signature scheme
with the property of hiding r might be constructed. However, it is not obvious
whether 2-DNF formulae ∨N

i=1(valid group user∧Ui) can be implemented or not
in the Sudarsono et al. attribute-based proof system. In addition, their construc-
tion also requires the N -dependent-size (N is the number of attributes in this
context) public values to update the witness of users, as in our group signature
scheme. So, we insist that proposing a revocable group signature scheme with
both the property of hiding r and constant proving costs is not trivial if such
large-size public key is allowed.

7 Security Analysis

The security proofs of following theorems are given in the appendix.

Theorem 1. The proposed group signature scheme satisfies anonymity w.r.t.
the revocation under the DLIN assumption and the XDH assumption.

Theorem 2. The proposed group signature scheme satisfies traceability under
the N -HSDH assumption, the CDH assumption, and Nt-SDH assumption, where
t is the final time interval that A outputs (M∗, σ∗).

8 Conclusion

In this paper, we propose a revocable group signature scheme with the property
of hiding r, by applying ABGS. Under a XDH-hard elliptic curve with 170 bits
p (as in [14,28]), the size of signature is 7242 bits, where the size of an element

198 K. Emura, A. Miyaji, and K. Omote

of G1 is 171 bits, the size of an element of G2 is 513 bits, and the size of the
challenge c is 80 bits. Since the size of signature in [14] (resp. in [28]) is 1444
(resp. 1533) bits, there is space for improvement the signature size. In addition,
proposing a r-hiding revocable group signature with small-size public key is also
interesting future work.

References

1. Ateniese, G., Tsudik, G.: Some Open Issues and New Directions in Group Signa-
tures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer,
Heidelberg (1999)

2. Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

3. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of
Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

5. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

6. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

7. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
Conference on Computer and Communications Security, pp. 168–177 (2004)

9. Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group
Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
1–15. Springer, Heidelberg (2007)

10. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

11. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

12. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Chen, L., Li, J.: VLR group signatures with indisputable exculpability and efficient
revocation. In: SocialCom/PASSAT, pp. 727–734 (2010)

14. Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signa-
tures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210.
Springer, Heidelberg (2006)

15. Emura, K., Miyaji, A., Omote, K.: A dynamic attribute-based group signature
scheme and its application in an anonymous survey for the collection of attribute
statistics. Journal of Information Processing 17, 216–231 (2009)

A Revocable Group Signature Scheme 199

16. Emura, K., Miyaji, A., Omote, K.: An Anonymous Designated Verifier Signature
Scheme with Revocation: How to Protect a Company”s Reputation. In: Heng, S.-
H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 184–198. Springer,
Heidelberg (2010)

17. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

18. Fujii, H., Nakanishi, T., Funabiki, N.: A proposal of efficient attribute-based group
signature schemes using pairings. IEICE Technical Report 109(272), 15–22 (2009)
(in Japanese), http://ci.nii.ac.jp/naid/110007520932/en/

19. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps.
IEICE Transactions 89-A(5), 1328–1338 (2006)

20. Isshiki, T., Mori, K., Sako, K., Teranishi, I., Yonezawa, S.: Using group signatures
for identity management and its implementation. In: Digital Identity Management,
pp. 73–78 (2006)

21. Khader, D.: Attribute based group signature with revocation. Cryptology ePrint
Archive, Report 2007/241 (2007)

22. Khader, D.: Attribute based group signatures. Cryptology ePrint Archive, Report
2007/159 (2007)

23. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ASIACCS, pp. 13–16 (2010)

24. Li, J., Kim, K.: Hidden attribute-based signatures without anonymity revocation.
International Journal of Information Sciences 180(9), 1681–1689 (2010)

25. Libert, B., Vergnaud, D.: Group Signatures with Verifier-Local Revocation and
Backward Unlinkability in the Standard Model. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)

26. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Hei-
delberg (2011)

27. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable Group Signature
Schemes with Constant Costs for Signing and Verifying. In: Jarecki, S., Tsudik, G.
(eds.) PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)

28. Nakanishi, T., Funabiki, N.: A Short Verifier-Local Revocation Group Signature
Scheme with Backward Unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp.
17–32. Springer, Heidelberg (2006)

29. Nakanishi, T., Funabiki, N.: Efficient revocable group signature schemes using
primes. Journal of Information Processing 16, 110–121 (2008)

30. Nakanishi, T., Kubooka, F., Hamada, N., Funabiki, N.: Group Signature Schemes
with Membership Revocation for Large Groups. In: Boyd, C., González Nieto, J.M.
(eds.) ACISP 2005. LNCS, vol. 3574, pp. 443–454. Springer, Heidelberg (2005)

31. Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

32. Shahandashti, S.F., Safavi-Naini, R.: Threshold Attribute-Based Signatures and
Their Application to Anonymous Credential Systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

33. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient Proofs of Attributes in
Pairing-Based Anonymous Credential System. In: Fischer-Hübner, S., Hopper, N.
(eds.) PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011)

http://ci.nii.ac.jp/naid/110007520932/en/

200 K. Emura, A. Miyaji, and K. Omote

Appendix A: Detailed SPK

First, we explain the relations proved in SPK V . V proves that:

1. A signer has a valid (Ki,1,Ki,2) generated by the KeyGen algorithm.

– (Ki,1,Ki,2) can be verified by using the public value Ω1 such that:

e(Ki,1, Ω1Ki,2) = e(g1, h)

– Since Ki,1 (resp. Ki,2) is hidden such that T1 = Ki,1g̃
r1 , (resp. T2 =

Ki,2h̃
r2), this relation is represented as:

e(T1, Ω1T2)

e(g1, h)
= e(g̃, Ω1T2)

r1e(T1, h̃)
r2e(g̃, h̃)α

– We need to guarantee the relation α = −r1r2 in the relation above. To
prove this, introduce an intermediate value γ = r2r6 + r7, and prove
that:

C1 = gr1 g̃r6 ∧C2 = gαg̃r7 ∧ C2 = C−r2
1 g̃γ

Note that C2 = C−r2
1 g̃γ = (gr1 g̃r6)−r2 g̃γ = g−r1r2 g̃−r2r6+γ = gαg̃r7

yields α = −r1r2 and γ = r2r6 + r7.

2. A signer has not been revoked.
– A non-revoked signer can compute Hi = h

logh Ki,2

T,t,i = (g
sT,t,i

1)xi from
Bi and dT,t,i, where sT,t,i is a signed message of At,i. These satisfy the
relations

e(hT,t,i,Ki,2) = e(Hi, h)

e(At,i, Ω2h
yt,i) = e(g

sT,t,i

1 gt2g
rt,i
3 g4, h)

– Since Hi, hT,t,i, and Ai are hidden such that T3 = Hig̃
r3 , T4 = hT,t,ig̃

r4 ,
and T5 = At,ig̃

r5 , these relations are represented as:

e(T4, T2)

e(T3, h)
=

e(g̃, T2)
r4e(T4, h̃)

r2e(g̃, h̃)β

e(g̃, h)r3

e(T5, Ω2)

e(g4, h)e(T4, h)e(g2, h)t
=

e(g̃, Ω2)
r5e(g3, h)

rt,ie(g̃, h)β
′

e(T5, h)yt,i

– We need to guarantee the relations β = −r2r4 and β′ = r5yt,i − r4
in the relations above. To prove these, introduce intermediate values
γ′ = r4r8 + r9 and γ′′ = r10yt,i, and prove that:

C3 = gr2 g̃r8 ∧ C4 = gβ g̃r9 ∧ C4 = C−r4
3 g̃γ

′

C5 = gr10 g̃−r5 ∧ C6 = gγ
′′
g̃−r4 ∧ C6 = C

yt,i

5 g̃β
′

As in α and γ explained before, relations β = −r2r4, β
′ = r5yt,i − r4,

γ′ = r4r8 + r9, and γ′′ = r10yt,i are obtained from the relations above.

– Note that (At,i, rt,i, yt,i) is a BBS+ signature for signed messages
(sT,t,i, t), and therefore V depends on the current time interval t.

A Revocable Group Signature Scheme 201

3. A value for the Open algorithm is included in σ.

– (F1, F2, F3) is a ciphertext (of the linear encryption scheme) of the plain-
text Ki,2, which can be computed by decrypting (F1, F2, F3) using msk.

Next, we describe the detailed SPK of our scheme as follows.

1. Choose rr1 , rr2 , rr3 , rr4 , rr5 , rr6 , rr7 , rr8 , rr9 , rr10 , ryt,i , rrt,i , rα, rβ , rβ′ , rγ , rγ′ ,

rγ′′ , rδ1 , rδ2
$← Z∗

p.

2. Compute

R1 = e(g̃, Ω1T2)rr1 e(T1, h̃)rr2 e(g̃, h̃)rα , R2 =
e(g̃, T2)rr4 e(T4, h̃)rr2 e(g̃, h̃)rβ

e(g̃, h)rr3
,

R3 =
e(g̃, Ω2)rr5 e(g3, h)

rrt,i e(g̃, h)rβ′

e(T5, h)
ryt,i

, R4=grr1 g̃rr6 , R5=grα g̃rr7 , R6=C
−rr2
1 g̃rγ ,

R7 = grr2 g̃rr8 , R8 =grβ g̃rr9 , R9 =C
−rr4
3 g̃rγ′ , R10 =grr10 g̃−rr5 , R11 =grγ′′ g̃−rr4 ,

R12 = C
ryt,i
5 g̃rβ′ , R13 =

h̃rr2

hrδ1+rδ2
, R14 = urδ1 , R15 = vrδ2 ,

c = H(gpk,M,C1, C2, C3, C4, C5, C6, F1, F2, F3, T1, T2, T3, T4, T5, R1, . . . , R15),

sri = rri + cri (i ∈ [1, 10]), syt,i = ryt,i + cyt,i, srt,i = rrt,i + crt,i,

sα = rα + cα, sβ = rβ + cβ, sβ′ = rβ′ + cβ′, sγ = rγ + cγ, sγ′ = rγ′ + cγ′,

sγ′′ = rγ′′ + cγ′′, sδ1 = rδ1 + cδ1, and sδ2 = rδ2 + cδ2,

3. Output V = (c, {sri}10i=1, syt,i , srt,i , sα, sβ, sβ′ , sγ , sγ′ , sγ′′ , sδ1 , sδ2).

Next, we describe the verification of σ = (C1, C2, C3, C4, C5, C6, F1, F2, F3, T1,
T2, T3, T4, T5, c, {sri}10i=1, syt,i , srt,i , sα, sβ , sβ′ , sγ , sγ′ , sγ′′ , sδ1 , sδ2) as follows.

1. Compute

R̃1 = e(g̃, Ω1T2)
sr1 e(T1, h̃)

sr2 e(g̃, h̃)sα(
e(T1, Ω1T2)

e(g1, h)
)−c,

R̃2 =
e(g̃, T2)

sr4 e(T4, h̃)
sr2 e(g̃, h̃)sβ

e(g̃, h)sr3
(
e(T4, T2)

e(T3, h)
)−c,

R̃3 =
e(g̃, Ω2)

sr5 e(g3, h)
srt,i e(g̃, h)sβ′

e(T5, h)
syt,i

(
e(T5, Ω2)

e(g4, h)e(T4, h)e(g2, h)t
)−c,

R̃4 = gsr1 g̃sr6C−c
1 , R̃5 = grα g̃sr7C−c

2 , R̃6 = C
−sr2
1 g̃rγC−c

2 ,

R̃7 = gsr2 g̃sr8C−c
3 , R̃8 = gsβ g̃sr9C−c

4 , R̃9 = C
−sr4
3 g̃sγ′C−c

4 ,

R̃10 = gsr10 g̃−sr5C−c
5 , R̃11 = gsγ′′ g̃−sr4C−c

6 , R̃12 = C
syt,i
5 g̃sβ′C−c

6 ,

R̃13 =
h̃sr2

hsδ1+sδ2
(
T2

F1
)−c, R̃14 = usδ1F−c

2 , and

R̃15 = vrδ2F−c
3 .

Note that a verifier computes e(g2, h)
t to check whether σ is made in the

time interval t or not.

2. Check c = H(gpk,M,C1, C2, C3, C4, C5, C6, F1, F2, F3, T1, T2, T3, T4, T5, R̃1,
. . . , R̃15). If it holds, then output 1, and 0, otherwise.

202 K. Emura, A. Miyaji, and K. Omote

Appendix B: Security Analysis

Proof of Theorem 1

Proof. Let C be the challenger of the linear encryption, and A be the adversary
who breaks anonymity w.r.t. the revocation of our scheme. We construct the
algorithm B that breaks the IND-CPA security of the linear encryption. First, C
gives the public key of the linear encryption (u, v, h). B chooses all values, except
(u, v, h), and therefore B can answer all queries issued from A.

In the challenge phase, A sends (M∗, Ui0 , Ui1). Let hxi0 and hxi1 be (a part
of) secret key of Ui0 , and Ui1 , respectively. B sets M∗

0 := hxi0 and M∗
1 := hxi1 ,

and sends (M∗
0 ,M

∗
1) to C as the challenge messages of the linear encryption. C

sends the challenge ciphertext C∗. B sets C∗ = (F1, F2, F3), and computes the
challenge group signature σ∗. Note that B does not know the random number
(δ∗1 , δ

∗
2) and μ ∈ {0, 1} such that C∗ = (hxiμhδ∗1+δ∗2 , uδ∗1 , vδ

∗
2), since (δ∗1 , δ

∗
2 , μ) are

chosen by C. So, B uses the backpatch of the random oracle H for computing
σ∗, and includes C∗ in σ∗. Then, all values (except C∗) is independent of μ.
Note that even if Uiμ is revoked in the challenge interval, B can compute σ∗,
since B knows msk. If either Ui0 or Ui1 is revoked in the challenge interval, this

fact is not used for guessing μ under the XDH assumption, since (g
sv,t+1,iμ+siμ
1 ,

g
sv,t+1,iμxiμ

1) and (g
sv,t+1,iμ+siμ
1 , g

s′v,t+1,iμ

1) are indistinguishable.
Finally, A outputs the guessing bit μ′ ∈ {0, 1}. B outputs μ′ as the guessing

bit of the IND-CPA game of the linear encryption. ��

Proof of Theorem 2

Proof. Let A1 be an adversary who outputs (M∗, σ∗) where for IDi∗ ←
Open(msk,M∗, σ∗), IDi∗ �∈ CU holds. As a case of the first one, let A2 be an ad-
versary who outputs (M∗, σ∗) where for IDi∗ ← Open(msk,M∗, σ∗), IDi∗ �∈ CU
and Ui∗ �∈ {U1, . . . , UN} holds. In addition, let A3 be an adversary who outputs
(M∗, σ∗) where for IDi∗ ← Open(msk,M∗, σ∗), IDi∗ ∈ RU holds. We construct
an algorithm B1 (resp. B2 and B3) that breaks the N -HSDH assumption (resp.
q-SDH assumption, where q is the number of signing queries, and the CDH
assumption) by using A1 (resp. A2 and A3).

First, we describe B1. Let g1, h, h
ω1 , {(g

1
ω1+xi
1 , hxi)}i=1,...,N be an N -HSDH

instance. B1 selects Ui∗ ∈ {U1, . . . , UN}, and choose all values, except g1, h, and
Ω1 := hω1 . B1 answers queries issued by A1 as follows:

Revocation : A1 requests the revocation of users IDi1 , . . . , IDikt
for some con-

stant kt ∈ [1, N]. Since B1 knows ω2, B1 adds IDi1 , . . . , IDikt
to RUt, and

simply returns the result of the Revoke algorithm.
GSigning : A1 requests a group signature on a message M for a user Ui where

IDi �∈ CU . Since B1 does not know gxi
1 , B1 computes σ by using the back-

patch of the random oracle H, and gives σ to A.
Corruption : A1 requests the secret key of a user Ui. If Ui = Ui∗ , then B1 aborts.

Otherwise, B1 sets (g
1

ω1+xi
1 , hxi) = (Ki,1,Ki,2), chooses s′i

$← Z∗
p, sets s′i =

A Revocable Group Signature Scheme 203

sixi, and computes Bi = gs
′
i . B1 adds IDi to CU , and gives (Ki,1,Ki,2, Bi)

to A1.
Opening : Since B1 has (X1, X2), B1 simply returns the result of the Open algo-

rithm.

Finally, A1 outputs a past interval t∗ ≤ t for the current interval t, and a
pair (M∗, σ∗). By using the extractor of SPK, B1 gets: (K∗

i,1,K
∗
i,2, H

∗
i), where

e(K∗
i,1, Ω1K

∗
i,2) = e(g1, h), e(hT,t,i,K

∗
i,2) = e(H∗

i , h), F1 = K∗
i,2h

δ1+δ2 , F2 = uδ1 ,

and F3 = vδ2 hold. From (F1, F2, F3), B1 obtains i by using the Open algorithm.
If i �= i∗, then B1 aborts. Otherwise, B1 outputs (K∗

i,1,K
∗
i,2) as a solution of the

N -HSDH problem.
Next, we describe B2 that outputs a forged BBS+ signature. Let C be the

challenger of the BBS+ signature. B2 is given (g, g1, g2, g3, g4, h, Ω2) from C.
B2 chooses all values, except (g, g1, g2, g3, g4, h, Ω2). For each revocation query,
B2 issues N signing queries to C for obtaining A·,i. So, B2 needs to issue the
signing query in Nt times. For other queries, B2 can answer since B2 knows
all other secret values. Finally, A3 outputs a past interval t∗ ≤ t for the cur-
rent interval t, and a pair (M∗, σ∗). By using the extractor of SPK, B2 gets:
(At∗,i∗ , yt∗,i∗ , rt∗,i∗), where e(At∗,i∗ , Ω2h

yt∗,i∗) = e(g
sT,t∗,i∗
1 gt

∗
2 g

rt∗,i∗
3 g4, h). Note

that, since Ui∗ �∈ {U1, . . . , UN}, B2 does not obtain (At∗,i∗ , yt∗,i∗ , rt∗,i∗) from C.
So, B2 outputs a forged BBS+ signature (At∗,i∗ , yt∗,i∗ , rt∗,i∗).

Finally, we describe B3 that breaks the CDH assumption. Let (g1, g
a
1 , g

b
1) be

an CDH instance. B3 selects Ui∗ ∈ {U1, . . . , UN}, sets xi∗ := a and si∗ := b,
and choose all values, except g1 and uski∗ . B3 answers queries issued by A3 as
follows:

Revocation : A3 requests the revocation of users IDi1 , . . . , IDikt
for some con-

stant kt. Since B3 knows ω2, B3 adds IDi1 , . . . , IDikt
to RUt, and simply

returns the result of the Revoke algorithm.
GSigning : A3 requests a group signature on a message M for a user Ui where

IDi �∈ CU . B3 computes σ by using the backpatch of the random oracle H,
and gives σ to A.

Corruption : A3 requests the secret key of a user Ui. If Ui = Ui∗ , then B3 aborts.
Otherwise, B3 adds IDi to CU , and gives (Ki,1,Ki,2, Bi) to A3.

Opening : Since B3 has (X1, X2), B3 simply returns the result of the Open
algorithm.

Finally, A3 outputs a past interval t∗ ≤ t for the current interval t, and a pair
(M∗, σ∗). By using the extractor of SPK, B3 gets: H∗

i , where e(K∗
i,1, Ω1K

∗
i,2) =

e(g1, h), e(hT,t,i,K
∗
i,2) = e(H∗

i , h), F1 = K∗
i,2h

δ1+δ2 , F2 = uδ1 , and F3 = vδ2 hold.
From (F1, F2, F3), B3 obtains i by using the Open algorithm. If i �= i∗, then B3

aborts. Otherwise, B3 solves the CDH problem as follows. Since Ui ∈ RLt, B3

has computed g
sv,t,i∗
1 ·gb1 = g

sv,t,i∗+si∗
1 and g

s′v,t,i∗
1 . That is, H∗

i = Bi∗ ·g
sv,t,i∗xi

1 =

g
ab+asv,t,i∗xi

1 holds. So, B3 outputs H∗
i /(g

a
1)

sv,t,i∗ = gab1 as the solution of the
CDH problem. ��

Generic Constructions

for Verifiable Signcryption�

Laila El Aimani

Technicolor, 1 avenue de Belle Fontaine - CS17616, 35576 Cesson-Sévigné, France

Abstract. Signcryption is a primitive which simultaneously performs
the functions of both signature and encryption in a way that is more
efficient than signing and encrypting separately. We study in this pa-
per constructions of signcryption schemes from basic cryptographic
mechanisms; our study concludes that the known constructions require
expensive encryption in order to attain confidentiality, however some
adjustments make them rest on cheap encryption without compromising
their security. Our constructions further enjoy verifiability which entitles
the sender or the receiver to prove the validity of a signcryption with/out
revealing the signcrypted message. They also allow the receiver to release
some information which allows anyone to publicly verify a signcryption
on a given message. Finally, our constructions accept efficient instantia-
tions if the building blocks belong to a wide class of signature/encryption
schemes.

Keywords: signcryption, sign-then-encrypt paradigm, commit-then-
encrypt-and sign paradigm, encrypt-then-sign paradigm, (public) veri-
fiability, homomorphic encryption.

1 Introduction

Cryptographic mechanisms that proffer both the functionalities of signature and
of encryption are becoming nowadays increasingly important. In fact, many real-
life applications entail both the confidentiality and the authenticity/integrity of
the transmitted data; an illustrative example is electronic elections where the
voter wants to encrypt his vote to guarantee privacy, and at the same time, the
voting center needs to ensure that the encrypted vote comes from the entity
that claims to be its provenance. To respond to this need, Zheng [27] introduced
the notion of signcryption which is a primitive that simultaneously performs the
functions of both signature and encryption in a way that is more efficient than
signing and encrypting separately.

Related work. Since the introduction of this primitive, many constructions which
achieve different levels of security have been proposed. On a high level, security

� This is an extended abstract. The full version [13] is available at the Cryptology
ePrint Archive.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 204–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Generic Constructions for Verifiable Signcryption 205

of a signcryption scheme involves two properties; privacy and authenticity. Pri-
vacy is analogous to indistinguishability in encryption schemes, and it denotes
the infeasibility to infer any information about the signcrypted message. Au-
thenticity is similar to unforgeability in signature schemes and it denotes the
difficulty to impersonate the signcrypter. Defining formally those two proper-
ties is a fundamental divergence in signcryption constructions as there are many
issues which come into play:

– Two-user versus multi-user setting In the two-user setting, adopted
for instance in [1], a single sender (the entity that creates the signcryption)
interacts with a single receiver (the entity that recovers the message from
the signcryption). Although such a setting is too simplistic to represent the
reality, e.g. the case of electronic elections, it provides however an important
preliminary step towards modeling and building schemes in the multi-user
setting. In fact, many works have proposed simple tweaks in order to derive
multi-user security from two-user security [1,22].

– Insider versus outsider security Another consequential difference be-
tween security models is whether the adversary is external or internal to the
entities of the system. The former case corresponds to outsider security, e.g.
[10], whereas the latter denotes insider security which protects the system
protagonists even when some of their fellows are malicious or have com-
promised/lost their private keys [1,22]. It is naturally possible to mix these
notions into one single signcryption scheme, i.e. insider indistinguishability
and outsider unforgeability [1,6], or outsider indistinguishability and insider
unforgeability [2]. However, the most frequent mix is the latter as illustrated
by the number of works in the literature, e.g. [1,19,2]; it is also justified by
the necessity to protect the sender from anyone trying to impersonate him
including entities in the system. Insider indistinguishability is by contrast
needed in very limited applications; the typical example [1] is when the ad-
versary happens to steal the private key of the sender, thus when it is able to
send “fake” messages, but we still wish to protect the privacy of the recorded
signcryptions sent by the genuine sender.

– Verifiability A further requirement on signcryption is verifiability which
consists in the possibility to prove efficiently the validity of a given sign-
cryption, or to prove that a signcryption has indeed been produced on a
given message. In fact, if we consider the example of electronic elections, the
voting center might require from the voter a proof of validity of the “sign-
crypted” vote. Also, the trusted party (the receiver) that decrypts the vote
might be compelled, for instance to resolve some later disputes, to prove that
the sender has indeed produced the vote in question; therefore, it would be
desirable to support the prover with efficient means to provide such a proof
without having to disclose his private input. This property is also needed
in filtering out spams in a secure email system. Although a number of con-
structions [3,26,7,21,25] have tackled the notion of verifiability (this notion
is often referred to in the literature as public verifiability, and it denotes
the possibility to release (by the receiver) some information which allows to

206 L. El Aimani

publicly verify a signcryption with/out revealing the message in question),
most of these schemes do not allow the sender to prove the validity of the
created signcryption, nor allow the receiver to prove without revealing any
information, ensuring consequently non-transferability, to a third party, the
validity of a signcryption w.r.t. a given message. It is worth noting that the
former need, i.e. allowing the sender to prove the validity of a signcryption
without revealing the message, already manifests in the IACR electronic vot-
ing scheme (The Helios voting scheme) where the sender proves the validity
of the encrypted vote to the voting manager. The scheme nonetheless does
not respond to the formal security requirements of a signcryption scheme.

Before ending this paragraph, we recall the main generic constructions of sign-
cryption schemes that were proposed so far. In fact, building complex mech-
anisms from basic ones is customary in cryptography as it allows achieving
easy-to-analyze schemes, compared to dedicated/monolithic constructions. The
first constructions of signcryption were given and analyzed in [1], where the au-
thors study how to derive signcryption schemes, mainly in the two-user setting,
using the classical combinations “sign-then-encrypt”, “encrypt-then-sign”, and
“commit-then-encrypt-and-sign”. Subsequently, the work [22] presented several
optimizations of these combinations that lead to signcryptions with multi-user
security. The paper shows also how to use symmetric encryption in order to de-
rive constructions in the outsider multi-user setting. Finally, there are the recent
constructions [6] which achieve security in the insider multi-user setting without
key registration assumptions (on the receiver’s side). It is worth noting that none
of these constructions treat verifiability.

To the best of our knowledge, there are no generic constructions which provide
verifiability in a reasonable security model. The main contribution of this paper
is to provide such constructions.

Our Contributions. We make the following contributions. First, we propose a
new model for signcryption schemes which upgrades the existing models by three
interactive protocols: 1. a protocol that allows the sender to prove, to a third
party, the validity of the created signcryption, 2. and two protocols that allow the
receiver to prove, to a third party, the validity of a given signcryption with/out
revealing the message. All these protocols do not require the provers to reveal
any information.

In Section 3, we show that the “sign-then-encrypt” (StE) and the “commit-
then-encrypt-and-sign” (CtEaS) paradigms require expensive assumptions on
the underlying encryption in order to derive signcryption with outsider indis-
tinguishability. We do this by first proving the insufficiency of OW-CCA and
NM-CPA secure encryption, then by exhibiting a simple attack if the system is
instantiated from certain encryption schemes. Next, we propose simple tweaks of
the paradigms that make the resulting constructions rest on cheap encryption.

In Section 4, we show that the “encrypt-then-sign” (“TagEncrypt-then-sign”)
paradigm provides efficient constructions which are proven secure in our adopted
model. We demonstrate the efficiency of these schemes by explicitly describing

Generic Constructions for Verifiable Signcryption 207

the different verification protocols if the constructions are instantiated from a
wide class of encryption (tag-based encryption) schemes.

Finally, in Section 5, we propose a new paradigm which combines the merits
of both the “sign-then-encrypt” (StE) and “encrypt-then-sign” (EtS) paradigms
while avoiding their drawbacks. In fact, the former (both the old and the new vari-
ant) suffers the problem of verifiability. The latter suffers the recourse to stronger
security assumptions on the underlying signature. Moreover, the paradigm does
not provide anonymity of the sender. In this section, we show that our new pro-
posed paradigm, called “encrypt-then-sign-then-encrypt” (EtStE) circumvents
these problems while accepting many efficient instantiations.

2 Model and Main Constructions

A verifiable signcryption scheme consists of the following algorithms/protocols:

Setup (setup(1κ)). This probabilistic algorithm inputs a security parameter κ,
and generates the public parameters param of the signcryption scheme.

Key generation (keygenU (1
κ, param), U ∈ {S,R}). This probabilistic algo-

rithm inputs the security parameter κ and the public parameters param,
and outputs a key pair (pkU , skU) for the system user U which is either the
sender S or the receiver R.

Signcryption (signcrypt(m, skS , pkS , pkR)). This probabilistic algorithm in-
puts a message m, the key pair (skS , pkS) of the sender, the public key pkR
of the receiver, and outputs the signcryption μ of the message m.

Proof of validity (proveValidity(μ, pkS , pkR)). This is an interactive protocol
between the receiver or the sender who has just generated a signcryption μ
on some message, and any verifier: the sender uses the randomness used to
create μ (as private input) and the receiver uses his private key skR in order
to convince the verifier that μ is a valid signcryption on some message. The
common input to both the prover and the verifier comprise the signcryption
μ in question, pkS , and pkR. At the end of the protocol, the verifier either
accepts or rejects the proof.

Unsigncryption (unsigncrypt(μ, skR, pkR, pkS)). This is a deterministic algo-
rithm which inputs a putative signcryption μ on some message, the key pair
(skR, pkR) of the receiver, and the public key pkS of the sender, and outputs
either the message underlying μ or an error symbol ⊥.

Confirmation/Denial ({confirm, deny}(μ,m, pkR, pkS)). These are interac-
tive protocols between the receiver and any verifier; the receiver uses his
private key skR (as private input) to convince any verifier that a signcryp-
tion μ on some message m is/is not valid. The common input comprises
the signcryption μ and the message m in question, in addition to pkR and
pkS . At the end of the protocol, the verifier is either convinced of the valid-
ity/invalidity of μ w.r.t. m or not.

Public verification (publicVerify(μ,m, skR, pkR, pkS)). This is an algorithm
which inputs a signcryption μ, a message m, the key pair (skR, pkR) of the
receiver, and the public key pkS of the sender, and outputs either an error

208 L. El Aimani

symbol ⊥ if μ is not a valid signcryption on m, or a string which allows to
publicly verify the validity of μ on m otherwise.

It is natural to require the correctness of a signcryption scheme:

unsigncrypt(signcrypt(m, skS , pkS , pkR), skR, pkR, pkS) = m.

publicVerify(m, signcrypt(m, skS , pkS , pkR), skR, pkR, pkS) �=⊥ .

Moreover, the protocols proveValidity and {confirm, deny} must be complete,
sound, and zero knowledge. We refer to [15] for details of these notions.

2.1 Unforgeability

This notion protects the sender’s authenticity frommalicious insider adversaries,
i.e. the receiver. It is defined through a game between a challenger C and an adver-
saryAwhere the latter gets the public key pkS of the sender, generates the key pair
(pkR, skR) of the receiver, and hands pkR to the challenger. During the game,A is
allowed to ask adaptively signcryption queries w.r.t. pkR and pkS on messages of
his choice to C. The scheme is said to be Existentially Unforgeable against Chosen
Message Attacks (EUF-CMA) if the adversary is unable to produce a valid sign-
cryption μ	 on a messagem	 that he did not ask to the signcryption oracle.

Definition 1 (Unforgeability). We consider a signcryption scheme sc given
by the algorithms/protocols defined earlier in this section. Let A be a PPTM.
We consider the following random experiment:

Experiment Expeuf-cma
sc,A (1κ)

param ← sc.setup(1κ)
(pkS , skS) ← sc.keygenS(1

κ, param)
pkR ← A(pkS)
μ	 ← AS(pkS , pkR, skR)

S : m $−→ sc.signcrypt{skS , pkS , pkR}(m)
return 1 if and only if the following properties are satisfied:

- sc.unsigncrypt{skR,pkR,pkS}[μ] = m	

- m	 was not queried to S

We define the success of A via:

Succeuf-cma
sc,A (1κ) = Pr

[
Expeuf-cma

sc,A (1κ) = 1
]
.

Given (t, qs) ∈ N2 and ε ∈ [0, 1], A is called a (t, ε, qs)-EUF-CMA adversary
against sc if, running in time t and issuing qs queries to the sc.signcrypt oracle,
A has Succeuf-cma

sc,A (1κ) ≥ ε. The scheme sc is said to be (t, ε, qs)-EUF-CMA secure
if no (t, ε, qs)-EUF-CMA adversary against it exists.

Remark 1. Note that A in the above definition is not given the oracles
sc.proveValidity, sc.unsigncrypt, sc.publicVerify, and sc.{confirm, deny}. In fact,
these oracles are useless for him as he has the receiver’s private key skR at his
disposal.

Generic Constructions for Verifiable Signcryption 209

2.2 Indistinguishability

This notion protects the sender’s privacy from outsider adversaries. It is defined
through a game between a challenger C and an adversary A; C generates the
key pairs (skS , pkS) and (skR, pkR) for the sender and for the receiver respec-
tively, and hands (pkS , pkR) to A. During the first phase of the game, A queries
adaptively signcrypt and proveValidity (actually proveValidity is only invoked on
inputs just obtained from the signcryption oracle), unsigncrypt, {confirm, deny},
and publicVerify for any input. Once A decides that this phase is over, he gen-
erates two messages m	

0,m
	
1 and hands them to C who generates a signcryption

μ	 on m	
b for b

R←− {0, 1} and gives it (μ) to A. The latter resumes querying
the previous oracles adaptively on any input with the exception of not query-
ing unsigncrypt on μ	, and {confirm, deny} and publicVerify on the pair (μ	,m	

i)
for i ∈ {0, 1}. At the end, the adversary outputs his guess b′ for the message
underlying the signcryption μ	. He is considered successful if b = b′.

Definition 2 (Indistinguishability (IND-CCA)). Let sc be a signcryption
scheme, and let A be a PPTM. We consider the following random experiment

for b
R←− {0, 1}:

Experiment Expind-cca-b
sc,A (1κ)

param← sc.setup(1κ)
(skS , pkS)← sc.keygenS(1κ, param)
(skR, pkR)← sc.keygen(1κ, param)
(m�

0,m
�
1, I)← AS,V,U,C(find, pkS , pkR)∣∣∣∣∣∣∣∣∣∣

S : m �−→ sc.signcrypt{skS ,pkS ,pkR}(m)

V : μ �−→ sc.proveValidity(μ, pkS, pkR)
U : μ �−→ sc.unsigncryptskR,pkR,pkS

(μ)

C : (μ,m) �−→ sc.{confirm, deny}(μ,m, pkR, pkS)
P : (μ,m) �−→ sc.publicVerify(μ,m, pkR, pkS)

μ� ← sc.signcrypt{skS ,pkS ,pkR}(m�
b)

d← AS,V,U,C(guess, I, μ�, pkS, pkC)∣∣∣∣∣∣∣∣∣∣

S : m �−→ sc.signcrypt{skS ,pkS ,pkR}(m)

V : μ �−→ sc.proveValidity(μ, pkS, pkR)
U : μ(= μ�) �−→ sc.unsigncryptskR,pkR,pkS

(μ)

C : (μ,m)(= (μ�,m�
i), i = 0, 1) �−→ sc.{confirm, deny}(μ,m, pkR, pkS)

P : (μ,m)(= (μ�,m�
i), i = 0, 1) �−→ sc.publicVerify(μ,m, pkR, pkS)

Return d

We define the advantage of A via:

Advind-cca
sc,A (1κ) =

∣∣∣∣Pr [Expind−cca−b
sc,A (1κ) = b

]
− 1

2

∣∣∣∣ .
Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and ε ∈ [0, 1], A is called a
(t, ε, qs, qv, qu, qcd, qpv)-IND-CCA adversary against sc if, running in time t and
issuing qs queries to the sc.signcrypt oracle, qv queries to the sc.proveValidity or-
acle, qu queries to the sc.unsigncrypt oracle, qcd queries to the sc.{confirm, deny}

210 L. El Aimani

oracle, and qpv to the publicVerify oracle, A has Advind−cca
sc,A (1κ) ≥ ε.

The scheme sc is said to be (t, ε, qs, qv, qu, qcd, qpv)-IND-CCA secure if no
(t, ε, qs, qv, qu, qcd, qpv)-IND-CCA adversary against it exists.

In the full version [13], we provide the above properties in the multi-user setting,
namely the dM-EUF-CMA and the fM-IND-CCA security properties, where the
adversary is further given all the private keys except those of the target sender
and of the target receiver.

2.3 Main Constructions

Let Σ be a digital signature scheme given by Σ.keygen which generates a key pair
(Σ.sk, Σ.pk), Σ.sign, and Σ.proveValidity. Let furthermore Γ denote a public key
encryption scheme described by Γ.keygen that generates the key pair (Γ.sk,Γ.pk),
Γ.encrypt, and Γ.decrypt. Finally, let Ω be a commitment scheme given by the
algorithms Ω.commit and Ω.open. The most popular paradigms used to devise
signcryption schemes from basic primitives are:

– The “sign-then-encrypt” (StE) paradigm. Given a message m, signcrypt first
produces a signature σ on the message using Σ.sk, then encrypts m‖σ under
Γ.pk. The result forms the signcryption on m. To unsigncrypt, one first de-
crypts the signcryption using Γ.sk inm‖σ, then checks the validity of σ, using
Σ.pk, on m. Finally, publicVerify of a valid signcryption μ = Γ.encrypt(m‖σ)
on m outputs σ.

– The “encrypt-then-sign” (EtS) paradigm. Given a message m, signcrypt pro-
duces an encryption e on m using Γ.pk, then produces a signature σ on e
using Σ.sk; the signcryption is the pair (e, σ). To unsigncrypt such a sign-
cryption, one first checks the validity of σ w.r.t. e using Σ.pk, then de-
crypts e using Γ.sk to get m. Finally, publicVerify outputs a zero knowledge
non-interactive (NIZK) proof that m is the decryption of e; such a proof is
possible since the statement in question is in NP ([16] and [4]).

– The “commit-then-encrypt-and-sign” (CtEaS) paradigm. This construction
has the advantage of performing the signature and the encryption in parallel
in contrast to the previous sequential compositions. Given a message m,
one first produces a commitment c on it using some random nonce r, then
encrypts m‖r under Γ.pk, and produces a signature σ on c using Σ.sk. The
signcryption is the triple (e, c, σ). To unsigncrypt such a signcryption, one
first checks the validity of σ w.r.t. c, then decrypts e to get m‖r, and finally
checks the validity of the commitment c w.r.t (m, r). publicVerify is achieved
by releasing the decryption of e, namely m‖r.

The proofs of well (mal) formed-ness, namely proveValidity and {confirm, deny}
can be carried out since the languages in question are in NP (co-NP) and thus
accept zero knowledge proof systems [16]. Finally, it is possible to require a proof
in the publicVerify algorithms of StE and CtEaS, that the revealed information is
indeed a correct decryption of the encryption in question; such a proof is again
possible to issue since the corresponding statement is in NP.

Generic Constructions for Verifiable Signcryption 211

3 Analysis of the StE and CtEaS Paradigms

3.1 Insufficiency of OW-CCA and NM-CPA Secure Encryption

We proceed in this subsection as in [11] where the author shows the impossibility
to derive secure confirmer signatures, using the StE and the CtEaS paradigms,
from both OW-CCA and NM-CPA secure encryption; we first show the impos-
sibility result for the so-called key-preserving reductions, i.e. reductions which
launch the adversary on its challenge public key in addition to some freely cho-
sen parameters, then we generalize the result to arbitrary reductions assuming
new assumptions on the underlying encryption scheme.

Lemma 1. Assume there exists a key-preserving reduction R that converts an
IND-CCA adversary A against signcryptions from the StE (CtEaS) paradigm
to a OW-CCA (NM-CPA) adversary against the underlying encryption scheme.
Then, there exists a meta-reduction M that OW-CCA (NM-CPA) breaks the
encryption scheme in question.

Moreover, we can rule out the OW-CPA, OW-PCA, and IND-CPA notions by
remarking that ElGamal’s encryption meets all those notions (under different
assumptions), but cannot be employed in StE and CtEaS as it is malleable. We
refer again to [13] for further details.

In consequence of the above analysis, the used encrypted scheme has to satisfy
at least IND-PCA security in order to lead to secure signcryption from StE or
CtEaS. Since there are no known encryption schemes in the literature which
separate the notions IND-PCA and IND-CCA, our result practically means that
the encryption scheme underlying the previous constructions has to satisfy the
highest security level (IND-CCA) in order to lead to secure signcryption. This
translates in expensive operations, especially if verifiability is further required
for the resulting signcryption.

3.2 Positive Results

Constructions from StE or CtEaS suffer the strong forgeability: given a sign-
cryption on some message, one can create another valid signcryption on the
same message without the sender’s help. To circumvent this problem, we pro-
pose the following techniques which bind the digital signature to the resulting
signcryption.

The New “Sign-then-Encrypt”(StE) Paradigm. Let Σ be a digital signa-
ture scheme given by Σ.keygen, which generates a key pair (Σ.sk, Σ.pk), Σ.sign,
and Σ.proveValidity. Let furthermore K be a KEM given by K.keygen, which
generates a key pair (K.pk, K.sk), K.encap, and K.decap. Finally, we consider a
DEM D given by D.encrypt and D.decrypt. We assume that the message space
of D includes the concatenation of elements from the message space of Σ, and
of signatures produced by Σ, and that the encapsulations generated by K are
exactly κ-bit long, where κ is a security parameter.

212 L. El Aimani

A signcryption scheme sc is defined as follows: sc.setup invokes the setup
algorithms of Σ, K, and D. sc.keygenS and sc.keygenR consist of Σ.keygen and
K.keygen respectively. To sc.signcrypt a message m, one first generates a key k
with its encapsulation c using K.encap, then produces a signature σ on c‖m, and
finally outputs μ = (c,D.encryptk(m‖σ)) as a signcryption of m. Unsigncryption
of some (μ1, μ2) is done by first recovering the key k from μ1 using K.decap,
then using D.decrypt and k to decrypt μ2, and finally checking that the result is
a valid digital signature on μ1‖m where m is the retrieved message. The rest is
similar to the original StE.

Theorem 1. Given (t, qs) ∈ N2 and ε ∈ [0, 1], the above construction is
(t, ε, qs)-EUF-CMA secure if the underlying digital signature scheme is (t, ε, qs)-
EUF-CMA secure.

Theorem 2. Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ε′) ∈ [0, 1]2, the above
construction is (t, ε, qs, qv, qu, qcd, qpv)-IND-CCA secure if it uses a (t, ε′, qs)-
EUF-CMA secure digital signature, an IND-OT secure DEM and an (t+qs(qu+
qcd + qpv), ε · (1 − ε′)qu+qcd+qpv)-IND-CPA secure KEM.

The new “Commit-then-Encrypt-and-Sign” (CtEaS) paradigm The
new “commit-then-encrypt-and-sign” (CtEaS) paradigm. The construction is
similar to the basic one described earlier, with the exception of producing the
digital signature on both the commitment c and the encryption e. The new con-
struction looses the parallelism of the original one, i.e. encryption and signature
can longer be carried out in parallel, however it has the advantage of resting on
cheap encryption compared to the basic one.

Theorem 3. Given (t, qs) ∈ N2 and (ε, εb) ∈ [0, 1]2, the above construction is
(t, ε, qs)-EUF-CMA secure if it uses a uses a (t, εb) binding commitment scheme
and a (t, ε(1− εb)

qs , qs)-EUF-CMA secure digital signature scheme.

Theorem 4. Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ε′, εh) ∈ [0, 1]3, the
new CtEaS construction is (t, ε, qs, qv, qu, qcd, qpv)-IND-CCA secure if it uses a
(t, ε′, qs)-SEUF-CMA secure digital signature, a statistically binding, and (t, εh)-
hiding commitment, and a (t + qs(qu + qcd + qpv),

1
2 (ε + εh)(1 − ε′)qu+qcd+qpv)-

IND-CPA secure encryption scheme.

4 Efficient Verifiable Signcryption from the EtS Paradigm

The EtS paradigm turns out to provide efficient signcryptions schemes that are
proven secure in the model we adhere to.

Theorem 5. Given (t, qs) ∈ N2 and ε ∈ [0, 1], signcryption schemes from
EtS are (t, ε, qs)-EUF-CMA secure if the underlying digital signature scheme
is (t, ε, qs)-EUF-CMA secure.

Generic Constructions for Verifiable Signcryption 213

Theorem 6. Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ε′) ∈ [0, 1]2, sign-
cryptions from EtS are (t, ε, qs, qv, qu, qcd, qpv)-IND-CCA secure if they use a
(t, ε′, qs)-SEUF-CMA secure digital signature and a (t+ qs(qu + qcd + qpv), ε(1−
ε′)qu+qcd+qpv)-IND-CPA secure encryption scheme

4.1 Efficient Instantiations

To allow efficient proveValidity, {confirm, deny}, and publicVerify proto-
cols/algorithms, we propose to instantiate the encryption scheme from the class
E defined in [12] which includes most homorphic encryption, e.g. ElGamal’s en-
cryption [14], the encryption scheme defined in [5], or Paillier’s [23] encryption
scheme.

We describe in the following proveValidity, {confirm, deny}, and publicVerify
protocols/algorithms if the used encryption belongs to the class E.

Proof of Validity. We depict the proveValidity protocol in Figure 1.

Prover P Verifier V

Choose m′ R←− M
Compute e′ = Γ.encryptΓ.pk(m

′) e′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Choose b

R←− {0, 1}� (b ∈ N)

z = m′ ∗ mb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PoK{e′ ◦e eb = Γ.encryptΓ.pk(z)}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if PoK is valid

Fig. 1. Proof system for membership to the language {m : e = Γ.encryptΓ.pk(m)}
Common input: (e, Γ.pk) and Private input: m and Γ.sk or randomness used to pro-
duce e.

Theorem 7. Let Γ be a one-way encryption scheme from the class E. The pro-
tocol depicted in Figure 1 is a ZK proof of knowledge of the decryption of e.

Confirmation/Denial Protocols. The confirm protocol is nothing but the
proof PoK which is in case of [14,5] a proof of equality of two discrete logarithms,
and in case of [23] a proof of knowledge of an N -th root. We depict the deny
protocol in Figure 2, where f denotes an arbitrary homomorphic injective one
way function:

∀m,m′ : f(m �m′) = f(m) ◦ f(m′)

Theorem 8. Let Γ be an IND-CPA encryption scheme from the above class E.
The protocol depicted in Figure 2 is a ZK proof of the decryption of e which is
different from the message m.

214 L. El Aimani

Prover P Verifier V

Choose m′ R←− M
Compute e′1 = f(m′)

Compute e′2 = Γ.encryptΓ.pk(m
′)

e′1, e
′
2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Choose b
R←− {0, 1}� (b ∈ N)

z = m′ ∗ m̃b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PoK{e′2 ◦e eb = Γ.encryptΓ.pk(z)}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if PoK is valid

and if f(z) �= e′1 ◦s f(m)b.

Fig. 2. Proof system for membership to the language {(m, e) : ∃m̃ : e = Γ.encrypt(m̃)∧
m̃ 	= m} Common input: (m, e, Γ.pk) and Private input: Γ.sk or randomness encrypting
m̃ in e

Public Verification. the publicVerify algorithm outputs a ZK non-interactive
proof of the correctness of a decryption. We note the following three solutions
according to the used encryption:

1. The case of Paillier’s encryption [23]: this scheme belongs to fully decryptable
encryption schemes, i.e. encryption schemes where decryption leads to the
randomness used to produce the ciphertext. Thus, publicVerify will simply
release the randomness used to generate the ciphertext.

2. The case of [5]’s encryption: Groth and Sahai [17] presented an efficient ZK
non-interactive proof that a given encryption using this scheme encrypts a
given message under a given public key.

3. The case of DL-based encryption schemes, e.g. [14,5,8]: the interactive proof
of correctness of most such schemes reduces to a proof of equality of two
discrete logarithms. The work [9] presented an efficient method to remove
interaction using additively homomorphic encryption, e.g. Paillier [23].

4.2 Extension to Multi-user Security

The construction is the same provided in [22], namely the TagEncrypt-then-Sign
paradigm (TEtS), which deviates from the standard EtS paradigm as follows:

1. It considers a tag-based encryption scheme where the tag is set to the public
key of the sender pkS .

2. The digital signature is produced on the resulting ciphertext and on the
public key of the receiver.

Theorem 9. Given (t, qs) ∈ N2 and ε ∈ [0, 1], signcryption schemes from the
TEtS paradigm are (t, ε, qs)-dM-EUF-CMA secure if the underlying digital sig-
nature scheme is (t, ε, qs)-EUF-CMA secure.

Theorem 10. Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ε′) ∈ [0, 1]2, signcryp-
tion constructions from the TEtS paradigm are (t, ε, qs, qv, qu, qcd, qpv)-IND-
CCA secure if they use a (t, ε′, qs)-SEUF-CMA secure digital signature and a
(t+ qs(qu + qcd + qpv), ε(1− ε′)qu+qcd+qpv , qu + qcd + qpv)-IND-sTag-CCA secure
tag-based encryption scheme.

Generic Constructions for Verifiable Signcryption 215

5 Efficient Verifiable Signcryption from the EtStE
Paradigm

The EtS technique provides efficient verifiability but at the expense of the
sender’s anonymity, and of the security requirements on the building blocks.
StE achieves better privacy using cheap constituents but at the expense of veri-
fiability. It would be nice to have a technique that combines the merits of both
paradigms while avoiding their drawbacks. This is the main contribution in this
section; the core of the idea consists in first encrypting the message to be sign-
crypted using a public key encryption scheme, then applying the StE paradigm
to the produced encryption. The result of this operation in addition to the en-
crypted message form the new signcryption of the message in question. In other
terms, this technique can be seen as a merge between EtS and StE; thus we can
term it the “encrypt-then-sign-then-encrypt” paradigm (EtStE).

5.1 The Construction

Setup. Consider a signature scheme Σ, an encryption scheme Γ , and another
encryption scheme (K,D) derived from the KEM/DEM paradigm. Next, on
input the security parameter κ = (κ1, κ2, κ3), generate the parameters param
of these schemes. We assume that signatures issued with Σ can be written as
(r, s), where r reveals no information about the signed message nor about the
public signing key, and s represents the “significant” part of the signature.

Key generation. On input the security parameter κ and the public param-
eters param, invoke the key generation algorithms of the building blocks
and set the sender’s key pair to (Σ.pk, Σ.sk), and the receiver’s key pair to
({Γ.pk,K.pk}, {Γ.sk,K.sk}).

Signcrypt. On a messagem, produce an encryption e = Γ.encryptΓ.pk(m) ofm.
Then fix a key k along with its encapsulation c using K.encryptK.pk, produce
a signature (r, s) on c‖e, and finally encrypt s with k using D.encrypt. The
signcryption of m is the tuple (e, c,D.encryptk(s), r).

Prove Validity. Given a signcryption μ = (μ1, μ2, μ3, μ4) on a message m,
the prover proves knowledge of the decryption of μ1, and of the decryption
of (μ2, μ3), which together with μ4 forms a valid digital signature on μ2‖μ1.
The private input is either the randomness used to create μ or {Γ.sk,K.sk}.

Unsigncrypt. On a signcryption a (μ1, μ2, μ3, μ4), compute m =
Γ.decryptΓ.sk(μ1) and k = K.decapsulateK.sk(μ2). Check whether
(D.decryptk(μ3), μ4) is valid signature on μ2‖μ1; if yes then output m, oth-
erwise output ⊥.

Confirm/Deny. On input a putative signcryption μ = (μ1, μ2, μ3, μ4) on a
message m, use the receiver’s private key to prove that m is/isn’t the de-
cryption of μ1, and prove knowledge of the decryption of (μ2, μ3), which
together with μ4 forms a valid/invalid digital signature on μ2‖μ1.

Public Verify. On a valid signcryption μ = (μ1, μ2, μ3, μ4) on a message
m, output a ZK non-interactive proof that μ1 encrypts m, in addition to
(D.decryptK.decap(μ2)(μ3), μ4).

216 L. El Aimani

5.2 Analysis

Theorem 11. Given (t, qs) ∈ N2 and ε ∈ [0, 1], the above construction is
(t, ε, qs)-EUF-CMA secure if the underlying signature is (t, ε, qs)-EUF-CMA se-
cure.

Theorem 12. Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ε′) ∈ [0, 1]2, the con-
struction proposed above is (t, ε, qs, qv, qu, qcd, qpv)-IND-CCA secure if it uses a
(t, ε′, qs)-EUF-CMA secure signature, an IND-CPA secure encryption, an IND-

OT secure DEM, and a (t+qs(qu+qcd+qpv),
ε(1−ε′)qcd+qu+qpv

2)-IND-CPA secure
KEM.

Our aim in the rest of this paragraph consists in identifying suitable classes of
encryption/signature schemes that renders the proveValidity and {confirm, deny}
efficient. These protocols comprise the following sub-protocols:

1. Proving knowledge of the decryption of a ciphertext produced using the
encryption scheme Γ .

2. Proving that a message is/isn’t the decryption of a certain ciphertext pro-
duced using Γ .

3. Proving knowledge of the decryption of a ciphertext produced using (K,D),
and that this decryption forms a valid/invalid digital signature, issued using
Σ, on some known string.

It is natural to instantiate the encryption scheme Γ from the class E. The first
two sub-protocols can be efficiently carried out using the proofs depicted in
Figure 1 and Figure 2. For the last sub-protocol, one can consider encryption
schemes from the class E that are derived from the KEM/DEM paradigm, in
addition to signature schemes that accept efficient proofs of knowledge. See the
full version [13] for further details.

5.3 Extension to Multi-user Security

The above EtStE technique can be extended to achieve security in the multi-
user setting by applying the standard techniques [1,22]. More specifically, one
considers a tag-based encryption scheme Γ , a tag-based KEM K, a DEM D,
an a signature scheme. The sender’s key pair is the signature scheme key pair,
whereas the receiver’s key pair comprise both key pairs of Γ and K. Signcryption
on a message m w.r.t. a sender’s public key Σ.pk and a receiver’s public key
(Γ.pk,K.pk) is generated as follows. First compute an encryption e on m (with
Γ) w.r.t. the tag Σ.pk, then generate a key k and its encapsulation c w.r.t. the
same tag (with K), then compute a digital signature on c‖e‖{Γ.pk,K.pk}, and
finally sign the “significant” part of this signature using k. The signcryption
consists of the result of this encryption, the remaining part of the signature, and
(e, c). The rest is similar to the paradigm in the two-user setting.

Theorem 13. Given (t, qs) ∈ N2 and ε ∈ [0, 1], the above construction is
(t, ε, qs)-dM-EUF-CMA secure if the underlying digital signature scheme is
(t, ε, qs)-EUF-CMA secure.

Generic Constructions for Verifiable Signcryption 217

Theorem 14. Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ε′) ∈ [0, 1]2, the above
construction is (t, ε, qs, qv, qu, qcd, qpv)-fM-IND-CCA secure if it uses a (t, ε′, qs)-
EUF-CMA secure digital signature, an IND-sTag-CCA secure encryption, an

IND-OT secure DEM, and a (t+qs(qu+qcd+qpv),
ε(1−ε′)qcd+qu+qpv

2 , qcd+qu+qpv)-
IND-sTag-CCA secure KEM.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption.
J. Cryptology 20(2), 203–235 (2007)

3. Bao, F., Deng, R.H.: A Signcryption Scheme with Signature Directly Verifiable by
Public Key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998)

4. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Appli-
cations (Extended Abstract). In: Simon, J. (ed.) STOC, pp. 103–112. ACM Press
(1988)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient Generic Construc-
tions of Signcryption with Insider Security in the Multi-user Setting. In: Lopez, J.,
Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg
(2011)

7. Chow, S.M., Yiu, S.-M., Hui, L., Chow, K.P.: Efficient Forward and Provably Secure
ID-Based Signcryption Scheme with Public Verifiability and Public Ciphertext
Authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp.
352–369. Springer, Heidelberg (2004)

8. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryp-
tion Schemes Secure Against Adaptive Chosen Ciphertext Attack. SIAM J. Com-
put. 33(1), 167–226 (2003)

9. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive Zero-Knowledge from Homo-
morphic Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

10. Dent, A.W.: Hybrid Signcryption Schemes with Outsider Security. In: Zhou, J.,
López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 203–217.
Springer, Heidelberg (2005)

11. El Aimani, L.: On Generic Constructions of Designated Confirmer Signatures. In:
Roy and Sendrier [24], Full version available at the Cryptology ePrint Archive,
Report 2009/403, pp. 343–362

12. El Aimani, L.: Efficient Confirmer Signature from the ”Signature of a Commit-
ment” Paradigm. In: Heng, Kurosawa [18], Full version available at the Cryptology
ePrint Archive, Report 2009/435, pp. 87–101

13. El Aimani, L.: Generic Constructions for Verifiable Signcryption (2011), Available
at the Cryptology ePrint Archive. Report 2011/592

14. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

218 L. El Aimani

15. Goldreich, O.: Foundations of cryptography. Basic Tools. Cambridge University
Press (2001)

16. Goldreich, O., Micali, S., Wigderson, A.: How to Prove All NP-Statements in Zero-
Knowledge and a Methodology of Cryptographic Protocol Design. In: Odlyzko,
A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg
(1987)

17. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

18. Heng, S.-H., Kurosawa, K. (eds.): ProvSec 2010. LNCS, vol. 6402. Springer, Hei-
delberg (2010)

19. Jeong, I., Jeong, H., Rhee, H., Lee, D., Lim, J.: Provably Secure Encrypt-then-Sign
Composition in Hybrid Signcryption. In: Lee, Lim [20], pp. 16–34

20. Lee, P.J., Lim, C.H. (eds.): ICISC 2002. LNCS, vol. 2587. Springer, Heidelberg
(2003)

21. Ma, C.: Efficient Short Signcryption Scheme with Public Verifiability. In: Lipmaa,
H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 118–129. Springer,
Heidelberg (2006)

22. Matsuda, T., Matsuura, K., Schuldt, J.: Efficient Constructions of Signcryption
Schemes and Signcryption Composability. In: Roy, Sendrier [24], pp. 321–342

23. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

24. Roy, B., Sendrier, N. (eds.): INDOCRYPT 2009. LNCS, vol. 5922. Springer, Hei-
delberg (2009)

25. Selvi, S., Vivek, S., Pandu Rangan, P.: Identity Based Public Verifiable Signcryp-
tion Scheme. In: Heng, Kurosawa [18], pp. 244–260

26. Shin, J.-B., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Lee,
Lim [20], pp. 35–47

27. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

Non-delegatable Strong Designated Verifier

Signature on Elliptic Curves

Haibo Tian1, Xiaofeng Chen2, Zhengtao Jiang3, and Yusong Du1

1 School of Information Science and Technology,
Sun Yat-Sen University, Guangzhou, 510275, China

sysutianhb@gmail.com, yud80h@163.com
2 School of Telecommunications Engineering, Xidian University,

Xi’an, 710071, China
xfchen@xidian.edu.cn

3 School Of Computer, Communication University of China,
Beijing, 100024, China
z.t.jiang@163.com

Abstract. We propose a non-delegatable strong designated verifier sig-
nature on elliptic curves. The size of the signature is less than 500 bits
considering an 80 bits security strength. It provably satisfies the non-
delegatability and signer ambiguity properties. The construction method
is a combination of the Schnorr signature and the elliptic curve Diffie-
Hellman problem.

Keywords: Signature Schemes, Strong Designated Verifier Signature,
Non-delegatability, Signer Ambiguity.

1 Introduction

Jakobsson et al. [10] proposed the concept of designated verifier signature (DVS).
A DVS consists of a proof that either “the signer has signed on a message” or
“the signer has the verifier’s secret key”. If the designated verifier is confident that
her/his private key is kept in secret, the verifier makes sure that the signer has
signed on a message. No other parties can be convinced by the DVS since the des-
ignated verifier can generate it with her/his private key. It is useful in various com-
mercial cryptographic applications, such as e-voting, copyright protection, etc.

A strong DVS (SDVS) is an extension of the DVS. In the appendix, Jakobsson
et al. [10] gave a definition of SDVS. It means that the verifier needs to use
her/his private key to verify the signature. It considers a situation where the
signature is captured before reaching the verifier. In this case, an adversary can
know who is the real signer as there are only two possibilities. Laguillaumie and
Vergnaud [13], and Saeednia [20] both formalized the notion.

There are five properties of SDVS, three basic properties and two enhance-
ments. The basic properties include the unforgeability and non-transferability
[15], and privacy of signer’s identity (PSI) [13]. Informally, the unforgeability
means that if an adversary can forge a (strong) DVS, it solves some hard prob-
lems. The non-transferability means that the designated verifier cannot convince

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 219–234, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 H. Tian et al.

a third party that an SDVS is produced by a signer. The PSI means that nobody
can identify a real signer from an SDVS except the designated verifier. Generally,
a PSI attacker does not know the private key of a signer. The enhancements are
the non-delegatability (ND) [17] and signer ambiguity (SA) [14]. The ND prop-
erty means that the only way to generate an SDVS is to own a private key of a
signer or a verifier. The SA property means that an attacker equipped with the
private key of a signer, cannot identify who is the real signer of an SDVS.

This paper focuses on the SDVS. We give a new approach to construct an
SDVS and prove that the scheme satisfies all above properties. We emphasize
the ND and SA properties that are detailed in Section 3. It is interesting to
design schemes with good performance under stricter conditions.

1.1 Related Works

Jakobsson et al. [10] gave a DVS scheme and proposed a method to transform
a DVS to an SDVS by an encryption layer. Saeednia et al. [20] proposed a DVS
scheme and an SDVS scheme. Lee [14] showed that the SDVS construction [20]
lost the SA property. Lipmaa et al. [17] showed that the construction in [20]
was delegatable. Laguillaumie et al. [13] proposed an ID-based SDVS scheme by
using the long term symmetric secret of two users. Tso et al. [22] proposed to
construct SDVS schemes by using authenticated key agreement protocols. Zhang
et al. [24] proposed an SDVS scheme where the verification needed a long term
symmetric key. Huang et al. [5] proposed a short DVS scheme by using a long
term symmetric key. Kancharla et al. [11] proposed an ID-based strong DVS by
using a temporal symmetric secret. According to the analysis technique in [14],
schemes lose the SA property if they used a symmetric secret. Sun et al. [21]
showed that the scheme in [11] was delegatable.

Lipmaa et al. [17] proposed a non-delegatable DVS scheme based on the sig-
nature scheme in [12]. Huang et al. [4] proposed an universal DVS without del-
egatability. Shahandashti and Safavi-Naini [19] proposed a general approach to
construct an universal DVS without delegatability. Liao and Jia [16] proposed a
DVS with an argument about its non-delegatability. Wang [23] proposed a non-
delegatable ID-based SDVS scheme. Huang et al. [7] proposed a non-delegatable
SDVS scheme. The team also [6] proposed a non-delegatable ID-based DVS
scheme and a non-delegatable ID-based SDVS scheme [8].

1.2 Contributions

– First of all, we propose a new method to construct non-delegatable schemes.
Some literatures also proposed (S)DVS schemes with the non-delegatability
property. These schemes show two construction ideas:

• One idea is to use an approach in [10], such as schemes in [17,23], which
uses a trap-door commitment and the Fiat-Shamir heuristic;

• The other idea is to use the typical OR proofs of two three-round zero
knowledge protocols, such as schemes in [4, 6–8, 19].

Non-delegatable SDVS on Elliptic Curves 221

We give another idea to combine the Schnorr signature and a hard problem.
The advantage of the idea is that it can produce a signature consisting of
three elements. Comparatively, the two existing ideas lead to a signature
with at least four elements.

– The scheme enjoys ND and SA properties at the same time. Other schemes
usually enjoy one property and lose the other.
• Lee et al. [14] showed that the SDVS in [20] lost the SA property. They
proposed a scheme and argued that it satisfied the SA. However, their
scheme is delegatable. A signer can generate a random group value r
and compute a temporal value s in the same way as the signer in their
signing algorithm. Then the signer can give (r, s) to an agent to sign any
message.

• Huang et al. [7] proposed a non-delegatable SDVS scheme. Their scheme
loses the SA property. The value K in their scheme is a long term secrete
between a signer and a designated verifier. With the private key of the
signer, an attacker can compute the value K and verify an SDVS.

• Wang [23] proposed a non-delegatable identity-based SDVS scheme. The
scheme loses the SA property. The value VS in the verification algorithm
can be computed without using the private key of the designated verifier.
Then with the private key of the signer, an attacker can check their
verification equation.

In fact, we only find that the scheme in [8] enjoys the ND and SA properties
with high bandwidth and computation costs.

In summary, the features of this paper are as follows:

– It shows a new method to construct a non-delegatable SDVS;
– The scheme enjoys the ND and SA properties with a short signature size

and a moderate computation cost.

1.3 Organizations

Section 2 includes elementary materials about assumptions and definitions of
an SDVS. Section 3 presents the ND and SA properties. Section 4 is the new
SDVS scheme. The scheme is proven secure in section 5. Section 6 compares our
scheme and other non-delegatable (strong) DVS schemes.

2 Preliminaries

2.1 Assumptions

Let p be a large prime and Fp be a finite filed. Let a, b ∈R Fp be random elements
in the field to define a curve E. Let P ∈R E be a point in the curve and be a
generator of a group G with an order q.

– Elliptic Curve Diffie-Hellman Problem (ECDHP): Given points αP,
βP ∈ G, find another point αβP .

222 H. Tian et al.

– Elliptic Curve Decisional Diffie-Hellman Problem (ECDDHP):
Given points αP, βP, γP ∈ G, check whether γ = αβ mod q.

The assumption is that there are no (t, ε) algorithms to solve the ECDHP (ECD-
DHP) problem in time t with a non-negligible probability ε if q is big enough.

Knowledge Extractor Assumption version 1 (KEAv1) [9]: Let T de-
notes a polynomial time bounded algorithm which on input (P, αP), produces
(βP, αβP) where β is chosen by T . The assumption is that there exists another
polynomial time bounded algorithm T ∗, which takes as the same input of T ,
uses the same coins of T , and produces (β, βP, αβP) with a probability 1 − ε
where ε is a negligible value.

Remark 1. The KEAv1 is proven in a generic group model [3]. This gives it an ev-
idence about its plausibility. It is only used in the proof of the non-delegatability
in this paper.

2.2 SDVS

We define an SDVS scheme as follows.

– System Parameters Generation SP : A probabilistic polynomial time
algorithm that, on input a security parameter k, produces the system pa-
rameters sp.

– Key Generation KG: A probabilistic polynomial time algorithm that, on
input the system parameters sp, produces key pairs (pks, sks) for a signer
and (pkv, skv) for a verifier.

– Signature Generation SG: A probabilistic polynomial time algorithm
that, on input the signer’s private key sks, the verifier’s public key pkv and
a message m, produces a signature δ.

– Signature Verification SV : A deterministic polynomial time algorithm
that, on input the public key pks of the signer, the private key skv of the
verifier, the message m, and a signature δ, produces a verification decision
b ∈ {True, False}.

– Transcript Simulation TS: A probabilistic polynomial time algorithm
that, on input the public key pks of the signer, the private key skv of the
verifier, and the message m, produces a signature δ.

Properties

There are three basic properties about SDVS, namely the non-transferability,
unforgeability, and PSI.

– Unforgeability [15]: It is formally defined by using a game between an ad-
versary A and a challenger C:
• C provides the system parameters sp to A.
• C provides A a public key pks of a signer and a public key pkv of a
designated verifier.

Non-delegatable SDVS on Elliptic Curves 223

• At any time, A can send any message mi to C for the signature of mi.
These singing queries are up to qs times. C will answer a query by pro-
viding the signature δ = SG(sks, pkv,mi).

• Eventually, A will produce a new signature δ∗ for a message m∗. A
succeeds if SV (pks, skv,m

∗, δ∗) = True and m∗ has never been queried.
The success probability of A is defined by AdvSDV S,A(k).

Definition 1. An SDVS scheme is (t, qs, ε) unforgeable, if no polynomial
time bounded adversary A has a success probability AdvSDV S,A(k) ≥ ε run-
ning in time t with qs signing queries.

– non-transferability [15]: It is formally defined by using a game between a
distinguisher D and a challenger C:
• C provides the system parameters sp to D.
• C provides D a public key pks of a signer and a public key pkv of a
designated verifier.

• D issues signing queries on any message mi. C replies to D with δi =
SG(sks, pkv,mi).

• D submits a new message m∗ to C. C flips a fair coin b ← {0, 1}, and pro-
duces a signature δ∗ = SG(sks, pkv,mi) if b = 0 or δ∗ = TS(pks, skv,mi)
if b = 1. C replies to D with δ∗.

• On receiving δ∗, D can issue new singing queries at will. These signing
queries are up to qs times.

• Eventually, D produces a bit b′ and succeeds if b′ = b.
The advantage of D is defined as AdvSDV S,D(k) = |Pr[b′ = b]− 1/2|.

Definition 2. An SDVS scheme is (t, qs, ε) non-transferable if no polyno-
mial time bounded distinguisher D has an advantage AdvSDV S,D(k) ≥ ε in
time t with qs signing queries.

– Privacy of Signer’s Identity [13]: It is formally defined by using a game
between a distinguisher D and a challenger C:
• C provides the system parameters sp to D.
• C provides D two public keys pks0 and pks1 of two signers and a public
key pkv of a designated verifier.

• C provides D two signing oracles Σs0 and Σs1, and a verifying or-
acle Υ . On a signing query mi of D, Σs0 replies to D with δi0 =
SG(sks0, pkv,mi), and Σs1 with δi1 = SG(sks1, pkv,mi). On a verifying
query (pksζ ,mj, δj), ζ ∈ {0, 1}, Υ replies to D with True or False. D
produces a message m∗ and a state information I∗ after enough queries.
D sends the message m∗ to C.

• C flips a fair coin b ← {0, 1}, and computes δ∗ = SG(sksb, pkv,m
∗) as a

reply to D.
• D continues to issue signing and verifying queries on any message with
the restriction of not querying Υ about (pksζ ,m

∗, δ∗), ζ ∈ {0, 1}. The
state information is taken as input in this step. The signing queries are
up to qs times. The verifying queries are up to qv times.

224 H. Tian et al.

• Eventually, D produces a bit b′ and succeeds if b′ = b.
The advantage of D is defined as AdvPSI

SDV S,D(k) = |Pr[b′ = b]− 1/2|.
Definition 3. An SDVS scheme is (t, qs, qv, ε) secure about privacy of a
signer’s identity if no polynomial time bounded distinguisher D has an ad-
vantage AdvPSI

SDV S,D(k) ≥ ε in time t with qs signing queries and qv verifying
queries.

3 Modified Definitions

3.1 Non-delegatability

A Brief Review

The notion of ND was initiated in 2005 by Lipmaa et al. [17]. A real life scenario
is that an adversary interacts with a signer who is responsible for the generation
of the public and secret key pair (pks, sks). After this interaction, the adversary
may obtain something which can be used to create signatures for a particular
designated verifier. It is intended to prevent a dishonest signer to sell a specif-
ically constructed key which is capable of creating a signature for a particular
designated verifier.

The requirement of ND is then given access to the adversary, an extractor
should be able to extract the private key sks. This guarantees that any designated
verifier signature must be created from an entity who is in possession of the secret
key from either the signer or the verifier. The original definition of ND [17] is as
follows:

Definition 4. Let κ ∈ [0, 1] be the knowledge error. A scheme is (τ, κ)-non-
delegatable if there is a black-box knowledge extractor K that, for every algorithm
F and for every valid signature δ, satisfies the following condition: For every
(pks, sks) ← KG(sp), (pkv, skv) ← KG(sp) and message m, if F produces a
valid signature on m with probability ε ≥ κ then, on input m and on access to
the oracle Fm, K produces either sks or skv in expected time τ/(ε− κ) (without
counting the time to make the oracle queries).

In the proof of ND [17], it said that “K executes Fm step by step” and K
answered hashing queries of Fm. As Fm is a black-box, nobody knows what it
has, and how it produces a signature. Luckily, in the random oracle model, Fm

must request a hashing oracle. By providing the oracle, K uses the rewinding
technique to extract the private keys. As their scheme is the Schnorr style, this
technique works.

The Motivation. There are some subtle problems.

– As F is a black-box, nobody knows how it works. It may just need a hashing
oracle if we are lucky. However, it may also need other oracles, such as signing
oracles or verifying oracles. That is, a malicious signer may sell some partial
secret so that F can produce a signature for a valuable message after some
online signing queries for garbage messages (according to the agreement
between the signer and F).

Non-delegatable SDVS on Elliptic Curves 225

– For the same reason, nobody knows what F has. It may directly buy the
private key of the singer with a high price. It may buy a partial secret from
a signer or a verifier with a moderate cost. And it may buy nothing, but can
simply produce a signature after some oracle queries.

– It seems that there are four players in the original definition. Two of them
are a signer and a designated verifier that produce key pairs, and the other
two of them are F and K. There is no specification about the interaction
between F and the two key-pair producers.

– The random oracle is the only available tool for K to extract the possible
private key of F . This makes the ND proof be limited to use the rewinding
of a hashing oracle.

These observations make the proof of ND uneasy. It is not easy to determine
what K should provide to F so that F can produce a signature, and which key
will be extracted by K, and not easy to apply the definition to new constructions.

The Instinctive Version

However, instinctively, an (S)DVS is non-delegatable means that if a party can
create a valid signature, this party must know either the secret key of the signer
or the verifier. Then a direct model is that if K interacts with a signature pro-
ducer F , K can extract a private key.

To overcome the subtle problems, we let F provide a public key pks(v) of a
signer or a verifier as the target to be extracted. It doesn’t matter whether F
knows the private key sks(v) corresponding to pks(v). We do not care what F has
as it is a black-box. We let K provide any possible help to F to produce a signa-
ture. That is, K provides the signing, verifying and hashing oracles if possible.
K can provide them easily since it controls the other key pair (skv(s), pkv(s)).

We define the instinctive version in a game style as follows. Suppose a poly-
nomial time bounded signature producer F and an extractor K.

– K produces the system parameter sp, and sends it to F .
– F produces a public key pks(v), and sends it to K.
– K produces the other public key pkv(s) and sends it to F .
– F produces a valid SDVS for a messagem queried by K with a non-negligible

probability. F accesses to the signing and hashing oracles if F produces pkv,
or accesses to the signing, verifying, and hashing oracles if F produces pks.

– K produces sks(v).

The success probability of K is defined as AdvND
SDV S,K(k).

Definition 5. An SDVS scheme is (t, ε, t′, ε′) non-delegatable if K can extract
the private key in time t with a probability AdvND

SDV S,K(k) ≥ ε against F that
can produce a signature in time t′ with a probability ε′, where ε > poly1(ε

′) and
t < poly2(t

′) for two polynomial functions poly1 and poly2.

The Relationship. If a scheme is non-delegatable in the original definition,
so it is in the instinctive version. If a scheme can be proven secure in the new
version, it may NOT be proven in the old one. In this way, we can view the new
version as a relaxed version. While it captures the core of the ND directly, it
allows more flexible constructions.

226 H. Tian et al.

3.2 Signer Ambiguity

Lee and Chang [14] gave a comment on Saeednia et al.’s SDVS scheme [20]. They
found that Saeednia et al.’s scheme would reveal the identity of the signer if the
secret key of this signer is compromised. That is, if an adversary is equipped
with a signer’s private key, for any SDVS produced by the signer, the adversary
can verify the SDVS. Then, if such an SDVS is captured before it reaches the
designated verifier, the real signer can be revealed. It is deemed as a weakness
for the signer ambiguity. There is no formal definition about it in [14]. They
argued their new scheme for the signer ambiguity.

Huang et al. [6] defined a stronger definition for the PSI property. It allows
an adversary to know the private key of a signer. The signer ambiguity property
is integrated. However, a simulator should provide various oracles for an adver-
sary, including the signing, verifying and hashing oracles in their definition. It
is unnecessary to provide the signing oracle as the adversary knows the signer’s
private key. It provides more information than what the adversary needs in [14].

We define a tailored model for the attack in [14]. It is defined by using a game
between a distinguisher D and a challenger C:

– C provides the system parameter sp to D.
– C provides D two key pairs (pks0, sks0) and (pks1, sks1) of two signers and a

public key pkv of a designated verifier.
– D produces a message m∗ and sends it to C.
– C flips a fair coin b ← {0, 1}, and computes δ∗ = SG(sksb, pkv,m

∗) as a
reply to D.

– D produces a bit b′ and succeeds if b′ = b.

The advantage of D is defined as AdvSA
SDV S,D(k) = |Pr[b′ = b]− 1/2|.

Definition 6. An SDVS scheme is (t, ε) ambiguous about the signer if no poly-
nomial time bounded distinguisher D has an advantage AdvSA

SDV S,D(k) ≥ ε in
time t.

Remark 2. As the attack in [14] does not need any oracles, our definition provide
no oracles too. It is reasonable to provide a verifying oracle as a distinguisher
cannot do so. However, it is not easy to provide such a oracle in our proof, and
that enhancement is beyond the attack technique in [14].

4 The SDVS Scheme

– SP : Let p be a large prime and Fp be a finite filed. Let a, b ∈R Fp be random
elements in the field to define a curve E. Let P ∈R E be a point in the curve
and be a generator of a group G with an order q. Let H1 : G → Z∗

q and
H2 : {0, 1}∗ → G be secure hashing functions. The system parameter sp is
(Fp, a, b, P, q,H1, H2).

– KG: For a signer, randomly select sks = s ∈R Z∗
q and compute pks = Qs =

−sP . For a designated verifier, randomly select skv = v ∈R Z∗
q and compute

pkv = Qv = vP .

Non-delegatable SDVS on Elliptic Curves 227

– SG: Randomly select r, l ∈R Z∗
q and compute A = lP , C0 = rP and C1 =

H2(m,A), C = C0 + C1 = (cx, cy), z = l + cxs mod q, R = rQv, and
t = H1(R). The signature is (C, z, t).

– SV : Compute A′ = zP + cxQs, C
′
1 = H2(m,A′), C′

0 = C − C′
1, R

′ = vC′
0,

and t′ = H1(R
′). Verify that t = t′.

– TS: Randomly select C ∈R G, z ∈R Z∗
q and compute A = zP + cxQs.

Compute C1 = H2(m,A), C0 = C − C1, R = vC0 and t = H1(R).

Remark 3. The point C in the signature will be presented in a compressed fash-
ion to shorten the size. That is, only the X coordinate and a compressed one-bit
representation of the Y coordinate of the point will be transmitted.

The computation of values A and C0 in the SG algorithm is taken as one scalar
multiplication as they can be computed sequentially where they are sorted by
the values of their indexes. The computation of zP + cxQs is approximated to
one scalar multiplication thanks to the algorithm 15.2 recorded in a book [18].

5 Proof of Properties

We use the symbol τm to denote the time of a scalar multiplication on elliptic
curves. Generally, we suppose the hash functions, H1, H2 are random oracles,
and the qh is the number of the hashing queries to the H2 oracle.

Unforgeability

Proposition 1. The SDVS scheme is (t, qs, ε) unforgeable if the ECDHP prob-
lem is (t′, ε′) unsolvable, where t′ ≤ 4(t+(qh+2qs)τm), and ε′ > 1/3ε(ε/qh − 1/q)

Proof. Assume a simulator C which tries to solve an ECDHP problem. Assume
an ECDHP problem instance is (αP, βP) with group parameters (Fp, a, b, P, q).
Suppose an adversary,A, which claims a non-negligible success probability ε over
the SDVS scheme in time t with qs signing queries. C runs two games with A.

– Game 0:
• C sets sp = (Fp, a, b, P, q,H1, H2), and gives sp to A.
• C runs KG to produce a verifier’s key pair (pkv, skv), and gives A public
keys pks = αP and pkv.

• C provides a signing oracle by running the TS algorithm.
• C provides two hashing oracles by maintaining two hashing lists.

1. C maintains an H1
list for hashing queries of H1. The H1

list is empty
at the beginning. When A provides an Ri for hashing, if there is a
match in the H1

list, C replies to A the value ti in the match directly.
Else C randomly selects ti ∈R Z∗

q and replies to A with ti and records
an entry (Ri, ti) in the H1

list.
2. C maintains an H2

list for hashing queries of H2. The H2
list is empty

at the beginning. When A provides (mi, Ai) for hashing, if there is
a match in the H2

list, C replies to A with the value Qi in the match
directly. Else C randomly selects di ∈R Z∗

q and computes Qi = diP .
C replies to A with Qi and records an entry (mi, Ai, di, Qi) in the
H2

list.

228 H. Tian et al.

• Since the non-transferability property will show that the signatures pro-
duced by the TS algorithm are distributed the same as those produced
by the SG algorithm, A should give an SDVS (C∗, z∗, t∗) for a new
message m∗.

According to the general forking lemma [2], A should give another SDVS
(C′, z′, t′) for the same message m∗ with fixed coins. The probability is θ =
ε(ε/qh − 1/q). Suppose the probability of z∗ �= z′ is ξ ∈ [0, 1]. Then with a
probability ξθ, C can extract the private key α of the signer. Then C computes
βαP as the answer of the ECDHP problem. The total run time of C in this
case is less than 2(t+ (qh + 2qs)τm).

There is a probability 1− ξ for the event z∗ = z′. This leads to the design
of Game 1.

– Game 1:
• C gives the system parameter sp to A.
• C runs KG to produce a signer’s key pair (pks, sks), and sets pkv = βP ,
and gives public keys pks, pkv to A.

• C provides a signing oracle by running the SG algorithm.
• C provides the hashing oracles in the same way as it does in the Game
0.

• Finally, A should give an SDVS (C∗, z∗, t∗) for a new message m∗.
Again, A should give another SDVS (C′, z′, t′) for the same message m∗ with
fixed coins with a probability θ = ε(ε/qh − 1/q). However, when A queries
(m∗, A∗ = z∗P + c∗xQs) at the second run, C sets H2(m

∗, A∗) = C∗ − αP or
H2(m

∗, A∗) = −C∗ −αP with a probability 1/2. After A gives (C′, z′, t′), C
finds the R′ in H1

list indexed by t′. The answer is R′ for the ECDHP problem.
Note that if z∗ = z′, c∗x = c′x mod q. Then C′ = C∗ or C′ = −C∗. Since
αP = C∗ − H2(m

∗, A∗) or αP = −C∗ − H2(m
∗, A∗), and pkv = βP , it

should be R′ = βαP with a probability 1/2.
As we are in the random oracle, we omit the collision event that when R′ �=
R′′, H1(R

′) = H1(R
′′). There is another error event that although c∗x �= c′x,

c∗x = c′x mod q. Note that p+1− 2
√
p < q < p+1+ 2

√
p by the well-known

Hasse’s theorem. If q > p, there is no error probability. If q < p, the error
probability is (p− q)/p · 1/(p− q) = 1/p.
The success probability of C is at least 1/2(1 − 1/p)(1 − ξ)θ > 1/3(1− ξ)θ
to solve the ECDHP problem. The runtime of C in this case is similar to it
in the Game 0.

So the total runtime of C is less than 4(t + (qh + 2qs)τm). The total success
probability of C is at least 1/3(1− ξ)θ + ξθ > 1/3θ. ��

Remark 4. The general forking lemma [2] can be used in contexts other than
traditional signatures as it only considers the inputs and outputs of a function.

Non-transferability

Proposition 2. The SDVS scheme is non-transferable in the context of
Definition 2.

Non-delegatable SDVS on Elliptic Curves 229

Proof. According to the Definition 2, we assume a challenger C. C runs algo-
rithms SP and KG to generate the system parameter sp and key pairs. Then C
sends the sp and public keys to a distinguisher D. To answer the signing queries,
C uses the private key of a signer directly to sign a query message according to
the SG algorithm. When D submits a message m∗ for a test, C flips a fair coin
b ∈ {0, 1}. If b = 0, C uses the private key of the signer to produce a signature
(Ĉ0, ẑ0, t̂0). If b = 1, C uses the private key of the designated verifier to produce
a signature (Ĉ1, ẑ1, t̂1) according to the TS algorithm.

The distinguisher D has no advantage to produce a b′ such that b′ = b since
the distribution of (Ĉ0, ẑ0, t̂0) is identical to that of (Ĉ1, ẑ1, t̂1).

Let (Ĉ, ẑ, t̂) be an SDVS that is randomly chosen in the set of all valid signa-
tures of a signer intended to a designated verifier. Then we consider the prob-
ability of the event: Ĉ0 = r0P +H2(m, l0P) = Ĉ, ẑ0 = l0 + ĉ0x(sks) = ẑ, and
t0 = H1(r0pkv) = t̂. The randomness is over the variables r0, l0 ∈R Z∗

q . The
probability is about 1/q2.

Another event is Ĉ1 = Ĉ, and ẑ1 = ẑ, and t̂1 = H1((C1 − H2(m, ĉ1xQs +
z1P))skv) = t̂. The randomness is over the variables ẑ1 ∈R Z∗

q and Ĉ1 ∈R G.
The probability is also about 1/q2. ��
Privacy of signer’s identity (PSI)

Proposition 3. If the SDVS scheme is (t′, q′s, ε′) unforgeable, and the ECD-
DHP problem is (t′′, ε′′) unsolvable, the SDVS scheme is (t, qs, qv, ε) secure in
the context of Definition 3.

Proof. There is a challenger C and a distinguisher D as in the Definition 3. They
play a serial of games.

Game 0

– C invokes SP to produce the system parameter sp and gives it to D.
– C runs KG to set up two key pairs (sksζ , pksζ), ζ ∈ {0, 1}, for two signers

and one key pair (pkv, skv) for a designated verifier. Then C gives D public
keys (pks0, pks1, pkv).

– C installs the private key sks0 in the signing oracle Σs0, and sks1 in Σs1. C
installs the private key skv in the verifying oracle Υ . C provides a hashing
oracle for H1 that is the same as it in the Game 0 of the Proposition 1. Then
C provides D the signing, verifying and hashing oracles.

– When D provides the message m∗, C produces a challenge SDVS (C∗, z∗, t∗).
C flips a fair coin b∗ ∈ {0, 1}, and uses the private key sksb∗ to produce a
challenge SDVS according to the SG algorithm.

– C provides the signing and verifying oracles as before except that the veri-
fying oracle Υ has no response to the query (pksζ ,m

∗, C∗, z∗, t∗), ζ ∈ {0, 1}.
– Eventually, D produces a bit b and succeeds if b = b∗.

This game is exactly the definition of the PSI. So D should succeed with a non-
negligible advantage ε in time t with qs signing queries and qv verifying queries.

Game 1: This game is intended to show that D cannot tell whether a challenge
signature is valid.

230 H. Tian et al.

– C takes an ECDDHP problem instance (αP, βP, γP).
– C sets pkv = βP .
– C provides the signing oracles as before. However, C maintains a signing list

Slist for all signatures produced by the signing oracles. The verifying oracle
Υ uses the Slist to answer queries. If a query is in the list, Υ answers True,
else False.

– When D provides the message m∗, C produces a challenge SDVS (C∗, z∗, t∗)
as follows. C flips a fair coin b∗ ∈ {0, 1}, and uses the private key sksb∗ . It
randomly selects l ∈R Z∗

q and computes A∗ = lP , and C1 = H2(m
∗, A∗). It

sets C0 = αP and R = γP . It computes C∗ = C0+C1, and z∗ = l+ c∗xsksb∗ ,
and t∗ = H1(R). The challenge signature is (C∗, z∗, t∗).

– Other steps keep unchanged.

The distinguisher D has two possible ways to distinguish Game 0 from Game
1. The first is about the two challenge signatures in the two games. However, If
the input of C is an ECDDHP tuple, the signature is valid and indistinguishable
from it in the Game 0. If it is not, the challenge SDVS is an invalid signature. If
D can distinguish the Game 1 from Game 0 by the two signatures, C can solve
the ECDDHP problem directly. So the probability is ε′′ for D to distinguish the
two games by the challenge signatures in time t′′.

The second way is through the verifying oracle Υ . From the Proposition 1, we
know the probability of successful forgery is a negligible probability ε′ in time
t′ with q′s signing queries. So all True signatures queried to the oracle Υ can
be verified rightly. The only questionable signature is the challenge signature,
which is not allowed to be a query by the game rules. So the probability is ε′ for
D to use the oracle Υ to distinguish Game 1 from Game 0 in time t′ in this case.

Game 2: The challenge SDVS (C∗, z∗, t∗) is produced without using any private
keys.

– When D provides the message m∗, C produces a challenge SDVS (C∗, z∗, t∗)
as follows. C randomly selects t∗, z∗ ∈R Z∗

q , and C∗ ∈R G. The challenge
signature is (C∗, z∗, t∗).

– Other steps keep unchanged.

The values C∗ and z∗ are distributed the same as them in the Game 1 due to
the non-transferability property. The value t∗ is also distributed the same as it
in the Game 1 since we are in the random oracle model. So D cannot distinguish
the Game 2 from the Game 1.

Since no private keys are used to produce the challenge SDVS in Game 2, it
is meaningless for the distinguisher D to claim that the message m∗ is signed
by the owner of a private key sk0 or sk1, or simulated by a designated verifier.
There is no advantage for D in Game 2. ��
Non-delegatability

Proposition 4. Suppose that the KEAv1 assumption holds with a probability
1 − ε′′. Then the SDVS scheme is (t, ε, t′, ε′) non-delegatable in the context of
Definition 5.

Non-delegatable SDVS on Elliptic Curves 231

Proof. According to the Definition 5, there is an extractor K and a signature
producer F . F produces a valid signature on a message m with a non-negligible
probability ε′ in time t′.

– F produces a public key pks as the target.
• K produces the sp and sends it to F
• F produces pks and sends it to K.
• K produces the key pair (pkv, skv) and sends the pkv to F .
• K provides a signing oracle by the TS algorithm, and a verifying oracle
by the SV algorithm, and two hashing oracles for the H1 and H2 in the
same way as them in the Game 0 of the Proposition 1.

• K selects a message m∗ and sends it to F .
• F produces a signature (C∗, z∗, t∗) for the message m∗.
• K uses the same method as C in the Game 0 of the unforgeability proof to
extract the private key sks. The successful probability is ε ≥ ξε′(ε′/qh −
1/q) where ξ is the same as it in the Game 0 of the Proposition 1. The
runtime is t < 2(t′ + (qh + 2qs + 2qv)τm).

– F produces a public key pkv as the target.
• K produces the sp and sends it to F
• F produces pkv and sends it to K.
• K produces the key pair (pks, sks) and sends pks to F .
• K provides a signing oracle by the SG algorithm, and two hashing oracles
for the H1 and H2 in the same way as them in the Game 0 of the
Proposition 1.

• K selects a message m∗ and sends it to F .
• F produces a signature (C∗, z∗, t∗) for the message m∗.
• K runs F again with fixed coins. When F queries the H2 with (m∗, z∗P+
c∗xpks), K replies C′

1 = C∗ − C′′
0 or C′

1 = −C∗ − C′′
0 with a probability

1/2, where C′′
0 = r′P ∈R G for a random r′ ∈R Z∗

q . F produces another
signature (C′, z′, t′) form∗. If z′ �= z∗, K fails. Else K finds the value R′ =
r′pkv in the H1

list. We take the values (P,C′′
0) as an input to F because

the values are totally determined by K. We take the values (pkv, R
′) as

the output of F . Then according to the KEAv1 assumption, K can build
another F∗ with the same coins to produce an output (skv, pkv, R

′).
Similar to the analysis in the Game 1 of the Proposition 1, the success

probability of F is ε > 1/3(1− ε′′)(1− ξ)(ε′(ε′/qh−1/q)) considering the
extra assumption of KEAv1. The runtime is t < 2(t′+(qh+2qs)τm). ��

Signer Ambiguity

Proposition 5. The SDVS scheme is (t, ε) ambiguous about the signer if the
ECDDHP problem is (t′, ε′) unsolvable, where t ≈ t′ − τm and ε = ε′.

Proof. Suppose a challenger C which tries to solve an ECDDHP problem in-
stance (αP, βP, γP). Suppose a distinguisher D which tries to break the SA
property of the scheme with an advantage ε in time t.

– C provides the system parameters sp to D.

232 H. Tian et al.

– C provides D two key pairs (pks0, sks0) and (pks1, sks1) of two signers and a
public key pkv = βP of a designated verifier.

– D produces a message m∗ and sends it to C.
– C flips a fair coin b ← {0, 1}. It randomly selects l ∈R Z∗

q , and computes
A∗ = lP . Then it sets C0 = αP and R = γP . Then C∗ = H2(m

∗, A∗) + C0,
and z∗ = l+ c∗xsksb mod q, and t∗ = H1(R). The SDVS is (C∗, z∗, t∗).

– C produces whatever produced by D.

If the tuple (αP, βP, γP) is an ECDDHP tuple, D should have an advantage
ε in time t. If it is not, the signature is invalid and D has no advantage. The
advantage of C is the same as D. The runtime of C is about t+ τm. ��

6 Performance

We compare our scheme with some current non-delegatable (strong) DVS
schemes. The column “Type” shows the signature type of each scheme. The
column “SA” shows whether a scheme enjoys the SA property. The “RO” col-
umn shows the proof model of a scheme. The “NPRO” means a non-programable
random oracle model. The “RO” means a random oracle model. Other columns
are about the signature size and computation cost.

There are three kinds of system parameters.

– Let p′, q′ be large primes such that q′|p′ − 1. Let G′ be a group of order q′.
– The parameters (Fp, a, b, P, q) is for a group G in a non-supersingular elliptic

curve.
– Let Ge be a group derived from the curve defined by y2 = x3 +2x+1 in the

filed F3u . There is a pairing evaluation e : Ge ×Ge → Gt. The order is qe of
the two groups.

Let |p| denote the bits length of the value p. Considering a cryptographic strength
of approximate 80 security bits, |p′| = 1024 and |q′| = 160, |q| = 160, and u = 97
and |qe| = 151. If Q ∈ G, |Q| = 161. If Q ∈ Ge, |Q| = 154. If Q ∈ Gt, |Q| ≈ 923.

We use symbols τ ′, τm, τp, τh to denote the computation of modular exponen-
tiation in G′ or Gt, the scalar multiplication in G or Ge, the bilinear pairing
computation and the hash function that maps arbitrary input strings to elliptic
curve points (the MapToGroup function [1]).

From the Table 1, we observe the following points:

Table 1. Comparison among non-delegatable (strong) DVS schemes

Scheme Type SA Signature-Size (bits) Sign-Cost Verify-Cost RO

[17] DVS - 640 (Z4
q′) 3τ ′ 3τ ′ NPRO

[6] IBDVS - 758 (Z4
qe ×Ge) 3τ ′ + 3τp + τm + 2τh 4τ ′ + 4τp + 3τh RO

[7] SDVS No 640 (Z4
q′) 3τ ′ 3τ ′ RO

[8] IBSDVS Yes 2607 (Z3
qe ×G

2
e ×G

2
t) 4τ ′ + 4τp + τm + 3τh 4τ ′ + 5τp + 4τh RO

Ours SDVS Yes 481 (Z2
q ×G) 2τm + τh 2τm + τh RO

Non-delegatable SDVS on Elliptic Curves 233

– Only one IBSDVS scheme [8] enjoys the ND and SA properties, which has a
big signature size and high signing and verifying costs. Comparatively, our
scheme shows advantages in both the signature size and computation costs.

– The signature size of our scheme is short. It is the only scheme consists of
three elements in a signature.

– The signing and verifying costs of our scheme are moderate due to the cost
of the scalar multiplication on elliptic curves.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China (Nos. 60970144, 60803135, 61070168, 61003244, 61103199),
Fundamental Research Funds for the Central Universities (Nos. 10lgpy31,
11lgpy71, 11lgzd06, 10lgzd14), Specialized Research Fund for the Doctoral Pro-
gram of Higher Education for New Teachers (No. 20090171120006), and Beijing
Municipal Natural Science Foundation(No. 4112052).

References

1. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

2. Bellare, M., Neven, G.: Multi-Signatures in the Plain Public-Key Model and a
General Forking Lemma. In: Proceedings of the 13th Association for Computing
Machinery (ACM) Conference on Computer and Communications Security (CCS),
pp. 390–399. ACM, Alexandria (2006)

3. Dent, A.W., Galbraith, S.D.: Hidden Pairings and Trapdoor DDH Groups. In:
Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 436–451.
Springer, Heidelberg (2006)

4. Huang, X., Susilo, W., Mu, Y., Wu, W.: Universal Designated Verifier Signature
Without Delegatability. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 479–498. Springer, Heidelberg (2006)

5. Huang, X., Susilo, W., Mu, Y., Zhang, F.: Short Designated Verifier Signature
Scheme and Its Identity-based Variant. International Journal of Network Secu-
rity 6(1), 82–93 (2008)

6. Huang, Q., Susil, W., Wong, D.S.: Non-delegatable Identity-based Designated Ver-
ifier Signature. Cryptology ePrint Archive: Report 2009/367 (2009)

7. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient Strong Designated Verifier
Signature Schemes without Random Oracles or Delegatability. Cryptology ePrint
Archive: Report 2009/518 (2009)

8. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Identity-based strong designated
verifier signature revisited. Journal of Systems and Software 84(1), 120–129 (2011)

9. Damg̊ard, I.B.: Towards Practical Public Key Systems Secure against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg (1992)

10. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

11. Kancharla, P.K., Gummadidala, S., Saxena, A.: Identity Based Strong Designated
Verifier Signature Scheme. Journal of Informatica 18(2), 239–252 (2007)

234 H. Tian et al.

12. Katz, J., Wang, N.: Efficiency Improvements for Signature Schemes with Tight
Security Reductions. In: 10th ACM Conference on Computer and Communications
Security, pp. 155–164. ACM Press (2003)

13. Laguillaumie, F., Vergnaud, D.: Designated Verifier Signatures: Anonymity and
Efficient Construction from Any Bilinear Map. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005)

14. Lee, J., Chang, J.: Comment on Saeednia et al.’s strong designated verifier signa-
ture scheme. Journal of Computer Standards & Interfaces - CSI 31(1), 258–260
(2009)

15. Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated Verifier Signature: Definition, Frame-
work and New Constructions. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao,
J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 1191–1200. Springer, Heidelberg (2007)

16. Liao, Y., Jia, C.: Designated verifier signature without random oracles. Commu-
nications, Circuits and Systems. In: IEEE International Conference on ICCCAS
2008, pp. 474–477 (2008)

17. Lipmaa, H., Wang, G., Bao, F.: Designated Verifier Signature Schemes: Attacks,
New Security Notions and a New Construction. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 459–471. Springer, Heidelberg (2005)

18. Mao, W.: Modern cryptography: theory and practice. Prentice Hall Professional
Technical Reference (2003)

19. Shahandashti, S.F., Safavi-Naini, R.: Construction of Universal Designated-Verifier
Signatures and Identity-Based Signatures from Standard Signatures. In: Cramer,
R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 121–140. Springer, Heidelberg (2008)

20. Saeednia, S., Kramer, S., Markovitch, O.: An Efficient Strong Designated Verifier
Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004)

21. Sun, X., Li, J., Hu, Y., Chen, G.: Delegatability of an Identity Based Strong Des-
ignated Verifier Signature Scheme. INFORMATICA 21(1), 117–122 (2010)

22. Tso, R., Okamoto, T., Okamoto, E.: Practical Strong Designated Verifier Signature
Schemes Based on Double Discrete Logarithms. In: Feng, D., Lin, D., Yung, M.
(eds.) CISC 2005. LNCS, vol. 3822, pp. 113–127. Springer, Heidelberg (2005)

23. Wang, B.: A non-delegatable identity-based strong designated verifier signature
scheme, http://eprint.iacr.org/2008/507

24. Zhang, J., Mao, J.: A novel ID-based designated verifier signature scheme. Infor-
mation Sciences 178(3), 766–773 (2008)

http://eprint.iacr.org/2008/507

An Improved Known Plaintext Attack

on PKZIP Encryption Algorithm

Kyung Chul Jeong, Dong Hoon Lee, and Daewan Han

The Attached Institute of ETRI,
P.O. Box 1, Yuseong-Gu, Daejeon, Korea
{jeongkc,dlee,dwh}@ensec.re.kr

Abstract. The PKZIP encryption algorithm has been widely used to
protect the contents of compressed archives despite the known security
weakness. Biham and Kocher proposed a known plaintext attack with
the complexity 240 when 12 plaintext bytes are given. Stay suggested a
different way to attack and addressed an idea which makes the complex-
ity be reduced if the information of additional files encrypted under the
same password is provided. However, the complexity of Stay’s attack is
quite large when only one file is used.

In this paper, we propose a new attack based on Biham and Kocher’s
attack. We introduce a method to reduce the complexity using the in-
formation of multi-files, so our attack can have the both advantages of
previous two attacks. As a result, our attack becomes about (3.4)l times
faster than the attack of Biham and Kocher when l additional files are
used. Our experiment shows that ours is at least 10 times faster than
Stay’s. In addition, our attack can be improved in the chosen ciphertext
model. It is about (21.3)l times faster than Biham and Kocher’s attack
with chosen plaintext of l additional files.

Keywords: PKZIP encryption, known plaintext attack.

1 Introduction

Compression softwares are used for various reasons: to reduce the size of big
files, to unify many files and folders into a single archive, to split a big file
into several parts with a small size and to protect the contents of the files by
the password-based encryption. Most compression softwares support the ZIP
file format among several compression file formats such as ZIP, RAR, ARJ, 7z
and etc. As one of their protection algorithms, they also support the traditional
PKZIP encryption included in the ZIP format specification. Almost all softwares
support more strong encryption algorithms like AES in addition.

The traditional PKZIP encryption algorithm (a.k.a standard Zip 2.0 encryp-
tion) was designed by Roger Schlafly [4]. It has been widely supported by most
compression softwares despite the publicly known security weakness. Biham and
Kocher presented a known plaintext attack on the PKZIP encryption in [1].
They described an algorithm which extracts the encryption key (initialized with

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 235–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

236 K.C. Jeong, D.H. Lee, and D. Han

the password) with 240 complexity providing 12 plaintext bytes (or 238 com-
plexity providing 13 plaintext bytes). Stay introduced a ciphertext-only attack
on the PKZIP encryption for some of the compression softwares [3]. If 5 files in
an archive are given, the first 10 plaintext bytes of all files could be derived in
some softwares at that time. He proposed a new type of attack to utilize this
additional information. His attack has the complexity of 263 when only one file
with 12 plaintext bytes is given, but it can be much more efficient using every
plaintext of 5 files.

In this paper, we propose an attack which includes a new method to reduce
the complexity using the additional file’s plaintext. Our attack can be regarded
as a generalization of Biham and Kocher’s attack in the sense that ours is same
as theirs when there is only one file. In the early state of our attack, a portion of
key candidates can be filtered out by checking a certain condition induced from
the relation between the plaintexts. As a result, we combine the two advantages:
smaller complexity of [1] and the efficiency of utilizing multi-files in [3]. In the
known plaintext attack, our attack becomes about (3.4)l times faster than the
attack of [1] if plaintexts of l additional files are given. The experiment supports
our claim and shows that ours is at least 10 times faster than Stay’s attack.

The ratio of the reduced complexity depends on the relation between plaintext
values. In the chosen ciphertext attack, we can determine plaintexts to satisfy
the optimal relation. As a result, our attack can be improved to become (21.3)l

times faster than the original attack when l additional files are given.
This paper is organized as follows. The preliminary and previous works are

briefly described in the next section. It includes the overview of PKZIP encryp-
tion algorithm and the sketches of the attacks of [1] and [3]. We explain a new
attack in Section 3, 4 and validate our result by comparing with other results
by some experiments in Section 5. Finally we conclude in Section 6.

2 Previous Works

In this section, we briefly describe the PKZIP encryption which can be found in
[4] and fix the notation. The attack of Biham and Kocher [1] is summarized in
2.2 and the recent attack of Stay [3] is summarized in 2.3.

2.1 The PKZIP Encryption

The PKZIP encryption is a stream cipher which encrypts one byte at a time.
Three 32-bit keys K0, K1 and K2 are used as an internal state. One byte informa-
tion ‘B’ is used to update these 3 keys as follows.

Key update(B): K0 = CRC32(K0, B)

K1 = {K1 + L
(
K0

)
} × 0x08088405+ 1

K2 = CRC32(K2, M
(
K1

)
)

The definition of CRC32(,) is described in [1]. L(X) and M(X) are the least and
the most significant byte of X, respectively. Each bit is numbered from right to

An Improved Known Plaintext Attack on PKZIP Encryption Algorithm 237

left such that (i+1)-st bit is the (2i)’s position. We denote consecutive k bits of X
from (i+1)-st bit to (i+k)-th bit by k(i+k−1..i) bits of X. For example, if X is a
32-bit value, L(X) consists of 8(7..0) bits of X and M(X) consists of 8(31..24) bits of
X. The prefix 0x indicates that it is the hexadecimal representation. The 4 basic
binary operations +, −, × and ()−1 in this paper are the modular arithmetics
(mod 232) in almost all cases.

The characters of the password, denoted by PW[1], PW[2], · · · , are firstly used to
update the internal state. After initializing with the given password, the initial
internal state is denoted by K0[0], K1[0] and K2[0]. Plaintext is used to update
the state during the encryption. We denote plaintext bytes by P[1], P[2], · · · and
ciphertext bytes by C[1], C[2], · · · . The i-th internal state K0[i-1], K1[i-1] and
K2[i-1] are updated with P[i] and become K0[i], K1[i] and K2[i] for i=1, 2, · · · .

Key stream bytes are denoted by S[1], S[2], · · · . One key stream byte is
generated using K2[] of each state. S[i]=Stream gen(K2[i-1]) is computed as
follows.

Stream gen(K2[i-1]): tmp = (K2[i-1]&0xFFFC)|2

S[i] = L({tmp×(tmp⊕1)}'8),

where & is the bitwise logical ‘and’, | is the bitwise logical ‘or’, ⊕ is the bitwise
‘exclusive or’ and ' is the right shift as usual.

The algorithm 1 is the overall process of the PKZIP encryption.

Algorithm 1. The PKZIP encryption overview

Require:
1. PW[m] - The password of length m

2. P[n] - The plaintext of length n

3. C[n] - The empty array for ciphertext
Ensure:

1. K0=0x12345678, K1=0x23456789, K2=0x34567890 at first

1: Init Keys(PW[m])
2: Encryption(P[n], C[n])

3: procedure Init Keys(PW[m])
4: for i=1 to m do
5: Key update(PW[i])
6: end for
7: end procedure

8: procedure Encryption(P[n], C[n])
9: for i=1 to n do

10: C[i] = P[i]⊕Stream gen(K2[i-1])
11: Key update(P[i])
12: end for
13: end procedure

238 K.C. Jeong, D.H. Lee, and D. Han

The followings are another representation of CRC32(,) and the definition of
CRC32−1(,) which is introduced in [1].

Y = CRC32(X, C) = (X ' 8)⊕ crc[L(X)⊕C], (1)

X = CRC32−1(Y, C) = (Y " 8)⊕ inv[M(Y)]⊕ C, (2)

where crc[] and inv[] are the tables same as [1]. " is the left shift. The crc[]
tables has the linear property such that crc[L(X)⊕C]= crc[L(X)]⊕crc[C].

2.2 The Attack of Biham and Kocher

Biham and Kocher suggested a known plaintext attack on the PKZIP encryption
in [1]. They assumed that adjacent plaintext bytes of arbitrary position are
known. Following is the sketch of the trade-off version of the attack which is
mentioned in [3]. We are going to explain details about some computations in
section 3 since our attack is based on this algorithm. We assume that P[1], P[2],
· · · , P[12] are given.

1. Making a list of 224 K2[]’s candidates
Guess 16(31..16) bits of K2[11] and get 64 values of 14(15..2) bits of K2[11]
using S[12].
– Determine 30(31..2) bits of K2[10] using K2[11] and S[11]

→ Find 2(1,0) more bits of K2[11]
– Determine 30(31..2) bits of K2[9] using K2[10] and S[10]

→ Find 2(1,0) more bits of K2[10] → Find M
(
K1[11]

)
...

– Determine 30(31..2) bits of K2[0] using K2[1] and S[1]
→ Find 2(1,0) more bits of K2[1] → Find M

(
K1[2]

)
Guess 2(1,0) bits of K2[0] → Find M

(
K1[1]

)
.

2. Given K2[] and M
(
K1[]

)
, making a list of 216 K1[]’s candidates

Get 216 values of 24(23..0) bits of K1[11] using M
(
K1[11]

)
and M

(
K1[10]

)
– Find L

(
K0[11]

)
using K1[11] and M

(
K1[9]

)
→ Determine K1[10]

– Find L
(
K0[10]

)
using K1[10] and M

(
K1[8]

)
→ Determine K1[9]

...
– Find L

(
K0[3]

)
using K1[3] and M

(
K1[1]

)
3. Deriving K0[8] from L

(
K0[8]

)
, L

(
K0[9]

)
, L

(
K0[10]

)
and L

(
K0[11]

)
A list of 240 candidates for the 9-th internal state is made.

4. Checking the validity of each candidate
Compute K0[i-1] using K0[i] and P[i] for i = 8,7,6,5,4 and compare the least
significant bytes with the values found in step 2. Finally the unique and
correct 4-th internal state is found.

This attack requires 12 known plaintext bytes and has the complexity of 240 (the
number of candidates in the list). The original attack presented in [1] requires
13 bytes with 238 complexity. In fact, last 2 bits guess of K2[0] in step 1 can be

An Improved Known Plaintext Attack on PKZIP Encryption Algorithm 239

done after 4 bytes comparison of L
(
K0[]

)
in step 4. So the actual running times

of these 2 versions seem to be similar to each other.
The complexity can be reduced if there are more adjacent plaintext bytes of

the target compressed file. For example, the complexity may be reduced to about
227 using about 10,000 known plaintext bytes. If an internal state is given, we
can find a corresponding password which makes that initial state much more
efficiently than the brute-force search.

2.3 The Attack of Stay

Stay suggested another type of attack on the PKZIP encryption in [3]. This
attack has the bigger complexity than the previous one, but the number of
candidates of the key can be reduced naturally when multi-files encrypted under
an identical password are given.

1. 223 candidates (31 bits guess and 8 bits check)
– 28: Guess L

(
CRC32(K0[0],0)

)
→ Determine L

(
K0[1]

)
using P[1]

– 29: Guess M
(
K1[0]×0x08088405

)
and 1 carry bit

→ Determine M
(
K1[1]

)
using L

(
K0[1]

)
– 26: Guess 14(15..2) bits of CRC32(K2[0],0)

→ Determine 14(15..2) bits of K2[1] using M
(
K1[1]

)
and check 8 bits

condition using S[2]
2. 219 candidates (27 bits guess and 8 bits check) → 242 candidates in total

– 28: Guess 8(15..8) bits of CRC32(K0[0],0)
→ Determine L

(
K0[2]

)
using P[2]

– 29: Guess M
(
K1[0]×0x080884052

)
and 1 carry bit

→ Determine M
(
K1[2]

)
using L

(
K0[2]

)
– 22: Guess 8(23..16) bits and 2(1..0) bits of CRC32(K2[0],0)

→ Determine 14(15..2) bits of K2[2] using M
(
K1[2]

)
and check 8 bits

condition using S[3]
3. 213 candidates (29 bits guess and 16 bits check) → 255 candidates in total

– 28: Guess 8(23..16) bits of CRC32(K0[0],0)
→ Determine L

(
K0[3]

)
using P[3]

– 213: Guess K1[0] using the previous conditions (about 213 possibilities)
→ Determine M

(
K1[3]

)
using L

(
K0[3]

)
– 2−8: Guess M

(
CRC32(K0[0],0)

)
, determine K0[0] and check 8 bits condi-

tion using S[1]
→ Determine K2[3] using M

(
K1[3]

)
and check 8 bits condition using S[4]

4. 28 candidates (8 bits guess) ⇒ 263 candidates of K0[0], K1[0], K2[0] are found.
– 28: Guess 8(31..24) bits of CRC32(K0[0],0) and determine K0[0]

5. Check 64 bits condition using S[5], S[6], · · · S[12]
⇒ The correct internal state is found.

This attack requires 12 known plaintext bytes and has the complexity(also the
number of key candidates) of 263.

240 K.C. Jeong, D.H. Lee, and D. Han

Stay introduced a ciphertext-only attack on the public compression softwares
such as WinZip and NetZip. Due to the flaws of a little different encryption
method and the random byte generator, if there were 5 files in an encrypted
archive, the first 10 plaintext bytes of all 5 files can be extracted.

If we can use an external method to check the validity of the internal state,
less number of plaintext bytes are required in both attacks shown above. The
effect of this assumption seems to similar. So we consider no situation like that
in this paper.

3 New Known Plaintext Attack

Our new attack is based on the algorithm of Biham and Kocher. The attack of
Stay is suitable to utilize additional files but has larger complexity. So we take
the advantage of the small complexity of [1] and mount a new idea to utilize the
information of multi-files. The complexity of Biham and Kocher’s attack mainly
depends on the product of the number of K2 candidates and the number of K1

candidates. We are going to filter out some of the K2 candidates, thus improve
the complexity. Our attack can be regarded as a generalization of [1] when the
known plaintexts of more than one encrypted files are given.

3.1 Main Idea

In each step of Stay’s attack, every bit of the initial state required to update
the state and to produce the keystream is guessed in order to update the state
again with other plaintext bytes. So the basic complexity is large, whereas the
way of using additional information is quite straightforward.

In the first step of Biham and Kocher’s algorithm, the series of K2[] and M
(
K1[]

)
can be determined using the keystream after some bits of K2[11] are guessed. The
plaintext bytes influence this algorithm at the last step. On the other hand, the
update of K0 is basically the xor operation with P[1] due to the linear property of
crc[] table and the K1 update begins with the addition with L

(
K0

)
. So the partial

information about relation between M
(
K1

)
’s updated with different plaintext bytes

can be obtained from the plaintext values if we adopt the concept of the additive
differential of xor whose formal definition is found in [2]. Then the key candidates
can be sieved in the first step with no more bits guess.

3.2 Attack Using 2 Files

For the clear description of our concept we deal with the case of two known plain-
texts. We assume that there are two zip files1 encrypted under an identical pass-
word and their first 12 bytes of plaintext are given. The plaintext bytes are denoted
by P0[1], . . ., P0[12] and P1[1], . . ., P1[12], respectively. The lower index indicates
the file identity and is going to be applied to K0, K1, K2 and S[i] as well.

1 Note that an encrypted archive containing two files is also allowed.

An Improved Known Plaintext Attack on PKZIP Encryption Algorithm 241

Since P0[i] and P1[i] are equal for all i with the probability of 1/296, it is
natural to assume that two 12-byte plaintexts are not all the same. It does not
matter which i is the smallest index such that P0[i]�=P1[i], so we may assume
that P0[1]�=P1[1]. Some of the computations below can be found in [1] or [3]. We
write them down again for the readability.

Find the Partial Information of K10[1] and K11[1]. At first, the most sig-
nificant 16(31..16) bits of K20[1] has to be guessed. One byte output S0[2] is
produced with the input of 14(15..2) bits of K20[1] through Stream gen(). For
each key stream byte, there are exactly 64 inputs of 14-bit value. So 64 values
for 14(15..2) bits of K20[1] can be listed directly from S0[2] with the prepared
table. Thus we have a list of 222 candidates for 30(31..2) bits of K20[1].

The most significant 22(31..10) bits of the previous state’s K20[0] are computed
from 30(31..2) bits of K20[1] using the equation

K20[0] = (K20[1] " 8)⊕ inv
[
M
(
K20[1]

)]
⊕ M

(
K10[1]

)
.

Independently, 64 values for 14(15..2) bits of K20[0] are derived from S0[1] in the
same manner as above.

This can be presented as Figure 1.

K20[0] ← S0[1]
�

M
(
K10[1]

)
⊕

inv
[
M
(
K20[1]

)]
⊕

K20[1]

Fig. 1. The equation for K20[0]

On average, one out of 64 values has the 6(15..10) bits same as the previous
22(31..10) bits at the overlapped location. So 30(31..2) bits of K20[0] are deter-
mined using 30(31..2) bits of K20[1] and S0[1].

The least significant 2(1,0) unknown bits of K20[1] can be computed using
2(9..8) bits of K20[0]. 6(7..2) bits of M

(
K10[1]

)
are same as 6(7..2) bits of

K20[0]⊕inv
[
M
(
K20[1]

)]
. The complete value of K20[1], 30(31..2) bits of K20[0] and

6(7..2) bits of M
(
K10[1]

)
are included in each of the 222 candidates.

Since the internal states of the two files are initialized with an identical pass-
word, their initial states are identical. This fact plays an essential role to gather
more information from the second plaintext. From the equation (1) we have

K21[1] = (K21[0] ' 8)⊕ crc
[
L
(
K21[0]

)
⊕M

(
K11[1]

)]
and already know 30(31..2) bits of K21[0](=K20[0]). On the other hand, 64 values
for 14(15..2) bits of K21[1] are obtained from S1[2]. Therefore 64 values of 14(15..2)
bits of crc

[
L
(
K21[0]

)
⊕M

(
K11[1]

)]
can be obtained.

242 K.C. Jeong, D.H. Lee, and D. Han

Since crc[] table has the 28 elements among all the 32-bit values, any given
14-bit value can be one of the 14(15..2)-bit values of the table elements with the
probability of 1/64. So a unique 14(15..2)-bit value of crc

[
L
(
K21[0]

)
⊕M

(
K11[1]

)]
can survive on average. We can get the value of L

(
K21[0]

)
⊕M

(
K11[1]

)
, then 6(7..2)

bits of M
(
K11[1]

)
come from 6(7..2) bits of K21[0]. In addition, the complete 32-bit

value of K21[1] can be computed.

Relation between K10[1] and K11[1]. Now we will show that M
(
K10[1]

)
−M

(
K11[1]

)
should satisfy a certain condition, provided that we guess K20[1] correctly in the
previous step. Thus we can filter out some of the wrong candidates from the list.

The staring point of the condition is P0[1]⊕P1[1]. The exact value of K
0
0[1]⊕K01[1]

can be computed even without any knowledge of each value.

K00[1]⊕ K01[1] = CRC32(K00[0], P0[1])⊕ CRC32(K01[0], P1[1])

= (K00[0] ' 8)⊕ crc
[
L
(
K00[0]

)
⊕P0[1]

]
⊕(K01[0] ' 8)⊕ crc

[
L
(
K01[0]

)
⊕P1[1]

]
= crc[P0[1]⊕P1[1]] (Because K

0
0[0] = K01[0]).

This xor difference of K00[1] and K01[1] affects on the subtraction difference of K10[1]
and K11[1] through the key update process as follows.

K10[1]− K11[1] =
{
(K10[0] + L

(
K00[1]

)
)× 0x08088405+ 1

}
−

{
(K11[0] + L

(
K01[1]

)
)× 0x08088405+ 1

}
=

{
L
(
K00[1]

)
− L

(
K01[1]

)}
× 0x08088405.

In summary, we have

K10[1]−K11[1]=
{
L
(
K00[1]

)
−L

(
K00[1]⊕crc[P0[1]⊕P1[1]]

)}
×0x08088405. (3)

For a fixed P0[1]⊕P1[1], not all the possible most significant 6(31..26) bits appear
in the equation (3) even running it over all 256 values of L

(
K00[1]

)
. For example,

if P0[1]⊕P1[1]=0x1d, then L(crc[P0[1]⊕P1[1]])=0xd9. In this case, there are only
18 values for 6(7..2) bits of M

(
K10[1]

)
−M

(
K11[1]

)
considering the possibility of the

unknown carry bit. The − operation between 6(7..2) bits of M
(
K10[1]

)
and M

(
K11[1]

)
is calculated under the modulus 26.

On average over all P0[1]⊕P1[1], 18.7 out of 64 values for 6(7..2) bits of
M
(
K10[1]

)
−M

(
K11[1]

)
are possible. The table 2 in the appendix A shows the number

of possible M
(
K10[1]

)
−M

(
K11[1]

)
values for each P0[1]⊕P1[1].

We can filter out some of the candidates using the second file’s information
P1[1] and S1[2] by keeping track of the plaintext difference influence. The trace
of the P[1] difference in the key updated process is depicted in figure 2. The
number of K20[1] candidates is reduced to 222 × (18.7/64) = 222 × (1/3.4) ≈ 220.2

on average.

An Improved Known Plaintext Attack on PKZIP Encryption Algorithm 243

︷ ︸︸ ︷
K0[0] K1[0] K2[0]

⊕ L
(
K0[1]

)
+ ∗ ⊕

crc
[
L
(
K0[0]

)] ︸ ︷︷ ︸ crc
[
L
(
K2[0]

)]
⊕ × 08 08 84 05 ⊕

crc[P[1]] ∗ ∗ ∗ ∗ ↗ + 01 crc
[
M
(
K1[1]

)] ∗ ∗ ∗ ∗
� � ↗ �

K0[1] ∗ ∗ ∗ � K1[1] � ∗ ∗ ∗ K2[1] ∗ ∗ ∗ ∗

Fig. 2. Difference trace of P[1] in the key update process

Rest of the Attack. The rest of the attack is similar to [1]. Now we have
220.2 candidates of K20[1], K

2
1[1], 30(31..2) bits of K20[0], 6(7..2) bits of M

(
K10[1]

)
and 6(7..2) bits of M

(
K11[1]

)
. By the similar way of finding K21[1] and 6(7..2) bits

of M
(
K11[1]

)
, we can find the forward state’s K20[i] and M

(
K10[i]

)
using S0[i+1] in

the sequel for i=2,. . . ,7.
At this point, we have to increase the number of candidates by the factor

of 216 because of guessing the least significant 24-bit value of K10[7]. We guess
24(23..0) bits of K10[7] and compute

(K10[7]− 1)× 0x08088405−1 = K10[6] + L
(
K00[7]

)
.

About 216 values remain by comparing the most significant bytes of the both
side. Through the pre-computed table, we can determine about 216 values for
24(23..0) bits of K10[7] from M

(
K10[6]

)
and M

(
K10[7]

)
without excess guessing.

L
(
K00[7]

)
is determined by comparing the most significant bytes of following

equation.

K10[5] + L
(
K00[6]

)
= (K10[6]− 1)× 0x08088405−1

=
{
(K10[7]− 1)× 0x08088405−1 + L

(
K00[7]

)
− 1

}
× 0x08088405−1

Determining L
(
K00[7]

)
can also be done by reading the pre-computed table instead

of comparing 8 bits for all 256 trials for L
(
K00[7]

)
. In the same manners, we can

compute the backward state’s K10[i] and L
(
K00[i]

)
in the sequel for i=6,5,4.

By the linearity of CRC32(,) function, we can determine K00[7] with L
(
K00[4]

)
,

L
(
K00[5]

)
, L

(
K00[6]

)
and L

(
K00[7]

)
. Then a complete state which consists of K00[7],

K10[7] and K20[7] is made for each element of 236.2 lists.
Until this point, we utilize 10 known plaintext bytes, P0[1],. . .,P0[8], P1[1] and

P1[2]. We need 5 more plaintext bytes except P0[1],. . .,P0[8] to check whether the
internal state is guessed correctly. We remark that P1[1] and P1[2] can be reused.
The efficiency of using P1[1] is relatively low because it was already used for the
same purpose at the beginning.

As a result, the attack has the complexity of 236.2 and uses at most 14-byte
known plaintext. It is aforementioned that the two versions of the Biham and
Kocher’s attack seem to have similar time complexity. So our new attack is about
3.4 times faster than the previous attack on average.

244 K.C. Jeong, D.H. Lee, and D. Han

3.3 Attack with More Files

If some additional files encrypted under the same password are given with their
forepart plaintext bytes, they also can be used to reduce the number of candi-
dates at the early stage of the attack.

The exact position where we use the j-th additional file Fj is related to the
smallest index, denoted by ij, such that P0[ij]�=Pj[ij]. The effects of Fj and Fk
are independent unless ij=ik and Pj[ij]=Pk[ik]. The difference between Pj[]
and Pk[] is also able to be used to reduce the number of key candidates. The
effects of this additional filtering differ according to the positions of the discrep-
ancy and the difference values. The algorithm of the attack with many files is
a straightforward extension. As a result, we can expect the attack to be about
(3.4)l times faster when l additional files with their plaintext are given.

4 Chosen Plaintext Attack

In the attack of the previous section, the ratio of the filtered wrong keys using
the plaintext of j-th additional file varies with the value of P0[ij]⊕Pj[ij]. Unlike
the Stay’s attack, our attack’s efficiency depends on the relation between the
plaintexts, so we can take an advantage in the chosen ciphertext attack. The
number’s minimum of the possible values for 6(7..2) bits of M

(
K10[1]

)
−M

(
K11[1]

)
is 3 in the table 2 of the appendix A. If we choose the plaintext bytes to reach
this minimum, our attack becomes 64/3 ≈ 21.3 times faster whenever one file is
additionally given.

The number of candidate keys in the list right before the filtering is 222. In
the known plaintext attack, each additional file can make the number decrease
by the factor of about 3.4 on average. Since 13 is the smallest inter i satisfying
222× (1/3.4)i < 1, it can be expected that there remains a unique key candidate
when 13 additional files are given. Similarly, in the chosen plaintext attack,
one key candidate can be obtained at this filtering stage with 5 additional files
because 5 is the smallest i such that 222 × (1/21.3)i < 1.

5 Experimental Result and Comparison

In this section, we give the time measuring result about the implementation of
our attack. It is briefly described how we can use the additional files in the Stay’s
attack. We implement the attack of Stay including the case of many files and
compare these results.

5.1 The Implementation of Our Attack

Our attack is implemented on the PC equipped with the Intel(R) Core(TM) i7
CPU 870 @ 2.93GHz using the C language. Since 8 threads are available on this
CPU, we have to employ a parallelizing technique. We use ‘openmp’ to work
with all 8 threads and simply parallelize the first loop for 16 bits guessing of

An Improved Known Plaintext Attack on PKZIP Encryption Algorithm 245

Table 1. The experimental result of our attack

The number of files 1 2 3 4 5

Average attack time 124.5 min 24.1 min 4.2 min 37.8 sec 11.7 sec

Ratio to the left column · 0.19 0.17 0.15 0.31

Ratio to the 1st col. per additional file 1 0.19 0.18 0.17 0.20

K20[1]. We measure the worst case time complexity which means the key finding
process goes till the end even after the correct key is found. The correct key is
found around the middle on average.

The result is summarized in the table 1. Whenever one file is added, the
ratio of time deceasing seems to be somewhat regular. To focus on measuring
the ratios, we use the common F0 for all cases, the common F1 for the last 4
cases, and so on, in each iteration. This result is better than the expected. One
additional file makes the attack about 5 times faster.

5.2 The Comparison with the Attack of Stay

The way to utilize an additional file in the Stay’s attack is natural. We explicitly
and briefly write down the case of 2 files. We denote temporarily 0 and 1 as �,
for example, K0	[1] means K00[1] and K01[1].

1. 216 candidates (32 bits guess / 16 bits check)
– Guess L

(
CRC32(K00[0],0)

)
→ Determine L

(
K0	[1]

)
using P	[1]

– Guess M
(
K10[0]×0x08088405

)
and 2 carries → Determine M

(
K1	[1]

)
– Guess 14(15..2) of CRC32(K20[0],0)

→ Determine 14(15..2) of K2	[1] and check 16 bits using S	[2]
2. 228 candidates (28 bits guess / 16 bits check)

– Guess 8(15..8) of CRC32(K00[0],0) → Determine L
(
K0	[2]

)
using P	[2]

– Guess M
(
K10[0]×0x080884052

)
and 2 carries → Determine M

(
K1	[2]

)
– Guess 10(23..16,1,0) of CRC32(K20[0],0)

→ Determine 14(15..2) of K2	[2] and check 16 bits using S	[3]
3. 230 candidates (26 bits guess / 24 bits check)

– Guess 8(23..16) of CRC32(K00[0],0) → Determine L
(
K0	[3]

)
using P	[3]

– Guess K10[0] (2
10 possibilities) → Determine M

(
K1	[3]

)
– Guess M

(
CRC32(K00[0],0)

)
, determine K00[0] and check 8 bits using S0[1]

→ Determine K2	[3] and check 16 bits using S	[4]
4. 238 candidates of K00[0], K

1
0[0], K

2
0[0] (8 bits guess)

– 28: Guess 8(31..24) of CRC32(K00[0],0) and determine K00[0]
5. Check 40 bits using S	[5], S	[6] and S0[7] ⇒ The correct state is found.

The maximum number of candidates is 238, which is a great improvement from
the single file case. One of the greatest advantages of this algorithm is that the
number of lists decreases by the factor of 27 in every step whenever one additional
file is given. However, it must be done in the way of one more bits guessing and 8

246 K.C. Jeong, D.H. Lee, and D. Han

more bits check. It is not easy to reduce the number of intermediate candidates
using some preparations.

We have to mention that finding the list of K10[0] efficiently in step 3 does
not seem to be easy to us. The 32-bit brute force search is very inefficient. The
pre-computation table including about 16GB information can be made if we do
not apply the information about the carry bits. It is not easy to handle this table
due to its size.

If 5 files are given, there remains a unique list in each step. So no more addi-
tional file is needed. Thus we implemented this attack of 5-file case in the same
environment including the parallel computing with 8 threads as the previous
subsection. We employed an inevitable cheating about K10[0] in step 3. We just
use the stored right key value to make the list of appropriate size. The worst
case average time of this attack is about 2 minutes. It is about 10 times slower
than 5 file case of our new attack.

If there is only one file, the Biham and Kocher’s algorithm is more efficient
than the Stay’s algorithm. The improvement of the complexity per additional
file is much greater in the Stay’s attack. The complexity of the Stay’s attack
keep decreasing until the number of files encrypted under an identical password
grows to 5. Our attack’s complexity decreases until 14 files are given on average.
So we can conclude that our attack is always at least 10 times faster than the
Stay’s attack if the same number of files are given with their plaintext.

6 Conclusion

In this paper, we improved the known plaintext attack on the PKZIP encryption
suggested in [1]. Our attack can utilize the additional information of multi-files
encrypted under the same password. Comparing the single file case (original
version of [1]), our attack can be about (3.4)l times faster when (l+1) files with
their plaintext bytes are given. In the chosen ciphertext model, ours becomes
(21.3)l times faster when (l + 1) files are used.

References

1. Biham, E., Kocher, P.: A Known Plaintext Attack on the PKZIP Stream Cipher.
In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 144–153. Springer, Heidelberg
(1995)

2. Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of
Exclusive-Or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–
331. Springer, Heidelberg (2004)

3. Stay, M.: ZIP Attacks with Reduced Known Plaintext. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 125–134. Springer, Heidelberg (2002)

4. PKWARE, Inc., APPNOTE.TXT - .ZIP File Format Specification. version 6.3.2,
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

An Improved Known Plaintext Attack on PKZIP Encryption Algorithm 247

A The Subtraction Difference of K1[1]

We are going to explain the detail about the process to find the possible values
of K1[1] difference. Let assume that P0[1]⊕P1[1]=0x1d, then L(crc[P0[1]⊕P1[1]])
is 0xd9. The equation (3) can be written again with the specific value.

K10[1]− K11[1] =
{
L
(
K00[1]

)
− L

(
K00[1]

)
⊕ 0xd9

}
× 0x08088405 (4)

For all the values of L
(
K00[1]

)
, 16 distinct 6-bit values appear as the most signif-

icant 6(31..26) bits of the righthand side of the equation (4). The entire values
of this list are 0xc, 0xd, 0xe, 0xf, 0x10, 0x11, 0x12, 0x13, 0x2c, 0x2d, 0x2e,
0x2f, 0x30, 0x31, 0x32 and 0x33.

Assume that the actual value of the most significant 6 bits of equation (4) is
0x13. If 26(25..0) bits of K10[1] is greater than 26(25..0) bits of K11[1], 6(7..2) bits
of M

(
K10[1]

)
minus 6(7..2) bits of M

(
K11[1]

)
equals to 0x14. So the number of all the

possible values for the most significant 6-bit subtraction of K1[1] considering the
carry possibility is 18, which consists of 0xc, 0xd, 0xe, 0xf, 0x10, 0x11, 0x12,
0x13, 0x14, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33 and 0x34.

The numbers of the possible subtraction differences for all values of P0[1]⊕P1[1]
are presented in Table 2. For example, when P0[1]⊕P1[1] = 0x1d, the number of
subtraction difference is placed in the intersection of the row with index ‘1’ and
the column with index ‘d’ in the table. The result is 18 as the above description.
The average value of all 255 elements is 18.7.

Table 2. The subtraction difference table of K1

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 · 20 12 20 12 56 12 17 6 10 24 8 24 36 16 9

1 6 12 6 40 28 34 6 33 12 5 14 20 48 18 12 20

2 10 24 10 6 9 24 40 24 24 12 20 3 17 12 64 12

3 20 12 4 12 18 12 18 32 40 4 10 6 25 6 34 24

4 5 8 20 12 16 48 18 12 10 6 32 6 34 24 33 4

5 12 6 10 24 36 28 9 24 20 3 20 14 64 12 19 12

6 6 40 6 10 6 33 24 36 12 24 12 5 12 18 48 18

7 12 20 3 16 12 17 8 64 16 10 6 10 24 7 24 36

8 3 20 8 20 12 64 12 13 6 8 24 10 16 36 24 9

9 6 10 6 48 24 34 6 33 12 5 12 20 48 20 12 18

a 10 28 10 6 11 24 36 24 20 12 24 3 17 12 64 14

b 16 12 5 12 18 8 18 48 40 6 10 4 33 6 30 24

c 5 12 20 8 18 48 14 12 8 6 40 6 34 16 33 6

d 10 6 12 24 36 24 9 24 20 3 20 12 64 12 17 12

e 6 40 6 10 6 35 24 34 12 20 12 5 12 18 55 18

f 12 16 3 20 8 17 12 64 24 10 4 10 24 9 24 30

Synthetic Linear Analysis: Improved Attacks

on CubeHash and Rabbit

Yi Lu1, Serge Vaudenay2, Willi Meier3,
Liping Ding1, and Jianchun Jiang1

1 National Engineering Research Center of Fundamental Software,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 EPFL, Lausanne, Switzerland
3 FHNW, Windisch, Switzerland

Abstract. It has been considered most important and difficult to an-
alyze the bias and find a large bias regarding the security of crypto-
systems, since the invention of linear cryptanalysis. The demonstration
of a large bias will usually imply that the target crypto-system is not
strong. Regarding the bias analysis, researchers often focus on a the-
oretical solution for a specific problem. In this paper, we take a first
step towards the synthetic approach on bias analysis. We successfully
apply our synthetic analysis to improve the most recent linear attacks
on CubeHash and Rabbit respectively. CubeHash was selected to the
second round of SHA-3 competition. For CubeHash, the best linear at-
tack on 11-round CubeHash with 2470 queries was proposed previously.
We present an improved attack for 11-round CubeHash with complexity
2414.2. Based on our 11-round attack, we give a new linear attack for
12-round CubeHash with complexity 2513, which is sharply close to the
security parameter 2512 of CubeHash. Rabbit is a stream cipher among
the finalists of ECRYPT Stream Cipher Project (eSTREAM). For Rab-
bit, the best linear attack with complexity 2141 was recently presented.
Our synthetic bias analysis yields the improved attack with complex-
ity 2136. Moreover, it seems that our results might be further improved,
according to our ongoing computations.

Keywords: bias, linear cryptanalysis, synthetic analysis, conditional
dependence, CubeHash, Rabbit.

1 Introduction

It has been considered most important and difficult to analyze the bias and
find a large bias regarding the security of crypto-systems, since the invention of
linear cryptanalysis [6] almost 20 years ago. The demonstration of a large bias
will usually imply that the target crypto-system is not as strong as expected.
Regarding the bias analysis, researchers often focus on a theoretical solution for
a specific problem. Unfortunately, it does not help much to analyze the bias for
a broad class of problems.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 248–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 249

Most often, we need to study the combined bias of multiple Boolean functions
(suchasmultiple linear approximations)withmany inputvariables.Assuming that
these Boolean functions are all independent pairwise, the problem reduces to the
bias computation of each Boolean function separately. Apparently, if the terms in-
volved in each Boolean function are statistically independent of the terms in the
others, we are sure that all are independent pairwise and it is “safe” to concentrate
on bias computation of each Boolean function. Further, it is worth pointing out
that it is incorrect to conclude independence when the terms involved in each func-
tion “differ” from the terms occurring in the others. It is thus essential to conduct
synthetic analysis to study these bias problems. In this paper, we take a first step
towards the synthetic approach on bias analysis.We also propose a conditional de-
pendent bias problem and we give an analysis to estimate the bias.

We apply our synthetic analysis to improve the most recent linear attack [1] on
the hash function CubeHash [2]. CubeHash was selected to the second round of
SHA-3 competition [8]. In [1], based on the bias analysis for 11-round CubeHash,
the best linear attack on 11-round CubeHash with 2470 queries was proposed.
Our results improve the bias analysis [1]. We show the largest bias 2−207.1 for
11-round CubeHash, and we present an improved linear attack for 11-round
CubeHash with complexity 2414.2. Further, based on our 11-round attack, we
give a new linear attack for 12-round CubeHash with complexity 2513, which is
sharply close to the security parameter 2512 of CubeHash.

Meanwhile, our synthetic analysis is applied to the recent linear attack [5]
on stream cipher Rabbit [3]. Rabbit is a stream cipher among the finalists of
ECRYPT Stream Cipher Project (eSTREAM). It has also been published as
informational RFC 4503 with the Internet Engineering Task Force (IETF). In
[5], the best linear attack with complexity 2141 was presented. As reference,
Rabbit designers claim the security level 2128. Our synthetic analysis applies
to the main part of the bias analysis [5]. Our results yield the improved linear
attack with complexity 2136.

The rest of the paper is organized as follows. In Section 2, we give preliminary
analysis on CubeHash. In Section 3, we introduce the synthetic approach to the
bias analysis problem and discuss how to apply to CubeHash round function in
details. In Section 4, we propose the synthetic bias analysis for the conditional
dependent problem. In Section 5 and Section 6, we present our improved attacks
on CubeHash and Rabbit. We conclude in Section 7.

2 Preliminary Analysis on CubeHash Round Function

The hash function CubeHash [2] was designed by Prof. Daniel J. Bernstein. It
was one of the 14 candidates which were selected to the second round of SHA-3
competition [8]. SHA-3 was initiated by the U.S. National Institute of Standards
and Technology to push forwards the development of a new hash standard,
following the recent fruitful research work on the hash function cryptanalysis.
CubeHash is a family of cryptographic hash functions, parameterized by the
performance and security requirement. At the heart of it, CubeHash consists

250 Y. Lu et al.

of an internal state of 1024 bits, round transformation T , round number r,
between introduction of new message blocks. At the end, T is repeated 10r times
before outputting h bits of its state as the final hash value. Security/performance
tradeoffs are provided with different combinations h, r and the message block
length b. The normal security parameters are r = 16, b = 32, according to [1].

Each Round of CubeHash consists of two half rounds. Each half round consists
of five steps, and only one step out of five introduces nonlinearity to the internal
state by performing the modular addition operations. We will investigate the
largest bias [1] for CubeHash. It was shown that due to this largest bias, a non-
trivial linear attack on 11-round CubeHash with 2470 queries exists. As reference,
the security parameter is 2512. We will improve the bias analysis of multiple linear
approximations in [1]. Recall that the bias1 of a binary random variable X is
Pr[X = 0] − Pr[X = 1]. Our main focus is that, within each round, the linear
approximations are not all independent pairwise. This can be justified by the
fact that nonlinearity is introduced by two separate steps (Step 1 and Step 6)
instead of one step within a round.

Let us start from a simple case of Round 7 first. We let 32 words x00000, x00001,
. . . , x11111 to denote the internal states of 1024 bits (each word has 32 bits). The
round transformation T can be described by the following ten steps of operations
(‘+’ denotes modular addition):

Step 1: x0n + x1n → x1n for all 4-bit n

Step 2: x0n ≪ 7 → x0n for all 4-bit n

Step 3: x00n ↔ x01n for all 3-bit n

Step 4: x0n ⊕ x1n → x0n for all 4-bit n

Step 5: x1jk0m ↔ x1jk1m for all 1-bit j, k,m

Step 6: x0n + x1n → x1n for all 4-bit n

Step 7: x0n ≪ 11 → x0n for all 4-bit n

Step 8: x0j0km ↔ x0j1km for all 1-bit j, k,m

Step 9: x0n ⊕ x1n → x0n for all 4-bit n

Step 10: x1jkm0 ↔ x1jkm1 for all 1-bit j, k,m

For our purpose, we use superscripts to represent the step number within the
round. We let the states without superscripts to represent the states right at
beginning of the round. The round number of the internal states which we study
is clear from the context, and we omit it from the notations. At Step 1 of Round
7, the step operation allows us to deduce:

0x300 · x10100 ⊕ 0x300 · x10110 (1)

= 0x300 · x10100 ⊕ 0x300 · x00100 ⊕ 0x300 · x00100 ⊕ (2)

0x300 · x10110 ⊕ 0x300 · x00110 ⊕ 0x300 · x00110 (3)

≈ 0x300 · x1
10100 ⊕ 0x300 · x1

10110 ⊕ 0x300 · x1
00100 ⊕ 0x300 · x1

00110 (4)

1 Our definition of bias is slightly different from [1], it was defined as Pr[X = 0]− 1/2
in [1].

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 251

We note that two linear approximations are introduced into (4):

0x300 · x1
10100 ⊕ 0x300 · x1

00100 ≈ 0x300 · (x1
10100 − x1

00100) (5)

0x300 · x1
10110 ⊕ 0x300 · x1

00110 ≈ 0x300 · (x1
10110 − x1

00110) (6)

We continue on (4) from Step 2 through Step 5:

= 0x300 · x2
10100 ⊕ 0x300 · x2

10110 ⊕ 0x18000 · x2
00100 ⊕ 0x18000 · x2

00110

= 0x300 · x3
10100 ⊕ 0x300 · x3

10110 ⊕ 0x18000 · x3
01100 ⊕ 0x18000 · x3

01110

= 0x300 · x4
10100 ⊕ 0x300 · x4

10110 ⊕ 0x18000 · x4
01100 ⊕ 0x18000 · x4

11100 ⊕
0x18000 · x4

01110 ⊕ 0x18000 · x4
11110

= 0x300 · x5
10110 ⊕ 0x300 · x5

10100 ⊕ 0x18000 · x5
01100 ⊕ 0x18000 · x5

11110

⊕0x18000 · x5
01110 ⊕ 0x18000 · x5

11100 (7)

At Step 6, (7) can be rewritten as,

= 0x300 · x5
10110 ⊕ 0x300 · x5

00110 ⊕ 0x300 · x5
00110 ⊕

0x300 · x5
10100 ⊕ 0x300 · x5

00100 ⊕ 0x300 · x5
00100 ⊕

0x18000 · x5
01100 ⊕ 0x18000 · x5

11100 ⊕ 0x18000 · x5
01110 ⊕ 0x18000 · x5

11110

≈ 0x300 · x6
10110 ⊕ 0x300 · x6

00110 ⊕ 0x300 · x6
10100 ⊕ 0x300 · x6

00100 ⊕
0x18000 · x6

11100 ⊕ 0x18000 · x6
11110

Four linear approximations are introduced in this step:

0x300 · x5
10110 ⊕ 0x300 · x5

00110 ≈ 0x300 · (x5
10110 + x5

00110) (8)

0x300 · x5
10100 ⊕ 0x300 · x5

00100 ≈ 0x300 · (x5
10100 + x5

00100) (9)

0x18000 · x5
01100 ⊕ 0x18000 · x5

11100 ≈ 0x18000 · (x5
01100 + x5

11100) (10)

0x18000 · x5
01110 ⊕ 0x18000 · x5

11110 ≈ 0x18000 · (x5
01110 + x5

11110) (11)

It is clear that the bias for the linear approximation at Round 7,

0x300 · x10100 ⊕ 0x300 · x10110 (12)

≈ 0x180000 · (x10
00000 ⊕ x10

00010 ⊕ x10
10001 ⊕ x10

10011)⊕
0x300 · (x10

10101 ⊕ x10
10111)⊕ 0x18000 · (x10

11101 ⊕ x10
11111)

equals the combined bias of the six approximations (5), (6), (8), (9), (10), (11)
holding simultaneously. Furthermore, if these approximations are independent,
we apply Piling-up lemma [6] to deduce that the total bias is equal to the product
of the six individual biases for each linear approximation. Unfortunately, as we
demonstrate below, this independence assumption is not true.

Obviously, we can easily justify that Approximations (5), (6) are independent,
because the involved states x10100, x00100 in (5) are independent of the involved
states x10110, x00110 in (6); similarly, Approximations (8), (9), (10), (11) are
independent pairwise. Our main focus here is to show below that these two

252 Y. Lu et al.

groups of approximations are, however, not independent. The internal states
are invertible with the CubeHash round function T , as each step operation is
invertible. Thus, we can rewrite Approximations (8), (9), (10), (11) in terms of
states right after step one as follows respectively,

0x300 · (x1
10100 + (x1

01110 ≪ 7⊕ x1
10110)) ≈ 0x300 · (x1

10100 (13)

⊕x1
01110 ≪ 7⊕ x1

10110)

0x300 · (x1
10110 + (x1

01100 ≪ 7⊕ x1
10100)) ≈ 0x300 · (x1

10110 (14)

⊕x1
01100 ≪ 7⊕ x1

10100)

0x18000 · (x1
11110 + (x1

00100 ≪ 7⊕ x1
11100)) ≈ 0x18000 · (x1

11110 (15)

⊕x1
00100 ≪ 7⊕ x1

11100)

0x18000 · (x1
11100 + (x1

00110 ≪ 7⊕ x1
11110)) ≈ 0x18000 · (x1

11100 (16)

⊕x1
00110 ≪ 7⊕ x1

11110)

In the next section, we will discuss the synthetic bias analysis and apply it for
CubeHash Round 7 to analyze (5), (6), (13), (14), (15) and (16).

3 The Synthetic Approach

When we study the combined bias of multiple Boolean functions, such as multi-
ple linear approximations, it is common to assume that they are all independent
pairwise. This way, the problem reduces to the bias computation of each Boolean
function separately. Apparently, if the terms involved in each function are sta-
tistically independent of the terms in the other functions, we are sure that all
function outputs are independent pairwise and it is “safe” to concentrate on bias
computation of each Boolean function. Further, it is worth pointing out that it
is incorrect to conclude independence when the terms involved in each function
“differ” from the terms occurring in the other functions. For example, one might
take it for granted that (5), (6), (8), (9), (10), (11) are all independent, as the
terms occurring in any linear approximation never occurs in other approxima-
tions. As a matter of fact, as we will see later, after re-writing (8), (9), (10), (11)
equivalently by (13), (14), (15), (16) respectively, they are not all independent.

It thus leads us naturally to the “Divide-and-Conquer” method to the bias
analysis involving multiple Boolean functions. That is, we try to group multiple
possibly dependent Boolean functions (eg. linear approximations with regards
to CubeHash). The aim is that the functions in each group are dependent and
the functions in different groups are independent. When grouping, it is desirable
to make each group size as small as possible. The group size is referred to the
number of functions contained in the group. The rationale behind grouping is
that, we are dividing originally one (big) group of a larger number of functions
into multiple independent groups; once grouping is done, we just need to study
each group of smaller size individually. This helps make the task of bias anal-
ysis easier by reducing the number of the functions, which have to be studied
simultaneously. We will explain in details next on CubeHash.

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 253

3.1 Our Analysis on CubeHash Round Function

We will first see how to group the six approximations (5), (6), (13), (14), (15)
and (16) for CubeHash Round 7. We look at (13) and (14) first. At first glance,
it seems that they are dependent as both have x1

10110 and x1
10100. However, we

note that x1
01110, x

1
01100 only occurs once in (5), (6), (13), (14), (15), (16), i.e.,

neither occurs in (5), (6), (15), (16). From the fact that x1
01110, x

1
01100 are indepen-

dent, we deduce that x1
10100, x

1
01110 ≪ 7 are independent of x1

10110, x
1
01100 ≪ 7.

Thus, x1
10100, x

1
01110 ≪ 7 ⊕ x1

10110 are independent of x1
10110, x

1
01100 ≪ 7; and

x1
10100, x

1
01110 ≪ 7⊕x1

10110 are independent of x1
10110, x

1
01100 ≪ 7⊕x1

10100. Con-
sequently, we know that (13) and (14) are independent. As x1

10100 occurs in both
(5) and (13), we group (5) and (13) together. Likewise, as x1

10110 occurs in both
(6) and (14), we group (6) and (14) together.

Both (15), (16) involve x1
11110, x

1
11100, and it thus seems that (15), (16) are

dependent. We can use the fact that x1
00100, x

1
00110 are independent to show that

x1
11110, x

1
00100 ≪ 7⊕ x1

11100 are independent of x1
11100, x

1
00110 ≪ 7 ⊕ x1

11110. So,
we deduce (15) and (16) are independent. As (15), (16) relates to x1

00100, x
1
00110

respectively, x1
00100 is related to (5), (13), and x1

00110 is related to (6) and (14).
Therefore, we are able to make two groups. Group One contains (5), (13), (15).
Group Two contains (6), (14), (16). These two groups are independent as we
have just explained above.

When it comes to the joint bias computation of a group of dependent linear
approximations, in general, it is a computationally hard problem, although in
certain cases it might be feasible to calculate the bias for a single linear ap-
proximation. For example, [4] is applicable to analyze the bias of a single linear
approximation in our above CubeHash problem. Nevertheless, when the bias is
large, we can always compute it empirically, as successfully showed with recent
results on RC4 biases (eg. [9]). The direct bias computation when the bias is
small is beyond the scope of this paper.

Our computations show that the joint bias for the group of approximations
(5), (13), (15) holding simultaneously is around 2−2.5 and the joint bias for (6),
(14), (16) is around 2−2.5.

Consequently, the total bias for the linear approximation (12) at Round 7,
is calculated as 2−2.5 × 2−2.5 = 2−5. In contrast, if the dependency within the
round is ignored, we would have a smaller bias 2−6 at Round 7.

For CubeHash Round 8, we can show that six pairwise independent approxi-
mations arise at Step 1:

0x180000 · (x1
00001 ⊕ x1

10001) ≈ 0x180000 · (x1
00001 − x1

10001) (17)

0x180000 · (x1
00011 ⊕ x1

10011) ≈ 0x180000 · (x1
00011 − x1

10011) (18)

0x300 · (x1
00101 ⊕ x1

10101) ≈ 0x300 · (x1
00101 − x1

10101) (19)

0x300 · (x1
00111 ⊕ x1

10111) ≈ 0x300 · (x1
00111 − x1

10111) (20)

0x18000 · (x1
01101 ⊕ x1

11101) ≈ 0x18000 · (x1
01101 − x1

11101) (21)

0x18000 · (x1
01111 ⊕ x1

11111) ≈ 0x18000 · (x1
01111 − x1

11111) (22)

254 Y. Lu et al.

Eight pairwise independent approximations arise at Step 6. They are presented
in terms of states right after step one of the round:

0x180000 · (x1
10011 + (x1

01001 ≪ 7⊕ x1
10001)) ≈

0x180000 · (x1
10011 ⊕ x1

01001 ≪ 7⊕ x1
10001) (23)

0x180000 · (x1
10001 + (x1

01011 ≪ 7⊕ x1
10011)) ≈

0x180000 · (x1
10001 ⊕ x1

01011 ≪ 7⊕ x1
10011) (24)

0xc00300 · (x1
10111 + (x1

01101 ≪ 7⊕ x1
10101)) ≈

0xc00300 · (x1
10111 ⊕ x1

01101 ≪ 7⊕ x1
10101) (25)

0xc00300 · (x1
10101 + (x1

01111 ≪ 7⊕ x1
10111)) ≈

0xc00300 · (x1
10101 ⊕ x1

01111 ≪ 7⊕ x1
10111) (26)

0xc000000 · (x1
11010 + (x1

00000 ≪ 7⊕ x1
11000)) ≈

0xc000000 · (x1
11010 ⊕ x1

00000 ≪ 7⊕ x1
11000) (27)

0xc000000 · (x1
11011 + (x1

00001 ≪ 7⊕ x1
11001)) ≈

0xc000000 · (x1
11011 ⊕ x1

00001 ≪ 7⊕ x1
11001) (28)

0xc000000 · (x1
11000 + (x1

00010 ≪ 7⊕ x1
11010)) ≈

0xc000000 · (x1
11000 ⊕ x1

00010 ≪ 7⊕ x1
11010) (29)

0xc000000 · (x1
11001 + (x1

00011 ≪ 7⊕ x1
11011)) ≈

0xc000000 · (x1
11001 ⊕ x1

00011 ≪ 7⊕ x1
11011) (30)

Thus, we have 6+8=14 linear approximations involved in this round. As was
done for Round 7, we can demonstrate that these 14 approximations fall into
four independent groups.

Group One: (17), (18), (23), (24), (28), (30).
Group Two: (19), (20), (21), (22), (25), (26).
Group Three: (27).
Group Four: (29).

As Group Three and Group Four each contains only one approximation, we easily
know the bias is 2−1 for each group directly from [4]. Group One and Group
Two each contains six approximations. We compute the total bias for each group
separately. Our results show that the bias for Group One is 2−5 and the bias
for Group Two is 2−6.8. Note that the independence assumption would yield a
smaller bias 2−6, 2−8 for Group One, Group Two respectively. Consequently, we
deduce the total bias 2−5×2−6.8×2−1×2−1 = 2−13.8 for Round 8, by considering
the dependence within the round. Note that, if the dependency within the round
is ignored, we would have a smaller bias 2−16.

4 Synthetic Bias Analysis on the Conditional Dependent
Problem

When analyzing CubeHash round function, we note a new bias problem, which
we shall call conditional dependence from now on. This is in contrast to the well-
known concept of conditional independence in statistics. Let X,Y, Z be random

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 255

variables. Recall thatX,Y are conditional independent given Z, if X,Y, Z satisfy
Pr(X = x, Y = y|Z) = Pr(X = x|Z) Pr(Y = y|Z) for all x, y. In our problem,
X,Y are statistically independent variables, but X,Z are dependent as well as
Y, Z. We say that X,Y are conditional dependent given Z. We are concerned
with the bias of f1(X) ⊕ f2(Y) ⊕ f3(Z) for Boolean functions f1, f2, f3. For
convenience, we say f1(X), f2(Y) are conditional dependent given f3(Z) rather
than that X,Y are conditional dependent given Z.

Formally speaking, we consider that u0, u1, u2, v1, v2 are independent vari-
ables of binary strings (of fixed length). Three Boolean functions fA(u0, u1, u2),
fB(u2, v2), fC(u1, v1) are defined over those variables. For simplicity, they are
denoted by A,B,C in shorthand. We assume that we already know the bias
for A,B,C respectively. The main question is, we want to estimate the bias for
A ⊕ B ⊕ C, and due to the dependence we do not want to use the Piling-up
approximation. We assume it infeasible to compute directly. Our first solution
is to obtain the bias for A ⊕ C (or A ⊕ B) first. Then, estimate the bias for
A⊕B ⊕ C by taking either of the two

Bias(A⊕ C) · Bias(B), Bias(A⊕B) · Bias(C).

Here, we consider only one dependence relation and ignore another dependence
relation.

By considering the functions as black-boxes (of random functions), we propose
to use the heuristics and make a more delicate estimate as follows. As u1 affects
both A⊕B and C, we make a simple assumption about the two distributions of
the bias for A⊕B and for C over u1: the absolute value of the bias is (almost)
a constant and can only take values in a set of two elements. Thus, it leads us
to compute the average p+ (resp. p−) of the positive (resp. negative) biases for
A ⊕ B over randomly chosen u1 and the percentage q of the positive biases for
A ⊕ B over randomly chosen u1. Similarly, we also compute the average of the
positive p′+ (resp. negative p′−) biases for C over randomly chosen u1 and the
percentage q′ of the positive biases.

The distribution of the bias for A⊕B over u1 is independent of the distribution
of the bias for C over u1, so we combine the results and give an estimate on the
bias of A⊕B ⊕ C by

qq′p+p′+ + (1− q)(1 − q′)p−p′− − q(1− q′)p+p′− − (1− q)q′p−p′+ (31)

5 Improved Attacks on CubeHash

Using our synthetic analysis, we analyzed all the 11 rounds for CubeHash. We
give our results in Table 1. Note that we can show that all the linear approxi-
mations for Round 5 are independent and for Round 6, so no bias improvement
is possible for Round 5 as well as Round 6. Due to the dependence within each
round, we are able to improve the bias estimate for 11-round CubeHash from
2−234 in [1] to 2−207.1. This gives an improved attack for 11-round CubeHash
with complexity 2414.2.

256 Y. Lu et al.

Table 1. Our analysis results on 11-round linear approximations of CubeHash

round 1 2 3 4 5 6 7 8 9 10 11 total

our bias 2−29 2−35.7 2−16.9 2−13 2−4 2−2 2−5 2−13.8 2−18.7 2−36.5 2−32.5 2−207.1

paper [1] 2−34 2−40 2−18 2−14 2−4 2−2 2−6 2−16 2−22 2−42 2−36 2−234

We can extend our above results to attack 12-round CubeHash. Our analysis
shows that by choosing the same output masks from the set {0x600, 0x18000,
0x180000, 0xc000000, 0xc0000000} for x01101 and x01111 at the end of Round 5,
going backwards 6 rounds, forwards 6 rounds, we get2 five new linear approxi-
mations (given in Appendix A) on 12-round CubeHash. They all have the same
bias of around 2−261.1. In particular, with this construction, the last 11 rounds
all have the same bias as our 11-round CubeHash above. The bias for its first
round is 2−54, assuming all linear approximations are independent3.

In above analysis, the analysis is focused within each round. According to the
specification of CubeHash, no randomization is introduced between consecutive
rounds, and the biases of consecutive rounds of CubeHash are likely to be depen-
dent. Our current quick results show that the bias for round 6 and round 7 can
be improved to 2−6, and the bias for round 4 and round 5 can be improved to
2−16. Thus, we have the improved bias estimate 2−259.1 for 12-round CubeHash.
By using the five equal biases, we have an attack complexity 2(−256.5)×(−2), ie.
O(2513).

6 Our Improved Analysis on Stream Cipher Rabbit

Rabbit [3] is a stream cipher among the finalists of EU-funded ECRYPT Stream
Cipher Project (eSTREAM). Rabbit encryption algorithm has been published
as informational RFC 4503 with the Internet Engineering Task Force (IETF),
the standardization body for Internet technology. We give a brief description
on Rabbit in Appendix B. Recently, the bias for Rabbit keystream outputs,

0x606 · s[47..32]i+1 ⊕ 0x606 · s[79..64]i+1 ⊕ 0x606 · s[111..96]i+1 was estimated to be 2−70.5 in
[5]. It yields the best distinguishing attack with complexity 2141, which is still
above the claimed security level 2128.

In this section, we apply our synthetic approach to analyze the main part of
the bias analysis, i.e., the total combined bias of the six linear approximations
below for m = 0x606,m′ = 0x6060000 (for simplicity we omit the irrelevant
subscripts i from the variables g):

2 Note that in above analysis on 11-round CubeHash, the 11-round linear approxima-
tion can be obtained by going backwards 5 rounds and forwards 6 rounds with mask
0x6 for x01101 and x01111 at the end of Round 5.

3 As our computation is going on, we expect that our previous analysis on the internal
round dependence would further improve it.

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 257

m · (g2 + g1 ≪ 16 + g0 ≪ 16) ≈ m · (g2 ⊕ g1 ≪ 16⊕ g0 ≪ 16) (32)

m · (g4 + g3 ≪ 16 + g2 ≪ 16) ≈ m · (g4 ⊕ g3 ≪ 16⊕ g2 ≪ 16) (33)

m · (g6 + g5 ≪ 16 + g4 ≪ 16) ≈ m · (g6 ⊕ g5 ≪ 16⊕ g4 ≪ 16) (34)

m′ · (g1 + g0 ≪ 8 + g7) ≈ m′ · (g1 ⊕ g0 ≪ 8⊕ g7) (35)

m′ · (g3 + g2 ≪ 8 + g1) ≈ m′ · (g3 ⊕ g2 ≪ 8⊕ g1) (36)

m′ · (g7 + g6 ≪ 8 + g5) ≈ m′ · (g7 ⊕ g6 ≪ 8⊕ g5) (37)

Let Group One contain (32), (33), (36) and Group Two contain (34), (37).
Following Sect. 3, we can demonstrate that the linear approximations in Group
One are independent from those in Group Two. Nonetheless, given (35), the
two groups are not independent. We let A denote the corresponding4 Boolean
function of (35), and let B,C denote the corresponding5 Boolean function for
Group One, Group Two respectively. Obviously, this is a conditional dependent
bias problem as we proposed in Sect. 4. Using our first solution in Sect. 4, we
compute the bias for A⊕B,C respectively and get 2−11.4, 2−6. We estimate the
combined bias for above six linear approximations by

2−11.4 × 2−6 = 2−17.4. (38)

Now, we want to apply our black-box solution (31) in Sect. 4. In our case, we

have u1 = g
[31..16]
7 . For A ⊕ B, we compute with 226 random samples for each

randomly chosen u1 and we run it 214 times. We get in hexadecimal form: q =
0x24a6/0x4000, p+ = 0x1e0e6fc1/(0x24a6 ∗ 225), p− = 0x123210ab/(0x1b5a ∗
225). They correspond to the percentage of positive bias 57.3%, the average of
positive bias +2−9.3, the average of negative bias −2−9.6, and the average bias
+2−11.43 of all. For the function C, we compute with 222 random samples for
each randomly chosen u1 and we run it 216 times. We get q′ = 0xafed/0x10000,
p′+ = 0xd4698c87/(0xafed ∗ 221), p′− = 0x4ea00ceb/(0x5013 ∗ 221). They cor-
respond to the percentage of positive bias 68.7%, the average of positive bias
+2−4.73, the average of negative bias −2−5.03, and the average bias +2−5.94 of
all6 . By (31), we estimate the bias 2−17.5 for A ⊕ B ⊕ C. This result agrees
with our first estimation (38). Note that based on the naive independence as-
sumption, this combined bias is estimated to be smaller, i.e., 2−20, according to
[5]. Consequently, we have an improved attack on Rabbit with complexity 2136,
based on [5].

7 Conclusion

In this paper, we take a first step towards the synthetic approach on bias analy-
sis. We apply the “Divide-and-Conquer” method to our synthetic bias analysis.

4 We obtain it by replacing ‘≈’ with ‘⊕’ in (35).
5 We obtain it by replacing ‘≈’ with ‘⊕’ in all the linear approximations in the group

and XORing them together.
6 The computations were run several times and we always got these same statistics.

258 Y. Lu et al.

Our synthetic approach helps make the task of bias analysis easier when multiple
Boolean functions are involved. We also propose a conditional dependent bias
problem. Based on naive heuristics and certain ideal assumptions, we give the
synthetic bias analysis to estimate the bias. Our synthetic approach is success-
fully applied to improve the best linear attacks [1,5] on CubeHash and Rabbit
respectively. We present an improved attack on 11-round CubeHash with com-
plexity 2414.2. Based on our 11-round attack, we give a new linear attack for
12-round CubeHash with complexity 2513, which is sharply close to the security
parameter 2512 of CubeHash. We also give an improved attack on Rabbit with
complexity 2136. Moreover, it seems that our results might be further improved,
from our ongoing computations.

Acknowledgments. This work is supported by the National Science and Tech-
nology Major Project No. 2010ZX01036-001-002 and the Knowledge Innova-
tion Key Directional Program of Chinese Academy of Sciences under Grant No.
KGCX2-YW-125, and the National Natural Science Foundation of China under
Grant No. 90818012.

References

1. Ashur, T., Dunkelman, O.: Linear Analysis of Reduced-Round CubeHash. In: Lopez,
J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 462–478. Springer, Heidelberg
(2011)

2. Bernstein, D.J.: CubeHash specification (2.B.1) Submission to NIST (2009)
3. Boesgaard, M., Vesterager, M., Christensen, T., Zenner, E.: The stream cipher Rab-

bit. In: The ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream/
4. Cho, J.Y., Pieprzyk, J.: Multiple Modular Additions and Crossword Puzzle Attack

on NLSv2. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 230–248. Springer, Heidelberg (2007)

5. Lu, Y., Desmedt, Y.: Improved Distinguishing Attack on Rabbit. In: Burmester,
M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 17–23.
Springer, Heidelberg (2011)

6. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

7. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC (1996)

8. N.I.S.T., Cryptographic hash algorithm competition,
http://www.nist.gov/hash-competition

9. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Discovery and Exploitation of New
Biases in RC4. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 74–91. Springer, Heidelberg (2011)

http://www.ecrypt.eu.org/stream/
http://www.nist.gov/hash-competition

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 259

Appendix A: New Linear Approximations on 12-Round
CubeHash

The five new linear approximations on 12-round CubeHash, which we used in
Section 5, are given below (x, x′ denote the inputs, outputs respectively):

0x18199800 · x00000 ⊕ 0x18199800 · x00010 ⊕ 0xe7999f81 · x01101

⊕ 0xe7999f81 · x01111 ⊕ 0x18199800 · x10001 ⊕ 0x18199800 · x10011

⊕ 0x30333 · x10101 ⊕ 0x30333 · x10111 ⊕ 0x1819980 · x11101

⊕ 0x1819980 · x11111 ≈ 0x99800181 · x′
00000 ⊕ 0x99800181 · x′

00010

⊕ 0x18006018 · x′
01101 ⊕ 0x18006018 · x′

01111 ⊕ 0x99800181 · x′
10001

⊕ 0x99800181 · x′
10011 ⊕ 0x30333000 · x′

10101 ⊕ 0x30333000 · x′
10111

⊕ 0x19980018 · x′
11101 ⊕ 0x19980018 · x′

11111

0x6660006 · x00000 ⊕ 0x6660006 · x00010 ⊕ 0xe667e079 · x01101

⊕ 0xe667e079 · x01111 ⊕ 0x6660006 · x10001 ⊕ 0x6660006 · x10011

⊕ 0xc0ccc0 · x10101 ⊕ 0xc0ccc0 · x10111 ⊕ 0x60666000 · x11101

⊕ 0x60666000 · x11111 ≈ 0x60006066 · x′
00000 ⊕ 0x60006066 · x′

00010

⊕ 0x180606 · x′
01101 ⊕ 0x180606 · x′

01111 ⊕ 0x60006066 · x′
10001

⊕ 0x60006066 · x′
10011 ⊕ 0xccc000c · x′

10101 ⊕ 0xccc000c · x′
10111

⊕ 0x66000606 · x′
11101 ⊕ 0x66000606 · x′

11111

0x66600060 · x00000 ⊕ 0x66600060 · x00010 ⊕ 0x667e079e · x01101

⊕ 0x667e079e · x01111 ⊕ 0x66600060 · x10001 ⊕ 0x66600060 · x10011

⊕ 0xc0ccc00 · x10101 ⊕ 0xc0ccc00 · x10111 ⊕ 0x6660006 · x11101

⊕ 0x6660006 · x11111 ≈ 0x60666 · x′
00000 ⊕ 0x60666 · x′

00010

⊕ 0x1806060 · x′
01101 ⊕ 0x1806060 · x′

01111 ⊕ 0x60666 · x′
10001

⊕ 0x60666 · x′
10011 ⊕ 0xccc000c0 · x′

10101 ⊕ 0xccc000c0 · x′
10111

⊕ 0x60006066 · x′
11101 ⊕ 0x60006066 · x′

11111

0x30003033 · x00000 ⊕ 0x30003033 · x00010 ⊕ 0x3f03cf33 · x01101

⊕ 0x3f03cf33 · x01111 ⊕ 0x30003033 · x10001 ⊕ 0x30003033 · x10011

⊕ 0x6660006 · x10101 ⊕ 0x6660006 · x10111 ⊕ 0x33000303 · x11101

⊕ 0x33000303 · x11111 ≈ 0x3033300 · x′
00000 ⊕ 0x3033300 · x′

00010

⊕ 0xc0303000 · x′
01101 ⊕ 0xc0303000 · x′

01111 ⊕ 0x3033300 · x′
10001

⊕ 0x3033300 · x′
10011 ⊕ 0x60006066 · x′

10101 ⊕ 0x60006066 · x′
10111

⊕ 0x303330 · x′
11101 ⊕ 0x303330 · x′

11111

260 Y. Lu et al.

0x30333 · x00000 ⊕ 0x30333 · x00010 ⊕ 0xf03cf333 · x01101

⊕ 0xf03cf333 · x01111 ⊕ 0x30333 · x10001 ⊕ 0x30333 · x10011

⊕ 0x66600060 · x10101 ⊕ 0x66600060 · x10111 ⊕ 0x30003033 · x11101

⊕ 0x30003033 · x11111 ≈ 0x30333000 · x′
00000 ⊕ 0x30333000 · x′

00010

⊕ 0x303000c · x′
01101 ⊕ 0x303000c · x′

01111 ⊕ 0x30333000 · x′
10001

⊕ 0x30333000 · x′
10011 ⊕ 0x60666 · x′

10101 ⊕ 0x60666 · x′
10111

⊕ 0x3033300 · x′
11101 ⊕ 0x3033300 · x′

11111

Appendix B: Short Description on Stream Cipher Rabbit

We give a short description on Rabbit here. We refer to [3,5] for full description.
Rabbit outputs the 128-bit keystream block si from the eight state variables x’s
of 32 bits at each iteration i,

s
[15..0]
i = x

[15..0]
0,i ⊕ x

[31..16]
5,i s

[31..16]
i = x

[31..16]
0,i ⊕ x

[15..0]
3,i

s
[47..32]
i = x

[15..0]
2,i ⊕ x

[31..16]
7,i s

[63..48]
i = x

[31..16]
2,i ⊕ x

[15..0]
5,i

s
[79..64]
i = x

[15..0]
4,i ⊕ x

[31..16]
1,i s

[95..80]
i = x

[31..16]
4,i ⊕ x

[15..0]
7,i

s
[111..96]
i = x

[15..0]
6,i ⊕ x

[31..16]
3,i s

[127..112]
i = x

[31..16]
6,i ⊕ x

[15..0]
1,i

The state variables x’s are computed from intermediate variables g’s of 32 bits,

x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16) (39)

x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i (40)

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16) (41)

x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i (42)

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16) (43)

x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i (44)

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16) (45)

x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i (46)

where ≪ denotes left bit-wise rotation and all additions are computed modulo
232. The description of computing g’s (see [3,5]) is not relevant for us and we
omit it here.

On the Resistance of Boolean Functions

against Fast Algebraic Attacks�

Yusong Du1,2, Fangguo Zhang1,3, and Meicheng Liu3

1 School of Information Science and Technology,
Sun Yat-sen University, Guangzhou 510006, P.R. China

2 Key Lab. of Network Security and Cryptology,
Fujian Normal University, Fuzhou 350007, P.R. China

3 State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, P.R. China
yusongdu@hotmail.com, isszhfg@mail.sysu.edu.cn

Abstract. Boolean functions with large algebraic immunity resist alge-
braic attacks to a certain degree, but they may not resist fast algebraic
attacks (FAA’s). It is necessary to study the resistance of Boolean func-
tions against FAA’s. In this paper, we localize the optimal resistance of
Boolean functions against FAA’s and introduce the concept of e-fast alge-
braic immunity (e-FAI) for n-variable Boolean functions against FAA’s,
where e is a positive integer and 1 ≤ e < �n

2
�. We give the sufficient

and necessary condition of e-FAI. With e-FAI the problem of deciding
the resistance of an n-variable Boolean function against FAA’s can be
converted into the problem of observing the properties of one given ma-
trix. An algorithm for deciding e-FAI and the optimal resistance against
FAA’s is also described.

Keywords: stream ciphers, algebraic attacks, fast algebraic attacks,
Boolean functions, algebraic immunity.

1 Introduction

Algebraic immunity (AI) has been an important cryptographic property for
Boolean functions used in stream ciphers. The algebraic immunity of n-variable
Boolean functions is upper bounded by �n

2 � [1,2]. Studying and constructing
Boolean functions with the maximum AI (MAI Boolean functions) have received
attention for years [3,4,5,6,7].

The existence of low degree multiples (or low degree annihilators) of Boolean
functions is very necessary for an efficient algebraic attack. Boolean functions
with large AI can resist algebraic attacks since large AI guarantees the non-
existence of low degree multiples. However, Boolean functions with large AI
(even the maximum AI) may not resist fast algebraic attacks (FAA’s) [8,9].

� This work is supported by Funds of Key Lab of Fujian Province University Network
Security and Cryptology (2011008) and National Natural Science Foundations of
China (Grant No. 61070168, 10971246, 61003244, 60803135).

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 261–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 Y. Du, F. Zhang, and M. Liu

This is because the existence of low degree multiples of Boolean functions is
not necessary any more for FAA’s. Therefore the resistance of Boolean functions
against FAA’s should be considered as another necessary cryptographic property
for Boolean functions.

Some studies show that an n-variable Boolean function f has optimal re-
sistance against FAA’s if there does not exist any nonzero n-variable Boolean
function g of degree lower than n

2 such that fg = h and deg(g) + deg(h) < n
[8,9,5]. The concept of the optimal resistance of Boolean functions against FAA’s
can be implied from [8,9], but was firstly pointed out informally by Carlet et al. in
[5] as far as we know.

In resent years several efforts have been made to find Boolean functions with
good resistance against FAA’s, but none of them gave a class of Boolean functions
which can be proven to have optimal resistance against FAA’s. F.Armknecht et
al. introduced an effective algorithm with the purpose of observing the resistance
of Boolean functions against FAA’s [10]. In [5] Carlet et al. observed through
computer experiments by Armknecht’s algorithm that the class of MAI Boolean
functions constructed by them may have good behavior against FAA’s. E.Pasalic
recursively constructed a class of Boolean functions with very good resistance
against FAA’s (called ‘almostly’ optimal resistance) [11]. M.Liu et al. proved
that there does not exist a symmetric Boolean function with optimal resistance
against FAA’s [12]. P.Rizomiliotis studied the resistance against FAA’s of a class
of Boolean functions based on univariate polynomial representation [13].

In this paper, we further consider the optimal resistance of Boolean functions
against FAA’s. We note that the optimal resistance against FAA’s is a global
concept and it is not convenient for us to observe the optimal resistance of
Boolean functions against FAA’s. So our motivation is to find an alternative
method of describing the resistance against FAA’s so that some local properties
of the optimal resistance can be manifested. This results the introduction to
e-fast algebraic immunity (e-FAI) for n-variable Boolean functions where e is a
positive integer and 1 ≤ e < �n

2 �.
We give the sufficient and necessary condition of e-FAI. With e-FAI we can

more conveniently describe Boolean functions with good resistance against FAA’s.
With e-FAI the problem of deciding the resistance of an n-variable Boolean func-
tion against FAA’s can be converted into the problem of observing the proper-

ties of a given square matrix of order
∑�n

2 	−1
i=0

(
n
i

)
. We also describe an algorithm

for deciding e-FAI and the optimal resistance against FAA’s. This algorithm can
bring us more experimental information about Boolean functions against FAA’s.
Although we do not find more Boolean functions with good resistance against
FAA’s, we believe that our results can help better to understand the resistance
of Boolean functions against FAA’s.

The rest of the paper is organized as follows. Section 2 provides some pre-
liminaries. Section 3 recalls the concept of the optimal resistance of Boolean
functions against FAA’s. Section 4 introduces the concept of e-FAI of Boolean
functions. Section 5 gives the sufficient and necessary condition of e-FAI. Section
6 describes the algorithm for deciding e-FAI.

On the Resistance of Boolean Functions against FAA’s 263

2 Preliminaries

Let n be a positive integer in this paper. We denote by Bn the set of all the
n-variable Boolean functions. Any n-variable Boolean function has a unique
representation as a multivariate polynomial over F2, called the algebraic normal
form (ANF)

f(x1, x2, · · · , xn) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
,

where P(N) denotes the power set of N = {1, 2, · · · , n}, aI ∈ F2 is the coefficient
of monomial

∏
i∈I xi and every coordinate xi appears in this polynomial with

exponents at most 1. The algebraic degree of Boolean function f , denoted by
deg(f), is the degree of this polynomial.

A Boolean function g ∈ Bn is called an annihilator of f ∈ Bn if fg = 0.
The lowest algebraic degree of all the nonzero annihilators of f and 1 + f is
called algebraic immunity of f , denoted by AIn(f) and it has been proved that
AIn(f) ≤ �n

2 � for a given f ∈ Bn [1,2,3]. A Boolean function f ∈ Bn has the
maximum algebraic immunity (MAI) if AIn(f) = �n

2 �.
Another representation of an n-variable Boolean Function f(x1, x2, · · · , xn) is

by the output column of its truth table, i.e., a column vector of dimension 2n:

(f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1))tr.

For f ∈ Bn, the set of x = (x1, x2, · · · , xn) ∈ Fn
2 for which f(x) = 1 (resp.

f(x) = 0) is called the on-set (resp. off-set) of f , denoted by 1f (resp. 0f). The
Hamming weight of f is the cardinality of 1f , denoted by wt(f). f is called
balanced if wt(f) = 2n−1.

Let x = (x1, x2, · · · , xn) ∈ Fn
2 . The Hamming weight of x is the number of its

nonzero coordinates. We define supp(x) = {i |xi = 1, 1 ≤ i ≤ n}. For x, y ∈ Fn
2 ,

we say that x is covered by y if supp(x) ⊆ supp(y). For the sake of simplicity,
supp(x) ⊆ supp(y) is written as x ⊆ y. For any n-variable Boolean function,
there is a relation between its ANF and its truth table, i.e.,

aI =
∑

supp(x)⊆I

f(x), (1)

where I ∈ P(N). This equation means that the coefficient of every monomial in
the ANF of f can be linearly expressed by the components of its truth table.

3 Optimal Resistance of Boolean Functions
against FAA’s

In this section, we recall the concept of the optimal resistance of Boolean func-
tions against FAA’s and discuss a note given by Gong in [14] about Theorem
7.2.1 in [8].

Suppose f ∈ Bn is the nonlinear filtering function in an LFSR-based binary
nonlinear filter generator. If f has a low degree multiple h �= 0 (or a nonzero

264 Y. Du, F. Zhang, and M. Liu

annihilator of low degree), then the attacker can launch a standard algebraic
attack and the attack may be converted into solving an over-defined system with
multivariate equations of degree not more than the degree of h (or the degree of
the annihilator) [1]. It has been proved that the lowest degree of all the nonzero
multiples of f is equal to the lowest degree of all the nonzero annihilators of f
[9]. Thus Boolean functions with large AI can resist standard algebraic attacks
to a certain degree.

However, Boolean functions with large AI may not resist fast algebraic attacks
(FAA’s). If f has no low degree multiples or annihilators, but there exists a
nonzero n-variable Boolean function g of low degree such that fg �= 0 has not
high degree, the attacker may launch a fast algebraic attack. The attack may
be converted into solving an over-defined system with multivariate equations of
degree not more than the degree of g and the complexity of establishing the
over-defined system is mainly determined by the degree of fg [8,9].

Compared algebraic attacks with FAA’s, excluding the precomputation for
obtaining the over-defined system, the computation complexity of FAA’s can
be lower than that of algebraic attacks, since the algebraic degree of the over-
defined system in a fast algebraic attack can be lower than that in an algebraic
attack. This also means that the attacker will not launch a fast algebraic attack
with a Boolean function g of degree not less than AI(f). About FAA’s, there is
a well-known observation given by N.Courtois [8].

Proposition 1. [8] Let f ∈ Bn, d1 and d2 be two positive integers not more
than n. If d1 + d2 ≥ n, then there exists g ∈ Bn with deg(g) ≤ d1 such that
deg(fg) ≤ d2.

In order to resist FAA’s, we hope that deg(fg) can be as large as possible for
any nonzero n-variable Boolean function g of degree less than AI(f) ≤ �n

2 �.
However, Proposition 1 reveals that there always exists a nonzero n-variable
Boolean function g with deg(g) ≤ e such that deg(fg) ≤ n − e. Therefore the
best case for us against FAA’s is that there does not exist any nonzero n-variable
Boolean function g with deg(g) ≤ e < �n

2 � such that deg(fg) ≤ n− e − 1. This
means that f ∈ Bn has optimal resistance against FAA’s if there does not exist
any nonzero n-variable Boolean function g of degree lower than n

2 such that
deg(g) + deg(fg) < n.

The concept of the optimal resistance against FAA’s was firstly pointed out
informally by Carlet et al. in [5] according to Proposition 1. However, it was
noted by Gong in [14] that the Proposition 1 observed by Courtois (Theorem
7.2.1 in [8]) is not correct, since d1 + d2 ≥ n can not guarantee the existence of
g with deg(g) ≤ d1 such that fg �= 0 and fg �= 0 is necessary for FAA’s.

We point out that the note on Proposition 1 given by Gong does not essentially
affect the concept of the optimal resistance against FAA’s. If there exists an n-
variable Boolean function g with deg(g) < n

2 such that fg = 0, then the attacker
can not launch a fast algebraic attack, but she may launch a standard algebraic
attack since g may be a annihilator of low degree. Our aim is to resist FAA’s
with Boolean function, but we can not neglect the resistance of Boolean function

On the Resistance of Boolean Functions against FAA’s 265

against standard algebraic attacks at the same time. Therefore fg �= 0 must be
involved in the optimal resistance of Boolean functions against FAA’s.

By convention, deg(fg) can be any value when fg = 0. If we let deg(fg) =
−∞ when fg = 0, then Proposition 1 is corrected. Thus, the description of
the optimal resistance against FAA’s above does not need a change and the
requirement that fg �= 0 is involved naturally.

4 Fast Algebraic Immunity for Boolean Functions

In this section, we discuss the local resistance of Boolean functions against FAA’s
and introduce the concept of e-fast algebraic immunity for n-variable Boolean
functions.

The optimal resistance of Boolean functions against FAA’s is a global concept.
We usually need to consider the local resistance of Boolean functions against
FAA’s. We note that the (non-)existence of (d1, d2)-pairs considered by Ri-
zomiliotis in [13] is one of typical methods of describing the local resistance
of Boolean functions against FAA’s. According to [13], f ∈ Bn has a (d1, d2)-
pair if there is a nonzero g ∈ Bn with deg(g) ≤ d1 such that deg(fg) ≤ d2
where 1 ≤ d1 < deg(fg) ≤ d2 < n. According to the concept of the optimal
resistance of Boolean functions against FAA’s, in fact, we only need to consider
the (non-)existence of (d1, d2)-pairs with 1 ≤ d1 < n

2 and d2 < n− d1.
It is clear that some pairs, like the (1, �n

2 �)-pair for n-variable Boolean func-
tions, are favorable for FAA’s. We can say n-variable Boolean functions with
such pairs have poor resistance against FAA’s, but we can not say an n-variable
Boolean function without such pairs has good resistance against FAA’s.

For examples, it was shown in [10] that a class of (non-symmetric) n-variable
MAI Boolean functions presented in [3] may have poor resistance against FAA’s
since it has been tested for n ≤ 10 that every of these functions has a (1, �n

2 �)-
pair, which is favorable for FAA’s. On the contrary, it was shown in [13] that a
class of MAI Boolean function in even n variables based on univariate polynomial
representation may have some resistance against FAA’s since it has been tested
for n ≤ 20 that every of these functions has no (n2 − 3, n2)-pairs. However, we
can not say this class of function have good resistance against FAA’s only based
on these facts, since the non-existence of the (1, n

2 + 1)-pair, which may also be
favorable for FAA’s, is still not sure.

It is clear that f ∈ Bn has optimal resistance against FAA’s if f has no any
(d1, d2)-pair such that 1 ≤ d1 < n

2 and d1 + d2 < n. Let e be a fixed integer and
1 ≤ e < �n

2 �. We note that the non-existence of the (e, n−e−1)-pair implies the
non-existence of all the (d1, d2)-pairs such that 1 ≤ d1 ≤ e and d1 < d2 ≤ n−e−1.
This means that an n-variable which has no (e, n − e − 1)-pair for every e =
1, 2, · · · , �n

2 �− 1 must have optimal resistance against FAA’s and deciding an n-
variable Boolean function to have optimal resistance can be divided into deciding
these �n

2 �−1 pairs. Therefore it is interesting to study theses pairs independently.
Based on this, we introduce the concept of e-fast algebraic immunity (e-FAI) for
n-variable Boolean functions. We say an n-variable Boolean function has e-FAI
if it has no (e, n− e− 1)-pair.

266 Y. Du, F. Zhang, and M. Liu

Definition 1. Let f ∈ Bn and 1 ≤ e < �n
2 �. f is called a Boolean function

with e-fast algebraic immunity (e-FAI) if deg(fg) ≥ n− e holds for any nonzero
n-variable Boolean function g such that deg(g) ≤ e.

The optimal resistance against FAA’s can be divided into �n
2 �−1 parts according

to e-FAI and e-FAI represents one of these parts. All these parts together are
the optimal resistance. Thus Boolean functions in n variables with e-FAI have
locally optimal resistance against FAA’s.

Unfortunately, e-FAI can neither imply (e−1)-FAI nor (e+1)-FAI. We cannot
say the resistance against FAA’s of Boolean functions with e-FAI is better than
that of Boolean functions with (e − 1)-FAI or (e + 1)-FAI. So with e-FAI how
can we describe Boolean functions having good resistance against FAA’s?

We firstly note that an n-variable Boolean function having 1-FAI, 2-FAI, · · · e-
FAI at the same time possess good resistance against FAA’s under a assumption.

Corollary 1. Let 1 ≤ e < �n
2 �. An n-variable Boolean function which has 1-

FAI, 2-FAI, · · · e-FAI at the same time possesses good resistance against FAA’s
if the attacker only has the ability to solve systems with equations of degree not
more than e.

Proof. Only when (d1, d2)-pairs with d1 ≤ e exist can the attacker launch a fast
algebraic attack. The function has 1-FAI, 2-FAI, · · · e-FAI at the same time, so
every (d1, d2)-pair with d1 ≤ e which possibly exists must satisfy d2 ≥ n− d1 ≥
n−e. Thus the attacker can not find a (d1, d2)-pair with d1+d2 < n and d1 ≤ e.
Although some (d1, d2)-pairs with d1 + d2 < n and d1 > e can be found it is
infeasible to launch a fast algebraic attack because of attacker’s inability to solve
systems with equations of degree more than e. ��

In order to launch a fast algebraic attack, the attacker expects the existence of
(d1, d2)-pairs with d1 < �n

2 � and small d2. The exact value of d2 for which a fast
algebraic attack is feasible in practice depends on several parameters, like the
size of the memory and the key size of the stream cipher [15]. Therefore for some
(d1, d2)-pairs with d2 not small it may be infeasible in practice for the attacker
to launch a fast algebraic attack. We can assume that only when (d1, d2)-pairs
with d2 ≤ k exist does the attacker have the ability to launch a fast algebraic
attack, then we have the following result.

Corollary 2. Let k be a positive integer and �n
2 � < k < n. Suppose only when

(d1, d2)-pairs with d2 ≤ k exist does the attacker have the ability to launch a
fast algebraic attack. An n-variable Boolean function which has (�n

2 � − 1)-FAI,
(�n

2 �−2)-FAI, · · ·, (n−k)-FAI at the same time possesses good resistance against
FAA’s.

Proof. The function has (�n
2 � − 1)-FAI, (�n

2 � − 2)-FAI, · · ·, (n − k)-FAI at the
same time, so every (d1, d2)-pair with d2 ≤ k which possibly exists must satisfy
d1 + d2 ≥ n. Thus the attacker can not find a (d1, d2)-pair with d1 + d2 < n and
d2 ≤ k. Although some (d1, d2)-pairs with d1 + d2 < n and d2 > k can be found
it is infeasible for the attacker to launch a fast algebraic attack. ��

On the Resistance of Boolean Functions against FAA’s 267

Combining the two assumptions in Corollary 1 and Corollary 2, it is easy to see
the following fact.

Corollary 3. Let 1 ≤ e < �n
2 �. Suppose only when (d1, d2)-pairs with d1 ≤ e

d2 ≤ n−e−1 exist does the attacker have the ability to launch a fast algebraic at-
tack. An n-variable Boolean function with e-FAI possesses good resistance against
FAA’s.

Boolean functions in n variables with e-FAI have also other interesting proper-
ties. In Definition 1, if f is a Boolean function with e-FAI then deg((1 + f)g) =
deg(fg + g) ≥ n − e since deg(g) ≤ e < n− e ≤ deg(fg) for 1 ≤ e < �n

2 �, thus
1 + f is also a Boolean function with e-FAI if f has e-FAI. This means that we
do not need to consider 1 + f when discussing e-FAI of f .

Corollary 4. Let f ∈ Bn, 1 ≤ e < �n
2 �. f is a Boolean function with e-FAI

only if AIn(f) > e. Particularly, f is a Boolean function with (�n
2 � − 1)-FAI

only if AIn(f) = �n
2 �.

Proof. If f ∈ Bn is a Boolean function with e-FAI then f has no annihilators of
degree less than e. Furthermore, 1+ f is also a Boolean function with e-FAI and
1 + f also has no annihilators of degree less than e. Therefore AIn(f) > e. ��

Corollary 5. Let n be odd, f ∈ Bn. f is a Boolean function with (�n
2 �− 1)-FAI

if and only if AIn(f) = �n
2 �.

Proof. By Corollary 4, f is a Boolean function with (�n
2 � − 1)-FAI only if

AIn(f) = �n
2 �. If AIn(f) = �n

2 � then f has no annihilators of degree less
than �n

2 �, which implies that f has no multiples of degree less than �n
2 �. There-

fore for any nonzero n-variable Boolean function g with deg(g) ≤ �n
2 � − 1 we

have deg(fg) ≥ �n
2 � = n− (�n

2 � − 1). ��

Corollary 6. Let f ∈ Bn, 1 ≤ e < �n
2 �. f is a Boolean function with e-FAI,

then deg(f) ≥ n− e.

Proof. From the definition of e-FAI, deg(fg) ≥ n − e holds for any nonzero n-
variable Boolean function g such that deg(g) ≤ e. We let deg(g) = 0, i.e., g = 1.
Then we have deg(f) = deg(fg) ≥ n− e. ��

5 Sufficient and Necessary Condition of e-Fast Algebraic
Immunity

In this section we give the sufficient and necessary condition of e-FAI. Before
this we need some prepared work including several definitions and lemmas.

Definition 2. Let α = (a1, a2, · · · , an), β = (b1, b2, · · · , bn) ∈ Fn
2 . α ≺ β if and

only if wt(α) < wt(β), or when wt(α) = wt(β) there exists 1 ≤ i < n such that
ai = 1, bi = 0 and aj = bj for 1 ≤ j < i.

268 Y. Du, F. Zhang, and M. Liu

We give an example to help understanding Definition 2. We consider three vectors
in F5

2: α = (11000), β = (01101) and γ = (01011). According to Definition 2,
α ≺ β since wt(α) < wt(β), while wt(β) = wt(γ) but there exists i = 3 satisfying
the definition, thus β ≺ γ. Similarly, we can write out all the vectors ordered by
≺ in F5

2.

(00000) ≺ (10000) ≺ (01000) ≺ (00100) ≺ (00010) ≺ (00001) ≺
(11000) ≺ (10100) ≺ (10010) ≺ (10001) ≺ (01100) ≺ (01010) ≺
(01001) ≺ (00110) ≺ (00101) ≺ (00011) ≺ · · · ≺ (11111) .

Let
Fn
2 = {γi | 0 ≤ i ≤ 2n − 1}

where γ0 ≺ γ1 ≺ γ2 ≺ · · · ≺ γ2n−1 are ordered by ≺ according to Definition 2.
We say that γi is the ith vector in Fn

2 .
Let x = (x1, x2, · · · , xn) be a set of binary variables. For γ = (c1, c2, · · · , cn) ∈

Fn
2 , x

γ is defined to be the Boolean monomial xc1
1 xc2

2 · · ·xcn
n where x0

i = 1 and
x1
i = xi for i = 1, 2, · · ·n. Then all the Boolean monomials of n variables are

xγ0 , xγ1 , xγ2 , · · · , xγ2n−1

where γi is the ith vector in Fn
2 . If x is taken as a vetoer in Fn

2 , it is clear that
xγi = 1 if and only if supp(γi) ⊆ supp(x).

According to Definition 2, the truth table of an n-variable Boolean function
f(x1, x2, · · · , xn) can be written as:

T (f) = (f(γ0), f(γ1), · · · , f(γ2n−1))
tr.

In the following content, we denote by T (f) the truth table of f ∈ Bn, in which
the components are ordered by ≺ according to Definition 2.

The truth table of f can be also represented as a 2n × 2n matrix, denoted by
RT (f), whose entries on the main diagonal are the components of T (f) respec-
tively and the rest of entries are all zero. With these notations, for g ∈ Bn we
have T (h) = RT (f)T (g) if h = fg. The multiplication of two n-variable Boolean
functions can be represented as the product of a matrix and a column vector.

Definition 3. Let A ⊆ Fn
2 , |A| be the number of the elements in A and k (≤ n)

be a positive integer. When x is taken as a vetoer in Fn
2 , vk(x) is defined to be a

binary row vector of dimension
∑k

i=0

(
n
i

)
, i.e.,

vk(x) = (xγ0 , xγ1 , · · · , x
γ∑k

i=0 (
n
i)−1).

Moreover, Vk(A) is defined to be a matrix with |A| row vectors {vk(x) |x ∈
A} and the order of its row vectors corresponds to the order of elements in A
according to Definition 2.

Lemma 1. The column vectors of Ve(F
n
2) are exactly the truth tables of all the

n-variable monomials of degree not more than e.

On the Resistance of Boolean Functions against FAA’s 269

Proof. From Definition 3, the (i + 1)th column vector is (γγi

0 , γγi

1 , · · · , γγi

2n−1)
tr

and is also the truth table of Boolean monomial xγi where 0 ≤ i ≤
∑e

i=0

(
n
i

)
−1.

From Definition 2, xγ0 , xγ1 , · · · , xγE−1 are all the n-variable Boolean monomials
of degree not more than e where E =

∑e
i=0

(
n
i

)
. The result follows.

Lemma 2. Let Δn
d = {x |x ∈ Fn

2 ,wt(x) > d}. Every component of the col-
umn vector Vn(Δ

n
d)T (h) uniquely corresponds to the coefficient of a monomial

of degree more than d of h ∈ Bn.

Proof. From Equation (1) in section 2 we have

asupp(γi) =
∑
x⊆γi

h(x) i = 0, 1, · · · , 2n − 1. (2)

By Definition 3 Equation (2) can be written as the form of matrix product of
two vectors:

asupp(γi) = vn(γi)T (h) i = 0, 1, · · · , 2n − 1. (3)

From Definition 3, Vn(Δ
n
d) consists of all the row vectors vn(γ) with γ > wt(d).

Therefore every component of Vn(Δ
n
d)T (h) uniquely corresponds to asupp(γ) for

some γ with wt(γ) > d. ��
We denote by Ud(1f) the matrix obtained by taking column j1, j2, · · · , jwt(f) in
Vn(Δ

n
d) such that f(γji) = 1 (i = 1, 2, · · · ,wt(f)). Then we can give the sufficient

and necessary condition of e-FAI.

Theorem 1. Let f ∈ Bn, 1 ≤ e < �n
2 � and d = n − e − 1. f is a Boolean

function with e-FAI if and only if Ud(1f)Ve(1f) is an invertible matrix.

Proof. Let g ∈ Bn, g �= 0, deg(g) ≤ e and h = fg ∈ Bn. From Lemma 2,
every component of Vn(Δ

n
d)T (h) corresponds to the coefficient of a monomial of

degree more than d of h. According to Definition 1, we let the coefficients of the
monomials of degree more than d being zero in the ANF of h, i.e.,

Vn(Δ
n
d)T (h) = 0.

In other words, deg(h) ≤ d or h = 0 if and only if the equation above holds.
Note that T (h) = RT (f)T (g). By Lemma 1 a column vector of Ve(F

n
2) is exactly

the truth table of an n-variable monomial of degree not more than e. Then
T (g) =

∑E−1
i=0 kiαi, where E =

∑e
i=0

(
n
i

)
, ki ∈ F2, αi is the (i+ 1)th column of

Ve(F
n
2) and the truth table of monomial xγi . Thus, we have

Vn(Δ
n
d)RT (f)(

E−1∑
i=0

kiαi) = 0.

Viewing K = (k0, k1, · · · , kE−1)
tr as the unknown, we can get a homogenous

linear system with E unknowns and E equations:

Vn(Δ
n
d)RT (f)(α0, α1, · · · , αE−1)K = 0, (4)

where Vn(Δ
n
d)RT (f)αi can be seen as the (i+1)th column in the coefficients ma-

trix. It is clear that that nonzero g with deg(g) ≤ e does not exist if

270 Y. Du, F. Zhang, and M. Liu

and only if system (4) only has zero solution, then f is a Boolean function
with e-FAI if and only if the coefficient matrix of system (4) is invertible. Since
(α0, α1, · · · , αE−1) = Ve(F

n
2), the coefficient matrix can be written as

Vn(Δ
n
d)RT (f)Ve(F

n
2).

Note that the zero columns in Vn(Δ
n
d)RT (f) and their corresponding rows in

Ve(F
n
2) do not give any contribution for the computation of the matrix. After

omitting theses zero columns and corresponding rows, the coefficient matrix can
be simplified into Ud(1f)Ve(1f). Therefore, f is a Boolean function with e-FAI
if and only if Ud(1f)Ve(1f) is invertible. ��

For 1 ≤ e < �n
2 � and A ⊆ Fn

2 , in the following content we let

We(A) = Ud(A)Ve(A)

where d = n−e−1. We can give the sufficient and necessary condition of Boolean
functions to have optimal resistance against FAA’s.

Theorem 2. Let f ∈ Bn and 1 ≤ e < �n
2 �. f has optimal resistance against

FAA’s if and only if W�n
2 	−1(1f)e is invertible for every e (1 ≤ e < �n

2 �), where
W�n

2 	−1(1f)e is the submatrix which consists of the entries on the last E rows
and the first E columns in W�n

2 	−1(1f) = U�n
2 �(1f)V�n

2 	−1(1f).

Proof. Ud(1f) is the submatrix of U�n
2 �(1f) obtained by taking the last E rows

in U�n
2 �(1f), and Ve(1f) is the submatrix of V�n

2 	−1(1f) obtained by taking the
first E columns in V�n

2 	−1(1f). Thus, We(1f) = Ud(1f)Ve(1f) = W�n
2 	−1(1f)e.

From Theorem 1, the result follows. ��

From Theorem 2 we can see that all the We(1f) with 1 ≤ e ≤ �n
2 � − 1 are

included in one square matrix of order
∑�n

2 	−1
i=0

(
n
i

)
. Theorem 2 tells us studying

the resistance of n-variable Boolean functions against FAA’s can be converted
into studying the properties of matrix W�n

2 	−1(1f) = U�n
2 �(1f)V�n

2 	−1(1f).

6 An Algorithm for Deciding e-FAI

For x, y ∈ Fn
2 , we let x∪y = (x1+y1+x1y1, x2+y2+x2y2, · · · , xn+yn+xnyn) ∈ Fn

2

and y \ x = (y1 − x1, y2 − x2, · · · , yn − xn) = (y1 + x1, y2 + x2, · · · , yn + xn) ∈ Fn
2

when x ⊆ y.

Lemma 3. Let f ∈ Bn, e = �n
2 � − 1, E =

∑e
i=0

(
n
i

)
, 1 ≤ r, s ≤ E. Denote by

wyz = 1 the entry on row r and column s of W�n
2 	−1(1f) where y = γ2n−1−E+r

and z = γs−1. wyz = 1 if and only if z ⊆ y and
∑
u⊆z

ay\u = 1 where ay\u ∈ F2 is

the coefficient of the monomial xy\u in the ANF of f .

Proof. wyz is equal to the rth row of U�n
2 �(1f) multiplies (matrix multiplica-

tion) the sth column of V�n
2 	−1(1f). For 1 ≤ k ≤ |1f | we denote by U�n

2 �(1f)(r,k)
the kth component of the rth row of U�n

2 �(1f) and denote by V�n
2 	−1(1f)(k,s)kth

On the Resistance of Boolean Functions against FAA’s 271

component of the sth column of V�n
2 	−1(1f). From the definition of U�n

2 �(1f),
U�n

2 �(1f)(r,k) = 1 if and only if γk−1 ∈ 1f and γk−1 ⊆ y, and V�n
2 	−1(1f)(k,s) = 1

if and only if γk−1 ∈ 1f and z ⊆ γk−1. Note that x ⊆ y if and only if yx = 1
where x, y ∈ Fn

2 , thus,

wyz =
∑
x∈1f

yxxz =
∑
x∈Fn

2

yxxzf(x) =
∑

x⊆y\z
f(x ∪ z).

Therefore, wyz = 1 if and only if z ⊆ y and
∑

x⊆y\z
f(x ∪ z) = 1. When z ⊆ y, for∑

x⊆y\z
f(x ∪ z) we have

∑
x⊆y\z

f(x ∪ z) =
∑

x⊆y\z

∑
u⊆z

f(x ∪ u)
∑

u⊆v⊆z

1

=
∑

x⊆y\z

∑
u⊆z

∑
u⊆v⊆z

f(x ∪ u)

=
∑

x⊆y\z

∑
v⊆z

∑
u⊆v

f(x ∪ u)

=
∑
v⊆z

∑
x⊆y\z

∑
u⊆v

f(x ∪ u)

=
∑
v⊆z

∑
x⊆(y\z)∪v

f(x)

=
∑
u⊆z

∑
x⊆y\u

f(x)

=
∑
u⊆z

ay\u

The Lemma is proved. ��

Lemma 3 tells us that for a given f ∈ Bn and A = {x |x ∈ Fn
2 ,wt(x) > �n

2
},
W�n

2 	−1(1f) is the Hadamard product (entrywise product) of two of matrices,
V�n

2 	−1(A) and a matrix defined by 1f . On the ground of this, we can give
an effective algorithm (Algorithm 1) for deciding whether a given f ∈ Bn is a
function with e-FAI for 1 ≤ e < �n

2 �. We can also use Algorithm 1 for every
integer e with 1 ≤ e < �n

2 � to decide whether f is a Boolean function with
optimal resistance against FAA’s.

In Algorithm 1, the complexity of initializing matrix W is O(E2). For every
W(i,j) = 1, we have a choice of y and z. The number of choices is not more than

E2. Given one choice of y and z, we have |S| = 2wt(z), which corresponds to
the number of operations in step 06. After three layers loop, a modified W is
obtained and the complexity is O(E(

∑e
k=0

(
n
k

)
2k)). The complexity of deciding

the invertibility of W is O(E3). Therefore, the overall computation complexity
of Algorithm 1 is O(E3).

272 Y. Du, F. Zhang, and M. Liu

Algorithm 1. deciding whether f ∈ Bn is a Boolean function with e-FAI

Input: aγi (0 ≤ i ≤ 2n−1) (all the coefficients of monomials of f ∈ Bn), positive
integer e (1 ≤ e < �n

2 �)
Output: True (f is a Boolean function with e-FAI) or False (f is not a Boolean
function with e-FAI)
Initialize: d = n−e−1, A = {x |x ∈ Fn

2 ,wt(x) > d}, E×E matrix W = Ve(A)
with E =

∑e
i=0

(
n
i

)
, denote by W(i,j) its entry on row i and column j

01: for i from 1 to E do
02: for j from 1 to E do
03: if W(i,j) = 1 then
04: W(i,j) ← 0, y ← γ2n−1−E+i, z ← γj−1

05: Determine the set S ← {u |u ⊆ z}
06: W(i,j) ← W(i,j) +

∑
u∈S ay\u

07: end if
08: end for
09: end for
10: if W invertible then return True else return False

Another algorithm was introduced by Armknecht et al. (Algorithm 2 in [10],
say Algorithm 2 simply). For a given f ∈ Bn and two positive integers e, d
with e + d < n, it aimed at deciding the existence of a nonzero g ∈ Bn with
deg(g) ≤ e such that deg(fg) ≤ d. An E × E matrix is also established for
determining its invertibility in Algorithm 2, and the complexity of obtaining it
is O(E(

∑e
b=0

(
d+1
b

)
2d+1−b)).

We have to note that Algorithm 2 is valid only for pairs of (e, d) such that
E <

(
n

d+1

)
and it can be only used for denying the existence of g but determining

e-FAI directly since E >
(

n
d+1

)
always holds for d = n− e− 1.

Compared with Algorithm 2, Algorithm 1 may have better computation com-
plexity if n is large and e is small, for instance n ≥ 11 and e ≤ 2, since in these
cases,

∑e
k=0

(
n
k

)
2k <

∑e
b=0

(
d+1
b

)
2d+1−b where d = �n

2 �−1 in order to guarantee

E <
(

n
d+1

)
. This means that if n is large and e is small, Algorithm 1 may be

better when one wants to deny the existence of g with deg(g) ≤ e such that
deg(fg) ≤ d.

It is not hard to describe a modified Algorithm 2 that can be used for de-
termining e-FAI if we consider all the vectors of Hamming weight more than
d rather than only the vectors of Hamming weight equal d + 1 (denoted by
{γ : |γ| = d + 1} in [10]) to construct the E × E matrix in Algorithm 2. In
this case, the complexity of obtaining the matrix in Algorithm 2 increases to
O(E

∑n
k=d+1(

∑e
b=0

(
k
b

)
2k−b)). When two algorithm are used for deciding e-FAI,

the computation complexity of Algorithm 1 is always better than that of Algo-
rithm 2 since

∑e
k=0

(
n
k

)
2k <

∑n
k=d+1(

∑e
b=0

(
k
b

)
2k−b) when d = n− e− 1.

We let n = 5, 6, 7, 8, 9, 10 respectively and select randomly 105 balanced n-
variable Boolean functions. The results are listed in the following table.

On the Resistance of Boolean Functions against FAA’s 273

Num.Var n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Num. 1-FAI 4242 0 4184 0 4213 0
Num. 2-FAI 3330 2222 0 0 3959 4299
Num. 3-FAI - - 1576 0 4087 4123
Num. 4-FAI - - - - 2998 4261

Num.Optimal 1419 0 0 0 217 0

As shown in the table, the number of balanced Boolean functions with optimal
resistance against FAA’s seems to be not large especially for some numbers of
variables.

It has been shown in [5] by algorithm 2 in [10] that the Carlet-Feng function
of variable less than 13 have good behavior against FAA’s. By our algorithm we
can get more information about their resistance against FAA’s.

Num.Var n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13
1-FAI � × � × � × � × �
2-FAI � � × × � � × × �
3-FAI - - � × � � � × �
4-FAI - - - - � � � � ×
5-FAI - - - - - - � � �
6-FAI - - - - - - - - �

Optimal � × × × � × × × ×

As shown in the table, the Carlet-Feng function in 5 and 9 variables have optimal
resistance. The Carlet-Feng function in 6, 7 10, 11, and 13 variables have almostly
optimal resistance since there is only one (d1, d2)-pair with d1 < n

2 and d1 +
d2 < n for each of them. The Carlet-Feng function in 12 variables behave not
badly. But we can not say the Carlet-Feng function in 8 variables has very good
resistance.

7 Conclusion

e-FAI is an alternative cryptographic property for measuring the resistance of
Boolean functions against FAA’s. e-FAI describes locally optimal resistance of
Boolean functions against FAA’s. A sufficient and necessary condition of Boolean
functions to have e-FAI is provided. Thanks to this condition, the problem of
deciding the resistance against FAA’s of an n-variable Boolean function can be
converted into the problem of observing the property of a given square matrix

of order
∑�n

2 	−1
i=0

(
n
i

)
. Besides the algorithm given by Armknecht et al. there is

an alternative algorithm for deciding the resistance against FAA’s of Boolean
functions. The computation complexity of this algorithm is better than that of
the algorithm given by Armknecht et al.when deciding e-FAI or the optimal
resistance against FAA’s of Boolean functions.

274 Y. Du, F. Zhang, and M. Liu

References

1. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

2. Meier, W., Pasalic, E., Carlet, C.: Algebraic Attacks and Decomposition of Boolean
Functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

3. Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic Immunity for Crypto-
graphically Significant Boolean Functions: Analysis and Construction. IEEE Trans.
Inform.Theory 52(7), 3105–3121 (2006)

4. Li, N., Qi, W.: Boolean functions of an odd number of variables with maximum
algebraic immunity. Sci China Ser F-Information Sciences 50(3), 307–317 (2007)

5. Carlet, C., Feng, K.: An Infinite Class of Balanced Functions with Optimal Alge-
braic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

6. Liu, M., Pei, D., Du, Y.: Identification and construction of Boolean functions with
maximum algebraic immunity. Sci China Ser F-Information Sciences 53(7), 1379–
1396 (2010)

7. Tu, Z., Deng, Y.: A conjecture about binary strings and its applications on con-
structing Boolean functions with optimal algebraic immunity. Designs, Codes and
Cryptography 60(1), 1–14 (2011)

8. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

9. Armknecht, F.: Improving Fast Algebraic Attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)

10. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006)

11. Pasalic, E.: Almost Fully Optimized Infinite Classes of Boolean Functions Resistant
to (Fast) Algebraic Cryptanalysis. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 399–414. Springer, Heidelberg (2009)

12. Liu, M., Lin, D.: Fast Algebraic Attacks and Decomposition of Symmetric Boolean
Functions. IEEE Trans. Inform.Theory 57(7), 4817–4821 (2011)

13. Rizomiliotis, P.: On the Resistance of Boolean Functions Against Algebraic Attacks
Using Univariate Polynomial Representation. IEEE Trans. Inform. Theory 56(8),
4014–4024 (2010)

14. Gong, G.: Sequences, DFT and Resistance against Fast Algebraic Attacks. In:
Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS,
vol. 5203, pp. 197–218. Springer, Heidelberg (2008)

15. Canteaut, A.: Open Problems Related to Algebraic Attacks on Stream Ciphers. In:
Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 120–134. Springer, Heidelberg
(2006)

CCA Secure IB-KEM from the Computational

Bilinear Diffie-Hellman Assumption
in the Standard Model

Yu Chen1,2, Liqun Chen3, and Zongyang Zhang4,	

1 Institute of Information Engineering, Chinese Academy of Sciences
2 State Key Laboratory of Information Security, Beijing, China

chenyu@is.iscas.ac.cn
3 Hewlett-Packard Laboratories, Bristol, United Kingdom

liqun.chen@hp.com
4 Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, China
zongyang.zhang@gmail.com

Abstract. In this paper, we propose several selective-identity
chosen-ciphertext attack (IND-sID-CCA) secure identity based key en-
capsulation (IB-KEM) schemes that are provably secure under the com-
putational bilinear Diffie-Hellman (CBDH) assumption in the standard
model. Our schemes compare favorably to previous results in efficiency.
With delicate modification, our schemes can be strengthened to be full-
identity CCA secure easily.

Keywords: identity based encryption, standard model, CCA security,
CBDH assumption.

1 Introduction

1.1 Background

Security against adaptive chosen ciphertext attack (CCA security for short) is
nowadays considered the commonly accepted security notion for public key en-
cryption (PKE)/identity based encryption (IBE). One of the most important
research direction in this field is to design CCA-secure PKE/IBE schemes based
on weak security assumptions in the standard model.

Cramer and Shoup [7] proposed the first practical CCA-secure PKE scheme
without random oracles. Their construction was later generalized to hash proof
systems [9]. However, all its variants [3, 14–17, 20] inherently rely on decisional
assumption, e.g., the decisional Diffie-Hellman (DDH) assumption, the decisional
bilinear Diffie-Hellman (DBDH) assumption or the decisional quadratic residuos-
ity assumption. CCA security from computational assumptions was considered to
be hard to obtain. Canetti, Halevi and Katz [4] made the breakthrough in 2004.

� Corresponding author.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 275–301, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

276 Y. Chen, L. Chen, and Z. Zhang

They proposed the first practical CCA-secure PKE scheme based on CBDH as-
sumption. Later, Cash et al. [5] presented a variant of Cramer-Shoup scheme [7]
which is CCA-secure based on the strong twin CDH assumption, and in turn
based on the standard CDH assumption. However, n group elements (where the
value n is the bit-length of keys) have to be added into the ciphertext in order to
prove CCA security. Hanaoka and Kurosawa [12] presented a CCA-secure PKE
scheme enjoying the constant size ciphertext based on the CDH assumption from
broadcast encryption. Hofheinz and Kitz [15] presented a construction assuming
the hardness of factoring. Cramer, Hofheinz and Kitz [6] refined the well-known
Naor-Yung paradigm [22] and constructed practical CCA-secure PKE schemes
based on hard search problems, which includes the CDH and RSA type assump-
tions. Wee [24] gave more efficient and general transformations to CCA secure
PKE schemes from extractable hash proof system, which again can be based
on the hardness of CDH, RSA and factoring. Haralambiev, Jager, Kiltz and
Shoup [13] then proposed a number of new PKE schemes that are provably se-
cure under the CDH/CBDH assumption in the standard model, which improved
efficiency of prior schemes from [5, 12].

For the time being, although there are several practical CCA-secure PKE
schemes based on computational assumptions, CCA-secure IBE schemes based
on weak assumptions are rare. This forms the main motivation of our work.

1.2 Our Contributions

In this paper we propose a number of new IB-KEM schemes that are CCA-
secure under the CBDH assumption in the standard model. Our main idea is
to extend the technique of constructing CCA-secure PKE schemes [13] to the
IB-KEM version of Boneh-Boyen “commutative-blinding” IBE scheme (known
as BB1-IBE) [2]. We begin from a basic 1-bit IB-KEM, then extend it to n-bits
IB-KEMs using different methods. As shown in Table 1 at the end of this section,
our schemes improve efficiency of prior scheme [10].

A 1-bit IB-KEM Scheme. We first construct a 1-bit IB-KEM scheme. We
denote it by Scheme 0 and briefly describe it as follows.

Setup : mpk = (g, h,X = ga, X ′, Y),msk = a
KeyGen : sk = (Y aF (I)s, gs),where F (I) = XIh
Encap : C = (gr, (XtX ′)r, F (I)r),where t = TCR(gr)

K = fgl(e(X,Y)r, R)

Decryption only returns K if the ciphertext C = (C1, C2, C3) is consistent, i.e.,
e(C1, X

tX ′) = e(g, C2) ∧ e(C1, F (I)) = e(g, C3). In all other cases it rejects and
returns ⊥. We defer the detailed construction and security proof to Section 3.

In what follows, we give a brief explanation of our strategy to achieve indistin-
guishability of ciphertext under selective-identity CCA attack (IND-sID-CCA)
from two aspects, one is how to obtain selective-identity CCA security, and the
other is how to reduce it to the CBDH assumption.

CCA Secure IBE from CBDH Assumption 277

We first give the intuition behind the CCA security. From the attacker’s view,
the second part of the ciphertext C2 = (XtX ′)r prohibits an adversary from
modifying a valid ciphertext in a meaningful way. From the challenger’s view, the
consistency of ciphertext is publicly verifiable, i.e., anyone could check the con-
sistency of ciphertext with the help of bilinear map. Therefore any inconsistent
ciphertext will be rejected. On the other hand, in the simulation all consistent ci-
phertexts can be classified into the following three types. Type-1 ciphertext is the
one whose t value differs to t∗ of the challenge ciphertext. Type-2 ciphertext is the
one encrypted under an identity different from the challenge identity I∗. Type-3
ciphertext is exactly the challenge ciphertext. The reduction algorithm is able
to decrypt all the consistent ciphertexts correctly by implementing dual all-but-
one technique: set X ′ := X−t∗gd to implement the all-but-one technique (with
respect to t �= t∗) to decrypt Type-1 ciphertexts (t �= t∗); set F (I) := XI−I∗

gz

to implement the all-but-one technique (with respect to I �= I∗) to extract a
private key for all identities but the challenge identity I∗, thus to be able to
decrypt Type-2 ciphertexts (I �= I∗). Type-3 ciphertext (I = I∗ ∧ t = t∗) is
not allowed to be queried according to the definition of selective-identity chosen
ciphertext security model. To summarize, the reduction algorithm can handle
all the decryption queries correctly.

We then give our basic idea about how to reduce the IND-sID-CCA security to
the CBDH assumption. Note that the indistinguishable type security notion is es-
sentially defined as a decisional problem. Considering the gap between decisional
problems and computational problems, it would be difficult to directly reduce the
IND-sID-CCA security to the CBDH assumption. A natural approach is to find
a stepping stone. More specifically, we first reduce the IND-sID-CCA security
to some decisional assumption related to the CBDH assumption, then reduce
the decisional assumption to the CBDH assumption. In this way the IND-sID-
CCA security can be finally reduced to the CBDH assumption. We provide more
details as follows. We select the Goldreich-Levin version decisional BDH (GL-
DBDH) assumption [13] as the stepping stone, which states that there is no PPT
algorithm that can distinguish the two distributions Δbdh = (g,A,B,C,K,R)
and Δrand = (g,A,B,C, U,R). Here (g,A,B,C) are the inputs of a BDH prob-
lem, K is the output of a Goldreich-Levin hardcore predicate with bdh(A,B,C)
and randomness R as input while U is a bit sampled from {0, 1} uniformly ran-
dom. Suppose a reduction algorithm B is asked to solve the GL-DBDH problem.
B simulates a real attack game of Scheme 0 by embedding A into X , embed-
ding B into Y , and embedding C into one part of the challenge ciphertext. We
demonstrate that if there exists an IND-sID-CCA adversary A that can break
the CCA security of Scheme 0, then B can break the GL-DBDH assumption.
The GL-DBDH assumption can be thus reduced to the CBDH assumption ac-
cording to the Goldreich-Levin theorem. Therefore, the IND-sID-CCA security
of Scheme 0 is finally reduced to the CBDH assumption.

We note that Scheme 0 bears a close resemblance to the IB-KEM scheme [18].
The key difference between the two schemes is the derivation of the symmetric
key. In [18] the Encap algorithm directly uses a BDH seed as a symmetric key,

278 Y. Chen, L. Chen, and Z. Zhang

while in Scheme 0 the Encap algorithm uses the Goldreich-Levin hardcore pred-
icate to derive a 1-bit symmetric key from a BDH seed.

Note that the element (XtX ′)r and F (I)r in the ciphertext share the same
randomness r, thus it is possible to further shrink the public parameters size and
the ciphertext size. By using a technique similar to [19], the ciphertext can be
reduced to two group elements at the cost of adding one group element in the
private key and resorting to a stronger assumption, named the modified CBDH
assumption. We denote the resulting scheme by Scheme 0′. The concrete con-
struction and security proof are included in Appendix A.

A Scheme with constant size public parameters. To encapsulate a n-
bits symmetric key, we can follow the standard multiple encapsulations method:
perform the 1-bit IB-KEM n times using independent random coins. We denote
the resulting scheme by Scheme 1 and describe it as follows.

Setup : mpk = (g, h,X = ga, X ′, Y),msk = a
KeyGen : sk = (Y aF (I)s, gs)
Encap : C = (C1, . . . , Cn),where Ci = (gri , (XtX ′)ri , F (I)ri)

with t = TCR(Ci,1, . . . , Cn,1).
K = (K1, . . . ,Kn),where Ki = fgl(e(X,Y)ri , R)

We defer the detailed construction and security proof to Section 4.

A Scheme with constant size ciphertext. In contrast to the multiple en-
capsulations method used in Scheme 1, we may also adopt the randomness-
reusing technique: include n group elements (Y1, . . . , Yn) into mpk (instead of a
solo group element Y in previous schemes), then generate n BDH seeds using
a single randomness r with respect to n different bases e(X,Yi). We denote the
resulting scheme by Scheme 2 and describe it as follows.

Setup : mpk = (g, h,X = ga, X ′, Y1, . . . , Yn),msk = a
KeyGen : sk = (ski, . . . , skn),where ski = (Y a

i F (I)si , gsi)
Encap : C = (gr, (XtX ′)r, F (I)r),where t = TCR(gr)

K = (K1, . . . ,Kn),where Ki = fgl(e(X,Yi)
r, R)

We defer the detailed construction and security proof to Section 5.

Generalized Scheme 1. Scheme 1 enjoys the constant-size mpk but its ci-
phertext size is linear in n, while Scheme 2 enjoys the constant-size ciphertext
but its mpk size is linear in n. It is interesting to know if there exists a trade-off
between mpk size and ciphertext size. From the above two schemes, it is easy
to see that when generating n pair-wise independent BDH seeds, the roles of Yi

and the randomness rj are exchangeable. With this observation, we propose the
following generalized scheme that offers a trade-off between mpk and ciphertext.
We denote it by Scheme 3 and described it as follows. The detailed construction
and security proof are deferred to Section 6.

CCA Secure IBE from CBDH Assumption 279

Setup : mpk = (g, h,X = ga, X ′, Y1, . . . , Yn1),msk = a
KeyGen : sk = (ski, . . . , skn1),where ski = (Y a

i F (I)si , gsi)
Encap : C = (C1, . . . , Cn2),where Ci = (gri , (XtX ′)ri , F (I)ri)

with t = TCR(Ci,1, . . . , Cn2,1)
K = (Ki,j) for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, where Ki,j = fgl(e(X,Yi)

rj , R)

In the above generalized scheme, (Y1, . . . , Yn1) are n1 independent elements from
G. When performing encapsulation, the Encap algorithm picks n2 = n/n1 in-
dependent random integers (r1, . . . , rn2) from Zp, then mix-and-match them to
generate n pair-wise independent BDH seeds of the form e(X,Yi)

rj . If we set
n1 = n2 =

√
n, the yielding scheme has mpk of O(

√
n) group elements and ci-

phertext of O(
√
n) group elements. Scheme 1 and Scheme 2 can be viewed as spe-

cial cases of the generalized scheme with the parameter choice (n1 = 1, n2 = n)
and (n1 = n, n2 = 1), respectively. Interestingly, we find that the above trade-off
method can naturally apply to the KEM schemes proposed in [12,13,24] and the
IB-KEM scheme presented in [10]. Particularly, when implementing the trade-off
method to the KEM scheme presented in [13, Section 3], the resulting scheme is
exactly the one constructed by Liu et al. [21].

GeneralizedScheme 2. Observe that one BDH seed bdh(A,B,C) is determined
by three inputs, then mpk and ciphertext can be further shrunk to O(3

√
n) group

elements by using the mix-and-match method twice. More precisely, instead of
generating the BDH seed like e(X,Yi)

rj as the above generalized scheme, we can
generate the BDH seeds of the form e(Yi, Yj)

rk . That is, first self mix-and-match
the set (Y1, . . . , Yn1), thenmix-and-match the resultingn1(n1−1)/2 bases e(Yi, Yj)
(i �= j) with n2 random integers (r1, . . . , rn2). The self mix-and-match method is
better than the “implicitly defining” method used in [13, Section 5.3] since it trav-
els all the binary combinatorial pairs (Yi, Yj) over the set (Y1, . . . , Yn1), thus it can
generate the same number of bases with smaller mpk. Based on this observation,
we propose another generalized scheme called Scheme 4 as follows. The detailed
construction and security proof are deferred to Section 7.

Setup : mpk = (g, h,X,X ′, Y1 = gy1 , . . . , Yn1 = gyn1),msk = (y1, . . . , yn1)
KeyGen : sk = (skij) for 1 ≤ i < j ≤ n1 where skij = (gyiyjF (I)sij , gsij)
Encap : C = (C1, . . . , Cn2), where Ck = (grk , (XtX ′)rk , F (I)rk)

with t = TCR(Ci,1, . . . , Cn2,1)
K = (Ki,j,k := fgl(e(Yi, Yj)

rk , R)) for 1 ≤ i < j ≤ n1, 1 ≤ k ≤ n2

To generate n pair-wise independent BDH seeds we require that n = n1(n1 −
1)n2/2. Let n1 = n2, then the public parameters and the ciphertext are both of
O(3

√
n) groups elements. Not surprisingly, this trade-off technique can also apply

to the KEM scheme [13, Section 5.3] and the IB-KEM scheme [10].

1.3 Related Work

Recently, Galindo [10] gave an IND-sID-CCA secure IB-KEM based on the
CBDH assumption in the standard model by integrating the KEM scheme [12]

280 Y. Chen, L. Chen, and Z. Zhang

Table 1. Efficiency comparison of the proposed schemes

Scheme Ciphertext Efficiency [# exp, # pairing] Key Sizes
Overhead Encap Decap |mpk| |msk|

Galindo [10] 4× |GT | [4, 0] [2, 2n + 2] (2n + 9) × |G| (n + 4)× |Zp|
Scheme 1 (§4) 3n× |GT | [3n + 1, 0] [1, 4n] 5× |G| 1× |Zp|
Scheme 2 (§5) 3× |GT | [4, 0] [1, 2n + 2] (n + 4) × |G| 1× |Zp|
Scheme 3 (§6) 3n2 × |GT | [3n2 + 1, 0] [1, 2n + 2n2] (n1 + 4) × |G| 1× |Zp|
Scheme 4 (§7) 3n2 × |GT | [3n2 + 1, 0] [1, 2n + 2n2] (n1 + 4) × |G| n1 × |Zp|

In Scheme 3 we have n = n1n2, then n1 and n2 can be set to integers around
O(
√
n). In Scheme 4 we have n1(n1−1)n2/2, then n1 and n2 can be set to integers

around O(3
√
n).

with the BB1-IBE scheme [2]. Galindo’s scheme is not conceptually simple due
to the underlying KEM scheme [12], and its master secret consists of O(n) group
elements that might be impractical for some applications. Haralambiev et al. [13]
mentioned that their KEM scheme with public key of size O(

√
n) can extend

to selective-identity secure BB1-IBE scheme [2]. They sketched their ideas as
follows: the IBE scheme has the same parameters as their KEM scheme [13, Sec-
tion 5.3], and a private key for identity I contains 2n group elements of the

form (gziz
′
j · (XIX ′)sij , gsij) ∈ G2. However, we remark that a private key for

identity I should be (gziz
′
j · F (I)sij , gsij), where F (I) is the Boneh-Boyen hash.

Besides, the master secret key of their scheme is still a bit large (2
√
n elements

from Zp), which may render it less practical in use. Regarding to this, it would
be very interesting to construct IBE schemes with short master secret key while
provably secure under weak assumptions in the standard model.

2 Preliminaries

2.1 Notation

We use standard asymptotic notation O and o to denote the growth of functions.
We denote with poly(κ) an unspecified function f(κ) = O(κc) for some constant
c. We denote with negl(κ) an unspecified function f(κ) such that f(κ) = o(κ−c)
for every constant c. Throughout the paper, a probabilistic polynomial-time
(PPT) algorithm is a randomized algorithm that runs in time poly(κ). For a
positive integer n, we denote with [n] the set [n] = {1, . . . , n}. For a finite set S,

we use s
R←− S to denote that s is sampled from the set S uniformly at random.

2.2 Identity Based Key Encapsulation Mechanisms

An identity-based key encapsulation mechanism (IB-KEM) [1] consists of four
PPT algorithms as follows:

Setup: takes the security parameter 1κ as input and outputs the public param-
eter mpk and the master secret msk. Intuitively, mpk is the system parameters

CCA Secure IBE from CBDH Assumption 281

which will be public known, while the msk will be known only to the thrusted
third party, called Private Key Generator.

KeyGen: takes mpk, msk, an identity I as input and outputs the associated
private key sk.

Encap: takes mpk and an identity as input and outputs a pair (C,K) where C
is the ciphertext and K ∈ K is a data encryption key.

Decap: takes mpk, private key sk, and a ciphertext C as input and outputs the
data encryption key K ∈ K.

We require that if (mpk,msk)
R←− Setup(1κ), sk ← KeyGen(mpk,msk, I), and

(C,K) ← Encap(mpk, I) then we have Decap(mpk, sk, C) = K.

2.3 Chosen Ciphertext Security

CCA-security of an IB-KEM is defined by the following game playing between
an adversary A and a challenger CH.

Setup. CH takes a security parameter 1κ and runs the KeyGen algorithm. It
gives the adversary the resulting system parameters. It keeps the master key to
itself.

Phase 1. Amay make polynomially-many private key queries and decapsulation
queries. CH answers these queries by running the algorithm KeyGen to extract
the associated private keys.

Challenge. Once the adversary decides that Phase 1 is over it outputs an iden-
tity I∗ on which it wishes to be challenged. The only constraint is that I∗

did not appear in any private key extraction query in Phase 1. CH computes
(C∗,K∗

0) = Encap(mpk, I∗), samples K∗
1 uniform randomly from K. Finally,

CH picks a random bit β ∈ {0, 1} and sends (C∗,K∗
β) as the challenge to the

adversary.

Phase 2. A issues more private key queries with the restriction that 〈I〉 �= 〈I∗〉
and the decapsulation queries with the restriction that 〈I, C〉 �= 〈I∗, C∗〉.
Guess. Finally, A outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adver-
saryA’s advantage over the IB-KEM scheme E by AdvCCAE,A (κ) =

∣∣Pr[β = β′]− 1
2

∣∣,
where κ is the security parameter. The probability is over the random bits used
by the challenger and the adversary.

Definition 2.1. We say that an IB-KEM scheme E is IND-ID-CCA secure if for
any PPT IND-ID-CCA adversary A the advantage AdvCCAE,A (κ) is negligible.

Selective-identity CCA-security [4] can be defined in a similar game as the above
game of full-identity CCA-security, except that the adversary needs to output a

282 Y. Chen, L. Chen, and Z. Zhang

target identity at the very beginning of the game. We refer to such an adversary
A as an IND-sID-CCA adversary. We define adversary A’s advantage over the
IB-KEM scheme E by AdvCCAE,A (κ) =

∣∣Pr[β = β′]− 1
2

∣∣, where κ is the security
parameter. The probability is over the random bits used by the challenger and
the adversary.

Definition 2.2. We say that an IB-KEM scheme E is IND-sID-CCA secure if
for any PPT IND-sID-CCA adversary A the advantage AdvCCAE,A (κ) is negligible.

2.4 Target Collision Resistant Hash Function

TCR = (TCRk)k∈N is a family of keyed hash function TCRs
k : G → Zp for each

k-bit key s. For an adversary H, its tcr-advantage AdvTCR
H (k) is defined as:

Pr[TCRs(c∗) = TCRs(c) ∧ c �= c∗ : s
R←− {0, 1}k; c∗ R←− G; c ← H(s, c∗)]

Note that TCR is a weaker requirement than collision-resistance, so any prac-
tical collision-resistant function can be used. To simplify notation we will drop
the superscript s and simply use TCR hereafter. Additionally, we can define
multi-inputs TCR function in a natural way, that is TCRs

k : (G)n → Zp. The
corresponding tcr-advantage of an adversaryH is defined in a similar way except
substituting c with (c1, . . . , cn) and c∗ with (c∗1, . . . , c

∗
n).

2.5 Computational Bilinear Diffie-Hellman Assumption

Let G be a cyclic group generated by g and equipped with a bilinear map e :
G×G → GT . Define

bdh(A,B,C) := T, where A = ga, B = gb, C = gc, and T = e(g, g)abc

The computational bilinear Diffie-Hellman (CBDH) problem is computing the
value bdh(A,B,C) given random A,B,C ∈ G. The CBDH assumption asserts
that the CBDH problem is hard, that is, Pr[A(A,B,C) = bdh(A,B,C)] ≤
negl(κ) for all PPT algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [11] gives us the following
lemma for a Goldreich-Levin hardcore predicate fgl : GT × {0, 1}u → {0, 1}.

Lemma 2.3. Let G be a prime order group generated by g equipped with a pair-

ing e : G×G → GT . Let A,B,C
R←− G be random group elements, R

R←− {0, 1}u,
and let K = fgl(bdh(A,B,C), R). Let U

R←− {0, 1} be uniformly random. Sup-
pose there exists a PPT algorithm B distinguishing the distributions Δbdh =
(g,A,B,C,K,R) and Δrand = (g,A,B,C, U,R) with non-negligible advantage.
Then there exists a PPT algorithm computing bdh(A,B,C) on input (A,B,C)
with non-negligible success probability, hence breaking the CBDH problem.

CCA Secure IBE from CBDH Assumption 283

We assume that the global public parameters known to all the parties consist
of the pairing parameters (e,G,GT , g, p) ← GroupGen(1κ), the descriptions of
a target collision resistant hash function TCR and a suitable Goldreich-Levin
hardcore predicate fgl(·, R) with randomness R to extract one pseudorandom bit
from a BDH seed. It is well known that an IB-KEM scheme compares favorably
to an IBE scheme in many ways [1, 8], and IB-KEM schemes can be readily
bootstrapped to full functional IBE schemes by coupling with a DEM having
appropriate properties. Therefore in this paper, we focus on the constructions of
IB-KEM.

3 A 1-Bit IB-KEM Scheme

In this section we describe an 1-bit IB-KEM which is obtained by extending the
techniques of [13] to the Boneh-Boyen IBE scheme [2]. The resulting IB-KEM
scheme is IND-sID-CCA secure based on the CBDH assumption. It is defined as
follows.

Setup. Pick a
R←− Zp, h,X

′, Y R←− G, set X = ga, and define the function
F : Zp → G as I $→ XIh. The public parameters and the master secret key are
given by

mpk = (g, h,X,X ′, Y) and msk = a

KeyGen. To generate a private key for an identity I ∈ Zp, pick s
R←− Zp and

output
sk = (Y aF (I)s, gs)

Encap. Pick r
R←− Zp, then generate the ciphertext C = (C1, C2, C3) as C1 = gr,

C2 = (XtX ′)r with t = TCR(C1), and C3 = F (I)r. Compute

K = fgl(e(X,Y)r , R)

Decap. To decapsulate ciphertext (C1, C2, C3) under identity I, first compute
t = TCR(C1). If e(C1, X

tX ′) �= e(g, C2) or e(C1, F (I)) �= e(g, C3) then return
⊥. Take the private key sk and the ciphertext C = (C1, C2, C3) as input and

outputs K = fgl

(
e(C1,sk1)
e(C3,sk2)

, R
)
. Indeed, for a valid ciphertext, we have

e(C1, sk1)

e(C3, sk2)
=

e(gr, Y aF (I)s)

e(F (I)r , gs)
= e(X,Y)r.

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone
can verify a ciphertext being consistent or not.

Theorem 3.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

284 Y. Chen, L. Chen, and Z. Zhang

Proof. We proceed in a sequence of games. We write (C∗
1 , C

∗
2 , C

∗
3) to denote the

challenge ciphertext with the corresponding keyK∗ of identity I∗, denote with U∗

the random key chosen by the IND-sID-CCA experiment, and set t∗ = TCR(C∗
1).

Let Wi denote the event that A outputs β′ such that β′ = β in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAA

KEM(κ) (1)

Game 1. Let E01 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, C
′
2, C

′
3〉 with C′

1 = C∗
1 in Phase 1. Note that the probability that the

adversary submits a decapsulation query such that C′
1 = C∗

1 before seeing the
challenge ciphertext is bounded by Qd/p, where Qd is the number of decapsula-
tion queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤ Qd/p ≤ negl(κ).
We define Game 1 exactly the same as Game 0 except assuming that E01 never
occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ) (2)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C′
1, C

′
2, C

′
3〉 will

be rejected if C′
1 = C∗

1 . Since if C′
2 �= C∗

2 or C′
3 �= C∗

3 , the decapsulation query
will be rejected for the inconsistency of the ciphertext. If C′

2 = C∗
2 and C′

3 = C∗
3 ,

it will be rejected by definition of IND-sID-CCA game.
Game 2. Let E12 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, C
′
2, C

′
3〉 with C′

1 �= C∗
1 and TCR(C′

1) = TCR(C∗
1). By the target collision

resistance of TCR, we have Pr[E12] ≤ negl(κ). We define Game 2 exactly the
same as Game 1 except assuming that E12 never occurs in Game 2. It follows
that

|Pr[W2]− Pr[W1]| ≤ negl(κ) (3)

We claim that

Pr[W2] =
1

2
+ negl(κ) (4)

We prove this statement by letting an adversary against the GL-DBDH as-
sumption simulate the challenger in Game 2. B is given a challenge instance
(g,A,B,C, L,R), where L is either fgl(bdh(A,B,C), R) or randomly sampled
from {0, 1}. B plays the game with an adversary A against the IND-sID-CCA
security of the 1-bit IB-KEM scheme.

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B picks d
R←− Zp, and then sets X = A = ga, X ′ = X−t∗gd, Y = B = gb,

where t∗ = TCR(C). B picks z
R←− Zp and defines h = X−I∗

gz. It gives A
the public parameters mpk = (g, h,X,X ′, Y). The corresponding msk, which is
unknown to B is a. The function F is essentially of the form

F (I) = XIh = XI−I∗
gz

CCA Secure IBE from CBDH Assumption 285

Phase 1 - Private Key Queries. A issues up to Qe private key queries with
the only restriction that 〈I〉 �= 〈I∗〉. To respond to a private query for identity

I ∈ Zp, B generates sk as follows: for sk� algorithm B picks s
R←− Zp and sets

sk1 = Y
−z

I−I∗ F (I)s, sk2 = gsY
−1

I−I∗

Let s̃ = s− b/(I − I∗). It is easy to see that sk is a valid random private key for
I since

sk1 = Y
−z

I−I∗ (XI−I∗
gz)s = Y a(XI−I∗

gz)s−
b

I−I∗ = Y aF (I)s̃�

sk2 = gsY
1

I−I∗ = gs̃

where s, s̃ are uniform in Zp. This matches the definition for a private key for
I. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
〈I, C1, C2, C3〉, B responds as follows. If I �= I∗, B uses the corresponding private
key to handle it. Otherwise, B computes t = TCR(C1) and tests the consistency
of the ciphertext by checking

e(C1, X
tX ′) ?

= e(g, C2) ∧ e(C1, F (I))
?
= e(g, C3)

If the equality holds, B sets K := fgl(e(X̃, Y), R). The decapsulation is correct

by observing that X̃ = (C2/C
d
1)

1/(t−t∗) = (Xr(t−t∗)grd/grd)1/(t−t∗) = Xr =
dh(X,C1). By the definition of Game 2 we know that when I = I∗, if C1 �= C∗

1

then we have t �= t∗. Therefore B can answer all decapsulation queries issued by
A correctly.

Challenge. B sets C∗
1 = C (which implicitly assigns r = c), C∗

2 = Cd, and C∗
3 =

Cz. The challenge ciphertext is C∗ = (C∗
1 , C

∗
2 , C

∗
3). Note that this is a consistent

ciphertext since we have (Xt∗X ′)r = (gd)r = Cd and F (I∗)r = (gz)r = Cz .
Then B sets K∗ = L and gives A the challenge (C∗,K∗).

Phase 2. In Phase 2, all the queries are responded in the same way as in Phase
1 except the decapsulation query 〈I∗, C∗〉 will be rejected.

This finishes the description of simulation. It is easy to see that B simulates the
challenger perfectly. If A’s advantage is not negligible, then B has non-negligible
advantage against the GL-DBDH problem. According to Lemma 2.3, B further
implies an algorithm with non-negligible advantage against the CBDH problem,
which contradicts to the CBDH assumption. Therefore, we prove the statement.
The theorem follows by combining (1)-(4). ��

4 CCA Secure IB-KEM with Constant Size Public
Parameters

In this section we present a n-bit IB-KEM scheme based on the 1-bit IB-KEM
scheme using multiple encapsulations method.

286 Y. Chen, L. Chen, and Z. Zhang

Setup. The same as Scheme 0.

KeyGen. The same as Scheme 0.

Encap. Pick r1, . . . , rn
R←− Zp, then compute Ci,1 = gri , t = TCR(C1,1, . . . , Cn,1),

Ci,2 = (XtX ′)ri , Ci,3 = F (I)ri . The final ciphertext is C = (C1, . . . , Cn), where
Ci = (Ci,1, Ci,2, Ci,3). Compute K = (K1, . . . ,Kn), where

Ki = fgl(e(X,Y)ri , R) for 1 ≤ i ≤ n.

Decap. To decapsulate ciphertext C = (C1, . . . , Cn) under identity I, first com-
pute t = TCR(C1,1, . . . , Cn,1). If e(Ci,1, X

tX ′) �= e(g, Ci,2) or e(Ci,1, F (I)) �=
e(g, Ci,3) for any i ∈ [n] then return ⊥. Take the private key sk = (sk1, sk2) and
the ciphertext C = (C1, . . . , Cn) as input and output

Ki = fgl

(
e(Ci,1, sk1)

e(Ci,3, sk2)
, R

)
for 1 ≤ i ≤ n.

Indeed, for a valid ciphertext, we have

e(Ci,1, sk1)

e(Ci,3, sk2)
=

e(gri , Y aF (I)s)

e(F (I)ri , gs)
= e(X,Y)ri for 1 ≤ i ≤ n.

Theorem 4.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument
with the proof of Scheme 0. For completeness we put the proof in Appendix B.

5 CCA Secure IB-KEM with Constant Size Ciphertext

In this section we present a n-bit IB-KEM scheme based on the 1-bit IB-KEM
scheme using the randomness-reuse technique.

Setup. Pick a
R←− Zp, h,X

′, Y1, . . . , Yn
R←− G, setX = ga, and define the function

F : Zp → G as I $→ XIh. The mpk and the msk are given by

mpk = (g, h,X,X ′, Y1, . . . , Yn) and msk = a

KeyGen. To generate a private key for an identity I ∈ Zp, pick s1, . . . , sn
R←− Zp

and output sk = (sk1, . . . , skn), where

ski = (Y a
i F (I)si , gsi) for 1 ≤ i ≤ n.

Encap. Pick r
R←− Zp, then generate the ciphertext C = (C1, C2, C3) as C1 = gr,

C2 = (XtX ′)r with t = TCR(C1), and C3 = F (I)r . Compute K = (K1, . . . ,Kn),
where

Ki = fgl(e(X,Yi)
r, R) for 1 ≤ i ≤ n.

CCA Secure IBE from CBDH Assumption 287

Decap. To decapsulate ciphertext (C1, C2, C3) under identity I, first compute
t = TCR(C1). If e(C1, X

tX ′) �= e(g, C2) or e(C1, F (I)) �= e(g, C3) then return
⊥. Take the private key sk = (sk1, . . . , skn) and the ciphertext C = (C1, C2, C3)
as input and output

Ki = fgl

(
e(C1, ski,1)

e(C3, ski,2)
, R

)
for 1 ≤ i ≤ n.

Indeed, for a valid ciphertext, we have

e(C1, ski,1)

e(C3, ski,2)
=

e(gr, Y a
i F (I)si)

e(F (I)r, gsi)
= e(X,Yi)

r for 1 ≤ i ≤ n.

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone
could verify a ciphertext being consistent or not.

Theorem 5.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument
with the proof of Scheme 0. For completeness we put the proof in Appendix C.

6 Generalized Scheme 1

In this section we present the first generalized scheme which shows that there
exists a trade-off between the ciphertext size and the public parameters size. We
assume that n is the product of n1 and n2. The generalized scheme is defined as
follows.

Setup. The same as Scheme 2 except we substitute n with n1.

KeyGen. The same as Scheme 2 except that we substitute n with n1.

Encap. Pick r1, . . . , rn2

R←− Zp, and set Cj,1 = grj for 1 ≤ j ≤ n2. Set
t = TCR(C1,1, . . . , Cn2,1), Cj,2 = (XtX ′)rj , Cj,3 = F (I)rj for 1 ≤ j ≤ n2.
The ciphertext is C = (C1, . . . , Cn2) where Cj = (Cj,1, Cj,2, Cj,3). Compute the
symmetric key K = (K1, . . . ,Kn), where

K(i−1)×n1+j = fgl(e(X,Yi)
rj , R) for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Decap. To decapsulate ciphertext C = (C1, . . . , Cn2) encrypted under iden-
tity I, first compute t = TCR(C1,1, . . . , Cn2,1). If e(Cj,1, X

tX ′) �= e(g, Cj,2) or
e(Cj,1, F (I)) �= e(g, Cj,3) for some j ∈ [n2] then return ⊥. Take the private key
sk = (sk1, . . . , skn1) and C = (C1, . . . , Cn2) as input and output

K(i−1)×n1+j = fgl

(
e(Cj,1, ski,1)

e(Cj,3, ski,2)
, R

)
where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Indeed, for a valid ciphertext, we have

e(Cj,1, ski,1)

e(Cj,3, ski,2)
=

e(grj , Y a
i F (I)si)

e(F (I)rj , gsi)
= e(X,Yi)

rj for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

288 Y. Chen, L. Chen, and Z. Zhang

Particularly, let n be a perfect square and n1 = n2 =
√
n, we obtain an IB-KEM

scheme with O(
√
n) public parameters size and O(

√
n) ciphertext size.

Theorem 6.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument
with the proof of Scheme 0. For completeness we put the proof in Appendix D.

7 Generalized Scheme 2

In this section we present the second generalized scheme. We assume that n =
n1(n1 − 1)n2/2.

Setup. mpk and msk are given by

mpk = (g, h,X,X ′, Y1 = gy1 , . . . , Yn1 = gyn1 , F) and msk = (y1, . . . , yn1)

KeyGen. To generate a private key sk = (skij) for an identity I ∈ Zp, pick

sij
R←− Zp and set skij = (gyiyjF (I)sij , gsij) for 1 ≤ i < j ≤ n1.

Encap. Pick r1, . . . , rn2

R←− Zp, and set Ck,1 = grk for 1 ≤ k ≤ n2. Set t =
TCR(C1,1, . . . , Cn2,1), Cj,2 = (XtX ′)rj , Cj,3 = F (I)rj for 1 ≤ j ≤ n2. The
ciphertext is C = (C1, . . . , Cn2) where Ck = (Ck,1, Ck,2, Ck,3). Compute the
symmetric key K = (Ki,j,k), where

Ki,j,k = fgl(e(Yi, Yj)
rk , R) for 1 ≤ i < j ≤ n1 and 1 ≤ k ≤ n2.

Decap. To decapsulate ciphertext C = (C1, . . . , Cn2) encrypted under iden-
tity I, first compute t = TCR(C1,1, . . . , Cn2,1). If e(Ck,1, X

tX ′) �= e(g, Ck,2) or
e(Ck,1, F (I)) �= e(g, Ck,3) for some k ∈ [n2] then return ⊥. Take the private key
sk = (skij) and C = (C1, . . . , Cn2) as input and output

Ki,j,k = fgl

(
e(Ck,1, skij,1)

e(Ck,3, skij,2)
, R

)
where 1 ≤ i < j ≤ n1 and 1 ≤ k ≤ n2.

Indeed, for a valid ciphertext, we have

e(Ck,1, skij,1)

e(Ck,3, skij,2)
=

e(grk , gyiyjF (I)sij)

e(F (I)rk , gsij)
= e(Yi, Yj)

rk for 1 ≤ i < j ≤ n1, 1 ≤ k ≤ n2.

Theorem 7.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The proof is similar to that of Scheme 1 in Section 4, Scheme 2 in Section 5,
and Generalized Scheme 1 in Section 6, except that for a given CBDH challenge
instance (A,B,C) the reduction algorithm first sets Yi = A for some i ∈ [n1]
then sets X = Ah for a random chosen exponent h instead of directly setting
X = A as before. For the limit of space, we omit the details here.

CCA Secure IBE from CBDH Assumption 289

8 Extensions

Since BB1-IBE [2] and Waters-IBE [23] share the same commutative-blinding
framework, thus we can enhance our IB-KEM schemes with only selective-
identity security to IB-KEM schemes with full-identity security by using the
Waters-IBE as the underlying IBE scheme. The security proofs are somewhat
straightforward by composing the proofs for IB-KEM schemes in Section 4, 5,
and 6 based on BB1-IBE and the proofs for Waters-IBE [18, 23]. For a concrete
example, we sketch the proof of Scheme 1∗, which is the resulting scheme of re-
placing the underlying IBE scheme of Scheme 1 with Waters-IBE, as follows. The
proof is conducted by a sequence of games. Game 0 is the standard IND-ID-CCA
game. Game 1 is defined like Game 1 except that the reduction algorithm will
terminate the simulation due to regular abort or artificial abort. Game 2, Game
3, and Game 4 are defined like Game 1, Game 2, and Game 3 in the proof for
Scheme 1, respectively. The argument of the indistinguishability between Game
3 and Game 4 is similar to that between Game 2 and Game 3 in the proof for
Scheme 1. Then the security result immediately follows.

Acknowledgments. We would like to thank Jiang Zhang, Cheng Chen, and
Qiong Huang for helpful discussions. The work of the third author is supported
in part by the National Natural Science Foundation of China under grant Nos.
60970110, 61033014, 61021004, 61170227, 61172085, 61103221, 11061130539 and
61161140320 and Science Foundation Project of Jiang Su Province under grant
No. BM20101014.

References

1. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions
of identity-based and certificateless kems. Journal of Cryptology 21(2), 178–199
(2008)

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329 (2005)

4. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

5. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

6. Cramer, R., Hofheinz, D., Kiltz, E.: A Twist on the Naor-Yung Paradigm and Its
Application to Efficient CCA-Secure Encryption from Hard Search Problems. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg
(2010)

290 Y. Chen, L. Chen, and Z. Zhang

7. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2001)

9. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

10. Galindo, D.: Chosen-Ciphertext Secure Identity-Based Encryption from Computa-
tional Bilinear Diffie-Hellman. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 367–376. Springer, Heidelberg (2010)

11. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Comput-
ing, STOC, pp. 25–32. ACM (1989)

12. Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key En-
cryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg
(2008)

13. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-
Key Encryption from Computational Diffie-Hellman in the Standard Model. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18.
Springer, Heidelberg (2010)

14. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

15. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332.
Springer, Heidelberg (2009)

16. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

17. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed
Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

18. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation Without Random Oracles. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006)

19. Kiltz, E., Vahlis, Y.: CCA2 Secure IBE: Standard Model Efficiency through Au-
thenticated Symmetric Encryption. In: Malkin, T. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 221–238. Springer, Heidelberg (2008)

20. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

21. Liu, Y., Li, B., Lu, X., Jia, D.: Efficient CCA-Secure CDH Based KEM Balanced
between Ciphertext and Key. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011.
LNCS, vol. 6812, pp. 310–318. Springer, Heidelberg (2011)

22. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the Twenty Second Annual ACM Symposium
on Theory of Computing - STOC, pp. 427–437. ACM (1990)

CCA Secure IBE from CBDH Assumption 291

23. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

24. Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg
(2010)

A A Variant of Scheme 0

In this section we describe a variant of Scheme 0 with shorter mpk and cipher-
text at the cost of relying on a slightly strong assumption, named the modified
computational bilinear Diffie-Hellman assumption.

A.1 The Modified Computational Bilinear Diffie-Hellman
Assumption

Let G be a cyclic group generated by g and equipped with a bilinear map e :
G×G → GT . Define

mbdh(A,B,B′, C) := T, where A = ga, B = gb, B′ = gb
2

, C = gc, T = e(g, g)abc

The modified computational BDH (mCBDH) problem is computing the value

mbdh(A,B,B′, C) given A,B,B′, C ∈ G where a, b, c
R←− Zp. Compared to the

BDH problem, the mBDH problem furthermore provide the adversary with the
element gb

2

. The mCBDH assumption asserts that the mCBDH problem is hard,
that is, Pr[A(A,B,B′, C) = mbdh(A,B,B′, C)] ≤ negl(κ) for all PPT algo-
rithms A.

Lemma 1.1. Let G be a prime order group generated by g equipped with a pair-

ing e : G×G → GT . Let a, b, c
R←− Zp be random integers, R

R←− {0, 1}u, and let

K = fgl(bdh(A,B,C), R). Let U
R←− {0, 1} be uniformly random. Suppose there

exists a PPT algorithm B distinguishing the distributions

Δmbdh = (g,A,B,B′, C,K,R) and Δrand = (g,A,B,B′, C, U,R)

with non-negligible advantage. Then there exists a PPT algorithm computing
bdh(A,B,C) on input (g,A,B,B′, C) with non-negligible success probability,
hence breaking the mCBDH assumption.

Setup. Pick a
R←− Zp, and then set X = ga. Pick h, Y

R←− G. Define the function
F : Zp → G as I $→ XIh. The public parameters and the master secret key are
given by

mpk = (g, h,X, Y) and msk = a

KeyGen. To generate a private key for an identity I ∈ Zp, pick s
R←− Zp and

output sk = (Y aF (I)s, g−s, Y s).

Encap. Pick r
R←− Zp, then compute C1 = gr, C2 = (F (I)Y t)r with t =

TCR(C1). Compute K = fgl(e(X,Y)r, R).

292 Y. Chen, L. Chen, and Z. Zhang

Decap. To decapsulate ciphertext (C1, C2) under identity I, first compute t =
TCR(C1). If e(C1, F (I)Y t) �= e(g, C2) then return ⊥. Otherwise, take the private
key sk and C = (C1, C2) as input, compute K = fgl (e(C1, sk1sk

t
3)e(C2, sk2), R).

Indeed, for a valid ciphertext C = (C1, C2), we have

e(C1, sk1sk
t
3)e(C2, sk2) = e(gr, Y aF (I)sY st)e(F (I)rY rt, g−s) = e(X,Y)r

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone
could verify a ciphertext being consistent or not.

Theorem 1.2. Let TCR be a target collision-resistant hash function and sup-
pose that the mCBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

Proof. We proceed in a sequence of games. We write (C∗
1 , C

∗
2) to denote the chal-

lenge ciphertext with the corresponding key K∗ of identity I∗, denote with U∗

the random key chosen by the IND-sID-CCA experiment, and set t∗ = TCR(C∗
1).

Let Wi denote the event that A outputs β′ such that β′ = β in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAA

KEM(κ) (5)

Game 1. Let E01 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, C
′
2〉 with C′

1 = C∗
1 in Phase 1. Note that the probability that the ad-

versary submits a decapsulation query such that C′
1 = C∗

1 before seeing the
challenge ciphertext is bounded by Qd/p, where Qd is the number of decapsula-
tion queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤ Qd/p ≤ negl(κ).
We define Game 1 exactly the same as Game 0 except assuming that E01 never
occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ) (6)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C′
1, C

′
2〉 will be

rejected if C′
1 = C∗

1 . Since if C
′
2 �= C∗

2 , the decapsulation query will be rejected for
the inconsistency of the ciphertext. If C′

2 = C∗
2 , it will be rejected by definition

of IND-sID-CCA game.

Game 2. Let E12 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, C
′
2〉 with C′

1 �= C∗
1 and TCR(C′

1) = TCR(C∗
1). By the target collision

resistance of TCR, we have Pr[E12] ≤ negl(κ). We define Game 2 exactly the
same as Game 1 except assuming that E12 never occurs in Game 2. It follows
that

|Pr[W2]− Pr[W1]| ≤ negl(κ) (7)

We claim that

Pr[W2] =
1

2
+ negl(κ) (8)

CCA Secure IBE from CBDH Assumption 293

We prove this statement by letting an algorithm B against the GL-mDBDH
assumption simulate the challenger in Game 2. Suppose B is given a challenge
instance (g,A,B,B′, C, L,R), where L is either uniform randomly sampled from
{0, 1} or fgl(mbdh(A,B,B′, C), R). B plays Game 2 with an adversaryA against
the IB-KEM scheme as follows.

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B picks d
R←− Zp, and then sets X = A = ga, Y = B = gb, compute t∗ =

TCR(C). B picks d
R←− Zp and defines h = X−I∗

Y −t∗gd. It gives A the public
parameters mpk = (g, h,X, Y). The corresponding msk, which is unknown to B
is a. The function F is essentially of the form

F (I) = XIh = XI−I∗
Y −t∗gd

Phase 1 - Private Key Queries. A issues up to Qe private key queries with
the only restriction that 〈I〉 �= 〈I∗〉. To respond to a private query for identity
I ∈ Zp, B generates sk as follows: pick a random integer s ∈ Zp and sets

sk1 = Y
−d

I−I∗ B′ t∗
I−I∗ (XI−I∗

Y −t∗gd)s, sk2 = g−sY
1

I−I∗ , sk3 = Y sB′ −1
I−I∗

Let s̃ = s− b/(I − I∗). It is easy to see that sk is a valid private key for I since

sk1 = Y
−d

I−I∗ B′ t∗
I−I∗ (XI−I∗

Y −t∗gd)s = Y a(XI−I∗
Y −t∗gd)s−

b
I−I∗ = Y aF (I)s̃

sk2 = g−sY
1

I−I∗ = g−s+ b
I−I∗ = g−s̃

sk3 = Y sB′ −1
I−I∗ = Y s− b

I−I∗ = Y s̃

where s, s̃ are uniform in Zp. This matches the definition for a private key for
I. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
〈I, C1, C2〉, B responds as follows. If I �= I∗, B uses the corresponding private
key to handle it. Otherwise, B computes t = TCR(C1) and tests the consistency
of the ciphertext by checking

e(C1, F (I)Y t)
?
= e(g, C2)

If the above equality holds, B sets K := fgl(e(Ỹ , X), R). The answer is cor-

rect by observing that Ỹ = (C2/(C
d
1)

1
d(t−t∗) = (Y (t−t∗)rgdr/grd)

1
d(t−t∗) = Y r =

dh(Y, gr). By Game 2 we know that when I = I∗, if C1 �= C∗
1 then t �= t∗.

Therefore B can answer all decapsulation queries issued by A correctly.

Challenge. B sets C∗
1 = C (which implicitly assigns r = c), and C∗

2 = Cd. The
challenge ciphertext is C∗ = (C∗

1 , C
∗
2). Note that this is a consistent ciphertext

since we have (F (I∗)Y t∗)r = (gd)r = Cd. Then B sets K∗ = L and gives A the
challenge (C∗,K∗).

294 Y. Chen, L. Chen, and Z. Zhang

Phase 2. In Phase 2, all the queries are responded in the same way as in Phase
1 except the decapsulation query 〈I∗, C∗〉 will be rejected.

This finishes the description of simulation. It is easy to see that B simulates the
challenger perfectly. If A’s advantage is not negligible, then B has non-negligible
advantage against the GL-mDBDH problem. According to Lemma 2.3, B fur-
ther implies an algorithm with non-negligible advantage against the mCBDH
problem, which contradicts to the mCBDH assumption. Therefore, we prove the
statement. The theorem follows by combining (5)-(8). ��

We compare Scheme 0 and Scheme 0′ in Table 2. Scheme 0′ can be extended to
n-bits IB-KEMs in an analogous way as we did to Scheme 0.

Table 2. Comparison of Scheme 0 and Scheme 0’

Scheme Assumption Ciphertext Efficiency [# exp, # pairing] Key Sizes
Overhead Encap Decap |mpk| |msk|

Scheme 0 (§3) CBDH 3× |GT | [4, 0] [1, 4] 5× |G| 1× |Zp|
Scheme 0′ (§A) mCBDH 2× |GT | [3, 0] [2, 4] 4× |G| 1× |Zp|

B The Proof of Scheme 1

Proof. We proceed in a sequence of games. Let (C∗
1 , . . . , C

∗
n) be the challenge

ciphertext of the corresponding keyK∗ under I∗, denote with U∗ the random key
chosen by the IND-sID-CCA experiment, and set t∗ = TCR(C∗

1,1, . . . , C
∗
n,1). We

start with a game where the challenger proceeds like the standard IND-sID-CCA
game (i.e., K∗ is a real key and U∗ is a random key), and end up with a game
where both K∗ and U∗ are chosen uniformly random. Then we show that all
games are computationally indistinguishable under the CBDH assumption. Let
Wi denote the event that A outputs β′ such that β′ = β in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAA

KEM(κ)

Game 1. Let E01 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, . . . , C
′
n〉 with C′

i,1 = C∗
i,1 for all 1 ≤ i ≤ n in Phase 1. Note that the

probability that the adversary submits a ciphertext such that C′
i,1 = C∗

i,1 for all
1 ≤ i ≤ n before seeing the challenge ciphertext is bounded by Qd/p

n, where Qd

is the number of decapsulation queries issued by A. Since Qd = poly(κ), we have
Pr[E0,1] ≤ Qd/p

n ≤ negl(κ). We define Game 1 like Game 0 except assuming
that E01 never occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C′
1, . . . , C

′
n〉 will

be rejected if C′
i,1 = C∗

i,1 for all 1 ≤ i ≤ n. Since if C′
i,2 �= C∗

i,2 or C′
i,3 �= C∗

i,3 for

CCA Secure IBE from CBDH Assumption 295

some i ∈ [n], the decapsulation query will be rejected for the inconsistency of
the ciphertext. If C′

i,2 = C∗
i,2 and C′

i,3 = C∗
i,3 for all 1 ≤ i ≤ n, it will be rejected

by definition of IND-sID-CCA game.

Game 2. Let E12 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, . . . , C
′
n〉 with C′

i,1 �= C∗
i,1 for some i ∈ [n] and TCR(C′

1,1, . . . , C
′
n,1) =

TCR(C∗
1,1, . . . , C

∗
n,1). By the target collision resistance of TCR we have Pr[E12] ≤

negl(κ). We define Game 2 like Game 1 except assuming that E12 never occurs
in Game 2. It follows that

|Pr[W2]− Pr[W1]| ≤ negl(κ)

Game 3. We define Game 3 like Game 2, except that we sample K∗ R←− {0, 1}nν
uniformly at random. Note that both K∗ and U∗ are chosen uniformly random,
thus we have

Pr[W3] =
1

2

We claim that |Pr[W3] − Pr[W2]| ≤ negl(κ)under the CBDH assumption. We
prove this by a hybrid argument. To this end, we define a sequence of hybrid
games H0, . . . , Hn, such that H0 equals Game 2 and Hn equals Game 3. Then
we argue that hybrid Hi is indistinguishable from hybrid Hi−1 for i ∈ {1, . . . , n}
under the CBDH assumption. The claim follows, since n = n(κ) is a polynomial.
We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we
set the first iν bits of K∗ to independent random bits, and proceed otherwise
exactly like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly like Game 3. Let
Ei denote the event that A outputs β′ such that β′ = β in Hi. Suppose that

|Pr[E0]− Pr[En]| = 1/poly′(κ) (9)

that is, the success probability of A in H0 is not negligible close to the suc-
cess probability in Hn. Note that then there must exist an index i such that
|Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i,
then we should have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which Equation (9) holds. Then
we can construct an adversaryB distinguishing the distributions Δbdh and Δrand,
which by Lemma 2.3 is sufficient to prove security under the CBDH assumption
in G. Adversary B receives a challengeD = (g,A,B,C, L,R) as input, guesses an
index � ∈ [n], which with probability at least 1/n such that |Pr[E�−1]−Pr[E�]| =
1/poly(κ), and proceeds as follows:

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. For i = [n]\�, B picks ri
R←− Zp, then picks d

R←− Zp, and setsX = A = ga,
Y = B = gb, andX ′ = X−t∗gd, where t∗ = TCR(gr1 , . . . , gr�−1, C, gr�+1 , . . . , grn).

Pick z
R←− Zp and defines h = X−I∗

gz. It gives A the system parameters
mpk = (g, h,X,X ′, Y, F). Note that the corresponding msk, which is unknown
to B is a.

296 Y. Chen, L. Chen, and Z. Zhang

Phase 1 - Private Key Queries. A issues up to Qe private key queries with
the only restriction that 〈I〉 �= 〈I∗〉. To respond to a private query of I ∈ Zp, B
picks s

R←− Zp and sets

sk1 = Y
−z

I−I∗ F (I)s, sk2 = gsY
−1

I−I∗

We claimed that sk is a valid private key for I. To see this, let s̃ = s−b/(I−I∗).
Then we have

sk1 = Y
−z

I−I∗ (XI−I∗
gz)s = Y a(XI−I∗

gz)s−
b

I−I∗ = Y aF (I)s̃

sk2 = gsY
−1

I−I∗ = gs̃

where s, s̃ are uniform distributed in Zp. This matches the definition for a private
key for I. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
〈I, C1, . . . , Cn〉, B responds as follows. If I �= I∗, B uses the corresponding private
key to handle it. Otherwise, B computes t = TCR(C1,1, . . . , Cn,1) and tests the
consistency of the ciphertext by checking

e(Ci,1, X
tX ′) ?

= e(g, Ci,2) ∧ e(Ci,1, F (I))
?
= e(g, Ci,3)

If the equality holds for all 1 ≤ i ≤ n, B sets K = (K1, . . . ,Kn) as Ki =

fgl(e(X,Y)ri , R) for i ∈ [n]\{�} and K� = fgl(e(X̃�, Y), R). Here we compute

X̃� := (C�,2/C
d
�,1)

1/(t−t∗) = (Xr�(t−t∗)grid/grid)1/(t−t∗) = Xr� = dh(X,C�,1).
By the definition of Game 2 we know that when I = I∗, if Ci,1 �= C∗

i,1 for some
i ∈ [n] then t �= t∗. Therefore B can answer all decapsulation queries issued by
A correctly.

Challenge. To generate the challenge ciphertext C∗ = (C∗
1 , . . . , C

∗
n), for i =

[n]\{�}, B generates C∗
i normally. For C∗

� = (C∗
�,1, C

∗
�,2, C

∗
�,3), B sets C∗

�,1 =

C (which implicitly assigns r� = c), C∗
i,2 = Cd, and C∗

i,3 = Cz. Note that

C∗ is a consistent ciphertext since we have (Xt∗X ′)r� = (gd)r� = Cd and
F (I∗)c = (gz)c = Cz . Then B samples � − 1 uniformly random groups of ν
bits K∗

1 , . . . ,K
∗
�−1, sets K∗

� = L, K∗
i = fgl(e(X,Y)r

∗
j , R) for i from � + 1 to n.

B samples uniform randomly bits U∗ ∈ {0, 1}nν, picks a random bit β ∈ {0, 1}.
If β = 1, it gives A the challenge (C∗,K∗). Otherwise it gives A the challenge
(C∗, U∗).

Phase 2. In Phase 2, all the queries are responded the same way as in Phase 1
except the decapsulation query 〈I∗, C∗〉 will be rejected.

This completes the description of simulation. If D ∈ Δbdh we have K∗
� =

fgl(bdh(A,B,C), R). ThusA’s view when interacting with B is identical toH�−1.
If D ∈ Δrand, then A’s view is identical to H�. Thus B can use A to distinguish
D ∈ Δbdh from D ∈ Δrand. According to Lemma 2.3, B further implies a PPT
algorithm which can break the CBDH problem, which contradicts to the CBDH
assumption. ��

CCA Secure IBE from CBDH Assumption 297

C The proof of Scheme 2

Proof. We proceed in a sequence of games. We write (C∗
1 , C

∗
2 , C

∗
3) to denote

the challenge ciphertext with the corresponding key K∗ of identity I∗, denote
with U∗ the random key chosen by the IND-sID-CCA experiment, and set t∗ =
TCR(C∗

1). We start with a game where the challenger proceeds like the standard
IND-sID-CCA game (i.e., K∗ is a real key and U∗ is a random key), and end
up with a game where both K∗ and U∗ are chosen uniformly random. Then
we show that all games are computationally indistinguishable under the CBDH
assumption. Let Wi denote the event that A outputs β′ such that β′ = β in
Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAA

KEM(κ)

Game 1. Let E01 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, C
′
2, C

′
3〉 with C′

1 = C∗
1 in Phase 1. Note that the probability that the

adversary submits a decapsulation query such that C′
1 = C∗

1 before seeing the
challenge ciphertext is bounded by Qd/p, where Qd is the number of decapsula-
tion queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤ Qd/p ≤ negl(κ).
We define Game 1 exactly the same as Game 0 except assuming that E01 never
occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C′
1, C

′
2, C

′
3〉 will

be rejected if C′
1 = C∗

1 . Since if C′
2 �= C∗

2 or C′
3 �= C∗

3 , the decapsulation query
will be rejected for the inconsistency of the ciphertext. If C′

2 = C∗
2 and C′

3 = C∗
3 ,

it will be rejected by definition of IND-sID-CCA game.
Game 2. Let E12 be the event that the adversary issues a decapsulation query
〈I∗, C′

1, C
′
2, C

′
3〉 with C′

1 �= C∗
1 and TCR(C′

1) = TCR(C∗
1). By the target collision

resistance of TCR, we have Pr[E12] ≤ negl(κ). We define Game 2 exactly the
same as Game 1 except assuming that E12 never occurs in Game 2. It follows
that

|Pr[W2]− Pr[W1]| ≤ negl(κ)

Game 3. We define Game 3 like Game 2, except that we sample K∗
0

R←− {0, 1}nν
uniformly random. Note that both K∗

0 and K∗
1 are chosen uniformly random,

thus we have

Pr[W3] =
1

2

We claim that |Pr[W3] − Pr[W2]| ≤ negl(κ) under the CBDH assumption. We
prove this by a hybrid argument. To this end, we define a sequence of hybrid
games H0, . . . , Hn, such that H0 equals Game 2 and Hn equals Game 3. Then
we argue that hybrid Hi is indistinguishable from hybrid Hi−1 for i ∈ {1, . . . , n}
under the CBDH assumption. The claim follows, since n = n(κ) is a polynomial.

298 Y. Chen, L. Chen, and Z. Zhang

We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we
set the first iν bits of K∗ to independent random bits, and proceed otherwise
exactly like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly like Game 3. Let
Ei denote the event that A outputs β′ such that β′ = β in Hi. Suppose that

|Pr[E0]− Pr[En]| = 1/poly′(κ) (10)

that is, the success probability of A in H0 is not negligible close to the suc-
cess probability in Hn. Note that then there must exist an index i such that
|Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i,
then we should have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which Equation (10) holds. Then
we can construct an adversaryB distinguishing the distributions Δbdh and Δrand,
which by Lemma 2.3 is sufficient to prove security under the CBDH assumption
in G. Adversary B receives a challenge D = (g,A,B,C, L,R) as input, guesses
an index � ∈ [n], which with probability at least 1/n that |Pr[E�−1]−Pr[E�]| =
1/poly(κ), and proceeds as follows:

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B picks d
R←− Zp, and then sets X = A = ga, X ′ = X−t∗gd, Y� = B = gb,

where t∗ = TCR(C). For i ∈ [n]\{�}, B picks yj
R←− Zp and sets Yi = gyj ; picks

z
R←− Zp and defines h = X−I∗

gz. It gives A the public parameters mpk =
(g, h,X,X ′, Y1, . . . , Yn, F). The corresponding msk, which is unknown to B is a.
The function F is essentially of the form

F (x) = Xxh = Xx−I∗
gz

Phase 1 - Private Key Queries. A issues up to Qe private key queries with
the only restriction that 〈I〉 �= 〈I∗〉. To respond to a private query for identity
I ∈ Zp, B generates sk = (sk1, . . . , skn) as follows: for sk� algorithm B picks

s�
R←− Zp and sets

sk�,1 = Y
−z

I−I∗
� F (I)s� , sk�,2 = gs�Y

−1
I−I∗
�

for ski where i ∈ [n]\{�}, B picks a random integer si ∈ Zp and sets

ski,1 = XyiF (I)si = Y a
i F (I)si , ski,2 = gsi

Let s̃� = s� − b/(I − I∗). It is easy to see that sk is a valid random private key
for I since

sk�,1 = Y
−z

I−I∗
� (XI−I∗

gz)s� = Y a
� (X

I−I∗
gz)s�−

b
I−I∗ = Y a

� F (I)s̃�

sk�,2 = gs�Y
1

I−I∗
� = gs̃�

where s�, s̃� are uniform in Zp. This matches the definition for a private key for
I. Hence, sk is a valid private key for I.

CCA Secure IBE from CBDH Assumption 299

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
〈I, C1, C2, C3〉, B responds as follows. If I �= I∗, B uses the corresponding private
key to handle it. Otherwise, B computes t = TCR(C1) and tests the consistency
of the ciphertext by checking

e(C1, X
tX ′) ?

= e(g, C2) ∧ e(C1, F (I))
?
= e(g, C3)

If the equality holds, B sets K = (K1, . . . ,Kn) as Ki = fgl(e(X,C1)
yi , R)

for i ∈ [n]\{�} and K� = fgl(e(X̃, Y�), R), where X̃ := (C2/C
d
1)

1/(t−t∗) =
(Xr(t−t∗)grd/grd)1/(t−t∗) = Xr = dh(X,C1). By Game 2 we know that when
I = I∗, if C1 �= C∗

1 then we have t �= t∗. Therefore B can answer all decapsulation
queries issued by A correctly.

Challenge. B sets C∗
1 = C (which implicitly assigns r = c), C∗

2 = Cd, and C∗
3 =

Cz. The challenge ciphertext is C∗ = (C∗
1 , C

∗
2 , C

∗
3). Note that this is a consistent

ciphertext since we have (Xt∗X ′)r = (gd)r = Cd and F (I∗)r = (gz)r = Cz .
Then B samples i − 1 uniformly random groups of ν bits K∗

1 , . . . ,K
∗
�−1, sets

K∗
� = L, K∗

i = fgl(e(X,C∗
1)

yi , R) for i from �+ 1 to n. B samples U∗ ∈ {0, 1}nν
uniformly at random, and picks a random bit β ∈ {0, 1}. If β = 1, it gives A the
challenge (C∗,K∗). Otherwise it gives A the challenge (C∗, U∗).

Phase 2. In Phase 2, all the queries are responded in the same way as in Phase
1 except the decapsulation query 〈I∗, C∗〉 will be rejected.

This finishes the description of simulation. If D ∈ Δbdh we have K∗
� = fgl(bdh

(A,B,C), R), A’s view is identical to H�−1. If D ∈ Δrand, A’s view is identical
to H�. Thus B can use A to distinguish D ∈ Δbdh from D ∈ Δrand. According
to Lemma 2.3, B further implies a PPT algorithm which can break the CBDH
problem, which contradicts to the CBDH assumption. ��

D The proof of Generalized Scheme 1

Proof. We proceed in a sequence of games. We write C∗ = (C∗
1 , . . . , C

∗
n2
) to

denote the challenge ciphertext with the corresponding key K∗ of I∗, denote
with U∗ the random key chosen by the IND-sID-CCA experiment, and set t∗ =
TCR(C∗

1,1, . . . , C
∗
n2,1). We start with a game where the challenger proceeds as

the standard IND-sID-CCA game (i.e., K∗ is a real key and U∗ is a random key),
and end up with a game where both K∗ and U∗ are chosen uniformly random.
Then we show that all games are computationally indistinguishable under the
CBDH assumption. Let Wi denote the event that A outputs β′ such that β′ = β
in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAA

KEM(κ)

300 Y. Chen, L. Chen, and Z. Zhang

Game 1, Game 2, and Game 3 are defined in the same way as in the proof
of Scheme 2. It is easy to verify that |Pr[W1] − Pr[W0]| ≤ negl(κ), |Pr[W2] −
Pr[W1]| ≤ negl(κ), and Pr[W3] = 1/2. We claim that |Pr[W3]−Pr[W2]| ≤ negl(κ)
under the CBDH assumption. We prove this by a hybrid argument. To this end,
we define a sequence of hybrid games H0, . . . , Hn, such that H0 equals Game
2 and Hn equals Game 3. Then we argue that hybrid Hi is indistinguishable
from hybrid Hi−1 for i ∈ {1, . . . , n} under the CBDH assumption. The claim
follows, since n = n(κ) is a polynomial. We define H0 exactly like Game 2. Then,
for i from 1 to n, in hybrid Hi we set the first iν bits of K∗ to independent
random bits, and proceed otherwise exactly like in hybrid Hi−1. Thus, hybrid
Hn proceeds exactly like Game 3. Let Ei denote the event that A outputs β′

such that β′ = β in Hi. Suppose that

|Pr[E0]− Pr[En]| = 1/poly′(κ) (11)

that is, the success probability of A in H0 is not negligible close to the suc-
cess probability in Hn. Note that then there must exist an index � such that
|Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i,
then we should have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which Equation (11) holds.
Then we can construct an adversary B distinguishing the distributions Δbdh

and Δrand, which by Lemma 2.3 is sufficient to prove security under the CBDH
assumption in G. Adversary B receives a challenge D = (g,A,B,C, L,R) as
input, guesses an index � ∈ [n], which with probability at least 1/n such that
|Pr[E�−1] − Pr[E�]| = 1/poly(κ). Let (̄i, j̄) be the unique tuple that satisfies
(̄i− 1)× n1 + j̄ = �, B proceeds as follows:

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B first picks rj
R←− Zp for j ∈ [n2]\j̄, then sets the value t∗ to be

TCR(gr1 , . . . , grj̄−1 , C, grj̄+1 , . . . , grn2). B then picks d
R←− Zp, and sets X = A =

ga, X ′ = X−t∗gd, Yī = B = gb; picks yi
R←− Zp and sets Yi = gyi for i ∈ [n1]\ī. It

gives A the system public parameters mpk = (g, h,X,X ′, Y1, . . . , Yn2 , F). Note
that the corresponding msk, which is unknown to B is a.

Phase 1 - Private Key Queries. A issues up to Qe private key queries with
the only restriction that 〈I〉 �= 〈I∗〉. To respond to the query of I ∈ Zp, for skī

algorithm B picks sī
R←− Zp and sets

skī,1 = Y
−z

I−I∗
ī

F (I)sī , skī,2 = gsīY
−1

I−I∗
ī

for ski where i ∈ [n1]\{ī}, B picks a random si ∈ Zp and sets

ski,1 = XyiF (I)si = Y a
i F (I)si ski,2 = gsi

CCA Secure IBE from CBDH Assumption 301

Let s̃ī = sī − b/(I − I∗). It is easy to see that sk is a valid random private key
for I since

skī,1 = Y
−z

I−I∗
ī

(XI−I∗
gz)sī = Y a

ī (X
I−I∗

gz)sī−
b

I−I∗ = Y a
ī F (I)s̃ī

skī,2 = gsīY
1

I−I∗
ī

= gs̃ī

where sī and s̃ī are uniform distributed in Zp. This matches the definition of a
private key for I. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
〈I, C1, . . . , Cn2〉, B responds as follows. If I �= I∗, B uses the corresponding
private key to handle it. Otherwise, B computes t = TCR(C1,1, . . . , Cn2,1) and
then tests the consistency of the ciphertext by checking

e(Cj,1, X
tX ′) ?

= e(g, Cj,2) ∧ e(Cj,1, F (I))
?
= e(g, Cj,3)

If the equality holds for all 1 ≤ j ≤ n2, then B computes K = (K1, . . . ,Kn) as
follows. Suppose e = (i− 1)× n1 + j,

1. If i �= ī, set Ke = fgl(e(X,Cj)
yi , R).

2. If i = ī, compute X̃j := (Cj,2/C
d
j,1)

1/(t−t∗) = (Xrj(t−t∗)grjd/grjd)1/(t−t∗) =

Xrj = dh(X,Cj,1), set Ke = fgl(e(X̃j , Yī), R).

By the definition of Game 2 we know that when I = I∗, if Cj,1 �= C∗
j,1 for some

j ∈ [n2] then t �= t∗. Therefore B can answer all decapsulation queries issued by
A correctly.

Challenge. To generate the challenge ciphertext C∗ = (C∗
1 , . . . , C

∗
n2
), for j =

[n2]\j̄, B sets C∗
j = (C∗

j,1, C
∗
j,2, C

∗
j,3) = (grj , (Xt∗X ′)rj , F (I∗)rj); for C ∗̄

j =

(C ∗̄
j,1

, C ∗̄
j,2

, C ∗̄
j,3

), B sets C ∗̄
j,1

= C (which implicitly assigns rj̄ = c), C ∗̄
j,2

=

Cd, and C ∗̄
j,3

= Cz . Note that this is a consistent ciphertext since we have

(Xt∗X ′)rj̄ = (gd)rj̄ = Cd and F (I∗)rj̄ = (gz)rj̄ = Cz. Then B samples � − 1
uniformly random groups of ν bits K∗

1 , . . . ,K
∗
�−1, sets K∗

� = L. For � ≤ e ≤ n,
B generates Ke in a similar way as it did when answering decapsulation queries,
that is, suppose e = (i−1)×n1+ j, if i �= ī, set Ke = fgl(e(X,Cj)

yi , R); if j �= j̄,
set Ke = fgl(e(X,Yi)

rj , R). B samples U∗ ∈ {0, 1}nν uniformly at random, then
picks a random bit β ∈ {0, 1}. If β = 1, it gives A the challenge (C∗,K∗).
Otherwise it gives A the challenge (C∗, U∗).

Phase 2. In Phase 2, all the queries are responded in the same way as in Phase
1 except the decapsulation query 〈I∗, C∗〉 will be rejected.

This completes the description of simulation. If D ∈ Δbdh we have K∗
� =

fgl(bdh(A,B,C), R), A’s view when interacting with B is identical to H�−1.
If D ∈ Δrand, A’s view is identical to H�. Thus B can use A to distinguish
D ∈ Δbdh from D ∈ Δrand. According to Lemma 2.3, B further implies a PPT
algorithm which can break the CBDH problem, which contradicts to the CBDH
assumption. ��

Design, Implementation, and Evaluation

of a Vehicular Hardware Security Module

Marko Wolf and Timo Gendrullis	

ESCRYPT GmbH, Embedded Security, Munich, Germany
{marko.wolf,timo.gendrullis}@escrypt.com

Abstract. Todays in-vehicle IT architectures are dominated by a large
network of interactive, software driven digital microprocessors called elec-
tronic control units (ECU). However, ECUs relying on information re-
ceived from open communication channels created by other ECUs or even
other vehicles that are not under its control leaves the doors wide open
for manipulations or misuse. Thus, especially safety-relevant ECUs need
effective, automotive-capable security measures that protect the ECU
and its communications efficiently and dependably. Based on a require-
ments engineering approach that incorporates all security-relevant auto-
motive use cases and all distinctive automotive needs and constraints,
we present an vehicular hardware security module (HSM) that enables
a holistic protection of in-vehicle ECUs and their communications. We
describe the hardware design, give technical details on the prototypical
implementation, and provide a first evaluation on the performance and
security while comparing our approach with HSMs already existing.

Keywords: hardware security module, automotive, in-vehicle, on-board.

1 Introduction and Motivation

Over the last two decades vehicles have silently but dramatically changed from
rather “dumb” electro-mechanical devices into interactive, mobile information
and communication systems already carrying dozens of digital microprocessors,
various external radio interfaces, and several hundred megabytes of embedded
software. In fact, information and communication technology is the driving force
behind most innovations in the automotive industry, with perhaps 90% of all in-
novations in vehicles based on digital IT systems [18]. This “digital revolution”
enables very sophisticated solutions considerably increasing flexibility, safety and
efficiency of modern vehicles and vehicle traffic [28]. It further helps saving fuel,
weight, and costs. Whereas in-vehicle IT safety (i.e., protection against [ran-
dom] technical failures) is already a relatively well-established (if not necessarily
well-understood) field, the protection of vehicular IT systems against system-
atic manipulations has only very recently started to emerge. In fact, automotive

� The authors thank Mirko Lange for his extensive help, Oliver Mischke for his valuable
comments, the EC, and all partners involved in the EVITA project [15]. The work
was done in scope of the European FP7 research project EVITA (FP7-ICT-224275).

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 302–318, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Design, Implementation, and Evaluation of a Vehicular HSM 303

IT systems were never designed with security in mind. But with the increasing
application of digital software and various radio interfaces to the outside world
(including the Internet), modern vehicles are becoming even more vulnerable to
all kinds of malicious encroachments like hackers or malware [2]. This is especially
noteworthy, since in contrast to most other IT systems, a successful malicious
encroachment on a vehicle will not only endanger critical services or business
models, but can also endanger human lives [26]. Thus strong security measures
should be mandatory when developing vehicular IT systems. Today most vehicle
manufacturer (hopefully) incorporate security as a design requirement. However,
realizing dependable IT security solutions in a vehicular environment consider-
ably differs from realizing IT security for typical desktop or server environments.
In a typical vehicular attack scenario an attacker, for instance, has extended at-
tack possibilities (i.e., insider attacks, offline attacks, physical attacks) and could
have many different attack incentives and attack points (e.g., tachometer manip-
ulations by the vehicle owner vs. theft of the vehicle components vs. industrial
espionage). Thus, just porting “standard” security solutions to the, moreover,
very heterogeneous IT environment usually will not work. However, there al-
ready exist some first automotive-capable (software) security solutions [29,32].
But, especially with regard to potential internal and physical attackers, these
software solutions have to be protected against manipulations as well. In order
to reliably enforce the security of software security mechanisms, the application
of hardware security modules (HSM) is one effective countermeasure as HSMs:

– protect software security measures by acting as trusted security anchor,
– securely generate, store, and process security-critical material shielded from

any potentially malicious software,
– restrict the possibilities of hardware tampering attacks by applying effective

tamper-protection measures,
– accelerate security measures by applying specialized cryptographic hardware,
– reduce security costs on high volumes by applying highly optimized special

circuitry instead of costly general purpose hardware.

Unfortunately, there are currently no automotive-capable HSMs available (cf.
Section 2.2). Thus, the objective of this research was to design and prototype a
standardized automotive-capable HSM for automotive on-board networks where
security-relevant components are protected against tampering and sensitive data
are protected against compromise. The HSM was especially designed for pro-
tecting e-safety applications such as emergency break based on communications
between vehicles (V2V) or emergency call based on communications between
vehicles and (traffic) infrastructures (V2I).

Our Contributions and Paper Outline. After this motivation, Section 2
gives a short introduction into our design rationale for a vehicular HSM includ-
ing a short state-of-the-art review of the related work. Section 3 then presents
the main objectives of this article, the design of a vehicular HSM concretely its
system architecture, communication interface, security building blocks and se-
curity functionalities. Section 4 gives a detailed, technical overview of the HSM

304 M. Wolf and T. Gendrullis

prototype implementation followed by a performance and security evaluation in
Section 5 that compares our HSM approach with other HSMs currently available.

2 The Need For Efficient Hardware Security

In this section we provide an introduction into our design rationale for realizing a
vehicular HSM. However, as this article focuses on the design, implementation,
and evaluation of a vehicular HSM, this section mainly summarizes the work
done before in [15] where the authors were involved, too. There, with a require-
ments engineering approach we identified all automotive use cases with a security
impact [6], that means, all use cases involving a security-critical asset or allow
for potential misuses. The security impacts identified are then transformed into
high-level security objectives that could thwart these impacts accordingly. For
fulfilling these security objectives, we then derived concrete (technical) security
requirements [7] including all related functional (security) requirements using an
appropriate security and trust model and reasonable “attack scenarios” [8].

2.1 Security and Functional Requirements Engineering

The security and functional requirements engineering is described in more de-
tail in [6,7,9]. It has yielded to the following HSM security requisites (SR) and
functional requisites (FR) as outlined below.

SR.1 Autonomous, strongly isolated security processing environment
SR.2 Minimal immutable trusted code to be executed prior to ECU processor
SR.3 Internal non-volatile memory for storing root security artifacts
SR.4 Non-detachable (tamper-protected) connection with ECU hardware
SR.5 Authentic, confidential, fresh comm. channel between HSM and ECU
SR.6 Autonomously controlled alert functionality (e.g., log entry, ECU halt)
SR.7 Only standardized, established security algorithms (e.g., NIST1, BSI2)

FR.1 Physical stress resistance to endure an automotive life-cycle of ≥20 years
FR.2 Bandwidth and latency performance that meets at least ISO 11898 [24]
FR.3 Compatibility with existing ECU security modules, i.e. with HIS-SHE [21]
FR.4 Compatibility with existing ECU microprocessor architectures
FR.5 Open, patent free specifications for cost-efficient OEM-wide application

2.2 Related Work

The vehicular HSM presented here is not the first security processor applied in
the automotive domain. Hence, there already exist some proprietary and single-
purpose HSM realizations used, for instance, by vehicle immobilizers, digital
tachographs [19] or tolling solutions [34]. However, these are no general-purpose,

1 US National Institute of Standards and Technology (www.nist.gov).
2 German Federal Office for Information Security (www.bsi.bund.de).

www.nist.gov
www.bsi.bund.de

Design, Implementation, and Evaluation of a Vehicular HSM 305

private HSMs and hence cannot be reused by other vehicular security solutions.
On the other hand, general-purpose HSMs that are currently available, for in-
stance, the IBM 4758 cryptographic co-processor [4], the TCG Mobile/Trusted
Platform Module [35], or typical cryptographic smartcards are not applicable
for use within an automotive security context. They, for instance, lack of cost
efficiency, performance, physical robustness, or security functionality. Solely, the
secure hardware extension (SHE) as proposed by the HIS consortium [21] takes
an exceptional position as it was explicitly designed for application in a auto-
motive security context. However, the SHE module is mainly built for securing
cryptographic key material against software attacks, but cannot be used, for in-
stance, to protect V2X communications. An overview comparison of the HSM
proposed in this work with the general-purpose HSMs is given later in Table 5.

3 Design

This section describes the hardware architecture and security functionality of
our HSM. The corresponding full detailed HSM specification can be found in [9].

3.1 System Architecture

As shown in Figure 1, the hardware architecture design is based on a closed
on-chip realization with a standard ECU application core and the HSM together
on the same chip connected by an internal communication link. Hence, HSM
commands are not explicitly and individually protected at hardware level. That
means they are communicated in plain and without any replay and authenticity
protection between HSM and application core. However, a TCG like command
protection approach based on session keys and rotating nonces [35] is possible.
The interface to the internal communication bus and external communication pe-
ripherals (if existing) are managed by the application core. The HSM consists of
an internal processor (secure processor), some internal volatile and non-volatile
memories (secure memory), a set of hardware security building blocks, hardware
security functionality, and the interface to the application core. In order to en-
able a holistic but cost-efficient in-vehicle security architecture, there exist at
least three different HSM variants – full, medium, and light – each focusing on

Fig. 1. Overall vehicular hardware security module architecture (full module)

306 M. Wolf and T. Gendrullis

different security use cases with different cost, functional and security require-
ments. However, these variants are no isolated developments, in fact, the light
and medium module are proper subsets of the full module. The full module
focuses on securing V2X communications and securely connecting the external
vehicle interface(s) with the in-vehicle IT infrastructure. Due to its central im-
portance and due to the strong V2X requirements, the full HSM provides the
maximum level of functionality, security, and performance applying amongst
others a very powerful hardware-accelerated asymmetric cryptographic building
block, as shown in Figure 1. The medium module focuses on securing the in-
vehicle communication. Hence the medium module has no dedicated hardware-
accelerated asymmetric cryptographic building block, no dedicated hardware-
accelerated hashing function, and a somewhat less performing internal processor.
Even though, the medium HSM has no asymmetric cryptography in hardware,
it is nonetheless able to perform some non-time-critical asymmetric cryptogra-
phy operations (e.g., key exchange protocols) using the internal processor and
firmware. As for efficiency and cost reasons virtually all internal communication
protection is based on symmetric cryptographic algorithms, omitting the asym-
metric cryptography and hashing hardware blocks is reasonable to save costs,
size and power consumption. The light module focuses on securing the interac-
tion of ECUs with sensors and actuators and is able to fulfill the strict cost and
efficiency requirements typical there. In comparison with the medium module,
the light module is again minimized and contains only a hardware-accelerated
symmetric cryptography engine, a hardware random number generator, a UTC
clock together with some very small optional volatile and non-volatile memories.

3.2 Hardware Interface in General

The HSM applies an asynchronous (i.e., non-blocking) hardware interface. The
interface is multi-session capable (i.e., interruptible) for all security building
blocks (cf. Section 3.3) that use a session identifier (e.g., encryptions, signatures,
hash functions). Single session (i.e., non-interruptible) security building blocks,
in contrast, are the random number generator, all counter functionality and all
higher-level security functionality (cf. Section 3.4). Internally, the HSM is single-
threaded in general, but provides limited multi-threading if different hardware
functionality is accessed in parallel. Thus, for instance, one can invoke a hardware
encryption in parallel with a random number generation, but not two encryptions
with the same hardware encryption building block at the same time. Finally, as
the HSM functionality is a proper superset of the HIS SHE functionality [21]
and should be able to process all SHE commands.

3.3 Hardware Security Building Blocks

This section describes the (always) hardware-protected and (selected) hardware-
accelerated security building blocks (SBB) available.

Asymmetric crypto engine enables creation and verification of digital
signatures with the asymmetric signature algorithm specified on invocation

Design, Implementation, and Evaluation of a Vehicular HSM 307

using different hashing functions, different padding schemes and optional time-
stamping. The full and medium prototype modules provide an ECC-256 (i.e.,
NIST P-256 [16] based) signature function that is hardware-accelerated at the
full module. Full and medium prototype modules also provide the elliptic curve
integrated asymmetric encryption scheme (ECIES) [1].

Symmetric crypto engine enables symmetric encryption and decryption with
the cipher specified on invocation including different modes of operation (e.g.,
ECB, CBC, GCM) and different padding schemes (e.g., bit padding, PKCSx) – if
available. As shown in Figure 1, all prototype modules provide at least the AES-
128 block cipher [17].The symmetric crypto engine further enables generation
and verification of message authentication codes (MACs) that optionally can
get time-stamped using the internal tick or UTC clock (if synchronized). Thus,
all prototype modules provide at least AES-128 CMAC [33] functionality.

Cryptographic hash function enables generation and verification of plain
hash fingerprints and additionally HMACs (hash-based message authentication
code) calculated with a secret key with the hashing algorithm specified on in-
vocation. This SBB also provides optional time-stamping of the hashes/HMACs
generated using the internal UTC clock (if synchronized). The full and medium
prototype modules provide an ISO 10118Whirlpool [23] hashing function that
is hardware-accelerated at the full module.

Pseudo random number generator (PRNG) creates pseudo random num-
bers with a PRNG algorithm specified on invocation that can be seeded in-
ternally from a physical true random number generator (TRNG) or from an
external TRNG during production in a controlled environment of the chip man-
ufacturer. The latter case additionally requires a proper seed update protocol.
All prototype modules provide at least an officially evaluated PRNG according
to E.4 [31] (e.g., AES- or hash-based).

Internal clock serves as hardware-protected time reference that can be syn-
chronized with UTC time. For further details see Section 3.4.

Monotonic counters servs as a simple secure clock alternative while providing
at least 16 monotonically increasing 64-bit counters together with corresponding
access control similar to TCG’s monotonic counters [35].

A distinctive feature of the HSM is the possibility for very fine-grained appli-
cation specific authorizations for the processing and the migration of internal
security assets. Concretely, a key can have several individual authorizations that
allow or forbid processing it in different SBBs specified by so-called use flags.
As shown in the example in Table 1, a symmetric key, for instance, can have
a use flag for using it for MAC verifications but has a different use flag (or
even no use flag) for using it for the creation of MACs. Our HSM prototype
supports key use flags each with individual authorizations for processing and
migration at least for signing, signature/MAC verification, data encryption and
decryption, time stamping, secure boot, secure storage, clock synchronization,
key creations and key transports. Moreover, these use flags can have individ-
ual migration authorizations that specify their transport restrictions to locations

308 M. Wolf and T. Gendrullis

outside the respective HSM (cf. Section 3.4). Thus, a use flag can be restricted
to be moved (i) to no other location (internal), (ii) only between HSMs identical
in construction (migratable), (iii) only between HSMs and trusted OEM locations
(oem), or freely to any other location (external). For example, the use flag ver-
ify for signature verification of a certain key can be allowed to become migrated
to another HSM (migratable), while the use flag sign for signature creation of
the same key cannot be moved to a location outside its local HSM (internal).
Lastly, each use flags can have also its individual authorizations required for
each invocation that can be simple passwords, can be based on the individual
ECU platform configuration as measured at ECU bootstrap (cf. Section 3.4), or
could be even a combination of both (i.e., configuration and password).

Table 1. Internal key structure including # of instances per field

key identifier [1] algorithm identifier [1..n]

expiration date [1] key signatures [0..n]

public key data [0..1] private key data [0..1]

use flag [1..i..n] transport flag [i] auth. flag [i] auth. value [0..i]

sign internal password Hash(“abc”)

verify migratable ecr ECR(0;1;7) = 0x123

3.4 Hardware Security Logic and Functionality

This section gives a short description of some central HSM keys and the underly-
ing key hierarchy used by our HSMs. The manufacturer verification key (MVK)
is a key from the module manufacturer to verify the authenticity of other HSMs
or to authenticate HSM firmware updates. The device identity key (IDK) enables
global HSM identification and authentication. The IDK is unique per module,
fixed for HSM lifetime, and signed by MVK. The OEM verification key (OVK)
is a key from an OEM to have an additional OEM managed trust domain similar
to the manufacturer trust domain controlled via MVK. The OVK is unique per
OEM and is also fixed for HSM lifetime. The clock synchronization key(s) (CSK)
are a verification keys from a trusted time reference (e.g., a certain GPS module
trusted by the HSM manufacturer) accepted for synchronizing the internal tick
counter to absolute UTC time. The CSK is signed by MVK. The storage root
key (SRK) is the (symmetric) master parent key for securely swapping inter-
nally created keys to external storages similar to the SRK as introduced by the
TCG [35]. The stakeholder key(s) (SxK) finally are all externally created sym-
metric (SSK) or asymmetric (SAK) keys for stakeholder individual usage such
as authentication, secure feature activation, or content protection. To increase
(external) trust into SxK and OVK, they can be signed by MVK as well.

Key management provides functionalities for internal key creation (using the
internal RNG), key import and export. The HSM further provides hardware-
protected functionality for Diffie-Hellman key agreements [3] and for symmetric
key derivations, for instance, according to ISO 18033 [25]. The creator of a

Design, Implementation, and Evaluation of a Vehicular HSM 309

key has the possibility to set individual usage authorizations (use flags) and
transport authorizations (trnsp flags) for each key usage as introduced in Sec-
tion 3.3 and Table 1. Note that some key flags cannot always be set freely but
are inherently set by the HSM (e.g., the internal transport flag). For moving
keys between different HSMs, between HSMs and external (trusted) locations (if
permitted), the HSM provides key import and export functionality that ensures
confidentiality of private key internals via (symmetric or asymmetric) transport
encryption as well as authenticity of all key data structures via (symmetric or
asymmetric) so-called transport authenticity codes (i.e., a digital signature or a
MAC). Strictly speaking, not the whole key itself is moved, but only individual
key use flags if they have proper transport authorizations (trnsp flags). The
trnsp flags inherently define also the keys that can be used for transport en-
cryption and authenticity enforcement. Hence, use flags of keys marked internal
are only permitted to become swapped out to offline storage and imported again
to the same HSM via the SRK. Use flags of keys marked migratable are addition-
ally permitted to become moved between HSMs identical in construction. This is
enforced by accepting only target IDKs for transport encryption that are signed
by a trusted MVK (e.g., MVKs from the same manufacturer used for HSMs of
at least equal physical security). A similar approach is foreseen for use flags of
keys marked oem that accept for transport encryption only keys that are signed
by a trusted OVK. This was introduced to support an OEM managed trusted
domain that can be differentiated (but not enforced!) by the HSM in contrast
to use flags of keys marked external that are fully out of the control of the HSM
for enforcing any trust assumptions.

Secure boot and authenticated boot is realized using HSM-internal so-
called ECU configuration registers (ECR) that are similar to TCG’s platform
configuration registers (PCR) [35]. In contrast to the TCG approach, our HSM
is also acting as the – by all involved parties a priori trusted3 – core root of trust
(CRT) that initializes the chain of trust for ECU integrity and authenticity ver-
ification. Assuming a multi-stage bootstrap with the CRT executed first, the
trust chain is built by a hierarchical step by step measuring of the program code
of all upper layers i such as the boot ROM, the boot routine, the boot loader,
and all consecutive layers that are part of the Trusted Computing Base(TCB)4.
For the HSM, the corresponding measurement routine m() that creates a small
unique fingerprint fi for each program code measured, is the Whirlpool one-
way hash function for full and medium modules and the AES-MAC for light
modules5. The fingerprint fi in turn is saved to an individual ECRn protected
against manipulations inside the HSM before the next stage becomes executed.
In order to prevent the overwriting of a previously saved ECR by layers executed
later, ECRs in fact can only become extended via ECRn[t] = m(ECRn[t-1], fi)
that connects the new fingerprint fi cryptographically with the old ECRn[t-1]
value and hence prevents overwriting. To detect and counteract possible vali-

3 It is per definition impossible to self-verify the integrity of the core root of trust.
4 The TCB means all code of the ECU that can be critical for ECU security.
5 The bootstrap security functionality is optional for light HSMs.

310 M. Wolf and T. Gendrullis

dation failures, there exist at least two different approaches, usually known as
secure boot and authenticated boot. In case the HSM can be deployed as active
module (e.g., as ECU master) and hence having autonomous control to the cor-
responding ECU or an alarm function, the HSM can realize the active secure
boot approach. Then the procedure executed at each step of the bootstrap uses
the HSM to compare the actual value of an ECRn[t] with the corresponding
reference value ECRn,ref that can securely preset for each ECR (cf. [9] for fur-
ther details). In case of a mismatch between ECRn[t] and ECRn,ref , secure boot
automatically yields to an immediate response (e.g., ECU halt or alarm). Au-
thenticated boot, in contrast, remains rather passive while only measuring the
bootstrap without any direct interventions. It can be used if the HSM can be de-
ployed as passive add-on module only having no autonomous control to the ECU
or no alarm function. By using the authenticated boot approach, some essential
key use flags) (e.g., decryption) can become inaccessible afterwards in case
the actual bootstrap measurements do not match the ECR reference individu-
ally linked for this particular use flag) by the key owner. Our HSM therefore
can enforce individual ECR references ECRn,ref as additional use flag invoca-
tion authorization (cf. Section 3.3) that makes the corresponding key use flag

inaccessible (and only this) in case of an ECR mismatch.

Secure clock is realized by a so-called tick counter tc that is monotonically
increasing during HSM runtime using a fixed tick() interval of at least 1 Hz.
As shown in Table 2, the initial value of tc on HSM’s first initialization in life is
tc = 0 or tc = UTC(t0) that represents a UNIX/POSIX encoded default time
value, for instance, the HSM release date. After any reset, the HSM continues
increasing tc unsynchronized (i.e., tc < UTC(t)), but starting with the last inter-
nally saved6 value of tc. This provides a simple relative secure clock that – even
if seldom or never synchronized – never “runs slow”. However, optionally tc can
be synchronized to absolute UTC time received from an external UTC source
(e.g., in-vehicle GPS sensor) trusted by the HSM manufacturer (e.g., in-vehicle
GPS sensor). Therefore, the HSM can be invoked with the actual UTC time and
the HSM synchronization challenge (as requested from the HSM before) both
signed with a trusted CSK (cf. Section 3.4).

Table 2. HSM clock with relative tick time optionally synchronized to absolute UTC

On clock event tc tc vs. UTC(t)

First initialization in HSM life 0 or UTC(t0) tc < UTC(t)

Internal tick() after reset tc++ tc < UTC(t)

External UTC synchronization UTC(t) tc = UTC(t)

Internal tick() after sync tc++ tc = UTC(t)

6 The internal saving interval for tc depends on the rewrite capabilities of the HSM
internal non-volatile memory and can vary from seconds up to hours or even days,
but is always inherently invoked after a successful UTC synchronization.

Design, Implementation, and Evaluation of a Vehicular HSM 311

Administration and audit functionality provides HSM status information,
self tests, internal state backup, migration, and updates. Auditing the HSM
operations can enhance the security by enabling an (external) auditor to retrace
for instance critical operations (e.g., key migrations) or critical incidents that
have occurred (e.g., authorization failures, resource exhaustions).

3.5 Driver Software and Software Security Framework

The HSM provides a set of basic hardware security functionalities on which a
larger set of more sophisticated software security mechanisms can be built on.
However, these higher-level software security mechanisms are not part of this
work. But the corresponding HSM low-level software driver [12], an appropri-
ate high-level software security framework [13] and proposals for implementing
secure on-board protocols using the HSM as basis [10] are already available.

4 Implementation

The HSM architecture has been prototypically implemented [11] on a Xilinx
Virtex-5 FPGA (XC5VFX70T-1FF1136C). This FPGA has a total amount of
11,200 slices (i.e., 44,800 both flip-flops (FF) and 6-input look-up tables (LUT)),
128 dedicated digital signal processing (DSP) blocks, and 148 Block-RAMs
(BRAMs) with 36Kb of memory each. Additionally, the FPGA comprises an em-
bedded hard-coded microprocessor block, that is, a PowerPC440 (PPC440) with
a maximum frequency of 550MHz. The FPGA comes on the Virtex-5 FXT FPGA
ML507 Evaluation Platform with all necessary peripherals such as various inter-
faces, both volatile memory and non-volatile memory (NVM), and power sup-
ply. The application processor was implemented on an Infineon TriCore TC1797
with all necessary peripherals and resources (i.e., application NVM, applica-
tion RAM, communication interfaces) available on a corresponding development
board. Both development boards are mechanically and electrically attached to
each other via a custom-made connection board that provides access from the
application core to the HSM. For this purpose the connection board wires the
TC1797’s external SPI bus with general purpose in-/output pins (GPIOs) of the
FPGA. Figure 2 gives an overview of the layered approach of the HSM imple-
mentation. In the prototypical design, the HSM’s secure processor is mapped
to the embedded PPC440 of the FPGA that runs at 400MHz with a standard
Linux 2.6.34 kernel as operating system. This is the basis to host software im-
plementations of the HSM firmware, the cryptographic library, and the Linux
kernel drivers to access the hardware cores. The hardware cores implemented in
the configurable logic of the FPGA are connected to the PPC440 via the 32 bit
wide Xilinx specific processor local bus (PLB). Thus, the interface between soft-
ware and hardware implementation has a theoretical throughput of 3Gbit/s at
the given PLB bus speed of 100MHz.

First, all SBBs of Section 3.3 (also cf. Figure 1) and all HSM security func-
tionalities of Section 3.4 were implemented in software (i.e., HSM library) as
a reference for verification and performance analysis. The underlying crypto-
graphic primitives of the SBBs were made available in a cryptographic software

312 M. Wolf and T. Gendrullis

Fig. 2. Architectural overview of the prototypical HSM implementation

library (i.e., CycurLIB [5]). Afterwards, those cryptographic primitives involved
in the vast majority of all SBBs were additionally implemented in hardware
(i.e., AES-128, ECC-256, and Whirlpool). In a straight-forward approach,
they were wrapped with the PLB interface and cryptographic algorithms in
software were enhanced by non-blocking hardware calls via custom SBB Linux
kernel drivers. Different modes and protocols based on one of the three crypto-
graphic primitives in hardware are also part of the cryptographic library using
the hardware calls. SBBs complementary to these three algorithms remain avail-
able as pure software. The HSM firmware is the top level entity that handles all
communication requests, that means, all requests from internal hardware cores
and also all external requests (i.e., from the application processor). Access from
the application processor to the secure processor of the HSM is provided via
the configuration, control and status module (CCS). The CCS is also part of
the HSM and its basic task is to make the communication interface independent
(i.e., to abstract it) from the underlying physical communication medium. The
CCS includes a shared message RAM to buffer issued commands and their an-
swers. The instantiation of the CCS module in the HSM prototype utilizes an
SPI slave module with a data rate of 22.5Mbit/s to connect the HSM to the
TC1797. However, because of the separate CCS abstraction layer, the design can
be easily enhanced to physical communication mediums other than SPI (e.g., to
a socket based communication using TCP/IP over Ethernet for demonstration
purposes with standard PCs). Since a serial bus (i.e., SPI) connects the HSM
with the application processor all data has to be serialized before transmitting
and de-serialized after receiving. This is done by a separate (de-)serialization
layer using abstract syntax notation number one (ASN.1 [22]). At the applica-
tion processor side, commands are serialized accordingly into a binary encoding
and return values are deserialized with the common ASN.1 representation of
the HSM API. The SBBs implemented in hardware are briefly described in the
following. Afterwards, Table 3 shows a comparison of the entire HSM system de-
sign and the single SBB hardware implementation results (time and area) after
synthesis. The synthesis results for the SBBs are mentioned as well for the sole
hardware core as for the core with hardware overhead for PLB integration.

Design, Implementation, and Evaluation of a Vehicular HSM 313

AES-128 was implemented in ECB mode with a focus on a very low area,
still providing a reasonable performance. To keep the design small, the imple-
mentation is comprised of four 8 bit S-boxes that are shared between all round
functions and the key scheduling. With this architecture, encrypting one 128bit
block in ECB mode takes 53 clock-cycles. As the AES operates with a clock of
100MHz, it has a theoretical throughput of 242Mbit/s. For decryption, the AES
needs another 53 clock-cycles to perform the key scheduling each time a new de-
cryption key is used. Thus, in the worst case, the decryption data rate decreases
to 50% compared to encryption. Due to the small hardware footprint, several
instances could be mapped to the design in parallel to increase the performance.
Since all remaining operation modes of AES (e.g., CBC) share the ECB mode
as their common atomic operation, they are realized in software finally using
hardware calls of the AES core in ECB mode.

WHIRLPOOL was implemented with a moderate time-area trade off. Both,
the underlying 512bit block cipher W (which is very similar to AES) and the en-
closing Miyaguchi-Preneel compression function were implemented in hardware.
In our implementation, the 512bit state of W consists of eight 8Byte blocks
operating on eight 8 bit S-boxes. Both the round function and the key schedul-
ing share all computational modules (i.e., S-boxes, ShiftColumns, MixRows).
With this architecture, one 512bit block operation takes 308 clock-cycles. To
keep the number of different clock domains in the HSM design at a minimum,
Whirlpool operates at the same clock of 100MHz as the AES-128 resulting in
a theoretical throughput of 166Mbit/s.

ECC-256 was implemented based on the work of Güneysu and Paar [20] with
a strong emphasis on performance optimization. Only the point multiplication
of the NIST P-256 [16] ECC operation is implemented in hardware while all re-
maining parts of the algorithm are still performed in software. Even though this
is only a small portion of the algorithm it covers over 90% of the entire ECC
computation time. The design is highly optimized for the Xilinx DSP architec-
ture and uses a pipelined architecture with input and output queues. Operated
at a clock of 200MHz, one ECC point multiplication (for signature generation)
with 303,450clocks takes 1.52ms on average (i.e., 659OP/s) and two point mul-
tiplications plus one addition with 366,905clocks takes 1.83ms (i.e., 545OP/s).

Table 3. Synthesis results for the prototypical HSM implementation

Module FF LUT BRAM DSP Critical Path

AES standalone 279 1,137 0 0 9.878 ns

AES with PLB 744 1,399 0 0 9.860 ns

Whirlpool standalone 2,656 2,932 0 0 6.364 ns

Whirlpool with PLB 3,445 3,826 0 0 6.386 ns

ECC standalone 1,854 1,964 13 32 3.539 ns

ECC with PLB 2,102 2,095 13 32 4.426 ns

HSM system 16,273 18,664 37 45 —

314 M. Wolf and T. Gendrullis

5 Evaluation

This section provides an evaluation on HSM performance and HSM security
based on the security requirements stated in Section 2 together with a compar-
ison of our HSM approach with other relevant HSMs already existing.

5.1 Performance Analysis

After fully implementing and extensively testing the HSM hardware design, the
implementation was finally deployed on the target platform. Table 4 shows a
comparison of the hardware cores’ theoretical throughput from the previous sec-
tion and the SBB performances measured in both pure software and hardware
accelerated versions. All measurements were performed on the internal PPC440
based on the cryptographic library CycurLIB [5] enhanced by drivers for hard-
ware core access. On first sight, the AES-128 hardware accelerated implemen-
tation gains only between 5 − 40% compared to the pure software solution.
Moreover, it reaches only 20 − 41% of the theoretical throughput of the hard-
ware core depending on the mode of operation. This seemingly small yield of
performance is mainly caused by the very high bidirectional data traffic over
the PLB bus. Since the AES core operates only on single 128 bit blocks in ECB
mode, each en-/decryption requires first sending and afterwards receiving a small
block of 128bit data. Additionally, all remaining modes (including MAC gener-
ation) have to perform their protocol overhead in software based on the ECB
block operation in hardware. Together with (bus) latencies this explains the rel-
atively small performance gain. With DMA (direct memory access) usage and
slight modifications to the hardware implementation, e.g., enhancing wrappers
for different operation modes, buffers for in-/output data or using pipelining,
the throughput could be increased vastly. On the other hand, the Whirlpool

implementation reaches 77% of its theoretical performance in hardware. Similar
to the AES, it operates on single blocks (of 512bit for Whirlpool) but the
communication remains unidirectional except for the last block of the hash com-
putation when the result is returned. This saves a vast amount of bus traffic (and
latencies). While the hardware performance benefits from the larger block size of
W (i.e., 512bit), it makes computation in software much harder. Actually, the
hardware accelerated Whirlpool outperforms the software version by a factor
of 25. Optimizing the software implementation might reduce this gap slightly but
will never close it entirely. From all SBBs, ECC-256 benefits the most from the
hardware acceleration. The more complex ECDSA signature verification (two
ECC point multiplications plus one addition vs. one ECC point multiplication
only) is 29 times faster in hardware than in software. Since one ECC operation
requires only sending 1024bit and receiving 512bit data, the requirements on
communication bandwidth are very low. This allows the ECC core to reach up
to 80% of its theoretical throughput although the complete ECDSA protocol
(except for the point multiplication) is performed in software.

Design, Implementation, and Evaluation of a Vehicular HSM 315

Table 4. Comparison of SBB Performance-Measurements in Software and Hardware

Throughput

SBB Mode SW (measured) HW (measured) HW (theoretical)

AES-128, ECB encrypt 53 Mbit/s 76 Mbit/s 242 Mbit/s

AES-128, ECB decrypt 53 Mbit/s 58 Mbit/s 121 Mbit/s

AES-128, CBC encrypt 46 Mbit/s 68 Mbit/s 242 Mbit/s

AES-128, CBC decrypt 44 Mbit/s 46 Mbit/s 242 Mbit/s

AES-128, CMAC generate 44 Mbit/s 60 Mbit/s 242 Mbit/s

Whirlpool, hash generate 5 Mbit/s 128 Mbit/s 166 Mbit/s

ECC-256, ECDSA generate 30 sig/s 480 sig/s 659 OP/s

ECC-256, ECDSA verify 15 sig/s 436 sig/s 545 OP/s

5.2 Security Analysis

This section shortly analyses the fulfillment of the security requirements (SR)
stated in Section 2 by our HSM approach. We fulfill SR.1 (isolated security
processing environment) as our HSM is realized as an autonomous micropro-
cessor with its own independent memories (physically) isolated from the ECU
main processor (cf. Section 3.1). The shielded execution environment can also
be strengthened further against physical manipulations by applying appropri-
ate physical tamper-protection measures [27]. We fulfill SR.2 (immutable core
root of trust code) by having foreseen an HSM deployment architecture that ei-
ther assumes an active HSM (part) executed prior to the ECU main processor
or an additional, small, immutable component that initializes the hierarchical
bootstrap measurements (cf. Section 3.1). We fulfill SR.3 (internal non-volatile
memory) by having our HSM foreseen at least about 64kB non-volatile mem-
ory for shielded storing of security root artifacts (cf. Section 3.1 and Figure 1).
We fulfill SR.4 (non-detachable connection with ECU hardware) by assuming a
system-on-chip (SoC) design, for instance, that ensures at least tamper evidence
if someone tries to detach the HSM from the corresponding ECU. However,
in the end, this requirement has to be fulfilled by the ASIC system designer,
who can apply different powerful tamper protection measures (e.g., cf. [27]). We
fulfill SR.5 (secure HSM-ECU communication channel) by assuming a secure
communication channel between HSM and ECU realized by appropriate physi-
cal tamper protection, for example, by assuming an SoC communication line. In
case this is not possible, we propose to realize a secure communication channel
by cryptographic means, for instance, as proposed by TCG’s command trans-
port encryption [35]. However, the additional cryptographic protection of HSM
commands is not part of our current design. We fulfill SR.6 (autonomously con-
trolled alert functionality) by moving this alert functionality inside the HSM’s
cryptographic boundary (cf. Figure 1). The specification of the actual alert re-
sponse (e.g., from autonomous log entry up to ECU full stop), however, should
be defined by the respective ECU application (engineer). We finally also fulfill
SR.7 (standardized, well-established security algorithms) for all security building
blocks, concretely by applying the NIST advance encryption standard [17] for

316 M. Wolf and T. Gendrullis

symmetric encryption, the NIST digital signature standard [16] for asymmetric
encryption, the ISO hash function standard [23] for cryptographic hashing, a
BSI evaluated PRNG according to E.4 [31] for random number generation, and
the ISO standardized ECDH [25] for key agreements.

5.3 Comparison with Other Hardware Security Modules

This section provides an overview comparison of our HSM with other hardware
security modules currently available. Table 5 compares our three different HSM
variants – full, medium, and light – with the Secure Hardware Extension (SHE)
as proposed by HIS [21], with the Trusted Platform Module (TPM) as proposed
by the TCG [35], and with a typical cryptographic smartcard (SmC). While
the TPM and the smartcard were neither designed nor applicable for use within
an automotive security context (as they lack, for instance, in cost efficiency,
performance, physical robustness, or security functionality), SHE was explicitly
designed for application in an automotive security context. It can be seen that
the HSM is quite successful in merging the relevant security functionalities from
SHE, from the TPM and from a typical smartcard while transferring them into
the automotive domain with its strict cost efficiency and performance require-
ments. Beyond this, Table 5 clearly indicates the distinctive security features, for
instance, the possibility for very fine-grained application-specific authorizations

Table 5. Comparison with other hardware security modules

Full Medium Light SHE TPM SmC

Cryptographic algorithms

ECC/RSA �/� �/� �/� �/� �/� 	/	
AES/DES �/	 �/	 �/� �/� �/� 	/	
WHIRLPOOL/SHA �/� �/� �/� �/� �/� 	/	

Hardware acceleration

ECC/RSA �/� �/� �/� �/� �/� �/�
AES/DES �/� �/� �/� �/� �/� �/�
WHIRLPOOL/SHA �/� �/� �/� �/� �/� �/�

Security features

Secure/authenticated boot �/� �/� 	/	 �/� �/� �/�
Key AC per use/bootstrap �/� �/� �/	 �/� 	/� �/�
PRNG with TRNG seed � � � � � �
Monotonic counters 32/64 bit �/� �/� �/� �/� �/� �/�
Tick/UTC-synced clock �/� �/� �/� �/� �/� �/�

Internal processing

Programmable/preset CPU �/	 �/	 �/	 �/� �/� 	/	
Internal V/NV (key) memory �/� �/� 	/	 �/� �/� �/�
Asynchronous/parallel IF �/	 �/� �/� �/� �/� �/�

Annotation: � = available, � = not available, 	 = partly or optionally available

Design, Implementation, and Evaluation of a Vehicular HSM 317

for the processing and the migration of internal security assets or the possibility
for a secure (UTC) time reference, that are exclusively available with this HSM.

6 Conclusion and Outlook

Based on a tight automotive-driven security requirements engineering, we have
designed, implemented, and evaluated a vehicular hardware security module that
enables a holistic protection of all relevant in-vehicle ECUs and their communi-
cations. Practical feasibility will be proven with first HSM-equipped passenger
vehicle demonstrators [14] by end of 2011. Further large-scale field operational
tests with hundreds of HSMs and HSM-equipped vehicles that amongst others
address performance, scalability, and deployment of our HSM approach are al-
ready scheduled in a subsequent research project [30]. We are convinced that
future interactive vehicles can be realized in dependable manner only based on
an effective, efficient holistic in-vehicle security architecture, which in turn is
based upon effective and efficient vehicular HSM as presented by this work.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An encryption scheme based on
the Diffie-Hellman problem. Submission to P1363a: Standard Specifications for
Public-Key Cryptography, Additional Techniques 5 (2000)

2. Checkoway, S., et al.: Comprehensive Experimental Analyses of Automotive Attack
Surfaces. National Academy of Sciences Committee on Electronic Vehicle Controls
and Unintended Acceleration (2011)

3. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6) (1976)

4. Dyer, J., Lindemann, M., Perez, R., Sailer, R., Van Doorn, L., Smith, S., Weingart,
S.: Building the IBM 4758 Secure Coprocessor. IEEE Computer 34(10) (2001)

5. escrypt GmbH – Embedded Security: CycurLIB - Cryptographic Software Library
(2011), http://www.escrypt.com/products/cycurlib/overview/

6. EVITA: Deliverable 2.1: Specification and Evaluation of E-Security Relevant Use
Cases (2008)

7. EVITA: Deliverable 2.3: Security Requirements for Automotive On-Board Net-
works Based on Dark-Side Scenarios (2009)

8. EVITA: Deliverable 3.1.2: Security and Trust Model (2009)
9. EVITA: Deliverable 3.2: Secure On-board Architecture Specification (2010)

10. EVITA: Deliverable 3.3: Secure On-Board Protocols Specification (2010)
11. EVITA: Deliverable 4.1.3: Security Hardware FPGA Prototype (2011)
12. EVITA: Deliverable 4.2.2: Basic Software (2011)
13. EVITA: Deliverable 4.3.2: Implementation of Software Framework (2011)
14. EVITA: Deliverable 5.1.2: On-board Communication Demonstrator (2011)
15. EVITA Project: E-safety Vehicle Intrusion proTected Applications, European

Commission research grant FP7-ICT-224275 (2008),
http://www.evita-project.org

16. FIPS-186-3: Digital Signature Standard (DSS). NIST (1994, 2006)
17. FIPS-197: Advanced Encryption Standard (AES). NIST (2001)

http://www.escrypt.com/products/cycurlib/overview/
http://www.evita-project.org

318 M. Wolf and T. Gendrullis

18. Frischkorn, H.G.: Automotive Software – The Silent Revolution. In: Workshop on
Future Generation Software Architectures in the Automotive Domain, San Diego,
CA, USA, January 10- 12 (2004)

19. Furgel, I., Lemke, K.: A Review of the Digital Tachograph System. In: Embed-
ded Security in Cars: Securing Current and Future Automotive IT Applications.
Springer (2006)

20. Güneysu, T., Paar, C.: Ultra High Performance ECC over NIST Primes on Com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

21. Herstellerinitiative Software (HIS): SHE Secure Hardware Extension Version 1.1
(2009), http://portal.automotive-his.de

22. International Telecommunication Union – ITU-T Study Group 7: Abstract Syntax
Notation number One – ASN.1 (1995), http://www.itu.int/ITU-T/asn1/

23. ISO/IEC 10118-3:2004: Information technology – Security techniques – Hash-
functions – Part 3: Dedicated hash-functions. ISO/IEC (2004)

24. ISO/IEC 11898:2003-2007: Information technology – Road vehicles Controller area
network. ISO/IEC (2007)

25. ISO/IEC 18033-2:2006: Information technology - Security techniques - Encryption
algorithms - Part 2: Asymmetric ciphers. ISO/IEC (2006)

26. Koscher, K., et al.: Experimental Security Analysis of a Modern Automobile. In:
IEEE Symposium on Security and Privacy (2010)

27. Lemke, K.: Physical Protection against Tampering Attacks. In: Embedded Security
in Cars: Securing Current and Future Automotive IT Applications. Springer (2006)

28. Luo, J., Hubaux, J.: A Survey of Inter-Vehicle Communication. EPFL, Lausanne,
Switzerland, Tech. Rep (2004)

29. PRECIOSA Project: Privacy Enabled Capability in Co-operative Systems and
Safety Applications (2008), http://www.preciosa-project.org

30. PRESERVE Project: Preparing Secure Vehicle-to-X Communication Systems
(2011), http://www.preserve-project.eu

31. Schindler, W.: AIS 20 – Functionality classes and evaluation methodology for de-
terministic random number generators. German Federal Office for Information Se-
curity (BSI) (1999)

32. SeVeCom Project: Secure Vehicular Communication (2006),
http://www.sevecom.org

33. Song, J., Poovendran, R., Lee, J., Iwata, T.: The AES-CMAC Algorithm. RFC4493,
IETF (June 2006)

34. Toll Collect GmbH (2011), http://www.toll-collect.com
35. Trusted Computing Group (TCG): TPM Specification 1.2 Revision 116 (2011),

http://www.trustedcomputinggroup.org

http://portal.automotive-his.de
http://www.itu.int/ITU-T/asn1/
http://www.preciosa-project.org
http://www.preserve-project.eu
http://www.sevecom.org
http://www.toll-collect.com
http://www.trustedcomputinggroup.org

Efficient Modular Exponentiation-Based Puzzles

for Denial-of-Service Protection

Jothi Rangasamy, Douglas Stebila, Lakshmi Kuppusamy,
Colin Boyd, and Juan Gonzalez Nieto

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

{j.rangasamy,stebila,l.kuppusamy,c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. Client puzzles are moderately-hard cryptographic problems
— neither easy nor impossible to solve — that can be used as a counter-
measure against denial of service attacks on network protocols. Puzzles
based on modular exponentiation are attractive as they provide impor-
tant properties such as non-parallelisability, deterministic solving time,
and linear granularity. We propose an efficient client puzzle based on
modular exponentiation. Our puzzle requires only a few modular multi-
plications for puzzle generation and verification. For a server under de-
nial of service attack, this is a significant improvement as the best known
non-parallelisable puzzle proposed by Karame and Čapkun (ESORICS
2010) requires at least 2k-bit modular exponentiation, where k is a secu-
rity parameter. We show that our puzzle satisfies the unforgeability and
difficulty properties defined by Chen et al. (Asiacrypt 2009). We present
experimental results which show that, for 1024-bit moduli, our proposed
puzzle can be up to 30× faster to verify than the Karame-Čapkun puzzle
and 99× faster than the Rivest et al.’s time-lock puzzle.

Keywords: client puzzles, time-lock puzzles, denial of service resistance,
RSA, puzzle difficulty.

1 Introduction

Denial-of-Service (DoS) attacks are a growing concern due to the advance-
ment in information technology and its application to electronic commerce. The
main goal of DoS attacks is to make a service offered by a service provider
unavailable by exhausting the service provider resources. In recent years, DoS
attacks disabled several Internet e-commerce sites including eBay, Yahoo!, Ama-
zon and Microsoft’s name server [16].

Since millions of computers are connected through the Internet, DoS attacks
on any of these systems would lead to a large scale impact on the whole network.
Many essential services such as communications, defense, health systems, bank-
ing and financial systems have become Internet-based applications. There is an
immense need for keeping these services alive and available on request. However
mounting a DoS attack is very easy for the sophisticated attackers while defend-
ing them is very hard for the victim servers. A promising way to deal with this

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 319–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

320 J. Rangasamy et al.

problem is for a defending server to identify and segregate the malicious requests
as early as possible.

Client puzzles, also known as proofs of work, can guard against resource
exhaustion attacks such as DoS attacks and spam [2,7,10]. When client puzzles
are employed, a defending server will process a client’s request only after the
client has provided the correct solution to its puzzle challenge. In this way, a
client can prove to the server its legitimate intentions in getting a connection.
Although employing client puzzles adds an additional cost for legitimate clients,
a big cost will be imposed on an attacker who is trying to make multiple connec-
tions. In this case, the attacker would need to invest its own resources in solving
a large number of puzzles before exhausting the server resources.

1.1 Puzzle Properties

The essential property of a client puzzle is that it be difficult to solve: not
impossible, but not too easy, either. Many cryptographic puzzles are based on
inverting a hash function [3,8,10].

Puzzles based on modular exponentiation have the potential to provide addi-
tional properties:

– Non-parallelisability. A client puzzle is called non-parellelisable if the
time to solve the puzzle cannot be reduced by using many computers in
parallel. This property ensures that a DoS attacker cannot divide a puzzle
into multiple small tasks and therefore gains no advantage in puzzle solving
with the large number of machines it may have in its control.

– Deterministic solving-time. If the puzzle issuing server has specified a
value as a difficulty parameter, then a client needs to do at least the specified
number of operations to solve a puzzle. This will help the server decide the
minimum work each client must do before getting a connection. Many puzzles
in contrast, only determine the average work required to obtain a solution.

– Fine granularity. A puzzle construction achieves finer granularity if the
server is able to set the difficulty level accurately. That is, the gap between
two adjacent difficulty levels should be small. This property helps servers
switch between different difficulty levels easily. If there is a large gap between
two difficulty levels, then increasing the difficulty to the next level might have
an impact on computationally-poor legitimate clients.

It is imperative that both the puzzle generation and solution verification algo-
rithms add only minimal computation and memory overhead to the server. Oth-
erwise, this puzzle mechanism itself may become a target for resource exhaustion
DoS attacks when a malicious client sends a large number of fake requests for
puzzle generation or a large number of puzzle solutions for verification.

Rivest et al. [17] described a concrete modular exponentiation puzzle based on
the RSA modulus factorisation problem. This was the first puzzle to provide the
three properties listed above: non-parallelisability, deterministic solving time,
and finer granularity. However, the main disadvantage of these puzzles is that

Efficient Modular Exponentiation-Based Puzzles for DoS Protection 321

Table 1. Verification costs and timings (in microseconds) for modular exponentiation-
based puzzles; n is an RSA modulus, k is a security parameter. Timings are for 1024-
bit modulus n with k = 80 and for 512-bit modulus n with k = 56, both with puzzle
difficulty 1 million.

Puzzle Verification Verification Time (μs)
Cost 512-bit n 1024-bit n

Rivest et al. [17] |n|-bit mod. exp. 474.68 2903.99
Karame-Čapkun [11] 2k-bit mod. exp. 263.35 895.17
This paper 3 mod. mul. 14.75 29.24

they require a busy server to perform computationally intensive exponentiation
to verify solutions. Recently, Karame and Čapkun [11] improved the verification

efficiency of Rivest et al.’s puzzle by a factor of |n|
2k for a given RSA modulus

n, where k is the security parameter. More details on these two puzzles will be
provided in Section 2.

Although Karame and Čapkun’s performance gain in verification cost is im-
pressive, it is still sufficiently expensive that it could be burdensome on a de-
fending server, as verification still requires modular exponentiations. This is the
main reason preventing modular exponentiation-based puzzles being deployed
widely, despite having some attractive characteristics. Construction of modu-
lar exponentiation-based puzzles which avoid a big modular exponentiation for
puzzle generation and solution verification has not been attained until now.

1.2 Contributions

1. We propose an efficient modular exponentiation-based puzzle which achieves
non-parallelisability, deterministic solving time, and finer granularity. Our
puzzle can be seen as an efficient alternative to Rivest et al.’s time-lock puzzle
[17]. Our puzzle requires only a few modular multiplications to generate and
verify puzzle solutions. The verification costs and timings for our puzzle and
other puzzles of the same type are presented in Table 1.

2. We analyse the security properties of our puzzle in the puzzle security model
of Chen et al. [6] and show that our puzzle is unforgeable and difficult.

3. In order to validate the performance of our puzzle, we give experimental
results and compare them with the performances of Rivest et al.’s time-lock
puzzle [17] and Karame and Čapkun’s puzzle [11], which is the most efficient
non-parallelisable puzzle in the literature. Our results suggest that our puz-
zle reduces the solution verification time by approximately 99 times when
compared to Rivest et al.’s time-lock puzzle and 30 times when compared to
Karame and Čapkun, for 1024-bit moduli.

Organization of paper: The rest of the paper is organized as follows. Section 2
presents the background and motivation for our work. Section 3 describes our
proposed puzzle and Section 4 analyses the security properties of the proposed
puzzle in the Chen et al. model. Section 5 presents our experimental results

322 J. Rangasamy et al.

validating the efficiency of the proposed puzzle scheme and we conclude the
paper in Section 6.

2 Background: Modular Exponentiation-Based Puzzles

In this section, we review known modular exponentiation-based puzzles and
follow the definition of a client puzzle proposed by Chen et al. [6].

Notation. If n is an integer, then we use |n| to denote the length in bits of n,
and φ(n) is the Euler phi function of n, which is equivalent to the size of the
multiplicative group Z∗

n. We denote the set {a, . . . , b} of integers by [a, b]. We use
x ←r S to denote choosing x uniformly at random from S. If A is an algorithm,
then x ← A(y) denotes assigning to x the output of A when run with the input
y. If k is a security parameter, then negl(k) denotes a function that is negligible
in k (asymptotically smaller than the inverse of any polynomial in k). By p.p.t.
algorithm, we mean probabilistic polynomial time algorithm.

Client Server

Off-line Phase
Setup(1k)

1. (n, p, q)← GenRSA(1k)

2. d←r [2k, 2k+1] such that
e = d−1 mod φ(n) exists and e ≥ n2.

3. s← (e, d, φ(n))
4. Select R ≥ e, |R| = Q.

On-line Phase

request−−−−−−−−−−−−→ GenPuz(s,Q,Nc)

1. Z ←r {0, 1}k
2. X ← HMAC(d, Z)
3. v ← HMAC(d,X), |v| ≥ k, gcd(v, d) = 1
4. K ← e · v − (R mod φ(n)).

FindSoln(puz, t)
puz←−−−−−−−−−−−− 5. puz ← (n,R,K,Z,X)

1. Y1 ← XR mod n

2. Y2 ← XK mod n
Y1, Y2, puz−−−−−−−−−−−−→ VerAuth(s, puz), VerSoln(s, puz, soln)

1. X ← HMAC(d, Z)
2. v ← HMAC(d,X)

3. Verify (Y1 · Y2)d
?≡ Xv mod n

Fig. 1. KCPuz: Karame-Čapkun’s Variable-Exponent Client Puzzle [11]

Efficient Modular Exponentiation-Based Puzzles for DoS Protection 323

2.1 Rivest et al.’s Puzzle

Given a RSA modulus n, Rivest et al.’s puzzle [17] requires |n|-bit exponentiation
to verify puzzle solutions. In detail, the server generates two RSA primes p and q,
and computes the associated RSA modulus n = pq and the Euler totient function
φ(n) = (p− 1) · (q− 1). Then sets the difficulty level Q or the amount of work a
client needs to do. Now, the server picks an integer a ←r Z∗

n and sends the client

the tuple (a,Q, n). The client’s task is to compute and return b ← a2
Q

mod n.

The server first computes c = 2Q mod φ(n) and then checks if ac
?≡ b mod n.

Here the server can compute c once and use it for all the solution verifications
unless it changes the difficulty level Q. With the trapdoor information φ(n), the
server is able to verify the solution in one |n|-bit exponentiation whereas the
client should perform Q repeated squarings and typically Q ' |n|.

2.2 Karame-Čapkun Puzzle

Recently, Karame and Čapkun [11] reduced |n|-bit exponentiation in time-lock
puzzle verification to 2k-bit exponentiation modulo n, thereby significantly re-

ducing the computational burden of the server by a factor of |n|
2k , where k is a

security parameter. The Karame and Čapkun puzzle KCPuz is depicted in Fig-
ure 1. Karame and Čapkun showed that their puzzle is unforgeable and difficult
in the puzzle security model of Chen et al. [6]. In this paper, we are considering
the variable-exponent version of Karame and Čapkun’s puzzle.

Although the verification cost is improved significantly in KCPuz, the server
still needs to engage in at least 2k-bit exponentiation for each puzzle solution
it receives. Since it is expected that the defending server may receive a large
number of fake requests/solutions, puzzle generation and solution verification
should be as efficient as possible. Otherwise this mitigation mechanism itself
opens door for resource exhaustion DoS attacks when a malicious client sends
a number of fake requests/solutions for puzzles triggering the server engage in
those expensive operations.

Parallelisability. Puzzle solving in KCPuz can be partially parallelised by de-
composing the exponent R into multiple parts. For example, consider a mali-
cious client C with two compromised machines, namely M1 and M2, under its
control. In order to parallelise the computation of xR mod n, C first decom-
poses R into two parts R1 and R2 such that R = R1||R2, where || denotes the

concatenation. Then C gives R1||0
�
2 to M1 and R2 to M2, along with the pub-

lic values (X,n). Now, using the square and multiply algorithm, M1 computes

XR1||0
�
2 mod n in 5�

4 modular multiplications and M2 computes XR2 mod n in
3�
4 modular multiplications. Note that, without decomposition, 3�

2 modular mul-
tiplications would have been required if the malicious client chose to compute
XR mod n itself. Since M1 and M2 could work in parallel, the time taken by

C to compute XR mod n is the time taken by M1 to compute XR1||0
�
2 mod n,

which requires to do more operations than M2. Therefore, this decomposition

324 J. Rangasamy et al.

saves the malicious client 1
6 of the total time needed to solve the puzzle. This

parallelisation via exponent decomposition is gainful only if R is not a power of
2. Rivest et al. set R to be power of 2 to achieve non-parallelisability. Moreover
when |R| ' 220 bits and R = 2Q for some Q ∈ N+, sending Q for each puzzle
instead of R will save communication cost as well.

Granularity. Unlike Rivest et al.’s modular exponentiation-based puzzle, the
Karame-Čapkun puzzle does not provide fine control over granularity of difficulty
levels. In KCPuz, a client is given the pair (K,R) where K ← e·v−(R mod φ(n))
and therefore for security reasons, R must be large enough so that R > n.
This condition rules out difficulty levels between 0 and n. Also, if R is the
current difficulty level, then the next difficulty levelR′ must satisfy the following:
R′
R ≥ n2. This implies that there will be a large gap between the two successive
difficulty levels. Hence, KCPuz does not support fine granularity.

Example Parameter Sizes. In a DoS scenario, a client is given a puzzle
whose hardness is typically set between 0 to 225 operations. Since a client needs
to perform at most 225 for each puzzle, the 40-bit security level is enough for the
puzzle scheme and is higher than the work needed to solve a puzzle. Lenstra and
Verheul [13] suggest using a 512-bit RSA modulus n which is widely believed to
match the 56-bit security of Data Encryption Standard (DES). Since |n| = 512,

|R| ≥ 512. Suppose R = 2512. From R′
R ≥ n2, the possible values for the next

two difficulty levels are R′ = 21536 and R′′ = 22560.
In this work, we give an efficient modular exponentiation-based puzzle which

achieves both non-parallelism and finer granularity.

3 Our Client Puzzle Protocol

In this section, we present a non-parallelisable client puzzle scheme that requires
only a few modular multiplications for puzzle generation and solution verifica-
tion. First we review the cryptographic ingredients required and then present
our puzzle construction.

3.1 Tools

Our puzzle construction makes use of algorithm GenRSA that generates an RSA-
style modulus n = pq as follows:

Definition 1 (Modulus Generation Algorithm). Let k be a security pa-
rameter. A modulus generation algorithm is a probabilistic polynomial time al-
gorithm GenRSA that, on input 1k, outputs (n, p, q) such that n = pq and p and
q are k-bit primes.

In our puzzle generation algorithm, the server needs to produce a pair (x, xu)
for each puzzle. Since the generation of these pairs are expensive, we utilise a
technique due to Boyko et al. [5] for efficient generation of many pairs (xi, x

u
i mod

n) for a fixed u using a relatively small amount of pre-computation.

Efficient Modular Exponentiation-Based Puzzles for DoS Protection 325

Definition 2 (BPV Generator). Let k, �, and N , with N ≥ � ≥ 1, be param-
eters. Let n ← GenRSA(1k) be an RSA modulus. Let u be an element in Zφ(n)

of length m. A BPV generator consists of the following two algorithms:

– BPVPre(u, n,N): This is a pre-processing algorithm that is run once. The
algorithm generates N random integers α1, α2, . . . , αN ←r Z∗

n and computes
βi ← αi

u mod n for each i. Finally, it returns a table τ ← ((αi, βi))
N
i=1.

– BPVGen(n, �, τ): This is run whenever a pair (x, xu mod n) is needed. Choose
a random set S ⊆r {1, . . . , N} of size �. Compute x ←

∏
j∈S αj mod n. If

x = 0, then stop and generate S again. Otherwise, compute X ←
∏

j∈S βj

mod n and return (x,X). In particular, the indices S and the corresponding
pairs ((αj , βj))j∈S are not revealed.

Indistinguishability of the BPV Generator. Boyko and Goldwasser [4] and
Shparlinski [18] showed that the values xi generated by the BPV generator are
statistically close to the uniform distribution. To analyse the security properties
of the proposed puzzle, we use the following results by Boyko and Goldwasser
[4, Chapter 2]. Let N be the number of pre-computed pairs (αi, βi) such that
αi’s are chosen independently and uniformly from [1, n] and βi = αu

i mod n.
Each time a random set S ⊆ {1, . . .N} of � elements is chosen and a new pair
(x,X) is computed such that x =

∏
j∈S αj mod n and X =

∏
j∈S βj mod n.

Then, with overwhelming probability on the choice of αi’s, the distribution of x
is statistically close to the uniform distribution of a randomly chosen x′ ∈ Z∗

n.
Here we also note that although BPV outputs a pair (x, xu), only x is made
available to clients and xu is kept secret by the server. That is, each time clients
are given the pair (x, 1), not (x, xu).

Theorem 1. [4, Chapter 2] If α1, . . . , αN are chosen independently and uni-
formly from Z∗

n and if x =
∏

j∈S αj mod n is computed from a random set
S ⊆ {1, . . .N} of � elements, then the statistical distance between the computed

x and a randomly chosen x′ ∈ Z∗
n is bounded by 2−

1
2 (log (

N
�)+1). That is,∣∣∣∣∣∣Pr

⎛⎝∏
j∈S

αj = x mod n

⎞⎠− 1

φ(n)

∣∣∣∣∣∣ ≤ 2−
1
2 (log (

N
�)+1) .

Parameters for BPV. As discussed in Section 2, in a DoS scenario, the diffi-
culty level Q for a puzzle is typically set between 0 and 225 operations. There-
fore, it can be anticipated that factoring of n and hence computing φ(n) for
solving puzzles easily, will be much more difficult than performing Q squarings
as Q " n when Q ≤ 225 and |n| ≥ 512. Lenstra and Verheul [13] suggest us-
ing a 512-bit RSA modulus n to match the 56-bit security of Data Encryption
Standard (DES). Since a client needs to perform at most 225 for each puzzle, the
40-bit security level could be enough for the puzzle scheme and hence breaking
the scheme is much harder than solving a puzzle.

326 J. Rangasamy et al.

Boyko et al.[4,5] suggest to set N and � so that subset product problem is in-
tractable and birthday attacks becomes infeasible. To achieve the above security
level, we can selectN and � such that

(
N
�

)
> 240. Boyko et al. [4,5] suggest setting

N = 512 and � = 6 for the BPV generator. Alternatively, we could achieve this
with N = 2500 and � = 4; this increases the amount of precomputation required
in BPVPre but reduces the number of modular multiplications performed online
in BPVGen from 12 to 8.

Client (C) Server (S)

Off-line Phase

Setup(1k)

1. (n, p, q)← GenRSA(1k)
2. d← 3−1 mod φ(n)
3. Set the difficulty level Q.

4. u← d− (2Q mod φ(n))
5. τ = ((αi, βi))

N
i=1 ← BPVPre(u, n,N)

6. ρ←r {0, 1}k
7. s← (ρ, d, φ(n), τ)
8. params← (Q,n)

On-line Phase

1. random NC
NC−−−−−−−−−−−−→ GenPuz(s,Q,NC)

1. (x,X)← BPVGen(n, �, τ)

2. NS ←r {0, 1}k
3. Z ← Hρ(NC , NS , IPC , IDS, x,Q)

FindSoln(NC , puz, t)
NC , puz←−−−−−−−−−−−− 4. puz ← (n, x,NS , Q, Z)

1. y ← x2Q mod n

2. soln← y
NC , puz, soln−−−−−−−−−−−−→ VerAuth(s, puz)

1. Verify Z
?
= Hρ(NC , NS , IPC , IDS, x,Q)

VerSoln(s, puz, soln)

1. Verify (X · soln)3
?≡ x mod n

Fig. 2. RSAPuz: A new client puzzle based on modular exponentiation

3.2 The Proposed Puzzle: RSAPuz

The main idea behind our puzzle construction is: given a RSA modulus n, an

integer Q and X ∈ Z∗
n, the task of a client is to compute X2Q mod n.

Our client puzzle RSAPuz is presented in Fig 2 as an interaction between a
server issuing puzzles and a client solving them. RSAPuz is parameterized by a
security parameter k and a difficulty parameter Q. In practice, a server using
puzzles as a DoS countermeasure can vary Q based on the severity of the attack
it is experiencing. However once a difficulty level is set, it is increased only if the
server still receives a large number of requests with correct puzzle solutions.

Efficient Modular Exponentiation-Based Puzzles for DoS Protection 327

In RSAPuz, the server does the following:

– Puzzle pre-computation. Generating (n, p, q) and computing d is a one
time process. Whenever a server is required to change the difficulty param-
eter Q, it selects an integer R such that |R| = Q and computes u. Then
it runs the BPV pre-processing step with inputs (u, n,N) and obtains N
pairs of (αi, βi). Since all the required pre-computations are done off-line,
the defending server can be more effective on-line against DoS attacks.

In a DoS setting, an attacker could mount a resource depletion attack by asking
the server to generate many puzzles and to verify many fake puzzle solutions.
Hence the following algorithms run online by the server many times should be
very efficient to resist such flooding attacks.

– Puzzle generation. The dominant cost in puzzle generation is the BPV
pair generation BPVGen, which requires 2(� − 1) modular multiplications:
� − 1 to compute x and � − 1 to compute X . There is also a single call
to the pseudo-random function Hρ to compute the authentication tag Z. As
suggested by Boyko et al., � could be set between 4 and 16 so that our puzzle
requires only 8 modular multiplications in the best case.

– Puzzle authenticity verification. Puzzle authenticity verification is
quite cheap, requiring just a single call to the pseudo-random function H to
verify the authentication tag Z.

– Puzzle verification. To verify correctness of a solution, the server has to
perform only 3 modular multiplications.

Our puzzle construction dramatically reduces the puzzle verification cost in-
curred by the server and is the only modular exponentiation-based puzzle that
does not require a big exponentiation to be performed by the server on-line. The
efficiency of our puzzle is compared with the efficiency of Karame-Čapkun and
Rivest et al.’s puzzles in Section 5.

After receiving the puzzle, the client finds the solution to the puzzle as follows:

– Puzzle solving. One typical method for a legitimate client to implement
the FindSoln algorithm is to use square-and-multiply algorithm, which is
the most commonly used algorithm for computing modular exponentiations.
Upon receiving a puzzle puz from the server with an integer Q, the client

computes y as x2Q mod n. We note however that a client could also choose
to factor n first and then can solve the puzzle efficiently.

The best known method to solve our puzzle is to perform Q repeated squar-
ings and this is an inherently sequential process [9,11,17]. Therefore a client
needs to do exactly Q sequential modular multiplications to correctly solve the
given puzzle, thereby achieving deterministic solving time property and non-
parallelisability. We also get finer granularity as Q can be set to any positive
integer regardless of the previously used difficulty values.

328 J. Rangasamy et al.

Table 2. Puzzle properties and operation counts for puzzle solving, generation and
verification. Q is the difficulty level, n is an RSA modulus, k is a security parameter,
and � is a small integer.

Puzzle Non-parallelisable Finer Puzzle Solving Generation Verification

& Deterministic Granularity Cost Cost Cost

Solving Time

TLPuz [17] Yes Yes Q mod. mul. 1 hash
1 hash

|n|-bit mod. exp.

KCPuz [11] Yes No
O(Q) mod. mul. 2 HMAC (4 hash) 2 HMAC (4 hash)
O(|n2|) mod. mul. 1 gcd 2k-bit mod. exp.

RSAPuz Yes Yes Q mod. mul.
1 hash 1 hash

2(�− 1) mod. mul. 3 mod. mul.

In Table 2, we compare the puzzle properties and asymptotic costs for
FindSoln, GenPuz and VerSoln algorithms for the non-parallelisable puzzles ex-
amined in this paper. In particular, we compare the performance of the proposed
puzzle RSAPuz with that of Rivest et al.’s time-lock puzzle (TLPuz) and Karame-
Čapkun’s variable exponent puzzle (KCPuz).

Remark 1. In RSAPuz as illustrated in Figure 2, the server requires a short-
term secret X for verifying the puzzle solution. Storing X for each puzzle may
introduce a memory-based DoS attack on the server. Fortunately, the server may
avoid this type of attack by employing stateless connections [1] to offload storage
of X to the client. That is, the server can use a long-term symmetric key sk to
encrypt X and send it along with each puzzle. Then the client has to send back
this encrypted value while returning the solution to the puzzle. In this way, the
server remains stateless and obtains X by decrypting the encrypted value using
the same key sk. With an efficient symmetric encryption algorithm, the server
will not experience any significant computational burden.

Table 3. Timings for modular exponentiation-based puzzles. For RSAPuz, N = 2500
and � = 4.

512-bit modulus, k = 56 1024-bit modulus, k = 80
Puzzle Setup (ms) GenPuz (μs) FindSoln (s) VerSoln (μs) Setup (ms) GenPuz (μs) FindSoln (s) VerSoln (μs)

Difficulty: 1 million

TLPuz [17] 13.92 4.80 1.54 474.68 56.10 4.86 4.13 2903.99
KCPuz [11] 11.52 8.37 1.59 263.35 42.30 8.66 4.27 895.17
RSAPuz 140.11 16.66 1.54 14.75 8510.92 35.15 4.29 29.24

Difficulty: 10 million

TLPuz [17] 49.99 4.80 15.17 474.83 103.95 4.87 42.62 2917.25
KCPuz [11] 28.95 8.37 15.18 265.28 85.09 8.62 43.31 907.03
RSAPuz 1419.78 16.66 15.34 14.53 8669.75 34.72 43.08 28.97

Difficulty: 100 million

TLPuz [17] 416.29 4.81 157.10 470.61 607.87 4.84 429.31 2924.01
KCPuz [11] 218.76 8.35 160.97 259.39 327.46 8.70 426.04 899.00
RSAPuz 1609.83 16.76 158.22 14.88 8966.74 34.76 422.58 29.18

Efficient Modular Exponentiation-Based Puzzles for DoS Protection 329

4 Security Analysis of RSAPuz

We analyse the security properties of RSAPuz using the security model of Chen
et al. [6].In particular, we show that RSAPuz satisfies the unforgeability and
difficulty properties introduced by Chen et al. Since we use a secure pseudo-
random function H in puzzle generation, proof of unforgeability for RSAPuz is
quite straightforward. Due to lack of space, we omit the proof for unforgeability
and give only the intuition behind the proof for difficulty.

4.1 Difficulty of RSAPuz

The time-lock puzzle was first proposed in 1996 and to date the best known
method of solving the puzzle is sequential modular squaring, provided that fac-
toring the modulus is more expensive. Indeed, it has been widely accepted that

given a large RSA modulus n, the computation of a2
Q

mod n can be obtained by
Q repeated squarings and no algorithm with better complexity than Q squarings
is known [9,11,14,17].

Karame and Čapkun proved that their puzzle KCPuz is εk,R(t)- difficult in
the Chen et al. model, where

εk,R(t) = min

{⌊
t

logR

⌋
+O

(
1

2k

)
, 1

}
for all probabilistic algorithms A running in time at most t.

If a solver knows a multiple of φ(n), then it can compute φ(n) and the factors
of n very efficiently [15]. Then the solver can efficiently compute xR mod n by
computing c ← R mod φ(n) first and then computing xc mod n. However, it
is computationally infeasible for a client to compute a multiple of φ(n) from
the transcripts of the puzzle scheme, so computing xR mod n requires at least
O(logR) modular multiplications. Hence, the success probability of solving the
puzzle is bounded by εk,R(t) for any algorithm running in time at most t.

Detailed examination of Karame and Čapkun’s proof reveals that they are
essential making the assumption that the best approach for solving the time-
lock puzzle is sequential modular squaring and multiplication. Moreover, their
proof further makes the assumption that the time-lock puzzle is difficult in the
Chen et al. model, in other words, when the adversary is allowed to see valid
puzzle-solution pairs returned from the CreatePuzSoln query.

We show in the following theorem that our puzzle RSAPuz is difficult in the
Chen et al. model [6] as long as Rivest et al.’s time-lock puzzle is difficult. Due
to lack of space the proof of the theorem will appear in full version.

Theorem 2 (Difficulty of RSAPuz). Let k be a security parameter and let
Q be a difficulty parameter. Let GenRSA be a modulus generation algorithm. If
TLPuz with GenRSA is εk,Q(t)-difficult, then RSAPuz is ε′k,Q(t)-difficult for all
probabilistic algorithms A running in time at most t, where

ε′k,Q(t) = 2 · εk,Q (t+ (qC + 1) (2(�− 1)TMul) + c) .

330 J. Rangasamy et al.

Here, qC is the number of CreatePuzSoln queries and TMul is the time complexity
for computing a multiplication modulo n, and c is a constant.

5 Performance Comparison

Table 3 presents timings from an implementation of these puzzle variants for
both 512-bit and 1024-bit RSA moduli with k = 56 and k = 80, respectively,
for puzzle difficulty levels 1 million, 10 million, and 100 million. The software
was implemented using big integer arithmetic from OpenSSL 0.9.8� and run on
a single core of a 3.06 GHz Intel Core i3 with 4GB RAM, compiled using gcc

-O2 with architecture x86 64.
In the 512-bit case, our puzzle reduces the solution verification time by ap-

proximately 32 times when compared to TLPuz and 17 times when compared to
KCPuz. For the 1024-bit case, the gain in the verification time is approximately
99 times when compared to TLPuz and 30 times when compared to KCPuz.

Since VerSoln cost in RSAPuz is independent of k the security parameter,
the verification gain increases as the size of RSA moduli increases. Note that,
for both the moduli, the puzzle generation algorithm GenPuz is 2 to 7 times
slower than the GenPuz in TLPuz and KCPuz. However, the cumulative puzzle
generation and puzzle verification time in RSAPuz is still substantially less than
in TLPuz or KCPuz. Furthermore, GenPuz cost in RSAPuz can still be improved
by reducing � from 4 to 2 and increasing the number N of pairs precomputed
by BPVPre in the puzzle setup algorithm.

6 Conclusion

In this paper, we presented the most efficient non-parallelisable puzzle based on
RSA. A DoS defending server needs to perform only 2(�− 1) modular multipli-
cations online, where � could be as low as 2, for a given RSA modulus. For the
comparable difficulty level, the best known non-parallelisable puzzle requires a
busy server perform online at least 2k-bit modular exponentiation, where k is a
security parameter.

We have also proved that the proposed puzzle satisfies the two security notions
proposed by Chen et al. In particular, we have reduced the difficulty of solving
our puzzle to the difficulty of solving Rivest et al.’s time-lock puzzle.

Experimental results show that our puzzle reduces the solution verification
time by a factor of 99 when compared to Rivest et al.’s time-lock puzzle and a
factor of 30 when compared to Karame and Čapkun puzzle, for 1024-bit moduli.

Acknowledgements. The authors are grateful to anonymous referees for their
comments. This work is supported by Australia-India Strategic Research Fund
project TA020002.

Efficient Modular Exponentiation-Based Puzzles for DoS Protection 331

References

1. Aura, T., Nikander, P.: Stateless Connections. In: Han, Y., Okamoto, T., Qing, S.
(eds.) ICICS 1997. LNCS, vol. 1334, pp. 87–97. Springer, Heidelberg (1997)

2. Aura, T., Nikander, P., Leiwo, J.: DOS-Resistant Authentication with Client Puz-
zles. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Pro-
tocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001)

3. Back, A.: Hashcash: A denial-of-service countermeasure (2002),
http://www.hashcash.org/papers/hashcash.pdf

4. Boyko, V.: A pre-computation scheme for speeding up public-key cryp-
tosystems. Master’s thesis, Massachusetts Institute of Technology (1998),
http://hdl.handle.net/1721.1/47493

5. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up Discrete Log and Factoring
Based Schemes via Precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)

6. Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security Notions and Generic
Constructions for Client Puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 505–523. Springer, Heidelberg (2009)

7. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidel-
berg (1993)

8. Feng, W., Kaiser, E., Luu, A.: Design and implementation of network puzzles. In:
INFOCOM 2005, vol. 4, pp. 2372–2382. IEEE (2005)

9. Hofheinz, D., Unruh, D.: Comparing two notions of simulatability. In: Kilian [2],
pp. 86–103

10. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: NDSS 1999, pp. 151–165. Internet Society (1999)

11. Karame, G., Čapkun, S.: Low-Cost Client Puzzles Based on Modular Exponentia-
tion. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 679–697. Springer, Heidelberg (2010)

12. Kilian, J. (ed.): TCC 2005. LNCS, vol. 3378. Springer, Heidelberg (2005)
13. Lenstra, A., Verheul, E.: Selecting cryptographic key sizes. J. Cryptology 14(4),

255–293 (2001)
14. Mao, W.: Timed-Release Cryptography. In: Vaudenay, S., Youssef, A.M. (eds.)

SAC 2001. LNCS, vol. 2259, pp. 342–358. Springer, Heidelberg (2001)
15. Miller, G.L.: Riemann’s hypothesis and tests for primality. In: STOC, pp. 234–239.

ACM (1975)
16. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet

denial-of-service activity. ACM Transactions on Computer Systems (TOCS) 24(2),
115–139 (2006)

17. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical Report TR-684, MIT Laboratory for Computer Science (March
1996)

18. Shparlinski, I.: On the uniformity of distribution of the RSA pairs. Mathematics
of Computation 70(234), 801–808 (2001)

http://www.hashcash.org/papers/hashcash.pdf
http://hdl.handle.net/1721.1/47493

Implementing Information-Theoretically Secure

Oblivious Transfer from Packet Reordering

Paolo Palmieri and Olivier Pereira

Université catholique de Louvain,
UCL Crypto Group,

Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
{paolo.palmieri,olivier.pereira}@uclouvain.be

Abstract. If we assume that adversaries have unlimited computational
capabilities, secure computation between mutually distrusting players
can not be achieved using an error-free communication medium. How-
ever, secure multi-party computation becomes possible when a noisy
channel is available to the parties. For instance, the Binary Symmetric
Channel (BSC) has been used to implement Oblivious Transfer (OT),
a fundamental primitive in secure multi-party computation. Current re-
search is aimed at designing protocols based on real-world noise sources,
in order to make the actual use of information-theoretically secure com-
putation a more realistic prospect for the future.

In this paper, we introduce a modified version of the recently proposed
Binary Discrete-time Delaying Channel (BDDC), a noisy channel based
on communication delays. We call our variant Reordering Channel (RC),
and we show that it successfully models packet reordering, the common
behavior of packet switching networks that results in the reordering of
the packets in a stream during their transit over the network. We also
show that the protocol implementing oblivious transfer on the BDDC
can be adapted to the new channel by using a different sending strategy,
and we provide a functioning implementation of this modified protocol.
Finally, we present strong experimental evidence that reordering occur-
rences between two remote Internet hosts are enough for our construction
to achieve statistical security against honest-but-curious adversaries.

Keywords: Oblivious transfer, secure multi-party computation, noisy
channels, packet reordering, delay.

1 Introduction

When a source transmits information over a packet-switching network, it
produces an in-order sequence of packets. However, depending on the network
properties and the communication protocol used, the sequence received at the
destination might be a different one. In this paper we show how this noise intro-
duced by the network can be used in practice to achieve oblivious transfer and,
more generally, secure computation.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 332–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Implementing Information-Theoretically Secure OT from Packet Reordering 333

At the network level of the ISO/OSI model, the Internet Protocol (IP) offers
no guarantee that packets are received at destination in the same order in which
they were sent at the source. This task is taken on by some of the protocols
at the transport layer, most notably the Transmission Control Protocol (TCP),
while others leave the problem unaddressed, as in the case of the User Datagram
Protocol (UDP). The phenomenon for which the ordering of a sequence of packets
in a stream is modified during its transit on a network is commonly known as
packet reordering. Common causes of packet reordering are packet striping at
the data-link and network layers [2,11], priority scheduling and route fluttering
[16,3]. Reordering is a common behavior over the Internet. For instance, tests
conducted in [1] for 50 hosts, 35 of which chosen randomly, show an occurrence
rate of over 40%, with a mean reordering rate roughly fluctuating between 10
and 20% per occurrence. Current Internet trends, like increasing link speeds and
increased parallelism within routers, wireless ad hoc routing, and the widespread
use of quality of service (QoS) mechanisms and overlay routing, all indicate an
expected increase in packet reordering occurrences.

For its ability to deteriorate the responsiveness and quality of data transmis-
sion, especially in applications featuring real time communication or streaming
of multimedia content, packet reordering is generally treated as any other form
of noise: a problem that needs to be solved. However, cryptographers have a
history in transforming noise into something useful and desirable. It is the case
of secure multi-party computation, that can be achieved only through the use
of noisy channels when the adversaries are computationally unbounded. Multi-
party computation deals with the problem of performing a shared task between
two or more players who do not trust each other. Security is achieved when the
privacy of each player’s input and the correctness of the result are guaranteed
[4]. A basic primitive and a fundamental building block for any secure compu-
tation is Oblivious Transfer (OT), introduced by Rabin in 1981 [19]. In fact,
when oblivious transfer is available, any two-party computation can be imple-
mented in a secure way [13]. A commonly used variant of the primitive is the
1-out-of-2 oblivious transfer, proposed by Even, Goldreich and Lempel [10], and
later proved to be equivalent to the original OT by Crépeau [5]. In this proto-
col, a sender Sam knows two secrets, and is interested in transmitting one to
a receiver Rachel without disclosing the other. Rachel wants to choose which
secret to receive, but does not want to reveal her choice. Privacy of the inputs
and correctness of the result are achieved without implying any degree of mutual
trust between the players.

The first protocol to implement oblivious transfer over a noisy channel used
the well-known Binary Symmetric Channel (BSC) [6]. The BSC is a simple
binary channel that flips with probability p each bit passing trough it. While
being a common reference in information theory, the BSC proved not to satisfy
cryptographers, more interested in modeling advantages a potential adversary
might have. Many modifications of the channel were consequently proposed, in
the direction of allowing dishonest players an edge over honest ones. An Unfair
Noisy Channel (UNC) let the adversary choose the crossover probability within a

334 P. Palmieri and O. Pereira

specific (narrow) range [9,8], while theWeak Binary Symmetric Channel (WBSC)
introduces the possibility for the dishonest player to know with a certain prob-
ability if a bit was received correctly [20]. The aim of these constructions is to
gain generality by easing the security assumptions, but, while we know that OT
can be built on any non-trivial noisy channel [7], none of these proved to be
suitable for actual implementation in a real world communication scenario, due
to the lack of flexibility and strong requirements imposed by the channel model.

A different approach was taken in [15], where the proposed oblivious transfer
protocol uses a different source of noise: communication delays. The protocol
is built over a new noisy channel model, called Binary Discrete-time Delaying
Channel (BDDC), that accepts binary string inputs at discrete times, and output
each string at the following discrete time. Strings passing through the channel
have a probability p of being delayed, and therefore being kept in the channel
until the following output time.

1.1 Contribution

In this paper we present a new channel model, the Reordering Channel (RC). The
reordering channel is a modified version of the BDDC, that modifies the concept
of delay from a temporal one to that of shifting positions in a sequence. We
observe that the RC provides enough ambiguity (noise) for building an oblivious
transfer protocol, and we show that using a different strategy for sending packets
at the sender’s end we are able to build oblivious transfer on the channel using a
modified version of the same protocol used on the BDDC. Since the reordering
channel models the behavior of packet reordering over the Internet, we provide
an actual, functioning implementation of the protocol based on the transmission
of UDP packets. The source code of the application is provided.1 Finally, we
present strong experimental evidence supporting the effectiveness and security of
the construction and we show how different specific packet reordering behaviors
can be used to improve the efficiency of the protocol.

To the best of our knowledge, this is the first actual implementation of obliv-
ious transfer over the Internet that provides security against computationally
unbounded adversaries, that is, adversaries with unlimited computational capa-
bilities.

1.2 Outline of the Paper

In section 2 we introduce some preliminary notions and definitions relative to
oblivious transfer that will be useful in the following. The definition of BDDC and
the protocol implementing OT over it are also presented. In section 3 we discuss
the implementation of oblivious transfer from packet reordering. We initially
introduce the reordering channel and we show how the OT protocol for the
BDDC can be modified to work on the new channel. In Section 3.1 we discuss

1 The source code of the latest version of the program is available for download over the
internet at the address: http://www.uclouvain.be/crypto/ifyd-latest.tar.gz.

http://www.uclouvain.be/crypto/ifyd-latest.tar.gz

Implementing Information-Theoretically Secure OT from Packet Reordering 335

common reordering behaviors that influence the design of our implementation of
the protocol, which is presented in Section 3.2. In Section 3.3 we introduce some
metrics used to analyze the data gathered during the testing of our application,
of which we relate in Section 3.4, where we present statistical evidence of the
security of our construction.

2 Preliminaries

Our construction is based on the chosen 1-out-of-2 binary oblivious transfer (in
the following simply called oblivious transfer). A protocol implements oblivious
transfer in a secure fashion when three conditions are satisfied after a successful
execution: the receiver party learns the value of the selected bit bs (correctness);
the receiver party gains no further information about the value of the other bit
b1−s (security for Sam); the sender party learns nothing about the value of the
selection bit s (security for Rachel) [6].

The behavior of the players defines the level of security that a protocol can
achieve. The oblivious transfer protocol for the BDDC is secure against honest-
but-curious players. In practice, the player strictly follows the protocol but tries
to gain extra information from her inputs and output, in order to gain an ad-
vantage in guessing the other player’s secret.

2.1 Binary Discrete-Time Delaying Channel

A protocol for achieving oblivious transfer from communication delays in the
information-theoretic model has been proposed in [15]. The noisy channel used
to model delay is the Binary Discrete-time Delaying Channel (Figure 1).

Definition 1. [15] A Binary Discrete-time Delaying Channel with delaying prob-
ability p consists of: an input alphabet {0, 1}n, an output alphabet {0, 1}n, a set
of consecutive input times T = {t0, t1, . . .} ⊆ N, a set of consecutive output times
U = {u0, u1, . . .} ⊆ N where ∀ui ∈ U, ti ∈ T, ui ≥ ti . Each input admitted into
the channel at input time ti ∈ T is output once by the channel, with probability
of being output at time uj ∈ U

Pr [uj] = p(j−i) − p(j−i+1) . (1)

2.2 Oblivious Transfer over a BDDC

The following protocol, also proposed in [15], implements oblivious transfer over
a BDDC with error probability p. The sender party, Sam, inputs two secret
bits b0, b1 and gets no output; the receiver Rachel inputs the selection bit s
and receives output bs. In the following, we introduce a modified version of this
protocol, which serves as the base for our construction over packet reordering.

336 P. Palmieri and O. Pereira

Channel

t0

t1

u0

u1

Pr (p)

c1, c2

c3, c4

c2

c1, c3, c4

t u

Fig. 1. A schematization representing a Binary Discrete-time Delaying Channel ac-
cepting two strings at time t0, one of which gets delayed once, and two at time t1, none
of which gets delayed. This results in the channel emitting one string at time u0 and
three at u1.

Protocol 1. [15] Before starting the communication between the parties, Sam
selects two disjoints sets E, E′ each composed of n distinct binary strings of
length l: e1, . . . , en and e′1, . . . , e

′
n. Then, Sam builds the sets C = {c1, . . . , cn}

and C′ = {c′1, . . . , c′n}, where ci := ei‖i and c′i := e′i‖i.

1. Sam sends to Rachel the set C at instant t0, and C′ at t1, using a p-BDDC.

2. Rachel receives over the BDDC the strings in {C ∪ C′}, in the order produced
by the channel. She keeps listening on the channel at instants u2, u3, . . . until
all the delayed strings have been received. 2

3. Rachel selects the set Is, where s ∈ {0, 1} is her selection bit, such that
|Is| = n

2 and so that i ∈ Is only if ci ∈ C has been received at u0. Then
she selects I1−s = {1, . . . , n} \ Is and sends I0 and I1 to Sam over a clear
channel.3

4. Sam receives I0, I1 and chooses two universal hash functions f0 and f1,
whose output is 1-bit long for any input. Let Ej ⊂ E be the set containing
every ei ∈ E corresponding to an i ∈ Ij, such that

ei ∈ Ej ⇔ i ∈ Ij . (2)

For each set Ij , Sam computes the string gj by concatenating each ejk ∈ Ej,
ordering them for increasing binary value, so that

gj =
(
ej1 ‖ . . . ‖ ejn

2

)
with ej1, . . . , e

j
n
2
∈ Ej . (3)

Sam computes h0 = f0 (g0), h1 = f1 (g1) and sends to Rachel the functions
f0, f1 and the two values

i0 = (h0 ⊕ b0) , i1 = (h1 ⊕ b1) . (4)

2 If less than n
2

strings are received at u0 Rachel instructs Sam to abort the commu-
nication.

3 Or Rachel can just send one of these two sets in order to save bandwidth as Sam
can easily reconstruct the other.

Implementing Information-Theoretically Secure OT from Packet Reordering 337

5. Rachel computes her guess for bs

bs = f s (gs)⊕ is . (5)

The internal working of the protocol is easily explained: when listening on the
BDDC, Rachel receives at instant u0 all the strings in C that have not been
delayed by the channel. This subset will constitute the correct information she
needs to decode the selected bit. Any string received at u1 or at a later time is
instead ambiguous, and guarantees that Rachel can not decode both b0 and b1.
At u1, the strings from C delayed once and the strings of set C′ that have not
been delayed can not be distinguished, and so on and so forth for u2, u3,

3 Packet Reordering as a Noisy Channel

While the BDDC is able to model discrete delays in a communication, it is not
suitable to simulate the delaying behavior of packet switching networks, which
is usually visible in the form of packet reordering. Therefore, we introduce a new
channel model, called Reordering Channel (RC), that redefines the concept of
delay using the relative position of a packet in a stream.

Definition 2. A Reordering Channel consists of: an input sequence of binary
strings T = (t1, . . . , tn), an output sequence of binary strings U = (u1, . . . , un),
a sequence of identically distributed discrete random variables {Xn} over N and
its probability distribution PX : N → [0, 1], with

∑
m∈N

PX (n) = 1. Each string
in T is output once by the channel in U , i.e. {t1, . . . , tn} ≡ {u1, . . . , un}. The
ordering of the output sequence is determined by the channel, that selects for
the next available position in the output sequence the ti ∈ T not already selected
with the smallest value v = i+Xi. In case more than one string shares the same
value v, the channel selects among them the one with the smallest value i.

In practice, the channel takes a stream of packets as input, and outputs the
same packets in a reordered fashion. For an appropriate distribution function,
where the probability of a packet not to be delayed (X = 0) is high enough,
this channel simulates accurately the reordering behavior of standard Internet
connections. We discuss experimental results regarding the amount of reordering
that is observed on the Internet in Section 3.4.

With an appropriate discrete probability distribution, that is, a distribution
that respects (1) for a value p, the delaying behavior of the reordering channel
follows that of the corresponding BDDC with probability p. However, the re-
ordering channel, due to its continuous nature, opposed to the discrete one of
the BDDC, lacks the reference points in time that are needed by the receiver
to make sure that a string has not been delayed. Therefore, the protocol that
implements oblivious transfer over the BDDC will not work on the RC. To adapt
the protocol to the new channel, we need to use a different sending strategy at
the sender’s end. Instead of sending the two sets C and C′ from step 1 of the
protocol into the reordering channel sequentially, we can send them as a stream,

338 P. Palmieri and O. Pereira

by interleaving the strings in the two sets. We observe, in fact, that we obtain
an ambiguity similar to the one of two strings output at the same time by the
BDDC, if two strings with the same value happen to be received consecutively as
a result of reordering by the RC. As illustrated in Figure 2, we can start sending
a first batch of i strings form C, where i is the arbitrarily selected interleaving
value. After ci, we interleave the strings from C with the ones from C′. Using
this sending sequence, the receiver is unable to distinguish between two strings
ci and c′i when ci is reordered, and received at least i − 1 positions far from its
original place. Adopting this sending strategy, we can implement the oblivious
transfer protocol for the BDDC on the reordering channel and, therefore, on the
Internet.

Sending sequence

C′
C 1 i

1

i + 1

2

i + 2

3

i + 3

Fig. 2. Package interleaving

3.1 Reordering Dynamics

For an implementation of the protocol to be effective, the selected value of i must
be consistent with the actual amount of reordering observed over the Internet.
However, it is not the only parameter that will affect reordering.

The probability of occurrence of packet reordering depends on a number of
factors, such as physical distance and number of intermediate hops between the
hosts, transmission medium, quality and speed of hop-to-hop links, traffic on
the network and so on. Packet reordering also frequently displays a consistent
behavior over time between two given hosts.

As already experimentally observed by Bellardo and Savage, the inter-spacing
of packets effectively reduces the reordering probability [1]. In the test they
conducted, the probability is significantly reduced when adding an inter-packet
gap of 100 microseconds (μs), while a longer spacing of 500 μs brings the number
of reorderings close to 0. An increase in the size of the packets has the same effect,
since the longer serialization delay increases the delay between the leading edge of
each subsequent packet. This, in turn, decreases the possibility that two packets
will be reordered if assigned to different queues, when subject to parallelization
during routing. We can actively use this property by adding an inter-packet gap
to stabilize a path affected by a high reordering probability.

3.2 Protocol Implementation

In our implementation of the protocol, the receiver acts as a server, waiting on-
line for a client (the sender) to connect. The protocol used to transmit packets
is the User Datagram Protocol (UDP). UDP provides no guarantees of message

Implementing Information-Theoretically Secure OT from Packet Reordering 339

delivery to the upper layer, offers no reordering detection or correction mecha-
nism, and retains no state of the messages once sent. The simple structure of a
packet, called datagram and defined in RFC 768, minimizes the size and does
not include any sequence number [18]. The structure of the packets sent follows
the structure of the strings in C and C′ as defined in Protocol 1. Each packet
pj is composed of the sequence number j and an unique identification value e.

To select the receiver mode of operation, the option -r {S} must be specified,
where S is the selection bit. The receiver algorithm is structured as follows. After
network initialization, the program waits for incoming connections on port 9930.
Once packets are received, they are put in the arrival order in a buffer. The
number of packets to be received is determined in advance with the sender. The
buffer is then read packet by packet, and each pair of packets sharing the same
sequence number j and satisfying any of the following conditions is marked
as ambiguous: the first packet with sequence number j is found in a position
higher than (j + i− 1); the two packets sharing sequence number j are less
than i

2 position apart. Sets Is and I1−s are created by putting all the sequence
numbers corresponding to an ambiguous pair of packets in I1−s, plus enough non-
ambiguous sequence numbers to reach half the total, and putting the remaining
values in Is. The two sets are then sent back to the sender’s address. The software
then waits for the encoded bits, and the chosen bit bs is decoded using (5).

The sender mode of operation is selected by using the option -s {B0:B1}.
The two secret bits are passed in the argument, separated by a colon character.
The mandatory option -a {IP_ADDRESS} is used to specify the receiver’s IP
address. -w USEC can be used to add a USEC microseconds long waiting gap
between packets. The algorithms is structured as follows. Two sets P 0 and P 1

of n packets each are created, with each packet p composed of an increasing
sequence number j and a randomly selected unique identifier e. The two sets
are then sent to the receiver’s address, using the sending sequence described in
Section 3 for a predetermined i. Once all the packets have been sent, the software
starts waiting for the sets I0, I1 from the receiver. Using the information received,
the secret bits are encoded according to (4), using an hash function, and sent to
the receiver.

The reference platform for our implementation of the protocol is Linux. The
programming language used is C++. Only standard POSIX libraries have been
used. The compiler of choice is the GNU Compiler Collection (gcc), version 4.
Full logging capabilities are implemented, including on-screen and file logging.

3.3 Metrics

In order to measure the incidence and relevance of the reorderings observed in
our tests, we use the metrics proposed in RFC 5236 [12] and in [21], adapting
them to the needs of our specific application when necessary.

When packets are received at the destination they are assigned a receive in-
dex (RI), according to the order of arrival. Displacement (D) of a packet is
defined as the difference between RI and the sequence number of the packet.
For example, the displacement of packet p0j from the first set is RI

(
p0j

)
− j,

340 P. Palmieri and O. Pereira

while D
(
p1j

)
= RI

(
p1j

)
+ i − j. Therefore, a negative displacement value indi-

cates the earliness of a packet and a positive value the lateness. We call absolute
displacement the modulus of D. The displacement frequency FD (k) is the num-
ber of received packets having a displacement of k. The reorder density (RD)
is the distribution of the displacement frequencies, normalized with respect to
the number of received packets, ignoring lost and duplicate packets. The mean
displacement of packets (MD) is defined as

MD =

∣∣∣∣∣
i=+Dr∑
i=−Dr

(|i| ×RD [i])

∣∣∣∣∣ /
∣∣∣∣∣
i=+Dr∑
i=−Dr

RD [i]

∣∣∣∣∣ , (6)

while the mean displacement of late packets (ML) is

ML =

∣∣∣∣∣
i=+Dr∑
i=1

(|i| ×RD [i])

∣∣∣∣∣ /
[
i=+Dr∑
i=1

RD [i]

]
(7)

in the case of packets with positive displacement. The reorder entropy (ER) is an
indicator of the reorder density (a discrete probability distribution) to be concen-

trated or dispersed. It is defined as ER = (−1)×
∑i=+Dr

i=−Dr
(RD [i]× lnRD [i]) .

For simplicity, and without loss of generality, in the following we study only
absolute displacements. In fact, for our purposes, displacements values of ±i are
equally ambiguous.

3.4 Experiment

Contrary to what is common in the study of packet reordering, our experiment
uses a an active approach, instead of passively monitoring traffic. We do so by
using the testing capabilities included in our protocol implementation, which let
us produce a stream of UDP datagrams from the sender to the receiver. For
testing the software we use two hosts:

– merlin.dice.dice.ac.ucl.be, IP 130.104.205.236, located in Belgium.
Debian GNU/Linux (kernel 2.6.32-5, i686);

– ec2-50-18-108-9.us-west-1.compute.amazonaws.com, IP 50.18.108.9,
located in Northern California (USA). Ubuntu GNU/Linux (kernel 2.6.35,
x86 64-bit).

Both hosts are connected to the Internet through wired, high-speed links. A
sample tracert shows 18 hops between the two. The mean round trip time
(RTT) is 149.6 milliseconds, with a standard deviation of 0.6 ms.

In the following, we base our analysis on two sample traffic datasets, pro-
duced by observing the behavior of our protocol implementation in two different
settings.

The dataset corresponding to the first experiment is the result of a single
prolonged execution of the protocol test routine. In total, 60167 datagrams are
recorded. The test session took place in May, 2011. The aim of the test is to

Implementing Information-Theoretically Secure OT from Packet Reordering 341

observe behavior under ideal traffic conditions: during the execution, both hosts
had no network activity beside the traffic generated by our protocol implemen-
tation itself. A first analysis of the data shows a total of 7009 reordering oc-
currences, equal to 11.65% of all packets received. The maximum displacement
value observed is 59. Detailed figures for low displacement values are displayed
in Fig. 3. The mean displacement is MD = 0.44, while the mean displacement
of late packets is ML = 3.75. The reorder entropy of the set is ER = 0.60, which
shows a good variance and therefore a uniformity of displacement frequency and
probability. These values appear to be consistent with those observed in [21].

D FD %

0 53157 88.35

1 1876 3.12

2 1697 2.82

3 1240 2.06

4 860 1.43

5 468 0.78

D FD %

6 246 0.41

7 137 0.23

8 79 0.13

9 59 0.10

10+ 347 0.58

Fig. 3. Number of occurrences and percentage for each absolute displacement value

The security of our construction is based on the assumption that the sender
can not accurately predict reorderings that will happen during the datagrams
transit over the network. Predictions of future reorderings are based on the
observation of past occurrences, and the research of patterns in the frequency
and magnitude of displacements. In order to show the independence between past
reordering occurrences and future ones, we evaluate the autocorrelation function.
Autocorrelation is the cross correlation of a vector of random variables with
itself, and is a useful tool frequently used in signal processing to find repeating
patterns. In Fig. 4 the number of reordering occurrences for three different subset
into which the first dataset has been divided for a more detailed analysis are
provided, along with the relative autocorrelation. It is evident that none of the
functions shows any recurring pattern.

The second experiment aims to reproduce reordering behavior under intense
traffic over the network. In order to generate traffic we use the software suite
composed of RUDE (Real-time UDP Data Emitter) and CRUDE (Collector for
RUDE), developed by Laine and Saaristo [14]. This client-server tool allows us
to produce UDP traffic from the sender to the receiver with a great deal of
precision. In particular, we use the following routine:

– for the first 5 seconds, RUDE sends 1000 packets per second, with a packet
size of size 200 bytes, generating a traffic of 200 KB/s;

– for the following 5 seconds, RUDE sends 10000 packets/second with 20
bytes/packet (200 KB/s);

– for the last 5 seconds, RUDE sends 500 packets/second with 2000 bytes/
packet (1 MB/s);

342 P. Palmieri and O. Pereira

0 50 100 150 200
0

0.5

1

1.5

2
Delay occurrences

Position

A
m

pl
itu

de

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Autocorrelation function

lags

A
ut

oc
or

re
la

tio
n

0 50 100 150 200
0

0.5

1

1.5
Delay occurrences

Position

A
m

pl
itu

de

0 50 100 150 200
0

0.5

1
Autocorrelation function

lags

A
ut

oc
or

re
la

tio
n

0 50 100 150 200
0

0.5

1

1.5
Delay occurrences

Position

A
m

pl
itu

de

0 50 100 150 200
0

0.5

1
Autocorrelation function

lags

A
ut

oc
or

re
la

tio
n

Fig. 4. The number of occurrences (left) and the autocorrelation function (right) for
the three subsets composing the first dataset

– for all the duration of the test, RUDE also sends 2500 packets/second with
100 bytes/packet (250 KB/s). These last datagrams have the Type of Service
(ToS) priority flag of the IPv4 header set to LOW_DELAY (0x10).

In addition to the traffic generated by RUDE, the receiver host also performs a
large file download from a remote host (mirror.garr.it, 131.175.1.35), using
the HTTP protocol. The file chosen is large enough for the download to last over
the entire execution of the experiment. The average download speed observed is
96.5 KB/s.

During the experiment, a total of 4293 datagrams generated by our protocol
implementation are received by the receiver host. About 4 seconds after the
testing routine start, a peak of reorderings is recorded (Fig. 5): this is due to a
set of packets being lost due to the traffic congestion. The particular routine of
external traffic generated with RUDE allows us to analyze how the frequency
of reordering occurrences is affected by manipulation of the traffic reaching the
receiver host. Fig. 5 clearly shows that the reordering behavior is only marginally
affected by external traffic, even when the capacity of the network is almost
fully used. In fact, no significant differences both in the number of occurrences
and mean displacement value can be seen at the change of bandwidth used
at second 10, where the external traffic goes from 200 KB/s to 1 MB/s. The
lower values recorded for the first 4 seconds can be instead explained by the
progressive increase in TCP traffic generated by the HTTP download, that take
full advantage of the available bandwidth only after a few seconds, thanks to the
mechanisms regulating TCP traffic.

Implementing Information-Theoretically Secure OT from Packet Reordering 343

Fig. 5. The number of occurrences (left) and the mean displacement value (right) for
the second dataset, calculated over subsets of 100 packets each. The peak of both
functions is due to the loss of a set of packets. The three areas colored with different
shades of gray picture the three time lapses into which the set is divided (5 seconds
each)

4 Conclusion

In this paper we propose an implementation of oblivious transfer over the Inter-
net. The construction we propose is secure against adversaries with unlimited
computational capabilities in the honest-but-curious model, and uses packet re-
ordering, a common phenomenon present in any packet-switching network. Re-
ordering of packets in a stream are due to a number of different causes, among
which intrinsic network characteristics, parallelism both at the node and the link
level, and traffic control and congestion, all of which are increasingly present in
today’s Internet.

Our construction is based on the protocol proposed for the Binary Discrete-
time Delaying Channel. In order to adapt the protocol for practical use over
the Internet, we introduce a new channel, the Reordering Channel, that models
packet reordering. We then build a modified version of the protocol, adapted
to work on the RC, and we present a practical implementation of this modified
protocol based on the transmission of UPD packets over the Internet. We also
present extensive experimental evidence of the security of the implementation:
we show that reordering occurrences are found consistently under both intense
traffic load and minimal network usage, statistical analysis of the reorderings
shows no sign of recurring patterns in frequency or magnitude and no strong
statistical correlation is found over reordering occurrences over time.

To the best of our knowledge, our implementation is the first oblivious trans-
fer protocol secure against computationally unbounded capabilities being imple-
mented over the Internet. The novelty of our construction, based on network
behavior, opens the way to new security constructions entirely based on channel
characteristics.

344 P. Palmieri and O. Pereira

Acknowledgments. This research work was supported by the SCOOP Action
de Recherche Concertées. Olivier Pereira is a Research Associate of the F.R.S.-
FNRS.

References

1. Bellardo, J., Savage, S.: Measuring packet reordering. In: Internet Measurement
Workshop, pp. 97–105. ACM (2002)

2. Bennett, J.C.R., Partridge, C., Shectman, N.: Packet reordering is not pathological
network behavior. IEEE/ACM Trans. Netw. 7(6), 789–798 (1999)

3. Bohacek, S., Hespanha, J.P., Lee, J., Lim, C., Obraczka, K.: A new tcp for persis-
tent packet reordering. IEEE/ACM Trans. Netw. 14(2), 369–382 (2006)

4. Chaum, D., Damg̊ard, I., van de Graaf, J.: Multiparty computations ensuring pri-
vacy of each party’s input and correctness of the result. In: Pomerance [17], pp.
87–119

5. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomerance
[17], pp. 350–354

6. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: FOCS, pp. 42–52. IEEE (1988)

7. Crépeau, C., Morozov, K., Wolf, S.: Efficient Unconditional Oblivious Transfer
from Almost Any Noisy Channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004.
LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)

8. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair Noisy Channels and Oblivi-
ous Transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer,
Heidelberg (2004)

9. Damg̊ard, I.B., Kilian, J., Salvail, L.: On the (Im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

11. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Measurement and
classification of out-of-sequence packets in a tier-1 ip backbone. IEEE/ACM Trans.
Netw. 15, 54–66 (2007), http://dx.doi.org/10.1109/TNET.2006.890117

12. Jayasumana, A., Piratla, N., Banka, T., Bare, A., Whitner, R.: Improved packet
reordering metrics. RFC 5236 (Informational) (June 2008),
http://www.ietf.org/rfc/rfc5236.txt

13. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM (1988)

14. Laine, J., Saaristo, S.: RUDE: Real-time UDP data emitter (1999–2002),
http://rude.sourceforge.net/

15. Palmieri, P., Pereira, O.: Building Oblivious Transfer on Channel Delays. In: Lai,
X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 125–138. Springer,
Heidelberg (2011)

16. Paxson, V.E.: Measurements and Analysis of End-to-End Internet Dynamics.
Ph.D. thesis, EECS Department, University of California, Berkeley (June 1997),
http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/5498.html

17. Pomerance, C. (ed.): CRYPTO 1987. LNCS, vol. 293. Springer, Heidelberg (1988)
18. Postel, J.: User datagram protocol. RFC 768 (Standard) (August 1980),

http://www.ietf.org/rfc/rfc768.txt

http://dx.doi.org/10.1109/TNET.2006.890117
http://www.ietf.org/rfc/rfc5236.txt
http://rude.sourceforge.net/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/5498.html
http://www.ietf.org/rfc/rfc768.txt

Implementing Information-Theoretically Secure OT from Packet Reordering 345

19. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-
81, Aiken Computation Laboratory, Harvard University (1981) (manuscript)

20. Wullschleger, J.: Oblivious Transfer from Weak Noisy Channels. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009)

21. Ye, B., Jayasumana, A.P., Piratla, N.M.: On monitoring of end-to-end packet re-
ordering over the internet. In: International Conference on Networking and Services
(2006)

Compression Functions Using a Dedicated

Blockcipher for Lightweight Hashing

Shoichi Hirose1, Hidenori Kuwakado2, and Hirotaka Yoshida3,4

1 Graduate School of Engineering, University of Fukui
2 Graduate School of Engineering, Kobe University

3 Yokohama Research Laboratory, Hitachi, Ltd.
4 Department of Electrical Engineering ESAT/SCD-COSIC,

Katholieke Universiteit Leuven

Abstract. This article presents a model of compression functions using
a blockcipher for lightweight hashing on memory-constrained devices.
The novelty of the proposed model is that the key length of the under-
lying blockcipher is half of its block length, which enables the reduction
of the size of the internal state without sacrificing the security. Secu-
rity of iterated hash functions composed of compression functions in the
model is also discussed. First, their collision resistance and preimage re-
sistance are quantified in the ideal cipher model. Then, a keyed hashing
mode is defined, and its security as a pseudorandom function is reduced
to the security of the underlying blockcipher as a pseudorandom per-
mutation. The analysis supports the security of Lesamnta-LW, which is
a lightweight hash function proposed in ICISC 2010. Finally, preimage
resistance is quantified assuming a computationally secure blockcipher.

Keywords: hash function, blockcipher, collision resistance, preimage
resistance, pseudorandom function, pseudorandom permutation.

1 Introduction

Background and Motivation. Secure communication in resource-constrained en-
vironments such as RFID tags and sensor networks is getting one of the impor-
tant research topics. To achieve secure communication, both of confidentiality
and authentication are important. A hash function is a useful primitive for them.
This article considers hash functions suitable for implementation on memory-
constrained devices. The construction of a hash function is roughly classified
into blockcipher-based, sponge-function-based and stream-cipher-based. Among
them, the blockcipher-based construction has been extensively studied. However,
this article reconsiders this construction in terms of lightweight implementation
on memory-constrained devices.

The most well-known blockcipher-based compression functions are
Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO), andMiyaguchi-Preneel (MP)
(Fig. 1). All of them have feedforwards of inputs which make them one-way. On
the other hand, since feedforwards require extra memory and make their internal

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 346–364, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Compression Functions Using a Dedicated Blockcipher 347

Fig. 1. Compression functions including the feedforward

states larger, they are not preferable to memory-constrained devices. Hence, this
article focuses on blockcipher-based compression functions without feedforwards.
Actually, we already know some blockcipher-based compression functions with-
out feedforwards such as Rabin’s scheme in the PGV model [15]. In this model, it
is assumed that the key length of the underlying blockcipher is equal to its block
length. On the other hand, if we shorten the key, we can further reduce the size
of the internal state. We only consider the case where the key length is half of the
plaintext length because this case gives a very good tradeoff between the internal
state size and the query complexity of collision attacks. In fact, the lightweight
hash function using such a compression function, Lesamnta-LW [9], was proposed
in ICISC 2010. The hardware implementation of Lesamnta-LW requires only 8.24
Kgates. Its software implementation requires only 50 bytes of RAM and runs fast
on short messages on 8-bit CPUs.

Our Contribution. This article first presents a model of compression functions
using a blockcipher for lightweight hashing. It is similar to the PGV model [15].
The novelty of the proposed model is that it uses a dedicated blockcipher whose
key length is half of its block length, which helps the reduction of the size of
the internal state without sacrificing the security. We will explain that this key
length is good for achieving collision resistance. This article focuses on showing
the validity of the new blockcipher-based approach for hashing on memory-
constrained devices and how to design an underlying blockcipher itself is out
of scope. Security of iterated hash functions using compression functions in the
proposed model is also discussed. First, their collision resistance and preimage
resistance are quantified in the ideal cipher model. Their preimage resistance is
as large as their collision resistance since the compression functions in the model
are invertible and collision attacks also work for finding a preimage. We will
see that some of them have optimal collision resistance and others have nearly
optimal collision resistance. As for the near optimality, the degradation is at
most an inverse factor of the output length, and it is reasonably small. This
analysis includes the security of Lesamnta-LW.

Second, a keyed hashing mode (a keyed-via-IV mode) is defined, and its secu-
rity as a pseudorandom function (PRF) is reduced to the security of the underly-
ing blockcipher as a pseudorandom permutation (PRP). Some of the compression
functions require their blockcipher to be secure against related-key differential

348 S. Hirose, H. Kuwakado, and H. Yoshida

attacks. Notice that, for Rabin’s scheme, such reduction is impossible since only
a message block is fed into the key of the underlying blockcipher.

Finally, their preimage resistance is also analyzed in a computationally secure
blockcipher model. It is reduced to the pseudorandomness or the key-finding
hardness of the underlying blockcipher. As far as we know, this is the first re-
sult on preimage resistance of blockcipher-based hash functions under non-ideal
assumptions though the reduction requires an unconventional padding.

Related Work. The PGV model [15] is a model of compression functions us-
ing a blockcipher whose key length equals its block length. In the same paper,
their security against several generic attacks are intensively discussed. Collision
resistance and preimage resistance of the PGV schemes are formally analyzed
in the ideal cipher model [4]. Stam [16] recently presented a model of compres-
sion functions, which includes the PGV model. He also discussed the collision
resistance and preimage resistance of iterated hash functions using compression
functions in the model. Actually, his model also includes our proposed model.
However, we treat compression functions not treated in [16], and we further dis-
cuss the security of a keyed hashing mode as a PRF as well as collision resistance
and preimage resistance. The security as a PRF of the keyed hashing mode of
a hash function using the MMO compression function and the MDP domain
extension [11] is almost reduced to the security of the underlying blockcipher as
a PRP [10].

There are few proposals for lightweight hash functions and their building
blocks compared to block/stream ciphers. MAME [17] is a dedicated lightweight
compression function. Bogdanov et al. [7] discussed hardware implementations
of hash functions using AES or a lightweight blockcipher PRESENT [6]. The
wide pipe construction [12] is quite popular among candidates of the NIST
SHA-3 competition, but, it does not seem suitable for lightweight hashing.
QUARK [1], PHOTON [8] and SPONGENT [5] are recently proposed algorithms
for lightweight hashing. They adopt the sponge construction [3]. To achieve the
same levels of security, a blockcipher-based construction generally needs a larger
internal state than a sponge construction. As far as the authors know, however,
an advantage of the former approach seems that the security of keyed hashing
modes as a PRF can be reduced to a weaker and standard security assumption
on the underlying blockcipher (PRP).

Organization. Section 2 gives definitions of security properties discussed in this
article, and presents the model of compression functions. Collision resistance
and preimage resistance are discussed in the ideal cipher model in Section 3. The
security of the keyed hashing mode is discussed in Sections 4. Preimage resistance
is discussed assuming a computationally secure blockcipher in Section 5.

2 Preliminaries

2.1 Definitions

For a set S, let S≤� =
⋃�

i=0 S
i and S+ =

⋃∞
i=1 S

i. The number of elements in S is

denoted by #S. Let s
$← S represent that an element s is selected from S under

Compression Functions Using a Dedicated Blockcipher 349

the uniform distribution. For sequences x and y, let x‖y be their concatenation.
Let F(X ,Y) be the set of all functions from X to Y. Let P(X) be the set of
all permutations on X . Let BC(κ, n) be the set of all (κ, n) blockciphers, where
κ and n represent their key size and block size, respectively. Let HE be a hash
function using a blockcipher E.

Collision Resistance. The collision resistance of a blockcipher-based hash func-
tion is often discussed in the ideal cipher model. We follow this convention. In
the ideal cipher model, the underlying blockcipher E is assumed to be uniformly
distributed over BC(κ, n). An encryption/decryption operation is an encryp-
tion/decryption query to the oracle E. Let A be an adversary trying to find a
collision for HE , that is, a pair of distinct inputs mapped to the same output
by HE . The col-advantage of A against HE is given by

Advcol
HE (A) = Pr[AE = (M,M ′) ∧HE(M) = HE(M ′) ∧M �= M ′] ,

where E is uniformly distributed over BC(κ, n). It is assumed that A makes all
the queries necessary to compute HE(M) and HE(M ′). Notice that AE can be
regarded as a random variable.

Preimage Resistance. The preimage resistance is also discussed in the ideal ci-
pher model. Let A be an adversary trying to find a preimage of a given output
for HE . The pre-advantage of A against HE is given by

Advpre
HE (A) = Pr[AE(v) = M ∧HE(M) = v] ,

where v is uniformly distributed over Y and E is uniformly distributed over
BC(κ, n). It is assumed that A makes all the queries necessary to compute
HE(M).

Pseudorandom Function and Permutation (PRF & PRP). Let f : K×X → Y be
a keyed function from X to Y, where K is its key space. f(K, ·) is often denoted
by fK . Let A be an adversary which has oracle access to a function from X to
Y and outputs 0 or 1. The prf-advantage of A against f is given by

Advprf
f (A) =

∣∣Pr[AfK = 1]− Pr[Aρ = 1]
∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
F(X ,Y). We sometimes consider the case where A has access to multiple oracles.
Each query by A is directed to just one of them. Let us define the following nota-
tion: 〈uj〉mj=1 = u1, u2, . . . , um. The m-prf-advantage of A against f is given by

Advm-prf
f (A) =

∣∣∣Pr[A〈fKj
〉mj=1 = 1]− Pr[A〈ρj〉mj=1 = 1]

∣∣∣ ,

where Kj ’s are independent random variables uniformly distributed over K, and
ρj ’s are independent random functions uniformly distributed over F(X ,Y).

The prp-advantage of A against f is given by

Advprp
f (A) =

∣∣Pr[AfK = 1]− Pr[Aρ = 1]
∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
P(X). The m-prp-advantage is defined similarly to the m-prf-advantage.

350 S. Hirose, H. Kuwakado, and H. Yoshida

C

Mi

E

k
w
x

F

M1 MN

h0
h1

h2N

h2N+1
F F

Fig. 2. Hash function (E ◦ C)+

PRF & PRP under Related-Key Attack. Let Φ ⊂ F(K,K). Let A be an adversary
which has oracle access to a function u ∈ F(K × X ,Y) with a key K ∈ K, and
outputs 0 or 1. A can make queries of the form (φ, x) ∈ Φ × X , and obtain
u(φ(K), x). The prf-rka-advantage of A against f restricted by Φ is given by

Advprf -rka
Φ,f (A) =

∣∣∣Pr[A(f,K) = 1]− Pr[A(ρ,K) = 1]
∣∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
F(K × X ,Y).

Let P(K × X ,X) be a set of all keyed permutations on X , where K is their
key space. The prp-rka-advantage of A against f restricted by Φ is given by

Advprp -rka
Φ,f (A) =

∣∣∣Pr[A(f,K) = 1]− Pr[A(ρ,K) = 1]
∣∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
P(K × X ,X). The m-prf(prp)-rka-advantage is defined similarly to the
m-prf(prp)-advantage.

2.2 Model

In the remaining parts of the paper, let n > 0 be an even integer and ň = n/2.
We consider constructions of an iterated hash function HE with a compression
function based on E ∈ BC(ň, n) (Fig. 2). The compression function F : {0, 1}n×
{0, 1}ň → {0, 1}n is specified as follows: h2i‖h2i+1 = F (h2i−2‖h2i−1,Mi) =
Ek(w‖x), where h2i−2, h2i−1, h2i, h2i+1,Mi ∈ {0, 1}ň, k, w, x ∈ {0, 1}ň,⎛⎝k

w
x

⎞⎠ = C

⎛⎝h2i−2

h2i−1

Mi

⎞⎠ =

⎛⎝c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

⎞⎠⎛⎝h2i−2

h2i−1

Mi

⎞⎠ ,

and C is a non-singular 3× 3 binary matrix. F is denoted by E ◦ C.
For 1 ≤ i ≤ N , let Mi ∈ {0, 1}ň. F+ : {0, 1}n × ({0, 1}ň)+ → {0, 1}n is

an iterated hash function such that F+(IV,M1‖ · · · ‖MN) = h2N‖h2N+1, where
h0‖h1 = IV is an initial value and h2i‖h2i+1 = F (h2i−2‖h2i−1,Mi) for 1 ≤
i ≤ N . For M ∈ {0, 1}∗, an unambiguous padding function pad : {0, 1}∗ →
({0, 1}ň)+ is necessary to apply F+ to M . Any unambiguous padding suffices
for most cases. Thus, unless explicitly stated otherwise, an input M is assumed
to be in ({0, 1}ň)+.

Compression Functions Using a Dedicated Blockcipher 351

Remark 1. For Lesamnta-LW,

C =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ .

3 Collision Resistance and Preimage Resistance

In this section, the collision resistance of (E ◦C)+ is analyzed in the ideal cipher
model. We will see that it depends on the value of c1,3.

Lemma 1. The upper right 2× 2 submatrix of C−1 is

1. singular but non-zero if c1,3 = 0.
2. non-singular if c1,3 = 1.

The proof is given in Appendix A.1. The case where c1,3 = 0 is first discussed,
which is not discussed in [16]. Theorem 1 implies that the complexity of collision
attacks on (E ◦ C)+ with c1,3 = 0 is Ω((log n)2ň/n) if they do not explore the
internal structure of the underlying blockcipher.

Theorem 1. Let A be a col-adversary against (E◦C)+ asking at most q queries
to E. Suppose that c1,3 = 0. Then, in the ideal cipher model,

Advcol
(E◦C)+(A) ≤

(μ(n) + 3)q

2ň − 1
,

where μ(n) = e ln 2ň/ ln ln 2ň = (e/2)n/(log2 n− log2 log2 e− 1).

Proof. For 1 ≤ i ≤ q, let (ti, ki, wi‖xi, yi‖zi) be a tuple such that E(ki, wi‖xi) =
yi‖zi and ti ∈ {e, d} obtained by the i-th query. ti represents the type of
the i-th query: encryption (e) or decryption (d). Moreover, let (g0i , g

1
i ,mi)

T =
C−1(ki, wi, xi)

T. Notice that yi‖zi = (E ◦ C)(g0i ‖g1i ,mi). Let G0, G1, . . . , Gq be
a sequence of directed graphs such that Gi = (Vi, Li), where

– V0 = L0 = ∅, and
– Vi = Vi−1 ∪ {g0i ‖g1i , yi‖zi}, Li = Li−1 ∪ {(g0i ‖g1i , yi‖zi)} for 1 ≤ i ≤ q.

Each edge (g0i ‖g1i , yi‖zi) is labeled by (ti,mi).
Suppose that the adversary A first finds a collision of (E ◦C)+ with the i-th

query. Then, there must be a path in Gi from IV to some colliding output,
which does not exist in G1, . . . , Gi−1. This path also contains the nodes g0i ‖g1i
and yi‖zi, and the edge (ti,mi).

If ti = e, that is, the i-th query is an encryption query, then there must be an
event such that yi‖zi ∈ {yj‖zj | 1 ≤ j ≤ i − 1} ∪ {g0j‖g1j | 1 ≤ j ≤ i − 1} ∪ {IV }.
If ti = d, then there must be an event such that g0i ‖g1i ∈ {yj‖zj | 1 ≤ j ≤
i− 1} ∪ {IV }. For the case where ti = d and g0i ‖g1i ∈ {yj‖zj | 1 ≤ j ≤ i− 1}, let
us look into the new path in Gi mentioned above. Let IV

(tj1 ,Mj1)−→ vj1
(tj2 ,Mj2)−→

352 S. Hirose, H. Kuwakado, and H. Yoshida

· · ·
(tjl−1

,Mjl−1
)

−→ vjl−1

(tjl ,Mjl
)

−→ vjl be the prefix of the path, where vjl−1
= g0i ‖g1i ,

(tjl ,Mjl) = (d,mi) and vjl = yi‖zi. We start from vjl and go back toward IV
until we first find an edge (e,Mjk) or reach the node IV without finding such
an edge. Suppose that we reach IV . Then, it implies that there is an event such
that ti′ = d and g0i′‖g1i′ = IV for some i′ such that 1 ≤ i′ < i. On the other
hand, suppose that we find an edge (e,Mjk). Then, it implies that there is an
event such that ti′ = e and yi′‖zi′ ∈ {g0j ‖g1j | 1 ≤ j < i′} for some i′ such that

1 < i′ < i, or an event such that ti′ = d and g0i′‖g1i′ ∈ {yj‖zj | 1 ≤ j < i′∧ tj = e}
for some i′ such that 1 < i′ ≤ i.

From the discussions above, if A finds a collision with at most q queries, then
there must be at least one of the following events for some i such that 1 ≤ i ≤ q:

Eai ti = e and yi‖zi = IV ,
Ebi ti = e and yi‖zi ∈ {yj‖zj | 1 ≤ j ≤ i− 1} ∪ {g0j ‖g1j | 1 ≤ j ≤ i− 1},
Eci ti = d and g0i ‖g1i = IV ,
Edi ti = d and g0i ‖g1i ∈ {yj‖zj | 1 ≤ j < i ∧ tj = e}.

It is easy to see that

Pr[Eai] ≤
1

2n − (i− 1)
and Pr[Ebi] ≤

2(i− 1)

2n − (i− 1)
.

For Eci, since ki is fixed by the query, and the upper right 2 × 2 submatrix of
C−1 is non-zero and singular from Lemma 1,

Pr[Eci] ≤
2ň

2n − (i− 1)
.

For Edi, since ki, which equals g0i , g
1
i or g0i ⊕ g1i , is fixed, the multicollision on

yj , zj or yj ⊕ zj should be taken into consideration. From Theorem 3.1 of [13],
for 1 ≤ q ≤ 2n,

Pr[Edi] ≤
μ(n)2ň

2n − (i− 1)
+

1

2ň
.

Precisely speaking, the distribution of yj‖zj is not uniform on {0, 1}n since E
is a keyed permutation. However, the probability of multicollision is smaller
in this case since Pr[yj ∈ {y1, . . . , yj−1}] ≤ Pr[yj �∈ {y1, . . . , yj−1}], Pr[zj ∈
{z1, . . . , zj−1}] ≤ Pr[zj �∈ {z1, . . . , zj−1}], and Pr[yj ⊕ zj ∈ {y1 ⊕ z1, . . . , yj−1 ⊕
zj−1}] ≤ Pr[yj ⊕ zj �∈ {y1 ⊕ z1, . . . , yj−1 ⊕ zj−1}]. Thus, for 1 ≤ q ≤ 2ň,

Advcol
(E◦C)+(A) ≤

q∑
i=1

(Pr[Eai] + Pr[Ebi] + Pr[Eci] + Pr[Edi])

≤ (μ(n) + 2)q

2ň − q/2ň
+

q

2ň
≤ (μ(n) + 3)q

2ň − 1
.

The upper bound exceeds 1 for q > 2ň. ��

Compression Functions Using a Dedicated Blockcipher 353

If c1,3 = 1, then the compression function is of Type-II defined by Stam [16].
Thus, the following theorem follows from Theorem 9 in [16]. It implies that
any collision attack is at most as effective as the birthday attack if it does not
explore the internal structure of the underlying blockcipher. The proof is given
in Appendix A.2.

Theorem 2. Let A be a col-adversary against (E◦C)+ asking at most q queries
to E. Suppose that c1,3 = 1. Then, in the ideal cipher model,

Advcol
(E◦C)+(A) ≤

q2 + q

2 (2n − q)
.

For the current model of compression functions, shorter keys would reduce the
size of the internal state. However, if the key length is αn for some constant
α ≤ 1/2, then the query complexity of collision attacks is o(2αn) for the case
where the key of the underlying blockcipher does not depend on the message
blocks. Thus, we only consider the case of α = 1/2.

Let us compare the upper bounds of Theorems 1 and 2. For Theorem 1,
Table 1 presents some values of q which satisfy (μ(n) + 3)q/(2ň − 1) = 1/2. For
Theorem 2, q almost equals 2n/2 if (q2 + q)/(2 (2n − q)) = 1/2.

Table 1. Some values of q such that (μ(n) + 3)q/(2ň − 1) = 1/2 for Theorem 1

n 128 160 192 224 256

q 57.87 73.65 89.47 105.3 121.1

Since the compression function E ◦C is invertible, the preimage resistance of
the hash function (E ◦ C)+ is as large as its collision resistance.

Theorem 3. Let A be a pre-adversary against (E◦C)+ asking at most q queries
to E. Then, in the ideal cipher model,

Advpre
(E◦C)+(A) ≤

⎧⎪⎨⎪⎩
(μ(n) + 3)q

2ň − 1
if c1,3 = 0

q2 + q

2 (2n − q)
if c1,3 = 1 ,

where μ(n) = e ln 2ň/ ln ln 2ň.

4 Keyed Hashing Mode

We consider a keyed hashing mode of (E ◦C)+: keyed-via-IV (KIV) mode, which
is accompanied by an output function ω : {0, 1}n → {0, 1}ň. The KIV mode of
(E ◦C)+ is denoted by kiv-(E ◦C)+. For a secret key K ∈ {0, 1}n and a message
M ∈ ({0, 1}ň)+, kiv-(E ◦ C)+(K,M) = ω((E ◦ C)+(K,M)).

In the remaining part of this section, the security of the keyed hashing mode
as a PRF will be reduced to the security of the underlying blockcipher E as a
PRP. First, we discuss the conditions on C.

354 S. Hirose, H. Kuwakado, and H. Yoshida

The reduction is impossible if adversaries know the value fed to the key of
E. Thus, we will assume that the key depends on the chaining value, that is,
(c1,1, c1,2) �= (0, 0).

For some PRPE, its non-random behaviour may be observed if a query related
to the key value is allowed. This fact should be taken into account when C is
chosen.

Example 1. Let Ẽ be a blockcipher in BC(ň, n) such that Ẽk(w‖x) = w‖x if
w⊕ k is a constant c. Ẽ can be a PRP. However, it is easy to distinguish it from
a random permutation if a query (k⊕ c)‖x is allowed. Thus, for example, it does
not seem a good idea to use the compression function Eh2i−2(h2i−2⊕Mi‖h2i−1).

For the general case, suppose that Mi = 0ň since it is fully controlled by adver-
saries. If the lower left 2×2 submatrix of C is non-singular, then k is represented
by a linear combination of w and x. Thus, we will assume that the rank of the
submatrix is 1.

Let (ca,1 ca,2) be a non-zero row of the lower left 2× 2 submatrix of C. The
output function ω is defined as follows:

ω(h2N‖h2N+1) = ca,1h2N ⊕ ca,2h2N+1 .

4.1 If the Message Blocks Are Not Fed into the Key of E

Let us first consider the case where the message blocks are not fed into the key
of the underlying blockcipher, that is, c1,3 = 0 for C. The following theorem
implies that the KIV mode of (E ◦ C)+ is a PRF if E is a PRP.

Theorem 4. Let A be a prf-adversary against the KIV mode of (E ◦C)+. Sup-
pose that c1,3 = 0. Suppose that A runs in time at most t, and makes at most
q queries, and each query has at most � message blocks. Then, there exists a
prp-adversary B against E such that

Advprf
kiv-(E◦C)+(A) ≤ �q ·Advprp

E (B) + �q(q − 1)/2n+1 .

B makes at most q queries and runs in time at most t + O(�qTE), where TE

represents the time required to compute E.

Theorem 4 directly follows from the two lemmas given below. Their proofs are
given in Appendices B.1 and B.2, respectively.

Lemma 2. Let A be a prf-adversary against kiv-(E◦C)+. Suppose that c1,3 = 0.
Suppose that A runs in time at most t, and makes at most q queries, and each
query has at most � message blocks. Then, there exists a prf-adversary B against
E with access to q oracles such that

Advprf
kiv-(E◦C)+(A) ≤ � ·Advq- prf

E (B) .

B makes at most q queries and runs in time at most t + O(�qTE), where TE

represents the time required to compute E.

Compression Functions Using a Dedicated Blockcipher 355

Lemma 3. Let A be a prf-adversary against E with m oracles. Suppose that
A runs in time at most t, and makes at most q queries. Then, there exists a
prp-adversary B against E such that

Advm-prf
E (A) ≤ m ·Advprp

E (B) + q(q − 1)/2n+1 .

B makes at most q queries and runs in time at most t + O(q TE), where TE

represents the time required to compute E.

4.2 If the Message Blocks Are Fed into the Key of E

Let us now consider the case where the message blocks are fed into the key of
the underlying blockcipher, that is, c1,3 = 1. In this case, adversaries are more
powerful than in the previous case because they can directly affect key inputs
of the underlying blockcipher through message blocks. Thus, the underlying
blockcipher should be secure against the related-key differential attacks where
the attacker can control only the difference between the two related keys. The
proof is omitted since it is similar to that in Sect. 4.1.

Theorem 5. Let Φ = {φ |φ : {0, 1}ň → {0, 1}ň, φ(x) = x⊕ c, c ∈ {0, 1}ň}. Let
A be a prf-adversary against the KIV mode of (E ◦ C)+. Suppose that A runs
in time at most t, and makes at most q queries, and each query has at most �
message blocks. Then, there exists a prp-rka-adversary B against E such that

Advprf
kiv-(E◦C)+(A) ≤ �q ·Advprp -rka

E (B) + �q(q − 1)/2n+1 .

B makes at most q queries restricted by Φ and runs in time at most t+O(�qTE),
where TE represents the time required to compute E.

5 Preimage-Resistance in the Computational Model

This section discusses the preimage resistance of (E ◦ C)+ when an underlying
blockcipher E is not ideal, that is, an efficient algorithm of E is known to an
adversary. This section assumes that the matrix C satisfies the conditions given
in Sect. 4: C is non-singular, the upper-left 1 × 2 submatrix of C is non-zero,
and the rank of the lower-left 2 × 2 submatrix of C is 1. When the distribu-
tions of h2i−2 and h2i−1 are uniform and Mi is 0ň, k is distributed on {0, 1}ň
uniformly and independently from the distributions of w, x. This property plays
an important role in proving theorems.

This section also assumes the following unambiguous padding. Let M be an l-
bit message to be hashed. A single ‘1’ bit is appended to the head of M , and then
‘0’ bits are appended to the head so that the length in bits of the padded message
becomes a multiple of ň. Finally, all zero block, 0ň, is appended to the tail of M .
Unlike usual padding, some padding bits are located in the front of the original
message. The number of padded message blocks is given by N = �l/ň
+ 2. As
shown in the following, this padding allows us to reduce the preimage resistance

356 S. Hirose, H. Kuwakado, and H. Yoshida

to computational security of E. The disadvantage of this padding is that the
length of M has to be known before hashing M .

We define two types of preimage resistance that differ in how to produce a
given digest. The first assumes that a digest is uniformly chosen from the digest
space. This definition is the computational version of the one given in Sect. 2.
The second assumes that a digest is given by the same computation as the
last compression function. The second is necessary only to discuss the relation
between the preimage resistance and the security of an underlying blockcipher.

Definition 1. Let A be an adversary finding a preimage for a given digest. The
pre-advantage of A is defined as

Advpre
(E◦C)+(A) = Pr

[
A(h) = M ∧ (E ◦ C)+(M) = h

]
(1)

where h is chosen uniformly at random from {0, 1}n. This adversary is called a
pre-finder. The pseudo-pre-advantage of A is defined as

Advppre
(E◦C)+(A) = Pr

[
A(h) = M ∧ (E ◦ C)+(M) = h

]
(2)

where h is produced in the following manner:

u‖d $← {0, 1}n, (k, w, x)T = C(u, d, 0ň)T , h = Ek(w‖x), (3)

where T is a transposition.

We show that the pre-advantage and the pseudo-pre-advantage are characterized
with the prp-advantage for E. The choice of h in Eq. (1) is equivalent to

u‖d $← {0, 1}n, (k, w, x)T = C(u, d, 0ň)T , h = ρ(w‖x) (4)

where ρ is a random permutation. In Eq. (2), k is chosen uniformly at random
from {0, 1}ň and is independent of w‖x because of the conditions on C. Com-
paring Eq. (3) with Eq. (4), we see that the difference between Eq. (1) and
Eq. (2) is the difference between Ek and ρ. Recall the prp-advantage Advprp

E

that measures the difference between Ek and ρ. Let Advprp
E (q, t) be the best

prp-advantage among adversaries B with queries q and time t, that is,

Advprp
E (q, t) = max

B
Advprp

E (B) .

We then have the following lemma, which is proved in Appendix C.1. This lemma
means that if E is a pseudorandom permutation, then the pre-advantage is nearly
equal to the ppre-advantage.

Lemma 4. Let F = E ◦ C. Let A be an adversary that finds a preimage for a
given digest. Suppose that the running time of A is at most t and the maximum
length of a preimage is l. Then, we have∣∣Advppre

F+ (A)−Advpre
F+(A)

∣∣ ≤ Advprp
E (1, t+NtF), (5)

where tF is the time for computing F and N = �l/ň
+ 2.

Compression Functions Using a Dedicated Blockcipher 357

Let F̃ (v) = (E ◦ C)(v, 0ň). The non-injectivity of E is defined as

νE = max
v∈{0,1}n

#F̃−1(v) .

The non-injectivity is a property of the mapping. Since the block length of E
is twice the key length, the value of νE is expected to be small if E is well-
designed. The following theorem implies that (E ◦ C)+ is secure against any
efficient pre-finder if the non-injectivity of E is small and E is a pseudorandom
permutation. The proof is given in Appendix C.2. The last zero message block,
which is appended in the padding method, plays an important role in the proof.

Theorem 6. Let F = E ◦ C. Let A be a pre-finder for the hash function F+.
Suppose that the running time of A is at most t and the length of a preimage
produced by A is at most l. Then, we have(

1

νE
− 1

2n − 1

)
Advpre

(E◦C)+(A) ≤ 2Advprp
E (2, t+ (N + 1)tF),

where tF is the time for computing F and N = �l/ň
+ 2.

6 Concluding Remarks

This article has first presented a model of compression functions using a dedi-
cated blockcipher for lightweight hashing. Then, it has discussed the security of
iterated hash functions composed of compression functions in the model. We can
find the following trade-off between collision resistance and the PRF property
of keyed hashing modes: if c1,3 = 0, then collision resistance is nearly optimal
but the KIV mode only requires a blockcipher secure as a PRP; if c1,3 = 1, then
collision resistance is optimal but the KIV mode requires a blockcipher secure
as a PRP against related-key attacks.

Acknowledgement. The first author was partially supported by KAKENHI
21240001. The second author was partially supported by KAKENHI 22560376.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

2. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science, pp. 514–523 (1996)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007)

358 S. Hirose, H. Kuwakado, and H. Yoshida

4. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

5. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, Verbauwhede [14], pp. 450–466

7. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P.
(eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

8. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

9. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: A
Lightweight 256-Bit Hash Function for Hardware and Low-End Devices: Lesamnta-
LW. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 151–168.
Springer, Heidelberg (2011)

10. Hirose, S., Kuwakado, H.: Efficient pseudorandom-function modes of a block-
cipher-based hash function. IEICE Transactions on Fundamentals E92-A(10),
2447–2453 (2009)

11. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

12. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

14. Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer, Hei-
delberg (2007)

15. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

16. Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

17. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Küçük, Ö., Preneel,
B.: MAME: A compression function with reduced hardware requirements. In: Pail-
lier, Verbauwhede [14], pp. 148–165

Compression Functions Using a Dedicated Blockcipher 359

A Proofs of Lemma and Theorem in Sect. 3

A.1 Proof of Lemma 1

It is clear that the upper right 2× 2 submatrix of C−1 is not a zero matrix. Let

C−1 =

⎛⎝d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎞⎠ .

For 1 ≤ i ≤ 3, let cri be the i-th row of C and dci be the i-th column of C−1.
Suppose that c1,3 = 0. Then,

cr1 · dc2 = c1,1d1,2 ⊕ c1,2d2,2 = 0 and cr1 · dc3 = c1,1d1,3 ⊕ c1,2d2,3 = 0 .

They imply that the rows of the upper right 2× 2 submatrix of C−1 are linearly
dependent since (c1,1, c1,2) �= (0, 0).

Suppose that c1,3 = 1. Then, the following matrix is the inverse of the upper
right 2× 2 submatrix of C−1:(

c2,1 c2,2
c3,1 c3,2

)
⊕ c2,3

(
c1,1 c1,2
0 0

)
⊕ c3,3

(
0 0

c1,1 c1,2

)
.

A.2 Proof of Theorem 2

Following the formalization in [16], a compression function F : {0, 1}n×{0, 1}ň →
{0, 1}n is specified as follows: h2i‖h2i+1 = F (h2i−2‖h2i−1,Mi), where

1. (k, w‖x) ← CPRE(Mi, h2i−2‖h2i−1),
2. y‖z ← Ek(w‖x),
3. h2i‖h2i+1 ← CPOST(Mi, h2i−2‖h2i−1, y‖z).

CPRE : {0, 1}ň×{0, 1}n → {0, 1}ň×{0, 1}n is called preprocessing, and CPOST :
{0, 1}ň × {0, 1}n × {0, 1}n → {0, 1}n is called postprocessing.

A compression function F is of Type-II if the following three conditions hold:

1. CPRE is bijective.
2. For all Mi and h2i−2‖h2i−1, C

POST(Mi, h2i−2‖h2i−1, ·) is bijective.
3. For all k, C−PRE(k, ·) restricted to its second output is bijective.

The compression function E ◦C satisfies the first condition since its CPRE is the
multiplication of the non-singular C. It also satisfies the second condition since
CPOST(Mi, h2i−2‖h2i−1, y‖z) = y‖z. For the third condition, notice that⎛⎝h2i−2

h2i−1

Mi

⎞⎠ = C−1

⎛⎝k
w
x

⎞⎠
and that the upper right 2× 2 submatrix of C−1 is non-singular from Lemma 1.
Thus, there is one-to-one correspondence between (w, x) and (h2i−2, h2i−1) for
any fixed k.

360 S. Hirose, H. Kuwakado, and H. Yoshida

B Proofs of Lemmas in Sect. 4

B.1 Proof of Lemma 2

The proof basically follows the hybrid argument given in [2]. Let M[1,l] =

M1‖M2‖ · · · ‖Ml. For i ∈ {0, 1, . . . , �} (� ≥ 1), let Ii : ({0, 1}ň)≤� → {0, 1}ň
be a random function such that

Ii(M[1,l]) =

{
α1(M[1,l]) if 1 ≤ l ≤ i,

kiv-(E ◦ C)+(Ki,0‖Ki,1,M[i+1,l]) if i+ 1 ≤ l ≤ �,

where (
Ki,0

Ki,1

)
=

(
c1,1 c1,2
ca,1 ca,2

)−1 (
α0(M[1,i])
α1(M[1,i])

)
,

and α0 and α1 are random functions uniformly distributed over F(({0, 1}ň)i,
{0, 1}ň) and F(({0, 1}ň)≤i, {0, 1}ň), respectively. If i = 0, then both α0 and α1

are just random elements uniformly and independently distributed over {0, 1}ň.
Then,

Advprf
kiv-(E◦C)+(A) =

∣∣Pr[AI0 = 1]− Pr[AI� = 1]
∣∣ .

A q-prf-adversaryB with q oracles 〈uj〉qj=1 is constructed using A as a subroutine.
B first selects i ∈ {1, . . . , �} uniformly at random. Then, B runs Bi described
below.

Bi runs A. Bi simulates a random function β uniformly distributed over
F(({0, 1}ň)≤i−1, {0, 1}ň) via lazy sampling. When Bi receives the p-th query

M (p) = M
(p)
[1,l] of A, Bi returns⎧⎪⎪⎨⎪⎪⎩
β(M

(p)
[1,l]) if 1 ≤ l ≤ i− 1,

ω(u
idx(M

(p)

[1,i−1]
)
(w(p)‖x(p))) if l = i,

kiv-(E ◦ C)+(u
idx(M

(p)

[1,i−1]
)
(w(p)‖x(p)),M

(p)
[i+1,l]) if i+ 1 ≤ l ≤ �,

where (
w(p)

x(p)

)
=

(
β2

β3

)
⊕M

(p)
i

(
c2,3
c3,3

)
,

and, for j ∈ {2, 3},

βj =

{
β(M

(p)
[1,i−1]) if (cj,1, cj,2) = (ca,1, ca,2),

0 if (cj,1, cj,2) = (0, 0).

In the above, for each p, idx(M
(p)
[1,i−1]) is a unique integer in {1, . . . , q}, which de-

pends onM
(p)
[1,i−1]. If there is a previous queryM (p′) (p′ < p) such that M

(p′)
[1,i−1] =

M
(p)
[1,i−1], then idx(M

(p)
[1,i−1]) = idx(M

(p′)
[1,i−1]). Otherwise, idx(M

(p)
[1,i−1]) = p.

Compression Functions Using a Dedicated Blockcipher 361

Now, suppose that Bi is given oracles EK1 , EK2 , . . . , EKq , whereKj’s are inde-
pendent random variables uniformly distributed over {0, 1}ň. Then, in response

to M
(p)
[1,l], Bi returns{

β(M
(p)
[1,l]) if 1 ≤ l ≤ i− 1,

kiv-(E ◦ C)+(Ki−1,0‖Ki−1,1,M
(p)
[i,l]) if i ≤ l ≤ �,

where (
Ki−1,0

Ki−1,1

)
=

(
c1,1 c1,2
ca,1 ca,2

)−1
(
K

idx(M
(p)

[1,i−1]
)

β(M
(p)
[1,i−1])

)
.

Since K
idx(M

(p)

[1,i−1]
)
can be regarded as a random function of M

(p)
[1,i−1], we can say

that A has oracle access to Ii−1. Therefore,

Pr[B
〈EKj

〉qj=1

i = 1] = Pr[AIi−1 = 1] .

Next, suppose that Bi has oracle access to ρ1, . . . , ρq, where ρj ’s are inde-
pendent random functions uniformly distributed over F({0, 1}n, {0, 1}n). Since
(c2,3, c3,3) �= (0, 0), the first half and the second half of ρ

idx(M
(p)

[1,i−1]
)
(w(p)‖x(p))

are independent random functions of M
(p)
[1,i]. Thus, we can say that A has oracle

access to Ii and

Pr[B
〈ρj〉qj=1

i = 1] = Pr[AIi = 1] .

From the discussions above,

Advq-prf
E (B) =

∣∣∣Pr[B〈EKj
〉qj=1 = 1]− Pr[B〈ρj〉qj=1 = 1]

∣∣∣
=

1

�

∣∣∣∣∣
�∑

i=1

Pr[AIi−1 = 1]−
�∑

i=1

Pr[AIi = 1]

∣∣∣∣∣
=

1

�

∣∣Pr[AI0 = 1]− Pr[AI� = 1]
∣∣ = 1

�
Advprf

kiv-(E◦C)+(A) .

B makes at most q queries and runs in time at most t + O(�qTE). There may
exist an algorithm with the same resources and larger advantage. Let us also call
it B. Then,

Advprf
kiv-(E◦C)+(A) ≤ � ·Advq-prf

E (B) .

B.2 Proof of Lemma 3

The proof is also based on the hybrid argument. Let K1, . . . ,Km be indepen-
dent random variables uniformly distributed over {0, 1}ň. Let ρ1, . . . , ρm be in-
dependent random functions uniformly distributed over F({0, 1}n, {0, 1}n). Let

362 S. Hirose, H. Kuwakado, and H. Yoshida

�1, . . . , �m be independent random permutations uniformly distributed over
P({0, 1}n). Then,

Advm-prf
E (A) =

∣∣∣Pr[A〈EKj
〉mj=1 = 1]− Pr[A〈ρj〉mj=1 = 1]

∣∣∣
≤

∣∣∣Pr[A〈EKj
〉mj=1 = 1]− Pr[A〈�j〉mj=1 = 1]

∣∣∣+∣∣∣Pr[A〈�j〉mj=1 = 1]− Pr[A〈ρj〉mj=1 = 1]
∣∣∣ .

For 0 ≤ i ≤ m, let Oi be m oracles such that EK1 , . . ., EKi , �i+1, . . ., �m.
Notice that O0 = 〈�j〉mj=1 and Om = 〈EKj 〉mj=1.

A prp-adversary B with an oracle u is constructed using A as a subroutine.
u is either EK or �, where K is a random variable uniformly distributed over
{0, 1}ň and � is a random permutation uniformly distributed over P({0, 1}n).

B first selects i from {1, 2, . . . ,m} uniformly at random. Then, B runs A
with oracles EK1 , . . . , EKi−1 , u, �i+1, . . . , �m by simulating EK1 , . . . , EKi−1 ,
and �i+1, . . . , �m. Finally, B outputs A’s output.

Then,

Pr[BEK = 1] =
1

m

m∑
i=1

Pr[AOi = 1] and Pr[B� = 1] =
1

m

m−1∑
i=0

Pr[AOi = 1] .

Thus,

Advprp
E (B) =

∣∣Pr[BEK = 1]− Pr[B� = 1]
∣∣ = 1

m

∣∣Pr[AOm = 1]− Pr[AO0 = 1]
∣∣ .

B makes at most q queries and runs in time at most t + O(q TE). There may
exist an algorithm with the same resources and larger advantage. Let us also call
it B. Then, ∣∣Pr[AOm = 1]− Pr[AO0 = 1]

∣∣ ≤ m ·Advprp
E (B) .

It is possible to distinguish �1, . . . , �m and ρ1, . . . , ρm only by the fact that
there may be a collision for ρi. Thus, since A makes at most q queries,∣∣∣Pr[A〈�j〉mj=1 = 1]− Pr[A〈ρj〉mj=1 = 1]

∣∣∣ ≤ q(q − 1)

2n+1
.

C Proofs of Lemma and Theorem in Sect. 5

C.1 Proof of Lemma 4

Consider the following prp-adversary B. The aim of B is to determine whether
its oracle O is Ek or ρ by using A as a subroutine.

1. Compute (v, w, x) as u‖d $← {0, 1}n, (v, w, x)T = C(u, d, 0ň)T .
2. Make a query w‖x to O and receive its response h = y‖z.

Compression Functions Using a Dedicated Blockcipher 363

3. Input a digest h to At,l and let M be output of A.
4. If (E ◦ C)+(M) = h, then output 1, otherwise output 0.

The number of queries made by B is one and the running time of B, which is
dominated by the running time of A and the computation of (E ◦ C)+(M) in
step 4, is t+(�λ/ň
+2)tF where λ is the length of M . Since λ ≤ l, the running
time of B is at most t+NtF . The probabilities that B outputs 1 are

Pr
[
BEk = 1

]
= Pr

[
At,l(h) = M ∧ (E ◦ C)+(M) = h

]
= Advppre

(E◦C)+(A),

Pr [Bρ = 1] = Pr
[
At,l(h) = M ∧ (E ◦ C)+(M) = h

]
= Advpre

(E◦C)+(A).

We consequently obtain

Advprp
E (B1,t+(�λ/ň�+2)tF) =

∣∣Pr [BEk = 1
]
− Pr [Bρ = 1]

∣∣
=

∣∣∣Advpre
(E◦C)+(A)−Advppre

(E◦C)+(A)
∣∣∣

≤ Advprp
E (1, t+NtF).

C.2 Proof of Theorem 6

Suppose that A is a pre-finder running in time at most t and producing a preim-
age of length at most l. Consider the following adversary B which uses A as a
subroutine. The aim of B is to determine whether its oracle O is Ek or a random
permutation ρ by finding k if O = Ek.

1. Compute (v, w, x) as u‖d $← {0, 1}n, (v, w, x)T = C(u, d, 0ň)T .
2. Make a query w‖x to O and receive its response h = y‖z.
3. Run A with a digest h, and receive its output M .
4. If (E ◦ C)+(M) �= h, then output 0 and terminate the algorithm.
5. Suppose that (E ◦ C)+(M) = h. Let ξ be the number of (padded) message

blocks. Compute (k̃, w̃, x̃)T = C(h2ξ−2, h2ξ−1, 0
ň)T . Note that

(h2ξ−2‖h2ξ−1, 0
ň) is the input to the last compression function of (E ◦

C)+(M).
6. Choose w′‖x′ from {0, 1}n \ {w‖x} uniformly. If

O(w′‖x′) = E(k̃, w′‖x′), (6)

then output 1, otherwise output 0 and terminate the algorithm.

Since the length of M is at most l, the running time of B is at most t+(N+1)tF ,
where N = �l/ň
+ 2. The number of queries made by B is at most two.

We next evaluate the probability that B outputs 1. If O = Ek, then the
probability that (k̃, w̃, x̃) = (k, w, x) is at least 1/νE. In this case, Eq. (6) always
holds because k̃ = k. Note that even if (k̃, w̃, x̃) �= (k, w, x), Eq. (6) may hold.
Hence,

Pr
[
O(w′‖x′) = E(k̃, w′‖x′)

]
≥ 1

νE
.

364 S. Hirose, H. Kuwakado, and H. Yoshida

If O = ρ, then the probability that O(w′‖x′) = E(k̃, w′‖x′) is 1/(2n−1) because
ρ is a random permutation. Noting that two cases differ in how to produce y‖z,
we have

Pr
[
BEk = 1

]
= Pr

[
A(h) = M ∧ (E ◦ C)+(M) = h ∧ O(w′‖x′) = E(k̃, w′‖x′)

]
≥ 1

νE
Advppre

(E◦C)+(A),

Pr [Bρ = 1] = Pr
[
A(h) = M ∧ (E ◦ C)+(M) = h ∧ O(w′‖x′) = E(k̃, w′‖x′)

]
=

1

2n − 1
Advpre

(E◦C)+(A).

The above equations yield

Advprp
E (B) =

∣∣Pr [BEk = 1
]
− Pr [Bρ = 1]

∣∣
≥ 1

νE
Advppre

(E◦C)+(A)−
1

2n − 1
Advpre

(E◦C)+(A). (7)

From Lemma 4,

1

νE
Advprp

E (1, t+NtF) ≥
1

νE

∣∣∣Advpre
(E◦C)+(A)−Advppre

(E◦C)+(A)
∣∣∣. (8)

Combining Eq. (7) and Eq. (8) gives

Advprp
E (B) +

1

νE
Advprp

E (1, t+NtF) ≥
(

1

νE
− 1

2n − 1

)
Advpre

(E◦C)+(A).

Since 1 ≤ νE ≤ 2ň, simplifying this inequality gives

2Advprp
E (2, t+ (N + 1)tF) ≥

(
1

νE
− 1

2n − 1

)
Advpre

(E◦C)+(A).

Since the right-hand term of the above inequality is non-negative, this inequality
is meaningful.

Biclique Attack on the Full HIGHT

Deukjo Hong, Bonwook Koo, and Daesung Kwon

ETRI
{hongdj,bwkoo,ds kwon}@ensec.re.kr

Abstract. HIGHT is a lightweight block cipher proposed at CHES 2006
and included in ISO/IEC 18033-3. In this paper, we apply recently pro-
posed biclique cryptanalysis to attack HIGHT. We show that bicliques
can be constructed for 8 rounds in HIGHT, and those are used to re-
cover the 128-bit key for the full rounds of HIGHT with the computa-
tional complexity of 2126.4, faster than exhaustive search. This is the first
single-key attack result for the full HIGHT.

Keywords: HIGHT, Biclique, Cryptanalysis.

1 Introduction

HIGHT is a lightweight block cipher which was proposed at CHES 2006 for low-
resource device such as radio frequency identifications (RFID) [4]. It is approved
by Telecommunications Technology Association (TTA) of Korea and included
in ISO/IEC 18033-3 [5]. It consists of 32 rounds in 8-branch type-2 generalized
Feistel network with 64-bit block and 128-bit key. The round function is designed
with ARX structure using addition modulo 28, XOR, and bitwise rotation.

In its proposal, it was claimed that at least 20 rounds of HIGHT was secure.
However, in 2007, Lu presented an impossible differential attack on 25 rounds,
an related-key rectangle attack on 26 rounds, and an related-key impossible
differential attack on 28 rounds [7]. In 2009, Özen et al. presented an impossible
differential attack on 26 rounds and an related-key impossible differential attack
on 31 rounds [8], and Zhang et al. presented an saturation attack on 22 rounds
[10]. In 2010, Koo et al. presented the first key recovery attack on the full HIGHT
using a related-key rectangle distinguisher for weak key space with the fraction
of 1/4 [6].

Some block ciphers such as AES and HIGHT adopt simple key schedule for
efficiency in hardware implementation. However, the simplicity of the key sched-
ule has been exploited for various related- and weak-key attacks. On the other
hand, those kinds of attacks have been regarded as relatively impractical, while
recently proposed biclique cryptanalysis [2] yields a single-key attack on such
block ciphers.

Biclique cryptanalysis introduced by Bogdanov, Khovratovich, and Rech-
berger [2] is a kind of meet-in-the-middle attack such that bicliques improve
the efficiency. They provided two approaches for key recovery using bicliques,

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 365–374, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

366 D. Hong, B. Koo, and D. Kwon

and gave several cryptanalytic results for AES including the first single-key at-
tack results for full rounds.

The notion of biclique is as follows. Let f be a subcipher that maps an in-
ternal state S to the ciphertext C: fK(S) = C. We consider 2d internal states
{S0, ..., S2d−1}, 2d ciphertexts {C0, ..., C2d−1}, and 22d keys {K〈i,j〉}:

{K〈i,j〉} =

⎡⎢⎣ K〈0,0〉 K〈0,1〉 · · · K〈0,2d−1〉
...

K〈2d−1,0〉 K〈2d−1,1〉 · · · K〈2d−1,2d−1〉

⎤⎥⎦ . (1)

The 3-tuple [{Ci}, {Sj}, {K〈i,j〉}] is called a d-dimensional biclique, if

Ci = fK〈i,j〉(Sj) for all i, j ∈ {0, ..., 2d − 1}. (2)

In this paper, we study biclique cryptanalysis of the full HIGHT. We find that
the slow and limited diffusion of the key schedule and encryption in HIGHT
leads to relatively long biclqiues with high dimension and the efficient matching
check with precomputations. Our attack recovers the 128-bit key of HIGHT with
the computational complexity of 2126.4, faster than exhaustive search. This is the
first single-key attack result for the full HIGHT.

This paper is organized as follows. Section 2 introduces biclique cryptanalysis
and techniques which we use for our attack. In Section 3, the block cipher HIGHT
is briefly described. In Section 4, we explain how to construct bicliques for 8
rounds of HIGHT. In Section 5, the key recovery procedure for the full HIGHT
are explained and the complexity is evaluated. In Section 6, the complexities of
our attack are evaluated. In Section 7, we conclude our work.

Table 1. Summary of the attacks on HIGHT(Imp.:Impossible, Diff.:Differential,
Rel.:Related, and Rec.:Rectangle). Time complexities marked by ‘∗’ should be com-
pared with 2127 , the complexity of the brute force attack with two distinct keys. Time
complexities marked by ‘∗∗’ should be compared with 2126, the complexity of the brute
force attack with four distinct keys.

Rounds Attack
Complexities

References
Data Time

18 Imp. Diff. 246.8 2109.2 [4]
22 Saturation 262.04 2118.7 [10]
25 Imp. Diff. 260 2126.8 [7]
26 Imp. Diff. 261 2119.5 [8]
26 Rel.-Key Rec. 251.2 2120.4 ∗∗ [7]
28 Rel.-Key Imp. 260 2125.5 ∗ [7]
31 Rel.-Key Imp. 263 2127.3 ∗ [8]

32(Full) Rel.-Key Rec. 257.84 2125.8 ∗∗ [6]
32(Full) Biclique 248 2126.4 This paper

Biclique Attack on the Full HIGHT 367

2 Biclique Cryptanalysis

We introduce Bogdanov et al.’s biclique cryptanalysis [2].

2.1 Attack Procedure

The biclique attack procedure consists of the following phases.

Preparation. The adversary partitions the key space into sets of 22d keys each.
The block cipher is considered as the composition of two subciphers: e = f ◦ g.
The key in a set is indexed as an element of a 2d × 2d matrix like (1): {K〈i,j〉}.

Constructing Bicliques. For each set of keys, the adversary build the structure
consisting of {C0, ..., C2d−1}, {S0, ..., S2d−1}, and {K〈i,j〉} satisfying (2).

Collecting Data. The adversary obtains the plaintexts {Pi} from the ciphertexts
{Ci} through the decryption oracle.

Testing Keys. The right key K maps the plaintext Pi to the intermediate Sj .
So, the adversary checks

∃i, j : Pi

K〈i,j〉−−−−→
g

Sj , (3)

which proposes a key candidate. If the right key is not found in the key set, he
chooses another key set and repeats the above phases.

2.2 Constructing Bicliques from Independent Related-Key
Differentials

We introduce one of two methods to construct bicliques, described in [2]. Firstly,
we consider two sets of 2d keys A = {K〈i,0〉|0 ≤ i ≤ 2d− 1} and B = {K〈0,j〉|0 ≤
j ≤ 2d − 1} such that A ∩ B = {K〈0,0〉}. We assume that n is the bit-length
of the block and S0 is an intermediate string which is a randomly chosen n-bit
string. Let the key K〈0,0〉 map intermediate state S0 to ciphertext C0 with f :

S0

K〈0,0〉−−−−→
f

C0. (4)

{Ci} and {Sj} are obtained through the following computations:

S0

K〈i,0〉−−−−→
f

Ci, (5)

Sj

K〈0,j〉←−−−−
f−1

C0. (6)

Let Δi = C0 ⊕ Ci, Δ
K
i = K〈0,0〉 ⊕ K〈i,0〉, ∇j = S0 ⊕ Sj , and ∇K

j = K〈0,0〉 ⊕
K〈0,j〉. The Δi-differential is the related-key differential trail between (4) and (5)

which is denoted by 0
ΔK

i
 Δi. The ∇j-differential is the related-key differential

368 D. Hong, B. Koo, and D. Kwon

trail between (4) and (6) which is denoted by ∇j

∇K
j
 0. If the two related-key

differential trails 0
ΔK

i
 Δi and∇j

∇K
j
 0 do not share active nonlinear components

(such as modular additions with nonzero input differences in HIGHT) for all i
and j, the following relation is satisfied.

S0 ⊕∇j

K〈0,0〉⊕ΔK
i ⊕∇K

j−−−−−−−−−−−→
f

C0 ⊕Δi for i, j ∈ {0, ..., 2d − 1}. (7)

This is proved by the concept of S-box switch [1] and a sandwich attack [3] in the
theory of boomerang attacks [9]. Let K〈i,j〉 = K〈0,0〉 ⊕ΔK

i ⊕∇K
j . Then, we get

bicliques satisfying the definition of (2). The construction of a biclique requires
less than 2 · 2d computations of f .

Note that we could not construct any good bicliques suitable for the full-round
attack on HIGHT, with the other approach for biclique construction in [2].

2.3 Matching with Precomputations

The matching with precomputations is an efficient way to check equation (3) in
the attack procedure. Let v be a part of an internal state between {Pi} and {Sj}.
v is called the matching variable. We denote v computed from Pi by

−→v i and v
computed from Sj by ←−v j . First, the adversary computes and store in memory
the followings:

for i = 0, 1, ..., 2d − 1, Pi

K〈i,0〉−−−−→ −→v i and

for j = 0, 1, ..., 2d − 1, ←−v j

K〈0,j〉←−−−− Sj .

Then, for particular i and j, the adversary checks the matching at v by recom-
puting only those parts of the cipher which differ from the stored ones.

The cost of recomputation depends on the diffusion properties of both internal
rounds and the key schedule of the cipher. Since the HIGHT key schedule has
very slow and limited diffusion, the adversary can skip most recomputations of
the key schedule operations.

3 Description of HIGHT

We use the following notations for describing HIGHT.

– ⊕ : bitwise exclusive OR(XOR)
– 	 : addition modulo 28

HIGHT takes a 64-bit plaintext P and a 128-bit key K, and its 32-round en-
cryption procedure produces a 64-bit ciphertext C. From now on, we present
any 64-bit variable A and any 128-bit variable B as a tuple of eight bytes
(A[7], ..., A[1], A[0]) and a tuple of sixteen bytes (B[15], ..., B[1], B[0]).

Biclique Attack on the Full HIGHT 369

The key schedule produces 128 8-bit subkeys SK[0], ..., SK[127] from a 128-bit
key K = (K[15], ...,K[0]): for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7,{

SK[16i+ j] ← K[j − i mod 8]	 δ[16i+ j],
SK[16i+ j + 8] ← K[(j − i mod 8) + 8]	 δ[16i+ j + 8],

where δ[0], ..., δ[127] are public constants.
Let Xi−1 = (Xi−1[7], ..., Xi−1[0]) and Xi = (Xi[7], ..., Xi[0]) be the input and

output of the Round i− 1 for 1 ≤ i ≤ 32, respectively, where ‘Round i’ denotes
the (i+ 1)-th round(i.e. Round 0 implies the first round).

The encryption procedure of HIGHT is as follows.

1. Initial Transformation:

X0[0] ← P [0]	K[12];X0[2] ← P [2]⊕K[13];

X0[4] ← P [4]	K[14];X0[6] ← P [6]⊕K[15];

X0[1] ← P [1];X0[3] ← P [3];X0[5] ← P [5];X0[7] ← P [7].

2. Round Iteration for 1 ≤ i ≤ 32:

Xi[0] ← Xi−1[7]⊕ (F0(Xi−1[6], SK[4i− 1]));

Xi[2] ← Xi−1[1]	 (F1(Xi−1[0], SK[4i− 2]));

Xi[4] ← Xi−1[3]⊕ (F0(Xi−1[2], SK[4i− 3]));

Xi[6] ← Xi−1[5]	 (F1(Xi−1[4], SK[4i− 4]));

Xi[1] ← Xi−1[0];Xi[3] ← Xi−1[2];Xi[5] ← Xi−1[4];Xi[7] ← Xi−1[6],

where for two 8-bit inputs x and sk, the functions F0 and F1 are defined by{
F0(x, sk) = (x≪1 ⊕ x≪2 ⊕ x≪7)	 sk,
F1(x, sk) = (x≪3 ⊕ x≪4 ⊕ x≪6)⊕ sk.

3. Final Transformation:

C[0] ← X32[1]	K[0];C[2] ← X32[3]⊕K[1];

C[4] ← X32[5]	K[2];C[6] ← X32[7]⊕K[3];

C[1] ← X32[2];C[3] ← X32[4];C[5] ← X32[6];C[7] ← X32[0].

4 Constructing Bicliques for 8 Rounds

In this section, we explain how to construct bicliques for 8 rounds of HIGHT.
Table 2 lists key bytes used at every round. For example, the subkeys SK[43],
SK[42], SK[41], and SK[40] are added at Round 10(=8+2), and you can see
four bytes K[9],K[8],K[15], and K[14] of the key K are used for generating
them from Table 2. Considering the table, we found varying K[7] and K[9] give
bicliques for attack on the full rounds of HIGHT.

370 D. Hong, B. Koo, and D. Kwon

Table 2. Key bytes used for generating subkeys

�����i
Round

Round i Round 8 + i Round 16 + i Round 24 + i

0 3, 2, 1, 0 1, 0, 7, 6 7, 6, 5, 4 5, 4, 3, 2

1 7, 6, 5, 4 5, 4, 3, 2 3, 2, 1, 0 1, 0, 7, 6

2 11, 10, 9, 8 9, 8, 15, 14 15, 14, 13, 12 13, 12, 11, 10

3 15, 14, 13, 12 13, 12, 11, 10 11, 10, 9, 8 9, 8, 15, 14

4 2, 1, 0, 7 0, 7, 6, 5 6, 5, 4, 3 4, 3, 2, 1

5 6, 5, 4, 3 4, 3, 2, 1 2, 1, 0, 7 0, 7, 6, 5

6 10, 9, 8, 15 8, 15, 14, 13 14, 13, 12, 11 12, 11, 10, 9

7 14, 13, 12, 11 12, 11, 10, 9 10, 9, 8, 15 8, 15, 14, 13

The base keys K〈0,0〉 are all possible 2112 16-byte values with K[7] and K[9]
fixed to 0 whereas the remaining 14 bytes run over all values. The keys {K〈i,j〉}
in a set are enumerated by all possible byte differences i and j with respect to
the base key K〈0,0〉. This partitions the HIGHT key space into the 2112 sets of
216 keys each. Note that K[7] and K[9] are not used for whitening keys. So,
for simplicity, we do not bother to consider whitening key additions and do not
depict them in figures because they have no effect on our attack at all.

Let f be the subcipher from Round 24 to Round 31. The adversary fixes
C0 = 0 and derives S0 = f−1

K〈0,0〉(C0). The Δi-differentials are based on the

difference ΔK
i where the difference of K[9] is i and the other bytes have zero

difference, and ∇j-differentials are based on the difference ∇K
j where the differ-

ence of K[7] is j and the other bytes have zero difference. Both of differentials
are depicted in Fig. 1. Note that the right F1 in Round 26 and the right F0 in
Round 30 are affected by the key byte K[9], and the left F1 in Round 24 and
the left F0 in Round 28 are affected by the key byte K[7]. They are colored blue
(in Δi-differential) and red (in ∇j -differential) in Fig. 1. As two differentials
share no active nonlinear elements (modular additions), the resulting combined
differentials yield a biclique of dimension 8.

Since the Δi-differential affects only 6 bytes of the ciphertext, all the cipher-
texts can be forced to share the same values in two bytes C[0] and C[1]. As a
result, the data complexity does not exceed 248.

5 Key Recovery for the Full HIGHT

We describe the key recovery procedure using bicliques for the full HIGHT. We
rewrite the decomposition of the cipher:

E : P −→
g1

V −→
g2

S −→
f

C,

where g1 is the subcipher from Round 0 to Round 11, g2 from Round 12 to
from Round 23, f from Round 24 to Round 31. In Section 4, 8-round bicliques
are constructed for Round 24 to Round 31. We assume the plaintexts set {Pi}
corresponding to an 8-round biclique are obtained through the decryption oracle.

Biclique Attack on the Full HIGHT 371

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

Round 24

Round 25

Round 26

Round 27

F0 F1 F0 F1

F0 F1 F0 F1

Round 28

Round 29

Round 30

Round 31

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

i -differentials j -differentials

Fig. 1. Δi- and ∇j-differentials for 8-round bicliques

Applying (3) to g2 ◦ g1, the adversary detects the right key by computing an
intermediate variable v in both directions:

Pi

K〈i,j〉−−−−→
g1

−→v ?
= ←−v

K〈i,j〉←−−−−
g−1
2

Sj . (8)

This is performed through the followings. Please recall that we do not bother
to consider whitening key additions and do not depict them in figures because
they have no effect on our attack at all.

Precomputation. For the efficient meet-in-the-middle attack on the g2 ◦ g1, we
use the matching with precomputations. According to 2.3, we prepare precom-
putations with 2d+1(= 29) computations.

For all i = 0, ..., 28 − 1, the adversary computes the 4-th byte of the output
of the Round 11, X11[4] from Pi and K〈i,0〉 in forward direction, and store it
as −→v i, together with the intermediate states and subkeys in memory. For all
j = 0, ..., 28 − 1, the adversary computes X11[4] from Si and K〈0,j〉 in backward
direction, and store it as ←−v j , together with the intermediate states and subkeys
in memory.

Computation in backward direction. In backward direction, the adversary should
compute ←−v (= X11[4]) from Sj and K〈i,j〉 for all i and j, and store them in

memory. We look at how the computation ←−v
K〈i,j〉←−−−− Sj differs from the stored

one ←−v j

K〈0,j〉←−−−− Sj . It is determined by the influence of the difference between

372 D. Hong, B. Koo, and D. Kwon

keys K〈i,j〉 and K〈0,j〉. The full area to be recomputed is depicted in Fig. 2.
Recomputations are performed according to bold lines in Fig. 2, and the values
on the other lines are reused from the precomputation table.

Computation in forward direction. In forward direction, the adversary should

compute −→v from Pi and K〈i,j〉. We look at how the computation Pi

K〈i,j〉−−−−→ −→v
differs from the stored one Pi

K〈i,0〉−−−−→ −→v i. Similarly, it is determined by the
influence of the difference between keys K〈i,j〉 and K〈i,0〉, now applied to the
plaintext. Recomputations are performed according to bold lines in Fig.2, and
the values on the other lines are reused from the precomputation table.

For each computed −→v , the adversary checks whether the corresponding key
candidate K〈i,j〉 satisfies (8). If he finds such one, he should check the matching
on whole bytes at X11 for the K〈i,j〉, Pi, and Sj . The matching on whole bytes
at X11 yields the right key K with high probability. If a biclique does not give
the right key, the adversary should choose another biclique and repeat the above
procedure again until the right key is found.

6 Complexities

The total computational complexity of the biclique attack on the full HIGHT is
evaluated as follows:

Ctotal = 2n−2d[Cbiclique + Cprecomp + Crecomp + Cfalsepos], (9)

where

– n = 128 and d = 8.
– Cbiclique is the complexity of constructing a single biclique. In our attack, it

is at most 2d+1(= 29) 8-round computations.
– Cprecomp is the complexity of preparing the precomputation for the matching

check in (8). In our attack, it is less than 2d(= 28) 23-round computations.
– Crecomp is the complexity of the recomputation of the internal variable v

22d(= 216) times. In one backward recomputation, F0 and F1 are computed 9
and 8 times, respectively, and 11 XOR and 10 addition modulo 28 operations
are required. Furthermore, 2 newly generated subkey bytes are needed for a
different key. In one forward recomputation, F0 and F1 are computed 10 and
10 times, respectively, and 11 XOR and 11 addition modulo 28 operations
are required. Furthermore, 2 newly generated subkey bytes are needed for a
different key.
Altogether, Crecomp is less than 216 10-round computations plus 216α where
α means the computational cost for generating 4 subkey bytes.

– Cfalsepos is the complexity caused by false positives, which have to be matched
on other byte positions. Since the matching check is performed on a single
byte in our attack, Cfalse-pos is less than 22d−8(= 28) computations. The
unit of the computation is less than 23-round if the adversary checks partial
matching for another byte, e.g. X11[0], X11[2], or X11[6].

Biclique Attack on the Full HIGHT 373

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0

F1

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1

F0

F1

Round 0

Round 1

Round 2

Round 3

F0 F1

F0

F1

F0 F1 F0 F1

Round 4

Round 5

Round 6

Round 7

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0

F1

F0 F1

F0

F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

F0

F1 F0 F1

Forward Direction Backward Direction

Round 16

Round 17

Round 18

Round 19

Round 20

Round 21

Round 22

Round 23

F0 F1 F0 F1
Round 8

F0 F1

F0 F1 F0 F1

Round 9

Round 10

F0

F0 F1 F0 F1
Round 11

F0

F0 F1 F0 F1

F0 F1 F0 F1

F0 F1 F0 F1

Round 13

Round 14

Round 15

F0 F1 F0 F1
Round 12

Fig. 2. Recomputations in forward and backward directions

Consequently, the most dominant complexity is Crecomp, and Ctotal - 2112 ·
216(10R+α) where R means one-round computation. We consider the unit of the
computation for the brute-force attack as 32R and the key schedule operation.
For a clever exhaustive search, one can use the fact that only 8 modular additions
are required for key scheduling if he makes the sequence of the tested keys
such that neighbored keys differ only on a single byte. However, even if we
compare our attack with this smart exhaustive search, Ctotal is upper bounded
by 2128 · 1

3 - 2126.4. The memory requirement is upper bounded by the storage
of 28 computations of 23 rounds from Round 0 to Round 11 and from Round 13
to Round 23.

7 Conclusion and Discussion

Biclique cryptanalysis provides advanced techniques of the meet-in-the-middle
attack. We found the slow and limited diffusion of the key schedule and encryp-
tion in HIGHT leads to relatively long bicliques with high dimension and the
efficient matching check with precomputations. Our attack recovers the 128-bit
key of the full HIGHT with the computational complexity of 2126.4. This is the
first single-key attack result for it.

374 D. Hong, B. Koo, and D. Kwon

Since our attack causes a marginal improvement of time complexity from
2128, we need to examine carefully time complexities of generic attacks. A naive
implementation of exhaustive search with a single plaintext-ciphertext pair costs
2128 encryptions, but more decent implementations will not.

If we divide the key space into 2120 subspaces where only the key byte K[11]
changes, the exhaustive search considering such partition of the key space can
take the advantage of partial computations in the first several rounds. Moreover
if we add a meet-in-the-middle approach, we can apply partial computations for
middle rounds and last rounds. Totally, 18 rounds are saved per trial. Its time
complexity is around 2127.

The time complexity of our attack is computedas 2126.4with the sameestimation
way. In fact, the exhaustive with a single plaintext-ciphertext pair is more simple
and parallelizable than our attack, but a high-cost dedicated machine is out of our
consideration.We address our work reports a weakness of an existing block cipher.

References

1. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

2. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371.
Springer, Heidelberg (2011); Full paper is availavle at Cryptology ePrint Archive
2011/449

3. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

4. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

5. International Organization for Standardization, “Information technology – Security
techniques – Encryption algorithms – Part 3: Block ciphers,” ISO/IEC 18033-
3:2005 (2005)

6. Koo, B., Hong, D., Kwon, D.: Related-Key Attack on the Full HIGHT. In: Rhee,
K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Heidel-
berg (2011)

7. Lu, J.: Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES
2006. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 11–26.
Springer, Heidelberg (2007)

8. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009)

9. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

10. Zhang, P., Sun, B., Li, C.: Saturation Attack on the Block Cipher HIGHT. In:
Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 76–
86. Springer, Heidelberg (2009)

Preimage Attacks on Step-Reduced

SM3 Hash Function

Jian Zou1,2, Wenling Wu1, Shuang Wu1,
Bozhan Su1, and Le Dong1

1 State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

{zoujian,wwl,wushuang,subozhan,dongle}@is.iscas.ac.cn
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Abstract. This paper proposes a preimage attack on SM3 hash func-
tion reduced to 30 steps. SM3 is an iterated hash function based on the
Merkle-Damg̊ard design. It is a hash function used in applications such
as the electronic certification service system in China. Our cryptanalysis
is based on the Meet-in-the-Middle (MITM) attack. We utilize several
techniques such as initial structure, partial matching and message com-
pensation to improve the standard MITM preimage attack. Moreover, we
use some observations on the SM3 hash function to optimize the com-
putation complexity. Overall, a preimage of 30 steps SM3 hash function
can be computed with a complexity of 2249 SM3 compression function
computation, and requires a memory of 216. As far as we know, this is
yet the first preimage result on the SM3 hash function.

Keywords: SM3, hash function, preimage attack, Meet-in-the-Middle.

1 Introduction

Cryptographic hash functions play a very important role in cryptology. In gen-
eral, hash function must fulfill three requirements made up of preimage resis-
tance, second preimage resistance and collision resistance. In other word, it
should be impossible for an adversary to find a collision faster than birthday
attack or a (second) preimage faster than brute force attack. In recent years, af-
ter the pioneering work of Wang[1,2,3], many cryptanalysis tools and new ideas
have been applied to attack hash function such as MD4, MD5, RIPEMD, SHA-0
and SHA-1.

At FSE 2008, Leurent proposed a way to construct the preimage of full MD4
hash function[4]. From then on, many techniques are proposed to improve the
preimage attacks. In this paper, we adopt the technique of MITM preimage at-
tack proposed by Aoki and Sasaki[5]. The basic idea of the MITM technique
is to divide hash function into two chunks (sub-functions are called chunks)
with regard to the neutral words. Using the independence of neutral words,
we can calculate the two chunks to the matching point respectively. Due to
the independence, we compute a preimage faster than the brute force attack.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 375–390, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

376 J. Zou et al.

The MITM technique has been widely used to search for the preimage of many fa-
mous hash functions, such as MD4[5,6,7], HAVAL[8,9], Tiger[10,6,11], GOST[12],
MD5[13,14,9], SHA-2[10,15,6], reduced SHA-0 and SHA-1[16].

SM3[17] is a hash function used in applications such as the electronic certifica-
tion service system. It has the similar structure as SHA-2. However, as explained
below, SM3 has a more complex step function and stronger message dependency
than SHA-256. Choosing neutral words from SM3 hash function is more difficult
than SHA-256. In other word, finding preimage of SM3 based on MITM method
seems to be more difficult than SHA-256.

Our Contributions. In this paper, we utilize several techniques to present a
preimage attack on reduced version of SM3 hash function to 30 steps. Firstly
We use the MITM technique to build up the general framework of the preimage
attack on SM3 compression function. Secondly we utilize the property of mes-
sage expansion of SM3 hash function and several techniques to achieve better
results. As far as we know, this is yet the first preimage result on the SM3 hash
function. The preimage of the reduced SM3 hash function can be computed in
the computational complexity of 2249, and the memory requirement is 216.

Outline of the Paper. This paper is organized as follows. We describe SM3
hash function in Section 2. In Section 3, we make a brief introduction to the
Meet-in-the-Middle preimage attack. Then we explain the details of the our
techniques and show how to use these techniques to attack more steps of com-
pression function of SM3 hash function in Section 4. Finally, we summarize the
attack process and the complexity of the attack in Section 5.

2 Description of SM3

SM3 is a hash function which compresses a message not more than (264−1) bits
into 256 bits. SM3 is an iterated hash function based on the Merkle-Damg̊ard
design. Its compression function maps 256-bit state and 512-bit message block
to a new 256-bit state, that is, the hash value is computed as follows:{

V0 ← IV

Vi+1 ← CF (Vi,Mi) for i = 0, 1, . . . , n− 1,

where IV = 7380166f 4914b2b9 172442d7 da8a0600 a96f30bc 163138aa e38dee4d
b0fb0e4e is the initial value defined in the specification[17] and V0 is a 256-bit
value. At last, Vn is output as a hash value of M .

Before applying the compression function, the input message M is processed
to be a multiple of 512 bits by the padding procedure. According to the padding
procedure, a single bit ‘1’ and len0 ‘0’s are put at the end of the message M .
Here len0 satisfies the following equation lenM +1+ len0 ≡ 448 mod 512 (lenM

and len0 are short for the length of M and the number of ‘0’ respectively). After
the above step, we put another 64 bits including the length of the message at
the end of the padding. Then the padded message M∗ is divided into 512-bit
blocks Mi (i = 0, 1, . . . , n− 1).

Preimage Attacks on Step-Reduced SM3 Hash Function 377

The compression function Vi+1 ← CF (Vi,Mi) is computed as follows:

1. Divide Mi into 32-bit message words Wj (j = 0, 1, . . . , 15) and expand them

into vectors of 68 32-bit words Wj and 64 32-bit words W
′
j by the following

formula:

a FOR j = 16 TO 67

Wj ← P1(Wj−16 ⊕Wj−9 ⊕ (Wj−3 ≪ 15))⊕ (Wj−13 ≪ 7)⊕Wj−6 (1)

ENDFOR

Here we generate W67 for calculating W
′
63. P1() is a permutation that will

be defined later.

b FOR j = 0 TO 63

W
′
j = Wj ⊕Wj+4

ENDFOR

2. S0 ← Vi, where Sj = (Aj , . . . , Hj).
3. Sj is updated by step function f which is defined in Fig.1, and should be

operated 64 identical steps.
4. Output Vi+1 ← S0 ⊕ S64, i.e. (A0 ⊕A64, . . . , H0 ⊕H64).

Three bitwise Boolean functions and two diffusion functions are employed by
the step transformation. The Boolean functions

FFj(X,Y, Z) =

{
X ⊕ Y ⊕ Z 0 ≤ j ≤ 15

(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z) 16 ≤ j ≤ 63

A HGFEDCB

A HGFEDCB

FF

G
G

<<<12
T

<<< j

<<<9

<<<7

<<<19

P0

Wj' Wj

Aj+1 Bj+1 Cj+1 Dj+1 Ej+1 Fj+1 Gj+1 Hj+1

Aj Bj Cj Dj Ej Fj Gj Hj

Step j

Fig. 1. j-th step function of SM3 uses words Wj and W
′
j of the expanded message to

update the the state of eight chaining variables Aj , . . . , Hj

378 J. Zou et al.

GGj(X,Y, Z) =

{
X ⊕ Y ⊕ Z 0 ≤ j ≤ 15

(X ∧ Y) ∨ (¬X ∧ Z) 16 ≤ j ≤ 63,

and diffusion permutations

P0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17),

P1(X) = X ⊕ (X ≪ 15)⊕ (X ≪ 23),

and the inverse function of P0(X) and P1(X) are as follows,

P−1
0 (X) = X ⊕(X ≪ 2)⊕ (X ≪ 3)⊕ (X ≪ 9)⊕ (X ≪ 11)

⊕(X ≪ 17)⊕ (X ≪ 18)⊕ (X ≪ 19)⊕ (X ≪ 27),

P−1
1 (X) = X ⊕(X ≪ 5)⊕ (X ≪ 13)⊕ (X ≪ 14)⊕ (X ≪ 15)

⊕(X ≪ 21)⊕ (X ≪ 23)⊕ (X ≪ 29)⊕ (X ≪ 30).

3 Previous Works: Techniques for Preimage Attacks

3.1 Converting Pseudo-preimages to a Preimage

A pseudo-preimage is a pair of (x,M) satisfying CF (x,M) = y, where y is a
given hash value and CF is the compression function. The difference between a
pseudo-preimage and a preimage is that we don’t need x to be equal to the initial
value. There is a generic algorithm that converts pseudo-preimages to a preimage.
Assume we can find a pseudo-preimage with computational complexity 2k, then

the computational complexity of the conversion algorithm will be 2
n+k
2 +1. The

detail of the algorithm is described in [18, Fact 9.99]. At FSE 2008, a new way
called unbalanced-tree multi-target pseudo-preimage (MTPP) method to convert
pseudo-preimages to a preimage was provided by Leurent[4]. The MTPP method
can convert pseudo-preimages to a preimage more efficiently than the generic
approach. Since our attack cannot satisfy the MTPP requirements, we omit the
details of the new method.

3.2 The Meet-in-the-Middle Preimage Attack

The general idea of the Meet-in-the-Middle Preimage Attack is shown in Fig.2.
We explain the idea in detail as follows:

1. Choose neutral words Wa and Wb respectively, and split the compression
function into two chunks (sub-functions are called chunks) according to the
neutral words, where one chunk is independent from neutral word Wa and
the other chunk is independent from neutral word Wb. Here we call the two
chunk the forward chunk and the backward chunk respectively.

2. Assign random value to the chaining registers at the splitting point and fix
all other message words except Wa and Wb. For all possible values of Wa,
we compute backward from the splitting point and obtain the value at the
matching point. Store the values in a list La.

Preimage Attacks on Step-Reduced SM3 Hash Function 379

Forward
chunk

Backward
chunk TargetInitial

value

Partial
Matching

Splitting
point

Wa WaWb

Fig. 2. Pseudo-Preimage Attack on Davies-Meyer Hash Functions

3. For all possible values of Wb, we compute forward from the splitting point
and obtain the result at the matching point. Check if there exists an entry in
La that matches the result (all the state bits or only some bits of the state)
at the matching point.

4. Repeat the above two steps with different initial assignments until we find a
full match.

5. The above four steps offer a way to return a pseudo-preimage of the given
hash function because the initial value is determined during the attack. Fur-
thermore, we can convert pseudo-preimages to a preimage by the method
introduced in section 3.1.

4 Our Strategies of the Pseudo-preimage on the
Compression Function of Reduced SM3 Hash Function

As shown in Section 2, W
′
j is determined by Wj and Wj+4. In other word, we

need to process Wj and Wj+4 in the j-th step, which means stepj is affected by
Wj and Wj+4 both. Compared to SM3, SHA-256 only processes Wj in the j-th
step. As a result, SM3 has stronger message dependency than SHA-256, and it
is more difficult to select neutral words for SM3 than SHA-256. In this section,
we will show several techniques that allow us to attack more steps on SM3.

4.1 The Message Expansion of SM3 Hash Function

Note that we want to choose the neutral words from message Mi. According
to (1), we can select the neutral words from {W0, . . . ,W15} instead. Note that
the message expansion (1) of SM3 hash function is invertible; as a result, all
the expanded message words can be uniquely determined by any consecutive 16
words {Wz, . . . ,Wz+15}, 0 ≤ z ≤ 52. Once we choose any 16 consecutive words,
we can determine the other ones recursively in both directions. Suppose we start
with {Wz, . . . ,Wz+15}. To determine the optimal choice of the splitting point

380 J. Zou et al.

and the neutral words, we expand the message words in both directions.
For backward direction:

Wz−1 = P−1
1 (Wz+15 ⊕Wz+9 ⊕ (Wz+2 ≪ 7))⊕Wz+6 ⊕ (Wz+12 ≪ 15),

Wz−2 = P−1
1 (Wz+14 ⊕Wz+8 ⊕ (Wz+1 ≪ 7))⊕Wz+5 ⊕ (Wz+11 ≪ 15), (2)

Wz−3 = P−1
1 (Wz+13 ⊕Wz+7 ⊕ (Wz ≪ 7))⊕Wz+4 ⊕ (Wz+10 ≪ 15),

Wz−4 = P−1
1 (Wz+12 ⊕Wz+6 ⊕ (Wz−1 ≪ 7))⊕Wz+3 ⊕ (Wz+9 ≪ 15),

Wz−5 = P−1
1 (Wz+11 ⊕Wz+5 ⊕ (Wz−2 ≪ 7))⊕Wz+2 ⊕ (Wz+8 ≪ 15),

Wz−6 = P−1
1 (Wz+10 ⊕Wz+4 ⊕ (Wz−3 ≪ 7))⊕Wz+1 ⊕ (Wz+7 ≪ 15),

Wz−7 = P−1
1 (Wz+9 ⊕Wz+3 ⊕ (Wz−4 ≪ 7))⊕Wz ⊕ (Wz+6 ≪ 15),

Wz−8 = P−1
1 (Wz+8 ⊕Wz+2 ⊕ (Wz−5 ≪ 7))⊕Wz−1 ⊕ (Wz+5 ≪ 15).

For forward direction:

Wz+16 = P1(Wz ⊕Wz+7 ⊕ (Wz+13 ≪ 15))⊕ (Wz+3 ≪ 7)⊕Wz+10, (3)

Wz+17 = P1(Wz+1 ⊕Wz+8 ⊕ (Wz+14 ≪ 15))⊕ (Wz+4 ≪ 7)⊕Wz+11,

Wz+18 = P1(Wz+2 ⊕Wz+9 ⊕ (Wz+15 ≪ 15))⊕ (Wz+5 ≪ 7)⊕Wz+12, (4)

Wz+19 = P1(Wz+3 ⊕Wz+10 ⊕ (Wz+16 ≪ 15))⊕ (Wz+6 ≪ 7)⊕Wz+13, (5)

Wz+20 = P1(Wz+4 ⊕Wz+11 ⊕ (Wz+17 ≪ 15))⊕ (Wz+7 ≪ 7)⊕Wz+14,

Wz+21 = P1(Wz+5 ⊕Wz+12 ⊕ (Wz+18 ≪ 15))⊕ (Wz+8 ≪ 7)⊕Wz+15, (6)

Wz+22 = P1(Wz+6 ⊕Wz+13 ⊕ (Wz+19 ≪ 15))⊕ (Wz+9 ≪ 7)⊕Wz+16, (7)

Wz+23 = P1(Wz+7 ⊕Wz+14 ⊕ (Wz+20 ≪ 15))⊕ (Wz+10 ≪ 7)⊕Wz+17,

Wz+24 = P1(Wz+8 ⊕Wz+15 ⊕ (Wz+21 ≪ 15))⊕ (Wz+11 ≪ 7)⊕Wz+18,

Preimage Attacks on Step-Reduced SM3 Hash Function 381

Wz+25 = P1(Wz+9 ⊕Wz+16 ⊕ (Wz+22 ≪ 15))⊕ (Wz+12 ≪ 7)⊕Wz+19,

Wz+26 = P1(Wz+10 ⊕Wz+17 ⊕ (Wz+23 ≪ 15))⊕ (Wz+13 ≪ 7)⊕Wz+20,

Wz+27 = P1(Wz+11 ⊕Wz+18 ⊕ (Wz+24 ≪ 15))⊕ (Wz+14 ≪ 7)⊕Wz+21,

Wz+28 = P1(Wz+12 ⊕Wz+19 ⊕ (Wz+25 ≪ 15))⊕ (Wz+15 ≪ 7)⊕Wz+22,

Wz+29 = P1(Wz+13 ⊕Wz+20 ⊕ (Wz+26 ≪ 15))⊕ (Wz+16 ≪ 7)⊕Wz+23.

After many tests, we find out that choosing Wz+9 and Wz+11 as neutral words
enables us to attack more steps. After that, the forward chunk from stepz+10 to
stepz+17 is independent from Wz+9, while the backward chunk from stepz+8 to
stepz+9 is independent from Wz+11. Although the length of backward is short
now, we can increase it with the below techniques.

4.2 Initial Structure

An Initial structure is a method that can swap the order of the neutral message
words near the splitting point, as shown in Fig.3. Note that such shifting is
allowed only when the swap dose not change the behavior of the step function.

In this paper, initial structure utilizes the absorption property of the Boolean
functions MAJ(X,Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z) and IF (X,Y, Z) =
(X ∧ Y)∨ (¬X ∧Z). For MAJ , if X = Y , then MAJ(X,Y, Z) = X = Y , which
means Z does not affect the output of MAJ function. Similarly, when Y = Z
or X = Z, X or Y dose not affect the output. For IF , if X is 1 (all bits of
X are 1), then IF (1, Y, Z) = Y which means Z does not affect the output of
IF function. Similarly when X is 0 (all bits of X are 0), Y does not affect the
output. The result is also right when we want to control some bits of the output.
The only thing we need to do is to fix the corresponding bits of input of the
Boolean function instead of all bits of input.

In Fig.3, we consider 3 consecutive step functions, i.e. from stepz+7 to stepz+9.
We show a way to move messages Wz+9 and W

′
z+9 to stepz+7 and move message

W
′
z+7 (which contains Wz+11) to stepz+8 without changing the behavior of the

step function. Note that message words W
′
z+9 and Wz+9 can be added to Dz+9

and Hz+9 respectively with no constraint.
As shown in Fig.3, l most significant bits (MSB) of Wz+9 and W

′
z+9 are

arbitrary (neutral bits, denoted by right oblique dashed box) and the rest bits
(gray) are set to 0, while l MSB of W

′
z+7 (gray) are set to 0 and the rest bits

are arbitrary (neutral bits, denoted by left oblique dashed box). Meanwhile, we
fix Az+8 to 0 (to avoid interference with addition on least significant bits) and
set l MSB of Bz+8 to 0 (to utilize the absorption property of MAJ). Due to
the absorption property of MAJ , we ensure that the output of the FFz+8 is not

382 J. Zou et al.

l

l

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<< Z+7

<<<9

<<<7

<<<19

P0

Splitting point

l l

l
l

W'Z+7

W'Z+9

WZ+9

WZ+9W'Z+9

W'Z+8

WZ+8

W'Z+7

(WZ+11)

(WZ+11)

WZ+7

Step z+7

Step z+8

Step z+9

<<< Z+8

Z+9<<<

: determined by fixed constant
: fixed constant : values depending on neutral bytes for the backward chunk

: values depending on neutral bytes for the forwrad chunk

Fig. 3. Initial structure allows us to move Wz+9(right oblique dashed box) two steps
upwards and Wz+11(left oblique dashed box) one step downward. The right oblique
dashed boxes and left oblique dashed boxes are used to denote messages that are
influenced by messages Wz+9 and Wz+11 respectively, the gray color means we can set
them freely at the beginning, and the white color means messages are determined by
the gray color messages.

Preimage Attacks on Step-Reduced SM3 Hash Function 383

affected by the neutral bits of Wz+9. Therefore, we can move W
′
z+9 to stepz+7

(adding W
′
z+9 to Cz+8), and transfer W

′
z+7 to stepz+8 (adding W

′
z+7 to Bz+9).

Similarly, due to the absorption property of IF , if we set l MSB of Ez+8 to 1,
we can move message Wz+9 to stepz+7 too (adding Wz+9 to Gz+8). If we don’t
utilize the absorption property of MAJ or IF , Az+9 or Ez+9 is affected by Wz+9

and Wz+11 both, which means we fail to separate the forward chunk from Wz+9.
We choose the optimal value l = 16 to reduce the complexity.

As we must utilize the absorption property of MAJ and IF , we should make
sure FF = MAJ and GG = IF , which means z + 8 ≥ 16. If we just want to
find a pseudo-preimage of the compression function of SM3, we don’t need to
consider the message padding.

4.3 Message Compensation

Using the initial structure technique explained in Section 4.2, then, the forward
chunk is from stepz+10 to stepz+17, and the backward chunk is from stepz−1 to
stepz+6, and the initial structure is from stepz+7 to stepz+9.

In the forward chunk, Wz+9 is used in equation (4), (6), and (7), because
Wz+18 contains Wz+9 and appears in (6). In order to extend the forward chunk
for several more steps, we compensate Wz+9 by Wz+2, Wz+3, Wz+6 and Wz .
Here the compensation means making the equation values of (4), (7), (5), and
(3) independent from Wz+9 by forcing

Wz+2 ⊕Wz+9 = C,

P1(Wz+6)⊕ (Wz+9 ≪ 7) = C,

P1(Wz+3)⊕ (Wz+6 ≪ 7) = C,

P1(Wz)⊕ (Wz+3 ≪ 7) = C,

(C is some constant here, and we set C = 0 for simplicity). Because these mes-
sages are independent from each other, we can satisfy the above four equations
with Wz+2, Wz+3, Wz+6 and Wz . Similarly, in the backward chunk, Wz+11 is
used in equation (2), we compensate it by forcing

P−1
1 (Wz+14) = (Wz+11 ≪ 15).

Note that the state of stepz+21 is affected by Wz+25 (which contains Wz+9).
As a result, the forward chunk from stepz+10 to stepz+20 is independent from
Wz+9. Similarly, the backward chunk from stepz−4 to stepz+6 is independent
from Wz+11. Besides, the initial structure is from stepz+7 to stepz+9. There are
25 steps totally, regardless of the choice of z.

We give a brief description of the messages Wj and W
′
j influenced by the

neutral words in Fig.4.

384 J. Zou et al.

StepZ-4

WZ+9WZ+7 WZ+21

WZ+21'

WZ+9'WZ+7'
WZ-4'

WZ-4 WZ+25

WZ+25'

Backward chunk Initial
structure Forward chunk Partial matching

StepZ+6 Stepz+10 StepZ+21 StepZ+25

: unknown values (values bytes are influenced by forward chunk and backward chunk both)

Fig. 4. Messages that are influenced by the neutral words

4.4 Partial Matching

SM3 step function can be thought to be composed of two MD5 step functions.
The basic partial matching for MD5 would offer us 3 more steps. However, using
the property of SM3 we can get 2 more steps.

Partial matching is from stepz+21 to stepz+25. As shown in Fig.5, it is clear
that message Wz+25 is independent from Wz+11, so that registers from Bz+26 to
Hz+26 are still known to us at stepz+25. In other word, we only lose registerAz+26

at stepz+25. Note that we need at least one register to perform the matching,
and the computation backward loses one register per step. Utilizing the property
of the Feistel structure, register Ez+22 is independent from message word Wz+11

at stepz+21, and registers from Az+21 to Hz+21 are independent from message
word Wz+9. We use the point Ez+22 shown in Fig.5 as the matching point.

Aoki proposed partial fixing technique to improve partial matching in [5].
Owing to the diffusion effect of the permutation P0 and P1, we cannot utilize
partial fixing technique to improve our attack.

Jian Guo also extended the partial matching by using the indirect partial
matching technique in [15]. However, as we know, some errors occur when we
modify modular equations by exchanging the order of an addition and a bit
rotation. Due to the rotation operation of the step function of SM3, we can’t
find such simple relation between states as Jian Guo did.

5 Preimage of the 30 Steps SM3 Hash Function

We should preset the message words W13, W14 and W15 of the last block to
satisfy the message padding of SM3, if we try to find preimage of the SM3 hash
function.

We fix z = 10, then the neutral words areW19 andW21, and the message words
W13, W14 and W15 are original Wz+3, Wz+4 and Wz+5 respectively. According
to our previous cryptanalysis in Section 4, we preset the lower 16 bits of W19

in initial structure, so we can utilize the inverse function of P1(X), as well as 1

Preimage Attacks on Step-Reduced SM3 Hash Function 385

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0

A HGFEDCB

A HGFEDCB

F
F

G
G

<<<12
T

<<<9

<<<7

<<<19

P0
Matching pointW'Z+21

WZ+21

W'Z+22

WZ+22

W'Z+23

WZ+23

WZ+24

W'Z+24

W'Z+25

WZ+25

Step z+21

Step z+22

Step z+23

Step z+24

Step z+25

F
o
r
w
a
r
d

B
a
c
k
w
a
r
d

<<< Z+21

<<< Z+22

<<< Z+23

<<< Z+24

<<< Z+25

A HGFEDCBA HGFEDCB

Matching

Fig. 5. Partial Matching

386 J. Zou et al.

bit freedom of the lower 16 bits of W19 to ensure the last bit of W13 is ‘1’(the
relation between W19 and W13 is in Section 4.3). Additionally we can utilize the
freedom of Wz+4 and Wz+5 to satisfy the message padding.

Here we attack the reduced SM3 hash function from step6 to step35. We give
a brief description of the preimage cryptanalysis of 30-step SM3 Hash Function
in Fig.6. As shown in Fig.6, we swap the neutral words W19 and W21 near the
splitting point with initial structure, so that the forward chunk is independent
from W19 and the backward chunk is independent from W21. Partial matching
gives us 5 more steps from step31 to step35.

Forward
chunk

Backward
chunk

Partial
matching

Step19Step17 Step31 Step35

W19

W21

Step6

Initial
structure

Target

Fig. 6. Overview of the attack

If we want to attack the reduced SM3 from step0, we will meet with several
difficulties. Firstly, FFj(X,Y, Z) = GGj(X,Y, Z) = X ⊕ Y ⊕ Z (0 ≤ j ≤ 15),
which means we can’t utilize the absorption property from step0 to step15. Sec-
ondly, it is difficult to find three successive messages (gray, we can set them value
freely) satisfying the message padding of SM3 hash function. We present a 28 step
preimage result on the reduced SM3 hash function starting from step0(shown in
Appendix A).

5.1 Algorithm and Complexity

As all the elements of our attack are explained, we can summarize them in one
algorithm below.

1. Set all bits of registers A18 and the upper 16 bits of B18 to 0 (to utilize the
absorption property of MAJ) and the upper 16 bits of register E18 to 1 (to
utilize the absorption property of IF). Randomly choose the registers C18,
D18, F18, G18, H18, the lower 16 bits of B18 and E18. Set message words
that are independent from neutral words randomly, i.e. W11, W14, W15, W17,
W18, W20, W22, W23, W25.

2. Set the lower 16 bits of W19 to special values to ensure the last bit of W13 is
‘1’. For all upper 16 bits of W19, compute the corresponding W10, W12, W13

and W16. For all possible values of W19, we compute backward and obtain
the value of E32 shown in Fig.5. Store the results in a list La.

Preimage Attacks on Step-Reduced SM3 Hash Function 387

3. Set the upper 16 bits of W21 to 0. For all lower 16 bits of W21, compute
the corresponding W24. For all possible values of W21 and W24, we compute
forward and obtain the value of E32. Here we use E32 as the matching point.
Using partial matching technique, we check if there exists an entry in La

that matches the result.
4. If a match is found, compute other registers A32, B32, C32, D32, F32, G32,

and H32 to check whether they match from both directions. If they do, a
pseudo-preimage is found.

5. Repeat the above four steps with different initial values until a pseudo-
preimage is found.

6. Repeat step 5 to find sufficiently many pseudo-preimages, then use the con-
version algorithm in [18, Fact 9.99] to find a preimage.

The length of preimage of SM3 is at least two blocks, the last block is used
to find the pseudo-preimage while the second last block is used to find the link
point of the initial value to the last block. If we consider the two blocks situation,
we should preset W14 and W15 special values. The corresponding computational
complexity is computed as follows. The computational complexity of step 2 and
3 is 216 and 216 respectively, and it generates 232 pairs. After that, we examine
32-bit matching for 232 pairs, and we obtain 232×2−32 = 1 pair whose 32 bits are
matched. Finally, by repeating step 1 to 3 of the above procedure 2256−32 = 2224

times, we obtain a pair, where all 256 bit are matched (with the degree of freedom
of messages and states we can do this). As a result, the final complexity of
the pseudo-preimage attack is 2256−32+16 = 2240. According to [18, Fact 9.99]
the overall complexity of the preimage attack is 2(256+240)/2+1 = 2249, and the
memory requirement is 216.

5.2 A Brief Comparison between SM3 and SHA-256

We show the compression function of SHA-256 in Fig.8 in Appendix B. Although
SM3 is very similar in structure to SHA-256, it turns out to be difficult to achieve
the same preimage result as SHA-256 due to the following three facts. Firstly,
SM3 has stronger message dependency than SHA-256, since we need to process
Wj and Wj+4 in the j-th step while SHA-256 only processes Wj in the j-th step.
Secondly, it is impossible to utilize the indirect partial matching technique as
the step function contains the rotation operation. Finally, SM3 employs Boolean
functions X ⊕ Y ⊕ Z, MAJ and IF in its step function, while SHA-256 only
employs Boolean functions MAJ and IF in its step function. In conclusion, it is
more difficult to find preimage of SM3 than SHA-256 based on MITM method.

6 Conclusion

In this paper, we propose a preimage attack on SM3 hash function reduced to
30 steps out of 64. Here we use several techniques to increase steps that we can
attack. These techniques include two-way message expansion, initial structure,

388 J. Zou et al.

message compensation and partial matching. As SM3 adopts a more complex
step function and stronger message dependency, it is difficult to achieve the same
preimage result as SHA-256.

Acknowledgments. We would like to thank anonymous referees for their help-
ful comments and suggestions. This work is supported by the National Natu-
ral Science Foundation of China (No.60873259), and the Knowledge Innovation
Project of The Chinese Academy of Sciences.

References

1. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

2. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

3. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

4. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

5. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

6. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Hei-
delberg (2010)

7. Dobbertin, H.: The First Two Rounds of MD4 are Not One-Way. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 284–292. Springer, Heidelberg (1998)

8. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

9. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage Attacks on 3-Pass HAVAL and
Step-Reduced MD5. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 120–135. Springer, Heidelberg (2009)

10. Isobe, T., Shibutani, K.: Preimage Attacks on Reduced Tiger and SHA-2. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 139–155. Springer, Heidelberg
(2009)

11. Indesteege, S., Preneel, B.: Preimages for Reduced-Round Tiger. In: Lucks, S.,
Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS, vol. 4945, pp. 90–99.
Springer, Heidelberg (2008)

12. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on the
GOST Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–
234. Springer, Heidelberg (2008)

13. Sasaki, Y., Aoki, K.: Preimage Attacks on Step-Reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer, Hei-
delberg (2008)

Preimage Attacks on Step-Reduced SM3 Hash Function 389

14. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

15. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

16. Cannière, C.D., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer,
Heidelberg (2008)

17. Sepecification of SM3 cryptographic hash function (in Chinese),
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf/

18. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

A 28 Steps Preimage of the Reduced SM3 Hash Function
(from Step 0 to Step 27)

As mentioned above, we will meet with a lot of difficulties if we want to attack
from the first step of the reduced SM3 hash function. In this case, we choose
Wz+8 and Wz+11 as the neutral words respectively. According to the message
expansion algorithm, we can swap Wz+8 with Wz+11 without any condition from
stepz+7 to stepz+8. As explained above, we use message compensation to attack
more steps. In the forward chunk, Wz+8 is used in equation (11), (12) and (15),
we compensate it by forcing

Wz+1 = Wz+8,

P1(Wz+2) = (Wz+5 ≪ 7),

P1(Wz+5) = (Wz+8 ≪ 7).

In the backward chunk, Wz+11 is used in equation (3), we compensate it by
forcing

P−1
1 (Wz+14) = (Wz+11 ≪ 15).

Here we set z = 5, the neutral words are W13 and W16, and the message words
W13, W14 and W15 are original Wz+8, Wz+9 and Wz+10 respectively. Since Wz+9

and Wz+10 are set random values in our algorithm, we can preset them special
values. We can preset message words W14 and W15 some special values. Using
1 bit freedom of Wz+8 to ensure the last bit of W13 is ‘1’. Due to the neutral
words, we can only increase 4 more steps by partial matching technique. We will
show the attack in Fig.7. The preimage search needs time complexity of 2241.5,
and requires a memory of about 231.

http://www.oscca.gov.cn/UpFile/20101222141857786.pdf/

390 J. Zou et al.

Backward
chunk

Partial
matching

Step13Step12 Step24 Step27

W13

W16

Step0

Initial
structure

Target

Forward
chunk

Fig. 7. 28 steps preimage of the reduced SM3 hash function

B Graph of SHA-256 Compression Function

Wj

Kj

Aj Bj Cj Dj Ej Fj Gj Hj

Aj+1 Bj+1 Cj+1 Dj+1 Ej+1 Fj+1 Gj+1 Hj+1

MAJ IF

Fig. 8. the compression function of SHA-256

Breaking a 3D-Based CAPTCHA Scheme

Vu Duc Nguyen1, Yang-Wai Chow2, and Willy Susilo1,	

1 Centre for Computer and Information Security Research,
2 Advanced Multimedia Research Laboratory,

School of Computer Science and Software Engineering,
University of Wollongong, Australia
{dvn108,caseyc,wsusilo}@uow.edu.au

Abstract. CAPTCHA is a standard defence mechanism against bots,
or automated programs, that attempt to use web-based services meant
for human users. While there are many different types of CAPTCHA
schemes that have emerged over the years, to date, the most widely used
type is 2D text-based CAPTCHAs. Unfortunately, a large number of
2D CAPTCHA schemes have been successfully broken. Thus, 3D-based
CAPTCHAs are seen as an alternative paradigm which has been ex-
plored by a number of CAPTCHA designers. 3D CAPTCHAs are meant
to overcome the limitations of 2D CAPTCHAs and are supposed to be
more robust and secure against automated attacks. To investigate the ro-
bustness of 3D text-based CAPTCHAs, this paper presents an approach
to breaking a representative 3D CAPTCHA scheme called Teabag 3D.
In particular, this paper describes the techniques that were used to break
this CAPTCHA, and as such highlights various security issues that have
to be considered in order to design better 3D CAPTCHA schemes.

Keywords: 3D CAPTCHA, character extraction, segmentation, optical
character recognition.

1 Introduction

CAPTCHA, an acronym which stands for ‘Completely Automated Public Tur-
ing test to tell Computers and Humans Apart’, is an automated challenge and
response test to ensure that a human is making an online transaction rather than
a computer [18]. Typically, CAPTCHAs can generate and grade tests that a hu-
man being should be able to solve easily, but are infeasible for an automated
program. At present, CAPTCHAs are used on many web-based services as a
standard security mechanism against spam bots or other malicious automated
programs. For example, it is used to prevent bots from sending out thousands
of comment spams every minute or signing up for thousands of email accounts
from free email services [19]. CAPTCHAs also offer potential solutions against
email worms or even to prevent cheating in online multiplayer games via the use
of bot programs [5].

� This work is supported by ARC Future Fellowship FT0991397.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 391–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

392 V.D. Nguyen, Y.-W. Chow, and W. Susilo

A CAPTCHA can be classified based on its content type, and there are
three main categories in existence; namely, text-based, image-based and sound-
based [21]. To date, 2D text-based CAPTCHAs are the most pervasive type of
CAPTCHA employed in real online applications. Among other reasons, this is
due to its human friendliness, intuitiveness, ease of use and low implementation
cost [3]. In general, a text-based CAPTCHA challenge typically takes the form of
a word or a sequence of characters, or digits, embedded within an image, which
contains distortion and noise to deter automated computer attacks.

Unfortunately, a large number of 2D text-based CAPTCHAs have successfully
been broken. It has been shown that various design flaws can be exploited by au-
tomated programs to break these CAPTCHAs. Well known examples include a
Microsoft CAPTCHA that was broken by a low-cost attack [20] or the EZ-Gimpy
CAPTCHA, previously used by Yahoo, that could be solved automatically by
a computer 92% of the time [12]. To increase the security strength and to con-
fuse automated Optical Character Recognition (OCR) programs, 2D text-based
CAPTCHAs rely on techniques like the warping of text and the overlaying of
visual noise. However, this often makes the resulting CAPTCHA difficult for
humans to recognize.

This has driven CAPTCHA developers to explore alternate paradigms in order
to design more secure and usable text-based CAPTCHAs. In recent years, 3D
text-based CAPTCHAs have been proposed to overcome the limitations of 2D
text-based CAPTCHAs. For instance, a 3D CAPTCHA was proposed by Ince et
al. [7] which presents randomly selected characters and numbers on individual
faces of a 3D cube or STE3D-CAP, a text-based CAPTCHA that is built from
stereoscopic 3D images, was proposed by Susilo et al. [17]. Others have also
proposed 3D text-based CAPTCHA challenges that present the user with 3D
text objects [2,6,10]. These proposals are based on the assumption that a human
can recognize 3D images of text characters better than computer vision systems
[2,16], and some have even suggested that 3D text-based CAPTCHAs is the next
generation in CAPTCHA design [6].

This paper addresses the question of whether 3D text-based CAPTCHAs are
really more secure. In particular, this paper presents a method of breaking a
representative 3D CAPTCHA scheme called Teabag 3D [14], which at the time
of writing was implemented on rediff.com when registering for Rediffmail [15].
The results of this research show that although this 3D CAPTCHA initially
appears to be secure, as it is effectively resistant against one of the best OCR
programs on the market, this paper shows that by performing some automated
processing on the CAPTCHA prior to the character recognition stage, the OCR
can correctly solve the CAPTCHA challenge at a high success rate.

Our Contribution. While there is much research on breaking 2D CAPTCHAs,
to our knowledge, this is the first time in literature that describes a method of
breaking a 3D-based CAPTCHA. We demonstrate that 3D text objects con-
tain additional side surface information which can be exploited to break 3D
CAPTCHAs. In particular, this paper introduces a novel method of extract-
ing side surface information, and we show that this information can be used to

Breaking a 3D-Based CAPTCHA Scheme 393

extract characters from the background as well as to segment the character
string into individual characters. This highlights a certain flaw in the design of
3D CAPTCHAs that are rendered with an additional dimension and emphasizes
the need to hide or distort this exploitable information.

2 Related Work

2.1 Breaking CAPTCHAs

A number of researchers have documented techniques that they have used to
break a variety of diverse CAPTCHA schemes. Mori and Malik [12] developed an
approach to break the Gimpy and EZ-Gimpy CAPTCHAs using object recog-
nition techniques to identify words amidst background clutter. In their work,
they presented a holistic approach of recognizing entire words at once, rather
than attempting to identify individual characters in severe clutter. Moy et al.
[13] described a method of breaking the EZ-Gimpy and Gimpy-r by estimating
the distortion of the text in the CAPTCHA image. After implementing the dis-
tortion estimation techniques, their approach then proceeded to undistort the
text prior to object recognition.

Machine learning algorithms have also been used to break CAPTCHAs. In
work by Chellapilla and Simard [4], they demonstrated that machine learning al-
gorithms could successfully be used to break a variety of CAPTCHA schemes. In
addition, unlike sophisticated computer vision or machine learning algorithms,
Yan and Ahmad [19] showed that simple pattern recognition algorithms could be
used to exploit flaws and design errors in CAPTCHA schemes, making them sus-
ceptible to simple attacks like counting the number of pixels to identify individual
characters. Li et al. [9] have also shown that image processing and pattern recog-
nition algorithms, such as k-means clustering, digital image inpainting, character
recognition based on cross-correlation, etc. have been successful in breaking a
variety of e-Banking CAPTCHAs.

2.2 Segmentation Resistant

It is widely accepted that the design of a secure text-based CAPTCHA must
adhere to the segmentation-resistant principle. This principle is based on the
work by Chellapilla et al. [3], where they established that computers could per-
form better at character recognition tasks compared to humans. As such, if a
CAPTCHA can be segmented into its constituting characters, it is essentially
broken. Techniques of segmenting text into individual characters and then per-
forming recognition using OCR programs have also been used in areas like de-
veloping text readers for the visually impaired [11].

The segmentation-resistant principle required for robust CAPTCHA design,
led a research team at Microsoft to develop a CAPTCHA scheme that was
meant to be segmentation-resistant. Unfortunately, it was shown that the Mi-
crosoft CAPTCHA could in fact be segmented, and thus broken, by a low-cost

394 V.D. Nguyen, Y.-W. Chow, and W. Susilo

attack [20]. In addition, a number of researchers have demonstrated using novel
segmentation techniques to break various CAPTCHAs [19]. Nevertheless, the
success of these attacks do not negate the segmentation-resistant principle in
the design of robust CAPTCHAs.

3 The Targeted CAPTCHA

To investigate the robustness of a 3D text-based CAPTCHA scheme, the Teabag
3D CAPTCHA was selected. This CAPTCHA scheme was designed by the OCR
Research Team [14], whose aim is to break known CAPTCHAs to identify weak-
nesses and to create new secure CAPTCHAs. Their website gives a good overview
of a number of 2D text-based CAPTCHAs and their corresponding weaknesses.
Additionally, some of the team’s valuable experiences are presented in [8]. While
there are a number of versions of Teabag 3D, the research in this paper deals
with the commercial version as implemented on rediff.com [15], shown in Figure
1, as well as version 1.2 [14].

Fig. 1. Examples showing the version of Teabag 3D as implemented on rediff.com [15]

A number of characteristics regarding the CAPTCHA in question were iden-
tified as follows:

– The CAPTCHA challenge appears on a grid in 3D space as depicted in
Figure 2.

– Four characters are used in each challenge.
– Only a selection of upper case letters and digits are used.
– Characters in close proximity may touch (i.e. are connected together).
– Each challenge appears to be generated from slightly different viewpoints.
– There are small variations in the grid direction and the shape of background

cells between challenges.

4 Our Approach

Our framework to break the 3D-based CAPTCHA can be divided into a number
of different phases. An overview of these stages is depicted in Figure 3.

4.1 Pre-processing

The first challenge faced in breaking Teabag 3D was in how to ascertain regions
containing characters. This involved effectively separating characters from the

Breaking a 3D-Based CAPTCHA Scheme 395

Fig. 2. The text appears on a grid in 3D space

Fig. 3. Overview of the stages

background grid by identifying and extracting key features from the CAPTCHA
image. Our method to achieve this is described as follows:

Adaptive Binarization. Teabag 3D challenges are presented as colored .png
image files. Therefore, to process the image it was initially binarized into a
black-and-white image. In order to find an appropriate binarization threshold,
an adaptive binarization approach was employed for this. The steps for this are
depicted in Figure 4.

To find the initial threshold, the image was first converted to greyscale.
From this, a histogram representing the distribution of greyscale pixel inten-
sities within the CAPTCHA was constructed. The initial binarization threshold

396 V.D. Nguyen, Y.-W. Chow, and W. Susilo

Fig. 4. The adaptive binarization process

was determined from the histogram, as the value that bisected the area of the
histogram by half. Pixels with an intensity greater than this threshold were con-
verted to white, while others were converted to black. This specific threshold
value was selected to balance the number of white and black pixels.

To fine tune the threshold, an algorithm akin to the flood fill algorithm is used
to count the number of white pixels within the cells of the CAPTCHA. If the
white pixel count was more than half the total number of CAPTCHA pixels, this
meant that the cell’s borders were broken during the binarization process and
that the selected threshold value was too low. The threshold was then increased
and the process was repeated until all the cells had clear borders.

To facilitate the identification of front character surfaces (described later in
the ‘front surface identification’ section), the value of the lowest greyscale pixel
intensity, i.e. the darkest greyscale pixel, was obtained from the histogram. In
other words, this value would give us the lowest binarization threshold and if it
were to be used to binarize the image, this would result in the least number of
black pixels (excluding the case of no black pixels).

Side Surface Identification. After binarizing the challenge into a black-and-
white image, it was observed that the side surfaces of the characters were often
represented in larger cells as compared to the background cells. As such, this
information could be exploited to facilitate distinguishing the sides of text ob-
jects from the surrounding regions. A simple way to detect possible side surface
cells of the characters in the image was to compute the average cell size (i.e.
the average number of white pixels within a cell). Then, for each cell the total
number of white pixels contained within the cell was compared with the average
cell size. Any cell with a size that was greater than the average cell size, would
be identified as a side surface cell of a character.

In some situations, the number ofwhite pixels in the side surface cellswas smaller
than the average size. This was because the shape of these cells were often longer
and/or narrower than the other cells. To identify and extract these cells, the aver-
age horizontal and vertical distances of the cell boundaries were calculated. Con-
sequently when processing each cell, their maximum horizontal and vertical cell
boundary distances were computed and compared with the average values. Cells
that hadmaximumdistances thatweremuch less than the normwould also be iden-
tified as cells representing the side surface of a character. An example illustrating
the result of side surface identification is shown in Figure 5(a).

Front Surface Identification. From the CAPTCHA’s image, one can see that
some borders between the characters and the background can be distinguished
because certain borders are clearly darker than the rest of the image. Hence, these

Breaking a 3D-Based CAPTCHA Scheme 397

(a) (b)

(c) (d)

Fig. 5. Extracting characters from the background. (a) Side surface identification; (b)
Front surface identification from clusters of black pixels; (c) Front surface identified by
using the lowest binarization threshold; (d) Final results showing the front and side
surfaces of the characters.

borders were obtained by simply identifying black pixels that were surrounded
by 4 neighboring black pixels in the black and white image. An example of this
is shown in Figure 5(b).

Furthermore, to get additional front surface pixels, the lowest binarization
threshold value was used in conjunction with the greyscale image to identify
the set of the darkest pixels (as previously described in the section on ‘adaptive
binarization’). Figure 5(c) shows an example resulting from the implementation
of this approach and it can be seen that additional information was obtained for
identifying the front surfaces of the characters.

Extracting Characters. The pixels identified as belonging to the front surface
were often only the borders of the front character surface. Therefore, to obtain
the front surface pixels within the borders of the characters, we scanned the
pixels column by column from top to bottom. In each column, whenever we
encountered a short section that started with a front surface pixel and that
ended with either a front or side surface pixel, we would fill in all the pixels
between these to represent front surface pixels. Figure 5(d) shows an example of
results obtained using this approach.

4.2 Segmentation

This stage involves the decomposition of the image into sub-images which only
contain single characters. This is a challenging task, as it can be seen from the
results of the extraction process (Figure 5(d)) that the extracted characters may

398 V.D. Nguyen, Y.-W. Chow, and W. Susilo

have missing pixels and some characters may be connected together. As such, a
number of segmentation techniques were used to obtain a set of possible splitters
for the characters. The best splitters were then selected from this candidate set.
The segmentation and splitter selection methods are described as follows.

Segmentation Using Vertical Projection. This approach involves creating a
histogram representing the number of character pixels per column in the image
(note that this is a different histogram from the one used for binarization),
then separating the image into chunks by identifying columns containing no
character pixels [20]. In the case of Teabag 3D, this was done by projecting
pixels in two directions respectively: vertically based on the image’s vertical
axis, and diagonally based on the projected vertical axis (since the CAPTCHA
was rendered in 3D, this corresponds to the characters’ vertical axis in 3D space),
as shown in Figure 6(a) and 6(b) respectively.

(a) (b)

Fig. 6. Segmentation using vertical projection. (a) Segmentation based on the image’s
vertical axis; (b) Segmentation in the direction of the characters’ vertical axis in 3D
space.

Side Surface Segmentation. Vertical segmentation [20] and other existing
methods such as Caliper distance [11] and Snake segmentation [19] have previ-
ously been used in character segmentation. However, in the case of Teabag 3D,
these are not the best choice as they are less effective when it comes to dealing
with connected characters. Furthermore, these methods are too sensitive when
it comes to character regions that are broken due to lack of pixel information,
as shown on Figure 7. To improve segmentation results, we implemented a novel
method that we named ‘Side Surface Scan’ (SSS) which is segmentation based
on the side surfaces of 3D characters. Our method is more effective for touching
or broken characters in Teabag 3D and can possibly be extended to other 3D
text-based CAPTCHAs.

The basic idea behind the Side Surface Scan method is depicted in Figure
8(a). An SSS can be done by performing a line wise scan from the left to the
right side of the image and counting the number of continuous side surface pixels
along each line. By lines, we mean the lines of pixels that are traced along the
contour of the character’s left side surface boundary, in the downward direction.
In the straight forward case, these lines will be parallel to the left border of the
grid. If the number of continuous side surface pixels in a line is greater than

Breaking a 3D-Based CAPTCHA Scheme 399

Fig. 7. Example of connected characters and a character lacking pixel information

three quarters of the total number of pixels per line, this will be treated as a
side surface line. In view of the fact that the side surfaces of the characters have
a certain width, if there are more than six consecutive side surface lines, the left
most side surface line will be used as a splitter (i.e. segmentation line).

Other than the straight forward case, in other situations, such as the letter
‘Y’ in Figure 8(b), the lines are not completely parallel to the left grid border.
For example, in Figure 8(b) it can be seen that the splitter was determined to
be at the left of the letter ‘Y’, as lines were traced along the contour of the
character’s left side surface boundary (note that there is no splitter inside the
letter ‘N’, because the number of continuous side surface pixels was less than
three quarters of the total number of pixels per line). Figure 8(c) in turn shows
a splitter to the left of the letter ‘W’.

In addition, SSS is flexible and can be used in different areas with different
parameters. Thus, we also performed SSS on the lower half of the CAPTCHA.
When performed on the lower half, the parameters were changed and all lines
containing continuous side surface pixels were considered to be side surface lines.
However, a splitter was only set if the number of consecutive side surface lines
was greater than half the average character width. This allowed us to set splitters
for characters like the number ‘4’, as can be seen in Figure 8(d).

Splitter Selection. After the above segmentation methods were performed,
the result is a set of splitters (i.e. segmentation line), as can be seen in the
example shown in Figure 9(a). Noise or the lack of character pixels, may cause
some splitters to be in the wrong position and other splitters may not be ideal.
To get the ‘best splitters’ from the set of splitters, we assigned weights to the
splitters with the values of 1, 2, 3 and 4 (shown in Figure 9(a) as blue, pink,
orange and red respectively).

Initially, the lowest weight of 1 is assigned to the splitters. The initial weights
will then be changed based on certain conditions. In essence, a splitter obtained
from the vertical projection method or the SSS method will have its weight
changed to 2. For three consecutive splitters obtained from the same segmenta-
tion method, their weight will be changed to 3, and a weight of 4 is given for four
or more consecutive splitters obtained from the same segmentation method.

The splitter with the highest weight will be chosen as the best splitter. In
cases where splitters in close proximity have the same weight, priority is given
to the splitter on the right. The result of splitter selection can be seen from the
example in Figure 9(b).

400 V.D. Nguyen, Y.-W. Chow, and W. Susilo

(a) (b)

(c) (d)

Fig. 8. Side Surface Scan (SSS) segmentation. (a) Lines parallel to left grid border; (b)
Lines not completely parallel to the left border, but instead traced along the contour
of a character’s left side surface boundary; (c) Another example of lines traced along a
character’s contour; (d) SSS performed on lower half of the CAPTCHA with different
parameters.

(a) (b)

Fig. 9. Example of splitter selection results. (a) Splitters resulting of the segmentation
methods; (b) Results after selecting the best splitters.

4.3 Post-processing and Character Recognition

After the segmentation stage, the result will be four individual characters. The
ABBYY OCR1 [1] was used for character recognition, as this is one of the
best OCR programs currently available on the market. However, before the
characters were passed to the OCR program, some post-processing steps had

1 The ABBYY FineReader 10 Professional Edition was used in this work.

Breaking a 3D-Based CAPTCHA Scheme 401

to be performed to ensure optimal character recognition accuracy. These post-
processing steps are listed as follows:

– Combining the side and front surfaces: As can be seen in Figure 10(a), the
image quality from the front surface alone is rather poor. As such, the side
and front surface pixels were combined and converted to black to get a higher
quality image of the character. An example of this is shown in Figure 10(b).

– Character de-skewing: Characters are originally skewed, or slanted, as they
were rendered in 3D space. This step straightens the characters, using a
de-skewing angle that was calculated based on the four extreme corners of
CAPTCHA’s grid. Figure 10(c) shows an example of a character after the
de-skewing step.

– Character resizing: This step was necessary, otherwise the OCR would mis-
interpret the image as containing a ‘word’ rather than an individual charac-
ter. The OCR would then proceed by performing segmentation on the word
and using a dictionary during recognition, hence leading to incorrect results.
Simply shrinking the character’s width by 50% was enough for the OCR to
interpret the image as containing a single character.

– Character refining: To increase the accuracy of character recognition, this
step removed noise, filled holes and smoothed the character borders. During
the automated hole filling process, it was important to retain the original
holes at the center of the characters (e.g. for letters like O, P, B, etc.), as these
were key features required by the OCR program to recognize the characters.
As such, holes in the center of the characters were left untouched. Figure
10(d) shows an example after character resizing and refining.

(a) (b) (c) (d)

Fig. 10. Post-processing steps. (a) Front surface only; (b) After combining side and
front surfaces; (c) After de-skewing; (d) After resizing and refining.

The four individual character images resulting from the post-processing stage
were then passed, in order, as input into the OCR program. The ABBYY OCR
uses machine learning to get more accurate results and needed to be trained using
a training set of character samples. In addition to the ABBYY FineReader’s
embedded training database, we added 100 of our own character samples to the
training set. Furthermore, since Teabag 3D only used a selection of uppercase
letters and digits, these were defined as the input language for the OCR.

402 V.D. Nguyen, Y.-W. Chow, and W. Susilo

5 Results

An experiment was set up to test the accuracy of our method. We used a total of
1,000 CAPTCHA samples collected from rediff.com [15]. To compare the results
of our approach, we tested the samples using three different approaches. First,
the samples were input into the OCR program in their original form. Then the
pre-processing and post-processing stages were applied to the samples, without
segmentation, and input into the OCR. This was done to test the effectiveness of
the segmentation stage. Finally, the samples were processed using all the stages
in our method and passed into the OCR.

Table 1 shows the experimental results for the different approaches. This in-
cludes the individual character recognition accuracy (i.e. each challenge contains
four individual characters) and the accuracy of the entire challenge (i.e. correct
recognition of all four characters). It can be observed from the results that with-
out any processing, Teabag 3D is robust against the OCR program. However,
with our automated extraction and segmentation approaches, the CAPTCHA
can be broken with a high success rate of 76%. The effectiveness of the segmen-
tation process can also be seen, as the accuracy of 29% without segmentation
is much lower than with segmentation. Experiments were conducted on an Intel
Core 2 Duo 3.33GHz PC, and the average attack speed was around 7 seconds
per challenge.

Table 1. Experimental results

Different Approaches
Accuracy

Individual Characters Entire Challenge

Unprocessed CAPTCHA image

0% 0%

Pre-processing and post-processing,
without segmentation

68% 29%

All stages applied

92% 76%

5.1 Discussion

Our attack exploited a number of weaknesses in the 3D CAPTCHA. For one
thing, the 3D characters could be separated from the background because of the
regular grid. This meant that the side surfaces could be identified based on the
fact that the size and shape of the background cells were somewhat constant.

Breaking a 3D-Based CAPTCHA Scheme 403

Furthermore, the front surfaces could be identified based on the density of pixels
at certain locations.

Another design flaw was that the borders of the grid could be used to estimate
the orientation of the characters. This would have been more difficult if the
borders were irregularly cut off or distorted. Between CAPTCHA challenges,
there was little variation in the size and orientation of the characters. This
made it easier for us to determine appropriate factors like the average cell size,
character width and height. The absence of any character distortion made the
CAPTCHA easy for humans to read, however, it also made it easier for the OCR
to correctly recognize the characters.

In essence, one of the key factors governing the success our attack, lies in
the fact that the CAPTCHA was rendered in 3D with no attempt to hide the
additional dimension. As such, the addition of the third dimension, while visually
attractive, also increased the amount of information that could be used to break
the CAPTCHA. In our approach, we used this information to identify the side
surfaces of the characters and also to facilitate segmentation. In addition, the
side surfaces were combined with the front surfaces to increase the accuracy of
character recognition.

Version 1.2. The OCR Research Team have released a new commercial version
on their website [14], i.e. version 1.2, which at the time of writing was not yet
implemented on rediff.com. As can be seen in Figure 11(a), this new version
appears to be much more robust compared to the previous version. In particular,
the grid and the characters are distorted using waves. This causes significant
variation in the size and shape of the cells.

We were still able to apply our approach to breaking this new version, albeit at
a lower success rate. To do this, we had make some changes to the pre-processing
and segmentation stages. In particular, for the pre-processing stage, instead of
using a global average cell size for side surface identification, a local average of
cell sizes was used instead. These local averages were calculated dynamically for
each cell based on the size its neighboring cells. In this manner, any large change
in the size of adjacent cells would be detected. Examples of the results after front
and side surface identification can be seen in Figure 11(b).

It can be seen from the figure that the resulting image typically contains
some noise. These are removed based on their distances to the side surface cells,
and the results after character extraction are shown in Figure 11(c). In the
segmentation stage, the SSS method was improved by approximating the size,
width and height of each side surface region, rather than using a pixel by pixel
approach, and applying this information for locating splitters. Figure 11(d) shows
examples of the segmentation results. For a sample size of 100, our approach
achieved a 51% accuracy for individual character recognition and an accuracy
of 24% in terms of correctly recognizing entire challenges.

404 V.D. Nguyen, Y.-W. Chow, and W. Susilo

(a)

(b)

(c)

(d)

Fig. 11. Processing Teabag 3D version 1.2 using our approach. (a) Teabag 3D version
1.2; (b) Extracting side and front surfaces of the characters; (c) Noise removal and
refinement; (d) Segmentation.

6 Conclusion

In this paper, we explored an attack on Teabag 3D which is a 3D text-based
CAPTCHA scheme.While this CAPTCHA effectively resists direct OCR attacks,
we show that after some processing our attack can successfully break this
CAPTCHA at a high success rate. Our attack exploits certain characteristics of
the 3DCAPTCHA. In particular, the 3D text characters were rendered with addi-
tional information in the form of side surfaces which we used to separate the text
from the background and also in character segmentation. As such, this additional
third dimensionmade theCAPTCHAscheme less secure. It is highly likely that our
approach can be extended and be applied to break other 3D CAPTCHA schemes.

References

1. ABBYY. ABBYY FineReader, http://finereader.abbyy.com
2. Chaudhari, S.K., Deshpande, A.R., Bendale, S.B., Kotian, R.V.: 3D Drag-n-

drop CAPTCHA Enhanced Security through CAPTCHA. In: Mishra, B.K. (ed.)
ICWET, pp. 598–601. ACM (2011)

http://finereader.abbyy.com

Breaking a 3D-Based CAPTCHA Scheme 405

3. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Designing Human
Friendly Human Interaction Proofs (HIPs). In: van der Veer, G.C., Gale, C. (eds.)
CHI, pp. 711–720. ACM (2005)

4. Chellapilla, K., Simard, P.Y.: Using Machine Learning to Break Visual Human
Interaction Proofs (HIPs). In: NIPS (2004)

5. Chow, Y.-W., Susilo, W., Zhou, H.-Y.: CAPTCHA Challenges for Massively Mul-
tiplayer Online Games: Mini-game CAPTCHAs. In: Proceedings of the 2010 In-
ternational Conference on Cyberworlds, CW 2010, pp. 254–261. IEEE Computer
Society, Washington, DC (2010)

6. Imsamai, M., Phimoltares, S.: 3D CAPTCHA: A Next Generation of the
CAPTCHA. In: Proceedings of the International Conference on Information Sci-
ence and Applications (ICISA 2010), Seoul, South Korea, April 21-23, pp. 1–8.
IEEE Computer Society (2010)

7. Ince, I.F., Salman, Y.B., Yildirim, M.E., Yang, T.-C.: Execution Time Prediction
for 3D Interactive CAPTCHA by Keystroke Level Model. In: Proceedings of the
2009 Fourth International Conference on Computer Sciences and Convergence In-
formation Technology, ICCIT 2009, pp. 1057–1061. IEEE Computer Society, Wash-
ington, DC (2009)

8. Kolupaev, A., Ogijenko, J.: CAPTCHAs: Humans vs. Bots. IEEE Security & Pri-
vacy 6(1), 68–70 (2008)

9. Li, S., Shah, S.A.H., Khan, M.A.U., Khayam, S.A., Sadeghi, A.-R., Schmitz, R.:
Breaking e-Banking CAPTCHAs. In: Gates, C., Franz, M., McDermott, J.P. (eds.)
ACSAC, pp. 171–180. ACM (2010)

10. Macias, C., Izquierdo, E.: Visual Word-based CAPTCHA using 3D Characters.
IET Seminar Digests 2009(2), P41–P41 (2009)

11. Mancas-Thillou, C., Ferreira, S., Demeyer, J., Minetti, C., Gosselin, B.: A Multi-
functional Reading Assistant for the Visually Impaired. J. Image Video Process.
2007, 5:1–5:11 (2007)

12. Mori, G., Malik, J.: Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In: CVPR (1), pp. 134–144 (2003)

13. Moy, G., Jones, N., Harkless, C., Potter, R.: Distortion Estimation Techniques in
Solving Visual CAPTCHAs. In: CVPR (2), pp. 23–28 (2004)

14. OCR Research Team. Teabag 3D CAPTCHA, http://ocr-research.org.ua
15. Rediff Inc. Rediffmail, http://register.rediff.com/register/register.php
16. Ross, S.A., Halderman, J.A., Finkelstein, A.: Sketcha: a CAPTCHA based on Line

Drawings of 3D Models. In: Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.)
WWW, pp. 821–830. ACM (2010)

17. Susilo, W., Chow, Y.-W., Zhou, H.-Y.: STE3D-CAP: Stereoscopic 3D CAPTCHA.
In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp.
221–240. Springer, Heidelberg (2010)

18. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI
Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003)

19. Yan, J., Ahmad, A.S.E.: Breaking Visual CAPTCHAs with Naive Pattern Recog-
nition Algorithms. In: ACSAC, pp. 279–291. IEEE Computer Society (2007)

20. Yan, J., Ahmad, A.S.E.: A Low-Cost Attack on a Microsoft CAPTCHA. In: ACM
Conference on Computer and Communications Security, pp. 543–554 (2008)

21. Yan, J., Ahmad, A.S.E.: Usability of CAPTCHAs or Usability Issues in CAPTCHA
Design. In: Cranor, L.F. (ed.) SOUPS. ACM International Conference Proceeding
Series, pp. 44–52. ACM (2008)

http://ocr-research.org.ua
http://register.rediff.com/register/register.php

Multi-User Keyword Search Scheme for Secure

Data Sharing with Fine-Grained Access Control

Fangming Zhao1,2, Takashi Nishide1, and Kouichi Sakurai1

1 Department of Computer Science and Communication Engineering,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
2 Corporate Research & Development Center, TOSHIBA Corporation,

1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan
fangming.zhao@toshiba.co.jp, {nishide,sakurai}@inf.kyushu-u.ac.jp

Abstract. We consider the problem of searchable encryption scheme for
the cryptographic cloud storage in such a way that it can be efficiently
and privately executed under the multi-user setting. Searchable encryp-
tion schemes allow users to perform keyword searches on encrypted files
to retrieve their interested data without decryption. All existing such
schemes only consider the straightforward search approach where for
searching one encrypted keyword, the cloud server must look round all
encrypted files on the storage to compare that encrypted keyword to
each keyword index. Since the file number can be very huge and the user
may be unable to decrypt all files, that approach is not efficient and se-
cure enough. In this paper, we first propose a keyword search scheme for
the cryptographic cloud storage based on attribute-based cryptosystems.
Our scheme presents a new keyword search notion: fine-grained access
control aware keyword search. By narrowing the search scope to the
user’s decryptable files’ group before executing the keyword search, our
approach can both decrease information leakage from the query process
and be more efficient than other existing schemes.

Keywords: keyword search, multi-user, fine-grained and flexible access
control, data sharing.

1 Introduction

1.1 Background and Motivation

For reasons of management cost and convenience, users often store their data not
on their own machine, but on remote servers, i.e., cloud storage. To address users’
concerns of data confidentiality on the cloud storage, a common approach is using
cryptography. Encryption at the server’s side is not appropriate when the server
is not fully trusted. Data owners encrypt all data before sending to the cloud
servers and later the encrypted data can be retrieved and decrypted by users who
have a decryption key. This kind of cloud storage is often called cryptographic
cloud storage [6]. Even if this will ease user’s concerns of data leakage, it also
introduces a new problem: because the encryption of data is not meaningful to

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 406–418, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

M-U Keyword Search Scheme for S-D-S with F-G Access Control 407

the cloud servers, many useful data processing operations performed by cloud
servers become infeasible. One of the most important operations for efficient
data retrieval and sharing in the cloud is the keyword search.

Many protocols have been proposed to partially solve the above problems.
However, most of existing schemes are limited to the single-user setting where
the owner who generates the encrypted data on the cloud is also the single user
to perform encrypted keyword searches on it. They can not satisfy the charac-
teristics of cryptographic cloud storage: sharing encrypted data with multiple
users who have the appropriate access rights. In the multi-user cryptographic
cloud storage setting, the data owner shares his encrypted data with multiple
users and also allow users who have the access permission to perform encrypted
keyword searches over the owner’s shared data on the cloud server side.

In an existing work Zhao et al [12], an attribute-based cryptosystems based
multi-user cryptographic cloud storage was proposed for secure data sharing.
Users with different attributes can access the cryptographic cloud storage for
secure data sharing, and the fine-grained and flexible access control is realized
by an access tree [2]. However, no specified keyword search method is given in
that work. In this paper, for efficient use of cryptographic cloud storage, we are
focusing on the keyword search toward the cryptographic cloud storage under
the multi-user setting.

1.2 Related Work

Several schemes have been developed to encrypt data on the client-side and
enable server-side searches on encrypted data. Song et al. [10] proposed the first
practical scheme for searching on encrypted data. The scheme enables clients
to perform searches on encrypted text without disclosing any information about
the plaintext and the keyword to the untrusted server. The untrusted server
cannot learn the plaintext given only the ciphertext, and it cannot search without
the user’s authorisation, and it learns nothing more than the encrypted search
results. The basic idea is to generate a keyed hash for the keywords and store
this information inside the ciphertext, then the server can search the keywords
by recalculating and matching the hash value. In [4], Goh presents a scheme
for keyword search on encrypted data using Bloom Filters. Golle et al. [5] first
considers keyword conjunctions which is based on pairings on elliptic curves. The
first public key schemes for keyword search over encrypted data are presented
in [3]. In that work, authors consider a setting in which the sender of an email
encrypts keywords under the public key of the recipient in such a way that
the recipient is able to give capabilities for any particular keyword to their mail
gateway for routing purposes. Their scheme allows multiple users to encrypt data
using the public key, but only the user who has the private key can search and
decrypt the data. Bao et al. [1,11] consider the multi-user query over encrypted
data. Their scheme allows each user to possess a distinct secret key for generating
the encrypted keyword (or called a trapdoor) respectively.

408 F. Zhao, T. Nishide, and K. Sakurai

1.3 Challenging Issues

For existing keyword search works [3,4,5,10], if we want to apply their protocols
to the multi-user cryptographic cloud storage setting, a naive approach is sharing
the secret key with all valid users. However, sharing keys is generally not a good
idea since it increases the risk of key exposure. The keys must be changed if
a user is no longer qualified to access the data. Moreover, changing keys may
result in decrypting all the data with the old key and re-encrypting it using the
new keys. For the cloud storage with a large number of users and files, this is
not practical.

All existing schemes have not considered the user’s access right while designing
the keyword search process on the cloud server’s side. (i): In the multi-user’s
cryptographic cloud storage environment, since not all users can read(decrypt)
all data, each user is not able to search through data that is not decryptable to
that user for the cloud data confidentiality. For example, a curious user of the
cloud storage who possesses a common secret key for searching, can perform an
investigation over all encrypted data to know whether some data on the cloud
storage contains a specified keyword w, by generating an encrypted query based
on that keyword. Especially in the cryptographic cloud storage using the latest
cryptographic technique: attribute-based encryption(ABE) [2], like [12], such
a result of the curious user’s investigation also leaks confidential information:
encrypted data using CP-ABE shows what kind of user attributes are required
to decrypt that encrypted data. That is, the relationship between encrypted data
and its access requirement can be known to the curious user from his keyword
search. (ii): We consider the search efficiency problem. Assuming n and m (m ⊆
n) are numbers of total files and decryptable files on the cryptograhic cloud
storage for a specific user. Let r be the average number of keywords associated
in a file. Traditionally, the cloud storage’s computation cost for executing a
keyword search shall be O(n× r). Thus the cloud server wastes O((n−m)× r)
computation cost in each query process. Allowing the cloud server to narrow
the search scope from n to m(the user’s decryptable scope) without leaking any
secret keys and plaintexts is a new challenge for the multi-user cryptographic
cloud storage.

1.4 Our Contributions

We study the encrypted keyword search problem in the multi-user cryptographic
cloud storage setting, and we present a first encrypted keyword search concept:
fine-grained access control aware keyword search, which requires the user’s key-
word search is performed by the cloud server over the user’s decryptable data
scope considering differential access right of the user. This new characteristic
is never considered by any other existing works. The formal definition of our
concept will be given in Section 4.1.

Our construction uses as building blocks some of the schemes mentioned
above. We stress, however, that it is not sufficient to use the schemes as-is.
We show an approach of access structure (also called access tree) computation

M-U Keyword Search Scheme for S-D-S with F-G Access Control 409

that evolves from the attribute-based cryptosystems, and then we apply it to
the query process for specifying the user’s access permission from the encrypted
keyword in order to narrow the search scope to the user’s decryptable file group.
Advantages of our approach can be summarized as follows:

– Decreasing information leakage from the keyword search process executed
between users and cloud servers.

– Being more efficient than existing works since our method does not search
unrelated files which can not be decrypted by that user.

Since its new characteristics on the security and the protocol convenience,
attribute-based encryption(ABE) technique is widely used on the cryptographic
cloud storage. However, no keyword search scheme is designed for the ABE based
cryptographic cloud storage because of the complex composition of the cipher-
text. Our work gives a simple but more effective scheme that first proposes an en-
crypted keyword search approach for the attribute-based encryption. Moreover,
our scheme innovates the application of the attribute-based signature(ABS)[7]
protocol, which is not applied widely yet.

From the viewpoint of scheme functionalities, under the multi-user cloud set-
ting, by providing fine-grained and flexible access control to the data on the
cloud, not only the data owner, but authorized users can also update the en-
crypted data and encrypted keyword list. Since each user has a distinct key for
keyword search, the key management becomes simpler. For example, key up-
date and user revocation can be easily achieved without complicated process of
decrypt and re-encrypt.

2 System Models and Definitions

2.1 System Models

We consider a multi-user cryptographic cloud storage which is described in [12].
In this system, a group of authorized users(E.g. readers and writers in [12]) can
share encrypted data and perform keyword search on the encrypted data without
decrypting them.

Cloud Server: The main responsibility of the cloud storage server is to store
and retrieve encrypted data according to authorized users’ requests. Moreover,
an new external functionality is provided by the cloud server: before executing
the keyword search for each user, the cloud server first needs to sort out those
files which can be decrypted by that user, and then the cloud server searches the
keyword only from his decryptable file group;

Trusted authority(TA): Being similar to the assumption in [12], TA is a
trusted third party in our system. Firstly, it is responsible for managing all
attributes and their related keys used in ABE and ABS. Secondly, about users’
keyword search, it is also responsible for user enrollment and revocation, i.e.
managing keys for user’ query generation.

Users: Being similar to the assumption in [12], we consider a multi-user set-
ting. Not only the owner can perform the keyword search, but other users, e.g.

410 F. Zhao, T. Nishide, and K. Sakurai

readers(who has the decrypt right, can read data) and writers(who has both the
read right and the update right), can also perform the keyword search corre-
sponding to their access right. Only writers can update the encrypted file and
its associated encrypted keyword list.

Data: As described in the previous work [12], all data is encrypted with CP-
ABE on the user’s side before sending to the cloud storage. Here, the data file
can be documents, videos, images, etc. Each file can be associated with a list of
keywords which is also encrypted by the user.

2.2 Definitions

In this subsection, we define our scheme: decryptable keyword search for cryp-
tographic cloud storage. Our proposed scheme consists of a tuple of algorithms
(Setup, BuildIndex, Write, Query, Search) such that:

– Setup(1k): The initialization algorithm Setup is run by the TA which takes
as input the security parameter k and outputs the unique master secret key
Kmsk and the key pair 〈KUid

, CKUid
〉 for each valid user whose user ID is

Uid. The TA respectively distributes the KUid
and the 〈Uid, CKUid

〉 to the
user and the cloud server.

– BuildIndex(w,CKUid
): The BuildIndex algorithm is run by the data owner

and the cloud server interactively. This algorithm outputs an index I(w) for
all keywords w = {w1, w2, ...}.

– Write(I(w), CT , Tdecrypt)): This Write algorithm is run by the data owner.
After the owner generates encrypted data CT , Tdecrypt and the I(w), he
writes(or, uploads) them to the cloud server. CT is the ciphertext of the
original data. We consider CP-ABE [2] for the data encryption as described
in [12].

– Query(Uid, Q(w), Sig(Q(w))): The Query algorithm is run by the user to gen-
erate a trapdoor for the keyword w and query to the cloud server. The user
first computes the trapdoor Q(w) by his keys’ material, and then generates a
signature Sig(Q(w)) of the trapdoor. We consider the ABS [7] for the digital
signature. Finally, the user will send the query data: 〈Uid, Q(w), Sig(Q(w))〉
to the cloud server for a keyword w.

– Search(Uid, CKUid, CT , I(w), Q(w), Sig(Q(w)), Tsign): The Search algo-
rithm is run by the cloud server. For each user, cloud server will only search
for the keyword Q(w) on the data’s group which can be decrypted by that
user.

– Revoke(Uid): The user search revocation algorithm is run by the TA and the
cloud server. Given user ID Uid, they revoke the user by updating its user’s
key list L = L \ 〈Uid, CKUid

〉, then the user is no longer able to search the
cloud storage.

3 Technical Preliminaries

We build on the work by Bethencourt et al. [2] and Maji et al. [7] respectively
(We do not describe their computation process here, and please refer to their

M-U Keyword Search Scheme for S-D-S with F-G Access Control 411

works for details). We also review some notions about efficiently computable
bilinear maps.

3.1 Ciphertext-Policy Attribute-Based Encryption

CP-ABE [2] is one of the latest public key cryptography primitives for secure
data sharing. More precisely, a user’s private key will be associated with an
arbitrary number of attributes expressed as strings. When a party encrypts a
message, they first specify an associated access structure over attributes. A user
will only be able to decrypt a ciphertext if that user’s attributes satisfy the
ciphertext’s access structure. At a mathematical level, access structures in our
system are described by a monotone access structure (or access tree) Tdecrypt

[2], where nodes of the access structure are composed of threshold gates and
the leaves describe attributes. Usually, AND gates can be constructed as n-of-n
threshold gates and OR gates as 1-of-n threshold gates. If a set of attributes U
satisfies the access structure Tdecrypt, we denote it as Tdecrypt(U) = 1.

Setup is probabilistic and run by the TA: on input the security parameter and
a universe of attributes, the master key MK and public key PK are generated.

Encryption(PK,m, Tdecrypt) is probabilistic and run by a user who wants to
encrypt a plaintext message m for a user with a set of attributes in the access
structure Tdecrypt, this algorithm generates a ciphertext CT .

Key-Generation(MK,U) is probabilistic and run by the TA: on input the
master key MK and a set of attributes U belonging to a user, a secret key SK
for these attributes is generated.

Decryption(CT, SK) is deterministic and run by a user with a set of attributes
U . On input CT and SK, this algorithm outputs the underlying plaintext m, if
CT is a valid encryption of m and U is contained in the access structure Tdecrypt

specified in the computation of CT . Otherwise an error will be returned.

3.2 Attribute-Based Signature

Like the CP-ABE, there are two entities in ABS: a central trust authority(TA)
and users. The authority is in charge of the issue of attribute private key to users
requesting them. Denote the universe of attributes as U , as the access structure
in the CP-ABE, there is a a monotone boolean claim-predicate(access structure)
Tverify over U whose inputs are associated with attributes of U . We say that an
attribute set U satisfies a predicate Tverify if Tverify(U) =1. The algorithms are
defined as follows.

Setup The authority obtains a key pair (PK,MK) and outputs public param-
eters PK and keeps a private master key MK.

412 F. Zhao, T. Nishide, and K. Sakurai

Key-Generation(MK,U) To assign a set of attributes U to a user, the au-
thority computes a signing key SKU and gives it to the user.

Sign(PK, SKU ,m, Tverify) To sign a message m with a claim-predicate
Tverify, and a set of attributes U such that Tverify(U) = 1, the user computes
a signature σ by (PK, SKU ,m, Tverify).

Verify(PK,m, Tsign, σ) To verify a signature σ on a message m with a claim-
predicate Tsign, a user runs V erify(PK,m, Tsign, σ), which outputs a boolean
value, accept or reject.

3.3 Bilinear Map

Let G0 and G1 be two bilinear groups of prime order p. Let ê : G0 × G0 → G1

denote the bilinear map. Let g be a generator of G0. The bilinear map ê has the
following properties:

– Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab

– Non-degeneracy: ê(g, g) �= 1.
– Computable: ê(u, v) can be efficiently computed for any u, v ∈ G0.

4 Concrete Constructions

We describe details of our fine-grained access control aware multi-user keyword
search scheme in this section. As mentioned, access control needs to be enforced
before the cloud server searches a keyword and a user is not allowed to search
through data which is not decryptable for him. We make our new proposal by
modifying two existing schemes: an attribute-based cryptographic cloud storage
as described in [12] and a query protocol by Bao et al. [1,11].

4.1 Access Tree Based Fine-Grained Access Control Verification
Mechanism

Attribute based cryptosystems [2,7,12] use the access tree (also called access
structure) to provide fine-grained access control. In CP-ABE [2], a user will
be able to decrypt a ciphertext with a given key if and only if there is an
assignment of attributes from the ciphertexts to nodes of the tree such that the
tree is satisfied. In ABS [7], a signer, who possesses a set of attributes from the
authority, can sign a message with a predicate that is satisfied by his attributes.
The signature reveals no more than the fact that a single user certainly with
some set of attributes satisfying the predicate has attested to the message.

Access Tree: T Let T be a tree representing an access structure. Each non-
leaf node of the tree represents a threshold gate, described by its children and
a threshold value. If numx is the number of children of a node x and kx is its
threshold value, then 0 < Kx ≤ numx. When kx = 1, the threshold gate is an
OR gate and when kx = numx, it is an AND gate. Each leaf node of the tree
simply represents an attribute.

M-U Keyword Search Scheme for S-D-S with F-G Access Control 413

Satisfying an Access Tree: Let T be an access tree with root r. Denote by Tx

the subtree of T rooted at the node x. Hence T is the same as Tr. If a set of
attributes r satisfies the access tree Tx, we denote it as Tx(r) = 1. We compute
Tx(r) recursively as follows. If x is a non-leaf node, evaluate Tx′(r) for all children
x′ of node x. Tx(r) returns 1 if and only if at least kx children return 1. If x is
a leaf node, then Tx(r) returns 1 if and only if att(x) ∈ r.

In our proposed scheme, we present a first encrypted keyword search concept:
fine-grained access control aware keyword search, which is formally defined as:

Definition 1. Access control aware keyword search: Let n be the number of en-
crypted files on the storage server, and a user u wants the server to search en-
crypted files that contain an encrypted w. Let m be the file number on the storage
server which can be decrypted by u, and (m ⊆ n). The user u’s access right is
unknown to the storage server and the server knows nothing about the plaintext
of both the encrypted files and keywords. The access control aware keyword search
requires that the server execute the keyword search scheme after narrowing the
search scope from n to m aware of u’s access right.

To realize our idea, we take advantage of the access tree to (i) allow the cloud
server to focus on the user’s decryptable file group by his attributes; (ii) make a
user show the cloud server that he really holds those attributes which is needed
to decrypt some files before his keyword query is executed. In our scheme, (ii) is
achieved by generating an attribute based signature(ABS) using the AND of all
his attributes: Tsign = {Att1 ∧Att2 ∧Att3...}. After verifying the signature, the
result proves whether the user holds those attributes as he claims. Two examples
of access trees Tsign and Tdecrypt are shown in Figure 1. In this example, a user
can prove the possession of his attributes {Professor∧Dean∧Trustee} in Tsign

by generating an attribute based signature(ABS). If the verification succeeds,
the cloud server can judge whether that user can decrypt a file by checking:
Tsign |= Tdecrypt = 1 or 0, |= is formally defined in Definition 2:

Definition 2. Let T1 and T2 be two access trees (also called access structure)
in attribute-based cryptosystems. T1 |= T2 is an access tree computation that
outputs 1 or 0, where 1 means that there is an attribute set x in T1 that satisfies
T2. 0 means no such attribute set exists in T1 and T2.

As shown in Figure 1, since the attribute “Trustee” that exists in Tsign also
satisfies Tdecrypt, the computation result of Tsign |= Tdecrypt = 1, and the cloud
server verifys that file is decryptable to that user. Next, we will describe our
scheme in details.

4.2 Proposed Scheme

Setup(1k): The initialization algorithm Setup(1k) is run by the TA which takes
as input the security parameter 1k and outputs the TA’s unique master secret
key Kmsk ∈ Zp and the key pair 〈KUid

∈ Zp, CKUid
〉 for each valid user whose

user ID is Uid, where CKUid
= gKmsk/KUid is a complementary key for a user.

414 F. Zhao, T. Nishide, and K. Sakurai

The TA respectively distributes the KUid
and the 〈Uid, CKUid

〉 to the user and
the cloud server.

BuildIndex(w,CKUid
): The BuildIndex algorithm is run by the data owner

and the cloud server interactively. This algorithm outputs an index I(w) for
the keywords set w = {w1, w2, ...}. Data owner first uploads the 〈Uid, h(w)

r〉
to the cloud server. h(): {0, 1}∗ → G0 is the hash function and r ∈ Zp is a
random number. After receiving the request, the cloud server calculates the
Capw = ê(h(w)r , CKUid

) for each w and then sends it back to the data owner.
The data owner can build the index for w as I(w) = [R,HMACk(R)], where the

key for the HMAC calculation is k = h(Cap
KUid

/r
w), R ∈ Zp is also a random

number.

Write(I(w), CT , Tdecrypt): After the owner generated the encrypted data CT
and the I(w), he writes(or, uploads) them to the cloud server. CT is the cipher-
text of CP-ABE [2] as described in [12]. CT = Enc(PKenc,M, Tdecrypt), PKenc

is the public key for encryption, M is the data’s plaintext, Tdecrypt is the access
tree for the CP-ABE generated by the owner. Finally, 〈CT, I(w), Tdecrypt〉 is
writen to the cloud server.

Query(Uid, Q(w), Sig(Q(w))): For a specific keyword w, the user first gen-
erates a trapdoor Q(w) = h(w)KUid . Then he generates an attribute-based sig-
nature(ABS) for that trapdoor: Sig(Q(w)) = {PK, SK,Q(w), Tsign}. Note that
the Tsign is made by all of the user’s attribute: Tsign = {Att1 ∧ Att2 ∧ Att3...}.
Note, the signature ABS shows that the user certainly possesses a set of at-
tributes from the authority as he/she declared in the access tree Tsign. The
cloud server can verify the user’s identification (attribute) by public keys from
the TA. In this step, the user sends 〈Uid, Q(w), Sig(Q(w))〉 to the cloud server.

Search(Uid, CKUid
, CT , I(w), Q(w), Sig(Q(w)), Tsign): After receiving the

query from a user, the server first checks the complementary key CKUid
by the

user ID Uid. If the Uid is valid, the server shall confirms the user’s decryptable

AND

Professor Dean Trustee

Trustee

OR

AND

System

Admin

Network

Center

Access Structure

Tsign for ABS

Access Structure

Tdecrypt for CP-ABE

Fig. 1. Access Trees

M-U Keyword Search Scheme for S-D-S with F-G Access Control 415

file group by: (i). Verify user’s attribute set {Att1 ∧Att2 ∧Att3...} as described
in Tsign by the ABS-verification process,: Verify(PK,Q(w), Tsign, Sig(Q(w))) =
True or False. The verification key PK are published by the TA. If the ABS
verification result is true, the user’s attributes as he/she declared in the Tsign

are confirmed. (ii). Using Tdecrypt of each CT stored on the server, the cloud
server can confirm the search scope S as the following procedure:
{
S = Null;
for(i = 0; i < n; i++)
//i is the file index number; n is the total file number.
{
if((Tsign |= Tdecrypt[i])! = 0)
S = S ∪ i;
}
return S; }
Then the cloud server performs the the keyword search only in the scope S. It
first computes k′ = ê(Q(w), CKUid

), and then checks each index of the data CT

in the scope S as: HMACk(R)
?
= HMACk′ (R). Finally, the server sends the

search result to the user.

Revoke(Uid): Since TA and the cloud server manage all users’ pair
〈Uid, CKUid

〉. For a comprised user, TA just instructs the cloud server to delete
the entry from the user list L: L = L \ 〈Uid, CKUid

〉, then the user is no longer
able to search the cloud storage.

5 Discussions on Security and Performance

5.1 Security Analysis

In this subsection, we discuss our access control aware keyword search scheme
from three security requirements: Data confidentiality, Query privacy, Query
unforgeability.

Data Confidentiality. The notion of data confidentiality here requires that
user’s data must be protected from both unauthorized users and the service
provider. In our proposed system, since both the data and the index of keyword
are encrypted before uploading to the server, the cloud server does not know
the plaintext of the data. Also, the server can not get any information about
the secret keys for decryption. In the keyword search process, since the query
(encrypted keyword) is also encrypted at the user’s side before sending to the
cloud server, the cloud server can not know what is queried from a user.

A characteristic of our keyword search scheme is that the index of all keywords
is generated by the data owner and the cloud server interactively. As described in
Section 4.2, the user first sends 〈Uid, h(w)

r〉 to the cloud server, then the cloud
server calculates the Capw = ê(h(w)r , CKUid

) for each keyword w and then
sends it back to the user. Finally, the index for a keyword w is generated as I(w)

416 F. Zhao, T. Nishide, and K. Sakurai

= [R,HMACk(R)]. In this index generation process, both the cloud server and
any attacker who can get the 〈Uid, h(w)

r〉 can not deduce any information about
w because the one-way hash function is used. Replay attack can also be prevented
by the random number r. In the whole process, no plaintext information is leaked
to the cloud server or unauthorized users.

Query Privacy. In traditional attribute-based cryptosystems [2,12], access struc-
ture (also called access tree) which is associated with ciphertexts indicates the
access policies. This information leaks what kind of policies (attributes) are
needed to decrypt the ciphertext. Recently, some research has contributed to
this privacy related problem, such as [8,9]. Actually, the problem of query pri-
vacy also exists in our keyword search scheme.

The notion of query privacy in this paper means that the privacy information
of users or data which may leak to the unauthorized party from the query pro-
cess. In the Query phase, the user sends an attribute-based signature Sig(Q(w))
with the encrypted keyword Q(w). The signature is generated with all of his
attributes, Tsign = {Att1 ∧ Att2 ∧ Att3...}. Thus the user’s attributes informa-
tion is inevitably leaked to the cloud server. The cloud server can also deduce
deduce which encrypted file can be decrypted by that user by comparing Tsign

and Tdecrypt. This privacy information leakage to the cloud server is tolerable,
because no data confidentiality (such as plaintexts or secret keys) is disclosed to
the cloud server or other users.

Query Unforgeability. In our scheme, an individual secret query key is used
by each user for encrypting keywords, so a query issued by a user is distinct
to his query key. In the multi-user cloud storage setting, this property is very
important. Neither another user nor the cloud server can generate a fake query on
behalf the valid user. Our scheme offers query unforgeability towards the cloud
server and a dishonest user unless a user’s secret query key is compromised. And
for compromised keys, our scheme allows the cloud administrator to dynamically
and efficiently revoke users.

5.2 Performance Analysis

Main processes of our scheme are performed by the user and the cloud server
interactively. In the BuildIndex phase, the main computation at the user side is
simply an exponentiation computation and an paring computation is run by the
server for each keyword w. In the Query phase, an exponentiation computation
and an ABS generation which is mainly based on the paring computation is run
by the user for each query. The Search process is run by the cloud server. In
this process, main overhead is composed of a paring computation and an ABS
verification for each query. Consequently, comparing to the overhead of Bao et
al. [1,11] our scheme increase the computation cost of ABS generation and ABS
verification to the user’s side for each query.

However, when considering the viewpoint of cloud server’s keyword search
computation complexity, our scheme is much efficient than the scheme [1,11] of
Bao et al.. Assuming n and m (m ⊆ n) are numbers of total files and decryptable

M-U Keyword Search Scheme for S-D-S with F-G Access Control 417

Table 1. A comparison of cloud server’s keyword search computation complexity be-
tween our scheme and existing works

Keyword Search Type Computation Complexity

Bao et al. [1,11] single-user O(n× r)

Boneh et al. [3] multi-user O(n× r)

Goh et al. [4] single-user O(n× r)

Golle et al. [5] single-user O(n× r)

Song et al. [10] multi-user O(n× r)

Our Scheme multi-user O(m× r), where m ⊆ n

files on the cryptograhic cloud storage for a specific user. Let r be the average
number of keywords associated in a file. In the scheme of Bao et al., the cloud
storage’s computation complexity for executing a keyword search is O(n × r).
In our approach, by allowing the cloud server to narrow the search scope from
n to m (to the user’s decryptable data group), the computation complexity of
our scheme is optimized from O(n × r) to O(m × r) for each query, m ⊆ n
(m is a subset of n), see Table 1. Especially for the large scale cloud storage
environment which has numerous users with different access right and numerous
files, the computation complexity advantage of our approach is significant.

6 Concluding Remarks and Future Works

In this paper, we considered the keyword search of a multi-user cryptographic
cloud storage(such as [12]) using attribute-based encryption. Our scheme pro-
poses a new keyword search concept for the first time: fine-grained access con-
trol aware keyword search. An access structure computation taking advantage
of access structures from CP-ABE and ABS is defined in our scheme to achieve
fine-grained access control, which facilitate granting differential access rights to
a set of users and allow flexibility in specifying the access rights of individual
users. Thus our approach also puts forward a new application of ABS proto-
col, which can not be substituted by traditional signature schemes. Finally, by
narrowing the search scope to the user’s decryptable files’ group, our keyword
search scheme decreases information leakage from the query process and is more
efficient than other existing schemes.

In our complimentary work, we plan to construct an entire trust model of
our proposed multi-user cryptographic cloud storage with flexible, fine-grained
access control and secure keyword search. Then, we hope to publish the full
result to accelerate the research of cryptographic cloud storage.

Acknowledgments. This work is partially supported by Grant-in-Aid for
Young Scientists (B) (23700021), Japan Society for the Promotion of Science
(JSPS).

418 F. Zhao, T. Nishide, and K. Sakurai

References

1. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private Query on Encrypted Data in
Multi-user Settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS,
vol. 4991, pp. 71–85. Springer, Heidelberg (2008)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy (2007)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

4. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216/

5. Golle, P., Staddon, J., Waters, B.: Secure Conjunctive Keyword Search over En-
crypted Data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

6. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

7. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392.
Springer, Heidelberg (2011); An full version on Cryptology ePrint Archive,
http://eprint.iacr.org/2010/595

8. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially
Hidden Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008)

9. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden ciphertext policies. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 92-A(1), 22–32 (2009)

10. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy (2000)

11. Yang, Y., Ding, X., Deng, R.H., Bao, F.: Multi-User Private Queries over Encrypted
Databases. International Journal of Applied Cryptography Archive 1(4) (August
2009)

12. Zhao, F., Nishide, T., Sakurai, K.: Realizing Fine-Grained and Flexible Access
Control to Outsourced Data with Attribute-Based Cryptosystems. In: Bao, F.,
Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 83–97. Springer, Heidelberg
(2011)

http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2010/595

Reaction Attack on Outsourced Computing

with Fully Homomorphic Encryption Schemes�

Zhenfei Zhang, Thomas Plantard, and Willy Susilo

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering (SCSSE)

University of Wollongong, Australia
{zz920,thomaspl,wsusilo}@uow.edu.au

Abstract. Outsourced computations enable more efficient solutions to-
wards practical problems that require major computations. Nevertheless,
users’ privacy remains as a major challenge, as the service provider can
access users’ data freely. It has been shown that fully homomorphic en-
cryption schemes might be the perfect solution, as it allows one party to
process users’ data homomorphically, without the necessity of knowing
the corresponding secret keys. In this paper, we show a reaction at-
tack against full homomorphic schemes, when they are used for securing
outsourced computation. Essentially, our attack is based on the users’
reaction towards the output generated by the cloud. Our attack enables
us to retrieve the associated secret key of the system. This secret key
attack takes O(λ log λ) time for both Gentry’s original scheme and the
fully homomorphic encryption scheme over integers, and O(λ) for the
implementation of Gentry’s fully homomorphic encryption scheme.

Keywords: Cloud Computing, Fully Homomorphic Encryption, Reac-
tion Attack, CCA security, Secured Outsource Computation.

1 Introduction

Cloud computing has changed the phenomena in the Information Technology
(IT) industry completely. It allows access to highly scalable, inexpensive, on-
demand computing resources that can execute the code and store the data that
are provided to them. This aspect, known as data outsourced computation, is
very attractive, as it alleviates most of the burden on IT services from the con-
sumer (or data owner). Nevertheless, the adoption of data outsourced compu-
tation by business has a major obstacle, since the data owner does not want to
allow the untrusted cloud provider to have access to the data being outsourced.
Merely encrypting the data prior to storing it on the cloud is not a viable so-
lution, since encrypted data cannot be further manipulated. This means that if
the data owner would like to search for particular information, then the data
would need to be retrieved and decrypted - a very costly operation, which limits
the usability of the cloud to merely be used as a data storage centre.

� This work is supported by ARC Future Fellowship FT0991397.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 419–436, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

420 Z. Zhang, T. Plantard, and W. Susilo

In [1], van Dijk and Juels argued that, cryptography tools alone is not sufficient
for providing privacy for cloud computing. Yet, they found that in a single-client
scenario, fully homomorphic encryption schemes deliver the required security.

Indeed, a fully homomorphic encryption is a solution for enabling operations
on the encrypted data. Essentially, fully homomorphic encryption schemes enable
one to apply homomorphic operations over an arbitrary number (n) of given
ciphertexts c1, c2, . . . , cn without the need to know the corresponding plaintexts
m1,m2, . . . ,mn.

This feature is useful in the outsourced computation scenario, where one can
upload encrypted data to the cloud and enable the cloud to process the data
without the need for decryption. Nevertheless, whether a fully homomorphic
encryption by itself is sufficient enough to secure the outsourced computation in
practice remains unclear. This will require some further research.

Our Contribution
In this paper, we show a negative result to the above question. Before addressing
our contribution, we should highlight some important factors to motivate our
work. In fact, one can categorize an outsourced computation into the following
models:

1. The user possesses the data and the computation circuit, and the service
provider provides the computation power;
Example: a stock share holder buys/sells his/her stocks via the cloud, and
then retrieve the receipt from the cloud to obtain his/her updated financial
status.

2. The user possesses the data, and the service provider provides its computa-
tional power, while the computation circuit can be made available publicly
to both of the entities;
Example: a hospital outsources its patients’ information to a research insti-
tute for acquiring further analysis from the institute (such as the result of the
prostate cancer), as the institute has more computational power compared
to the hospital.

3. The user possesses the data, and the service provider provides its computa-
tional power, only the cloud has access to the computation circuit;
Example: a company outsources its financial status to an auditing company,
however, the auditing algorithm is auditing the company’s private property.

In all of the above models, the users’ data privacy has to be ensured. The dif-
ference among them lies on the privacy of the computational circuit.

In this paper, we present a practical reaction attack that can be applied to all
of the above models, in which every time a user interacts with the cloud, he/she
is under the risk of leaking some information. As a result, known approaches,
i.e., secured outsourced computation (SOC) [2], becomes essential in the first
two models, while for the third model, even SOC technique will not be sufficient.

Further, using our attack, one can construct a probabilistic decryption ora-
cle. Consequently, we argue that for any fully homomorphic encryption schemes,
the CCA-1 security is essential. When applying our attack to Gentry’s frame-
work [3,4], our attack recovers the secret key for all published fully homomorphic

Reaction Attack on Outsourced Computing with FHE 421

encryption schemes. This secret key attack take O(λ log λ) time for both Gen-
try’s original scheme and the fully homomorphic encryption scheme over integers.
Furthermore, for the implementation of Gentry’s fully homomorphic encryption
scheme, this secret key attack requires O(λ) time.

Related Work
In [5], Hall et al. presented a reaction attack against several public key cryptosys-
tems, mainly on lattice based cryptosystems and coding based cryptosystems.
By observing the reaction of the decryption procedure, one obtains information
about the secret key and/or message. Compared to the result of [5], where one
does not observe the reaction of the decryption procedure, our attack relies on
the difference of users’ reactions on receiving different results.

In [2], Gennaro et al. presented a non-interactive verifiable computing pro-
tocol, that allows one to outsource its computation to untrusted workers. This
method can be applied to the first two models, where the users can check if the
cloud has modified the demanded computation circuit. However, it is impossible
for this method to be applied to the third model. In addition, the main obstacle
of using this technique is its computation efficiency. Initially, this protocol re-
quires a one time pre-processing to generate a minimum garbled circuit, which
takes O(C) × poly(λ) time, where C is in function of the computation circuit,
and λ is the security parameter. Then, for each new computation circuit, one
is required to modify the minimum garbled circuit, using a fully homomorphic
encryption scheme. Thus, we argue that this method is impractical.

Other related work of this paper can be found in [6].

2 Background

2.1 Fully Homomorphic Encryptions

The idea of fully homomorphic encryption was raised by Rivest, Adleman and
Dertouzos [7], shortly after the invention of RSA [8]. A fully homomorphic en-
cryption scheme consists of following four algorithms:

– KeyGen(λ): Input a security parameter λ, it outputs public key pk, secret
key sk.

– Encrypt(m, pk): Input a message m and the public key pk, it outputs a
corresponding ciphertext c.

– Decrypt(c, sk): Input a ciphertext c and the secret key sk, it outputs a
corresponding message m.

– Eval(pk, c1, c2, . . . , cn, Cn): Input a public key pk, n ciphertext c1, c2, . . . , cn
and a permitted circuit Cn, it outputs Cn(c1, c2, . . . , cn).

Following this notion, schemes that support partial homomorphism have been
proposed. Recently, Gentry [3,4] successfully provided a framework for construct-
ing homomorphic encryption schemes (referred to as the Gentry scheme) and,
further, he provided a concrete construction. In addition, subsequent works based
on his framework have been proposed recently (such as [9,10,11]). For instance,

422 Z. Zhang, T. Plantard, and W. Susilo

in [12] (referred to as Gentry-Halevi scheme), the author optimized the per-
formance of Gentry scheme, while in [11] (referred to as vDGHV scheme),
the author proposed an integer variant of Gentry scheme. In the following, for
clarity, we will review Gentry’s framework.

2.2 Gentry’s Framework

Gentry’s framework for constructing fully homomorphic encryption schemes is
based on creating a function to perform two atomic operations which will allow
the user to build any kind of circuit. Effectively, any circuit can be built with two
atomic functions, namely addition + and multiplication × over F2 (see [3,4]).
Therefore, to evaluate any circuit, we are only required to be able to add and
multiply over F2 two encrypted bits.

We note that, to ensure security, such an encryption function is required
to be indistinguishable, namely Enc(m0) �= Enc(m1) �⇒ m0 �= m1. To build
such a function, ⊕ and ⊗, Gentry used a simple model. Gentry defined the two
functions f+ and f× which are equivalent to decrypting both encrypted bits,
adding or multiplying such decrypted bits and then encrypting the resulting
bits (See Figure 1).

Fig. 1. f+,×

Fig. 2. Gentry’s fully homomorphic encryption model

However, if f+ and f× return the desired result for⊕ and⊗, the bits are clearly
readable and therefore they do not maintain the intended security requirement.

To achieve this required property, Gentry used an encryption scheme which
allows evaluation of short circuits. Therefore, it encrypts the ciphertext with

Reaction Attack on Outsourced Computing with FHE 423

a second cryptosystem. Hence, it can remove the first encryption securely to
perform the addition or the multiplication (See Figure 2).
Using such a technique, Gentry simplified the quest of constructing a fully homo-
morphic encryption that can evaluate any circuit on encrypted data by finding
an encryption system that can evaluate only some short circuits, namely f+ and
f×. In [4,3], Gentry built such an encryption scheme using ideal lattices. This
work was followed by other fully homomorphic encryption schemes based also
on ideal lattices [10,9]. Another type of encryption scheme respecting Gentry’s
model requirement was also proposed in [11] using integers.

2.3 The vDGHV Fully Homomorphic Encryption Scheme

In this subsection, we describe the fully homomorphic encryption scheme over
integers (vDGHV scheme), instead of Gentry scheme, since this scheme uses
integers rather than ideal lattice, and therefore, it is easier to demonstrate and
explain, and later incorporate our idea into.

vDGHV scheme consists of a somewhat homomorphic encryption scheme
(SHE) that supports limited additions and multiplications, and the bootstrap-
ping technique to break such limitation.

The somewhat homomorphic encryption scheme consists of four algorithms:

– KeyGen(λ): Input a security parameter λ, it firstly generates parame-
ters {α, β, γ, t, n} in function of λ. It then generates a secret odd integer
p ∈ (2β , 2β+1), n different integers {ri ∈ [−2α, 2α)} and another n differ-
ent integers {gi ∈ [0, 2γ−β)}, respectively. It finally outputs the public key
pk = {xi = gip+ 2ri} and secret key sk = {p}.

– Encrypt(m, pk): Input the public key pk and a message m ∈ {0, 1}, it
chooses a random subset s ⊆ pk and output c = m+2r+

∑
xi∈s xi mod x0,

where x0 is the smallest in {xi}, r ∈ [−2α, 2α) is a random noise.
– Decrypt(c, sk): Input the secret key sk = {p} and a ciphertext c, it outputs

m = (c mod 2) ⊕ (�c/p� mod 2), where �c/p� returns the closest integer of
c/p.

– Evaluate(c1, c2, ..., ck, P , pk). It outputs P(c1, c2, ..., ck), where P is a k-
inputs evaluation polynomial whose circuit depth is lower than the maximum
circuit depth allowed by this SHE.

This SHE supports homomorphic additions and multiplications, when α " β.
For instance, suppose c1 = m1 + g1p+ 2r1 and c2 = m2 + g2p+ 2r2 for certain
g1, r1, g2, r2, the product of two ciphertext c1c2 = m1m2 + 2(r1m2 + r2m1 +
2r1r2) + p(g1m2 + 2g1r2 + g2m1 + 2g2r1 + g1g2p). One can observe that the
decryption of c1c2 is m1m2, as long as 2(r1m2 + r2m1 + 2r1r2) ∈ (−p/2, p/2].
Therefore, the above SHE is somewhat homomorphic.

However, the homomorphic circuit depth is limited, i.e., the noise grows after
each operation, and eventually it is possible that the absolute value of the noise
will be greater than p/2 and a decryption error is then being generated.

Suppose we want to evaluate a circuit whose depth is greater than this SHE
permits, we break the circuit into several sub-circuits. For each sub-circuit, the

424 Z. Zhang, T. Plantard, and W. Susilo

absolute value of resulted noise is less than the threshold (p/2). Then we refresh
the resulted ciphertext using the bootstrapping technique. We describe the boot-
strapping technique in general. We refer the readers to their original scheme[11]
for more details.

To bootstrap, firstly, they modify the decryption circuit. As we have shown
earlier, the noise grows significantly faster in a multiplication than in an addition.
Therefore, vDGHV scheme used a squashing method that breaks the decryption
circuit from one multiplication into several additions. The squashing technique
is as follows:

– Generate x = �2κ/p�, where κ is a parameter in λ that is greater than β+1.
– Build a bit sequence S =< s1, s2, . . . , sη >, si ∈ {0, 1}, with

∑
si = θ. S

becomes the new secret key.
– Choose n random integers ui between 0 and 2κ+1, such that

∑n
i siui =

x mod 2κ+1.
– Set yi = ui/2

κ. Then
∑

siyi = 1/p+ ε, where ε is negligible compared with
1/p.

– New ciphertext is a vector z =< z1, z2, . . . , zη >, generated by zi = [c× yi]2.
– New decryption circuit becomes m = [c− �

∑
si × zi�]2

As a result, the decryption circuit now consists only additions, while the growth
of noise in additions is extremely slow. Then, because the modified decryption
circuit depth is relatively low, now it is possible to carry out the decryption
circuit homomorphically, through the proposed SHE.

In practice, they encrypt ciphertexts, denoted by {Enc(zi)} and the secret
keys, denoted by {Enc(si)}. Denote CD the decryption circuit, then

Decrypt(CD, {Enc(zi)}, {Enc(si)}) = Enc(m).

This is because firstly CD({zi}, {si}) = m and secondly, CD can be carried out
homomorphically. Therefore, we obtain a new ciphertext Enc(m).

The new ciphertext, Enc(m) has a refreshed noise level (less than 2α), which
means Enc(m) can be evaluated again. By doing this repeatedly, we can eval-
uate circuit with any depth homomorphically. Therefore, a fully homomorphic
encryption scheme is achieved.

2.4 Security Models

In the following, we describe briefly both Chosen-Plaintext Attack (CPA) [13]
and Chosen-Ciphertext Attack (CCA) [14] attacks for completeness.

The IND-CPA security game is defined as follows:

1. The challenger runs KeyGen algorithm and outputs a secret key sk and a
public key pk;

2. The attacker is given an encryption oracle that computes the functionality
Encrypt(m, pk);

3. The attacker then generates two ciphertexts m0 and m1;

Reaction Attack on Outsourced Computing with FHE 425

4. The challenger generates c = Encrypt(mb, sk), where b ∈ {0, 1};
5. The attacker outputs b′.

We say that an encryption scheme is CPA secure if the advantage of the attacker
to win the game (Pr[b = b′]− 1/2) is negligible.

The IND-CCA-1/2 security game is defined as follows:

1. The challenger runs KeyGen algorithm and outputs a secret key sk and a
public key pk;

2. The attacker is given two oracles, an encryption oracle and a decryption
oracle;

3. The attacker then generates two ciphertexts m0 and m1;

4. The challenger generates c = Encrypt(mb, sk), where b ∈ {0, 1};
5. (Only for CCA-2) The attacker is given the two oracles again, but it can not

query on c;

6. The attacker outputs b′.

We say that an encryption scheme is CCA-1/2 secure if the advantage of the
attacker to win the game (Pr[b = b′]− 1/2) is negligible.

3 Our Reaction Attack

In this section, we will firstly introduce our message attack that recovers a mes-
sage of any kind of fully homomorphic systems used in the outsourced compu-
tation, in probabilistic manner. Then, we show that by adapting our attack in
Gentry’s framework, we can recover the secret key. We note that our attack de-
scribed in this section is applicable to all three models in the first section. For
simplicity, we uses the first model.

Fig. 3. Using Fully Homomorphic Encryption in a Cloud Search Scenario

426 Z. Zhang, T. Plantard, and W. Susilo

3.1 A Message Attack

The Idea. In this subsection, we describe our message attack. For any given
ciphertext, our attack recovers the message with provability ε.

We will first illustrate our high level construction for clarity. To use fully ho-
momorphic encryption schemes in outsourced computation scenarios, the users
firstly upload their encrypted data to the cloud. Then, they submit their de-
manded circuits to the cloud, in an on-demand fashion. The demanded circuit
consists either some data and an evaluation function, or merely an evaluation
function only. The cloud processes users’ data through the requested circuits,
and returns the result.

Ideally, all the data, including the results, are encrypted, and hence, a mali-
cious cloud provider cannot gain information from the users, i.e., let ε1 be the
possibility of m = 1, then for any ciphertext, | ε1 − 1/2 | is negligible from the
cloud provider’s point of view.

Nevertheless, we notice that the attacker can modify the encrypted circuits/re-
sults by adding some random ciphertext c that encrypts a message m. Because
homomorphism is enabled, modifying the demanded circuits/results will affect
the plaintext eventually. To be more precise, if the added random ciphertext
encrypts a 0, the returned result remains the same; while if the added random
ciphertext encrypts a 1, the returned result is modified. By observing the users’
reactions, the service provider can increase or decrease ε1 accordingly, and even-
tually recover m.

Generally speaking, the cloud provider can compare users’ reaction with their
former reaction, if the users are acting “unexpectedly”, then the cloud can expect
m = 1. For completeness, we list some (but not all) possible reactions that can
be defined as “unexpected” behaviors.

– The users set up a new task much sooner than usual, after they acquire the
result sent by the cloud;

– The circuit of a new task is identical from a former one;
– The number of tasks is significantly higher than average - this occurs when

the cloud provider feeds same faulty information for a certain period.

We note that these users’ reactions are very natural and practical. To anticipate
the reactions is even easier, when the users use a certain software, instead of
expecting the results themselves, to communicate with the cloud. We argue that
this is very common in practice as nobody will conduct this process manually.

However, the success of our attack relies highly on the actions performed by
the users after receiving valid or error results. Hence, if the users act completely
randomly, then our attack will be unsuccessful. Nevertheless, we argue that the
latter usually will not happen in practice, as it is the users’ interest to acquire
the results that they would like to obtain.

An Example. In this subsection, we demonstrate an example of our attack.
Suppose we have a cloud search engine (see Figure 3), which looks up keywords
from database A, and outputs the corresponding results in database B. Database

Reaction Attack on Outsourced Computing with FHE 427

A consists of names of stocks, while database B shows corresponding price for
each stock.

To distinguish from a traditional search engine, the databases of the cloud
search engine are all encrypted, and the search circuit is a homomorphic circuit.
Without losing generality, we use vDGHV scheme to demonstrate our attack.

Table 1. Databases in plaintext

Entry A B

1 AAPL 335
2 GOOG 494
3 MSFT 027
4 SPRD 013
5 NDAQ 024
.

Table 1 shows the databases in plaintext for our example. We note that this
is not exactly the databases stored in the cloud. The cloud maintains multiple
copies of the databases for different users, each copy is encrypted under different
users’ FHE secret key.

Let K, A and B denote the binary form of the keyword, database A and
database B, respectively. Let ki, ai and bi be the i-th digit of K, A and B.
Then, the database in the cloud consists of {Enc(ai)} and {Enc(bi)}. Also, let⊗n

1 ci be c1 ⊗ c2 ⊗ · · · ⊗ cn. A basic search algorithm is defined in Algorithm 1,
and we achieve a fully homomorphic searching algorithm in Algorithm 2 using
the fully homomorphic encryption scheme over integers.

Algorithm 1. Basic Search (K,A,B)

la ← LEN OF WORD A //la = 32
lb ← LEN OF WORD B //lb = 24
for j = 0→END OF ENTRY−1 do

for i = 1→ lb do
ri ← bi+jlb ⊗ (

⊗la
t=1(at+jla ⊕ kt+jla))⊕ ri

end for
end for

As shown in Table 2, suppose we want to look for the price of GOOG, with the
basic search algorithm, we obtain 52, 57, 52 in ASCII code, which is 494. While
with the homomorphic search algorithm, we obtain the third column of Table 2.
The cloud cannot decrypt Enc(52)/Enc(57)/Enc(52), hence, the users’ privacy
is guaranteed. The user holds the secret key, therefore, he/she is the only one
who knows the searching results, while the cloud cannot even distinguish the
difference between the two Enc(52).

428 Z. Zhang, T. Plantard, and W. Susilo

Algorithm 2. Homomorphical Search ({Enc(ki)}, {Enc(ai)}, {Enc(bi)})
la ← LEN OF WORD A //la = 24
lb ← LEN OF WORD B //lb = 32
for j = 0→END OF ENTRY−1 do

for i = 1→ la do
ri ← Enc(bi+jlb)×∏la

t=1(Enc(at+jla) + Enc(kt+jla)) + ri
end for

end for

Table 2. Searching Results in ASC II

Database A Basic Search Homomorphic Search Homo Search + Faulty Info

AAPL 0,0,0 Enc(0), Enc(0), Enc(0) Enc(0),Enc(0),Enc(0)
GOOG 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
MSFT 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
SPRD 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
NDAQ 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
.

result 494 Enc(“494”) error

However, if the cloud acts maliciously, it can recover one bit of message from
c through our attack model, since it adds a value to the keyword. Hence, if
Dec(c) = 0, the algorithm will search for Enc(GOOG) as before, and therefore,
no error will occur, and the user will most likely do nothing. However, ifDec(c) =
1, instead of searching for Enc(GOOG), the input of the algorithm is actually
Enc(GOOH). Therefore, no match will be found. It is reasonable to believe that
the user will start to execute another search, in which case the cloud increases
ε1.

As we have stated, a malicious cloud can also modify the circuit/result ac-
cordingly. However, we notice that in the above example, modifying the result
merely helps our attack, as if the cloud induces an Enc(1), the user will receive
495, which will be recognized as a valid result.

Formal Construction. In this section we show a formal construction of evalu-
ating users’ reactions in terms of timing. We note that our formal construction is
only a function of the time the user responses. In practice, with the aid of other
parameters, the malicious service provider can further increase the successful
rate of this attack.

Let tres be the time period when the user starts a new task after receiving
the result from the cloud. Let tn be the average time when the user sets up
his/her tasks when no error is induced, and te be the minimum time when the
user starts a new task if some error occurs. Assume that tres follows a certain
distribution D0 = f0(t) depending on the average time tn when no error occurs,
and another distribution D1 = f1(t) depending on the te when there exists an
error. As a service provider, we assume the cloud is aware of above information.

Reaction Attack on Outsourced Computing with FHE 429

We note that the success of the message attack relies on the difference between
D0 and D1. For users whose reactions are completely random, i.e., D0 = D1, our
attack will not be successful. However, we argue that, in practice, a reasonable
user will have different distributions for different results.

For any time frame t, D0 has a f0(t) probability to distribute a new task,
while D1 has a f1(t) probability to distribute a new task. As a result, if the
cloud receives a new task at time t, the confidence of m = 0 and m = 1 can be

determined by g0(x) =
f0(t)

f0(t)+f1(t)
and g1(x) =

f1(t)
f0(t)+f1(t)

, respectively.

Later, we can anticipate the successful rate of our attack as follows.
Let ψ = g1(t1) = g2(t2) (t2 > t1), when the cloud wants to build a minimum ψ
confidence. Therefore, any task delivered prior to t1 will give the cloud at least ψ
confidence of m = 1, while any task delivered after t2 will give the cloud at least
ψ confidence of m = 0. Then we can evaluate the successful rate ε. Generally,
it can be expressed by the volume of f1(x) in [0, t1] and [t2,∞) over the total
volume. More formally,

ε =

∫ t1

0

f1(x) dx +

∫ ∞

t2

f1(x) dx∫ ∞

0

f1(x) dx

.

In the case the cloud has not developed sufficient confidence for a certain message
(i.e., it receives a new task at time between t1 and t2), it will induce the same
faulty information to the next several tasks. Suppose the cloud takes n tasks to
develop the confidence, and the corresponding response time are t1, t2, . . . , tn,
then the confidence can be determined by ψ′ = max(ψ′

0, ψ
′
1), where

ψ′
0 =

∏n
i g0(ti)∏n

i g0(ti) +
∏n

i g1(ti)
, ψ′

1 =

∏n
i g1(ti)∏n

i g0(ti) +
∏n

i g1(ti)
.

For instance, if the adversary sends an identical message twice, with response
time t1 and t2, then the possibility of two continuous 0-s and 1-s are g0(t1)g0(t2)
and g1(t1)g0(t2), respectively. We note that it is not possible to have 10 or 01,
as we are using the same ciphertext. As a result, the possibility of 10 and 01 are
eliminated. Therefore, we have

ψ′
0 =

g0(t1)g0(t2)

g0(t1)g0(t2) + g1(t1)g1(t2)
, ψ′

1 =
g1(t1)g1(t2)

g0(t1)g0(t2) + g1(t1)g1(t2)
.

Meanwhile, the new successful rate can be determined by ε′ = εn

εn+(1−ε)n . This

guarantees that we can achieve a very high confidence/successful rate by attack-
ing the same ciphertext repeatedly.

To exemplify our construction, without losing generality, we show a example
where users’ reaction follows a normal distribution (also known as Gaussian
distribution) [15] with the distribution factor σ = 2 (see Figure 4). We note
that for simplicity we uses smooth curves to illustrate the distributions, while in
practise, the actual distribution will be more discrete.

430 Z. Zhang, T. Plantard, and W. Susilo

In this example, tn = 10 minute. Meanwhile, we assume the transmission
time/evaluation time is negligible, which implies te = 0. From this figure, we
obtain a figure that illustrates the confidence of messages in Figure 5. Hence, if
the adversary requires 96% confidence in a single round, the corresponding t1
and t2 are 4 and 6.5, respectively. Therefore, the successful rate by one single

round can be determined by V1+V0

V1+V0+Ve
, which is essentially

∫ 4
0
f1(x)dx+

∫∞
6.5

f1(x) dx∫ ∞
0

f1(x) dx
.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

Pr
ob

ab
ili

ty

Time (minutes)

An Example of Normal Distribution for Users’ Reactions

V1

V0

Ve

Errors: f1(x)
Normal: f0(x)

Fig. 4. An example of Users’ Reactions Using Normal Distribution

On CCA Security. It is well known that for any public key encryption schemes,
the CPA security is essential. Meanwhile, constructing a CCA-2 secure fully
homomorphic encryption scheme is impossible, since homomorphic operations
on ciphertexts are enabled (and also it is due to the “malleability” of the ci-
phertext). Moreover, unfortunately, fully homomorphic encryption schemes that
follow Gentry’s framework cannot be CCA-1 secure due to the bootstrapping
technique. In fact, if a somewhat homomorphic encryption scheme is CCA-1
secure is questionable. Indeed, in [16], the authors presented a CCA-1 attack
against Gentry-Halevi SHE scheme.

We note that the consequence of such an attack might be severe. A CCA-1 at-
tack is an attack model that assumes there exists a decryption oracle. People may
argue that this is just merely an attack model, since in practice, having such an
oracle (or an honest user who is helping the attacker during the learning phase) is
impractical. Further, constructing such an oracle in general is not really feasible.
Nevertheless, with our message attack, it is possible to construct a probabilistic
decryption oracle in practice. Consequently, if for a certain fully homomorphic
encryption scheme, a CCA-1 attack is successful with a non-negligible advantage

Reaction Attack on Outsourced Computing with FHE 431

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
on

fi
de

nc
e

Time (minutes)

An Example of Confidence of message

0.96

6.50.04

m=1
m=0

Fig. 5. An example of Confidence Curve

of φ using a hypothetical deterministic oracle, then one can achieve this attack
with an advantage of φεn using our message attack, where n is the number of
ciphertext required for the CCA-1 attack. Hence, the CCA-1 attack becomes
really practical.

To sum up, we argue that in practice, if a fully homomorphic encryption
scheme is not CCA-1 secure, then it alone cannot deliver secured outsourced
computation.

3.2 The Secret Key Attack

In this subsection, we propose our secret key attack. We show that for any
FHE scheme, even its SHE schem is CCA-1 secure, as long as it uses Gentry’s
bootstrapping technique, it is vulnerable to our attack.

Recall that in Gentry’s framework, binary operations (i.e., ⊕,⊗) of messages
are eventually + and × of ciphertext in a FHE scheme; also, to enable “boot-
strappability”, one has to publish an encryption of its secret key. Therefore, for
any FHE schemes that follows Gentry’s framework, no matter what kind of cir-
cuit the user demands, with our message attack, a malicious cloud recovers one
bit of the secret key through each attack. Eventually, it will recover the whole
secret key.

For instance, as in vDGHV scheme, one publishes {Enc(si)}. The cloud can
recover si through each message attack, and recover S as a result. As another
example, the secret key in Gentry-Halevi scheme [17] is a bit sequence of
1024, while the number of encrypted 1-s is 15. Hence, it takes a maximum 1024
message attacks to recover the secret key.

432 Z. Zhang, T. Plantard, and W. Susilo

One may argue that the secret key may contain too many bits, and therefore,
it is impractical to recover them all. For instance, S in vDGHV scheme contains
λ5 digits, i.e., η ∼ O(λ5). Consequently, to recover all bits becomes impractical.

However, we note that, firstly, our attack can be launched with other attacks.
For instance, with the existence of a decryption oracle, the attack in [16] recovers
the secret key of Gentry-Halevi scheme within O(λ2) queries, consequently,

a CCA attack can break the system with an ελ
2

advantage.
Secondly, we notice that the secret keys of Gentry scheme, and that of

all other schemes following Gentry’s framework, are sparse sequences with a
significantly smaller Hamming weight. As an example, in vDGHV scheme, the
secret key S =< s1, s2, . . . , sη > only has θ 1-s, while the rest are 0-s and θ " η
(i.e., θ = λ, η = λ5). Hence, inducing Enc(si) will not result into any error, in
most cases. In practice, this means using our attack merely increases the error
rate by 1/λ4. This enables a much higher attacking rate for the cloud. The cloud
can induce encrypted secret key bits at all time without being detected.

Finally, because of the special structure of the secret key, we propose an
optimized secret key attack that improves the performance of our secret key
attack significantly. As a result, it only requires O(λ log λ) operations to recover
all λ5 bits. We will describe this optimized attack in the following section.

Optimized Secret Key Attack. In Gentry’s framework, the secret key S =<
s1, s2, . . . , sη > contains η bits, while the Hamming weight θ =

∑η
i si is sig-

nificantly smaller than η. Therefore, we propose two optimizations, using fully
Dichotomy search and block Dichotomy search algorithm.

For the block Dichotomy search algorithm, if we cut the whole secret key into
k blocks, with each block l = η/k bits, with a very high probability the block
will only consist of 0-s. Now, instead of testing the parity of each bit, we test if
a block contains only 0-s. To perform such a task, one generates

b = Enc(1) +

l∏
i

(Enc(1) + Enc(si)),

and test the parity of b. Because homomorphic operations are enabled, if all the
bits are 0-s, then decrypting b will give us 0, and vice versa. As a result, the
adversary recovers l bits in one message attack.

There is one exception, where there are at least one 1 in the block. Hence,
a Dichotomy search algorithm is required. The average case takes place when
there are no more than one encrypted 1 in a block. Therefore, for each encrypted
1, it requires additional log(l) message attacks.

To sum up, this optimization reduces the number of message attacks from η
to k + θ log(η/k). With the configuration of vDGHV scheme/Gentry scheme
(θ ∼ λ and η ' θ), the minimum number for message attacks is O(λ log λ).
While with the configuration of Gentry-Halevi scheme (θ = λ/ logλ and
η = 2�2 log λ), the minimum number for message attacks is O(λ).

While for the fully Dichotomy search algorithm, one cuts the secret key
into two halves for each round. For each half, one generates b′ = Enc(1) +

Reaction Attack on Outsourced Computing with FHE 433∏
i(Enc(1) +Enc(si)). If one or more 1-s is anticipated in any piece, the adver-

sary feeds the user with the inverse of b′, and vice versa. This method is to ensure
that the induced ciphertexts always have a higher probability of encrypting 0-s,
and consequently, the error rate will be minimized. For instance, for the first
round, any half has 1 −

(
η/2
θ

)
/
(
η
θ

)
possibility of having at least a 1. Therefore,

the cloud sends b′ + 1.
In the worst case, the fully Dichotomy search algorithm requires θ log(η/θ)+θ

enquiries. Applying over the FHE schemes, we observe a similar result with
the previous optimization, i.e., O(λ log λ) for vDGHV scheme/Gentry scheme
and O(λ) for Gentry-Halevi scheme. However, we note that in practice, this
optimization might work better, because we will have a higher probability to
eliminate a big block of 0-s.

We use vDGHV scheme to exemplify our secret key attack. The recommended
configuration for this scheme is θ = 80 and η = 805. Our optimization reduces
the number of messages attacks from 805 to approximately 2100. Meanwhile, the
actual successful rate for the secret key attack depends on the confidence from
the message attack. Suppose through the message attack the cloud develops
0.999 confidence on the message (this ratio can be achieved by launching the
message attack repeatedly on a same message), then the cloud can recover the
secret key with a probability of 0.9992100 = 0.122. That is to say, in average case,
the cloud needs to use the secret key attack for 8 times to recover the secret key,
which is unacceptable by the users.

4 Discussion

4.1 Practicality of Our Attack

In practice, errors cannot be eliminated in the outsourced computation scenario.
The users cannot distinguish if it is caused by a malicious service provider, or
by some connection/transmission error, or even by the algorithm itself. As we
have shown before, most of our message attacks in the (optimized) secret key
attack will not cause errors. Even with our optimization, the error rate is still
significantly small, compared with other causes. If λ = 80, the error rate can
be as small as 2.44 × 10−8 for the original secret key attack. Meanwhile, the
cloud can manipulate the attacking rate, i.e., it attacks only when the current
error rate of the network is lower than normal. Therefore, the user is incapable
of detecting this attack.

As a result, most of the decryption errors is generated by other reasons. The
user cannot afford to transfer its data to another cloud every time an error
occurs, since transferring encrypted data is too costly.

One may also argue that when the attacker induces Enc(0) and it might also
be so coincidence that a user is proceeding another search subsequently. Conse-
quently, the attacker would recognize the corresponding bit to be 1. Will this mis-
lead the attacker? Possibly. This is the reason why we stated that our attack is
probabilistic, and we have shown that our attack can minimize the impact of this
event to occur. The attacker performs one attack during a period, instead of one

434 Z. Zhang, T. Plantard, and W. Susilo

interaction. During this period, ε1 may have already been decreased a lot times
for other reasons. Therefore, one increase will not mislead the cloud after all.

4.2 Protecting FHE with Verifiable Computation

In theory, using FHE with verifiable computation will stop our attack in model
1 and 2. Since the user is able to verify the computation, the cloud will not be
able to modify the computation circuit without be detected. As a result, our
attack will be unsuccessful. However, we argue that, in order to use FHE in
those models, one must use verifiable computation all the time.

Moreover, we also observe that, although the cost of verification is low, to
generate the minimum circuit and to homomorphically modify it is costly. Thus,
whether this technique can be used in practise is doubtful.

Finally, as far as model 3 is concerned, the computation circuit is private
to the cloud, hence, verifiable computation protocols are not applicable in this
scenario.

4.3 Other Possible Protections

A possible solution to the secret key attack could be removing the necessity of
bootstrapping technique. If there is such a FHE scheme that supports arbitrary
circuit depth without the bootstrapping technique, then the users can avoid
publishing his/her encrypted secret keys. Unfortunately, so far all FHE schemes
except [18] follow Gentry’s framework, and to bootstrap is essential for them
to achieve fully homomorphic. Meanwhile, even if there exists a FHE scheme
without bootstrapping, by incorporating our attack, the attacker is still capable
of recovering data (but not the secret key) from the users.

To stop the message attack is much more difficult, as one cannot determine
where an error is actually from. A possible solution could be setting up certain
protocols between the service provider and the users. This protocol has to mini-
mize the error rate. Further, whenever an error occurs, the provider has to show
the users’ full details of the evaluation circuit, in order to convince the users.

Another possible but expensive solution would be letting the users to generate
random “meaningless” tasks (or “stubs”) periodically. Whenever the user needs
to use the service, he/she replaces a stub with the one he/she really requires.
Even though the user receives some errors and needs to set up the same task
again, he/she does not process immediately. Instead, he/she will wait till the next
period of sending tasks. As a result, the attacker will not be able to distinguish
if a task is a valid one, or a repeated one (due to message attack), or merely a
random one. Also, the overall average task rate remains the same.

However, we note that this solution is very expensive, as it requires periodic
communications between the users and the cloud. Meanwhile, the user sometimes
has to wait for several periods when he/she requires multiple tasks. As a result,
the availability of the cloud is not always ensured. Further, in practice, the service
providers charge users based on their tasks, and additional random meaningless
tasks will significantly increase the cost of using cloud computing.

Reaction Attack on Outsourced Computing with FHE 435

5 Conclusion

It is widely believed that cloud computing has become the next stage of the
Internet, as it enables outsourced computation. However, how to ensure infor-
mation security and users’ privacy remains a challenging open problem. In this
paper, we showed that, fully homomorphic encryption schemes, although seem
to be a promising candidate, have some problems when they are used in the
context of cloud computing.

Subsequently, we presented a practical message attack against all fully homo-
morphic encryption schemes, in that a malicious cloud can recover the messages
by observing users reactions. With several examples, we showed that in practice,
our message attack has a very high probability to be successful.

In addition, this message attack can be extended to construct a probabilistic
decryption oracle. This brings CCA-1 security as an essential requirement for
constructing a secure fully homomorphic encryption scheme.

Further, because of the bootstrapping technique that is used in Gentry’s
framework, we obtain a secret key attack against all fully homomorphic en-
cryption schemes that follow this framework [11,4,3,9,17,19,10,12,16], and this
secret key attack is very practical that only takes a maximum O(λ log λ) time.

Finally, we argued that CCA-1 security and no bootstrappability are the two
essential requirements for fully homomorphic encryption schemes that can be
used to secure cloud computing scenarios.

References

1. van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-
preserving cloud computing. Cryptology ePrint Archive, Report 2010/305 (2010),
http://eprint.iacr.org/

2. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

3. Gentry, C.: A Fully Homomorphic Encyrption Scheme. PhD thesis, Stanford Uni-
versity (2009)

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

5. Hall, C., Goldberg, I., Schneier, B.: Reaction Attacks against Several Public-Key
Cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999)

6. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616. IEEE
Computer Society (2009)

7. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press
(1978)

8. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

9. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

http://eprint.iacr.org/

436 Z. Zhang, T. Plantard, and W. Susilo

10. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

11. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

12. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

14. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of
Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

15. Georgii, H.O.: Stochastics: Introduction to Probability and Statistics (de Gruyter
Textbook), 1st edn. Walter de Gruyter (2008)

16. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Somewhat
Homomorphic Encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 55–72. Springer, Heidelberg (2012)

17. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and
Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010)

18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Electronic Colloquium on Computational Complexity
(ECCC) 18, 111 (2011)

19. Gentry, C.: Computing arbitrary functions of encrypted data. Commun.
ACM 53(3), 97–105 (2010)

A Blind Digital Image Watermarking Method

Based on the Dual-Tree Complex Discrete
Wavelet Transform and Interval Arithmetic

Teruya Minamoto and Ryuji Ohura

Department of Information Science, Saga University, Saga, Japan
{minamoto,ohura}@ma.is.saga-u.ac.jp

Abstract. We propose a new digital image watermarking method based
on the dual-tree complex discrete wavelet transform (DT-CDWT) and in-
terval arithmetic (IA). Both the DT-CDWT and IA produce redundancy
from the original data. This implies that there is a possibility of devel-
oping a new watermarking method based on the DT-CDWT and IA. We
describe our watermarking procedure in detail and show experimental
results demonstrating that our method gives watermarked images that
have better quality and that are robust against attacks such as marking,
clipping, JPEG and JPEG2000 compressions, median filtering, addition
of Gaussian white noise, addition of salt & pepper noise, rotation and
resizing.

Keywords: Digital watermarking, Dual-tree complex discrete wavelet
transform, Interval arithmetic.

1 Introduction

Many digital image watermarking methods have been proposed over the last
decade. According to whether or not the original signal is available during the
watermark detection process, digital watermarking methods can be roughly cat-
egorized into two types: non-blind and blind. Non-blind methods require the
original image at the detection end, whereas blind methods do not. Blind meth-
ods are more useful than non-blind ones because the original image may not be
available in actual scenarios. The majority of watermarking schemes can be cat-
egorized as algorithms operating either in the spatial domain or in the transform
domain. The spatial domain schemes embed a watermark by modifying the pixel
values directly so that common image processing operations can eliminate the
watermark. In contrast, the transform domain schemes are more robust against
signal processing attacks. Popular transforms used in digital watermarking are
based on the frequency domain, such as the discrete cosine transform (DCT)
and the discrete wavelet transform (DWT). These discussions are summarized
in Ref. [2].

Up to now, since the growing adoption of the JPEG2000 standard and the shift
from DCT-based to DWT-based image compression methods, many DWT-based

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 437–449, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

438 T. Minamoto and R. Ohura

watermarking schemes have been proposed. Most of them use the downsampling-
type wavelet transforms described in Ref. [3]. One drawback with this approach,
however, is the lack of translation invariance. Against this background, several
watermarking methods based on the dual-tree complex discrete wavelet trans-
form (DT-CDWT) have been proposed recently [1,5,6]. The DT-CDWT approx-
imates translation invariance [4] and has a redundancy ratio of 2m : 1 in m
dimensions. The watermarking scheme in Ref. [5] is a non-blind type that em-
beds the watermark into the low-frequency components. It seems that the quality
of watermarked images is relatively low, though the authors do not mention the
quality of watermarked images and do not describe how to determine the pa-
rameters used in their scheme. The watermarking scheme in Ref. [1] is a blind
type that embeds the watermark into the six high-frequency components or the
low-frequency components. This schemes resists at most 50% JPEG compression
ratio, and is not robust to image rotation. In Ref. [6], the subimage extracted
from the original image is transformed using the DT-CDWT, and the watermark
is embedded into each low-frequency component using a pseudo random matrix.
This scheme is the blind type and resists some attacks; however, for rotation at-
tacks, this scheme requires the synchronization of orthogonal axes to reconstruct
the watermark.

This paper proposes a new blind digital image watermarking method based
on DT-CDWT. Instead of Refs. [1,5,6], we use a new DT-CDWT proposed in
Ref. [10]. This DT-CDWT allows reconstruction by introducing redundancy into
the transform and achieves perfect translation invariance (PTI). Our method
is an extension of the watermarking method proposed in Ref. [7] where the
downsampling-type DWT [3] and interval arithmetic (IA) [8] are used. Accord-
ing to Ref. [7], a combination of the DWT and IA produces high-frequency com-
ponents containing low-frequency components, and both the DT-CDWT and IA
introduce redundancy produced by the original data. Thus we expect that a new
robust image watermarking method based on the DT-CDWT and IA may be
developed. Our proposed method is not only robust to spatial and frequency
attacks, such as marking, clipping, JPEG and JPEG2000 compressions, median
filtering, addition of Gaussian white noise, and addition of salt & pepper noise,
but also rotation and resizing. Moreover, we do not require any synchronization
of orthogonal axes to extract the watermark designed for a rotation attack.

The remainder of this paper is organized as follows: in Section 2, we briefly
describe the basics of the DT-CDWT and IA. In Section 3, we introduce the DT-
CDWT based on IA, and in Section 4, we propose a new digital watermarking
method. Experimental results are presented in Section 5, and Section 6 concludes
the paper.

2 Preliminaries

Since many readers are probably not familiar with the DT-CDWT proposed in
Refs. [10] and IA [8], an outline is presented here for the sake of convenience.

Digital Image Watermarking Based on DT-CDWT and IA 439

2.1 Dual-Tree Complex Discrete Wavelet Transform (DT-CDWT)

According to Ref. [10], the interpolation of the target digital signal {fl} with
the real and imaginary scaling functions φR(t − k), φI(t − k), and k ∈ Z is
represented as

f(t) =
∑
k

{cR0,kφR(t− k) + cI0,kφ
I(t− k)},

cR0,k =
1

2

∑
l

flφR(l − k), cI0,k =
1

2

∑
l

flφI(l − k),
(1)

and the function f(t) interpolates the target digital signal {fl}, that is, fn =
f(n), n ∈ Z. Here φ(t) is the complex conjugate of φ(t), and Z denotes the
set of integer numbers. Then, the DT-CDWT is calculated by the following
decomposition algorithm:

cRj−1,n =
∑
k

aR2n−kc
R
j,k, dRj−1,n =

∑
k

bR2n−kc
R
j,k,

cIj−1,n =
∑
k

aI2n−kc
I
j,k, dIj−1,n =

∑
k

bI2n−kc
I
j,k, j = 0,−1,−2, . . . ,

(2)

where {aRn , bRn } are the real decomposition sequences, and {aIn, bIn} are the imag-
inary decomposition sequences. Here, {aRn , aIn} are low-pass filters and {bRn , bIn}
are high-pass filters.

The inverse DT-CDWT is calculated by the following reconstruction algo-
rithm:

cRj,n =
∑
k

{gRn−2kc
R
j−1,k + hR

n−2kd
R
j−1,k},

cIj,n =
∑
k

{gIn−2kc
I
j−1,k + hI

n−2kd
I
j−1,k}.

(3)

Here, {gRn , hR
n } are the real reconstruction sequences, and {gIn, hI

n} are the imag-
inary reconstruction sequences.

Using the relations (3) and (1), the original discrete signal {fn} is obtained.

2.2 Interval Arithmetic (IA)

An interval is a set of the form A = [a1, a2] = {t|a1 ≤ t ≤ a2, a1, a2 ∈ R}, where
R denotes the set of real numbers. We denote the lower and upper bounds of an
interval A by inf(A) = a1 and sup(A) = a2, respectively, and the width of any
non-empty interval A is defined by w(A) = a2 − a1. The four basic operations,
namely, addition (+), subtraction (−), multiplication (∗) and division (/), on
two intervals A = [a1, a2] and B = [b1, b2] are defined as follows:

A+B = [a1 + b1, a2 + b2], A−B = [a1 − b2, a2 − b1],

A ∗B = [min{a1b1, a1b2, a2b1, a2b2},max{a1b1, a1b2, a2b1, a2b2}],
A/B = [a1, a2] ∗ [1/b2, 1/b1], 0 /∈ B.

(4)

440 T. Minamoto and R. Ohura

For interval vectors and matrices whose elements consist of intervals, these op-
erations are executed at each element.

From the basic operations (4), in general, the width of the interval expands in
proportion to the number of computations. This phenomena is sometimes called
“interval expansion”. We regard interval expansion as a useful tool to produce
the redundant part from the original signal.

3 DT-CDWT Based on IA

We define the DT-CDWT based on IA by

I(cRj−1,n) =
∑
k

I(Δk)a
R
2n−kc

R
j,k, I(dRj−1,n) =

∑
k

I(Δk)b
R
2n−kc

R
j,k,

I(cIj−1,n) =
∑
k

I(Δk)a
I
2n−kc

I
j,k, I(dIj−1,n) =

∑
k

I(Δk)b
I
2n−kc

I
j,k,

(5)

where I(Δk) = [1 − Δk, 1 + Δk] and Δk are positive real numbers. All opera-
tions are executed using IA, and then cRj−1,n ⊂ I(cRj−1,n), d

R
j−1,n ⊂ I(dRj−1,n),

cIj−1,n ⊂ I(cIj−1,n), and dIj−1,n ⊂ I(dIj−1,n) hold. Thus, the DT-CDWT based on
IA contains the original DT-CDWT. In this sense, the DT-CDWT based on IA
is the redundant set from the original signal. In actual computation, the decom-
positions (5) are computed by using the decomposition sequences listed in Ref.
[10] and interval arithmetic software.

In the case of images, the formulas (2) or (5) are applied in each direction,
that is, the vertical and horizontal directions. This procedure is shown in Fig. 1.
Here C, D, E and F indicate the low-frequency components and high-frequency
components in the vertical, horizontal, and diagonal directions, respectively. The
superscripts R and I stand for real and imaginary, respectively.

4 Watermarking Algorithm

We assume that the binary-valued watermark W consists of −1 and 1. To sim-
plify the remainder of the discussion, we discuss only the DT-CDWT from level
0 to −1.

The embedding procedure is as follows:

1. Apply the DT-CDWT based on IA and the usual DT-CDWT without IA to
the horizontal direction and to the vertical direction, respectively, and obtain
the 16 interval components corresponding to CRR−1 , D

RR−1 ,..., F
II−1 in Fig. 1 and

represent these interval components as I(CRR
−1), I(D

RR
−1),..., I(F

II
−1).

2. Choose several components of the 16 interval components, and represent the
chosen components as I(Si) (i = 1, 2, ..., N, 1 < N < 16).

3. Set S′
i = sup(I(Si)).

4. Replace other components with floating point ones.

Digital Image Watermarking Based on DT-CDWT and IA 441

Fig. 1. Two dimensional DT-CDWT

5. Compute the following sequence using a block-type sliding window of (2k+
1)× (2l + 1):

Si(i, j) = sgn(S′
i(i, j)) ·

1

2k + 1

1

2l+ 1

k∑
K=−k

l∑
L=−l

|S′
i(i+K, j + L)|, (6)

where k and l are fixed natural numbers and sgn(a) is the usual signum
function of a real number a.

6. Embed the watermark W by computing

S̃i(i, j) = Si(i, j)(1 + αW (i, j)), (7)

where 0 < α < 1 is a given hiding factor which adjusts the robustness.
7. Reconstruct the image using S̃i, the components that were replaced with

floating point ones, and the inverse DT-CDWT. Then, the watermarked
image C̃0 is obtained.

In the extraction procedure, we only need information about the components
where the watermark is embedded. This information is critical in extracting the
watermark. The extracting procedure is as follows:

1. Decompose C̃0 into the 16 components C̃RR
−1 , D̃RR

−1 ,..., F̃
II
−1 by using the DT-

CDWT and choose the watermarked components S̃i.
2. Compute W̃i = sgn(|S̃i| − |S̃i|) and W̃e =

∑N
i=1 W̃i.

3. Extract the binary-valued watermark W̃ by thresholding W̃e.

442 T. Minamoto and R. Ohura

In this extraction procedure, we sum up several watermarked pixelsWi to extract
the watermark W̃ . Thanks to this approach, the proposed method is expected
to be more robust than the methods in Ref. [7].

5 Experimental Results

Digital watermarking methods involve a trade-off between robustness and quality
of the watermarked image. Embedding the watermark into the low-frequency
components increases the robustness, but the quality of the watermarked image
declines because the low-frequency components contain most of the important
information representing an image. To maintain the image quality, we must
embed the watermark into the high-frequency components, but this causes the
robustness to decrease simultaneously. However, using a similar argument to
that in Ref. [7], we know that high-frequency components obtained by the DT-
CDWT based on IA contain a low-frequency component. Therefore, we may
expect that the robustness is maintained even if we embed the watermark into
the high-frequency components. In this experiment, we embedded the watermark
into four components: I(DRR−1), I(D

RI−1), I(D
IR−1), and I(DII−1).

Moreover, we set the parameters Δk = 0.02 in (5), k = l = 10 in (6) and
α = 0.9 in (7) so as not to considerably decrease the value of the peak signal
to noise ratio (PSNR), expressed in decibels, which is computed by PSNR =

20 log10

(
255√

1
NxNy

∑Nx
i=1

∑Ny
j=1(C0(i,j)−C̃0(i,j))2

)
, where Nx and Ny are the sizes of

the image in the horizontal and vertical directions, respectively.
To evaluate the performance of the proposedmethod, we adopted 256-grayscale

images of size 256× 256 pixels, namely Lenna, Woman, Boat, and Pepper images,
and a binary watermark of size 128 × 128 pixels, as shown in Fig. 2. We imple-
mented our method using INTLAB[9], which is aMATLAB toolbox that supports
interval arithmetic.

Fig. 2. Original images and watermark

Digital Image Watermarking Based on DT-CDWT and IA 443

Fig. 3 shows the watermarked images, together with PSNRs, obtained by the
proposed method and the watermarks extracted from the watermarked images
without any attack. If k and l in (6) are getting smaller, Si ≈ S′

i holds, and
the quality of the extracted watermark will be declining. Since there are many
points on which Si ≈ S′

i holds even if we set k = l = 10, the watermarks are
typically removed. However, these watermarked images have better quality, and
the inserted watermark is invisible to the naked eye.

PSNR = 32.5257 PSNR = 31.2813 PSNR = 30.5129 PSNR = 32.4108

Fig. 3. Watermarked images and extracted watermarks without any attack

5.1 Non-geometric Attacks

Figs. 4–7 illustrate watermarked images and the extracted watermarks under
attacks such as marking, median filtering, and addition of Gaussian white noise
and salt & pepper noise. Although the extracted images are degraded, we are
able to identify the existence of the watermark at a single glance.

Fig. 4. Watermarked images with marked areas and extracted watermarks

444 T. Minamoto and R. Ohura

Fig. 5. Watermarked images median-filtered in the 3 by 3 neighborhood and extracted
watermarks

Fig. 6. Watermarked images with added Gaussian white noise (mean: 0, variance:
0.001) and extracted watermarks

Fig. 7. Watermarked images with added salt & pepper noise (noise density: 0.005) and
extracted watermarks

Digital Image Watermarking Based on DT-CDWT and IA 445

Figs. 8 and 9 illustrate the watermarks extracted from the watermarked im-
ages under JPEG and JPEG2000 attacks. We are able to barely identify the
existence of the watermark.

18.88% 19.53% 17.41% 21.96%

Fig. 8. Watermarks extracted from watermarked JPEG images compressed with dif-
ferent compression ratios (from the left, Lenna, Woman, Boat, and Pepper)

6.71% 7.71% 5.41% 7.61%

Fig. 9. Watermarks extracted from watermarked JPEG2000 images compressed with
different compression ratios (from the left, Lenna, Woman, Boat, and Pepper)

5.2 Geometric Attacks

We examine for the robustness against geometric attacks such as clipping, ro-
tation and resizing. Figs. 10–12 illustrate the watermarked images and the ex-
tracted watermarks under clipping, rotation, and resizing attacks, respectively.
We are able to identify the existence of the watermark at a single glance.

5.3 Multi-attacks

We also examine for the robustness against several multi-attacks. Figs. 13–14
demonstrate the watermarked images and the extracted watermarks under sev-
eral multi-attacks. We are able to identify the existence of the watermark.

5.4 Comparison with Existing Methods

For comparison of the proposed method with existing methods, we pick up sev-
eral methods described in Refs. [1,5,6,7]. The method in Ref. [7] uses the IA and
DWT, the other methods are based on the DT-CDWT.

446 T. Minamoto and R. Ohura

Fig. 10. 190×190 fragments of watermarked images and extracted watermarks

Fig. 11. Watermarks extracted from watermarked images rotated by angles 1, 5, 10,
and 15 degrees (from left to right at top), and by angles 20, 25, 30, and 45 degrees
(from left to right at bottom)

Digital Image Watermarking Based on DT-CDWT and IA 447

Fig. 12. Watermarks extracted from watermarked image scaled by multiplying ratios
0.8, 0.9, 1.1 and 1.2 (from left to right)

Fig. 13. Watermarked images and watermarks extracted from watermarked images
subjected to JPEG 2000 compression with compression ratio 10.81% and several attacks
(from the left, clipping, addition of Gaussian white noise, addition of salt & pepper
noise, resizing, and rotation)

Fig. 14. Watermarked images and watermarks extracted from watermarked images
subjected to several attacks (from the left, resizing & rotation & clipping, JPEG com-
pression with compression ratio 25.25%& marking, and JPEG 2000 compression with
compression ratio 10.81%& marking

448 T. Minamoto and R. Ohura

Non-geometric attacks
The results shown in Figs. 8 and 9 are superior to those of the methods de-
scribed in Ref. [7] (JPEG compression ratio : 32.3%, JPEG2000 compression
ratio : 24.4%), in Ref. [6](JPEG compression ratio : 35%) and in Ref. [1] (JPEG
compression ratio : 50%). In Ref. [5], the authors do not touch on the robustness
against compression attacks. For other attacks, the performance of our method
is almost the same as the other methods.

Geometric attacks
The methods described in Refs. [1] can not resist geometric attacks. Unlike the
scheme in Ref. [6], we do not require any synchronization of orthogonal axes to
reconstruct the watermark from the rotated watermarked image. Thanks to the
translation invariance property of the DT-CDWT, we can extract the watermark,
whereas the method based on the DWT in Ref. [7] can not.

We would like to remark that the authors in Ref. [5] did not describe how
to choose the parameters which are needed to carry out their method, so we
can not implement their method. Moreover, we would like to point out that
the extraction process in Ref. [6] does not depend on their embedding rule,
and it uses the pixel coordinates where the watermark pixels are embedded, if
we understand correctly. Therefore, we can extract (or make) the watermark
depending on these coordinates from any image in our simulations based on
Ref. [6].

6 Conclusion

We proposed a new watermarking method using the DT-CDWT and IA. To
the best of our knowledge, this work is the first application of the DT-CDWT
proposed in Ref. [10] based on IA. Experimental results demonstrated that our
method gives better-quality watermarked images and is robust to marking, clip-
ping, JPEG and JPEG2000 compressions, median filtering, addition of Gaussian
white noise, addition of salt & pepper noise, rotation and resizing. We have com-
pared our results with the ones described in [1,5,6,7]. From the comparison with
these methods, we can conclude that our proposed method is superior to these.
Moreover, we would like to emphasize that this work opens up new possibili-
ties for interval arithmetic, because interval arithmetic has rarely been used for
image processing except computer graphics [8]. In this sense, we believe that
our approach makes meaningful contributions to the fields of not only digital
watermarking but also interval arithmetic.

References

1. Baolong, G., Leida, L., Jeng-Shyang, P., Liu, Y., Xiaoyue, W.: Robust Image Wa-
termarking Using Mean Quantization in DTCWT Domain. In: Eighth International
Conference on Intelligent Systems Design and Applications, pp. 19–22 (2008)

Digital Image Watermarking Based on DT-CDWT and IA 449

2. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking
and Steganography. Morgan Kaufmann Publishers (2008)

3. Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)
4. Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of

signals. Applied Computational Harmonic Analysis 10(3), 234–253 (2001)
5. Lee, J.J., Kim, W., Lee, N.Y., Kim, G.Y.: A new incremental watermarking based

on dual-tree complex wavelet transform. The Journal of Supercomputing 33, 133–
140 (2005)

6. Mabtoul, S., Ibn-Elhaj, E., Aboutajdine, D.: A Blind Chaos-Based Complex
Wavelet-Domain Image Watermarking Technique. IJCSNS International Journal
of Computer Science and Network Security 6(3), 134–139 (2006)

7. Minamoto, T., Aoki, K.: A blind digital image watermarking method using in-
terval wavelet decomposition. International Journal of Signal Processing, Image
Processing and Pattern Recognition 3(2), 59–72 (2010)

8. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM
(2009)

9. Rump, S.M.: INTLAB - Interval Laboratory,
http://www.ti3.tu-harburg.de/rump/intlab/

10. Toda, H., Zhang, Z.: Perfect translation invariance with a wide range of shapes
of Hilbert transform pairs of wavelet bases. International Journal of Wavelets,
Multiresolution and Information Processing 8(4), 501–520 (2010)

http://www.ti3.tu-harburg.de/rump/intlab/

On the Communication Complexity of Reliable

and Secure Message Transmission
in Asynchronous Networks

Ashish Choudhury1,	 and Arpita Patra2

1 Department of Computer Science
University of Bristol

Ashish.Choudhary@bristol.ac.uk, partho31@gmail.com
2 Department of Computer Science

ETH Zuruch
arpitapatra10@gmail.com, arpita.patra@inf.ethhz.ch

Abstract. In this paper, we study the communication complexity of Re-
liable Message Transmission (RMT) and Secure Message Transmission
(SMT) protocols in asynchronous settings. We consider two variants of
the problem, namely perfect (where no error is allowed in the protocol
outcome) and statistical (where the protocol may output a wrong out-
come with negligible probability). RMT and SMT protocols have been
investigated rigorously in synchronous settings. But not too much at-
tention has been paid to the asynchronous version of the problem. In a
significant work, Choudhury et al. (ICDCN 2009 and JPDC 2011) have
studied the network connectivity requirement for asynchronous perfect
and statistical SMT protocols. Their investigation reveals the following
two important facts:

1. perfect SMT protocols require more network connectivity in asyn-
chronous network than synchronous network.

2. Connectivity requirement of statistical SMT protocols is same for
both synchronous and asynchronous network.

Unfortunately, nothing is known about the communication complexity
of RMT and SMT protocols in asynchronous settings. In this paper, we
derive tight bounds on the communication complexity of the above prob-
lems and compare our results with the existing bounds for synchronous
protocols. The interesting conclusions derived from our results are:

1. RMT: Asynchrony increases the communication complexity of per-
fect RMT protocols. However, asynchrony has no impact on the com-
munication complexity of statistical RMT protocols.

2. SMT: Communication complexity of SMT protocols is more in
asynchronous network, for both perfect as well as statistical case.

� Part of this work was done when the author was working at Center of Excellence in
Cryptology, Indian Statistical Institute Kolkata India. The work in this paper was
partially supported by EPSRC via grant EP/I03126X/1, and by the European Com-
mission through the ICT Programme under Contract ICT2007216676 ECRYPT II.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 450–466, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Communication Complexity of Reliable and SMT 451

1 Introduction

Reliable Message Transmission (RMT) and Secure Message Transmission (SMT)
[4] are fundamental problems in secure distributed computing as well as in cryp-
tography. In the problem of RMT, there are n disjoint channels (also called as
wires) between a sender S and a receiver R. S and R shares no information in
advance. There is a computationally unbounded active adversary, denoted as At,
who can listen and forge the communication over t out of the n wires, where
t < n. S has a message mS, which is a sequence of � elements, chosen from a
finite field F, where � ≥ 1 and |F| > n. The challenge is to design a protocol,
such that at the end of the protocol, R correctly outputs mR = mS. Now there
are two flavors of RMT:

1. Perfect RMT (PRMT): Here mR = mS, without any error.
2. Statistical RMT (SRMT): Here mR = mS with probability at least 1 − δ,

where 0 < δ < 1/2 and is called the error probability.

Notice that there is no issue of privacy in RMT protocols; i.e., the adversary
can also know mS during the protocol execution. If we add the issue of privacy
to RMT protocols, then we arrive at the notion of SMT protocols. In SMT
protocols, we require that not only R outputs mR = mS, but also At should
not learn any information about mS in information theoretic sense. We can have
two types of SMT protocols:

1. Perfect SMT (PSMT): Here mR = mS, without any error.
2. Statistical SMT (SSMT): Here mR = mS with probability at least 1 −

δ, where 0 < δ < 1/2 and is called error probability. However, there is
no compromise in the privacy which should be error free and information
theoretic.

RMT and SMT problem were first formulated by Dolev et al. [4]. Any RMT or
SMT protocol has the following important parameters:

1. Connectivity: It is the total number of wires n (expressed as a function of t)
required in the protocol. We consider following two types of wires:

(a) Uni-directional wires: where all the n wires are uni-directional, directed
from S to R, allowing only one way communication (i.e., no interaction)
from S to R;

(b) Bi-directional wires: where all the n wires are bi-directional, allowing
bi-directional communication (i.e., interaction) between S and R.

2. Communication Complexity: It is the number of field elements communicated
by S and R (expressed as a function of n, �) in the protocol.

RMT and SMT problem have been studied rigorously by several researchers (see
for example [11,13,1,5,7,9,3]) and tight bounds have been established on con-
nectivity and communication complexity of PRMT, SRMT, PSMT and SSMT
protocols. These bounds are summarized in Table 1.

452 A. Choudhury and A. Patra

Table 1. Existing bounds for RMT and SMT protocols

Type of Type of n Bound on
Protocol Channels the Communication Complexity

PRMT Uni-directional n ≥ 2t + 1 [4] Θ
(

n�
n−2t

)
[13,15]

PRMT Bi-directional n ≥ 2t + 1 [4] Θ(�) [15,8]

SRMT Uni-directional n ≥ 2t + 1 [6] Θ(�) [9]

SRMT Bi-directional n ≥ 2t + 1 [6] Θ(�) [9]

PSMT Uni-directional n ≥ 3t + 1 [4] Θ
(

n�
n−3t

)
[5]

PSMT Bi-directional n ≥ 2t + 1 [4] Θ
(

n�
n−2t

)
[13,15,8,7]

SSMT Uni-directional n ≥ 2t + 1 [6] Θ
(

n�
n−2t

)
[9]

SSMT Bi-directional n ≥ 2t + 1 [6] Θ(�) [9]

Remark 1. (Note on the Communication Complexity of SRMT and
SSMT Protocols) In any SRMT/SSMT, the field size |F| is selected as a
function of the error probability δ. So though δ is not figuring out explicitly in
the communication complexity expressions of SRMT/SSMT protocols in Table
1, it is implicitly present. More specifically, each element of F can be represented
by log |F| bits, which will be a function of δ. So if we consider the total number
of bits communicated during any SRMT/SSMT protocol, δ will be present in
the communication complexity expression. This point will be made more clear,
when we discuss our protocols. ��

Motivation of Our Work. The results given in Table 1 assume that the under-
lying network is synchronous, where there is a global clock and the transmission
delay over each wire is bounded by an upper bound. Though theoretically inter-
esting, this does not model the real life scenario (like the Internet) appropriately,
as the delay in the transmission of even a single message will affect the overall
properties of the protocol. In a typical large network like the Internet, every mes-
sage can have arbitrary delay and this can be modeled more appropriately by
asynchronous networks, where no timing assumptions are made. Unfortunately,
unlike synchronous networks, not much attention has been paid to RMT and
SMT protocols in asynchronous settings. In this paper, we improve this situa-
tion by deriving tight bounds on the communication complexity of asynchronous
RMT and SMT protocols.

Asynchronous Network Model. In an asynchronous network, every wire
can have arbitrary, yet finite delay. That is, the messages are assumed to be
delivered eventually. To model the worst case scenario, it is assumed that At

can schedule the messages over each wire and hence can control the transmission
delay over each wire. However, note that At can only schedule the messages sent
over an honest wire, without having any access to them. The inherent difficulty
that arises in designing a protocol in asynchronous settings is that we cannot

On the Communication Complexity of Reliable and SMT 453

distinguish between a slow wire and a corrupted wire. That is, if in the protocol,
some information is supposed to arrive over a wire and if no information arrives,
then it cannot be distinguished whether the wire is honest and the information is
simply delayed (due to the malicious scheduling by At) or whether At has simply
blocked the transmission over the wire by taking its control. Due to this, neither
S nor R can afford to wait for all the n wires to transmit their information, as
waiting for all of them may turn out to be endless. So they have to start the
computation, as soon as they receive information over at least n − t wires and
they may have to ignore the transmission over t (potentially honest) wires. Due
to this limitation, the techniques from the synchronous world cannot be adapted
straight forwardly to the asynchronous settings.

We call the asynchronous PRMT, SRMT, PSMT and SSMT protocols as
APRMT, ASRMT, APSMT and ASSMT respectively. Now in addition to the
reliability and secrecy condition (as in the synchronous protocols), these asyn-
chronous protocols also have to explicitly satisfy termination condition, ac-
cording to which both S and R should eventually terminate the protocol.

Existing Results for Asynchronous Protocols. The first asynchronous
SMT protocol was proposed in [10], where the authors have designed an APSMT
protocol with n = 2t + 1 uni-directional wires from S to R. However, in [2],
Choudhury et al. have shown that the protocol of [10] is insecure. Moreover,
they have also studied the connectivity requirement for APSMT and ASSMT
protocols. More specifically, they have shown the following two surprising results:

1. Any APSMT protocol requires n ≥ 3t + 1 wires, irrespective of whether
the wires are uni-directional or bi-directional. This is quiet surprising, since
we can design PSMT protocols in synchronous settings with n ≥ 2t + 1
bi-directional wires (see sixth row of Table 1). This shows that asynchrony
affects the connectivity of PSMT protocols.

2. Any ASSMT protocol requires n ≥ 2t+ 1 wires, irrespective of whether the
wires are uni-directional or bi-directional. The same connectivity is required
even for SSMT protocols (see the last two rows of Table 1). This implies
asynchrony has no affect on the connectivity of SSMT protocols.

Our Results and Their Significance. So far nothing is known about the
communication complexity of APRMT, ASRMT, APSMT and ASSMT proto-
cols. We derive tight bounds on the communication complexity of the above
problems. These bounds are summarized in Table 2.

Comparing Table 1 and Table 2, we find the following surprising facts:

1. PRMT: Asynchrony increases the communication complexity of PRMT
protocols. With n = 2t + 1 bi-directional wires, PRMT protocol can be
designed with a communication complexity of Θ(�) (second row of Table 1),
where as APRMT protocol must have a communication complexity of Θ(n�)
(second row of Table 2).

2. SRMT: Asynchrony does not affect the communication complexity of SRMT
protocols. In this case, the communication complexity is same for both

454 A. Choudhury and A. Patra

Table 2. Our Bounds for Asynchronous RMT and SMT Protocols

Type of Type of n Bound on
Protocol Channels the Communication Complexity

APRMT Uni-directional n ≥ 2t + 1 Θ
(

n�
n−2t

)

APRMT Bi-directional n ≥ 2t + 1 Θ
(

n�
n−2t

)

ASRMT Uni-directional n ≥ 2t + 1 Θ(�)

ASRMT Bi-directional n ≥ 2t + 1 Θ(�)

APSMT Uni-directional n ≥ 3t + 1 Θ
(

n�
n−3t

)

APSMT Bi-directional n ≥ 3t + 1 Θ
(

n�
n−3t

)

ASSMT Uni-directional n ≥ 2t + 1 Θ
(

n�
n−2t

)

ASSMT Bi-directional n ≥ 2t + 1 Θ
(

n�
n−2t

)

synchronous as well as asynchronous protocols (third and fourth row of Table
1 and Table 2 respectively).

3. PSMT: Asynchrony increases the communication complexity of PSMT pro-
tocols. From [2], asynchrony increases the connectivity requirement of PSMT
protocols. Our results show that the same holds even for the communication
complexity (see the sixth row of Table 1 and Table 2).

4. SSMT: Interestingly, we find that asynchrony even increases the communi-
cation complexity of SSMT protocols. Specifically, for n = 2t+1 bi-directional
wires, SSMT protocol can be designed with a communication complexity of
Θ(�) (last row of Table 1), where as ASSMT scheme must have a commu-
nication complexity of Θ(n�) (last row of Table 2). However, [2] shows that
asynchrony does not increase the connectivity of SSMT protocols.

The Road-Map. We present our results on APRMT, ASRMT, APSMT and
ASSMT in Section 2, 3, 4 and 5 respectively. We conclude the paper and discuss
few open problems in Section 6.

2 Bound on the Communication Complexity of APRMT

Throughout Section 2, we assume n ≥ 2t+1, as n ≥ 2t+1 wires (uni-directional
or bi-directional) are required for any PRMT protocol (Table 1), we require the
same for APRMT protocols as well.

2.1 Bounds for Uni-directional Wires

Theorem 1. Any APRMT protocol, executed over n (n ≥ 2t+1) uni-directional

wires has a communication complexity of Ω
(

n�
n−2t

)
.

Proof: Easy, as the bound holds for PRMT protocols [13]. ��

On the Communication Complexity of Reliable and SMT 455

Theorem 2. Let there n (n = 2t+ 1) uni-directional wires from S to R. Then
there exists an APRMT protocol with communication complexity of O(n�) =

O
(

n�
n−2t

)
.

Proof: Consider the following protocol: To reliably send a message of size �, S
sends the message over all the n wires. R waits for a message received identically
over t + 1 wires and output the message. The output is correct, since at least
one wire out of these t + 1 wires is honest, which will deliver the original mes-
sage. Moreover, termination is guaranteed since there are at least t + 1 honest
wires, which will eventually deliver correct message. It is easy to verify that the
communication complexity is O(n�). ��

2.2 Bounds for Bi-directional Wires

LetS andR be connected byn bi-directionalwires, denoted byW = {w1, . . . , wn},
where n ≥ 2t+1. Then we show that any APRMT protocol has a communication

complexity of Ω
(

n�
n−2t

)
. For this, we prove the following:

1. We first show that the information exchanged over any n− 2t wires should
completely determine the message in any APRMT protocol executed over n
bi-directional wires (Lemma 1).

2. Next, we show that any APRMT protocol where the information exchanged
over any n− 2t wires completely determine the message, must communicate

Ω
(

n�
n−2t

)
(Lemma 2).

Lemma 1. In any APRMT protocol executed over n ≥ 2t + 1 bi-directional
wires, the information exchanged over any n − 2t wires completely determines
the message.

Proof: On contrary, let ΠAPRMT be an APRMT protocol where the information
exchanged over any n−2t wires is independent ofmS. We divide the set of n wires
into three groups, namely G1, G2 and G3. The groupG1 consists of the first n−2t
wires w1, . . . , wn−2t, group G2 consists of the next t wires wn−2t+1, . . . , wn−t

and group G3 consists of the last t wires wn−t+1, . . . , wn. Now according to our
assumption, the information exchanged over the wires in group G1 (consisting of
n− 2t wires) in any execution of ΠAPRMT will be independent of message. That
is, there exist a pair of messages, say mS

1 and mS
2 such that the information

communicated over G1 while sending mS
1 and respectively mS

2 are same. We
define the following variables with respect to any execution E of ΠAPRMT:

1. time(E,R, wi): lists the arrival time-stamps of different messages (with re-
spect to the local clock of R) received by R along wire wi, for i = 1, . . . , n
in execution E.

2. time(E,S, wi): lists the arrival time-stamps of the different messages (with
respect to the local clock of S) received by S along wire wi, for i = 1, . . . , n
in execution E.

3. Etime: denotes the total time taken (with respect to R) by execution E; i.e.,
the time at which R terminates the protocol in execution E.

456 A. Choudhury and A. Patra

Since ΠAPRMT is an APRMT protocol, any execution E of ΠAPRMT must termi-
nate. Now consider the following two possible executions of ΠAPRMT, E1 and E2.
Let R terminates E1 (E2) at time Etime

1 (Etime
2), correctly outputting mS

1 (mS
2).

1. Execution E1: The random coins of S and R are r1 and r2 respectively. S
wants to reliably send the messagemS

1 . The adversary strategy is to passively
listen (without modifying them) the communication over the wires in group
G2 and arbitrarily delaying the communication over the wires in group G3,
till the time Etime

1 + Etime
2 + 1. Let α and β1 denote the messages that are

exchanged between S andR, along the wires in groupG1 andG2 respectively.
2. Execution E2: The random coins of S and R are r3 and r2 respectively. S

wants to reliably send the message mS
2 �= mS

1 . The adversary strategy is to
passively listen (without modifying them) the communication over the wires
in group G2 and arbitrarily delaying the communication over the wires in
group G3, till the time Etime

1 +Etime
2 +1. Let α and β2 denote the messages

that are exchanged between S and R, along the wires in group G1 and G2

respectively. Notice that α is same as in execution E1 due to our assumption
about the distribution of information over the wires in G1 in ΠAPRMT.

We now show another possible execution of ΠAPRMT and an adversary strategy,
where R outputs an incorrect message.

3. Execution ECor: The random coins of S and R are r1 and r2 respectively. S
wants to reliably send the messagemS

1 . Let α denote the messages exchanged
over the wires in G1. Notice that α is same as in execution E1 and E2. Now
the adversary strategy in ECor is as follows: adversary delay any information
along the wires in group G3 for time Etime

1 + Etime
2 + 1. In addition, the

adversary controls the wires in groupG2 in Byzantine fashion and change the
communication over these wires, such that R gets messages corresponding
to β2 along G2, while S receives messages corresponding to β1 along G2.
Moreover, adversary schedules the messages along the wires in G1 and G2 in
such a way that time(ECor,S, wi) = time(E1,S, wi), for every wi ∈ G1 ∪G2

and time(ECor,R, wi) = time(E2,R, wi), for every wi ∈ G1 ∪ G2. Thus the
view of S is α β1, while view of R is α β2.

Thus the view of S in E1 and ECor are same, so S will assume that mS
1 has

been communicated reliably. However, the view of R in ECor is same as in E2

and hence R will output mS
2 . But this violates the perfect reliability property of

ΠAPRMT, which is a contradiction. Hence ΠAPRMT does not exist. ��

Lemma 2. Any APRMT protocol tolerating At executed over n (n ≥ 2t+1) bi-
directional wires, in which the information exchanged over any n−2t wires com-

pletely determine the message, has a communication complexity of Ω
(

n�
n−2t

)
.

Proof: Let ΠAPRMT be an APRMT protocol, executed over n bi-directional
wires (where n ≥ 2t + 1), to reliably send a message of size �, such that the
information exchanged over any n− 2t wires completely determine the message.
We now define the following notations:

On the Communication Complexity of Reliable and SMT 457

1. M denotes the message space from where S selects the message to be sent.
So M = F�.

2. Tm
i denotes the set of all possible transmissions that can occur on wire

wi ∈ {w1, . . . , wn}, when S transmits message m ∈ M using ΠAPRMT.
3. For j ≥ i, Mm

i,j ⊆ Tm
i ×Tm

i+1× . . .×Tm
j denotes the set of all possible trans-

missions that can occur over the wires {wi, wi+1, . . . , wj}, when S transmits
message m ∈ M using protocol ΠAPRMT.

4. Mi,j =
⋃

m∈MMm
i,j and Ti =

⋃
m∈M Tm

i . We call Ti as the capacity of wire
wi and Mi,j as the capacity of the set of wires {wi, wi+1, . . . , wj}.

In protocol ΠAPRMT, one element from the set Ti is transmitted over each wire
wi, for i = 1, . . . , n. Moreover, each element of the set Ti can be represented
by log |Ti| bits. Thus, the lower bound on the communication complexity of
ΠAPRMT is Σn

i=1 log |Ti| bits. In the sequel, we try to estimate Ti.
Since the transmission over any set of n − 2t wires in ΠAPRMT completely

determines the message, it must hold that |M2t+1,n| ≥ |M|.
Though the above relation must hold for any set of n− 2t wires, for simplicity,
we have focussed specifically on the last n− 2t wires. From the definition of Ti

and Mi,j , we get
n∏

i=2t+1

|Ti| ≥ |M2t+1,n| ≥ |M|.

Let g = n − 2t. The above inequality holds for any selection of g wires D ⊂
{w1, . . . , wn}, where |D| = g; i.e.,

∏
wi∈D |Ti| ≥ |M|. In particular, it holds

for every selection Dk = {wkg+1 mod n, wkg+2 mod n, . . . , wkg+g mod n}, with
k ∈ {0, . . . , n − 1}. If we consider all the Dk sets collectively, then each wire is
counted exactly g times in the collection. Thus, the product of the capacities of
all Dk yields the capacity of the full wire set to the gth power and also since each
Dk has capacity at least |M|, we get

n−1∏
k=0

∏
wj∈Dk

|Tj | =
(

n∏
i=1

|Ti|
)g

, and |M|n ≤
n−1∏
k=0

∏
wj∈Dk

|Tj |

and therefore

n log(|M|) ≤ g
n∑

i=1

log(|Ti|).

As log(|M|) = � log(|F|), from the above inequality, we get

n∑
i=1

log(|Ti|) ≥
(
n� log(|F|)

g

)
≥

(
n� log(|F|)
n− 2t

)
.

As mentioned earlier,
∑n

i=1 log(|Ti|) denotes the lower bound on the commu-
nication complexity in bits. From the above inequality, we find that the lower

bound is
(

n� log(|F|)
n−2t

)
bits. Now each field element can be represented by log(|F|)

bits. Thus the lower bound is
(

n�
n−2t

)
field elements. ��

458 A. Choudhury and A. Patra

From the previous two lemmas, we get the following theorem.

Theorem 3. Any APRMT protocol executed over n (n ≥ 2t+ 1) bi-directional

wires has a communication complexity of Ω
(

n�
n−2t

)
.

Any protocol executed over n uni-directional wires can also be executed over n
bi-directional wires. From Theorem 2, there exists an APRMT protocol which
can be executed over n = 2t+1 wires and requires a communication complexity

of O
(

n�
n−2t

)
. Thus the bound in Theorem 3 is tight.

3 Bounds on the Communication Complexity of ASRMT

Throughout Section 3, we assume n ≥ 2t + 1. These many wires wires (uni-
directional or bi-directional) are required for any SRMT protocol (Table 1). So
it will also be required for ASRMT protocols.

3.1 Bounds for Uni-directional Wires

Theorem 4. Any ASRMT protocol executed over the n (n ≥ 2t + 1) uni-
directional wires has a communication complexity of Ω(�).

Proof: Easy, as any ASRMT protocol has to at least send the message. ��
We now show that the bound in Theorem 4 is asymptotically tight. That is,
suppose there exists n = 2t+ 1 uni-directional wires from S to R and consider

a finite field F, where |F| = t2

δ . Then we design an ASRMT protocol tolerating
At called ASRMT-Uni-Directional, which reliably sends a message mS of size
(t + 1)2 = Θ(n2) field elements and has a total communication complexity of
O(n2). The protocol has an error probability of δ. The high level idea of the
protocol is as follows: let the n wires be denoted by W = {w1, . . . , wn} and let
mS = {mS

i,j : i, j = 0, . . . , t}, consisting of (t + 1)2 elements of F. S selects a

bi-variate polynomial QS(x, y) of degree-t in x and y, whose (t+1)2 coefficients
are elements of mS. Now QS(x, y) is evaluated at y = 1, . . . , n to obtain the
uni-variate polynomials fS

i (x) = QS(x, i) and fS
i (x) is sent over wire wi (by

sending its coefficients). To recover mS, R should correctly recover QS(x, y)
which requires R to know t + 1 correct fS

i (x)’s. In order to facilitate R to
identify the correct fS

i (x)’s, S authenticates each fS
i (x) using n different secret

authentication keys and sends the authentication information and authentication
key across the n wires. Now at the receiving end, R will consider an fS

i (x) as
valid only if it passes the authentication test with respect to the keys of t + 1
wires. Since at least one of these t + 1 wires is honest and the adversary will
have no information about the authentication keys delivered over an honest wire,
with very high probability a polynomial considered as valid by R will be indeed
a correct polynomial. Moreover, there are at least t + 1 honest wires, who will
eventually deliver t+ 1 correct fS

i (x)’s. The complete details are in Fig. 1.

On the Communication Complexity of Reliable and SMT 459

Computation and Communication by S:

1. Corresponding to the message mS = {mS
i,j : i, j = 0, . . . , t}, S forms the bivariate

polynomial QS(x, y) =
∑ i=t

j=t

i=0,j=0 m
S
i,jx

iyj .

2. For i = 1, . . . , n, S computes fS
i (x) = QS(x, i) and the authentication values

AuthS
ij = fS

i (KeyS
ij), corresponding to random authentication keys KeyS

ij , for j =
1, . . . , n.

3. For i = 1, . . . , n, S sends the following to R over wire wi and terminates:
(a) The degree-t polynomial fS

i (x);
(b) n authentication keys KeyS

ji, for j = 1, . . . , n;
(c) n authentication values AuthS

ji, for j = 1, . . . , n.

Message Recovery by R:

For r = 0, . . . , t, R does the following in iteration r:

1. Let WR be the set of wires wi over which R receives a complete set of values; i.e.,
(a) A degree-t polynomial fR

i (x);
(b) n Authentication keys KeyR

ji , for j = 1, . . . , n;
(c) n authentication values AuthR

ji, for j = 1, . . . , n.
Let WR

r denote the contents of WR, when WR contains exactly t + 1 + r wires.
2. Wait until |WR| ≥ t + 1 + r. Now corresponding to every wi ∈WR

r , R computes

Supporti = {wj ∈ WR
r : AuthR

ij = fR
i (KeyR

ij)

3. If Supporti ≥ t + 1, then R concludes that fR
i (x) is a valid polynomial.

4. If R finds t + 1 valid polynomials, then using them R constructs the bi-variate

polynomial QR(x, y) =
∑ i=t

j=t

i=0,j=0 m
R
i,jx

iyj , outputs mR = {mR
i,j : i, j = 0, . . . , t}

and terminates the protocol. Otherwise R proceeds to the next iteration.

Fig. 1. Protocol ASRMT-Uni-Directional with n = 2t + 1 unidirectional wires

Lemma 3. In protocol ASRMT-Uni-Directional, if R concludes that fR
i (x) is a

valid polynomial, then fR
i (x) = fS

i (x) except with probability t
|F| .

Proof: The lemma trivially holds without any error if wi is honest. So let
wi be a corrupted wire, which delivers fR

i (x) �= fS
i (x). In order that fR

i (x) is
considered as a valid polynomial by R, it must hold that Supporti ≥ t + 1.
This further implies that there exists at least one honest wire, say wj , such that
wj ∈ Supporti. This implies that AuthR

ij = fR
i (KeyRij). Now notice that wj

is an honest wire and so AuthR
ij = AuthS

ij = fS
i (KeySij) and KeyRij = KeySij .

However At will have no information about AuthR
ij and KeyRij , as they are sent

over wj . So the probability that fR
i (KeySij) = fS

i (KeySij), even if fR
i (x) �= fS

i (x)

is at most t
|F| . This is because two different polynomials of degree-t can agree

on at most t points and KeySij is selected randomly by S. So except with error

probability t
|F| , f

R
i (x) = fS

i (x) for every valid polynomial fR
i (x). ��

460 A. Choudhury and A. Patra

Lemma 4 (Termination). Rwill eventually terminateASRMT-Uni-Directional.

Proof: The proof follows from the fact that there always exists at least t + 1
honest wires, who will eventually deliver valid polynomials. ��

Lemma 5 (Communication Complexity). ASRMT-Uni-Directional has a
communication complexity of O(n2) to send a message of size (t+1)2 = Θ(n2).

Proof: Easy and follows from the protocol description. ��

Lemma 6 (Reliability). In protocol ASRMT-Uni-Directional,R will output the
correct message, except with error probability δ.

Proof: From Lemma 3, fR
i (x) = fS

i (x) for every valid polynomial fR
i (x), except

with probability t
|F| . In the worst case, out of the t+1 wires which have delivered

valid polynomials, t could be corrupted. So the probability that R outputs an

incorrect message is at most t2

|F| = δ (since |F| = t2

δ). ��

Theorem 5. Assume that there are n (n = 2t+1) uni-directional wires from S
to R. Then there exists an ASRMT scheme which can reliably send a message
containing Θ(n2) elements from F by communicating O(n2) elements from F,

where |F| = t2

δ and δ is the error probability.

3.2 Bounds for Bi-directional Wires

It is obvious that Θ(�) can be the most tight bound on the communication
complexity of any ASRMT protocol, irrespective of whether the wires are uni-
directional or bi-directional. Now in the previous section, we have already shown
that this bound is achieved if we consider only uni-directional wires. The same
bound will also hold even if we consider bi-directional wires.

Till now, we have focussed only on RMT protocols, without worrying about
the privacy. We next begin our discussion on SMT protocols, where we have to
ensure privacy, in addition to reliability.

4 Bounds on the Communication Complexity of APSMT

Throughout Section 4, we assume that n ≥ 3t+ 1 since n ≥ 3t+ 1 wires (uni-
directional or bi-directional) are required for any APSMT protocol [2].

4.1 Bounds for Uni-directional Wires

In [5], it is shown that any PSMT protocol has a communication complexity

of Ω
(

n�
n−3t

)
, when there exists n ≥ 3t + 1 uni-directional wires from S to R.

The lower bound will also hold for APSMT protocols. Moreover, in [2], the
authors have designed an APSMT protocol, which requires a communication

complexity of O(n�) = O
(

n�
n−3t

)
to send a message of size �, provided there are

n = 3t+1 uni-directional wires from S to R. From this discussion, we can state
the following theorem.

On the Communication Complexity of Reliable and SMT 461

Theorem 6. Any APSMT scheme executed over n uni-directional wires from

S to R, where n ≥ 3t+ 1 has a communication complexity of Θ
(

n�
n−3t

)
.

4.2 Bounds for Bi-directional Wires

LetS andR be connected byn bi-directionalwires, denoted byW = {w1, . . . , wn},
where n ≥ 3t+1. Then we show that any APSMT protocol has a communication

complexity of Ω
(

n�
n−3t

)
. To derive the lower bound, we use an approach similar

to the one used Theorem 3. Specifically, we show the following:

1. We first show that in any APSMT protocol executed over n bi-directional
wires, where n ≥ 3t + 1, the information exchanged over any n − 2t wires
completely determine the message (Lemma 7).

2. Next, we show that any APSMT protocol where the information exchanged
over n − 2t wires completely determine the message has a communication

complexity of Ω
(

n�
n−3t

)
(Lemma 8).

Lemma 7. In any APSMT protocol executed over n bi-directional wires, where
n ≥ 3t+ 1, the information exchanged over any n − 2t wires should completely
determine the secret message mS.

Proof: The proof follows using same arguments as in Lemma 1. ��

Lemma 8. Any APSMT protocol executed over n (n ≥ 3t + 1) bi-directional
wires, in which the information exchanged over any n − 2t wires completely

determine the message, has a communication complexity of Ω
(

n�
n−3t

)
.

Proof: Here we will use same arguments as used in Lemma 2. But we will
also use an additional fact about APSMT protocols. Let ΠAPSMT be an APSMT
protocol, executed over n bi-directional wires (where n ≥ 3t + 1), to securely
send a message of size �, such that the information exchanged over any n − 2t
wires completely determine the message. We now define the notations M, Tm

i ,
Mm

i,j and Mi,j , which are exactly the same as in Lemma 2.
Since ΠAPSMT is an APSMT protocol, it implies that in ΠAPSMT, the trans-

mission on any set of t wires is independent of the secret message. If it is not the
case, then adversary will also know the secret message by passively listening the
t wires. Thus, for any two messages m1,m2 ∈ M, it must hold that

Mm1
2t+1,3t = Mm2

2t+1,3t.

Notice that the above relation must hold for any selection of t wires. We focussed
on the set {w2t+1, . . . , w3t} just for simplicity. Now in ΠAPSMT, the transmission
over any set of n− 2t wires has full information about the secret message. Thus
it must also hold that

Mm1
2t+1,n ∩Mm2

2t+1,n = ∅.
We again stress that the above relation must hold for any selection of n − 2t
wires. We focussed on the set {w2t+1, . . . , wn} just for simplicity. As mentioned

462 A. Choudhury and A. Patra

earlier, Mm
2t+1,3t will be same for all messages m ∈ M. Thus, in order that

the above relation holds, it must hold that Mm
3t+1,n is unique for every message

m ∈ M. This implies that
|M3t+1,n| = |M|.

From the definition of Ti and Mi,j , we get

n∏
i=3t+1

|Ti| ≥ |M3t+1,n| ≥ |M|.

Let g = n − 3t. The above inequality holds for any selection of g wires D ⊂
{w1, . . . , wn}, where |D| = g; i.e.,

∏
wi∈D |Ti| ≥ |M|. In particular, it holds

for every selection Dk = {wkg+1 mod n, wkg+2 mod n, . . . , wkg+g mod n}, with
k ∈ {0, . . . , n − 1}. If we consider all the Dk sets collectively, then each wire is
counted exactly g times in the collection. Thus, the product of the capacities of
all Dk yields the capacity of the full wire set to the g-th power, and since each
Dk has capacity at least |M|, we get

|M|n ≤
n−1∏
k=0

Πwj∈Dk
|Tj | =

(
n∏

i=1

|Ti|
)g

,

and therefore

n log(|M|) ≤ g

n∑
i=1

log(|Ti|).

As log(|M|) = � log(|F|), from the above inequality, we get

n∑
i=1

log(|Ti|) ≥
(
n� log(|F|)

g

)
≥

(
n� log(|F|)
n− 3t

)
.

Now
∑n

i=1 log(|Ti|) denotes the lower bound on the communication complexity
of protocol ΠAPSMT in bits. From the above inequality, we find that the lower

bound is
(

n� log(|F|)
n−3t

)
bits. Now each field element can be represented by log(|F|)

bits. Thus the lower bound is
(

n�
n−3t

)
field elements. ��

Theorem 7. Any APSMT protocol executed over n (n ≥ 3t+ 1) bi-directional

wires has a communication complexity of Ω
(

n�
n−3t

)
.

Now any protocol executed over n uni-directional wires can also be executed
over n bi-directional wires. From Theorem 6, there exists an APSMT protocol
which can be executed over n = 3t + 1 uni-directional wires and requires a

communication complexity of O
(

n�
n−3t

)
. So the bound in Theorem 7 is tight.

5 Bounds on the Communication Complexity of ASSMT

Any ASSMT protocol requires n ≥ 2t+1 wires, irrespective of whether the wires
are uni-directional or bi-directional [2]. So we assume that n ≥ 2t+1 throughout
Section 5.

On the Communication Complexity of Reliable and SMT 463

5.1 Bounds for Uni-directional Wires

Theorem 8. Any ASSMT protocol executed over n (n ≥ 2t+1) uni-directional

wires has a communication complexity of Ω
(

n�
n−2t

)
.

Proof: The theorem follows from the fact that any SSMT protocol with n ≥
2t+1 uni-directional wires [9] requires the same communication complexity. ��
We now show that the bound in Theorem 8 is asymptotically tight. Let there
exists n = 2t+1 uni-directional wires W = {w1, . . . , wn} from S to R. Then we
design a protocol called ASSMT-Uni-Directional, which securely sends a message
mS = {mS

k : k = 1, . . . , n} containing � = n elements from the field F and has a

communication complexity of O(n2) = O
(

n�
n−2t

)
, where |F| = nt

δ .

The high level idea of the protocol is as follows: for each mS
k , sender generates

n Shamir shares [12]. Now the ith share of each mS
k is sent over wire wi. However,

it is not enough to just send the shares, as the adversary can delay the commu-
nication over t honest wires and it can also change the shares over t corrupted
wires. So S also sends some authentication information, which will enable R
to identify the corrupted shares with very high probability. For performing the
authentication, we use similar idea as used in our ASRMT protocol (see Fig.
1), with some additional steps. More specifically, we interpret the ith shares of
n secrets as the coefficients of a polynomial fS

i (x) of degree-n. This polynomial
will be sent over wi (this is same as sending the ith shares for the n messages).
Now the polynomial fS

i (x) can be authenticated by n random authentication
keys KeySij by computing AuthS

ij = fS
i (KeySij). However, the communication

of KeySij, Auth
S
ij over wire wj will breach the privacy of fS

i (x), if wi is honest
and wj is corrupted. To avoid this, we perform the authentication in the follow-
ing way: corresponding to KeySij, we select a random masking key MaskSij and

define AuthS
ij = fS

i (KeySij) + MaskSij . Finally, KeySij , Auth
S
ij will be sent over

wj , while MaskSij will be sent over wi, along with fS
i (x). As we will show later,

this will help to maintain the perfect privacy and will also help to identify the
corrupted shares with very high probability. Once R receives t+1 correct shares
(which he will receive eventually), R will correctly recover each mS

k with very
high probability. The details are in Fig. 2.

We now prove the properties of protocol ASSMT-Uni-Directional.

Lemma 9. In protocol ASSMT-Uni-Directional, if R concludes that fR
i (x) is a

valid polynomial, then fR
i (x) = fS

i (x) except with probability n
|F| .

Proof (sketch): Follows using similar arguments as in Lemma 3 and the fact
that two different polynomials of degree-(n) can agree on at most n points. ��
Lemma 10 (Termination). RwilleventuallyterminateASSMT-Uni-Directional.

Proof: The proof follows from the fact that there always exists at least t + 1
honest wires, who will eventually deliver valid polynomials. ��
Lemma 11 (Communication Complexity). ASSMT-Uni-Directional has a
communication complexity of O(n2) to send a message of size n.

464 A. Choudhury and A. Patra

Computation and Communication by S:

1. For k = 1, . . . , n, corresponding to mS
k , S selects a random degree-t polynomial

pSk (x), where pSk (0) = mS
k and computes ShS

ki = pSk (i), for i = 1, . . . , n.
2. For i = 1, . . . , n, S forms a polynomial fS

i (x) = ShS
1i ·x+ShS

2i ·x2 + . . .+ShS
ni ·xn.

3. For i = 1, . . . , n, corresponding to the polynomial fS
i (x), S selects n random au-

thentication keys KeyS
ij and n random masking keys MaskS

ij , for j = 1, . . . , n. S
then computes AuthS

ij = fS
i (KeyS

ij) + MaskS
ij .

4. For i = 1, . . . , n, S sends the following to R over wire wi and terminates:
(a) The polynomial fS

i (x) of degree-n by sending its coefficients;
(b) n Masking keys MaskS

ij , for j = 1, . . . , n;
(c) n authentication keys KeyS

ji and n authentication values AuthS
ji, for j =

1, . . . , n.

Message Recovery by R:

For r = 0, . . . , t, R does the following in iteration r:

1. Let WR be the set of wires wi over which R receives a complete set of values; i.e.,
(a) A polynomial fR

i (x) of degree-n;
(b) n Masking keys MaskR

ij , for j = 1, . . . , n;
(c) n authentication keys KeyR

ji and n authentication values AuthR
ji, for j =

1, . . . , n.
Let WR

r denote the contents of WR, when WR contains exactly t + 1 + r wires.
2. Wait until |WR| ≥ t + 1 + r. Now corresponding to every wi ∈WR

r , R computes

Supporti = {wj ∈ WR
r : AuthR

ij = fR
i (KeyR

ij) + MaskR
ij}

3. If Supporti ≥ t + 1, then R concludes that fR
i (x) is a valid polynomial. Let

fR
i (x) = ShR

1i · x + ShR
2i · x2 + . . . + ShR

ni · xn. Then ShR
ki is considered as a valid

share for mS
k , for k = 1, . . . , n.

4. If R finds t + 1 valid polynomials, then from their coefficients, R finds t + 1 valid
shares for each mS

k , for k = 1, . . . , n. Now using these valid shares, R reconstructs
the degree-t polynomials pRk (x), outputs mR = {pRk (0) : k = 1, . . . , n} and termi-
nates the protocol. Otherwise R proceeds to the next iteration.

Fig. 2. Protocol ASSMT-Uni-Directional. Let mS = {mS
k : k = 1, . . . , n}.

Proof: Easy and follows from the protocol description. ��

Lemma 12 (Reliability). In protocol ASSMT-Uni-Directional, R will output
the correct message, except with error probability δ.

Proof(sketch): The proof follows using similar arguments as used in Lemma
6 and the fact that |F| = nt

δ . ��

Lemma 13 (Perfect Secrecy). In protocol ASSMT-Uni-Directional, the mes-
sage mS will be perfectly secure.

On the Communication Complexity of Reliable and SMT 465

Proof: Without loss of generality, let w1, . . . , wt be under the control of At.
So the adversary will know t shares for each mS

k , for k = 1, . . . , n through the
polynomials fS

1 (x), . . . , f
S
t (x). The adversary will also know Authji, for j =

t+1, . . . , n and i = 1, . . . , t. But this will not reveal any new information about
fS
j (x), for j = t + 1, . . . , n, as the adversary will not know the corresponding
masking keys Maskji, for j = t+1, . . . , n and i = 1, . . . , t because they are sent
over wires wj , for j = t + 1, . . . , n, which are honest. Now the secrecy of each
mS

k follows from the properties of Shamir secret sharing [12]. ��

Theorem 9. Let there exists n (n ≥ 2t+ 1) uni-directional wires from S to R.
Then there exists an ASSMT protocol, which securely sends a message of size

� = n and requires a communication complexity of O(n2) = O
(

n�
n−2t

)
.

5.2 Bounds for Bi-directional Wires

Theorem 10. Any ASSMT protocol executed over n (n ≥ 2t+1) bi-directional

wires has a communication complexity of Ω
(

n�
n−2t

)
.

Proof(sketch): We give the high level idea. We first claim that in any ASSMT
protocol executed over n (n ≥ 2t + 1) bi-directional wires, the communication
over any set of n− t wires should completely determine the secret message. This
is obvious, since the adversary can arbitrarily delay the communication over t
wires. So R should have the capacity to recover the message even from the com-
munication done over n− t wires. We next claim that in any ASSMT protocol,
the communication over any set of t wires should be completely independent of
the secret message. Now from these two facts, we can derive that the communi-

cation complexity will be Ω
(

n�
n−2t

)
. ��

From Theorem 9, there exists an ASSMT scheme, which can be executed over
n = 2t + 1 uni-directional wires and which has an asymptotic communication

complexity of O
(

n�
n−2t

)
. The same protocol can also be executed over n = 2t+1

bi-directional wires. Thus the bound in Theorem 10 is asymptotically tight.

6 Conclusion and Open Problems

In this paper, we have resolved the communication complexity of asynchronous
RMT and SMT protocols. Our investigation reveals several insightful facts. We
have considered settings where all the n wires are either uni-directional or bi-
directional. It is interesting to consider a more general setting, where certain
wires are directed from S to R and certain wires are directed from R to S.

References

1. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically Optimal Two-Round Per-
fectly Secure Message Transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 394–408. Springer, Heidelberg (2006)

466 A. Choudhury and A. Patra

2. Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Pandu Rangan, C.:
On Minimal Connectivity Requirement for Secure Message Transmission in Asyn-
chronous Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN
2009. LNCS, vol. 5408, pp. 148–162. Springer, Heidelberg (2008); Full version to
appear in JPDC 2011

3. Choudhury, A.: Protocols for reliable and secure message transmission. Cryptology
ePrint Archive, Report 2010/281 (2010)

4. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
JACM 40(1), 17–47 (1993)

5. Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards Optimal and Ef-
ficient Perfectly Secure Message Transmission. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)

6. Franklin, M., Wright, R.: Secure communication in minimal connectivity models.
Journal of Cryptology 13(1), 9–30 (2000)

7. Kurosawa, K., Suzuki, K.: Truly Efficient 2-Round Perfectly Secure Message Trans-
mission Scheme. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
324–340. Springer, Heidelberg (2008)

8. Patra, A., Choudhary, A., Srinathan, K., Pandu Rangan, C.: Constant Phase Bit
Optimal Protocols for Perfectly Reliable and Secure Message Transmission. In:
Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221–235.
Springer, Heidelberg (2006)

9. Patra, A., Choudhary, A., Srinathan, K., Pandu Rangan, C.: Unconditionally reli-
able and secure message transmission in undirected synchronous networks: Possi-
bility, feasibility and optimality. IJACT 2(2), 159–197 (2010)

10. Sayeed, H., Abu-Amara, H.: Perfectly secure message transmission in asynchronous
networks. In: IEEE Symposium on Parallel and Distributed Processing, pp. 100–
105 (1995)

11. Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in syn-
chronous networks. Information and Computation 126(1), 53–61 (1996)

12. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

13. Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal Perfectly Secure Mes-
sage Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
545–561. Springer, Heidelberg (2004)

14. Srinathan, K., Patra, A., Choudhary, A., Pandu Rangan, C.: Probabilistic Perfectly
Reliable and Secure Message Transmission – Possibility, Feasibility and Optimality.
In: Srinathan, K., Pandu Rangan, C., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 101–122. Springer, Heidelberg (2007)

15. Srinathan, K., Prasad, N.R., Pandu Rangan, C.: On the optimal communication
complexity of multiphase protocols for perfect communication. In: IEEE S&P, pp.
311–320 (2007)

Two-Party Round-Optimal Session-Policy
Attribute-Based Authenticated Key Exchange

without Random Oracles

Kazuki Yoneyama

NTT Information Sharing Platform Laboratories
yoneyama.kazuki@lab.ntt.co.jp

Abstract. In this paper, we propose a new one-round session-policy attribute-
based (implicitly) authenticated key exchange (SP-ABAKE) scheme which al-
lows expressive access controls and is secure in the standard model (StdM). Our
scheme enjoys the best of both worlds: efficiency and security. The number of
rounds is one (optimal) while the known secure scheme in the StdM is not one-
round protocol. Our scheme is comparable in communication complexity with
the most efficient known scheme whereas it cannot be proved in the StdM. Also,
our scheme is proved to satisfy security against advanced attacks like key com-
promise impersonation under a non-interactive number-theoretic assumption. We
construct our scheme based on Waters’ ciphertext-policy attribute-based encryp-
tion with the generic conversion technique to the CCA-security from the CPA-
security.

Keywords: authenticated key exchange, attribute-based authenticated key ex-
change, session-policy, CK model.

1 Introduction

1.1 Background

How to provide flexible access control mechanisms over encrypted data is getting
important today because people ordinarily exchange sensitive information over the In-
ternet in various web services. Attribute-based encryption (ABE) solves this issue cryp-
tographically. There are two flavors of ABE; one is key-policy ABE (KP-ABE) and the
other is ciphertext-policy ABE (CP-ABE). In a KP-ABE scheme, a party possesses a
secret key corresponding to an access policy and can decrypt a ciphertext corresponding
to a set of attributes that satisfies the access policy of the party. In a CP-ABE scheme,
a party possesses a secret key corresponding to a set of attributes and can decrypt a ci-
phertext corresponding to an access policy that the set of attributes of the party satisfies.
Thus, a typical application of KP-ABE is content delivery services and that of CP-ABE
is data storage services.

On the other hand, how to provide flexible access control mechanisms for establish-
ing a secure channel is also important because a kind of web services is unsuitable to the
authentication based on identity. Attribute-based authenticated key exchange (ABAKE)

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 467–489, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

468 K. Yoneyama

is recently studied to solve such an issue. For example, ABAKE is useful in the situ-
ation that some sensitive information (e.g., medical history) is sent with the secure
channel established by an ABAKE scheme. Then, parties may hope to hide their iden-
tities from the peer of the session though the peer is needed to be a qualified registered
person. By using ABAKE, parties can establish the secure channel with a qualified
registered person without revealing their identities. ABAKE has also two flavors like
ABE; one is key-policy ABAKE (KP-ABAKE) and the other is session-policy ABAKE
(SP-ABAKE). KP-ABAKE is an analogy of KP-ABE; that is, a key generation center
(KGC) issues the static secret key according to an access policy of a party by using the
master secret key and the party specifies a set of attributes as an authentication condi-
tion in a session. If the set of attributes a party specifies satisfies the policy of the peer
and vice versa, the common session key is established. SP-ABAKE is an analogy of
CP-ABE; that is, the role of the set of attributes and the access policy is swapped from
KP-ABAKE.

There are several previous studies about ABAKE. Wang et al. [1,2,3] proposed sim-
ple variants of ABAKE as prior works. In their schemes, attributes are regarded as
identification strings and there is no mechanism for evaluating policy. Gorantla et al. [4]
proposed a one-round (i.e., round-optimal) generic construction of group SP-ABAKE
based on attribute-based KEM. Group ABAKE provides qualified parties to establish a
common session key. If underlying attribute-based KEM is expressive (i.e., fine-grained
access policies are allowed), their scheme is also expressive. In the setting of their
scheme, parties do not specify access policies individually. Parties obtain the common
session key if sets of attributes of all of them satisfy a common access policy that is set
in advance. Thus, their scheme fits in a special scenario as each party cannot specify the
access policy which the peer is expected to satisfy each other in the session. A drawback
of their scheme is that the proposed instantiation is proved in the random oracle model
(ROM) and the generic group model (GGM). Steinwandt and Suárez Corona [5] pro-
posed another two-round generic construction of group SP-ABAKE based on attribute-
based signcryption. Like the construction by Gorantla et al. [4], the access policy in a
session is common for all parties in their scheme. Unfortunately, the proposed instan-
tiation (using the encrypt-then-sign signcryption) is also proved in the ROM and in the
selective security setting (i.e., the adversary must specify an attribute or an access pol-
icy of the attack target party before receiving public parameters). Fujioka et al. [6] and
Yoneyama [7] proposed a KP-ABAKE scheme and a SP-ABAKE scheme which sat-
isfy resistance to leakage of session-specific randomness (LSR). Though their schemes
are round-optimal and expressive, security proofs are also given in the ROM and in the
selective security setting.

Beyond the above schemes, Birkett and Stebila [8] proposed a generic construc-
tion (BS scheme) of ABAKE based on predicate-based signatures. The BS scheme
can be used as both KP-ABAKE and SP-ABAKE according to underlying signatures.
Compared with the constructions by Gorantla et al. [4] and Steinwandt and Suárez
Corona [5], the BS scheme allows parties to specify access policies individually; thus,
it has wider applicative scenarios. Also, an additional property that is called creden-
tial privacy (CP) is guaranteed as well as the standard security of the session key. CP
implies that the adversary cannot distinguish between two parties satisfying the same

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 469

access policy. However, the BS scheme has several drawbacks. First, it needs sequential
protocol execution in a session (i.e., a party cannot compute the next message to a peer
without receiving the previous message from the peer; thus, the party must wait the
previous message from the peer). Three-move communication is necessary. Note that
we must distinguish ‘move’ from ‘round’. A message sent by an initiator in one-round
protocols must be independent from a message sent by a responder; that is, parties can
send messages simultaneously. On the other hand, in a kind of two-move protocols, a
message sent by a responder may depend on a received message; that is, the responder
must wait the message from the initiator before sending his message. Thus, such a pro-
tocol (including the BS scheme) is sensitive about the network condition because parties
must send messages sequentially. Most of ABAKE schemes need only one-round in a
session and allow simultaneous computation of each message. This drawback comes
from adopting the signed-Diffie-Hellman (DH) paradigm [9]. Secondly, possible in-
stantiations have several problems. There are some predicate-based (attribute-based)
signature schemes [10,11,12,13]. Instantiations with [10,11] cannot achieve expressive
ABAKE (i.e., these signatures only allow threshold access policies). Since three signa-
ture schemes are proposed in [12], three instantiations of SP-ABAKE with [12] are pos-
sible. One instantiation with [12] is very efficient and expressive, but the security proof
is given in the GGM. Other instantiations with [12] need large communication complex-
ity. The instantiation with [13] provides fully secure and expressive SP-ABAKE scheme
in the standard model (StdM). However, communication complexity of it is larger than
that of the efficient instantiation with [12], depending on the size to represent access
policies.

1.2 Our Contribution

We introduce a two-party SP-ABAKE scheme which has several attractive points com-
pared to existing schemes as follows:

Round complexity. The number of rounds of our scheme is optimal; that is, one-
round. All of previous one-round ABAKE schemes are proved in the ROM or
GGM. The only known ABAKE scheme in the StdM is the BS scheme that needs
three-moves. Moreover, since messages depend on previous one, messages must be
sent sequentially in the BS scheme.

Security in the standard model. The security of our scheme can be proved in the
StdM under a non-interactive assumption (the decisional parallel bilinear DH ex-
ponent (DPBDHE) assumption [14]). Most of existing schemes [4,6,7,5] rely on
the ROM or the GGM. Though one of instantiations of the BS scheme is secure in
the StdM, our scheme is more efficient both in round complexity and communica-
tion complexity. Our scheme is proved in the selective security setting due to the
security of the underlying Waters CP-ABE [14]. Though some of previous schemes
achieve full security, one [4] relies on the ROM and the GGM, and the other [8] is
less efficient than our scheme.

Communication complexity. In our scheme, a message sent by a party in a session
contains 2�+ 2 group elements and a signature and a verification key of a one-time
signature scheme, where � is the size of rows of the matrix according to the access

470 K. Yoneyama

Table 1. Comparison among expressive ABAKE schemes

Access Round Attack Resource Additional Communication
policy complexity model model property complexity

[4] SP 1 round full GGM & ROM none 6 + |ssig| + |svk| → |aCT |
[6] KP 1 round selective ROM wPFS, KCI, LSR k + 1
[7] SP 1 round selective ROM wPFS, KCI, LSR �n + 1
[5] SP 2 rounds selective ROM wPFS 3.5 + |asig| + |aCT |

[8] with [12] SP 3 moves full GGM wPFS, CP � + n + 3
[8] with [13] KP & SP 3 moves full StdM wPFS, CP 7� + 12

Ours SP 1 round selective StdM wPFS, KCI 2� + 2 + |sig| + |vk|

k is the number of attributes specified in a session. |asig| and |aCT | are the sizes of a
signature of an attribute-based signature scheme and a ciphertext of a CP-ABE scheme.
|sig| and |vk| are the sizes of the signature and the verification key of a one-time signature
scheme. For example, when the Mohassel signature [16] is used, |sig| = 2 and |vk| = 4.

policy. For example, when the Boneh-Boyen signature [15] is used, the signature
and the verification key contain 2 and 4 group elements, respectively. It is compa-
rable with the most efficient instantiation of the BS scheme secure in the GGM (a
message sent by a party in a session contains �+n+3 group elements where n is the
size of columns of the matrix according to the access policy.). Also, our scheme
is more efficient than the instantiation of [8] with [13] in the StdM (a message sent
by a party in a session contains 7�+ 12 group elements), especially when an access
policy is complicated (i.e., when � becomes large).

Resistance to advanced attacks. Our scheme satisfies (weak) perfect forward secrecy
(wPFS) and resistance to key compromise impersonation (KCI). wPFS in ABAKE
is formulated as an adversary cannot obtain any information about the session key
even if the adversary can obtain the master secret key of the KGC after the comple-
tion of the session. Resistance to KCI means that an adversary cannot impersonate
an honest party A to another honest party B even if the adversary can obtain the
static secret key of B. The generic construction in [4] does not satisfy wPFS. Also,
the security models of previous ABAKE schemes other than [6] and [7] do not
capture resistance to KCI; that is, this property is not guaranteed in these schemes.
Thus, our scheme is the first ABAKE scheme proved to be resilient to KCI in the
StdM.

Table. 1 shows a comparison among our scheme and existing schemes, which are ex-
pressive.

Our Technique. We construct our scheme based on the CP-ABE scheme by Wa-
ters [14]. The Waters CP-ABE is expressive (due to adopting linear secret sharing) and
efficient in the ciphertext size and the computational cost. Also, security is proved in the
StdM under the DPBDHE assumption. The intuitive strategy to construct our scheme
is as follows: First, parties exchange (a part of) ciphertexts of the Waters CP-ABE
with their respectively specifying access policies. If their attributes satisfy the specified

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 471

access policy each other, then they can share common values. Next, shared values are
converted to be uniformly distributed with a strong randomness extractor. Finally, they
obtain the session key derived from the outputs of a pseudo-random function (PRF)
where keys of the PRF are the outputs of the strong randomness extractor. This session
key derivation technique is similar to the generic construction of AKE [17,18]. Though
it seems to work correctly, there is a problem in the security proof. We must simulate
responses to ciphertexts sent by the adversary. However, since the Waters CP-ABE is
not CCA secure, we cannot decrypt such ciphertexts and the simulation is impossible.
Thus, we use a one-time signature additionally in order to simulate such a case based
on the conversion technique [19,20] to the CCA security from the CPA security.

To prove the security of our scheme, we extend the security model of [8] to capture
wPFS and resilient to KCI. By allowing the adversary to obtain the master secret key
for completed (matching) sessions, we represent wPFS. Also, by allowing the adversary
to obtain the static secret key for the target session that has no matching session, we
represent resilient to KCI.

1.3 Related Works

CP-ABE. The first ABE scheme is proposed by Sahai and Waters [21], called the
fuzzy ID-based encryption, which parties must match at least a certain threshold of at-
tributes. Bethencourt et al. [22] proposed the first CP-ABE scheme which allows the
ciphertext policies to be very expressive, but the security proof is in the generic group
model. Cheung and Newport [23] proposed a provably secure CP-ABE scheme and
their scheme deals with negative attributes explicitly and supports wildcards in the ci-
phertext policies. Kapadia et al. [24] and Nishide et al. [25] also proposed CP-ABE
schemes which achieves hidden ciphertext policies in a limited way, respectively. Shi
et al. [26] proposed a predicate encryption scheme that focuses on range queries over
huge numbers, which can also achieve a CP-ABE scheme with range queries. Boneh
and Waters [27] proposed a predicate encryption scheme based on the primitive called
the hidden vector encryption, which needs bilinear groups whose order is a product
of two large primes; thus, it needs to deal with large group elements and the number
of attributes is fixed at the system setup. Katz et al. [28] proposed a novel predicate
encryption scheme and their scheme is very general and can achieve both KP-ABE
and CP-ABE schemes. Waters [14] proposed expressive and efficient CP-ABE schemes
based on non-interactive assumptions. Lewko et al. [29] proposed the first fully se-
cure CP-ABE scheme. Okamoto and Takashima [30] proposed a CP-ABE scheme
which allows non-monotone access policies and is fully secure under non-interactive
assumptions.

2 Preliminaries

2.1 Access Structure

We introduce the notion of the access structure to represent the access control by the
policy. We show the definition given in [31].

472 K. Yoneyama

Definition 1 (Access Structure [31]). Let {P1, P2, . . . , Pn} be a set of parties. A collec-
tion A ⊆ 2{P1,P2,...,Pn} is monotone if ∀Att1, Att2 : if Att1 ∈ A and Att1 ⊆ Att2 then Att2 ∈
A. An access structure (resp. monotone access structure) is a collection (resp. monotone
collection)A of non-empty subsets of {P1, P2, . . . , Pn}, i.e.,A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets
in A are called the authorized sets, and the sets not in A are called the unauthorized
sets.

Though this definition restricts monotone access structures, it is also possible to (ineffi-
ciently) realize general access structures by having the ’not’ of an attribute as a separate
attribute altogether. Thus, the number of attributes in the system will be doubled.

2.2 Linear Secret Sharing

We use linear secret sharing schemes (LSSSs) to obtain the fine-grained access control.
The LSSS can provide arbitrary conditions for the reconstruction of the secret with
monotone access structures. We show the definition given in [31].

Definition 2 (Linear Secret Sharing Schemes [31]). A secret sharing scheme Π over
a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M with � rows and n columns called the share-generating

matrix for Π . For all i = 1, . . . , �, the ith row of M we let a labeling function
ρ defined the party labeling row i as ρ(i). When we consider the column vector
v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp are
randomly chosen, then Mv is the vector of � shares of the secret s according to Π .
The share (Mv)i belongs to party ρ(i).

The important property of LSSSs is the linear reconstruction property, defined as fol-
lows: Suppose that Π is an LSSS for the access structure A. Let S ∈ A be any autho-
rized set, and let I ⊂ {1, 2, . . . �} be defined as I = {i : ρ(i) ∈ S }. Then, there exist
constants {wi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s according to Π ,
then

∑
i∈I wiλi = s. In [31], it is shown that these constants {wi} can be found in time

polynomial in the size of the share generating matrix M.

Note on Convention. We note that we use the convention that vector (1, 0, 0, . . . , 0) is
the “target” vector for any linear secret sharing scheme. For any satisfying set of rows I
in M, we will have that the target vector is in the span of I. For any unauthorized set of
rows I the target vector is not in the span of the rows of the set I. Moreover, there will
exist a vector w such that w · (1, 0, 0, . . . , 0) = −1 and w · Mi = 0 for all i ∈ I.

2.3 Bilinear Maps

Definition 3 (Bilinear Maps). Let G be a cyclic group of prime order p and g is a
generator of G. We say that e : G ×G → GT is a bilinear map if the following holds:

– For all X, Y ∈ G and a, b ∈ Zp, we have e(Xa, Yb) = e(X, Y)ab,
– e(g, g) � 1.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 473

We say that G is a bilinear group if e and the group operation in G and GT can be
computed efficiently.

2.4 Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption

Let κ be the security parameter and p be a κ-bit prime. Let G be a cyclic group of a
prime order p with a generator g and GT be a cyclic group of the prime order p with a
generator gT . Let e : G × G → GT be a bilinear map. We say that G,GT are bilinear
groups with the pairing e where gT = e(g, g).

The decisional parallel bilinear DH exponent problem is as follows. An adversaryA
is given inputs m =

G,GT , e, p, g, gT , g
c, ga, . . . , g(aq), g(aq+2), . . . , g(a2q),

∀1≤ j≤q gcbj , ga/bj , . . . , gaq/bj , gaq+2/bj , . . . , ga2q/bj ,

∀1≤ j,k≤q,k� j gacbk/bj , . . . , g(aqcbk/bj)

where c, a, b1, . . . , bq ∈ Zp are randomly chosen. For adversaryA, we define advantage

AdvDPBDHE(A) = | Pr[A(m,T = gaq+1c
T) = 1] − Pr[A(m,T = R) = 1]|,

where R ∈ GT is randomly chosen and the probability is taken over the choices of y and
the random tape ofA.

Definition 4 (Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption).
We say that the DPBDHE assumption in G and GT holds if for all polynomial-time
adversaryA, the advantage AdvDPBDHE(A) is negligible in security parameter κ.

The validity of the DPBDHE assumption is proved in the GGM in [14].

2.5 Strong Randomness Extractor

Let Ext : S × X → Y be a function with finite seed space S , finite domain X, and finite
range Y.

Definition 5 (Strong Randomness Extractor). We say that the function Ext is the
(k, ε)-strong randomness extractor if for any distribution DX over X with H∞(DX) ≥ k,
Δ((US , Ext(US , DX)), (US ,UY)) ≤ ε holds, where two US in (US , Ext(US ,DX)) denotes
the same random variable, H∞ denotes min-entropy, Δ denotes statistical distance, and
US ,UX ,UY denotes uniform distribution over S , X, Y, respectively.

2.6 Pseudo-random Function

Let κ be a security parameter and F = {Fk : Domκ → Rngκ}κ be a function family with
a family of domains {Domκ}κ, a family of ranges {Rngκ}κ and a key k.

Definition 6 (Pseudo-Random Function). We say that function family F = {Fs}κ is the
(t, ε)-PRF family if for any distinguisher D with a time-complexity at most t, Advprf =

| Pr[DFk (·) → 1] − Pr[DRF(·) → 1]| ≤ ε, where k is randomly chosen the key space and
RF : Domκ → Rngκ be a truly random function.

474 K. Yoneyama

3 Security Model

In this section, we introduce a security model for SP-ABAKE. Our attribute-based
Canetti-Krawczyk (ABCK) model is an extension of the CK security model [9].

The proposed ABCK model is different from the original CK model in the following
points: (1) the session is identified by a set of attributes SP of party P, (2) resistance to
KCI is captured by giving the static secret key of the target party to the adversary, and
(3) wPFS is captured by giving the master secret key to the adversary same as in the
ID-based AKE.

Syntax. An ABAKE scheme consists of the following algorithms. We denote a party
by P and his associated set of attributes by SP. The party P and other parties are modeled
as a probabilistic polynomial-time Turing machine.

Setup. The setup algorithm Setup takes a security parameter κ as input, and outputs a
master secret key MS K and a master public key MPK, i.e.,

Setup(1κ)→ (MS K,MPK).

Key Generation. The key generation algorithm KeyGen takes the master secret key
MS K, the master public key MPK, and a set of attributes SP given by a party P, and
outputs a static secret key S KSP corresponding to SP, i.e.,

KeyGen(MS K,MPK, SP)→ S KSP .

Key Exchange. The party A and the party B share a session key by performing the
following N-move protocol. A (resp. B) selects a policy AA (resp. AB) as an access
structure, respectively.

A starts the protocol by computing the 1st message m1 by the algorithm Message,
that takes the master public key MPK, the set of attributes SA, the static secret key S KSA

and the policy AA, and outputs 1st message m1. A sends m1 to the other party B.
For i = 2, ...,N, upon receiving the (i − 1)th message mi−1, the party P (P = A or

B) computes the ith message by algorithm Message, that takes the master public key
MPK, the set of attributes SP, the static secret key S KSP , the policy AP and the sent and
received messages m1, . . . ,mi−1, and outputs the ith message mi, i.e.,

Message(MPK, SP, S KSP ,AP,m1, . . . ,mi−1)→ mi.

The party P sends mi to the other user P̄ (P̄ = B or A).
Upon receiving or after sending the final nth message mn, P computes a session key

by algorithm SessionKey, that takes the master public key MPK, the set of attributes SP,
the static secret key S KSP , the policy AP and the sent and received messages m1, ...,mN ,
and outputs a session key K, i.e.,

SessionKey(MPK, SP, S KSP ,AP,m1, . . . ,mN)→ K.

Both parties A and B can compute the same session key if and only if SA ∈ AB and
SB ∈ AA.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 475

Session. An invocation of a protocol is called a session. A session is activated with
an incoming message of the forms (I, SA, SB) or (R, SB, SA,m1), where I and R with
role identifiers, and A and B with user identifiers. If A was activated with (I, SA, SB),
then A is called the session initiator. If B was activated with (R, SB, SA,m1), then B is
called the session responder. After activated with an incoming message of the forms
(I, SA, SB,m1, . . . ,mk−1) from the responder B, the initiator A outputs mk, then may be
activated next by an incoming message of the forms (I, SA, SB,m1, . . . ,mk+1) from the
responder B. After activated by an incoming message of the forms (R, SB, SA,m1, . . . ,mk)
from the initiator A, the responder B outputs mk+1, then may be activated next by an in-
coming message of the forms (R, SB, SA,m1, . . . ,mk+2) from the initiator A. Upon receiv-
ing or after sending the final nth message mn, both parties A and B computes a session
key K.

If A is the initiator of a session, the session is identified by sid = (I, SA, SB,m1),
(I, SA, SB, m1,m2,m3), . . . , (I, SA, SB,m1, . . . ,mN). If B is the responder of a session,
the session is identified by sid = (R, SB, SA,m1,m2), (R, SB, SA, m1, m2, m3, m4), . . . ,
(R, SB, SA,m1, . . . ,mN). We say that a session is completed if a session key is computed
in the session. The matching session of a completed session (I, SA, SB,m1, . . . ,mN) is
a completed session with identifier (R, SB, SA,m1, . . . ,mN) such that SA ∈ AB and SB ∈
AA, and vice versa.

Adversary. The adversaryA that is modeled as a probabilistic polynomial-time Turing
machine controls all communications between parties including the session activation
by performing the following queries.

– Send(message): The message has one of the following forms: (I, SA, SB, m1, . . . ,
mk), or (R, SB, SA, m1, . . . , mk+1). The adversary obtains the response from the
party.

Revealing secret information of parties is captured via the following queries.

– KeyReveal(sid): The adversary obtains the session key for the session sid if the
session is completed.

– StateReveal(sid): The adversary obtains the ephemeral secret key associated with
the session sid. The adversary obtains session state of owner of the session sid, if
the session is not completed (the session key is not established yet). Session state
includes all chosen randomness and intermediate computation results but not the
static secret key.

– Corrupt(P): This query allows the adversary to obtain all information of the party
P (including the static secret key corresponding to the set of attributes SP) and
the adversary totally controls that party. Then, we call P dishonest. If a party P′

possesses SP′ such that SP′ ⊆ SP, then we also call P′ dishonest. Otherwise, we call
P′ honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 7 (Freshness). Let sid∗ = (I, SA, SB,m1, . . . ,mN) or (R, SB, SA,m1, . . . ,mN)
be a completed session between honest users A with the set of attributes SA and B with

476 K. Yoneyama

SB. If the matching session exists, then let sid
∗

be the matching session of sid∗. We say
sid∗ to be fresh if none of the following conditions hold:

1. The adversary poses KeyReveal(sid∗) or KeyReveal(sid
∗
) query if sid

∗
exists,

2. sid
∗

exists and the adversary poses StateReveal(sid∗) or StateReveal(sid
∗
),

3. sid
∗

does not exist and the adversary poses StateReveal(sid∗).

Security Experiment. For our security definition, we consider the following security
experiment. Initially, the adversary A is given a set of honest users, and makes any
sequence of the queries described above. During the experiment,Amakes the following
query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈ {0, 1}, and
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues untilAmakes a guess b′. The adversary wins the game if the
test session sid∗ is still fresh and if A’s guess is correct, i.e., b′ = b. The advantage of
A in the experiment with the ABAKE scheme Π is defined as

AdvABAKE
Π (A) = Pr[A wins] − 1

2
.

We define the security as follows.

Definition 8 (ABCK Security). We say that an ABAKE scheme Π is secure in the
ABCK model if the following conditions hold:

1. If two honest parties completing matching sessions and SA ∈ AB and SB ∈ AA hold,
then, except with negligible probability, they both compute the same session key.

2. For any probabilistic polynomial-time adversary A, AdvABAKE
Π (A) is negligible if

sid
∗

exists and the master secret key is given to the adversary.
3. For any probabilistic polynomial-time adversary A, AdvABAKE

Π (A) is negligible if
sid
∗

does not exist and the static secret key of the owner of sid∗ is given to the
adversary.

Moreover, we say that the ABAKE scheme is selectively secure in the ABCK model, if
A specifies AA in sid∗ (and AB in sid

∗
if sid

∗
exists) at the beginning of the security

experiment.

We remark that the item 2 of Def. 8 corresponds to wPFS and the item 3 corresponds to
resistance to KCI. Both cases imply the standard CK security for ABAKE [8].

4 Round-Optimal SP-ABAKE without Random Oracles

In this section, we provide our two-party SP-ABAKE scheme that allows fine-grained
access structure. Expressiveness of access structures is due to the direct application of
LSSSs for the access control same as the Waters CP-ABE [14]. Our construction is
parameterized by att which specifies the number of attributes in the system.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 477

Waters CP-ABE. First, we review the protocol of the Waters CP-ABE as a warm-up
for our main result.

Setup : For input a security parameter κ, choose p, G, GT , g and gT such that G
and GT are bilinear groups with pairing e : G × G → GT of order κ-bit prime p
with generators g and gT = e(g, g), respectively. Then, output a master public key
MPK := (g, gr, gz

T , h1, . . . , hatt) and a master secret key MS K := gz such that r, z ∈
Zp and h1, . . . , hatt ∈ G are randomly chosen.

Encrypt : For input the master public key MPK, a plaintext m and an LSSS access
structure (M, ρ) where the function ρ associates rows of � × n share-generating
matrix M to attributes, randomly choose u = (u1, . . . , un) ∈ Zn

p and (x1, . . . , x�) ∈
Z�p. For i = 1 to �, find λi = u·Mi where Mi is the vector corresponding to the ith row
of M. Then, output the ciphertext CT := (U′,U, {U}, {X}) such that U ′ = m · (gz

T)u1 ,
U = gu1 , Ui = grλih−xi

ρ(i) and Xi = gxi for 1 ≤ i ≤ � (let {U} denote the set of Ui and
{X} denote the set of Xi for 1 ≤ i ≤ �).

KeyGen : For input the master secret key MS K and a set of attributes S, choose
t ∈ Zp, and compute S ′ = gzgrt, T = gt and S i = ht

i for i ∈ S (let {S } denote the set
of S k for i ∈ S). Then, output a secret key S K := (S ′, T, {S }).

Decrypt : For input a ciphertext CT for the access structure (M, ρ) and a secret key
S K for a set S, let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. We suppose that
S satisfies M and ρ. Then, find {wi ∈ Zp}i∈I such that

∑
i∈I wiλi = α for valid shares

{λi} of any secret α according to M and output the plaintext m as

m = U′ ·
(∏

i∈I e(Ui, T)e(Xi, S ρ(i))
)
/e(U, S ′).

Design Principle. The Waters CP-ABE can be regarded as an attribute-based KEM
scheme. Specifically, a ciphertext contains U′ = mgu1z

T and the decryption algorithm
derives m by computing gu1z

T where m is a plaintext. Thus, we can regard gu1z
T as a KEM

key. In our construction, parties exchange ciphertexts except U′ with their specified
access policies and share two KEM keys gu1z

T and gv1z
T . The shared secret information

gu1z
T and gv1z

T are used to derive the session key. However, only gu1z
T and gv1z

T are not
enough to achieve the security in the ABCK model in Section 3. The ABCK model
allows the adversary to reveal the master secret key in the case that the test session has
the matching session, in order to capture wPFS. We cannot prove the security in such
a case because the simulator cannot embed the instance of the DPBDHE problem to
the master secret key. Thus, we must share grxy

T as an additional shared secret to cre-
ate the session key in order to simulate such a case. We can embed gr = gc, gx = ga

and gy = g(aq) because r is not contained in the master secret key. Also, we must con-
sider the case that the adversary poses Send query and StateReveal query to a session
when the simulator embeds the instance of the DPBDHE problem to the static secret
key. In this case, though the simulator must respond the shared secret (gu1z

T , g
v1z
T , g

rxy
T)

of the session key, it cannot be computed because the Waters CP-ABE is only CPA
secure. Thus, we apply the generic conversion technique [19,20] to the CCA security
from the CPA security with a one-time signature scheme (Gen,Sign,Ver). Specifically,
we use a set W of dummy attributes as well as the set S of real attributes. W is associ-
ated to a verification key of the one-time signature and a ciphertext is specified with a
real access policy and the dummy access policy corresponding to the verification key.

478 K. Yoneyama

If the simulator does not know the static secret key corresponding to S, he can correctly
respond queries of the adversary with the static secret key corresponding to W.

Our Construction. The protocol of our scheme is as follows.

Setup : We set W = {W1,0,W1,1, . . . ,Wk,0,Wk,1} and att′ = att + 2k. For input att′ and
a security parameter κ, choose p, G, GT , g and gT such that G and GT are bilinear
groups with pairing e : G × G → GT of order κ-bit prime p with generators g
and gT = e(g, g), respectively. F : {0, 1}∗ × Kspace → {0, 1}κ be a pseudo-random
function, Ext : G → Kspace be a strong randomness extractor where Kspace is
the key space for F, and (Gen,Sign,Ver) be a one-time signature scheme where
the bit length of a verification key is k. Then, randomly choose h1, . . . , hatt′ ∈ G
and r, z ∈ Zp, and output a master public key MPK := (g, gr, gz

T , h1, . . . , hatt′) and a
master secret key MS K := gz.

KeyGen : For input a set of attributes SP from a party P and MS K, randomly choose
tP ∈Zp, and compute S ′P = gzgrtP , TP = gtP and S Pi = htP

i for i ∈ SP (let {S P} denote
the set of S Pi for i ∈ SP). Then, output a static secret key S KP := (S ′P, TP, {S P}).

Exchange : We suppose that the party A is the session initiator and the party B is the
session responder. A has the static secret key S KA = (S ′A, TA, {S A}) corresponding
to the set of his attributes SA and B has the static secret key S KB = (S ′B, TB, {S B})
corresponding to the set of his attributes SB. Then, A sends to B the message memA

corresponding to the access structure AA, and B sends to A the message memB

corresponding to the access structure AB. Finally, both parties A and B compute
the shared session key S K if and only if the set of attributes SA satisfies the access
structure AB and the set of attributes SB satisfies the access structure AA.
1. A decides an access structure AA which he requires that the set of attributes

SB of B satisfies AA. Next, A runs (vkA, skA) ← Gen(1κ) and sets a dummy
attributes set WA = {W1,vkA1 , . . . ,Wk,vkAk } ⊂ W where vkAi is the ith bit of vkA.
A derives the �A × nA share-generating matrix MA and the labeling function
ρA in an LSSS for the access structure AA ∨ (∧W∈WA W). A randomly chooses
u = (u1, . . . , unA) ∈ ZnA

p and (x, x1, . . . , x�A) ∈ Z�A+1
p . For i = 1 to �A, A finds

λi = u ·MAi where MAi is the vector corresponding to the ith row of MA. Then,
A computes U = gu1 , Ui = grλih−xi

ρA(i), X = gx and Xi = gxi for 1 ≤ i ≤ �A (let
{U} denote the set of Ui and {X} denote the set of Xi for 1 ≤ i ≤ �A). Also, A
runs sA ← SignskA

(U, {U}, X, {X}). A sends memA := (U, {U}, X, {X}, MA, ρA,
vkA, sA) to B.

2. B decides an access structure AB which he requires that the set of attributes
SA of A satisfies AB. Next, B runs (vkB, skB) ← Gen(1κ) and sets a dummy
attributes set WB = {W1,vkB1 , . . . ,Wk,vkBk } ⊂ W where vkBi is the ith bit of vkB.
B derives the �B × nB share-generating matrix MB and the labeling function
ρB in an LSSS for the access structure AB ∨ (∧W∈WB W). B randomly chooses
v = (v1, . . . , vnB) ∈ ZnB

p and (y, y1, . . . , y�B) ∈ Z�B+1
p . For i = 1 to �B, B finds

λi = v · MBi where MBi is the vector corresponding to the ith row of MB. Then,
B computes V = gv1 , Vi = grλih−yi

ρB(i), Y = gy and Yi = gyi for 1 ≤ i ≤ �B (let {V}
denote the set of Vi and {Y} denote the set of Yi for 1 ≤ i ≤ �B). Also, B runs
sB ← SignskB

(V, {V}, Y, {Y}). B sends memB := (V, {V}, Y, {Y}, MB, ρB, vkB, sB)
to A.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 479

3. Upon receiving memB, A checks whether the set of his attributes SA satisfies
the access structure MB and ρB. We suppose that SA satisfies MB and ρB, and
let IA, I′A ⊂ {1, 2, . . . , �B} be defined as IA = {i : ρB(i) ∈ SA} and I′A = {i :
ρB(i) ∈ WB}. A can efficiently find {wAi ∈ Zp}i∈IA and {w′Ai ∈ Zp}i∈I′A such that
∑

i∈IA
wAiλi =

∑
i∈I′A w′Aiλi = α for valid shares {λi} of any secret α according to

MB. Note that, if SA does not satisfy MB and ρB, A cannot find all wAi for i ∈ IA

from the property of LSSSs. A verifies whether the following condition holds:

(V, {V}, Y, {Y} ∈ G) ∧ (1← VervkB(V, {V}, Y, {Y}, sB))∧
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏

i∈IA

(e(Vi, g)e(Yi, hρB(i)))wAi =
∏

i∈I′A

(e(Vi, g)e(Yi, hρB(i)))w′Ai = e(gr,V)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

If not, A aborts. Otherwise, A computes the session key as follows: First, A sets
shared information

σ2 = e(V, S ′A)/
(∏

i∈IA
(e(Vi, TA)e(Yi, S AρB(i)))wAi

)
,

σ1 = (gz
T)u1 , σ3 = e(gr, Y)x.

A computesσ′1 ← Ext(σ1), σ′2 ← Ext(σ2) and σ′3 ← Ext(σ3), sets the session
identity sid = (memA, memB) and the session key S K = Fσ′1 (sid) ⊕ Fσ′2 (sid)
⊕ Fσ′3 (sid), completes the session and erases all temporary information other
than S K.

4. Upon receiving memA, B checks whether the set of his attributes SB satisfies
the access structure MA and ρA. We suppose that SB satisfies MA and ρA, and
let IB, I′B ⊂ {1, 2, . . . , �A} be defined as IB = {i : ρA(i) ∈ SB} and I′B = {i :
ρA(i) ∈ WA}. B can efficiently find {wBi ∈ Zp}i∈IB and {w′Bi ∈ Zp}i∈I′B such that
∑

i∈IB
wBiλi =

∑
i∈I′B w′Biλi = α for valid shares {λi} of any secret α according to

MA. Note that, if SB does not satisfy MA and ρA, B cannot find all wBi for i ∈ IB

from the property of LSSSs. B verifies whether the following condition holds:

(U, {U}, X, {X} ∈ G) ∧ (1← VervkA (U, {U}, X, {X}, sA))∧
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏

i∈IB

(e(Ui, g)e(Xi, hρA(i)))wBi =
∏

i∈I′B

(e(Ui, g)e(Xi, hρA(i)))w′Bi = e(gr,U)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

If not, B aborts. Otherwise, B computes the session key as follows: First, B sets
shared information

σ1 = e(U, S ′B)/
(∏

i∈IB
(e(Ui, TB)e(Xi, S BρA(i)))wBi

)
,

σ2 = (gz
T)v1 , σ3 = e(gr, X)y.

B computesσ′1 ← Ext(σ1), σ′2 ← Ext(σ2) and σ′3 ← Ext(σ3), sets the session
identity sid = (memA, memB) and the session key S K = Fσ′1 (sid) ⊕ Fσ′2 (sid)
⊕ Fσ′3 (sid), completes the session and erases all temporary information other
than S K.

480 K. Yoneyama

Correctness. Seeds of the session key that both parties compute are

σ1 = e(U, S ′B)/
(∏

i∈IB
(e(Ui, TB)e(Xi, S BρA(i)))wBi

)

= e(gu1 , gzgrtB)/
(∏

i∈IB
(e(grλih−xi

ρA(i), g
tB)e(gxi , htB

ρA(i)))
wBi
)

= gu1(z+rtB)
T /

∏
i∈IB

grtBλiwBi
T

= gu1(z+rtB)
T /grtBu1

T

= gu1z
T (= (gz

T)u1),

σ2 = e(V, S ′A)/
(∏

i∈IA
(e(Vi, TA)e(Yi, S AρB(i)))wAi

)

= e(gv1 , gzgrtA)/
(∏

i∈IA
(e(grλih−yi

ρB(i), g
tA)e(gyi , htA

ρB(i)))
wAi
)

= gv1(z+rtA)
T /

∏
i∈IA

grtAλiwAi
T

= gv1(z+rtA)
T /grtAv1

T

= gv1z
T (= (gz

T)v1),

σ3 = e(gr, X)y = grxy
T = e(gr, Y)x,

and therefore they can compute the same session key S K.

5 Security

We prove that our SP-ABAKE scheme is secure in the ABCK model. Since the under-
lying ABE scheme just satisfies selective security, our scheme also satisfies selective
security.

Theorem 1. Suppose that the DPBDHE assumption holds, F is a pseudo-random func-
tion, Ext is a strong randomness extractor, and (Gen,Sign,Ver) is an existentially un-
forgeable one-time signature scheme against chosen message attacks. Then, our scheme
is selectively secure in the ABCK model.

The proof of Theorem 1 is shown in Appendix A.

6 Concluding Remark

Our SP-ABAKE scheme is superior to the BS scheme with [13] except security model
(i.e., selective vs. full). The selective security of our scheme comes from the underlying
Waters CP-ABE. We may be able to achieve full security if we construct a scheme based
on a fully secure CP-ABE scheme. For example, the CP-ABE scheme by Okamoto-
Takashima [30] achieves full security in the StdM. However, communication complex-
ity will heavily increase. Thus, a remaining problem of future researches is to achieve
full security in the StdM with small communication complexity.

References

1. Wang, H., Xu, Q., Ban, T.: A Provably Secure Two-Party Attribute-Based Key Agreement
Protocol. In: IIH-MSP 2009, pp. 1042–1045 (2009)

2. Wang, H., Xu, Q., Fu, X.: Revocable Attribute-based Key Agreement Protocol without Ran-
dom Oracles. JNW 4(8), 787–794 (2009)

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 481

3. Wang, H., Xu, Q., Fu, X.: Two-Party Attribute-based Key Agreement Protocol in the Stan-
dard Model. In: ISIP 2009, pp. 325–328 (2009)

4. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Attribute-Based Authenticated Key Ex-
change. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 300–317.
Springer, Heidelberg (2010)

5. Steinwandt, R., Suárez Corona, A.: Attribute-based group key establishment. Advances in
Mathematics of Communications 4(3), 381–398 (2010)

6. Fujioka, A., Suzuki, K., Yoneyama, K.: Predicate-Based Authenticated Key Exchange Re-
silient to Ephemeral Key Leakage. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS,
vol. 6513, pp. 15–30. Springer, Heidelberg (2011)

7. Yoneyama, K.: Strongly Secure Two-Pass Attribute-Based Authenticated Key Exchange.
In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 147–166.
Springer, Heidelberg (2010)

8. Birkett, J., Stebila, D.: Predicate-Based Key Exchange. In: Steinfeld, R., Hawkes, P. (eds.)
ACISP 2010. LNCS, vol. 6168, pp. 282–299. Springer, Heidelberg (2010)

9. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001)

10. Shahandashti, S.F., Safavi-Naini, R.: Threshold Attribute-Based Signatures and Their Ap-
plication to Anonymous Credential Systems. In: Preneel, B. (ed.) AFRICACRYPT 2009.
LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

11. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications.
In: ASIACCS 2010, pp. 60–69 (2010)

12. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Kiayias, A. (ed.)
CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

13. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-monotone Pred-
icates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011)

14. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and
Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

15. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg
(2004)

16. Mohassel, P.: One-Time Signatures and Chameleon Hash Functions. In: Biryukov, A., Gong,
G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer, Heidelberg
(2011)

17. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient One-Round Key Ex-
change in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

18. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)

19. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

20. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic Constructions for Chosen-
Ciphertext Secure Attribute Based Encryption. In: Catalano, D., Fazio, N., Gennaro, R., Ni-
colosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011)

21. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryption. In:
IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)

482 K. Yoneyama

23. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Conference on
Computer and Communications Security, pp. 456–465 (2007)

24. Kapadia, A., Tsang, P.P., Smith, S.W.: Attribute-Based Publishing with Hidden Credentials
and Hidden Policies. In: NDSS 2007, pp. 179–192 (2007)

25. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially Hidden
Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129. Springer, Heidelberg (2008)

26. Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-Dimensional Range
Query over Encrypted Data. In: IEEE Symposium on Security and Privacy 2007, pp. 350–
364 (2007)

27. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

28. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial
Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 146–162. Springer, Heidelberg (2008)

29. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional
Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg
(2010)

30. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations
from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 191–208. Springer, Heidelberg (2010)

31. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel
Institute of Technology, Technion (1996)

A Proof of Theorem 1

In the experiment of the ABCK model, we suppose that sid∗ is the session identity for
the test session, and that there are N users and at most L sessions are activated. Let κ be
the security parameter, and let A be a PPT (in κ) bounded adversary. S uc denotes the
event thatA wins. We consider the following events that cover all cases of the behavior
ofA.

– Let E1 be the event that the test session sid∗ has matching session sid
∗
, and the

master secret key is given toA.
– Let E2 be the event that the test session sid∗ has no matching session sid

∗
, and the

static secret key of the owner of sid∗ is given toA.

To finish the proof, we investigate events Ei∧S uc (i = 1, 2) that cover all cases of event
S uc.

Proposition 1. Pr[E1 ∧ S uc] is negligible.

Proof. We change the interface of oracle queries and the computation of the session
key. These instances are gradually changed over six hybrid experiments, depending on
specific sub-cases. In the last hybrid experiment, the session key in the test session does
not contain information of the bit b. Thus, the adversary clearly only output a random
guess. We denote these hybrid experiments by H0, . . . ,H5 and the advantage of the ad-
versaryA when participating in experiment Hi by Adv(A,Hi).

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 483

Hybrid Experiment H0: This experiment denotes the real experiment for the ABCK
model and in this experiment the environment forA is as defined in the protocol. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid Experiment H1: In this experiment, if session identities in two sessions are
identical, the experiment halts.

When (U, {U}, X, {X}, vkA, sA,V, {V}, Y, {Y}, vkB, sB) in two sessions (i.e., randomness
in two sessions are independently and uniformly chosen) are identical and two access
policies are identical, session identities in two sessions are also identical. Such an event
occurs with the probability that collision of randomness occur, that is negligible. Thus,
|Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: In this experiment, the experiment selects a party A intending
that the peer is a party B and integer i ∈ [1, L] randomly in advance. If A poses Test
query to a session except i-th session of A with intended peer B, the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/N2L,
Adv(A,H2) ≥ 1/N2L · Adv(A,H1).

Hybrid Experiment H3: In this experiment, the computation of σ∗3 in the test ses-

sion is changed. Instead of computing σ∗3 = gx∗y∗r
T , it is changed as choosing σ∗3 ← GT

randomly, where we suppose that B is the intended partner of A in the test session.
We construct a DPBDHE solver S from A in H2 or H3; that is, if |Adv(A,H3) −

Adv(A,H2)| is non-negligible, we can construct successful S. The simulation in E1 ∧
S uc is very simple; S can perfectly respond to all queries of A as the same way as
the protocol (except the test session) because S can know the master secret key and all
static secret keys. S performs the following steps.

Init. The DPBDHE solver S receives a DPBDHE tuple (m,T) as a challenge. Also, S
receives A∗A and A∗B as a challenge access structure fromA.

Setup. S sets W = {W1,0,W1,1, . . . ,Wk,0,Wk,1} and att′ = att + 2k, and embeds gr =

gc. S randomly choose h1, . . . , hatt′ ∈ G and z ∈ Zp, and output a master public key
MPK := (g, gr, gz

T , h1, . . . , hatt′) and a master secret key MS K := gz. MS K is given to
A. S generates all static secret keys of N parties with gz.
S sets the messages mem∗A and mem∗B of iAth session of A as follows: First, S embeds

X∗ = ga and Y∗ = g(aq), runs (vk∗A, sk∗A) ← Gen(1κ) and (vk∗B, sk∗B) ← Gen(1κ), and sets
dummy attributes sets W∗

A = {W1,vk∗A1
, . . . ,Wk,vk∗Ak

} ⊂W and W∗
B = {W1,vk∗B1

, . . . ,Wk,vk∗Bk
}

⊂W.S derives the �∗A×n∗A share-generating matrix M∗A and the labeling function ρ∗A in an
LSSS for the access structure A∗A ∨ (∧W∈W∗

A
W), and the �∗B × n∗B share-generating matrix

M∗B and the labeling function ρ∗B in an LSSS for the access structure A∗B ∨ (∧W∈W∗
B
W). S

randomly chooses u∗ = (u∗1, . . . , u
∗
n∗A

) ∈ Zn∗A
p , v∗ = (v∗1, . . . , v

∗
n∗B

) ∈ Zn∗B
p , (x∗1, . . . , x

∗
�∗A

) ∈ Z�
∗
A

p

and (y∗1, . . . , y
∗
�∗B

) ∈ Z�
∗
B

p . For i = 1 to �∗A, S finds λAi = u∗ · M∗Ai where M∗Ai is the vector
corresponding to the ith row of M∗A. For i = 1 to �∗B, S finds λBi = v∗ · M∗Bi where
M∗Bi is the vector corresponding to the ith row of M∗B. Then, S computes U∗ = gu∗1 ,

U∗i = grλAi h
−x∗i
ρ∗A(i) and X∗i = gx∗i for 1 ≤ i ≤ �∗A (let {U∗} denote the set of U∗i and {X∗}

484 K. Yoneyama

denote the set of X∗i for 1 ≤ i ≤ �∗A). Also, S computes V∗ = gv∗1 , V∗i = grλBih
−y∗i
ρ∗B(i) and

Y∗i = gy∗i for 1 ≤ i ≤ �∗B (let {V∗} denote the set of V∗i and {Y∗} denote the set of Y∗i for 1 ≤
i ≤ �∗B). S runs s∗A ← Signsk∗A

(U∗, {U}∗, X∗, {X}∗) and s∗B ← Signsk∗B
(V∗, {V}∗, Y∗, {Y}∗).

Finally, S sets the messages mem∗A = (U∗, {U∗}, X∗, {X∗}, M∗A, ρ∗A, vk∗A, s∗A) and mem∗B =
(V∗, {V∗}, Y∗, {Y∗}, M∗B, ρ∗B, vk∗B, s∗B) for iAth session of A.

Simulation. S simulates oracle queries by A as follows. S maintains the list LK that
contains queries and answers of KeyReveal.

1. Send(I, SP, SP̄): If P = A and the session is iA-th session of A, S returns the
message mem∗A computed in the setup. Otherwise, S computes memP obeying the
protocol, returns it and records (SP, SP̄,memP).

2. Send(R, SP̄, SP,memP) and Send(I, SP̄, SP,memP):S computes the message memP̄

and the session key S K obeying the protocol, returns it, and records all session state
and (SP, SP̄,memP, memP̄) as the completed session and S K in LK .

3. KeyReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value S K ∈ LK for sid.

4. StateReveal(sid):
(a) If the session sid is completed, S returns an error message.
(b) Otherwise, S returns all recorded state of sid.

5. Corrupt(P): S returns S KP generated in the setup.
6. Test(sid∗): S computes σ∗1 = g

u∗1z
T and σ∗2 = g

v∗1z
T , and embeds σ∗3 = T . S returns

S K∗ computed from σ∗1, σ∗2 and σ∗3.
7. IfA outputs a guess b′, S outputs b′.

Analysis. The simulation forS is same as H2 forAwhenT = gaq+1c
T and same as H3 for

A when T = R. Hence, if |Adv(A,H3)−Adv(A,H2)| is non-negligible,S is successful
with negligible probability.

Therefore, |Adv(A,H3) − Adv(A,H2)| ≤ negl from the DPBDHE assumption.

Hybrid Experiment H4: In this experiment, the computation of σ′∗3 in the test ses-
sion is changed. Instead of computing σ′∗3 ← Ext(σ∗3), it is changed as choosing
σ′∗3 ∈ Kspace randomly.

Since σ∗3 is randomly chosen in H3, it has sufficient min-entropy. Thus, by the defi-
nition of the strong randomness extractor, |Adv(A,H4) − Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: In this experiment, the computation of S K∗ in the test ses-
sion is changed. Instead of computing S K∗ = Fσ′∗1 (sid∗) ⊕ Fσ′∗2 (sid∗) ⊕ Fσ′∗3 (sid∗), it is
changed as S K∗ = Fσ′∗1 (sid∗) ⊕ Fσ′∗2 (sid∗) ⊕ α where α ∈ {0, 1}κ is chosen randomly
and we suppose that B is the intended partner of A in the test session.

We construct a distinguisher D between PRF F : {0, 1}∗ × Kspace → {0, 1}k and
a random function RF from A in H4 or H5; that is, if |Adv(A,H5) − Adv(A,H4)| is
non-negligible, we can construct successfulD.D performs the following steps.

Setup. D sets the master secret key and all N parties’ static secret keys.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 485

Simulation. D simulates oracle queries by A as follows. D maintains the list LK that
contains queries and answers of KeyReveal.

1. Send(I, SP, SP̄): D computes memP obeying the protocol, returns it and records
(SP, SP̄,memP).

2. Send(R, SP̄, SP,memP) and Send(I, SP̄, SP,memP):D computes the message memP̄

and the session key S K obeying the protocol, returns it, and records all session state
and (SP, SP̄,memP, memP̄) as the completed session and S K in LK .

3. KeyReveal(sid):
(a) If the session sid is not completed,D returns an error message.
(b) Otherwise,D returns the recorded value S K ∈ LK for sid.

4. StateReveal(sid):
(a) If the session sid is completed,D returns an error message.
(b) Otherwise,D returns all recorded state of sid.

5. Corrupt(P):D returns S KP generated in the setup.
6. Test(sid∗): D poses sid∗ to the function F∗ (F∗ is the PRF F or a random function

RF) and obtains α = F∗(sid∗).D returns S K∗ = Fσ′∗1 (sid∗) ⊕ Fσ′∗2 (sid∗) ⊕ α.
7. IfA outputs a guess b′,D outputs b′.

Analysis. The simulation forD is same as H4 forA when F∗ is F with a random key
because σ′∗3 is randomly chosen in H4. Also, the simulation forD is same as H5 forA
when F∗ is RF. Hence, if |Adv(A,H5)−Adv(A,H4)| is non-negligible,D is successful
with negligible probability.

Therefore, |Adv(A,H5) − Adv(A,H4)| ≤ negl.
In H5, the session key in the test session is perfectly randomized. Thus, A cannot

obtain any advantage from Test query.
Therefore, Adv(A,H5) = 0 and Pr[E1 ∧ S uc] is negligible. ��

Proposition 2. Pr[E2 ∧ S uc] is negligible.

Proof. We change the interface of oracle queries and the computation of the session
key. These instances are gradually changed over six hybrid experiments, depending on
specific sub-cases. In the last hybrid experiment, the session key in the test session does
not contain information of the bit b. Thus, the adversary clearly only output a random
guess. We denote these hybrid experiments by H0, . . . ,H5 and the advantage of the ad-
versaryA when participating in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for the ABCK
model and in this experiment the environment forA is as defined in the protocol. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid Experiment H1: In this experiment, if session identities in two sessions are
identical, the experiment halts.

When (U, {U}, X, {X}, vkA, sA,V, {V}, Y, {Y}, vkB, sB) in two sessions (i.e., randomness
in two sessions are independently and uniformly chosen) are identical and two access
policies are identical, session identities in two sessions are also identical. Such an event
occurs with the probability that collision of randomness occur, that is negligible. Thus,
|Adv(A,H1) − Adv(A,H0)| ≤ negl.

486 K. Yoneyama

Hybrid Experiment H2: In this experiment, the experiment selects a party A and
integer i ∈ [1, L] randomly in advance. If A poses Test query to a session except i-th
session of A, the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/N2L,
Adv(A,H2) ≥ 1/N2L · Adv(A,H1).

Hybrid Experiment H3: In this experiment, the computation of σ∗1 in the test ses-

sion is changed. Instead of computing σ∗1 = g
u∗1z
T , it is changed as choosing σ∗1 ← GT

randomly, where we suppose that B is the intended partner of A in the test session.
We construct a DPBDHE solver S from A in H2 or H3; that is, if |Adv(A,H3) −

Adv(A,H2)| is non-negligible, we can construct successful S. The simulation in E2 ∧
S uc is quite complicated; S should respond to all queries of A without knowing the
master secret key. S performs the following steps.

Init. The DPBDHE solver S receives a DPBDHE tuple (m,T) as a challenge. Also, S
receives A∗A as a challenge access structure fromA.

Setup. First, Smust determine the �∗A ×n∗A share-generating matrix M∗A and the labeling
functionρ∗A for i-th session of A where �∗A, n

∗
A ≤ q.S setsW = {W1,0,W1,1, . . . ,Wk,0,Wk,1}

and att′ = att + 2k, runs (vk∗A, sk∗A) ← Gen(1κ), and sets dummy attributes sets W∗
A =

{W1,vk∗A1
, . . . ,Wk,vk∗Ak

} ⊂ W. S derives the �∗A × n∗A share-generating matrix M∗A and the
labeling function ρ∗A in an LSSS for the access structure A∗A ∨ (∧W∈W∗

A
W). Then, S ran-

domly chooses (z′, z1, . . . , zatt′) ∈ Zatt′+1
p and embeds gz

T = e(ga, gaq
)gz′

T and gr = ga; that
is, z is implicitly set as aq+1 + z′. Let I denote the set of indices i such that ρ∗A(i) = j

for 1 ≤ j ≤ att′. S programs h j = gz j
∏

i∈I gaM∗A(i,1)/bi · · · gan∗A M∗A (i,n∗A)/bi for 1 ≤ j ≤ att′. S
outputs the master public key MPK := (g, gr, gz

T , h1, . . . , hatt′).
Next, S generates all static secret keys of N parties. We suppose that for a party P

according to the set of attributes SP that does not satisfy M∗A,1 S randomly chooses rP.

S finds a vector w = (w1, . . . ,wn∗A
) ∈ Z

n∗A
P such that w1 = −1 and w · M∗Ai = 0 for all

i where ρ∗A(i) ∈ SP. S embeds TP = grP
∏

i=1,...,n∗A
(gaq+1−i

)wi ; that is, tP is implicitly set

as rp + w1aq + · · · + wn∗A
aq−n∗A+1. Then, S can compute S ′P = gz′garP

∏
i=2,...,n∗A

(gaq+2−i
)wi

without knowing gz because gatP cancels out the unknown term in gz. Also, S can com-

pute S Pi = T zi
P

∏
j∈I
∏

l=1,...,n∗A

(
g(al/bj)rP

∏
k=1,...,n∗A(k�l)(g

aq+1+l−k/b j)wk
)M∗A (j,l) without knowing

gaq+1/bj because w · M∗Ai = 0 and all these terms are canceled out. The static secret key
(S ′A, TA, {S A}) of A is given toA.

Finally, S sets the message mem∗A of iAth session of A as follows: S embeds U∗ = gc

and randomly chooses u∗2, . . . , u
∗
n∗A
, x∗, x∗1, . . . , x

∗
�∗A
∈ Zp. S sets {U∗} and {X∗} such that

u∗ is implicitly defined as (c, ca + u∗2, . . . , can∗A−1 + u∗n∗A
). For i = 1, . . . , n∗A, let Ji be a

set of all j(� i) such that ρ∗A(i) = ρ∗A(j); that is, Ji is a set of all other row indices that

have the same attributes as row i. S embeds U∗i = h
x∗i
ρ∗A(i)

(∏
j=2,...,n∗A

(ga)M∗A (i, j)u
∗
j
)

(gbic)−zρ∗A(i)

1 S does not need to create static secret keys of parties according to sets of attributes that satisfy
M∗

A.A cannot pose Corrupt queries for SP that satisfies M∗
A because of the freshness in Def. 7.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 487

·
(∏

k∈Ji

∏
j=1,...,n∗A

(gajc(bi/bk))M∗A (k, j)

)
and X∗i = g−x∗i g−cbi . Also, S computes X∗ = gx∗ and

runs s∗A ← Signsk∗A
(U∗, {U}∗, X∗, {X}∗). S sets the message mem∗A = (U∗, {U∗}, X∗, {X∗},

M∗A, ρ∗A, vk∗A, s∗A).

Simulation. S simulates oracle queries by A as follows. S maintains the list LK that
contains queries and answers of KeyReveal.

1. Send(I, SP, SP̄): If P = A and the session is iA-th session of A, S returns the
message mem∗A computed in the setup. Otherwise, S computes memP obeying the
protocol, returns it, and records all session state and (SP, SP̄,memP).

2. Send(R, SP̄, SP,memP) and Send(I, SP̄, SP,memP): S parses memP into
(U, {U}, X, {X}, M, ρ, vk, s). Then,S checks that 1← Vervk(U, {U}, X, {X}, s). If not,
S returns nothing. If the verification holds and vk = vk∗A holds, S fails in the simu-
lation. Otherwise, we suppose that SP̄ satisfies M and ρ, and let I, I′ ⊂ {1, 2, . . . , �}
be defined as I = {i : ρ(i) ∈ SP̄} and I′ = {i : ρ(i) ∈ WP}. S can efficiently find
{wi ∈ Zp}i∈I and {w′i ∈ Zp}i∈I′ such that

∑
i∈I wiλi =

∑
i∈I′ w′iλi = α for valid shares

{λi} of any secretα according to M.S verifies whether the following condition holds:
⎛
⎜⎜⎜⎜⎜⎝

∏

i∈I
(e(Ui, g)e(Xi, hρ(i)))wi =

∏

i∈I′
(e(Ui, g)e(Xi, hρ(i)))w′i = e(gr,U)

⎞
⎟⎟⎟⎟⎟⎠ .

If not, S returns nothing. Otherwise, S generates a static secret key according to
the set of attributes WP as in the setup and computes the session key obeying the
protocol. Note that WP does not satisfy M∗A because vk � vk∗A. S records all session
state and (SP, SP̄,memP, memP̄) as the completed session and S K in LK .

3. KeyReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value S K ∈ LK for sid.

4. StateReveal(sid):
(a) If the session sid is completed, S returns an error message.
(b) Otherwise, S returns all recorded state of sid.

5. Corrupt(P): S returns S KP generated in the setup.
6. Test(sid∗): S embeds σ∗1 = T e(gc, gz′), and computes σ∗2 = e(V∗, S ′A) /

(
∏

i∈IA
(e(V∗i , TA)· e(Y∗i , S AρB(i)∗))wAi) and σ∗3 = e(ga, Y∗)x∗ . S returns S K∗ computed

from σ∗1, σ∗2 and σ∗3.
7. IfA outputs a guess b′, S outputs b′.

Analysis. First, we have to estimate the probability that S aborts. S aborts when 1 ←
Vervk(U, {U}, X, {X}, s) and vk = vk∗A occur. This event corresponds to a forge of a sig-
nature in the unforgeability game of the one-time signature because sk∗A is hidden from
A. Thus, such a probability is negligible.

Next, we show that if
∏

i∈I(e(Ui, g)e(Xi, hρ(i)))wi =
∏

i∈I′ (e(Ui, g)e(Xi, hρ(i)))w′i =

e(gr,U) holds, the session key is computable with the static secret key (S ′, T, {S }) ac-
cording to the set of attributes WP. σ1 is defined as

488 K. Yoneyama

e(U, S ′
P̄
)/
(∏

i∈I (e(Ui, TP̄)e(Xi, S P̄ρ(i)))
wi
)
=e(U, S ′P̄)/

⎛
⎜⎜⎜⎜⎜⎝

∏

i∈I
(e(Ui, g)tP̄e(Xi, hρ(i))tP̄)wi

⎞
⎟⎟⎟⎟⎟⎠

=e(U, S ′P̄)/

⎛
⎜⎜⎜⎜⎜⎝

∏

i∈I′
(e(Ui, g)e(Xi, hρ(i)))

w′i

⎞
⎟⎟⎟⎟⎟⎠

tP̄

=e(U, S ′
P̄
)/e(gr,U)tP̄

=gu1z
T .

σ2 is also similarly computable. Thus, the simulation of Send queries is perfect.
The simulation for S is same as H2 for A when T = gaq+1c

T and same as H3 for
A when T = R except negligible probability. Hence, if |Adv(A,H3) − Adv(A,H2)| is
non-negligible,S is successful with negligible probability.

Therefore, |Adv(A,H3) − Adv(A,H2)| ≤ negl from the DPBDHE assumption.

Hybrid Experiment H4: In this experiment, the computation of σ′∗1 in the test ses-
sion is changed. Instead of computing σ′∗1 ← Ext(σ∗1), it is changed as choosing
σ′∗1 ∈ Kspace randomly.

Since σ∗1 is randomly chosen in H3, it has sufficient min-entropy. Thus, by the defi-
nition of the strong randomness extractor, |Adv(A,H4) − Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: In this experiment, the computation of S K∗ in the test ses-
sion is changed. Instead of computing S K∗ = Fσ′∗1 (sid∗) ⊕ Fσ′∗2 (sid∗) ⊕ Fσ′∗3 (sid∗), it is
changed as S K∗ = α ⊕ Fσ′∗2 (sid∗) ⊕ Fσ′∗3 (sid∗) where α ∈ {0, 1}κ is chosen randomly
and we suppose that B is the intended partner of A in the test session.

We construct a distinguisher D between PRF F : {0, 1}∗ × Kspace → {0, 1}k and
a random function RF from A in H4 or H5; that is, if |Adv(A,H5) − Adv(A,H4)| is
non-negligible, we can construct successfulD.D performs the following steps.

Setup. D sets the master secret key and all N parties’ static secret keys.

Simulation. D simulates oracle queries by A as follows. D maintains the list LK that
contains queries and answers of KeyReveal.

1. Send(I, SP, SP̄): D computes memP obeying the protocol, returns it and records
(SP, SP̄,memP).

2. Send(R, SP̄, SP,memP) and Send(I, SP̄, SP,memP):D computes the message memP̄

and the session key S K obeying the protocol, returns it, and records all session state
and (SP, SP̄,memP, memP̄) as the completed session and S K in LK .

3. KeyReveal(sid):
(a) If the session sid is not completed,D returns an error message.
(b) Otherwise,D returns the recorded value S K ∈ LK for sid.

4. StateReveal(sid):
(a) If the session sid is completed,D returns an error message.
(b) Otherwise,D returns all recorded state of sid.

Two-Party Round-Optimal Session-Policy ABAKE without Random Oracles 489

5. Corrupt(P):D returns S KP generated in the setup.
6. Test(sid∗): D poses sid∗ to the function F∗ (F∗ is the PRF F or a random function

RF) and obtains α = F∗(sid∗).D returns S K∗ = α ⊕ Fσ′∗2 (sid∗) ⊕ Fσ′∗3 (sid∗).
7. IfA outputs a guess b′,D outputs b′.

Analysis. The simulation forD is same as H4 forA when F∗ is F with a random key
because σ′∗1 is randomly chosen in H4. Also, the simulation forD is same as H5 forA
when F∗ is RF. Hence, if |Adv(A,H5)−Adv(A,H4)| is non-negligible,D is successful
with negligible probability.

Therefore, |Adv(A,H5) − Adv(A,H4)| ≤ negl.
In H5, the session key in the test session is perfectly randomized. Thus, A cannot

obtain any advantage from Test query.
Therefore, Adv(A,H5) = 0 and Pr[E2 ∧ S uc] is negligible. ��

From Proposition 1 and 2, we obtain that Pr[S uc] is negligible. ��

Sufficient Condition for Identity-Based

Authenticated Key Exchange Resilient
to Leakage of Secret Keys

Atsushi Fujioka and Koutarou Suzuki

NTT Information Sharing Platform Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan
{fujioka.atsushi,suzuki.koutarou}@lab.ntt.co.jp

Abstract. In this paper, we provide a sufficient condition, called admis-
sible polynomials, to construct a two-pass identity-based authenticated
key exchange (ID-AKE) protocol secure in the identity-based extended
Canetti-Krawczyk (id-eCK) model. The proposed ID-AKE protocol is
secure under the gap Bilinear Diffie-Hellman assumption in the random
oracle model.

Keywords: identity-based authenticated key exchange, gap Bilinear
Diffie-Hellman assumption, identity-based extended Canetti-Krawczyk
model, random oracle model.

1 Introduction

Key exchange is one of the important cryptographic protocols since it can be
used to establish secure channels. Recent progress in its research has reached a
formulation, authenticated key exchange (AKE), where AKE enables two parties
to share a key via a public communication channel, and both parties are assured
that only their intended peers can derive the session key.

In ordinary AKE, public-key infrastructure (PKI) is necessary since each
static public-key needs to be linked with the identity of each user to provide
authenticity, and such AKE is called PKI-based AKE. It is natural to intro-
duce an identity-based version of AKE, called identity-based authenticated key
exchange (ID-AKE). In order to avoid such requirement like a PKI system, a
key generation center (KGC) in an ID-AKE protocol generates a pair of master
public and secret keys, and the KGC extracts each user’s secret key correspond-
ing to the user’s identity. Every user has own secret key and can use the identity
as public information. Then, a party, called initiator, who wants to share a key
with another party, called responder, sends ephemeral public information to the
responder, the responder sends back another ephemeral public information to
the initiator. This type of ID-AKE is called two-pass ID-AKE. Each party gen-
erates the session key from the master public key, own secret key given by the
KGC, own secret values of ephemeral information, the peer’s identity, and the
received ephemeral information.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 490–509, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 491

The several security models of ID-AKE has been investigated, and they are
influenced by the security models of PKI-based AKE. For PKI-based AKE, the
Canetti-Krawczyk (CK) model [9] and the extended Canetti-Krawczyk (eCK)
model [22] followed the Bellare-Rogaway (BR) model [4], which is the first for-
mal security model for AKE. The security notions defined in the above models
are given as an indistinguishability game, where an adversary is required to dif-
ferentiate between a random key and a session key of a session. The session is
called target session, and is chosen by the adversary. Based on these models, the
id-BR1 [6,11], id-CK [7], and id-eCK [21] models were defined, respectively. Note
that in ID-AKE, although the KGC has much power than users, any session key
between users should not be reveal even to the KGC. This property is called
forward secrecy against KGC (KGC-FS). The security and the eCK security are
stronger than the BR security [9,13,22], however, the CK security and the eCK
security are incompatible [14,15]. These relations hold in the security definitions
of ID-AKE, also.

In this paper, we adopt the id-eCK model since it ensures the security against
an adversary who tries to distinguish the session key from a random value under
the disclosure of any pair of static secret keys and ephemeral secret keys of the
initiator and the responder in the session except both static and ephemeral secret
key of the initiator or the responder. In addition, it is complicated to precisely
define state information in the CK model.

1.1 Related Works

In a literature, many ID-AKE protocols secure in the id-BR model have been
investigated. (See survey papers for them [6,11].)

However, the BR model does not consider exposure of secret information, and
then, the CK model was formulated to treat such situations. The CK model
considers leakage of information in sessions, and the adversary in the CK model
is allowed to access the state information, named session state. The session state
contains not only the ephemeral secret key but also internal values computed
with the static secret key, however, the adversary is not allowed to access the
static secret key itself. The same discussion can be applied to the id-BR and
id-CK models, and several id-CK secure protocols [7,17,18] have followed the
first attempt by Chow and Choo [12]. It is worthy to note that it is complicated
to precisely define state information in the CK model.

For (ID-)AKE, several security notions have been proposed in addition to the
(id-)CK security: The weak Perfect Forward Secrecy (wPFS) implies that an ad-
versary cannot recover an already established session key before the compromise
of static secret keys. The resilient to Key Compromised Impersonation (KCI)
means that given a static secret key an adversary tries to impersonate some
honest party against the owner of the leaked secret key. The resilient to Reflec-
tion Attack (REF) implies that the indistinguishability test must be passed even

1 The BR model is defined in symmetric key setting, and the model in public key
setting is defined by Blake-Wilson, Johnson, and Menezes [5].

492 A. Fujioka and K. Suzuki

when the adversary is allowed to make a session between the same party. The
resilience to Maximal EXposure attack (MEX) means that an adversary tries to
distinguish the session key from a random value under the disclosure of any pair
of secret static keys and ephemeral secret keys of the initiator and the responder
in the session except both static and ephemeral secret key of the initiator or the
responder.

Regarding to the id-eCK security, Huang and Cao defined the model, and pro-
posed an id-eCK secure ID-AKE protocol [21]. The extended Canetti-Krawczyk
(eCK) model for AKE was defined by LaMacchia, Lauter, and Mityagin [22],
and roughly speaking, the eCK security assures that any adversary cannot dis-
tinguish the session key of a target session from a random value even when the
adversary is allowed to access either the static secret key or the ephemeral se-
cret key of each party establishing the target session, and the similar assurance
is achieved in the id-eCK model.

Fujioka, Suzuki, and Ustaoğlu [20] proposed a shared security model for ID-
AKE, where two different protocols can be securely carried out even when the
identity and the secret key are shared in these protocols. They adopted and
modified the id-eCK model, and proved that their proposed protocols are secure
in both id-eCK and shared security models.

For ID-AKE, it is required that the KGC-FS security should be ensured, also,
and the id-eCK security guarantees the all previous security notions: wPFS,
KGC-FS, KCI, REF, and MEX.

Fujioka and Suzuki [19] provide a sufficient condition for PKI-based AKE
secure in the eCK model and introduce the notion of admissible polynomials.
The notion of admissible polynomials closely related to the generalization of
DDH assumption introduced by Bresson, Lakhnech, Mazaré, and Warinschi [8].

1.2 Our Contributions

This paper provides a sufficient condition, called admissible polynomials, to con-
struct an id-eCK secure ID-AKE protocol under the gap Bilinear Diffie-Hellman
(gap BDH) assumption [1]. Here, the gap BDH problem is to solve the Bilinear
Diffie-Hellman (BDH) problem with the help of a decisional BDH (DBDH) or-
acle, the BDH problem is to compute gxyzT from gx, gy, and gz, and the DBDH
oracle returns a bit which means the input tuple (gx, gy, gz, gwT) is a BDH
instance or not, i.e., gwT = gxyz or not, where gT is e(g, g) and e is a polynomial-
time computable bilinear non-degenerate map called a pairing. We adopt the
id-eCK model, where the security ensures the ID-based version of the eCK secu-
rity model [22]. We give the condition regarding the exponents of shared values
computed as the intermediate value in the protocols.

As seen in the above, there are fewer id-CK or id-eCK secure protocols than
the id-BR secure protocols. The reason is that we need complex analysis to prove
that a protocol is id-CK or id-eCK secure. To prove it, the detail analysis on
exposure of secret information is required.

In an original Diffie-Hellman (DH) protocol [16], a party uses a single key to
compute a shared value, that is Y x from x and Y , and the peer also computes

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 493

Xy from y and X , where X = gx, Y = gy, and g is a generator of a cyclic
group. We extend this exponent of the shared value to weighted inner product
of two-dimensional vectors related to the exponents of the static and ephemeral
public keys. For two vectors u = (u0, u1), v = (v0, v1) and two-dimensional

square matrix C, the shared value is computed as guCvT

, where T is a transpo-
sition operation. Then, the exponent of the shared value is given as a quadratic
polynomial, p = uCvT , of u0, u1, v0, and v1. When all polynomials p are admis-
sive polynomial, the underlying protocol can be proved as id-eCK secure. In the
considering protocols of this paper, the shared value of the ID-AKE protocol is

computed as g
(uCvT)z
T (= gp·zT), where gT is e(g, g), e is a pairing function, and

z is a master secret key of the KGC.
When the exponents of the shared value in an ID-AKE protocol are expressed

by admissible polynomials, we can construct a reduction algorithm, which inter-
acts with the adversary and solves a BDH problem with the help of a decisional
BDH (DBDH) oracle. The algorithm simulates all queries the adversary requires
and extracts the answer of the BDH instance. The resulting ID-AKE protocols
based on admissible polynomials contain not only the existing efficient protocols
but also new id-eCK secure protocols. That is, our sufficient condition is useful
for constructing two-pass ID-AKE protocols.

Once the exponents of the shared values in an ID-AKE protocol are expressed
by admissible polynomials, the ID-AKE protocol is id-eCK secure. It is required
only to confirm that the exponents are expressed by admissible polynomials, and
this confirmation is an easier task than the proof of id-eCK security.

It can be viewed as an application of a sufficient condition for PKI-based AKE
in the eCK model, investigated by Fujioka and Suzuki [19], to ID-AKE in the
id-eCK model. In the security proof, the gap BDH assumption and the random
oracle model (ROM) [3] are needed. Furthermore, the twin DH technique [10]
makes the constructed protocols secure under the BDH assumption.

The resulting protocol which satisfies the proposed condition guarantees the
wPFS, KGC-FS, KCI, REF, and MEX. Although the security of the protocols
constructed under the proposed condition is proved in the random oracle model,
its security proof is done without the Forking Lemma [23]. Notice that in the
case of using the Forking Lemma, the security parameter in the protocols must
be bigger than the expected one in the underlying problem since the security de-
grades according to the number of hash queries. Thus, the protocols need longer
key-length to meet the security parameter and they may loose the advantage in
efficiency. The resulting protocols have an advantage in efficiency as number of
the static (secret) keys and the ephemeral keys are related to the sizes of storage
and communication data in the system, respectively.

Organization

In Section 2, we provide the id-eCK security model for ID-AKE. In Section 3, we
propose a sufficient condition for id-eCK secure ID-AKE protocol and the resul-
tant two-pass ID-AKE protocols, and discuss security arguments. In Section 4,
we conclude the paper. In Appendix, we provide the security proof.

494 A. Fujioka and K. Suzuki

2 Security Model for ID-Based AKE

We recall the id-eCK security model for ID-AKE by Huang and Cao [21] that
is the ID-based version of the eCK security model by LaMacchia, Lauter and
Mityagin [22].

We denote a party by Ui and the identifier of Ui by IDi. We outline our model
for two-pass ID-AKE protocol, where parties UA and UB exchange ephemeral
public keys XA and XB, i.e., UA sends XA to UB and UB sends XB to UA,
and thereafter compute a session key. The session key depends on the exchanged
ephemeral keys, identities of the parties, the static keys corresponding to these
identities and the protocol instance that is used.

In the model, each party is a probabilistic polynomial-time Turing machine in
security parameter κ and obtains a static private key corresponding to its iden-
tity string from a key generation center (KGC) via a secure and authenticated
channel. The KGC uses a master secret key to generate individual private keys.

Session. An invocation of a protocol is called a session. A session is activated via
an incoming message of the forms (Π, I, IDA, IDB) or (Π,R, IDA, IDB, XB),
whereΠ is a protocol identifier. If UA was activated with (Π, I, IDA, IDB), then
UA is the session initiator, otherwise the session responder. After activation, UA

appends an ephemeral public key XA to the incoming message and sends it as
an outgoing response. If UA is the responder, UA computes a session key. If UA is
the initiator, UA that has been successfully activated via (Π, I, IDA, IDB) can be
further activated via (Π,R, IDA, IDB, XA, XB) to compute a session key.We say
that UA is owner of session sid if the third coordinate of session sid is IDA. We
say that UA is peer of session sid if the fourth coordinate of session sid is IDA.
We say that a session is completed if its owner computes a session key.

A session initiator UA identifies the session via (Π, I, IDA, IDB, XA,×) or
(Π, I, IDA, IDB, XA, XB). If UA is the responder, the session is identified via
(Π,R, IDA, IDB, XB, XA). For session (Π, I, IDA, IDB, XA, XB) the matching
session has identifier (Π,R, IDB, IDA, XA, XB) and vice versa. From now on
we omit I and R since these “role markers” are implicitly defined by the order
of XA and XB.

Adversary. The adversary A is modeled as a probabilistic Turing machine
that controls all communications between parties including session activation,
performed via a Send(message) query. The message has one of the following
forms: (Π, IDA, IDB), (Π, IDA, IDB, XA), or (Π, IDA, IDB, XA, XB). Each
party submits its responses to the adversary, who decides the global delivery
order. Note that the adversary does not control the communication between
each party and the key generation center.

A party’s private information is not accessible to the adversary, however,
leakage of private information is captured via the following adversary queries.

– SessionKeyReveal(sid) The adversary obtains the session key for the session
sid, provided that the session holds a session key.

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 495

– EphemeralKeyReveal(sid) The adversary obtains the ephemeral secret key
associated with the session sid.

– StaticKeyReveal(IDi) The adversary learns the static secret key of party Ui.
– MasterKeyReveal() The adversary learns the master secret key of the KGC.
– EstablishParty(IDi) This query allows the adversary to register a static public

key on behalf of a party Ui, the adversary totally controls that party. If a
party is established by an EstablishParty(IDi) query issued by the adversary,
then we call the party dishonest, and if not, we call the party honest. This
query models malicious insiders.

Freshness. Our security definition requires the notion of “freshness”.

Definition 1 (Freshness). Let sid∗ be the session identifier of a completed
session, owned by an honest party UA with peer UB, who is also honest. If the
matching session exists, then let sid∗ be the session identifier of the matching
session of sid∗. Define sid∗ to be fresh if none of the following conditions hold:

1. A issues SessionKeyReveal(sid∗) or SessionKeyReveal(sid∗) (if sid∗ ex-
ists).

2. sid∗ exists and A makes either of the following queries
– both StaticKeyReveal(IDA) and EphemeralKeyReveal(sid∗), or
– both StaticKeyReveal(IDB) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and A makes either of the following queries
– both StaticKeyReveal(IDA) and EphemeralKeyReveal(sid∗), or
– StaticKeyReveal(IDB).

Note that if A issues MasterKeyReveal(), we regard A as having issued both
StaticKeyReveal(IDA) and StaticKeyReveal(IDB).

Security Experiment. The adversary A starts with a set of honest parties,
for whom A adaptively selects identifiers. The adversary makes an arbitrary
sequence of the queries described above. During the experiment, A makes a
special query Test(sid∗) and is given with equal probability either the session
key held by sid∗ or a random key. The experiment continues until A makes a
guess whether the key is random or not. The adversary wins the game if the test
session sid∗ is fresh at the end of A’s execution and if A’s guess was correct.

Definition 2 (security). The advantage of the adversary A in the experiment
with ID-AKE protocol Π is defined as

AdvID-AKE
Π (A) = Pr[A wins]− 1

2
.

We say that Π is secure ID-AKE protocols in the id-eCK model if the following
conditions hold.

1. If two honest parties complete matching session, then, except with negligible
probability in security parameter κ, they both compute the same session key.

2. For any probabilistic polynomial-time bounded adversary A, AdvID-AKE
Π (A)

is negligible in security parameter κ.

496 A. Fujioka and K. Suzuki

3 Sufficient Condition for id-eCK Secure ID-AKE
Protocol

In this section, we propose a sufficient condition for id-eCK secure ID-AKE
protocol and resultant two-pass ID-AKE protocols. The sufficient condition can
be seen as the ID-based version of the notion of admissible polynomials [19].

The proposed ID-AKE protocol is a natural extension of the DH key ex-
change, where shared value gxy is computed w.r.t. the ephemeral public keys
gx of user UA and gy of user UB. The proposed ID-AKE protocol is a two-
dimensional and ID-based generalization of the DH key exchange, i.e., shared
value e(g, g)zp(a,x,b,y) is computed w.r.t. the master public key gz, the static and
ephemeral public keys (ga, gx) of user UA and (gb, gy) of user UB, where e is a
pairing and

p(a, x, b, y) =
(
a x

)(
c0,0 c0,1
c1,0 c1,1

)(
b
y

)
is a weighted inner product of vectors (a, x) and (b, y) of secret keys. For (KGC)
forward security, we additionally adopt shared value gxy that cannot be computed
even if master key or both static keys are leaked. We show that if p(a, x, b, y) satis-
fies the condition of admissible polynomials, the resultant two-pass ID-AKE pro-
tocol is id-eCK secure, i.e., we propose a sufficient condition for id-eCK secure
ID-AKE protocol.

3.1 Admissible Polynomials

We recall the notion of admissible polynomials introduced by [19]. We define the
notion of admissible polynomials over Zq, where Zq is the additive group with
prime modulus q.

Definition 3 (Admissible Polynomials [19]). We say m polynomials pi ∈
Zq[u0, u1, v0, v1] (i = 1, ...,m) are admissible if the following conditions are sat-
isfied.

1. pi(u0, u1, v0, v1) = ci,0,0u0v0 + ci,0,1u0v1 + ci,1,0u1v0 + ci,1,1u1v1.
2. For any f (= 0, 1), there exist i, j (1 ≤ i, j ≤ m), s.t.

(ci,f,0, ci,f,1) and (cj,f,0, cj,f,1)

are linearly independent, and for any f ′ = 0, 1, there exist i, j (1 ≤ i, j ≤ m),
s.t.

(ci,0,f ′ , ci,1,f ′) and (cj,0,f ′ , cj,1,f ′)

are linearly independent.
3. For any i (= 1, ...,m), either of the following conditions holds: a)

pi(u0, u1, v0, v1) is expressed as a product of �i(u0, u1) and �′i(v0, v1), where
�i(u0, u1) and �′i(v0, v1) are linear combinations of u0, u1 and v0, v1, respec-
tively, s.t.

pi(u0, u1, v0, v1) = �i(u0, u1)�
′
i(v0, v1).

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 497

Or b) for any f (= 0, 1), ci,f,0ufv0 + ci,f,1ufv1 is expressed as a product of
�i,f,∗(u0, u1) and �′i,f,∗(v0, v1), where �i,f,∗(u0, u1) and �′i,f,∗(v0, v1) are linear
combinations of u0, u1 and v0, v1, respectively, s.t.

ci,f,0ufv0 + ci,f,1ufv1 = �i,f,∗(u0, u1)�
′
i,f,∗(v0, v1),

and for any f ′ (= 0, 1), ci,0,f ′u0vf ′ + ci,1,f ′u1vf ′ is expressed as a product
of �i,∗,f ′(u0, u1) and �′i,∗,f ′(v0, v1), where �i,∗,f ′(u0, u1) and �′i,∗,f ′(v0, v1) are
linear combinations of u0, u1 and v0, v1, respectively, s.t.

ci,0,f ′u0vf ′ + ci,1,f ′u1vf ′ = �i,∗,f ′(u0, u1)�
′
i,∗,f ′(v0, v1).

We provide examples of admissible polynomials below.

Example 1. The first example of admissible polynomials is

m= 4, p1(a, x, b, y)= ab, p2(a, x, b, y)= ay, p3(a, x, b, y)= xb, p4(a, x, b, y)=xy.

Example 2. The second example of admissible polynomials is

m = 3, p1(a, x, b, y) = ab, p2(a, x, b, y) = (a+ x)(b + y), p3(a, x, b, y) = xy.

The three conditions of admissible polynomials relate to the security proof of
the (ID-)AKE protocol constructed from admissible polynomials. From the first
condition, both users can compute the shared values. From the second condition,
the simulator can extract the answer of a (B)DH problem in the security proof.
From the third condition, the simulator can check that the shared values are
correctly formed in the security proof. See sketch of the proof of Theorem 1 for
details.

3.2 Resultant ID-Based AKE Protocol

We propose the ID-AKE protocol Πp1,...,pm constructed from admissible poly-
nomials pi (i = 1, ...,m). We then prove in Theorem 1 that if polynomials pi
(i = 1, ...,m) satisfy the conditions of admissible polynomials, the proposed ID-
AKE protocol Πp1,...,pm is id-eCK secure, i.e., we provide a sufficient condition
for id-eCK secure ID-AKE protocols.

The proposed ID-AKE protocol Πp1,...,pm is described as follows. Let pi (i =
1, ...,m) be admissible polynomials s.t. pm(qA, xA, qB, xB) = xAxB . Let κ be
the security parameter. Let G and GT be a cyclic group with generator g and
gT = e(g, g) and of order κ-bit prime q, and e : G × G → GT be pairing. Let
H : {0, 1}∗ → {0, 1}κ and H1 : {0, 1}∗ −→ G be cryptographic hash functions
modeled as random oracles. Let Π be the protocol identifier of the protocol
Πp1,...,pm .

KGC randomly selects master secret key z ∈ Zq, and publishes master public
key Z = gz ∈ G. These are provided as part of the system parameters.

User Ui with identity IDi is assigned static secret key Di = Qz
i ∈ G, where

Qi = H1(IDi) = gqi ∈ G.

498 A. Fujioka and K. Suzuki

Thus, UA’s identity and static secret key are IDA andDA=Qz
A=H1(IDA)

z=
gzqA ∈ G, and UB’s identity and static secret key are IDB and DB = Qz

B =
H1(IDB)

z = gzqB ∈ G
In the description, user UA is the session initiator and user UB is the session

responder.

1. UA selects a random ephemeral private key xA ∈U Zq, computes the
ephemeral public key XA = gxA , and sends (Π, IDB , IDA, XA) to UB.

2. Upon receiving (Π, IDB, IDA, XA), UB selects a random ephemeral private
key xB ∈U Zq, computes the ephemeral public key XB = gxB , and sends
(Π, IDA, IDB, XA, XB) to UA.
UB computes m shared values

Zi = e(QA, D
ci,0,0
B Zci,0,1xB) · e(XA, D

ci,1,0
B Zci,1,1xB) (i = 1, ...,m− 1),

Zm = XxB

A

computes the session key K = H(Z1, ..., Zm, Π, IDA, IDB, XA, XB), and
completes the session.

3. Upon receiving (Π, IDA, IDB, XA, XB), UA checks if UA has sent (Π, IDB ,
IDA, XA) to UB or not, and aborts the session if not.
UA computes m shared values

Zi = e(D
ci,0,0
A Zci,1,0xA , QB) · e(Dci,0,1

A Zci,1,1xA , XB) (i = 1, ...,m− 1),

Zm = XxA

B

computes the session key K = H(Z1, ..., Zm, Π, IDA, IDB, XA, XB), and
completes the session.

Both parties compute the same shared values

Zi = g
zpi(qA,xA,qB ,xB)
T (i = 1, ...,m− 1),

Zm = gpm(qA,xA,qB ,xB)

and compute the same session key K.
The proposed ID-AKE protocol Πp1,...,pm requires 2(m − 1) pairing opera-

tions, 4(m− 1)+ 2 exponential operations (including the exponentiation for the
ephemeral public key), and m shared values, at most.

Example 3. From the second example of admissible polynomials, i.e.,

m = 3, p1(a, x, b, y) = ab, p2(a, x, b, y) = (a+ x)(b + y), p3(a, x, b, y) = xy,

we have ID-AKE protocol ΠqAqB ,(qA+xA)(qB+xB),xAxB
, where user UA computes

Z1 = e(DA, QB) = gzqAqB
T , Z2 = e(DAZ

xA , QBXB) = g
z(qA+xA)(qB+xB)
T ,

Z3 = XxA

B = gxAxB .

This protocol requires 2 pairing operations, 3 exponential operations (including
the exponentiation for the ephemeral public key), and 3 shared values. The
protocol has been proposed as protocol Π2 in [20], and is the most efficient
id-eCK secure ID-AKE protocol based on pairing as far as our best knowledge.

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 499

3.3 Security

For the security of the proposed protocol, we need the gap Bilinear Diffie-
Hellman (gap BDH) assumption described below. The computational BDH func-
tion BCDH : G3 → GT is BCDH(U, V,W) = e(g, g)logU log V logW , and the
decisional BDH predicate BDDH : G4 → {0, 1} is a function which takes an
input (gu, gv, gw, e(g, g)x) and returns the bit 1 if uvw = x mod q and the bit 0
otherwise, where log denote discrete logarithm. An adversary A is given input
U, V,W ∈U G selected uniformly random and oracle access to BDDH(·, ·, ·, ·)
oracle, and tries to compute BCDH(U, V,W). For adversary A, we define advan-
tage

AdvgapBDH(A) = Pr[U, V,W ∈R G,ABDDH(·,·,·,·)(U, V,W) = BCDH(U, V,W)],

where the probability is taken over the choices of U, V,W and A’s random tape.

Definition 4 (gap BDH assumption). We say that G,GT satisfy the gap
BDH assumption if, for all polynomial-time adversaries A, advantage AdvgapBDH

(A) is negligible in security parameter κ.

The proposed ID-AKE protocol is secure in the id-eCK model [21] under the
gap BDH assumption in the random oracle model.

Theorem 1. If G,GT are groups where the gap BDH assumption holds, H,H1

are random oracles, and pi (i = 1, ...,m) s.t. pm(qA, xA, qB, xB) = xAxB are ad-
missible polynomials, the proposed ID-AKE protocol Πp1,...,pm constructed from
pi (i = 1, ...,m) is secure in the id-eCK model.

The proof of Theorem 1 is provided in Appendix A. We provide a intuitive
discussion here.

Proof (Sketch). From the first condition of admissible polynomials, both users
can compute the shared values as follows. User UA, who knows secret keys
DA, xA, can compute shared values

Zi = e(D
ci,0,0
A Zci,1,0xA , QB) · e(Dci,0,1

A Zci,1,1xA , XB).

User UB, who knows secret keys DB, xB, can compute shared values

Zi = e(QA, D
ci,0,0
B Zci,0,1xB) · e(XA, D

ci,1,0
B Zci,1,1xB).

The gap BDH solver S extracts the answer guvwT of an instance (U = gu, V =
gv,W = gw) of the gap BDH problem using adversary A. For instance, we
assume the case that test session sid∗ has no matching session sid∗, adversary
A is given DA, and adversary A does not obtain xA and DB from the condition
of freshness. In this case, solver S embeds the instance as Z = U (= gu), XA = V
(= gv) and QB = W (= gw), and extracts guvwT from the shared values Zi = gzpi

T

(i = 1, ...,m− 1), gzpm

T = e(Z,Zm).

500 A. Fujioka and K. Suzuki

Solver S can perfectly simulate StaticKeyReveal query by selecting random qi
and setting Qi = H1(IDi) = gqi and Di = Zqi . Solver S can perfectly simulate
EphemeralKeyReveal query by selecting random xi and setting Xi = gxi .

From the second condition of admissible polynomials, solver S can extract
the answer of the gap BDH instance as follows. From the second condition,
there exist i, j (1 ≤ i, j ≤ m), s.t. (ci,1,0, ci,1,1) and (cj,1,0, cj,1,1) are linearly
independent. Using qA, solver S can compute

Z ′
i = g

z(ci,1,0xAqB+ci,1,1xAxB)
T = Zi/(e(Z,QB)

ci,0,0qAe(Z,XB)
ci,0,1qA),

Z ′
j = g

z(cj,1,0xAqB+cj,1,1xAxB)
T = Zj/(e(Z,QB)

cj,0,0qAe(Z,XB)
cj,0,1qA).

Solver S can compute gzxAqB
T from Z ′

i, Z
′
j as

(Z ′cj,1,1
i /Z ′ci,1,1

j)1/(ci,1,0cj,1,1−cj,1,0ci,1,1) = gzxAqB
T

since (ci,1,0, ci,1,1) and (cj,1,0, cj,1,1) are linearly independent, and successfully
outputs the answer gzxAqB

T = guvwT of the gap BDH problem.
From the third condition of admissible polynomials, solver S can check if the

shared values are correctly formed w.r.t. IDs and ephemeral public keys, and can
simulate H and SessionKeyReveal queries consistently, i.e., in the simulation of
the H(Z1, ..., Zm, Π, IDA, IDB, XA, XB) query, solver S needs to check that the
shared values Zi (i = 1, ...,m) are correctly formed, and if so return session keyK
being consistent with the previously answered SessionKeyReveal(Π, I, IDA, IDB,
XA, XB) and SessionKeyReveal(Π,R, IDB , IDA, XA, XB) queries.

For all i (= 1, ...,m), solver S performs the following procedure. If condition
a) of the third condition holds, pi(u0, u1, v0, v1) = �i(u0, u1)�

′
i(v0, v1), where

�i(u0, u1) and �′i(v0, v1) are linear combinations of u0, u1 and v0, v1, respectively.
Then, solver S can check if shared value Zi is correctly formed w.r.t. the IDs
and ephemeral public keys by asking BDDH oracle

BDDH(Z, g�i(qA,xA), g�
′
i(qB ,xB), Zi) = 1.

Here solver S can compute g�i(qA,xA) = Qd1

A Xd2

A , g�
′
i(qB ,xB) = Qd3

B Xd4

B since
�i(qA, xA), �′i(qB , xB) are linear, that is, they are expressed as �i(qA, xA) =
d1qA + d2xA, �

′
i(qB, xB) = d3qB + d4xB .

Otherwise, from condition b) of the third condition,

ci,f,0ufv0 + ci,f,1ufv1 = �i,f,∗(u0, u1)�
′
i,f,∗(v0, v1),

where �i,f,∗(u0, u1) and �′i,f,∗(v0, v1) are linear combinations of u0, u1 and v0, v1,
respectively. Using qA, solver S can compute

Z ′
i = g

z(ci,1,0xAqB+ci,1,1xAxB)
T = Zi/(e(Z,QB)

ci,0,0qAe(Z,XB)
ci,0,1qA).

Then, solver S can check if shared value Z ′
i is correctly formed w.r.t. the IDs

and ephemeral public keys, by asking BDDH oracle

BDDH(Z, g�i,1,∗(qA,xA), g�
′
i,1,∗(qB ,xB), Z ′

i) = 1,

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 501

and this implies Zi is correctly formed. Here solver S can compute g�i,1,∗(qA,xA) =
Qd1

A Xd2

A , g�
′
i,1,∗(qB ,xB) = Qd3

B Xd4

B since �i,1,∗(qA, xA), �′i,1,∗(qB, xB) are linear,
that is, they are expressed as �i,1,∗(qA, xA) = d1qA + d2xA, �′i,1,∗(qB, xB) =
d3qB + d4xB .

Solver S can check if shared value Zm = gxAxB is correctly formed w.r.t. the
ephemeral public keys, by checking e(XA, XB) = e(g, Zm).

Finally, we assume the case that adversary A issues MasterKeyReveal query.
In this case, solver S embeds the instance as XA = V (= gv), XB = W (= gw),
and extracts answer gvw of the computational Diffie-Hellman problem from the
shared values Zm = gxAxB . ��

3.4 Remarks

The resulting ID-AKE protocols based on admissible polynomials are id-eCK
secure, however their security requires a gap assumption, i.e., the gap BDH
assumption, not a conventional computational assumption, such like the BDH
assumption. To remove the gap assumption, the twin DH technique [10] is ap-
plicable to the constructed protocols. Although this modification requires twice
as many public keys as the original protocols, the modified protocol are id-eCK
secure under the BDH assumption.

In the consideration of the sufficient condition, we assume that the coefficients
of the admissive polynomials, ci,j,k, are constant. However, it is possible that
these coefficients are generated from a publicly available value, such like the
session id. For instance, when the following admissive polynomials

p1(a, x, b, y) = (caa+x)(b+y), p2(a, x, b, y) = (a+x)(cbb+y), p3(a, x, b, y) = xy

are used to construct an ID-AKE protocol and the coefficients, ca, cb, are gener-
ated with a additional hash function H ′ such that ca = H ′(XA), cb = H ′(XB),
the resulting protocol is the same with protocol Π1 in [20].

In Table 1, we show the comparison with the existing id-eCK secure id-AKE
protocols, [21] and [20]. In the table, “model” means security model, “#SK,
#EK, #SV, #exp, #pairing” mean the number of static key, ephemeral key,
shared value, exponential operation (including computation of ephemeral public
key), and pairing operation, and “assumption” means required assumption. The
proposed protocol requires m shared values, 4(m−1)+2 exponential operations,
and 2(m − 1) pairing operations in general. However, it contains efficient one,
e.g., “Example 3” that is same as Π2 of [20].

Table 1. Comparison with the existing id-eCK secure id-AKE protocols

protocol model #SK #EK #SV #exp #pairing assumption

HC [21] id-eCK 2 1 3 3 2 BDH+ROM
Π1 of FSU [20] id-eCK 1 1 3 5 2 GBDH+ROM
Π2 of FSU [20] id-eCK 1 1 3 3 2 GBDH+ROM

Proposed protocol id-eCK 1 1 m 4(m− 1) + 2 2(m− 1) GBDH+ROM
Example 3 of proposed id-eCK 1 1 3 3 2 GBDH+ROM

502 A. Fujioka and K. Suzuki

4 Conclusion

We presented a sufficient condition for constructing id-eCK secure two-pass AKE
protocols with a single static (secret) key and a single ephemeral key using a sin-
gle hash function. The constructed protocols consist of several two-dimensional
versions of the DH key exchange protocol, and their security proofs do not de-
pend on the Forking Lemma. As a result, our protocols provide strong security
assurances without compromising too much on efficiency.

References

1. Baek, J., Safavi-Naini, R., Susilo, W.: Universal Designated Verifier Signature
Proof (or How to Efficiently Prove Knowledge of a Signature). In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 644–661. Springer, Heidelberg (2005)

2. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: CCS 1993: Proceedings of the 1st ACM Conference on
Computer and Communications Security, pp. 62–73 (1993)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and their
Security Analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

6. Boyd, C., Choo, K.-K.R.: Security of Two-Party Identity-Based Key Agreement.
In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243.
Springer, Heidelberg (2005)

7. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient One-Round
Key Exchange in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.)
ACISP 2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008), Full version
available at http://eprint.iacr.org/2008/007/

8. Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A Generalization of
DDH with Applications to Protocol Analysis and Computational Soundness. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidel-
berg (2007)

9. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

10. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

11. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. International Journal of Information Security 6(4), 213–241 (2007)

12. Chow, S.S.M., Choo, K.-K.R.: Strongly-Secure Identity-Based Key Agreement and
Anonymous Extension. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 203–220. Springer, Heidelberg (2007)

http://eprint.iacr.org/2008/007/

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 503

13. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

14. Cremers, C.J.F.: Session-state Reveal Is Stronger Than Ephemeral Key Reveal:
Attacking the NAXOS Authenticated Key Exchange Protocol. In: Abdalla, M.,
Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536,
pp. 20–33. Springer, Heidelberg (2009)

15. Cremers, C.J.F.: Examining indistinguishability-based security models for key ex-
change protocols: The case of CK, CK-HMQV, and eCK. In: 6th ACM Symposium
on Information, Computer and Communications Security, pp. 80–91. ACM, New
York (2011)

16. Diffie, W., Hellman, H.: New directions in cryptography. IEEE Transactions of
Information Theory 22(6), 644–654 (1976)

17. Fiore, D., Gennaro, R.: Making the Diffie-Hellman Protocol Identity-Based. In:
Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 165–178. Springer, Heidel-
berg (2010)

18. Fiore, D., Gennaro, R.: Identity-Based Key Exchange Protocols without Pairings.
In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Computa-
tional Science X. LNCS, vol. 6340, pp. 42–77. Springer, Heidelberg (2010)

19. Fujioka, A., Suzuki, K.: Designing Efficient Authenticated Key Exchange Resilient
to Leakage of Ephemeral Secret Keys. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 121–141. Springer, Heidelberg (2011)

20. Fujioka, A., Suzuki, K., Ustaoğlu, B.: Ephemeral Key Leakage Resilient and Effi-
cient ID-AKEs That Can Share Identities, Private and Master Keys. In: Joye, M.,
Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 187–205. Springer,
Heidelberg (2010)

21. Huang, H., Cao, Z.: An ID-based authenticated key exchange protocol based
on bilinear Diffie-Hellman problem. In: Safavi-Naini, R., Varadharajan, V. (eds.)
ASIACCS 2009: Proceedings of the 2009 ACM Symposium on Information, Com-
puter and Communications Security, New York, NY, USA, pp. 333–342 (2009)

22. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

23. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. of Cryptology 13(3), 361–396 (2000)

A Proof of Theorem 1

We need the gap Bilinear Diffie-Hellman (gap BDH) assumption in pairing
groupsG,GT of order q with generator g, gT , where one tries to compute BCDH(
U, V,W) accessing the BDDH oracle. Here, we denote BCDH(gu, gv, gw) = guvwT ,
and the BDDH oracle on input (gu, gv, gw, gxT) returns bit 1 if uvw = x, or bit
0 otherwise. We also need a variant of the gap BDH assumption, where one
tries to compute BCDH(U, V, V) instead of BCDH(U, V,W). We call the vari-
ant as the square gap BDH assumption, which is equivalent to the gap BDH
assumption if groups G,GT have prime order q [2] as follows. Given a challenge
U, V of the square gap BDH assumption, one sets W = V s for random integers
s ∈R [1, q − 1] and can compute BCDH(U, V, V) = BCDH(U, V,W)1/s. Given a

504 A. Fujioka and K. Suzuki

challenge U, V,W of the gap BDH assumption, one sets V1 = VW, V2 = VW−1

and can compute BCDH(U, V,W) = (BCDH(U, V1, V1)/BCDH(U, V2, V2))
1/4.

We show that if polynomially bounded adversaryA can distinguish the session
key of a fresh session from a randomly chosen session key, we can solve the gap
BDH problem. Let κ denote the security parameter, and let A be a polynomial-
time bounded adversary w.r.t. security parameter κ. We use adversary A to
construct the gap BDH solver S that succeeds with non-negligible probability.
Adversary A is said to be successful with non-negligible probability if adversary
A wins the distinguishing game with probability 1

2 + f(κ), where f(κ) is non-
negligible, and the event M denotes that an adversary A is successful.

Let the test session be sid∗ = (Π, I, IDA, IDB, XA, XB) or (Π,R, IDB , IDA,
XA, XB), which is a completed session between honest users UA and UB, where
user UA is the initiator and user UB is the responder of the test session sid∗. Let
H∗ be the event that adversary A queries (Z1, ..., Zm, Π, IDA, IDB, XA, XB) to
H . Let H∗ be the complement of event H∗. Let sid be any completed session
owned by an honest user such that sid �= sid∗ and sid is non-matching to
sid∗. Since sid and sid∗ are distinct and non-matching, the inputs to the key
derivation function H are different for sid and sid∗. Since H is a random oracle,
adversary A cannot obtain any information about the test session key from the
session keys of non-matching sessions. Hence, Pr(M ∧ H∗) ≤ 1

2 and Pr(M) =

Pr(M ∧ H∗) + Pr(M ∧ H∗) ≤ Pr(M ∧ H∗) + 1
2 , whence f(κ) ≤ Pr(M ∧ H∗).

Henceforth, the event M ∧H∗ is denoted by M∗.
We denote a user as Ui, and user Ui and other parties are modeled as proba-

bilistic polynomial-time Turing machines w.r.t. security parameter κ. We denote
master secret (public) key as z (Z). For user Ui, we denote static secret keys as
Di and ephemeral secret (public) keys as xi (Xi, respectively). We also denote
the session key as K. Assume that adversary A succeeds in an environment with
n users and activates at most s sessions within a user.

We consider the non-exclusive classification of all possible events in Tables 2
and 3. Here, users UA and UB are initiator and responder of the test session sid∗,
respectively. Table 2 classifies events when identities IDA, IDB are distinct,
and Table 3 classifies events when identities IDA = IDB are the same, i.e.,
reflection attacks. In these tables, “ok” means the secret key is not revealed, or

Table 2. Classification of attacks when IDs IDA, IDB are distinct. “ok” means the
secret key is not revealed. “r” means the secret key may be revealed. “n” means no
matching session exists. The “instance embedding” row shows how the simulator em-
beds an instance of the gap BDH problem.

z DA xA DB xB instance embedding

E1 ok r ok ok n Z = U,XA = V,QB = W

E2 ok ok r ok n Z = U,QA = V,QB = W

E3 ok r ok ok r Z = U,XA = V,QB = W

E4 ok ok r ok r Z = U,QA = V,QB = W

E5 r r ok r ok XA = V,XB = W

E6 ok ok r r ok Z = U,QA = V,XB = W

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 505

Table 3. Classification of attacks when IDs IDA = IDB are the same.

z DA xA DB xB instance embedding

E′
2 ok ok r ok n Z = U,QA = V,QB = V

E′
4 ok ok r ok r Z = U,QA = V,QB = V

E′
5 r r ok r ok XA = V,XB = V

the matching session exists and the ephemeral key is not revealed. “r” means the
secret key may be revealed. “n” means no matching session exists. The “instance
embedding” row shows how the simulator embeds an instance of the gap BDH
problem.

Since the classification covers all possible events, at least one event Ei ∧M∗

in the tables occurs with non-negligible probability if event M∗ occurs with
non-negligible probability. Thus, the gap BDH problem can be solved with non-
negligible probability, which means that the proposed protocol is secure under
the gap BDH assumption. We investigate each of these events in the following
subsections.

A.1 Event E1 ∧M∗

In event E1, test session sid∗ has no matching session sid∗, adversaryA obtains
DA, and adversaryA does not obtain xA andDB from the condition of freshness.
In this case, solver S embeds the instance as Z = U (= gu), XA = V (= gv)
and QB = W (= gw), and extracts guvwT from the shared values Zi = gzpi

T

(i = 1, ...,m−1), gzpm

T = e(Z,Zm) using the knowledge of qA. In event E1∧M∗,
solver S performs the following steps.

Setup. The gap BDH solver S embeds instance (U = gu, V = gv,W = gw) of
the gap BDH problem as follows. S set the master public key Z = U , establishes
n honest users U1, ..., Un. S randomly selects two users UA and UB and integer
t ∈R [1, s], which is a guess of the test session with probability 1/n2s. S sets the
ephemeral public key of t-th session of user UA as XA = V , and sets hash value
QB = W of IDB of of user UB. S selects random qi, sets Qi = H1(IDi) = gqi

and Di = Zqi , and assigns the static secret key Di to user Ui.
S activates adversary A on this set of users and awaits the actions of A. We

next describe the actions of S in response to user activations and oracle queries.

Simulation. S maintains a list LH that contains queries and answers of H
oracle, and a list LS that contains queries and answers of SessionKeyReveal. S
simulates oracle queries as follows.

1. Send(Π, I, IDi, IDj): S selects ephemeral secret key xi ∈U Zq, computes
ephemeral public key Xi honestly, records (Π, IDi, IDj , Xi), and returns it.

2. Send(Π,R, IDj , IDi, Xi): S selects ephemeral secret key xj ∈U Zq, com-
putes ephemeral public key Xj honestly, records (Π, IDi, IDj, Xi, Xj), and
returns it.

506 A. Fujioka and K. Suzuki

3. Send(Π, I, IDi, IDj, Xi, Xj): If (Π, IDi, IDj , Xi) is not recorded, S records
the session (Π, I, IDi, IDj , Xi, Xj) as not completed. Otherwise, S records
the session as completed.

4. H(Z1, ..., Zm, Π, IDi, IDj , Xi, Xj):
(a) If (Z1, ..., Zm, Π, IDi, IDj, Xi, Xj) is recorded in list LH , then return

recorded value K.
(b) Else if the session (Π, I, IDi, IDj, Xi, Xj) or (Π,R, IDj , IDi, Xi, Xj) is

recorded in list LS , then S checks that the shared values Zi (i = 1, ...,m)
are correctly formedw.r.t. IDs and ephemeral public keys IDi, IDj , Xi, Xj

using knowledge of secret keys qi or xi by the procedure Check described
below.
If the shared values are correctly formed, then return recorded value K
and record it in list LH .

(c) Else if i = A, j = B, and the session is t-th session of user UA, then
S checks that the shared values Zi (i = 1, ...,m) are correctly formed
w.r.t. IDs and ephemeral public keys IDA, IDB, XA, YB using knowledge
of secret key qA by the procedure Check described below.
If the shared values are correctly formed, then S computes the answer
of the gap BDH instance from the shared values and public keys using
knowledge of secret key qA by the procedure Extract described below,
and is successful by outputting the answer.

(d) Otherwise, S returns random value K and records it in list LH .
5. SessionKeyReveal((Π, I, IDi, IDj , Xi, Xj) or (Π,R, IDj , IDi, Xi, Xj)):

(a) If the session (Π, I, IDi, IDj , Xi, Xj) or (Π,R, IDj , IDi, Xi, Xj) (= sid)
is not completed, return error.

(b) Else if sid is recorded in list LS, then return recorded value K.
(c) Else if (Z1, ..., Zm, Π, IDi, IDj , Xi, Xj) is recorded in list LH , then S

checks that the shared values Zi (i = 1, ...,m) are correctly formed w.r.t.
IDs and ephemeral public keys IDi, IDj , Xi, Xj using knowledge of se-
cret keys qi or xi by the procedure Check described below.
If the shared values are correctly formed, then return recorded value K
and record it in list LS .

(d) Otherwise, S returns random value K and records it in list LS .
6. SessionStateReveal(sid): If sid is t-th session of UA, then S aborts with

failure. Otherwise, S computes all session states as the protocol with si and
returns it.

7. Corrupt(Ui): If i = A or i = B, then S aborts with failure. Otherwise, S
returns Di and all session states of sessions owned by Ui.

8. MasterKeyReveal(): S aborts with failure.
9. Test(sid): If sid is not t-th session of UA, then S aborts with failure. Oth-

erwise, S responds to the query faithfully.
10. If adversary A outputs a guess γ, S aborts with failure.

Extract : The procedure Extract computes g
zufv0
T from the shared values Zi =

gzpi

T (i = 1, ...,m− 1), gzpm

T = e(Z,Zm) and public values QA = U0 = gu0 , XA =
U1 = gu1 , QB = V0 = gv0 , XB = V1 = gv1 using knowledge of secret key uf as
follows.

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 507

From the second condition of admissible polynomials, there exist i, j (1 ≤
i, j ≤ m), s.t. (ci,f,0, ci,f,1) and (cj,f,0, cj,f,1) are linearly independent. Using uf ,
the procedure Extract computes

Z ′
i = g

z(ci,f,0ufv0+ci,f,1ufv1)

T = Zi/(e(Z, V0)
ci,f,0uf e(Z, V1)

ci,f,1uf),

Z ′
j = g

z(cj,f,0ufv0+cj,f,1ufv1)

T = Zj/(e(Z, V0)
cj,f,0uf e(Z, V1)

cj,f,1uf).

The procedure Extract computes gzufv0 from Z ′
i, Z

′
j as

(Z ′cj,f,1

i /Z ′ci,f,1

j)1/(ci,f,0cj,f,1−cj,f,0ci,f,1) = g
zufv0
T

since (ci,f ,0, ci,f,1) and (cj,f,0, cj,f,1) are linearly independent.

The procedure Extract can compute g
zufv1
T using knowledge of secret key uf

same as above. The procedure Extract can compute g
zu0vf′
T and g

zu1vf′
T using

knowledge of secret key vf ′ same as above. Thus, we can compute the answer of
the gap BDH problem.

Check : The procedure Check checks that the shared values Zi = gzpi

T (i =
1, ...,m − 1), gzpm

T = e(Z,Zm) are correctly formed w.r.t. public values QA =
U0 = gu0 , XA = U1 = gu1 , QB = V0 = gv0 , XB = V1 = gv1 using knowledge of
secret key uf as follows.

For all i = 1, ...,m, the procedure Check performs the following. If condi-
tion a) of the second condition of admissible polynomials holds, there exist lin-
ear combination �i(u0, u1) of u0, u1 and linear combination �′i(v0, v1) of v0, v1,
s.t. pi(u0, u1, v0, v1) = �i(u0, u1)�

′
i(v0, v1). Then, the procedure Check checks if

shared value Zi is correctly formed w.r.t. public values by asking BDDH oracle

BDDH(Z, g�i(u0,u1), g�
′
i(v0,v1), Zi) = 1.

Here, we can compute g�i(u0,u1) = U
du0
0 U

du1
1 and g�

′
i(v0,v1) = V

dv0
0 V

dv1
1 , since

�i(u0, u1) and �′i(v0, v1) are expressed as �i(u0, u1)=du0u0+du1u1 and �′i(v0, v1)=
dv0v0 + dv1v1.

Otherwise, from condition b) of the second condition of admissible polynomi-
als, there exist linear combination �i,f,∗(u0, u1) of u0, u1 and linear combination
�′
i,f,∗(v0, v1) of v0, v1, s.t. ci,f,0ufv0 + ci,f,1ufv1 = �i,f,∗(u0, u1)�

′
i,f,∗(v0, v1). Us-

ing knowledge of secret key uf , the procedure Check computes

Z ′
i = g

z(ci,f,0ufv0+ci,f,1ufv1)

T = Zi/(e(Z, V0)
ci,f,0uf e(Z, V1)

ci,f,1uf).

Then, the procedure Check checks that shared value Z ′
i is correctly formed w.r.t.

public values by asking BDDH oracle

BDDH(Z, g�i,f,∗(u0,u1), g
�′
i,f,∗(v0,v1), Z ′

i) = 1,

and this implies that shared value Zi is correctly formed w.r.t. public values.

Here, we can compute g�i,f,∗(u0,u1) = U
du0

0 U
du1

1 and g
�′
i,f,∗(v0,v1) = V

dv0

0 V
dv1

1 ,

508 A. Fujioka and K. Suzuki

since �i,f,∗(u0, u1) and �′
i,f,∗(v0, v1) are expressed as �i,f,∗(u0, u1) = du0u0+du1u1

and �′
i,f,∗(v0, v1) = dv0v0 + dv1v1.

The procedure Check can check that the shared values are correctly formed
w.r.t. the public values using knowledge of secret key vf same as above.

The procedure Check can check also that the shared value Zm = gxAxB is
correctly formed w.r.t. the ephemeral public keys, by checking e(XA, XB) =
e(g, Zm).

Analysis. The simulation of the environment for adversary A is perfect except
with negligible probability. The probability that adversary A selects the session,
where UA is initiator, UB is responder, and ephemeral public key XA is V , as
the test session sid∗ is at least 1

n2s . Suppose this is indeed the case, solver S
does not abort in Step 9.

Suppose event E1 occurs, solver S does not abort in Steps 6, 7 and 8.
Suppose event M∗ occurs, adversary A queries correctly formed Z1, ..., Zm to

H . Therefore, solver S is successful as described in Step 4c, and does not abort
as in Step 10.

Hence, solver S is successful with probability Pr(S) ≥ p1

n2s , where p1 is prob-
ability that E1 ∧M∗ occurs.

A.2 Event E2 ∧M∗

In event E2, test session sid∗ has no matching session sid∗, A obtains xA, and
A does not obtain either DA or DB. The reduction to the gap BDH assumption
is similar to event E1 ∧M∗ in Subsection A.1, except the following points.

In Setup and Simulation, S embeds gap BDH instance U, V,W as Z = U ,
QA = V , and QB = W .

In Simulation, using knowledge of xA, S extracts answer gzqAqB
T of the gap

BDH problem.

A.3 Event E3 ∧M∗

In event E3, test session sid∗ has matching session sid∗, A obtains DA and
xB, and A does not obtain either xA or DB. The reduction to the gap BDH
assumption is similar to event E1 ∧M∗ in Subsection A.1, except the following
points.

In Setup and Simulation, S embeds gap BDH instance U, V,W as Z = U ,
XA = V , and QB = W .

In Simulation, using knowledge of qA or xB, S extracts answer gzxAqB
T of the

gap BDH problem.

A.4 Event E4 ∧M∗

In event E4, test session sid∗ has matching session sid∗, A obtains xA and
xB, and A does not obtain either DA or DB. The reduction to the gap BDH
assumption is similar to event E1 ∧M∗ in Subsection A.1, except the following
points.

Sufficient Condition for ID-AKE Resilient to Leakage of Secret Keys 509

In Setup and Simulation, S embeds gap BDH instance U, V,W as Z = U ,
QA = V , and QB = W .

In Simulation, using knowledge of xA or xB , S extracts answer gzqAqB
T of the

gap BDH problem.

A.5 Event E5 ∧M∗

In event E5, test session sid∗ has matching session sid∗, A obtains z, DA, and
DB, and A does not obtain either xA or xB . The reduction to the gap BDH
assumption is similar to event E1 ∧M∗ in Subsection A.1, except the following
points.

In Setup and Simulation, S embeds gap BDH instance U, V,W as XA = V
and XB = W .

In Simulation, using knowledge of qA or qB, S extracts gxAxB from shared
value Zm and can compute answer e(U, gxAxB) of the gap BDH problem.

A.6 Event E6 ∧M∗

In event E6, test session sid∗ has matching session sid∗, A obtains xA and
DB, and A does not obtain either DA or xB. The reduction to the gap BDH
assumption is similar to event E1 ∧M∗ in Subsection A.1, except the following
points.

In Setup and Simulation, S embeds gap BDH instance U, V,W as Z = U ,
QA = V , and XB = W .

In Simulation, using knowledge of xA or qB, S extracts answer gzqAxB

T of the
gap BDH problem.

A.7 IDA = IDB Cases

In the case of IDA = IDB, i.e., QA = QB, we make the reduction to the square
gap BDH assumption.

In event E′
2, the reduction to the square gap BDH assumption is similar to

event E2. In Setup and Simulation, S embeds square gap BDH instance U, V as
Z = U , QA = V , and QB = V . In Simulation, using knowledge of xA, S extracts
answer gzqAqB

T of the square gap BDH problem.
In event E′

4, the reduction to the square gap BDH assumption is similar to
event E4. In Setup and Simulation, S embeds square gap BDH instance U, V as
Z = U , QA = V , and QB = V . In Simulation, using knowledge of xA or xB , S
extracts answer gzqAqB

T of the square gap BDH problem.
In event E′

5, the reduction to the square gap BDH assumption is similar to
event E5. In Setup and Simulation, S embeds square gap BDH instance U, V as
XA = V and XB = V . In Simulation, using knowledge of qA or qB, S extracts
gxAxB from shared value Zm and can compute answer e(U, gxAxB) of the square
gap BDH problem. ��

Author Index

Aimani, Laila El 204
Aoki, Kazumaro 1

Baek, Yoo-Jin 74
Boyd, Colin 319

Chen, Danyang 169
Chen, Kai 140
Chen, Liqun 275
Chen, Xiaofeng 219
Chen, Yu 275
Chen, Zhong 109
Cheon, Jung Hee 74
Choudhury, Ashish 450
Chow, Yang-Wai 391

Ding, Liping 248
Dong, Le 375
Du, Yusong 219, 261

Emura, Keita 186

Feng, Dengguo 61
Fujioka, Atsushi 88, 490

Gendrullis, Timo 302
Gonzalez Nieto, Juan 319

Han, Daewan 235
He, Jie 127
Hirose, Shoichi 346
Hong, Deukjo 365

Jeong, Kyung Chul 235
Jiang, Jianchun 248
Jiang, Zhengtao 219

Kikuchi, Ryo 88
Kim, HongTae 74
Koo, Bonwook 365
Krämer, Juliane 155
Kuppusamy, Lakshmi 319
Kuwakado, Hidenori 346
Kwon, Daesung 365

Lee, Dong Hoon 235
Lee, Hyung Tae 74

Lian, Yifeng 140
Liu, Bo 127
Liu, Jiye 169
Liu, Meicheng 261
Lu, Yi 248
Luo, Song 109

Meier, Willi 248
Mendel, Florian 33
Minamoto, Teruya 437
Miyaji, Atsuko 186

Nad, Tomislav 33
Nedospasov, Dmitry 155
Nguyen, Vu Duc 391
Nishide, Takashi 406

Ohura, Ryuji 437
Okamoto, Yoshiaki 88
Omote, Kazumasa 186

Paar, Christof 48
Palmieri, Paolo 332
Patra, Arpita 450
Pereira, Olivier 332
Plantard, Thomas 419

Qiao, Yong 127

Raddum, H̊avard 18
Rangasamy, Jothi 319

Saito, Taiichi 88
Sakurai, Kouichi 406
Sasaki, Yu 1
Schilling, Thorsten Ernst 18
Schläffer, Martin 33
Seifert, Jean-Pierre 155
Shen, Qingni 109
Stebila, Douglas 319
Strobel, Daehyun 48
Su, Bozhan 375
Susilo, Willy 391, 419
Suzuki, Koutarou 490

Tian, Haibo 219

512 Author Index

Vaudenay, Serge 248

Wolf, Marko 302
Wu, Shuang 375
Wu, Wenling 375

Yang, Shuguo 169
Yang, Yuexiang 127
Yoneyama, Kazuki 467
Yoshida, Hirotaka 346

Zeng, Yingzhi 127

Zhang, Fangguo 261

Zhang, Hailong 61

Zhang, Yingjun 140

Zhang, Zhenfei 419

Zhang, Zongyang 275

Zhao, Fangming 406

Zhou, Yongbin 61, 169

Zou, Jian 375

	Title

	Preface
	ICISC 2011 Organization
	Table of Contents
	Hash Function I
	Improved Integral Analysis on Tweaked Lesamnta
	Introduction
	Specification of Lesamnta
	Related Work
	Integral Attack
	Integral Attack in the Known-Key Setting
	Previous Integral Attack and Known-Key Attack on Lesamnta
	Chosen-Key Attack

	New Integral Characteristics for Lesamnta
	Existing Integral Characteristics
	Experiment and New Integral Characteristic

	Known-Key Attack on 31-Round Block-Cipher of Tweaked Lesamnta
	Chosen-Key Attack on Full-Round Block-Cipher of Tweaked Lesamnta
	32-Round Integral Characteristic and Analysis for the Key Schedule
	Chosen-Key Distinguisher and Its Impact

	Concluding Remarks
	References

	Analysis of Trivium Using Compressed Right Hand Side Equations
	Introduction
	Preliminaries
	Multiple Right Hand Side Equation Systems
	Binary Decision Diagrams
	Trivium

	Compressed Right Hand Side Equation Systems
	Dependencies among Linear Combinations

	Experimental Results
	Solving Attempts

	Conclusion and Further Work
	References

	Cryptanalysis of Round-Reduced HAS-160
	Introduction
	Description of HAS-160
	Alternative Description of HAS-160

	Basic Attack Strategy
	Finding Two Short Characteristics
	Linearization of HAS-160
	Construction of the Generator Matrix
	Searching for Low Hamming Weight Codewords
	Short Differential Characteristics

	Finding Connecting Characteristics
	Generalized Conditions
	Application to HAS-160
	Finding a Message Pair

	Conclusions
	References

	Side Channel Analysis I

	An Efficient Method for Eliminating Random Delays in Power Traces of Embedded Software
	Introduction
	Alignment Techniques
	Our Contribution
	Structure of This Paper

	The Pipelining Concept of ATmega8 and PIC16F54
	Removing Random Delays
	Conversion of Power Traces to Strings
	Identification of Random Delays
	Efficient String Matching for Detecting Random Delays

	Practical Results
	Conclusion
	Discussions

	References

	An Efficient Leakage Characterization Method
for Profiled Power Analysis Attacks
	Introduction
	Typical Profiled Power Analysis Attacks
	Profiling
	Key-Recovery

	Covariance Analysis Based Characterization Method
	Main Idea
	Characterization Procedure
	Summary

	Experiments
	Comparison with Variance Power Analysis
	Evaluation of Characterization Accuracy
	The Minimum Number of Power Traces Needed in Profiling
	Key-Recovery Efficiency Influenced by Profiling

	Conclusions
	References

	Correcting Errors in Private Keys Obtained from Cold Boot Attacks
	Introduction
	Our Results
	Related Works

	Splitting System
	Correcting Errors in Private Key of DL Based Cryptosystems
	Basic Algorithm
	Coron and Kocher's Method Koc96,Cor99
	Clavier and Joye's Method CJ01

	Applying to RSA Cryptosystem
	Conclusion
	References

	Public Key Cryptography
	Strong Security Notions for Timed-Release Public-Key Encryption Revisited
	Introduction
	Our Contribution
	Related Works

	Preliminaries
	Public-Key Encryption
	Identity-Based Encryption
	-Uniformity and Collision Resistance of the Encryption

	Timed-Release Encryption with Pre-open Capability
	Syntax
	New Security Notions

	Generic Construction of Strong Secure TRPKE-PC
	Security
	Comparison

	Conclusion
	References

	Fully Secure Unidirectional Identity-Based
Proxy Re-encryption
	Introduction
	Our Contribution
	Related Works
	Organization

	Backgroud
	Multi-hop Identity-Based Proxy Re-encryption
	Single-hop Identity-Based Proxy Re-encryption
	Master Secret Security
	Composite Order Bilinear Groups
	Complexity Assumptions

	Single-hop IB-PRE Scheme
	Construction
	Security

	Multi-hop IB-PRE Scheme
	Construction
	Security

	Discussion
	Re-encryption Control
	Transitivity and Transferability

	Conclusion
	References

	Network and Mobile Security

	Detecting Parasite P2P Botnet in eMule-like Networks through Quasi-periodicity Recognition
	Introduction
	Related Work
	Background and Motivation
	C&C of the Parasite P2P Botnet
	Quasi-periodicity Characteristic

	Detection Framework
	Sequence Collector
	Mathematical Model
	Algorithms

	Experiment and Analysis
	Datasets
	Determining the Empirical Value of Parameters
	Verification and Analysis

	Conclusion and Future Work
	References

	AutoDunt: Dynamic Latent Dependence Analysis for Detection of Zero Day Vulnerability
	Introduction
	Related Work
	Overview of AutoDunt
	Latent Dependence
	Implementation
	State Saving Module
	State Recovery Module
	Distinguishing Different Processes and Threads

	Evaluation
	Effectiveness
	Obfuscated Shellcode Detection
	Efficiency

	Conclusion and Future Work
	References

	Digital Signature

	Weaknesses in Current RSA Signature Schemes
	Introduction
	Background
	RSA CRT
	Square-and-Multiply for Modular Exponentiation
	The ZDN Algorithm for Modular Multiplication
	Blinding Techniques to Thwart Statistical Attacks

	SPA-Based Secret Exponent Recovery
	Known Methods
	Classes of Input Messages

	Proof of Concept
	Full RSA Private Key Recovery
	Conclusion
	References

	Back Propagation Neural Network Based Leakage Characterization for Practical Security Analysis of Cryptographic Implementations
	Introduction
	Preliminaries
	Power Leakage Decomposition
	Linear Power Leakage Modeling
	Nonlinear Power Leakage Modeling
	Generic Leakage Function

	Introduction to Back Propagation Neural Network
	Our BP Neural Network based Leakage Characterizing Approach
	BP Neural Network Based Leakage Model
	Soundness of BP Neural Network for Leakage Characterization
	Constructions of BP Neural Network Based Attacks

	Experiments
	Comparison with CPA-like Attacks
	Comparison with MIA-like Attacks
	Comparison among Attacks Using Different Leakage Characterizations

	Conclusions
	References

	Side Channel Analysis II

	A Revocable Group Signature Scheme with the Property of Hiding the Number of Revoked Users
	Introduction
	Bilinear Groups and Complexity Assumptions
	Definitions of Group Signature
	Other Cryptographic Tools
	Proposed Group Signature Scheme with Hiding of the Number of Revoked Users
	Discussion
	Security Analysis
	Conclusion
	References

	Generic Constructions
for Verifiable Signcryption
	Introduction
	Model and Main Constructions
	Unforgeability
	Indistinguishability
	Main Constructions

	Analysis of the StE and CtEaS Paradigms
	Insufficiency of OW-CCA and NM-CPA Secure Encryption
	Positive Results

	Efficient Verifiable Signcryption from the EtS Paradigm
	Efficient Instantiations
	Extension to Multi-user Security

	Efficient Verifiable Signcryption from the EtStE Paradigm
	The Construction
	Analysis
	Extension to Multi-user Security

	References

	Non-delegatable Strong Designated Verifier Signature on Elliptic Curves
	Introduction
	Related Works
	Contributions
	Organizations

	Preliminaries
	Assumptions
	SDVS

	Modified Definitions
	Non-delegatability
	Signer Ambiguity

	The SDVS Scheme
	Proof of Properties
	Performance
	References

	Cryptanalysis

	An Improved Known Plaintext Attack on PKZIP Encryption Algorithm
	Introduction
	Previous Works
	The PKZIP Encryption
	The Attack of Biham and Kocher
	The Attack of Stay

	New Known Plaintext Attack
	Main Idea
	Attack Using 2 Files
	Attack with More Files

	Chosen Plaintext Attack
	Experimental Result and Comparison
	The Implementation of Our Attack
	The Comparison with the Attack of Stay

	Conclusion
	References

	Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit
	Introduction
	Preliminary Analysis on CubeHash Round Function
	The Synthetic Approach
	Our Analysis on CubeHash Round Function

	Synthetic Bias Analysis on the Conditional Dependent Problem
	Improved Attacks on CubeHash
	Our Improved Analysis on Stream Cipher Rabbit
	Conclusion
	References

	On the Resistance of Boolean Functions against Fast Algebraic Attacks
	Introduction
	Preliminaries
	Optimal Resistance of Boolean Functions against FAA's
	Fast Algebraic Immunity for Boolean Functions
	Sufficient and Necessary Condition of e-Fast Algebraic Immunity
	An Algorithm for Deciding e-FAI
	Conclusion
	References

	CCA Secure IB-KEM from the Computational Bilinear Diffie-Hellman Assumption
in the Standard Model
	Introduction
	Background
	Our Contributions
	Related Work

	Preliminaries
	Notation
	Identity Based Key Encapsulation Mechanisms
	Chosen Ciphertext Security
	Target Collision Resistant Hash Function
	Computational Bilinear Diffie-Hellman Assumption

	A 1-Bit IB-KEM Scheme
	CCA Secure IB-KEM with Constant Size Public Parameters
	CCA Secure IB-KEM with Constant Size Ciphertext
	Generalized Scheme 1
	Generalized Scheme 2
	Extensions
	References

	Efficient Implementation

	Design, Implementation, and Evaluation of a Vehicular Hardware Security Module
	Introduction and Motivation
	The Need For Efficient Hardware Security
	Security and Functional Requirements Engineering
	Related Work

	Design
	System Architecture
	Hardware Interface in General
	Hardware Security Building Blocks
	Hardware Security Logic and Functionality
	Driver Software and Software Security Framework

	Implementation
	Evaluation
	Performance Analysis
	Security Analysis
	Comparison with Other Hardware Security Modules

	Conclusion and Outlook
	References

	Efficient Modular Exponentiation-Based Puzzles for Denial-of-Service Protection
	Introduction
	Puzzle Properties
	Contributions

	Background: Modular Exponentiation-Based Puzzles
	Rivest et al.'s Puzzle
	Karame-Čapkun Puzzle

	Our Client Puzzle Protocol
	Tools
	The Proposed Puzzle: RSAPuz

	Security Analysis of RSAPuz
	Difficulty of RSAPuz

	Performance Comparison
	Conclusion
	References

	Implementing Information-Theoretically Secure Oblivious Transfer from Packet Reordering
	Introduction
	Contribution
	Outline of the Paper

	Preliminaries
	Binary Discrete-Time Delaying Channel
	Oblivious Transfer over a BDDC

	Packet Reordering as a Noisy Channel
	Reordering Dynamics
	Protocol Implementation
	Metrics
	Experiment

	Conclusion
	References

	Hash Function II�
	Compression Functions Using a Dedicated Blockcipher for Lightweight Hashing
	Introduction
	Preliminaries
	Definitions
	Model

	Collision Resistance and Preimage Resistance
	Keyed Hashing Mode
	If the Message Blocks Are Not Fed into the Key of E
	If the Message Blocks Are Fed into the Key of E

	Preimage-Resistance in the Computational Model
	Concluding Remarks
	References

	Biclique Attack on the Full HIGHT
	Introduction
	Biclique Cryptanalysis
	Attack Procedure
	Constructing Bicliques from Independent Related-Key Differentials
	Matching with Precomputations

	Description of HIGHT
	Constructing Bicliques for 8 Rounds
	Key Recovery for the Full HIGHT
	Complexities
	Conclusion and Discussion
	References

	Preimage Attacks on Step-Reduced SM3 Hash Function
	Introduction
	Description of SM3
	Previous Works: Techniques for Preimage Attacks
	Converting Pseudo-preimages to a Preimage
	The Meet-in-the-Middle Preimage Attack

	Our Strategies of the Pseudo-preimage on the Compression Function of Reduced SM3 Hash Function
	The Message Expansion of SM3 Hash Function
	Initial Structure
	Message Compensation
	Partial Matching

	Preimage of the 30 Steps SM3 Hash Function
	Algorithm and Complexity
	A Brief Comparison between SM3 and SHA-256

	Conclusion
	References

	Cryptographic Application

	Breaking a 3D-Based CAPTCHA Scheme
	Introduction
	Related Work
	Breaking CAPTCHAs
	Segmentation Resistant

	The Targeted CAPTCHA
	Our Approach
	Pre-processing
	Segmentation
	Post-processing and Character Recognition

	Results
	Discussion

	Conclusion
	References

	Multi-User Keyword Search Scheme for Secure Data Sharing with Fine-Grained Access Control
	Introduction
	Background and Motivation
	Related Work
	Challenging Issues
	Our Contributions

	System Models and Definitions
	System Models
	Definitions

	Technical Preliminaries
	Ciphertext-Policy Attribute-Based Encryption
	Attribute-Based Signature
	Bilinear Map

	Concrete Constructions
	Access Tree Based Fine-Grained Access Control Verification Mechanism
	Proposed Scheme

	Discussions on Security and Performance
	Security Analysis
	Performance Analysis

	Concluding Remarks and Future Works
	References

	Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes
	Introduction
	Background
	Fully Homomorphic Encryptions
	Gentry's Framework
	The vDGHV Fully Homomorphic Encryption Scheme
	Security Models

	Our Reaction Attack
	A Message Attack
	The Secret Key Attack

	Discussion
	Practicality of Our Attack
	Protecting FHE with Verifiable Computation
	Other Possible Protections

	Conclusion
	References

	A Blind Digital Image Watermarking Method Based on the Dual-Tree Complex Discrete Wavelet Transform and Interval Arithmetic
	Introduction
	Preliminaries
	Dual-Tree Complex Discrete Wavelet Transform (DT-CDWT)
	Interval Arithmetic (IA)

	DT-CDWT Based on IA
	Watermarking Algorithm
	Experimental Results
	Non-geometric Attacks
	Geometric Attacks
	Multi-attacks
	Comparison with Existing Methods

	Conclusion
	References

	Cryptographic Protocol

	On the Communication Complexity of Reliable and Secure Message Transmission in Asynchronous Networks
	Introduction
	Bound on the Communication Complexity of APRMT
	Bounds for Uni-directional Wires
	Bounds for Bi-directional Wires

	Bounds on the Communication Complexity of ASRMT
	Bounds for Uni-directional Wires
	Bounds for Bi-directional Wires

	Bounds on the Communication Complexity of APSMT
	Bounds for Uni-directional Wires
	Bounds for Bi-directional Wires

	Bounds on the Communication Complexity of ASSMT
	Bounds for Uni-directional Wires
	Bounds for Bi-directional Wires

	Conclusion and Open Problems
	References

	Two-Party Round-Optimal Session-Policy Attribute-Based Authenticated Key Exchange without Random Oracles
	Introduction
	Background
	Our Contribution
	Related Works

	Preliminaries
	Access Structure
	Linear Secret Sharing
	Bilinear Maps
	Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption
	Strong Randomness Extractor
	Pseudo-random Function

	Security Model
	Round-Optimal SP-ABAKE without Random Oracles
	Security
	Concluding Remark
	References

	Sufficient Condition for Identity-Based Authenticated Key Exchange Resilient to Leakage of Secret Keys
	Introduction
	Related Works
	Our Contributions

	Security Model for ID-Based AKE
	Sufficient Condition for id-eCK Secure ID-AKE Protocol
	Admissible Polynomials
	Resultant ID-Based AKE Protocol
	Security
	Remarks

	Conclusion
	References

	Author Index

