
K2C: Cryptographic Cloud Storage with Lazy
Revocation and Anonymous Access �

Saman Zarandioon1, Danfeng (Daphne) Yao2, and Vinod Ganapathy1

1 Department of Computer Science, Rutgers University,
Piscataway, NJ 08854

samanz,vinodg@cs.rutgers.edu
2 Department of Computer Science, Virginia Tech,

Blacksburg, VA 24060
danfeng@cs.vt.edu

Abstract. Security and privacy concerns hinder the adoption of cloud storage
and computing in sensitive environments. We present a user-centric privacy-
preserving cryptographic access control protocol called K2C (Key To Cloud) that
enables end-users to securely store, share, and manage their sensitive data in an
untrusted cloud storage anonymously. K2C is scalable and supports the lazy re-
vocation. It can be easily implemented on top of existing cloud services and APIs
– we demonstrate its prototype based on Amazon S3 API.

K2C is realized through our new cryptographic key-updating scheme, referred
to as AB-HKU. The main advantage of the AB-HKU scheme is that it supports
efficient delegation and revocation of privileges for hierarchies without requiring
complex cryptographic data structures. We analyze the security and performance
of our access control protocol, and provide an open source implementation. Two
cryptographic libraries, Hierarchical Identity-Based Encryption and Key-Policy
Attribute-Based Encryption, developed in this project are useful beyond the spe-
cific cloud security problem studied.

Keywords: Cloud, Untrusted Storage, Access Control, Mashup, Security, Web.

1 Introduction

In industries such as health-care, insurance and financial organizations, which deal with
sensitive data, the question of how to ensure data security and privacy in cloud environ-
ments is crucial [19,28] and even of legal concerns. For example, in the health-care
industry the privacy and security of protected health information (PHI) need to be guar-
anteed according to HIPAA (Health Insurance Portability and Accountability Act)[1]
requirements.

To take advantage of public clouds, data owners must upload their data to commer-
cial cloud providers which are usually outside of their trusted domain. Therefore, they
need a way to protect the confidentiality of their sensitive data from cloud providers.
Moreover, in many cases, data owners also play the role of content provider for other
parties. Following the naming convention used in [29,31], we refer to the parties that

� This work has been supported in part by DHS CCICADA and NSF grants CNS-0831186,
CNS-0953638, CNS-0831268, CNS-0915394, CNS-0931992, and CNS-0952128.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 59–76, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

60 S. Zarandioon, D. Yao, and V. Ganapathy

consume data owner’s data as data consumers or end-users. For example, a healthcare
provider (data owner) may need to let a medical doctor (data consumer) access medical
record of his patient. Even a data consumer may recursively play the role of data owner
on its own. A medical doctor may want to share part of his patient’s medical record
with his secretary or nurse. Therefore, there is a need for a decentralized, scalable and
flexible way to control access to cloud data without fully relying on the cloud providers.

In this paper we design and implement a scalable, user-centric, and privacy-
preserving access control framework for untrusted cloud storage. Our framework pro-
tects the confidentiality and integrity of stored data as well as the privacy of end-users.
It is also implementable on top of existing cloud services and APIs. (Design goals in
more details are presented in Section 3.1) .

Traditional access control techniques are based on the assumption that the server is
in the trusted domain of the data owner and therefore an omniscient reference monitor
can be used to enforce access policies against authenticated users. However, in cloud-
based services this assumption usually does not hold and therefore these solutions are
not applicable. Cryptographic access control techniques designed for shared/untrusted
file systems are potential candidates for clouds. In these approaches, the data stored
on untrusted storage is encrypted and the corresponding decryption keys are disclosed
only to the authorized users. Therefore, the confidentiality of data is protected against
untrusted storage as well as unauthorized users.

However, the existing solutions [23,24,25] have scalability limitations that hinder
their adoption in the cloud-storage settings. For example, until recently finding a cryp-
tographic approach that simultaneously supports fine-granularity, scalability, and data
confidentiality was an open problem. In [31], Shucheng Yu et al addressed this open
problem by introducing a novel protocol which closes this gap. Another scalability
issue, which we address in this paper, is related to access revocation. To eliminate re-
encryptions required as part of access revocation, a technique called lazy revocation is
widely adopted by existing cryptographic filesystems [12,26,27]. Lazy re-encryption
delays required re-encryptions until the next write access 1. In practice, lazy revoca-
tion eliminates extra re-encryptions as write access requires the client to re-encrypt the
data anyway. Therefore, lazy revocation significantly improves the performance at the
cost of slightly lowered security. To support lazy revocation, cryptographic access con-
trol protocols need to use a key-updating scheme which provides key regression. Key
regression enables a user holding a new key to derive an older key.

Despite the recent developments on untrusted cloud storage, current key-updating
schemes are still inadequate in terms of usability and efficiency. Specifically, existing
key-updating schemes [12], especially for access hierarchies, are not scalable as they
require complex data structures such as cryptographic trees [23] or linked lists [25]
(section 2). These cryptographic data structures need to be updated after each revoca-
tion. Since most of the existing cloud storage services have very simple APIs which al-
low only storing and updating key-value pairs, implementation of existing key-updating
schemes on top of existing commercial clouds is inefficient and unscalable.

1 Lazy re-encryption, adopted by [31], delays re-encryptions till next (read or write) access.
Since in regular workloads read accesses are significantly more than write accesses, the per-
formance gain by lazy revocation is drastically more than that of lazy re-encryption.

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 61

We introduce a new key-updating scheme called AB-HKU which is scalable and
also supports access hierarchies without requiring complex data structures. Our AB-
HKU scheme enables us to support lazy revocation without requiring any change in
the existing cloud APIs. We also introduce a new signature scheme for Key-Policy
Attribute-Based Encryption [22] called AB-SIGN. We then apply these new crypto-
graphic schemes to achieve scalable and anonymous information sharing in existing
commercial cloud storage services. We provide an implementation of the proposed pro-
tocols and perform extensive experimental evaluation on cloud storage environments.
Our technical contributions are summarized as follows:

– We introduce a new scalable and secure key-updating scheme for access hierar-
chies.

– We design and implement a scalable and privacy-preserving access control frame-
work for existing untrusted cloud services. Our framework supports lazy revocation
and access hierarchies.

– We present a signature scheme for Key-Policy Attribute-Based Encryption [22].
Using our signature scheme, users can prove that they own a key that its policy
satisfies with a set of attributes, without revealing their identity or credentials.

– We provide the first open source implementation of cryptographic libraries for
Hierarchical Identity-Based Encryption [6] and Key-Policy Attribute-Based En-
cryption [8] schemes. They are useful beyond the specific cloud storage problem
studied.

Our paper is organized as follows. In Section 2 we introduce our new key-updating
scheme and prove its security. In Section 3 we explain our access control protocol and
discuss its features and security guarantees. Then, in Section 4 we discuss the imple-
mentation details of our cryptographic libraries and access control framework and eval-
uate its performance. In Section 5 we discuss the related work. Conclusions and future
work are given in Section 6.

2 Key Updating Schemes for Access Hierarchies

In this section we present an efficient secure key-updating scheme that supports hi-
erarchies. First, we provide a formal definition for secure key-updating schemes for
hierarchical access. Then, we give a concrete construction of a key-updating scheme
based on the use of attribute-based encryption scheme. Our solution supports both key
revocation and hierarchical delegation of secret access keys. Our secure cloud storage
framework for easy sharing and revocation, described in Section 3, is built based on
those two key properties.

2.1 Background

Lazy revocation, first introduced in Cephues [20], is a technique which reduces the
overhead of revocation at the price of slightly lowered security [23]. When a user’s read
access right on a file is revoked, lazy revocation allows to postpone re-encryption of that

62 S. Zarandioon, D. Yao, and V. Ganapathy

file until the next change. Lazy revocation has been adopted by all majors cryptographic
file systems [12,26,27]. However, it also causes fragmentation of encryption keys in ac-
cess hierarchies. Therefore, a user receiving the most recent key of an access hierarchy
should be able to compute the older keys in order to decrypt files that are not yet re-
encrypted by the most recent key, a capability that is referred to as key regression [21].
Key-updating schemes [12] are cryptographic schemes which support key regression.

Another key management issue that we need to address is related to access hierar-
chies. A user owning access key of a specific hierarchy class should be able to decrypt
all objects belonging to that hierarchy as well as all lower hierarchies. Key manage-
ment schemes for hierarchies generate keys that satisfy this requirement. Key-updating
schemes enable users to move backward in time dimension and decrypt data objects
encrypted by older keys, whereas key management schemes for hierarchies let users
traverse space forward and decrypt data objects encrypted by keys which correspond to
lower hierarchies. Access control protocols that are coupled with folder structure of file
system ([23]) and need support for lazy revocation, require schemes that let the users
simultaneously traverse time backward and space forward. For example, a user holding
the most recent version of an access key for folder /a should be able to decrypt a file
located at /a/b/c which is encrypted by an older key.

In [12], Backes et al formalize key-updating schemes. They also analyze and evalu-
ate existing protocols that support key regression, but none of these protocols support
hierarchies. In [15,16], Blanton et al formalize key management schemes for hierar-
chies, study existing protocols and introduce an efficient protocol for managing keys
in hierarchies. But all of these schemes and protocols are static with respect to time,
as they do not support key-updating/regression. Therefore, none of these schemes are
capable of handling key regression and hierarchies simultaneously.

To our knowledge, the only work on key regression (lazy revocation) in hierarchies
is [23], in which Grolimund et al introduced the concept of Cryptree, a tree constructed
by symmetric and asymmetric cryptographic links. In Cryptree, a user holding a clear-
ance key pointing to a folder can traverse a sequence of cryptographic links to derive
access keys to all of its sub-folders and files. Moreover, the structure of the Cryptree
lets the protocol delay re-encryption of data until the next update; thus supports lazy
revocation. However, for the reasons that we explain in Section 5, the complexity of
required data structure and its high performance cost for large volume of data makes its
implementation on top of existing cloud services unscalable and inefficient.

2.2 Model and Definitions in HKU Scheme

In this section we present a formal definition for Hierarchical Key Updating (HKU)
Schemes and its security. Let T = (V,E,O) be a tree that represent a hierarchical ac-
cess structure. More general access class hierarchies in which partially ordered access
classes are represented by a DAG are studied in [16]. In our work, we are only inter-
ested in a special case where DAG is a tree. Each vertex vi in V = {v0, v1, ..., vn}
corresponds to an access class. v0 is the root and an edge e = (vi, vj) ∈ E implies that
vi class is the parent of class vj .

For example, top secret, secret, confidential, and unclassified form a hierarchy of
access classes, where the root top secret access class is the parent of the secret access

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 63

class. In a more complex access tree, a parent access class may have two or more child
access classes. For example, a root Enterprise access class may have Marketing, Man-
ufacturing, and R & D as its child access classes. We sometimes refer to access class as
class, and use terms node, vertex and access class interchangeably.

O is a set of sensitive data objects, each object o is associated with exactly one access
class V(o). In this model, any subject that can assume access rights at class vi is also
permitted to access any object assigned to a vertex that is a descendant of vi.

The following definitions introduce the concept of time into our model.

Definition 1. The local time at vertex vi is an integer ti that increases (elapses) every
time access rights of a subject to that class is revoked.

Definition 2. The global time associated with node vi is a vector τi = (t0, ..., tj , .., ti)
where tj is the local time of jth vertex on the path from root to vertex vi on the access
tree T .

Two instances of global time are comparable only if the vertices that they belong to
are identical or one of them is the ancestor of the other one; We say τi < τj iff τi and
τj are comparable and all common components of τi are less then the corresponding
components in τj . Similarly, we define comparative operators =, >, ≤, and ≥.

Definition 3. A Hierarchical Key-Updating (HKU) Scheme consists of a root user and
end users. An end user may be a reader, a writer, or both. There are five polynomial
time algorithms HKU = (Init, Derive, Encrypt, Decrypt, Update) defined as follows.

– Init(1k, T) is a randomized process run by the root user which takes as inputs
a security parameter k and an access hierarchy tree T and then generates and
publishes a set of public parameters Pub and outputs the root key Kv0,⊥. It also
initializes the state parameters including the value of local time at each vertex.

– Derive(T,K(vi,τi), vj) is a randomized process run by the root user, reader or
writer which using the private key K(vi,τi) of vi at time τi derives a private key
of target class vj at its current global time τj according to T . Derive computes the
requested key only if vi is an ancestor of vj and τj = τi; otherwise, it outputs null
(⊥).

– Revoke(T, vi) run by the root user, reader or writer, increments the local time ti of
vi by one, updates other state variables, and returns the updated tree T ′.

– Encrypt(T, ok) is a randomized algorithm called by writer that encrypts the data
object ok and returns the encrypted object C.

– Decrypt(K(vi;τi), C) is a deterministic process run by reader which takes a key and
an encrypted object as inputs and returns the corresponding object in plaintext.
This function can decrypt C only if it belongs to the same or a descendant of the
access class that the key belongs to and the time that ok is encrypted at is less than
or equal to τi; otherwise, it outputs null (⊥).

Definition 3 is a generalization of the definition of key-updating schemes in [12] and
the definition of key allocation schemes for hierarchies in [16]. If we assign to T a
tree of depth 1 where its leaves are a set of groups (i.e, remove heirarchies), our def-
inition reduces to a key-updating scheme defined in [12] and if we remove the update

64 S. Zarandioon, D. Yao, and V. Ganapathy

process and the time dimension, our scheme reduces to key allocation scheme for hier-
archies defined in [16]. Intuitively, a hierarchical key-updating scheme is secure if all
polynomial time adversaries have at most a negligible advantage to break the ciphertext
encrypted with the current-time key of a target class, assuming that the adversaries do
not belong to higher (ancestor) target classes in the hierarchy, or possess keys for earlier
time periods. The formal definition of the security model of hierarchical key-updating
schemes is provided in the technical report [32]. In this model the adversary chooses
her target at the beginning of the game and then adaptively queries the scheme.

2.3 AB-HKU Scheme

In this section, we present a concrete construction for HKU scheme called AB-HKU.
This scheme is based on the use of bilinear map and the difficulty of the Bilinear
Diffie-Hellman problem. Our solution is realized on top of the Key-Policy Attribute-
Based Encryption scheme (KP-ABE) [22] and invokes KP-ABE operations including
SETUP ABE, KEYGEN ABE for private key generation, ENCRYPT ABE for data en-
cryption, and DECRYPT ABE for decryption.

– Init(1k, T)

1. The root user runs the SETUP ABE process with 1k as security parameter to
generate ABE public parameters and the master key MK. Publishes the ABE
public parameters as Pubabe.

2. Calls KEYGEN ABE procedure using MK as the secret key and “L0 =
v0” as its policy. Outputs the result as the root key (K(v0,⊥)= KEY-
GEN ABE(MK, L0 = v0)).

3. To each vertex in T adds a local time variable ti initialized to zero.

– Derive(T,K(vi; τi), vj) is run by a user (root user, reader, or writer) with secret
key K(vi; τi) at time τi to obtain the private key for node vj .
If class vj is not a descendant of class vi, or the time τi is not equal to current time
τj associated with vj , then return null. Otherwise, denote (u1, u2, ..., un) as the list
of vertices in the path from vi to vj ; denote (tu1 , tu2 , ..., tun , tvj) on T as the list of
current local time values of intermediate vertices (including vj); and let d represent
the depth of vi.
The user performs the following operations.
1. Construct the access tree T ′ which corresponds to the following Boolean ex-

pression: (Ld.v attribute represents vertex in d-th level, Ld.t represents its cur-
rent local time and ∧ is conjunction operator.)

(L(d+1).v = u1 ∧ ... ∧ L(d+n).v = un

∧L(d+ n+ 1).v = vj) ∧
(L(d+1).t ≤ τu1 ∧ ... ∧ L(d+n).t ≤ τun

∧L(vj).t ≤ τvj) (1)

This Boolean expression restricts access to objects that belong to node vj or its
descendants and are created at current time or before.

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 65

2. Denote the access tree of K(vi,τi) by T . Using the procedure for delegation of
private key in [22], add the access tree T ′ to the root of K(vi, τi), increase its
threshold by one, update and calculate the private parameters associated to the
root according the protocol. In implementation section we provide more details
on this procedure.

3. Output the resulting access tree and parameters as a private key K(vj , τj) for
vj .

– Encrypt(T, ok): Denote vi as the access class that object ok belongs to.
(vi = V(ok)). Denote (v0, u1, u2, ..., un, vi) as vi’s path and τi =
(tv0 , tu1 , tu2 , ..., tun , tvi) as its current time according to T . A writer encrypts ok
as follows.

1. Set the attribute set γ as follows. The attribute set is used as the public key for
encryption.

γ = {L0.v = v0, ..., Ln.v =n, Ln+1.v = vi,

L0.t = tv0 , ..., Ln.t = tun , Ln+1.t = tvi} (2)

2. Use ABE encryption procedure to encrypt ok with attribute set γ and return the
resulting encrypted object. (C = ENCRYPT ABE(Pubabe, γ, ok)).

– Decrypt(K(vi,τi), C). The reader decrypts as follows.

1. If the encrypted object C does not belong to the same access class vi as the key
K(vi,τi) or one of its descendants, or the time when C is encrypted is later than
the time τi when the key is generated, then return null (⊥).

2. Otherwise, run ABE decryption procedure and return its result as output (ok=
DECRYPT ABE(K(vi,τi), C)).

– Revoke (T, vi) is run by a user to increment the local time of vi by one and then
returns the updated tree T ′.)

The correctness of our HKU scheme follows the correctness of the key policy ABE
scheme [22] and is omitted here.

Theorem 1. Assuming the hardness of the Decisional BDH, AB-HKU is a secure hier-
archical key-updating scheme.

Proof. Proof is presented in the technical report [32].

3 K2C Protocol

We describe the application of our hierarchical key-updating scheme in realizing a se-
cure and scalable cloud access control protocol that supports easy sharing and revoca-
tion on hierarchically organized resources. We also analyze the security of our protocol.

66 S. Zarandioon, D. Yao, and V. Ganapathy

3.1 Design Goals

Below we list the design goals of our K2C access control protocol:

– Security: Our protocol must protect the confidentiality and integrity of stored data
against cloud providers and unauthorized end-users. Meaning that the stored data
should be readable for authorized users only and any unauthorized change to the
data should be prevented or detectable.

– Privacy-preserving: Access rights of a specific end-user as well as his usage trends
should not be visible to other users or cloud service providers.

– Efficiency and Scalability: To avoid unjustified cost of re-encryption, the protocol
should support lazy revocation. Also, the complexity of operations should be inde-
pendent of number of data objects and users in the system. This ensures that the
protocol will not affect the scalability of existing cloud services.

– Flexibility: The protocol should allow data owners and end-users to organize and
manage their data in hierarchies similar to conventional file systems. Directories
also represent access class hierarchies, users who have access to a directory/folder
also assume the same access to all files and directories below that directory. Also,
they should be able to grant/revoke part of their access rights to/from other users in
a decentralized and scalable manner.

– Simplicity and Extensibility: Last but not the least, the protocol should be simple
enough to be efficiently implementable on top of existing commercial cloud APIs.

We assume end-users have secure communication channels, limited computation power
and storage required for authenticating each other and performing client-side key dis-
tribution in a synchronous or asynchronous manner.

Security Model. We assume that the root user, representing the data owner, is trusted.
The cloud providers are honest-but-curious (aka semi-honest), who follow the proto-
col and faithfully execute the operations, but may actively attempt to gain additional
knowledge, such as the sensitive data stored in the cloud. An adversary may attempt to
perform unauthorized read or write access against the stored data, or attempt to learn the
identities of readers or writers. For example, end-users may try to perform unauthorized
read or write operations on stored data objects. To perform their attacks, unauthorized
users may use their existing access keys for other objects and categories or cooperate
with other unauthorized users and cloud providers to derive/guess credentials required
to perform unauthorized access. Similarly, cloud providers may try to read or modify
stored data or learn about the identities of the end uers. Cloud providers may collude
with each other or some unauthorized end-users to break the security of K2C. We as-
sume communication channels between participants are secure (e.g., SSL).

3.2 A Signature Scheme for KP-ABE

K2C requires a signature scheme to 1) enable the readers to verify the integrity of
data and ensure that it is produced by an authorized writer, 2) enable the cloud service
providers to validate incoming requests and block unauthorized accesses. However, the
original paper which introduces KP-ABE [22] does not present any signature scheme.
In this section we introduce an attribute-based signature scheme called AB-SIGN which

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 67

enables the verifier to ensure that a signature is produced by a user whose access policy
is satisfiable by a set of attributes without learning the signer’s identity.

Definition 4. AB-SIGN is a signature scheme for key-policy attribute-based encryption
that its signing and verification methods are defined as follows. Let’s say that the signer
has a key K for policy P , and wants to sign message M. The verifier needs to verify
that the signature is generated by a signer whose key policy satisfies attribute set A.

Signing: From K derive a key (K ′) which corresponds to a policy which is the con-
catenation of P and (@S = M) (@S is a reserved attribute for signatures). Send the
derived key to the verifier as the signature.

Verification: Generate a random token and encrypt it using the attribute set A∪{@S =
M} and then decrypt the result using a key which is equal to the signature. If the result
is equal to the original token the signature is valid (i.e. the attribute set A satisfies the
signer’s key policy.)

To prevent an attacker from using the signature method to derive a valid access key,
we need to reserve the attribute ‘@S’ for signature. The security of AB-SIGNscheme in
terms of unforgeability follows immediately from the security of KP-ABE scheme.

3.3 Protocol Description

In this section we provide the details of K2C protocol. The protocol runs between the
root user, end-user (reader or writer), and the cloud providers. The root user may be
a system administrator in the data owner’s organization, who can specify the access
privileges of end-users. The end-users may further delegate their access privileges to
other individuals for easy sharing. We achieve the revocation of privilege by encoding
the validity period in the private keys of users and advancing time with respect to the
target hierarchy or data object. Another advantage of our K2C framework for use in
cloud storage is the support of anonymous access.

As illustrated in Figure 1, K2C requires three repositories: Meta-data Directory,
Data Store and Key-store.

– Meta-data Directory: All meta-data associated with hierarchies and data objects
are maintained in this repository. K2C requires two properties for each object: Read
Access Revision (RAR) and Write Access Revision (WAR). These two properties
play the role of local time in AB-HKU for read and write access, respectively. In
order to compute Read/Write Access Revision Vectors (which correspond to global
time instances in K2C), the cloud provider that hosts Meta-data Directory needs
to provide an API for querying RAR and WAR values of multiple directories in a
single request. All existing cloud-based databases such as Amazon SimpleDB [3],
Microsoft Azure SQL [10], and Google’s AppEngine [5] database (Bigtable [18]))
satisfy this requirement and therefore qualify to host a K2C Meta-data Directory.
For our experiments we use Amazon SimpleDB [3].

68 S. Zarandioon, D. Yao, and V. Ganapathy

Fig. 1. Illustration of all major participants of K2C. Following K2C protocol, end-users can en-
force access control on their own data without fully trusting or relying on the cloud providers.
In K2C, keys are distributed and managed in a distributed fashion. Solid arrows represent access
delegation.

– Data Store: This repository contains the actual content of each data object. Any
cloud key-value based storage system such as Amazon S3 [2] can be used as
K2C Data Store. In K2C, keys are hierarchical path name of data objects and val-
ues are the actual content of corresponding data objects. Cloud key-value storage
providers are tuned for high throughput and low storage cost; these features make
them a good candidate for K2C Data Store2.

– Key-store: All read/write access keys of end-users are kept in their secure local
repository called Key-store.

Initial Setup: To setup K2C, the root user needs to follow the steps listed below:

1. Sign up for cloud services required for hosting Meta-data Directory and Data Store.
2. Run Init procedure according to AB-HKU scheme to generate public parameters

and the master key.
3. Save the master key and public parameters in the root’s Key-store.
4. Share the public parameters with the cloud service providers that support K2C re-

quest authorization.
5. Create an entry in Meta-date Directory that corresponds to the root directory. The

WAR and RAR numbers of the root directory entry are initialized to zero.

Basic Operations: There are four basic operations in our protocol: write, read, dele-
gate, and revoke. Each basic operation leads to calls to Meta-data directory and/or Data
Store. We present the high-level steps involved in these operations below. Other op-
erations such as create/remove/rename for directories and data objects can be defined

2 Note that using key-value storage for Meta-data Directory is not efficient as computing
WAR/RAR vector leads to multiple calls to the cloud storage system.

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 69

Fig. 2. Write operation

similarly. K2C requires that each request be signed by user’s access key for the target
object using our AB-SIGN operation. This requirement enables cloud providers which
support K2C to block unauthorized request. We refer to this property as K2C request
authorization.

– Write: To write into a specific data object, the end-user needs to perform the fol-
lowing steps (See also Figure 2).

1. Retrieve the required write access key from the local Key-store.
2. Query Meta-data directory to get read access revision (RAR) vector of the tar-

get object.
3. Using AB-HKU scheme, encrypt the data by the retrieved RAR vector and its

path.
4. Using AB-SIGN scheme, sign the data by his write access key.
5. Construct a key-value pair where the key is equal to the path of data object and

the value is the encrypted data and corresponding signature. Store the pair in
Data Store.

– Read: To read a specific data object stored using K2C protocol, the end-user needs
to do the following (See also Figure 3). To ensure the data is produced by an au-
thorized writer, the reader needs to validate the corresponding signature using AB-
SIGN signature scheme. Then the reader can decrypt the data using its read access
key and AB-HKUscheme.

70 S. Zarandioon, D. Yao, and V. Ganapathy

Fig. 3. Read Operation

1. Retrieve the required read access key from the local Key-store.
2. Using AB-HKU scheme and the read access key, decrypt the encrypted data.
3. Using AB-SIGN signature scheme, validate the signature to ensure that data is

produced by a user who has the proper write access.
4. Return the decrypted data.

– Delegation: Delegation operation can be run by a user to authorize another user a
subset of his access privileges. It requires three input parameters: the identity of the
delegatee, the resource path, and access type (read/write). The steps required for
this operation are listed below:
1. From the local Key-store, get the access key that matches the target resource

path and access type.
2. Query Meta-date Directory to get the read/write access revision (RAR/WAR)

vector of target resource.
3. Run Derive operation, as defined in AB-HKU scheme, to generate the required

access key.
4. Send the generated access key to the delegatee through a secure communication

channel.
– Revocation: To revoke a user’s access on a specific directory or data object, the

authorized user needs to make a signed request to the Meta-data Directory to in-
crease the corresponding access revision number. To ensure the integrity of access
revision numbers, these entries should be signed by the requester.

3.4 Security Analysis

In this section we state the security guarantees provided by K2C protocol. More detailed
proofs and analysis can be found in our full version [32].

Confidentiality: Our solution ensures that only the users who have the most recent
version of the access key of the data object or one of its ancestor directories can decrypt

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 71

it. The confidentiality of stored data is protected under our protocol because writers al-
ways encrypt the data objects by their path and most recent read access revision (RAR)
vector according to AB-HKU scheme. The cloud provider or other unauthorized users
cannot gain any information that helps them to guess the access key of unauthorized
data objects.

Collusion-resistance: of KP-ABE guarantees that unauthorized users and malicious
cloud service providers cannot collude to guess access key to an unauthorized data
object.

Integrity: The integrity of stored data is preserved. This guarantee is realized by re-
quiring writers to sign the data by their write access key using AB-SIGN scheme. We re-
quire readers to validate writer’s signature to ensure that it is produced by an authorized
writer (i.e. a user with write access to that data object or on of its parent directories). Be-
cause meta-data entries stored in the Meta-data Directory are also required to be signed
by the end-users, any unauthorized change in Meta-data Directory is detectable by the
reader.

Anonymity: The end users are anonymous to each other and to the cloud providers.
The signatures used in the our authorization do not contain any identify information.
During the course of protocol, the end-users do not reveal any information about their
credentials. AB-SIGN signatures bound to the data objects and requests, include only
attributes related to the location and global time of those objects.

4 Implementation and Evaluation

We give our implementation of K2C framework and the required cryptographic li-
braries. We present our experimental results on accessing Amazon cloud storage [2,3]
using K2C framework.

4.1 Key-Policy Attribute-Based Crypto Library

To support lazy-revocation and hierarchies, K2C uses our AB-HKU scheme that is based
on Key-Policy Attribute-Based encryption scheme [22]. But, we were not able to find
any implementation of KP-ABE 3. Therefore, we develop a general KP-ABE crypto-
graphic library and release it as an independent open source project [8]. In this section,
we provide a short overview of this library.

Our library implements the KP-ABE scheme. We also fix a non-trivial limitation ex-
isted in the construction of [22]. KP-ABE is a large universe construction, meaning that
it does not require the attributes to be fixed during the initialization process. However,
the maximum number of attributes should be known in advance – a limitation which is
not desirable in many practical cases. To overcome this limitation, we adopt the random
oracle model [13] and replace function T (X) (used in the Setup phase) by a secure hash
function. This modification also improves the efficiency of the library. Therefore, our
library does not put any limitation on the number of attributes that can be used in the
system. We support numerical attributes and comparisons [14].

3 The open source implementation of Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [14] which was presented in the original paper [14] is available at [9]. However, CP-
ABE is not applicable in our protocol.

72 S. Zarandioon, D. Yao, and V. Ganapathy

In our library, policies are defined recursively and represented using an S-Expression
(LISP-like expression) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

a = v a is a symbolic attribute
(c a v) a is a numerical attribute &

c is a comparative operator
([t | and | or] p1 p2 . . . pn) Composite policy

The first and second types correspond to a simple policy for symbolic and numer-
ical attributes, respectively. The third type represents policies which are composed of
a set of policies (i. e. p1, p2, . . . , pn) proceeded by a threshold. Composed polices get
satisfied only if the number of satisfied polices in that list is more than or equal to
the specified threshold. The threshold can be one of the following three items: an in-
teger threshold t ∈ [1, n], and, or. For example, (and role=manager (> age
18)) is a composite policy which gets satisfied only when the value of attribute role
is equal to manager and the value of the numerical attribute age is greater than 18.
More implementation details are presented in the technical report [32].

4.2 K2C Framework and Performance Evaluation

In this section we present the high-level architecture of K2C framework. We also pro-
vide some experimental results that show its performance in an existing commercial
cloud storage.

Simplicity and extendability are two major design goals of K2C framework.
K2C framework is independent of any specific cloud provider. It has two simple in-
terfaces which abstract away the details of the cloud providers: IDataStore and
IMetadataDirectory. A new cloud service provider can be supported easily by
implementing these interfaces. Out of the box, K2C framework comes with a data store
driver for Amazon S3 and a meta-data directory driver which uses Amazon SimpleDB.
To make it easier for the developers to learn and use our framework, we expose its ser-
vices through a set of APIs which are very similar to the Java APIs for accessing the
file system. The source code is published at [7].

To evaluate the performance of K2C framework/protocol, we used the default drivers
(Amazon S3 [2] data store driver and Amazon SimpleDB [3] meta-data directory driver)
and ran our experiments on a machine with the following configuration: Intel Core 2
CPU, 2.53GHz, 2.90 GB RAM, Microsoft Windows XP 2002 SP2.

Figure 4 shows the time required for users in different access levels to perform read
and write operations against the data objects of size 1KB belonging to directories in
different hierarchical levels. Reported costs for each operation include computational
time required for cryptographic operations (Symmetric and KP-ABE) as well as round
trip time for HTTP calls to the cloud servers. As these diagrams show, users with higher
level access (e.g. the root user) can perform read and write operations more efficiently,
a property which is normally desirable4. Access time increases linearly as the access
level of users decreases. Also this figure shows that access time for both read and write

4 In Cyptree, high-level users have higher access time as they have to traverse longer crypto-
graphic lists to find the access key (See Section 5).

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 73

Fig. 4. Cost of read/write operation on objects which belong to different hierarchy levels per-
formed by users with different access levels. The size of data objects are 1 KB.

Fig. 5. Read/write access time for the root user as the size of data objects increase

operations increases linearly as the hierarchy level of object increases. The reason be-
hind this linear increase is that encryption/deception time in KP-ABE is a function of
number of attributes and the number of attributes associated with data objects linearly
increases as their hierarchy level increases. Another observation is that write operations
are more expensive than reads. This overload for write operations is partly due to an
extra http call to Meta-data Directory required for retrieving the latest RAR vector.

Figure 5 shows the cost of read and write access as the size of data object increases.
Since in our experiments the actual data is encrypted using the symmetric-key encryp-
tion scheme AES (Advanced Encryption Standard) and only the key is encrypted using
KP-ABE, these statistics reflect the time required by AES to encrypt the data as the data
size increases.

5 Related Work

There are two general key management approaches which are used in the existing cryp-
tographic file systems: 1) classic access control list (e.g., [23,24]) requires maintaining a
key list along with each file. This approach supports fine-granularity but is not scalable.
2) grouping files and assigning the same access key to each group (e.g., [25]). This

74 S. Zarandioon, D. Yao, and V. Ganapathy

approach is more scalable but provides coarse-grained access control. This trade-off
makes these solutions unsuitable for clouds where we need a fine-grained and scal-
able access control mechanism. In [31], Shucheng Yu et al introduced a novel approach
which addresses this trade-off by proposing a fine-grained and scalable access control
protocol. Their solution uses lazy re-encryption to statistically reduce the number of re-
encryptions required after access revocation. They use proxy re-encryption (PRE) [17]
to off-load the task of re-encryption to cloud servers. In our solution, we adopt lazy
revocation to eliminate these re-encryptions. In [30], Xiong et al introduce a protocol
for securing end-to-end content distribution when delivery services are involved.

Lazy revocation was first introduced in Cephues [20] to eliminate re-encryption re-
quired for each revocation at the cost of slightly lowered security. Lazy revocation,
which is widely being used in recent cryptographic file systems [25,26,27], requires a
key-updating scheme to support key regression. Key-updating schemes are studied and
formalized in [12]. In [23], Grolimund et al introduced Cryptree which can support ac-
cess hierarchies and lazy revocation simultaneously. However, due to the explicit and
physical dependency of these links, file system operations – especially revocations – re-
quire updating large number of these cryptographic links. For example, the revocation
of write privilege requires updating O(n) keys, where n is the number of data objects
contained in that folder and its sub-folders. Therefore, revocation of write access for a
folder containing many files is relatively slow as all the links that connect to the con-
tained sub-folders and files need to be updated.

Moreover, in Cryptree, since key derivation requires traversing cryptographic links,
key derivation time is a function of distance of data objects to the folder that the user has
access to. Therefore, users with access to high-level folders (e.g. root user) have slower
read access. For a specific user read access time depends on the location of the data
object, but intuitively we expect the read access time to be independent of the location of
the data object. Another limitation of this approach is that Cryptree does not support the
delegation of administrative rights and assumes that granting and revoking access rights
are done by a single administrator, an assumption which is usually unrealistic in the
context of Cloud Storage, as we expect non-centralized administration of data. In this
paper we introduced a scalable key updating scheme for hierarchies which addresses
these shortcomings and enables us to build a cryptographic access control supporting
lazy revocation.

6 Conclusion and Future Work

We presented a novel key-updating scheme that can be used to enhance the scalability
and performance of cryptographic cloud storages by adopting lazy revocation. We also
designed a new digital signature scheme that enables cloud providers to ensure that
requests are submitted by authorized end-users, without learning their identities. Using
our key-updating and signature scheme, we developed, implemented, and evaluated a
scalable cryptographic access control protocol for hierarchically organized data. We
plan to improve the efficiency of K2C, and to enhance our access control protocol by
using proxy re-encryption [11] to off-load key distribution task to the cloud [31]. We
are also investigating application of our key-updating scheme in existing cryptographic
file systems and webtops [33].

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 75

Acknowledgments. The first author would like to thank the help of professors at Bahai
Institute for Higher Education (BIHE [4]), Aidin Behroozi and Gurpreet Singh.

References

1. 104th United States Congress. Health Insurance Portability and Accountability Act of 1996
(HIPPA), http://aspe.hhs.gov/admnsimp/pl104191.html

2. Amazon S3, http://aws.amazon.com/s3/
3. Amazon SimpleDB, http://aws.amazon.com/simpledb/
4. BIHE, http://bihe.org/
5. Google App Engine, http://appengine.google.com
6. HIBE Crypto Library, https://sourceforge.net/projects/hibe
7. K2C Framework, https://sourceforge.net/projects/key2cloud/
8. KP-ABE Crypto Library, https://sourceforge.net/projects/kpabe.
9. Open Source Implementation of CP-ABE, http://acsc.cs.utexas.edu/cpabe/

10. SQL Data Services/Azure Services Platform,
http://www.microsoft.com/azure/data.mspx

11. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. In: NDSS, pp. 29–43 (2005)

12. Backes, M., Cachin, C., Oprea, A.: Secure Key-Updating for Lazy Revocation. In: Research
Report RZ 3627, IBM Research, pp. 327–346. Springer, Heidelberg (2005)

13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications
Security, CCS 1993, pp. 62–73. ACM (1993)

14. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: Pro-
ceedings of the 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE
Computer Society, Washington, DC (2007)

15. Blanton, M.: Key Management in Hierarchical Access Control Systems, 2007. PhD Thesis,
Purdue University (August 2007)

16. Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and Efficient Key Management for Access
Hierarchies. In: Proceedings of the ACM Conference on Computer and Communications
Security (2005)

17. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryptography.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidel-
berg (1998)

18. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. In: Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation, vol. 7,
pp. 205–218 (2006)

19. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J.: Controlling
Data in the Cloud: Outsourcing Computation without Outsourcing Control. In: Proceedings
of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, pp. 85–90. ACM,
New York (2009)

20. Fu, K.: Group sharing and random access in cryptographic storage file systems. Technical
report, Masters thesis, MIT (1999)

21. Fu, K., Kamara, S., Kohno, T.: Key regression: Enabling efficient key distribution for secure
distributed storage. In: NDSS (2006)

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, pp. 89–98. ACM, New York (2006)

http://aspe.hhs.gov/admnsimp/pl104191.html
http://aws.amazon.com/s3/
http://aws.amazon.com/simpledb/
http://bihe.org/
http://appengine.google.com
https://sourceforge.net/projects/hibe
https://sourceforge.net/projects/key2cloud/
https://sourceforge.net/projects/kpabe
http://acsc.cs.utexas.edu/cpabe/
http://www.microsoft.com/azure/data.mspx

76 S. Zarandioon, D. Yao, and V. Ganapathy

23. Grolimund, D., Meisser, L., Schmid, S., Wattenhofer, R.: Cryptree: A folder tree structure
for cryptographic file systems. In: Proceedings of the 25th IEEE Symposium on Reliable
Distributed Systems, pp. 189–198. IEEE Computer Society, Washington, DC (2006)

24. Goh, E.J., Shacham, H., Modadugu, N., Boneh, D.: Sirius: Securing remote untrusted stor-
age. In: NDSS, pp. 131–145 (2003)

25. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable secure file
sharing on untrusted storage (2003)

26. Riedel, E., Kallahalla, M., Swaminathan, R.: A framework for evaluating storage system
security. In: Proceedings of the 1st USENIX Conference on File and Storage Technologies,
FAST 2002. USENIX Association, Berkeley (2002)

27. Stanton, P., Yurcik, W., Brumbaugh, L.: Protecting multimedia data in storage: A survey of
techniques emphasizing encryption. In: IS and T/SPIE International Symposium Electronic
Imaging/Storage and Retrieval Methods and Applications for Multimedia, pp. 18–29 (2005)

28. Takabi, H., Joshi, J.B.D., Ahn, G.-J.: Security and Privacy Challenges in Cloud Computing
Environments. IEEE Security and Privacy 8, 24–31 (2010)

29. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling Public Verifiability and Data Dynam-
ics for Storage Security in Cloud Computing. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

30. Xiong, H., Zhang, X., Zhu, W., Yao, D.: CloudSeal: End-to-End Content Protection in Cloud-
Based Storage and Delivery Services. In: Rajarajan, M., et al. (eds.) SecureComm 2011.
LNICST, vol. 96, pp. 483–492. Springer, Heidelberg (2012)

31. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proceedings of the 29th Conference on Information Commu-
nications, INFOCOM 2010, pp. 534–542. IEEE Computer Society Press, Piscataway (2010)

32. Zarandioon, S., Yao, D., Ganapathy, V.: K2C: Cryptographic Cloud Storage With Lazy Re-
vocation and Anonymous Access. Technical report, Rutgers University. DCS-tr-688

33. Zarandioon, S.: Zaranux, http://zaranux.com/

http://zaranux.com/

	K2C: Cryptographic Cloud Storage with LazyRevocation and Anonymous Access
	Introduction
	Key Updating Schemes for Access Hierarchies
	Background
	Model and Definitions in HKU Scheme
	AB-HKU Scheme

	K2C Protocol
	Design Goals
	A Signature Scheme for KP-ABE
	Protocol Description
	Security Analysis

	Implementation and Evaluation
	Key-Policy Attribute-Based Crypto Library
	K2C Framework and Performance Evaluation

	Related Work
	Conclusion and Future Work
	References

