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Preface

ICISC 2011, the 14th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during November 30 — December 2, 2011.
It was organized by the Korea Institute of Information Security and Cryptology
(KIISC).

The aim of this conference was to create a forum for the dissemination of the
latest results in research, development, and applications in the field of informa-
tion security, and cryptology. The conference received 126 submissions from 29
countries, covering all areas of information security and cryptology. The review
and selection processes were carried out in two stages by the Program Committee
(PC) of 52 prominent experts via the Springer OCS. First, each paper was blind
reviewed by at least three PC members. Second, for resolving conflicts on each
reviewer’s decision, individual review reports were revealed to PC members, and
detailed interactive discussion on each paper followed. Through this process, the
PC finally selected 32 papers from 10 countries.

The acceptance rate was 25.4%. For the LNCS proceedings, the authors of
selected papers had a few weeks to prepare for their final versions based on the
comments received from the reviewers. The conference featured two invited talks
delivered by Thomas Peyrin from Nanyang Technological University and Atsuko
Miyaji from Japan Advanced Institute of Science and Technology.

Many people have contributed to the organization of ICISC 2011 and the
preparation of this volume. We would like to thank all the authors who submitted
papers to this conference. We are deeply grateful to all 52 members of the PC.
It was a truly nice experience to work with such talented and hard-working
researchers. We wish to thank all the external reviewers for assisting the PC in
their particular areas of expertise.

Finally, we would like to thank all the participants of the conference who made
this event an intellectually stimulating one through their active contribution and
all Organizing Committee members who nicely managed the conference.

November 2011 Howon Kim
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Improved Integral Analysis
on Tweaked Lesamnta

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan
{sasaki.yu,aoki.kazumaro}@lab.ntt.co.jp

Abstract. In this paper, we show a known-key (middletext) distin-
guisher on the internal block cipher of tweaked Lesamnta reduced to 31
(out of 32) rounds, which is one of the hash functions submitted to the
SHA-3 competition. Moreover, we present a distinguisher for full internal
block cipher of Lesamnta with stronger assumption. Although Lesamnta
was not chosen for the second round, for its tweaked version, all previous
cryptanalysis can work no more than 24 rounds. We search for a new
integral characteristic for the internal block cipher, and discover a 19-
round integral characteristic for forward direction. We then search for an
integral characteristic for backward direction, and the characteristics can
be combined to full rounds with some assumption. The distinguisher for
the internal block cipher of Lesamnta-256 requires 2'9% query complexity
and negligible memory. This is the best attack on Lesamnta compression
function and its internal block cipher after the tweak.

Keywords: integral attack, middletext distinguisher, known-key,
chosen-key, Lesamnta, hash, SHA-3.

1 Introduction

Hash functions are one of the most basic primitives used in many applications.
After the discovery of real collision pairs for MD5 and collision attacks for SHA-1
by Wang et al. [112], cryptographers are seeking for secure and efficient hash
functions. Based on these backgrounds, NIST started the SHA-3 competition
which determines a new hash function standard [3].

In October 2008, 51 algorithms were accepted by NIST as the first round can-
didates for the SHA-3 competition. In August 2009, 15 algorithms were chosen
for the second round, and in December 2010, 5 algorithms were chosen for the
third round. Lesamnta, which was proposed by Hirose et al. [4], is one of the
first round candidates but was not chosen for the second round.

Although it has already been out of the SHA-3 competition, Lesamnta has var-
ious interesting properties such as the efficiency in the hardware implementation
and the security. In fact, Lesamnta-LW [5], which is a successor of Lesamnta
and was proposed at ICISC 2010, has been designed and published recently.
Therefore, even if the analysis on Lesamnta does not give any impact to the

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 1-[[7] 2012.
© Springer-Verlag Berlin Heidelberg 2012



2 Y. Sasaki and K. Aoki

SHA-3 competition, Lesamnta is still an interesting and useful research target.
We believe that its security evaluation will contribute to the future hash function
design.

Lesamnta has a narrow-pipe Merkle-Damgard structure and its compression
function consists of an internal block-cipher with the Matyas-Meyer-Oseas mode
[6, Algorithm 9.41]. The internal block-cipher uses a generalized Feistel structure
with 4 branches, and consists of 32 rounds. Lesamnta has a provable security
from several viewpoints. Most of the case, the provable security including the
security proof of MMO mode is based on the ideal behavior of the internal block-
cipher. Therefore, analyzing the internal block-cipher and discovering non-ideal
propertied] is an important work to know the security margin of the tweaked
version of Lesamnta.

For the original version of Lesamnta, Bouillaguet et al. found a distinguish-
ing attack on the full-rounds of the internal block-cipher and a pseudo-collision
attack on the full-rounds of Lesamnta [7]. After that, designers of Lesamnta
proposed a tweak [8] which made these attacks invalid. Several attacks can still
work for the tweaked version of Lesamnta. For example, collision and preimage
attacks for 16 rounds of Lesamnta proposed by Mendel in the submission docu-
ment [4] can still work. The current best attack is the one using the cancellation
property proposed by Bouillaguet et al. [9] which finds collisions and preimages
for 24 rounds of Lesamnta. Moreover, the full version of the paper proposes a
key-recovery attack on the internal block-cipher reduced to 21 rounds using an
integral characteristic with the cancellation property [10].

The integral attack@, which is the main object we study in this paper, is a
cryptanalytic technique for symmetric-key primitives proposed by Daemen et
al. [T1]. Then, Knudsen and Rijmen applied the integral attack for AES [12J13]
in the known-key attack model [14]. They showed that integral characteristics
in the forward direction and the backward direction can be combined together
in the known-key model. Afterwards, Minier et al. proposed the middletext dis-
tinguisher to formalize a part of known-key model [15]. Their middletext dis-
tinguisher is easy to understand the known-key attack with combined integral
characteristics.

The designers of Lesamnta evaluated its security against the integral attack
[4, Sect. 12.6.3]. They showed a 19-round integral characteristic (in forward
direction) for the internal block-cipher of Lesamnta, and demonstrated a 20-
round key-recovery attack in the secret-key model with a complexity of 22537
decryptions. However, Bouillaguet et al. showed that their integral characteristic
was flawed [10]. In the submission document, the designers also evaluated the
resistance against known-key attacks [4], Sect. 12.6.4], and showed that 12 rounds
could be distinguished in the known-key setting.

Actually, the security proof may be fixed without the ideal property of the inter-
nal block cipher and with the discovered non-ideal property. However, we cannot
determine whether or not the target is secure until a new proof is made.

2 The integral attack is sometimes referred to as SQUARE attack, saturation attack,
or multi-set analysis.
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Table 1. Summary of attacks for tweaked version of Lesamnta-256

Attack Rounds Attack setting Complexity /Query Ref.
Collision 24  Comp. Func. 2112 9]
Second Pre. 24  Comp. Func. 2240 ]
Integral KR 207 Internal BC (secret-key) 22537 4]
Integral KR 21  Internal BC (secret-key) 2192 [10]
Integral Dist. 31  Internal BC (middletext) 2192 Ours
Integral Dist. 32(Full) Internal BC (middletext with 64-bit 2192 Ours

key restriction)

1: The impacts of the correction for the integral characteristic is not considered.

Pre, KR, Dist., Comp. Func., and BC represent Preimage, Key Recovery, Distinguisher,
Compression Function, and Block-Cipher, respectively.

For all attacks, the above complexity/query is for Lesamnta-256. They can also be
applied to Lesamnta-512 with additional complexity/query.

Our Contributions

In this paper, we investigate the security of the internal block-cipher for the
tweaked version of Lesamnta. We first search for a longest integral
characteristic for the forward and the backward directions, because the inte-
gral characteristic described in [4] is flawed and [I0] only showed the good
integral characteristic with cancellation property and there is no known good
integral characteristic for the backward direction. We find a 19-round integral
characteristic for the forward direction and 15-round integral characteristic for
the backward direction, and find that the best combination of the forward and
backward directions can reach 31 rounds. This can be turned into a middletext
distinguisher for the internal block-cipher of Lesamnta with 2'9? query complex-
ity and negligible memory. Moreover, we point out that the above characteristic
can be extended to 32 rounds by assuming an equality between two specific
subkeys. We then consider the key schedule function of Lesamnta and explain
how to choose the key satisfying this condition. This can be used as a full-round
distinguisher with 64-bit relation of the key with 2'°2 query complexity and
negligible memory. The summary of the attacks is shown in Table [l

Lesamnta has a provable security in the ideal-cipher model. Therefore, al-
though this attack does not threat the security of the Lesamnta hash function,
these security proofs are needed to be updated.

Paper Outline

This paper is organized as follows. In Sect. 2 the specification of Lesamnta is
given. In Sect. Bl several related works are explained shortly. In Sect. 4], we search
for new integral characteristics with a machine experiment. In Sect. [, our new
integral characteristic for the 31-round middletext distinguisher is described. In
Sect. [6] we extend the attack to a full-round chosen-key distinguisher. Finally,
in Sect. [, we conclude this paper.
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X0

Xis1,0 Xis1.1 Xis1.2 Xis1.3

Fig. 1. Round function of Lesamnta

2 Specification of Lesamnta

Lesamnta [4] is a hash function which takes almost arbitrary length message as
input and computes 224, 256, 384, and 512-bit strings as output. The main differ-
ence between Lesamnta-224/-256 and Lesamnta-384/-512 is the word-size, and
Lesamnta-224 (resp. -384) and Lesamnta-256 (resp. -512) use the same internal
block-cipher. Hence, in this paper, we mainly discuss only Lesamnta-256.

Lesamnta uses a Merkle-Damgard structure. For Lesamnta-256, the input
message M is padded to a multiple of 256 bits, and divided into 256-bit blocks
My ||My|| - - || My —1. Then, the compression function CF : {0,1}2%6x {0, 1}%%¢ —
{0,1}2°% is iteratively computed as follows;

HiJrl (*CF(HZ,MZ) fOTZ‘ZO,].P..,N*].,

where Hy is the initial value defined in the specification. Finally, Hy is output
as the hash value of M.

The input to the compression function CF is a 256-bit chaining variable H;
and 256-bit message block M;. The compression function is composed of the
Matyas-Meyer-Oseas mode with an internal block-cipher Ex. The output H;41
is computed as H; 11 < Eg, (M;) ® M,;.

The internal block-cipher Ex has a 4-branch generalized Feistel structure as
shown in Fig.[l First, a key generation function takes a 256-bit chaining variable
H; as input and computes 64-bit subkeys k;, where 0 < j < 31. By using 64-bit
variables X o, X, 1, X; 2, and X} 3, the output of Ex is computed as follows;

(Xo0,0, Xo,1, Xo,2, Xo,3) + M,
(X100 Xjr1,1, Xjy1,2, Xjpr3) < (F(Xj2 @ kj) @ X3, X0, X1, Xj2)
for 0 < j < 31.
F'is a 64-bit permutation motivated by the AES-design. Because our attacks do

not look inside F' except for the property that F' is a permutation, we omit its
description.
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The key generation function uses almost the same round function as the
data encryption part. By using 64-bit variables Y} o,Y} 1,Yj 2, and Y} 3, subkeys
ko, k1, ..., ks are computed as follows;

(}/0,07%,17 }/0,271/2),3) — Hi7

Repeat the followings for 0 < j < 31:
kj < Yjo,
(Yj41,0, Yit1,1, Yit1,2, Yit1,3) < (F(Yj2© C)) © Y3, Yj0,Yj1,Yj2).

C; is a pre-defined constant. Note that the tweak for Lesamnta made by the
designers [8] only changes the value of C;. Because our attacks do not depend
on the value of C}, our attacks can work for both of the original and tweaked
versions of Lesamnta.

3 Related Work

3.1 Integral Attack

The integral attack is a cryptanalytic technique for symmetric-key primitives,
which was first proposed by Daemen et al. to evaluate the security of the SQUARE
cipher [11]. The crucial idea of the integral attack is to collect a set of plaintexts
which contains all possible values for some bytes and has a constant value for the
other bytes. All plaintexts in the set are passed to the encryption oracle, and an
attacker computes the XOR of all corresponding ciphertexts. If the encryption
procedure does not mix the text well, several bytes of the XOR of the ciphertexts
always become 0. We call this characteristic integral characteristic.

The application of the integral attack to AES is widely known. AES is a 16-
byte block-cipher. The attacker collects 256 plaintexts where the first byte varies
from 0 to 255 and the other 15 bytes are fixed to some constant, e.g. 0. After all
256 plaintexts are encrypted by 3.5-rounds, the XOR, of the corresponding 256
ciphertexts always becomes 0 in all bytes.

Note that the same attack can be performed in the decryption direction.

3.2 Integral Attack in the Known-Key Setting

Known-key attack is a framework proposed by Knudsen and Rijmen [I4] to
evaluate the security of block-ciphers. Although the formalization of the known-
key attack is still an open problem, the intuition of this model is as follows;

A secret key is randomly chosen and given to attackers. Attackers aim to
detect a certain property of a random instance of the block cipher, where
the same property cannot be observed for a random permutation.

For the confidentiality use of block ciphers, the secret key should be kept secret,
and an attacker does not know the value of the secret key in advance. However,
a block cipher can be used to construct hash functions such as Davies-Meyer
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Byte A stands for “Active”, which means all possible values are included and are used
exactly the same number of times in the set of texts.

Byte B stands for “Balanced”, which means the XOR of all texts in the set is 0.
Byte C stands for “Constant”, which means the value is fixed to a constant for all
texts in the set.

Fig. 2. Integral attack on AES in the known-key setting [14]

construction. In such a case, attackers can sometimes know and even specify the
secret key as one of the message blocks to find unpleasant properties such as the
collision. Hence, we should analyze the block cipher with the known-key setting.
Knudsen and Rijmen showed that, in the known-key model, the integral char-
acteristic in the encryption and the decryption directions can be combined to-
gether. They proposed a known-key attack on 7-round AES with this concept.
In this attack, they prepared the 3-round integral characteristic in backward and
4-round integral characteristic in forward as shown in Fig. 21 The attacker col-
lects 256 texts for the internal state and computes the XOR of the corresponding
plaintexts and ciphertexts. In 7-round AES, the result always becomes B
After the publication of [I4], the known-key attack combining two integral
characteristics was formalized by Minier et al. as an n-limited non-adaptive cho-
sen middletexts distinguisher (N A-C'M A) [15], Algorithm 1]. In this framework,
the oracle O implements either a random permutation or a random instantiation
of the target block-cipher. The goal of the distinguisher is to decide which is im-
plemented in ©. The distinguisher first determines the acceptance region A
which is the set of the plaintexts and ciphertexts determined by considering the
biased property of the target cipher. For example, A" for the above known-key
distinguisher on AES should be any set of 256 plaintexts whose XOR is 0 and
any set of 2°6 ciphertexts whose XOR is 0. The distinguisher then chooses or
computes a set of texts for some intermediate state and input them to O and
obtain the oracle’s output. Finally, the attack checks if the obtained output is in
A™) or not. The detailed procedure of NA-C'M A by [15] is given in Appendix [Al

3 Knudsen and Rijmen suggest to use more strong property: confirm that the number
of occurrence of the value of each byte of plaintexts and ciphertexts is the same.
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The security of a pseudo-random permutation is usually defined as follows.

Definition 1. For a pseudo-random permutation Ex parameterized by K € K,
an advantage of distinguisher D is defined as follows.

Advp = PJr[DEK’EI;1 1| K ey K] - PY[DMFI —1|mey P,

where © €y X means that x is uniformly chosen from set X, and P is the set
of all permutations on the text space.

Definition 2. A pseudo-random permutation Ex (K € K) is secure if Advp is
negligible for any distinguisher D.

From the above definition, we can say that E} is not secure even if we only show
an example of a distinguisher whose advantage is not negligible.

3.3 Previous Integral Attack and Known-Key Attack on Lesamnta

The designers of Lesamnta evaluated its security against integral attack [4]
Sect. 12.6.3]. They showed the 19-round integral characteristic. However, Bouil-
laguet et al. pointed out that their integral characteristic would not work, and
they proposed a 20-round integral characteristic with the cancellation property,
and mount a key-recovery attack on 22-round internal block-cipher of Lesamnta
with the complexity of 2192 encryptions.

The designers of Lesamnta also evaluated the resistance against known-key
attacks [4, Sect. 12.6.4]. They considered a differential cryptanalysis, and con-
structed a known-key distinguisher for Lesamnta-256 reduced to 12 rounds.

3.4 Chosen-Key Attack

The concept of the known-key attack can be extended to the chosen-key attack.
Similar to the known-key attack, the formalization of the chosen-key attack is
also an open problem. Examples of papers discussing the chosen-key attack are
[TEUT7ITE].

4 New Integral Characteristics for Lesamnta

4.1 Existing Integral Characteristics

The submission document [4] showed a 19-round integral characteristic. Bouil-
laguet et al. showed the flaw in the integral characteristic. To show the flaw,
they used complicated formulae, because the 19-round integral characteristic
uses multi-active-words.

Bouillaguet et al. also proposed a new integral characteristic. However the new
integral characteristic was intended to be used with the cancellation property,
and it seems difficult to be used for the middletext distinguisher, though the
integral characteristic is long.

As a result, we do not know the longest integral characteristic for the forward
direction, and we do not have any knowledge of the integral characteristic for
the backward direction.
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Table 2. New integral characteristic

Round Inputs
0CAAA
1ACAA
2AACA
3AAAC
4AAAA
5AAAA
6AAAA
TAAAA
8AAAA
9AAAA
10AAAA
11AAAA
12AAAA
13BAAA
14BBAA
15BBBA
16 7 BB B
177 7 BB
187 7 7B

4.2 Experiment and New Integral Characteristic

This section tries to find the best integral characteristic for the internal block-
cipher of Lesamnta in the forward and backward directions. As shown by Bouil-
laguet et al., a simple analysis method intended to activate one word may cause
an error of the characteristic, and formulae analysis is complicated, and we may
miss an optimal characteristic. We decide to use computer experiments to find
good integral characteristics. This strategy has a possibility to detect wrong
characteristic, but its probability is quite low.

Because computing 2'9? texts for Lesamnta is infeasible, we consider the small
experiment. First, we reduce the word size to 8 bits. Then, the block-size becomes
32 bits and computing all values for 3 words cost 224 computations. Second, we
replace the F' function with a single S-box computation. Third, we replace the
subkey in each round with the S-box output whose input is a round number.
The algorithm of our experiment, which checks the integral characteristic up to
R rounds is shown in Fig. Bl When the algorithm in Fig. [l is implemented we
prepare temporary variables T, o for line 8, where 0 < u < R. T,, ¢ are initialized
to 0. Every time X, o is computed, we compute T, o < T, 0 ® X, ,0 to update
the current XOR-sum of X, o. If T\, o = 0 after 224 iterations, we know that the
variable is balanced. Because X, 1, Xy 2, and X, 3 are just a copy of previously
computed value, only updating X, o is enough. Note that the XOR of 224 results
may happen to become 0, i.e. result in a balanced word with a probability of 278.
To avoid this event, we ran the algorithm several times with changing the S-box,
sub-key, or value for the constant word, and check that balanced words are always
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1. Set Xo,0 < C for some constant C; and initialize XOR~sum,;
2. FOR all possible 22* values of (Xo.1, Xo,2, X0,3) {
3. FOR round = 0 to R —1 {
4 X(roundJrl),O = Xround,B D S(Xround,Q D S(round));
5 X(Tound+1),1 = Xround,0§
6. X(round+1),2 = Xround,l;
7. X(round+1),3 = Xround,Q;
8 Update the XOR-sum of X(;ound+1),0;
9 } //END of FOR
10. } //END of FOR

Fig. 3. Algorithm in our experiment

balanced for any S-box, sub-key, and constant number. Also note that to check if
each word is active or not, counting the number of the occurrence of each value
is necessary. Actually, we counted it in our experiment. Because investigating
the active words is irrelevant to our attack and the algorithm becomes more
complicated than Fig.[3] we omit its description.

As a result of the experiment, we obtain the new integral characteristic which
is shown in Table[2l The most important difference from the previous character-
istic is that the integral characteristic only can work up to 18 rounds. Note that
this will give some impact to the 20-round secret key attack in [4]. Intuitively,
the number of attacked rounds will decrease by 1 round. However, we will not
discuss details because the open-key approach explained in the following sections
can attack much more rounds.

5 Known-Key Attack on 31-Round Block-Cipher of
Tweaked Lesamnta

As [14] showed, the integral characteristics in the forward direction and the back-
ward direction can be combined together. Therefore, we search for the backward
integral characteristic with the new approach explained in Sect. @l Because the
algorithm for the backward search is very similar to the one in Fig. Bl we omit
its description.

[14] combined the most effective independent characteristics for the forward
and backward directions. On the other hand, we cannot combine the most ef-
fective ones because our characteristic in Table 2] has already activated three
words, and thus cannot combine the backward characteristic which activates the
constant word. That is, the positions of the active words at the combining state
must be identical between the forward and backward characteristics. We search
for the best characteristic satisfying this condition. The result is described in
Table Bl

As shown in Table 3 if we collect 292 texts whose the left most word is fixed
to some constant and the right three words take all possibilities, we will have
one balanced word after 18-round encryption and 13-round decryption.
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Table 4. 32-round characteristic for
chosen-key attack

Table 3. 31-round characteristic for
known-key attack

Round Total State Condition

Round Total State in each round

in each round direction

direction 14 0B ? 7?7
13 oB 7?7?77 13 1BB? 7?
12 1AB?? 12 2ABB?
11 2AAB? 11 3AABB
10 3AAAB 10 4AAAB
9 4AAAA 9 5AAAA ks =ks
8 5AAAA 8 6 AAAA
7 6AAAA 7 TAAAA
6 TAAAA 6 8AAAA
5 8AAAA 5 9AAAA
4 9AAAA 4 10AAAA
3 1I0AAAA 3 11AAAA
2 11AAAA 2 12AAAA
1 12AAAA 1 13AAAA
0 13CAAA 0 14CAAA
1 14ACAA 1 1I5ACAA
2 15AACA 2 16 AACA
3 16 AAAC 3 1TAAAC
4 1TAAAA 4 1I8AAAA
5 1I8AAAA 5 19AAAA
6 19AAAA 6 20AAAA
7 20AAAA 7 21AAAA
8 21AAAA 8 22AAAA
9 22AAAA 9 2ZAAAA
10 2ZAAAA 10 24 AAAA
11 24 AAAA 11 25AAAA
12 25 AAAA 12 260AAAA
13 26BAAA 13 2TBAAA
14 2T BB AA 14 2 BBAA
15 28 BBB A 15 29BBBA
16 29?7 BBB 16 30?” BBB
17 30?” 7?7 BB 17 317 7?7 BB
18 31?7 7?8 18 32?7778

We can mount the 31-round middletext distinguisher with this characteristic.
The property we distinguish is a partial zero-sum, namely, the distinguisher
collects a set of 2192 plaintexts whose XOR is 0 regarding the left most word
(X0,0) and the XOR of the corresponding 2'9% ciphertexts is also 0 regarding
the right most word (X3; 3). If we rephrase it for the context of NA-CM A [15],
the acceptance region A(™ is any set of 2192 plaintexts whose XOR is (0, *, *, *)
and any set of 2192 ciphertexts whose XOR is (x, *, *,0), where * represents an
arbitrary value.
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The distinguishing procedure is the same as N A-C M A. The 2'92 middletexts
are chosen as the leftmost word is fixed constant and other words take all values,
and the belonging confirmation of the acceptable set can be realized by the
examination of XOR of all plaintexts as (x, *,*,0) and XOR of all ciphertexts
as (0, *, %, *).

For the ideal cipher, the best way to achieve this data set is making exactly
2192 queries so that the XOR of the left most word becomes 0, and check that
the XOR of the ciphertexts are 0 in the right most word. Because the XOR  of the
ciphertexts behaves truly random in the last query, the probability for satisfying

192

@?:1 X313 =0is 2-64 On the other hand, for 31-round internal block-cipher of
Lesamnta, by starting 2'°? texts from the middle state, we can obtain the set of
2192 plaintexts and ciphertexts which achieves the property with probability 1.
Hence, the distinguisher obtains a significant advantage, 1 — 2764,

Remark 1. Even if the case for ideal cipher, we can make an element in the ac-
ceptable set with high probability if we allow one more query to the oracle for
the distinguisher, since (212912942'1) = 2192 1 1 and the restriction on the acceptable
set is 128 bits in total. The advantage of this case is almost 0, and it is negligible.
Followed by Definition 2, we only need to show one distinguisher whose advan-
tage is not negligible to say that a block cipher is not secure. As the above, we
showed an example of a distinguisher whose advantage is significant, when we
restrict to use exactly 2!°2 queries. We can conclude that 31-round block cipher
of tweaked Lesamnta is not secure followed by Definition 2

Remark 2. Aumasson et al. pointed out that the zero-sum property can be con-
verted to an existential forgery attack against the prefix-MAC construction [19,
Section 3.1].

6 Chosen-Key Attack on Full-Round Block-Cipher
of Tweaked Lesamnta

6.1 32-Round Integral Characteristic and Analysis for the Key
Schedule

The 31-round integral characteristic explained in Sect. Bl can be extended to 32-
rounds by assuming an equality between two subkeys. In details, the backward
characteristic is extended by one more round under the condition k5 = k13. We
confirmed this fact by the experiment. In Step [ of the backward version of the
algorithm in Fig. Bl we replace S(round) with some constant value for rounds
1 and 9. The discovered 32-round characteristic is shown in Table @l Compare
Table @ with Table B the condition k5 = k13 makes one more B state in 11th
round of the backward direction. For those who wants to verify the experiment,
we show the code of the experiment written in the C-language in Appendix [Bl

In order to search for a key satisfying this condition, we analyze the key
schedule function of Lesamnta. The computations for obtaining ks to ki3 are
shown in Fig. [l Note that in the key schedule function of Lesamnta, if a 256-bit
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Condition: C; & C,,

Fig. 4. Key schedule function for obtaining ks to ki3

internal state is fixed, the original key value is uniquely computed by inverting
the round function. Therefore, the goal is searching for a 256-bit internal state
which produces the same k5 and ki3. This can be achieved by using the idea
of the cancellation property [9]. Also note that, different from the known-key
attack in Sect. Bl we need to use the property that the inversion of F is easily
computed.

ks =Yz 3 = F(Yo3® Cs) ® Yo, (1)
k‘13 = 1/1370 = F(Y12,2 @ 012) S 1/12,37 (2)

Because Yy o = Yi2.3, the condition to achieve the goal (ks = ki3) is expressed
as

Y93 ® Cs = Yig2® Chra. (3)

Because Y122 = Yi0,0 = F(Yy,2 ® Cy) @ Yy 3, the condition Eq. (@) is expressed
as

F(Yy2 ® Cq) = Cs @ Cy2, (4)
which is,

Yo 2 = F~1(Cs @ C12) @ Co, (5)
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In the end, to obtain the key satisfying ks = ki3, we first compute Yy o with
Eq. (@) and randomly choose values of Yy ,Yy 1, and Yy 3. Then we invert the
round function and the resulting (Y50, Yo,1,Y0,2, Yo,3) is a desired key. Note that
the complexity for choosing a key is almost one key schedule computation.

6.2 Chosen-Key Distinguisher and Its Impact

Mounting the chosen-key distinguisher with 32-round characteristic can be done
by the same manner as the known-key distinguisher in Sect. 5l The property we
discuss in this distinguisher is a partial zero-sum. The distinguisher computes
a key and collects a set of 2!92 plaintexts whose XOR is 0 regarding the left
most word (X ) and the XOR of the corresponding 2192 ciphertexts is also 0
regarding the right most word (Xs2 3). Because the partial zero-sum property is
satisfied with probability 1, we can distinguish the full-round Lesamnta block-
cipher from the ideal cipher.

According to the designer’s document [4, Sect. 11], the security proof of
Lesamnta is based on the work by Black et al. in 2002 [20], which showed that the
security bound of the MMO mode in terms of the preimage resistance is 2¢/2"
under the ideal cipher model. This represents the upper-bound of distinguisher’s
advantage after making g queries for n-bit output. Because our distinguisher
succeeds with probability 1 with ¢ = 2192 queries, the internal block-cipher of
Lesamnta cannot achieve the security bound of 2¢/2™.

Note that our chosen-key distinguisher can be regarded as a known-key attack
for a weak-key. The attack works against any key satisfying ks = ki3, which is
satisfied with probability of 2754 for a randomly chosen key. The number of such
weak-keys is 2256 . 2764 = 2192,

7 Concluding Remarks

In this paper, we revisited the integral attack on Lesamnta after the tweak. We did
the experiment on the small variant of the same generalized Feistel structure, and
discovered that the 19-round characteristic seems optimal for the forward direction.

We then searched for the integral characteristic suitable for the known-key
attack under the framework of the middletext distinguisher. As a result, we found
the 31-round characteristic that could be turned into the known-key attack on
31-round internal block-cipher of Lesamnta with 2'°2 query complexity and a
negligible memory.

In addition, we discovered that the 31-round characteristic could be extended
by one more round by assuming an equality between two specific subkeys. We then
analyzed the key schedule function of Lesamnta, and showed that finding keys sat-
isfying this condition was possible with complexity of one key schedule function
computation. In the end, we successfully achieved the chosen-key distinguisher on
the full-round internal block-cipher of Lesamnta. This attack does not threat the
security of the Lesamnta hash function immediately, but invalidates some security
proof made on Lesamnta. As far as we know, this is the first result that shows the
non-ideal property of the full-round Lesamnta block-cipher after the tweak.
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Although it has already been out of the SHA-3 competition, Lesamnta still

has various interesting properties. Our results except for the full-round analy-
sis of Lesamnta-256 can also be applied to reduced Lesamnta-LW and type-I
generalized Feistel network, since we do not use any detailed property of the
round function. Even if the analysis on Lesamnta does not give impact to the
competition, we believe that its security evaluation will contribute to the future
hash function design.
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A Formalization of Known-Key Integral Attack [15]

In this section, we cite the formalization of the known-key integral attack by
[15, Algorithm. 1]. It defines an n-limited non-adaptive chosen middletexts dis-
tinguisher (NA-CMA). In this framework, the oracle O implements either a
random permutation or a random instantiation of the target block-cipher. The
goal of the distinguisher is to decide which is implemented in the oracle O. The
core of the distinguisher is the acceptance region A(™: it defines the set of input
and output values (P,C) = (Py,--+, P,,C1,---,C,) which lead to output 0 (i.e.
it decides that the oracle implements a random permutation) or 1 (i.e. it decides
that the oracle implements a random instantiation of the target block-cipher).

Algorithm 1. An n-limited generic non-adaptive chosen middletexts
distinguisher (NA-CMA)

Parameters: a complexity n, an acceptance set A(")
Oracle: an oracle O implementing internal functions f; (resp. f2) of permu-
tation ¢ that process input middletexts to the plaintext (resp. ciphertext)
Compute some middletexts M = (M, - , M,)
Query P = (Py,-+, P,) = (fi(My), -+, fi(My)) and C = (Cy,--- ,Cy) =
(fo(Mn),-- -, f2(My)) to O
if (P,C) € A™ then
Output 1
else
Output 0
end if
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B Code of the Experiment for the Chosen-Key Attack

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

/* S Box data values */
static int Sdata[256] = {
0x63, 0x7c, 0x77, 0x7b, O0xf2, 0x6b, 0x6f, Oxch,
0x30, 0x01, 0x67, 0x2b, Oxfe, 0xd7, Oxab, 0x76,
Oxca, 0x82, 0xc9, 0x7d, Oxfa, 0x59, 0x47, 0xf0,
Oxad, 0Oxd4, Oxa2, Oxaf, 0x9c, Oxa4, 0x72, 0xcO,
0xb7, Oxfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, Oxcc,
0x34, Oxab, Oxeb, Oxf1l, 0x71, 0xd8, 0x31, 0Ox15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, Oxe2, Oxeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, Oxla, Oxlb, Ox6e, Oxba, 0xaO,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0Oxe3, 0x2f, 0x84,
0x53, 0Oxd1l, 0x00, Oxed, 0x20, Oxfc, Oxbl, 0x5Db,
0x6a, Oxcb, Oxbe, 0x39, Ox4a, Ox4c, 0x58, Oxcf,
0xd0O, Oxef, Oxaa, Oxfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
Oxbc, 0xb6, Oxda, 0x21, 0x10, Oxff, O0xf3, 0xd2,
Oxcd, 0x0Oc, 0x13, Oxec, Oxbf, 0x97, 0x44, 0x17,
0Oxc4, Oxa7, Ox7e, 0x3d, 0x64, 0xbd, 0x19, 0x73,
0x60, 0x81, 0x4f, Oxdc, 0x22, 0x2a, 0x90, 0x88,
0x46, Oxee, 0xb8, 0x14, Oxde, Oxbe, 0x0Ob, Oxdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0Ox5c,
0xc2, 0xd3, Oxac, 0x62, 0x91, 0x95, Oxe4, 0x79,
Oxe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, Ox4e, 0Oxa9,
0x6¢c, 0x56, 0xf4, Oxea, 0x65, 0x7a, Oxae, 0x08,
Oxba, 0x78, 0x25, 0x2e, Oxlc, Oxa6, Oxb4, 0xc6,
0xe8, 0Oxdd, 0x74, Ox1f, 0x4b, Oxbd, 0x8b, 0x8a,
0x70, 0x3e, Oxb5, 0x66, 0x48, 0x03, 0xf6, 0xOe,
0x61, 0x35, 0x57, 0xb9, 0x86, Oxcl, 0Oxld, O0x9e,
Oxel, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, Oxle, 0x87, Oxe9, Oxce, 0xb5, 0x28, Oxdf,
0x8c, Oxal, 0x89, 0x0d, Oxbf, Oxe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0O, 0x54, Oxbb, 0x16,};

int main()

{
unsigned int H[24];
int round;
int sum[24];
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int n;

H[0]=0;
for(n=0;n<68;n++){
sum[n]=0;

}

for (H[2]=0;H[2]<256;H[2]++){

for(H[1]1=0;H[1]1<256;H[1]1++){
for(H[3]=0;H[3]1<256;H[3]++){
H[ 4]=H[ 0]"Sdata[H[ 3]"Sdatal 0]]; sum[ 4]"=H[ 4];

/* Set k[0]=k[8] */

H[ 5]=H[ 1]~Sdatal[H[ 4]"Sdatal 5]]; sum[ 5]"=H[ 5];
H[ 6]=H[ 2]~Sdatal[H[ 5]~Sdatal 6]]; sum[ 6] =H[ 6];
H[ 71=H[ 3]-Sdata[H[ 6]"Sdatal 7]1]1; sum[ 7]1"=H[ 7];
H[ 8]=H[ 4]-Sdata[H[ 7]"Sdatal 8]]; sum[ 8]"=H[ 8];
H[ 9]=H[ 5]-Sdata[H[ 8]"Sdatal 9]11; sum[ 9]"=H[ 9];
H[10]=H[ 6]~Sdatal[H[ 9]~Sdatal[10]]; sum[10] “=H[10];
H[11]=H[ 7]~Sdatal[H[10]"Sdatal[11]]; sum[11]"=H[11];
H[12]=H[ 8]"Sdatal[H[11] Sdatal 0]]; sum[12]"=H[12];

/* Set k[0]=k[8] */

H[13]=H[ 9]-Sdata[H[12]"Sdata[13]]; sum[13]"=H[13];
H[14]=H[10] ~Sdata[H[13]"Sdata[14]]; sum[14]"=H[14];
H[15]=H[11] “Sdata[H[14] "Sdata[15]]; sum[15]"=H[15];
H[16]=H[12] “Sdata[H[15] "Sdata[16]]; sum[16]"=H[16];
H[17]=H[13] “Sdata[H[16]"Sdata[17]]; sum[17] =H[17];
H[18]=H[14] “Sdata[H[17]"Sdata[18]]; sum[18] "=H[18];
H[19]=H[15] "Sdata[H[18] "Sdatal[19]]; sum[19] “=H[19];
H[20]=H[16] "Sdata[H[19] “Sdata[20]]; sum[20] “=H[20];
H[21]=H[17] ~Sdata[H[20] “Sdata[21]]; sum[21]"=H[21];
H[22]=H[18] “Sdata[H[21] “Sdata[22]]; sum[22] "=H[22];
H[23]=H[19] “Sdata[H[22] “Sdata[23]]; sum[23] "=H[23];
H[24]=H[20] “Sdata[H[23] “Sdata[24]]; sum[24] "=H[24];

}

for (round=20;round>=0;round--){

printf ("Round’02d: %02x

%02x

%02x  %02x\n",

round, sum[round] , sum[round+1] , sum[round+2] , sum[round+3]) ;

3

return(0) ;
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Abstract. We study a new representation of non-linear multivariate
equations for algebraic cryptanalysis. Using a combination of multiple
right hand side equations and binary decision diagrams, our new repre-
sentation allows a very efficient conjunction of a large number of separate
equations. We apply our new technique to the stream cipher TRIVIUM
and variants of TRIVIUM reduced in size. By merging all equations into
one single constraint, manageable in size and processing time, we get a
representation of the TRIVIUM cipher as one single equation.

Keywords: multivariate equation system, BDD, algebraic cryptanaly-
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1 Introduction

In this paper we present a new way of representing multivariate equations over
GF(2) and their application in algebraic cryptanalysis of the stream cipher
TRIVIUM.

In algebraic cryptanalysis one creates an equation system of the cipher being
analyzed and tries to solve it. The solution will reveal the key or some other
secret information. Solving the system representing a cipher in time faster than
exhaustive search will be a valid attack on the cipher.

There exist several ways to represent such a system, e.g., ANF, CNF [I] or
MRHS [2]. Along these representations different families of algorithms to solve
equation systems have been proposed, e.g., Grobner Basis like algorithms [3],
XL [] SAT-solving [1] and Gluing/Agreeing algorithms [BI2J6].

For the stream cipher TRIVIUM, which has an especially simple structure, one
can easily construct an equation system describing its inner state constraints
using some known keystream bits. Attempts at solving this system have never-
theless been unsuccessful. While reduced versions of TRIVIUM could be broken
[1], there is no attack better than brute-force known for the full version.

Previous methods describe the TRIVIUM-equation system as a set of non-
linear constraints, which have to be true in conjunction. One can simplify those
equation systems by joining several constraints into a single new one. Unfor-
tunately the conjunction operation usually leads to exponentially big objects,
which quickly become too big for today’s computers.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 18-BZ] 2012.
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In this paper we present a new way of representing the constraints given by
a non-linear equation system. This representation allows all equations in the
TRIVIUM-equation system to be merged into one single equation. The process
of merging equations has asymptotically exponential complexity, but using our
new technique we are nevertheless still able to complete it in practice, with an
actual complexity far lower than the O(25°)-bound for TRIVIUM.

The paper is organized as follows. In Section 2 we explain the Multiple Right
Hand Side equation representation and Binary Decision Diagrams as well as
some operations on both constructions. The cipher TRIVIUM is also briefly de-
scribed. Section 3 introduces Compressed Right Hand Side equations and shows
how a solution to such equations can be found. In Section 4 we present our
experimental results and explain how to reduce the TRIVIUM equation system
to a single Compressed Right Hand Side equation. Section 5 concludes the pa-
per. The appendix contains examples for several of the used constructions and
algorithms.

2 Preliminaries

2.1 Multiple Right Hand Side Equation Systems

The Multiple Right Hand Side (MRHS) representation [2/5] is an efficient way to
represent equations containing much inherent linearity. Equation systems com-
ing from cryptographic primitives are well suited for MRHS representation, since
cryptographic algorithms are usually built using both linear and non-linear com-
ponents.

A MRHS equation is a linear system with, as the name suggests, multiple
right hand sides. We write one MRHS equation as Axz = B, where A and B
are matrices with the same number of rows, and z is a vector of variables. Any
assignment of x such that Ax equals some column in B satisfies the equation.

We construct a system of MRHS equations from a cryptographic primitive
as follows. First we assign variable names to the bits of cipher states at several
places in the encryption process. The assignment of variables should be done
such that the bits of the input and output of any non-linear component can
be written as linear combinations of variables. Then we construct one MRHS
equation Az = B for each non-linear component f. The rows of A are the input
and output linear combinations of f. Finally, we list all possible inputs to f,
with their corresponding outputs. Each input/output pair becomes a column in
B. An example of this can be found in the appendix.

Following this procedure we can construct a system of MRHS equations

All‘:Bh...,Aml‘:Bm

for any cryptographic primitive that uses relatively small non-linear components.

For a given solution to the system, there is exactly one column in each B;
corresponding to this solution. We say such a column is correct. If the system has
a unique solution, there is only one correct right hand side in each B;. Solving
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MRHS equation systems means identifying columns in the B; that cannot be
correct, and delete them.

Several techniques for solving MRHS systems exist. One of them is called
gluing and is used in this paper. Gluing means to merge two equations into one,
making sure that only solutions that satisfy both original equations are carried
over into the new (glued) equation.

Gluing two equations reduces the number of equations by one. The process of
gluing can be repeated, packing all initial equations into one MRHS equation.
The resulting equation is nothing more than a system of linear equations, and
can easily be solved. The solution we find will necessarily satisfy all the original
initial MRHS equations, so this strategy will solve the system in question.

The problem we face when applying the technique of gluing in practice, is that
the number of right hand sides in glued equations tends to increase exponentially.
Only when there are just a few equations remaining, with large A-matrices, will
the restrictions on potential solutions be so limiting that the number of possible
right hand sides rapidly decreases. As we shall see, however, the problem of
exponential growth in the number of right hand sides may be circumvented
using binary decision diagrams.

2.2 Binary Decision Diagrams

In this section we will introduce binary decision diagrams (BDDs). A BDD is
a directed acyclic graph used to represent a set of binary vectors or a Boolean
formula. They are mostly used in design and verification systems and were intro-
duced by S.B. Akers [7]. Later implementations and refinements led to a broad
interest in the computer science community as BDDs allow the manipulation of
large propositional formulae [8/9] in compressed form. Sometimes they are used
as an alternative to guess-and-verify solvers of propositional problems since they
enable one to keep track of all satisfying assignments at once and offer polyno-
mial time algorithms to count the number of solutions of a propositional problem
given in the form of a BDD.

The use of BBDs in cryptanalysis for LFSRs was proposed by Krause [10] and
successfully applied to Grain with NLFSRs by Stegemann [I1].

Definition 1 (Binary Decision Diagram). A binary decision diagram is
a pair D = (G,L) where G = (V,E) is a directed acyclic graph, and L =
(lo, 11,y lr—1,€) is an ordered set of variables.

The vertices of G are V- = {vg, v1,...,vs-1}U{T, L} where all v; denote inner
vertices and contain exactly one root vertice with no incoming edges. Fvery inner
vertex v has exactly two outgoing edges, which we call the 1-edge and the 0-edge.
We call T and L terminal vertices, they have no outgoing edges. Every vertex v
is associated with a variable, denoted L(v), and for all edges (u,v) we have L(u)
appearing before L(v) in L. We always have L(T) = L(L) = .

We denote with G(v) the subgraph of G rooted at v, i.e., the graph consisting
of wvertices and edges along all directed paths originating at v. For any pair of
vertices u,w it holds that if G(u) = G(w) then u = w.
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There exist other definitions of BDDs which do or do not include the order L
or the reducedness property of unequal subgraphs. The definition above is also
known as a reduced ordered BDD and is canonical [9]. We denote the number
of vertices in a binary decision diagram D by B(D) = |G|. The size of a BDD
depends heavily on the order L. Finding the optimal ordering to minimize B(D)
is an N P-hard problem [9].

In Definition [l L induces a partial order of the vertices. We visualize a BDD
by drawing it from top to bottom, with vertices of the same order on the same
line, and we say that these vertices are at the same level. There is only one root
vertex and it must necessarily associated with the first variable in L. This node
associated with [y is drawn on top, and the nodes T and L are drawn on the
bottom. An example of a BDD can be found in the appendix.

Definition 2 (Accepted Inputs of a BDD). In a BDD D every path from
the root vertex to the terminal vertex T is called an accepted input of D.

Since every inner node is associated with a variable, we can regard every edge
as a variable assignment. To find a variable assignment (or vector) which is
accepted by the BDD, we start with an empty vector of length |L|. Following a
path from the root vertex to T we visit at most one node at each level.

Whenever we go from v through a 1-edge, we say that L(v) is assigned to 1,
and L(v) = 0 whenever we go via a 0-edge. A path that ends up in T gives us
one accepted input in terms of variable assignments. Likewise, a path from the
root vertex to L gives us a rejected input to a specific BDD. By traversing all
paths to T we can build the set of all vectors which are accepted by the BDD.

If a path from the root to T jumps a level, i.e. the assignment to a variable
lr is undefined since the path does not contain a vertex v with L(v) = I,
both assignments to this variable are accepted and we get two different variable
assignments. If an accepted input jumps r levels in total we get 2" different
satisfying assignments from this path. An example of accepted inputs of a BDD
can be found in the appendix.

AND-Operation on BDDs. As shown above, we can use BDDs to represent the
set of vectors that satisfy a Boolean equation. By the nature of our equation
systems, we need a way to merge solution sets from different equations. Below
is a simple recursive algorithm which does this. A more general version of the
algorithm can be found in [12].

Let D and D’ be two BDDs with vg as the root of D and ug the root of D’.
The conjunction of D and D’ into a new BDD £ is done as follows.

First we need to define an ordering on the union of variables from D and D’.
Next, we set the root node of £ at the top level, and label it (voug). Then we
perform Algorithm [ which will fill in nodes and edges in £, from top to bottom.

The paths in the BDD that results after merging D and D’ using Algorithm [I]
will correspond to vectors that satisfy both Boolean equations related to D
and D’. One feature of the conjunction of two BDDs is that all nodes in the new
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Algorithm 1. Merging BDDs D and D’ into £
while 3 a node (vu) in £ without outgoing edges do
Let v be child of v in D through e-edge
Let u¢ be child of u in D’ through e-edge
if L(v) = L(u) then > v and u are at the same level
Insert (v°u®) at level min{L(v"), L(u")} with 0-edge from (vu).
Insert (v'u') at level min{L(v'), L(u')} with 1-edge from (vu).
end if
if L(v) < L(u) then > v is higher up than u
Insert (v%u) at level min{L(v°), L(u)} with 0-edge from (vu).
Insert (v'u) at level min{L(v'), L(u)} with 1-edge from (vu).
end if
if L(v) > L(u) then > u is higher up than v
Insert (vu®) at level min{L(v), L(u®)} with 0-edge from (vu).
Insert (vu') at level min{L(v), L(u")} with 1-edge from (vu).
end if
end while

BDD can be labelled with (vu) where v and u come from the two orginal BDDs.
It is then not hard to see that the following upper bound holds

B(€) < B(D)B(D'). (1)

We will use this fact later in the paper. For a more detailed description and
analysis of operations on BDDs one might consult [I2]9l8]. An example of the
AND-operation on BDDs can be found in the appendix.

2.3 Trivium

Trivium [I3] is a synchronous stream cipher and part of the ECRYPT Stream
Cipher Project portfolio for hardware stream ciphers. It consists of three con-
nected non-linear feedback shift registers (NLFSR) of lengths 93, 84 and 111.
These are all clocked once for each key stream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key bits, 80
bits of IV, and 128 constant bits. The cipher is clocked 1152 times before actual
keystream generation starts. The generation of keystream bits and updating the
registers is very simple. The pseudo-code in [13] is a good and compact description
of the whole process of generating keystream as shown in Algorithm 2]

Here z; is the key stream bit, and the registers are filled with the bits s1, . . ., Sogs
before clocking.

For algebraic cryptanalysis purposes one can create four equations for every
clock; three defining the inner state change of the registers and one relating the
inner state to the key stream bit. Solving this equation system in time less than
trying all 280 keys is considered a valid attack on the cipher.

Small Scale Trivium. For our experiments we considered small scale versions of
Trivium. While reduced versions of a cipher sometimes dismiss some structural
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Algorithm 2. Trivium Pseudo-Code
fori=1to N do
t1 < Ses + So3
to < S162 + S177
t3 < S243 + Soss

Zi 11 +to+t3 > Keystream bit
t1 < t1 + So1 - S92 + S171

to < t2 + S175 - S176 + S264
ts < t3 + S2s6 - S287 + S69

(s1,82,...,803) < (t3,81,...,803)

(894,895, .. .,5177) < (t1,894, .. .,5176)

(s178, S179, - . - , S288) — (t2,S178, ..., S287)
end for

component of the full scale cipher, e.g. Bivium [I], we try to keep our reduced
versions as close to Trivium as possible.

We scale with respect to the number of bits in the state. When we speak about
Trivium-N, we are speaking about a cipher with N bits of internal state, that
is, scaled down by a factor « = N/288. The lengths of the two first registers will
be 93a and 84a, rounded to the nearest integers. The length of the last register
will be what remains to get N as the total number of state bits (either |111«|
or [111al]).

In the full Trivium, the three top positons in each register are all used as tap
positions. This property is also carried over to all the scaled versions. For the
tap positions appearing elsewhere in the registers, we simply scale their indices
with a. For example, as 66 is used as a tap position in the full Trivium, for
Trivium-N the corresponding tap position will be 66«, rounded to the nearest
integer, with the following exception: Tap positions that are close to each other
in the full Trivium may get the same indices in some Trivium-N if « is small
enough. When this happens, we reduce the tap position of the smaller index by
one, thus ensuring that all tap positions in Trivium-/V are distinct. The equation
systems representing Trivium-N and Trivium will then have similar structures.

3 Compressed Right Hand Side Equation Systems

With MRHS equations a clear separation between the linear and the non-linear
part of an equation was introduced. Overall it yielded a much smaller repre-
sentation for equations typical in algebraic cryptanalysis. Nevertheless, solving
MRHS equations has been limited to relatively small-scale examples because of
the problem with a big number of right hand sides.

It was shown in [7] that representing Boolean equations as BDDs is canonical
with respect to the ordering of variables. This way of recording sets of assign-
ments gives us the advantage that we may have a moderate number of nodes in
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a BDD, but very many paths from the root leading to T. Rather than writing
out all satisfying assignments, or a truth table for a Boolean equation, only a
BDD is retained in memory. However, when experimenting with equations from
certain ciphers, BDDs may also become too big to keep in computer memory
[11].

By combining the MRHS and BDD approaches, we get a new way to handle
large equation systems in algebraic cryptanalysis. We call this representation of
equations Compressed Right Hand Sides (CRHS) equations.

Definition 3 (CRHS). A compressed right hand side equation is written as
Ax = D, where A is a k X n-matriz with rows lg,...,lp_1 and D is a BDD
with variable ordering (from top to bottom) ly,...,lk—1. Any assignment to x
such that Ax is a vector corresponding to an accepted input in D, is a satisfying
assignment.

An easy example of a CRHS equation can be found in the appendix.

CRHS Gluing. If we are given two Boolean equations f1(X1) = 0, fo(X2) =0
and we want to find vectors in variables X; U X5 which satisfy both equations
simultanously we can do this by investigating their individual satisfying vectors
at common variables. If two vectors have the same values at common variable
indices we have found a vector which satisfies both equations. This operation is
part of the Gluing operation described in Section 211

If we are given two CRHS equations [C4]x = Dy, [C2]x = Dy and we want to
compute their common solutions we use a similar technique called CRHS Gluing.
The result of gluing both equations above is
g

C2:| l‘:Dl/\DQ.

Any assignment of x such that [gl} x is an accepted input in the conjunction
2

D1 AD, gives a solution to both initial equations simultanously. Like the Gluing
operation on MRHS equations the right hand side BDD contains all possible
combinations of vectors from the original equations. The difference is that sat-
isfying vectors are no longer explicit in the computer memory, but are recorded
in a compressed format, namely as paths in the BDD.

It is easy to output all possible vectors from the paths in a BDD. There also
exists an easy polynomial-time (in the number of nodes) algorithm to count the
number of accepted inputs to a BDD. An example of CRHS-gluing can be found
in the appendix.

3.1 Dependencies among Linear Combinations

The left hand side in a CRHS equation is equal to the left hand side in a MRHS
equation, namely a set of linear combinations {lg,...,lx—1} in the variables of
the system. If we glue several CRHS equations together, it might happen that
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the resulting left hand side matrix in the glued equation does not have full
rank, that is, the set of linear combinations in the left hand side contains linear
dependencies.

The BDD on the right hand side treats the I; as variables, and is oblivious
to the constraint that some of them should sum to zero or one. Therefore, an
accepted input in the BDD may or may not satisfy the linear dependencies
known to the left hand side. These paths should be taken out of the BDD in
order to not produce false solutions.

The straight-forward way to remove paths that do not satisfy some linear
dependency is to use the AND-operation. The number of nodes in the BDD
representing a linear equation g(lo,...,lk—1) is two times the number terms in
g. It is then easy to construct the BDD for any g, and combine it with the BDD
in the equation using the AND-operation. This will remove all false solutions.

4 Experimental Results

While exploring the possibilities of CRHS equations we used a software library
called Cudd[14]. The Cudd software library implements various types of BDDs
and algorithms/operations which can be performed on BDDs. The code base is
optimized and usable on a personal computer even for very big BDDs.

We used Cudd together with C++ code and developed a program capable of
reading different equation systems representing scaled Triviums and then gluing
the equations together.

It was crucial in the experiments to find out the size of the resulting CRHS
equation when gluing many of them together. This number is important to
determine in order to evaluate the feasability of our method. Theoretically the
size of the final CRHS equation C' is upper bounded by

B(C) < Bleo) - Bler) - ... - Bler1)

when gluing CRHS equations ¢, ¢1, ..., c¢.—1 into C. This value is exponential in
the number of nodes and might lead to infeasible sizes of BDDs, even for quite
small versions of Trivium. However, our experiments showed that the size of the
BDD for the glued CRHS equations was far smaller than the upper bound, and
stayed manageable. Thus we are indeed, in contrast to MRHS equation systems,
able to glue all equations in large CRHS equation systems together. For MRHS
equation systems, gluing all equations together will reveal the solutions to the
system. As we explain below, it is more complicated for CRHS equation systems,
due to false solutions in the right hand side BDD.

In the experiments reported below, we created CRHS equation systems rep-
resenting Trivium-N for various values of V. Then we glued all equations into
one single big CRHS equation. We examined different aspects of the equation
systems, which can tell us something about their solvability with our method.
For several small scale versions we measured the following properties:
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Value Description

n # of variables = # of initial CRHS equations
k # of different linear combinations of variables
B # vertices in BDD in final equation

le # of linear constraints for solution

Sol. # paths in final BDD
Mem. Memory consumption in MB

Table 1. Experimental results

N n k B le Sol. Mem.
35 85 173 2'88 gy 98567 87
40 94 191 22057 97 99377 182
45 106 215 22168 109 210660 358
50 115 233 22415 118 211560 258
55 127 257 22155 130 212760 329
60 138 282 22231 144 214035 560
65 148 299 22266 151 l48.60 687
70 160 323 22242 163 216049 588
75 171 349 22278 178 217383 742

Initial equations have 4 nodes in the BDD, so we see from Table [I] that the
size of the BDD after gluing all equations together is far from the theoretical
upper bound. However, the growth of B is exponential just with a very small
constant. It is worth to notice that B is not strictly increasing with N. We also
see that the expected number of paths that satisfy all constraints given by lc is
between 274 and 272

A point worth mentioning is that the exponential upper bound for gluing
CRHS equations together is tight, in general. There are equations that will
achieve the bound when glued together. Equation systems coming from ciphers
tend to be very sparse, in the sense that each initial equation contain few vari-
ables, and each variable only appears in a few equations. This is also the case for
Trivium. Two equations that do not share any variables have a linear size when
glued together. As shown in (@), the gluing in this case is basically putting one
BDD on top of the other. This may explain why it is particularly easy to glue
together CRHS equations coming from scaled versions of Trivium.

Full Trivium. So what about N = 2887 For full Trivium our computer ran out
of memory before finishing gluing all equations together. On the other hand, we
were able to glue 404 of the 666 initial equations together, producing a CRHS
equation C of size 2229, Then we glued the remaining initial equations into Cs,
of size 2248, By using the upper bound () for merging two BDDs, we have then
demonstrated that the single CRHS equation representing the full Trivium has a
size smaller than 2%7-7. The true size of the BDD for the full Trivium is probably
a lot smaller than 2477, given that the upper bound we use has proved to be
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very loose for the systems we study. In any case, we know that the size of the
CRHS equation representing the full Trivium is quite far from the 28°-bound for
a valid attack.

4.1 Solving Attempts

If a single CRHS equation gave a solution as readily as a MRHS equation, we
would be done, and have an algebraic attack on Trivium with complexity much
smaller than the O(28°)-bound for exhaustive search. As noted above, we can not
deduce a solution straight from the CRHS equation, since we have eventually to
find a path in the BDD that satisfies a number of linear constraints. For scaled
Triviums, we have of course tried the straight-forward approach mentioned in
Section Bl Gluing BDDs representing linear constraints onto the BDD of the
cipher CRHS equation unfortunately makes the size grow too large very rapidly.

Another solving method we have tried works as follows. Let the set of linear
constraints to be satisfied be contained in a matrix LC. We set LC' at the (single)
top node in the BDD, and will propagate the matrix through the whole BDD
according to Algorithm [3]

Algorithm 3. Propagating linear constraints through BDD with k levels.
for i =0 to k do
for every node a at level 7 do
if a contains matrix then
Build matrix M of linear constraints present in all matrices in a
if [; = 0 is consistent with M then
Send M|;,—o through 0O-edge
end if
if [; = 1 is consistent with M then
Send M|;,—; through 1l-edge
end if
end if
end for
end for

What we are bascally doing is to fix the value of [; in LC' to 0 or 1 when passing
LC through a 0- or 1-edge out of a node at level 4. If the linear constraints of
LC would become inconsistent by sending it across an edge, the matrix is not
propagated in that direction. Nodes receiving more than one LC-matrix will
only keep linear constraints present in all matrices.

A node containing a matrix could be interpreted as saying “Any path below
me must satisfy the linear constraints in my matriz.” We hope that the matrix
ending up in the T-node will contain some other linear constraints than the ones
we started with. If this is the case, we can repeat Algorithm [3] with increasingly
large LC.

In small examples (that can be checked by hand) the method of propagating
the linear constraints through the BDD works, but for Trivium-35 it did not,
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as there were no new linear constraints in the matrix arriving at the bottom.
What we did see for Trivium-35 however, was that there is a significant amount
of nodes at levels 113 — 138 in the BDD that did not receive any matrices (due
to inconsistencies). At some levels almost half of the nodes were empty. We
learn from this that there is no path satisfying the linear constraints in LC' that
can pass through these nodes, and so they can be deleted. Hence we can use
Algorithm [3] to prune the BDD, and reduce its size.

5 Conclusion and Further Work

In this paper we have introduced a new way of representing algebraic equations,
and shown its advantages compared to previously known representations. With
the CRHS representation it is possible to merge many more equations together,
than what is possible by other approaches. Building the CRHS equation system
for Trivium, we have shown that Trivium may be described by a single CRHS
equation with a BDD of size 2477 nodes, at most.

We have not yet been able to solve big CRHS equation systems, due to the
many false solutions appearing in the right hand side BDD. The problem that
needs to be solved is: How do we efficiently find a path in a BDD that
satisfies a set of linear constraints? The method of matrix propagation helps
in reducing the size of the BDD, and may be an approach worth pursuing. This
is a topic for further research.

Finally, we should keep in mind that the operation of merging equations in
a system is a process with exponential complexity. This is also true for CRHS
equations, but for systems representing versions of Trivium we can do full merg-
ing anyway, because of the structure of the system. Solving non-linear equation
systems is NP-hard in general, so we cannot hope to have a solving algorithm
without any exponential step in it. Gluing all equations together is an exponen-
tial step, and full gluing normally solves the system. We can then speculate that
after gluing all initial equations into one, we have overcome the exponential step
and that the remaining problem for finding a solution can be solved efficiently.
It is not clear that the problem of finding a path in a BDD subject to a set
of linear constraints must have exponential complexity in the number of nodes.
Further investigation into this question is needed.
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Appendix

Ezxample 1 (MRHS). The basic non-linear component in Trivium is the bitwise
multiplication found in the function updating the registers. The new bit (zg)
coming into a register at some point is related to the old ones (z1,...,25) by

X1 -T2+ X3+ T4+ 25 = Tg.

The multiplication is the non-linear component, with inputs z; and xs, and
a single linear combination as output, namely x3 + x4 + x5 + xg. There are
four different inputs to this function, hence there will be four columns in the
B-matrix. The corresponding MRHS equation is

X1
1000007 | ™2 0101
010000 [* [=]o011]. (2)
oo1111||™ 0001

Ts5

Te

Ezample 2 (BDD). Figure [l] shows an example BDD. The vertex vy is the root.
Solid lines indicate 1-edges and dashed lines indicate 0-edges. In this example
the order is (lo,l1,l2) as indicated to the left.
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Fig. 1. Example BDD

Ezample 3 (Accepted Inputs). The accepted inputs for the BDD in Figure[Il are
the vectors (lg, 11, 12):

One can see that (0,0,0) and (0,0,1) are on the same path from vy to T. On
that path no node associated with [s is visited, so I3 can be assigned both values.

A Boolean equation may be characterized by its set of satisfying assignments.
Building a BDD whose accepted inputs match the set of satisfying assignments,
gives us another representation of the same equation. For example, the Boolean
equation corresponding to the BDD in Figure [ is lgly + lolo + l1lo + 1o + 11 = 0.

Ezample 4 (AND operation). The top half of Fig. 2] shows the BDDs of two
Boolean functions. The left BDD shows Iy +1; +12 = 0, the right BDD represents
lol1 + lo = 0. Both BDDs share the same order of variables, and the resulting
BDD of their conjunction after reduction is shown below the two original BDDs.

Ezample 5 (CRHS). We write equation (2]) from Example[llas a CRHS equation
by converting the right hand side into a BDD.

Instead of writing out the left hand matrix of equation ([2l), we write down the
corresponding linear combinations, and give them the names [y, (1, lo.

lo

1 = l() l1
9 =l | = N ®3)
T3+ T4 + 5 + 26 = lo l
2
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Fig. 2. AND-operation example

The right hand side of the CRHS equation is a compressed version of the right
hand side in a MRHS equation. Every accepted input in the graph of the CRHS
equation stands for one right hand side of the corresponding MRHS equation.
The example above contains the edge (vg, v3). This edge is jumping over a level,
i.e. every path through this edge does not contain any vertex at level ;. That
means that for a path containing the edge (vg,vs), the variable I; can take
any value. The path (vg,vs, T) thus contains two vectors for (lg,l1,l2), namely
(0,0,0) and (0,1, 0).

Ezample 6 (CRHS Gluing). The following two equations are similar to equations
in a Trivium equation system. In fact, the right hand sides of the following are
taken from a full scale Trivium equation system. The left hand matrices have
been shortened.
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x1
x2

=l
:ll = \\\\
x3+ T4 =12 A

The gluing of the equations above is

Ty =l
To = l1
T3+ x4 = o _
T4 = l3
T5 = l4

T +x7 =5

where |-paths in this last graph are omitted for better readability. Note that
omitting these paths does not decrease the overall number of vertices. The re-
sulting equation has 8 nodes where the corredsponding MRHS equation would

have 16 right hand sides.

|

lo
lh
la
I3

Iy

T4
Ts5

=3
:l4

x6 +x7 =15

s

N

s

N

ints0-0050-0

|

l3

la

ls



Cryptanalysis of Round-Reduced HAS-160

Florian Mendel, Tomislav Nad, and Martin Schléffer

Institute for Applied Information Processing and Communications (TAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
Tomislav.Nad@iaik.tugraz.at

Abstract. HAS-160 is an iterated cryptographic hash function that is
standardized by the Korean government and widely used in Korea. In
this paper, we present a semi-free-start collision for 65 (out of 80) steps of
HAS-160 with practical complexity. The basic attack strategy is to con-
struct a long differential characteristic by connecting two short ones by
a complex third characteristic. The short characteristics are constructed
using techniques from coding theory. To connect them, we are using an
automatic search algorithm for the connecting characteristic utilizing the
nonlinearity of the step function.

Keywords: differential attack, hash function, coding theory, collision.

1 Introduction

In the last years research in cryptanalysis of hash function has made significant
progress. Weaknesses have been shown in many commonly used hash functions
as SHA-1 [19] and MD5 [18]. These breakthrough results in the cryptanalysis of
hash functions were the motivation for intensive research in this field. Especially,
in the ongoing SHA-3 [12] competition several new design strategies and attack
techniques have been proposed. However, it also draws the attention away from
currently used hash function standards, whereas it is important to analyze these
standards to achieve a better understanding of the security margin in critical
applications like e-commerce and e-government systems. In this paper, we focus
on the hash function HAS-160. It is standardized by the Korean government
(TTAS.KO-12.0011/R1) [I7] and hence widely used in Korea. It is an iterated
cryptographic hash function that produces a 160-bit hash value. The design of
HAS-160 is similar to SHA-1 and MD5.

In [22], Yun et al. applied the techniques invented by Wang et al. in the crypt-
analysis of MD5 and SHA-1 to the HAS-160 hash function. They show that a
collision can be found for HAS-160 reduced to 45 steps with a complexity of
about 2'2. This attack was later extended by Cho et al. [3] to HAS-160 reduced
to 53 steps. The attack has a complexity of about 2°° 53-step HAS-160 computa-
tions. Mendel and Rijmen [10] improved the attack and reduced the complexity
to 235 and presented an actual colliding message pair for HAS-160 reduced to
53 steps. Furthermore, they presented a theoretical attack on 59 steps. Finally,
preimage attacks on 52 steps by Sasaki and Aoki [16] and on 68 steps by Hong

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 33-fT7] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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et al. [6] have been presented. Both attacks have only theoretical complexity and
are only slightly faster than the generic attack which has complexity 2160,

In this paper, we combine different techniques to construct a semi-free start col-
lision for 65 (out of 80) steps of HAS-160 with practical complexity. A semi-free-
start collision is a collision attack where the adversary can choose the value of the
initial value (IV). The basic idea of our attack is similar to the attack on a DES
based hash function by Rijmen and Preneel [15] and to the recent attack on the
SHA-3 candidate Skein by Yu et al. [21]. The idea is to construct a long differen-
tial characteristic by connecting two short ones by a complex third characteristic.
We show how this idea can be applied on HAS-160 resulting in a semi-free start
collision. Furthermore, we present an actual colliding message pair and IV fulfill-
ing all conditions of the differential characteristics. This is so far the best attack
in terms of number of steps on HAS-160 with practical complexity.

The remainder of this paper is structured as follows. A description of the
hash function is given in Section [2l In Section Bl we describe the basic attack
strategy. In Section [ the search for two short differential characteristics and the
determination of a good position for the connection is explained. In Section Bl we
connect the short characteristics and present the final differential path. Finally,
we present a colliding message pair in Section and conclude in Section [Gl

2 Description of HAS-160

HAS-160 is an iterative hash function that processes 512-bit input message
blocks, operates on 32-bit words and produces a 160-bit hash value. The de-
sign of HAS-160 is similar to the design principles of MD5 and SHA-1. In the
following, we briefly describe the hash function. It basically consists of two parts:
message expansion and state update transformation. A detailed description of
the HAS-160 hash function is given in [I7].

Message Expansion. The message expansion of HAS-160 is a permutation of
20 expanded message words W; in each round. The 20 expanded message words
W; used in each round are constructed from the 16 input message words m; as
shown in Table[l

For the ordering of the expanded message words W; the permutation in Table[2]
is used.

Table 1. Message expansion of HAS-160

Round 1 Round 2 Round 3 Round 4
Wo mo mo mo mo
Wis mis mis mis mis

Wie WodWi @WedWs W3® We® Wo® Wiz Wiza @ Ws @ Wia @ W7 Wy & Wo @ Wiz ® Wy
Wiz Wi@WsdWsdWr Wis @Wa @ W5 @Ws Wo @ Wo®Wa® Wii Wi ® Wiy @ Wy @ Wy
Wis Ws @ Wo @ Wio @ W11 W11 @ Wis @ W1 @ Wy Wy @ Wiz @ We @ Wis Wis @ Wio @ W5 @ Wo
Wig Wiz @ Wiz @ Wia @ Wis W7z @ Wio @ Wiz @ Wo Ws @ W1 @ Wio @ W3 W11 @ We & W1 @ Wiz
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Table 2. Permutation of the message words

stepe 1 234 5 6 7 8910111213 141516 17 18 19 20
Round1 18 01 2 3194 56 7 16 8 9 101117121314 15
Round 2 18 3 6 9 121915 2 58 161114 1 4 17 7 1013 0
Round 3 1812514 7 19 0 9 21116 4 13 6 1517 8 1 10 3
Round 4 18 7 213 8 19 3 149 4 161510 5 0 1711 6 1 12

State Update Transformation. The state update transformation of HAS-
160 starts from a (fixed) initial value IV of five 32-bit registers and updates
them in 4 rounds of 20 steps each. Figure [Il shows one step of the state update
transformation of the hash function.

LA [ B [ & [ D | B ]

E%L K;
=l
H

- W

K S

’ A1 \ Bt \ Cit1 \ D \ Ein ‘

Fig. 1. The step function of HAS-160

Note that the function f is different in each round: fy is used in the first
round, fi is used in round 2 and round 4, and f5 is used in round 3.

f0<1'7y,2) = (SU A y) D (_‘SU A Z)

filz,y,z) =z@y®2

f2<1'7y,2’) = (SU \ _'Z) Dy
A step constant K; € {0,5a827999, 6ed9ebal, 8f1bbcdc} is added in every step
and is different for each round. While rotation value so € {10,17,25,30} is
different in each round of the hash function, the rotation value s; is different in

each step of a round. The rotation value s; for each step of a round is given in
Table Bl

Table 3. Permutation of the message words

stepi1 2345678 910111213 141516 17 18 19 20
s1 H11715613814712 9 11 8 15 6 12 9 14 5 13
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After the last step of the state update transformation, the initial value and
the output values of the last step are combined, resulting in the final value of
one iteration known as Davies-Meyer hash construction (feed forward). The feed
forward is a word-wise modular addition of the IV and the output of the state
update transformation. The result is the final hash value or the initial value for
the next message block.

2.1 Alternative Description of HAS-160

As one can see in the description of the step update transformation (see Figure[I)
only the state variable A; is updated in each step. The values of the other state
variables are defined by A;. Therefore, we can redefine the state update such
that only one state variable is used.

Ai+1 =A;_4>> 89+ A; K 81+
F(Ai—1, Aig >> 59, A3 >> s9)+ (1)
Kj + W;

Note that so need to be adapted accordingly if the update uses A’s between two
rounds. The chaining values are represented by Ag, A_1, A_2, A_3, A_4.

3 Basic Attack Strategy

In this section, we briefly describe the attack strategy to construct a semi-free
start collision for 65 steps of HAS-160. A similar attack was done on a DES
based hash function by Rijmen and Prencel [15] and recently on Skein by Yu
et al. [2I]. The main idea is to construct a long differential characteristic by
connecting two short ones. First, proper differences in the expanded message
words need to be chosen, such that they result in two short linear characteristics
with low Hamming weight and hence hold with high probability. Second, we
connect the two short differential characteristics by a third one. This one can have
low probability, since we can use message modification to fulfill the conditions.
Figure [ illustrates the strategy.
The attack can be summarized as follows:

1. Choose an optimal position for the connection and find two differential char-
acteristics, which hold with high probability.

2. Find a connecting differential characteristic.

3. Find inputs fulfilling the conditions and use message modification to improve
the attack complexity.

To find two good characteristics and to determine an optimal position, we use
a linearized model of the hash function. Finding a characteristic in a linearized
hash function is not difficult. However, we aim for characteristics with high
probability such that the available freedom can be used for the connection. The
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linear

connection - ME

Fig. 2. Basic attack strategy. Differences occur only in the parts with background color.

probability that the linear characteristic holds in the original hash function is
related to the Hamming weight of the characteristic. In general, a differential
characteristic with low Hamming weight has a higher probability than one with a
high Hamming weight. Finding a characteristic with high probability (low Ham-
ming weight) is related to finding a low weight word in linear codes. Therefore,
we use a probabilistic algorithm from coding theory to find good characteris-
tics. It has been shown in the past, for instance the cryptanalysis of SHA-0 [2],
SHA-1 [13], EnRUPT [7] or SIMD [g] that this technique works well for finding
differential characteristics with low Hamming weight.

We are constructing different linear codes for different positions and lengths
of the connecting part to determine the optimal choice. Afterwards, we use an
automatic search technique to find a connecting differential characteristic. Fi-
nally, we use message modification, introduced by Wang et al. in [20], to find
inputs fulfilling all conditions.

4 Finding Two Short Characteristics

As mentioned before the problem of finding characteristics for a linearized hash
function which hold with high probability for the original function is related
to coding theory [QII3J14]. In order to find such characteristics for HAS-160 we
need to linearize the hash function.

4.1 Linearization of HAS-160

Since the message expansion is already linear, only the step update transforma-
tion has to be linearized. The nonlinear parts of this function are the modular
additions and the Boolean functions fo and fo (f1 is linear). In the attack, we



38 F. Mendel, T. Nad, and M. Schléffer

replace all modular addition by XORs. For the Boolean functions we tried sev-
eral different linearizations. However, the following variant turned out to be the
best. The function fy (IF) is replaced by the O-function, i.e. we block each input
difference in fo. This has probability 1/2 in most cases (cf. [4]). One can see
that there is exactly one input difference for f; where the output difference is
always one. In that case we discard the characteristic. f> is approximated by its
second input. which holds with probability higher than 1/2. In summary we get
the following approximation for the Boolean functions:

fo(z,y,2) =0
fo(z,y,2) =y

4.2 Construction of the Generator Matrix

In this section we explain the standard approach to find collision producing
characteristics for a linearized hash function. As observed by Rijmen and Oswald
[14], all differential characteristics for a linearized hash function can be seen as
the codewords of a linear code. Our goal is to find codewords with low Hamming
weight, i.e. characteristics with high probability. Therefore, we have to include
all intermediate chaining values where differences could decrease the success
probability in the linear code. Based on the alternative description of HAS-160
(see Section 27I)) we include only A; in the linear code, since the other state
variables do not add any additional information to the code. This decreases the
length of the code significantly and therefore also the running time of the search
algorithm.

Let AA; € {0,1}32 be the difference vector of the chaining value A; in bit
representation at step ¢. Then the vector

cw = (AAy, -+, AA,), (2)

where cw € {0,1}"32, represents the differences in the chaining value A; after
each step of n steps of HAS-160. cw is one codeword of the linear code and
therefore a differential characteristic. To construct the generator matrix for the
linear code, we proceed as follows:

1. Compute cw; with the input difference AM = e;, where e; € {0,1}°12

is the j-th unit vector and AM the difference of the message block in bit
representation.
2. Repeat the computation for j =1,...,512.

The resulting generator matrix of the linear code representing linearized HAS-
160 is defined in the following way:

Gs12xn.32 = : . (3)
CWs12
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Since we are aiming for a collision in the last step, we need to apply code shorten-
ing on the last 160 bits, i.e. ensuring that all code words are zero in the last 160
bits. This reduces the dimension and length of the code to 352 and (n-32 —160),
respectively.

Using this matrix one can search for low Hamming weight codewords over all
n steps. As explained in Section [l we are looking for two short characteristics,
which will be connected later. Therefore, we need to modify the linear code to
include this requirement.

Modification. The easiest way to define a linear code for both characteristics
simultaneously and ensuring that both use the same expanded message, is the
following. Firstly, ignore ¢ steps in the middle. Hence, we change the vector (2))
to:

cw = (AAy, - JAALAA4qq, -+, AAY). (4)

At the beginning of the second characteristic (after step [+1), the state variables
can have any difference, since the differences in the steps before are yet undefined.
Therefore, we need to add the information to the code that after step [ + t all
differences are possible. Hence, we add the chaining variables at step [ +¢+1 to
the linear code. The construction of the generator matrix changes to:

1. Compute cw; with the input difference AM = e;, where e; € {0,1}5'2
is the j-th unit vector and AM the difference of the message block in bit
representation.

2. Repeat the computation for j =1,...,512.

3. Compute cwsia4y as follows:

(a) Set AM =0 and cw, = e, where e;, € {0,1}1%° is the k-th unit vector
and
CWs = (AAHth, AAl+t727 AAl+t71; AAlth, AAl+t+1)~

(b) Compute AA; for (I+t+1) < i <n with cws and AM as input. Hence,
we get following codeword:
CWs12+4k = (AAl = 0, s 7AA1 = 0, CWsg, AAl+t+27 R 7AAn)
4. Repeat the computation for k =1,...,160.

Note that ABl-I—t-I—l = AAl+t7ACl+t+1 = AAl+t_17ADl+t+1 = AAH—t—Q and
AFEj 4441 = AAj4—3 and therefore all possible chaining values after step [ 4 ¢
are included in the code. The resulting generator matrix is

Cw1
Gerax (n—t+4)-32 1= : . (5)

CWeg72

Again code shorting is applied to ensure that all codewords result in a collision
after n steps.
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Determining I, t and n. There exist several possible choices for the parameters
[, t and n of the linear code. First of all we limit ¢ < 21. The reason for this
is simple. We have 21 words (16 message words and 5 IV words) which can
be choosen freely and hence can be used for message modification to fulfill all
conditions in the connecting part which is usually the most expensive part of
the attack. However, we aimed for a smaller ¢ to reduce the search space for the
connecting part as well.

For the search we constructed generator matrices for 21 < [ < (n — 21) and
t = 21. If we have found two characteristics with high probability we reduce t.

4.3 Searching for Low Hamming Weight Codewords

We use the publicly available CodingTool Library [II] which contains all tools
needed to search for codewords with low Hamming weight. It implements the
probabilistic algorithm from Canteaut and Chabaud [I] to search for codewords
with low Hamming weight. This iterative algorithm basically looks for small
Hamming weight codewords in a smaller code. Such a codeword is considered as
a good candidate for a low Hamming weight codeword for the whole code. The
algorithm randomly selects o columns of it and splits the selection in two sub-
matrices of equal size. By computing all linear combination of p rows (usually
2 or 3) for each sub-matrix and storing their weight, the algorithm searches for
a collision of both weights which allow to search for codewords of 2p. Then two
randomly selected columns are interchanged, followed by one Gaussian elimina-
tion step. This procedure is repeated until a sufficiently small Hamming weight
is found. With this tool we can find good characteristics for different choices of
[l and t in few seconds on a standard PC. In Table[d we present the best (lowest
Hamming weight) characteristics we have found for different parameters. As one
can see after 65 steps the Hamming weight is getting too high such that we
cannot find a characteristic and conforming inputs with practical complexity.
Note that decreasing ¢ always increases the Hamming weight, since more state
variables with differences are included in the linear code. Furthermore, the Ham-
ming weight in Table[dlincludes only differences in A. To estimate the probability

Table 4. Results for the low weight search

n 1 t Hamming weight

53 18 21 3
60 18 21 3
65 18 21 3
66 19 21 25
67 18 21 25
68 18 21 72
69 18 21 72
70 18 21 119
7519 21 123

80 19 21 247
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one has to take the differences in all state variables into account. Therefore, the
probability for the linear characteristic can be roughly estimated by four times
the Hamming weight of A.

Using this general approach we can cover the whole (linear) search space and
allow arbitrary differences in the message words. However, it turned out that the
best characteristics we have found are indeed the trivial ones which have only
few differences in the message words and only a one bit difference per message
word.

4.4 Short Differential Characteristics

To describe the differential characteristics we use generalized conditions which
are explained in Section [(B.J] We have found several different characteristics,
depending on the choice of [ and ¢. In Table § of Appendix [Al we present two
short characteristics, where t is kept small. To improve readability, we used the
alternative description of HAS-160 (see Section [ZT])

5 Finding Connecting Characteristics

In this section, we show how one can find a connecting differential characteristic
which is the most expensive part in our attack. The main idea to find a connect-
ing characteristic is to use the nonlinearity of the step update function. Con-
structing such complex characteristics is a difficult task. In [5], De Canniére and
Rechberger proposed a new method to find complex characteristics for SHA-1 in
an efficient way. In their concept they allow characteristics to impose arbitrary
conditions on the pairs of bits (referred to as generalized conditions). Based on
this they presented an efficient probabilistic search algorithm. Recently, Mendel
et al.[9] extended this technique and applied it successfully on SHA-2. The basic
idea of the search algorithm is to randomly pick a bit position and impose a
zero-difference. Afterwards, it is calculated how this condition propagates. This
is repeated until an inconsistency is found or all unrestricted bits are eliminated.

5.1 Generalized Conditions

To describe the search algorithm in more detail we first repeat the notation
of generalized conditions which was introduced in [5]. Inspired by signed-bit
differences, generalized conditions for differences take all 16 possible conditions
on a pair of bits into account. Table [§ lists all these possible conditions and
introduces notations for the various cases.

For example, all pairs of 8-bit words X and X* that satisfy

{(X, X*) € {0,1}® x {0,1}%| X7 - X2 =0,X; = X[ for 1 <i <5, Xy # X3},

can be conveniently written in the form
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Table 5. Notation for possible generalized conditions on a pair of bits [5]

(Xi, X:™) (0,0) (1,0) (0,1) (1,1) (X, X;) (0,0) (1,0) (0,1) (1,1)

? v v v Vv 3 v v - -
- v - - v 5 v - v -
X - v v - 7 v o v v -
0 v - - - A - v - v
u - v - - B v v - v
n - - v - C - - VR
1 - - - D v - VR
# - - - - E - v o v v

5.2 Application to HAS-160

Due to the similarities of HAS-160 to SHA-1 the adaption of the above concept
can be done in a straightforward manner and can be used to find the connecting
characteristic. For more details see [59]. We proceed as follow:

Pick a random unrestricted bit (?) or an unsigned difference (x).

Impose a zero-difference (-) or randomly a sign (u or n), respectively.
Check how the new condition propagates.

If an inconsistency occurs jump back to the point where the last sign was
imposed and make a different decision.

5. Repeat this until all unrestricted bits are eliminated

o=

Using a small number of unrestricted words reduces the search space and run-
ning time of the algorithm significantly. Therefore, we reduced this number by
extending the two short linear characteristics linearly. Since there are only few
differences at the end of the first linear characteristic and at the beginning of
the second linear characteristic, we can extend them forward and backward re-
spectively, without increasing the Hamming weight too much. In fact for the
characteristic in Table Bl in Appendix [Al we extended the linear characteristics
linearly forward by two and backwards by ten steps. Table [6l shows the starting

Table 6. Steps free of conditions at the beginning of the search algorithm

step VA VW

20 x X——X -

26 —X-X-—-—-—-——-X-——X-XXX--X X—= -
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point of the search algorithm using the notation of generalized conditions leaving
only five words unrestricted.

Applying the above algorithm on this starting point the algorithm converges
already after an hour (on a standard PC) to a complete characteristic for 65
steps. Determining the complexity of the probabilistic algorithm in general is
still an open problem. Among others it depends on the hash function, search
strategy, start characteristic and implementation. The complete characteristic
is given in Table [} of Appendix [Al Note that with this approach we can find
several different characteristics.

5.3 Finding a Message Pair

Almost all of the differences in the characteristic of Table Bl in Appendix [Al are
within 21 steps. Since we can choose up to 21 words (16 message and 5 IV)
freely we can use message modification to find efficiently inputs which fulfill
all the conditions of the characteristic. The conditions for the characteristic are
listed in Table @ in Appendix [Al The resulting colliding message pair and 1V is
given in Table [7

Table 7. A colliding message pair and IV for HAS-160

IV ed3c8cab 38127dc3 bcf7b374 264eeb2b 73bel247
467d7948 3c¢433177 981f570c 6bf43c12 3dc04bTc cb85a46d 3356206e biff3eal4
9603f6ca 252¢37eb 3a1d6197 479ca8d1l badbe3d9 4e23c48c c52a6189 53fleal6
, 467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3eal4
9603f6ca 252¢37eb 3a1d6197 479ca8d1l 3adbe3d9 4e23c48c 452a6189 53flealb
00000000 00000000 00000000 OOO00O0000 00000000 OOOOOO0O OO0O0O000 00000000
00000000 00000000 00000000 00000000 80OOOO00 OOOO0V0O 8000O000 OOOO0000
h  4b0a28ae bc82dbbl a4805bfd cd226435 7cb7eb52
k' 4b0a28ae bc82dbbl a4805bfd cd226435 Tcb7eb52

6 Conclusions

The progress in the cryptanalysis of hash functions in the last years shows that
the security of existing standards need to be reevaluated. Therefore, we analyze
in this paper the Korean hash function standard (TTAS.KO-12.0011/R1) HAS-
160. The main idea of our attack is to construct two short linear differential
characteristics which hold with high probability and connect them by a com-
plex third characteristic by using the nonlinearity of the state update function.
We use techniques from coding theory to search efficiently for the short char-
acteristics and simultaneously determine an optimal position and length of the
connecting characteristic. In a second step we use an automatic search algorithm
to find a connecting characteristic taking the nonlinearity of the state update
into account.
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We present a semi-free-start collision for 65 (out of 80) steps HAS-160 with
practical complexity. Extending the attack to more rounds seems to be difficult.
One can always extend the size of the connecting part, but this also increases
the complexity of finding the connecting characteristic, which running time is
hard to estimate. If we limit the length of the connecting part to 21 steps, then
the best short characteristics we can find with probability below the generic
complexity of a collision attack, are for up to 65 steps.

Even though we only present a semi-free-start collision, it is a step forward
in the analysis of HAS-160. This is so far the best known attack with practical
complexity in terms of attacked steps for HAS-160.

Acknowledgments. The work in this paper has been supported by the Eu-
ropean Commission under contract ICT-2007-216646 (ECRYPT II) and by the
Austrian Science Fund (FWF, project P21936).
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A Characteristic

Table 8. Characteristic for 65 steps HAS-160 using generalized conditions. The rows
with darkgray background represent the connecting part. The rows with lightgray
background represent the two linear characteristics. All conditions can be fulfilled using
message modification.

step VA vWw
-4
-3
-2
-1

0

16
17 u X
18 u

19 n u X
20 u u--u;

21 ——————= n-uuuuuu--u----n----u----

22 u--n---uu-nu---uu---nn uu
23 --n-n-nnnu-n-u--nu nu
24 wuun-nu--u-u----n-N-UNNUUUUUUU-D

25 --n----uu---uu-un-u----- nu-n-n-- Xx

26 -n-n------n---n-uun--u n--
27 -unu------ u-n---uu---u-n-u-u---n
28 --n---u---u---u--u-n---u u-n

29 n---u n u-n
30 --u n-u u

31 --n n n-n--
32 n n--
33 n b3
34 n u--
35 u--
36
37
38
39 n
40
41
42 b3
43
44 X
45
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Table 9. Set of conditions for the semi-free-start collision for 65 steps

step set of conditions

16 Aiez =0, Ais21 = A15.21

17 Az =1 Aiz; =1

18 Aigo =1, A1gz3 =1, A1gg # Ai7s

19 AlU,lB = 11 Alf).:fl = 07 A19,23 # Al7,l31 A19,27 7£ A18,2~, AIQ.SJ # A18,317 A19.24 - /118,31

20 Az =1, Azo12 =1, A2031 = 1, A20,16 # Ais,e, A20,3 = Ais25, A20,0 # A19,0, A201 = Ar9,1, A20,2 = Aro2,
Az, = Arg,3, A20,4 = Ar9,4, A205 = A19,5, A20,23 # Ar9,6, A20,7 = Ar9,7, A20,19 = A19,19, A2024 = Ar9,24,
As0,20 # Arg,20

21 Asia =1, A2190 =0, Ao11a =1, Asii7r = 1, Aoiis = 1, Azii9 = 1, Asio0 = 1, Azio1 = 1, Azio2 = 1,22
Azi2a = 0, A2126 # Augye, A21,20 = Arg12, A21,3 # A20,3, A216 # Az0,6, A21,7 # A20,7, A21,11 # Az0,11,
Az1,15 # Az0,15, A21,16 # A20,16, A21,3 # A20,18, A21,25 # A20,25, A21,26 = A20,26, A21,30 = A20,30

22 Ao =1, Aon1 =1, Ass10 = 0, Aoz11 = 0, Azp1s = 1, Asoie = 1, Asopo = 1, Azoor = 0, Aszpz = 1, 28
Azza =1, Az228 = 0, A2231 = 1, Azz2 = A20,17, A22,3 = Aso0,18, A22,4 # A20,19, A22,5 # A20,20, A22,6 = A20,21,
A22,7 # A20,221 A2‘2,9 = A20,241 A22,3 7(: A21,37 A22A5 = AZIASy A2Z,6 # A21,6~, A22,7 = A2|,7v A22,8 = A21,87
Az 12 # As1,12, A22,20 # A21,12, A22,20 = A21,20, A22,30 = A21,30

23 Aoz =1, Aoz 7 =0, Az 14 =1, Aoz 15 =0, Aoz 1z =1, Aoz 00 =0, Aoz oo =1, Az 03 =0, Aoz o4 =0, Aoz o5 = 34
0, A2s27 = 0, Aaz29 = 0, Aaz17 = A21,0, A2z s # A21,11, A2s0 # Ao21,15, A2z # Asi1e, A2zs = Aois,
Azzis = Azis, Azsi6 = A2131, A2sz = Azo, Asso1 # Aoza, Aozs = Azs, Aozs = Asas, Az # Az,
AQS,ZG = A22A9y A23,]2 # AZZ,]Z-, A23,l3 # A2‘2,13y A23,'Z = A22,l7~, A23,17 7/: A22,l77 A‘23,3 = A‘22A18y A23,4 3& AZ‘Z,IQ,
Azs 19 # Asz,19, A2s26 # A22,26, A23,30 # A22,30

24 Aoy =0, Aoy =1, Aoyz =1, Aoua =1, Aogs =1, Aoy =1, Aoa7 =1, Aoug =1, Aag9 =0, Az410 =0, 35
Asg1 =1, A2a13 = 0, Aagis = 0, Azapo = 1, Aoaoe = 1, Aosos = 1, Asso6 = 0, Aoaos = 0, Azg20 = 1,
Azazo = 1, Asazt = 1, Asas = Az, Azapa # Azar, Asa12 = Azoor, Asaa = Aszog, Azar # Az,
A24,1 # A23,17 A‘ZALIS # A23,lv A24,‘27 = A‘23,107 A24,]2 # A‘23Al‘2y A24,1 = A23,169 A24,l7 :)é A23,]71 A‘ZAAIQ = A23,|97
Aza21 = Asz 21, A2a,16 # A23 31

25 Azs2 =0, A4 =0, Aos6 = 1, Aas,7 =0, A5 13 = 1, A2s,15 = 0, Aos16 = 1, Azs 18 = 1, Aas19 = 1, Aos o3 = 1, 27
Ass2a =1, Azs 20 = 0, Aas 17 # Aoz, Aos 20 = Az, Aos21 = Asza, Assoa # Aoz s, Aosos # Aosg, Aos o6 #
Azsg, Assor = Assio, Azses = Assan, Azszo = Azsas, Az = Avsze, Azsir = Azair, Az = Asas,
A25,8 = A24,‘23y A25,9 = A24,‘24~, A‘ZSAI‘Z = A24,27

26 A2 = 0, Assi0 = 1, A3 = 0, Aze1a = 1, Aze1s = 1, Assar = 0, Azs21 = 0, Ass2s = 0, A2s30 = 0, 26
Az = Aza16, A26,3 = A24,18, Az6,a # Aza,19, A2es = A2a.23, Az6,9 = Aa24, Aze20 # A2s,3, A2622 # Azs 5,
Ane,2s # Aosg, Aze 26 = Aazs,9, Aoe2r = Azs 10, Aze,11 = Aos 11, Aze12 = Ass 12, Azes = Azs 20, Aos7 = Ass 22,
Ase,25 # Ass,25, Az6,11 = A2s26, A26,16 # A25,31

27 A270=0, A2ra =1, Aor6 = 1, Aars = 0, A27,10 = 1, A27,14 = 1, Ao715 = 1, A27190 = 0, Ao721 = 1, Ao728 = 1, 23
Azz9 = 0, Aar30 = 1, Aoror # Az, Aora = Assir, Aoz = Aosos, Aoros # Asee, Aorza = Az,
Az712 # Asei2, A2r1 # Aseie, A2,z # Ase1s, A2r,23 = Aze,23, A27,9 = Aze,24, Aor27 # Aze 27

28 Asgo = 0, Aogo = 1, Asgs = 1, Aog1o = 0, Asga = 1, Asg17 = 1, Aogor = 1, Asgas = 1, Asgog = 0, 13
Aszs 23 = Ase,6, A2sa = Azg 19, A2s19 # A27,2, A2s30 # A27,13

29 Ao =0, Aag2 = 1, A0 = 0, A2010 = 1, Azg23 = 0, A2920 = Ao712, Azoa # Aoga, A2g21 # Aoga, 13
Azge = Azs e, Azg27 # Azs 10, A2ga = Asg 19, A29,13 = Ass,2s, A29,15 = A2s,30

30 Asoi0 =1, Azo21 =1, Aszo.23 = 0, Aszo20 = 1, Aso,27 = Azs 10, As0,4 = Azs 19, As0,s # A2s 23, As04 = A2g4, 14
A3z0,25 = Aag,s, Azo,12 # A2o,12, Az0,2 # A20,17, Az0,17 = A29,17, As0,6 # A20,21, Asz0,14 # A29,29

31 Azi2 =0, A314 =0, Az121 =0, Az120 = 0, Az1,6 # A29,21, Az1,14 = A2929, A31,0 # Az0,0, Az1,17 # Azo0,0,
Asi,19 # Aszo2, Az1,17 # Asoar

32 A32,2 = 01 A32 17 = 01 Af}'Z,lU = A30,2> A32.21 = A:ﬁ(]./11 A32,27 = A.'il,llh A32,8 7£ A31,23

33 Aszz21 =0, A # Az117, Asza # Asaa, Aszze = Asp 21, Azz1a = A3z 29

34 Azaz =1, Asap1 =0, Asse # A3z 01, Aza19 # Aszsz2, Asair = Aszar

35 Aszso =1, Ass 19 = Ass2

36 Aszee # Aszs21

37 Aszro1 =0, Asr10 # Ase2

30 Asep=0

41 Apgi =1

oo w o Ik

—
(=}

i i CA S



An Efficient Method for Eliminating Random
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Abstract. Generating random delays in embedded software is a com-
mon countermeasure to complicate side channel attacks. The idea is to
insert dummy operations with varying lengths at different moments in
time. This creates a non-predictable offset of the attacking point in the
time dimension. Since the success of, e.g., a correlation power analysis
(CPA) attack is largely affected by the alignment of the power traces, the
adversary is forced to apply additional large computations or to record
a huge amount of power traces to achieve acceptable results.

In this paper, we present a new efficient method to identify random
delays in power measurements. Our approach does not depend on how
the random delays are generated. Plain uniform delays can be removed
as well as Benoit-Tunstall [II] or improved floating mean delays [4]. The
procedure can be divided into three steps. The first step is to convert
the power trace into a string depending on the Hamming weights of the
opcodes. After this, the patterns of the dummy operations are identified.
The last step is to use a string matching algorithm to find these patterns
and to align the power traces.

We have started our analysis with two microcontrollers, an Atmel
AVR ATmega8 and a Microchip PIC16F54. For our practical evaluation,
we have focused on the ATmega8. However, the results can be applied
to many other microcontrollers with a similar architecture.

Keywords: Side channel analysis, random delays, alignment of power
traces, embedded devices.

1 Introduction

Although there is a wide range of modern ciphers that allow very high levels
of security, their implementations in real systems can often be broken due to
their susceptibility to side channel attacks. In recent years, the side channel
community spent a lot of work on practical countermeasures. In this paper,
we will focus on a hiding countermeasure which is often adopted on embedded
devices and combined with additional masking methods. The idea of hiding is
to hinder the adversary to assign instruction operands and intermediate values
to the power consumption. This is realized either by additional noise in the
frequency domain or by randomized shiftings of operations in the time dimension.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 48-F0] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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We will concentrate on the second case, namely on the insertion of random delays
during the execution of the algorithm.

An adversary who is faced with the problem of mounting a correlation power
analysis (CPA) attack against a hiding protected implementation has mainly
three possibilities [7]: alignment of the power traces, preprocessing of the power
traces or simply retrieving a large set of measurements. While preprocessing
techniques like integration or convolution of power traces and fast Fourier trans-
formation may increase the success of an attack, acquiring a large set of mea-
surements is not feasible in many cases. The alignment of the power traces is
in fact the most promising method, since a correct alignment directly influences
the effect of the countermeasure.

1.1 Alignment Techniques

There are some alignment techniques we would like to mention before we begin
with our proposal. A generic approach is carried out in two steps [7]:

First, a characteristic pattern is selected which is (nearby) the attacking point
and has to be aligned. This is in fact a challenging task. The attacker usually
has no information about the time period that contains the relevant data for
his attack. Hence, it is difficult to find the right pattern that is close enough to
the attacking point such that no delays are between them. In the second step,
this pattern has to be found in other traces mainly by using pattern matching
algorithms. This can be, e.g., by stepwise computing the Euclidean distances
or correlation coefficients between trace and pattern. The problems that may
encounter with this approach are also discussed by Mangard et al. in [7] and
include, e.g., the uniqueness of the selected pattern or intermediate results that
are processed in the pattern and cause a variation in the power consumption.

Another alignment technique was proposed by Woudenberg et al. in [12]. In
this paper, fast dynamic time warping (FastDTW) is used to find the optimal
alignment between two power traces in linear time and space complexity. Fast-
DTW, first introduced in [9], produces a warp path between time series which
leads to an alignment with the minimum distance. Woudenberg et al. applied
this algorithm to power traces to circumvent misalignment produced by random
process interrupts or an unstable clock. The time complexity to align two power
traces with length T is given by O(T).

At CARDIS 2011, Muijrers et al. introduced a method called RAM (Rapid
Alignment Method) [8]. It is based on algorithms that are mostly applied for
object recognition in images. In a direct comparison with elastic alignment, it
achieves similar results in less time (about factor 0.2).

1.2 Owur Contribution

In this paper, we present an efficient method to detect and eliminate random
delays in power traces. Instead of applying pattern matching algorithms on raw
traces, we first apply a mapping of the power consumption of each instruction
cycle to the Hamming weight of the processed instruction. This allows us to



50 D. Strobel and C. Paar

use efficient string matching techniques to identify and detect random delays.
We evaluate our proposal on an AES-128 implementation with the improved
floating mean countermeasure introduced at CHES 2010. After the application
of our approach, we mount a CPA attack [3] and get comparable results to an
attack on an unprotected implementation.

The main target device is an 8-bit microcontroller Atmel AVR ATmega8. To
show that our proposal is not constrained to this specific device, we partially
extend our analysis to a second microcontroller, the Microchip PIC16F54.

1.3 Structure of This Paper

We begin with a short description of the two microcontrollers with a focus on
their prefetching and execution process in Sect. 2l Our approach of removing
the misalignment is introduced in three steps in Sect. B} mapping the power
consumption to strings, identifying random delays and detecting them in strings.
Finally, practical results on an ATmega8 are given in Sect. 4

2 The Pipelining Concept of ATmega8 and PIC16F54

This section gives us important background information about the two devices
Atmel AVR ATmega8 and Microchip PIC16F54. Both devices are 8-bit micro-
controllers which use the Harvard architecture, i.e., the instruction memory and
the data memory are physically separated and accessed via different buses. In
contrast to the von Neumann architecture where instructions and data are shar-
ing one bus system, an instruction is fetched from the flash memory while another
one is executed. This basic pipelining concept is depicted in Fig. [l and is used
by both microcontrollers to maximize the performance. In Sect. Bl we will see
that the prefetching mechanism leaks an essential information that we exploit
for our approach.

T1 T2 T3 T4

|
I
ckepu V‘

1st instruction fetch

1st instruction execute
2nd instruction fetch
2nd instruction execute
3rd instruction fetch

3rd instruction execute
4th instruction fetch

SR [ (N .
SR (R ) .

Fig. 1. Parallel instruction fetches and executions for an ATmega8 [I]

Please note that Fig.[Ilcan only be applied to instructions that are executed in
one instruction cycle. For any other instruction, especially for program branches,
the successive instruction in the execution flow need not necessarily be the next
one in the program memory. An example is given by the following sequence:
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CP R4,R10 ; compare registers R4 and R10
BREQ SUB ; branch if equal
ADD R4,R10

SUB:
AND R4,R11

While CP is being executed, BREQ SUB is fetched into the instruction register.
In the next cycle, ADD R4,R10 is fetched and, if the two registers match, the
program counter is changed due to the branch instruction. Hence, the previously
fetched instruction is discarded and another cycle is needed to fetch the correct
instruction AND R4,R10.

The instructions are stored as 12-bit (PIC16F54) or 16-bit (ATmega8) opcodes
in the program memory. If we mention the Hamming weight of an instruction,
we always refer to one complete opcode including the associated registers and
literals, respectively. According to the instruction set of the ATmega8 ADD, e.g.,
is defined by the opcode 0000 11rd dddd rrrr, with the 5-bit description of
the source register r and the destination register d. Hence, the opcode for ADD
R4,R10 is 0000 1100 0100 1010 resulting in the Hamming weight 5.

The length of the opcode is not the only difference between the two micro-
controllers concerning their instruction sets. The main differences that have to
be considered for our approach are given in Tab. [Il

Table 1. Comparison of the AVR Atmega8 and Microchip PIC16F54 instruction sets

Atmega8 PIC16F54
Number of instructions 130 33
Opcode length 16 bits! 12 bits
Execution cycles (# clocks) mostly 1, up to 4 4 or 82

3 Removing Random Delays

Within this section, we give an efficient solution to remove random delays. For
this purpose, we reduce the power consumption of one instruction, which may
have thousands of sampling points, to only one value that is independent of
the processed data. This leads to a string with the length of the number of
performed instructions. The strings of several executions are then analyzed to
identify the random delays. Afterwards we use the generalized Bayer-Moore-
Horspool algorithm [I0] to detect the random delays.

! Most of the 130 instructions have a length of 16 bits. However, there are four in-
structions for accessing the program memory that can also be described by a 32-bit
opcode which are fetched in two clock cycles. For the rest of this paper we will only
focus on 16-bit opcodes.

2 Only if the program counter is changed by the instruction.
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The final step after the detection of the random delays is to find the correct
positions in the power traces and to remove the dummy operations. Because
every clock cycle of the target devices is clearly distinguishable, this last step is
rather trivial and is not discussed in this paper.

3.1 Conversion of Power Traces to Strings

As mentioned in Sect. 2] our target devices use a pipelining concept that prefetches
every instruction on a separated bus during the execution of the predecessor. A
closer look at the power traces reveals that the Hamming weight of the opcode has
a characteristic impact on the power consumption. Figures[2andBlshow the differ-
ent Hamming weights in contrast to each other at a clock rate of 1M H z. For both
figures, a number of different instructions and operands were chosen randomly.
All traces are single traces that have not been averaged.

Voltage [mV]

. 15
Time [ns]

Fig. 2. Power traces of PIC16F54 opcodes with Hamming weight 0 (lowermost) to 12
(uppermost)

One can clearly recognize that the different voltage levels are related to the
Hamming weights of the opcodes, especially in the second and third clock cycle
(PIC16F54) and just before the rising to the second peak (ATmega8). While for
the PIC16F54 a smaller Hamming weight leads to a lower power consumption,
for the ATmega8 it is the other way round. These voltage levels seem to be
hardly influenced by the executed instruction nor by the processed operands.
Hence, these time intervals are well-suited to map the power consumption of one
instruction cycle to one Hamming weight value. As a result we get a string of
Hamming weights in chronological order of the prefetched opcodes. For instance,
the instructions

INC R1 ; 1001 0100 0001 0011
ADD R4,R1 ; 0000 1100 0100 0001
CP R4,R6 ; 0001 0100 0100 0110
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-150

, \ \ | , \ , , ,
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Fig. 3. Power traces of ATmega8 opcodes with Hamming weights 0 (uppermost) to 15
(lowermost). There exist no 16-bit instruction with a Hamming weight of 16.

are mapped to the string 6,4, 5. Note that the Hamming weights do not depend
on the values that are stored in R1, R4 and R6.

For the rest of the paper, the point of measurement that leaks the Hamming
weight of the prefetched opcode is referred to as index voltage.

3.2 Identification of Random Delays

There are two ways for a random delay implementation. The first is to choose
fixed points in the execution flow, where a subroutine for the generation of dummy
instructions is called. The advantage of this approach is that the programmer can
choose the exact points in time when the misalignment should take place. This can
be, e.g., right in front of S-box substitutions. In contrast to this, the second method
uses an the interrupt service routine which is triggered by a timer overflow or an
external signal. In addition to the random lengths of the delays, another random
parameter can be used to trigger the execution of a callback subroutine.

The identification of random delays depends on the implementation and is
discussed in the following.

Fixed Calls to the Subroutine (or In-Line Implementations). Let us
assume a set of strings which include random delays at fixed points in time. If
the random delays of all strings are of equal length, the corresponding power
traces are aligned and nothing has to be done. Different lengths can easily be
recognized by comparing the strings. The expected subroutine typically consists
of an initialization where the length of the random delay is set, a variable number
of loops and the return instruction. A mismatch between the strings occurs
at the point where the return instruction of the shortest delay collides with
unfinished loops. The alignment step can then be accomplished by locating the
return instructions and cutting the loops to an equal length. Note that it is not
necessary to completely eliminate the random delays.
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Interrupt Service Routine. When using interrupts, the overhead per delay
is higher than for the first method. Some reasons are, e.g., disabling interrupts,
temporarily storing intermediate values, resetting the timer, etc. A comparison
between strings will lead to a mismatch directly at the first call of a subroutine.
The end of the delay can be detected by a string search after the regular execution
flow. In this scenario, the complete interrupt has to be removed to align the power
traces.

3.3 Efficient String Matching for Detecting Random Delays

This part of the section describes different string matching algorithms and figures
out the most suitable one for detecting random delays. Before we start, we
introduce the following notations: Let s be the string of length n, e.g., derived
from the computations proposed in Sect. Bl and p a pattern of length m. Each
character s; of the string s, with ¢ € {1,2,3,...,n}, and p; of the pattern p,
with j € {1,2,3,...,m}, is taken from the alphabet Y. In our example, s and p
are strings composed of Hamming weights. Hence, ¥ = {0,1,2,3,...,1}, where
[ is the number of bits of the opcode, e.g., [ = 16 in case of the ATmega8.

According to Sect. [3.2] either the delay loop or the interrupt has to be de-
tected. This is done by a string matching algorithm which tests if a pattern is
included in a string and at which positions it occurs. A naive approach is to
write the pattern below the string, compare the characters and shift the pattern
by one position to the right, every time a mismatch occurs. As one can imagine,
this is not very efficient. If the mismatch occurs at the last character p,,, the
previous positions have to be checked again. For the naive approach, the worst
case runtime is O((n —m + 1)m).

In the remaining part of this section, we describe more efficient string match-
ing algorithms. First of all, we present the Boyer-Moore algorithm which serves
as basis for the sophisticated generalized Boyer-Moore-Horspool algorithm.

Boyer-Moore Algorithm. In 1977, Boyer and Moore presented a fast string
matching algorithm with the complexity of O(n) (see Alg. [I).

After aligning p; to a character s;, the comparison is done from right to left,
i.e., we start with s;;,, and p,,. If a mismatch occurs at position s;4; and p;,
respectively, the Boyer-Moore algorithm uses two heuristics to avoid frequent
one by one shifts:

1. Bad character heuristic: Find the rightmost character, let’s say p;, in p that
matches with s;4;. Shift the pattern p by j — I positions, but at least one
position, to the right. If s;;; does not occur in p, the pattern is shifted by j
positions.

2. Good suffix heuristic: Move the pattern to the right, until the suffix s;1 41 ...
Si+m matches to a part of the pattern. If this part does not occur in p, shift
the pattern by m positions.

At every mismatch, the algorithm chooses the larger shift of both heuristics (line
14). The tables Iy and I are preprocessings of the two heuristics and consist
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Algorithm 1. Boyer-Moore algorithm based on [5]

Input : string s, length n of s, pattern p, length m of p, bad character table
I, good suffix table I
Output: vector pos containing all positions of matchings

1 begin

2 ent — 1

3 1—0

4 while i <n —m do

5 J—m

6 while j > 0 and s;+; = p; do
7 Je—g—1

8 end

9 if j =0 then
10 pos(cnt) — i
11 cent «— cent + 1
12 1—1+1
13 else
14 i i+max[j — I'(sit;), [2(j)]
15 end
16 end
17 end

of the number of shifts depending on the position of the mismatch. We skip
the description of the good suffix table I, and only give an algorithm for the
generation of the bad character table I'7 (see Alg. [J). Every character of the
alphabet X is assigned the position of the rightmost occurrence in the pattern p.
If a character is not included in the pattern, the entry of the table is set to 0.
For further information, especially for the computation of I, we refer to [2].

Algorithm 2. Precomputation of the bad character table I

Input : pattern p, length m of p, alphabet X
Output: bad character table I
1 begin
foreach element e € X do
F1 (6) — 0
end
for j=1,...,m—1do
I'i(pj) < Jj
end

®» N0 A W N

end

Boyer-Moore-Horspool Algorithm. A simplification of the Boyer-Moore
algorithm was introduced by Nigel Horspool in 1980 [6]. For patterns that have
no repetitions, the good suffix heuristic does not bring any advantages. Hence,
Horspool proposed the simplified Boyer-Moore algorithm, also known as Boyer-
Moore-Horspool (BMH) algorithm, which only makes use of the bad character
heuristic. In contrast to the original algorithm, the pattern is not aligned to the
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mismatched character s;;, but to the rightmost character s;4,, to induce larger
shifts. Hence, line 6 of Alg. @l has to be changed to I'1(p;) < m — j and line 14
of Alg. M to ¢ «— i+ I (Sitm)-

Generalized Boyer-Moore-Horspool Algorithm with k& Mismatches.
Since we do not expect a fully correct mapping of opcodes to Hamming weights,
a string matching is needed that does not only consider exact string matches,
but also partial matches which include up to a predefined number &k of mis-
matches. Tarhio et al. introduced a generalized BMH algorithm that solves the
k mismatches problem in O(nk(* + ', )) on average, where ¢ = |X| [10]. Ad-
ditionally, a preprocessing is executed once for every pattern in O(m + kc).

The first step is quite obvious. While the original algorithm stops comparing
after the first mismatch, the generalized BMH algorithm continues until £ mis-
matches are exceeded. The following shift is then determined by considering the
rightmost k + 1 string characters s;1m—k,-. - -,Si+m. We shift the pattern to the
right until at least one match occurs in the last k + 1 string characters.

Let us assume k = 0. The procedure is in fact equivalent to the exact string
matching. After a mismatch only the last position s;, is focused and I'1 (8;4m,)
returns the number of shifts that are necessary to align s;,, to a character of the
pattern. If k = 1, we enhance our focus on the last two positions. In addition to I,
another look-up table I'f for the position next to last is created. I ($;4+m—1) then
gives us the number of shifts to align s; 1 ,,,—1. We can now skip all shifts smaller than
min(IY (Si+m-1), [1(Si+m)), because none of the two characters will appear at the
according position in the pattern. If we skip more than min (17 (S;4m—1), I (Sitm)),
probably a valid match is missed. Consequently, for considering £ mismatches, k+1
tables have to be generated with ¢ entries each or one (k+ 1) x c table. An efficient
computation of the (k + 1) x ¢ table is given in [10].

4 Practical Results

We present our practical results by verifying an AES-128 implementation on
an ATmega8 which was clocked with an 1M H z external quartz oscillator. The
power consumption of the device was measured by means of the voltage drop
over a 47(2 shunt resistor inserted on the GND line of the ATmegaS8.

We extended a standard AES implementation by the improved floating mean
countermeasure proposed by Coron et al. at CHES 2010 [4]. The number of loop
iterations of the delays is defined by random numbers that are transferred to the
microcontroller and stored in the SRAM before every encryption. We chose the
same parameters as proposed by Coron et al.. This includes the insertion of 10
random delays per round and three dummy rounds at the beginning and at the
end of every encryption. In total, before the first S-box byte substitution occurs,
32 random delays were executed.

We computed the correlation coefficients on raw power traces for all key hy-
potheses using the Hamming weight power model to attack the first S-box. Ac-
cording to [4], around 160 000 traces should be required for a successful attack
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on an 8-bit AVR Atmel microprocessor. However, although we took the imple-
mentation proposed in their appendix, the correct key was already leaking out
at about 35000 traces (see Fig. Hl), which is much lower than expected but still
a good starting point for our approach.

Correlation coefficient

Fig. 4. CPA attack on an AES-128 implementation with improved floating mean coun-
termeasure. The correct key guess is highlighted.

As mentioned in[3.1] the power consumption right before the rising to the sec-
ond peak of the instruction is highly data independent and is therefore suitable
as index when classifying the instructions to Hamming weights. This is verified
by the histogram in Fig. 5] which shows the distribution of the index voltages.

The intersections between the peaks were used as threshold values for the
classification. In this way, we achieved a nearly perfect mapping of index voltages
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Fig. 5. Histogram of the index voltages discussed in Sect. 3} It visualizes a total of
1000 executions of AES with improved floating mean countermeasure on an ATmega8.
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Correlation coefficient

Correlation coefficient

Fig. 6. CPA on 1000 traces of AES-128 (a) with improved floating mean countermea-
sure after alignment and (b) without countermeasure

to Hamming weights. In fact, over 99% of the the mappings were correct, i.e.,
the resulting value matches with the Hamming weight of the prefetched opcode.

We analyzed the set of strings to identify the variable part of the first random
delay as described in Sect. In the reference implementation of Coron et
al. it was only a short loop of the pattern 8,12, 5. This is in fact too short to
detect, especially in presence of faulty mappings to Hamming weights. Hence,
we decided to choose an eight clock cycle pattern of the delay initialization right
before the beginning of the loop. The detection process was performed by the
generalized BMH algorithm with £ = 1. Every time a match was found, the
subsequent characters were sought after the loop pattern to remove them in the
corresponding part of the power traces.

In total, over 98% of the delays were found and eliminated. After this prepro-
cessing step, we mounted a CPA attack on the first S-box again. The results are

given in Figs. and For comparison, Figs. and [7(b)| show a CPA

09 4
09| 4
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08| 4

07 4

>
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Number of traces

(a) (b)

Fig. 7. Comparison between a CPA attack on AES-128 (a) with improved floating mean
countermeasure after eliminating random delays and (b) without countermeasure. The
traces for wrong key guesses are displayed in gray, for the correct key guess in black.
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attack on an AES-128 implementation without any countermeasure encrypting
the same input data.

The correlation coefficient of the correct key guess is a bit lower for the random
delay implementation. However, in both scenarios the correct key is clearly distin-
guishable from wrong key guesses with a CPA attack using only 30 power traces.

5 Conclusion

We have shown that in future discussions about generating random delays in em-
bedded software, the leakage of the instruction prefetch has to be taken into con-
sideration. Many microcontrollers are using a pipelining concept that allows us to
detect the Hamming weight of the prefetched instruction. With this additional in-
formation, we have presented an efficient method to identify and eliminate random
delays after the acquisition of power traces by applying string matching algorithms.
Our proposal has been evaluated on an 8-bit microcontroller with a reference imple-
mentation given in [4]. We have shown that the effect of the countermeasure after
the application of our new method was negligible.

5.1 Discussions

Although we do not have analyzed other countermeasures like dummy rounds
or random order executions, it seems to be not infeasible to detect them as
well. Dummy rounds, e.g., are mostly implemented in a special routine or loop
with unused registers or with registers whose values have to be stored before
accessing the dummy rounds (due to register limitations). In both cases, the
Hamming weight sequence may leak information about executed instructions,
which includes also storing immediate values, branching to a routine or leaving
a loop. The attacker could be able to exploit this leakage to distinguish between
real rounds and dummy rounds. However, it highly depends on the implemen-
tation if this kind of attack is practical or not.

We did not mention that there is one instruction in the Atmega8 instruction
set that does not comply with the model we introduced in Sect. Bl The in-
struction LPM Rd,Z loads one byte from the program memory to the register Rd
and does not leak the Hamming weight of the opcode. Instead, the index voltage
depends on intermediate values. Although this did not influence the methods
proposed in this paper, it can be used to complicate the attack by frequent
executions of LPM with random values during the random delay.
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Abstract. In typical Profiled Power Analysis Attacks, like Template
Attack (TA) and Stochastic Model based Power Analysis (SMPA), key-
recovery efficiency is strongly influenced by the accuracy of characteriza-
tion in profiling. In order to accurately characterize signals and noises in
different times, a large number of power traces is usually needed in pro-
filing. However, a large number of power traces is not always available.
In this case, the accuracy of characterization is rapidly degraded, and so
it is with the efficiency of subsequent key-recovery. In light of this, we
present an efficient Covariance Analysis based Characterization Method
(CACM for short) to deal with the problem of more accurate leakage
characterization with less power traces. We perform experimental power
analysis attacks against an AES software implementation on STC89C52
microcontroller, then conduct a comparative study of the effectiveness
of these profiled attacks. The results firmly support the validity and ef-
ficiency of our method.

Keywords: Profiled Power Analysis Attacks, Covariance Analysis
based Characterization Method, Template Attack, Stochastic Model
based Power Analysis.

1 Introduction

Since Kocher first introduced Differential Power Analysis in [KJJ1999] more
than a decade ago, a myriad of practical power analysis attacks have been pro-
posed, including Template Attack (TA)[CRR2003], Correlation Power Analysis
(CPA)[BCO2004], Stochastic Model based Power Analysis (SMPA)[SLP2005],
Mutual Information Analysis (MIA)[{GBTP2008], etc. Among these methods,
TA and SMPA belong to one broad category, as they often have a profiling
phase. Therefore, these attacks are referred to as Profiled Power Analysis At-
tacks. In profiled attacks, a reference device similar or identical to the targeted
device is usually assumed to be available for profiling. With the help of certain
reference device, an adversary characterizes the leakage of the targeted device,
and then uses the result of this profiling phase for subsequent key-recovery.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 61-[73] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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In profiling, noises in different times are assumed to follow multivariate normal
distribution, and a large number of power traces measured from reference de-
vice are needed to accurately characterize signals and noises in different times.
In subsequent key-recovery, the adversary resorts to leakage characterization in-
formation produced in profiling to recover the secret key. At a high level, the
adversary tries to match noises contained in sampled power traces with those of
characterized ones. If the key-hypothesis is correct, the match probability will
be higher.

In fact, characterization accuracy exerts a strong influence on the key-recovery
efficiency. If noises are not accurately characterized, the match probability is
influenced. In this case, the correct key is not easy to distinguish, and the attacker
needs more power traces in key-recovery to recover the correct key. However,
in the attack scenario of profiled attacks, only a few power traces are given
to the attacker in key-recovery. If noises are not accurately characterized in
profiling, the attacker can not successfully recover the correct key. Therefore, in
order to improve the key-recovery efficiency, one feasible way for the attacker
is to characterize noises accurately. For TA and SMPA, this task means a large
number of power traces are needed. After looking up to references about TA
and SMPA, we summarize the number of power traces needed in profiling, and
results are listed in Table 1. Table 1 shows that, to reach an acceptable level of
characterization accuracy, both TA and SMPA need a large number of power
traces.

Table 1. Number of Power Traces Needed by TA and SMPA

Reference Algorithm  Platform Attack Method Number of Power Traces

[CRR2002] RC4 - TA 512,000
[SLP2005]  AES ATM163 SMPA 4,000
[GLP2006] AES ATM163 TA 230,000
[GLP2006] AES ATM163 SMPA 230,000
[OM2007] AES  Microcontroller TA 10,000
[LP2007] AES AT90S8515 SMPA 40,000

Under the assumption that one reference device is available, the attacker can
operate the reference device as many times as possible and sample a large num-
ber of power traces to help accurately characterize signals and noises in different
times. However, in practical scenario, it is not always the case. For example, a
common countermeasure is to limit the number of operations that the attacked
cryptographic device can perform in certain time interval, or that the attacked
cryptographic devices can perform under one key. In these scenarios, the attacker
can only record limited number of power traces. In order to make profiled attacks
still powerful and practical in this scenario, one important technique route is for
the attacker to find feasible approach to characterizing signals and noises more
accurately with limited number of power traces. Motivated by this, we present
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Covariance Analysis based Characterization Method (CACM). We have experi-
mentally demonstrated that, compared with TA and SMPA, the attacker with
CACM can use less power traces in profiling to more accurately characterize sig-
nals and noises, which helps to improve the correct key distinguish level and reduce
the number of power traces needed in key-recovery to recover the correct key.

The rest of the paper is organized as follows. In Section 2, we briefly intro-
duce two typical Profiled Power Analysis Attacks. In order to more accurately
characterize signals and noises with less power traces , we give CACM in Section
3. In Section 4, we have experimentally demonstrated the advantage of CACM
over SMPA and TA, in terms of the number of power traces needed in profiling
and in key-recovery, the characterization accuracy for signals and noises, and
the influence of correct key distinguish level. Finally, conclusions are given in
Section 5.

2 Typical Profiled Power Analysis Attacks

TA and SMPA are two typical Profiled Power Analysis Attacks. In this section,
we briefly introduce principles of TA and SMPA.

2.1 Profiling

Template Attack

In TA, the characterization of signals and noises in different times is as follows.
First, for each key hypothesis k;, input the same plaintext p, operate the ref-
erence device M times and measure the corresponding power traces Iy, ..., Ip;.
Then, for the power traces I, ..., Ips that correspond to key hypothesis k;, the
attacker calculates their mean:m; = |, E;V; I; to get rid of noises and obtain
signals in different times. Noise at time ¢, x€[1,1] can be obtained by subtract-
ing signal from the power consumption: R; ., = I, — My, ,je[l, M]. Finally,
the attacker uses covariance matrix C; = Cov(R;,, Rty)lX | to characterize the
relationship of noises in different times. In this way, for each key hypothesis k;,
the attacker obtains a template which is composed of a mean vector m; and a
covariance matrix Cj.

Stochastic Model based Power Analysis

In SMPA, power consumption at time t¢,,ze[l,l] can be seen as I (p,k) =
hi, (p, k) + Ry, , where hy, (p, k) is the data-dependent part which depends on
p and k, and R, denotes a random variable that is irrelevant to the targeted
intermediate value. In profiling, the attacker knows the key that is used by ref-
erence device. The attacker chooses some mutually independent base functions
91(p, k), .., gu(p, k). he,(p, k) can be approximated by a linear combination of
these mutually independent base functions: hy, (p, k) = Z}L:l a;9;(p, k). The
choice of base functions relies on the targeted intermediate value. In order to
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obtain the coefficient of each base function, the attacker needs to solve the fol-
lowing linear equation

Iy, (p1, k) g1(p1, k) g2(p1,k) - gu(p1, k) a
Ii,(p2: k) | _ | 91(p2,k) g2(p2.k) - gu(p2, k) az
Itm(le,k‘) gl(pNuk) 92(pN1,k') gu(leyk) Gy

The attacker needs N7 power traces in this process. Then, the attacker uses
N, power traces to calculate the noise at time ¢, ze[l,l]: R;¢, = I, (p;, k) —
he, (pj, k), je[1, No]. Finally, he builds covariance matrix for noises in different
times: C' = Cov(Ry,, Ry, )ix:- In this way, the attacker characterizes signals and
noises in different times.

2.2 Key-Recovery

In key-recovery, both TA and SMPA wuse the Maximum Likelihood
Rule(MLR) to distinguish the correct key. If the key hypothesis is correct,
noises contained in the attacked power traces match those of the characterized
ones best. The attacker uses N3 power traces to dlstlnguish the key hypoth-
esis kie[l, ..., K] that maximizes a(l1, ..., In,, ki) = H 1 Prob; j(R;). For TA,
T 1
Probi;(R;) = " 2(\I/<2:;§ d§<c gl "V for SMPA, Probi;(R;) =
eap(=} (I =h(ps ki) T (1;=h(ps ki)
\/(2m)l-det(C)

3 Covariance Analysis Based Characterization Method

As two typical Profiled Power Analysis Attacks, both TA and SMPA need a
large number of power traces in profiling to accurately characterize signals and
noises. For TA, in order to accurately characterize signals, the attacker needs to
calculate the mean of a large number of power traces to avoid the influence of
noises; for SMPA, when building the linear equation, the attacker ignores the
influence of noises, which will affect the characterization accuracy. Therefore,
SMPA also needs a large number of power traces to reach a relatively accurate
characterization. In order to characterize signals and noises more accurately
with less power traces, and to improve the key-recovery efficiency, we propose
Covariance Analysis based Characterization Method (CACM).

3.1 Main Idea

n [Hoo2010], Hoogvorst presented Variance Power Analysis (VPA). The idea
of this method is that, if an attacker can accurately characterize noise at single
time, the variance of noise is small; otherwise, the variance of noise is big. The
attacker can use different key hypothesis to characterize noise at single time.
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The key hypothesis that makes the variance of noise the smallest is the correct
key.

In profiled attacks, signals and noises in different times have to be character-
ized. Because noises in different times follow multivariate normal distribution,
noise at single time follow gaussian distribution. If the key hypothesis is correct,
noises in different times are characterized accurately, and the covariance of noises
in different times is small; otherwise, noises in different times are characterized
incorrectly, and the covariance of noises in different times is big. The attacker
can characterize signals and noises by analyzing the covariance of noises in dif-
ferent times. Based on these considerations, we present CACM. In this method,
an attacker first has to choose the targeted intermediate value; then, he has to
choose the targeted times. The targeted times correspond to the times when the
targeted intermediate value is being processed. The attacker can characterize
signals and noises in these targeted times.

3.2 Characterization Procedure
The steps to implement CACM are as follows:

1) Randomly generate plaintext p;,ie[l, M] and feed these messages into the
reference device. Measure the power consumption of the device when it is
operating and obtain M power traces;

2) Choose the targeted intermediate value (usually, the S-Box output byte is
chosen as the attacked intermediate value). The targeted times corresponding
to the targeted intermediate value being processed are ti,...,¢;. When the
input plaintext is p;, the power consumption at time ¢, ze[1,1] is I; ¢, ;

3) For signal at time ¢, define some mutually independent events e; , , j¢[0, N].
N is the number of events. When event e; ¢ occurs, its value is 1; otherwise,
its value is 0. When event e;;, occurs, its power consumption is P; ¢, . Signal
at time ¢, is the sum of mutually independent events’ power consumption.
E;, is a M x N matrix, which represents the value of NV events when randomly
input M plaintext;

4) Denote noise at time ¢, as J;,,9€[1, M]. Covariance of noises in two times
ty and ¢, x,ye[l,1l] and x <y, can be computed as follows:

Cov(Ji,, Jv,) = ElJe,][J1,] — E[Ji, ] E[J1,] (1)
in which
N
Ji’tx = Ii,tw - Z(Pj,tw : ej’tw)a 7:6[]‘7 M] (2)
j=1

(1) can also be written as:

Cov(Ji,, Jr,) = P, XPl + P Y1+ P,Ya+ 2 (3)
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in which
1 M 1 M
X = M Z(Eta” ET ZEt ZEty)T (4)
i=1 i=1
1 M 1 M 1 M
:M§E“MZ¥@*M§@”EJ (5)

NE

1 & 1 & 1

= 2B gy D L= D i, Bry) (6)
i=1 i=1

We know that the correct key makes the covariance of noises in two different
times the smallest. In order to obtain the minimum of (3), we can take
partial derivative of (3) with respect to vector P,, and P, . When the partial
derivative equals to zero, the covariance of noises in times ¢, and ¢, is the
smallest.
Taking partial derivative of (3) with respect to vector P;, and P; , and
make the partial derivative equals to zero, we obtain equations (7) and (8)
as follows:

=1

XPl+vi=0 (7)
XPl+Y,=0 (8)

Using equations (7) and (8), we obtain P, and P , that is PL = —X~!.Y5,
Pl = —X~'.Y1. Using (4)-(6), we can obtain the value of X, Y; and Ya.
Therefore the value of vector P, and P, can be obtained. Wlth P, and
Py, , we can accurately characterize 81gnals in times ¢, and t,.

For signals in different times ¢1, ..., t;, we repeat step 4 to accurately charac-
terize signals in these times;

5) Using equation (2) to compute noise J; ,x€e[l,1]. Noise in each time has
to be adjusted so that they follow multivariate normal distribution. For
noise at time t,, we compute its mean m;, and its standard deviation oy_;
then, for noise J; ., ,i€[l, M], we adjust its value:J;; = Ji ’fn—m” When
we have adjusted noise at each time, we can compute the covariance matrix
C = Cov(Jy,, Ji; )ixi for noises in different times.

3.3 Summary

In SMPA, in order to characterize signal at single time, an attacker has to
build and solve an linear equation. Under the fact that the attacker ignores
the influence of noise when building linear equation, signal cannot be accurately
characterized. Compared with SMPA, CACM doesn’t ignore the influence of
noises when characterizing signals. Therefore, CACM characterizes signals and
noises more accurately than SMPA.



An Efficient Leakage Characterization Method 67

Compared with TA, CACM has to build only one covariance matrix for noises
in different times. However, in TA, the attacker has to build a template for each
key hypothesis, which means the attacker has to build many covariance matrices.
Therefore, CACM has more samples to characterize noises in different times more
accurately.

We will experimentally demonstrate the above mentioned advantages of CACM
over SMPA and TA. Meanwhile, we note that the method used to select the tar-
geted times is not restricted, and the attacker can use known methods to select
the targeted times.

4 Experiments

In this section, we will experimentally demonstrate the advantage of CACM over
SMPA and TA, in terms of the characterization accuracy for signals and noises
in different times, the minimum number of power traces needed in profiling,
influence of correct key distinguish level and the number of power traces needed
in key-recovery.

We attack AES software implementation on an 8-bit STC89C52 microcon-
troller. The clock frequency of the microcontroller is set 22.1184MHZ. An Agilent
DSA90404A digital oscilloscope is used to sample power traces. The sampling
rate is 100Ms/s. Differential probe of digital oscilloscope is connected at two
ends of a 2042 resistor in series with the GND line of the microcontroller. We
collect power traces correspond to the 1% round implementation of AES, and
use these power traces to accomplish our experimental analysis. The mean of 100
power traces correspond to the same plaintext and key is calculated to reduce
the influence of noise. We use CPA to find the the targeted times.

First, we show that CACM can also be an attack method, and we compare
CACM with VPA in terms of the characterization accuracy for signal at single
time; second, we analyze the characterization accuracy of TA, SMPA and CACM
for signal at single time when there is limited number of power traces; third,
for each method, we analyze the minimum number of power traces needed in
profiling to accurately characterize signals and noises; finally, we analyze the
correct key distinguish level and the number of power traces needed in key-
recovery influenced by the characterization accuracy in profiling using different
methods.

Experimental results show that, compared with TA and SMPA, CACM needs
less power traces in profiling to more accurately characterize signals and noises
in different times, which helps to improve the correct key distinguish level and
reduce the number of power traces needed in key-recovery to recover the correct
key.

4.1 Comparison with Variance Power Analysis

VPA is an attack method, with which an attacker recovers the correct key by
analyzing the variance of noise at single time. The attacker can characterize
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signal in the process of analyzing noise. CACM is a characterization method,
with which an attacker can characterize signals and noises by analyzing the
covariance of noises in different times. The common factor is, in both methods
attackers assume signal at single time is the sum of some mutually independent
events’ power consumption. Attackers can characterize signal at single time by
analyzing noise.

In fact, CACM can also be used to construct practical attacks. An attacker
can recover the correct key by comparing the covariance of noises computed
using different key hypothesis. The key hypothesis that makes the covariance of
noises the smallest is the correct key. In order to demonstrate this fact, we use
100 power traces to recover the correct key. The targeted two times correspond
to the times that the 1%* S-Box output byte of AES 1°¢ round being processed.
We choose an event for each bit of S-Box output byte, and each event’s value
equals to the corresponding bit’s value. Experimental result is shown in Figure 1.

Value of Covariance

N

X: 14
Y: 3.8680-005

0 50 200 250

100 150 .
key hypothesis

Fig. 1. Covariance of Noises in Two Different Times

Figure 1 clearly shows that the correct key 14 makes the covariance of noises
in two times the smallest. We also experimentally analyzed the characterization
ability of VPA and CACM for signal. The experimental result told us that with
the same number of power traces and the same event choice, CACM and VPA
characterize signal equally accurate. The essential difference lies in the different
characterization object. VPA can only characterize signal in single time, while
CACM is able to characterize signals and noises in different times.

4.2 Evaluation of Characterization Accuracy

In this subsection, we analyze the characterization accuracy of TA, SMPA and
CACM for signal at single time when there is limited number of power traces.
500 power traces are used to characterize signal, and another 100 power traces
are used to evaluate the characterization accuracy of each method. All traces
correspond to the same key and random plaintext. We compute the correlation
coefficient between the characterized signal and measured power consumption.
For CACM, the same event as in 4.1 is chosen; for SMPA, we choose a base
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function for each bit of S-Box output described in 4.1, and the value of each
base function is the corresponding bit’s value. The targeted time correspond to
the time that the 1% S-Box output byte of AES 1% round being processed.

correlation coefficient

correlation coefficient

correlation coefficient

g

E) 00 750 20
key hypothesis

(a) TA (b) SMPA (c) CACM

EJ 3 70 F E) 0 750 20
key hypothesis key hypothesis

Fig. 2. Characterization Accuracy of Different Methods

Figure 2 shows that, using 500 power traces, TA cannot accurately charac-
terize signal; using SMPA, when the key hypothesis is correct, the correlation
between the measured power consumption and the characterized signal is 0.4367;
finally, using CACM to characterize signal, when the key hypothesis is correct,
the correlation reaches to 0.7020. Therefore, when the number of power traces
is limited, CACM has the best characterization ability for signal.

4.3 The Minimum Number of Power Traces Needed in Profiling

In this subsection, we analyze the minimum number of power traces needed by
each method to accurately characterize signals and noises. 3000 power traces
are used to characterize signal at single time. Another 100 traces are used to
evaluate the characterization accuracy. All traces correspond to the same key
and random plaintext. For CACM and SMPA, we choose the same event as in
subsection 4.2. The targeted time correspond to the 1%¢ S-Box output byte of
AES 1% round being processed.

Figure 3 shows that, about 2500 power traces are needed by TA to accurately
characterize signal. The correlation between the measured power consumption

01

Correlation Coefficient

Correlation Coefficient
Correlation Coefficient

50 1000 _ 150 2000 2500 500 1000 _ 1500 2000 2500 3000 500 1000 _ 1500 2000 2500 3000
Number of Power Traces Number of Power Traces Number of Power Traces

(a) TA (b) SMPA (¢c) CACM

Fig. 3. Minimum Number of Power Traces Needed in Profiling



70 H. Zhang, Y. Zhou, and D. Feng

and the characterized signal is 0.8. About 600 power traces are needed by SMPA
to characterize signal. The correlation between the measured power consumption
and the characterized signal is 0.6. About 200 power traces are needed by CACM
to make the correlation between the characterized signal and the measured power
consumption reaches to 0.8. We know that power consumption in single time is
composed of signal and noise, an accurate characterization for signal means an
accurate characterization for noise. Therefore, compared with SMPA and TA,
CACM needs less power traces in profiling to accurately characterize signals and
noises in different times.

4.4 Key-Recovery Efficiency Influenced by Profiling

In this subsection, we evaluate key-recovery efficiency influenced by characteri-
zation accuracy in profiling. First, we evaluate the correct key distinguish level
influenced by characterization accuracy. 300 power traces are used in profiling
and 20 power traces are used in key-recovery. All power traces correspond to the
same key and random plaintext. In profiling, noises at four times correspond to
the 1%* S-Box output byte of AES 15! round being processed are characterized.
For SMPA and CACM, we choose the same event as in 4.3. In key-recovery,
we use MLR to recover the correct key. To avoid the exponentiation, we can
compute the inverse of the absolute value of the logarithm of the probability.
From [MOP2007], we know that the correct key makes this statistical value the
highest. Experimental results are shown in Figure 4.

Match Statistical Value

Match Statistical Value
Match Statistical Value

50 00 150 200 50 100 0 20 50 100 w0 20
key hypothesis key hypothesis key hypothesis

(a) TA (b) SMPA (c) CACM

Fig. 4. Match statistical values in Key-Recovery

We use the distinguish level which was proposed in [MMPS2009] as the metric
to evaluate the correct key distinguish level influenced by the characterization
accuracy of different methods. This metric is defined as follows: D = "““*V“L

= {V1,...,Vix|} denotes a set of statistical value which is calculated using
certain statlstlc tool and different key hypothesis. V4, denotes the largest value
in the set, and V.. denotes the second largest value in the set. The calculated
correct key distinguish level is shown in Table 2.

Table 2 shows that, TA cannot accurately characterize noises with 300 power
traces. Therefore, TA cannot recover the correct key with 20 power traces. With
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Table 2. Distinguish Level of Correct key Using Different Methods

Methods TA SMPA CACM
Distinguish Level - 0.1030 0.4771

300 power traces, SMPA can characterize noises, but not much accurate. There-
fore, although SMPA can recover the correct key with 20 power traces, the correct
key distinguish level is merely 0.1030. Finally, CACM can accurately character-
ize signals and noises with 300 power traces, and the distinguish level of the
correct key reaches to 0.4771, which increases about 37%. Therefore, when the
number of power traces is limited, CACM characterizes noises more accurately
than SMPA and TA, which induces higher distinguish level of the correct key.

Next, we evaluate the number of power traces needed in key-recovery to re-
cover the correct key. In profiling, CACM uses 100 power traces; SMPA uses
1200 power traces; and TA uses 2500 power traces. In key-recovery, different
methods use different number of power traces. We use success rate proposed
in [SMY2009] as the metric to evaluate the number of power traces needed in
key-recovery to successfully recover the correct key. For each number of power
traces, we do 500 tests and calculate the success rate. Experimental results are
shown in Figure 5.

success rate
success rate
success rate

"0 5 w0 70 w0 % 0

T 20 % 40 o e 70 EREES 2 4 6 8 10 12 14 15 18
#traces for key-recovery #traces for key-recovery #traces for key-recovery

(a) TA (b) SMPA (c) CACM

Fig. 5. Success Rates of Distinguishing the Correct Key

We evaluate the number of power traces needed in key-recovery when the
success rate exceeds 90%. We note that, because CACM characterizes signals
and noises in different times more accurately, an attacker with CACM needs less
power traces in key-recovery than TA and SMPA to reach a success rate 90% of
recovering the correct key. The evaluation results are shown in Table 3.

Table 3. Number of Traces Needed in Profiling

Methods TA SMPA CACM
Number of Traces 40 70 7
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Table 3 shows that, with TA, when using 2500 power traces in profiling to
characterize signals and noises, about 40 power traces are needed in key-recovery
to reach a success rate 90%. With SMPA, when using 1200 power traces in
profiling to characterize signals and noises, about 70 power traces are needed in
key-recovery to reach a success rate 90%. Finally, with CACM, when using 100
power traces in profiling to characterize signals and noises, only about 7 power
traces are needed in key-recovery to reach a success rate 90%. Experimental
results demonstrated that, because CACM characterizes noises more accurately,
compared with TA and SMPA, attacker with CACM can use less power traces in
key-recovery to successfully recover the correct key, which makes Profiled Power
Analysis Attacks more powerful in practical application.

5 Conclusions

In this paper, we presented Covariance Analysis based Characterization Method
(CACM for short) to deal with the problem of more accurate characterization
with less power traces. We have experimentally demonstrated the advantage of
CACM over TA and SMPA in terms of the characterization accuracy for signals
and noises, and the number of power traces needed in profiling and key-recovery.

We argue that CACM brings two improvements to known profiled attacks.
First, CACM can characterize signals and noises more accurately, which helps
improve the key-recovery efficiency of profiled attacks; second, CACM needs less
power traces in profiling, which relaxes the assumption of profiled attacks and
makes profiled attacks more useful in practical attack scenario.

On the other hand, evaluators can more efficiently evaluate the side channel
leakage of cryptographic devices in practical application, and adopt some coun-
termeasures to help maintain the security of cryptographic devices, which is very
important in practical application.
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Abstract. Based on the cold boot attack technique, this paper proposes
a new algorithm to obtain the private key of the discrete logarithm (DL)
based cryptosystems and the standard RSA from its erroneous value.
The proposed algorithm achieves almost the square root complexity of
search space size. More precisely, the private key of the DL based system
with 160-bit key size can be recovered in 24324 exponentiations while the
complexity of the exhaustive search is 271%° exponentiations if the error
rate is given by 10%.

In case of the standard RSA with 1024-bit key size, our algorithm can
recover the private key with 2%9-%% exponentiations if the error rate is
given by 1%. Compared with the efficiency of some algorithms [7l6] to
recover the private key in RSA using Chinese Remainder Theorem, the
recoverable error rate of our algorithm is quite small. However, our algo-
rithm requires only partial information of the private key d while other
algorithms require additional information such as partial information of
factors of the RSA modulus N.

The proposed algorithm can also be used for breaking countermeasure
of differential power analysis attack. In the standard RSA, one uses the
randomized exponent d = d +7-¢(N) instead of the decryption exponent
d with the random value . When the size of a random value r is 26-bit,
it can be shown that the randomized exponent can be recovered with
2%9-30 exponentiations if the error rate is 1%. Finally, we also consider
the breaking countermeasure that splits the decryption exponent d into
d1 and ds of same size.

Keywords: Cold Boot Attack, Discrete Logarithm, RSA, Side Channel
Attack.

1 Introduction

The cold boot attack [8] is a very sophisticated side channel attack and is based
on the phenomenon that even though the volatile memory is cut off from its
power source, the memory retains its data (some parts of which are erased) for
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several seconds. More surprisingly, if the temperature is very low, the data of
memory retains for several hours. Using this phenomenon, Halderman et al. [§]
could read erroneous data from the (power-offed) memory and suggested some
algorithms to recover the real data from the erroneous data in block cipher
cryptosystems.

Later, based on the idea of cold boot attacks, Heninger and Shacham [7]
proposed the algorithm to recover the private key from its erroneous value in
RSA cryptosystems using Chinese Remainder Theorem (CRT. That is, even
though the private key is known to the attacker with some bits decayed in
a unidirectional way, their algorithm could recover the whole private key in
a reasonable time if the error rate is assumed to be bounded above by some
threshold values. Henecker et al. [6] improved the algorithm to deal with the
case that the errors can occur in a bidirectional way, that is, each bit of the
private key can be flipped with a certain probability. Both algorithms make use
of the specific structure of RSA-CRT, thus they are not directly applied to the
DL based cryptosystems or the standard RSA.

1.1 Our Results

In this paper, we firstly consider cold boot attacks on the DL based cryptosys-
tems and the standard RSA, and propose an algorithm to recover the private key
from its bidirectional erroneous value in these cryptosystems. When the order
of the base group of DL problem (DLP) is ¢, there is a generic algorithm to
solve a DLP with the square root complexity if the range of exponent is Z, [11].
However, if the range of exponent in DLP is constrained to a random subset H
of Z, and the size of H is less than or equal to /g, the complexity of a generic
algorithm for this DLP is almost same with the size of H [10]. We provide a
generic algorithm to recover the private key from bidirectional erroneous key
using the splitting system with additional techniques. The complexity of our
algorithm achieves almost the square root of search space. For example, when
the error rate is 10% in 160-bit DL based cryptosystems, the private key can
be recovered in 271-9° operationsg by exhaustive search, however, our algorithm
takes only 24324 operations. In case of unidirectional errors, we observed that
one can recover the private key using the method in [4] and the complexity is
reduced to 23638 operations if the error rate is less than 10%.

The proposed algorithm can be applied to the standard RSA as well as the DL
based cryptosystems. While there are two algorithms [7J6] to recover the private
key in RSA-CRT, there have been no research to recover the private key from
the cold boot attack in the standard RSA. Our algorithm can be applied to the
standard RSA and recover the decryption exponent d in time 249-% operations if
the error rate is 1% in 1024-bit RSA. Compared with algorithms for RSA-CRT,
our algorithm looks inefficient and the recoverable error rate is quite small. In
the standard RSA, however, since only a faulty value of the decryption exponent

! Throughout this paper, these cryptosystems are denoted by RSA-CRT.
2 The unit of operations for complexity is an exponentiation or a scalar multiplication.
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d is given without any information of prime factors of the modulus, this result is
reasonable. Moreover, it is practical scenario to obtain an erroneous value whose
error rate is less than 1% [g].

Furthermore, we investigate how the previous countermeasures [92/3] against
side channel attacks resist our algorithm. Consider the use of the blind exponent
presented in [9I2], that is, one uses d=d+r- |G| instead of the private key
d where r is a random integer and |G| is the order of the underlying group in
the cryptosystem. A larger blind factor gives better security, however, it causes
the efficiency problem. We estimate the complexity for various blind factors in
order to check the security of this countermeasure. For example, if 26-bit random
number r is used, one can recover the private key in 24939 operations when the
error rate is 1%. We also consider the security of countermeasure [3] that splits
the private key d into d; and do of same size. When the error rate is 1%, the
private key can be recovered in 27916 operations in the standard RSA with
1024-bit key size.

1.2 Related Works

There are several researches [7J6] to recover the private key in RSA-CRT. How-
ever, these techniques can not be applied to the DL based cryptosystems since
some additional information such as some bits of factors of the modulus are also
required in these algorithms. In the standard RSA, Fouque et al. [4] proposed
the algorithm to recover the private key when few bits of the private key are
missing. They suggested the use of the splitting system [12], which was suggested
to solve the low Hamming weight DL problem. According to their analysis, one
can recover the private key when the number of missing bits in 1024-bit RSA
is less than or equal to 145 (14.16%) under 28° operations. We can apply their
method to get the private key under the assumption that unidirectional errors
are occurred in cold boot attacks.

2 Splitting System

The Hamming weight of an integer x (denoted by wt(z)) is the number of 1’s in
its binary representation. Let G be a cyclic group of order ¢ with a generator g.
Then the discrete logarithm problem of Hamming weight ¢ (DLP of weight ¢) is
to find log, y whenever g,y € G are given with wt(log, y) = t.

Let = be an n-bit integer with ¢* = y and wt(z) = ¢. In order to solve this
DLP of weight ¢, Heiman and Odlyzko independently proposed an algorithm [5].
Their idea is to consider the exponent x as x1 + x2 with wt(z1) = t1, wt(ze) = to
and t = t1+to. Thereafter, they compute g**, yg—*2 for all cases and compare the
values ¢g** and yg~*2. When we find x1, z9 satisfying the equality ¢** = yg~*?,
21 + x2 becomes the correct value. In this case, the complexity is (g) + (g)
Coppersmith improved Heiman and Odlyzko algorithm through the splitting
system. The splitting system is defined as follows:
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Definition 1. Let n and ¢ be even integers with 0 < t < n. An (n,t)-splitting
system is a pair (X, B) that satisfies the following properties:

1. |X|=mn and B is a set of -subsets of X called blocks.

2. For every Y C X such that |Y| = t, there exists a block B; € B such that
|Bi N Y| = é

An (n,t)-splitting system with N blocks is denoted by (N;n,t)-splitting system.
The following lemma guarantees the existence of an (1 ;n,t)-splitting system.

Lemma 1. ([I2]) For all even integers n and t with 0 <t < n, there exists an
(53 m,t)-splitting system for Zn,.

Stinson generalized Definition [l to arbitrary integers n,t with 0 < ¢ < n and
extended Lemmal [Tl to the cases where one or both of n and ¢ are odd [12]. We
can solve the DLP of weight ¢ in n(%) from the lemma.

Since the DL based cryptosystem; and RSA cryptosytems in this paper have
the key size of 160-bit and 1024-bit, respectively, we assume the parameter n is
even. To simplify the description of the splitting system, we will use the following
notation. Given a and b with 0 < a,b < ¢ and a # b, we define

la, )¢ = {a,a+1,---,b—1} if a<b,
T lain)e U [0,b) it b<a

Additionally, we denote by A[j] the value of the least significant (j + 1)-th bit of
A, and by |a| and [a] the largest integer b < a and the smallest integer b > a,
respectively.

3 Correcting Errors in Private Key of DL Based
Cryptosystems

The public key pk and private key sk of DL based schemes, such as ElGamal en-
cryption scheme and Schnorr signature scheme, have the form (pk,sk) = (¢, x)
when ¢ is the generator of the base group G and x is an n-bit positive integer less
than the group order g. We assume that through cold boot attacks an adversary
can obtain the erroneous private key z’, some of whose bits are same as that of
the private key .

We introduce an algorithm to recover the private key from an erroneous pri-
vate key. We also extend our algorithm to the case that the private key is pro-
tected using some countermeasures against previous side channel attacks.

3.1 Basic Algorithm

We first deal with the case that the private key is stored in the memory of a
device without any transformation. Assume that the erroneous private key z’ is
given. Then we can recover the correct private key x using the splitting system.
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Bidirectional Errors. Assume each bit of the private key can be flipped inde-
pendently with error rate § B. First one computes the upper bound of error bits,
|nd], in the given erroneous private key o’ and executes the following phase with
growing the estimated number of error bits from 0 to |nd| as in Algorithm [I

Algorithm 1. Recovering private key from the erroneous key '

INPUT: (g,y,2',n,9)
OUTPUT: z such that y = ¢g*

for t =0 to [nd] do
for i=0to [n/2] —1do
set By,; and Ba; to [i,i+n/2), and [i + n/2,)n, respectively
set U1,j and U2,j
while possible T3 ¢’s do
set Ui e
compute gVt and store (U; ¢, gY1¢) in the table Tab
end while
while possible 75 .,’s do
set Ua,m
compute yg~U2m
find yg~Y2m among gVt ’s in Tab
if collision gV1.¢* = yg
return U1 ¢+ + Uz m>
end if
end while
initialize the table Tab
end for
end for

~Y2.m* occurs then

Fix the number of error bits in 2’ by ¢. Consider % pairs of two blocks

(B1,i, B2,;) such that By; = [i,i +n/2), and By; = [i + n/2,i), for i =
o,--- ,g*].. Set Ui, to

. 2'[j] if j € By,
Uk.ilil = ’
kilJ] { 0 otherwise

where k = 1,2 and ¢ = 0,--- , 5 — 1. Consider sets T4, T2, C By, such that
[Ty N By = [;] and |T2m N Bz i| = L;J for k =1,2,i=0,---,5 —1, and
possible ’s and m’s. Define Uy, ¢ so that

Ui = {1 Uhelil - (mod 2) it € T,
S Uk, el7] otherwise.

3 In this paper, it is assumed that & is the upper bound of error rate.
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n
2

all possible Ty ,’s and stores (U1, gY¢)’s in the table Tab. Thereafter, for all
Ui

From i =0 to ™ — 1, one does the followings: for fixed 4, one computes gV1¢ for

possible 15 ,,’s, compute yg~U2m and compare it with elements g s in the
table Tab. If the collision between gU1¢’s and yg~Y2m’s occurs, output Uy ¢« +
Us,m~ for satisfying gV1.¢* = yg=V2.m_ If collision does not occur, then delete
all data in the table Tab and repeat the above process for the next i.

The following theorem gives the correctness of Algorithm [I1

Theorem 1. When Algorithm [ is executed with the input (g,y,2’',n,9), then
it outputs the discrete logarithm x of y if the number of error bits is less than

|nd|.

Proof. From Lemma [Il there exists j such that the numbers of errors of z’ in
By, Bajare [ 4], 4], respectively. Since, for all cases that the error is less than
|nd], we observe all possible (T} ¢, T2,m) and (B, Ba,i), we can find (T1,¢, T2 m,)
and (B j, Be ;) such that the set of error bits of 2’ is same to T4 ¢ U T5 p,. For
(Ui,6=,Ug,m+) corresponded to such (T ¢+, T2 m+) and (B j, Ba,j), the relation
gVt = yg~Y2m* is satisfied. Hence the output of Algorithm [ is to be the
private key x. |

Toy Example. Let G = (2) be a cyclic subgroup of Z3,54 generated by 2 of order
1019. Set the public key y to 1571 and the private key = to 11101011012y = 941.
Assume that the erroneous private key 2’ is given as 1010110111 ).

With Algorithm [I, when ¢t = 4, By o = [2,7)10 and Bz = [7,2)10, U1,2 and
Us,2 are to be 00101100002y and 1000000111 5), respectively. Then, when T} ¢ is
{2,6}, Uy,¢ is 0110100000(2). Hence the value

gUre = 0110100000¢2) = 645 (mod 2039)

is stored in the table Tab with U1, = 0110100000 3).
Then, when T3, is {7,9}, Uz, is 1000001101 5). Hence one also obtains

y-g~Urm =1571.2710000000e) = 15711737 = 645 (mod 2039).

Therefore, Algorithm [Il outputs Ui ¢ + Ua,m = 1110101101 (9) = 941.

Complexity. The following theorem gives the complexity of Algorithm [

Theorem 2. Letn be the private key size and d be the upper bound of error rate.

Then Algorithm [ is required less than Z}Zgj n(ﬁ//;) complexity and ([(L;5/J2/2)1)

storage to recover the private key x.

Proof. In Algorithm [ there exist § pairs (B, Ba,;) of blocks. For each pair,

there are ([7;//;) candidates of 77, and (L?//zzj) candidates of 75 ,,, and hence
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one computes (ft//;) Uie'g and (Lt//22J) ~Uz,m’g for each pair. Therefore, the

complexity of Algorithm [ is

(Complexity of Algorithm [I]) = g ;L (((7;//220 ™ <ESL// 22J>)
[né]

<3 (i)

All gUr’s corresponded to T1’s are stored for all T ¢’s and the data stored
in the table Tab are deleted if a pair (Bj,;, B2,;) is changed. And the maximum

Ui

number of generated g“¢’s in each pair is <T(L:5/J2/2ﬂ) when t is [nd|. Hence the

storage for ([(L;5/J2/2)1) elements is required. (I

Remark 1 (Unidirectional Errors). In [§], Halderman et al. observe that errors
are overwhelmingly unidirectional, that is, either 0 — 1 or 1 — 0. In general,
since the private key x is chosen uniformly at random, we can expect that the
numbers of 0’s and 1’s are approximately equal. Hence we can determine the
direction of errors by comparing the number of 0’s and 1’s in the erroneous key
2’ If the number of 1’s is larger than that of 0’s, then the direction of errors might
be 0 — 1 and all 0’s in the erroneous key are correct in this case. Then we obtain
the private key whose some bits are missing and we can recover correct private
key x applying the algorithm in [4]. When n; bits of the private key are missing
[nd]

2
and the error rate ¢ is given, one recovers the real key within Z ni (’7_;1/2 ])
t=0
n1/2

[([nd]/2)]

complexity and ( > storage using the algorithm in [4].

Table 1. Complexity of exhaustive search, Algorithm [Tl and unidirectional case (n =

160)
upper bound of complexity
error rate exhaustive search  Algorithm [ unidirection
0.03 924.69 919.98 917.21
0.05 943.10 928.99 924.65
0.10 971.95 943.24 936.38

In Table[] we provide the complexity of Algorithm [Ilfor various upper bounds
of error rate when the private key size n is 160. Also we give more precise
complexity of algorithm in [4] when an unidirectional erroneous key is given
with n; = § + [nd] and compare them with exhaustive search which is the best
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algorithm before our method. In case of exhaustive search, one tries to compute
. S s
for all possible cases of an erroneous key and the complexity is Ztlzoj (T;
the error rate is 4.
According to our analysis, when the error rate is 10%, the exhaustive search
can recover the private key in 27159 operations, but our algorithm takes only

24324 gperations. If we assume unidirectional errors, it is further reduced to
936.38

) when

Within 289 security, while the exhaustive search can recover the private key
with at most error rate 0.118, our algorithm can recover the private key with
smaller than error rate 0.343. In other words, an erroneous private key which has
54 or less error bits can be recovered within 289 complexity using Algorithm [
in contrast to that exhaustive search can recover 18 or less error bits.

3.2 Coron and Kocher’s Method [92]

There are many methods to randomize the private key x to endure against
differential power analysis. Coron [2] and Kocher [9] independently proposed the
use of £ = x + rq instead of the original private key x which is less than the
group order g. Here, r is a randomly chosen integer of size n,-bit. In this case,

since the relation
Cac — Cac+7“q _ Cac

is satisfied for all ¢ € G, T is available as the private key. However one who knows
Z can also decrypt the encrypted message, it is enough to recover the correct &
from erroneous private key ’.

Assume that the erroneous private key Z’ is given. Then one may utilize
Algorithm [ with the input (g,y,z’,n + n,, ) to recover the private key & and
the complexity of Algorithm [l in this case is

L(n+n.)d]

(n +ny) <(n + nT)/Q)

[1/2]

t=0

. n+n,)/2
with (H((nJrnr))é/J /21) storage.

Table 2. Lower bound of n, to provide 2%° complexity (n = 160)

upper bound of error rate  0.10 0.15 0.20 0.25 0.30
lower bound of n, 155 87 45 24 10

Table 2] shows the lower bound of n,. for various upper bounds of error rate,
to be required more than 28 complexity for recovering the private key using our
algorithm when the private key size n is 160. From Table 2] we observe that the
bit size of random number 7 in Coron and Kocher’s method has to be larger
than or equal to 155 to provide 280 security when the upper bound of error rate
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is 0.10. In this case, since the bit size of modified private key Z is to be 315,
the exponentiation using Z is roughly two times slower than that using original
160-bit private key .

3.3 Clavier and Joye’s Method [3]

To randomize the exponent x, Clavier and Joye split it into two parts (x1,z—x1)
for a randomly chosen z; [3]. Given an element g, g® is performed by computing
g1 = g*', g2 = g*2 and then g; - g2, where zo = x — x1. Suppose we obtained
erroneous values x, x4 of z1, z2 with error rate d, respectively. Now, we provide
an algorithm for recovering the private keys 1, zo.

Algorithm. Since error rate is given, one computes the upper bound of error bits,
|nd], in the given erroneous private keys xf,z5. Fix the numbers of error bits
in 2,2, are t1,ts, respectively. We have to check the all 1 < ¢1,t2 < |[nd] to
recover the keys x1, xs.

Algorithm 2. Recovering private key from the erroneous keys a}, 24

INPUT: (g,y,z},x5,n,0)
OUTPUT: z such that y = ¢g*
for t; =0 to [nd| do
set x|
while possible T7’s do
compute ¢g®1 and store (z, g*1) in the table Tab
end while
end for
for t =1 to [nd| do
set x4
while possible T%’s do
compute yg_”/2
find ygfzé among g“v/1 ’s in the table Tab
if collision occurs then
return x} +
end if
end while
end for

Let o}, z}, be the guessing key of ], 4, respectively. Consider sets T; C [0,n),
such that |71 N [0,n),| = t1 and |T5 N [0,n),| = t2 where ¢ = 1, 2. Define z} so
that
" {1 —2[j] (mod?2) ifjeT;,

j =

X
! ;lj] otherwise.
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First, for all possible Ty’s (1 < t; < |nd|), compute ¢* and store (;U;7gzii) in
the table Tab. Then, for all possible T»’s (1 < t2 < |[nd]|), compute yg~ "2 and

compare it with elements ¢”1’s in the table Tab. If the collision occurs, output
x) + .

Complezity. The complexity of Algorithm [l is

[nd| [nd]

(complexity of Algorithm [2) = Z (Z) + Z (Z)
t1=0 t2=0
s}
=> 2( )
t1=0 tl
s
with tlz::() <t1> storage.

In Table Bl we give the complexity of Algorithm ] to recover the private key
suggested by Clavier and Joye when the private key size n is 160. Table Bl shows
that when the error rate is 5%, the private key can be recovered within 244:10
complexity using Algorithm Bl It is further reduced to 2379 if errors occur
unidirectional.

Table 3. Complexity of Algorithm 2] and unidirectional case (n = 160)

upper bound of complexity
error rate Algorithm unidirection
0.03 925.69 921.95
0.05 944.10 937.05
0.10 972.95 960.51

Now, we compare Coron and Kocher’s suggestion with Clavier and Joye’s
suggestion. For fair comparison, we assume that square-and-multiply algorithm
is utilized for the exponentiation and the cost for one multiplication in a group
G is same as that of one squaring in G. To compute one exponentiation with an
n/-bit exponent using square-and-multiply algorithm, the expected numbers of
multiplications and squarings are n’/2 and n’, respectively. Clavier and Joye’s
suggestion requires 480 multiplications when the private key size n is 160. This
cost is same when the random number size n, is 160 in case of Coron and
Kocher’s suggestion. Then the recoverable error rate within 289 complexity using
our algorithm is 0.096 in case of Coron and Kocher’s and is 0.118 in case of
Clavier and Joye’s. It shows that Clavier and Joye’s suggestion is more tolerable
than Coron and Kocher’s suggestion against our proposed algorithm.
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4 Applying to RSA Cryptosystem

There have been numerous algorithms to recover the RSA decryption key from
its partial information. One approach is to assume that some contiguous bits of
decryption keys are known [I]. The other is to deal with less restrictive informa-
tion on the private key, but it is assumed that some additional partial information
on prime divisors of the modulus are given. The latter approach [7J6] has been
initiated mainly from the cold boot attack. These results show that if an erro-
neous value of private key (p, q,d, dp,d,) is given in RSA-CRT, one can recover
the whole key with a reasonable probability. These papers assume that the decay
direction of key is unidirectional [7] or bidirectional [6].

In this section, we consider the standard RSA decryption module and propose
an algorithm to recover the private key of RSA cryptosystem from an erroneous
decryption key d. While the attack against the standard RSA in [I] requires
contiguous ) least significant bits of the private key d where n is the bit size of
modulus N, our attack assumes random and independent errors. Our algorithm
requires a lot more information than the previous, but it does not have such a
restriction.

Throughout this section, N will be the RSA modulus and the public key
and the private key of the standard RSA cryptosystem will be given as e and
d, respectively. The bit length of the private key will be given as n and it is
assumed that the bit length of the private key d is same as that of N. Let m be
the message and C be the ciphertext.

Standard RSA. Assume that the erroneous private key d’ is given. To recover
the correct private key d using Algorithm [Tl one chooses a message m chosen
at random and compute m® = C (mod N). Then he gets a pair (C,m) that
satisfies the relation C? = m (mod N). With input (C,m,d’, n,d), one executes

Algorithm [Il and then obtains d as the output. In this case, the complexity of
[n]

Algorithm s to be n@//;) with ((:5/12/2> storage.

t=0

Table 4. Complexity of exhaustive search, Algorithm [ and unidirectional case in
RSA (n = 1024)

upper bound of complexity
error rate exhaustive search  Algorithm [I] unidirection
0.003 927.42 927.01 924.04
0.005 2143.09 934.42 930.49
0.010 978.16 949.08 943.23

Table [ provides the complexity of exhaustive search, Algorithm [Il and unidi-
rection for upper bounds of error rate. Similarly with DL based cryptosystems,
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(4]
n
the complexity of exhaustive search is Z (t) ,when the error rate is §, which

t=0
is the same with the number of possible cases of an erroneous key. When n is

1024 and the error rate is 1%, one could recover the private key d from the given
erroneous key d’ within 2499 while exhaustive search takes 27816, In the case
of unidirectional errors, the complexity becomes 24323,

Coron and Kocher’s Method [9[2]. In order to randomize the private key pro-

tecting against differential power analysis, Coron and Kocher proposed the use

of blinding private key d=d+ r¢(N) where r is a randomly chosen integer of

size n,-bit. In this case, as in Section 3.2}, the private key can be recovered using

Algorithm [ with input (C, m, d, (n+n;),d) where C¢ = m. And the complexity
L(n+n,)d]

; : (n+n.)/2) . ntn,
of Algorithm [I] is ; (n+ nr)< /2] with (H((njnr))é/f/ﬂ) storage.

Table 5. Lower bound of n., to provide 259 complexity in RSA (n = 1024)

upper bound of error rate  0.005 0.008 0.010 0.015 0.020
lower bound of n, 1976 1101 699 243 26

In Table[B] we provide the value of n, for given upper bounds of error rate to
get the complexity more than 23° complexity. If the upper bound of error rate
is 0.008, we have to choose n, so that n, > 1024.

Clavier and Joye’s Method [3]. In order to randomize the private key d, Clavier

and Joye split it into two parts (di,d — di) for a random number d; where

dy+ds = d. In this case, we can recover the private keys dj, ds using Algorithm 2]

of Section B3] with input (C,m,d,d}, n,d). And the complexity of Algorithm 2
[nd] [nd]

is g 2 with g storage. Their complexities for various error rates
i \! im0\t

are presented in Table [l

Table 6. Complexity of exhaustive search, Algorithm [2] and unidirectional case in
RSA (n =1024)

upper bound of complexity
error rate exhaustive search  Algorithm unidirection
0003 255.83 22&42 22544
0.005 < 980 944.09 939.15

0.010 ~ 980 979.16 969.39
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5 Conclusion

In this paper, we proposed the algorithm to recover the private key from its
erroneous value using the splitting system in the DL based cryptosytems and
the standard RSA. We also considered breaking countermeasures of differential
power analysis. Our algorithm achieves almost the square root complexity of the
size of the search space. Considering that the most efficient generic algorithm
to solve DLP has the complexity of the square root of the base group order,
the square root complexity can be considered optimal. It would be interesting
to find the lower bound of the complexity in terms of the size of search space to
recover the private key when its partial information is given.

There have been numerous algorithms to recover the RSA decryption key from
its partial information. However, all the works either require some contiguous
information or additional partial information on prime divisors of the modulus.
Our algorithm requires a lot more information than the previous, but it does
not have those restriction. It would be interesting to apply the previous lattice
techniques to have more efficient algorithms in this case.
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Abstract. Timed-release public-key encryption (TRPKE) provides a
mechanism that a ciphertext cannot ordinarily be decrypted, even with
its secret key, before a specific time. TRPKE with pre-open capabil-
ity (TRPKE-PC) provides an additional mechanism where the sender
can permit a receiver to decrypt the ciphertext before that specific time
if necessary. A TRPKE(-PC) scheme should be secure in following as-
pects: against malicious receivers, a time-server, and, only in TRPKE-
PC, against malicious senders. In this paper, we mention that previous
security definitions are incomplete or insufficient, and propose new ones
in all aspects of the above. We also present a generic construction of a
TRPKE-PC scheme. Our construction provides the first TRPKE(-PC)
scheme that is provably secure with respect to the above security defini-
tions, especially against malicious key generations of the time-server.

Keywords: timed-release encryption, malicious time-server, malicious
key generation, strong decryption, generic construction, pre-open
capability.

1 Introduction

Timed-release public-key encryption (TRPKE) was introduced by Chan and
Blake [7] in 2005. Intuitively, TRPKE provides a mechanism whereby a cipher-
text cannot be decrypted until a specific time. In addition to TRPKE, TRPKE
with pre-open capability (TRPKE-PC), introduced by Hwang et al. in 2005 [22],
has more flexibility such that a receiver can decrypt a ciphertext with the support
of the sender even before a specific time. In this paper, we focus on TRPKE-PC
and describe security definitions and syntax of a scheme for TRPKE-PC since
it contains TRPKE.

A TRPKE-PC system consists of three entities: a time-server, sender, and
receiver. The sender encrypts plaintext by using the receiver’s and time-server’s
public keys and designates a time-period T after which the receiver is allowed
to decrypt the ciphertext. At each T, the time-server periodically generates a
time signal st corresponding to T" and broadcasts it to all users including the
receiver. The receiver can decrypt the ciphertext with his/her secret key and

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 88-{[08] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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st corresponding to T'. This decryption is called time-period decryption and in
TRPKE-PC, the receiver can decrypt in another way called pre-open decryption.
This uses the receiver’s secret key and a pre-open key pok generated together with
the ciphertext. Therefore, the receiver can decrypt the ciphertext independent
of the T if the sender sends pok to the receiver.

The TRPKE(-PC) scheme has many applications for constructing secure pro-
tocols in which information is revealed to users after a specific time. One of
major applications is timed-release commitment in a sealed-bid auction: Bidders
encrypt their bids with a closure time. To confirm bids, an auctioneer decrypts
ciphertexts with a time-signal. Therefore, there is no interaction between bidders
and the auctioneer.

Previous Security Definitions. Security notions for TRPKE are considered
from two aspects against malicious receivers and against a time-server. The for-
mer means that no one can obtain information from the ciphertext without a
corresponding time signal and the latter means no one can obtain information
without the receiver’s secret key. The TRPKE-PC scheme demands another se-
curity notion against senders such that no one can create a tuple of a ciphertext,
time-period, and pre-open key where a plaintext decrypted with time-period
decryption differs from one decrypted with pre-open decryption.

There are many security definitions for TRPKE(-PC), which can be catego-
rized into two aspects: what an adversary issues to the decryption oracle, and if
an adversary can maliciously generate its own keys. We summarize these defini-
tions in Table [I

Table 1. Previous Security Definitions for TRPKE(-PC)

notion name against dec. query key gen.

IND-RTR-CCA2 receiver (usk,T,c) malicious
IND-CCA2  time server (T, c) honest

IND-CTCA receiver  (upk, T, ¢) malicious
IND-CCA  time server (7T,sr,c) honest

Type-I receiver  (upk, T, c¢) malicious
Type-II time server (upk,T,c) honest
IND-TR-CPA1s receiver no dec. honest
Dent and Tang [I5] IND-TR-CCArs time server (T, c¢) honest
Binding sender (T,c) honest

Cheon et al. [§]
Cathalo et al. []

Chow et al. [10]

Type-1 receiver  (upk, T, ¢) malicious
Chow and Yiu [11] Type-11 time server (upk,T,c) honest
Binding sender  (upk,T,c) honest

c is a ciphertext, usk is a user’s secret key, upk is a user’s public key, T" is a time
period, st is the time signal at 7', “malicious” means attacker can generate
own keys maliciously and “honest” means attacker cannot do this.
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Strong Security Notion. Several previous security notions are
indistinguishability-based definitions allowing an adversary to issue a decryption
query including a user’s public key, then a challenger responds with a message
derived from the issued ciphertext. Such a decryption oracle is called a strong
decryption oracle and we call the security definition with such an oracle strong
security. This might seem too strong since an adversary can issue decryption
queries with an adversarial chosen public key; no one knows the corresponding
secret key, even the adversary.

However, it is important to consider such a strong security definition. Many
applications of TRPKE(-PC) involve multiple receivers, and some adversaries
may collude with each other to maliciously generate their keys, e.g., depending
on other keys. It seems natural to assume that an adversary can choose a user’s
key issued to the decryption oracle. Theoretically, it is interesting to consider
whether a scheme that achieves strong security can exist or not.

Furthermore, in some applications of TRPKE(-PC), a strong decryption
oracle makes sense. To explain this, we first discuss the security notion, com-
plete non-malleability, defined by Fischlin [16]. Roughly speaking, complete non-
malleability states that giving a ciphertext to an adversary does not help to
produce a ciphertext of a related message under an adversarial chosen public
key. This security notion is desired, for example, when one uses an encryption
scheme as a commitment, e.g., timed-release commitment in a sealed-bid auction
described in the previous section. Without complete non-malleability, the adver-
sary may produce a related commitment and cheat, i.e., generate a ciphertext
and a public key of plaintext m + 1 from those of plaintext m.

Recently, Barbosa and Farshim [3] clarified] the relation between indistin-
guishability with strong decryption and complete non—malleabilityE This means
that indistinguishability under a strong decryption oracle is a convenient for-
malization for establishing that a scheme is completely non-malleable. Therefore,
strong decryption for TRPKE(-PC) is important since complete non-malleability
is worth considering, and satisfying a strong security notion comprises complete
non-malleability.

1.1 Owur Contribution

There are many benefits for considering a strong decryption oracle as described
in the previous section, so we focus on the strong security notion. We show
that previous security definitions are incomplete or insufficient. We thus provide
precise or strong security definitions and also propose a generic construction of
a TRPKE-PC scheme that satisfies our definitions in the random oracle model.

Note that we provide new security definitions only in the context of TRPKE-
PC. This is because the security definitions for TRPKE-PC are easily converted
to those for TRPKE.

! They prove the equivalence for ordinal public-key encryption, and it can be applied
to TRPKE-PC.
2 Though their definition is slightly different from Fischlin’s, the aim is the same.
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Problems with Previous Strong Security Definitions and New Defi-
nitions. We first go with the security against malicious receivers. Several def-
initions were proposed, such as IND-CTCA and Type-I security, but they do
not explain the behavior when an adversary issues an invalid public key or in-
valid ciphertext to a strong decryption oracle. They may work well for a specific
scheme, but become a problem when we consider a general case, e.g., generic
construction. Fujioka et al. [18] recently noticed this ambiguity and avoided it
by adding a restriction in which an adversary cannot issue an invalid public
key. However, this restriction is not realistic. We aim to define a strong security
notion without such a restriction on an adversary.

A strong decryption oracle can be defined in roughly two ways. One is based
on the principle “reply as far as possible”, and the other is based on the principle
“reply only if a query is valid”. They are incomparable with each other since
they assist the adversary with an another aspect: decrypting invalid ciphertexts
under an invalid public key or checking their validity. Our definition uses the
former principle since it is more suitable for a generic construction. The latter
principle may lose generality since it excludes a TRPKE-PC scheme such that
one cannot check the validity of both the public key and ciphertext, e.g., most
RSA-based schemes.

Second, we go with the security against a malicious time-server. As described
in Table[Il honest key generations are assumed with the previous definitions, But
the malicious time-server, which generates its keys maliciously, may break the
TRPKE-PC scheme. In a sealed-bid auction, for example, the time-server with
malicious key generations can see all bids and, if it colludes with a bidder, the
bidder may illegally succeed in the auction. We take Chow and Yiu’s TRPKE-PC
scheme [IT], which can be totally broken by a such an adversary, as an example
in Appendix

Third, we go with the security against malicious senders in a TRPKE-PC
scheme. The sender knowing nothing about the time-server’s secret key is as-
sumed with the previous definitions. This implies that collusion with the time-
server is beyond the definition. We thus define another strong security definition
called Strong Binding to prevent collusion.

Generic Construction of Strongly Secure TRPKE-PC. We also propose
a generic construction of a TRPKE-PC scheme that first satisfies the above new
security definitions, especially against a malicious time-server with malicious
key generations even in the random oracle model [4]. We use the random ora-
cle since Fischlin [16] claimed that there is no black-box construction which is
complete non-malleable (and is likely secure with the strong decryption oracle)
in the standard model without a trusted setup. There are several schemes (e.g.,
[B0U3IT3]) that are complete non-malleable or secure with the strong decryption
oracle in the standard model, but they require a trusted setup. On the contrary,
our scheme does not has a trusted setup since our security allows malicious key
generations of the time-server. Therefore, it seems a difficult task to construct
secure schemes w.r.t. our definitions in the standard model.
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Our construction consists of a public-key encryption (PKE) scheme and an
identity-based encryption (IBE) scheme. It uses a simple approach, a PKE-then-
IBE paradigm. A naive construction of this sort is insecure against a “Decrypt-
then-Encrypt” attack [I432] since a ciphertext differs from one that is decrypted
partway (i.e., only IBE decryption) and re-encrypted. We prevent such an attack
by encrypting with a second (IBE) scheme deterministically, which is bounded
randomness technique [I7]. To enable pre-open functionality, we use an inter-
mediate ciphertext, encrypted with a PKE scheme, as a pre-open key. That
is, we use PKE-then-IBE, not IBE-then-PKE used in Ref. [I8]. In the PKE-
then-IBE construction, a receiver can decrypt an intermediate ciphertext while
others cannot decrypt it without the receiver’s secret key; in the IBE-then-PKE
construction, the receiver cannot decrypt the intermediate ciphertext.

We require the property called extensive y-uniformity from both IBE and
PKE, where 7 is negligible. Intuitively, this means the entropy of a ciphertext
for a fixed message is large even if a public key is invalid. If PKE(IBE) is IND-
(ID-)CPA secure, we can easily convert them to satisfy this property. The original
~-uniformity defined by Fujisaki and Okamoto [19] means the same thing under
uniformly and honestly chosen public keys, and ~-pk-uniformity used in [18]
means the same thing under all valid public keys. We also assumes the collision
resistance of the encryption, which is essential to be secure against a strong
chosen ciphertext attacks. This is trivially guaranteed under a valid public key
thanks to completeness.

Fujioka et al. [I8] also proposed a generic construction of TRPKE with IBE-
then-PKE technique and negligible «-pk-uniformity. Their construction is, how-
ever, proven secure against only a malicious time-server with honest key genera-
tions and, against malicious receivers under the restriction of invalid key queries.
It also does not provide pre-open capability.

1.2 Related Works

Certificateless encryption (CLE) [2[12] is a primitive related to TRPKE. Chow et al.
[10] proposed a method for converting any general CLE scheme, that is, a CLE
scheme with additional properties, into a TRPKE scheme. In the CLE context,
security with strong decryption has been also studied. Chow et al. [10] defined
Type-Tand Type-II security, and Au et al. [I] pointed out that a malicious key gen-
eration center (KGC) with malicious key generations may violate the security of
CLE. Hwang et al. [23] proposed a scheme secure against a time-server with mali-
cious key generations, without strong decryption.

Timed-release public-key encryption is also closely related to multiple encryp-
tion. Zhang et al. [32] and Dodis and Katz [14], studied the security of multiple
encryption and how to construct secure schemes from IND-CCA secure compo-
nents. Recently, Fujioka et al. [I7] studied the security of multiple encryption
and constructed it from IND-CPA secure schemes.

The notion of complete non-malleability was first defined by Fischlin [I6],
and Ventre and Visconti [30] later formalized it in another way and proposed
a complete non-malleable secure scheme with a trusted setup in the standard
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model. Barbosa and Farshim [3] studied and categorized the definition of a strong
decryption oracle, and clarified the relation between a strong decryption oracle
and complete non-malleability.

Very recently, Kawai et al. [24] showed that it is impossible for PKE to re-
duce the security with strong decryption oracle (called IND-SCCA) to any other
weaker security notion under black-box analysis in the standard model. Further-
more, they also showed that even if the encryption system has a setup procedure,
it is also impossible under setup-preserving black-box reductions. These results
indicates the difficulty to construct strongly secure schemes in the standard
model.

Due to space limitation, we describe traditional schemes and give a brief
history of TRPKE and TRPKE-PC in Appendix [Al

2 Preliminaries

We review the primitives used as components of our construction and their
security notions.

Notation. Throughout this paper, A denotes the security parameter and PPT
algorithm denotes a probabilistic polynomial-time algorithm. x < y means that
x is chosen from y uniformly at random if Y is a finite set; if otherwise, simply
substitute y into . For probabilistic algorithm A, y < A(z;r) means that y is
the output of A with input z and randomness r, and if r is picked uniformly at
random, r is omitted as y < A(x). ||y denotes the concatenation of x and y. A
denotes a space of a, e.g., a space of a message m is denoted as M. |M| denotes
the number of elements that belong to M.

2.1 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms as follows. A
key generation algorithm PKE.KG takes 1 as input, and outputs a public key
pk and a secret key sk. An encryption algorithm PKE.Enc takes a pk, a message
m and as inputs and outputs a ciphertext ¢. A decryption algorithm PKE.Dec
takes sk and ciphertext ¢ as inputs and outputs the plaintext m or 1. These
algorithms are required to satisfy PKE.Dec(sk,PKE.Enc(pk,m)) = m for any
(pk, sk) + PKE.KG(1*) and any m. Throughout this paper, we use Mpxg, Cpxs,
and Rpky to indicate the message space, ciphertext space, and randomness space
of the encryption algorithm respectively.

We use IND-CPA secure PKE in our construction. Due to space limitation,
the definition of IND-CPA security appears in Appendix [Bl

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme consists of the following four algo-
rithms. A setup algorithm IBE.Setup takes 1% as input and outputs a public
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parameter params and a master secret key msk. An extract algorithm IBE.Ext
takes params, msk, and an arbitrary string (identity) ID € {0, 1}* as inputs and
outputs a decryption key drp. An encryption algorithm IBE.Enc takes params,
ID, and a message m as inputs and outputs a ciphertext c. A decryption algo-
rithm IBE.Dec takes params, dip, and ¢ as inputs and outputs the message m or
L. These algorithms are required to satisfy IBE.Dec(params, dip,
IBE.Enc(params,ID,m)) = m for any m, any (params, msk) < IBE.Setup(1*),
and any drp + IBE.Ext(params, msk,ID). Throughout this paper, we use Mgy,
Cigg, and R to indicate the message space, ciphertext space, and randomness
space of the encryption algorithm respectively.

We use IND-ID-CPA secure IBE in our construction. Due to space limitation,
the definition of IND-ID-CPA security appears in Appendix [Cl

2.3 ~-Uniformity and Collision Resistance of the Encryption

Fujisaki and Okamoto proposed v-uniformity [T9/20], which represents the size
of the entropy for a fixed message in PKE. We denote it as ~ypxz-uniformity.

We say a PKE scheme is ~pge-uniformity if Pr[Vz € Mpxp;Vy €
Crxs; (pk, sk) < PKE.KG(1") : y = PKE.Enc(pk, )] < 7pks holds. Note that
we consider entropy under a uniformly and honestly chosen public key with vpyg-
uniformity, and all IND-CPA secure PKE schemes have ~pxg-uniformity where
~rke 18 negligible in A. Fujioka et al. [18] extended it to Ypxs-pk-uniformity, which
aims to represent the size of the entropy under all public keys generated by a key
generation algorithm. We also extends it to a slightly stronger property called ez-
tensive ypxp-uniformity. Roughly speaking, extensive ypkg-uniformity states the
size of the entropy under a public key that is possibly invalid. It is formally de-
scribed as Pr[Va € Mpg; Vy; Vpk : y = PKE.Enc(pk, z)] < vpxe. Our construction
requires extensive ypgp-uniformity where vk is negligible in A. Although an IND-
CPA secure PKE does not generally have extensive ypip-uniformity where ypky is
negligible in A, all IND-CPA secure PKEs can be converted to one that has exten-
sive Ypkp-uniformity where vpky is negligible [20].

Yang et al. extended ~-uniformity to IBE [3I] and we denote it as 7sp-
uniformity. We say IBE has ypg-uniformity if Pr[Ve € Mipg;Vy € Cipg; VID €
{0,1}*; (params, msk) < IBE.Setup(1*) : y = IBE.Enc(params,ID,x)] < Yipg
holds. Note that all IND-ID-CPA secure IBE schemes have 7;gg-uniformity where
e is negligible. Similar to the PKE scheme, we use extensive 7y,zg-uniformity,
formally described as Pr[Vz € Mie;Vy;VID € {0,1}*;Vparams : y =
IBE.Enc(params,ID,z)] < ~pe. Our construction also requires that an IBE
scheme has extensive ~;pp-uniformity where ;55 is negligible in A. Although an
IND-ID-CPA secure IBE does not generally have extensive ~y;gg-uniformity where
s 18 negligible, all IND-ID-CPA secure IBEs can be converted to have negligible
extensive Ypkp-uniformity, almost the same as that of PKE.

We also require collision resistance of the encryption: for all pk there is
no message pair mg, my such that PKE.Enc(pk,mo) = PKE.Enc(pk, m;)
for PKE. Also for all params,ID there is no message pair mg, m; such that
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IBE.Enc(params, ID, mg) = IBE.Enc(params,ID,my) for IBEH This is trivially
fulfilled under a valid public key because of completeness, and seems to be ful-
filled by pudding more random components under an invalid key.

3 Timed-Release Encryption with Pre-open Capability

In this section, we discuss and review the definitions of TRPKE-PC and their
security notions.

3.1 Syntax
A TRPKE-PC scheme is formally defined as a tuple of the below algorithms.

— Setup: A setup algorithm that takes 1 as input, and outputs a time-server’s
public key tpk and corresponding secret key tsk.

— Release: A release algorithm that takes tpk, tsk, and a time-period T as
inputs and outputs a time signal sp corresponding to 7.

— KeyGen: A user key generation algorithm that takes tpk as input, and outputs
a user’s public key upk and corresponding secret key usk.

— Enc: An encryption algorithm that takes tpk, T, upk, and message m as
inputs and outputs the ciphertext CT" and corresponding pre-open key pok.

— Dectgr: A time-period decryption algorithm that takes tpk, sp, usk, and CT
as inputs and outputs m € MU {L}.

— Decpo: A pre-open decryption algorithm that takes tpk, pok, usk, and CT
as inputs and outputs m € MU {_L}.

Throughout this paper, we use M, C, and R to indicate the message space,
ciphertext space, and randomness space of the encryption algorithm.

These algorithms are required to satisfy Dectr(tpk,sr,usk, CT) =
Decpo (tpk, pok,
usk, CT) = m for any (tpk, tsk) « Setup(1*), any (upk, usk) + KeyGen(tpk),
any T, any m, any (CT,pok) < Enc(tpk,T,upk,m), and any sp <
Release(tsk,T).

3.2 New Security Notions

Security against Malicious Receivers. We define the security notion for
TRPKE-PC against malicious receivers with a precise definition of strong de-
cryption. We call this definition IND-SCCA Security against a Type-1 Adversary
(Type-I security) since it is mostly based on Chow and Yiu’s definition [I1].
We define the strong decryption oracle with the principle “reply as far as pos-
sible”. The strong decryption oracle responds with a message m, where (CT,-) =
Enc(tpk, T, upk, m); nevertheless, both upk and CT may be invalid. We can also

3 To be exact, it is sufficient for our construction that the equation is not hold with an
overwhelming probability.
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define it with the principle “reply only if a query is valid”, which responds with
L if one of components of a query is invalid. In our security definition, we use the
former principle, though it could accept an invalid query as mentioned by Barbosa
and Farshim [3], by following reasons. First, these principles empower the adver-
sary in another aspect: The adversary can receive a plaintext of even an invalid
query in the former principle, and the adversary can check the validity of both
the ciphertext and public key in the latter principle. Therefore, we choose one of
these principles. Second, the latter principle loses generality of the construction.
It requires the checkable property of both the ciphertext and public key, so it ex-
cludes TRPKE-PC schemes such that one cannot check the validity. This property
is especially difficult for RSA-based construction.

Of course, one can use the latter principle when constructing a TRPKE-
PC scheme with a checkable property. However, if a TRPKE-PC scheme has
a checkable property, our definition is essentially equal to one with the latter
principle. This is because a TRPKE-PC scheme secure w.r.t. the latter principle
can be also secure w.r.t. ours by checking a validity of a public key in the
encryption and checking a validity of a ciphertext in the decryption.

Fujioka et al. [I8] used another approach that restricts the adversary from
issuing a query including invalid components. This definition, however, implies
the adversary is generates its key as honest-but-curious, not malicious.

We formally describe Type-I security for a TRPKE-PC scheme based on the
following Type-I game between a challenger C and an adversary A.

1. C takes a security parameter 1%, runs the setup algorithms (tpk, tsk) <
Setup(1*) and give tpk to A.

2. A is permitted to issue a series of queries to some oracles. (A is allowed
to make adaptive queries here — subsequent queries are made based on the
answers to previous queries.)

— Release queries: A issues a time-period T' and receives a corresponding
time signal sp derived from Release(tpk, tsk,T').

— Time-period decryption queries: A issues a tuple of (upk,T, CT). If a
group {m | (CT,-) = Enc(tpk, T, upk, m)} is not empty, C responds with
m & {m | (CT,-) = Enc(tpk, T, upk,m)}. Otherwise, C responds with
1.

3. A outputs a user’s public key upk®, a pair of messages mg, m1, and a time-
period T* that was not issued as a release query. C randomly chooses b €
{0,1}, computes a challenge ciphertext and a pre-open key (CT™, pok™) <
Enc(tpk, T*, upk™, my), and gives CT™ to A.

4. Ais permitted to issue a series of queries similarly. except with the restriction
that no Release query T*, no time-period decryption query (upk™, T*, CT™)
are allowed.

5. At the end of this game, A outputs a guess b’ € {0,1}.

Awins a Type-Igameif b’ = b, and its advantage is defined by Adv¥>! (A =

TRPKE-PC, A
| Pr[A wins Type-I game] — J|.
Definition 1. A timed-release encryption scheme with pre-open capability is Type-
I secure if no PPT adversary A has non-negligible advantage Adv i7" (N).

TRPKE-PC, A
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Note that an adversary is not allowed to receive a pre-open key corresponding to
a challenge ciphertext nor to issue pre-open decryption queries. The adversary
can choose all user’s public keys in the above game so it is logical that the
adversary has the corresponding user’s secret keys; hence, pre-open decryption
queries are not useful for the adversary. In addition, if we allow the adversary
to access a pre-open decryption oracle, TRPKE-PC schemes that can generate
pok from a ciphertext with a sender’s secret key are excluded.

Security against a Malicious Time-Server. We show a new strong secu-
rity definition for TRPKE-PC against a malicious time-server with malicious
key generations. The security definition is called IND-SCCA against a Type-II™
adversary (Type-IIT security). It is similar to the Type-II security defined in
Ref. [11] except that an adversary can maliciously generate time-server’s key, so
Type-IIT security is a stronger notion.

Previous schemes that are secure with a strong decryption oracle in the stan-
dard model often embed a trapdoor in the time-server’s key. Such schemes are
not secure in our model because an adversary can also embed in the same way.
In other words, previous schemes are secure when the adversary honestly gener-
ates own keys. This is a serious vulnerability since, if the adversary maliciously
generates own keys, it can decrypt a ciphertext without a recognition of other
participants. We take Chow and Yiu’s scheme [I1] as an example of the above
insecurity in Appendix [Dl

As the same to Type-I security, one can define to check the validity in a strong
decryption oracle for TRPKE-PC schemes with checkable property. We do not
give it since it is easily derived from ours.

We formally describe the Type-ITT security for a TRPKE-PC scheme based
on the following Type-IIT game between a challenger C and an adversary .A.

1. C takes a security parameter 1* as input, passes it to A and gets tpk from
A. C computes (upk™, usk™) < KeyGen({pk) and gives upk™ to A.

2. A is permitted to issue a series of (adaptive) queries to some oracles.

— Time-period decryption queries: A issues a tuple of (upk,T, CT). If a
group {m | (CT,-) = Enc(tpk, T, upk,m)} is not empty, C responds with
m {m | (CT,-) = Enc(tpk, T, upk,m)}. Otherwise, C responds with
1.

— Pre-open decryption queries: A issues a tuple of (upk,pok, CT). If a
group {m | (CT,pok) = Enc(tpk,-, upk, m)} is not empty, C responds
with m & {m | (CT, pok) = Enc(tpk, -, upk, m)}. Otherwise, C responds
with L.

3. A outputs a pair of messages mg,m; and a time-period T™*. C randomly
chooses b € {0,1}, computes a challenge ciphertext and a pre-open key
(CT™, pok™) < Enc(tpk, T*, upk™, m;), and gives (CT™, pok™) to A.

4. A is permitted to issue a series of queries similarly, except with the restric-
tion that no time-period decryption query (upk™, T*, CT™*) and no pre-open
decryption query (upk™, pok™, CT*) is allowed.

5. At the end of this game, A outputs a guess b’ € {0,1}.
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A wins a Type-IIT game if ¥ = b, and its advantage is defined by
AdvTrelt o (\) = | Pr[A wins Type-IIT game] — 3l

TRPKE-PC, A

Definition 2. A timed-release encryption scheme with pre-open capability
is Type-II" secure if no PPT adversary A has non-negligible advantage
Advi7 ().

TRPKE-PC, A

Note that the setup phase often generate system components such as description
of the group. Our construction is secure even in this situation since the construc-
tion is completely separated into a PKE and IBE scheme, and we regards hash
functions as a random oracle. However, this is problematic in some situations,
e.g., generating a user’s key over the group generated by the setup phase. One
can avoid it to restrict the adversary from generating a part of its key, i.e., sys-
tem components. If so, the security is guaranteed as long as these components
is determined honestly, e.g., using the group stated by ISO.

Security against Malicious Senders. In the context of TRPKE-PC, another
security notion called Binding was defined by Dent and Tang [15]. This binding
notion means that an adversary cannot make a tuple of ciphertext, time-period,
and pre-open key where a plaintext that is decrypted with time-period decryp-
tion differs from one decrypted with pre-open decryption.

A previous security definition is considered for only an adversary with a user’s
public key. If an adversary colludes with a time-server and receives its key, the
binding property is no longer guaranteed. We thus define a stronger notion called
Strong Binding.

We formally describe the strong binding property for the TRPKE-PC scheme
based on the following game between a challenger C and an adversary A.

1. C takes a security parameter 1* as input, passes it to A and gets tpk from
A. C runs (upk™, usk™) < KeyGen(tpk) and gives upk™ to A.
2. A is permitted to issue a series of (adaptive) queries to some oracles.

— Time-period decryption queries: A issues a tuple of (upk,T, CT). If a
group {m | (CT,-) = Enc(tpk, T, upk, m)} is not empty, C responds with
m & {m | (CT,-) = Enc(tpk, T, upk,m)}. Otherwise, C responds with
1.

— Pre-open decryption queries: A issues a tuple of (upk,pok, CT). If a
group {m | (CT,pok) = Enc(tpk, -, upk,m)} is not empty, C responds
with m & {m | (CT, pok) = Enc(tpk, -, upk, m)}. Otherwise, C responds
with L.

3. At the end of this game, A outputs a ciphertext CT™, a time-signal sk, and
a pre-open key pok™.

A wins a strong binding game if L # my # mp, # L, where my,
Decrr(tpk, sk, usk™, CT*), and my, < Decpo(tpk, pok™, usk™, CT™). Its advan-
tage is defined by AdvS7ome Prdins(\y — Pr[ A wins strong binding game].

TRPKE-PC, A
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Definition 3. A timed-release encryption scheme with pre-open capability has
the strong binding property if no PPT adversary A has non-negligible advantage
Adetmng Binding ()\)

TRPKE-PC, A :
Note that in our definition the adversary outputs a time-signal s, not a time-
period T as defined by Dent and Tang [I5]. This is because if the adversary
colludes with the time-server, it is natural that s7. may be disturbed.

4 Generic Construction of Strong Secure TRPKE-PC

In this section, we explain the general construction of a TRPKE-PC scheme.
A TRPKE-PC scheme derived from the above construction is the first scheme
that satisfies the above strong security definitions, especially against a malicious
time-server with malicious key generations. The proposed construction consists
of an IND-CPA secure PKE and an IND-ID-CPA secure IBE and uses a PKE-
then-IBE technique.

Although we assume with our construction that both PKE and IBE schemes
have negligible extensive y-uniformity, which can be achieved for all IND-(ID-
)CPA secure schemes. We also assumes collision resistance of the encryption.

Our proposed scheme is described as follows.

— Setup(1*): Run (params, msk) <+ IBE.Setup(1*) and choose hash functions
H; mapping {0,1}* to Rpxy and Hy mapping {0,1}* to Rizs. Then set
tpk = (params, Hy, Hs), tsk = msk and output them.

— Release(tpk, tsk,T): See tpk and tsk as (params, Hy, Hy) and msk respec-
tively. Run dr < IBE.Ext(params, tsk,T), set sy = (T, dr), and output sr.

— KeyGen(tpk): Run (pk, sk) + PKE.KG(1%), set upk = pk, usk = (pk, sk),
and output (upk, usk).

— Enc(tpk, T, upk, m): See tpk and upk as (params, Hy, H2) and pk respectively.
Compute ¢ < PKE.Enc(pk, m||r; Hi(pk,m||r,T)) where r < R, compute
¢ = IBE.Enc(
params, T, ¢ Hy(T, ¢)), set CT = (T,c) and pok = ¢, and output them.

— Dectr(tpk, sT, usk, CT): See tpk, s, usk, and CT as (params,Hy, Hs),
(T,dr), (pk,sk), and (f, ¢) respectively. If T = T, compute ¢ <
IBE.Dec(params, dr,c) and if ¢ = IBE.Enc(params,T, ¢; Ha(T, ¢)), compute
m||r < PKE.Dec(sk,¢), and if ¢ = PKE.Enc(pk, m||r; H1(pk, m||r,T)), out-
put m. Otherwise, output L.

— Decpo(tpk, pok, usk, CT): See tpk, usk, and CT as (params, Hy, Ha), (pk, sk),
and (T, ¢) respectively. If ¢ = IBE.Enc(params, T, pok; Ha(T, pok)), compute
m||r < PKE.Dec(sk, pok), and if pok = PKE.Enc(pk, m||r; H1(pk,m||r,T)),
output m. Otherwise, output L.

We require that |R| is sufficiently large, e.g., R = {0, 1}80.
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4.1 Security

Due to space limitation, we do not give a precise probability estimation. We will
give it in the full version.

Notice that there are hash oracles H; and Hs in the proof since our proposed
scheme is secure in the random oracle model.

Theorem 1. Suppose an IBE scheme is IND-ID-CPA secure, a PKE scheme
has extensive Ypxp-uniformity where vpxy is negligible and has the collision resis-
tance of the encryption. Our proposed construction is then Type-I secure in the
random oracle model.

Sketch of Proof. Assume that there exists an adversary A that breaks Type-I
security of our proposed scheme. Then we can also construct an adversary B,
that breaks IND-ID-CPA security of the IBE scheme.

On input params, B1 runs as follows.

Setup: Bj takes params as input. Then B; chooses hash functions H; and Hs,
sets tpk = (params, Hy, Hy). In addition, B; generates two lists T, = Tp, =
¢, and gives tpk to A.

Hash queries: B; responds to hash queries while maintaining two query-
answer lists, 75, and 7p,, in the usual manner except if A issues (T, ¢;)
where b € {0,1}, By immediately outputs b as a guess of the IND-ID-CPA
game and halts. An input-output pair is recorded as (input, output) in these
lists.

Release queries: A issues T'. By passes it to its extraction oracle in the IND-
ID-CPA game and gets drp. Then By sets sy = (T, dr) and responds with
it.

Time-period decryption queries: A issues (upk,T, CT = (f, ). U T +# T,
B; immediately responds with L. If not, By searches ((T,¢),value2) €
Tr, such that ¢ = IBE.Enc(params, T, ¢;value2) holds, and also searches
((upk,m||r,T),valuel) € Tp, such that ¢ = PKE.Enc(upk,m||r;valuel)
holds. If both exist, B; responds with m. Otherwise, responds with L.

Challenge: A issues (upk™,T*, mo, m1). By randomly chooses r; € R and com-
putes & < PKE.Enc(upk™, my||ri; Hi(upk™, m;||r;, T*)) for i € {0,1}. Next,
By issues (¢o, ¢1) to the challenger of the IND-ID-CPA game and receives c*.
Then By sets CT* = (T*,¢*) and responds with CT™.

Output: Finally, A outputs a guess b’. By directly outputs b'.

If the above simulations succeed, the equation b’ = b holds with the probability
Advii::}fE»PC,A'

There are four special cases according to the activity of A.
[Case 1]: A issues (upk,T, CT = (T,c)) to the time-period decryption oracle
such that [{m | (CT,-) = Enc(tpk, T, upk,m)}| > 2.
[Case 2-1]: A issues (upk,T,CT = (T,c)) to the time-period decryption
oracle where a issued ciphertext is valid and corresonding intermediate ci-
phertext was not issued to the Hs hash oracle: For some 7, m, these for-
mulas ¢ = IBE.Enc(params,T, ¢ Ho(T,¢)) and (T,¢) ¢ Tp, hold where ¢ «+
PKE.Enc(upk, m||r; Hy (upk, m||r,T)).
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[Case 2-2]: The same event as Case 2-1 occurs except that corresponding inter-
mediate ciphertext was issued to the Hs hash oracle but corresponding plaintext
was not issued to the H; hash oracle.

[Case 3]: A issues (T*,¢;) where b e {0,1} to the Hy hash oracle.

Case 1 contradicts the collision resistance of the PKE encryption. More precisely,
the collision resistance of the PKE encryption guarantees that if a plaintext is
different, an intermediate cipertext is also different. On the other hand, params
is honestly generated so we use the completeness of the IBE scheme: if an in-
termediate ciphertext is different, a ciphertext is also different. In summary, a
ciphertext does not collide, so the number of elements belonging to the group
‘{m | (CT,-) = Enc(tpk, T, upk,m)}‘ is at most 1. Therefore, the Case 1 does
not occur.

Case 2-1 occurs at most negligible probability. By definition of Case 2-1, a hash
value Ho(T, ¢) is not determined and we assume that Hs is a random oracle.
Therefore Case 2-1 occurs if ¢ = IBE.Enc(params, T, & R) holds for randomly
picked R € Rzg. Such a probability at most v;55. Note that the adversary can
choose user’s public key, so we need to assume negligible ypgg-uniformity for any
(possibly invalid) pk.

Case 2-2 occurs with the probability at most vpxs. We do not give the de-
scription since it is almost the same as Case 2-1.

When Case 3 occurs B fails to similate the Hs hash oracle since By does
not know Hy(T™*,é) and also does not know b. However, the probability that
adversary issues (T, ¢,) is at most to 1/|R| at each query, where b denotes 1 —b.
This is because the adversary’s view is independent to ¢,. If the adversary issues
(T*,é), B1 wins the IND-ID-CPA game.

Consequently, those whole simulations succeeds in overwhelming probability.

O

Theorem 2. Suppose an IBE scheme has extensive vg-uniformity and the
collision resistance of the encryption, and a PKE scheme is IND-CPA secure
with extensive Ypxp-uniformity where v,z and Ypxp are negligible. Our proposed
scheme is then Type-IIt secure in the random oracle model.

Sketch of Proof. Assume that there exists an adversary A that breaks Type-1IT
security of our proposed scheme. Then we can also construct an adversary Bs
that breaks the IND-CPA security of the PKE scheme.

On input pk, By runs as follows.

Setup: B gives security parameter 1* to A and gets tpk. By generates two lists
Tr, = Th, = ¢, sets upk™ = pk, and gives upk to A

Hash queries: B; responds to hash queries while maintaining two query-
answer lists, 75, and 7Tp,, in the usual manner except that if A issues
(upk™,my||r;, T*) where b € {0,1} to the H; hash oracle, B, immediately
outputs b as a guess of the IND-CPA game and halts. An input-output pair
is recorded as (input, output) in these lists. _ N

Time-period decryption queries: A issues (upk, T, CT = (T,c¢)). U T # T,
By immedeately responds with L. If not, By searches ((T),¢),value2) €
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Tn, such that ¢ = IBE.Enc(params,T,é value2) and also searches
((upk,m||r,T),valuel) € Ty, such that é = PKE.Enc(upk, m||r, T;valuel).
If both exist, Bs responds with m. Otherwise, By responds with L.

Pre-open decryption queries: A issues (upk, pok, CT = (T,c)). Bz searches
(T, pok),value2) € Tp, such that ¢ = IBE.Enc(params,T, pok;value2).
and also searches ((upk,m||r,T),valuel) € Ty, such that pok =
PKE.Enc(upk, m||r, T;valuel). If both exist, By responds with m. Otherwise,
By responds with L.

Challenge: A issues (T, mgp, m1). B2 randomly chooses 1,71 € R and issues
(mol|ro, m1||r1) to the challenger in the IND-CPA game. After that, Bs re-
ceives ¢*, computes ¢* + IBE.Enc(params, T*, ¢*; Ho(T*,¢%)), and responds
(CT* = (T*,c*), pok™ = ¢*),

Output: Finally, A outputs a guess b'. By directly outputs b’.

If above simulations succeed, the equation b = b holds with the probability
Advape»II+
TRPKE-PC, A"
There are seven special cases according to the activity of A.

[Case 1-1]: A issues (upk,T, CT = (T, ¢)) to the time-period decryption oracle
such that |{m | (CT,-) = Enc(tpk, T, upk7m)}| > 2.

[Case 1-2]: A issues (upk, pok, CT = (T, c)) to the pre-open decryption oracle
such that |{m | (CT, pok) = Enc(tpk, -, upk,m)}‘ > 2.

[Case 2-1]: This case is the same as Case 2-1 in the proof of Type-I security.
[Case 2-2]: The same as Case 2-2 in the proof of Type-I security.

[Case 3-1]: Above cases do not occur and A issues (upk, pok, CT = (T, ¢)) to the
pre-open decryption oracle where a issued ciphertext is valid and corresonding
intermediate ciphertext (pre-open key) was not queried to the Hs hash oracle:
For certain r, m, the equations pok = PKE.Enc(upk, m||r; Hy (upk, m||r,T)), and
¢ = IBE.Enc(params, T, pok;

Hy (T, pok)) hold and (T, pok) ¢ Tp,,.

[Case 3-2]: Above cases do not occur and the same event as Case 3-1 occurs
except that corresponding intermediate ciphertext (pre-open key) was issued to
the Hs hash oracle but corresponding plaintext was not issued to the H; hash
oracle.

[Case 4]: Above cases do not occur and A issues (upk™,m;||r;, T*) where be
{0,1} to the H; hash oracle.

Cases 1-1 and 1-2 do not occur as almost the same discussions as Case 1 in Type-
I security proof except that pk is generated honestly and params is generated
maliciously. Therefore we needs the collision resistance of the IBE’s encryption.

Cases 2-1 and 2-2 occurs at most negligible probability. These case is the same
as Cases 2-1 and 2-2 in Type-I security except that a params is chosen by the
adversary, so we need extensive 7;zg-uniformity.

Cases 3-1 and 3-2 also occurs at most negligible probability since the same as
Cases 2-1 and 2-2.

When Case 4 occurs By fails to similate the H; hash oracle since By doesn’t
know Hi(upk™, mp||ry, T*) and also doesn’t know b. However, the probability
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that the adversary issues (upk™, m,||r,, T*), is at most 1/|R| at each query, where

b denotes 1 — b. This is because the adversary’s view is independent to m,||r,.
If the adversary issues (upk™, my||rs, T*), B1 wins the IND-CPA game.

Consequently, those whole simulations succeeds in overwhelming probability.

O

It should be noted that in the above proof hash functions H; and Hs are regarded
as the random oracle in spite of the fact that they are chosen by the adversary.
However, this is not a matter in the theoretical proof in the random oracle model,
and is practically natural since the hash function is typically chosen according
to the standard, as SHA-1.

Theorem 3. Suppose an IBE scheme has the collision resistance of the encryp-
tion. Our proposed scheme then has the strong binding property.

Sketch of Proof. Suppose an adversary A wins the strong binding game with out-
puts (CT* = (T*,c*), sk, pok™). By the definition of the game, L # my, #
Mmpo # L holds where my. <+ Dectr(params, sy, usk™, c¢*), and mp, <
Decpo (params, pok™, usk™, c*). Please notice that in the decryption, our construc-
tion conducts a re-encryption check.

First, L # my, means T =T.

Second, L # my # mp, F# L and the PKE encryption being
injective (notice that upk is generated honestly) mean é* # pok™ where
pk* = wupk™, ¢& = PKE.Enc(pk®, m||rer; Hi(pk, mu||7er, T*)), pok™ =
PKE.Enc(pk™, mypo||Tpo; H1(pk, Mpo||rpo, T*)) for some ry,. and some 7.

Third, ¢ # pok™ and the IBE encryption has collision resis-
tance of the encryption also mean IBE.Enc(params,T™*,é*; Ho(T*,¢*)) #
IBE.Enc(params, T*, pok™; Ha(T*, pok™)).

Table 2. Scheme Comparison

Generic or concrete Security notion Model

HYL1 [22] concrete IND-TR-CPA g & no estimation & no estimation ROM
HYL2 [22] concrete IND-TR-CCA g & no estimation & no estimation ROM
NMKM [27] generic IND-TR-CPA1s & IND-TR-CCArs & Binding  SM
MNM1 [26] generic IND-TR-CPA1s & IND-TR-CCArs & Binding SM

MNM2 [26] generic IND-TR-CPA1s & IND-TR-CCArs & Binding ROM

DT [15] concrete IND-TR-CPA1s & IND-TR-CCA~s & Binding ROM
CY [11] concrete Type-1 & Type-1I & Binding SM

ours generic Type-1 & Type-IIT & Strong binding ROM

In the security notion & model columns, the left side is the security against malicious
receivers, the middle is the security against a malicious time-server, and the right is
the security against malicious senders. The compared schemes are ranked lower as the
security notion is strong. Note that IND-TR-CCA g is weaker than IND-TR-CPArs,
and “no estimation” means there is no adversarial model where the adversary gets a
time-server’s secret key. “ROM?” indicates that security is proved in the random oracle
model, and “SM” indicates that security is proved in the standard model.
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This contradicts to the definition when A wins. So our proposed construction
has the strong binding property. O

4.2 Comparison

We now compare the existing TRPKE-PC schemes [22ITTIT527/26] in the respect
of the general/concrete construction, security, and model. Our construction sat-
isfies the strongest security, and is generic construction in the random oracle
model.

5 Conclusion

We showed that previous security definitions are incomplete or insufficient.
Therefore, we defined new security definitions. We gave a precise definition of
a strong decryption oracle against malicious receivers, strong security defini-
tion against a malicious time-server cheating under adversarial chosen keys, and
strong security definition against senders cheating even if the adversary colludes
with the time-server.

We also proposed a generic construction of a TRPKE-PC scheme satisfy-
ing stronger security notions. Our proposed construction is the first generic
TRPKE(-PC) construction secure against a malicious time-server with malicious
key generations.

Acknowledgment. We thank Keita Xagawa for useful discussions, and also
thank to the anonymous reviewers for their helpful comments.
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A More Related Works

Timed-release encryption (TRE) has a mechanism whereby a ciphertext can be
decrypted after a time-period. (We distinguish TRE and TRPKE by whether
a sender specifies a receiver.) There are two approaches to constructing a TRE
scheme. One uses time-lock puzzles [29], in which a receiver has to solve “puzzles”
to decrypt the ciphertext; and it is sufficiently difficult that the receiver cannot
solve it within a specific time. The other uses a trusted agent (i.e., time-server)
that periodically, or as needed, generates time-specific information.

Chan and Blake [7] proposed the first TRPKE scheme, and after that sev-
eral additional functionalities, security aspects, and generalizations have been
introduced. Cheon et al. [8l9] introduced a TRE scheme with authentication.
Cathalo et al. [6] defined a notion of release time confidentiality for TRPKE
and Chow and Yiu [I1] defined it for TRPKE-PC. Chow et al. [10] generalized
TRPKE so that a time-period can be hierarchical, and Paterson et al. [28] gen-
eralized TRE for time-specific encryption (TSE), in which a sender can specify a
“Interval” of a time-period, such as [Tfrom, Tto), and a receiver can decrypt a ci-
phertext with a time instant key corresponding to a time-period T' € [Tfrom, Tto)-
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Security notions for TRPKE-PC were first defined by Hwang et al. [22] and
later adjusted by Dent and Tang [15]. Essentially, three security notions were
defined: time-server security, insider security and sender security, respectively
named IND-TR-CCArg, IND-TR-CPAs and Binding. IND-TR-CCAg security
is defined in an indistinguishability game between a challenger and an adversary
where the adversary can issue a time-period decryption query consisting of a
ciphertext and a time-period to obtain a plaintext and can issue a pre-open
decryption query consisting of a ciphertext and a pre-open key to obtain a cor-
responding plaintext. IND-TR-CPA g security is similar to IND-TR-CCArg, ex-
cept that the adversary can only issue a release query consisting of a time-period
to obtain corresponding time signal. The Binding notion means that the adver-
sary cannot make a ciphertext, time-period and pre-open key where a plaintext
that is decrypted with time-period decryption differs from one decrypted with
pre-open decryption.

B IND-CPA Security

We describe IND-CPA security [2I] for a PKE scheme based on the following
IND-CPA game between a challenger C and an adversary A. At the beginning
of the game, C runs the key generation algorithm (pk, sk) <~ PKE.KG(1*) and
gives the public key pk to A. A gives two messages mg, my to C. C randomly
chooses b € {0,1} and gives a challenge ciphertext ¢* «Penc(pk,mp) to A. A
finally outputs a guess b’ € {0,1}. We define the advantage of A for PKE in the
IND-CPA game as Advp, 4% (\) = 2Prb=b]—1|.

PKE, A

Definition 4. A public-key encryption scheme is IND-CPA secure if no PPT

adversary A has non-negligible advantage Adv 54" (X).

C IND-ID-CPA Security

We describe the IND-ID-CPA security [5] for an IBE scheme based on the fol-
lowing IND-ID-CPA game between a challenger C and an adversary A. At the
beginning of the game, C takes a security parameter 1*, runs the setup algorithm
(params, msk) < IBE.Setup(1*), and gives params to A. A gives two messages
mo, my and an identity ID* to C. Then C randomly chooses b € {0,1} and gives
a challenge ciphertext ¢* « IBE.Enc(params, ID*,m;) to A. A finally outputs a
guess b’ € {0,1}.

During the game, the adversary A can issue extraction queries ID to the
challenger C to obtain the decryption key drp except the challenge identity ID*.

We define the advantage of A in the IND-ID-CPA game as
Advi DR = 2Prb =] — 1.

1BE, A

Definition 5. An identity-based encryption is IND-ID-CPA secure if no PPT

adversary A has non-negligible advantage Adv ;7" (X).
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D Analysis of Chow and Yiu’s Scheme

We show here a previous Type-II secure scheme [11] is vulnerable to a mali-
cious time-server with malicious key generation. We first review how a time-
server’s/user’s public key and a ciphertext are generated in the Chow and Yiu’s
scheme. We describe algorithms only Setup, KeyGen, Enc that are sufficient to
analyze, and omit detail definitions (e.g., the definition of bilinear map) due to
the space limitation.

— Setup(1*): Let G, Gr be two multiplicative groups with a bilinea map é : G x
G — Gr. They are of the same order p, which is a prime and 2* < p < 2*+1,
Pick the following components:

e Encryption key: choose two generators g, g2 + G.
e Master public key: choose an exponent « < Z, and set g; = g°.
e Hash key for time-identifier: randomely pick (£ + 1) G elements

ﬁ = (v, u1,...,up). Let T =tyty---ty. Define F,(T) = v’ §=1 u' .
e Hash key for ciphertext wvalidity: randomely pick =
(v',v1,...,v0) € G This vector defines F,(w) = v’ Hle v?j where

w is an ¢-bits string b1y - - - by.

e Key-derivation function (KDF): K is a KDF such that K : G; —
{0, 1}7+*+1in which assuming that the output of K is computationally
indistinguishable from a random distribution when the input comes from
a uniformly distribution. Also assuming an implicit one-to-one mapping
between G and {0, 1}F+1.

Let H be a collision resistance hash function. The output is: (pamms =
A\ p,G,Gr,e(-,), ¢, H K, g,91, g2, ﬁ, 7), msk = 9(21)

— KeyGen(ipk): Pick usk < Z; and set upk = (gusk, gusk).

— Enc(tpk, T, upk, m): See upk as (X,Y), If e(X,g1) = e(g,Y) holds, pick
S  Zp, set k = K(é(X,g2)°), compute CT = (C1,Cq,7,0) = (m .
(Y, g2)", (T Fu(T)*) @ k, g°, Fy(w)*) where w = H(Cy|Ca |kl upk) and set
pok = g;. Otherwise, return L.

We next show how an adversary, i.e., malicious time-server with malicious key
generation, decrypt a ciphertext without a receiver’s secret key.

The adversary generate params as follows. The adversary honestly chooses
H, K,g,gl,ﬁ, . Then the adversary picks = < Z;, sets g = ¢g* and then
publishes params. To decrypt a ciphertext (C1, Ca, 7, 0) encrypted with a public
key (X,Y), the adversary computes é(glﬂm.

A distribution of maliciously generated params is identical to honestly gen-
erated one, so no one can detect the malicious key generation. Chow and Yiu
[11] insists that in practice these elements of params can be generated by using
a pseudorandom function with a public seed. If so, we should proof the security
under such condition but they did not: in the proof of Type-I security, a simula-
tor maliciously generates params and embeds a trapdoor in it without a public
seed.
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1 Introduction

The primitive of proxy re-encryption (PRE) is first proposed by Blaze et al. [2]
which involves three parties: Alice, Bob, and a proxy. PRE allows allows Alice
to temporarily delegate the decryption rights to Bob via a proxy, i.e., the proxy
with proper re-encryption key can translate a ciphertext encrypted under Alice’s
public key into another ciphertext that can be decrypted by Bob’s secret key.
Unlike the traditional proxy decryption scheme, PRE doesn’t need users to store
any additional decryption key, in other words, any decryption would be finished
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using only his own secret keys. PRE can be used in many scenarios, such as
email forwarding, distributed file system, and the DRM of Apple’s iTunes.

The concept of identity-based encryption (IBE) was first introduced by Shamir
[16]. In an IBE system, arbitrary strings such as e-mail addresses or IP addresses
can be used to form public keys for users. After Boneh and Franklin [5] proposed
a practical identity-base encryption scheme, Green and Ateniese [I1] proposed
the first identity-based proxy re-encryption (IB-PRE). It allows the proxy to
convert an encryption under Alice’s identity into the encryption under Bob’s
identity. Due to the simplification of public-key infrastructure in identity-based
framework, IB-PRE schemes are more desirable than non-identity-based ones.

According to the direction of transformation, IB-PRE schemes can be clas-
sified into two types, one is bidirectional, i.e., the proxy can transform from
Alice to Bob and vice versa; the other is unidirectional, i.e., the proxy can only
convert in one direction. Blaze et al. [2] also gave another method to classify IB-
PRE schemes: single-hop, where the ciphertext can be transformed only once;
and multi-hop, where the ciphertext can be transformed from Alice to Bob to
Charlie and so on.

IB-PRE schemes are different from PRE schemes in which there exists a
trusted private key generator (PKG) to generate all secret keys for identities.
If Alice can compute re-encryption keys without the participation of Bob or
PKG, the scheme is called non-interactive, or else called interactive. Obviously,
it would be a hard work if all re-encryption keys are computed by the PKG.
Therefore, it is more desirable to find non-interactive IB-PRE schemes. How-
ever, when generating secret keys, PKG insert the master key to users’ secret
keys. Obviously, re-encryption must involve some information of master key. But
it is always hard to extract the part of master key from secret key to generate
re-encryption, since elements of secret keys are always group elements and hard
to get the discrete log based on a random generator.

Up to now, there are two ways to generate the re-encryption keys. One is
proposed by Green and Ateniese [II]. In Green-Ateniese paradigm, to form a
re-encryption key from Alice to Bob, a token is inserted in Alice’s secret key
and the token is encrypted to Bob, then these two parts form the re-encryption
key. It is non-interactive in the generation of the re-encryption key and the re-
encryption can be multi-hop where the ciphertext can be re-encrypted again
and again. But the drawback of this method is that after one re-encryption, the
encryption of the token would be attached to the ciphertext. So the ciphertext
will grow linearly with the re-encryption times. The other is interactive proposed
by Matsuo [I5] in which the re-encryption key is generated by the private key
generator or an extra re-encryption key generator which also owns the master
key. This type of IB-PRE schemes are always single-hop where the re-encrypted
ciphertext cannot be re-encrypted again.

1.1 Owur Contribution

We present two novel unidirectional identity-based proxy re-encryption schemes.
The first scheme is a single-hop scheme with master secret security. To make
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this scheme be unidirectional, we present two kinds of ciphertexts, the original
ciphertext is called the second level ciphertext which is nearly the same as Lewko-
Waters IBE scheme’s ciphertext, the transformed ciphertext is called the first
level ciphertext and cannot be re-encrypted more. Our way of generating re-
encryption keys are different from Green-Ateniese and Matsuo. To make the re-
encryption key be generated by the user itself, we introduce non-group elements
containing part information of master keys in user’s secret keys and provide
re-randomization to avoid collusion of proxy and users.

Based on our single-hop scheme, we present a multi-hop scheme in which
the decryption cost and size of ciphertext do not grow linearly with the re-
encryption times. To the best of our knowledge, this scheme is the first unidirec-
tional IB-PRE scheme without growing linearly in the size of ciphertext as the
re-encryption times increasing. Both schemes are non-interactive, which means
the re-encryption key can be generated by Alice without the participation of
Bob or the private key generator. We construct our schemes in composite or-
der groups and use dual system encryption to prove the security of proposed
schemes.

1.2 Related Works

Identity-Based Encryption. The first practical IBE scheme, proposed by
Boneh and Franklin [5], was proven secure in the random oracle model. To remove
random oracles, Canetti, Halevi, and Katz [7] suggested a weaker security notion
for IBE, known as selective identity (selective-ID) security, relative to which
they were able to build an inefficient but secure IBE scheme without using
random oracles. Boneh and Boyen [3] proposed two new efficient selective-ID
secure IBE schemes without random oracles. Later Boneh and Boyen [4], Waters
[20] proposed new IBE schemes with full security. In Eurocrypt’06, Gentry [10]
proposed an efficient identity based encryption with tight security reduction in
the standard model but based on a stronger assumption.

By using dual system encryption, Waters [21] proposed the first fully secure
IBE and HIBE schemes with short parameters under simple assumptions. But
Waters’s HIBE scheme does not have constant ciphertext size. Afterwards, an-
other two fully secure HIBE schemes with constant size ciphertexts were pro-
posed in composite order groups [8|[13].

Identity-Based Proxy Re-encryption. Ateniese et al. [I] presented the first
unidirectional and single-use proxy re-encryption scheme. In 2007, Green and
Ateniese [IT] provided the first identity-based proxy re-encryption scheme but
their scheme is secure in the random oracle model. Chu and Tzeng [9] pro-
posed a new multi-hop unidirectional identity-based proxy re-encryption scheme
in the standard model. However, their scheme is not chosen-ciphertext secure,
Shao et al. [17] pointed out that its transformed ciphertext can be modified to
another well-formed transformed ciphertext by anyone. Recently Lai et al. [12]
gave new constructions on IB-PRE based on identity-based mediated encryp-
tion. Luo et al. [I4] also gave a new generic IB-PRE construction based on an
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existing IBE scheme. Wang et al. [I8] proposed the first multi-use CCA-secure
unidirectional IB-PRE scheme. All these schemes follow Green-Ateniese token
paradigm, which makes the decryption cost and size of ciphertext grow linearly
with the re-encryption times. In addition, Matsuo [I5] proposed a new proxy
re-encryption system for identity-based encryption, but his solution needs a re-
encryption key generator (RKG) to generate re-encryption keys. Wang et al. [19]
followed the route of Matsuo and proposed new secure IB-PRE schemes which
let the PKG take part in generating the re-encryption keys.

1.3 Organization

The remaining paper is organized as follows. In Section 2l we review the defini-
tions related to our proposals. In what follows, we present the single-hop scheme
and its security analysis, and the multi-hop scheme and its security analysis, in
Section Bl and Section [4] respectively. In Section [f] we discuss some extensions of
the two schemes. Finally, we conclude the paper in Section [6l

2 Backgroud

2.1 Multi-hop Identity-Based Proxy Re-encryption

Definition 1. A multi-hop unidirectional IB-PRE scheme consists of the fol-
lowing six algorithms: Setup, KeyGen, ReKeyGen, Enc, ReEnc, and Dec.

Setup(1*). This algorithm takes the security parameter \ as input and gener-
ates a public key PK, a master secret key MK.

KeyGen(MK,Z). This algorithm takes MK and an identity Z as input and
generates a secret key SKz associated with I.

ReKeyGen(SKz,Z'). This algorithm takes a secret key SKz and an identity
T’ as input and generates a re-encryption key RKz_ 1.

Enc(PK, M,T). This algorithm takes PK, a message M, and an identity T as
input, and generates a ciphertext CTz.

ReEnc(CTz, RKz_,7/). This algorithm takes a a ciphertext CTz encrypted to
T and a re-encryption key RKz_,7/ as input, generates a ciphertext CTz
encrypted to T'.

Dec(CTz,SKz). This algorithm takes a ciphertext CTz and SKz associated
with T as input and returns the message M or the error symbol L if CTz is
invalid.

Correctness. A multi-hop unidirectional IB-PRE scheme should satisfy the
following requirements:

1. Dec(Enc(PK,M,T),SKz) = M;
2. Dec(ReEnc((---ReEnc(Enc(PK, M,7),RK7_,1,)--), RKz1, ,,1,),5K1,)
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We describe the game-based security definitions for multi-hop unidirectional IB-
PRE systems as follows.

Definition 2. The security of a multi-hop unidirectional IB-PRE scheme is de-
fined according to the following IND-PrID-ATK game, where ATK € {CPA, CCA}.

Setup. Run the Setup algorithm and give PK to the adversary A.

Phase 1. A makes the following queries.

~ Extract(T): A submits an identity T for o KeyGen query, return the
corresponding secret key SKr.

- RKExtract(Z,T'): A submits an identity pair (Z,Z") for « ReKeyGen
query, return the re-encryption key RKz_ 7.

If ATK = CCA, A can make the additional queries:

- Reencrypt(CTz,Z,7'): A submits a ciphertext CTz encrypted for T
and an identity T' for a ReEnc query, return the re-encrypted ciphertext
CTI/ = ReEnc (CTI, RKI_>I/) where RKI%I/ :ReKeyGen(SKI,I’)
and SK7 = KeyGen(MK, 7).

— Decrypt(CTz,Z): A submits a ciphertext CTz encrypted for T for a
Dec query, return the corresponding plaintext M = Dec(CTz, SK7),
where SK17 = KeyGen(MK, 7).

Note that A is not permitted to choose T* which will be submitted in Challenge
phase such that trivial decryption is possible using keys extracted during this
phase (e.g., by using extracted re-encryption keys to translate from I* to some
identity for which A holds a decryption key).

Challenge. A submits a challenge identity T* and two equal length messages
My, My to B. B flips a random coin b and passes the ciphertext CT* =
Enc(PK, My, Z*) to A.

Phase 2. Phase 1 is repeated with the following restrictions. Let C be a set of
ciphertext/identity pairs, initially containing the single pair (Z*,CT*). For
all CT € C and for all RK given to A, let C' be the set of all possible values
derived via (one or more) consecutive calls to Reencrypt:

— A is not permitted to issue any query Decrypt(CT,Z) where (CT,Z) €
cnc);

— A is not permitted to issue any query Extract(Z) or RKExtract(Z,T’)
that would permit trivial decryption of any ciphertext in (CNC');

- A is not permitted to issue any query Reencrypt(CT,Z,7') where A
possesses the keys to trivially decrypt ciphertexts under I’ and (CT,T) €
(CNC"). On successful execution of any re-encrypt query, let CT' be the
result and add the pair (CT',Z') to the set C.

Guess. A outputs its guess b’ of b.

The advantage of A in this game is defined as Adva = |Pr[b’ = b] — 1| where the
probability is taken over the random bits used by the challenger and the adver-
sary. We say that a multi-hop unidirectional IB-PRE scheme is IND-PrID-ATK
secure, where ATK € {CPA, CCA}, if no probabilistic polynomial time adversary
A has a non-negligible advantage in winning the IND-PrID-ATK game.
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2.2 Single-hop Identity-Based Proxy Re-encryption

Single-hop IB-PRE can be viewed as a weaker concept than multi-hop IB-PRE,
in which the ciphertext can be re-encrypted only once or not. According to
the re-encryption time, its ciphertext is divided into two levels: second level
ciphertext and first level ciphertext. A second ciphertext can be re-encrypted
into a first level one (intended for a possibly different receiver) using the suitable
re-encryption key and a first level ciphertext cannot be re-encrypted for another
party. So the algorithms Enc and Dec are divided into two sub-algorithms
Enc,; and Ency, Decs and Decy, respectively. The other algorithms are similar
to multi-hop IB-PRE schemes. Furthermore, a single-hop unidirectional IB-PRE
scheme should satisfy the following requirements:

1. Decy(Ence(PK, M,T),SKz1) = M;
2. Dec;(Ency(PK, M,T),SKz) = M;
3. Dec;(ReEnc(Ence(PK, M,7), RKz_,7/), SK1/) = M.

The game-based security definitions for single-hop unidirectional IB-PRE sys-
tems are derived from previous multi-hop IB-PRE systems. Since single-hop uni-
directional IB-PRE system has two level ciphertexts, there are two level securities
called IND-2PrID-CPA(CCA) security and IND-1PrID-CPA(CCA) security.

Definition 3. The security of a single-hop unidirectional IB-PRE scheme at the
second level is defined according to the following IND-2PrID-ATK game, where
ATK € {CPA,CCA}.

Setup. Run the Setup algorithm and give PK to the adversary A.
Phase 1. A makes the following queries.

— Extract(Z): A submits an identity T for a KeyGen query, return the
corresponding secret key SKr.

- RKExtract(Z,T'): A submits an identity pair (Z,Z") for « ReKeyGen
query, return the re-encryption key RKz_ 7.

If ATK = CCA, A can make the additional queries:

- Reencrypt(CTz,Z,7'): A submits a second level ciphertext CTz en-
crypted for T and an identity ' for a ReEnc query, the challenger gives
the adversary the re-encrypted ciphertext CTz =ReEnc (CTz, RKz_,1/)
where RK7_,7» = ReKeyGen(SKz,Z') and SK7 = KeyGen(MK, 7).

- Decrypt(CTz,Z): A submits a first level ciphertext CTz encrypted for
T for a Decy query, return the corresponding plaintext M = Decy(CTz,
SKr1), where SK7 = KeyGen(MK, 7).

Challenge. A submits a challenge identity T* and two equal length messages
My, My to B. If the queries
- Extract(I*); and
- RKExtract(Z*,7') and Extract(Z') for any identity T'
are never made, then flip a random coin b and pass the ciphertext CT* =
Ency(PK, My, I*) to A.
Phase 2. Phase 1 is repeated with the restriction that A cannot make the fol-
lowing queries:
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Extract(I*);
RKExtract(Z*,1') and Extract(I') for any identity T';

- Reencrypt(CT*,I*,T') and Extract(Z') for any identity T';

— Decrypt(CTz/,T') for any identityZ’, where CTr =ReEnc(CT*,Z*,T').
Guess. A outputs its guess b’ of b.

The advantage of A in this game is defined as Adv = |Pr[b’ = b] — }| where the
probability is taken over the random bits used by the challenger and the adversary.
We say that a single-hop unidirectional IB-PRE scheme is IND-2PrID-ATK
secure, where ATK € {CPA, CCA}, if no probabilistic polynomial time adversary
A has a non-negligible advantage in winning the IND-2PrID-ATK game.

Note that in the Decrypt query, we only provide the first level ciphertext de-
cryption because any second level ciphertext can be re-encrypted to a first level
ciphertext and then be queried for decryption.

Definition 4. The security of a single-hop unidirectional IB-PRE scheme at
the first level is defined according to the following IND-1PrID-ATK game, where
ATK € {CPA,CCA}.

Setup. Run the Setup algorithm and give PK to the adversary A.
Phase 1. A makes the following queries.
— Extract(T): A submits an identity T for a KeyGen query, return the
corresponding secret key SKr.
- RKExtract(Z,7'): A submits an identity pair (Z,7') for a ReKeyGen
query, return the re-encryption key RKz_7/.
If ATK = CCA, A can make the additional queries:

~ Decrypt(CTz,Z): A submits a first level ciphertext CTz encrypted to T
for a Decy query, return the corresponding plaintext M = Decy(CTz,
SKrt), where SK7 = KeyGen(MK, 7).
Challenge. A submits a challenge identity T* and two equal length messages
My, My to B. If the query Extract(Z*) is never made, then C flips a random
coin b and passes the ciphertext CT* = Ency(PK, My, T*) to A.

Phase 2. Phase 1 is repeated with the restriction that A cannot make the fol-
lowing queries:
- Extract(I*);
— Decrypt(CT*,T*).
Guess. A outputs its guess b’ of b.

The advantage of A in this game is defined as Adva = |Pr[b’ = b] — 1| where the
probability is taken over the random bits used by the challenger and the adversary.
We say that a single-hop unidirectional IB-PRE scheme is IND-1PrID-ATK
secure, where ATK € {CPA, CCA}, if no probabilistic polynomial time adversary
A has a non-negligible advantage in winning the IND-1PrID-ATK game.
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2.3 Master Secret Security

Master secret security is an important property for unidirectional PRE defined
by Ateniese et al. [I]. Roughly speaking, even if the dishonest proxy colludes
with the delegatee, it is still impossible for them to derive the delegator’s secret
key in full.

Definition 5. The master secret security of a single-hop or multi-hop unidirec-
tional IB-PRE scheme is defined according to the following master secret security
game.

Setup. Run the Setup algorithm and give PK to the adversary A.
Phase 1. A makes the following queries.
— Extract(T): A submits an identity T for o KeyGen query, return the
corresponding secret key SKr.
- RKExtract(Z,T'): A submits an identity pair (Z,ZI") for « ReKeyGen
query, return the re-encryption key RKz_ 7.
Challenge. A submits a challenge identity Z* and query Extract(Z*) is never
made.
Phase 2. Phase 1 is repeated with the restriction that A cannot make query
Extract(T*).
Output. A outputs the secret key SKz- for the challenge identity T*.

The advantage of A in this game is defined as Advg = Pr[A succeeds]. A single-
hop or multi-hop IB-PRE scheme has master secret security if no probabilistic
polynomial time adversary A has a non-negligible advantage in winning the mas-
ter secret security game.

For single-hop unidirectional IB-PRE schemes, it is easy to see that the mas-
ter secret security is implied by the first level plaintext security. We have the
following result.

Lemma 1. For a single-hop unidirectional IB-PRE scheme, the master secret
security is implied by the first level plaintext security. That is, if there exists an
adversary A who can break the master secret security of a single-hop unidirec-
tional IB-PRE scheme &, then there also exists an adversary B who can also
break £’s IND-1PrID-CPA security.

Lemma [Tl is obvious, so we omit its proof here.

2.4 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced by Boneh, Goh and Nissim
in [6].

Definition 6. Let G be an algorithm called a bilinear group generator that
takes as input a security parameter A and outputs a tuple (N = p1paps, G, Gr,€)
where p1,p2 and ps are three distinct primes, G and G are two multiplicative
abelian groups of order N, and e : G X G — G is an efficiently computable map
(or “pairing”) satisfying the following properties:
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~ (Bilinear) ¥g,h € G,a,b € Zy, e(g*, h®) = e(g, h)*.
— (Non-degenerate) 3g € G such that e(g,g) has order N in Gr.

We assume that the group action in G and Gr as well as the bilinear map
e are all polynomial time computable in \. Furthermore, we assume that the
description of G and G includes a generator of G and G respectively.

We say that G,Gr are bilinear groups if the group operation in G and the
bilinear map e : G x G — Grp are both efficiently computable.

We let Gp,,G,, and G,, denote the subgroups of order pi,p; and p3 in G
respectively. There is an important property called “orthogonality” between two
different order subgroups under the bilinear map e, i.e., if g € G, and h € Gy,
where ¢ # j, then e(g,h) = 1. If g1 generates G,,, g2 generates Gp, and gs
generates G,,, then every element h of G can be expressed as g7 g5 g5 for some
values z,y,z € Zy.

2.5 Complexity Assumptions

We use the notation X <= S to express that X is chosen uniformly randomly
from the finite set S.

Assumption 1. Given a bilinear group generator G, we define the following
distribution: N
G = (N = pipaps, G,Gr,€) < G(N),
g & Gp,, X3 & Gps,
D= (G7 g, X3)7
R R
T Gp,, To < Gpyp,-

We define the advantage of an algorithm A in breaking Assumption 1 to be

Advilg(\) = Pr[A(D,T1) = 1] - Pr[A(D, T») = 1] .

Definition 7. We say that G satisfies Assumption 1 if Advf\}g(/\) s a negligible
function of \ for any probabilistic polynomial-time algorithm A.

Assumption 2. Given a bilinear group generator G, we define the following
distribution:
G = (N = p1p2p3, G, Gr,¢) &g,
0. X1 & G X Y &G X Y G
D = (G, g, X1X2, X3,Y2Y3),
&Gy T &G

We define the advantage of an algorithm A in breaking Assumption 2 to be

Advi% () = Pr[A(D,T1) = 1] - Prl[A(D,T3) = 1] .
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Definition 8. We say that G satisfies Assumption 2 if Advf‘?g()\) is a negligible
function of A for any probabilistic polynomial-time algorithm A.

Assumption 3. Given a bilinear group generator G, we define the following
distribution:

G = (N = p1paps, G, Gr.€) - G(\), @, s & Zn,

g (E Gpl,X27Y27Z2 (—11 Gp27X3 (—11 Gp3
D = (G,g,9%X2, X3,9°Y2, Zs),
T =e(g,9)*, Ty & Gr.

We define the advantage of an algorithm A in breaking Assumption 3 to be

Adv%(\) == Pr[A(D,Ty) = 1] = Pr[A(D,Tp) = 1] .

Definition 9. We say that G satisfies Assumption 3 if Advf\f”g(/\) is a negligible
function of \ for any probabilistic polynomial-time algorithm A.

3

Single-hop IB-PRE Scheme

In this section, we present a single-hop IB-PRE scheme. Our construction is
based on Lewko-Waters IBE scheme [I3] with small modification. We use its
ciphertext as the second level ciphertext and add an extra element to make the
re-encryption feasible. The scheme is constructed as follows.

3.1 Construction

Setup(1?). Given the security parameter A, this algorithm first gets a bilin-

ear group G of order N = pipops from G(\) where p; and py are distinct
primes. Let G, denote the subgroup of order p; in G. It then chooses
a,b,c,d,a, 8,y € Zn and g € Gp, randomly. Next it computes u; = g%,
hi = g% us = g% hy = ¢%, w = ¢°, and v = ¢". The public parameters are
published as

PK = {N797 Ui, hla Uz, h2a w,v, e(g7g)a}'

The master secret key MK is {a, 5,7, a,b, ¢, d} and a generator of Gp,.
The identity space is Zy and the message space is Gp.

KeyGen(MK, 7). Given an identity Z € Zy, this algorithm chooses 7,t, t’,

x,y, z € Zy and Rs, Rf, Rs, Ry € G,, randomly, and computes Dy =
ga(U%hQTRS, Dy = g"Rb, By = aCI—Tb’ Ey, = gﬁx7 F = adI++yb’ F, = gﬁy’
21 = gy L2 = 9%, Ky = B(czt+d)’ Ky = g%g""" R3, K3 = g" R3. We
require that the PKG always use the same random value ¢ for Z. This can
be accomplished by using a pseudo-random function (PRF) or an internal
log to ensure consistency.

The secret key is SKI = (D17 DQ, E17 E27 Fl, FQ, Zl, 227 Kl, K27 Kd)
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ReKeyGen(SKz, I/). Given a secret key SKIZ (D17 DQ, El, Eg, Fl, FQ, Zl, Zg,
K, K>) for Z and an identity Z’ # Z, this algorithm chooses ki, ks € Zn
randomly and computes rk; = (E1 + k1 - Z1) - Z' + (Fy + k2 - Z1), 1ke =
(Bz- Zg" ) - (Fa - Z5%).

The re-encryption key is RKz_,7 = (rk1,7k2).

Ency(PK, M,7T). To encrypt a message M € Grp for an identity Z, this algo-
rithm chooses s € Zy randomly and computes C = M - e(g,g)**, C1 =
(u{hl)s, C2 = gs, Cg =°.

The second level ciphertext is CTz = (C, Cq, Cs, Cs).

Enc, (PK, M,T). To encrypt a message M € Gr for an identity Z, this algo-
rithm chooses s € Zy randomly and computes C = M - e(g,9)**,C] =
e(ubha,w)®, Cy = g°, C3 = v°.

The first level ciphertext is CTz = (C, C7, Ca, C3).

ReEnc(CTz, RK7_,7/). Given a second level ciphertext CTz = (C, C1, Ca, Cs)
and a re-encryption key RKz_,7: = (rk1, rka), this algorithm computes C] =
e(Cy,w)™ 1 e(Cy,rke) L.

The re-encrypted ciphertext is CTz, = (C, C1, Ca, Cs).

Decy(CTz,SKz). Let CTz = (C,C4,C5,C3) be a second level ciphertext for
identity Z, it can be decrypted as

e(D2,Ch)

M=C- .
e(Dl,Cg)

Decy1(CTz,SK7z). Let CTz = (C,C1, Cs) be a first level ciphertext for identity
Z, it can be decrypted as

e(Ks,Cs)

_ . ! Kl.
M=C-(C) (K, Cs)’

Correctness at Second Level

e(D2,C1) _ e(g"Rs, (uih1)®) — e(g,g
e(D1,C2)  e(g*(uihi)"Rs, %) 7

Correctness at First Level

K C . . t,R/7 s
(cp e(Ka, 3)—e(u§h2,w)s BeTta) . elg’ Rz, 97°) = e(g, g)~°".

Ce(K2,Ch) e(gg"+" Ry, g°)
3.2 Security
We have the following results for our proposed single-hop IB-PRE scheme.

Theorem 1. If Assumptions 1, 2, 3 hold, then our single-hop IB-PRE scheme
1s IND-2PrID-CPA secure.

Theorem 2. If Assumptions 1, 2, 3 hold, then our single-hop IB-PRE scheme
is IND-1PrID-CPA secure.
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It is easy to get the following result from Lemma [Tl and Theorem
Corollary 1. Our single-hop IB-PRE scheme has master secret security.

We use the dual system encryption technique to prove Theorem [0 and Theo-
rem [2l First we define two additional structures: semi-functional keys and semi-
functional ciphertexts. According to the encryption algorithms, there are two
types of semi-functional ciphertext: second level semi-functional ciphertext and
first level semi-functional ciphertext. These will not be used in the real system,
but they will be used in our proof.

Second Level Semi-functional Ciphertext. Let g2 denote a generator of the
subgroup G,,. A second level semi-functional ciphertext is created as follows.
The algorithm first runs the Encs algorithm to generate a normal second level
ciphertext CA‘,ACA'17CA’27CA’3, chooses z,y € Zy randomly and sets C' = C,c, =
Clg;’y7 CQ = ngg, 03 = nggy.

First Level Semi-functional Ciphertext. A first level semi-functional ci-
phertext is created as follows. The algorithm first runs the Enc; algorithm to
generate a normal first level ciphertext C, C17 C’g7 C3, chooses y € Zy randomly
and sets C = C’ Cl = C’l,C’g 0292703 = (395"

Semi-functional Key. A semi-functional key is created as follows. The algo-
rithm first runs the KeyGen algorithm to generate a normal secret key Dl, Dg,
E, EQ, B\, Fy, 74, Zg, Ky, Ko, Kg, chooses 1,0, 21, 22 € Zy randomly and sets
D1 = Dlgnz1 Dg = Dggg, E1 = E17 EQ = Eg, F1 Fl, FQ = FQ, Zl = Zl,
Zy = Zs, K1 = K1, Ko = Kog5®, K3 = K3g3.

We will prove the security of our system from Assumptions 1, 2, 3 using a
hybrid argument over a sequence of games. We let ¢ denote the number of key
queries made by the attacker. We define these games as follows:

Gamey peqi: The IND-2PrID-CPA game defined previously in which the cipher-
text and all the keys are normal.

Game; Restricted: This is like the real IND-2PrID-CPA game except that the
attacker cannot ask for keys for identities which are equal to the challenge
identity modulo po.

Game; ;, 0 <7 < ¢: This is like Games restricted €xcept that the challenge ci-
phertext is semi-functional and the first ¢ private key is semi-functional. The
rest of the keys are normal.

Game; pinqi: Thisislike Game; , except that the ciphertext is a semi-functional
encryption of a random message, independent of the two messages provided by
the attacker.

Game; peqi: The IND-1PrID-CPA game defined previously in which the cipher-
text and all the keys are normal.

Game; Restricteq: This is like the real IND-1PrID-CPA game except that the
attacker cannot ask for keys for identities which are equal to the challenge
identity modulo po.
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Game; ;, 0 < i < ¢: This is like Game; restricted €xcept that the challenge ci-
phertext is semi-functional and the first ¢ private key is semi-functional. The
rest of the keys are normal.

Game; pinq: Thisislike Game; 4 except that the ciphertext is a semi-functional
encryption of a random message, independent of the two messages provided by
the attacker.

Game; Restricted a0d Game; pestricted are introduced in our proofs due to the
same reason explained in Lewko-Waters IBE scheme’s proof [I13]. We note that
Game; , and Game, , are defined differently due to the two base games IND-
2PrID-CPA game and IND-1PrID-CPA game are different. In Game, o the chal-
lenge ciphertext is semi-functional, but all keys are normal and in Game, 4
all private keys are semi-functional. We will prove Game; , type games and
Game; , type games are indistinguishable respectively.

Lemma 2. Suppose there exists a polynomial time algorithm A where Games req
Advg— Gamesy restricted Adv4 = €. Then we can construct a polynomial time al-
gorithm B with advantage > § in breaking either Assumption 1 or Assumption 2.

Proof. With probability e, A produces identities Z and Z* such that 7 # Z*
modulo N and ps divides Z — Z*. Let a = ged(Z — Z*,N) and b = 1;[ We have
D2 ‘ a and a < N. Note that N = pipaps, so there are two cases:

1. p1 | b which means a = pa, b = p1ps or a = paps, b = p1.

2. p1 1 b which means a = p1p2, b = ps.

At least one of these cases must occur with probability > 5. In case 1, B will
break Assumption 1. Given g, X3,7T, B can confirm that it is case 1 by checking
whether g® = 1. Then B can test whether T® = 1. If yes, then T € G,,. If not,
then T' € Gp,p,-

In case 2, B will break Assumption 2. Given g, X1 X5, X3, Y2Y3, B can con-
firm that it is case 2 by checking whether g* = 1. Then B can test whether
e((Y2Y3)?,T) = 1. If yes, then T' € G, p,. If not, then T € G. O

Lemma 3. Suppose there exists a polynomial time algorithm A where
Game; restricted Adva— Gamey gAdvyg = €. Then we can construct a polyno-
mial time algorithm B with advantage € to Assumption 1.

Proof. B receives g, X3 and T' to simulate Games gestricted O Games o with A
depending on whether T' € G, or T' € G, p, -

B sets the public parameters as follows. B chooses random exponents «, [3,
v, a, b, ¢, d and computes u; = g%, hy = g°, us = g%, hy = g%, w = ¢°, and
v = ¢7. It sends these public parameters N, g, u1, h1, ug, ha, w, v, (g, g)* to A.
And B uses X3 as a generator of G,,. Note that B has the actual master secret
key, it simply runs the key generation to generate the normal keys to A for any
identity Z.

At the challenge phase, A submits two equal-length messages My, M; and the
challenge identity Z* to B. It then flips a coin g and computes the challenge
ciphertext as follows:

C'=M,e(g,T)*,C, =TT Cy =T,C5 =T".
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If T' € G),, this is a normal ciphertext. If T € G, p,, then it can be written
as ¢g°1g;? and the ciphertext is a semi-functional ciphertext with randomness
s=s1,x=al"+b, y=so.

We can thus conclude that, if T € Gp,, then B has properly simulated
Games restricted- I T € Gp, p,, then B has properly simulated Game; . Hence,
B can use the output of A to distinguish between these possibilities for 7. O

Lemma 4. Suppose there exists a polynomial time algorithm A where Games ;1
Advs— Game; Advyg = €. Then we can construct a polynomsal time algorithm
B with advantage € to Assumption 2.

Proof. B receives g, X1 X2, X3, YaY3, T to simulate Games ;_; or Games
with A depending on whether T' € Gp, p, or T € G.

B sets the public parameters as follows. B chooses random exponents «, 3, 7,
a, b, ¢, d and computes u; = g% hy = g°, us = g%, ha = g%, w = ¢% and v = ¢".
And B uses X3 as a generator of Gp,. It sends these public parameters IV, g, u;,
hla Uz, h27 w, v, e(g’g)a to A.

When A requests the i-th key for Z; where i < k, B returns a semi-functional
key as follows. It chooses 14, 7, 7%, t;, t}, t;, €}, 4, Yi» i € 7 randomly and com-
putes Dy = g®(uy hy)"™* (YaY3)™, Dy = g™ (YaY3)™, By = 5% By = %" Fy =
i Fy =g, 2y = Zy =g K=, Ky = ggt g7t (YaYs)",
K3 = g'(YaY3)h.

When i = k, to response the key query for identity Zy, B chooses ry, 4., tk, t}.,

Zi ti
aZ;+b’ (cZ+4d)>

tk, Tk, Yk, 2k € Zn randomly and computes Dy = g*T+(@Zetb) Xk Dy =TT,

_ cHz _ _ d+y _ _ z _
By = aIk:b’ By = gﬁ$k7 Bo= aIkJrkb’ Iy = gﬂyk’ Z = aI:+b’ Zy = gﬂZk’
K

1= ﬁ(c%+d), K, = gagtkTvtAkXé;ﬂ, Ky = T If T € G,,p,, this is a normal
key. If T € G, then it is a semi-functional key.

For ¢ > k, we note that B has the actual master secret key, so it only need
to run the key generation algorithm to generate the normal keys to A for any
identity Z.

At the challenge phase, A submits two equal-length messages My, M; and the
challenge identity Z* to B. It then flips a coin g and computes the challenge
semi-functional ciphertext as follows:

C = Mue(g,Xng)a, Cl = (X1X2)az*+b, Cg = XlXQ, 03 = (XlXQ)A/.

We can thus conclude that, if T € Gp,p,, then B has properly simulated
Game; ;1. If T € G, then B has properly simulated Game; ;. Hence, B can
use the output of A to distinguish between these possibilities for T'. a

Lemma 5. Suppose there exists a polynomial time algorithm A where Games 4
Advg— Games pinqiAdvg = €. Then we can construct a polynomial time algo-
rithm B with advantage € to Assumption 3.

Proof. B receives g, g* Xs, X3, g°Y2, Z>,T to simulate Game; ; or Games ginqi
with A depending on whether T' = e(g,¢g)*® or T is a random element of Gr.
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B sets the public parameters as follows. B chooses random exponents (3, 7, a,
b, ¢, d and computes u; = g%, h1 = ¢°, us = g%, ho = g%, w = ¢® and v = ¢".
And B uses X3 as a generator of Gp,. It sends these public parameters IV, g, u1,
hi, ua, ha, w, v, e(g,9*X2) = e(g,9)“ to A. Note that « is unknown to B.

When responding a key query from A for identity Z;, B returns a semi-
functional key as follows. It chooses 74, t;, i, @i, yi, &4, Wi, W, Wy, Wh, 24, 20, 24,
2! € Zy randomly and computes Dy = gan(u%ihl)“Z;“iX?, Dy = g”Z;U;X;;,

Ey = C::;:i_iw Ey = gﬁmi7 F = adj—:gjw F = gﬁyi7 Zy = Zy = gﬁiia
K

1= grray K2 =9 Xagh g Zy X5, Ks = g% 2, X5

At the challenge phase, A submits two equal-length messages My, M; and the
challenge identity Z* to B. It then flips a coin p and computes the challenge
semi-functional ciphertext as follows:

&5
aZl;+b’

C'=M,T,Cy = (¢°Va)* T+ Oy = g°Ya, O = (g°Ya)".

If T = e(g,g)*°, then this is a properly distributed semi-functional ciphertext
with message M,,. If T' is a random element of G'r, then this is a semi-functional
ciphertext with a random message. Hence, B can use the output of A to distin-
guish between these possibilities for 7. O

Proof of Theorem /[l If Assumptions 1, 2, 3 hold then we have proved by Lemma
2 B @ [l that the real security game is indistinguishable from Games pinai,
in which the value of u is information-theoretically hidden from the attacker.
So there is no attacker that can obtain non-negligible advantage in winning the
IND-2PrID-CPA game. O

Proof of Theorem [is similar but uses the games Game , so the concrete proof
is omitted here and provided in the full version of our paper due to similarity
and space limitation.

4 Multi-hop IB-PRE Scheme

Now we construct a multi-hop IB-PRE scheme based on our single-hop IB-PRE
scheme proposed in previous section. We observe that if we set a = c and b = d,
then the first level ciphertext can be re-encrypted using the same re-encryption
key and has the same form. This means from the first level ciphertext, we can
get a new multi-hop IB-PRE scheme. The new scheme is constructed as follows.

4.1 Construction

Setup(1?). Given the security parameter A, this algorithm first gets a bilin-
ear group G of order N = pipops from G(A\) where p1,ps and p3 are dis-
tinct primes. Let G}, denote the subgroup of order p; in G. It then chooses
a,b,a, 8 € Zn and g € Gy, randomly. Next it computes u = g%, h = q°,
w = g and v = ¢7. The public parameters are published as

PK = {N,g,u, h,w,v,e(g,9)"},
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the master secret key is MK = {«, 8,7, a,b} and a generator of Gy,.
The identity space is Zy and the message space is Gp.

KeyGen(MK, 7). Given anidentity Z € Zy, this algorithm chooses ¢, r, z,y, z €
Zn and R3, R} € G, randomly, and computes Dy = B(a%+b) , Do =g%g" ™" R3,

D3 = grRév E, = aaI-cha Ey = gﬁz, k= abI-|—+yb7 F = gﬁy’ Z1 = aIZ+ba
Zy = ¢g%*. We also require that the PKG always use the same random value
t for Z.

The secret key is SKI = (Dh DQ, Dg, El, E27 F17 FQ, Zh ZQ)

ReKeyGen(SKz,Z'). Given a secret key SKz = (D1, D2, Ev, Ea, Fi, Fb,
Zy1, Z3) for T and an identity 7' # Z, this algorithm chooses k1, ke € Zn
randomly and computes rk; = (E1 + k1 - Z1) - Z' + (Fy + k2 - Z1), mke =
(o Zy' ) - (- Z3%).

The re-encryption key is RKz_,7 = (rk1,7k2).

Enc(PK, M,T). To encrypt a message M € Grp for an identity Z, this algorithm
s € Zy randomly and computes C' = M -e(g, g)**, C1 = e(ulh,w)*, Cy = g°,
03 = 5.

The ciphertext is CTz = (C, Cy, Ca, C3).

ReEnc(CTz, RK7_,7/). Given a second level ciphertext CTz = (C, C1, Ca, Cs)
and a re-encryption key RKz_,7: = (rk1, rka), this algorithm computes C] =
(C1)Tk1 . €(C277”k2)71.

The re-encrypted ciphertext is CTz, = (C, C1, Ca, Cs).

Dec(CTz,SKz). Let CTz = (C,C1,C4%,Cs) be a ciphertext for identity Z, it

can be decrypted as

e(D3,C3)
e(DQ, Cg) '

The correctness of decryption process is easily observable.

M=C-(Cy)Pr-

4.2 Security
We have the following result for our proposed multi-hop IB-PRE scheme.

Theorem 3. If Assumptions 1, 2, 8 hold, then our multi-hop IB-PRE scheme
1s IND-PrID-CPA secure.

Proof of Theorem [3is similar to proofs of Theorem [l and Theorem [2], so we give
the concrete proof in the full version due to similarity and space limitation.

5 Discussion

5.1 Re-encryption Control

In the single-hop proxy re-encryption scheme, we can see that the element C5 =
v® is of no use in the Decq algorithm and it is only used in the Dec; algorithm. If
the encryptor doesn’t provide v* in the second level ciphertext, the second level
decryption is not affected but the decryption of re-encrypted ciphertext cannot
go on. So the encryptor can decide whether the second level ciphertext can be
re-encrypted (in fact he can decide whether the re-encrypted ciphertext can be
decrypted).
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5.2 Transitivity and Transferability

Transitivity means the proxy can redelegate decryption rights. For example,
from RKz, .7, and RK7z,_,1,, he can produce RK7z,_,7,. Transferability means
the proxy and a set of delegatees can redelegate decryption rights. For example,
from RKrz, 7, and SKt,, they can produce RK7,_,7,. Note that the user Z can
produce the re-encryption key RKz,_,7,, so transferability is implied by transi-
tivity. Our multi-hop scheme has such transitivity that the proxy can produce
RKz, 7, by RK7,_,7, and RK7z, ,7, as follows:

Let RKz, 7, = (rk1,7ke) and RKz, .z, = (rki,rk}). It computes rk{ =
rky - vk} and rk = (rky)™ - rkl. Then RKz, 7, is (rk}, rkY).

6 Conclusion

In this paper, we propose two novel unidirectional identity-based proxy re-
encryption schemes, which are both non-interactive and proved secure in the
standard model. The first scheme is a single-hop IB-PRE scheme and has mas-
ter secret security, allows the encryptor to decide whether the ciphertext can be
re-encrypted. The second scheme is a multi-hop IB-PRE scheme which allows
the ciphertext re-encrypted many times but without the cost of ciphertext size
growing linearly as previous multi-hop IB-PRE schemes.
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Abstract. It’s increasingly difficult to detect botnets since the introduction of
P2P communication. The flow characteristics and behaviors can be easily hidden
if an attacker exploits the common P2P applications’ protocol to build the net-
work and communicate. In this paper, we analyze two potential command and
control mechanisms for Parasite P2P Botnet, we then identify the quasi periodi-
cal pattern of the request packets caused by Parasite P2P Botnet sending requests
to search for the Botmaster’s commands in PULL mode. Considering our obser-
vation, a Parasite P2P Botnet detection framework and a mathematical model are
proposed, and two algorithms named Passive Match Algorithm and Active Search
Algorithm are developed. Our experimental results are inspiring and suggest that
our approach is capable of detecting the P2P botnet leeching in eMule-like net-
works.

Keywords: Quasi-periodicity, Parasite P2P Botnet, Pull, eMule, Active Search
Algorithm.

1 Introduction

Botnet, as a special overlay network, is becoming one of the major threats to Internet
security. It’s commonly agreed that botnet is a malicious network constituted by a large
number of compromised hosts which are also known as bots. Bots can be remotely
controlled by a unified command from the Botmaster to launch DDOS attacks, send
out spam messages, and conduct other group malicious activities. Currently, botnets
are usually classified into three categories: centralized IRC-based botnets, distributed
P2P-based botnets, and HTTP-based botnets.

Among those three types of botnets, the most widespread one is the IRC botnet. It
has low complexity, simple structure and high efficiency in launching attacks. How-
ever, considering the congenital “single point of failure” defect brought by the central-
ized control structure, researchers have developed plenty of detection methods for the
widespread IRC botnets [1]]. In 2007, the outbreak of the peacomm [2]] worm and the
storm botnet [3]] in Europe made the world begin to realize the possibility and signifi-
cant threats of P2P botnets. Therefore the P2P botnets have been considered as the most
promising next-generation botnets [4]. A series of P2P Botnets such as Hybrid P2P Bot-
net [5l], Super P2P Botnet [6] and Overbot [1] were proposed shortly afterwards.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 127-[139] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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From current point of view in the research communities, a noteworthy phenomenon
is that any P2P botnet based on a private protocol will be inevitably detected because
of its individual flow characteristics or behaviors. So the researchers believe that the
attackers may launch new P2P botnets by using the public P2P protocols and let P2P
botnets leeching into the widely used P2P networks such as eMule or BT network.
Overbot is such a P2P botnet designed to work on eMule or BT network.

In this paper, we propose a detection model to deal with these new challenges. Main
contributions of our paper are shown as follows:

1. We analyze the two potential Command and Control (C&C) mechanisms for Para-
site P2P Botnet and introduce the quasi-periodicity characteristic.

2. We propose a detection framework with a mathematical model based on the quasi
periodical pattern of the request packets caused by Parasite P2P Botnet sending re-
quests to search for the Botmaster’s command, two algorithms called Passive Match
Algorithm (PMA) and Active Search Algorithm (ASA) are developed to implement
the model. During them, ASA can reduce the time complexity significantly.

3. We introduce the approach to identify the search requests from the eMule network
traffic and some features of the packets eMule used to send requests.

2 Related Work

In terms of P2P botnets detection, Gu [8] et al. proposed a detection scheme named
Bothunter to integrate the feedback information about different IDSs and perform a
clustering analysis about the malicious activities. Others [9/10/11] also use the cluster-
ing methods to justify the flow similarities for botnets detection. BotMiner [[12], another
tool by Gu, can carry out detection independent of the structure and protocol of the
botnet, which is an advanced method compared with its counterparts. Different from
BotMiner, the proposed model in our research focuses on a specific type of P2P bot-
net which uses PULL mode to communicate and parasitizes in eMule-like networks.
[[13U14] use the Honeypots or Honeynet to detect the existing botnets, which fail in
prediction botnets similarly to the one considered in this paper. Similar to our work,
[15416117] also take periodic characteristics into account to detect botnets. However,
their focal points and contexts are quite different from ours, we will analyze those dif-
ferences in Section 5.

3 Background and Motivation

3.1 C&C of the Parasite P2P Botnet

Ping W. et al. [4] have pointed out, due to the structures of P2P network have evolved
from early centralized form like Napster [18] to distributed or hybrid form such as
eMule and BT network, current P2P applications are more stable in propagation and
enjoy a higher bandwidth. Therefore, it attracts attacker to build P2P botnet based on
existing P2P networks, which is named as Parasite P2P Botnet in this paper. There are
two potential C&C mechanisms for Parasite P2P Botnet: PUSH mode and PULL mode.
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In the PUSH mode, Botmaster needs to send commands to a certain number of bots,
which will propagate these commands to the other bots. Due to the difficulties of using
benign nodes to transmit commands actively in Parasite P2P Botnet, PUSH pattern is
not a feasible choice for Parasite P2P Botnet.

Another C&C mechanism, PULL mode, is the main research object in Parasite P2P
Botnet, which is called Command Publishing/Subscribing mechanism. In this mode,
Botmaster randomly selects one or more bots to publish its commands. Here, this so-
called publishing commands in P2P file-sharing systems is to allow a node to claim
that it has a special shared file. In this way, the other bots could find these commands
by searching for files periodically. If the formats of such search requests are consistent
with the parasitized network, the benign nodes in the parasitized network can provide
requests querying and store services for P2P botnet, which is exactly the same way
as searching for normal resources and provided as the original functions of the benign
nodes. Large-scale P2P application networks such as eMule, possess numerous nodes,
so the commands searching will become efficient and accurate in these networks while
adopting PULL pattern. Subsequently, the PULL mode is very suitable for Parasite P2P
Botnet and more readily to be used by attackers to build such botnet. We assume that
the PULL mode is used by Parasite P2P Botnet in this paper.

3.2 Quasi-periodicity Characteristic

Existing pull-model botnets usually perform periodic searches to look for commands.
For example, Grizzard [2] mentioned in his analysis of Storm that nodes should pe-
riodically search for their own IDs in order to make sure they know the closest nodes
near themselves. In addition, most theoretical P2P botnets proposed are also featured by
search packets which are periodically sent. For instance, Ping W. et al [5]], the authors of
the famous Hybrid P2P Botnet, mentioned that both client and server bots actively and
periodically connect to the server bots in their peer lists in order to retrieve commands
issued by their Botmaster. Another example is overbot [[7], which illustrates that nodes
issue search requests at regular intervals. According to the analysis of representative
P2P botnets above, we can summarize that it’s universal for PULL model P2P botnets
to send search packets periodically, and we believe that there are two reasons as follows:

1. This feature comes mainly from the unpredictability of the time when Botmaster
send commands and the real-time demand of the bots. For convenience, botnets
often adopt periodical method directly to search for commands punctually.

2. The pre-programmed behavior [16] of bots also leads to the periodic behaviors of
sending search requests.

We note that this periodicity often comes with small fluctuations due to factors like
network latency and packets timeout.It’s not a strict mathematical periodicity, so we
call it the quasi-periodicity feature.

Our detection-model focuses on the Parasite P2P Botnet, which is one of the high
possibility predictive botnets. Based on our analysis of the development of P2P botnets,
this botnet has the following characteristics:

1. This botnet builds C&C channels according to the communication protocol of
eMule.



130 Y. Qiao et al.

2. Bots send quasi-periodic packets to search for commands depending on the search
protocol of eMule.

Here we take eMuld!| network as an example to illustrate our idea. Under above assump-
tions, our goal is to distinguish the malicious botnet search requests from benign eMule
search requests automatically. In terms of the periodicity feature, what we need to do is
to search for a periodic subsequence in hybrid ones.

4 Detection Framework

As demonstrated in Figure 1, our Parasite P2P Botnet detection framework is com-
posed of five components: Sequence Collector, Periodicity Recognition Detection Math-
ematical Model, Algorithms, Botnet Traffic Simulator, Parameters Trainer, in which the
Sequence Collector Module will complete the acquisition of the search requests’ se-
quences, then outputs the results to the mathematical model. Two algorithms used to
solve the model which we called PMA and ASA will be introduced in the Algorithms
section. However, before that, we need to use Parameters Trainer module to get the
recommended value of the parameters used in our model. Botnet Traffic Simulator will
be used simultaneously. The last two modules will be explained in Section 5.

Sequence collector

Sequences
Capture eMule Traffic Botnet Traffic
Simulator
‘ Parameters

v > Trainer
Benign Sequences

Select Search Requests

i ﬁ Algorithms
Record Time Points Passive Match Algorithm
.\ Periodicity Recognition Detection [ (PMA)

i v Mathematical Model > Active Search Algorithm
Generate Incremental Time Hybrid (ASA)

Sequence Sequences

Obtain the malicious nodes

Fig. 1. Framework Overview

4.1 Sequence Collector

The procedure of the Sequence Collector shown in Figure [l is straightforward. Next
we will just introduce the core part about how to analyze the network output packets in
order to decode the hybrid eMule search requests.

! eMule began to support KAD network which is based on Kademlia protocol since Version
0.42, Because eDonkey, another network in eMule, is based on centralized P2P protocol which
is obviously unsuitable for the construction of a P2P botnet. eMule mentioned in this paper
refers to the KAD network.
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From [19] we know, eMule search requests have three action types: KADEM-
LIA FIND VALUE; KDEMLIA STORE; KADEMLIA FIND NODE. However, accord-
ing to [7], KADEMLIA STORE is not suitable for use in P2P botnets commands
transmission, so we will focus on only another two types in the following part. The
manual [20] has introduced the search types corresponding to the two action types in
Table 1. We will not distinguish those different search types here, because all types can
theoretically be used as carriers for P2P botnets to search for commands. With Wire-
shark 1.6, we have done numerous experiments on capturing the eMule search requests,
and we have got a series of features as follows:

— They are all UDP packets;

— The size of each packet is 77 bytes, and the UDP part has 43 bytes;

— The payload part has 35 bytes, including the first three bytes of identifications as
shown in the last column of Table 1. In these identifications, E4 indicates that the
packet is sent by eMule, 21 shows the packet is used to search for requests, 02
and OB can represent different action types. The rest of the 32 bytes are filled with
encrypted MD4 value of the search contents and recipient’s ID.

Table 1. The search Request’s classification and identifications

Action Type Search Type Identification
StoreFile
FIND VALUE StoreKeyword  E4 21 02
StoreNotes
FindBuddy
FIND NODE Node E421 0B
NodeComplete

Beside the three features above, we have noticed another interesting phenomenon. eMule
does not put the MD4 values into a UDP packet directly, but changes the sequence of
the MD4 characters as the way followed. Take the string “abc” for example, its MD4
value is a448017a af21d852 5fcl10ae8 7aa6729d.

1. The 32 hexadecimal characters are divided into 4 big groups at the first time, for
instance: a448017a/af21d852/5fc10ae8/7aa6729d.

2. Divides each big group into 4 small groups evenly, and reverse the 4 small groups’
order. A case for the first group: a448017a — a4/48/01/7a — 7a/01/48/a4.

3. Recomposes the 32 hexadecimal characters, and the original MD4 value changes
to : 7a0148a4 52d821af e80acl5f 9d72a67a.

With the above knowledge, it is easy to identify and capture various types of search
requests of eMule network.
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4.2 Mathematical Model

Considering the analysis above, the result of the hybrid sequences is represented as T'n.
Our target is to justify whether exists a subsequence of T'n fulfilled formula (1) and (2)
showed below. represents the length limitation of the periodic sequence, « is proposed
to relax the limitation of the periodic interval with the consideration of local volatility
in the periodic sequences, w can avoid the false judgment when very few parts of the
sequences are lost or deviate from the regular time. We will discuss the recommended
value of the parameters in section 5.

Table 2. The definition and introduction of parameters

Parameters Introduction

Tn={Ty,Ts,T3,....,T;,....,Tn },Vic(1,n)— the ascending time sequence of the
Tip1>T; search requests

S={t1,t2,t3,...;tj,...,tm },i€(1,m),t;€Tn S is one of T'n ’s non-empty sequence

AS={At1,Aty,Atg,..., Aty,..., At _1},At,= AS is S’s difference sequence
thy1—tg,kE(1,m—1)

Avg= E;”‘ :Slm’“ = E;’:;ilm’“ The average value of AS

a€l0,1] The adjustment ratio

welo,1] The identification ratio

Kent The minimum length of the periodic
sequence

Target Problem: whether 35 C T'n, Satisfies:

15| > K (1)

1 if: Aty € [Avg(1 — @), Avg(1 + a)];
0 else.

P flak) =

|AS] > w. )

4.3 Algorithms

It’s not necessary for us to find out all the periodic sequences satisfied the condi-
tions. One valid periodic sequence is enough to validate whether the hybrid sequence is
anomalous.

Passive Match Algorithm(PMA). A simple method is to traverse through every se-
quence whose length is greater than or equal to K, then judge it by the constraints of
the target function. Set the total length of the hybrid sequence as N, the amount of all
possible subsequences will be:

Num=CF +CET 4.+ =2V -0k -C)—...-CE' -1 (3
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Compared with N, K is a smaller natural number based on experience. So that the time
complexity is approximately equal to O(2"), which is unacceptable in real context.
It is necessary to design a fast approximation algorithm to replace the passive match
method.

Active Search Algorithm(ASA). This algorithm will not traverse through all possible
sequences passively. It starts from a certain node or a group of nodes, and finds the next
possible node actively in the sequence according to the periodic conditions actively.

Active Search Algorithm (ASA)
Input: Tn, o, w, K, S
Output: SuccessS: Have Got the periodic sequence if SuccessS # ()
Begin:
SuccessS = (;
Foreach T; € T'n do
S =0t =Ti;
GetSecondNode:
S ={t1};
If exists the nearest node t2 ahead of ¢1 in T'n except the nodes
used before in the loop, then:
Add s to S
else: goto Begin;
Addnodes:
If existed node t; in T'n that satisfies formula (4),then
Addt; to S;
if S.length > K then:
Return Success = S
else: goto Addnodes;
else: goto GetSecondNode;
Return SuccessS)
End

The judging rule which determines whether a suitable node exists in the hybrid se-
quence or not is: If the subsequence S = {1, ta,13,...,tm }(m < K) satisfies all the
periodic conditions but the length condition, then do this:

m—1
At
Define: Avg= 1 k VAt = tg41 — ti, whether 3t; C Th,and satifies:
m

Avg(l —a) < tj —ty, < Avg(l + ) 4)

if a satisfied node ¢; can be found in T'n, then add it to the S, and a new sequence
formed:S = {t1,12,t3,...,tm,t;} ,or else quit the procedure.
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A: Time Complexity analysis
In ASA, the length of a periodic subsequence is gradually increased up to K. So the
max beginning node is Ty _ g 11). If 75 is the first node in .S, the potential amount
of the second node is (IV — K —i+2), and search steps of each progress are (K —1)
at most, so the total steps at this stage will be (N — K — i + 2)(K — 1), and the
total potential steps of all stages will be:

Num = (K = D)[14+2+...+ (N — K +1)]

=KX [(N-K+1)+(N-K+1)%
From the formula (5) we can see the time complexity here is O(IN?), which reduces
the computation cost effectively compared with the PMA.

B: Complementary Conditions
In ASA, if the current subsequence’s first node is 7,,, then the biggest interval of
this subsequence is (T'v — T, ). As the max length of the periodic subsequence is
known, so we get a complementary condition:

TN_Tm
K-1

The formula above can apply to every judgment step in ASA, which will further
reduce the searching space and the computation costs.

Atm < (1 + G{) (Atm = tm+1 - tm) (6)

5 Experiment and Analysis

5.1 Datasets

We captured real traffic from campus network, and tracked 100 eMule nodes through
port identification. From the user behavior analysis of eMule, we know that the period
between 18pm and 24pm is the peak of eMule usage, so the datasets used below are all
captured in this period.

Botnet Traffic Simulator: In addition to real traffic collection of eMule, we developed
a P2P botnet traffic simulator, which can periodically send packets in the format of
standard eMule search packets. The simulator can make the period fluctuate in a certain
degree or generate some controllable noise to correspond with real circumstances.

5.2 Determining the Empirical Value of Parameters

Those three parameters are interdependent, thus cannot be determined through separate
experiments. As we have abandoned w in our implementation of ASA, we only consider
the determination of o and K here. According to the initial definition of o and K, we
performed experiments on some possible combinations through crossing and rotating.
Table 3 shows the recommended empirical value range of the two parameters. Because
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Table 3. The Parameters’ Range
Parameter Range Unit Counts

a  (0-0.3]002 15
K [5-20 1 15

1
—#—False Positive ratio |
1. —=— False Negative ratio 05 W_/’H
il | ; L e 5

0.8 0D 005 01 015 02 02 03
K=5 a=(0,0.3]
1
2 0B
=
o2 0s
r. 2
=
E 0.4 i) PO, o, e
0D 005 01 015 02 025 03
K=11,a=(0,0.3]
024 | ;
0s
| M

o 005 01 015 02 025 03
Kformstots 20 0 a: from 0.02 t0 0.3 K=18,2=(0,0.3]

Fig. 2. False Positive ratio(FP) and False Negative ratio (FN)

the value of « lies in a continuous range, it’s impossible to traverse all its value, we
averagely divided the range into 15 pieces of units. As K has 15 possible values, the
total number of potential combinations of the two parameters is 225.

Our experiments have separately collected traffic data from 100 hosts when they
run normal eMule exclusively and when they run malicious periodical program as well
in two days. Thus, we extracted 100 normal sequences containing search requests time
points and another 100 anomalous sequences contain periodical malicious requests time
points from the traffic data. Having known the true role of every node, we test all 225
combinations of « and K, and calculated their False Positive ratio (F'P) and False
Negative ratio (F'N') shown in Figure 2, with 3 groups of typical values of parameters
are illustrated together.

From Figure 2 we can see that both o and K can affect F'P and F'N significantly. A
better combination should set formula (7) with the lowest value. Here, we assume that
0, = 0> = 0.5 empirically, in this situation, we just need to get the combinations with
the lowest (F'N + FP).

F=0,-FN+6,-FP @)

From the experimental results above, we have got the optimal groups of parameters in
Table 4, which convince us that K € [10,12] and o € [0.18,0.22] is a suitable range
for the justification of periodic sequences, and we can use them for verification in live
circumstances.
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Table 4. The Parameters’ Range

FN+ FP Combinations
0 K=11,a=0.22
K=12,a=0.22
K =10, =0.18
1% K=10,a=0.2
K=11,a=0.2
K =10,a=0.22

2% K=12,a=02

5.3 Verification and Analysis

Accuracy

We run a test with all the combinations recommended above. A hundred nodes installed
with the eMule clients are involved, 40 P2P botnet traffic simulators were installed on
those nodes randomly. By means of collecting the search requests, we got 100 groups of
requests, and generated 100 sequences by abstracting the times points of the requests’
packets. We use the ASA to justify the sequences. The F'P and F'N rates were shown
in Figure 3.

We can see from Figure 3 that, none of these combinations can do perfectly to justify
the hosts absolutely right, but they have already fulfilled the detection task successfully
to a great extent and the empirical values of the parameters exhibit a good robustness. In
the future we still need to utilize the w parameter, which can adjust the sequence when
there is a partial fluctuation appearance.

Comparions

Similar to our work, [[15/16J17] take the periodic characteristics into account when de-
tecting botnet. Table 5 gives an analysis of relevant characteristics. In the table, PO in-
dicates objects with periodicity in botnets, DA indicates the detection algorithm, DOC

0.1 T T T T T T

I I
22 False Positive ratio (FP)
B E—— False Negative ratio [FN)

0.08 - E

0.07 - =
0.06 - E

005 i
(0,0.16) (10020 (10,0.22)

FP and FN

004k
(1020 (10.22) (12018
noak

(12020) (120.22)
ooz _
DD“ I % % |

]
5 6 7 ) 9

K form 10 to 12, a from 0.18 1o 0.22

Fig. 3. The FP/FN with the change of (K, «)
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is the degree of vertical-cross confusiorf] between periodic sequence and non-periodic
sequence, and CUB indicates whether the method can be used in our work context
without considering the detection effect. According to [[17], there is no vertical cross
but horizontal connections between periodic sequence and non-periodic sequence. AR
represents the accuracy of detection when the algorithm is applied to our detection con-
text using certain parameters.

Table 5. Comparision of Four Detection M odels™

PO DA DocC cuB AR
[15]  Connection intervals  Perceptual intuition none N
[16] Number of packets in C&C  Periodogram  weak Y 2%
[17]  Packet size Sequence Ukkonen none Y 16%
Our Search Request’s intervals ASA strong Y 98%

PO:Periodic Object DA: Detection Algorithm
DOC:Degree of Confusion CUB: can be used here AR: Accuracy Rate
*: Periodogram algorithm used here is under the same parameter definition in [16]
and we define the (¢ = 0.75) in algorithms [17] used here, (K = 11, o = 0.18) is defined in ASA

Table 5 also shows the detection effect of [[16417] and ASA when adopt specified
parameters. As we can see, Periodogram algorithm [[16] cannot achieve an effective
detection, however, as some sequences here have low DOC. Ukkonen algorithm [17]
is lucky to get a 16% detection accuracy rate here, which is still quite low. The low
detection rate of the two algorithms can be mainly attributed to the huge differences of
contexts, rather than the algorithms themselves. These results further demonstrate that
our ASA algorithm is more suitable and effective in our detection context and the ASA
also can be used to solve the similar problems theoretically.

6 Conclusion and Future Work

A detection framework with a mathematical model based on the quasi-periodicity char-
acteristic is proposed in this paper after analyzing the potential C&C mechanisms in
Parasite P2P Botnet. Two algorithms are proposed to solve the model. We verify the
model and algorithms by doing a series of experiments. Compared with other detection
methods in [8I9U10U1 141201314, our research focuses on a special predictive P2P bot-
net, which has been demonstrated as a devastating threat on the security of the future
Internet security. The detection framework we proposed against such botnet is promis-
ing to be one step ahead of the attackers to discover and prevent this upcoming threat.
We will further analyze possible communication modes of P2P botnets in the future,
and provide better detection methods and suppression measures.

2 Vertical-cross refers to situations where several time series get crossed in time domain. For ex-
ample, for two series {1, 3,5} and {4, 5, 5.5}, a vertical-cross is {1, 3,4, 5,5.5}. On the con-
trary, the horizontal-cross refers to time series concatenated end to end: {1, 2, 3} and {4, 5, 7}
connected as {1,2,3,4,5,7}.
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Abstract. Zero day vulnerabilities have played an important role in cy-
ber security. Since they are unknown to the public and patches are not
available, hackers can use them to attack effectively. Detecting software
vulnerabilities and making patches could protect hosts from attacks that
use these vulnerabilities. But this method cannot prevent all vulnerabil-
ities. Some methods such as address space randomization could defend
against vulnerabilities, but they cannot find them in software to help soft-
ware vendors to generate patches for other hosts. In this paper, we design
and develop a proof-of-concept prototype called AutoDunt (AUTOmati-
cal zero Day vUlNerability deTector), which can detect vulnerable codes
in software by analyzing attacks directly in virtual surroundings. It does
not need any source codes or care about polymorphic/metamorphic shell-
code (even no shellcode). We present a new kind of dependence between
variables called latent dependence and use it to save necessary states
for virtual surrounding replaying. In this way, AutoDunt does not need
to use slicing or taint analysis method to find the vulnerable code in
software, which saves managing time. We verify the effectiveness and
evaluate the efficiency of AutoDunt by testing 81 real exploits and 7
popular applications at the end of this paper.

Keywords: AutoDunt, Latent dependence, Zero day vulnerability, De-
bug, Arbitrary code execution.

1 Introduction

Zero day vulnerabilities play a very important role in cyber security [I2]. Many
well known cyber security problems, such as worms, zombies and botnets, are
rooted in that. Before a zero day vulnerability is disclosed, attacks based on it
will be almost always effective since there is no patch for it. Moreover, a zero day
vulnerability can usually be popular without being disclosed for many years. For
example in 2008 Microsoft confirmed a vulnerability in Internet Explorer, which
affected some versions that were released in 2001 [3]. This is very dangerous since
hackers can use this vulnerability to attack again and again before its patch is
published. New methods such as return-oriented programming [4] make those
attacks even more difficult to detect.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 140-[[54] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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People usually defend against zero day attacks in the following three ways.
1) Detecting all vulnerabilities in software and patching them seem to be a
reasonable way [BJ6[7]. But vulnerability detection is a challenging task. It is
almost impossible for current detection techniques to find all the vulnerabilities.
Thus, hackers could still use zero day vulnerabilities to attack. 2) Some methods
such as LibSafe [8] and address space randomization [9/10] are used to prevent
attacks without prior knowledge of vulnerabilities. But these methods cannot
protect other hosts that do not use these methods. 3) Some methods such as
Memsherlock [IT] can point out the corruption position in software by slicing
source codes [I2] or using taint analysis method [I3]. These methods usually need
source codes. Unfortunately, not all of the software provide their source codes,
especially the commercial software. It is not easy for them to perform operating
system kernel protection. Moreover, slicing and taint analysis methods are not
efficient since they need to record program execution traces or to instrument lots
of instructions.

In this paper, we have designed and developed an end-to-end approach to au-
tomatically prevent attacks and point vulnerable positions in software by using
attack information without source codes. At a high level, our approach is a four-
step process: saving, detecting, rolling back and re-running. When examining a
software sample, we first load it into our analysis environment. We save some
snapshots of the CPU and memory when the sample is running. When an attack
is detected, we roll back the running thread to a certain saved state. In the end,
we re-run the thread from the checkpoint to find the position of the vulnerabil-
ity. We present a new dependence between variables called latent dependence to
decrease the number of saved states. To explore the feasibility of our approach,
we design and develop a proof-of-concept prototype called AutoDunt and make
several experiments on it. The results show that AutoDunt successfully detects
arbitrary code execution vulnerabilities and points out the right vulnerable po-
sitions in the binary codes even if the attacks are polymorphic/metamorphic.

In summary, this paper makes the following contributions:

— the concept of latent dependence between variables represented by medium
instructions, which is essential to arbitrary code execution vulnerabilities. By
recognizing this type of relationship between variables and saving the states
when medium instructions are executed, we decrease the number of saved states
to about 0.232% of all the running blocks in average.

— an automatic system AutoDunt that performs kernel-level analysis and au-
tomatically points out vulnerable codes in binary programs without any source
codes from zero day attacks. It avoids using slicing and taint analysis methods
to increase managing speed. It does not care about the form of the shellcode
even it is polymorphic/metamorphic.

— a description of how the malicious input exploits the unknown vulnerabil-
ities. By re-running threads from checkpoints in virtual surroundings, we can
replay the whole process of exploiting the vulnerability.

The rest of the paper is organized as follows. In Section 2, we summarize the
work related to ours. In Section 3, we give an overview of our work. In Section 4,
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some definitions of latent dependence are shown. We give the implementation in
Section 5 and show our experimental results in Section 6. Finally, we conclude
the paper in Section 7.

2 Related Work

Our work draws on techniques from several areas, including: A) worm detection
and signature generation, B) vulnerability prevention and C) virtual-machine
replaying.

A) Generating worm signatures is an effective way to detect worms. Auto-
graph [I4] automatically generates signatures for novel Internet worms that
propagate using TCP transport. Polygraph [I5] can produce signatures that
match polymorphic worms. Hamsa [I6] enhances the efficiency, accuracy and at-
tack resilience. SigFree [I7] can block new and unknown buffer overflow attacks
without signature. All the methods in this class need to analyze TCP traffic.
Thus, if the attack is only performed once, it cannot be detected. Our work uses
host-based method to detect such attacks without any need for network traffic.
Most methods in this class rely on analyzing shellcode to detect attacks. New
techniques such as return-oriented programming [4] make it possible that there
is no shellcode in the malicious payload, which increases the difficulty to detect
attacks.

B) Different methods are proposed to prevent vulnerabilities. Modifications
of OS are made to prevent buffer overflow such as Pax [18], LibSafe [§] and e-
NeXsh [19]. These methods need to re-compile the operating system. Mcgregor
[20] proposed to store return address on the processor that no input can change
any return address. This method needs hardware support. Our method supplies
a cheap solution that we do not need to modify any operating system or hard-
ware. Castro [21] proposed a new approach called data-flow integrity detection to
prevent the system from being attacked. It needs to analyze source codes firstly
and hence cannot handle indirect control flow precisely. Kiriansky etc. presented
program shepherding to monitor control flow transfers to enforce a security pol-
icy [22]. Bhatkar etc. proposed address space randomization to randomize all
code and data objects and their relative distances to protect against memory
error exploits [23]. But it also needs source codes and it can only protect the
software using randomization techniques while AutoDunt could detect the vul-
nerability and alarm other computers even without AutoDunt. Vigilant [24] can
control the spread of worm by automatically generating SCAs. But if the worm is
polymorphic, Vigilante will generate too many SCAs. MemSherlock [I1] is very
similar to our work. It can identify unknown memory corruption vulnerabilities
upon the detection of malicious payloads that exploit such vulnerabilities, but
it needs source codes and needs to analyze libraries files in advance. Further-
more, neither Vigilant nor MemSherlock can analyze operating system kernel
while AutoDunt performs a whole-system, fine-grained analysis. Brumley and
Newsome etc. focus on signature generation in their work [25J26] but they do
not care about how to find the vulnerabilities. Panorama [27] and TTAnalyze
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[28] can detect and analyze malware by capturing its behavior. They aim to
comprehend the behavior and innerworking of unknown samples while our work
aims to protect system and detect vulnerabilities. Most of the methods above
use dynamic taint analysis [I3J29], which suffers a lot from high overhead.

C) In our work, we use the method of virtual-machine replay. TTVM [30] is
very similar to AutoDunt from the first view. It also saves the states of operating
system and re-runs the system from checkpoints. Since we aim to find vulner-
abilities while TTVM aims to debug operating system, the time when to save
states differs a lot. TTVM saves the states when processing external inputs while
AutDunt only saves the states related to vulnerabilities. In this way, the number
of AutoDunt’s checkpoints is much less than that of TTVM’s checkpoints. Since
different operating systems may have different input functions, TTVM needs
to know all of them. AutoDunt is based on latent dependence which does not
care about different platforms and operating systems. Moreover, we distinguish
processes and threads to supply more precise results.

3 Overview of AutoDunt

Our approach is a four-step process: saving, detecting, rolling back and re-
running. Figure 1 depicts the overview of AutoDunt. We first build virtual sur-
rounding to load a program and monitor its behavior. In this way, AutoDunt
saves necessary states without any interference with the programs running inside
virtual machine. The next step is to detect the attack. For the sake of simplicity,
in our current proof-of-concept implementation, we only detect arbitrary code
execution vulnerability. However, using the method in Vigilante [24] to detect
other types of vulnerabilities is straightforward. When an attack happens, we
roll back and re-run the system from the saved states to find the vulnerable code.

1/0O Subsystem 8 Disk
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Program : Other Thread . ¢
| 4 Memory
. I—\ 7z
Thread o
S
~

N
Virtual CP!
|rtuaL—| Virtual Surrounding

 FR—— | e ' i i

Malicious Code
Information

| System Monitor H Vulnerability Analyzer li Vulnerability Information

Fig. 1. An Overview of AutoDunt

Process is not the scheduled unit but the thread is. So we need to distinguish
different threads. System Monitor can extract thread information by using oper-
ating system kernel data structure such as ETHREAD. When the vulnerability
is triggered, eip (instruction pointer) will point to special position in memory
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such as stack or heap. Vulnerability Analyzer saves the thread states of the tar-

get program using latent dependence between variables. From the saved states,
AutoDunt points out the vulnerable code in software.

Fo - - - - - - - - - - -—-—--= ~N
State Choosing Module

State Saving Module
: Computer State
State Recovery Module : State Reposition
~. 4

[

Memory

Fig. 2. Design of Vulnerability Analyzer

Figure 2 is the structure of Vulnerability Analyzer, which seems like a time
machine. To re-run the target thread, it is necessary to save its running states.
However, the number of the states may be too large even infinite to save. So
proper states should be chosen by State Choosing Module. State Saving Module
saves the chosen states into the State Repository according to the criteria in
the next section. When an attack happens, State Recovery Module will pick
out suitable state from the State Repository to re-run the target thread for
vulnerability detection. In this way, complex methods such as slicing and taint
analysis can be avoided. What AutoDunt needs to do is to compare the thread’s
states and to re-run the thread from those states.

4 Latent Dependence

In this section, we propose a new kind of dependence between variables in pro-
gram. We also make some conclusions and implement AutoDunt based on them.
Let’s start from an example:

int a = 10 ; char b[10]; int i = O;
do{cin>>b[il;} while(b[i++] != ‘0’);

In the upper example, the value of a seems not to be changed after the loop.
This can only be guaranteed if the length of the input is less than 10 bytes. Note
that the loop exit condition is that the input value equals ‘0’. So if the input is
not equal to ‘0’ for 10 times, it will overflow buffer b and overwrite a. In this
case, the value of a may not be ‘10’ at the end of the program. So a may be data
dependent on input. This kind of dependence is very special. It cannot be caught
by regular analysis method. We refer to it as latent dependence. We define static
definition set and dynamic definition set first.

Definition 1. [Static Definition Set]: Static definition set of instruction I
includes variable(s) in I whose value(s) will always be changed after I is executed.
It can be referred to as def(I). For example, in instruction ‘a = b, defs(I) = a.
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Definition 2. [Dynamic Definition Set]: Dynamic definition set of instruc-
tion I includes variable(s) whose value(s) will possibly be changed after I is
executed. It can be referred to as defq(I).

Definition 3. [Latent Dependence]: If v € defy(I), then v latent dependent

on use(I). It can be referred to as v Lo, use(l). use([) is the set of variable(s)

that I uses. I can be called medium instruction.

Suppose instruction I is in the form of ‘op opri, oprs’. op is opcode, and opry
and oprq are operands. If defy(I) # 0, ‘opr;’ must be a piece of memory
with indirect index. Otherwise, opry € defs(I) and defq(I) = 0. Suppose the

indirect index is ‘r’. There are two situations here: S1) r Lo, input (DD means
data dependence), which means input data could change arbitrary memory lo-

cations in a program. S2) r ﬁ) input. In this situation, I should be in a loop.
Otherwise, r has a fixed value and defy(I) = 0.

S1 is not very common since a normal program will not let input data change
arbitrary memory locations. Even if this situation happens, there are some limi-
tations on ‘r’, which is less likely to be a vulnerability. So we focus our attention
on S2. In this situation, we try to identify medium instructions and latent de-
pendence between variables by recognizing loops. There are lots of algorithms to
find loops in programs such as [31]. We use DJ graphs to identify loops [32] in
this paper. In this way, we can get candidate medium instructions easily in static
analysis. But not all the instructions in loops can become medium instructions
even if their left values are with indirect indexes. More limitations should be
added to narrow the scope of candidate medium instructions.

Definition 4. [Super Variable|: The super variable of a variable v is the
continuous objects of the same type which v belongs to. It can be referred to
as sv(v). For example, the super variable of an element in an array is the array
itself.

If an arbitrary code execution vulnerability is triggered in a loop [, there exists
i which meets sv(v?) # sv(v*D). v € def (I) Udefy(I) and sv(v?) means
the super variable of v in the ith execution of I in [. This can be used to detect
latent dependence in dynamic analysis. Since we analyze binary codes directly
without source codes, we do not know type information of variables. So it is
difficult to judge whether sv(v()) # sv(v(H+1).

We generate some rules to distinguish possibly different types. Table 1 shows
those rules. Three classes of marks are used here: read/write mark, loop mark
and memory block mark. Read/write mark indicates that a piece of memory has
been read/written. We distinguish them since they can be used to detect other
types vulnerabilities such as reading uninitialized memory in the future. Loop
mark indicates that a piece of memory is read or written in a loop. Memory
block mark is used to distinguish different blocks of memory. Any two blocks of
memory have different memory block marks.
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Table 1. Rules to Distinguish Possibly Different Types

Memory operations: Rules:

Read mem|i] (outside loop) smeml[i] < smeml[i] +
Write mem[i] (outside loop) smeml[i] + smeml[i] + w
Allocate meml[i ~ j] smemli ~ j| < mb
Release mem|[i ~ j] smemli ~ j] < 0

Read/Write mem[i] (inside loop) Check marks in smem/[i] and smem|i] + (

In table 1, mem][i] is the piece of memory indexed by i. smem is the shadow
memory of mem. If meml[i] is read/written outside loops, we add read/write
mark ‘r/w’ to smem[i]. When a new block of memory mem/[i ~ j] is allocated,
we set memory block mark ‘mb’ to every piece of memory in smemli ~ j|. mb is
different from the memory block mark of smem[i — 1] and that of smeml[j + 1].
When a block of memory is released, we clear the marks. When a read/write
operation I in loop [ is executed, we can test whether v(9 and vt have the
same mark (v € defs(I) Udefq(I)). If not, we will get v € defq(I). We also add
loop mark ‘I to it. We do not set ‘r/w’ to the piece of memory with [. Based on it,
we design and develop a proof-of-concept prototype called AutoDunt. Detailed
implementation will be shown in the next section.

5 Implementation

We choose QEMU [33] as the virtual surrounding because of its efficiency when
compared to previous processor emulators such as Bochs. QEMU works in the
following way. It first picks a basic block of executable codes from the program.
A basic block in a procedure is a sequence of consecutive instructions with a
single entry and a single exit point. Then QEMU translates the codes and runs
it at last. AutoDunt plays as a middleware to analyze the codes and saves the
necessary states of the guest OS. In this way, AutoDunt can be easily integrated
with other virtual surroundings.

5.1 State Saving Module

In order to re-run a thread from a certain checkpoint, proper states should be
saved when the thread is running. In our current implementation, AutoDunt
only saves memory states and CPU states of the running thread, which are
enough for vulnerability detection. Saving the state of every basic block works
well. But most states are unnecessary for vulnerability detection. We use the
results of latent dependence analysis to decrease the number of saved states.
When we find sv(v®) # sv(v+1)) in a loop, we save the current state for the
loop (only once). We use QEMU to instrument memory operation codes in table
1 to distinguish possibly different types. Some memory operations are implicit.
For example, PUSH, POP, CALL and RET instructions can change stacks. Since
CALL instruction will write return address in the stack, AutoDunt sets ‘w’ mark
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to the corresponding memory in smem. In this way, this type of vulnerability
can be detected by latent dependence analysis. Overflowing SEH could also be
detected since the address of exception handling function is marked in smem.
Heap and stack have different kinds of memory allocation operations. Heap is
usually allocated by system call ‘HeapAlloc’ while stack is allocated by any
function call.

When AutoDunt manages nested loops, the states of inner loop may be saved
many times. For example, suppose there are three loops. The outer-most one is
l1, the inner loop of I; is I3, and the inner loop of Is is I3. Suppose [; runs t;
times and Iy runs to times. Then the states may be saved t; X to times. Most
of the saved states are unnecessary. So before AutoDunt saves a state, it should
firstly try to identify nested loops and only saves the state once. In this way,
we can avoid saving unnecessary states. Evaluations about the number of saved
states will be shown in Section 6.

Sometimes we do not need to analyze some trusted codes such as system calls
and library functions. This saves a lot time since the number of these codes is
not small. According to experiments in Section 6, we find kernel codes are about
55.6% of the overall codes in average. We define a set of instruction addresses
which do not need to be analyzed. AutoDunt ignores the instructions whose
addresses are in the set.

5.2 State Recovery Module

If a vulnerability is exploited, the vulnerable code can be found by compar-
ing the saved states and re-running the thread. QEMU supplies an interface
‘cpu memory rw debug’ to access virtual memory of guest operating system. So
it is easy to re-run the thread from a saved state. There is no need to re-run every

saved state to perform vulnerability detection. Suppose eip EEENEENY | nput
and the value of eip is v.;, when an attack happens. We choose state s; as start-
ing state for vulnerability analysis. s; meets the following conditions: the value
of v in s;41 equals to ve;, and the value of v in s; does not equals to vVeip. Si+1
is the next state after s;. In this way, we can find the medium instruction that
changes v. This information is valuable for software vendors to generate patches.
By restarting the process from s;, we avoid analyzing the codes from program
start point, which improves the overall efficiency, especially when the program
has executed for a long time. We analyzed 81 exploits and found this method
could point out almost all of the vulnerable codes. Detailed results are shown in
Section 6.

5.3 Distinguishing Different Processes and Threads

In windows operating system, different processes have different CR3 values. CR3
is a register in CPU to save the page directory address of current process, which
can be used to distinguish different processes. When using QEMU, it is easy to
read CR3 value in virtual CPU. We can use EPROCESS structure to get process
names. In this way, we can choose the target program to analyze by names.
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As different threads have different ID numbers, thread ID can be used to
distinguish them. AutoDunt can get thread ID easily from ETHREAD struc-
ture by using the interface ‘cpu memory rw debug’. Although the structure of
ETHREAD differs in different operating system, it is not a big task to acquire
its structure information. In fact, most rootkits use ETHREAD to get thread id
in the same way.

6 Evaluation

In order to evaluate the effectiveness and efficiency of AutoDunt, we deploy
it with QEMU 0.9.0 and do some evaluations. Our testing computer is one
IBM server which is equipped with two 3GHz Intel Pentium IV processors, 4GB
memory cards and the operating system is Linux 2.6.11.

6.1 Effectiveness

To evaluate the effectiveness of AutoDunt, we test 81 real exploits. 35 of them
are stack buffer overflow exploits, 23 of them are heap overflow exploits, 6 of
them are integer overflow exploits and the rest are format string exploits. Most
of the exploits are from MilwOrm [34] while the rest are collected from Internet.

We first choose MS06-055 (Vulnerability in Vector Markup Language Could
Allow Remote Code Execution) [35] as a case study to illustrate AutoDunt.
We select an unpatched Windows XP SP1 as guest operating system and run
IE on it. Then we load a malicious HTML webpage (MS06-055.htm) which is
shown as the left part of figure 3. AutoDunt successfully points out the medium
instruction when the vulnerability is exploited. The code is ‘MOV [EDI], DX’

(0x6FF3ED1E) which copies malicious input to stack and overwrites the return
LD(MOV|[EDI],DX)

address. This instruction is in a loop and eip Input . Au-
toDunt also figures out the position of input data which changes the value of
eip. To verify its correctness, we change the data at this position from ‘AA’ to
‘MN’ (as shown in the right part of figure 3) and load the webpage again. After
the overflow, eip pointers to 0x004E004D (which is the Unicode form of ‘MN’ in
memory).

o) ) e S SETE
Ble Edt Fomat Vew Heb Fle Edt Format View Help

khtml xmlns:v="urn:schemas-microsoft-com:vml”><head> ﬂ <html zmlns:v="urn:schemas-microsoft—com:vml “><head> =
(title>XSec. orgl/titled<style>v\:* { behavior: <title>XSec. org</title><styledv\:* { behavior:

url (#defaul t#VIL); ) </styled</head><body><virect url (#defaul t#VIL) ; }</style><{/head><body>¢virect
style="width:20pt;height:20pt” fillcolor="red”»<v:fill style="width:20pt ; height:20pt” fillcolor="red”><v:fill
method="AAMAAAAAAAAAAAAAAAAAARAAAARAAAALAARAAAAAAAAAAAAAAAA me thod="

AAAMAAARAMAAAAAMAAAAARAAAAAAAAAARAMAAARAMAAAMARAAAAARAAAAL
AAAAAAMAAAAARAAAMAAAAAAMARAAAARAAANARAASAMANAAARAAAAAAARRA | IAAAAAAAAAAAAAMAAAAAAAAARAAAAAAARAAAAARRAAAARAAAARMAAAAAAMA

<{/v:rect></body><{/html> </virect><{/body></htnl>

Fig. 3. A Malicious Webpage for MS06-055
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In 81 exploits we have tested, we find AutoDunt could point out 77 right
positions of the vulnerable codes successfully. The rest four vulnerabilities are all
format string ones. Format string vulnerability falls into three categories: denial
of service, reading and writing [36]. The four vulnerabilities are all in category
three, which is the combination of arbitrary code execution attack and arbitrary
function argument attack. We do not implement this kind of detection in our
current prototype. It is not difficult to achieve this by using the method in [24].
Note that there may be some false positives in our system if the target program
modifies the return address in stack itself. This exists in some self-modified codes
and packed binaries. We will manage this problem in the future.

6.2 Obfuscated Shellcode Detection

Obfuscated shellcode usually has different signatures from its original one, which
makes it difficult to detect. So attackers like to obfuscate codes to evade the
detection of antivirus software and firewall [37/38]. In this part, several methods
are chosen to obfuscate the shellcodes of five popular worms (including CodeRed,
Slammer, Blaster, Sasser, MyDoom) to test the robustness of AutoDunt.

Table 2. Obfuscated Shellcode Detection

Obfuscation Result
Code Reordering Yes
Garbage Insertion Yes
Equivalent Code Replacement Yes
Jump Insertions Yes
Code and Data Encapsulation Yes
Register Renaming Yes
Branch function Yes
Opaque Predict Yes
No Shellcodes Yes

Table 2 shows that no obfuscated shellcode could evade the detection of Au-
toDunt. It is easy to understand since AutoDunt does not rely on signatures to
detect shellcode. What AutoDunt cares is the change of super variables. Thus,
no matter how different the shellcode seems, AutoDunt can still detect it and
expose the vulnerable code in software.

6.3 Efficiency

We measured the efficiency of AutoDunt using several popular software in Win-
dows in different ways. Table 3 compares the basic block number of user codes
and kernel codes of several popular applications. It also shows the number of
saved states and their proportion to all blocks. The result shows that AutoDunt
chooses only a few states to save, which increases the efficiency of state saving
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and recovery. The peak memory usage of AutoDunt is also recorded. AutoDunt
only saves the changed memory instead of the whole memory of each state, which
saves a lot of memory and time. A comparison of these two methods is shown in
figure 4. The first method is to record the whole memory of user stack in each
state. We do not include heaps and global memory here since the memory usage
is too high for AutoDunt to manage. The other method is to record changed
memory (including stack, heap and all the other global memory). It is obvious
that the memory usage of AutoDunt is extremely low. We also compare the
memory usage between AutoDunt and TTVM [30], which also saves program
states and replays them for program analysis. The memory usage (per second)
of AutoDunt is about 0.5 MB/s while the usage of TTVM is about 4~7 MB/s
[30]. The travel time to go to a desired point is about 10 seconds for TTVM
while it is less than 1 second for AutoDunt.

To measure the overhead of state saving process, we record the time to open
a document or a mp3 music according to different programs. Figure 5 compares
the running time of those programs in native system and in virtual surroundings
(with and without AutoDunt). The overhead of AutoDunt is about two times as

Table 3. Blocks number, States number and Memory Usage of Different Programs

Microsoft Acrobat Media Microsoft. Microsoft Outlook Excel
Word Reader 7 Player 10 IE 6 Live  Mes- 2003 2003
2003 senger 8.1
Block (user) 38251073 13167959 16601976 20316738 43028837
(42.108%) (68.262%) (31.926%) (30.115%) (62.143%)
Block (ker- 52589922 6122278 35398642 47146661 26212978

36883635 21935884
(37.210%) (39.350%)
62240349 33809681

nel) (57.892%) (31.738%) (68.074%) (69.885%) (37.857%)  (62.790%) (60.650%)
State Num- 135972 123907 179815 56864 138585 125420 40545
ber (0.150%) (0.642%) (0.346%) (0.084%) (0.200%)  (0.127%) (0.073%)
Memory 13,145 16,698 3,408 12,988 10,975 14,647 13,820
(KB)
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much as QEMU in average. As the performance of AutoDunt depends much on
virtual surroundings, it increases with the improvement of virtual technologies.
Moreover, some other methods [3940/41] are proposed to decrease the overhead
in dynamic analysis. We may use them in the future implementation of AutoDunt.
Figure 6 and figure 7 show the results of omitting the trusted code and nested loop.
They save as much as 2.95x numbers of states and 3.94x running time in average.
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Fig.6. The number of states with/
without trusted codes and nested loops
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Fig. 7. The running time of different
programs with/without trusted codes

and nested loops

7 Conclusion and Future Work

In this paper, we design and develop a proof-of-concept prototype called Auto-
Dunt to detect arbitrary code execution vulnerabilities in software by analyz-
ing attacks directly in virtual surroundings. It could analyze both user codes
and kernel codes without any source codes. It does not care about polymor-
phic/metamorphic shellcode (even no shellcode). We also propose a new kind of
dependence between variables called latent dependence to decrease the number
of saved states for virtual surrounding replaying. In this way, there is no need
to use slicing method or taint analysis method, which increases the efficiency.

AutoDunt is a young system. Finding vulnerable codes greatly relies on at-
tacks detection. In future work, we will enhance the detection part of AutoDunt.
We will also try to decrease the number of saved states and increase the manag-
ing speed further. Moreover, we try to implement AutoDunt in a non-emulated
environment to improve efficiency.
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Abstract. This work presents several classes of messages that lead to
data leakage during modular exponentiation. Such messages allow for the
recovery of the entire secret exponent with a single power measurement.
We show that padding schemes as defined by industry standards such as
PKCS#1 and ANSI x9.31 are vulnerable to side-channel attacks since
they meet the characteristics defined by our classes. Though PKCS#1
states that there are no known attacks against RSASSA-PKCS1-v1 5,
the EMSA-PKCS1-v1 5 encoding in fact makes the scheme vulnerable to
side-channel analysis. These attacks were validated against a real-world
smartcard system, the Infineon SLE78, which ran our proof of concept
implementation. Additionally, we introduce methods for the elegant re-
covery of the full RSA private key from blinded RSA CRT exponents.

Keywords: RSA, PKCS#1, ANSI x9.31, Side-Channel Attacks, Simple
Power Analysis, CRT, Exponent Blinding.

1 Introduction

Side-channel attacks exploit information leaked by the physical characteristics of
a cryptosystem [8I9/T7]. A common side-channel attack is power analysis. Power
analysis can be categorized into two subcategories, simple power analysis (SPA,
methods requiring few measurements) and differential power analysis (DPA,
methods requiring many measurements) [I2]. Since it is commonly impossible
to recover the data being leaked in a single measurement, adversaries are often
forced to perform DPA to recover data in its entirety. In turn, countermeasures,
e.g., blindings, are implemented to counteract the attacks and to thwart DPA.

In this work, we attack the RSA signature process by performing simple power
analysis to recover the potentially blinded secret exponent. We present several
classes of messages that lead to data leakage during modular exponentiation.
Specifically, we show that several properly formatted standardized input mes-
sages, including the message encodings of PKCS#1 [I8] and ANSI x9.31 [II,
meet the criteria defined by these classes. Thus, we show that compliance with
industry standards can in fact lead to data leakage, although these standards
are considered to be secure message encodings.

The analysis was performed against our proof of concept (POC) implemen-
tation running on an Infineon smartcard system, which performed ZDN-based

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 155-[[68] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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modular multiplication [7]. This setup allowed us to test all classes of input mes-
sages presented in this work. For all classes of input messages, the SPA yielded
the entire private exponent or the entire blinded private exponent that was used
for the signature process.

Recovering a potentially blinded exponent is sufficient to sign messages in
the RSA signature scheme. However, this is not true for RSA CRT. In the case
of RSA CRT, the attacker must instead recover the full private key. Methods
for recovering the full RSA private key have been known since 1978, whereas we
present two specific methods for RSA CRT, with and without exponent blinding.
Since several methods for recovering a secret exponent fail to recover all of the
exponent bits, we present the approach exponent un-blinding, which enables an
attacker to compute the full private key more efficiently in such cases. This
method can cope with more noise, more efficiently than other known methods.

The main contributions of this paper are:

1. Categorization of common vulnerable message classes and the corresponding
attack scenarios.

2. Demonstrating that constant padding makes RSA signature schemes such as
RSASSA-PKCS1-v1 5 and ANSI x9.31 vulnerable to side-channel analysis.

3. Practical validation of the attacks and the proposed attack scenarios against
a proof of concept implementation on an Infineon smartcard system.

4. More efficient methods for recovering the full RSA CRT private key from
blinded private exponents.

The paper is organized as follows: Section [2] presents necessary background in-
formation. In Section [3] we present several common types of input messages and
explain attack vectors and scenarios which arise from certain characteristics of
these messages. We categorize these characteristics into classes of messages which
lead to data leakage. Any valid PKCS#1 and ANSI x9.31 message meets the cri-
teria defined in one of these classes. We then demonstrate these attacks against
an Infineon smartcard system running our POC implementation in Section [ In
Section Bl novel methods for the recovery of the full private key are explained for
RSA CRT. Finally, we summarize the implications of our research in Section [6

2 Background

In this section, we first give a brief introduction of the RSA and the RSA CRT
signature scheme. We then explain the square-and-multiply algorithm for mod-
ular exponentiation and the ZDN algorithm for modular multiplication. Finally,
we explain blinding techniques, which are used to thwart statistical attacks.

2.1 RSA CRT

Let (N, e) be the public RSA modulus and exponent, and (p, ¢, d, ¢(N)) be the
private key, satisfying N = pq and ed = 1 mod (V). As the modulus N is
the product of two different primes, the Chinese Remainder Theorem (CRT)
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can be used to speed up the time intensive process of message signing by a
factor of four [I3J16]. Instead of computing the RSA signature s = m? mod N
with an exponent of the order of n = log,(N) bits (assuming a small e), two
modular exponentiations with n/2-bit exponents are performed. In this setting
and without loss of generality ¢ < p, we precompute d, = d mod (p — 1),
dy = d mod (¢ — 1) and giny, = ¢~' mod p. These constants are also part of the
private key [I8]. They are used for the computations

sp = m®% mod p and 54 = m% mod q. (1)

Subsequently, Garner’s algorithm is used to yield the signature s of m:

s =8¢+ (Ginv - ($p — 8¢) mod p) - q. (2)

2.2 Square-and-Multiply for Modular Exponentiation

A commonly used algorithm for modular exponentiation is the modular square-
and-multiply algorithm, which exploits the binary representation of the exponent,
see Figure [ The input for this algorithm is (m, d, N) and its output, s =
m? mod N, is the signature of m. Let d;, i € {0,...,] — 1}, denote the i*" bit of
d, i.e., do is the least significant bit. Thus, [ is the bit length of d and we have
I = |logy(d)] + 1. Performing a modular exponentiation with this algorithm
needs O(log,(d)) operations, i.e., it has logarithmic complexity.

2.3 The ZDN Algorithm for Modular Multiplication

Whithin the square-and-multiply algorithm, modular multiplications are per-
fomed. ZDN-based modular multiplications consist of three major parts, com-
putation of the “look-ahead” multiplication (LABooth) [BI21], computation of
the “look-ahead” reduction (LARed) [5I21], and a subsequent 3-operand addi-
tion, which finally yields the resulting partial product, see Figure Pl LABooth
is optimized to shift across constant bit strings, whereas LARed requires only
several significant bits to compute the reduction. The look-ahead reduction is
designed so that its average reduction is approximately the same as the one of
the look-ahead multiplication Thanks to this high level of optimization, the
three parts are executed in parallel and require just a single clock cycle [5]. The
algorithm ensures that the intermediate result Z fulfills |Z| < éN , hence the
name (two-thirds IV is zwei Drittel N in German).

2.4 Blinding Techniques to Thwart Statistical Attacks

Both RSA and RSA CRT are vulnerable to differential side-channel attacks
[BI9IT7]. To prevent these statistical side-channel attacks, randomized blinding
is used to disguise intermediate results and to decouple the leaked information

! Both look-ahead sub-operations are explained in detail in [20121].
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1 dinput: m, d, N 1 input: t, m, N

2 output: m? mod N 2 output: m-t mod N

3 k :=loga2(d) - 1, t := 1 3 Z =0, C :=m

4 while k >= 0 4 1 := loga(t) + 1, ¢ := 0

5 // square 5 while I > 0 or ¢ > 0 do

6 // ZDN Mod-Mult 6 LABooth (t, &l, &s:, &vc)
7 t = (t-t) mod N 7 LARed(Z, N, c, &s., &vn)
8 if dr =1 then 8 Sc 1= Sz - St

9 // multiply 9 C := C-2%¢

10 // ZDN Mod-Mult 10 Z = 7-2°Z 4+ vo-C+ovn-N
11 t = (t-m) mod N 11 ¢ := ¢ - Sc

12 k =k -1 12 endwhile

13 endwhile 13 if Z < 0 then Z := Z+ N
14 return t 14 return Z

Fig. 1. Modular Square-and-Multiply Fig. 2. ZDN-Based Modular Multiplication

from the processed data. We explain three different blinding techniques of which
two are vulnerable to our attack. In all cases, the integers r and ry, 19, respec-
tively, are random A-bit numbers, commonly A = 32 [22]. A new r is chosen
independently for every operation.

The first of these blinding techniques is called exponent blinding [22]. The
blinded exponent is d' := d + r - p(IN). Due to Euler’s theorem, the following
equation holds true: s = m® mod N = m4*+"¢) mod N The same blinding
can be applied to both exponents when using RSA CRT. In this case, the blinded
exponents are dj, = d, +71 - (p — 1) and dj, = d, + 72 - (¢ — 1), respectively.

The second blinding technique is called base blinding [9] or message blinding.
Base blinding decouples the side channel leakage from the input m. For a random
A-bit integer r its inverse modulo N is calculated, i.e., » - 7~! = 1 mod N.
The blinded message is m’ := r¢ - m. Instead of m, the blinded message is
signed, yielding the blinded signature s’. The blinding is reversed by computing
s = (r~!-s’) mod N. Since this form of base blinding includes a computationally
expensive inverse calculation in Zy™, it is relatively unattractive for embedded
systems. Alternatively, another form of base blinding can be used. Given two
random A-bit integers 71,72 where 1 < ro, the exponentiation can be computed
as follows, s = [(r1 - N +m)? mod (rz - N)| mod N. This form of base blinding
is far less computationally expensive.

3 SPA-Based Secret Exponent Recovery

In this section, we present several side-channel attacks which obtain the exponent
of a modular exponentiation with a single-trace analysis. Most known methods

2 It is very unlikely that the necessary condition ged(m, N) = 1 is not fulfilled.
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for recovering exponents rely on statistical analysis [4I8I9IT923]. As such, these
methods require multiple exponentiations with the same exponent, and thus, can
be prevented by exponent blinding. Instead, we consider approaches that are able
to recover the entire exponent from a single modular exponentiation operation.
These approaches also work whenever exponent blinding is used. First, we recall
several known methods and then we present a list of criteria for the message
that, when met, allow us to recover an exponent in a single trace.

3.1 Known Methods

In 2005, an attack that uses the specific input m = —1, i.e., N — 1 mod N, was
presented [24]. This attack exploits the fact that whenever square-and-multiply
is used, there are just three distinct pairs of operations, which are performed
during exponentiation [I4]. Due to the special input message, these distinct
pairs result in three distinct power dissipation states, which can be identified
within the power trace. Therefore, the bit pattern of the private exponent can
be obtained by performing a single-trace SPA [14)24]. The same approach was
extended for RSA CRT.

In 2010, an additional method for recovering secret data via a single-trace
SPA emerged [3]. The authors consider systems, which utilize ¢-bit multipliers
for performing long integer arithmetic, i.e., t = 32 or ¢ = 64. If one or more ¢-bit
strings of a message are equal to 0, i.e., O-strings, the message will lead to data
leakage in the power trace. The authors also describe several possible messages,
which lead to data leakage, such as messages with a low Hamming weight, i.e.,
m = 2% where x < log,(NN). The authors mention that multiple constant ¢-bit
strings, or constant strings that are longer in length, only increase the leakage
even more. We demonstrate in this work that certain aspects of this attack are
also applicable to systems that do not use t-bit multipliers of a certain length ¢,
and consider systems that perform full length integer multiplication directly.

3.2 Classes of Input Messages

We present several classes of input messages and corresponding attack scenarios
that lead to differences in the power consumption depending on the value of the
exponent bit. As a result, whenever a cryptosystem performs a modular expo-
nentiation with a message from one of these classes, the exponent bit sequence
can be recovered. We validate these claims by performing an SPA against a POC
implementation in Section Ml

Our attacks are based on messages that have constant bit strings, which can
lead to data leakage. Specifically, we focus on two message types. The first class
includes standardized messages, which consist largely of constant padding. In
such cases, the constant padding of the leading bits constitutes a Leading Con-
stant Bit String (LCBS). In the second class of message we consider regions of
the message, which are set or affected by user input. Usually this is a region of
the least significant bits or trailing bits. Hence we refer to this class of message
as Trailing Constant Bit String (TCBS).
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prefix postfix ASN-1 SHA-1
0x00 6x01 0x33 0xCC .. 0x2B OxOE .. 0x22 0x59 .. 0x11

(a) 2048-bit PKCS#1 encoded message

header SHA-1 trailer
0x6 0x22 0x59 .. Ox11 0x33 0xCC

(b) 2048-bit ANSI x9.31 encoded message

Fig. 3. Figures and [3(b)| are drawn to scale. The dark gray area of Figure
corresponds to the “heavier” Hamming weight of the leading OxFF of the RSASSA-

PKCS1-vl 5 padding and the lighter gray of Figure to the “lighter” Hamming
weight of the leading 0xBB padding of ANSI x9.31.

The message classes described in this section allow us to distinguish between
square and multiply operations. Once we are able to distinguish a square from a
multiply, the bit pattern of the exponent can be recovered from a single power
trace, as is demonstrated in Section @l

Leading Constant Bit String: The first class of message we consider, is the
Leading Constant Bit String (LCBS). These are messages in which the most sig-
nificant bits consist mostly of constant 0- or 1-strings. LCBS messages are par-
ticularly interesting because many valid messages utilizing non-random padding
schemes constitute LCBS messages. For example, we classify both RSASSA-
PKCS1-vl 5 of PKCS#1 [18] because of the leading 0xFF (111111115), and to
a lesser extent ANSI x9.31 [I] with leading 0xBB(101110115) as LCBS mes-
sages. Thus, attacks that utilize LCBS messages are potentially harder to de-
fend against because such attacks do not necessarily rely on the chosen message
attack model. In such a scenario, the data is leaked by any valid message.
Though PKCS#1 states that there are no known attacks against RSASSA-
PKCS1-v1 5 [18], we demonstrate that the EMSA-PKCS1-v1 5 encoding in fact
makes the scheme vulnerable to side-channel analysis, see Section [l In the case
of the exemplary 2048-bit PKCS#1 message, over 84% of the message is padding,
see Figure In the case of the exemplary 2048-bit ANSI x9.31 message, over
91% of the message is padding, see Figure

LCBS messages do not necessarily reduce the workload of the modular re-
duction on systems that do not perform multiplication and reduction in parallel.
However, the consistent structure of the leading 0- or 1-strings ensures a reduced
workload on highly optimized systems implementing algorithms like ZDN [5].

Trailing Constant Bit String: The second class of message we consider is
the Trailing Constant Bit String (TCBS). This is an important classification
because many cryptographic schemes operate on messages that contain only a
relatively small variable region set or affected by user input. In most cases, this
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region is a relatively small portion of the least significant bits and the bulk of
the message consists of padding. However, if an attacker is able to set as little as
5%-10% of the least significant bits by, for example, supplying the specified hash
to the signature scheme directly, then the attacker would be able to recover the
secret data independent of the padding scheme being used. In this scenario, even
if randomized padding is used, a very small region of trailing bits is sufficient to
leak the entire secret data. Note, standards such as PKCS#1 also define multiple
hash algorithms that can be used. Potentially, an attacker could even increase
the region affected by user input to be as large as 512 bits if he is allowed to
provide, for example, SHA-512-based messages instead.

As with LCBS, TCBS messages can be as long as the modulus in bits and, as
such, TCBS messages do not necessarily reduce the workload of the modular re-
duction. This is generally the case whenever multiplication and reduction are not
computed in parallel. However, on highly optimized systems, i.e. those which im-
plement ZDN [5], the constant trailing 0- or 1-strings ensure a reduced workload.

Short Messages: Though of little interest if the implementation enforces pad-
ding, the third class of messages we consider is the short message. Short messages
are messages m < N, where N is the modulus of the modular exponentiation
operation in question. Short messages can be considered LCBS messages with
leading O-strings. We consider short messages in this work, primarily because
they exploit both the multiplication and reduction step of modular multiplica-
tion and achieve the greatest difference in the power consumption of squares and
multiplies, respectively. This was also validated against our POC implementa-
tion, where padding checks could be disabled, see Section @l Note that efficient
implementations generally ignore, or shift across any leading 0-strings, which
in conjunction with the relatively low Hamming weight of the entire message
greatly reduces the workload of the multiplication step. Additionally, because of
the short length in bits of the message m, the intermediate result of the mul-
tiplication step of the square-and-multiply algorithm increases by only log,(m)
bits in length prior to reduction. In comparison, during the square operation,
the bit length of the intermediate result approximately doubles. As a result, in
addition to the lower computational workload of the multiplication, such mes-
sages also reduce the computational workload of the modular reduction after a
multiplication and potentially eliminate reduction completely, further lowering
the power consumption of the multiply operation.

4 Proof of Concept

In this section we present the practical evaluation of the classes of messages
described in Section [3l on a real-world system.

The cryptosystem analyzed in this work is an Infineon SLE78-based [7] smart-
card system. The SLET78 features a cryptographic coprocessor known as the
Crypto@2304T, which provides 2304-bit registers and ZDN-based modular mul-
tiplication [5]. In contrast to previous works such as [3], which focus on cryp-
tosystems that use “short” bit length multipliers (i.e. 32 or 64-bit multipliers),
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the SLE78 performs full-length arithmetic operations by utilizing registers and
logic capable of 1024-bit and 2048-bit modular multiplication. With ZDN-based
modular multiplication, multiplication and reduction are computed in parallel in
multiple iterations of the modular multiplication loop, see Section This im-
proves performance and further reduces register length requirements by ensuring
|Z| < N for the partial product Z and the RSA modulus N.

When used in conjunction with algorithms like square-and-multiply, the high-
ly optimized nature of this modular multiplication introduces additional weak-
nesses. The two important characteristics of ZDN-based modular multiplication,
which were exploited in this work are:

— LABooth ensures that the cryptosystem can shift across 0- (i.e., 00..00) and
1-strings (11..11) as well as 0- and 1-strings with isolated 1’s and 0’s, respec-
tively, i.c., (0..010..0) and (1..101..1).

— LARed ensures that partial products are only actually reduced whenever they
become too large, i.e. |Z] > }N.

By selecting messages, which meet the criteria outlined in Section B we exploit
all of these characteristics of the algorithm. However, exploiting even any one
characteristic of the algorithm allows for the recovery of the sequence of square
and multiply operations, and thus, for the recovery of the secret exponent.

The system ran a proof of concept software implementation, which performed
RSA signing. This implementation used square-and-multiply for modular ex-
ponentiation, the ZDN algorithm for modular multiplication, and it performed
exponent blinding, as described in Section 2] and [Z4l The system did not
enforce padding, which allowed us to test all the message types described in Sec-
tion [B] including short messages. The system was connected to a PC, which ran
the client software, via a standard USB smartcard reader. The client software
allowed us to select input messages and enable or disable additional software
and hardware countermeasures.

Figures and show the first 3ms of the computation for a common
exponent, but with the different classes of messages introduced in Section [3 as
the input. The modulus of the modular exponentiation was 1024 bits in length
for all the input message classes. For comparison since truly random messages
do not produce data leakage, we provide a trace of a random message in the
extended version of this paper (see [10]).

The data leakage is clearly visible in Figures and for the short mes-
sage (see [10]). The attacks failed to recover a few of the leading bits depending
on the class of input message, as described in Section Bl The system ran at
32MHz with no current limit and timing jitter enabled. Our experimental setup
allowed us to capture the entire computation at this resolution. The system
current was measured with a LeCroy 7-zi oscilloscope by performing a low-side
shunt measurement over a 10{?2 resistor.

Leading Constant Bit String: Figures and show the data leakage
of the system while processing an LCBS input message. The LCBS message
is the most important message class analyzed in this work, because any valid
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Fig. 4. First 3ms of the exponentiation for LCBS and TCBS input messages. The
system current was measured with a LeCroy 7-Zi digital oscilloscope [11] via low-side
current shunt insertion. Figures and are a magnification of the time 2ms -
3ms for the respective input message.

RSASSA-PKCS1-vl 5 message is a candidate LCBS message. On systems im-
plementing highly optimized algorithms like ZDN, such as the smartcard system
we analyzed, LCBS messages can also lead to data leakage despite the leading
non-zero padding, i.e., leading OxFF (11111111) and 0xBB(101110113). With
ZDN, the look-ahead algorithm’s sub-operations, LABooth and LARed, run in
parallel and ensure that the system simply shifts across any leading 0- or 1-
strings, deferring the bulk of the arithmetic operations, see Section As a
result, the constant structure of the leading bits of the message ensures a lower
workload and lower power dissipation during the multiply operation. These ef-
fects are clearly visible for the LCBS input message in Figure We chose
the message according to the scenario described in Section B2 i.e., we used the
constant RSASSA-PKCS1-v1 5 padding and added a random 160-bit string as
hash value. Messages coded in the ANSI x9.31 format resulted in very similar
data leakage.

Trailing Constant Bit String: Figures and show the data leakage
of the system while processing a TCBS input message. The TCBS message suc-
ceeds in inducing leakage despite the random padding used in the input message.
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The message consisted completely of random padding except for the least sig-
nificant 160 bits. This illustrates the scenario described in Section B.2] where
the attacker is able to supply a hash value into the signature scheme directly.
The 160 bits of SHA-1 make up only 16% of the entire message. However, the
look-ahead algorithm’s sub-operations, LABooth and LARed, ensure that the sys-
tem simply shifts across any leading 0- or 1-strings and the trailing constant bit
string of the input message is sufficient to induce leakage on our POC imple-
mentation. Note, our experiments show that a constant bit string consisting of
as little as 5%-10% of the message is sufficient to induce data leakage. Thus,
the attack would also work against 2048-bit RSA and for other common hash
algorithms, such as SHA-256/384/512 or MD2 and MD5, respectively. Each of
these hash functions accounts for at least 6.25% and 12.5% of the entire message,
respectively, depending on whether 1024- or 2048-bit RSA is used.

Short Messages: As already mentioned in Section B2 short messages exploit
both parts of parallel modular multiplication algorithms such as ZDN. In con-
trast to the square operation, during the multiply, because of the small value
and low Hamming weight of the short message, the modular multiplication can
be computed very quickly with very few iterations of the LABooth algorithm,
see Section 2.3l In addition, since the intermediate result only grows by very
few bits, reduction may potentially be eliminated entirely. If the partial product
must be reduced, it can be computed with very few iterations of the loop during
ZDN-based modular multiplication, see Figure 2.3l For these reasons the short
message achieves the greatest difference in power consumption between squares
and multiplies on the SLE7S.

Potential Countermeasures: Because the attacks presented in this section
require a particular structure, i.e., constant bit strings within the message, base
blinding can defeat such attacks. However, it is worth noting that the “classical”
blinding method as described by [9] actually fails in disrupting the constant bit
string structure within the message. In this case, the message m’ := r¢ - m is
used for the exponentiation instead of m, see Section 2.4l For common values
of )\, i.e., 32-bit randoms, and small exponents, i.e., 3 or 17, the randomization
introduced into the message is actually quite minimal. Additionally, the com-
putation of the blinded message and its inverse becomes increasingly difficult
for increasing \’s and exponents. For these reasons, an alternative form of base
blinding should be used, which ensures randomization of the entire message,
namely s = [(r1 - N 4+ m)? mod (ro - N)| mod N.

Exponent blinding could be used to obfuscate the exponent, however, blinded
exponents can also be used to sign messages in the RSA signature scheme. How-
ever, its worth noting that RSA CRT exponents cannot be used to forge signa-
tures, and for this reason we present several methods for recovering the full RSA
private key from potentially blinded exponents in Section Bl
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Techniques that decouple the execution from the data being processed, such
as square-and-multiply-always, were able to prevent our attacks. However, other
DPA countermeasures, such as timing jitter, had no affect in our analysis.

5 Full RSA Private Key Recovery

If an attacker can obtain a CRT exponent, which also might be blinded, he can
not generate valid signatures with it since the CRT computation of signatures
requires both p and ¢. Thus, the attacker must factorize the modulus N. We
present three methods for the factorization of IV of which only the first is known.

Lemma 1. Let N = pq be an RSA modulus, e the public exponent, and d the
private exponent with ed = 1 mod p(N). Let d, = d mod (p — 1) and d; =
d mod (¢ — 1) be the RSA private CRT exponents. Then given d, or dy, N can
be factorized [2].

Proof. Let m < N be an arbitrary message. Without loss of generality, let d,
be known. Given (N,e) and dp, we can compute ¢ = m® mod N and m, =
¢® mod N. Since p | N and d, = d mod (p — 1), m = ¢% mod p and m, =
¢® mod p. Then p = ged(N,m —my,,) [2].

Lemma 2. Let N = pq be an RSA modulus, e the public exponent, and d the
private exponent with ed = 1 mod ¢(N). Let dy = d mod (p — 1) and dy =
d mod (¢ — 1) be the RSA private CRT exponents. Then given a single blinded
private CRT exponent d,’ =d, +r-(p—1) ord,/ =d;+7r-(q—1),r€Z, N
can be factorized.

Proof. Let m < N be an arbitrary message. Without loss of generality, let
dy’ =d,+r-(p—1), r € Z, be known. Given (N,e) and d,’, we can compute
¢=m® mod N and m, = ¢  mod N. Since p | N and d,’ =d + z - (p — 1) for
d 4" mod p. Then p = ged(N, m — myp).

’
some x € Z, m = c¢* mod p and m, = ¢

We propose an elegant method for recovering the full RSA private key from
blinded CRT exponents, which we call exponent un-blinding. This method spares
the expensive modular exponentiations necessary in Lemma [2

Lemma 3. Let N = pq be an RSA modulus, e the public exponent, and d the
private exponent with ed = 1 mod p(N). Let d, = d mod (p — 1) and d; =
d mod (q — 1) be the RSA CRT private exponents. Then given at least k > 3
blinded exponents dp; =d,+ri-(p—1) or dq; =dg+mri-(g—-1), r €N,
i€{l,...,k}, N can be factorized.

Proof. Without loss of generality, let k£ blinded exponents dp; be known. We
calculate the pairwise differences dp;’j = |dp; — dp;.| = |d, + 7 - op) — (dp +
rj e = Iri =il - @(p) = rij - lp) = riy - (p— 1), since p(p) = p—1.
Subsequently, we get G = gcd{dp;j} =ged{r;;}-(p—1) =g (p—1). Thus, we
can test whether g = 1, i.e., if G = p—1, by testing whether N =0 mod (G+1).
If fulfilled, we have found p and thus know the private key. Otherwise, we test
whether N =0 mod (G/g+1) for g =2,3,4....
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Alternatively, if blinded exponents are easily obtainable, we simply obtain an
additional blinded exponent dp;C 41 and perform the same calculations again. The
higher k is, the higher is the probability of having a very small g. We provide
experimental results and further information about the success probability in
the extended version of this paper (see [10]).

The main advantage of the exponent un-blinding approach lies in the cheap
computation costs. Many methods to obtain exponents, in fact, do not reveal the
whole exponent [6/I5]. This also holds true for an attack using the short message
presented in this work, since such attack cannot distinguish square and multiply
operations during the computation of the first 7 - 8 bits, i.e., before the first
reduction. This means that we cannot determine the value of these bits, apart
from the most significant bit, which is always 1. Thus, an attacker has to test all
the resulting possibilities. The complexity of these computations can be heavily
reduced by applying exponent un-blinding. Although it requires at least three
blinded exponents, the method is very efficient. The efficiency of the algorithm
is two-fold: First, the required computations are cheap, especially compared to
modular exponentiation, which is needed when the method presented in Lemma
is used. Second, a false guess for one of the exponents will quickly lead to an
obvious false intermediate result, i.e., G < N/2. Thus, in contrast to the other
methods, exponent un-blinding is able to handle more noise, more efficiently.

6 Conclusion

In this work, we presented two classes of messages that lead to data leakage.
These classes are referred to as leading constant bit string (LCBS) and trailing
constant bit string (TCBS). Valid input messages of common signature schemes,
including PKCS#1 and ANSI x9.31, meet the criteria for these classes. Both
classes and the short message, a specific LCBS message, were validated against an
advanced smartcard system from Infineon, which ran our POC implementation
of the RSA signature scheme. In all cases the input messages allowed for the
recovery of the RSA private exponent in a single-trace SPA.

The short message exploits both multiplication and reduction of the modu-
lar multiplication in RSA signing. However, short messages can be prevented
by means such as message length checks or padding. TCBS messages reiterate
the importance of restricting direct user input. Our analysis showed that even
if the most significant 95% of the message bits consist of random padding, if
the attacker is able to set the least significant 5%, he will be able to recover
the secret data. Most importantly, LCBS messages demonstrate that even prop-
erly formatted messages can lead to distinct data leakage because of constant
padding. For these reasons, we consider the constant paddings used by RSASSA-
PKCS1-vl 5 and ANSI x9.31 to present a substantial security risk to modern
cryptosystems that implement highly optimized algorithms, such as ZDN-based
modular multiplication.

Our experimental results show that 0-strings result in far more distinctive
data leakage than 1-strings. For this reason, zero padding should be avoided at
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all costs. In addition to non-constant padding, there are several countermea-
sures that can thwart such attacks, including square-and-multiply-always and a
certain kind of base blinding. The initial reduction of RSA CRT also destroys
any constant bit strings in the input message if the input message is larger than
the modulus of the operation, i.e., larger than one of the prime factors of the
modulus N. For these reasons, unless RSA CRT with initial reduction is used,
we recommend that message blinding always be used on systems that implement
a constant bit string padding scheme, such as the padding schemes of RSASSA-
PKCS1-v1 5 and ANSI x9.31.

Additionally, a specific method for private key recovery when RSA CRT is
used was presented, exponent un-blinding. This is substantially faster than the
known methods if at least three distinct blinded exponents can be obtained.
Most importantly, this method can cope with more noise, more efficiently and
elegantly than any other known method.

In conclusion, this paper demonstrates that even an advanced cryptosystem,
which implements recommended industry standards, can introduce additional
unexpected side-channels. We believe that the claim “no attacks are known
against RSASSA-PKCS1-v1 5” [18§] is no longer true.
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Abstract. Side-channel attacks have posed serious threats to the phys-
ical security of cryptographic implementations. However, the effective-
ness of these attacks strongly depends on the accuracy of underlying
side-channel leakage characterization. Known leakage characterization
models do not always apply into the real scenarios as they are working
on some unrealistic assumptions about the leaking devices. In light of
this, we propose a back propagation neural network based power leakage
characterization attack for cryptographic devices. This attack makes full
use of the intrinsic advantage of neural network in profiling non-linear
mapping relationship as one basic machine learning tool, transforms the
task of leakage profiling into a neural-network-supervised study process.
In addition, two new attacks using this model have also been proposed,
namely BP-CPA and BP-MIA.

In order to justify the validity and accuracy of proposed attacks, we
perform a series of experiments and carry out a detailed comparative
study of them in multiple scenarios, with twelve typical attacks using
mainstream power leakage characterization attacks, the results of which
are measured by quantitative metrics such as SR, GE and DL. It has been
turned out that BP neural network based power leakage characterization
attack can largely improve the effectiveness of the attacks, regardless of
the impact of noise and the limited number of power traces.

Taking CPA only as one example, BP-CPA is 16.5% better than ex-
isting non-linear leakage characterized based attacks with respect to DL,
and is 154% better than original CPA.
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1 Introduction

Power analysis attack takes instantaneous power consumptions of a device to be
its side-channel leakages. In power analysis attack, power leakage model char-
acterizes the correlation between intermediate values and corresponding power
consumptions. The accuracy of power model determines not only whether the
power analysis attack is feasible, but also how complex the attack will be. There-
fore, cryptanalyst usually tries to model power leakages as precisely as possi-
ble before mounting an attack. We performed Hamming Weight(HW for short)
based DPAs[]][2] against one software AES prototype implementation on 8-bit
Cb51-compatible micro-controllers and have acquired the following two important
observations:

Observation 1: HW-based DPA targeting different bits in one intermediate
value results in DPA peaks with different heights.
Observation 2: HW-based DPA has a very low tolerance for noises.

These observations reflect that traditional HW based linear leakage approaches
are not capable of characterizing the real leakage precisely. [15] also claims that
some simple linear power models are no longer valid as the size of transistors
shrinks, even for standard CMOS circuits.

As of today, several approaches have been proposed to model non-linear power
leakage, e.g. SM(namely stochastic model)[I7], VPA(namely variance power
analysis)[14] and BWC(namely bit-wised characterizing)[I0]. These three ap-
proaches use combination of independent components to model the power leak-
age. Specifically, SM approach uses basis function on predefined vector subspace,
VPA approach uses predefined events(usually bit-flip event), and BWC uses DPA
peak heights of different bits to approximate the leakage function. All these
non-linear power leakage characterizing approaches are based upon one basic
assumption: the basic vector(SM), events(VPA)or power consumption of each
bit(BWC) are independent from one another. This assumption is commonly
referred to as Bit Independent Leakage Assumption. Unfortunately, this
assumption does not always hold in practice, thanks to the equivalent inductance
among circuits. Of course, this inevitably jeopardize the accuracy of underlying
characterization approaches.

Generally speaking, our work in this paper are motivated by the following two
factors. First of all, traditional linear models could no longer precisely character-
ize the actual power leakage of circuits. Secondly, nearly all existing non-linear
modeling approaches are based upon relatively strong and unrealistic assump-
tion, which would lead to more errors when are used to deal with noisy scenario.

Taking two above-mentioned factors into consideration, we present a new
power leakage modeling approach based on BP neural network. As a supervised
learning method for capturing power leakage, BP neural network based mod-
eling approach does NOT rely on any specific assumptions, thus having better
compatibility and higher precision.

The main contributions of this paper are twofold. On one hand, we proposed
one side-channel leakage modeling approach based upon BP neural network,
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which is applicable to non-linear power leakages and does NOT rely on any spe-
cific assumptions. By making use of intrinsic capability of BP neural network to
model arbitrary mapping relationship, the proposed model is capable of profil-
ing power leakages of unknown devices. On the other hand, we have constructed
two new side-channel attacks based on BP neural network, namely BP-CPA
and BP-MIA. The results of a series of experiments show that, BP-CPA shows
compelling effectiveness and strong noise tolerance with respect to three quan-
titative metrics, including Success Rate(SR[2]), Guessing Entropy(GE[LS]) and
Distinctive Level(DL[5]).

The rest of this paper is organized as follows. Section 2 briefly introduces
power leakage decomposition, existing attacks for leakage modeling and one
generic leakage function. Section 3 introduces the elementary knowledge of BP
neural network. Section 4 describes our BP Neural Network based leakage char-
acterizing approach, and then proves its soundness, after which two new attacks
are constructed. Section 5 presents a comprehensive and systematic comparison
study of a set of typical attacks, in order to demonstrate the effectiveness of pro-
posed BP neural network based power modeling approach. Section 6 concludes
the whole paper.

2 Preliminaries

Modeling the power leakage is the basis for launching a power analysis attack,
and its accuracy determines the final result of the attack. This section will first
introduce the composition of power trace. Then we will introduce several classic
linear power leakage modeling approaches(e.g HW model, HD model), followed
by non-linear power leakage modeling approaches including BWC, VPA and SM.
Finally, we will provide the formal description of generic power leakage model.

2.1 Power Leakage Decomposition

According to[I2], any single point in power traces can be considered to be the
sum of four independent components, namely signal, algorithm noise, electronic
noise and constant. Let P be the overall power consumption, F,, the signal com-
ponent(caused by operations), Pyqt, the signal component(caused by targeted
intermediate values), P,,;sc the electronic noise, and Peopnst the constant. Then,
the power leakage decomposition can be represented as shown in Eq.(T]).

P = Pop + Pdata + Pconst + Pnoise (]-)

where Pjyqt, is regarded as the power leakage. The main purpose of power mod-
eling is to precisely model the mapping between intermediate value and Pyqtq-

2.2 Linear Power Leakage Modeling

The most representative linear power model is Hamming Weight and Hamming
Distance model. Hamming Weight model assumes that power leakage is pro-
portional to the number of “1” in intermediate value[l2]. Similarly, Hamming
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Distance model assumes that power leakage is proportional to the number of
“17—=“0” or “0”—“1” transition[I2]. The relationship between HW and HD
model is given as follow.

HD(vg,v1) = HW (vg & v1)

2.3 Nonlinear Power Leakage Modeling

SM. SM approach is, in essence, a two-step attack. In profiling phase, one suit-
able vector subspace is used to approximate the leakage function, while some
basis functions are used to approximate various components of power leak-
ages. Note that the selection of vector subspace mainly relay on experiences
and intuitions. In subsequence analysis phase, minimum distance attack or
maximum likelihood is used to evaluate key candidates.

VPA. VPA approach needs to predefine the events that caused the power con-
sumption, assuming that different events are independent. Then, it calculates
the weight of each event in order to characterize the overall power consump-
tion. For instance, if Bit-flip is selected as the event, VPA is equivalent to
weighted HD model.

BWC. BWC attack assumes that different bits in a intermediate value are
independent from each other, and uses the DPA results of different bits as
the weights.

2.4 Generic Leakage Function

Power leakage model is essentially a mapping from particular intermediate value
to real power consumption. [3] gives the formal definition of power model.

n—1 n—1 n—1
Piata(v) =a—1 + E av; + E Qliq igVig Vig + .o + E Qg jig,ee,ig Vi Vig = * * Viy
i=0 i1,i2=0 i15eenyig=0
(2)

where Pjyuiq is the signal(caused by targeted intermediate values), v is the in-
termediate value, n is the number of bits of the intermediate value, v; is i** bit
of the the intermediate value, all the o’s are the parameters which need to be
characterized.

When all o; are equal and the parameters of higher order terms are zero,
Eq.(@) equivalently is HW model. Actually, SM, VPA and BWC consider only
the constant part av_1, and linear part a;. They ignore the higher order terms,
which is due to the assumed bit-wise dependence of intermediate value.

3 Introduction to Back Propagation Neural Network

According to [6][7], artificial neural network is a mathematic model for processing
intelligent information by simulating the connections and activities of neurons.
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It is also a computing model composed of numerous nodes and their connections.
Each node has an unique activation function and a bias. Each connection between
two nodes has a weight. These parameters stores the memory of the network.
The output of a network is determined mainly by the activation function and
bias of each node, the weight and mode of each connection, and the topological
structure of the entire network. When all these parameters are determined, the
output is fixed.

Input layer Hidden layer Output layer

Fig. 1. A multi-layer BP neural network

BP neural network is a popular multi-layer network which uses the error back-
propagation algorithm as its learning algorithm (in Figlll). A BP neural network
works with the followings five steps:

Step 1: Determination of Topological Structure. Specify the number of
nodes in input layer, the number of hidden layers, the number of nodes in each
hidden layer, and the number of nodes in output layer.

Step 2: Initialization of Weights and Biases. Generally, initial values for
weights and biases set to be small random real numbers within [-1,1].

Step 3: Forward Propagation. Forward Propagation goes as follows.

(a) Initially, preprocess input data and transform them into the value scope
of nodes in input layer.

(b) For input node 4, set its output to be its input. So O; = I; holds.

(¢) For each node j not in input layer, compute its input as shown in EqBl

I; = Z WijOi + @j (3)

where W;; means the weight of the connection between node 7 and node
Jj, ©; is the bias of node j.
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(d) Compute the output of nodes in hidden or output layer by O; = f(I;),

where f is the activation function of node j. BP neural network algorithm
requests that the activation function be a nonconstant, bounded, and
monotone-increasing continuous function. The activation function always
uses the following form.

1

f@ =

(4)

Step 4: Back Propagation. We can obtain an output value of the network by
Forward Propagation process. However, there is always a difference between the
actual output and the expected one, and this difference is called error. By back-
propagating the error, we can update all the parameters stored in the network,
including all the weights of connections and all the biases of nodes, thus bringing
the output of the network closer to the expected value. It is the core of the whole
learning algorithm.
This process goes as follows.

(a) For node k in output layer, compute the Erry corresponding

Errk = Ok(l — Ok)(Tk — Ok) (5)

where Oy, is the output of node k and T} is the expected output value
according to the training data.

(b) The error of a hidden layer node j is the weighted sum of all the errors

of the nodes connected to node j in next layer. Compute the error of
node j is shown in Eqlfl

Err; = 0;(1 - 05) Z ErryWis (6)
k

where Wy, is the weight of the connection between node j and node k in
next layer, and Erry is the error of node k.
Update weights and biases according to the following two equations.

Wij = Wij + L - ET’?”jOZ' (7)

@j = @j + L - Errj (8)

where L is the learning rate, a constant range from 0 to 1. This constant
is used for adjusting the behavior of the network. It helps avoid getting
stuck at a locally optimum solution and encourages the search for a global
optimum one. The bigger L is, the faster the network converges, and vice
versa. Generally we can set L to 1, where t is the number of iterations
during the training process.

Step 5: Termination. Training process will stop either all parameters have
converged, or the number of iterations exceeds its maximum, or the output of
the network meets the desired result.
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4 Our BP Neural Network based Leakage Characterizing
Approach

In this section, a detailed description of the proposed approach to side-channel
leakage characterization will be give firstly, with power leakage being a concrete
example. Then we will prove that the BP network can precisely characterize the
general leakage model (in Eq)). Finally, two new attacks are constructed using
our leakage model.

4.1 BP Neural Network Based Leakage Model

Essentially, BP neural network based leakage model is a BP neural network
well-trained for the mapping from intermediate values to real power consump-
tions. The main steps of building BP Neural Network based leakage model is as
follows.

Step 1: Definition of Topological Structure. The number of nodes in input
layer is related to the bit-width of intermediate value. Each input value of nodes
in input layer is derived from the bit value of the target intermediate value.
We take AES as case of study. The implementation is an unprotected software
implementation of AES, and the target intermediate value is the output of 1%
S-box in 1%% AES round. So the size of intermediate value is 8 and we set the
number of nodes in the input layer to be 8. We use only one single hidden layer
with 16 nodes. The output layer contains only one output node.

Step 2: Preparation of Training Data. We use V to denote one
8-bit intermediate value vector. Each element v in V is represented by
v(vg, v1, V2, U3, U4, Us, Ug, U7) in binary form. Let R be real power consumption
vector, each element r is according to intermediate value v. So the training set is
pairs of (V, R). Since the total number of possible intermediate value is 256, so
we only need 256 pairs of (v, 7). We can use trace averaging to reduce Gaussian
noise.

First, for each intermediate value v(vg, v1, va, vs, v4, V5, V6, v7), compute each
component I, ; of the network input I,,(I, 01,1 Lv2Ly 31y a1y 510 610,7) Dy

1 ifv, =1
I,,; = GetInputValue(v;) = {1 i v = 0 (9)
Then, for each real power consumption r, normalize it into [—1,1] by

T, = GetTargetValue(r) = Ma;(R‘;W—”;\(jjr)z(R) *2—1 (10)

When one gets 256 pairs of (I, 7)), the training data set is ready.
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Step 3: Training of BP Neural Network based Leakage Model. Since
the number of training cases is limited, the training process will be iterative.
Whether or not to continue the training epoch mainly relies on the precision
of BP neural network output. We take Pearson Correlation Coefficient v (in
Eq[IT)) between network output vector O and real power consumption vector R
to be the standard to judge when to stop training. Training will terminate when
v > 0.95.

v = Pearson(X,Y) = 2ima(#i =) (v = 7) (11)

V(- )2 (g - )

Training a BP neural network based leakage model is described in Algorithm
@ So far, we get a well-trained BP network to be our new BP neural network
based leakage model.

Input: Intermediate value vector:V', real power consumption vector: R
Output: Trained BP Neural Network:network as the leakage model

1 Create BP neural network: network (8 nodes in input layer,16 nodes in hidden
layer,1 node in output layer);

2 Initialize weights and biases;

3 foreach Intermediate value v in V do

4 I, =0;

5 foreach inputnode I, ; in I, do

6 I,; = GetInputValue(v;) (Eq@);

7 end

8 end

9 foreach realvalue r in R do
10 T, = GetTargetValue(r) (EqI0);
11 end
12 v = 0;
13 while v < 0.95 do
14 foreach I, do
15 O, = Forward-Propagation(network,I,) ;
16 Back-Propagation(network,0y,T%);
17 end

18 Compute v = Pearson(O,T) (EqdI);
19 end
20 return network;

Algorithm 1. The BP neural network based leakage model training algorithm

Step 4: Prediction of Hypothetical Leakages. Given an intermediate value,
evaluation of hypothetic leakages by BP neural network based leakage model
could be done by calling Forward-Propagation process of BP neural network.
Algorithm [2] describes this process.
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Input: Trained BP Neural Network:network, intermediate value vector:V’
Output: The hypothetical leakage vector: H (according to V')

1 foreach intermediate value v in V do

2 I, =0;

3 foreach inputnode I, ; in I, do

4 I,;; = GetInputValue(v;) (EqD);

5 end

6 H, = Forward-Propagation(network,/, );
7 end

8 return H;

Algorithm 2. The BP neural network based leakage model prediction algo-
rithm

4.2 Soundness of BP Neural Network for Leakage Characterization

In this subsection, we will prove the soundness of BP BP-Network in charac-
terizing leakage model. We begin with this subsection with the following two
theorems.

Theorem 1 (Weierstrass[9]). Suppose f is a continuous complez-valued func-
tion defined on the real interval [a,b]. For every e > 0, there exists a polynomial
function p over C' such that for all x in [a,b], we have |f(z) — p(x)| < €, or
equivalently, the supremum norm ||f(x) — p(z)|| < e. If f is real-valued, the
polynomial function can be taken over R.

Theorem 2 (Universal Approximation[16]). Let ¢(-) be a nonconstant,
bounded, and monotone-increasing continuous function. Let I,,, denote the mq-
dimensional unit hypercube [0, 1]™°. The space of continuous function on L, is
denoted by C(Ip,,). Then, given any function f 3 C(Ipn,) and € > 0, there exist
an integer m1 and sets of real constants o, b; and w;j, where i = 1,...,m; and
j=1,...,mq such that we may define

ma mo
Flzy, - ame) = Y cip(Y | wijay + bi) (12)
i=1 j=1

as an approzimate realization of the function f(-);that is,

|F(x17"’ axmo)*f(xla"' axm0)| <e
for all x1,x2, -+, Tm,that lie in the input space.

Theorem [2] may be viewed as the natural extension of Weierstrass Theorem.
It can be applied directly to multi-layer neural network[6]. Notice that the ac-
tivation function in EqM of each node in a BP neural network is required to
be a nonconstant, bounded, and monotone-increasing continuous function, so it
meets the condition of function ¢(-). In fact, EqI2| describes such a multi-layer
neural network:
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(a) Network has mg input nodes and a single hidden layer which is composed
of my nodes. The input of the network is denoted as x1,z2, -+ , Tp,.

(b) The node in hidden layers has its weights denoted by w14, -+ , Wy and
a bias denoted by ©;

(¢) The output of network is the linear combination of the output of nodes in
hidden layer, and weights of the node in the output layer are ay,- - - , am, .

As we can see, Universal Approximation Theorem shows that for computing the
€ uniform approximation of a fixed training set from input x1,z2, -+, %m, to
expected output f(z1,- - ,Zm,), a single hidden layer is enough. The leakage
characterizing is to map intermediate value to real leakage. In Eq[2 the leakage
function can be represented as a high order polynomial function. Therefor, using
BP neural network to training the relationship between intermediate value and
real leakage is sound and practical.

4.3 Constructions of BP Neural Network Based Attacks

This subsection will briefly introduce two BP neural network based attacks we
constructed, namely BP-CPA and BP-MIA, which are variants of CPA[I][LI]
and MIA[4][13][19] respectively. CPA and MIA are two popular and effective
distinguishers, and they use different mathematic tools, i.e. Pearson Correlation
Coefficient and Mutual Information to compare hypothetic power consumption
and real power consumption. In order to construct new attacks, we only need to
replace the original HW model with our BP neural network based leakage model.
Note that performing BP-CPA and BP-MIA requires only one well-trained BP
neural network based leakage model. In this way, CPA-like and MIA-like attacks
can be built over any specific leakage model.

5 Experiments

A series of typical experiments have been conducted to test the reliability of our
new approach. Specially, we performed simulated experiments on a 8-bit soft-
ware implementation of an unprotected AES. The leakage model for simulation
adopted the function in Eqal2l where d = 3. It means that the function Pygtq(v)
has only four terms: one constant, one order term, one quadratic term and one
three order term. These parameters v, 4, (0r &, 4, ;) Will be set to small random
real numbers when values of corresponding adjacent 2(or 3) bits in the interme-
diate value are 1 simultaneously, otherwise the parameters will be set to 0. This
takes into consideration the interactions between multi-bits themselves in an in-
termediate value. This leakage function describes the superimposed situation of
both linear and non-linear scenarios. Therefore, it is very close to the scenario
of a real device[I5].

We divide the considered contexts with different noise levels into three cate-
gories: ideal scenario with a noise level o < 10, realistic scenario with a noise level
o € (10,30), challenging scenario with a noise level 0 > 30. Three quantitative
metrics, including SR, GE and DL are used to measure the effectiveness.
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Each attack in this section is viewed as a combination of power leakage model
and distinguisher. We considered five power leakage models and four distin-
guishers. The power leakage models are HW, BP, BWC, VPA and SM. And the
distinguishers are CPA, MIA, VPA and SM. Note that all attacks are denoted by
”A-B”, where ”A” denotes power leakage model of the attack and ”B” denotes
its distinguisher. For example, BP-CPA stands for a attack that uses BP neural
network based leakage model and Pearson Correlation Coefficient.

Considering that CPA and MIA are two mainstream distinguishers most
widely used, we take them as two standard distinguishers to evaluate the ef-
fectiveness of different leakage models. The results thus obtained will be reliable
and convincing. All results in this paper are obtained by averaging the results
of 100 times of repeated tests.

The experiments have been preformed from following three aspects: evaluation
and comparison with CPA-like attacks, evaluation and comparison with MIA-like
attacks, evaluation and Comparison with attacks which has a modeling phase.

5.1 Comparison with CPA-like Attacks

This subsection compares 5 CPA-like attacks in three scenarios, including HW-
CPA, BP-CPA, BWC-CPA, VPA-CPA and SM-CPA. Three scenarios are ideal
scenario(c = 1), realistic scenario(c = 25) and challenging scenario(c = 50)
respectively. Additionally, three metrics(SR, GE and DL) are used in our evalu-
ation. The results are showed in Figl2l As we can see, in all three scenarios, SR
values of tested attacks present the following pattern: HW-CPA < SM-CPA <
BWC-CPA = VPA-CPA < BP-CPA. The same results also holds for GE and DL.
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Specifically, in ideal scenario, all attacks except HW-CPA need only 50 traces to
reach 100% SR, while HW-CPA needs 100 traces. In realistic scenario, BP-CPA
needs 250 traces to achieve 100%SR, while BWC-CPA and VPA-CPA need 400
traces. The SM-CPA and HW-CPA have performed a little worse; with 1000
traces they achieve 91% and 57% respectively. In challenging scenario, BP-CPA
needs 800 traces to get SR 100%, while BWC-CPA and VPA-CPA get only 95%
with 1000 traces.
Table [Tl shows DLs in three scenarios when trace number is 1000.

Table 1. Distinctive Levels of five CPA-like attacks in three scenarios

N=1000 Ideal(o = 1) Realistic(o = 25) Challenging (o = 50)
- DL  (*/HW-CPA)% DL  (*/HW-CPA)% DL  (*/HW-CPA)%
HW-CPA 5.17800841 - 3.01123095 - 2.3206056 -

BP-CPA 10.8724881 209.9743 7.65685814 254.2767 5.3341048 229.8583
BWC-CPA 9.21271198 177.9200 6.51802617 216.4572 4.51194033 194.4294
VPA-CPA 9.33850383 180.3493 6.56984784 218.1781 4.51801854 194.6914
SM-CPA  6.62982683 128.0382 4.11803832 136.7560 2.96579518 127.8026

As Tablelll shows, BP-CPA outperforms other attacks in all three scenarios.
The difference is most significant in realistic scenario, where the DL of BP-
CPA exceeds that of HW-CPA by 154%. The DL of BWC-CPA, VPA-CPA and
SM-CPA is higher than that of HW-CPA 116%, 118% and 37% respectively.
So in terms of DL, BP-CPA is better than the second best CPA-like attacks
16.5%(refer to VPA-CPA).

5.2 Comparison with MIA-like Attacks

This subsection compares 5 MIA-like attacks in three scenarios, including HW-
MIA, BP-MIA, BWC-MIA, VPA-MIA and SM-MIA. Three scenarios are ideal
scenario(c = 4), realistic scenario(c = 16) and challenging scenario(c = 30)
respectively. Additionally, two metrics(SR and GE) are used. The results are
showed in FiglBl The results are showed in Figll Note: Due to the poor noise
tolerance of MIA-like attacks, we reduce the noise levels of three scenarios respec-
tively. As illustrated in Fig[3l in all three scenarios, SR values of tested attacks
present the following pattern: HW-MIA < SM-MIA < BWC-MIA =~ VPA-MIA
< BP-MIA. The HW-MIA performs the worst due to an rough leakage model.

In ideal scenario, BP-MIA only needs 150 traces to get 100% SR, while BWC-
MIA and VPA-MIA need 200 traces. In realistic scenario, BP-MIA needs 800
traces to get 100%SR. Meanwhile, it takes 1000 traces for BWC-MIA and VPA-
MIA to reach 82% and 84% respectively.

In challenging scenario, none of attacks achieved any high SR. However, we
can see that BP-MIA still outperforms others significantly.
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Results show that all MIA-like attacks have a low noise tolerance. Even though
BP-MIA does not performs well in challenging scenario even when the noise level
reduces to o = 4, BP-MIA is still the best among all MIA-like attacks.

5.3 Comparison among Attacks Using Different Leakage

Characterizations

The results of above experiments have proved that BP-CPA is the best among
CPA-like attacks, and BP-MIA best among MIA-like attacks. The following part
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Table 2. Results of 12 Attacks in Three Scenarios

Scenarios Ideal(o=1) Realistic(c=30) Challenging(c=50)
#Trace 50 400 700 1000 50 400 700 1000 50 400 700 1000
HW-CPA

SR 0 1 1 1 0 011 032 0.5 0.02 005 0.1 0.19

GE 1.25 1 1 1 115.8 44.66 17.9 6.6 97.78 61.57 36.83 22.35
HL 2.591 4.316 4.985 5.178 0.749 1.784 2.417 3.011 0.991 1.44 1.944 2.321

BP-CPA
SR 1 1 1 1 019 1 1 1 007 075 096 1
GE 1 1 1 1 2237 1 1 1 5234 318 1.01 1
HL 6.298 10.54 10.8 10.87 2.221 5.319 6.707 7.657 1.554 3.515 4.459 5.334
BWC-CPA
CPA SR 1 1 1 1 012 095 1 1 004 049 0.79 0.95
GE 1 1 1 1 45.06 1.06 1 1 68.06 8.97 223 1.05
HL 5.609 8.455 9.058 9.213 1.846 4.368 5.625 6.518 1.399 2.883 3.764 4.512
VPA-CPA
SR 1 1 1 1 011 095 1 1 004 047 0.78 0.95
GE 1 1 1 1 4511 1.04 1 1 69 9.13 2.25 1.03
HL 5.621 8.561 9.179 9.339 1.838 4.403 5.667 6.57 1.397 2.88 3.768 4.518
SM-CPA
SR 1 1 1 1 004 029 066 088 0.04 0.1 0.24 049
GE 1 1 1 1 98.1515.25 3.49 1.27 88.56 38.62 18.17 8.15
HL 3.515 5.797 6.488 6.63 1.023 2.546 3.398 4.118 1.128 1.818 2.449 2.966
HW-MIA
SR 0 0 0 0 0 0 0 0 0 0 0 0
GE 226.9 18.13 167.8 106 122.8 81.31 21.39 6.92 220.2 180.5 120.5 123.2
BP-MIA
SR 0.69 1 1 1 0 0.03 031 037 O 0 0 0
GE 1.09 1 1 1 121.1 39.42 4.49 4.99 103.9 124.9 93.55 82.04
BWC-MIA
MIA SR 0 1 1 1 0 0.01 004 005 O 0 0 0
GE 60.23 1 1 1 137 82.96 54.03 35.81 68.52 136.7 113.5 93.5
VPA-MIA
SR 0 1 1 1 0 0 002 003 O 0 0 0
GE 69.19 1 1 1 51.11 81.5 54.31 36.46 94.68 119.1 117.2 94.76
SM-MIA
SR 0 0 001 008 0 001 O 0 0 0 0 0
GE 203.6 26.28 17.96 3.7 142.5 105.4 50.74 126.6 156.7 157.4 153.3 140.3
VPA-VPA
VPA SR 1 1 1 1 013 099 1 1 012 056 0.79 0.97
GE 1 1 1 1 2249 1 1 1 4283 506 156 1
SM-SM
SM SR 0 1 1 1 002 029 073 093 0 0 0.09 0.22

GE 5.06 1 1 1 100.3 7.44 1.35 1.01 104.6 57.4 30.46 15.29
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will compare BP-CPA and BP-MIA with non CPA-like or MIA-like attacks that
use a characterized leakage model.

In this subsection, BP-CPA, BP-MIA, VPA-VPA and SM-SM are compared
under three scenarios, namely ideal scenario(o = 4), realistic scenario(c = 16)
and challenging scenario(oc = 32), with SR and GE as metrics. The attack results
are showed in Figll As illustrated in Figldl BP-CPA still performs best among
all attacks. In ideal scenario, all attacks can get 100%SR with a small mount of
traces. In realistic scenario, BP-CPA only needs 150 traces to get 100%SR, while
VPA-VPA needs 200 traces and BP-MIA needs 850 traces. However, SM-SM only
gets 87% with 1000 traces. BP-MIA outperforms SM-SM in this scenario.

It is worth noticing that the performance of BP-MIA reduces significantly
from realistic scenario to challenging scenario, while other non-MIA-like attacks
show a better tolerance to the increasing noise.

So far, we have obtained performance data of all 12 attacks in different sce-
narios with different metrics. Due to the limit of space, we only present part of
results in Table2

6 Conclusions

In summary, this paper has proposed a new leakage characterizing method based
upon BP neural network. This method makes full use of the intrinsic advantage
of the machine learning method in profiling non-linear mapping relationship,
and does NOT rely on any specific assumptions. Leakage characterizing phase
of BP neural network based leakage model is realized in the training process of
one BP neural network, and hypothetical leakage prediction phase is realized in
the forward propagation process of a well-trained BP neural network.

Two new BP Neural Network based side channel attacks have been proposed,
namely BP-CPA and BP-MIA. They have been validated with a series of sim-
ulated experiments on a 8-bit software implementation of an unprotected AES.
Results show that BP Neural Network based attacks require fewer traces to
reach an acceptable level of success rate, and they outperform other attacks un-
der some harsh conditions. Under consideration by the data, we believe that BP
based model can more accurately characterize correlations (linear as well as non-
linear) between intermediate value and side channel leakages of cryptographic
implementations.

However, we admit that the proposed approach also has some disadvantages.
For example, the training process of a back propagation is inefficient. Each iter-
ation of a pair of intermediate value and real leakage value has to go through the
entire network twice, forward computing the output of every nodes and back-
ward updating parameters of every nodes and connections. As shown in line 13
of Algorithm [l we used 0.95 as our termination target precision. The ~ value
grows rapidly when it is below 0.85, but when it exceeds 0.90 the increasing
speed shrinks quickly. The training process lasts almost several hours to meet
the termination condition. Considering that the training process for each target
device needs to be done only once, we consider it reasonable and acceptable to
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sacrificed some time penalty in training process for a higher predicting preci-
sion. In the future, we will focus on improving the efficiency, e.g. by changing
the topological structure of network or using a new machine learning algorithm.

Acknowledgements. This work is supported in part by the National Nat-
ural Science Foundation of China (No.61073178) and Beijing Natural Science
Foundation (No.4112064).
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Abstract. If there are many displaced workers in a company, then a
person who goes for job hunting might not select this company. That is,
the number of members who quit is quite negative information. Similarly,
in revocable group signature schemes, if one knows (or guesses) the num-
ber of revoked users (say r), then one may guess the reason behind such
circumstances, and it may lead to harmful rumors. However, no previous
revocation procedure can achieve to hide r. In this paper, we propose the
first revocable group signature scheme, where r is kept hidden. To handle
these properties, we newly define the security notion called anonymity
w.r.t. the revocation which guarantees the unlinkability of revoked users.

Keywords: Group signature, Revocation, Hiding the Number of Re-
voked Users.

1 Introduction

Imagine that there are many users who have stopped using a service. If this fact
is published, then how would the newcomers feel about this? One may guess the
reason behind such circumstances, and may judge that those users did not find
the service attractive or the service fee is expensive. The same thing may occur
in other cases, e.g., if there are many displaced workers in a company, then a
person who goes for job hunting might not select this company. That is, the
number of members who quit is quite negative information.

Many cryptographic attempts for the revocation of rights of users have been
considered so far, especially, in group signature [12], anonymity revocation has

! The concept of group signature was investigated by Chaum and Heyst [12], and its
typical usage is described as follows: The group manager (GM) issues a membership
certificate to a signer. A signer makes a group signature by using its own membership
certificate. A verifier anonymously verifies whether a signer is a member of a group
or not. In order to handle some special cases (e.g., an anonymous signer behaves
maliciously), GM can identify the actual signer through the open procedure. Since
verifiers do not have to identify individual signers, group signature is a useful and
powerful tool for protecting signers’ privacy.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 186-E03] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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been introduced [7,8,14,25,27,28,31]. However, the number of revoked users (say
r) is revealed in all previous revocable group signature schemes. As mentioned
previously, the number of revoked users r is quite a negative information. As a
concrete example, we introduce an application of revocable group signature for
outsourcing businesses [20]. By applying group signature, the service authentica-
tion server (outsourcee) has only to verify whether a user is a legitimate member
or not, and does not have to manage the list of identities of users. Therefore,
the risk of leaking the list of identities of users can be minimized, and this is the
merit of using group signature in identity management. After a certain interval,
the service provider charges the users who have already used the service, by using
the opening procedure of group signature. When a user would like to leave the
group, or when a user have not paid, the service provider revokes this user. In
this system, if r is revealed, then one may think that there might be many users
who have stopped using the service, i.e., this service may not be interesting, or
he/she have not paid the service fee, namely, the service fee may be expensive,
and so on.

So, our main target is to propose a revocable group signature scheme with the
property of hiding the number of revoked users . Then, we need to investigate
the methodology for achieving the following:

1. The size of any value does not depend on 7.

2. The costs of any algorithm do not depend on r, except the revocation algo-
rithm executed by GM.

3. Revoked users are unlinkable.

In particular, if revoked users are linkable, then anyone can guess (i.e., not exactly
obtain) r by linking and counting revoked users. Although we assume that an
adversary can obtain the polynomial (of the security parameter) number of group
signatures, this assumption is not unreasonable (actually, the adversary can issue
the polynomial times queries of the signing oracle). In addition, r is also a
polynomial-size value. That is, this guessing attack works given that revoked
users are linkable.

However, no previous revocable signature scheme satisfying all requirements
above has been proposed. For example, in revocable group signatures [7ITTIT4)31]
(which are based on updating the group public values, e.g., using accumulators),
either the size of public value or the costs of updating membership certificate
depend on r. Nakanishi et al. [27] proposed a novel technique of group signature,
where no costs of the GSign algorithm (or the Verify algorithm also) depend on
r. However, their methodology requires that r signatures are published to make
a group signature, and therefore r is revealed. In [SIT3I25I28] (which are verifier-
local revocation (VLR) type group signature), revoked users are linkable. In this
case, anyone can guess r by executing the verification procedure. For the sake
of clarity, we introduce the Nakanishi-Funabiki methodology [28] as follows: let

2 Since a long RSA modulus might lead to certain inefficiency aspects (e.g., long
signatures, heavy complexity costs, and so on), we exclude RSA-based revocable
group signatures (e.g., [29I30]) in this paper.
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RL = {h®,h*2,...,h® } be the revocation list, where z; is the secret value of
revoked user U;. Note that by adding dummy values, we can easily expand |RL]|.
So, we can assume that r is not revealed from the size of RL. But, r is revealed
(or rather, guessed) as follows. Each group signature ¢ (made by U;) contains
f*it8 and hP for some random 3 and some group elements f and h. If U. ; has
been revoked, then there exists h** such that e(f*+2 h) = e(h®h?, f) holds.
By counting such 4, one can easily guess r even if RL is expanded by dummy
values. Since each value in RL is linked to a user (i.e., k¢ is linked to U;), even if
values in RL are randomized (e.g., (h*#)™ for some random r;), this connection
between a user and a value in RL is still effective. So, one can easily guess r
even if RL is randomized.

From the above considerations, no previous revocation procedure can be ap-
plied for hiding r. One solution has been proposed in [I6], where only the desig-
nated verifier can verify the signature. By preventing the verification of signature
from the third party, r is not revealed from the viewpoint of the third party. How-
ever, this scheme (called anonymous designated verifier signature) is not group
signature any longer. Next, as another methodology, consider the multi group
signature [I] with two groups (valid user group and revoked user group). How-
ever, this attempt does not work, since each user is given his/her membership
certificate (corresponding the group he/she belongs to) in the initial setup phase,
and the revocation procedure is executed after the setup phase.

Our Contribution: In this paper, we propose the first group signature scheme
with the property of hiding the number of revoked users r, by applying attribute-
based group signature (ABGS) [I5JI8I2T122]. By considering two attributes: (1)
valid group user and (2) the user’s identity, we can realize the property of hiding
r. To handle this property, we newly define the security notion called anonymity
w.r.t. the revocation. As the main difference among our anonymity definition
and previous ones, to guarantee the unlinkability of revoked users, A can issue
the revocation queries against the challenge users.

2 Bilinear Groups and Complexity Assumptions

Definition 1 (Bilinear Groups). Let G1, Ga, and Gr be cyclic groups with
a prime order p, and G1 = (g) and Gy = (h). Let e : G x Gy — Gr be an
(efficient computable) bilinear map with the following properties: (1) bilinearity:
for all (9,9') € GT and (h,h') € G3, e(g9',h) = e(g,h)e(g’,h) and e(g, hh') =
e(g,h)e(g,h’) hold, and (2) non-degeneracy : e(g, h) # 1y, where 1y is the unit
element over Gr.

Definition 2 (The Computational Diffie-Hellman (CDH) assumption).
We say that the CDH assumption holds if for all probabilistic polynomial time
(PPT) adversary A, Pr[A(g1,g%,9%) = g%°] is negligible, where g1 € Gy and
(a,b) € Z3.
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Definition 3 (The Decision Diffie-Hellman (DDH) assumption). We
say that the DDH assumption holds if for all PPT adversary A, | Pr[A(g1, g1, 97,
91") = 0] — Pr[A(g1,91,97,91") = 0]| is negligible, where (g1,97) € G} and
(z,7) € 23 with x # 7.

Definition 4 (The Decision Linear (DLIN) assumption [7]). We say that
the DLIN assumption holds if for all PPT adversary A, | Pr[A(u, v, h, u®, v®, h9t?) =
0] —Pr[A(u, v, h,u, v*, 1) = 0]| is negligible, where (u, v, h,n) € G3 and(a,b) € ZIQ).

Definition 5 (The Hidden Strong Diffie-Hellman (HSDH) assump-
tion [9]). We say that (-HSDH assumption holds if for all PPT adversary A,
1 1

Pr[A(g1, h, h%, (9,7 h® )iz, o) = (g7, h®) AV, # 2] is negligible, where
(91,h) € G1 X Gy and (w,x,x1,...,2¢) € ZET2.

Definition 6 (The Strong Diffie-Hellman (SDH) assumption [6]). We
say that q-SDH assumption holds if for all PPT adversary A, Pr[A(g1, h, h*, he’
1

o W) = (gt o)) ds negligible, where (g1,h) € Gy x Go and (w,x) € Zg.

Definition 7 (The external Diffie-Hellman (XDH) assumption [14]).
Let (G1,Ga,Gr) be a bilinear group. We say that the XDH assumption holds if
for all PPT adversary A, the DDH assumption over Gy holds.

3 Definitions of Group Signature

Here, we define the system operations of revocable group signature and security
requirements (anonymity w.r.t. the revocation and traceability) by adapting [27].
Note that our definition follows the static group settings [4]. However, we can
easily handle the dynamic group settings [3] (and non-frameability) by applying
an interactive join algorithm.

Definition 8. System Operations of Group Signature

Setup : This probabilistic setup algorithm takes as input the security parameter
1%, and returns public parameters params.

KeyGen : This probabilistic key generation algorithm (for GM) takes as input
the mazimum number of users N and params, and returns the group public
key gpk, GM’s secret key msk, all user’s secret key {usk;}ic1,n), and the
initial revocation-dependent value Tg.

GSign : This probabilistic signing algorithm (for a user U;) takes as input gpk,
usk;, a signed message M, and a revocation-dependent value (in the period
t) Ti, and returns a group signature o.

Verify : This deterministic verification algorithm takes as input gpk, M, o, and
Ti, and returns 1 if o is a valid group signature, and 0 otherwise.

Revoke : This (potentially) probabilistic revocation algorithm takes as input gpk,
msk, a set of revoked users RLy11 = {U;}, and T, and returns Tiy1.



190 K. Emura, A. Miyaji, and K. Omote

Open : This deterministic algorithm takes as input msk and a valid pair (M, o),
and returns the identity of the signer of o ID. If ID is not a group member,
then the algorithm returns 0.

In the Revoke algorithm, we set RLg = (), and assume that the non-revoked user
intis {U1,...,Un}\ RL:. Under this setting, boomerang users (who re-join the
group) are available (i.e., U; such that U; € RL;—1 and U; ¢ RL;). In addition, if
an invalid pair (M, o) is input to the Open algorithm, then the Open algorithm
easily detect this fact by using the Verify algorithm. So, we exclude this case
from the definition of the Open algorithm.

Next, we define anonymity w.r.t. the revocation and traceability. As the main
difference among our anonymity definition and previous ones, to guarantee the
unlinkability of revoked users, A can issue the revocation queries against the chal-
lenge users. Note that we do not handle the CCA-anonymity, where an adversary
A can issue the open queries. So, we just handle the CPA-anonymity [7] only in
this paper. However, as mentioned by Boneh et al. [7], the CCA-anonymity can
be handled by applying a CCA secure public key encryption for implementing
the open algorithm.

Definition 9 (Anonymity w.r.t. the Revocation)

Setup : The challenger C runs the Setup algorithm and the KeyGen algorithm,
and obtains params, gpk, msk, and all {usk;} ;. C gives params and gpk
to A, and setst =0, RUy = 0, and CU = 0, where RUy denotes the (initial)
set of ID’s of revoked users, and CU denotes the set of ID’s of corrupted
users.

Queries : A can issue the following queries:
Revocation : A can request the revocation of users IDZ-l,...,ID,»,%+1 for
some constant ki1 € [1,N]. C uns Tiy1 < Revoke(msk,{ID,,,

. ,IDZ»,%+1 Y, T¢) and adds 1D;, . .. 71Dikt+1 to RUy41.

Signing : A can request a group signature on a message M for a user U;
where ID; ¢ CU. C runs o < GSign(gpk, usk;, M,T;), where Ty is the
current revocation-dependent value, and gives o to A.

Corruption : A can request the secret key of a user U;. C adds ID; to CU,
and gives usk; to A.

Challenge : A sends a message M* and two users U, and U, , where
ID;,,ID;; ¢ CU. C chooses a bit b <« {0,1}, and runs o* <
GSign(gpk, usk;,, M*, Ty« ), where Tp= is the current revocation-dependent
value, and gives o* to A.

Queries : The same as the previous one (Note that no corruption query for the
challenge users is allowed).

Output : A outputs a guessing bit b’ € {0,1}.

We say that anonymity holds if for all PPT adversaries A, the advantage
Advy*"(17) := | Pr[b = b] — ;|

s negligible.
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There are two types of revocable group signature such that (1) any users can
make a valid group signature, and anyone can distinguish whether a signer has
been revoked or not [SIT3I25I28], or (2) no revoked user can make a valid group
signature without breaking traceability [TUTTITZI273T]. We implicitly require the
second type revocable group signature, since clearly anonymity is broken if one
of the challenge users is revoked in a first type scheme. We also require that
the challenger C (that has msk) can break traceability to compute the challenge
group signature ¢* for the case that a challenger user is revoked. Note that
since msk is used for generating user’s secret keys, obviously any entity with
msk makes an “untraceable” group signature, and this fact does not detract the
security of our group signature.

One may think that the above anonymity definition can be extended that
A can issue the corruption query against the challenge users, as in the Full-
Anonymity []. It might be desired that r is not revealed even if revoked users
reveal their secret signing keys, since their signing keys are already meaningless
(i.e., the rights of signing have been expired). For example, if users are not
intentionally revoked (e.g., a user has not paid in the outsourcing businesses
example [20]), then users might reveal their secret signing keys to compromise
the systems. Or, even if users are intentionally revoked (e.g., they feel that this
service is not interesting in the outsourcing businesses example), they might
reveal their secret signing keys as a crime for pleasure. However, even if r is kept
hidden when revoked users reveal their secret signing keys, one can easily guess
r by counting the number of revealed secret keys. So, in our opinion such secret
key leakage resilient property is too strong, and therefore our proposed group
signature does not follow this leakage property. Next, we define traceability.

Definition 10 (Traceability)

Setup : The challenger C runs the Setup algorithm and the KeyGen algorithm,
and obtains params, gpk, msk, and all {usk‘i}fil. C gives params and gpk
to A, and setst =0, RUy = 0, and CU = 0, where RUy denotes the (initial)
set of ID’s of revoked users, and CU denotes the set of ID’s of corrupted

users.
Queries : A can issue the following queries:
Revocation : A can request the revocation of users ID;,,...,I1D;, for
t+1

some constant kiy1 € [1,N]. C runs Tiy1 < Revoke(msk,{ID,,,
PN IDikt-H }, 7;) and adds IDil yee ’IDikt,+1 to RUt+1.

GSigning : A can request a group signature on a message M for a user U;
where ID; ¢ CU. C runs o < GSign(gpk, usk;, M,T;), where T; is the
current revocation-dependent value, and gives o to A.

Corruption : A can request the secret key of a user U;. C adds ID; to CU,
and gives usk; to A.

Opening : A can request to a group signature o on a message M. C returns
the result of Open(msk, M, o) to A.

Output : A outputs a past interval t* < t for the current interval t, and (M*,0*).
We say that A wins if (1) A (2) A((3) V (4)) holds, where
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1. Verify(gpk, M*,0*, Tt=) =1

2. A did not obtain o* by making a signing query at M*.
3. for ID;+ < Open(msk, M*,c*), ID; & CU

4. for ID;« + Open(msk, M*,c*), ID;» € RU,~

We say that traceability holds if for all PPT adversaries A, the advantage

Adv*(17) := Pr[A wins|
1s megligible.

4 Other Cryptographic Tools

In this section, we introduce cryptographic tools applied for our construction.

BBS+ Signature [2[7/19)27]: Let L be the number of signed messages,

and (G1,G2,Gr) be a bilinear group. Select g,g1,...,9L & G1, h & Gao,
and w < Z,, and compute {2 = g¢¥. The signing key is w and the verifica-
tion key is (p, G1,Go,Gr,e,9,01,.-.,95+1, 1, £2). For a set of signed messages

(mq,...,mp) € sz, choose 7,y & Z,, and compute A = (g™ - - ogZ”LgEHg)w}ry.
For a signature (A,r,y), the verification algorithm output 1 if e(A, 2hY) =
e(g7" -+ 97" 97 41, h) holds. The BBS+ signature scheme satisfies existential
unforgeability against chosen message attack (EUF—CMA)E under the ¢-SDH
assumption.

Linear Encryption [7]: A public key is pk = (u,v,h) € Gz such that
uwXt = vX2 = h for X1, X, € Z,. The corresponding secret key is (X1, X2). For

a plaintext M € Ga, choose 61, 62 & Zy, compute a ciphertext C = (Fy, F, F3),
where Fi = M - %% F, = 4%, and F3 = v%. C can be decrypted as
M = F;/(F;* F5**). The linear encryption is IND-CPA securd] under the DLIN

assumption.

Signature Based on Proof of Knowledge: In our group signature, we ap-
ply the conversion of the underlying interactive zero knowledge (ZK) proof into
non-interactive ZK (NIZK) proof by applying the Fiat-Shamir heuristic [I7]. We
describe such converted signature based on proof of knowledge (SPK) as SPK{x :
(y,x) € R}(M), where x is the knowledge to be proved, R is arelation (e.g., y = ¢g*

3 First an adversary A is given vk from the challenger C. Then A sends messages to
C and obtains the corresponding signatures. Finally, A outputs a message/signature
pair (M™,0™). We say that A wins if (M"*,0") is valid and A has not sent M* as a
signing query. The EUF-CMA security guarantees that the probability Pr[A wins]
is negligible.

4 First an adversary A is given pk from the challenger C. Then A sends the challenge
message (Mg, M7) to C, and C chooses p & {0,1}, and computes the challenge
ciphertext C* which is a ciphertext of M};. A is given C*, and outputs a bit 4'. The
IND-CPA security guarantees that | Pr{p = p'] — 1| is negligible.
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in the case of the knowledge of the discrete logarithm), and M is a signed message.
The SPK has an extractor of the proved knowledge from two accepting protocol
views whose commitments are the same but challenges are different.

5 Proposed Group Signature Scheme with Hiding of the
Number of Revoked Users

In this section, we propose a group signature scheme hiding the number of re-
voked users by applying ABGS. Before explaining our scheme, we introduce
ABGS as follows:

Attribute-Based Group Signature (ABGS): ABGS [I5I82T22] is a kind
of group signature, where a user with a set of attributes can prove anonymously
whether he/she has these attributes or not. Anonymity means a verifier cannot
identify who the actual signer is among group members. As a difference from
attribute-based signature [2324/26/32], there is an opening manager (as in group
signatures) who can identify the actual signer (anonymity revocation), and a ver-
ifier can “explicitly” verify whether a user has these attributes or not [15/2122].
By applying this explicitly attribute verification, anonymous survey for the col-
lection of attribute statistics is proposed [I5]. As one exception, the Fujii et al.
ABGS scheme [I8] achieves signer-attribute privacy, where a group signature
does not leak which attributes were used to generate it, except that assigned at-
tributes satisfy a predicate. As another property (applied for our construction),
the dynamic property has been proposed in [15], where the attribute predicate
can be updated without re-issuing the user’s secret keys.

Our Methodology: We consider two attributes: (1) valid group user and (2)
the user’s identity (say U;), and apply the dynamic property of ABGS [15]
and the signer-attribute privacy of ABGS [I§]. Here we explain our method-
ology. Let the initial access tree be represented as in Fig 1:

V

7 T
N /\

Valid Ui valid Uz Valid
Group Group """ Group
User User User

Fig. 1. Initial Access Tree

Due to the signer-attribute privacy, a user U; can anonymously prove that
he/she has attributes “valid group user” and “U;”. Namely, anyone can verify
whether the signer’s attributes satisfy the access tree, without detecting the
actual attribute (i.e., the user’s identity).
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When a user (say Uy) is revoked, the tree structure is changed as in Fig 2.

Ur Valid U2 Valid
Group Group
User User

Fig. 2. Modified Access Tree

Due to the dynamic property of ABGS, this modification can be done without
re-issuing the user’s secret keys. By removing the attribute “valid group user”
from the subtree of Uy, we can express the revocation of Uy, since U; cannot
prove that his/her attributes satisfy the current access tree.

In addition, we propose a randomization and dummy attribute technique to
implement the revocation procedure (Fig 3). We apply the Boldyreva multisig-
nature [5], since it is applied for the computation of the membership certificate
in the Fujii et al. ABGS. Let ¢ be the time interval and v denote the attribute
“valid group user”.

Time interval ¢

/\ S iLTi S i S
/\ Public value : gl’”t’” ‘, gf”“ﬁ ‘
Valid Ui = .
Group User secret key : g;***
User

Time interval ¢ + 1

/\ S/ S S
\ Public value : glv’t'*'l’t, gl”’t'*'l’1Jr ’
(U; is revoked) Ui —
User secret key : g7*""

Fig. 3. Our Randomization and Dummy Attribute Technique

For a non-revoked user U;, GM publishes the dummy value gf“’”"x"’. Then
(sv,t,i+si)Ts (:

Sv,t,iTi

U; can compute gy ;) from dryi = g; and U;’s secret key
B; = ¢7""". Let U; be revoked in the time interval ¢ + 1. Then, GM publishes a

randomized dummy value g;"**** (instead of g , and therefore U; can-

not compute g(**++1.:+5)%¢ due to the CDH assumption. Note that (g5 "+
g7t ) and (gf“’tﬂ”*_s’791“”“”) are indistinguishable, under the XDH

Sv,t+1, 11¢)
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assumption, where the DDH assumption holds in G;. Next, we give our group
signature scheme.

Protocol 1 (Our revocable group signature)

Setup(1¥) : Select a bilinear group (Gi,Gz,Gr) with prime order p, a bilinear
map € : Gy x G2 = Gr, g,91,--.,94,9 & G1, h & Go. Output params =
(pa le (G’Qv (G’T7 €, va7gla 92,93, g47§7 h)
KeyGen(params, N) : Let (Ur,...,Un) be all users. Set t = 0. Select wy,wa, X1,
$ ok
Xoy @1yt oy TN, 81,3 SNy S0,0,15 - - -5 Su,0,N < ZLy. Compute
— u,v,h € Gy with the condition u** = vX2 = h (note that (u,v,h) is
a public key of the linear encryption, and (X1, X2) is the corresponding
secret key),

- K1 = g{”“’, K;2=h*, and B; = ¢7*"* for all i € [1, N], and
— (21 = h*' and (25 = h¥2.
For all i € [1, N], choose $y.0.i,Y0,i,70,i & Ly If $4,0,i + si = 0 mod p, then
choose sy 0,; again until s,0; + s; 7 0 mod p holds. Set st0,; = Sy,0,i + Si,
and compute
- hroi=g1"""
) 1
~ Ao = (97" gbgs% ga) »*v0i (which is a BBS+ signature for signed
messages (S1,0,i,t)), and
_ dT’O,’L = giv 0,iTq .
Set Sign(sr.0,i,t) = (Aoi, Yo,i,70,:)- Output
- gpk = (params, 21, 22, u,v, "), where H : {0,1}* — Zy is a hash func-
tion which is modeled as a random oracle.
- msk = (Xl,XQ,Sl,...,SN,SU,OJ,...,SU70,N,$1,...,xN,reg =
{(Ki2, )},
- usk; = (K;1, K2, B;) for all i € [1,N], and
= To = {(Sign(sr,0,i,9): 70,4, dr0,i) }L s -
GSign(gpk, usk;, M, T;) : Let U; be a non-revoked user in the current time in-
terval t. That is, for (Sign(st,i,), hreirdrei) € Ty hrgs = gyt =

"t and dry; = g1t hold for some unknown exponent sy, € Zy.

U; chooses r1,712,...,710,01, 02 e Ly, sets o = —rira, B = —Trary, B =
TsYri — T4, Y =TaTe + 77, ¥ = rars + 79, and v = rioys,:, and computes

S$iTi+Su,t,iTi T,
H; =B -dri= g, =hy'y s
Ty = Ki1§g™ To = K;oh™, T3 = H;§"™ Ty = hr, i, Ts = AriG"™,

1"

Cy=g"§",Co=g"g",Cs=g"§",Cs=9g"§",Cs=9"°G""",Cs=g" §
F = Kigh‘;ﬁ‘sz,Fg =u’, and Fy =02, and

r4
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/ ron .
V= SPK{(Tl,7’277"377"477"5,7’6,7’777"877"977"107yt’7;77"t’7;,06,6,6 YY) 751352) .

e(Ty, {1 Ty) - = s
— Q T T T ) «
6(917h) 6(97 1 2) 6( 17h) e(g7h)
e(Ty, T)  e(g, To)"e(Ty, h)>e(g, h)?
e(Ts, h) e(g, h)rs
N e(T57~QQ) — e(g7 92)T56(937h)”’16(g7 h)ﬂ,
e(ga, h)e(Ty, h)e(ge, h)t e(Ts, h)vei

NCy =g g NCy=g“g"" NCy = C1 ™ g"
NCs = g5 ACy = g°§"" NCy = C5 g
NCs = g"°g " NCs = g7 § " ACo ="' g"
T, hr2
/\F1 = poi+se
Output o = (Cy, Ca, C3,Cy, Cs, Cs, F1, Fy, F3, Ty, To, T3, Ty, Ts, V.
Verify(gpk, M, o, T;) : Return 1 if o is a valid group signatunﬁ, and 0 otherwise.
Revoke(gpk, msk,{U;}, Tt) : Let RLiy+1 := {U;} be a set of revoked users. Set
t — t+1. For alli € {i|U; € RLi11}, choose s, ;.1 ; & Zy. For alli € [1, N,

A Fy = u A F3 = v°2}(M)

$ .
choose sy 1116, Yta1,i, Tev1,i < Ly (until sy 411, + s; 7 0 mod p holds), set
ST t41,i = Sv,t+1,i + Si, and compute

S
hriv1: = g""
1
o ST, t4+1,5 t+1 Tt4+1,i + i
A1, = (91 Gy gg T gs) et

and compute dr 41, such that:

d 91" (Ui € RLgg)
Tt+1,i = 5:; t41,i
! g1’ T (Ul S RLt+1)

and set  Sign(sr41,i,1) (g1, Y105 Te1,4). Output Tepqr =
{(Sign(sris1,i:1), hrast, dresti) ey -

Open(gpk, msk, M,o) : Compute F;(F;“;(? = K, and search i such that
(Ki2,1) € reg and K = K, 2. If there is no such i, output 0. Otherwise,
output 7.

In our scheme, no public values have size dependent on r, and no costs of the
GSign algorithm (or the Verify algorithm) depend on r or N. In addition, our
scheme satisfies anonymity w.r.t. the revocation which guarantees the unlinka-
bility of revoked users. So, in our scheme, no r is revealed.

® We give the detailed form of SPK V in the appendix.
5 We give the procedure of the verification algorithm in the appendix.
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6 Discussion

One drawback of our scheme is that the number of public values depends on
N, since no common attribute can be applied for implementing the revoca-
tion procedure of “each” user. So, one may think that there might be a more
trivial construction (without applying ABGS) if such big-size public value is al-
lowed. For example, as one of the most simple group signature construction, let
g*t, ..., g*N be users’ public keys, and GM randomizes these value such that
y1 = (g")"eM . yn = (¢"V)"eM, and publishes y := ¢"¢*. Each user (say
U;) proves the knowledge of z; for the relation (g"¢* )% using the OR relation
such that SPK{z:y* =y1 V---Vy* = yn}(M) to hide the identity i € [1, N].
If a user (say Uj) is revoked, then GM publishes a random value R; (instead
of (¢g®)"eM). In this case, the number of revoked users is not revealed under
the DDH assumption, since (g, g%, g"¢™, (g*)"¢M) is a DDH tuple. However,
this trivial approach requires N-dependent signing/verification cost, whereas our
scheme achieves constant proving costs.

As another candidate, Sudarsono et al. [33] proposed an attribute-based
anonymous credential system by applying an efficient pairing-based accumu-
lator proposed by Camenisch et al. [10]. Since the Sudarsono et al. construction
follows AND/OR relations of attributes, a revocable group signature scheme
with the property of hiding r might be constructed. However, it is not obvious
whether 2-DNF formulae V¥, (valid group user AU;) can be implemented or not
in the Sudarsono et al. attribute-based proof system. In addition, their construc-
tion also requires the N-dependent-size (N is the number of attributes in this
context) public values to update the witness of users, as in our group signature
scheme. So, we insist that proposing a revocable group signature scheme with
both the property of hiding r and constant proving costs is not trivial if such
large-size public key is allowed.

7 Security Analysis

The security proofs of following theorems are given in the appendix.

Theorem 1. The proposed group signature scheme satisfies anonymity w.r.t.
the revocation under the DLIN assumption and the XDH assumption.

Theorem 2. The proposed group signature scheme satisfies traceability under
the N-HSDH assumption, the CDH assumption, and Nt-SDH assumption, where
t is the final time interval that A outputs (M*,c*).

8 Conclusion

In this paper, we propose a revocable group signature scheme with the property
of hiding 7, by applying ABGS. Under a XDH-hard elliptic curve with 170 bits
p (as in [14128]), the size of signature is 7242 bits, where the size of an element
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of Gq is 171 bits, the size of an element of Go is 513 bits, and the size of the
challenge c is 80 bits. Since the size of signature in [I4] (resp. in [2§]) is 1444
(resp. 1533) bits, there is space for improvement the signature size. In addition,
proposing a r-hiding revocable group signature with small-size public key is also
interesting future work.
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Appendix A: Detailed SPK

First, we explain the relations proved in SPK V. V proves that:

1. A signer has a valid (K 1, K; 2) generated by the KeyGen algorithm.
— (K1, K;2) can be verified by using the public value £2; such that:

e(Ki1, 1 Ki2) = e(g1,h)
— Since K (resp. K;2) is hidden such that T3 = K; 13", (resp. Tp =
K; 2h™), this relation is represented as:

e(Ty, {1 Ty) - = I
=e(g, A T2)" e(Th, h)2e(g, h)”
e(glv h')
— We need to guarantee the relation o = —rir9 in the relation above. To
prove this, introduce an intermediate value v = rerg + r7, and prove

that:
Cy = gmgre ACy = gagh ANCy = Cfrzgv
Note that Cyp = Clﬂ"zg’y — (gmgre)—?“’zg’v _ g—T17"2§—7"2T6+’Y = gagr7

yields a = —ri7re and v = rorg + 7.
2. A signer has not been revoked. e K
— A non-revoked signer can compute H; = h;gt’l = (g;""")% from
B; and dr4,;, where s7;; is a signed message of A;;. These satisfy the

relations
e(hri, Ki2) = e(H;i, h)
e(Ai, 2oh¥0) = e(g7""" g595"" ga, )

— Since H;, hr 44, and A; are hidden such that T3 = H;§", Ty = hr4,:G™,
and T5 = A; ;3" these relations are represented as:

8(T47 TQ) _ e(g7 TQ)T46(T47 ﬁ)r28(§7 h)ﬂ

e(Ts,h) e(g,h)s
e(Ts, £22) _ (g 2)7e(gs, h) v e(g, h)”
e(ga, h)e(Ty, h)e(ga, h)t e(Ts, h)vei
— We need to guarantee the relations f = —rory and ' = 15y — ra

in the relations above. To prove these, introduce intermediate values
v =rarg + rg and v’ = r10y1,;, and prove that:

Cs = g™ NCy = g°§"° NCy = Cy™ 5"

C5 =97 NCo=g"" g7 NCs = CI"'§”
As in o and v explained before, relations f = —rory, 5/ = 5y, — 7,

v = ryrg + 19, and v = ry1oy;,; are obtained from the relations above.

— Note that (A, 74, Y1s) s a BBS+ signature for signed messages
(s7.t.i,t), and therefore V' depends on the current time interval ¢.
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3. A value for the Open algorithm is included in o.
— (F1, Fa, F3) is a ciphertext (of the linear encryption scheme) of the plain-
text K 2, which can be computed by decrypting (F, Fa, F3) using msk.

Next, we describe the detailed SPK of our scheme as follows.
1. Choose TrisTroy Tras Trys Trs s Tre s Tre s Trsy Trgs Traos Tyeis Tre s Tas TR T/ Ty s Ty
$ s
Tty T8y 5 T8y < Loy
2. Compute

~ g T\ ~ TA\T ~7T e Tz}NLTTQ N,]:(Lrﬁ
T GO

_ e(g, Qz)rrse(g& h)rrt’i e(gz h)rﬁl
e(Tfnh)ryt'i
Ry =g'"2§""s, Rs=g"7§"", Ry=Cy ™§™", Rio=¢g"™0§ "5, Ru=g""§"""4,

.
o ryt,,t ~T g/ _ h 2
Ri2 = CS g*, Ris = 81T,

c= H(gpk7M7 Cl,CQ,03,04705706,Fl,FQ,F37T17T2,T3,T47T57R1,- . -,R15),

;= Tr;, T CTy (l € [1’ 10])’ Syss = Ty T CYtyiy Sy = Tryy + CTt i,

Rs , R4:gr,,.1 §T"'6 , Rszgru gr” , Rﬁzcl—rm 9”,

T, T,
,R14:u51, R15:1}52,

Sr
Sa =Tatca, sg=1r5+cB, sgr =1 +cB, sy =7y +cYy, 84 =7 + 7',
sy =1+, 85, =715, + 1, and ss, =15, + cd2,
3. Output V = (¢, {87, 1121, Sysis Sres Sas Sy 875 Svyy Sy7 Syrr, So15 865 )
Next, we describe the verification of ¢ = (Cy,Ca, Cs,Cy4,Cs, Cq, F1, Fo, F3,T1,
T, T3, Tu, T, ¢, {87, 1221, Syy ss Srois Sar SBy S/, Svyy Sy7, Sy, 8o, 4 So,) as follows.
1. Compute

~ ~ 7\ 50 6(T1791T2)

Ry = e(g, 1To) " e(Th, h)*r2e(g, h) )¢

6(917 h)
R — e(ga TQ)SM €(T47 h)srz e(ga h)sﬁ (€(T4, T2) )70
2 e(g, h)*rs e(Ts,h)
i, _ @) elg e ) T )
e(Ts, h)%ve: e(ga, h)e(Ty, h)e(ga, h)t" 7

R4 — gs“ gsTG C;C, RS — gmgsr7 0507 RG _ C;sr-g ‘Z]TVC;C,
Ry =g*2§7sC5¢, Ry = ¢*§°Cy ¢, Ry = Cy g% Oy F,
Rlo _ gs*log_s") 05—07 Rll _ gsﬁfug—sT4 Cﬁ_c, RlQ _ C;Ut,i gsﬁ/ Cﬁ—c7

here Ty
8611862 (F1

5 T —c
R15 = 52F3 .

Rz = )¢, Rig =u’1F; ¢ and

Note that a verifier computes e(ga, k)’ to check whether ¢ is made in the
time interval ¢ or not.

2. Check ¢ = ’H(gpk‘, ]\47 Cl, Cg, 03, 04, 05, Cﬁ, Fl, FQ, Fg, Tl, TQ, T37 T47 T5, Rl,
ceey 1%15). If it holds, then output 1, and 0, otherwise.



202 K. Emura, A. Miyaji, and K. Omote

Appendix B: Security Analysis

Proof of Theorem 1

Proof. Let C be the challenger of the linear encryption, and A be the adversary
who breaks anonymity w.r.t. the revocation of our scheme. We construct the
algorithm B that breaks the IND-CPA security of the linear encryption. First, C
gives the public key of the linear encryption (u, v, k). B chooses all values, except
(u,v, h), and therefore B can answer all queries issued from .A.

In the challenge phase, A sends (M*,U;,,U;,). Let h*0 and h*1 be (a part
of) secret key of U;,, and U;,, respectively. B sets M := h%o and M; = h"x1,
and sends (M{, M{) to C as the challenge messages of the linear encryption. C
sends the challenge ciphertext C*. B sets C* = (Fy, Fy, F3), and computes the
challenge group signature o*. Note that B does not know the random number
(6%,0%) and p € {0,1} such that C* = (h%x h91+92 4% 492) since (07,65, 1) are
chosen by C. So, B uses the backpatch of the random oracle ‘H for computing

o*, and includes C* in o*. Then, all values (except C*) is independent of u.

*

Note that even if U;, is revoked in the challenge interval, B can compute o*,

since B knows msk. If either U;, or U;, is revoked in the challenge interval, this

fact is not used for guessing p under the XDH assumption, since (giv'tﬂ’i“ Hi“,

gf”’”l'i“ “) and (gf”’”l'i“ R , giv'tﬂ’i“) are indistinguishable.
Finally, A outputs the guessing bit ' € {0,1}. B outputs y’ as the guessing
bit of the IND-CPA game of the linear encryption. O

Proof of Theorem 2

Proof. Let A; be an adversary who outputs (M*,o*) where for ID;« <«
Open(msk, M*,0*), ID;« ¢ CU holds. As a case of the first one, let A3 be an ad-
versary who outputs (M*, 0*) where for I D;« < Open(msk, M*,0*), ID;« & CU
and U;« & {Uy,...,Un} holds. In addition, let A3 be an adversary who outputs
(M*,0*) where for ID;+ < Open(msk, M*,0*), ID;» € RU holds. We construct
an algorithm By (resp. Bz and Bs) that breaks the N-HSDH assumption (resp.
¢-SDH assumption, where ¢ is the number of signing queries, and the CDH
assumption) by using A; (resp. Az and Ajs).

1
First, we describe By. Let g1,h, h“t, {(g;* """, h%)},—1... N be an N-HSDH
instance. By selects U;» € {Uy,...,Un}, and choose all values, except g1, h, and

21 := h**. By answers queries issued by A; as follows:

Revocation : A; requests the revocation of users ID;,,...,ID;, for some con-
stant k; € [1, N]. Since By knows wa, By adds ID;,,...,ID;,, to RU;, and
simply returns the result of the Revoke algorithm.

GSigning : A; requests a group signature on a message M for a user U; where
ID,; ¢ CU. Since By does not know ¢7*¢, By computes o by using the back-
patch of the random oracle #H, and gives o to A.

Corruption : A; requests the1 secret key of a user U;. If U; = U;«, then By aborts.

. w1t $
Otherwise, By sets (917", h"') = (K;1,Ki2), chooses s} < Z7, sets s} =
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sixi, and computes B; = gs’/i. B1 adds ID; to CU, and gives (K 1, K; 2, B;)
to Al.

Opening : Since B; has (X1, X3), By simply returns the result of the Open algo-
rithm.

Finally, A; outputs a past interval ¢* < ¢ for the current interval ¢, and a
pair (M*,0*). By using the extractor of SPK, By gets: (K}, K}, H;), where
e(K; 1, 0K} y) = e(gi, h), e(hrpi, Kiy) = e(Hf h), Fy = K[,h% T2, Fy = uf,
and F3 = v°2 hold. From (Fy, Fy, F3), B; obtains i by using the Open algorithm.
If i # i*, then By aborts. Otherwise, By outputs (K}, K}5) as a solution of the
N-HSDH problem.

Next, we describe B that outputs a forged BBS+ signature. Let C be the
challenger of the BBS+ signature. By is given (g, g1, 92, g3, ga, h, £22) from C.
Ba chooses all values, except (g, g1, 92, g3, g4, h, £22). For each revocation query,
By issues N signing queries to C for obtaining A.;. So, Bz needs to issue the
signing query in Nt times. For other queries, By can answer since By knows
all other secret values. Finally, A3 outputs a past interval t* < t for the cur-
rent interval ¢, and a pair (M*,0*). By using the extractor of SPK, By gets:
(Age iy Ype i, Teeiv ), Where e(Agp =, Qoh¥ei*) = e(g)™"""" g4 g5 ga, h). Note
that, since U+ & {Ui,...,Un}, B2 does not obtain (Agx =, Yp= i, re» i+ ) from C.
So, By outputs a forged BBS+ signature (Ag« jx, Y ix, Tx 3% ).

Finally, we describe B3 that breaks the CDH assumption. Let (g1, g%, ¢%) be
an CDH instance. Bs selects U« € {Uy,...,Un}, sets z;+ := a and s;+ := b,
and choose all values, except ¢g; and usk;«. B3 answers queries issued by A3z as
follows:

Revocation : A3z requests the revocation of users ID;,,...,ID;, for some con-
stant k;. Since Bz knows we, B3 adds ID;,,...,ID;, to RU;, and simply
returns the result of the Revoke algorithm.

GSigning : A3 requests a group signature on a message M for a user U; where
ID; ¢ CU. Bs computes ¢ by using the backpatch of the random oracle H,
and gives o to A.

Corruption : Ajs requests the secret key of a user U;. If U; = U;«, then B3 aborts.
Otherwise, Bs adds ID; to CU, and gives (K; 1, K; 2, B;) to As.

Opening : Since Bs has (X1, X5), Bs simply returns the result of the Open
algorithm.

Finally, A3 outputs a past interval t* < t for the current interval ¢, and a pair
(M*,0*). By using the extractor of SPK, Bs gets: H}, where e(K}, {1 K},) =
(g1 h), e(hri, Kiy) = e(H} h), Fy = K7 ,h% %2 Fy = 4% and F3 = v° hold.
From (Fi, Fy, F3), Bs obtains ¢ by using the Open algorithm. If ¢ # i*, then Bs
aborts. Otherwise, B3 solves the CDH prob%em as follows. Since U; € RL;, B3
has computed g - gt = g7 %" and ;""" . That is, H} = Bje-g;""" " =
glUte e 10lds. So, Bs outputs Hj /(g%)%+i* = g@ as the solution of the
CDH problem. O
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Abstract. Signcryption is a primitive which simultaneously performs
the functions of both signature and encryption in a way that is more
efficient than signing and encrypting separately. We study in this pa-
per constructions of signcryption schemes from basic cryptographic
mechanisms; our study concludes that the known constructions require
expensive encryption in order to attain confidentiality, however some
adjustments make them rest on cheap encryption without compromising
their security. Our constructions further enjoy verifiability which entitles
the sender or the receiver to prove the validity of a signcryption with/out
revealing the signcrypted message. They also allow the receiver to release
some information which allows anyone to publicly verify a signcryption
on a given message. Finally, our constructions accept efficient instantia-
tions if the building blocks belong to a wide class of signature/encryption
schemes.

Keywords: signcryption, sign-then-encrypt paradigm, commit-then-
encrypt-and sign paradigm, encrypt-then-sign paradigm, (public) veri-
fiability, homomorphic encryption.

1 Introduction

Cryptographic mechanisms that proffer both the functionalities of signature and
of encryption are becoming nowadays increasingly important. In fact, many real-
life applications entail both the confidentiality and the authenticity/integrity of
the transmitted data; an illustrative example is electronic elections where the
voter wants to encrypt his vote to guarantee privacy, and at the same time, the
voting center needs to ensure that the encrypted vote comes from the entity
that claims to be its provenance. To respond to this need, Zheng [27] introduced
the notion of signcryption which is a primitive that simultaneously performs the
functions of both signature and encryption in a way that is more efficient than
signing and encrypting separately.

Related work. Since the introduction of this primitive, many constructions which
achieve different levels of security have been proposed. On a high level, security

* This is an extended abstract. The full version [I3] is available at the Cryptology
ePrint Archive.

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 204-EI8] 2012.
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of a signcryption scheme involves two properties; privacy and authenticity. Pri-
vacy is analogous to indistinguishability in encryption schemes, and it denotes
the infeasibility to infer any information about the signcrypted message. Au-
thenticity is similar to unforgeability in signature schemes and it denotes the
difficulty to impersonate the signcrypter. Defining formally those two proper-
ties is a fundamental divergence in signcryption constructions as there are many
issues which come into play:

— TWO-USER VERSUS MULTI-USER SETTING In the two-user setting, adopted
for instance in [1], a single sender (the entity that creates the signcryption)
interacts with a single receiver (the entity that recovers the message from
the signcryption). Although such a setting is too simplistic to represent the
reality, e.g. the case of electronic elections, it provides however an important
preliminary step towards modeling and building schemes in the multi-user
setting. In fact, many works have proposed simple tweaks in order to derive
multi-user security from two-user security [122].

— INSIDER VERSUS OUTSIDER SECURITY Another consequential difference be-
tween security models is whether the adversary is external or internal to the
entities of the system. The former case corresponds to outsider security, e.g.
[10], whereas the latter denotes insider security which protects the system
protagonists even when some of their fellows are malicious or have com-
promised/lost their private keys [122]. It is naturally possible to mix these
notions into one single signeryption scheme, i.e. insider indistinguishability
and outsider unforgeability [IJ6], or outsider indistinguishability and insider
unforgeability [2]. However, the most frequent mix is the latter as illustrated
by the number of works in the literature, e.g. [IIT912]; it is also justified by
the necessity to protect the sender from anyone trying to impersonate him
including entities in the system. Insider indistinguishability is by contrast
needed in very limited applications; the typical example [I] is when the ad-
versary happens to steal the private key of the sender, thus when it is able to
send “fake” messages, but we still wish to protect the privacy of the recorded
signcryptions sent by the genuine sender.

— VERIFIABILITY A further requirement on signcryption is verifiability which
consists in the possibility to prove efficiently the validity of a given sign-
cryption, or to prove that a signcryption has indeed been produced on a
given message. In fact, if we consider the example of electronic elections, the
voting center might require from the voter a proof of validity of the “sign-
crypted” vote. Also, the trusted party (the receiver) that decrypts the vote
might be compelled, for instance to resolve some later disputes, to prove that
the sender has indeed produced the vote in question; therefore, it would be
desirable to support the prover with efficient means to provide such a proof
without having to disclose his private input. This property is also needed
in filtering out spams in a secure email system. Although a number of con-
structions [BI26I7J2125] have tackled the notion of verifiability (this notion
is often referred to in the literature as public verifiability, and it denotes
the possibility to release (by the receiver) some information which allows to



206 L. El Aimani

publicly verify a signeryption with/out revealing the message in question),
most of these schemes do not allow the sender to prove the validity of the
created signcryption, nor allow the receiver to prove without revealing any
information, ensuring consequently non-transferability, to a third party, the
validity of a signcryption w.r.t. a given message. It is worth noting that the
former need, i.e. allowing the sender to prove the validity of a signcryption
without revealing the message, already manifests in the IACR electronic vot-
ing scheme (The Helios voting scheme) where the sender proves the validity
of the encrypted vote to the voting manager. The scheme nonetheless does
not respond to the formal security requirements of a signcryption scheme.

Before ending this paragraph, we recall the main generic constructions of sign-
cryption schemes that were proposed so far. In fact, building complex mech-
anisms from basic ones is customary in cryptography as it allows achieving
easy-to-analyze schemes, compared to dedicated/monolithic constructions. The
first constructions of signcryption were given and analyzed in [I], where the au-
thors study how to derive signcryption schemes, mainly in the two-user setting,
using the classical combinations “sign-then-encrypt”, “encrypt-then-sign”, and
“commit-then-encrypt-and-sign”. Subsequently, the work [22] presented several
optimizations of these combinations that lead to signcryptions with multi-user
security. The paper shows also how to use symmetric encryption in order to de-
rive constructions in the outsider multi-user setting. Finally, there are the recent
constructions [6] which achieve security in the insider multi-user setting without
key registration assumptions (on the receiver’s side). It is worth noting that none
of these constructions treat verifiability.

To the best of our knowledge, there are no generic constructions which provide
verifiability in a reasonable security model. The main contribution of this paper
is to provide such constructions.

Our Contributions. We make the following contributions. First, we propose a
new model for signcryption schemes which upgrades the existing models by three
interactive protocols: 1. a protocol that allows the sender to prove, to a third
party, the validity of the created signcryption, 2. and two protocols that allow the
receiver to prove, to a third party, the validity of a given signcryption with/out
revealing the message. All these protocols do not require the provers to reveal
any information.

In Section [Bl we show that the “sign-then-encrypt” (StE) and the “commit-
then-encrypt-and-sign” (CtEaS) paradigms require expensive assumptions on
the underlying encryption in order to derive signcryption with outsider indis-
tinguishability. We do this by first proving the insufficiency of OW-CCA and
NM-CPA secure encryption, then by exhibiting a simple attack if the system is
instantiated from certain encryption schemes. Next, we propose simple tweaks of
the paradigms that make the resulting constructions rest on cheap encryption.

In Section ] we show that the “encrypt-then-sign” (“TagEncrypt-then-sign”)
paradigm provides efficient constructions which are proven secure in our adopted
model. We demonstrate the efficiency of these schemes by explicitly describing
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the different verification protocols if the constructions are instantiated from a
wide class of encryption (tag-based encryption) schemes.

Finally, in Section [l we propose a new paradigm which combines the merits
of both the “sign-then-encrypt” (StE) and “encrypt-then-sign” (EtS) paradigms
while avoiding their drawbacks. In fact, the former (both the old and the new vari-
ant) suffers the problem of verifiability. The latter suffers the recourse to stronger
security assumptions on the underlying signature. Moreover, the paradigm does
not provide anonymity of the sender. In this section, we show that our new pro-
posed paradigm, called “encrypt-then-sign-then-encrypt” (EtStE) circumvents
these problems while accepting many efficient instantiations.

2 Model and Main Constructions

A verifiable signcryption scheme consists of the following algorithms/protocols:

Setup (setup(1%)). This probabilistic algorithm inputs a security parameter x,
and generates the public parameters param of the signcryption scheme.

Key generation (keygen; (17, param),U € {S,R}). This probabilistic algo-
rithm inputs the security parameter x and the public parameters param,
and outputs a key pair (pky;,sky) for the system user U which is either the
sender S or the receiver R.

Signcryption (signcrypt(m,sks, pkg, pkg)). This probabilistic algorithm in-
puts a message m, the key pair (skg, pkg) of the sender, the public key pkp
of the receiver, and outputs the signcryption p of the message m.

Proof of validity (proveValidity(u, pkg, pkg)). This is an interactive protocol
between the receiver or the sender who has just generated a signcryption p
on some message, and any verifier: the sender uses the randomness used to
create p (as private input) and the receiver uses his private key skg in order
to convince the verifier that u is a valid signcryption on some message. The
common input to both the prover and the verifier comprise the signcryption
p in question, pkg, and pkp. At the end of the protocol, the verifier either
accepts or rejects the proof.

Unsigncryption (unsignerypt(p, skgr, pkg, pkg)). This is a deterministic algo-
rithm which inputs a putative signcryption 4 on some message, the key pair
(skr, pkp) of the receiver, and the public key pkg of the sender, and outputs
either the message underlying p or an error symbol L.

Confirmation/Denial ({confirm,deny}(u, m, pkg,pkg)). These are interac-
tive protocols between the receiver and any verifier; the receiver uses his
private key skp (as private input) to convince any verifier that a signcryp-
tion 4 on some message m is/is not valid. The common input comprises
the signcryption p and the message m in question, in addition to pkp and
pkg. At the end of the protocol, the verifier is either convinced of the valid-
ity /invalidity of u w.r.t. m or not.

Public verification (publicVerify(u, m,skgr, pkg, pkg)). This is an algorithm
which inputs a signcryption p, a message m, the key pair (skg, pkg) of the
receiver, and the public key pkg of the sender, and outputs either an error
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symbol L if p is not a valid signcryption on m, or a string which allows to
publicly verify the validity of © on m otherwise.

It is natural to require the correctness of a signcryption scheme:
unsigncrypt(signcrypt(m, sks, pkg, pkg), skr, pkg, pkg) = m.

publicVerify(m, signcrypt(m, skg, pkg, pkr), skr, pkg, pkg) #L .

Moreover, the protocols proveValidity and {confirm,deny} must be complete,
sound, and zero knowledge. We refer to [15] for details of these notions.

2.1 Unforgeability

This notion protects the sender’s authenticity from malicious insider adversaries,
i.e. the receiver. It is defined through a game between a challenger C and an adver-
sary A where the latter gets the public key pkg of the sender, generates the key pair
(pk g, skr) of the receiver, and hands pkp to the challenger. During the game, A is
allowed to ask adaptively signcryption queries w.r.t. pkp and pkg on messages of
his choice to C. The scheme is said to be Ezxistentially Unforgeable against Chosen
Message Attacks (EUF-CMA) if the adversary is unable to produce a valid sign-
cryption p* on a message m* that he did not ask to the signcryption oracle.

Definition 1 (Unforgeability). We consider a signcryption scheme sc given
by the algorithms/protocols defined earlier in this section. Let A be a PPTM.
We consider the following random experiment:

Ezperiment Expg(';’f;\cma (1)

param < sc.setup(1”)
(pkg,sks) + sc.keygeng(17, param)
pkr < A(pks)
p* < A (pkg, pkg, skr)
S : m — scsignerypt{sks, pkg, pkg } (m)
return 1 if and only if the following properties are satisfied:
- SC.UNSIgNCrYPt g, ok ok} 1] = ™"
- m* was not queried to S

We define the success of A via:
Suceg5™ (1%) = Pr [Exp&s™(17) = 1] .

Given (t,qs) € N? and ¢ € [0,1], A is called a (t,¢,qs)-EUF-CMA adversary
against sc if, running in time t and isswing qs queries to the sc.signcrypt oracle,
A has Succ:é’,':'f’"a(l"i) > e. The scheme sc is said to be (t,e,qs)-EUF-CMA secure
if mo (t,e,qs)-EUF-CMA adversary against it exists.

Remark 1. Note that A in the above definition is not given the oracles
sc.proveValidity, sc.unsigncrypt, sc.publicVerify, and sc.{confirm,deny}. In fact,
these oracles are useless for him as he has the receiver’s private key skr at his
disposal.
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2.2 Indistinguishability

This notion protects the sender’s privacy from outsider adversaries. It is defined
through a game between a challenger C and an adversary A; C generates the
key pairs (skg, pkg) and (skg, pkg) for the sender and for the receiver respec-
tively, and hands (pkg, pkg) to A. During the first phase of the game, A queries
adaptively signcrypt and proveValidity (actually proveValidity is only invoked on
inputs just obtained from the signcryption oracle), unsignerypt, {confirm, deny},
and publicVerify for any input. Once A decides that this phase is over, he gen-
erates two messages mg, mj and hands them to C who generates a signcryption

w* on m} for b %il {0,1} and gives it (u*) to A. The latter resumes querying
the previous oracles adaptively on any input with the exception of not query-
ing unsigncrypt on p*, and {confirm, deny} and publicVerify on the pair (u*, m})
for i € {0,1}. At the end, the adversary outputs his guess b’ for the message
underlying the signcryption p*. He is considered successful if b = ¥/,

Definition 2 (Indistinguishability (IND-CCA)). Let sc be a signcryption
scheme, and let A be a PPTM. We consider the following random experiment

forb & {0,1}:

Ezperiment Expll?{<™(1%)

param < sc.setup(1”)
(sks, pkg)  sc.keygeng (17, param)
(skr, pkg) < sc.keygen(1™, param)
(m§, mi, ) + A® % (find, pkg, pky)
S 1 m > sc.signerypt (g g ok ok} (M)
U : p — sc.proveValidity (p, pkg, pkg)
Ut p— sc.unsignerypty, o o (1)
€ : (u, m) — sc.{confirm,deny}(p, m, pkg, pkg)
P : (u, m) — sc.publicVerify (i, m, pkg, pkg)
" 4= sc.signerypt (g . oio ok} (725)
d + A®T % (guess, T, 1*, pkg, pke)
& 1 m — sc.signCrypt g . oks ok} (M)
U : u — sc.proveValidity (i, pkg, pkg)
s p(F# ) — sc.unsignerypty o o (1)
¢ (u,m)(# (w*,mj), i =0,1) — sc.{confirm, deny} (i, m, pkg, pkg)
P (u,m)(# (w*,m]),i =0, 1) —> sc.publicVerify(p, m, pkg, pkg)

Return d
We define the advantage of A via:

Adv e (1%) =

: 1
Pr [Explidi«=b(1%) = b| - 2’ .
Given  (t,4s, Qv, Qu,4ed, 4pv) € NC and e € [0,1], A is called a
(t,€,qs, Qu, Qu, Ged, Gpv ) -IND-CCA adversary against sc if, running in time t and
issuing qs queries to the sc.signcrypt oracle, q, queries to the sc.proveValidity or-
acle, q,, queries to the sc.unsigncrypt oracle, q.q queries to the sc.{confirm,deny}
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oracle, and qp, to the publicVerify oracle, A has Advis'l‘jcca(l"i) > e
The scheme sc is said to be (t,€,ds,qv,qu,eds dpv)-IND-CCA secure if no
(t,€,4s: G, Gu, Geds pv)-IND-CCA adversary against it exists.

In the full version [13], we provide the above properties in the multi-user setting,
namely the dM-EUF-CMA and the fM-IND-CCA security properties, where the
adversary is further given all the private keys except those of the target sender
and of the target receiver.

2.3 Main Constructions

Let X be a digital signature scheme given by X'.keygen which generates a key pair
(X.sk, X.pk), X.sign, and X'.proveValidity. Let furthermore I" denote a public key
encryption scheme described by I'.keygen that generates the key pair (I"sk,I".pk),
Iencrypt, and I'.decrypt. Finally, let 2 be a commitment scheme given by the
algorithms {2.commit and (2.open. The most popular paradigms used to devise
signcryption schemes from basic primitives are:

— The “sign-then-encrypt” (StE) paradigm. Given a message m, signcrypt first
produces a signature ¢ on the message using X'.sk, then encrypts m||o under
I'.pk. The result forms the signcryption on m. To unsigncrypt, one first de-
crypts the signeryption using I'.sk in m||o, then checks the validity of o, using
X.pk, on m. Finally, publicVerify of a valid signcryption p = I'.encrypt(m/| o)
on m outputs o.

— The “encrypt-then-sign” (EtS) paradigm. Given a message m, signcrypt pro-
duces an encryption e on m using I'.pk, then produces a signature ¢ on e
using X.sk; the signcryption is the pair (e,o). To unsigncrypt such a sign-
cryption, one first checks the validity of ¢ w.r.t. e using X.pk, then de-
crypts e using sk to get m. Finally, publicVerify outputs a zero knowledge
non-interactive (NIZK) proof that m is the decryption of e; such a proof is
possible since the statement in question is in NP ([16] and [4]).

— The “commit-then-encrypt-and-sign” (CtEaS) paradigm. This construction
has the advantage of performing the signature and the encryption in parallel
in contrast to the previous sequential compositions. Given a message m,
one first produces a commitment ¢ on it using some random nonce r, then
encrypts m||r under I'.pk, and produces a signature o on ¢ using X'.sk. The
signcryption is the triple (e, c¢,0). To unsigncrypt such a signeryption, one
first checks the validity of o w.r.t. ¢, then decrypts e to get m||r, and finally
checks the validity of the commitment ¢ w.r.t (m,r). publicVerify is achieved
by releasing the decryption of e, namely m||r.

The proofs of well (mal) formed-ness, namely proveValidity and {confirm, deny}
can be carried out since the languages in question are in NP (co-NP) and thus
accept zero knowledge proof systems [I6]. Finally, it is possible to require a proof
in the publicVerify algorithms of StE and CtEaS, that the revealed information is
indeed a correct decryption of the encryption in question; such a proof is again
possible to issue since the corresponding statement is in NP.
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3 Analysis of the StE and CtEaS Paradigms

3.1 Insufficiency of OW-CCA and NM-CPA Secure Encryption

We proceed in this subsection as in [IT] where the author shows the impossibility
to derive secure confirmer signatures, using the StE and the CtEaS paradigms,
from both OW-CCA and NM-CPA secure encryption; we first show the impos-
sibility result for the so-called key-preserving reductions, i.e. reductions which
launch the adversary on its challenge public key in addition to some freely cho-
sen parameters, then we generalize the result to arbitrary reductions assuming
new assumptions on the underlying encryption scheme.

Lemma 1. Assume there exists a key-preserving reduction R that converts an
IND-CCA adversary A against signcryptions from the StE (CtEaS) paradigm
to a OW-CCA (NM-CPA) adversary against the underlying encryption scheme.
Then, there exists a meta-reduction M that OW-CCA (NM-CPA) breaks the

encryption scheme in question.

Moreover, we can rule out the OW-CPA, OW-PCA, and IND-CPA notions by
remarking that ElGamal’s encryption meets all those notions (under different
assumptions), but cannot be employed in StE and CtEaS as it is malleable. We
refer again to [I3] for further details.

In consequence of the above analysis, the used encrypted scheme has to satisfy
at least IND-PCA security in order to lead to secure signcryption from StE or
CtEaS. Since there are no known encryption schemes in the literature which
separate the notions IND-PCA and IND-CCA, our result practically means that
the encryption scheme underlying the previous constructions has to satisfy the
highest security level (IND-CCA) in order to lead to secure signcryption. This
translates in expensive operations, especially if verifiability is further required
for the resulting signcryption.

3.2 Positive Results

Constructions from StE or CtEaS suffer the strong forgeability: given a sign-
cryption on some message, one can create another valid signcryption on the
same message without the sender’s help. To circumvent this problem, we pro-
pose the following techniques which bind the digital signature to the resulting
signcryption.

The New “Sign-then-Encrypt” (StE) Paradigm. Let X be a digital signa-
ture scheme given by X .keygen, which generates a key pair (X.sk, X.pk), X.sign,
and XY.proveValidity. Let furthermore I be a KEM given by K.keygen, which
generates a key pair (K.pk, K.sk), K.encap, and K.decap. Finally, we consider a
DEM D given by D.encrypt and D.decrypt. We assume that the message space
of D includes the concatenation of elements from the message space of X', and
of signatures produced by Y, and that the encapsulations generated by IC are
exactly k-bit long, where k is a security parameter.
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A signcryption scheme sc is defined as follows: sc.setup invokes the setup
algorithms of X, IC; and D. sc.keygeng and sc.keygenp consist of X.keygen and
KC.keygen respectively. To sc.signcrypt a message m, one first generates a key k
with its encapsulation ¢ using K.encap, then produces a signature o on c||m, and
finally outputs p = (¢, D.encrypt, (m||o)) as a signeryption of m. Unsigneryption
of some (u1,u2) is done by first recovering the key k from p; using K.decap,
then using D.decrypt and k to decrypt us, and finally checking that the result is
a valid digital signature on p ||m where m is the retrieved message. The rest is
similar to the original StE.

Theorem 1. Given (t,qs) € N? and ¢ € [0,1], the above construction is
(t,€,qs)-EUF-CMA secure if the underlying digital signature scheme is (t,¢€,qs)-
EUF-CMA secure.

Theorem 2. Given (t,qs, v, Qu, Ged; Gpv) € N° and (g,€') € [0,1]%, the above
construction is (t,€,qs, Qu, Qus 9eds Qv )-IND-CCA secure if it uses a (t,€,qs)-
EUF-CMA secure digital signature, an IND-OT secure DEM and an (t+ qs(q. +
Ged + Qpo), €+ (1 — €') T teatare ) IND-CPA secure KEM.

The new “Commit-then-Encrypt-and-Sign” (CtEaS) paradigm The
new “commit-then-encrypt-and-sign” (CtEaS) paradigm. The construction is
similar to the basic one described earlier, with the exception of producing the
digital signature on both the commitment ¢ and the encryption e. The new con-
struction looses the parallelism of the original one, i.e. encryption and signature
can longer be carried out in parallel, however it has the advantage of resting on
cheap encryption compared to the basic one.

Theorem 3. Given (t,qs) € N? and (¢,€,) € [0,1]?, the above construction is
(t,€,qs)-EUF-CMA secure if it uses a uses a (t,€p) binding commitment scheme
and a (t,e(1 — €)%, qs)-EUF-CMA secure digital signature scheme.

Theorem 4. Given (t,qs,qv, Qusqed;s @pv) € N° and (g,€',en) € [0,1]3, the
new CtEaS construction is (t,€,qs, Qv, Gu, Ged, @pv) - IND-CCA secure if it uses a
(t,€,qs)-SEUF-CMA secure digital signature, a statistically binding, and (t,€p,)-
hiding commitment, and a (t + qs(qu + qed + Gpov), 5 (€ + €) (1 — €/)TuTeaTry)
IND-CPA secure encryption scheme.

4 Efficient Verifiable Signcryption from the EtS Paradigm

The EtS paradigm turns out to provide efficient signcryptions schemes that are
proven secure in the model we adhere to.

Theorem 5. Given (t,qs) € N? and ¢ € [0,1], signeryption schemes from
EtS are (t,e,qs)-EUF-CMA secure if the underlying digital signature scheme
is (t,€,qs)-EUF-CMA secure.
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Theorem 6. Given (t,qs,qv, Gu,Ged, @pv) € N® and (e,€') € [0,1]%, sign-
cryptions from EtS are (t,€,qs, qv; Gus Geds @pv)-IND-CCA secure if they use a
(t,€',qs)-SEUF-CMA secure digital signature and a (t + ¢s(qu + Ged + Gpv), €(1 —
€')Iutdeatdre) IND-CPA secure encryption scheme

4.1 Efficient Instantiations

To allow efficient proveValidity, {confirm,deny}, and publicVerify proto-
cols/algorithms, we propose to instantiate the encryption scheme from the class
E defined in [I2] which includes most homorphic encryption, e.g. ElGamal’s en-
cryption [14], the encryption scheme defined in [5], or Paillier’s [23] encryption
scheme.

We describe in the following proveValidity, {confirm,deny}, and publicVerify
protocols/algorithms if the used encryption belongs to the class E.

Proof of Validity. We depict the proveValidity protocol in Figure [Il

Prover P Verifier V'
Choose m’ <% M

’
€

b

Compute e’ = I'encryptp ()

Choose b <2 {0,1}¢ (b € N)

z=m' xm®

PoK{e’ o, e’ = I'encrypty , (2)}

Accept if PoK is valid

Fig. 1. Proof system for membership to the language {m : e = I'encryptp ,(m)}
Common input: (e, I'.pk) and Private input: m and I'.sk or randomness used to pro-
duce e.

Theorem 7. Let I be a one-way encryption scheme from the class E. The pro-
tocol depicted in Figure[dl is a ZK proof of knowledge of the decryption of e.

Confirmation/Denial Protocols. The confirm protocol is nothing but the
proof PoK which is in case of [T4[5] a proof of equality of two discrete logarithms,
and in case of [23] a proof of knowledge of an N-th root. We depict the deny
protocol in Figure Bl where f denotes an arbitrary homomorphic injective one
way function:

Vm,m': f(mxm') = f(m)o f(m')

Theorem 8. Let I' be an IND-CPA encryption scheme from the above class E.
The protocol depicted in Figure[d is a ZK proof of the decryption of e which is
different from the message m.
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Prover P Verifier V'
Choose m’ <& M

Compute €] = f(m')

, , ey, el

Compute e, = I'encryptp ,, (m’)

b

Choose b <~ {0,1}* (beN)

z=m' xm°

PoK{e} oc €’ = Iencrypt ., (2)}

Accept if PoK is valid
and if f(z) # €} os f(m)®.

Fig. 2. Proof system for membership to the language {(m,e): Im : e = encrypt(m) A
m # m} Common input: (m, e, I.pk) and Private input: Isk or randomness encrypting
min e

Public Verification. the publicVerify algorithm outputs a ZK non-interactive
proof of the correctness of a decryption. We note the following three solutions
according to the used encryption:

1. The case of Paillier’s encryption [23]: this scheme belongs to fully decryptable
encryption schemes, i.e. encryption schemes where decryption leads to the
randomness used to produce the ciphertext. Thus, publicVerify will simply
release the randomness used to generate the ciphertext.

2. The case of [5]’s encryption: Groth and Sahai [I7] presented an efficient ZK
non-interactive proof that a given encryption using this scheme encrypts a
given message under a given public key.

3. The case of DL-based encryption schemes, e.g. [I458]: the interactive proof
of correctness of most such schemes reduces to a proof of equality of two
discrete logarithms. The work [J] presented an efficient method to remove
interaction using additively homomorphic encryption, e.g. Paillier [23].

4.2 Extension to Multi-user Security

The construction is the same provided in [22], namely the TagEncrypt-then-Sign
paradigm (TEtS), which deviates from the standard EtS paradigm as follows:

1. It considers a tag-based encryption scheme where the tag is set to the public
key of the sender pkg.

2. The digital signature is produced on the resulting ciphertext and on the
public key of the receiver.

Theorem 9. Given (t,qs) € N? and ¢ € [0,1], signeryption schemes from the
TEtS paradigm are (t,€,qs)-dM-EUF-CMA secure if the underlying digital sig-
nature scheme is (t,€,qs )-EUF-CMA secure.

Theorem 10. Given (t,qs,qv, Gus Geds @pv) € N® and (g,€') € [0,1]?, signeryp-
tion constructions from the TEtS paradigm are (t,€,qs, Qu,Qu,ded, Qpv)-IND-
CCA secure if they use a (t,€,qs)-SEUF-CMA secure digital signature and a
(t +4s (QU + Gea + qpv)a 6(]- - 6’)qu+ch+qpv yQu + Ged T qpv)'IND’STag'CCA secure
tag-based encryption scheme.
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5 Efficient Verifiable Signcryption from the EtStE
Paradigm

The EtS technique provides efficient verifiability but at the expense of the
sender’s anonymity, and of the security requirements on the building blocks.
StE achieves better privacy using cheap constituents but at the expense of veri-
fiability. It would be nice to have a technique that combines the merits of both
paradigms while avoiding their drawbacks. This is the main contribution in this
section; the core of the idea consists in first encrypting the message to be sign-
crypted using a public key encryption scheme, then applying the StE paradigm
to the produced encryption. The result of this operation in addition to the en-
crypted message form the new signcryption of the message in question. In other
terms, this technique can be seen as a merge between EtS and StE; thus we can
term it the “encrypt-then-sign-then-encrypt” paradigm (EtStE).

5.1 The Construction

Setup. Consider a signature scheme Y, an encryption scheme I', and another
encryption scheme (K, D) derived from the KEM/DEM paradigm. Next, on
input the security parameter k = (k1, k2, K3), generate the parameters param
of these schemes. We assume that signatures issued with X' can be written as
(r, s), where r reveals no information about the signed message nor about the
public signing key, and s represents the “significant” part of the signature.

Key generation. On input the security parameter x and the public param-
eters param, invoke the key generation algorithms of the building blocks
and set the sender’s key pair to (X.pk, X.sk), and the receiver’s key pair to
({I.pk, K.pk}, {I"sk, K.sk}).

Signcrypt. On a message m, produce an encryption e = I".encrypt ., (m) of m.
Then fix a key k along with its encapsulation ¢ using K.encrypty ., produce
a signature (r, s) on c||e, and finally encrypt s with k using D.encrypt. The
signeryption of m is the tuple (e, ¢, D.encrypt,(s),r).

Prove Validity. Given a signcryption pu = (u1, o, pi3, ft4) On a message m,
the prover proves knowledge of the decryption of u;, and of the decryption
of (g, p3), which together with u4 forms a valid digital signature on usal| .
The private input is either the randomness used to create p or {I.sk, K.sk}.

Unsignerypt. On a signeryption a  (p1, o, 43, pa), compute m =
I'decryptpg (1) and &k = K.decapsulateg g (p2). Check whether
(D.decrypty, (us), pa) is valid signature on ps||p1; if yes then output m, oth-
erwise output L.

Confirm/Deny. On input a putative signcryption g = (p1, o, 43, ft4) O1 &
message m, use the receiver’s private key to prove that m is/isn’t the de-
cryption of pi, and prove knowledge of the decryption of (2, us), which
together with py forms a valid/invalid digital signature on pal| 1.

Public Verify. On a valid signeryption p = (p1, pio, 43, 44) O a message
m, output a ZK non-interactive proof that u; encrypts m, in addition to

(D~decryptK.decap(;L2) (/J’3 ) ) M4)'
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5.2 Analysis

Theorem 11. Given (t,qs) € N? and € € [0,1], the above construction is
(t,€,qs )-EUF-CMA secure if the underlying signature is (t,€,qs)-EUF-CMA se-
cure.

Theorem 12. Given (t,qs, Gv, Qu, deds @pv) € N° and (g,€') € [0,1]%, the con-
struction proposed above is (t,€,qs, Gu, Qus Qed, Gpv )-IND-CCA secure if it uses a
(t,€,qs)-EUF-CMA secure signature, an IND-CPA secure encryption, an IND-

6(176/)QUd+‘1u+‘11)v
OT secure DEM, and a (t+ qs(qu+ Gea+ qpo), ) )-IND-CPA secure
KEM.

Our aim in the rest of this paragraph consists in identifying suitable classes of
encryption/signature schemes that renders the proveValidity and {confirm, deny}
efficient. These protocols comprise the following sub-protocols:

1. Proving knowledge of the decryption of a ciphertext produced using the
encryption scheme I'.

2. Proving that a message is/isn’t the decryption of a certain ciphertext pro-
duced using I'.

3. Proving knowledge of the decryption of a ciphertext produced using (I, D),
and that this decryption forms a valid/invalid digital signature, issued using
X, on some known string.

It is natural to instantiate the encryption scheme I' from the class E. The first
two sub-protocols can be efficiently carried out using the proofs depicted in
Figure [l and Figure Bl For the last sub-protocol, one can consider encryption
schemes from the class E that are derived from the KEM/DEM paradigm, in
addition to signature schemes that accept efficient proofs of knowledge. See the
full version [I3] for further details.

5.3 Extension to Multi-user Security

The above EtStE technique can be extended to achieve security in the multi-
user setting by applying the standard techniques [1I22]. More specifically, one
considers a tag-based encryption scheme I', a tag-based KEM K, a DEM D,
an a signature scheme. The sender’s key pair is the signature scheme key pair,
whereas the receiver’s key pair comprise both key pairs of I" and K. Signcryption
on a message m w.r.t. a sender’s public key X .pk and a receiver’s public key
(I.pk, K.pk) is generated as follows. First compute an encryption e on m (with
I') w.r.t. the tag X.pk, then generate a key k and its encapsulation ¢ w.r.t. the
same tag (with ), then compute a digital signature on cl|le||{Ipk, K.pk}, and
finally sign the “significant” part of this signature using k. The signcryption
consists of the result of this encryption, the remaining part of the signature, and
(e, ¢). The rest is similar to the paradigm in the two-user setting.

Theorem 13. Given (t,qs) € N? and ¢ € [0,1], the above construction is
(t,€,qs)-dM-EUF-CMA secure if the underlying digital signature scheme is
(t,€,qs)-EUF-CMA secure.
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Theorem 14. Given (t7QS7QU7Qu7QCd7va) € N° and (e,€') € [0, 1]2; the above
construction is (t, €, ¢s, qv, Qu; deds v ) -fM-IND-CCA secure if it uses a (t,€,qs)-
EUF-CMA secure digital signature, an IND-sTag-CCA secure encryption, an

IND-OT secure DEM, and a (t+qs(qu~+Gcd+4po),

6(176/)q0d+Qu+Qp1)

) ch+qu+qpv)‘

IND-sTag-CCA secure KEM.
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Abstract. We propose a non-delegatable strong designated verifier sig-
nature on elliptic curves. The size of the signature is less than 500 bits
considering an 80 bits security strength. It provably satisfies the non-
delegatability and signer ambiguity properties. The construction method
is a combination of the Schnorr signature and the elliptic curve Diffie-
Hellman problem.

Keywords: Signature Schemes, Strong Designated Verifier Signature,
Non-delegatability, Signer Ambiguity.

1 Introduction

Jakobsson et al. [I0] proposed the concept of designated verifier signature (DVS).
A DVS consists of a proof that either “the signer has signed on a message” or
“the signer has the verifier’s secret key”. If the designated verifier is confident that
her/his private key is kept in secret, the verifier makes sure that the signer has
signed on a message. No other parties can be convinced by the DVS since the des-
ignated verifier can generate it with her/his private key. It is useful in various com-
mercial cryptographic applications, such as e-voting, copyright protection, etc.

A strong DVS (SDVS) is an extension of the DVS. In the appendix, Jakobsson
et al. [I0] gave a definition of SDVS. It means that the verifier needs to use
her/his private key to verify the signature. It considers a situation where the
signature is captured before reaching the verifier. In this case, an adversary can
know who is the real signer as there are only two possibilities. Laguillaumie and
Vergnaud [13], and Saeednia [20] both formalized the notion.

There are five properties of SDVS, three basic properties and two enhance-
ments. The basic properties include the unforgeability and non-transferability
[15], and privacy of signer’s identity (PSI) [I3]. Informally, the unforgeability
means that if an adversary can forge a (strong) DVS, it solves some hard prob-
lems. The non-transferability means that the designated verifier cannot convince

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 219-P34] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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a third party that an SDVS is produced by a signer. The PSI means that nobody
can identify a real signer from an SDVS except the designated verifier. Generally,
a PSI attacker does not know the private key of a signer. The enhancements are
the non-delegatability (ND) [I7] and signer ambiguity (SA) [I4]. The ND prop-
erty means that the only way to generate an SDVS is to own a private key of a
signer or a verifier. The SA property means that an attacker equipped with the
private key of a signer, cannot identify who is the real signer of an SDVS.

This paper focuses on the SDVS. We give a new approach to construct an
SDVS and prove that the scheme satisfies all above properties. We emphasize
the ND and SA properties that are detailed in Section 3. It is interesting to
design schemes with good performance under stricter conditions.

1.1 Related Works

Jakobsson et al. [I0] gave a DVS scheme and proposed a method to transform
a DVS to an SDVS by an encryption layer. Saeednia et al. [20] proposed a DVS
scheme and an SDVS scheme. Lee [I4] showed that the SDVS construction [20]
lost the SA property. Lipmaa et al. [I7] showed that the construction in [20]
was delegatable. Laguillaumie et al. [I3] proposed an ID-based SDVS scheme by
using the long term symmetric secret of two users. Tso et al. [22] proposed to
construct SDVS schemes by using authenticated key agreement protocols. Zhang
et al. [24] proposed an SDVS scheme where the verification needed a long term
symmetric key. Huang et al. [5] proposed a short DVS scheme by using a long
term symmetric key. Kancharla et al. [I1] proposed an ID-based strong DVS by
using a temporal symmetric secret. According to the analysis technique in [14],
schemes lose the SA property if they used a symmetric secret. Sun et al. [21]
showed that the scheme in [I1] was delegatable.

Lipmaa et al. [I7] proposed a non-delegatable DVS scheme based on the sig-
nature scheme in [12]. Huang et al. [4] proposed an universal DVS without del-
egatability. Shahandashti and Safavi-Naini [I9] proposed a general approach to
construct an universal DVS without delegatability. Liao and Jia [16] proposed a
DVS with an argument about its non-delegatability. Wang [23] proposed a non-
delegatable ID-based SDVS scheme. Huang et al. [7] proposed a non-delegatable
SDVS scheme. The team also [6] proposed a non-delegatable ID-based DVS
scheme and a non-delegatable ID-based SDVS scheme [§].

1.2 Contributions

— First of all, we propose a new method to construct non-delegatable schemes.
Some literatures also proposed (S)DVS schemes with the non-delegatability
property. These schemes show two construction ideas:

e One idea is to use an approach in [I0], such as schemes in [1'7,23], which
uses a trap-door commitment and the Fiat-Shamir heuristic;

e The other idea is to use the typical OR proofs of two three-round zero
knowledge protocols, such as schemes in [4}[6H8L[19)].
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We give another idea to combine the Schnorr signature and a hard problem.
The advantage of the idea is that it can produce a signature consisting of
three elements. Comparatively, the two existing ideas lead to a signature
with at least four elements.

— The scheme enjoys ND and SA properties at the same time. Other schemes
usually enjoy one property and lose the other.

o Lee et al. [14] showed that the SDVS in [20] lost the SA property. They
proposed a scheme and argued that it satisfied the SA. However, their
scheme is delegatable. A signer can generate a random group value r
and compute a temporal value s in the same way as the signer in their
signing algorithm. Then the signer can give (r, s) to an agent to sign any
message.

e Huang et al. [7] proposed a non-delegatable SDVS scheme. Their scheme
loses the SA property. The value K in their scheme is a long term secrete
between a signer and a designated verifier. With the private key of the
signer, an attacker can compute the value K and verify an SDVS.

e Wang [23] proposed a non-delegatable identity-based SDVS scheme. The
scheme loses the SA property. The value Vg in the verification algorithm
can be computed without using the private key of the designated verifier.
Then with the private key of the signer, an attacker can check their
verification equation.

In fact, we only find that the scheme in [§] enjoys the ND and SA properties
with high bandwidth and computation costs.

In summary, the features of this paper are as follows:

— It shows a new method to construct a non-delegatable SDVS;
— The scheme enjoys the ND and SA properties with a short signature size
and a moderate computation cost.

1.3 Organizations

Section 2 includes elementary materials about assumptions and definitions of
an SDVS. Section 3 presents the ND and SA properties. Section 4 is the new
SDVS scheme. The scheme is proven secure in section 5. Section 6 compares our
scheme and other non-delegatable (strong) DVS schemes.

2 Preliminaries

2.1 Assumptions

Let p be a large prime and ), be a finite filed. Let a,b € F, be random elements
in the field to define a curve E. Let P €r E be a point in the curve and be a
generator of a group G with an order gq.

— Elliptic Curve Diffie-Hellman Problem (ECDHP): Given points aP,
BP € G, find another point aSP.
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— Elliptic Curve Decisional Diffie-Hellman Problem (ECDDHP):
Given points aP, BP,vP € G, check whether v = a8 mod q.

The assumption is that there are no (¢, €) algorithms to solve the ECDHP (ECD-
DHP) problem in time ¢ with a non-negligible probability € if ¢ is big enough.

Knowledge Extractor Assumption version 1 (KEAv1) [9]: Let T de-
notes a polynomial time bounded algorithm which on input (P, aP), produces
(8P, a8P) where (3 is chosen by T'. The assumption is that there exists another
polynomial time bounded algorithm 7%, which takes as the same input of T,
uses the same coins of T', and produces (3, 8P, afP) with a probability 1 — ¢
where € is a negligible value.

Remark 1. The KEAv1 is proven in a generic group model [3]. This gives it an ev-
idence about its plausibility. It is only used in the proof of the non-delegatability
in this paper.

2.2 SDVS
We define an SDVS scheme as follows.

— System Parameters Generation SP: A probabilistic polynomial time
algorithm that, on input a security parameter k, produces the system pa-
rameters sp.

— Key Generation KG: A probabilistic polynomial time algorithm that, on
input the system parameters sp, produces key pairs (pks, sks) for a signer
and (pk,, sk,) for a verifier.

— Signature Generation SG: A probabilistic polynomial time algorithm
that, on input the signer’s private key sks, the verifier’s public key pk, and
a message m, produces a signature §.

— Signature Verification SV: A deterministic polynomial time algorithm
that, on input the public key pks of the signer, the private key sk, of the
verifier, the message m, and a signature §, produces a verification decision
b € {True, False}.

— Transcript Simulation 7'S: A probabilistic polynomial time algorithm
that, on input the public key pks of the signer, the private key sk, of the
verifier, and the message m, produces a signature §.

Properties

There are three basic properties about SDVS, namely the non-transferability,
unforgeability, and PSI.

— Unforgeability [15]: It is formally defined by using a game between an ad-
versary A and a challenger C:
e C provides the system parameters sp to A.
e C provides A a public key pks of a signer and a public key pk, of a
designated verifier.
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e At any time, A can send any message m; to C for the signature of m;.
These singing queries are up to g5 times. C will answer a query by pro-
viding the signature § = SG(sks, pky, m;).

e Eventually, A will produce a new signature 6* for a message m*. A
succeeds if SV (pks, sk,, m*,5*) = True and m* has never been queried.

The success probability of A is defined by Advspvs,a(k).

Definition 1. An SDVS scheme is (t,qs,€) unforgeable, if no polynomial
time bounded adversary A has a success probability Advspys,a(k) > € run-
ning in time t with qs signing queries.

— non-transferability [I5]: It is formally defined by using a game between a
distinguisher D and a challenger C:
e C provides the system parameters sp to D.
e C provides D a public key pks of a signer and a public key pk, of a
designated verifier.
e D issues signing queries on any message m;. C replies to D with §; =
SG(sks, pky,m;).
e D submits a new message m* to C. C flips a fair coin b + {0, 1}, and pro-
duces a signature §* = SG(sks, pky, m;) it b = 0 or * = T'S(pks, sky, m;)
if b = 1. C replies to D with 6*.
e On receiving §*, D can issue new singing queries at will. These signing
queries are up to gs times.
e Eventually, D produces a bit ¥’ and succeeds if b’ = b.
The advantage of D is defined as Advspvsp(k) = |Prlt’ = b —1/2|.

Definition 2. An SDVS scheme is (t,qs,€) non-transferable if no polyno-
mial time bounded distinguisher D has an advantage Advspvsp(k) > € in
time t with qs signing queries.

— Privacy of Signer’s Identity [I3]: It is formally defined by using a game
between a distinguisher D and a challenger C:

e C provides the system parameters sp to D.

e C provides D two public keys pksg and pks; of two signers and a public
key pk, of a designated verifier.

e C provides D two signing oracles Yyo and Y, and a verifying or-
acle T. On a signing query m; of D, XYy replies to D with §;p =
SG(skso, pky, m;), and X1 with §;1 = SG(sks1, pky, m;). On a verifying
query (pksc,mj,0;), ¢ € {0,1}, T replies to D with True or False. D
produces a message m* and a state information I* after enough queries.
D sends the message m* to C.

e C flips a fair coin b < {0, 1}, and computes §* = SG(sksp, pk,, m*) as a
reply to D.

e D continues to issue signing and verifying queries on any message with
the restriction of not querying 1" about (pksc,m*,6*), ¢ € {0,1}. The
state information is taken as input in this step. The signing queries are
up to ¢s times. The verifying queries are up to ¢, times.
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e Eventually, D produces a bit ¥’ and succeeds if b’ = b.
The advantage of D is defined as Advgg{/s’p(k) = |Prlt) = b —1/2|.
Definition 3. An SDVS scheme is (t,qs,quv,€) secure about privacy of a
signer’s identity if no polynomial time bounded distinguisher D has an ad-
vantage Advgg{,sp(/@) > € in time t with qs signing queries and q, verifying
queries.

3 Modified Definitions

3.1 Non-delegatability
A Brief Review

The notion of ND was initiated in 2005 by Lipmaa et al. [I7]. A real life scenario
is that an adversary interacts with a signer who is responsible for the generation
of the public and secret key pair (pks, sks). After this interaction, the adversary
may obtain something which can be used to create signatures for a particular
designated verifier. It is intended to prevent a dishonest signer to sell a specif-
ically constructed key which is capable of creating a signature for a particular
designated verifier.

The requirement of ND is then given access to the adversary, an extractor
should be able to extract the private key sks. This guarantees that any designated
verifier signature must be created from an entity who is in possession of the secret
key from either the signer or the verifier. The original definition of ND [I7] is as
follows:

Definition 4. Let k € [0,1] be the knowledge error. A scheme is (T, Kk)-non-
delegatable if there is a black-box knowledge extractor K that, for every algorithm
F and for every wvalid signature &, satisfies the following condition: For every
(pks, sks) +— KG(sp), (pky,sky,) < KG(sp) and message m, if F produces a
valid signature on m with probability € > K then, on input m and on access to
the oracle Fp, K produces either sks or sk, in expected time 7/(e — k) (without
counting the time to make the oracle queries).

In the proof of ND [I7], it said that “K executes F,, step by step” and K
answered hashing queries of F,,. As F,, is a black-box, nobody knows what it
has, and how it produces a signature. Luckily, in the random oracle model, F,,
must request a hashing oracle. By providing the oracle, K uses the rewinding
technique to extract the private keys. As their scheme is the Schnorr style, this
technique works.

The Motivation. There are some subtle problems.

— As F is a black-box, nobody knows how it works. It may just need a hashing
oracle if we are lucky. However, it may also need other oracles, such as signing
oracles or verifying oracles. That is, a malicious signer may sell some partial
secret so that F can produce a signature for a valuable message after some
online signing queries for garbage messages (according to the agreement
between the signer and F).
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— For the same reason, nobody knows what F has. It may directly buy the
private key of the singer with a high price. It may buy a partial secret from
a signer or a verifier with a moderate cost. And it may buy nothing, but can
simply produce a signature after some oracle queries.

— It seems that there are four players in the original definition. Two of them
are a signer and a designated verifier that produce key pairs, and the other
two of them are F and K. There is no specification about the interaction
between F and the two key-pair producers.

— The random oracle is the only available tool for K to extract the possible
private key of F. This makes the ND proof be limited to use the rewinding
of a hashing oracle.

These observations make the proof of ND uneasy. It is not easy to determine
what IC should provide to F so that F can produce a signature, and which key
will be extracted by /C, and not easy to apply the definition to new constructions.

The Instinctive Version

However, instinctively, an (S)DVS is non-delegatable means that if a party can
create a valid signature, this party must know either the secret key of the signer
or the verifier. Then a direct model is that if I interacts with a signature pro-
ducer F, K can extract a private key.

To overcome the subtle problems, we let F provide a public key pk,(,) of a
signer or a verifier as the target to be extracted. It doesn’t matter whether F
knows the private key sk, corresponding to pks(,). We do not care what F has
as it is a black-box. We let I provide any possible help to F to produce a signa-
ture. That is, I provides the signing, verifying and hashing oracles if possible.
KC can provide them easily since it controls the other key pair (sky(s), pky(s))-

We define the instinctive version in a game style as follows. Suppose a poly-
nomial time bounded signature producer F and an extractor /.

— K produces the system parameter sp, and sends it to F.

— F produces a public key pk(,), and sends it to K.

— K produces the other public key pk, ) and sends it to F.

— JF produces a valid SDVS for a message m queried by K with a non-negligible
probability. F accesses to the signing and hashing oracles if F produces pk,,
or accesses to the signing, verifying, and hashing oracles if F produces pks.

— K produces sk

The success probability of K is defined as Adv§py g i (k).

Definition 5. An SDVS scheme is (t,e,t',€) non-delegatable if K can extract
the private key in time t with a probability Advfgvgvs,,c(k) > € against F that
can produce a signature in time t' with a probability €', where € > polyi(€') and
t < polya(t') for two polynomial functions poly, and polys.

The Relationship. If a scheme is non-delegatable in the original definition,
so it is in the instinctive version. If a scheme can be proven secure in the new
version, it may NOT be proven in the old one. In this way, we can view the new
version as a relaxed version. While it captures the core of the ND directly, it
allows more flexible constructions.
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3.2 Signer Ambiguity

Lee and Chang [I4] gave a comment on Saeednia et al.’s SDVS scheme [20]. They
found that Saeednia et al.’s scheme would reveal the identity of the signer if the
secret key of this signer is compromised. That is, if an adversary is equipped
with a signer’s private key, for any SDVS produced by the signer, the adversary
can verify the SDVS. Then, if such an SDVS is captured before it reaches the
designated verifier, the real signer can be revealed. It is deemed as a weakness
for the signer ambiguity. There is no formal definition about it in [I4]. They
argued their new scheme for the signer ambiguity.

Huang et al. [0] defined a stronger definition for the PSI property. It allows
an adversary to know the private key of a signer. The signer ambiguity property
is integrated. However, a simulator should provide various oracles for an adver-
sary, including the signing, verifying and hashing oracles in their definition. It
is unnecessary to provide the signing oracle as the adversary knows the signer’s
private key. It provides more information than what the adversary needs in [14].

We define a tailored model for the attack in [I4]. It is defined by using a game
between a distinguisher D and a challenger C:

— C provides the system parameter sp to D.

— C provides D two key pairs (pkso, skso) and (pks1, sks1) of two signers and a
public key pk, of a designated verifier.

— D produces a message m* and sends it to C.

— C flips a fair coin b + {0,1}, and computes §* = SG(skq, pk,,m*) as a
reply to D.

— D produces a bit b and succeeds if b’ = b.

The advantage of D is defined as Advgévsp(k) = |Pr[p) =b] —1/2|.

Definition 6. An SDVS scheme is (t,€) ambiguous about the signer if no poly-
nomial time bounded distinguisher D has an advantage Advﬁévs’p(k‘) > € in
time t.

Remark 2. As the attack in [14] does not need any oracles, our definition provide
no oracles too. It is reasonable to provide a verifying oracle as a distinguisher
cannot do so. However, it is not easy to provide such a oracle in our proof, and
that enhancement is beyond the attack technique in [I4].

4 The SDVS Scheme

— SP: Let p be a large prime and ), be a finite filed. Let a,b €r IF;, be random
elements in the field to define a curve E. Let P €g E be a point in the curve
and be a generator of a group G with an order ¢. Let Hy : G — Zj and
H, : {0,1}* — G be secure hashing functions. The system parameter sp is
(Fp, a, b7 1:)7 q, Hl, Hg)

— KG: For a signer, randomly select sks = s €gr Z; and compute pks = Qs =
—sP. For a designated verifier, randomly select sk, = v €g Z; and compute
pky, = Q, = vP.
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— SG: Randomly select 7,1 €g Z; and compute A = [P, Cyp = rP and C; =
Hy(m,A), C = Cy+ C1 = (cz,¢y), 2 =l + czsmod g, R = rQ,, and
t = Hi(R). The signature is (C, 2, t).

— SV: Compute A’ = zP + ¢,Q,,Cf = Ha(m, A"), C), = C — Cf, R = vC},
and ¢’ = Hy(R'). Verify that t = ¢'.

— T'S: Randomly select C €r G,z €r Z; and compute A = zP + c;Qs.
Compute Cy = Hz(m, A), Co = C — C1, R=vCy and t = H,(R).

Remark 3. The point C' in the signature will be presented in a compressed fash-
ion to shorten the size. That is, only the X coordinate and a compressed one-bit
representation of the Y coordinate of the point will be transmitted.

The computation of values A and Cj in the SG algorithm is taken as one scalar
multiplication as they can be computed sequentially where they are sorted by
the values of their indexes. The computation of zP + ¢,Qs is approximated to
one scalar multiplication thanks to the algorithm 15.2 recorded in a book [I§].

5 Proof of Properties

We use the symbol 7,,, to denote the time of a scalar multiplication on elliptic
curves. Generally, we suppose the hash functions, Hy, Hy are random oracles,
and the gy is the number of the hashing queries to the Hy oracle.

Unforgeability

Proposition 1. The SDVS scheme is (t, qs, €) unforgeable if the ECDHP prob-
lem is (¥, €') unsolvable, where t’ < 4(t+(qn~+2qs)Tm), and € > 1/3e(e/qn — 1/q)

Proof. Assume a simulator C which tries to solve an ECDHP problem. Assume
an ECDHP problem instance is (aP, 8P) with group parameters (F,,a,b, P, q).
Suppose an adversary, A, which claims a non-negligible success probability e over
the SDVS scheme in time ¢ with g5 signing queries. C runs two games with A.

— Game 0:
o C sets sp = (Fp,a,b, P,q, Hi, Hy), and gives sp to A.
e C runs KG to produce a verifier’s key pair (pk,, sk, ), and gives A public
keys pks = aP and pk,.
e C provides a signing oracle by running the 7'S algorithm.
e C provides two hashing oracles by maintaining two hashing lists.
1. C maintains an H}. , for hashing queries of H;. The H}, is empty
at the beginning. When A provides an R; for hashing, if there is a
match in the H llist, C replies to A the value ¢; in the match directly.
Else C randomly selects t; €gr ZZ and replies to A with ¢; and records
an entry (R;,t;) in the H},.
2. C maintains an Hl2ist for hashing queries of Hy. The ngist is empty
at the beginning. When A provides (m;, A;) for hashing, if there is
a match in the HZ,, C replies to A with the value Q; in the match
directly. Else C randomly selects d; €g Z;; and computes Q; = d; P.
C replies to A with @; and records an entry (m;, 4;,d;,Q;) in the
Hl2ist'
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e Since the non-transferability property will show that the signatures pro-
duced by the T'S algorithm are distributed the same as those produced
by the SG algorithm, A should give an SDVS (C*,z*,¢*) for a new
message m*.

According to the general forking lemma [2], A should give another SDVS
(C', 2, t") for the same message m™ with fixed coins. The probability is § =
e(e/qn — 1/q). Suppose the probability of z* # 2’ is £ € [0,1]. Then with a
probability £60, C can extract the private key « of the signer. Then C computes
BaP as the answer of the ECDHP problem. The total run time of C in this
case is less than 2(t + (g + 2¢s)Tm)-

There is a probability 1 — £ for the event 2* = z’. This leads to the design
of Game 1.
Game 1:

e C gives the system parameter sp to A.

e C runs KG to produce a signer’s key pair (pks, sks), and sets pk, = 8P,
and gives public keys pkg, pk, to A.

e C provides a signing oracle by running the SG algorithm.

e C provides the hashing oracles in the same way as it does in the Game
0.

e Finally, A should give an SDVS (C*, z*, t*) for a new message m*.
Again, A should give another SDVS (C’, 2/, t’) for the same message m* with
fixed coins with a probability 6 = e(e/qn — 1/q). However, when A queries
(m*, A* = z*P + c£Qs) at the second run, C sets Ha(m*, A*) = C* — aP or
Hy(m*, A*) = —C* — aP with a probability 1/2. After A gives (C’, 2',t'), C
finds the R’ in H}.,, indexed by t'. The answer is R’ for the ECDHP problem.
Note that if z* = 2/, ¢ = ¢/, mod q. Then C' = C* or C' = —C*. Since
aP = C* — Hy(m*, A*) or aP = —C* — Hy(m*, A*), and pk, = P, it
should be R’ = SaP with a probability 1/2.

As we are in the random oracle, we omit the collision event that when R’ #
R", Hi(R') = H1(R"). There is another error event that although ¢} # ¢/,
cy = ¢, mod q. Note that p+1 —2,/p < ¢ < p+1+2,/p by the well-known
Hasse’s theorem. If ¢ > p, there is no error probability. If ¢ < p, the error
probability is (p —¢)/p-1/(p — q) = 1/p.

The success probability of C is at least 1/2(1 — 1/p)(1 — £)8 > 1/3(1 — )6
to solve the ECDHP problem. The runtime of C in this case is similar to it
in the Game 0.

So the total runtime of C is less than 4(t + (gn + 2¢s)7m ). The total success
probability of C is at least 1/3(1 — &) + &6 > 1/36. |

Remark 4. The general forking lemma [2] can be used in contexts other than
traditional signatures as it only considers the inputs and outputs of a function.

Non-transferability

Proposition 2. The SDVS scheme is mnon-transferable in the context of
Definition 2.
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Proof. According to the Definition 2, we assume a challenger C. C runs algo-
rithms SP and KG to generate the system parameter sp and key pairs. Then C
sends the sp and public keys to a distinguisher D. To answer the signing queries,
C uses the private key of a signer directly to sign a query message according to
the SG algorithm. When D submits a message m* for a test, C flips a fair coin
be {0,1}. If b = 0, C uses the private key of the signer to produce a signature
(C’o, 20, fo) If b =1, C uses the private key of the designated verifier to produce
a signature (C’l7 %1, tl) according to the T'S algorithm.

The distinguisher D has no advantage to produce a b’ such that b’ = b since
the distribution of (C’O, 29, 19) is identical to that of (C’h 21,11).

Let (C’ , 2, f) be an SDVS that is randomly chosen in the set of all valid signa-
tures of a signer intended to a designated verifier. Then we consider the prob-
ability of the event: Co = roP + Hy(m,loP) = C, 20 =lo+ ¢ox(sks) = 2, and
to = Hi(ropky) = t. The randomness is over the variables ro,lo €r Zj. The
probability is about 1 / q°.

Another event is C; = C’ and 2; = 2, and £, = H,((Cy — Hg(m C1:Qs +
2 P))*ke) = . The randomness is over the variables 21 €gr Z; and Cy €r G.
The probability is also about 1/¢2. O

Privacy of signer’s identity (PSI)

Proposition 3. If the SDVS scheme is (¥, q.,€') unforgeable, and the ECD-
DHP problem is (t",€") unsolvable, the SDVS scheme is (t,qs, qv,€) secure in
the context of Definition 3.

Proof. There is a challenger C and a distinguisher D as in the Definition 3. They
play a serial of games.

Game 0

— C invokes SP to produce the system parameter sp and gives it to D.

— C runs KG to set up two key pairs (sks¢c,pksc), ¢ € {0,1}, for two signers
and one key pair (pk,, sk, ) for a designated verifier. Then C gives D public
keys (pksmpkslapkv)'

— C installs the private key skso in the signing oracle Xy, and skg; in X1. C
installs the private key sk, in the verifying oracle 7. C provides a hashing
oracle for H; that is the same as it in the Game 0 of the Proposition 1. Then
C provides D the signing, verifying and hashing oracles.

— When D provides the message m*, C produces a challenge SDVS (C*, z*, t*).
C flips a fair coin b* € {0,1}, and uses the private key sk to produce a
challenge SDVS according to the SG algorithm.

— C provides the signing and verifying oracles as before except that the veri-
fying oracle 1" has no response to the query (pksc, m*,C*,z*,t*), ¢ € {0,1}.

— Eventually, D produces a bit b and succeeds if b = b*.

This game is exactly the definition of the PSI. So D should succeed with a non-
negligible advantage € in time ¢ with g5 signing queries and ¢, verifying queries.

Game 1: This game is intended to show that D cannot tell whether a challenge
signature is valid.
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— C takes an ECDDHP problem instance (aP, P,y P).

— C sets pk, = BP.

— C provides the signing oracles as before. However, C maintains a signing list
Siist for all signatures produced by the signing oracles. The verifying oracle
T uses the Sj;s¢ to answer queries. If a query is in the list, 7" answers T'rue,
else False.

— When D provides the message m*, C produces a challenge SDVS (C*, z*, t*)
as follows. C flips a fair coin b* € {0,1}, and uses the private key skgp+. It
randomly selects [ €g Z; and computes A* = [P, and C; = Ha(m*, A*). It
sets Cy = aP and R = v P. It computes C* = Cy+ (4, and z* = [+ ¢k sksp-,
and t* = Hy(R). The challenge signature is (C*, z*, t*).

— Other steps keep unchanged.

The distinguisher D has two possible ways to distinguish Game 0 from Game
1. The first is about the two challenge signatures in the two games. However, If
the input of C is an ECDDHP tuple, the signature is valid and indistinguishable
from it in the Game 0. If it is not, the challenge SDVS is an invalid signature. If
D can distinguish the Game 1 from Game 0 by the two signatures, C can solve
the ECDDHP problem directly. So the probability is €’ for D to distinguish the
two games by the challenge signatures in time t”.

The second way is through the verifying oracle 7. From the Proposition 1, we
know the probability of successful forgery is a negligible probability € in time
t' with ¢/ signing queries. So all True signatures queried to the oracle 7" can
be verified rightly. The only questionable signature is the challenge signature,
which is not allowed to be a query by the game rules. So the probability is €’ for
D to use the oracle T to distinguish Game 1 from Game 0 in time ¢’ in this case.

Game 2: The challenge SDVS (C*, z*, t*) is produced without using any private
keys.

— When D provides the message m*, C produces a challenge SDVS (C*, z*, t*)
as follows. C randomly selects t*,2* €r Z;, and C* €r G. The challenge
signature is (C*, z*,t*).

— Other steps keep unchanged.

The values C* and z* are distributed the same as them in the Game 1 due to
the non-transferability property. The value t* is also distributed the same as it
in the Game 1 since we are in the random oracle model. So D cannot distinguish
the Game 2 from the Game 1.

Since no private keys are used to produce the challenge SDVS in Game 2, it
is meaningless for the distinguisher D to claim that the message m™ is signed
by the owner of a private key sko or ski, or simulated by a designated verifier.
There is no advantage for D in Game 2. O

Non-delegatability

Proposition 4. Suppose that the KEAvl assumption holds with a probability
1 —€”. Then the SDVS scheme is (t,¢,t',€') non-delegatable in the context of
Definition 5.
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Proof. According to the Definition 5, there is an extractor K and a signature
producer F. F produces a valid signature on a message m with a non-negligible
probability € in time ¢’

— F produces a public key pks as the target.
K produces the sp and sends it to F
F produces pk, and sends it to K.
K produces the key pair (pk,, sk,) and sends the pk, to F.
KC provides a signing oracle by the T'S algorithm, and a verifying oracle
by the SV algorithm, and two hashing oracles for the H; and Hs in the
same way as them in the Game 0 of the Proposition 1.
K selects a message m* and sends it to F.
F produces a signature (C*, z*,t*) for the message m*.
IC uses the same method as C in the Game 0 of the unforgeability proof to
extract the private key sks. The successful probability is € > &€/ (€' /qn —
1/q) where £ is the same as it in the Game 0 of the Proposition 1. The
runtime is t < 2(¢' + (qn + 2¢s + 2qv)Tm)-
— F produces a public key pk, as the target.
e K produces the sp and sends it to F

F produces pk, and sends it to /.
K produces the key pair (pks, sks) and sends pks to F.
IC provides a signing oracle by the SG algorithm, and two hashing oracles
for the H; and Hs in the same way as them in the Game 0 of the
Proposition 1.
K selects a message m* and sends it to F.
F produces a signature (C*, z*,t*) for the message m*.
K runs F again with fixed coins. When F queries the Hs with (m*, z*P+
cipks), K replies Cf = C* — Cff or C{ = —C* — C{/ with a probability
1/2, where Cff = r'P €r G for a random 7’ €g Z;. F produces another
signature (C', 2/, t') for m*. If 2’ # z*, K fails. Else K finds the value R’ =
r'pk, in the H}: ,. We take the values (P, C{/) as an input to F because
the values are totally determined by K. We take the values (pk,, R') as
the output of F. Then according to the KEAv1 assumption, IC can build
another F* with the same coins to produce an output (sk,, pk,, R').

Similar to the analysis in the Game 1 of the Proposition 1, the success
probability of Fise > 1/3(1—¢€")(1—&)(¢'(¢//qn—1/q)) considering the
extra assumption of KEAv1. The runtime is ¢ < 2(¢' + (qn, +2¢s)7m). O

Signer Ambiguity

Proposition 5. The SDVS scheme is (t,e) ambiguous about the signer if the
ECDDHP problem is (t',€') unsolvable, where t =~ t' — 1, and € = €.

Proof. Suppose a challenger C which tries to solve an ECDDHP problem in-
stance (aP,8P,vP). Suppose a distinguisher D which tries to break the SA
property of the scheme with an advantage € in time t.

— C provides the system parameters sp to D.
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— C provides D two key pairs (pkso, skso) and (pks1, sks1) of two signers and a
public key pk, = BP of a designated verifier.

— D produces a message m* and sends it to C.

— C flips a fair coin b <+ {0,1}. It randomly selects | €r Z;, and computes
A* =[P. Then it sets Cyp = aP and R = yP. Then C* = Hy(m*, A*) + C,
and z* =1+ cksks, mod ¢, and t* = Hy(R). The SDVS is (C*, z*, t*).

— C produces whatever produced by D.

If the tuple (aP,SP,vP) is an ECDDHP tuple, D should have an advantage
€ in time ¢. If it is not, the signature is invalid and D has no advantage. The
advantage of C is the same as D. The runtime of C is about ¢ + 7,,. O

6 Performance

We compare our scheme with some current non-delegatable (strong) DVS
schemes. The column “Type” shows the signature type of each scheme. The
column “SA” shows whether a scheme enjoys the SA property. The “RO” col-
umn shows the proof model of a scheme. The “NPRO” means a non-programable
random oracle model. The “RO” means a random oracle model. Other columns
are about the signature size and computation cost.

There are three kinds of system parameters.

— Let p/, ¢’ be large primes such that ¢’[p’ — 1. Let G’ be a group of order ¢'.

— The parameters (Fp,a, b, P, q) is for a group G in a non-supersingular elliptic
curve.

— Let G, be a group derived from the curve defined by 3% = 2% + 2z + 1 in the
filed F3u. There is a pairing evaluation e : G, x G, — G;. The order is g, of
the two groups.

Let |p| denote the bits length of the value p. Considering a cryptographic strength
of approximate 80 security bits, |p'| = 1024 and |¢’| = 160, |¢| = 160, and u = 97
and |qe| = 151. IFQ € G, |Q| = 161. If Q € G, |Q| = 154. If Q € Gy, |Q| ~ 923.

We use symbols 7/, 7y, 7p, Th, to denote the computation of modular exponen-
tiation in G’ or Gy, the scalar multiplication in G or G, the bilinear pairing
computation and the hash function that maps arbitrary input strings to elliptic
curve points (the MapToGroup function [1]).

From the Table 1, we observe the following points:

Table 1. Comparison among non-delegatable (strong) DVS schemes

Scheme Type SA Signature-Size (bits) Sign-Cost Verify-Cost RO
[7] DVS - 640 (Zy) 37/ 37/ NPRO
[6] IBDVS - 758 (de X Ge) 37" + 37 + T + 27 47" + 475 + 37, RO
[ SDVS No 640 (Zy/) 37/ 37/ RO

[B] IBSDVS Yes 2607 (Z3, x G2 x G?) 47" + 47p + Tm + 374 47’ + 575 + 47, RO
Ours SDVS Yes 481 (Zg x G) 2Tm + Th 2Tm + Th RO
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— Only one IBSDVS scheme [§] enjoys the ND and SA properties, which has a

big signature size and high signing and verifying costs. Comparatively, our
scheme shows advantages in both the signature size and computation costs.

— The signature size of our scheme is short. It is the only scheme consists of

three elements in a signature.

— The signing and verifying costs of our scheme are moderate due to the cost

of the scalar multiplication on elliptic curves.
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Abstract. The PKZIP encryption algorithm has been widely used to
protect the contents of compressed archives despite the known security
weakness. Biham and Kocher proposed a known plaintext attack with
the complexity 2'° when 12 plaintext bytes are given. Stay suggested a
different way to attack and addressed an idea which makes the complex-
ity be reduced if the information of additional files encrypted under the
same password is provided. However, the complexity of Stay’s attack is
quite large when only one file is used.

In this paper, we propose a new attack based on Biham and Kocher’s
attack. We introduce a method to reduce the complexity using the in-
formation of multi-files, so our attack can have the both advantages of
previous two attacks. As a result, our attack becomes about (3.4)" times
faster than the attack of Biham and Kocher when [ additional files are
used. Our experiment shows that ours is at least 10 times faster than
Stay’s. In addition, our attack can be improved in the chosen ciphertext
model. Tt is about (21.3)" times faster than Biham and Kocher’s attack
with chosen plaintext of [ additional files.

Keywords: PKZIP encryption, known plaintext attack.

1 Introduction

Compression softwares are used for various reasons: to reduce the size of big
files, to unify many files and folders into a single archive, to split a big file
into several parts with a small size and to protect the contents of the files by
the password-based encryption. Most compression softwares support the ZIP
file format among several compression file formats such as ZIP, RAR, ARJ, 7z
and etc. As one of their protection algorithms, they also support the traditional
PKZIP encryption included in the ZIP format specification. Almost all softwares
support more strong encryption algorithms like AES in addition.

The traditional PKZIP encryption algorithm (a.k.a standard Zip 2.0 encryp-
tion) was designed by Roger Schlafly [4]. It has been widely supported by most
compression softwares despite the publicly known security weakness. Biham and
Kocher presented a known plaintext attack on the PKZIP encryption in [IJ.
They described an algorithm which extracts the encryption key (initialized with
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the password) with complexity providing 12 plaintext bytes (or com-
plexity providing 13 plaintext bytes). Stay introduced a ciphertext-only attack
on the PKZIP encryption for some of the compression softwares [3]. If 5 files in
an archive are given, the first 10 plaintext bytes of all files could be derived in
some softwares at that time. He proposed a new type of attack to utilize this
additional information. His attack has the complexity of 253 when only one file
with 12 plaintext bytes is given, but it can be much more efficient using every
plaintext of 5 files.

In this paper, we propose an attack which includes a new method to reduce
the complexity using the additional file’s plaintext. Our attack can be regarded
as a generalization of Biham and Kocher’s attack in the sense that ours is same
as theirs when there is only one file. In the early state of our attack, a portion of
key candidates can be filtered out by checking a certain condition induced from
the relation between the plaintexts. As a result, we combine the two advantages:
smaller complexity of [I] and the efficiency of utilizing multi-files in [3]. In the
known plaintext attack, our attack becomes about (3.4)! times faster than the
attack of [I] if plaintexts of [ additional files are given. The experiment supports
our claim and shows that ours is at least 10 times faster than Stay’s attack.

The ratio of the reduced complexity depends on the relation between plaintext
values. In the chosen ciphertext attack, we can determine plaintexts to satisfy
the optimal relation. As a result, our attack can be improved to become (21.3)!
times faster than the original attack when [ additional files are given.

This paper is organized as follows. The preliminary and previous works are
briefly described in the next section. It includes the overview of PKZIP encryp-
tion algorithm and the sketches of the attacks of [I] and [3]. We explain a new
attack in Section [3 @ and validate our result by comparing with other results
by some experiments in Section Bl Finally we conclude in Section

2 Previous Works

In this section, we briefly describe the PKZIP encryption which can be found in
[4] and fix the notation. The attack of Biham and Kocher [I] is summarized in
and the recent attack of Stay [3] is summarized in

2.1 The PKZIP Encryption

The PKZIP encryption is a stream cipher which encrypts one byte at a time.
Three 32-bit keys K°, K! and K2 are used as an internal state. One byte informa-
tion ‘B’ is used to update these 3 keys as follows.
Key update(B): K’ = CRC32(k’,B)

K' = {K' + L(k%)} x 0x08088405 + 1

K? = CRC32(k* M(K'))
The definition of CRC32(,) is described in [I]. L(X) and M(X) are the least and
the most significant byte of X, respectively. Each bit is numbered from right to
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left such that (i+1)-st bit is the (2%)’s position. We denote consecutive k bits of X
from (i+1)-st bit to (i+k)-th bit by k(i+k—1..7) bits of X. For example, if X is a
32-bit value, L(X) consists of 8(7..0) bits of X and M(X) consists of 8(31..24) bits of
X. The prefix 0x indicates that it is the hexadecimal representation. The 4 basic

binary operations +, —, x and ()~! in this paper are the modular arithmetics
(mod 232) in almost all cases.
The characters of the password, denoted by PW[1], PW[2], - - -, are firstly used to

update the internal state. After initializing with the given password, the initial
internal state is denoted by K°[0], K![0] and K?[0]. Plaintext is used to update
the state during the encryption. We denote plaintext bytes by P[1], P[2], - - - and
ciphertext bytes by C[1], C[2], - --. The i-th internal state K°[i-1], K![i-1] and
K?[i-1] are updated with P[i] and become K°[i], K![i] and K*[i] for i=1, 2, ---.

Key stream bytes are denoted by S[1], S[2], ---. One key stream byte is
generated using K2[] of each state. S[i]=Stream gen(K?*[i-1]) is computed as
follows.

Stream gen(K?[i-1]): tmp = (K?[i-1]&0xFFFC)|2
S[i] = L({tmpx (tmp®1) } >8),

where & is the bitwise logical ‘and’, | is the bitwise logical ‘or’, @ is the bitwise
‘exclusive or’ and > is the right shift as usual.
The algorithm [I is the overall process of the PKZIP encryption.

Algorithm 1. The PKZIP encryption overview
Require:
1. PWm] - The password of length m
2. P[n] - The plaintext of length n
3. C[n] - The empty array for ciphertext
Ensure:
1. K’=0x12345678, K'=0x23456789, K’=0x34567890 at first

1: Init Keys(PW[m])
Encryption(P[n], C[n])

N

procedure INIT KEYS(PW[m])
for i=1 to m do
Key update (PW[i])
end for
end procedure

8: procedure ENCRYPTION(P[n], C[n])

9: for i=1 to ndo
10: C[i] = P[i]PStream gen(K?[i-1])
11: Key update (P[i])

12: end for
13: end procedure
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The followings are another representation of CRC32(,) and the definition of
CRC3271(,) which is introduced in [I].

Y = CRC32(X,C) = (X > 8) & crc[L(X)&C], (1)
X = CRC327'(Y,C) = (Y < 8) @ invM(Y)] & C, 2)

where crc[]| and inv[] are the tables same as [I]. < is the left shift. The crc|[]
tables has the linear property such that crc[L(X)®C|= crc[L(X)]®crc[C].

2.2 The Attack of Biham and Kocher

Biham and Kocher suggested a known plaintext attack on the PKZIP encryption

in [I]. They assumed that adjacent plaintext bytes of arbitrary position are

known. Following is the sketch of the trade-off version of the attack which is

mentioned in [3]. We are going to explain details about some computations in

section [l since our attack is based on this algorithm. We assume that P[1], P[2],
-, P[12] are given.

1. Making a list of 224 K?[]’s candidates
Guess 16(31..16) bits of XK2[11] and get 64 values of 14(15..2) bits of K?[11]
using S[12].
— Determine 30(31..2) bits of K2[10] using XK2[11] and S[11]
— Find 2(1,0) more bits of K2[11]
— Determine 30(31..2) bits of K2[9] using K*[10] and S[10]
— Find 2(1,0) more bits of K?[10] — Find M(K'[11])

— Determine 30(31..2) bits of XK2[0] using K*[1] and S[1]
— Find 2(1,0) more bits of X?[1] — Find M(K'[2])
Guess 2(1,0) bits of K2[0] — Find M(K'[1]).
2. Given K?[] and M(K'[]), making a list of 2! K'[]’s candidates
Get 26 values of 24(23..0) bits of K'[11] using M(K'[11]) and M(K'[10])
— Find L(X°[11]) using K*[11] and M(K*[9]) — Determine K*[10]
— Find L(K°[10]) using K'[10] and M(K'[8]) — Determine K*[9]

— Find L(X°[3]) using K'[3] and M(K'[1])
3. Deriving K°[8] from L(K°[8]), L(K°[9]), L(k°[10]) and L(K°[11])
A list of 249 candidates for the 9-th internal state is made.
4. Checking the validity of each candidate
Compute K°[i-1] using K°[i] and P[i] for i = 8,7,6,5,4 and compare the least
significant bytes with the values found in step 2. Finally the unique and
correct 4-th internal state is found.

This attack requires 12 known plaintext bytes and has the complexity of 240 (the
number of candidates in the list). The original attack presented in [1] requires
13 bytes with 238 complexity. In fact, last 2 bits guess of K?[0] in step 1 can be
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done after 4 bytes comparison of L(K°[]) in step 4. So the actual running times
of these 2 versions seem to be similar to each other.

The complexity can be reduced if there are more adjacent plaintext bytes of
the target compressed file. For example, the complexity may be reduced to about
227 using about 10,000 known plaintext bytes. If an internal state is given, we
can find a corresponding password which makes that initial state much more
efficiently than the brute-force search.

2.3 The Attack of Stay

Stay suggested another type of attack on the PKZIP encryption in [3]. This
attack has the bigger complexity than the previous one, but the number of
candidates of the key can be reduced naturally when multi-files encrypted under
an identical password are given.

1. 2% candidates (31 bits guess and 8 bits check)
— 28: Guess L(CRC32(X°[0],0)) — Determine L(K°[1]) using P[1]
— 29: Guess M(K'[0]x0x08088405) and 1 carry bit
— Determine M(K'[1]) using L(K°[1])
— 26: Guess 14(15..2) bits of CRC32(k?[0],0)
— Determine 14(15..2) bits of K?[1] using M(K'[1]) and check 8 bits
condition using S[2]
2. 219 candidates (27 bits guess and 8 bits check) — 2%? candidates in total
— 28: Guess 8(15..8) bits of CRC32(k°[0],0)
— Determine L(K°[2]) using P[2]
— 29: Guess M(K'[0]x0x08088405%) and 1 carry bit
— Determine M(K'[2]) using L(kK°[2])
— 22 Guess 8(23..16) bits and 2(1..0) bits of CRC32(K?[0],0)
— Determine 14(15..2) bits of K?[2] using M(K'[2]) and check 8 bits
condition using S|3]
3. 213 candidates (29 bits guess and 16 bits check) — 2°° candidates in total
— 28: Guess 8(23..16) bits of CRC32(k°[0],0)
— Determine L(K°[3]) using P(3]
— 213: Guess K![0] using the previous conditions (about
— Determine M(K*[3]) using L(XK°[3])
— 278: Guess M(CRC32(K°[0],0) ), determine K°[0] and check 8 bits condi-
tion using S[1]
— Determine K?[3] using M(K*[3]) and check 8 bits condition using S[4]
4. 28 candidates (8 bits guess) = 253 candidates of K°[0], K*[0], K?[0] are found.
— 28 Guess 8(31..24) bits of CRC32(K°[0],0) and determine X°[0]
5. Check 64 bits condition using S[5], S[6], --- S[12]
= The correct internal state is found.

213 possibilities)

This attack requires 12 known plaintext bytes and has the complexity( also the
number of key candidates) of 23.
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Stay introduced a ciphertext-only attack on the public compression softwares
such as WinZip and NetZip. Due to the flaws of a little different encryption
method and the random byte generator, if there were 5 files in an encrypted
archive, the first 10 plaintext bytes of all 5 files can be extracted.

If we can use an external method to check the validity of the internal state,
less number of plaintext bytes are required in both attacks shown above. The
effect of this assumption seems to similar. So we consider no situation like that
in this paper.

3 New Known Plaintext Attack

Our new attack is based on the algorithm of Biham and Kocher. The attack of
Stay is suitable to utilize additional files but has larger complexity. So we take
the advantage of the small complexity of [1] and mount a new idea to utilize the
information of multi-files. The complexity of Biham and Kocher’s attack mainly
depends on the product of the number of K? candidates and the number of K!
candidates. We are going to filter out some of the K? candidates, thus improve
the complexity. Our attack can be regarded as a generalization of [I] when the
known plaintexts of more than one encrypted files are given.

3.1 Main Idea

In each step of Stay’s attack, every bit of the initial state required to update
the state and to produce the keystream is guessed in order to update the state
again with other plaintext bytes. So the basic complexity is large, whereas the
way of using additional information is quite straightforward.

In the first step of Biham and Kocher’s algorithm, the series of X?[] and M(K'[])
can be determined using the keystream after some bits of K2[11] are guessed. The
plaintext bytes influence this algorithm at the last step. On the other hand, the
update of K is basically the xor operation with P[1] due to the linear property of
crc|] table and the K' update begins with the addition with L(K°). So the partial
information about relation between M(Kl) 's updated with different plaintext bytes
can be obtained from the plaintext values if we adopt the concept of the additive
differential of xor whose formal definition is found in [2]. Then the key candidates
can be sieved in the first step with no more bits guess.

3.2 Attack Using 2 Files

For the clear description of our concept we deal with the case of two known plain-
texts. We assume that there are two zip filed] encrypted under an identical pass-
word and their first 12 bytes of plaintext are given. The plaintext bytes are denoted
by Po[1], ..., Po[12] and P1[1], ..., P1[12], respectively. The lower index indicates
the file identity and is going to be applied to K°, K!, K? and S[i] as well.

! Note that an encrypted archive containing two files is also allowed.
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Since Pg[i] and P1[i] are equal for all i with the probability of 1/2%, it is
natural to assume that two 12-byte plaintexts are not all the same. It does not
matter which i is the smallest index such that Pg[i]#P1[i], so we may assume
that Pg[1]#P1[1]. Some of the computations below can be found in [I] or [3]. We
write them down again for the readability.

Find the Partial Information of Xj[1] and Ki[1]. At first, the most sig-
nificant 16(31..16) bits of K2[1] has to be guessed. One byte output So[2] is
produced with the input of 14(15..2) bits of K3[1] through Stream gen(). For
each key stream byte, there are exactly 64 inputs of 14-bit value. So 64 values
for 14(15..2) bits of K2[1] can be listed directly from So[2] with the prepared
table. Thus we have a list of 222 candidates for 30(31..2) bits of K3[1].

The most significant 22(31..10) bits of the previous state’s K2[0] are computed
from 30(31..2) bits of K3[1] using the equation

]
K3[0] = (K3[1] < 8) @ inv M(K3[1])] @ M(K}[1]).

Independently, 64 values for 14(15..2) bits of K3[0] are derived from So[1] in the
same manner as above.
This can be presented as Figure [l

K5[0] « So[1]
M(Ks[1])
inv [M(K3[1])]
K5[1]

Fig. 1. The equation for K3[0]

On average, one out of 64 values has the 6(15..10) bits same as the previous
22(31..10) bits at the overlapped location. So 30(31..2) bits of K3[0] are deter-
mined using 30(31..2) bits of K3[1] and Sp[1].

The least significant 2(1,0) unknown bits of K2[1] can be computed using
2(9..8) bits of K3[0]. 6(7..2) bits of M(Kj[1]) are same as 6(7..2) bits of
KZ[0]®inv [M(K3[1])]. The complete value of K3[1], 30(31..2) bits of KZ[0] and
6(7..2) bits of M(K§[1]) are included in each of the 222 candidates.

Since the internal states of the two files are initialized with an identical pass-
word, their initial states are identical. This fact plays an essential role to gather
more information from the second plaintext. From the equation (Il) we have

Ki[1] = (K}[0] > 8) @ crc|[L(K}[0])dM(K][1])]

and already know 30(31..2) bits of K2[0](=K2[0]). On the other hand, 64 values
for 14(15..2) bits of K2[1] are obtained from S;[2]. Therefore 64 values of 14(15..2)
bits of crc|[L(K3[0])@M(K{[1])] can be obtained.
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Since crc|] table has the 2% elements among all the 32-bit values, any given
14-bit value can be one of the 14(15..2)-bit values of the table elements with the
probability of 1/64. So a unique 14(15..2)-bit value of crc[L(K}[0])®M(K{[1])]
can survive on average. We can get the value of L(K?[0])@®M(K}[1]), then 6(7..2)
bits of M(K}[1]) come from 6(7..2) bits of K3[0]. In addition, the complete 32-bit
value of K3[1] can be computed.

Relation between Kj[1] and K7 [1]. Now we will show that M(K§[1]) —M(K}[1])
should satisfy a certain condition, provided that we guess K2[1] correctly in the
previous step. Thus we can filter out some of the wrong candidates from the list.

The staring point of the condition is Po[1]@P1[1]. The exact value of K)[1]®K)[1]
can be computed even without any knowledge of each value.

K)[1] @ K9[1] = CRC32(k)[0], Po[1]) ® CRC32(KI[0], P1[1])
= (Kg[0] > 8) @ crc[L(KJ[0])&Po[1]]
®(KJ[0] > 8) @ crc[L(KI[0]) P4 [1]]
= crc[Po[1]®P1[1]] (Because K3[0] = K?[0]).

This zor difference of KJ[1] and K{[1] affects on the subtraction difference of K§[1]
and K}[1] through the key update process as follows.

Ko[1] — Ki[1] = { (Kp[0] +L(K0[ ) x 0x08088405 + 1}
— {(&}[0] + L(x9[1])) x 0x08088405 + 1}
= {L(ko[1]) - L(K‘f [1])} x 0x08088405.

In summary, we have
Ky (1] —Ki[1] = {L(X5[1]) —L (Ko [t]®crc[Po[1]@Py [1]]) } x 0x08088405.  (3)

For a fixed Po[1]@P1[1], not all the possible most significant 6(31..26) bits appear
in the equation (@) even running it over all 256 values of L(Kg[l]). For example,
if Pg[1]®P1[1]=0x14d, then L(crc[Po[1]@P1[1]])=0xd9. In this case, there are only
18 values for 6(7..2) bits of M(K§[1]) —M(K{[1]) considering the possibility of the
unknown carry bit. The — operation between 6(7..2) bits of M(K§[1]) and M(K}[1])
is calculated under the modulus 26.

On average over all Pg[1]@P1[1], 18.7 out of 64 values for 6(7..2) bits of
M(K§[1]) —M(K}[1]) are possible. The table@in the appendix[Alshows the number
of possible M(K§[1]) —M(K{[1]) values for each Po[1]®P1[1].

We can filter out some of the candidates using the second file’s information
P1[1] and S1[2] by keeping track of the plaintext difference influence. The trace
of the P[1] difference in the key updated process is depicted in figure 2 The
number of K3[1] candidates is reduced to 222 x (18.7/64) = 222 x (1/3.4) ~ 2292
on average.
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K°[0] K'[0] S K?[0]
) L(K°[1]) + * ®
crc [L (KO [0])] S~ 7 crc [L (K2 [0])]
&) X 08 08 84 05 &)
crc[P[1]] * * * x N + 01 crc[M(Kl[l])] ¥ k% ok
" " Va I
Ko[l] * % x ® Kl[l] ® * * x K2[1] * % %k

Fig. 2. Difference trace of P[1] in the key update process

Rest of the Attack. The rest of the attack is similar to [I]. Now we have
220-2 candidates of K3[1], K3[1], 30(31..2) bits of K3[0], 6(7..2) bits of M(K{[1])
and 6(7..2) bits of M(K{[1]). By the similar way of finding K}[1] and 6(7..2) bits
of M(K}[1]), we can find the forward state’s K3[i] and M(K{[i]) using So[i+1] in
the sequel for i=2,...,7.

At this point, we have to increase the number of candidates by the factor

of 216 because of guessing the least significant 24-bit value of K}[7]. We guess
24(23..0) bits of K}[7] and compute

(Ko[7] — 1) x 0x08088405 ! = K{[6] + L(Kp[7]).

About 2'6 values remain by comparing the most significant bytes of the both
side. Through the pre-computed table, we can determine about 2'¢ values for
24(23..0) bits of K§[7] from M(K}[6]) and M(K§[7]) without excess guessing.

L(Kg [7]) is determined by comparing the most significant bytes of following
equation.

Ky[5] + L(ko[6]) = (KO[G] — 1) x 0x08088405™*
= {(K§[7] — 1) x 0x08088405~" + L(K{[7]) — 1} x 0x08088405 "

Determining L (K8 [7]) can also be done by reading the pre-computed table instead
of comparing 8 bits for all 256 trials for L(K)[7]). In the same manners, we can
compute the backward state’s Kj[i] and L(K}[i]) in the sequel for i=6,54.

By the linearity of CRC32(,) function, we can determine K{[7] with L(KJ[4]),
L(K0[5]), L(XJ[6]) and L(K)[7]). Then a complete state which consists of KJ[7],
K§[7] and K3[7] is made for each element of 2362 lists.

Until this point, we utilize 10 known plaintext bytes, Po[1],...,Po[8], P1[1] and
P1[2]. We need 5 more plaintext bytes except Po[1],. . .,Po[8] to check whether the
internal state is guessed correctly. We remark that P1[1] and P;[2] can be reused.
The efficiency of using P1[1] is relatively low because it was already used for the
same purpose at the beginning.

As a result, the attack has the complexity of and uses at most 14-byte
known plaintext. It is aforementioned that the two versions of the Biham and
Kocher’s attack seem to have similar time complexity. So our new attack is about
3.4 times faster than the previous attack on average.

236.2
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3.3 Attack with More Files

If some additional files encrypted under the same password are given with their
forepart plaintext bytes, they also can be used to reduce the number of candi-
dates at the early stage of the attack.

The exact position where we use the j-th additional file F; is related to the
smallest index, denoted by ij, such that Pg[i,;]#P;[i,;]. The effects of F; and Fy
are independent unless i;=1ij and P;[i;]=Py[ix]. The difference between P;[]
and Pg[] is also able to be used to reduce the number of key candidates. The
effects of this additional filtering differ according to the positions of the discrep-
ancy and the difference values. The algorithm of the attack with many files is
a straightforward extension. As a result, we can expect the attack to be about
(3.4)! times faster when [ additional files with their plaintext are given.

4 Chosen Plaintext Attack

In the attack of the previous section, the ratio of the filtered wrong keys using
the plaintext of j-th additional file varies with the value of Py[i;|®P;[1;]. Unlike
the Stay’s attack, our attack’s efficiency depends on the relation between the
plaintexts, so we can take an advantage in the chosen ciphertext attack. The
number’s minimum of the possible values for 6(7..2) bits of M(K§[1]) —M(K}[1])
is 3 in the table [ of the appendix [Al If we choose the plaintext bytes to reach
this minimum, our attack becomes 64/3 ~ 21.3 times faster whenever one file is
additionally given.

The number of candidate keys in the list right before the filtering is 222. In
the known plaintext attack, each additional file can make the number decrease
by the factor of about 3.4 on average. Since 13 is the smallest inter 4 satisfying
222 x (1/3.4)F < 1, it can be expected that there remains a unique key candidate
when 13 additional files are given. Similarly, in the chosen plaintext attack,
one key candidate can be obtained at this filtering stage with 5 additional files
because 5 is the smallest i such that 222 x (1/21.3)% < 1.

5 Experimental Result and Comparison

In this section, we give the time measuring result about the implementation of
our attack. It is briefly described how we can use the additional files in the Stay’s
attack. We implement the attack of Stay including the case of many files and
compare these results.

5.1 The Implementation of Our Attack

Our attack is implemented on the PC equipped with the Intel(R) Core(TM) i7
CPU 870 @ 2.93GHz using the C language. Since 8 threads are available on this
CPU, we have to employ a parallelizing technique. We use ‘openmp’ to work
with all 8 threads and simply parallelize the first loop for 16 bits guessing of
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Table 1. The experimental result of our attack

The number of files 1 2 3 4 5
Average attack time 124.5 min 24.1 min 4.2 min 37.8 sec 11.7 sec
Ratio to the left column - 0.19 0.17 0.15 0.31
Ratio to the 1st col. per additional file 1 0.19 0.18 0.17 0.20

K3[1]. We measure the worst case time complexity which means the key finding
process goes till the end even after the correct key is found. The correct key is
found around the middle on average.

The result is summarized in the table I Whenever one file is added, the
ratio of time deceasing seems to be somewhat regular. To focus on measuring
the ratios, we use the common Fg for all cases, the common F; for the last 4
cases, and so on, in each iteration. This result is better than the expected. One
additional file makes the attack about 5 times faster.

5.2 The Comparison with the Attack of Stay

The way to utilize an additional file in the Stay’s attack is natural. We explicitly
and briefly write down the case of 2 files. We denote temporarily 0 and 1 as «,
for example, K[1] means K3[1] and K[1].

1. 216 candidates (32 bits guess / 16 bits check)
— Guess L(CRC32(K§[0],0)) — Determine L(K?[1]) using P, [1]
— Guess M(K}[0] x0x08088405) and 2 carries — Determine M(K}[1])
— Guess 14(15..2) of CRC32(k2[0],0)
— Determine 14(15..2) of K2[1] and check 16 bits using S,[2]
2. 228 candidates (28 bits guess / 16 bits check)
— Guess 8(15..8) of CRC32(K][0],0) — Determine L(K{[2]) using P,[2]
— Guess M(K§[0] x0x080884057) and 2 carries — Determine M(K}[2])
— Guess 10(23..16,1,0) of CRC32(K2[0],0)
— Determine 14(15..2) of K2[2] and check 16 bits using S,[3]
3. 230 candidates (26 bits guess / 24 bits check)
— Guess 8(23..16) of CRC32(K{[0],0) — Determine L(K%[3]) using P, [3]
— Guess K§[0] (29 possibilities) — Determine M(K}[3])
— Guess M(CRC32(K{[0],0)), determine K§[0] and check 8 bits using So[1]
— Determine K2[3] and check 16 bits using S,[4]
4. 238 candidates of K3[0], K}[0], K3[0] (8 bits guess)
— 28: Guess 8(31..24) of CRC32(kJ[0],0) and determine K [0]
5. Check 40 bits using S,[5], S,[6] and S¢[7] = The correct state is found.

The maximum number of candidates is 23%, which is a great improvement from

the single file case. One of the greatest advantages of this algorithm is that the
number of lists decreases by the factor of 27 in every step whenever one additional
file is given. However, it must be done in the way of one more bits guessing and 8



246 K.C. Jeong, D.H. Lee, and D. Han

more bits check. It is not easy to reduce the number of intermediate candidates
using some preparations.

We have to mention that finding the list of K}[0] efficiently in step 3 does
not seem to be easy to us. The 32-bit brute force search is very inefficient. The
pre-computation table including about 16GB information can be made if we do
not apply the information about the carry bits. It is not easy to handle this table
due to its size.

If 5 files are given, there remains a unique list in each step. So no more addi-
tional file is needed. Thus we implemented this attack of 5-file case in the same
environment including the parallel computing with 8 threads as the previous
subsection. We employed an inevitable cheating about Kj[0] in step 3. We just
use the stored right key value to make the list of appropriate size. The worst
case average time of this attack is about 2 minutes. It is about 10 times slower
than 5 file case of our new attack.

If there is only one file, the Biham and Kocher’s algorithm is more efficient
than the Stay’s algorithm. The improvement of the complexity per additional
file is much greater in the Stay’s attack. The complexity of the Stay’s attack
keep decreasing until the number of files encrypted under an identical password
grows to 5. Our attack’s complexity decreases until 14 files are given on average.
So we can conclude that our attack is always at least 10 times faster than the
Stay’s attack if the same number of files are given with their plaintext.

6 Conclusion

In this paper, we improved the known plaintext attack on the PKZIP encryption
suggested in [I]. Our attack can utilize the additional information of multi-files
encrypted under the same password. Comparing the single file case (original
version of [1]), our attack can be about (3.4)! times faster when (I + 1) files with
their plaintext bytes are given. In the chosen ciphertext model, ours becomes
(21.3)! times faster when (I + 1) files are used.
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A The Subtraction Difference of K'[1]

We are going to explain the detail about the process to find the possible values
of K![1] difference. Let assume that Pg[1]@P;1[1]=0x1d, then L(crc[Po[1]®P1[1]])
is 0xd9. The equation () can be written again with the specific value.

Ky[1] — Ki[1] = {L(K0[1]) — L(KQ[1]) @ 0xd9} x 0x08088405 (4)

For all the values of L(Kg[l]), 16 distinct 6-bit values appear as the most signif-
icant 6(31..26) bits of the righthand side of the equation (). The entire values
of this list are Oxc, 0xd, Oxe, Oxf, 0x10, O0x11, 0x12, 0x13, Ox2c, 0x2d, Ox2e,
0x2f, 0x30, 0x31, 0x32 and 0x33.

Assume that the actual value of the most significant 6 bits of equation (@) is
0x13. If 26(25..0) bits of K§[1] is greater than 26(25..0) bits of K1[1], 6(7..2) bits
of M(K§[1]) minus 6(7..2) bits of M(K{[1]) equals to 0x14. So the number of all the
possible values for the most significant 6-bit subtraction of K![1] considering the
carry possibility is 18, which consists of Oxc, 0xd, Oxe, Oxf, 0x10, Ox11, 0x12,
0x13, 0x14, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33 and 0x34.

The numbers of the possible subtraction differences for all values of Pg[1]®P1[1]
are presented in Table 2l For example, when Py[1]®P1[1] = 0x1d, the number of
subtraction difference is placed in the intersection of the row with index ‘1’ and
the column with index ‘d’ in the table. The result is 18 as the above description.
The average value of all 255 elements is 18.7.

Table 2. The subtraction difference table of K!

0123456789 abcdef

0 -2012201256 1217 61024 8243616 9
1 612 6402834 63312 5142048 181220
2102410 6 9244024241220 3171264 12
32012 4121812183240 410 625 63424
4 5 820121648181210 632 6342433 4
512 610243628 92420 3201464121912
6 640 610 6332436122412 512184818
71220 3161217 8641610 61024 724 36
8 320 82012641213 6 82410163624 9
9 610 6482434 63312 5122048201218
a 102810 611243624201224 3171264 14
b 1612 51218 8184840 610 433 63024
c 51220 818481412 8 640 6341633 6
d 10 612243624 92420 3201264121712
e 640 610 6352434122012 512185518
f 1216 320 81712642410 41024 92430
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Abstract. It has been considered most important and difficult to an-
alyze the bias and find a large bias regarding the security of crypto-
systems, since the invention of linear cryptanalysis. The demonstration
of a large bias will usually imply that the target crypto-system is not
strong. Regarding the bias analysis, researchers often focus on a the-
oretical solution for a specific problem. In this paper, we take a first
step towards the synthetic approach on bias analysis. We successfully
apply our synthetic analysis to improve the most recent linear attacks
on CubeHash and Rabbit respectively. CubeHash was selected to the
second round of SHA-3 competition. For CubeHash, the best linear at-
tack on 11-round CubeHash with 247" queries was proposed previously.
We present an improved attack for 11-round CubeHash with complexity
24112 Based on our 11-round attack, we give a new linear attack for
12-round CubeHash with complexity 2512, which is sharply close to the
security parameter 2°'? of CubeHash. Rabbit is a stream cipher among
the finalists of ECRYPT Stream Cipher Project (eSTREAM). For Rab-
bit, the best linear attack with complexity 2'4! was recently presented.
Our synthetic bias analysis yields the improved attack with complex-
ity 2'35. Moreover, it seems that our results might be further improved,
according to our ongoing computations.

Keywords: bias, linear cryptanalysis, synthetic analysis, conditional
dependence, CubeHash, Rabbit.

1 Introduction

It has been considered most important and difficult to analyze the bias and
find a large bias regarding the security of crypto-systems, since the invention of
linear cryptanalysis [6] almost 20 years ago. The demonstration of a large bias
will usually imply that the target crypto-system is not as strong as expected.
Regarding the bias analysis, researchers often focus on a theoretical solution for
a specific problem. Unfortunately, it does not help much to analyze the bias for
a broad class of problems.
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Most often, we need to study the combined bias of multiple Boolean functions
(such as multiple linear approximations) with many input variables. Assuming that
these Boolean functions are all independent pairwise, the problem reduces to the
bias computation of each Boolean function separately. Apparently, if the terms in-
volved in each Boolean function are statistically independent of the terms in the
others, we are sure that all are independent pairwise and it is “safe” to concentrate
on bias computation of each Boolean function. Further, it is worth pointing out
that it is incorrect to conclude independence when the terms involved in each func-
tion “differ” from the terms occurring in the others. It is thus essential to conduct
synthetic analysis to study these bias problems. In this paper, we take a first step
towards the synthetic approach on bias analysis. We also propose a conditional de-
pendent bias problem and we give an analysis to estimate the bias.

We apply our synthetic analysis to improve the most recent linear attack [1] on
the hash function CubeHash [2]. CubeHash was selected to the second round of
SHA-3 competition [8]. In [I], based on the bias analysis for 11-round CubeHash,
the best linear attack on 11-round CubeHash with 2470 queries was proposed.
Our results improve the bias analysis [I]. We show the largest bias 272071 for
11-round CubeHash, and we present an improved linear attack for 11-round
CubeHash with complexity 24!42. Further, based on our 11-round attack, we
give a new linear attack for 12-round CubeHash with complexity 2°'3, which is
sharply close to the security parameter 2512 of CubeHash.

Meanwhile, our synthetic analysis is applied to the recent linear attack [5]
on stream cipher Rabbit [3]. Rabbit is a stream cipher among the finalists of
ECRYPT Stream Cipher Project (eSTREAM). It has also been published as
informational RFC 4503 with the Internet Engineering Task Force (IETF). In
[5], the best linear attack with complexity 24! was presented. As reference,
Rabbit designers claim the security level 2!2%. Our synthetic analysis applies
to the main part of the bias analysis [5]. Our results yield the improved linear
attack with complexity 2136,

The rest of the paper is organized as follows. In Section 2] we give preliminary
analysis on CubeHash. In Section Bl we introduce the synthetic approach to the
bias analysis problem and discuss how to apply to CubeHash round function in
details. In Section [ we propose the synthetic bias analysis for the conditional
dependent problem. In Section Bl and Section [6, we present our improved attacks
on CubeHash and Rabbit. We conclude in Section [

2 Preliminary Analysis on CubeHash Round Function

The hash function CubeHash [2] was designed by Prof. Daniel J. Bernstein. It
was one of the 14 candidates which were selected to the second round of SHA-3
competition [8]. SHA-3 was initiated by the U.S. National Institute of Standards
and Technology to push forwards the development of a new hash standard,
following the recent fruitful research work on the hash function cryptanalysis.
CubeHash is a family of cryptographic hash functions, parameterized by the
performance and security requirement. At the heart of it, CubeHash consists
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of an internal state of 1024 bits, round transformation 7', round number r,
between introduction of new message blocks. At the end, T is repeated 107 times
before outputting h bits of its state as the final hash value. Security /performance
tradeoffs are provided with different combinations h,r and the message block
length b. The normal security parameters are r = 16,b = 32, according to [1].

Each Round of CubeHash consists of two half rounds. Each half round consists
of five steps, and only one step out of five introduces nonlinearity to the internal
state by performing the modular addition operations. We will investigate the
largest bias [I] for CubeHash. It was shown that due to this largest bias, a non-
trivial linear attack on 11-round CubeHash with 2470 queries exists. As reference,
the security parameter is 2°!2. We will improve the bias analysis of multiple linear
approximations in [I]. Recall that the biad] of a binary random variable X is
Pr[X = 0] — Pr[X = 1]. Our main focus is that, within each round, the linear
approximations are not all independent pairwise. This can be justified by the
fact that nonlinearity is introduced by two separate steps (Step 1 and Step 6)
instead of one step within a round.

Let us start from a simple case of Round 7 first. We let 32 words 00000, Z00001,
...,Z11111 to denote the internal states of 1024 bits (each word has 32 bits). The
round transformation T can be described by the following ten steps of operations
(‘4 denotes modular addition):

Step 1:  zgp + 10 — x1, for all 4-bit n
Step 2: zgp, &K 7 — xgy for all 4-bit n
Step 3:  xoon <> To1n for all 3-bit n
Step 4: xon D T1n — Ton for all 4-bit n
Step 5: Z1jkom <> T1jkim for all 1-bit j,k,m
Step 6: xop + T1n — T1, for all 4-bit n
Step 7 xg, K 11 — xg,, for all 4-bit n
Step 8:  xojokm < Tojikm for all 1-bit j, k,m
Step 9:  zop B T1n — Ton for all 4-bit n
Step 10: Z1jkmo <> T1jkma for all 1-bit j, k,m
For our purpose, we use superscripts to represent the step number within the
round. We let the states without superscripts to represent the states right at
beginning of the round. The round number of the internal states which we study
is clear from the context, and we omit it from the notations. At Step 1 of Round
7, the step operation allows us to deduce:
02300 - x10100 @ 02300 - T10110 (1)
= 02300 - 210100 ® 02300 - Zgp100 ® 02300 - Zop100 D (2)
02300 - 210110 © 02300 - zgp110 © 02300 - Zgo110 (3)
~ 02300 - 215100 © 02300 - 79170 © 02300 - 250100 © 02300 - 230119 (4)

L Our definition of bias is slightly different from [I], it was defined as Pr[X = 0] — 1/2
in [1].



Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit 251

We note that two linear approximations are introduced into ():

02300 - x%omo @ 02300 - x(l)omo ~ 02300 - (x%owo - x(lmoo)
02300 - 210119 B 02300 - 20119 ~ 02300 - (10110 — Tho110)

We continue on ([{]) from Step 2 through Step 5:

= 02300 - 224,00 © 02300 - 275,10 ® 0218000 -

= 02300 - 234,00 ® 02300 - 235,10 ® 0218000 -

= 02300 - 219100 © 02300 - 274,10 © 0218000 -
0218000 - z311,0 © 0218000 - 231,10

= 02300 - 254,,0 © 02300 - 235,00 ® 0218000 -
©0218000 - 23,110 © 0218000 - 23140

220100 © 0218000 -
31100 ® 0218000 -
31100 © 0218000 -

2
Loo110

3
To1110

11100 ©
T11100

201100 © 0218000 - 27110

(7)
At Step 6, () can be rewritten as,

= 02300 - 250110 @ 02300 - 250110 © 02300 - 250110 ©
02300 - 275100 @ 02300 - 239109 S 02300 - 250109 ©
0218000 - 5,100 © 0218000 - 231,90 @ 0218000 - x5,,1¢ © 0218000 - 23,14,
~ 0300 - 250110 © 02300 - 20119 & 02300 - 250109 © 02300 - 25199 &
0218000 - 28,00 © 0218000 - 25,1,

Four linear approximations are introduced in this step:

02300 - 230110 ® 02300 - 200119 =~ 02300 - (230110 + T00110) (8)
02300 - 39199 © 02300 - 280100 & 02300 - (239100 + L00100) 9)
0218000 - 23,190 ® 0218000 - 231,50 = 0218000 - (23100 + Z31100)  (10)
0218000 - 23110 © 0218000 - 31,0 &~ 0218000 - (23110 + 231110)  (11)

It is clear that the bias for the linear approximation at Round 7,

02300 - x10100 D 02300 - 10110
~ 02180000 - (230000 © 60010 D 10001 D T10011) P
02300 - (210101 ® T10111) 0218000 - (21910, ® #1711;)

equals the combined bias of the six approximations (&), @), &), @), (I0), ()
holding simultaneously. Furthermore, if these approximations are independent,

we apply Piling-up lemma [6] to deduce that the total bias is equal to the product
of the six individual biases for each linear approximation. Unfortunately, as we
demonstrate below, this independence assumption is not true.

Obviously, we can easily justify that Approximations (@), (@) are independent,
because the involved states x10100, Zoo100 in (Bl) are independent of the involved

states x10110, Zoo110 in (B); similarly, Approximations (), @), [I0), ([II) are
independent pairwise. Our main focus here is to show below that these two
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groups of approximations are, however, not independent. The internal states
are invertible with the CubeHash round function T, as each step operation is
invertible. Thus, we can rewrite Approximations (&), @), (IQ), (1) in terms of
states right after step one as follows respectively,

02300 - (210100 + (01110 <€ 7D Tig110)) = 02300 - (219109 (13)
BTg1110 <K TS T1g110)

02300 - (210110 + (201100 << 7B Tig100)) & 02300 - (219110 (14)
BZg1100 <K T D T1g100)

0218000 - (11110 + (200100 < 7S T1100)) & 0218000 - (11119 (15)
Bxgo100 << 7D T11100)

0218000 - (211100 + (260110 <K 7B T11110)) & 0218000 - (11109 (16)

1 1
DTo110 <K 7D Tyq110)

In the next section, we will discuss the synthetic bias analysis and apply it for

CubeHash Round 7 to analyze (@), @), (I3), (I4), (@3) and (IG).

3 The Synthetic Approach

When we study the combined bias of multiple Boolean functions, such as multi-
ple linear approximations, it is common to assume that they are all independent
pairwise. This way, the problem reduces to the bias computation of each Boolean
function separately. Apparently, if the terms involved in each function are sta-
tistically independent of the terms in the other functions, we are sure that all
function outputs are independent pairwise and it is “safe” to concentrate on bias
computation of each Boolean function. Further, it is worth pointing out that it
is incorrect to conclude independence when the terms involved in each function
“differ” from the terms occurring in the other functions. For example, one might
take it for granted that (@), (@), @), @), (I0), (II) are all independent, as the
terms occurring in any linear approximation never occurs in other approxima-
tions. As a matter of fact, as we will see later, after re-writing (8), @), (I0)), (1)
equivalently by ([[3), (I4), (@3), (6] respectively, they are not all independent.

It thus leads us naturally to the “Divide-and-Conquer” method to the bias
analysis involving multiple Boolean functions. That is, we try to group multiple
possibly dependent Boolean functions (eg. linear approximations with regards
to CubeHash). The aim is that the functions in each group are dependent and
the functions in different groups are independent. When grouping, it is desirable
to make each group size as small as possible. The group size is referred to the
number of functions contained in the group. The rationale behind grouping is
that, we are dividing originally one (big) group of a larger number of functions
into multiple independent groups; once grouping is done, we just need to study
each group of smaller size individually. This helps make the task of bias anal-
ysis easier by reducing the number of the functions, which have to be studied
simultaneously. We will explain in details next on CubeHash.
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3.1 Our Analysis on CubeHash Round Function

We will first see how to group the six approximations (), (@), [@3), (@4), &)
and (I8) for CubeHash Round 7. We look at (I3]) and (4] first. At first glance,
it seems that they are dependent as both have x1,,;, and #14;00. However, we
note that d;110, Zd1100 only occurs once in (), (@), (@3), (@), (5), d6), i.e.,
neither occurs in (B)), (€), (), (I6). From the fact that 28,119, T$;100 are indepen-
dent, we deduce that z1y;00, 2d1110 <& 7 are independent of 21119, Th1100 < 7.
Thus, T10100s T1110 <K 7 D 210110 are independent of x14110, 21100 < 7; and
T10100s Td1110 <K 7D T1o110 are independent of 14,10, 71100 <K 7D 21 0100- Con-
sequently, we know that (I3) and (Id) are independent. As x},; occurs in both
@) and ([I3), we group (@) and ([3) together. Likewise, as x1y;;, occurs in both
() and ([d), we group (@) and (4] together.

Both (), ([I6) involve x11110, 711100, and it thus seems that ([H), ([IG) are
dependent. We can use the fact that 23y;00, Teo110 are independent to show that

7111105 Tdo100 <K 7 D 211100 are independent of 211100, Tdo110 <K 7@ T11110- So,
we deduce ([H) and (I6)) are independent. As (I5)), (I8) relates to 239100, Teo110
respectively, zly100 is related to (), ([[3), and z{4;,, is related to (@) and (I4)
Therefore, we are able to make two groups. Group One contains (&), (I3)), {@5).
Group Two contains (@), (I)), (I8). These two groups are independent as we
have just explained above.

When it comes to the joint bias computation of a group of dependent linear
approximations, in general, it is a computationally hard problem, although in
certain cases it might be feasible to calculate the bias for a single linear ap-
proximation. For example, [4] is applicable to analyze the bias of a single linear
approximation in our above CubeHash problem. Nevertheless, when the bias is
large, we can always compute it empirically, as successfully showed with recent
results on RC4 biases (eg. [9]). The direct bias computation when the bias is
small is beyond the scope of this paper.

Our computations show that the joint bias for the group of approximations
@), (@), [@5) holding simultaneously is around 272 and the joint bias for (@),
(@), (@6) is around 2723,

Consequently, the total bias for the linear approximation (I2) at Round 7,
is calculated as 272° x 272> = 275, In contrast, if the dependency within the
round is ignored, we would have a smaller bias 275 at Round 7.

For CubeHash Round 8, we can show that six pairwise independent approxi-
mations arise at Step 1:

02180000 -
02180000 - (zgp011 @ 5U10011

() ~ 02180000 - (30001 — 1 0001)
(g
02300 - (240101 @ xloml
(g
(g
(g

Zoooo1 P $10001 (17)
~ 02180000 - (230011 — T10011) (18)

~ 02300 - (280101 — Z1o101) (19)

02300 - (20)
0218000 - (21)
(22)

0218000 -

~ 02300 - (250111 — Tho111)
~ 0218000 - (231101 — ¥11101)
~ 0218000 - (31111 — T11111)

Zoo111 P $10111

Zo1101 D CU11101

—_— — — — — —

To1111 D Ti1111
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Eight pairwise independent approximations arise at Step 6. They are presented
in terms of states right after step one of the round:

02180000 - (219911 + (To1001 < 7@ T1gg01)) &

02180000 - (19911 © Tg1001 < T T10001) (23)

02180000 - (219901 + (@h1011 < 7S Tgp11)) ~
02180000 - (219901 ® Tg1011 < T D Tigo11) (24)

02¢00300 - (19111 + (To1101 < 7 ® T1g101)) &
0200300 - (10111 ® Zo1101 <€ 7D T1g101) (25)

0200300 - (19101 + (201111 <€ 7@ T1g111)) ~
0200300 - (210101 @ To1111 <€ 7D T1g111) (26)

02000000 - (11910 + (50000 < 7 S T11000)) =
02c000000 - (211010 @ 0000 << 7 11000 (27)

02¢000000 - (211911 + (€g0001 < TS Z11001)) =
02c000000 - (211011 © Zooo01 <K 7 S T11001) (28)

02000000 - (11900 + (50010 < 7 © T11010)) =
02¢000000 - (211000 © 0010 << 7S 11010) (29)

02000000 - (21901 + (50011 < TS Z11011)) =
02c000000 - (211001 © o011 <K 7D T11011) (30)

Thus, we have 6+8=14 linear approximations involved in this round. As was
done for Round 7, we can demonstrate that these 14 approximations fall into
four independent groups.

Group One: (1), (I8), @3), @4), 28), B0).

Group Two: (I9), 0), 1), 2), @3), @d).
Group Three: (21).

Group Four: (29).

As Group Three and Group Four each contains only one approximation, we easily
know the bias is 271 for each group directly from [4]. Group One and Group
Two each contains six approximations. We compute the total bias for each group
separately. Our results show that the bias for Group One is 27° and the bias
for Group Two is 27%8. Note that the independence assumption would yield a
smaller bias 276,278 for Group One, Group Two respectively. Consequently, we
deduce the total bias 27° x 2768 x 271 x 2= = 27138 for Round 8, by considering
the dependence within the round. Note that, if the dependency within the round
is ignored, we would have a smaller bias 2716,

4 Synthetic Bias Analysis on the Conditional Dependent
Problem

When analyzing CubeHash round function, we note a new bias problem, which
we shall call conditional dependence from now on. This is in contrast to the well-
known concept of conditional independence in statistics. Let X,Y, Z be random
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variables. Recall that XY are conditional independent given Z, if XY, Z satisfy
Pr(X =2,Y =y|Z) = Pr(X = 2|Z2) Pr(Y = y|Z) for all z,y. In our problem,
X, Y are statistically independent variables, but X, Z are dependent as well as
Y, Z. We say that X,Y are conditional dependent given Z. We are concerned
with the bias of f1(X) @ f2(Y) @ f3(Z) for Boolean functions fi, fa, f3. For
convenience, we say f1(X), f2(Y) are conditional dependent given f5(Z) rather
than that X, Y are conditional dependent given Z.

Formally speaking, we consider that wg,u1,us,v1,v2 are independent vari-
ables of binary strings (of fixed length). Three Boolean functions fa(ug,u1,uz),
fB(u2,v2), fo(u1,v1) are defined over those variables. For simplicity, they are
denoted by A, B,C in shorthand. We assume that we already know the bias
for A, B, C respectively. The main question is, we want to estimate the bias for
A® B ® C, and due to the dependence we do not want to use the Piling-up
approximation. We assume it infeasible to compute directly. Our first solution
is to obtain the bias for A ® C' (or A @ B) first. Then, estimate the bias for
A @ B @ C by taking either of the two

Bias(A @ C) - Bias(B), Bias(A @ B) - Bias(C).

Here, we consider only one dependence relation and ignore another dependence
relation.

By considering the functions as black-boxes (of random functions), we propose
to use the heuristics and make a more delicate estimate as follows. As u; affects
both A® B and C, we make a simple assumption about the two distributions of
the bias for A @ B and for C over u;: the absolute value of the bias is (almost)
a constant and can only take values in a set of two elements. Thus, it leads us
to compute the average py (resp. p—) of the positive (resp. negative) biases for
A @ B over randomly chosen u; and the percentage g of the positive biases for
A @ B over randomly chosen u;. Similarly, we also compute the average of the
positive p/, (resp. negative p’ ) biases for C' over randomly chosen u; and the
percentage ¢’ of the positive biases.

The distribution of the bias for A® B over u is independent of the distribution
of the bias for C' over u1, so we combine the results and give an estimate on the
bias of A® B ® C by

aq'p+p + (1 — @) (1 — ¢ p—p" —q(1 = ¢")psp" — (1 — q)¢'p-p', (31)

5 Improved Attacks on CubeHash

Using our synthetic analysis, we analyzed all the 11 rounds for CubeHash. We
give our results in Table [[l Note that we can show that all the linear approxi-
mations for Round 5 are independent and for Round 6, so no bias improvement
is possible for Round 5 as well as Round 6. Due to the dependence within each
round, we are able to improve the bias estimate for 11-round CubeHash from
2723 in [1] to 272971, This gives an improved attack for 11-round CubeHash
with complexity 2442,
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Table 1. Our analysis results on 11-round linear approximations of CubeHash

round 1 2 3 4 5 6 7 8 9 10 11 total
our bias 2-2° 97357 9=16.9 9=13 9—4 9—2 5—5 9—13.8 9—18.7 5—36.5 5—32.5 5—207.1
paper [I] 934 9—40 9-18 9-14 9—4 9=2 9—6 9-16 9—22 9-42 o-36 o—234

We can extend our above results to attack 12-round CubeHash. Our analysis
shows that by choosing the same output masks from the set {02600, 0218000,
02180000, 022:¢000000, 020000000} for 1101 and xo1111 at the end of Round 5,
going backwards 6 rounds, forwards 6 rounds, we getlq five new linear approxi-
mations (given in Appendix A) on 12-round CubeHash. They all have the same
bias of around 272611, In particular, with this construction, the last 11 rounds
all have the same bias as our 11-round CubeHash above. The bias for its first
round is 27°4, assuming all linear approximations are independemﬁ.

In above analysis, the analysis is focused within each round. According to the
specification of CubeHash, no randomization is introduced between consecutive
rounds, and the biases of consecutive rounds of CubeHash are likely to be depen-
dent. Our current quick results show that the bias for round 6 and round 7 can
be improved to 275, and the bias for round 4 and round 5 can be improved to
2716, Thus, we have the improved bias estimate 272%9-! for 12-round CubeHash.

By using the five equal biases, we have an attack complexity 2(=256-5)x(=2) e,
0(2513).

6 Our Improved Analysis on Stream Cipher Rabbit

Rabbit [3] is a stream cipher among the finalists of EU-funded ECRYPT Stream
Cipher Project (eSTREAM). Rabbit encryption algorithm has been published
as informational RFC 4503 with the Internet Engineering Task Force (IETF),
the standardization body for Internet technology. We give a brief description

on Rabbit in Appendix B. Recently, the bias for Rabbit keystream outputs,

02606 - 5£f1~32] @ 02606 - 55_91“64] @ 02606 - sgi_lll"%] was estimated to be 27795 in

[5]. Tt yields the best distinguishing attack with complexity 214!, which is still
above the claimed security level 2128,

In this section, we apply our synthetic approach to analyze the main part of
the bias analysis, i.e., the total combined bias of the six linear approximations
below for m = 02606, m’ = 026060000 (for simplicity we omit the irrelevant
subscripts ¢ from the variables g):

2 Note that in above analysis on 11-round CubeHash, the 11-round linear approxima-
tion can be obtained by going backwards 5 rounds and forwards 6 rounds with mask
0x6 for xp1101 and xo1111 at the end of Round 5.

3 As our computation is going on, we expect that our previous analysis on the internal
round dependence would further improve it.
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m- (g2 +g1 K16+ gy <K 16) ~m - (g2 ® g1 K 16D gy <K 16)
m-(gs+9g3 <K 16+ g <K 16) @ m - (g2 ® g3 <K 16  go < 16)

) & 32)
) &
m- (g6 + g5 << 16 + g4 << 16) = m - (g6 ® g5 << 16 @ g4 < 16)
) &
) ~

33)
34)
m' - (g1 + go << 8+ g7 " (g1 @ go K 8D gr) 35)
m' - (g3 + g2 K 8+ g1 " (g3 ® g2 K 8D g1) 36)
m' - (g7 + g6 <K 8+ g5) =m’ - (g7 D g6 <K 8 g5) (37)

Let Group One contain (32)), (3), (B6) and Group Two contain [B4), B1).
Following Sect. Bl we can demonstrate that the linear approximations in Group
One are independent from those in Group Two. Nonetheless, given (BH), the
two groups are not independent. We let A denote the correspondin£ Boolean
function of (B3]), and let B,C denote the correspondingﬁ Boolean function for
Group One, Group Two respectively. Obviously, this is a conditional dependent
bias problem as we proposed in Sect. @l Using our first solution in Sect. d we
compute the bias for A @ B, C respectively and get 274,276 We estimate the
combined bias for above six linear approximations by

A~~~ Y~~~

m
m

2714 x 976 = 7174, (38)
Now, we want to apply our black-box solution (BII) in Sect. [l In our case, we
have u; = g;‘ﬂ”w]. For A ® B, we compute with 226 random samples for each

randomly chosen u; and we run it 2'* times. We get in hexadecimal form: ¢ =
022406 /024000, py = 0xlele6 fcl/(0224a6 * 22°), p_ = 02123210ab/(0x1b5a *
225). They correspond to the percentage of positive bias 57.3%, the average of
positive bias +27%3, the average of negative bias —27%6, and the average bias
+27 1143 of all. For the function C, we compute with 22? random samples for
each randomly chosen u; and we run it 2'¢ times. We get ¢ = Oza fed/0x10000,
ply = 02d4698¢87/(0zafed  221), p’ = Ozdea00ceb/ (025013 x 22'). They cor-
respond to the percentage of positive bias 68.7%, the average of positive bias
+27473 the average of negative bias —27°03, and the average bias 42759 of
alld . By [@B1)), we estimate the bias 2717° for A @ B & C. This result agrees
with our first estimation ([B8]). Note that based on the naive independence as-
sumption, this combined bias is estimated to be smaller, i.e., 272, according to
[5]. Consequently, we have an improved attack on Rabbit with complexity 2136,
based on [5].

7 Conclusion

In this paper, we take a first step towards the synthetic approach on bias analy-
sis. We apply the “Divide-and-Conquer” method to our synthetic bias analysis.

4 We obtain it by replacing ‘~’ with ‘@’ in (33).

5 We obtain it by replacing ‘~’ with ‘@’ in all the linear approximations in the group
and XORing them together.

5 The computations were run several times and we always got these same statistics.
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Our synthetic approach helps make the task of bias analysis easier when multiple
Boolean functions are involved. We also propose a conditional dependent bias
problem. Based on naive heuristics and certain ideal assumptions, we give the
synthetic bias analysis to estimate the bias. Our synthetic approach is success-
fully applied to improve the best linear attacks [IJ5] on CubeHash and Rabbit
respectively. We present an improved attack on 11-round CubeHash with com-
plexity 24142, Based on our 1l-round attack, we give a new linear attack for
12-round CubeHash with complexity 2513, which is sharply close to the security
parameter 2°2 of CubeHash. We also give an improved attack on Rabbit with
complexity 2136, Moreover, it seems that our results might be further improved,
from our ongoing computations.
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Appendix A: New Linear Approximations on 12-Round
CubeHash

The five new linear approximations on 12-round CubeHash, which we used in
Section [, are given below (z, 2’ denote the inputs, outputs respectively):

0218199800 - Zooo00 & 0218199800 - o010 B 02€7999 f81 - 1101
@ 027999 81 - 291111 @ 0218199800 - 219001 B 0218199800 - £19011
@ 0230333 - 210101 © 0230333 - 210111 ® 021819980 - 211101
@ 021819980 - w11111 ~ 0299800181 - (5000 & 0299800181 - 20010
& 0218006018 - (19, @ 0218006018 - (111, © 0299800181 - 25001
@ 0299800181 - 2/, 50;; B 0230333000 - 2010, @ 0230333000 - 2,011,
® 0219980018 - 10, © 0219980018 - 1,1,

026660006 - 290000 © 026660006 - 290010 B 02667079 - 291101
@ 02e667e079 - 291111 @ 026660006 - 210001 B 026660006 - 210011
@ 0xcOccc - 219101 D 0xcOcec - x19111 D 0260666000 - 11101
@ 0260666000 - 11111 ~ 0260006066 - 20000 S 0260006066 - 010
® 02180606 - 210, ® 0180606 - 2,11, ® 0260006066 - /000,
& 0260006066 - 4911 © 0xcec000c - 2191 B 0zcec000c - 114
® 0266000606 - 2410, @ 0266000606 - 111,

0266600060 - xop000 B 0266600060 - zogo10 D 02667€079¢ - To1101
@ 02667e079¢ - xg1111 D 0266600060 - x19001 B 0266600060 - £10011
@ 0xc0ccc00 - 10101 ® 02c0ccc00 - 19111 D 026660006 - 211101
& 026660006 - 211111 ~ 0260666 - (000 B 0260666 - (0010
@ 021806060 - (110, ® 021806060 - (11, B 0260666 - 500,

@ 0260666 - 551, © 02ccc000c0 - 20101 D 02ccc000c0 - 25111
& 0260006066 - 2,9, ® 0260006066 - 21,4,

0230003033 - zgg000 @ 0230003033 - zogo10 © 023 f03cf33 - xo1101
@ 0x3f03cf33 - 1111 D 0230003033 - 10001 B 0230003033 - 10011
@ 026660006 - 19101 D 026660006 - x19111 D 0233000303 - 11101
® 0233000303 - z11111 ~ 023033300 - £H0000 B 023033300 - 250010
& 02:¢0303000 - (119, © 020303000 - (411 © 023033300 - 2001
& 023033300 - 7917 © 0260006066 - 21419, & 0260006066 - 2717,
® 02303330 - 271197 D 02303330 - 21111
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030333 - 200000 ® 0230333 - Top010 ® 02£03¢f333 - Zo1101
@ 02f03¢f333 - 201111 D 0230333 - 10001 ® 0230333 - 210011
@ 0266600060 - 210101 B 0266600060 - 210111 ® 0230003033 - 211101
@ 0230003033 - 211111 ~ 0230333000 - T)0000 @ 0230333000 - 24010
@ 02303000c - 2,10, @ 02303000¢ - 2,11, ® 0230333000 - 2, 000,
@ 0230333000 - 2,591, B 0260666 - 2,1, ® 0260666 - 2,4,
@ 023033300 - 21101 © 023033300 - 2114,

Appendix B: Short Description on Stream Cipher Rabbit

We give a short description on Rabbit here. We refer to [3l5] for full description.
Rabbit outputs the 128-bit keystream block s; from the eight state variables z’s
of 32 bits at each iteration 1,

8£15H0] x[15 0 g [31“16] 8£31 16 _ x([)s: 16] o xé{f“o]
s£47”32] _ [15 0 g [3’1 16 S£63 48] _ x[zi 16] o, SU[;?'O]
8£79H64] _ 4[115 ol o [13’}“16] 8£95 80 _ x£“1 16] o x[71’?“0]
s£111 96] _ gf P g:aj..m] s£127 A12] xéll 16] o, x[11,?”0]

The state variables x’s are computed from intermediate variables g’s of 32 bits,

(I8}
Ne)

g7, <K 16) + (g6,s < 16)
go.i <K 8) + gr.i
91,5 K 16) + (go,; <« 16)
92, K 8)+ g1,
g3,i K 16) + (g2,; <€ 16)
ga,i K 8) + 93
g5, <K 16) + (94, < 16)
g6, K 8)+ g5,

To,i+1 = Jo,s +
T1i+1 = g1, +
T2i4+1 = §2,i +
T3,i+1 = §3,i +
T4i+1 = G4, +
T55+1 = g5, +
T6,i+1 = g6,i 1+
T7i41 = g7,i +

I
(==}

o~~~ o~ o~ o~ —
IS
DN =

= L D DO - =

A~ o~~~ o~~~
=
Ut = W

W
(2]

where << denotes left bit-wise rotation and all additions are computed modulo
232, The description of computing g’s (see [3I5]) is not relevant for us and we
omit it here.
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Abstract. Boolean functions with large algebraic immunity resist alge-
braic attacks to a certain degree, but they may not resist fast algebraic
attacks (FAA’s). It is necessary to study the resistance of Boolean func-
tions against FAA’s. In this paper, we localize the optimal resistance of
Boolean functions against FAA’s and introduce the concept of e-fast alge-
braic immunity (e-FAI) for n-variable Boolean functions against FAA’s,
where e is a positive integer and 1 < e < [7]. We give the sufficient
and necessary condition of e-FAI. With e-FAI the problem of deciding
the resistance of an n-variable Boolean function against FAA’s can be
converted into the problem of observing the properties of one given ma-
trix. An algorithm for deciding e-FAI and the optimal resistance against
FAA’s is also described.

Keywords: stream ciphers, algebraic attacks, fast algebraic attacks,
Boolean functions, algebraic immunity.

1 Introduction

Algebraic immunity (AI) has been an important cryptographic property for
Boolean functions used in stream ciphers. The algebraic immunity of n-variable
Boolean functions is upper bounded by [%] [1I2]. Studying and constructing
Boolean functions with the maximum AI (MAI Boolean functions) have received
attention for years [3I4U567].

The existence of low degree multiples (or low degree annihilators) of Boolean
functions is very necessary for an efficient algebraic attack. Boolean functions
with large AI can resist algebraic attacks since large AI guarantees the non-
existence of low degree multiples. However, Boolean functions with large Al

(even the maximum AI) may not resist fast algebraic attacks (FAA’s) [S9].
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China (Grant No. 61070168, 10971246, 61003244, 60803135).
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This is because the existence of low degree multiples of Boolean functions is
not necessary any more for FAA’s. Therefore the resistance of Boolean functions
against FAA’s should be considered as another necessary cryptographic property
for Boolean functions.

Some studies show that an n-variable Boolean function f has optimal re-
sistance against FAA’s if there does not exist any nonzero n-variable Boolean
function g of degree lower than 7 such that fg = h and deg(g) + deg(h) < n
[89I5]. The concept of the optimal resistance of Boolean functions against FAA’s
can be implied from [89], but was firstly pointed out informally by Carlet et al. in
[6] as far as we know.

In resent years several efforts have been made to find Boolean functions with
good resistance against FAA’s, but none of them gave a class of Boolean functions
which can be proven to have optimal resistance against FAA’s. F.Armknecht et
al. introduced an effective algorithm with the purpose of observing the resistance
of Boolean functions against FAA’s [I0]. In [5] Carlet et al. observed through
computer experiments by Armknecht’s algorithm that the class of MAI Boolean
functions constructed by them may have good behavior against FAA’s. E.Pasalic
recursively constructed a class of Boolean functions with very good resistance
against FAA’s (called ‘almostly’ optimal resistance) [I1]. M.Liu et al. proved
that there does not exist a symmetric Boolean function with optimal resistance
against FAA’s [I2]. P.Rizomiliotis studied the resistance against FAA’s of a class
of Boolean functions based on univariate polynomial representation [13].

In this paper, we further consider the optimal resistance of Boolean functions
against FAA’s. We note that the optimal resistance against FAA’s is a global
concept and it is not convenient for us to observe the optimal resistance of
Boolean functions against FAA’s. So our motivation is to find an alternative
method of describing the resistance against FAA’s so that some local properties
of the optimal resistance can be manifested. This results the introduction to
e-fast algebraic immunity (e-FAI) for n-variable Boolean functions where e is a
positive integer and 1 <e < [7].

We give the sufficient and necessary condition of e-FAI. With e-FAI we can
more conveniently describe Boolean functions with good resistance against FAA’s.
With e-FAI the problem of deciding the resistance of an n-variable Boolean func-
tion against FAA’s can be converted into the problem of observing the proper-
ties of a given square matrix of order ZEJ -t (?) We also describe an algorithm
for deciding e-FAT and the optimal resistance against FAA’s. This algorithm can
bring us more experimental information about Boolean functions against FAA’s.
Although we do not find more Boolean functions with good resistance against
FAA’s, we believe that our results can help better to understand the resistance
of Boolean functions against FAA’s.

The rest of the paper is organized as follows. Section 2 provides some pre-
liminaries. Section 3 recalls the concept of the optimal resistance of Boolean
functions against FAA’s. Section 4 introduces the concept of e-FAI of Boolean
functions. Section 5 gives the sufficient and necessary condition of e-FAI. Section
6 describes the algorithm for deciding e-FAI.
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2 Preliminaries

Let n be a positive integer in this paper. We denote by B,, the set of all the
n-variable Boolean functions. Any n-variable Boolean function has a unique
representation as a multivariate polynomial over o, called the algebraic normal

form (ANF)
f($17l'27"‘,$n): Z ay <H‘T’L>a
IeP(N) i€l
where P(N) denotes the power set of N = {1,2,---,n}, a; € Fa is the coefficient
of monomial [[;.; #; and every coordinate x; appears in this polynomial with
exponents at most 1. The algebraic degree of Boolean function f, denoted by
deg(f), is the degree of this polynomial.

A Boolean function g € B, is called an annihilator of f € B, if fg = 0.
The lowest algebraic degree of all the nonzero annihilators of f and 1+ f is
called algebraic immunity of f , denoted by AZ,,(f) and it has been proved that
AL, (f) < [5] for a given f € B, [1I213]. A Boolean function f € B, has the
mazimum algebraic immunity (MAI) if AZ,(f) =[5].

Another representation of an n-variable Boolean Function f(x1, 2, -+, zy) is
by the output column of its truth table, i.e., a column vector of dimension 2":

(f(0707...70)7f(1707...70)7f(0717...70)7‘]"(1717...70)7...7‘]"(1717...71))tT_

For f € B,, the set of x = (x1,z2, -+, 2,) € Fy for which f(x) = 1 (resp.
f(z) = 0) is called the on-set (resp. off-set) of f, denoted by 15 (resp. 0y). The
Hamming weight of f is the cardinality of 1¢, denoted by wt(f). f is called
balanced if wt(f) = 2"~

Let ¢ = (z1,22," -+, Zn) € F}. The Hamming weight of = is the number of its
nonzero coordinates. We define supp(z) = {i|z; = 1,1 < i < n}. For z,y € F},
we say that x is covered by y if supp(z) C supp(y). For the sake of simplicity,
supp(z) C supp(y) is written as  C y. For any n-variable Boolean function,
there is a relation between its ANF and its truth table, i.e.,

ar = Z f(il’)7 (1)

supp(z)CI

where I € P(N). This equation means that the coefficient of every monomial in
the ANF of f can be linearly expressed by the components of its truth table.

3 Optimal Resistance of Boolean Functions
against FAA’s

In this section, we recall the concept of the optimal resistance of Boolean func-
tions against FAA’s and discuss a note given by Gong in [I4] about Theorem
7.2.1in 8.

Suppose f € B, is the nonlinear filtering function in an LFSR-based binary
nonlinear filter generator. If f has a low degree multiple 2 # 0 (or a nonzero
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annihilator of low degree), then the attacker can launch a standard algebraic
attack and the attack may be converted into solving an over-defined system with
multivariate equations of degree not more than the degree of h (or the degree of
the annihilator) [1]. It has been proved that the lowest degree of all the nonzero
multiples of f is equal to the lowest degree of all the nonzero annihilators of f
[9]. Thus Boolean functions with large AI can resist standard algebraic attacks
to a certain degree.

However, Boolean functions with large Al may not resist fast algebraic attacks
(FAA’s). If f has no low degree multiples or annihilators, but there exists a
nonzero n-variable Boolean function g of low degree such that fg # 0 has not
high degree, the attacker may launch a fast algebraic attack. The attack may
be converted into solving an over-defined system with multivariate equations of
degree not more than the degree of g and the complexity of establishing the
over-defined system is mainly determined by the degree of fg [8I9].

Compared algebraic attacks with FAA’s, excluding the precomputation for
obtaining the over-defined system, the computation complexity of FAA’s can
be lower than that of algebraic attacks, since the algebraic degree of the over-
defined system in a fast algebraic attack can be lower than that in an algebraic
attack. This also means that the attacker will not launch a fast algebraic attack
with a Boolean function g of degree not less than AZ(f). About FAA’s, there is
a well-known observation given by N.Courtois [§].

Proposition 1. [§] Let f € B, di and d2 be two positive integers not more
than n. If di + da > n, then there exists g € B, with deg(g) < dy such that

deg(fg) <ds.

In order to resist FAA’s, we hope that deg(fg) can be as large as possible for
any nonzero n-variable Boolean function g of degree less than AZ(f) < [7].
However, Proposition [[] reveals that there always exists a nonzero n-variable
Boolean function g with deg(g) < e such that deg(fg) < n — e. Therefore the
best case for us against FAA’s is that there does not exist any nonzero n-variable
Boolean function g with deg(g) < e < [} ] such that deg(fg) <n —e — 1. This
means that f € B,, has optimal resistance against FAA’s if there does not exist
any nonzero n-variable Boolean function g of degree lower than © such that
deg(g) + deg(fg) <n.

The concept of the optimal resistance against FAA’s was firstly pointed out
informally by Carlet et al.in [5] according to Proposition [l However, it was
noted by Gong in [I4] that the Proposition [Il observed by Courtois (Theorem
7.2.1 in [§]) is not correct, since d; + dz2 > n can not guarantee the existence of
g with deg(g) < dy such that fg # 0 and fg # 0 is necessary for FAA’s.

We point out that the note on Proposition[Il given by Gong does not essentially
affect the concept of the optimal resistance against FAA’s. If there exists an n-
variable Boolean function g with deg(g) < 3 such that fg = 0, then the attacker
can not launch a fast algebraic attack, but she may launch a standard algebraic
attack since ¢ may be a annihilator of low degree. Our aim is to resist FAA’s
with Boolean function, but we can not neglect the resistance of Boolean function
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against standard algebraic attacks at the same time. Therefore fg # 0 must be
involved in the optimal resistance of Boolean functions against FAA’s.

By convention, deg(fg) can be any value when fg = 0. If we let deg(fg) =
—oo when fg = 0, then Proposition [ is corrected. Thus, the description of
the optimal resistance against FAA’s above does not need a change and the
requirement that fg # 0 is involved naturally.

4 Fast Algebraic Immunity for Boolean Functions

In this section, we discuss the local resistance of Boolean functions against FAA’s
and introduce the concept of e-fast algebraic immunity for n-variable Boolean
functions.

The optimal resistance of Boolean functions against FAA’s is a global concept.
We usually need to consider the local resistance of Boolean functions against
FAA’s. We note that the (non-)existence of (di,dsz)-pairs considered by Ri-
zomiliotis in [I3] is one of typical methods of describing the local resistance
of Boolean functions against FAA’s. According to [13], f € B,, has a (di,d2)-
pair if there is a nonzero g € B, with deg(g) < d; such that deg(fg) < do
where 1 < dy < deg(fg) < da < n. According to the concept of the optimal
resistance of Boolean functions against FAA’s, in fact, we only need to consider
the (non-)existence of (di, do)-pairs with 1 < d; < ) and da <n —d;.

It is clear that some pairs, like the (1, [7 ])-pair for n-variable Boolean func-
tions, are favorable for FAA’s. We can say n-variable Boolean functions with
such pairs have poor resistance against FAA’s, but we can not say an n-variable
Boolean function without such pairs has good resistance against FAA’s.

For examples, it was shown in [I0] that a class of (non-symmetric) n-variable
MAI Boolean functions presented in [3] may have poor resistance against FAA’s
since it has been tested for n < 10 that every of these functions has a (1, [} ])-
pair, which is favorable for FAA’s. On the contrary, it was shown in [I3] that a
class of MATI Boolean function in even n variables based on univariate polynomial
representation may have some resistance against FAA’s since it has been tested
for n < 20 that every of these functions has no (3 — 3, )-pairs. However, we
can not say this class of function have good resistance against FAA’s only based
on these facts, since the non-existence of the (1, + 1)-pair, which may also be
favorable for FAA’s, is still not sure.

It is clear that f € B,, has optimal resistance against FAA’s if f has no any
(dy, da)-pair such that 1 < d; < and dy +ds < n. Let e be a fixed integer and
1 <e < [5]. Wenote that the non-existence of the (e, n —e —1)-pair implies the
non-existence of all the (dy, dz)-pairssuch that 1 < d; < eand d; < dy < n—e—1.
This means that an n-variable which has no (e,n — e — 1)-pair for every e =
1,2,---,[ 5] — 1 must have optimal resistance against FAA’s and deciding an n-
variable Boolean function to have optimal resistance can be divided into deciding
these [ | —1 pairs. Therefore it is interesting to study theses pairs independently.
Based on this, we introduce the concept of e-fast algebraic immunity (e-FAI) for
n-variable Boolean functions. We say an n-variable Boolean function has e-FAI
if it has no (e,n — e — 1)-pair.
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Definition 1. Let f € B, and 1 < e < [}]. f is called a Boolean function
with e-fast algebraic immunity (e-FAI) if deg(fg) > n— e holds for any nonzero

n-variable Boolean function g such that deg(g) < e.

The optimal resistance against FAA’s can be divided into [} | —1 parts according
to e-FAI and e-FAI represents one of these parts. All these parts together are
the optimal resistance. Thus Boolean functions in n variables with e-FAI have
locally optimal resistance against FAA’s.

Unfortunately, e-FAI can neither imply (e—1)-FAI nor (e+1)-FAI We cannot
say the resistance against FAA’s of Boolean functions with e-FAI is better than
that of Boolean functions with (e — 1)-FAI or (e + 1)-FAIL So with e-FAI how
can we describe Boolean functions having good resistance against FAA’s?

We firstly note that an n-variable Boolean function having 1-FAI, 2-FAI - - - e-
FAI at the same time possess good resistance against FAA’s under a assumption.

Corollary 1. Let 1 < e < [}]. An n-variable Boolean function which has 1-
FAI 2-FAI --- e-FAI at the same time possesses good resistance against FAA’s
if the attacker only has the ability to solve systems with equations of degree not
more than e.

Proof. Only when (d;, ds)-pairs with dy < e exist can the attacker launch a fast
algebraic attack. The function has 1-FAI, 2-FAI, - .- e-FAI at the same time, so
every (dq,ds)-pair with d; < e which possibly exists must satisfy do > n —dy >
n— e. Thus the attacker can not find a (dy, ds)-pair with dq +ds < n and dy < e.
Although some (di,ds)-pairs with dq + d2 < n and dy > e can be found it is
infeasible to launch a fast algebraic attack because of attacker’s inability to solve
systems with equations of degree more than e. O

In order to launch a fast algebraic attack, the attacker expects the existence of
(d1,dz)-pairs with d; < [7] and small dz. The exact value of dy for which a fast
algebraic attack is feasible in practice depends on several parameters, like the
size of the memory and the key size of the stream cipher [I5]. Therefore for some
(d1, d2)-pairs with ds not small it may be infeasible in practice for the attacker
to launch a fast algebraic attack. We can assume that only when (di, ds)-pairs
with do < k exist does the attacker have the ability to launch a fast algebraic
attack, then we have the following result.

Corollary 2. Let k be a positive integer and [5] < k < n. Suppose only when
(d1,d2)-pairs with do < k exist does the attacker have the ability to launch a
fast algebraic attack. An n-variable Boolean function which has ([%] —1)-FAI
([51=2)-FAL - --, (n—k)-FAI at the same time possesses good resistance against
FAA’s.

Proof. The function has ([ 5] — 1)-FAL ([ 5] — 2)-FAL ---, (n — k)-FAI at the
same time, so every (dy,ds)-pair with da < k which possibly exists must satisfy
dy 4+ dg > n. Thus the attacker can not find a (dy, dz)-pair with dy +d2 < n and
do < k. Although some (d1, d2)-pairs with di + d2 < n and da > k can be found
it is infeasible for the attacker to launch a fast algebraic attack. O
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Combining the two assumptions in Corollary [l and Corollary[2 it is easy to see
the following fact.

Corollary 3. Let 1 < e < [}]. Suppose only when (dy,ds)-pairs with d; < e
das < n—e—1 exist does the attacker have the ability to launch a fast algebraic at-
tack. An n-variable Boolean function with e-FAI possesses good resistance against

FAA’s.

Boolean functions in n variables with e-FAI have also other interesting proper-
ties. In Definition[I] if f is a Boolean function with e-FATI then deg((1+ f)g) =
deg(fg+g) > n — e since deg(g) < e <n —e < deg(fg) for 1 <e <[], thus
1+ f is also a Boolean function with e-FAI if f has e-FAI. This means that we
do not need to consider 1+ f when discussing e-FAT of f.

Corollary 4. Let f € B,, 1 < e < [J]. f is a Boolean function with e-FAI
only if AL, (f) > e. Particularly, f is a Boolean function with ([%] — 1)-FAI

only if ALn(f) =151

Proof. If f € B,, is a Boolean function with e-FAI then f has no annihilators of
degree less than e. Furthermore, 1+ f is also a Boolean function with e-FAI and
1+ f also has no annihilators of degree less than e. Therefore AZ,(f) >e. O

Corollary 5. Let n be odd, f € B,. f is a Boolean function with ([} ]—1)-FAI
if and only if AZ,(f) =1[%].

Proof. By Corollary B, f is a Boolean function with ([%] — 1)-FAI only if
AL, (f) = [5]. If AZ,(f) = [5] then f has no annihilators of degree less
than [ 7], which implies that f has no multiples of degree less than [ % ]. There-
fore for any nonzero n-variable Boolean function g with deg(g) < [5] — 1 we

have deg(fg) > [3]=n— ([3] ~ 1). 0

Corollary 6. Let f € B,, 1 < e < [}]. f is a Boolean function with e-FAI,
then deg(f) > n —e.

Proof. From the definition of e-FAI, deg(fg) > n — e holds for any nonzero n-
variable Boolean function g such that deg(g) < e. We let deg(g) =0, i.e., g = 1.
Then we have deg(f) = deg(fg) > n —e. O

5 Sufficient and Necessary Condition of e-Fast Algebraic
Immunity

In this section we give the sufficient and necessary condition of e-FAI. Before
this we need some prepared work including several definitions and lemmas.

Definition 2. Let « = (a1,a2, -+, a,), 8 = (b1,b2,--,b,) € FY. a < B if and
only if wt(a) < wt(B), or when wt(a) = wt(B) there exists 1 <i < n such that
a;=1,b;=0and a; =b; for1 <j<i.
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We give an example to help understanding Definition[2l We consider three vectors
in F3: o = (11000), 8 = (01101) and v = (01011). According to Definition 2]
a < B since wt(a) < wt(/3), while wt(8) = wt(y) but there exists i = 3 satisfying
the definition, thus 8 < 7. Similarly, we can write out all the vectors ordered by
< in FF3.

(00000) < (10000) < (01000) < (00100) < (00010) < (00001) <
(11000) < (10100) < (10010) < (10001) < (01100) < (01010) <
(01001) < (00110) < (00101) < (00011) < --- = (11111) .

Let
Fy ={vl0<i<2" -1}

where 79 < 71 < 72 < -+ < Y2n_1 are ordered by < according to Definition 2
We say that ; is the i¢th vector in F5.

Let x = (21,22, -+, x,) be a set of binary variables. For v = (¢q, 02, ceeCp) €
F2, 27 is defined to be the Boolean monomial z{*x5? - - - 25" where 2 = 1 and

x} =x; for i = 1,2,---n. Then all the Boolean monomials of n Varlables are

x“/07x“/17x“/2’ e x72"71

where ~; is the ith vector in F3. If x is taken as a vetoer in F7, it is clear that
a7 =1 if and only if supp(y;) C supp(z).

According to Definition [2 the truth table of an n-variable Boolean function
f(z1,22, -+, x,) can be written as:

T(f) = (f(yo), f(r1)s- -+, flyan— 1))

In the following content, we denote by T'(f) the truth table of f € B,,, in which
the components are ordered by < according to Definition 2l

The truth table of f can be also represented as a 2™ x 2™ matrix, denoted by
Ryp(y), whose entries on the main diagonal are the components of T'(f) respec-
tively and the rest of entries are all zero. With these notations, for g € B,, we
have T'(h) = Rp(pT'(g) if h = fg. The multiplication of two n-variable Boolean
functions can be represented as the product of a matrix and a column vector.

Definition 3. Let A C FY, |A| be the number of the elements in A and k (< n)

be a positive integer. When x is taken as a vetoer in FY, vi(x) is defined to be a
) . . E o (ny

binary row vector of dimension ), (Z), i.e.,

’y L
oplz) = (20,27, g Ti=o (’;)71).

Moreover, Vi(A) is defined to be a matriz with |A| row vectors {vi(z)|z €
A} and the order of its row vectors corresponds to the order of elements in A
according to Definition [2.

Lemma 1. The column vectors of V.(F%) are exactly the truth tables of all the
n-variable monomials of degree not more than e.
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Proof. From Definition B the (i + 1)th column vector is (79,77, -, 79n_1)""
and is also the truth table of Boolean monomial 27 where 0 < 7 < Zf:o (7;) —1.
From Definition 2], ", 2", -, 272~! are all the n-variable Boolean monomials
of degree not more than e where E = >¢ (?) The result follows.

Lemma 2. Let A} = {z|x € Fy,wt(x) > d}. Every component of the col-
umn vector Vp, (A7)T (h) uniquely corresponds to the coefficient of a monomial
of degree more than d of h € B,,.

Proof. From Equation () in section 2 we have

gupp(r) = Y Mx) i=0,1,---,2" =1, (2)

zC;

By Definition [}l Equation () can be written as the form of matrix product of
two vectors:

Asupp(y) = Un(7)T'(h) i=0,1,---,2" — 1. (3)
From Definition Bl V,,(A}}) consists of all the row vectors vy, (7y) with v > wt(d).
Therefore every component of V,(A})T'(h) uniquely corresponds to agupp() for
some v with wt(y) > d. O

We denote by Ug(1y) the matrix obtained by taking column ji, jo, - - -, jwi(s) in
Vo (A7) such that f(v;,) =1(i=1,2,---,wt(f)). Then we can give the sufficient
and necessary condition of e-FAI.

Theorem 1. Let f € B,, 1 < e < [}] andd = n —e — 1. f is a Boolean
function with e-FAI if and only if Ug(15)Ve(1y) is an invertible matriz.

Proof. Let g € B, g # 0, deg(g) < e and h = fg € B,. From Lemma [2]
every component of V,,(A%)T'(h) corresponds to the coefficient of a monomial of
degree more than d of h. According to Definition [II, we let the coefficients of the
monomials of degree more than d being zero in the ANF of h, i.e.,

V(AT (h) = 0.
In other words, deg(h) < d or h = 0 if and only if the equation above holds.
Note that T'(h) = Rp5)T(g). By Lemma [ a column vector of V. (Fy) is exactly
the truth table of an n-variable monomial of degree not more than e. Then
T(g) = Zf:_ol kic;, where E =37 , (7), k; € Fa, a; is the (i + 1)th column of
V.(F%) and the truth table of monomial 7. Thus, we have

E—1
Vn(AZ)RT(f)(Z k‘iai) =0.
i=0
Viewing K = (ko, k1, --,kg—1)"" as the unknown, we can get a homogenous
linear system with E unknowns and E equations:
Vn(AZ)RT(f)(ao,Oq,---,aE_l)K = 07 (4)

where V,,(A}}) Rp(p)a; can be seen as the (i+41)th column in the coefficients ma-
trix. It is clear that that nonzero g with deg(g) < e does not exist if
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and only if system () only has zero solution, then f is a Boolean function
with e-FAT if and only if the coefficient matrix of system (@) is invertible. Since
(o, a1, ,ap_1) = Vo(F3), the coefficient matrix can be written as

V(&) Ry Ve ().

Note that the zero columns in V;,(A})Rp(y) and their corresponding rows in
V.(F%) do not give any contribution for the computation of the matrix. After
omitting theses zero columns and corresponding rows, the coefficient matrix can
be simplified into Uq(17)Ve(1s). Therefore, f is a Boolean function with e-FAI
if and only if Ug(15)Ve(1y) is invertible. O

For 1 <e< [7] and A C F3, in the following content we let
We(A) = Ua(A)Ve(A)

where d = n—e—1. We can give the sufficient and necessary condition of Boolean
functions to have optimal resistance against FAA’s.

Theorem 2. Let f € B, and 1 < e < [}]. f has optimal resistance against
FAA’s if and only if Wrny_1(1y)e is invertible for every e (1 <e < [5]), where
Wrny_1(1y)e is the submatriz which consists of the entries on the last E rows
and the first E columns in Winy_1(15) = Uz (1£)Vrny-1(1p).

Proof. Ua(1y) is the submatrix of U »|(1f) obtained by taking the last £ rows
in Uz (1f), and Ve(1y) is the submatrix of Viny_1(1f) obtained by taking the
first & columns in Viny_1(15). Thus, We(1y) = Ua(15)Ve(ly) = Winy_1(1f)e.
From Theorem [I], the result follows. a

From Theorem ] we can see that all the W, (1) with 1 < e < [}] — 1 are

included in one square matrix of order ZEJA (7) Theorem [l tells us studying
the resistance of n-variable Boolean functions against FAA’s can be converted
into studying the properties of matrix Wyn1_y(1f) = Uz (1f)Vizy-1(1p).

6 An Algorithm for Deciding e-FAI

For z,y € Fy, welet Uy = (z1+y1+21y1, Ta+yat+Taya, - Tntynt+Tnyn) € F
andy\x: (ylthyQ*va"’ayn*xn) = (yl +$17y2+$2,"',yn+$n) €F72L
when z C y.

Lemma 3. Let f € By, e=[3] -1, E=) 7 ((}), 1< rs < E. Denote by

wy, = 1 the entry on row r and column s of Wy g]_l(lf) where y = Yon _1_E1r

and z = Ys—1. Wy, = 1 if and only if z Cy and ) a,, = 1 where a,, € Fy is
uCz

the coefficient of the monomial xY\* in the ANF of f.

Proof. wy is equal to the rth row of U r (1) multiplies (matrix multiplica-
tion) the sth column of Viny_1(1y). For 1 <k < [1¢| we denote by Uz |(1f)rx)
the kth component of the rth row of U »|(1y) and denote by Viny_1(1¢) (1, s)kth



On the Resistance of Boolean Functions against FAA’s 271

component of the sth column of Viny_1(1y). From the definition of U (1),
Uin(1f)rk = Lifand only if y4—1 € 15 and y4—1 C y, and Viny 1 (1)) =1
if and only if y,—1 € 1y and 2z C ;1. Note that z C y if and only if y* =1
where z,y € Fy, thus,

wye = Y ytat =Y yraif(x)= Y flxUz).
z€ly z€Fy xCy\z

Therefore, wy, = 1if and only if z Cy and >, f(xUz)=1. When z C y, for
zCy\z

> f(xUz) we have

zCy\z
Z flxUz)= Z Zf(qu) Z 1

zCy\z zCy\z uCz uCvCz

Y seuw

zCy\z uCz uCvCz

> Y o

zCy\z vCz uCvw

> 2. D S

vCz zCy\z uCv

The Lemma is proved. a

Lemma [ tells us that for a given f € B, and A = {z|x € Fy,wt(z) > [ ]},
Wrny-1(1y) is the Hadamard product (entrywise product) of two of matrices,
Vin1-1(A) and a matrix defined by 1y. On the ground of this, we can give
an effective algorithm (Algorithm 1) for deciding whether a given f € B, is a
function with e-FAI for 1 < e < [7]. We can also use Algorithm 1 for every
integer e with 1 < e < []] to decide whether f is a Boolean function with
optimal resistance against FAA’s.

In Algorithm 1, the complexity of initializing matrix W is O(E?). For every
W5y = 1, we have a choice of y and 2. The number of choices is not more than
E?. Given one choice of y and z, we have |S| = 2wt(2)  which corresponds to
the number of operations in step 06. After three layers loop, a modified W is
obtained and the complexity is O(E(>";_, (7)2¥)). The complexity of deciding
the invertibility of W is O(E?). Therefore, the overall computation complexity
of Algorithm 1 is O(E3).
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Algorithm 1. deciding whether f € B,, is a Boolean function with e-FAI

Input: a,: (0 <4 < 2" —1) (all the coefficients of monomials of f € B,,), positive
integer e (1 <e < [7])

Output: True (f is a Boolean function with e-FAI) or False (f is not a Boolean
function with e-FAT)

Initialize:d=n—c—1, A = {z |z € F}, wt(z) > d}, E X E matrix W = V_(A)
with £ =37 (%), denote by W, ; its entry on row i and column j

01: for i from 1 to E do

02: for j from 1 to F do

03: if W(i,j) =1 then

04: W(i,j) 0, Y Yon—1—E+i, 2 & V-1
05: Determine the set S «+ {u|u C z}
00 Wi ) & Wiig) + Lues t\u

07: end if

08: end for

09: end for

10: if W invertible then return True else return False

Another algorithm was introduced by Armknecht et al. (Algorithm 2 in [I0],
say Algorithm 2 simply). For a given f € B, and two positive integers e, d
with e + d < n, it aimed at deciding the existence of a nonzero g € B, with
deg(g) < e such that deg(fg) < d. An F x E matrix is also established for
determining its invertibility in Algorithm 2, and the complexity of obtaining it
is O(B(X5—0 (1} 1)27)).

We have to note that Algorithm 2 is valid only for pairs of (e,d) such that
E< ( dil) and it can be only used for denying the existence of g but determining

e-FAT directly since E > (dil) always holds ford =n —e — 1.

Compared with Algorithm 2, Algorithm 1 may have better computation com-
plexity if n is large and e is small, for instance n > 11 and e < 2, since in these
cases, Y p_o (1)2F < 35_o (“51)291=" where d = [ ] — 1 in order to guarantee
E < (dil). This means that if n is large and e is small, Algorithm 1 may be
better when one wants to deny the existence of g with deg(g) < e such that
deg(fg) <d.

It is not hard to describe a modified Algorithm 2 that can be used for de-
termining e-FAI if we consider all the vectors of Hamming weight more than
d rather than only the vectors of Hamming weight equal d + 1 (denoted by
{7 : 7] = d+ 1} in [I0]) to construct the F x E matrix in Algorithm 2. In
this case, the complexity of obtaining the matrix in Algorithm 2 increases to
O(E S g i (5)257?)). When two algorithm are used for deciding e-FAI,
the computation complexity of Algorithm 1 is always better than that of Algo-
rithm 2 since Yy _o (7)2% < > y1 Ciso (¥)28=) when d =n —e — 1.

We let n = 5,6,7,8,9,10 respectively and select randomly 10° balanced n-
variable Boolean functions. The results are listed in the following table.
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Num.Var n=5n=6n="n=8n=9n=10
Num. 1-FAI 4242 0 4184 0 4213 0

Num. 2-FAT 3330 2222 O 0 3959 4299
Num. 3-FAI - - 1576 0 4087 4123
Num. 4-FAI - - - - 2998 4261

Num. Optimal 1419 0 0 0 217 0

As shown in the table, the number of balanced Boolean functions with optimal
resistance against FAA’s seems to be not large especially for some numbers of
variables.

It has been shown in [B] by algorithm 2 in [10] that the Carlet-Feng function
of variable less than 13 have good behavior against FAA’s. By our algorithm we
can get more information about their resistance against FAA’s.

Num.Varn=5n=6n="n=8n=9n=10n=11n=12n =13

1-FAI v X v X v X v X N
2-FAI v v X X v v X X v
3-FAI - - v X N v v X v
4-FAI - - - - v v v v X
5-FAI - - - - - - v v v
6-FAI - - - - - - - - v
Optimal Vv X X X N X X X X

As shown in the table, the Carlet-Feng function in 5 and 9 variables have optimal
resistance. The Carlet-Feng function in 6, 7 10, 11, and 13 variables have almostly
optimal resistance since there is only one (di,ds)-pair with d; < g and d; +
ds < n for each of them. The Carlet-Feng function in 12 variables behave not
badly. But we can not say the Carlet-Feng function in 8 variables has very good
resistance.

7 Conclusion

e-FAI is an alternative cryptographic property for measuring the resistance of
Boolean functions against FAA’s. e-FAI describes locally optimal resistance of
Boolean functions against FAA’s. A sufficient and necessary condition of Boolean
functions to have e-FAI is provided. Thanks to this condition, the problem of
deciding the resistance against FAA’s of an n-variable Boolean function can be
converted into the problem of observing the property of a given square matrix
of order szz’;g—l (7) Besides the algorithm given by Armknecht et al. there is
an alternative algorithm for deciding the resistance against FAA’s of Boolean
functions. The computation complexity of this algorithm is better than that of
the algorithm given by Armknecht et al. when deciding e-FAI or the optimal
resistance against FAA’s of Boolean functions.
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Abstract. In this paper, we propose several selective-identity
chosen-ciphertext attack (IND-sID-CCA) secure identity based key en-
capsulation (IB-KEM) schemes that are provably secure under the com-
putational bilinear Diffie-Hellman (CBDH) assumption in the standard
model. Our schemes compare favorably to previous results in efficiency.
With delicate modification, our schemes can be strengthened to be full-
identity CCA secure easily.
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1 Introduction

1.1 Background

Security against adaptive chosen ciphertext attack (CCA security for short) is
nowadays considered the commonly accepted security notion for public key en-
cryption (PKE)/identity based encryption (IBE). One of the most important
research direction in this field is to design CCA-secure PKE/IBE schemes based
on weak security assumptions in the standard model.

Cramer and Shoup [7] proposed the first practical CCA-secure PKE scheme
without random oracles. Their construction was later generalized to hash proof
systems [9]. However, all its variants [3,[14H17,20] inherently rely on decisional
assumption, e.g., the decisional Diffie-Hellman (DDH) assumption, the decisional
bilinear Diffie-Hellman (DBDH) assumption or the decisional quadratic residuos-
ity assumption. CCA security from computational assumptions was considered to
be hard to obtain. Canetti, Halevi and Katz [4] made the breakthrough in 2004.
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They proposed the first practical CCA-secure PKE scheme based on CBDH as-
sumption. Later, Cash et al. [5] presented a variant of Cramer-Shoup scheme [7]
which is CCA-secure based on the strong twin CDH assumption, and in turn
based on the standard CDH assumption. However, n group elements (where the
value n is the bit-length of keys) have to be added into the ciphertext in order to
prove CCA security. Hanaoka and Kurosawa [12] presented a CCA-secure PKE
scheme enjoying the constant size ciphertext based on the CDH assumption from
broadcast encryption. Hofheinz and Kitz [I5] presented a construction assuming
the hardness of factoring. Cramer, Hofheinz and Kitz [6] refined the well-known
Naor-Yung paradigm [22] and constructed practical CCA-secure PKE schemes
based on hard search problems, which includes the CDH and RSA type assump-
tions. Wee [24] gave more efficient and general transformations to CCA secure
PKE schemes from extractable hash proof system, which again can be based
on the hardness of CDH, RSA and factoring. Haralambiev, Jager, Kiltz and
Shoup [13] then proposed a number of new PKE schemes that are provably se-
cure under the CDH/CBDH assumption in the standard model, which improved
efficiency of prior schemes from [5,[12].

For the time being, although there are several practical CCA-secure PKE
schemes based on computational assumptions, CCA-secure IBE schemes based
on weak assumptions are rare. This forms the main motivation of our work.

1.2 Owur Contributions

In this paper we propose a number of new IB-KEM schemes that are CCA-
secure under the CBDH assumption in the standard model. Our main idea is
to extend the technique of constructing CCA-secure PKE schemes [I3] to the
IB-KEM version of Boneh-Boyen “commutative-blinding” IBE scheme (known
as BB1-IBE) [2]. We begin from a basic 1-bit IB-KEM, then extend it to n-bits
IB-KEMs using different methods. As shown in Table[]at the end of this section,
our schemes improve efficiency of prior scheme [10].

A 1-BiT IB-KEM ScHEME. We first construct a 1-bit IB-KEM scheme. We
denote it by Scheme 0 and briefly describe it as follows.

Setup: mpk = (g,h, X = g%, X", Y), msk =a

KeyGen : sk = (Y2F(I)%, g°), where F(I) = X'h

Encap: C = (¢",(X'X")",F(I)"),where t = TCR(g")
K = fa(e(X,Y)",R)

Decryption only returns K if the ciphertext C' = (C1, Ca, Cs5) is consistent, i.e.,
e(C1, X'X') =e(g,C2) Ne(Cy, F(I)) = e(g,C3). In all other cases it rejects and
returns 1. We defer the detailed construction and security proof to Section Bl

In what follows, we give a brief explanation of our strategy to achieve indistin-
guishability of ciphertext under selective-identity CCA attack (IND-sID-CCA)
from two aspects, one is how to obtain selective-identity CCA security, and the
other is how to reduce it to the CBDH assumption.
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We first give the intuition behind the CCA security. From the attacker’s view,
the second part of the ciphertext Co = (X*X’)" prohibits an adversary from
modifying a valid ciphertext in a meaningful way. From the challenger’s view, the
consistency of ciphertext is publicly verifiable, i.e., anyone could check the con-
sistency of ciphertext with the help of bilinear map. Therefore any inconsistent
ciphertext will be rejected. On the other hand, in the simulation all consistent ci-
phertexts can be classified into the following three types. Type-1 ciphertext is the
one whose t value differs to t* of the challenge ciphertext. Type-2 ciphertext is the
one encrypted under an identity different from the challenge identity I*. Type-3
ciphertext is exactly the challenge ciphertext. The reduction algorithm is able
to decrypt all the consistent ciphertexts correctly by implementing dual all-but-
one technique: set X’ := X~ ¢% to implement the all-but-one technique (with
respect to t # t*) to decrypt Type-1 ciphertexts (¢ # t*); set F(I) := X117 ¢*
to implement the all-but-one technique (with respect to I # I*) to extract a
private key for all identities but the challenge identity I*, thus to be able to
decrypt Type-2 ciphertexts (I # I*). Type-3 ciphertext (I = I* At = t*) is
not allowed to be queried according to the definition of selective-identity chosen
ciphertext security model. To summarize, the reduction algorithm can handle
all the decryption queries correctly.

We then give our basic idea about how to reduce the IND-sID-CCA security to
the CBDH assumption. Note that the indistinguishable type security notion is es-
sentially defined as a decisional problem. Considering the gap between decisional
problems and computational problems, it would be difficult to directly reduce the
IND-sID-CCA security to the CBDH assumption. A natural approach is to find
a stepping stone. More specifically, we first reduce the IND-sID-CCA security
to some decisional assumption related to the CBDH assumption, then reduce
the decisional assumption to the CBDH assumption. In this way the IND-sID-
CCA security can be finally reduced to the CBDH assumption. We provide more
details as follows. We select the Goldreich-Levin version decisional BDH (GL-
DBDH) assumption [13] as the stepping stone, which states that there is no PPT
algorithm that can distinguish the two distributions Apay, = (g, 4, B,C, K, R)
and Ayana = (9,4, B,C,U, R). Here (g, A, B,C') are the inputs of a BDH prob-
lem, K is the output of a Goldreich-Levin hardcore predicate with bdh(A, B, C)
and randomness R as input while U is a bit sampled from {0, 1} uniformly ran-
dom. Suppose a reduction algorithm B is asked to solve the GL-DBDH problem.
B simulates a real attack game of Scheme 0 by embedding A into X, embed-
ding B into Y, and embedding C into one part of the challenge ciphertext. We
demonstrate that if there exists an IND-sID-CCA adversary A that can break
the CCA security of Scheme 0, then B can break the GL-DBDH assumption.
The GL-DBDH assumption can be thus reduced to the CBDH assumption ac-
cording to the Goldreich-Levin theorem. Therefore, the IND-sID-CCA security
of Scheme 0 is finally reduced to the CBDH assumption.

We note that Scheme 0 bears a close resemblance to the IB-KEM scheme [I8§].
The key difference between the two schemes is the derivation of the symmetric
key. In [I8] the Encap algorithm directly uses a BDH seed as a symmetric key,



278 Y. Chen, L. Chen, and Z. Zhang

while in Scheme 0 the Encap algorithm uses the Goldreich-Levin hardcore pred-
icate to derive a 1-bit symmetric key from a BDH seed.

Note that the element (X*X’)" and F(I)" in the ciphertext share the same
randomness 7, thus it is possible to further shrink the public parameters size and
the ciphertext size. By using a technique similar to [19], the ciphertext can be
reduced to two group elements at the cost of adding one group element in the
private key and resorting to a stronger assumption, named the modified CBDH
assumption. We denote the resulting scheme by Scheme 0. The concrete con-
struction and security proof are included in Appendix [Al

A SCHEME WITH CONSTANT SIZE PUBLIC PARAMETERS. To encapsulate a n-
bits symmetric key, we can follow the standard multiple encapsulations method:
perform the 1-bit IB-KEM n times using independent random coins. We denote
the resulting scheme by Scheme 1 and describe it as follows.

Setup: mpk=(g,h, X =9¢*, X", Y),msk=a

KeyGen : sk = (Y°F(I)*, ¢g°)

Encap: C = (Cy,...,Cy),where C; = (g™, (Xt X')", F(I)™)
with t = TCR(Ci,l, ey Cn,1)~
K = (Ki,...,K,),where K; = fa(e(X,Y)", R)

We defer the detailed construction and security proof to Section [l

A SCHEME WITH CONSTANT SIZE CIPHERTEXT. In contrast to the multiple en-
capsulations method used in Scheme 1, we may also adopt the randomness-
reusing technique: include n group elements (Y7, ...,Y,,) into mpk (instead of a
solo group element Y in previous schemes), then generate n BDH seeds using
a single randomness r with respect to n different bases e(X,Y;). We denote the
resulting scheme by Scheme 2 and describe it as follows.

Setup: mpk = (g9,h, X =9¢9* X" ' Y1,...,Y,),msk=a

KeyGen : sk = (ski, ..., sky), where sk; = (YAF(I)%, g%)

Encap: C = (¢",(X'X")", F(I)"),where t = TCR(g")
K = (Ky,...,Ky,),where K; = fa(e(X,Y;)", R)

We defer the detailed construction and security proof to Section

GENERALIZED SCHEME 1. Scheme 1 enjoys the constant-size mpk but its ci-
phertext size is linear in n, while Scheme 2 enjoys the constant-size ciphertext
but its mpk size is linear in n. It is interesting to know if there exists a trade-off
between mpk size and ciphertext size. From the above two schemes, it is easy
to see that when generating n pair-wise independent BDH seeds, the roles of Y;
and the randomness r; are exchangeable. With this observation, we propose the
following generalized scheme that offers a trade-off between mpk and ciphertext.
We denote it by Scheme 3 and described it as follows. The detailed construction
and security proof are deferred to Section [6l
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Setup: mpk = (9,h, X =¢*, X" Y1,...,Ys,),msk=a
KeyGen : sk = (sk, ..., skn,), where sk; = (Y2F(I)%, g%)
Encap: C = (C1,...,Ch,), where C; = (g7, (X' X')"i, F(I)™)
with ¢ = TCR(CZ"h ceey an’l)
K = (K, ) for 1 <i<ny,1<j<ng, where K, ; = fa1(e(X,Y;)", R)

In the above generalized scheme, (Y1, ...,Y,,) are ny independent elements from
G. When performing encapsulation, the Encap algorithm picks ny = n/n; in-
dependent random integers (r1,...,7y,) from Z,, then mix-and-match them to
generate n pair-wise independent BDH seeds of the form e(X,Y;)™. If we set
n1 = ng = /n, the yielding scheme has mpk of O(y/n) group elements and ci-
phertext of O(y/n) group elements. Scheme 1 and Scheme 2 can be viewed as spe-
cial cases of the generalized scheme with the parameter choice (n; = 1,n2 = n)
and (ny = n,ng = 1), respectively. Interestingly, we find that the above trade-off
method can naturally apply to the KEM schemes proposed in [12/[13,24] and the
IB-KEM scheme presented in [I0]. Particularly, when implementing the trade-off
method to the KEM scheme presented in [I3], Section 3], the resulting scheme is
exactly the one constructed by Liu et al. [21].

GENERALIZED SCHEME 2. Observe that one BDH seed bdh(A, B, C) is determined
by three inputs, then mpk and ciphertext can be further shrunk to O(/n) group
elements by using the mix-and-match method twice. More precisely, instead of
generating the BDH seed like e(X,Y;)™ as the above generalized scheme, we can
generate the BDH seeds of the form e(Y;, Y;)™. That is, first self mix-and-match
theset (Y1,...,Y,, ), then mix-and-match the resulting ny (n;—1)/2 bases e(Y;, Y;)
(i # j) with ng random integers (r1, ..., 7y,). The self mix-and-match method is
better than the “implicitly defining” method used in [I3], Section 5.3] since it trav-
els all the binary combinatorial pairs (Y;, Y;) over the set (Y7, ...,Y5, ), thus it can
generate the same number of bases with smaller mpk. Based on this observation,
we propose another generalized scheme called Scheme 4 as follows. The detailed
construction and security proof are deferred to Section [7

Setup : mpk = (ga h7X7X,aY1 = gyla cee 7Yn1 = gynl)’msk = (yla s ayn1)
KeyGen : sk = (sk;;) for 1 <i < j <ny where sk;; = (¢¥¥ F(I)%3, g%9)
Encap: C = (Cy,...,Ch,), where Cy, = (g™, (X' X")™ F(I)"™)

with t = TCR(Ci,l, ey Cn271)

K= (K, i := fa(e(Y;,Y;)  R)) for 1 <i<j<mg,1<k<mng

To generate n pair-wise independent BDH seeds we require that n = nq(n; —
1)n2/2. Let n; = ng, then the public parameters and the ciphertext are both of
O(+¥/n) groups elements. Not surprisingly, this trade-off technique can also apply
to the KEM scheme [I3| Section 5.3] and the IB-KEM scheme [10].

1.3 Related Work

Recently, Galindo [10] gave an IND-sID-CCA secure IB-KEM based on the
CBDH assumption in the standard model by integrating the KEM scheme [12]
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Table 1. Efficiency comparison of the proposed schemes

Scheme  Ciphertext Efficiency [# exp, # pairing] Key Sizes
Overhead  Encap Decap |mpk| |msk]|
Galindo [10] 4 x|Gr|  [4,0] [2,2n + 2] (2n+9) x |G| (n+4) x |Zy|
Scheme 1 () 3n x |Gr| [3n+1,0] [1,4n)] 5% |G| 1 X |Zy|
Scheme 2 (§5) 3 x |G| [4,0] [1,2n + 2] (n+4) x |G| 1 X |Zyp|
Scheme 3 (§8) 3n2 x |G| [3n2 +1,0]  [1,2n+2n2]  (n1 +4) x |G| 1 X |Zyp|

Scheme 4 (§1) 3n2 X |Gr| [3n2 +1,0]  [1,2n+2n2]  (n1 +4) x |G| ny X |Zp|

In Scheme 3 we have n = nin2, then n; and ns can be set to integers around
O(y/n). In Scheme 4 we have n;(n1 — 1)nz/2, then n; and ns can be set to integers
around O(/n).

with the BB;-IBE scheme [2]. Galindo’s scheme is not conceptually simple due
to the underlying KEM scheme [12], and its master secret consists of O(n) group
elements that might be impractical for some applications. Haralambiev et al. [13]
mentioned that their KEM scheme with public key of size O(y/n) can extend
to selective-identity secure BB1-IBE scheme [2]. They sketched their ideas as
follows: the IBE scheme has the same parameters as their KEM scheme [I3] Sec-
tion 5.3], and a private key for identity I contains 2n group elements of the
form (g*% - (X1 X')%, g% ) € G2. However, we remark that a private key for
identity I should be (g% - F(I)%3, g%), where F(I) is the Boneh-Boyen hash.
Besides, the master secret key of their scheme is still a bit large (21/n elements
from Z,), which may render it less practical in use. Regarding to this, it would
be very interesting to construct IBE schemes with short master secret key while
provably secure under weak assumptions in the standard model.

2 Preliminaries

2.1 Notation

We use standard asymptotic notation O and o to denote the growth of functions.
We denote with poly(k) an unspecified function f(x) = O(k°) for some constant
c. We denote with negl(x) an unspecified function f(x) such that f(x) = o(k™°)
for every constant c. Throughout the paper, a probabilistic polynomial-time
(PPT) algorithm is a randomized algorithm that runs in time poly(x). For a
positive integer n, we denote with [n] the set [n] = {1,...,n}. For a finite set S,

we use s ¢ S to denote that s is sampled from the set S uniformly at random.

2.2 Identity Based Key Encapsulation Mechanisms

An identity-based key encapsulation mechanism (IB-KEM) [1] consists of four
PPT algorithms as follows:

Setup: takes the security parameter 1 as input and outputs the public param-
eter mpk and the master secret msk. Intuitively, mpk is the system parameters
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which will be public known, while the msk will be known only to the thrusted
third party, called Private Key Generator.

KeyGen: takes mpk, msk, an identity I as input and outputs the associated
private key sk.

Encap: takes mpk and an identity as input and outputs a pair (C, K') where C
is the ciphertext and K € K is a data encryption key.

Decap: takes mpk, private key sk, and a ciphertext C as input and outputs the
data encryption key K € K.

We require that if (mpk, msk) £ Setup(17), sk + KeyGen(mpk, msk,I), and
(C,K) + Encap(mpk, I) then we have Decap(mpk, sk,C) = K.

2.3 Chosen Ciphertext Security

CCA-security of an IB-KEM is defined by the following game playing between
an adversary A and a challenger CH.

Setup. CH takes a security parameter 1* and runs the KeyGen algorithm. It
gives the adversary the resulting system parameters. It keeps the master key to
itself.

Phase 1. A may make polynomially-many private key queries and decapsulation
queries. CH answers these queries by running the algorithm KeyGen to extract
the associated private keys.

Challenge. Once the adversary decides that Phase 1 is over it outputs an iden-
tity I* on which it wishes to be challenged. The only constraint is that I*
did not appear in any private key extraction query in Phase 1. CH computes
(C*,K}) = Encap(mpk, I*), samples K{ uniform randomly from K. Finally,
CH picks a random bit 8 € {0,1} and sends (C*, K;,) as the challenge to the
adversary.

Phase 2. A issues more private key queries with the restriction that (I) # (I*)
and the decapsulation queries with the restriction that (I, C) # (I*,C*).

Guess. Finally, A outputs a guess ' € {0, 1} and wins the game if g = '

We refer to such an adversary A as an IND-ID-CCA adversary. We define adver-
sary A’s advantage over the IB-KEM scheme & by Advgi’}(/ﬂ) = |Pr[ﬁ =p]- 5 |7
where k is the security parameter. The probability is over the random bits used
by the challenger and the adversary.

Definition 2.1. We say that an IB-KEM scheme & is IND-ID-CCA secure if for
any PPT IND-ID-CCA adversary A the advantage Advgi’}(/ﬂ) is negligible.

Selective-identity CCA-security [4] can be defined in a similar game as the above
game of full-identity CCA-security, except that the adversary needs to output a
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target identity at the very beginning of the game. We refer to such an adversary
A as an IND-sID-CCA adversary. We define adversary A’s advantage over the
IB-KEM scheme & by Advgi’i(m) = |Pr[3 = B'] — 3|, where & is the security
parameter. The probability is over the random bits used by the challenger and
the adversary.

Definition 2.2. We say that an IB-KEM scheme £ is IND-sID-CCA secure if
for any PPT IND-sID-CCA adversary A the advantage Advgiﬁ‘ (k) is negligible.

2.4 Target Collision Resistant Hash Function

TCR = (TCRg)ken is a family of keyed hash function TCR}, : G — Z, for each
k-bit key s. For an adversary H, its tcr-advantage AdVLCR(k) is defined as:

Pr[TCR®*(c*) = TCR%*(c) A c¢#c":s ia {0,1}%: ¢ L Gy H(s,c")]

Note that TCR is a weaker requirement than collision-resistance, so any prac-
tical collision-resistant function can be used. To simplify notation we will drop
the superscript s and simply use TCR hereafter. Additionally, we can define
multi-inputs TCR function in a natural way, that is TCR}, : (G)" — Z,. The
corresponding tcr-advantage of an adversary H is defined in a similar way except

substituting ¢ with (c1,...,¢,) and ¢* with (cf,...,c}).

2.5 Computational Bilinear Diffie-Hellman Assumption

Let G be a cyclic group generated by g and equipped with a bilinear map e :
G x G — Gr. Define

bdh(A, B,C) :=T, where A =g¢* B =¢",C =¢° and T = e(g, g)**°

The computational bilinear Diffie-Hellman (CBDH) problem is computing the
value bdh(A, B,C) given random A, B,C € G. The CBDH assumption asserts
that the CBDH problem is hard, that is, Pr[A(4, B,C) = bdh(A, B,C)] <
negl(x) for all PPT algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [IT] gives us the following
lemma for a Goldreich-Levin hardcore predicate fg : Gr x {0,1}* — {0,1}.

Lemma 2.3. Let G be a prime order group generated by g equipped with a pair-
inge: GxG— Gp. Let A, B,C & G be random group elements, R il {0, 1},
and let K = fa(bdh(A, B,C),R). Let U £ {0,1} be uniformly random. Sup-
pose there exists a PPT algorithm B distinguishing the distributions Apqn =
(9,A,B,C,K,R) and Ayana = (g9, 4, B,C,U, R) with non-negligible advantage.
Then there exists a PPT algorithm computing bdh(A, B,C) on input (A, B,C)
with non-negligible success probability, hence breaking the CBDH problem.
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We assume that the global public parameters known to all the parties consist
of the pairing parameters (e, G,Gr,g,p) + GroupGen(17), the descriptions of
a target collision resistant hash function TCR and a suitable Goldreich-Levin
hardcore predicate fgi(-, R) with randomness R to extract one pseudorandom bit
from a BDH seed. It is well known that an IB-KEM scheme compares favorably
to an IBE scheme in many ways [I,[§], and IB-KEM schemes can be readily
bootstrapped to full functional IBE schemes by coupling with a DEM having
appropriate properties. Therefore in this paper, we focus on the constructions of
IB-KEM.

3 A 1-Bit IB-KEM Scheme

In this section we describe an 1-bit IB-KEM which is obtained by extending the
techniques of [I3] to the Boneh-Boyen IBE scheme [2]. The resulting IB-KEM
scheme is IND-sID-CCA secure based on the CBDH assumption. It is defined as
follows.

Setup. Pick a il Zp, b, X")Y £ G, set X = g%, and define the function
F:7Z,— G as I — X!h. The public parameters and the master secret key are
given by

mpk = (g,h, X, X", Y) and msk = a

KeyGen. To generate a private key for an identity I € Z,, pick s £ Z,, and
output
sk = (YF(I)*,g°)

Encap. Pick r £ Z,, then generate the ciphertext C' = (Cy,Cs,C3) as C; = ¢,
Cy = (X'X')" with t = TCR(C}), and C3 = F(I)". Compute

K = fgl(e(X7 Y)", R)

Decap. To decapsulate ciphertext (Cy,Cs,C3) under identity I, first compute
t = TCR(Cy). If e(Cy, Xt X") # e(g,C2) or e(Cy, F(I)) # e(g,C3) then return
L. Take the private key sk and the ciphertext C' = (Cy,C2,C3) as input and

outputs K = fa (Eég;i;; , R). Indeed, for a valid ciphertext, we have

C1, sk T YeFR(I)®
8( 1,8 1)26(97 ( ))ZB(X,Y)T.
e(Cs,skz)  e(F(I)",9°)
Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone
can verify a ciphertext being consistent or not.

Theorem 3.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.
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Proof. We proceed in a sequence of games. We write (C}, C5, C%) to denote the
challenge ciphertext with the corresponding key K* of identity I, denote with U*
the random key chosen by the IND-sID-CCA experiment, and set t* = TCR(CY).
Let W; denote the event that A outputs 8’ such that 8/ = 8 in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have
1 A

Game 1. Let Fy; be the event that the adversary issues a decapsulation query
(I*,C1,C4,C4) with C] = C7 in Phase 1. Note that the probability that the
adversary submits a decapsulation query such that C; = C} before seeing the
challenge ciphertext is bounded by Q4/p, where Q4 is the number of decapsula-
tion queries issued by A. Since Q4 = poly(k), we have Pr[Ey1] < Qq/p < negl(k).
We define Game 1 exactly the same as Game 0 except assuming that Fy; never
occurs in Game 1. It follows that

| Pr[WA] — Pr{Wo]| < negl(r) (2)

Moreover, we remark that in Phase 2 a decapsulation query (I*,C7, C%, C%) will
be rejected if C7 = Cf. Since if Cy # C5 or C4 # Cj, the decapsulation query
will be rejected for the inconsistency of the ciphertext. If C4 = C5 and C% = Cf,
it will be rejected by definition of IND-sID-CCA game.

Game 2. Let F15 be the event that the adversary issues a decapsulation query
(I*,C1,C4,C%) with C] # C7 and TCR(CY) = TCR(CY). By the target collision
resistance of TCR, we have Pr[Ej2] < negl(k). We define Game 2 exactly the
same as Game 1 except assuming that Fjo never occurs in Game 2. It follows
that

| Pr{Wa] — Pr(IW3]| < negl(x) (3)
We claim that )
Pr[Ws] = o T negl(k) 4)

We prove this statement by letting an adversary against the GL-DBDH as-
sumption simulate the challenger in Game 2. B is given a challenge instance
(9,A,B,C,L,R), where L is either fg(bdh(A,B,C),R) or randomly sampled
from {0,1}. B plays the game with an adversary A against the IND-sID-CCA
security of the 1-bit IB-KEM scheme.

Initialization. A first outputs an identity I* € Z, that it intends to attack.

Setup. B picks d & Z,,and thensets X = A =g X' = X" ¢%, Y =B = ¢,

where t* = TCR(C). B picks z il Z, and defines h = X1 g*. It gives A
the public parameters mpk = (g, h, X, X', Y). The corresponding msk, which is
unknown to B is a. The function F is essentially of the form

F(I)=X'h=Xx""1"¢
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Phase 1 - Private Key Queries. A issues up to Q. private key queries with
the only restriction that (I) # (I*). To respond to a private query for identity

I € Zy, B generates sk as follows: for sk, algorithm B picks s £ Z,, and sets
sk = Y -1+ F(I)*, skq= gSYI:}*

Let s=s—0b/(I —I*). It is easy to see that sk is a valid random private key for
I since

sk = Vi (XI—I*gz)s _ Ya(XI—I*gz)sf o YaF(I)é}
sko = ngI—II* = gg

where s, s are uniform in Z,. This matches the definition for a private key for
1. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
(I,C1,C4,C3), Bresponds as follows. If I # I*, BB uses the corresponding private
key to handle it. Otherwise, B computes t = TCR(C}) and tests the consistency
of the ciphertext by checking

? ?

e(Cr, X' X') = e(g,C2) A e(C1,F(I)) = e(g,Cs)

If the equality holds, B sets K := fgl(e(f( ,Y), R). The decapsulation is correct
by observing that X = (Cy/CHY (=17 — (Xr(t—tT)grd/grd)l/(t—t") — xr —
dh(X, Cy). By the definition of Game 2 we know that when I = I*, if Cy # C}
then we have t # t*. Therefore B can answer all decapsulation queries issued by
A correctly.

Challenge. B sets C; = C (which implicitly assigns r = ¢), Cj = C?, and C3 =
C*. The challenge ciphertext is C* = (C7, C5, C%). Note that this is a consistent
ciphertext since we have (X* X')" = (¢%)” = C% and F(I*)" = (¢°)" = C=.
Then B sets K* = L and gives A the challenge (C*, K*).

Phase 2. In Phase 2, all the queries are responded in the same way as in Phase
1 except the decapsulation query (I*, C*) will be rejected.

This finishes the description of simulation. It is easy to see that B simulates the
challenger perfectly. If A’s advantage is not negligible, then B has non-negligible
advantage against the GL-DBDH problem. According to Lemma 2.3, B further
implies an algorithm with non-negligible advantage against the CBDH problem,
which contradicts to the CBDH assumption. Therefore, we prove the statement.
The theorem follows by combining (II)-(@). O

4 CCA Secure IB-KEM with Constant Size Public
Parameters

In this section we present a n-bit IB-KEM scheme based on the 1-bit IB-KEM
scheme using multiple encapsulations method.
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Setup. The same as Scheme 0.

KeyGen. The same as Scheme 0.

Encap. Pickry,...,7, i Zyp, then compute C; 1 = g, t = TCR(C11,...,Ch.1),
Cia = (X'X")i, C; 3 = F(I)". The final ciphertext is C = (C},...,Cy), where
C; = (C;1,Ci2,C 3). Compute K = (K, ..., K,), where

K; = fa(e(X,Y)", R) for 1 <i<nmn.

Decap. To decapsulate ciphertext C' = (C4, ..., C,) under identity I, first com-
pute t = TCR(Cl,l, ey Cn,l)- If 8(0@71, XtX/) 79 e(g, Ci,g) or e(C’i,l,F(I)) 79
e(g,C;,3) for any i € [n] then return L. Take the private key sk = (ski, sko) and
the ciphertext C = (C1,...,Cy) as input and output

6(0,‘ 1, Skl)
K; = ’
fgl (6(0@3, Skg)

Indeed, for a valid ciphertext, we have

e(Ci1,sky)  e(g", Y*F(I)®) ; ,
’ = =e(X,Y)" for 1 <i<mn.
(Cosiska) — e(F(Dyge) — (YT risis

,R) for1<i<n.

Theorem 4.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument
with the proof of Scheme 0. For completeness we put the proof in Appendix [Bl

5 CCA Secure IB-KEM with Constant Size Ciphertext

In this section we present a n-bit IB-KEM scheme based on the 1-bit IB-KEM
scheme using the randomness-reuse technique.

Setup. Pick a £ Zp, h, X' Y1,...,Y, il G, set X = g%, and define the function
F:Z,— G as I+ X'h. The mpk and the msk are given by

mpk = (g,h, X, X", Y1,...,Y,) and msk = a

KeyGen. To generate a private key for an identity I € Z,, pick s1,..., sy, il Zy

and output sk = (skq, ..., sky), where
sk; = (Y;2F(I)%,¢%) for 1 <i <n.

Encap. Pick r il Z,, then generate the ciphertext C' = (C1, Cq,C3) as Cy = ¢,
Cy = (X'X")" with t = TCR(C}), and C5 = F(I)". Compute K = (K3, ..., K,),
where

K = fa(e(X,Y;)",R) for 1 <i<n.
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Decap. To decapsulate ciphertext (Cy,Cs,C3) under identity I, first compute
t = TCR(Cy). If e(Cy, Xt X') # e(g,C2) or e(Cy, F(I)) # e(g,C3) then return
L. Take the private key sk = (ski, ..., sky,) and the ciphertext C' = (Cy, Cs, C3)
as input and output
6(01, Sk‘z 1)
K, = ’
! fgl (6(03781%’2)7
Indeed, for a valid ciphertext, we have
6(01751%,1) o 6(9T7YiaF(I)s"’)
e(Cs, ski2) e(F(D)r, g%)

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone
could verify a ciphertext being consistent or not.

R) for1<i<n.

=e(X,Y;)" for 1 <i<n.

Theorem 5.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument
with the proof of Scheme 0. For completeness we put the proof in Appendix [Cl

6 Generalized Scheme 1

In this section we present the first generalized scheme which shows that there
exists a trade-off between the ciphertext size and the public parameters size. We
assume that n is the product of n; and no. The generalized scheme is defined as
follows.

Setup. The same as Scheme 2 except we substitute n with ny.

KeyGen. The same as Scheme 2 except that we substitute n with n;.

Encap. Pick r1,...,7n, i Zyp, and set Cj1 = g7 for 1 < j < na. Set
t = TCR(CL17...7CTL2’1), Cj’z = (th)(')rj7 Cj’g = F(I)TJ for 1 < j < no.
The ciphertext is C = (C4,...,Cp,) where C; = (Cj1,Cj 2, Cj3). Compute the
symmetric key K = (Kq,..., K,,), where

K(Z-,l)anJrj = fgl(e(X,E)rj,R) for 1 S ) S nq and 1 S j S ng.

Decap. To decapsulate ciphertext C = (Ci,...,Cy,) encrypted under iden-
tity I, first compute t = TCR(Cy 1,...,Chy1). If e(Cj1, X' X") # e(g,Cj2) or
e(Cj1, F(I)) # e(g,Cj,3) for some j € [no] then return L. Take the private key
sk = (ski,...,skp,) and C = (C1,...,Cy,) as input and output

6(0‘1 Skil) . .
K = ST R where 1 <4 < d1<j<ns.
(i—1)xni+j fal (e(Cj’S, Ski,2)7 where 1 =7 = np an >J] > N2

Indeed, for a valid ciphertext, we have
e(Cja,skin) _ e(g™, Y2 F(I)™)

B =e(X,Yy)" for 1 <i < d1<j<no.
€(Cj,3,sk‘i’2) e(F(I)Tj7gSi) 8( s z) or 1 <:<n;an <j<n
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Particularly, let n be a perfect square and n; = ny = y/n, we obtain an IB-KEM
scheme with O(y/n) public parameters size and O(y/n) ciphertext size.

Theorem 6.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument
with the proof of Scheme 0. For completeness we put the proof in Appendix

7 Generalized Scheme 2
In this section we present the second generalized scheme. We assume that n =
ni(n1 — 1)ng/2.
Setup. mpk and msk are given by

mpk = (g,h, X, X', Y1 = g%, ..., Y,, = g1, F) and msk = (y1, ..., Yn,)
KeyGen. To generate a private key sk = (sk;;) for an identity I € Z,, pick

Sij & Zy, and set sk;; = (g¥ ¥ F ()%, g% ) for 1 <i < j <mny.

Encap. Pick rq,...,7p, i Zy,, and set Cpq1 = g™ for 1 < k < ny. Set t =
TCR(CLl,...,CnQ,l), Cj72 = ()(t)(/)”7 Cj,g = F(I)TJ for 1 S ] S nog. The
ciphertext is C' = (Ch,...,Cy,) where Cy = (C1,Ck,2,Ck3). Compute the
symmetric key K = (K ; ), where

Kijr= fale(Y;,Y;)™ R)for1<i<j<n;and1<k<ny.

Decap. To decapsulate ciphertext C = (Ci,...,Cy,) encrypted under iden-
tity I, first compute t = TCR(C11,...,Cny1). If €(Cr1, X' X') # e(g,C2) or
e(Cra, F(I)) # e(g, Cr,3) for some k € [ng] then return L. Take the private key
sk = (sk;;) and C' = (C1,...,Chy,) as input and output

e(Cr,1,5kij1)
Ki ik — ’ ’ )
k= Ja <€(Ck,37 skij2)

Indeed, for a valid ciphertext, we have

R) where 1 <i<j<njpand1l <k <ns.

e(Cr1,skija) _ e(g"*, g" ¥ F(I)%7) , .

: - =e(Y:,Y;)"" for 1 < <ni,1<k<no.
(Crashia) ~ e(F(Iyn gy~ (BT Irisessmd ks
Theorem 7.1. Let TCR be a target collision-resistant hash function and sup-
pose that the CBDH assumption holds in G. Then the above scheme is an

IND-sID-CCA secure IB-KEM.

The proof is similar to that of Scheme 1 in Section @ Scheme 2 in Section [l
and Generalized Scheme 1 in Section [6] except that for a given CBDH challenge
instance (A, B,C) the reduction algorithm first sets ¥; = A for some i € [ny]
then sets X = A" for a random chosen exponent h instead of directly setting
X = A as before. For the limit of space, we omit the details here.



CCA Secure IBE from CBDH Assumption 289
8 Extensions

Since BB;-IBE [2] and Waters-IBE [23] share the same commutative-blinding
framework, thus we can enhance our IB-KEM schemes with only selective-
identity security to IB-KEM schemes with full-identity security by using the
Waters-IBE as the underlying IBE scheme. The security proofs are somewhat
straightforward by composing the proofs for IB-KEM schemes in Section [ [5]
and [0 based on BB1-IBE and the proofs for Waters-IBE [I8,23]. For a concrete
example, we sketch the proof of Scheme 1*, which is the resulting scheme of re-
placing the underlying IBE scheme of Scheme 1 with Waters-IBE, as follows. The
proof is conducted by a sequence of games. Game 0 is the standard IND-ID-CCA
game. Game 1 is defined like Game 1 except that the reduction algorithm will
terminate the simulation due to regular abort or artificial abort. Game 2, Game
3, and Game 4 are defined like Game 1, Game 2, and Game 3 in the proof for
Scheme 1, respectively. The argument of the indistinguishability between Game
3 and Game 4 is similar to that between Game 2 and Game 3 in the proof for
Scheme 1. Then the security result immediately follows.

Acknowledgments. We would like to thank Jiang Zhang, Cheng Chen, and
Qiong Huang for helpful discussions. The work of the third author is supported
in part by the National Natural Science Foundation of China under grant Nos.
60970110, 61033014, 61021004, 61170227, 61172085, 61103221, 11061130539 and
61161140320 and Science Foundation Project of Jiang Su Province under grant
No. BM20101014.

References

1. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions
of identity-based and certificateless kems. Journal of Cryptology 21(2), 178-199
(2008)

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (2004)

3. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320-329 (2005)

4. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207-222. Springer, Heidelberg (2004)

5. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127-145. Springer,
Heidelberg (2008)

6. Cramer, R., Hofheinz, D., Kiltz, E.: A Twist on the Naor-Yung Paradigm and Its
Application to Efficient CCA-Secure Encryption from Hard Search Problems. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146-164. Springer, Heidelberg
(2010)



290

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Y. Chen, L. Chen, and Z. Zhang

Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13-25. Springer, Heidelberg (1998)

. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167-226 (2001)

. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen

Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45-64. Springer, Heidelberg (2002)

Galindo, D.: Chosen-Ciphertext Secure Identity-Based Encryption from Computa-
tional Bilinear Diffie-Hellman. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 367-376. Springer, Heidelberg (2010)

Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Comput-
ing, STOC, pp. 25-32. ACM (1989)

Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key En-
cryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J.
(ed.) ASTIACRYPT 2008. LNCS, vol. 5350, pp. 308-325. Springer, Heidelberg
(2008)

Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-
Key Encryption from Computational Diffie-Hellman in the Standard Model. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1-18.
Springer, Heidelberg (2010)

Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 5563-571. Springer,
Heidelberg (2007)

Hoftheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313-332.
Springer, Heidelberg (2009)

Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581-600. Springer, Heidelberg
(2006)

Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed
Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282-297. Springer, Heidelberg (2007)

Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation Without Random Oracles. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058, pp. 336-347. Springer, Heidelberg (2006)

Kiltz, E., Vahlis, Y.: CCA2 Secure IBE: Standard Model Efficiency through Au-
thenticated Symmetric Encryption. In: Malkin, T. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 221-238. Springer, Heidelberg (2008)

Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426-442. Springer, Hei-
delberg (2004)

Liu, Y., Li, B., Lu, X., Jia, D.: Efficient CCA-Secure CDH Based KEM Balanced
between Ciphertext and Key. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011.
LNCS, vol. 6812, pp. 310-318. Springer, Heidelberg (2011)

Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the T'wenty Second Annual ACM Symposium
on Theory of Computing - STOC, pp. 427-437. ACM (1990)



CCA Secure IBE from CBDH Assumption 291

23. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127. Springer,
Heidelberg (2005)

24. Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314-332. Springer, Heidelberg
(2010)

A A Variant of Scheme 0

In this section we describe a variant of Scheme 0 with shorter mpk and cipher-
text at the cost of relying on a slightly strong assumption, named the modified
computational bilinear Diffie-Hellman assumption.

A.1 The Modified Computational Bilinear Diffie-Hellman
Assumption

Let G be a cyclic group generated by g and equipped with a bilinear map e :
G x G — Gr. Define

mbdh(A, B, B’,C) := T, where A= g% B=¢" B = ng,C =g¢° T = e(g, g)™°

The modified computational BDH (mCBDH) problem is computing the value
mbdh(A, B, B’,C) given A, B,B’,C € G where a,b,c & Z,. Compared to the
BDH prob;em, the mBDH problem furthermore provide the adversary with the
element ¢g° . The mCBDH assumption asserts that the mCBDH problem is hard,
that is, Pr[A(4, B, B’,C) = mbdh(A4, B, B’,C)] < negl(x) for all PPT algo-
rithms A.

Lemma 1.1. Let G be a prime order group generated by g equipped with a pair-
inge:GxG— Gp. Let a, b, c il Zy, be random integers, R £ {0,1}*, and let
K = fa(bdh(A4, B,C),R). Let U il {0,1} be uniformly random. Suppose there
exists a PPT algorithm B distinguishing the distributions

Amban = (9,A, B,B",C, K, R) and Ayana = (9, A, B, B',C,U, R)
with non-negligible advantage. Then there exists a PPT algorithm computing

bdh(A, B,C) on input (g,A, B, B’,C) with non-negligible success probability,
hence breaking the mCBDH assumption.

Setup. Pick a £ Zy, and then set X = g®. Pick h,Y & G. Define the function
F:Z,— G as I — XTh. The public parameters and the master secret key are
given by

mpk = (g,h, X,Y) and msk = a

KeyGen. To generate a private key for an identity I € Z,, pick s £ Z,, and
output sk = (Y°F(I)®, g%, Y*).

Encap. Pick r il Zp, then compute C; = ¢", Cy = (F(I)Y")" with t =
TCR(C4). Compute K = fa(e(X,Y)", R).
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Decap. To decapsulate ciphertext (C7,C2) under identity I, first compute ¢ =
TCR(CY). If e(C1, F(I)Y'?) # e(g, C2) then return L. Otherwise, take the private
key sk and C' = (C, Cs) as input, compute K = fq1 (e(C1, sk1skb)e(Ca, sk2), R).
Indeed, for a valid ciphertext C' = (C1, Cs), we have

e(Cy, skisky)e(Cy, ska) = e(g", YOF(I)*Y*")e(F(I)"Y"™, g7 %) = e(X,Y)"

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone
could verify a ciphertext being consistent or not.

Theorem 1.2. Let TCR be a target collision-resistant hash function and sup-
pose that the mCBDH assumption holds in G. Then the above scheme is an
IND-sID-CCA secure IB-KEM.

Proof. We proceed in a sequence of games. We write (C5, C5) to denote the chal-
lenge ciphertext with the corresponding key K™ of identity I*, denote with U*
the random key chosen by the IND-sID-CCA experiment, and set t* = TCR(CY).
Let W; denote the event that A outputs 8’ such that §/ = 3 in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have
1
Pr(Wo] =, + AdvCCALew (K) (5)

Game 1. Let Fy; be the event that the adversary issues a decapsulation query
(I*,C1,C4) with C] = Cf in Phase 1. Note that the probability that the ad-
versary submits a decapsulation query such that C] = C; before seeing the
challenge ciphertext is bounded by Q4/p, where Q4 is the number of decapsula-
tion queries issued by A. Since Q4 = poly(k), we have Pr[Ey1] < Qq/p < negl(x).
We define Game 1 exactly the same as Game 0 except assuming that Fy; never
occurs in Game 1. It follows that

| Pr[Wh] — Pr[Wo]| < negl(x) (6)

Moreover, we remark that in Phase 2 a decapsulation query (I*, C{, C%) will be
rejected if O = C7F. Since if C4 # C3, the decapsulation query will be rejected for
the inconsistency of the ciphertext. If C4 = C3, it will be rejected by definition
of IND-sID-CCA game.

Game 2. Let F15 be the event that the adversary issues a decapsulation query
(I*,C1,C%) with Cf # C7 and TCR(CY) = TCR(CY). By the target collision
resistance of TCR, we have Pr[Ej2] < negl(k). We define Game 2 exactly the
same as Game 1 except assuming that Fj2 never occurs in Game 2. It follows
that

| Px{Wa] — Pr(W3]| < negl(x) (™)

We claim that .
Pr[Ws] = + negl(x) (8)
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We prove this statement by letting an algorithm B against the GL-mDBDH
assumption simulate the challenger in Game 2. Suppose B is given a challenge
instance (g, A, B, B’,C, L, R), where L is either uniform randomly sampled from
{0,1} or fei(mbdh(A4, B, B’,C), R). B plays Game 2 with an adversary A against
the IB-KEM scheme as follows.

Initialization. A first outputs an identity I* € Z, that it intends to attack.

Setup. B picks d il Zy,, and then sets X = A=g¢* Y =B = g%, compute t* =

TCR(C). B picks d il Z, and defines h = X1V~ g% Tt gives A the public
parameters mpk = (g, h, X,Y). The corresponding msk, which is unknown to B
is a. The function F is essentially of the form

F(I)=X'h=Xx"""y " g

Phase 1 - Private Key Queries. A issues up to Q. private key queries with
the only restriction that (I) # (I*). To respond to a private query for identity
I € Z,, B generates sk as follows: pick a random integer s € Z, and sets

sky = Yot Balee (XTI y =t g8 sy = g7V 110 sky = YSB'1-1-
Let §=s—0b/(I — I*). It is easy to see that sk is a valid private key for I since

sk = YI:?* B/If}* (XI—I*Y_t*gd)s _ Ya(XI_I*Y_t*gd)s_I—bz* _ YaF(I)g

sko = 975Y 1711* — g_s+17b1* = gfs
sks = YSB/I:}* — YS_I—bI* = ng'

where s, s are uniform in Z,. This matches the definition for a private key for
1. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
(I,C1,C3), B responds as follows. If T # I*, B uses the corresponding private
key to handle it. Otherwise, B computes t = TCR(C}) and tests the consistency
of the ciphertext by checking

2

e(C, F(IY') = e(g, Ca)

If the above equality holds, B sets K := fgl(e(f/,X ), R). The answer is cor-
rect by observing that ¥ = (Cy/(C%) aeten) = (Y (=t7)r gdr / grdy aeley = YT =
dh(Y,¢"). By Game 2 we know that when I = I*, if C; # C} then t # t*.
Therefore B can answer all decapsulation queries issued by A correctly.

Challenge. B sets Cf = C (which implicitly assigns r = ¢), and C3 = C%. The
challenge ciphertext is C* = (Cf,C3). Note that this is a consistent ciphertext
since we have (F(I*)Y")" = (¢%)" = C%. Then B sets K* = L and gives A the
challenge (C*, K™).
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Phase 2. In Phase 2, all the queries are responded in the same way as in Phase
1 except the decapsulation query (I*, C*) will be rejected.

This finishes the description of simulation. It is easy to see that B simulates the
challenger perfectly. If A’s advantage is not negligible, then B has non-negligible
advantage against the GL-mDBDH problem. According to Lemma 2.3 B fur-
ther implies an algorithm with non-negligible advantage against the mCBDH
problem, which contradicts to the mCBDH assumption. Therefore, we prove the
statement. The theorem follows by combining (&])-(). O

We compare Scheme 0 and Scheme 0’ in Table 2l Scheme 0’ can be extended to
n-bits IB-KEMs in an analogous way as we did to Scheme 0.

Table 2. Comparison of Scheme 0 and Scheme 0’

Scheme Assumption Ciphertext Efficiency [# exp, # pairing] Key Sizes

Overhead Encap Decap |mpk|  |msk|
Scheme 0 (§8) CBDH 3 x [Gr| [4,0] 1, 4] 5% |G| 1 x |Z|
Scheme 0’ (§A) mCBDH 2 x |Gr| [3,0] 2, 4] 4% |G| 1 X |Zp)

B The Proof of Scheme 1

Proof. We proceed in a sequence of games. Let (Cf,...,C) be the challenge
ciphertext of the corresponding key K* under I*, denote with U* the random key
chosen by the IND-sID-CCA experiment, and set t* = TCR(CY 4,...,C} ). We
start with a game where the challenger proceeds like the standard IND-sID-CCA
game (i.e., K* is a real key and U* is a random key), and end up with a game
where both K* and U* are chosen uniformly random. Then we show that all
games are computationally indistinguishable under the CBDH assumption. Let
W; denote the event that A outputs 3’ such that 3/ = 8 in Game 3.

Game 0. This is the standard IND-sID-CCA game. By definition we have
1 A
Pr[Wy] = g T AdvCCA{em(K)

Game 1. Let Fy; be the event that the adversary issues a decapsulation query
(I*,C1,...,Cy) with Cf ; = Cf, for all 1 <4 < n in Phase 1. Note that the
probablhty that the adversary submits a ciphertext such that Ci, =C}y for all
1 < i < n before seeing the challenge ciphertext is bounded by Qd /", where Qq
is the number of decapsulation queries issued by A. Since Q4 = poly(k), we have
Pr[Eo1] < Qa/p™ < negl(x). We define Game 1 like Game 0 except assuming
that Fg1 never occurs in Game 1. It follows that

| Pr[IW1] — Pr{Wo]| < negl(x)

Moreover, we remark that in Phase 2 a decapsulation query <I *C1, ..., CL) will
be rejected if C} ; = CF, for all 1 <4 < n. Since if C} , # C}, or C] 3 # Cf 5 for
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some i € [n], the decapsulation query will be rejected for the inconsistency of
the ciphertext. If C’{’Q = C}, and C’{’3 = Cf forall 1 <7 <n, it will be rejected
by definition of IND-sID-CCA game.

Game 2. Let F15 be the event that the adversary issues a decapsulation query
(I*,C1,...,Cy) with Cj; # Cfy for some i € [n] and TCR(CY 4,...,C} 1) =
TCR(CY 4, -.,C 1). By the target collision resistance of TCR we have Pr[E2] <
negl(k). We define Game 2 like Game 1 except assuming that F14 never occurs
in Game 2. It follows that

| Pr[W2] — Pr[Wh]| < negl(r)

Game 3. We define Game 3 like Game 2, except that we sample K* il {0, 1}
uniformly at random. Note that both K* and U* are chosen uniformly random,

thus we have .

2

We claim that |Pr[Ws5] — Pr[IW2]| < negl(x)under the CBDH assumption. We
prove this by a hybrid argument. To this end, we define a sequence of hybrid
games Hy, ..., H,, such that Hy equals Game 2 and H,, equals Game 3. Then
we argue that hybrid H; is indistinguishable from hybrid H;_; for i € {1,...,n}
under the CBDH assumption. The claim follows, since n = n(k) is a polynomial.
We define Hy exactly like Game 2. Then, for ¢ from 1 to n, in hybrid H; we
set the first iv bits of K* to independent random bits, and proceed otherwise
exactly like in hybrid H;_;. Thus, hybrid H,, proceeds exactly like Game 3. Let
E; denote the event that A outputs 3’ such that 8 = 3 in H;. Suppose that

Pr[Wg] =

| Pr[Eo] — Pr[En]| = 1/poly’ () (9)

that is, the success probability of A in Hy is not negligible close to the suc-
cess probability in H,,. Note that then there must exist an index i such that
| Pr[E;_1] — Pr[E;]| = 1/poly(k) (since if | Pr[E;—1] — Pr[E;]| < negl(k) for all i,
then we should have |Pr[Ey] — Pr[E,]| < negl(k)).

Suppose that there exists an algorithm A for which Equation (@) holds. Then
we can construct an adversary B distinguishing the distributions Apqn and Aang,
which by Lemma [2.3]is sufficient to prove security under the CBDH assumption
in G. Adversary B receives a challenge D = (g, A, B, C, L, R) as input, guesses an
index ¢ € [n], which with probability at least 1/n such that | Pr[E,_;]|—Pr[E/]| =
1/poly(x), and proceeds as follows:

Initialization. A first outputs an identity I* € Z, that it intends to attack.

Setup. For i = [n]\¢, B picks r; i Zy, then picks d il Zy, and sets X = A = ¢°,
Y =B =g’ and X' = Xt g% wheret* = TCR(g™,...,¢"*,C,g"+,...,g™).
Pick z <& Z, and defines h = X1 “g%. Tt gives A the system parameters
mpk = (g,h, X, X', Y, F). Note that the corresponding msk, which is unknown
to B is a.
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Phase 1 - Private Key Queries. A issues up to Q. private key queries with
the only restriction that (I) # (I*). To respond to a private query of I € Z,, B

picks s £ Z,, and sets
sky =Y 11" F(I)*, sky=g'Yir1°

We claimed that sk is a valid private key for I. To see this, let s = s—b/(I —I*).
Then we have

Sk‘l — YI:f* (XI—I*gz)s — Ya(XI_I*gZ)87 Il’I* — YaF(I)g
Skg :gSYI:}* — g§

where s, 5 are uniform distributed in Z,. This matches the definition for a private
key for I. Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query
(I,Ch,...,Cy), Bresponds as follows. If I # I'*, B uses the corresponding private
key to handle it. Otherwise, B computes ¢t = TCR(C} 1,...,Cp 1) and tests the
consistency of the ciphertext by