

Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 96

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK

Muttukrishnan Rajarajan Fred Piper
Haining Wang George Kesidis (Eds.)

Security and Privacy
in Communication
Networks

7th International ICST Conference, SecureComm 2011
London, UK, September 7-9, 2011
Revised Selected Papers

13

Volume Editors

Muttukrishnan Rajarajan
City University London
10 Northampton Square, London EC1V 0HB, UK
E-mail: r.muttukrishnan@city.ac.uk

Fred Piper
Royal Holloway University of London
Egham Hill, TW20 0EX, UK
E-mail: f.piper@rhul.ac.uk

Haining Wang
College of William and Mary
P.O. Box 8795, Williamsburg, VA 23187, USA
E-mail: hnw@cs.wm.edu

George Kesidis
Pennsylvania State University
338J IST Building, University Park, PA 16802, USA
E-mail: kesidis@cse.psu.edu

ISSN 1867-8211 e-ISSN 1867-822X
ISBN 978-3-642-31908-2 e-ISBN 978-3-642-31909-9
DOI 10.1007/978-3-642-31909-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): K.6.5, C.2.2, C.2, D.4.6, E.3, H.4

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On a daily basis, we see cyber attacks getting more powerful than before. Lately
we have witnessed security failures at a host of commercial enterprises like Sony
(their Playstation network and later their Web services) that have made in-
ternational news. Thus, it becomes essential to understand why such systems
fail. Depending on the industrial sector, the company policy, national customs,
laws and regulations, the reaction after a failure varies. Indeed, revelation of
the cyber-theft at Citibank in 1995, made stocks drop. In general, companies,
engineers, individuals, prefer to avoid talking about failures. This is often mo-
tivated by commercial interest, nationalistic reasons, people’s self-esteem, etc.
The resulting overconfidence may have dramatic consequences. The Fukushima
accident seems to have been such an example. Although we often do not have
access to detailed information about why security engineering failed, in the case
of Electronic Passports and E-Voting, we have clear evidence. These examples
will be used to analyze why (information) security engineering fails.

September 2011 Yvo G. Desmedt

Organization

SecureComm 2011 was organized by the School of Engineering and Mathematical
Sciences at City University London, in cooperation with European Alliance for
Innovation (EAI), Italy.

Organizing Committee

General Chairs
Muttukrishnan Rajarajan City University London, UK
Fred Piper Royal Holloway, University of London, UK

Program Chairs

George Kesidis Pennsylvania State University, USA
Haining Wang College of William and Mary, USA

Workshops Chair

Morley Mao University of Michigan, USA

Publicity Chair

Syed Ali Khayam NUST, Pakistan

Panels Chair

Veselin Rakocevic City University London, UK

Demos Chair

Dhiren Patel NIT Surat, India

Exhibits Chair

Theo Dimitrakos BT, UK

Posters Chair

Divya Bansal Punjab Engineering College, India

Local Chair

Steve Furnell University of Plymouth, UK

Publications Chair

Ali Sajjad City University London, UK

VIII Organization

Web Chair

Pramod Pawar City University London, UK

Conference Manager

Anna Sterzi European Alliance for Innovation (EAI), Italy

Technical Program Committee

Ehab Al-Shaer University of North Carolina at Charlotte, USA
Kun Bai IBM T.J. Watson Research Center, USA
Raheem Beyah Georgia Institute of Technology, USA
Kevin Butler University of Oregon, USA
David Chadwick University of Kent, UK
Aldar Chan Institute for Infocomm Research, Singapore
Hao Chen University of California at Davis, USA
Songqing Chen George Mason University, USA
Yan Chen Northwestern University, USA
Mihai Christodorescu IBM T.J. Watson Research Center, USA
Mauro Conti Vrije Universiteit Amsterdam, The Netherlands
Jedidiah Crandall University of New Mexico, USA
Michel Cukier University of Maryland, USA
Tassos Dimitriou Athens Information Technology, Greece
Wenliang Du Syracuse University, USA
Zhenhai Duan Florida State University, USA
Xinwen Fu University of Massachusetts at Lowell, USA
Vinod Ganapathy Rutgers University, USA
Matthew Green Johns Hopkins University, USA
Yong Guan Iowa State University, USA
Peter Gutmann University of Auckland, New Zealand
Chris Hankin Imperial College London, UK
Thorsten Holz Ruhr University Bochum, Germany
Xuxian Jiang North Carolina State University, USA
Loukas Lazos University of Arizona, USA
Adam J. Lee University of Pittsburgh, USA
Jun Li University of Oregon, USA
Qun Li College of William and Mary, USA
Alex Liu Michigan State University, USA
Wenjing Lou Worcester Polytechnic Institute, USA
John C.S. Lui The Chinese University of Hong Kong, China
Ludovic Me SUPELEC, France
Chris Mitchell Royal Holloway University of London, UK
Yi Mu University of Wollongong, Australia
David Nicol University of Illinois at Urbana-Champaign,

USA
Panos Papadimitratos KTH at Stockholm, Sweden

Organization IX

Joachim Posegga University of Passau, Germany
Atul Prakash University of Michigan, USA
Geraint Price Royal Holloway University of London, UK
Radha Provendran University of Washington, USA
Douglas Reeves North Carolina State University, USA
Peter Reiher University of California at Los Angeles, USA
Kui Ren Illinois Institute of Technology, USA
William Robertson University of California at Berkeley, USA
Luca Salgarelli University of Brescia, Italy
Pierangela Samarati Università degli Studi di Milano, Italy
Micah Sherr Georgetown University, USA
Mukesh Singhal University of Kentucky, USA
Angelos Stavrou George Mason University, USA
Paul Syverson Naval Research Laboratory, USA
Patrick Tague Carnegie Mellon University, USA
Xiaofeng Wang Indiana University, USA
Xinyuan Wang George Mason University, USA
Andreas Wespi IBM Zurich Research Laboratory, Switzerland
Susanne Wetzel Stevens Institute of Technology, USA
Mengjun Xie University of Arkansas at Little Rock, USA
Dong Xuan Ohio State University, USA
Danfeng Yao Virginia Tech, USA
David Yau Purdue University, USA
Vinod Yegneswaran SRI International, USA
Heng Yin Syracuse University, USA
Chuan Yue University of Colorado at Colorado Spring,

USA
Xiaolan Zhang IBM T.J. Watson Research Center, USA
Sencun Zhu Pennsylvania State University, USA
Andrea Zisman City University London, UK
Cliff Zou University of Central Florida, USA

Steering Committee

Peng Liu (Chair) Pennsylvania State University, USA
Imrich Chlamtac Create-Net, Italy
Andreas Schmid Novalyst, Italy

Table of Contents

Network Intrusion Detection

Designing Scalable and Effective Decision Support for Mitigating
Attacks in Large Enterprise Networks . 1

Zhiyun Qian, Z. Morley Mao, Ammar Rayes, and David Jaffe

An On-Line Learning Statistical Model to Detect Malicious Web
Requests . 19

Harald Lampesberger, Philipp Winter, Markus Zeilinger, and
Eckehard Hermann

Secure Configuration of Intrusion Detection Sensors for Changing
Enterprise Systems . 39

Gaspar Modelo-Howard, Jevin Sweval, and Saurabh Bagchi

Anonymity and Privacy (I)

K2C: Cryptographic Cloud Storage with Lazy Revocation and
Anonymous Access . 59

Saman Zarandioon, Danfeng (Daphne) Yao, and Vinod Ganapathy

Analyzing the Gold Star Scheme in a Split Tor Network 77
Benedikt Westermann, Pern Hui Chia, and Dogan Kesdogan

Location Privacy and Attacker Knowledge: Who Are We Fighting
against? . 96

Rinku Dewri

Wireless Security (I)

Insecurity in Public-Safety Communications: APCO Project 25 116
Stephen Glass, Vallipuram Muthukkumarasamy,
Marius Portmann, and Matthew Robert

Behavioral Mimicry Covert Communication . 134
Seyed Ali Ahmadzadeh and Gordon Agnew

Defense against Spectrum Sensing Data Falsification Attacks in
Cognitive Radio Networks . 154

Chowdhury Sayeed Hyder, Brendan Grebur, and Li Xiao

XII Table of Contents

System Security

On Detection of Erratic Arguments . 172
Jin Han, Qiang Yan, Robert H. Deng, and Debin Gao

SA3: Automatic Semantic Aware Attribution Analysis of Remote
Exploits . 190

Deguang Kong, Donghai Tian, Peng Liu, and Dinghao Wu

Time-Traveling Forensic Analysis of VM-Based High-Interaction
Honeypots . 209

Deepa Srinivasan and Xuxian Jiang

Anonymity and Privacy (II)

Optimistic Fair Exchange of Ring Signatures . 227
Lie Qu, Guilin Wang, and Yi Mu

Efficient U-Prove Implementation for Anonymous Credentials on Smart
Cards . 243

Wojciech Mostowski and Pim Vullers

Multi-party Private Web Search with Untrusted Partners 261
Cristina Romero-Tris, Jordi Castellà-Roca, and Alexandre Viejo

DNS and Routing Security

v -CAPS: A Confidentiality and Anonymity Preserving Routing
Protocol for Content-Based Publish-Subscribe Networks 281

Amiya Kumar Maji and Saurabh Bagchi

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 303
Shimrit Tzur-David, Kiril Lashchiver, Danny Dolev, and Tal Anker

Unilateral Antidotes to DNS Poisoning . 319
Amir Herzberg and Haya Shulman

Key Management

Security Analysis of Leap-of-Faith Protocols . 337
Viet Pham and Tuomas Aura

Secure and Practical Key Distribution for RFID-Enabled Supply
Chains . 356

Tieyan Li, Yingjiu Li, and Guilin Wang

Towards a Deterministic Hierarchical Key Predistribution for WSN
Using Complementary Fano Plane . 373

Sarbari Mitra, Ratna Dutta, and Sourav Mukhopadhyay

Table of Contents XIII

Wireless Security (II)

Context-Related Access Control for Mobile Caching 389
Zhi Xu, Kun Bai, Sencun Zhu, Leslie Liu, and Randy Moulic

Anonymity for Key-Trees with Adaptive Adversaries 409
Michael Beye and Thijs Veugen

Short Papers

Analyzing the Hardware Costs of Different Security-Layer Variants for
a Low-Cost RFID Tag . 426

Thomas Plos and Martin Feldhofer

Preventing Secret Data Leakage from Foreign Mappings in Virtual
Machines . 436

Hanjun Gao, Lina Wang, Wei Liu, Yang Peng, and Hao Zhang

Winning with DNS Failures: Strategies for Faster Botnet Detection 446
Sandeep Yadav and A.L. Narasimha Reddy

Trading Elephants for Ants: Efficient Post-attack Reconstitution 460
Meixing Le, Zhaohui Wang, Quan Jia, Angelos Stavrou,
Anup K. Ghosh, and Sushil Jajodia

Privacy-Preserving Online Mixing of High Integrity Mobile Multi-user
Data . 470

Akshay Dua, Nirupama Bulusu, and Wu-chang Feng

Symbolic Analysis for Security of Roaming Protocols in Mobile
Networks (Extended Abstract) . 480

Chunyu Tang, David A. Naumann, and Susanne Wetzel

CloudSeal: End-to-End Content Protection in Cloud-Based Storage
and Delivery Services . 491

Huijun Xiong, Xinwen Zhang, Wei Zhu, and Danfeng Yao

Call Behavioral Analysis to Thwart SPIT Attacks on VoIP Networks . . . 501
Hemant Sengar, Xinyuan Wang, and Arthur Nichols

T-CUP: A TPM-Based Code Update Protocol Enabling Attestations
for Sensor Networks . 511

Steffen Wagner, Christoph Krauß, and Claudia Eckert

Build and Test Your Own Network Configuration . 522
Saeed Al-Haj, Padmalochan Bera, and Ehab Al-Shaer

XIV Table of Contents

PP2db: A Privacy-Preserving, P2P-Based Scalable Storage System for
Mobile Networks . 533

Manuel Crotti, Diego Ferri, Francesco Gringoli, Manuel Peli, and
Luca Salgarelli

NetFlow Based Network Protection . 543
Vojtech Krmicek and Jan Vykopal

Author Index . 547

Designing Scalable and Effective Decision Support
for Mitigating Attacks in Large Enterprise Networks

Zhiyun Qian1, Z. Morley Mao1, Ammar Rayes2, and David Jaffe2

1 University of Michigan, Ann Arbor, MI 48105, USA
{zhiyunq,zmao}@umich.edu

2 Cisco Systems, Inc. San Jose, CA 95134, USA
{rayes,djaffe}@cisco.com

Abstract. Managing numerous security vulnerabilities has long been a difficult
and daunting task especially due to the complexity, heterogeneity, and various
operational constraints of the network. In this paper, we focus on the task of
mitigating and managing network-device-specific vulnerabilities automatically
and intelligently. We achieve the goal by a scalable, interactive, topology-aware
framework that can provide mitigation actions at selectively chosen devices. The
intuition behind our work is that more and more network devices are becoming
security-capable so that they can be collectively used to achieve security goals
while satisfying certain network policies.

The intelligence utilizes integer programming to optimize a quantifiable ob-
jective conforming to the policy of a given network. An example would be to find
the minimum number of network devices to install filters to effectively protect
the entire network against potential attacks from external untrusted sources. The
constraints of the integer programming are mainly based on the network topology
and settings of vulnerable devices and untrusted sources. Our novel implementa-
tion uses an iterative algorithm to scale to networks of tens of thousands of nodes,
and we demonstrate the effectiveness of our framework using both synthetic and
realistic network topologies. Besides scalability, our tool is also operationally
easy to use by enabling interactivity to input additional constraints during run-
time.

Keywords: vulnerability management, optimization, integer programming.

1 Introduction

With the increasing complexity of the Internet, enterprise networks have grown in both
size and complexity, so have associated network devices which not only perform packet
routing and forwarding but are also equipped with network management and security
functionalities such as packet filtering. These devices can act as firewalls to partition the
network into distinct groups and prevent intrusions by filtering unwanted traffic based
on attributes such as source/destination IP address, source/destination port, TTL values,
etc. These can provide intermediate or temporary solutions to defend the network, for
instance, by limiting access to potentially vulnerable services only to trusted/valid IPs
through the use of ACLs (Access Control List).

Given the broad range of security vulnerabilities in existing networks ranging from
buffer overflow, code injection [1] to denial of service [2], it may not be sufficient to

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 1–18, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

2 Z. Qian et al.

rely on simple firewalls. However, many of such vulnerabilities can be mitigated at the
network level due to significant advance in network security technology manifested in
devices such as Network Intrusion Detection System (NIDS) and Network Intrusion
Prevention System (NIPS).

If a network device, e.g., Cisco Intrusion Prevention System (IPS) device [3], has
advanced Deep Packet Inspection (DPI) capability, packet filters can be set up based
on payload. They are capable of detecting and preventing a variety of intrusions. For
example, the DNS Implementations Insufficient Entropy Vulnerability can be mitigated
by installing a signature on the DPI-capable device to detect a DNS flood possibly
leading to DNS cache poisoning, reflection, or amplification attacks [4].

Note that network level defense suffers from the shortcoming by assuming where
attacks can enter the network. Thus our proposed framework shares the same assump-
tion, revealing the difficulties of fully defending against internal attacks. Nevertheless,
network level defense complements well other types of defense such as host-based
intrusion detection system. The alternative of applying a patch to fully fix the vulnera-
bility may not be immediately adopted because of several reasons. First, a patch for the
vulnerable software may not be available. Second, the patch may not be fully tested and
may introduce unwanted side-effects. Finally, applying the patch may require rebooting
the device, introducing network disruption. Since the basic firewall capability is built-in
for virtually every modern router and switch (e.g., Access Control List), various choices
with different tradeoffs exist in terms of how to temporarily protect the network.

For those vulnerabilities that cannot be prevented at the network level, applying the
patch directly to the vulnerable software is preferred since patching only incurs one-
time overhead and provides the best protection. However, considering the number of
devices in the network that are potentially very diverse (as shown in the next section),
knowing what to patch first without causing much disruption can be very challenging,
let alone consider the case when the options of patching vs. network-level defense are
both available. Finding the best strategy considering various tradeoffs can be a daunting
task. For that purpose, we have developed a framework using integer programming
that considers various tradeoffs and makes optimal suggestions on which routers to
reconfigure/patch to prevent intrusions based on the topology of the network and
policies/preference of network/sys admin. In what follows, we will use the term filter as
a general term for network-level defense.

Our work is quite applicable as large networks today often deploy DPI capable
security systems not only at a few external gateways but also internally to defend against
internal threats. Furthermore, it is the trend that more network devices will have such
security capabilities built-in. There is however no prior work to thoroughly analyze how
to plan or utilize these resources wisely. More specifically, decision has to be made to
determine which devices and what operations are to be performed to address known
vulnerabilities while minimizing overhead without compromising security protection.
The overhead includes management complexity, as well as performance penalty intro-
duced by the size of DPI signatures or firewall rules [5].

We develop a prototype framework to help network/sys admin manage security vul-
nerabilities at the network level by integrating two main primitive operations – filter and
patch. Our novel iterative implementation allows the system to easily scale to networks
of thousands of network devices. Furthermore, we build operational interactivity into

Decision Support for Mitigating Attacks in Large Enterprise Networks 3

the design to facilitate constraint modification during run time. As with any model-
based approach, the guarantees offered depend on the model accuracy. Despite the
simplicity of the abstraction used in our model, it is sufficient for our purpose as
shown later. Furthermore, our approach has the benefit of being independent of low-
level implementations, e.g., how to configure the filtering rules. Our framework also
complements existing work in formal analysis [6] to ensure the correctness of rule
configurations.

The paper is organized as follows. §2 motivates our work by revealing the hetero-
geneity and complexity of real networks. §3 introduces our framework. §4 then focuses
on how we translate the security management problem into an optimization problem
illustrated using a simple example. We evaluate our tool against several real networks
to demonstrate its effectiveness in §6. §7 describes several related work. Finally we
conclude with discussions in §8 and §9.

2 Network Device Diversity in Real Networks

To motivate the need for a framework to deal with complex network goals and con-
straints, we first want to understand how diverse real networks are. We leverage the
inventory data from Cisco’s remote router management system (formally known as
Cisco Inventory and Reporting or IR [7]). In a nutshell, Cisco IR allows Cisco to
remotely manage the network of a company that chooses to use the service (many big
companies from different industrials use the service).

Interestingly, from these real networks, we found there are many different versions
of operating systems running on their network devices (e.g., shown in Figure 1). The Y-
axis is # of different IOS version

of devices/chassis which indicates the degree of variety of the network
devices. The X-axis is different organizations whose networks are managed by Cisco’s
Inventory Reporting application. The number of devices for each of the organizations
range from hundreds to a thousand. Surprisingly, the most diverse network has more
than 180 different OS versions. This many different OS versions cause complex many-
to-many relationships between OS versions and corresponding vulnerabilities as shown
in Table 1, securing the entire network taking into account all OS versions and device
vulnerabilities in an optimized fashion is quite challenging. Furthermore, some of
the vulnerability may be more critical than others, some incur more overhead (e.g.,
downtime). The surprisingly diverse and complex network devices motivate the need
to mitigate and manage their vulnerabilities automatically and intelligently. To ensure
practical relevance, we design our framework to handle multiple vulnerabilities, allow-
ing users to specify these in a quantifiable metric.

3 The Framework

In this section, we first describe the high-level framework and the building blocks to
support our objective of providing intelligent attack mitigation decision support. As
example mitigation support of interest to network/sys admin could be “finding the
minimum number of network devices to install filters to prevent attack X”. This work
is based on the observation that many of the security management problems can be

4 Z. Qian et al.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Bar graph for No. of IOS version per chassis

Index

N
o.

 o
f I

O
S

 v
er

si
on

 p
er

 c
ha

ss
is

Fig. 1. The number of unique OS version per chassis in different real networks

Table 1. An example of multiple vulnerabilities on various versions of Cisco IOS

�����������IOS version
Vulnerability ID

1 2 3 4

11.0(11)BT x x
12.0(10)ST x x x x
12.0(11)S4 x x

modeled as optimization problems. We present our simple and elegant method based
on integer programming to help solve this class of problems.

Our framework is designed to be built on top of existing network information
including network topology, configuration files of the network devices, the security alert
data and the network/sys admin’s objective and requirements. We describe the inputs
below, also illustrated in Figure 2.

Inventory and vulnerability information contains data such as device type and
running services (including PCs and routers/switches). IT departments in companies
often track a subset, if not all, of such information already. For instance, Cisco offers
remote router management that tracks the inventory and vulnerability information of all
the routers. The information can be automatically collected using both open source
and commercial tools [8, 9]. As an open standard, Open Vulnerability Assessment
Language (OVAL) [9] is an XML-based language for specifying machine configuration
tests. OVAL-compatible scanners can be used to gather vulnerability information of the
devices given OVAL definitions. For network devices, the network/sys admin typically
runs the scanner via SNMP to collect the device info as well as the OS version and its
patch level. We ran the similar test on our local network which has several hundreds of
network devices and it takes only less than a minute to finish.

Security alerts contain vulnerability information for software on different platforms
(both PCs and routers/switches) and provides the basic prevention or detection rec-
ommendations. For example, the alerts may disclose whether a patch is available for
a particular piece of software. Such information or service is published by various
vendors such as Cisco Intellishield [10]. For instance, we can easily tell, according to the
security alert service, that the Multiple SNMPv3 Implementations Hash-Based Message
Authentication Code Manipulation Vulnerability can be mitigated by either applying
patches, configuring ACLs, or installing IPS signatures on DPI-capable devices.

Decision Support for Mitigating Attacks in Large Enterprise Networks 5

Fig. 2. Our framework for making attack mitigation suggestions

Network Topology. Typically, this information is maintained by IT department already.
If not, there are techniques to reconstruct layer-three topology based on their IP
addresses [11] from router configuration files. The topology information can also be
obtained by probing the network [8, 11], typically, by real network management tools
such as NetMRI [12].

Objective is used to describe the network-dependent properties that can either be
specified by the network/sys admin or inferred automatically discussed later.

Here we assume that different kinds of attack mitigation building blocks can be used
on each network device depending on its unique capability:

– Configure the ACL (Access Control List) to guard against certain (untrusted) IP
range and/or ports.

– Configure the firewall to stop unwanted traffic.
– Install an appropriate packet filter based on signatures for identifying malicious

payload if the device is IDS or IPS-enabled.
– Apply the patch on the devices or the end-hosts.
– Other network device built-in capabilities such as IP Source Guard enabled on

many Cisco devices.

4 Problem Formulation - Optimization

From the input of the framework, we can extract the network settings, the vulnerable
nodes (PCs or routers/switches), and more importantly, the goals and constraints. For
example, network/sys admin may want to balance the number of filtering rules on a
particular router (due to processing overhead) and the overall number of interfaces to
be reconfigured (due to management overhead). The constraint can be, for example,
to protect all of vulnerable nodes or to protect only nodes with the most severe vul-
nerability. Based on the problem requirement, it is natural to cast it as an optimization
problem which we can model using integer programming. The reason for this choice is
that integer programming is not only very simple and intuitive to use, but also provides
a small and well-defined interface, thus allowing various Integer Programming Solvers
to be optimized separately. We will illustrate how these variables are defined and how
to use different objective functions and constraints to solve several types of realistic
security management problems.

6 Z. Qian et al.

Note that our framework aims to provide intelligent suggestions for various security
management problems. More specifically, the framework supports filtering and patch-
ing decisions based on various constraints/tradeoffs for multiple vulnerabilities.

4.1 Overview

Variables. For each interface in the network, we define a binary integer variable xi,
which can either be 0 or 1 indicating whether this interface is configured with a filter (for
normal switch/router) or a signature (for NIDS/NIPS). Alternatively, a variable can be
defined for each node (PC or switch/router) rather than an interface indicating whether
a node has filters installed (regardless of the interfaces). Similarly, for each node, we
define a binary integer variable yi which indicates whether this particular node is to be
patched.

Note here we can omit a variable or always assign the variable to zero if a network
device or interface does not support the basic mitigation support (e.g., an older version
of router without ACL support). To address multiple vulnerabilities, we define different
sets of variables x

(k)
i , x

(k)
i+1 etc. for the kth vulnerability. In comparison, we also

define a special patch variable yi. Since patching one node usually eliminate all the
vulnerabilities under consideration, either all k vulnerabilities are protected by filters or
the node is patched suffices the security requirement. In the following discussions, any
variables defined will be a binary integer variable unless otherwise specified.

Objective function can express many different goals but with the limitation that it
has to be linear function of the variables of the form

∑
i aixi. Despite this apparent

limitation, it is sufficient to solve many of the security management problems. For
example, the objective function could be

∑
i xi which is the total number of interfaces

that are configured to install filters or NIDS/NIPS signatures. The goal would be to
minimize this value.

Constraint is of the form
∑

i aixi <= b where ai and b are constants. A sample
constraint would be defined as x1 + x2 + x3 + y1 >= 1 where x1 is an untrusted
interface and x3 is an interface that belongs to a vulnerable device y1. This constraint
means that there has to be at least one filter along this path to protect the vulnerable
device or the device can be patched by assigning variable y1 to 1. If there is no patch
available yet for the vulnerability or due to other business reasons (e.g., downtime), we
can simply remove the variable y1.

4.2 An Example

A simple example that illustrates how integer programming can be set up is shown
in Figure 3. We do not consider patch in this example for simplicity. The topology
consists of a set of routers (from x1 to x7) and a set of servers that are vulnerable to
a newly discovered vulnerability in an enterprise network. Assuming that the operator
prefers not to simply patch these servers due to reasons such as possible downtime to
their customers, so we remove all the patch variables yi. The alternative is to install a
corresponding signature for this vulnerability to filter malicious incoming packets on the
routers (or any other mitigation building blocks such as ACLs), assuming the signature
is available. The question is where to install such filters. A simple solution would be to

Decision Support for Mitigating Attacks in Large Enterprise Networks 7

Fig. 3. Example 1 - topology

install it on every gateway (x1, x2 and x3), but it is not an optimal solution in terms of
the number of devices involved (assuming a desirable goal is minimal complexity).

A better strategy is to install the filters on x4 and x5 only. This optimal solution can
be found by solving the corresponding integer programming problem that is translated
from the current network setting (network topology, untrusted source interfaces and
vulnerable nodes). Below are the definitions of objective functions and constraints for
this example.

Objective Function. Since we are trying to minimize the number of nodes that are
installed with filters, the objective function is defined as

∑7
i=1 xi.

Constraints:
x1 + x4 + x6 >= 1
x1 + x4 + x7 >= 1
x2 + x4 + x6 >= 1
x2 + x4 + x7 >= 1
x2 + x5 >= 1
x3 + x5 >= 1
xi >= 0 for each 1 <= i <= 7

We can easily get the answer from this integer programming setup: x4 = x5 = 1,
xi = 0 for i �= 4 and i �= 5. Sometimes, however, the number of filters on x4 and x5

may be too large so that the network/sys admin may want to avoid using them. This
can either be solved by setting a different objective function (§4.3) or allow the user to
interact with the tool and provide feedback to the tool (§6.3).

4.3 Objectives

Network/sys admins may specify different kinds of objective functions that they want to
optimize based on a given set of constraints. Here we describe some common objective
functions of interest:

Minimal involvement - minimum number of network device configuration changes.
The objective function is defined as

∑
i xi where xi is the variable for each node

indicating whether a particular node has been configured for filters as discussed before.

8 Z. Qian et al.

Note here once the node is configured, then it can be applied to any number of interfaces
on that device without additional cost in our formulation. The reason for this policy is
that network operators may want to involve smallest number of devices to defend their
network for simplicity or management overhead considerations.

Minimal management complexity - minimum amount of management complexity
imposed. The objective function is defined as

∑
i(((ni + 1)

2 − ni
2)× xi)where (ni+

1)2 − ni
2 is the amount of management complexity increased by adding a new ACL

entry on an interface, ni as the number of ACL entries for the corresponding interface
and n2

i is the management complexity of a given interface where n is the number of
entries of ACLs configured. The incentive for this policy is that due to complex ACL
matching rules, a large number of ACL entries are known to be difficult to manage.

Minimal number of devices involved - minimum number of devices that are
either to be configured for filters or patches. The objective function is defined as∑

i,j x
(j)
i + α

∑
m ym, where x

(j)
i is the variable for node i and vulnerability j

indicating whether this node has been configured for filters to prevent vulnerability
j, ym is the variable for node m indicating whether this node is to be patched (multiple
real patches for different vulnerabilities are combined into this single variable). α is the
constant coefficient which balances the choice between installing filtering and patching.
Normally it is larger than the cost of installing filters. However, as previously stated,
if patching one node can eliminate the need for filters on many nodes, then it may
be a preferred choice. This is the case given multiple vulnerabilities in one or more
nodes, patching them obviates any other filters. In fact, modern routers tend to have
multiple vulnerabilities due to their complexities [13]. §2 describes how to set up the
constraints for multiple vulnerabilities and patch operation. We can also define the
objective function in terms of interfaces instead of nodes.

Minimal network performance overhead - minimize possible throughput and
latency performance overhead imposed by installing filters. The idea is that although
most network devices support ACL or firewall rules, they come with a cost. Even
for modern devices where hardware support has been widely applied to optimize the
ACL or firewall rules, for example, by using Content-addressable memory (CAM),
the throughput can drop significantly [14] when the number of ruleset exceeds certain
threshold (depending on vendors and models). The same also applies to DPI devices.
As a result, the objective function can be defined as

∑
i ki where ki is defined based on

the number of existing filters (denoted by ni) on interface i. ki = 0 when ni <= s and
ki = xi

j + ni − s when ni > s.
Intuitively, the objective function captures the performance penalty imposed on each

interface due to filters and the overall impact. Note that ki = 0 when ni <= s is
approximated because s is relatively larger than the number of filters to be placed
on a single interface. Typical s for modern routers is in the order of hundreds. An
alternative objective function would be to minimize max (ki) because usually the
overall network performance is determined by the bottleneck component. This policy is
to help eliminate the scenario where filters are installed only on few core routers which
may deeply impact the network performance.

Note that these objective functions can be combined to achieve a balance between
different goals. Here in many cases the cost of placing filter is to be set identically
for simplicity. However, we do offer some simple heuristics on how the cost can be

Decision Support for Mitigating Attacks in Large Enterprise Networks 9

selected. For example, a network device with high capability and low overhead for
installing filters should generally be considered low cost. Another example is that when
the number of existing filters on the device is already large, it should be considered
high cost. Further, we allow the users to tune the result in an interactive fashion which
provides much better usability as shown in § 6.3.

4.4 Constraints

Below are some examples of useful constraints.

Installing Filters to Protect Vulnerable Nodes. For each vulnerable node j and
untrusted node i, enumerate all possible paths from i to j. For each path, consider
the constraint xi + .. + xj >= 1 where each variable can be the variable for the node
or the interface, depending on the problem setup. If this constraint is satisfied, then a
vulnerable node is guaranteed to be protected on this particular path (since at least one
interface/router along the way will be configured to filter malicious packets). Similarly,
we can apply this for every vulnerable node and untrusted node pair to ensure global
safety. There are variants where one can specify the constraint to be xi + ..+ xj >= 2
to increase defense redundancy.

Filters or Patch. Given a particular vulnerability for which a patch is available, a
vulnerable node j and an untrusted node i, enumerate all possible paths from i to j.
For each path, consider the constraint xi+ ..+xj + yj >= 1 where xi to xj can be the
variables for the node or the interface. yj is the additional variable (defined in objective
functions) indicating whether this node will be patched. This constraint will be satisfied
either when there is a filter along the path or it is patched. Note that in practice, we might
need several different patches to be installed for diverse vulnerabilities, but generally
we consider them logically as one aggregate patch in our abstraction. Exceptions are
made when some vulnerabilities have corresponding patches but some do not. We can
also support this case by partitioning the vulnerabilities into patchable ones and un-
patchable ones, as discussed in §4.3 and §4.4.

Latency Constraint. For simplicity, we can model the latency constraint using filtering
rules. Intuitively, with more rules, the router needs to spend more time processing them.
For a beginning node i and an ending node j on a path, consider the constraint x(1)

i +

.. + x
(1)
j + x

(2)
i + ... + x

(2)
j + ... + x

(n)
i + ... + x

(n)
j <= c, where each x

(k)
l is the

variable defined for each interface along the path, assuming that x(k)
l = 1 is equivalent

of adding one filtering rule on an interface. c is a constant describing the maximum
number of increased filtering rules allowed. x(k)

i + ...+ x
(k)
j is the number of filtering

rules added for kth vulnerability along the path from node i to node j. Obviously,∑
k x

(k)
i + ...+ x

(k)
j is the overall filtering rules added for the path.

5 Implementation

The Integer Programming Solver we use is CPLEX-11.0 [15]. We first implement our
tool in a brute-force, naive manner, by calculating all possible constraints through the

10 Z. Qian et al.

Input Parser Constraint Generation IP Solver Verifier

Network topology

Network setting

Problem input
Constraints Outcome

YES

NO

Fig. 4. Logic flow of iterative implementation

x1 x2 x3

x4

x5

x6

Fig. 5. An example topology that shares common path

enumeration of all paths between untrusted node and vulnerable node. The problem is
that when the graph is dense enough, the number of paths between two nodes could
be exponential with respect to the number of nodes. We may argue that most real
topologies are usually not dense graphs, but many large networks usually have redun-
dant links/backup nodes to provide availability and failure resilience. To address this
problem, we have proposed the novel implementation that uses an iterative approach to
incrementally add constraints to reduce the search space for all possible paths between
two nodes. Further, the iterative implementation produces the same optimal result as
the naive implementation.

Formally, our problem is min cTx, under a set of constraints I . Note that the size of I
can be very large. We propose to iteratively add a subset of I and generate a temporary
result for the subset of constraints. The hope is that the outcome computed based on
the subset of I will satisfy the ultimate constraint that all of the vulnerable nodes are
protected before all of the constraints in I are added. It is illustrated in Figure 4.

This approach is based on the following observations:

1. We may not need all the constraints in I to compute the optimal solution because
there are many redundant constraints. It is unnecessary to go through all of them. For
example, x1 + x2 + x3 >= 1 is redundant if there is a constraint x1 + x2 >= 1.
These cases should be handled automatically by standard linear programming or integer
programming solver. However, there are many other constraints that can share common
variables while neither one of them is redundant. See Figure 5 as an example, there are
two paths from x1 to x6 whose corresponding constraints look like x1+x2+x3+x4+
x6 >= 1 and x1 + x2 + x3 + x5 + x6 >= 1. They share four common variables. It
is highly likely, although not always the case, that one satisfied constraint will lead to
others being satisfied as well. In real networks, it is not uncommon that several paths
share common devices or links. By iteratively adding constraints (in a certain order),
we are able to take advantage of such properties.

2. It is relatively easy to verify whether a given set of filters and patch operations will
protect all vulnerable devices. This allows us to quickly iterate several times. To check
if all vulnerable devices are protected, we perform a breadth-first search in the graph
from the untrusted nodes to the vulnerable nodes. The search stops when it encounters
a filter or the reached vulnerable node on the edge will be patched.

3. The ordering of added constraints can be determined relatively easily – first add the
ones that are less likely to be redundant. Specifically, we pick those shortest attack paths
to be the constraints. In general, fewer variables result in less redundancy. If a constraint

Decision Support for Mitigating Attacks in Large Enterprise Networks 11

Algorithm 1. The iterative algorithm

Initialization: I ′ = {},
filter set F0 = {},
patch set P0 = {},
objective function f .

repeat {iteration i from 0 to ...}
1. Given Fi and Pi, compute the set of shortest attack paths and its corresponding
Ii based on the topology.
2. I ′ = I ′ ∪ Ii.
3. Run the IP solver for objective function f under constraints I ′, get the solution
Fi+1 and Pi+1.

until Fi+1 and Pi+1 protects all vulnerable nodes

with fewer variables is satisfied, the constraints with more variables that share common
variables are also likely satisfied.

Formally, the algorithm works as shown in Algorithm 1. It is easy to see that when
we select a set of constraints, it limits the search space of the IP solver. The complete
set of constraints I will produce the smallest search space. Given a subset of I , we
essentially enlarge the search space for the IP solver.

We illustrate the iterative algorithm in Figure 6. The oval here represents the search
space of corresponding constraint set. Initially, the search space of the constraint set
I ′′ is generated for the first iteration and then I ′ is generated in the second iteration.
Suppose the initial search space by I ′′ is too large and causes an incorrect solution
(i.e., some nodes will not be protected), while the search space by I ′ is smaller and
the solution can be found within the same range, then there is no need to go to the
next iteration and use constraints I to re-compute. The reasoning is that if we found
a minimum value in a larger search space (suppose the objective is to minimize), it
is guaranteed that we can only find the same minimum or bigger value in a smaller
search space too. Since we also check if the result in larger search space satisfies all the
constraints, a satisfying result can guarantee that the same minimum value can be found
in the final smaller search space.

Note that we are able to approach a good subset quickly and wisely by adding the
constraints that are represented by shortest attack path in each iteration. It is essentially
an optimistic method by assuming a smaller number of constraints are needed to find
the optimal solution which in reality is often the case. By reducing the exponentially
large number of constraints, the execution time is significantly improved shown in §6
where most cases take 2 to 5 iterations only.

5.1 Correctness Verification

Note that by the above reasoning, the iterative algorithm is equivalent to the naive
approach. To further verify the correctness of our implementation, we ran more than
100 tests up to hundreds of nodes to check that the results generated by naive imple-
mentation indeed matches the results generated by the iterative algorithm.

12 Z. Qian et al.

 I’’ I’I

Incorrect solution

1st iteration
2nd iteration

Last iteration

Correct solution

Fig. 6. Illustrating why results computed under a subset of the complete constraint set I are the
same as the one under I

6 Evaluation

We describe the evaluation of our framework using both realistic and synthetic network
data.

6.1 Real Network Based Evaluation

We have evaluated our tool for a small real network, as shown in Figure 7. The problem
setting is as follows (based on a real topology and vulnerabilities): In this network,
each node is a router. Node 15 - 18 and 19 - 22 are the untrusted nodes (For simplicity,
we do not consider internal nodes as potentially untrusted), and nodes 1 and 2 are the
vulnerable nodes. These two vulnerable nodes are installed with different OS versions
on the router with a different set of vulnerabilities. Node 1 has vulnerability 1 while
Node 2 has vulnerability 1 and 2. All of the vulnerabilities can either be patched or
temporarily protected by installing filters. The cost of patch operation is set to be 3
here. The variables are defined in terms of the interfaces visible in the figure.

Our first attempt to set up the problem is to only consider installing filters. Thus the
objective function can be setup as:∑

i

x
(1)
i +

∑
i

x
(2)
i

where two vulnerabilities are considered together in the objective function.
Alternatively, we can examine each vulnerability independently. These two ap-

proaches yield the same solution since the variables in different set of constraints for
each vulnerability happen to be disjoint. We first consider vulnerability 1.

The goal is to minimize the objective function defined as
∑

i x
(1)
i . The constraints

are to protect every possible attack path and the solution would be 3 according to the
integer programming solver which means only three interfaces need to be configured
for filters. Similarly we can obtain the solution for vulnerability 2, which is 2. So it takes
3 + 2 = 5 interfaces to be configured in order to protect from all of the vulnerabilities.

Our next step is to set up the problem by allowing patch operation, and the objective
function is slightly tuned to include the patch variables for the two nodes:∑

i x
(1)
i +

∑
i x

(2)
i + 2× (y1 + y2)

The 2× (y1 + y2) is added to include the cost of patching vulnerable nodes. y1 and
y2 indicate whether Node 1 and 2 will be patched respectively.

Decision Support for Mitigating Attacks in Large Enterprise Networks 13

20(u)

19(u)

21(u)

22(u)

14

15(u) 16(u)17(u)

18(u)

6
11

5

12(v)

4
2(v)

3

1

7

1013 98

x51

x47 x49

x45 x33
x52

x48 x50

x46

x22 x43

x44
x21

x34

x27

x28
x32

x31

x30

x29

x23
x25

x26

x14

x13

x19

x20
x24

x16

x15

x2
x1

x18
x17x8x7

x12 x11

x35

x36
x37 x38 x42 x41

x9

x10

x40 x39 x4
x3

Fig. 7. A small real network for evaluation

The constraints are similar as before, namely to protect every possible attack paths.
The difference is that the patch variable y1 and y2 are added respectively into each
previous constraint depending on the destination node. For example, y1 will be added
to the original constraint x33+x34+x23+x24+x2+x1 >= 1 such that x33+x34+
x23 + x24 + x2 + x1 + y1 >= 1 forms a new constraint. Since x4 belongs to Node
1, this means that if the vulnerable node is patched, all the constraints associated with
protecting this node can be automatically satisfied.

We obtain the value 4 as the optimal solution where x
(1)
4 = x

(1)
3 = x

(2)
5 = y2 = 1

with every other variable equals to zero.

6.2 Simulation-Based Evaluation

To illustrate the performance of our tool, we simulate various random topologies
using the transit-stub model in GT-ITM [16] and randomly select malicious nodes and
vulnerable nodes for the problem setup.

In the simulation, we first measure the average running time of our tool against
various topologies using our iterative implementation compared with the naive imple-
mentation. Then, we measure the number of paths generated and compare with that of
the naive implementation. The parameters can be found in Table 2 and Table 3. The
sizes of the topologies are approximately 100, 500, 1000, 3000, 5000, 7000 and 10000
respectively.

It can be seen from Figure 8 that the running time (average for ten runs) for naive
implementation increases much more quickly with network size compared with the
iterative approach. We also verified that they indeed produce the same optimal value. It
is quite evident that our iterative approach scales very well. Similarly, Figure 9 shows
the overall number of paths for the naive implementation is much larger. This clearly
implies much information in the complete constraint set I is quite redundant.

We also illustrate how performance changes when the problem becomes more
complex (e.g., with increasing number of untrusted devices and vulnerabilities). We fix
a topology with 200 nodes and set up the problem so that the number of untrusted nodes
grows together with the number of vulnerable nodes and the types of vulnerabilities.
We execute our tool 10 times to measure the average running time and the number of
paths/constraints generated. In Figure 10, we can see that our tool can efficiently handle
networks of large size.

14 Z. Qian et al.

Table 2. Parameter in the topology generation

Parameters Variable Values
stubs domains per trans node Fs/t 4,4,5,7,8,10

of transit domains Nt 4,5,6,8,8,8
of nodes in each transit domain nt 5,8,10,10,10,11
Edge prob. between transit nodes Pt 0.6
of nodes in each stub domain Ns 6,6,10,10,11,11
Edge prob. between stub nodes Ps 0.42

Table 3. Parameter in the problem setup

Parameters Variable Value
of untrusted/malicious node Nu 10

of vulnerable node Nv 10
of vulnerability V 3

6.3 Enabling User Interactivity

From the large simulation result, we know that the execution time increases with the
problem size (i.e., network size, the number of untrusted/vulnerable nodes, and the
number of vulnerability). To understand the bottleneck of the iterative algorithm, we
compare the time spent on calculating constraints vs. that on the solver, and observe that
the former consumes more than 90% of the execution time. This leads us to develop the
heuristic of reusing already calculated constraints. One of the interesting applications
it enables is allowing network/sys admin to modify the constraint after he/she sees the
result. This effectively turns the tool into an interactive one, which is very useful in
operational settings. Although theoretically the result computed is the global optimal
in terms of the objective function and constraints, the network/sys admin may not have
given sufficient input to the tool initially. So allowing changes to the initial result in an

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Number of network devices

T
im

e
(s

ec
on

d)

Naive implementation
Iterative implementation

Fig. 8. Execution time for networks of differ-
ent sizes

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of network devices

N
um

be
r

of
 c

on
st

ra
in

ts

Naive implementation
Iterative implementation

Fig. 9. Total number of paths/constraints for
networks of different sizes

Decision Support for Mitigating Attacks in Large Enterprise Networks 15

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of vulnerable nodes with 10 untrusted nodes

E
xe

cu
tio

n
tim

e
in

 m
s

an
d

N
um

be
r

of
 c

on
st

ra
in

ts

Execution time
Number of constraints

Fig. 10. Number of vulnerable nodes vs. Execution time and number of paths/constraints for size
of 1000 network devices

interactive fashion is useful to further tune based on the network/sys admin’s domain
knowledge of the network. For example, the network/sys admin may want to manually
tune the result slightly (e.g., remove filters from some network devices and/or give
preference to other devices).

We implemented two types of primitives to allow interactive changes and evaluate
their performance. The first primitive is removing a filter assigned on an interface,
and the second one is giving preference to a network device for installing filters.
The implementation of the first one is straightforward – adding another constraint∑

j x
(j)
i == 0 where x

(j)
i is the variable indicating whether there should be a filter

for vulnerability j on interface xi. The implementation of second primitive is also
simple, i.e., reducing the cost of installing a filter on the specified network device in
the objective function (e.g., halving the cost). Given such simplicity, the performance
overhead is minimal for supporting interactivity.

7 Related Work

There is a significant amount of research focusing on describing, analyzing and verify-
ing firewall rules [17, 18, 19, 6] to achieve specific global policy. Work on developing
a higher level language to describe the firewall rules can be useful, but orthogonal to
our work. Investigating issues after the rules are set is complementary to our goal of
designing the rules in advance.

Several related work tries to enforce the global policy by distributing policies at
different places in the network. An extreme is to distribute the policy to end-hosts
instead of to network nodes [20, 21]. This method is topology-ignorant and can be easy
to deploy since end-host is easier to change. However, if every policy is to be checked
at the end-host (for each packet), it could incur non-trivial overhead. There is additional
complexity and security measure introduced to ensure end-host identity, which can
potentially lead to another set of security holes; While our solution is leveraging existing
security measures and does not introduce new mechanisms. Further, their solution
focuses on the access control policy issues rather than protecting vulnerable nodes in
general. For example, routers may also be vulnerable and require protection.

16 Z. Qian et al.

There are many reasoning systems specific to firewall or NIDS. For example, filtering
Postures [22] uses heuristics to automatically compute the set of filters for individual
routers to enforce a particular global policy. The solution they found, however, may
not be optimal. Further, they are only limited to the problem of network access control,
rather than our broader goal of leveraging both filter and patch operations to mitigate
network vulnerabilities. A follow-up work in [23] includes NIDS behavior into the
reasoning system and differ from our work by neither considering patch operation nor
trade-offs among various defense strategies.

Similar but more powerful, MulVal [24] uses formal methods to reason about the
security properties which can easily enable what-if analysis such as verifying “if router
A is patched, machine B will be free of attack.” Our proposed framework tackles a
different problem by going a step further that not only verifies that machine B is free
of attack, but also computes the optimal way to stop such attack. In fact, our work
complements theirs in the sense that once they finish reasoning about the vulnerabilities
and identify the available options to fix the network, it can be abstracted into our model
which performs the subsequent optimization.

Other works including [25, 26, 11] have somewhat similar goals though without
considering patch operation either. For example, one of their goals is to find the virtual
border - minimum number of filters or nodes to install filters. We can easily capture this
goal by our Minimal disruption objective function. Further, we can also express other
goals by using different objective functions as those listed in §4.3. The use of integer
programming allows us to easily accommodate new objective functions and constraints.
As a result, our framework is more general and extensible compared to previous work,
as it can solve not only one particular problem but also many other problems by tuning
the objective functions and taking various constraints into account.

8 Discussion

Different Types of Network-Level Defense. Different types of network defense have
different capabilities (some may be able to defend against more sophisticated attacks).
It is possible to distinguish different network-level defense (e.g., ACL and NIDS)
in our framework by assigning different cost for different types of network defense.
Alternatively, we can simply always choose the most powerful defense mechanism
available.

Incremental Deployment. While it is easy to use our tool to provide a new protection
suggestion, our tool also fits in the scenario where the network has been partially
protected and we can provide incremental suggestions in terms of additional protection
based on existing setups.

Appropriate Abstraction? Note that the abstraction we have still support many of the
existing abstractions. For example, to solve similar problems a human expert may use
abstractions such as the network of department x or the unsecured wireless network or
the group of servers holding financial records. We can easily support these abstractions
by understanding the mapping between the group and a number of network devices or
IP addresses.

Decision Support for Mitigating Attacks in Large Enterprise Networks 17

Path Selection. Currently we are conservatively assuming that any path could be
traversed from untrusted devices to the vulnerable device while it may not be the case
in reality. One may desire to pick only paths that are in greater need of protection by
ranking each path by the probability that it is selected as the actual forwarding path.
This can be done by enumerating all possible failures in the network and simulate the
routing algorithm to find the path [25].

9 Conclusions and Future Work

We have presented a simple and novel way of modeling the vulnerability mitigation
and management problem using integer programming. We have given examples about
how to model the problem. More specifically, our framework provides intelligent
suggestions in terms of where to deploy filtering or where to patch which are the two
main mechanisms in network defense. Further, optimal solutions can be computed by
considering multiple vulnerabilities jointly which is of practical need. Our prototype
suggestion tool has been evaluated using several examples based on real network
topologies with demonstrated efficiency and effectiveness.

For future work, we plan to consider other objective functions and constraints. Our
framework is fairly easy to extend since integer programming has a plain and clean
interface. We plan to add more objective functions and constraints into our framework
based on real user needs. In addition, we also plan to evaluate our tool more extensively
with real usage scenarios.

References

1. Cisco IOS HTTP Server Code Injection Vulnerability,
http://tools.cisco.com/security/center/
viewAlert.x?alertId=10102

2. Cisco IOS Software UDP Packet Processing Denial of Service Vulnerability,
http://tools.cisco.com/security/center/
viewAlert.x?alertId=17765

3. Cisco Intrusion Prevention System,
http://www.cisco.com/en/US/products/sw/
secursw/ps2113/index.html

4. Multiple Vendor DNS Implementations Insufficient Entropy Vulnerability,
http://tools.cisco.com/security/center/
viewAlert.x?alertId=16183

5. Grote, A., Funke, R., Heiss, H.-U.: Performance evaluation of firewalls in gigabit-networks.
In: Proc. 1999 Symposium on Performance Evaluation of Computer and Telecommunication
Systems (1999),
http://www.kbs.cs.tu-berlin.de/publications/
fulltext/GFH99.pdf

6. Capretta, V., Stepien, B., Felty, A., Matwin, S.: Formal correctness of conflict detection for
firewalls. In: FMSE 2007: Proceedings of the 2007 ACM Workshop on Formal Methods in
Security Engineering, pp. 22–30 (2007)

http://tools.cisco.com/security/center/viewAlert.x?alertId=10102
http://tools.cisco.com/security/center/viewAlert.x?alertId=10102
http://tools.cisco.com/security/center/viewAlert.x?alertId=17765
http://tools.cisco.com/security/center/viewAlert.x?alertId=17765
http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html
http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html
http://tools.cisco.com/security/center/viewAlert.x?alertId=16183
http://tools.cisco.com/security/center/viewAlert.x?alertId=16183
http://www.kbs.cs.tu-berlin.de/publications/fulltext/GFH99.pdf
http://www.kbs.cs.tu-berlin.de/publications/fulltext/GFH99.pdf

18 Z. Qian et al.

7. Introduction to Cisco Inventory and Reporting,
http://www.cisco.com/en/US/docs/net mgmt/
inventory and reporting/User Guides/Introduction
to Cisco Inventory and Reporting.html

8. David System, a network management system (nms),
http://www.hadden.pl/en/index.php

9. Introduction to OVAL: A new language to determine the presence of software vulnerabilities
(2003), http://oval.mitre.org/documents/docs03/intro/intro.html

10. Cisco Intellishield, http://www.cisco.com/security/
11. Todtmann, B., Rathgeb, E.P.: Integrated management of distributed packet filter configura-

tions in carrier-grade ip networks. In: International Conference on Networking, p. 44 (2007)
12. NetMRI, http://www.netcordia.com/
13. Cisco Multiple Vulnerabilities, http://secunia.com/advisories/23867/
14. Old, J.L., Buchanan, W., Graves, J., Saliou, L.: Performance analysis of network based

forensic systems for in-line and out-of-line detection and logging. In: 5th European
Conference on Information Warfare and Security, ECIW (2006)

15. CPLEX, High-performance software for mathematical programming and optimization,
http://www.ilog.com/products/cplex/

16. GTITM, Modeling Topology of Large Internetworks,
http://www.cc.gatech.edu/projects/gtitm/

17. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A novel firewall management toolkit.
ACM Trans. Comput. Syst. 22(4), 381–420 (2004)

18. Mayer, A., Wool, A., Ziskind, E.: Fang: A firewall analysis engine. In: SP 2000: Proceedings
of the 2000 IEEE Symposium on Security and Privacy, p. 177 (2000)

19. Al-shaer, E., Hamed, H., Boutaba, R., Hasan, M.: Conflict classification and analysis of
distributed firewall policies. IEEE Journal on Selected Areas in Communications 23, 2069–
2084 (2005)

20. Bellovin, S.M.: Distributed firewalls. Login, 37–39 (1999)
21. Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a distributed

firewall. In: CCS 2000: Proceedings of the 7th ACM Conference on Computer and
Communications Security, pp. 190–199 (2000)

22. Guttman, J.D.: Filtering postures: local enforcement for global policies. In: SP 1997:
Proceedings of the 1997 IEEE Symposium on Security and Privacy, p. 120. IEEE Computer
Society (1997)

23. Uribe, T.E., Cheung, S.: Automatic analysis of firewall and network intrusion detection
system configurations. In: FMSE 2004: Proceedings of the 2004 ACM Workshop on Formal
Methods in Security Engineering, pp. 66–74 (2004)

24. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic-based network security analyzer.
In: SSYM 2005: Proceedings of the 14th Conference on USENIX Security Symposium
(2005)

25. Tödtmann, B., Rathgeb, E.P.: Anticipatory distributed packet filter configurations for carrier-
grade ip networks. Comput. Netw. 51(10), 2565–2579 (2007)

26. Todtmann, B., Rathgeb, E.P.: Advanced packet filter placement strategies for carrier-
grade ip-networks. In: AINAW 2007: Proceedings of the 21st International Conference on
Advanced Information Networking and Applications Workshops, vol. 1, pp. 415–423 (2007)

http://www.cisco.com/en/US/docs/net_mgmt/inventory_and_reporting/User_Guides/Introduction_to_Cisco_Inventory_and_Reporting.html
http://www.cisco.com/en/US/docs/net_mgmt/inventory_and_reporting/User_Guides/Introduction_to_Cisco_Inventory_and_Reporting.html
http://www.cisco.com/en/US/docs/net_mgmt/inventory_and_reporting/User_Guides/Introduction_to_Cisco_Inventory_and_Reporting.html
http://www.hadden.pl/en/index.php
http://oval.mitre.org/documents/docs03/intro/intro.html
http://www.cisco.com/security/
http://www.netcordia.com/
http://secunia.com/advisories/23867/
http://www.ilog.com/products/cplex/
http://www.cc.gatech.edu/projects/gtitm/

An On-Line Learning Statistical Model to Detect
Malicious Web Requests

Harald Lampesberger1,2, Philipp Winter1, Markus Zeilinger1,
and Eckehard Hermann1

1 Upper Austria University of Applied Sciences, Department Secure Information
Systems, Softwarepark 11, A-4232 Hagenberg, Austria

2 Johannes-Kepler-University Linz, Christian-Doppler Laboratory for Client-Centric
Cloud Computing, Softwarepark 21, A-4232 Hagenberg, Austria

h.lampesberger@cdcc.faw.jku.at

Abstract. Detecting malicious connection attempts and attacks against
web-based applications is one of many approaches to protect the World
Wide Web and its users.

In this paper, we present a generic method for detecting anomalous
and potentially malicious web requests from the network’s point of view
without prior knowledge or training data of the web-based application.
The algorithm assumes that a legitimate request is an ordered sequence
of semantic entities. Malicious requests are in different order or include
entities which deviate from the structure of the majority of requests. Our
method learns a variable-order Markov model from legitimate sequences
of semantic entities. If a sequence’s probability deviates from previously
seen ones, it is reported as anomalous.

Experiments were conducted on logs from a social networking web
site. The results indicate that that the proposed method achieves good
detection rates at acceptable false-alarm rates.

Keywords: intrusion detection, anomaly detection, on-line learning,
Markov model, web security.

1 Introduction

The popularity of the Web is continuously rising and our daily lives are more
and more dependent on this source of information. Accordingly, the Hypertext
Transfer Protocol (HTTP) has evolved to one of the most employed application
layer protocols in the Internet. But with increasing global dependence on the
Web, attackers are even more interested in tampering with those systems.

The paper is structured as follows: The remaining introduction deals with
HTTP, its security challenges and related work in this area. Section 2 explains
the concept of the proposed anomaly detection method. Section 3 outlines imple-
mentation details, evaluation results are listed in Section 4 and Section 5 draws
the conclusion.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 19–38, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

20 H. Lampesberger et al.

1.1 HTTP and Web Security

The HTTP protocol [11] defines stateless and generic exchange of information.
The communication is initiated by a client who requests a specific resource,
identified by the Unified Resource Identifier (URI) path, from the server. The
response assembles server status codes, meta information and possible entity
content.

A fundamental security problem of web-based applications is that the client is
out of the application’s scope of control. The protocol was originally designed for
static resources and stateless interaction, but today’s web applications employ
it for dynamic content and stateful sessions. Consequently, data sent from the
client must be somehow interpreted by the server. Semantic client data can be
found in the request-URI path, header fields and possible request entity content.

Request-URI Path. The path is a hierarchically structured sequence of string
segments and an optional query component. The grammar is defined in [5] and
traditionally, the path references a static resource, or in dynamic web applica-
tions a content generating process. A segment only allows a subset of printable
characters; others must be escaped by using the URI percent-encoding.

The ’?’ character introduces the query component of a path and parameters
are supposed to be in field-value pairs. But real-world implementations tend
to break this convention because expressive path names in URLs are preferred
by developers and users. This is called URL Rewriting and a representative
example is the widely used Apache web server module mod_rewrite [2] which
allows mapping of path segments into queries. As a result, a client can never
conclude from a path whether segments are interpreted as static resources or
parameters in a web-based application.

Request Headers. In a request, headers represent meta data from the client in
an unordered field-value structure. For example, headers inform the server which
kind of content and encoding is understood by the client. The best example
for client data processed by the web application is the so-called cookie. Many
applications use the cookie to track states in the stateless HTTP protocol.

Request Entity Content. A typical GET request can transport parameters
in the URI path, but the size of the query part is restricted by server’s imple-
mentation. For high-volume transmissions or forms, the POST method allows
query-style or MIME-encoded data in the request entity content. Additional
headers are necessary to describe type and length of this entity content.

Weaknesses. Wrong handling of client data in any function of the web appli-
cation introduces a security weakness which can probably be exploited by an
attacker. To name a few, attack vectors like buffer overflows, SQL or code in-
jections, Cross-Site Scripting, Cross-Site Request Forgery or HTTP parameter
pollution emerge from few common pitfalls. These classic flaws are gathered in
the Common Weakness Enumeration database [22] and, in this paper, attacks

An On-Line Learning Statistical Model to Detect Malicious Web Requests 21

Legitimate Request:
GET /fotos.php?action=view HTTP/1.1

Code Injection:
GET /fotos.php?action=http://195.33.221.4:8081/bot.txt? HTTP/1.1

SQL Injection:
GET /userportal.php?id=4518-999.9+union+select+0-- HTTP/1.1

Cross-Site Scripting:
GET /fotos.php?action=search&album=%22%2F%3E%3Cscript%3Ealert%281%29
%3B%3C%2FScript%3E HTTP/1.1

Path Traversal:
GET /images/../../../../../../../../../../etc/passwd HTTP/1.1

Fig. 1. Examples for legitimate and malicious URI paths in HTTP requests

are grouped by their common weakness. Some examples are given in Figure 1
for a better understanding.

Protecting a web-based application implicitly protects its users. Drive-by
downloads to create botnets are on the rise as noted by Provos et al. [25].
In addition to disturbing the service availability or stealing information from
a high-volume web site, an attacker might consider planting drive-by malware
to infect visitors.

1.2 Intrusion Detection

Another approach in protecting web-based applications, besides writing robust
code, is the domain of payload-based intrusion detection systems (IDS) to en-
able prevention mechanisms or early warning. IDS techniques can be distin-
guished into misuse detection and anomaly detection based on the style of de-
tection. While misuse detection relies on proper signatures of malicious behavior,
anomaly detection tends to use methods such as machine learning or statistics
to construct a profile of normal behavior and report deviating interactions as
anomalies.

As stated by Sommer and Paxson [29], both concepts are challenged in dif-
ferent ways. The detection performance of misuse detection completely depends
on currentness and coverage of signatures, but false-alarm rates are accordingly
low. Anomaly detection is prone to costly false-alarm rates, but it is more prob-
able by design to recognize novel attacks. To succeed in real-world scenarios,
anomaly detection must consider a) the variability of input data, b) the lack of
training data, c) a very high cost of errors, d) the difficulty of sound evaluation
and e) descriptiveness of detection results.

Detecting malicious web requests is challenging. Encodings, especially poly-
morphic ones as used in attack frameworks like Metasploit [20], make it al-
most impossible to induce valid signatures for misuse detection. Additionally,
web applications are very dynamic and constantly change over time. This con-
cept drift [19] handicaps the process of learning normal behavior in anomaly
detection.

22 H. Lampesberger et al.

1.3 Related Work

Anomaly detection in network data is not new. Over the past years, different
strategies for extracting representative features from network payload were pre-
sented. The payload-based anomaly detector (PAYL) by Wang and Stolfo [34]
uses byte frequencies for payload profiling. Anagram [33] is an advancement of
PAYL using n-grams instead of single byte frequencies. Perdisci et al. [24] fur-
ther pursue this approach and introduce McPAD, a method based on 2ν-grams.
PAYL, Anagram and McPAD are rather generic concepts to analyze applica-
tion layer network traffic, but their evaluation focuses on HTTP. Also, the three
methods rely on training data sets.

Kruegel and Vigna [16] introduce the first detection system focused on web
applications. It uses a linear combination of six different anomaly detection mea-
sures like attribute character distributions, structural information or attribute
lengths. This concept establishes the foundation for follow-up research: group-
ing similar anomalies [26], addressing concept drift [19] and dealing with scarce
training data [27].

Ingham et al. [14] define an approach where finite automaton representations
are learned from HTTP tokens. Another method customized to protocol syntax
using an attributed token kernel in One-Class Support Vector Machines is shown
by Duessel et al. [9]. Spectogram is a model of multiple Markov chains proposed
by Song et al. [30]. Ma et al. [18] define a model based on compression for web
anomaly detection which tolerates concept drift to a certain degree. The HTTP re-
verse proxy TokDoc, presented by Krueger et al. [17], uses an ensemble of anomaly
detection methods to detect, and automatically repair, malicious web requests.

All previously listed algorithms achieve good evaluation results, but they de-
pend on training data. Especially for a fast-paced large-scale web application it is
hardly possible to create an up-to-date and representative training data set. Gör-
nitz et al. [12] realize this problem and present an active learning strategy based
on methods such as PAYL, Anagram and McPAD. Their solution actively queries
for labels to reduce the need for training, but context drift is not addressed.

1.4 Scope of This Work

As outlined in 1.1, a client or network device cannot conclude which elements of a
web request will be processed in weakness-prone functions of the web application.
Furthermore, URL Rewriting is not mentioned in previous work, but it is actively
used in practical scenarios. So, RFC-compliant queries in URI paths cannot be
assumed. The only possible assumption is that during normal operation of a
web site, the application is probably receiving more legitimate web requests
than malicious ones.

This paper explores the question of whether potentially malicious web requests
can be detected from the network’s point of view without prior knowledge at
decent performance levels. An exemplary implementation scenario is a network-
based IDS system for providers to monitor high-volume web sites and provide
early warning mechanisms. Considering Sommer and Paxson’s conclusions [29],
the following requirements were defined:

An On-Line Learning Statistical Model to Detect Malicious Web Requests 23

– No explicit training data is necessary,
– The model considers concept drift of the web application,
– The model accepts URL Rewriting,
– False-alarm rates are minimized,
– Details on an alert’s cause are available and
– Throughput performance is kept in mind.

2 Methodology

Our approach is formed by two assumptions:

– A legitimate web request is a series of semantic entities in specific order and
– Normal requests are more probable than malicious ones.

Within a web request, the data, especially the URI path, is in some kind of or-
der as the result of design principles. For example, if the request is processed as
stream and the first bytes indicate request method POST, then entity content is
to be expected. It might come natural to say that a web request is Markovian. A
conjecture of our detection method is that malicious requests have unexpected
order of data or include entities which differ from the common structure. Con-
sequently, Markov modeling seems to be a suitable approach for prediction.

It is important to mention that web-based applications actually use random
strings in requests, for example session identifiers, random file names of im-
age thumbnails, random transaction codes and so on. If transition probabilities
purely rely on single byte frequencies, a single Markov model will get falsified by
random strings. But Markov chains and Hidden Markov Models have success-
fully been employed for modeling web requests [19, 16, 26, 30, 18, 17, 27]. These
concepts use multiple models to cope with high-entropy content.

Our method was inspired by Begleiter et al. [4] and their work on sequence
prediction using compression models. The core idea is to deduce a variable-
order Markov model (VMM) from legitimate web requests and use this model to
classify novel web requests based on their probability. To increase robustness and
handle high-entropy content, the grammar of HTTP is exploited to transform
a web request into a sequence of abstract symbols beforehand. A novel web
request is classified whether it is normal or not by comparing its probability to
the distribution of ones. Therefore, the algorithm maintains a sliding window
over recent sequence probabilities.

Based on Vovk et al. [31, pp. 3–7], we consider learning in our scenario as
transductive on-line learning: Instead of inducing a general rule from training
data, samples are presented one by one to the model, it predicts the sample’s
label and adds it to a bag of training examples. In our case, a so-called sample
equals a web request and the VMM represents the bag of training examples.
Each new prediction relies on previously seen samples, no induction is needed
and the quality of predictions should improve over time. Finally, the model
predicts whether a sample is normal or anomalous.

24 H. Lampesberger et al.

On-line learning requires somehow feedback of the truth. Following Vovk’s
definitions [31, p. 107], our scenario has two so-called lazy teachers who occa-
sionally reveal the true label of a sample. The first lazy teaching mechanism is
a constrained randomness assumption: the majority group of similar samples is
probably normal. The second lazy and slow teacher is the human expert who
works with and maintains the system. The expert intervenes after possible de-
lay if false positive or false negative detections were realized. To sum up, our
proposed algorithm processes a web request in four steps:

1. The web request is converted into a sequence of symbols,
2. A VMM estimates a probability of the sequence,
3. The sequence probability is assigned to a confidence interval in the sliding

window probability distribution and
4. Depending on the confidence interval, the sequence is learned, ignored or

reported.

2.1 A Request is a Sequence of Symbols

RFC 2616 [11] defines the grammar of the US-ASCII-oriented HTTP. The fun-
damental grammar entity is one byte. A class of characters called separators has
special meaning in the protocol. So, in context of this work, a symbol σ ∈ N0

16

is the statistical representation of bytes between two separators. These 16 occur-
rence counters of a symbol are a computationally optimized heuristic to model
the appearance of a variable-length string token in fixed-length memory while si-
multaneously handling high-entropy content. The counter definitions are based
on HTTP character classes defined in the RFC and some additional counters
capture structural characteristics of the content:

σ ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ[0] amount of printable ASCII characters,
σ[1 − 4] lexical letter index ∈ {a..z, A..Z} mod 4,
σ[5 − 6] digit index ∈ {0..9} mod 2,
σ[7] uppercase letters ∈ {A..Z},
σ[8] lowercase letters ∈ {a..z},
σ[9] US-ASCII control characters,
σ[10] protocol-specific bytes ∈ {CR LF SPACE TAB},
σ[11] path-specific characters ∈ {./},
σ[12] protocol separators ∈ {?&;()<>@,:[]{}=\},
σ[13] single and double quotes,
σ[14] percent character,
σ[15] non-US-ASCII character.

(1)

A web request is transformed into an n-tuple or sequence of symbols qn
1 =

(σ1, σ2, . . . , σn). For precise tokenization of URI paths, the class of separators is
split up in pre- and post-separators:

pre-separators = {SPACE TAB},
post-separators = {/?&;()<>@,:"[]{}=\}. (2)

An On-Line Learning Statistical Model to Detect Malicious Web Requests 25

In a data stream, the observation of a pre-separator triggers the allocation of a
new symbol in the sequence before the observed byte increments the occurrence
counter in the symbol. Given the previous definitions, Figure 2 shows part of
an exemplary HTTP GET request and how it is transformed into a sequence of
symbols.

Fig. 2. Transformation of a web request data into a sequence of symbols

The dynamic alphabet A consists of all the symbols the anomaly detection
model is currently aware of. The initial alphabet is empty and as a result of
learning, symbols are added or removed over time. For prediction, the symbols
of the web request are mapped to similar symbols in A if possible. This mapping
function Φ requires a metric to compare symbols. A similarity measure between
two sets is the Tanimoto coefficient τ [13, p. 398] which estimates the intersection
of two symbols:

τ(σ1, σ2) =
σ1 · σ2

‖σ1‖2 + ‖σ2‖2 − σ1 · σ2

. (3)

Let TA be the similarity threshold for alphabet A and also an anomaly de-
tection model parameter. Two symbols σ1 and σ2 are considered identical if
τ(σ1, σ2) > TA. So, the mapping function Φ is defined as:

Φ(σ,A, TA) =

{
argmax

ν∈A
τ(σ, ν) if ∃ν ∈ A : τ(σ, ν) > TA,

σ otherwise.
(4)

2.2 Prediction by Partial Matching

The idea of Prediction by Partial Matching (PPM) is to predict the next symbol
σ ∈ A in a stream based on the previously seen symbols, the so-called context
s ∈ An of order n. Probability estimates are based on symbol counts in the data.

Cleary and Witten [7] present PPM as a concept of statistical modeling for
lossless compression. PPM belongs to the group of variable-order Markov mod-
els which are able to capture both large and small order Markov dependencies
in observed data, as stated by Begleiter et al. [4]. To handle the zero-frequency
problem when novel symbols are encountered, PPM provides the escape and ex-
clusion mechanisms. In this work, exclusion is ignored due to the computational
overhead and escape follows ‘Method C’ proposed by Moffat [23].

PPM requires an upper Markov order bound D for VMM construction. A
data structure to model PPM is a trie of depth D + 1. A trie node references

26 H. Lampesberger et al.

a symbol from alphabet A and maintains a frequency counter. Each path from
root to node represents a subsequence in the already processed stream and the
node’s count indicates, how often this subsequence appeared. Figure 3 shows an
exemplary trie for Markov order D = 2 constructed from a single sequence.

root

a(3)

a(1)

b(1)

b(2)

c(2)

b(4)

b(1) c(2)

b(1) c(1)

c(3)

a(1)

a(1)

b(1)

b(1)

c(1)

a(1)

Fig. 3. PPM trie (order D = 2) for simplified sequence q10
1 = abccaabcbb

Let k be the length of the current context and k ≤ D. Estimating the proba-
bility P̂ of symbol σ considering its context s follows a recursive relation, where
s′ is a one-symbol-shorter context and k < 0 ends the recursion:

P̂ (σ|s) =

{
P̂k(σ|s) if sσ exists in the VMM,
P̂k(escape|s) · P̂ (σ|s′) otherwise.

(5)

Let As be the specific alphabet of context s and N(sσ) be a count value of the
node in context s referencing symbol σ. Then the probability estimates based
on ‘Method C’ [23] are:

P̂k(σ|s) =
N(sσ)

|As| +
∑

σ′∈As

N(sσ′)
if σ ∈ As , (6)

P̂k(escape|s) =
|As|

|As| +
∑

σ′∈As

N(sσ′)
otherwise. (7)

The escape probability depends on the entropy within a specific context and
the alphabet size is not assumed finite. The following examples based on Figure
3 are for a better understanding of the estimation process: The probability that
a sequence starts with b is P̂ (b) = 4

3+10 = 0.308. The chance that c occurs after
’ab’ is P̂ (c|ab) = 2

1+2 = 0.667. But a after ’bc’ has not been seen before, so
P̂ (a|bc) = P̂ (escape|bc) · P̂ (a|c) = 2

2+2 · 1
3+3 = 0.083.

Finally, the average probability of a sequence qn
1 is the arithmetic mean of all

its symbol probabilities:

P̂ (qn
1) =

1
n

n∑
i=1

P̂ (qi|qi−1
i−D) . (8)

An On-Line Learning Statistical Model to Detect Malicious Web Requests 27

In context of web-based applications, a perfect VMM that learned all possible
web requests delivers approximately high mean probability scores for legitimate
sequences. A malicious web request will likely contain symbols that are unknown
to the VMM’s alphabet or symbol arrangements in an unexpected order. This
results in a low mean probability score of the sequence. The distribution of
probabilities depends on the web application and its dynamics. Accordingly, a
static threshold for classification of outliers is insufficient.

2.3 Detecting Outliers

The proposed outlier detection method assumes that mean sequence probabilities
of all legitimate web requests are somehow similar distributed in a perfect VMM.
Different quantiles of the estimated distribution represent confidence intervals.
Outliers are found in intervals distant to the mean.

Algorithm 1. Sliding window mean and sample variance estimator in O(1)
Require: wsize > 0

empty queue W ← []
sum-of-squared residuals M2 ← 0
fill count n← 0
P̄ ← s2 ← 0
while Pnew ← Input do

if n < wsize then
n← n + 1

else
Pold ← Dequeue(W)
δ ← Pold − P̄
P̄ ← P̄ − δ/(n− 1)
M2 ←M2 − δ ∗ (Pold − P̄)

end if
δ ← Pnew − P̄
P̄ ← P̄ + (δ/n)
M2 ←M2 + δ ∗ (Pnew − P̄)
Enqueue(W,Pnew)
if n > 1 then

s2 ←M2/(n− 1)
end if
print P̄ , s2{mean and sample variance of previous wsize entities}

end while

The bounded probability space [0, 1] is supported by the Beta distribution
Beta(α, β). The parameters for this distribution are estimated from the mean
P̄ and sample variance s2 of recent sequence probabilities by the method-of-
moments [10, p. 40]:

α̂ = P̄

(
P̄ (1 − P̄)

s2
− 1

)
, β̂ = (1 − P̄)

(
P̄ (1 − P̄)

s2
− 1

)
. (9)

28 H. Lampesberger et al.

Due to numerical and complexity boundaries, it is challenging to calculate
the mean and sample variance in a streaming scenario, where each new sequence
causes an update of the values. Maintaining a sliding window over the recent
wsize sequence probabilities reduces the computational complexity. Also, a slid-
ing window forgets values over time and allows better adaption to concept drift
of the underlying application. The size of the sliding window affects how strong
the mean and sample variance are affected by outliers in the data.

For computational efficiency, the algorithm for one-pass mean and sample vari-
ance estimation proposed by Welford [35], and recommended by Knuth [15, p.
216], has been modified for sliding windows. Algorithm 1 updates the sliding
window mean P̄ and sample variance s2 in constant time. All probability values
stay in a FIFO queue for wsize updates and before discarding them, their mo-
ments are withdrawn from the mean and sample variance to attain the sliding
window.

The confidence cq of a web request’s mean sequence probability P̂ (q) is esti-
mated by the Beta distribution’s cumulative distribution function:

cq = IP̂ (q)(α̂, β̂). (10)

We define three confidence thresholds as model parameters: base confidence
Tbase, warn confidence Twarn and alert confidence Talert. As a result, four con-
fidence intervals are formed in the distribution and Figure 4 outlines them. A
web request is classified according to its confidence cq:

classify(cq) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Normal (learning) if cq > 1 − Tbase,
Normal (ignore) if 1 − Tbase > cq > 1 − Twarn,
Anomalous (warn) if 1 − Twarn > cq > 1 − Talert,
Anomalous (alert) otherwise.

(11)

To sum up outlier detection, a Beta probability distribution over previous
VMM prediction results is estimated. Depending on a web request’s confidence,
the grade of abnormality is known, it is assigned to one of four confidence inter-
vals and further learning or reporting actions are taken.

2.4 On-line Learning Strategy

The VMM requires learning of legitimate sequences to reduce VMM escapes and
to increase prediction precision over time. Better predictions result in higher
mean and lower sample variance, the distribution and its confidence intervals
get more and more distinct and anomaly detection performance improves.

Learning. The first lazy teacher in the on-line learning scenario is a constrained
randomness assumption: most of the web requests are probably normal. Conse-
quently, sequences in the learning interval are automatically fed back, the VMM
trie grows and new symbols are added to alphabet A.

An On-Line Learning Statistical Model to Detect Malicious Web Requests 29

Fig. 4. Exemplary Beta probability-density function graph where the four confidence
intervals (alert, warn, ignore and learning interval) are marked

The second lazy and slow teacher is a human expert who eventually recognizes
a false positive or false negative with possible delay. In the case of false positive,
the sequence and novel symbols are added into the VMM trie and alphabet.
The according node counters are incremented until the sequence resides in the
learning interval. If a false negative detection is corrected, the trie nodes related
to the sequence are decremented or removed from the trie. Unreferenced alphabet
symbols are deleted.

Especially during the first hundred web requests, a malicious attempt may
unintentionally be learned. Also because of concept drift, the web-based appli-
cation might change, new resources appear or old resources fade to exist. The web
application matures and the detection model must forget outdated information
over time too.

Pruning. Due to concept drift and numerical limits in computers, the VMM
trie and its counters cannot grow indefinitely. The model parameter Tprune is a
threshold for the most frequent node counter in the trie. If the most frequent
node exceeds Tprune, pruning is performed. All node counters in the trie are
integer divided by two, zero nodes or branches are removed and unreferenced
symbols are deleted from the alphabet.

So, VMM escape probabilities increase again, the model is able to adapt to a
certain degree of concept drift and malicious sequences learned by mistake will
be dropped over time.

To sum up all introduced model parameters, the proposed anomaly detection
model M is parameterized by:

M〈TA, D, wsize, Tbase, Twarn, Talert, Tprune〉 .

30 H. Lampesberger et al.

3 Implementation

The proposed methodology is implemented in two independent prototypes with
the same algorithmic background: an off-line log file analyzer for performance
evaluation and a passive network analysis tool. For performance reasons, all
implementations are written in C and the efficient trie data structure follows the
recommendations from Salomon [28, pp. 150–155].

3.1 Network Operation

The network prototype is built upon Libnids [36], a library for payload inspection
of TCP sessions in live network traffic or recordings. Due to full decoding of TCP
sessions, the library is resistant to fragmentation attacks. Furthermore, it allows
intervening in established TCP sessions by sending forged reset segments to both
communication partners. Reset segments are an unreliable third-party method
for killing connections because of possible network delays, but it still gives this
prototype some intrusion prevention abilities.

Fig. 5. Analysis concept for network data processing

Figure 5 outlines the concept of network data processing. Libnids decodes
TCP sessions for a configured subset of destination hosts, other sessions are ig-
nored. Packet payload is handed to the Protocol State Machine (PSM). The PSM
is a TCP session-specific deterministic finite automaton, where state transitions
are triggered by payload byte tokens. A transition also performs user-specified
actions. This includes starting and finalizing of anomaly detection, reporting,
killing connections or canceling further analysis of the session.

The PSM states, transition tokens and actions are defined in XML by the
user and Aho-Corasick pattern matching [1] enables the search for these tokens
in the payload stream. So, the computationally intensive anomaly detection can
be limited to weakness-prone sections in the protocol, for example the HTTP
request and response headers.

A TCP session is reported if it is anomalous. The raw analyzed data and
prediction results are kept in a ring-buffer for a certain amount of time. In case
of a detection error, an expert can see which symbols in the payload stream are
responsible for the anomaly.

An On-Line Learning Statistical Model to Detect Malicious Web Requests 31

At last, all anomaly detection model parameters are changeable during op-
eration. The network prototype features an XML-RPC interface for parameter
modifications or teaching of false positive or false negative detections.

4 Experiments

For evaluation of detection performance, we assume a binary classification case
where legitimate requests represent class Normal and warnings or alerts are
considered as class Attack. A labeled data set is required to construct a confu-
sion matrix as shown in Table 1. The values in the matrix are mandatory for
estimating performance metrics.

Table 1. Confusion matrix for the binary classification case

Actual
Attack Normal

Predicted Attack True Positive (TP) False Positive (FP)
Normal False Negative (FN) True Negative (TN)

The Receiver Operator Characteristic (ROC) curve and its area under the
curve (AUC) are commonly used metrics to describe detection performance of
a classification algorithm. But in the intrusion detection area, normal and ma-
licious examples are not equally distributed. So, false positives cause a much
higher cost and impact in the IDS area, as already shown by Axelsson [3]. We
assume that ROC is not an optimal choice in this case.

Performance evaluation in this paper uses the metrics Precision and Recall
as recommended by Davis and Goadrich [8] for skewed data sets. For intrusion
detection, Recall is equivalent to detection rate and Precision indicates how
reliable the detections are. The Precision-Recall (PR) curve and its area under
the curve (PR-AUC) give better information on the algorithm’s performance in
a scenario, where examples are not equally distributed. Also, Precision and the
false positive rate (FPR) are interdependent. Maximizing Precision implicitly
minimizes the FPR.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, FPR =

FP

FP + TN
. (12)

In PR space, a perfect algorithm has maximum Precision for the complete
Recall range, the curve is in the upper-right corner and PR-AUC = 1. The
PR-AUC represents the capability of an algorithm to correctly separate the two
classes in the binary classification case.

4.1 Evaluation Data

Realistic data is mandatory for sound evaluation. As logs contain a part of the
web request, the presented evaluation results are based on anonymized web site

32 H. Lampesberger et al.

log files. A data set is neither partitioned for training nor ordered, the analysis
starts with an empty model and the first sample, and ends with the last sample
in the data set. So, these experiments are kept as realistic as possible.

Manifesting attacks are planted randomly in the data sets. Table 2 shows a
pool of 57 unique attack vectors and their CWE classes. Custom attacks are
adapted to the web application in use; others are referenced either by their
Common Vulnerability and Exposures (CVE) [21] identifier or worm name.

Table 2. Unique CWE weaknesses for a total of 57 attack vectors

CWE Name Num CVE or Other References
20 Input Validation 16 worm:Nimda worm:CodeRed
22 Path Traversal 3 custom:2 2010-2334
78 OS Command Injections 5 custom:3 2005-0116 2005-2847
79 Cross-Site Scripting 8 custom:5 2010-0804 2010-2356 2010-4366
89 SQL Injection 9 custom:3 2005-1810 2008-0397 2008-1982

2009-0968 2010-3601 2011-0519
94 Code Injection 5 custom:3 2005-0511 2007-1599
119 Buffer Errors 11 1999-0874 2001-0241 2001-0500 2003-0109

2003-1192 2004-1374 2004-1561 2004-1134
2006-1148 2006-5216 2007-0774

CMS Data Set. The data is from a PHP-based content management system
named Redaxo and samples were collected within several months. The original
data contains 108 malicious attempts, basically automated scans and code in-
jections. The final set consists of 3,279 log lines where additional 29 attacks are
added.

CACTI Data Set. Samples are from the web front-end of a Cacti monitoring
solution deployed in a hosting environment and were collected within approxi-
mately one month. There is one code injection attempt in the original data and
it is free of scanning events. The final set with planted attacks has 25,057 request
samples where 126 requests are malicious.

SOCIAL Data Set. The log data is from a social networking site which is a
hybrid solution of different web applications. From the analyst’s point of view,
the data is a worst-case scenario because there is a) concept drift, b) user data
like events or names in the URI path, c) URL Rewriting, d) lots of random data
like names of image thumbnails and e) an advertising system that transmits the
encoded referee URL within the URI path.

The original set has 12,515,970 log lines and contains 1,922 attacks where
1,392 are scanning attempts. Also, 115 suspicious requests are the result of a
JavaScript fault in the application and marked as CWE-0 in this paper. This data
was collected in a timespan of about two weeks. The final data set for evaluation
has 12,528,513 samples where a total of 14,465 are considered anomalous.

An On-Line Learning Statistical Model to Detect Malicious Web Requests 33

Table 3. Distribution of weaknesses in the data sets

CWE 0 20 22 78 79 89 94 119 200 total fraction
CMS 0 7 1 2 6 6 58 5 52 137 4.178%

CACTI 0 26 7 18 30 15 8 22 0 126 0.503%
SOCIAL 115 3464 611 1137 1794 2076 1416 2460 1392 14465 0.115%

4.2 Results

To keep experiments as realistic as possible, we assume that a virtual expert gives
feedback to the algorithm occasionally. This expert randomly recognizes 66.6%
of false positives and 10% of false negatives and triggers a learning function. All
experiments were performed on one core of a consumer-grade Intel i5-760 CPU.

The advantage of the chosen scenario is that it is oriented on practical deploy-
ment. Due to the constant on-line learning and varying detection performance,
results cannot be directly compared to solutions that are pre-trained on existing
training data.

CMS Results. The CMS data set is a toy example to visualize outlier detection
and learning. Figure 6 shows the time-series of evaluated samples. Within the
first 500 requests, the confidence intervals stabilize. As visible at about sample
1,000, only few values are in the sliding window, the distribution is not yet robust
against outliers.

A model with parameters 〈0.7, 2, 10000, 0.99, 0.999, 0.9999, 50000〉 minimizes
false positives to one and achieves Recall = 97.08% and Precision = 99.25%. The
final model has 119 trie nodes, alphabet size |A| = 15 and reaches throughput
of 91,083 logs/second due to the simpleness of the underlying web application.

0 500 1000 1500 2000 2500 3000
Sample Id

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y

Probability Distribution of Samples

TP

FP

TN

FN

T
base

T
warn

T
alert

Fig. 6. Time-series of sequence probabilities and evolution of confidence intervals in
the CMS data set

34 H. Lampesberger et al.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

0.95

c
=
0
.9
9
9
9
9

c
=
0
.9
9
9
9
5

Precision-Recall Curve

PR−AUC=0.957

(a) PR curve.

0 5000 10000 15000 20000 25000
Sample Id

0

1

2

3

4

5

6

7

8

9

C
u
m

u
la

ti
v
e
 F

P
 E

rr
o
rs

/T
ra

in
in

g
s

0

2

4

6

8

10

C
u
m

u
la

ti
v
e
 F

N
 E

rr
o
rs

/T
ra

in
in

g
s

Cumulative Errors and Trainings

FP

FP trained

FN

FN trained

(b) Cumulative error and training curves.

Fig. 7. Performance metrics for the CACTI data set

CACTI Results. This data set is more realistic and performance curves are
displayed in Figure 7. Here, Recall = 92.06% and Precision = 92.8% are achieved
by parameters 〈0.82, 2, 10000, 0.995, 0.99995, 0.99995, 10000〉, only nine false pos-
itives take place in the simulated timespan.

Figure 7(a) outlines the PR curve and two different confidence thresholds are
marked. It is visible that an increased threshold also increases the precision at
the expense of detection rate. The cumulative curves in Figure 7(b) show that
false negatives only occur in the initial phase and after about sample 13,000 the
growth of false positives stagnates. This stagnation indicates that the statistical
model adepts to the data. After the last sample processed, the model has 225 trie
nodes, alphabet size |A| = 20 and still achieves throughput of 65,083 logs/second.

SOCIAL Results. The last data set represents the worst case experiment
and resulting performance curves are shown in Figure 8. A model with pa-
rameters 〈0.8, 4, 20000, 0.995, 0.99995, 0.99995, 5000000〉 achieves the best per-
formance with Recall = 74.15% and Precision = 93.76%. A total of 714 false
positives yield FPR = 5.71 · 10−5. The two least-recalled classes of weaknesses
are scanning attempts and the already mentioned JavaScript fault.

Figure 8(b) outlines, that most false positive detections take place in the
initial phase and growth decreases over time. Due to the complexity of this web
application, the final model has 19,650 trie nodes, alphabet size |A| = 100 and
permits throughput of 29,200 logs/second.

To sum up, the results of all three data sets are promising considering the
on-line scenario and evaluation data. Also, the search for optimal performance
has shown that initial parameters 〈0.7, 2, 10000, 0.99, 0.9999, 0.9999, 500000〉 are
a good start. For each data set there are several parameter combinations with
comparable performance results and the presented ones in this paper maximize
throughput. The parameter TA has direct impact on the size of the alphabet
and accordingly, the throughput performance.

An On-Line Learning Statistical Model to Detect Malicious Web Requests 35

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

0.95

c
=
0
.9
9
9
9
9
9

c
=
0
.9
9
9
9
5

c
=
0
.9
9
9

Precision-Recall Curve

PR−AUC=0.817

(a) PR curve.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Sample Id 1e7

0

100

200

300

400

500

600

700

C
u
m

u
la

ti
v
e
 F

P
 E

rr
o
rs

/T
ra

in
in

g
s

0

500

1000

1500

2000

2500

3000

3500

C
u
m

u
la

ti
v
e
 F

N
 E

rr
o
rs

/T
ra

in
in

g
s

Cumulative Errors and Trainings

FP

FP trained

FN

FN trained

(b) Cumulative error and training curves.

Fig. 8. Performance metrics for the SOCIAL data set

4.3 Evasion Strategies

The proposed concept relies on statistical features collected over time to detect
deviating web requests. Due to the nature of the problem domain, an attacker
with detailed knowledge about the algorithm might be able to evade detection
under certain conditions. Three potential evasion strategies, which apply to the
proposed algorithm, have been studied in theory.

Initial Phase Attack. During the initial phase of deployment, the algorithm
might unintentionally learn an attack. If this attack keeps undetected and similar
attacks occur regularly, the algorithm will assume them as normal too. In the
best case, the attack is a single incident and the pruning mechanism will clean
the VMM and symbol alphabet over time. In the worst case, the web application
constantly receives a high amount of similar malicious requests. This scenario
needs lower Tbase and Tprune thresholds to limit the feedback of sequences into
the VMM. As a side-effect, these parameters will produce more false positive
detections and require more human expert feedback, especially during the initial
phase.

Mimicry Attack. A skilled attacker might be able to craft malicious data which
undergoes detection [32]. The presented algorithm has shown to be resistant
against classic polymorphic attacks, but a potential weakness is the decision-
making based on the arithmetic mean sequence probability. In a malicious re-
quest, some symbols have a very low probability, and so, the mean sequence
probability is lowered towards zero. But if the attacker is able to extend the
malicious request with additional highly probable symbols, the impact of low-
probable symbols on the mean decreases and the attack might not be recognized.
A possible countermeasure is to increase the algorithm’s sensitivity by increasing
order D and TA while reducing Twarn and Talert.

36 H. Lampesberger et al.

Frog-Boiling Attack. This category of poisoning attack [6] affects the presented
detection mechanism. It aims to falsify the statistical detection model by con-
tinuously sending borderline legitimate requests. At some point, the detection
model will be too inaccurate to detect real attacks. A possible countermeasure,
in addition to increasing the algorithm’s sensitivity, is to include the server’s
response into the analysis. For example, tampering with the URI path will likely
produce invalid requests, and accordingly, bad response codes. The downside of
using response codes for decision-making is the limitation of prevention capabil-
ities, because the malicious data has already been sent. This concept has been
implemented in the network prototype, but more testing is still required.

5 Conclusion and Future Work

We propose an on-line learning approach to detect malicious web requests. The
main contribution of this paper is a concept that addresses both concept drift
of web applications and the problem of representative training data. Also by
design, the algorithm copes with URL Rewriting which is popular in realistic
web deployments. In experiments with realistic log data the implemented log
analyzer prototype shows decent detection and throughput performance.

To sum up, our presented method transforms the HTTP request into a se-
quence of symbols, where one symbol is the statistical representation of bytes
between HTTP separator characters. A variable-order Markov model assigns a
probability of occurrence to the sequence. An estimated Beta distribution over
recent sequence probabilities is used to detect deviating sequences. In case of an
detected anomaly, an expert can trace the responsible section in the web request
according to the individual symbol probabilities. Feedback of highly probable
sequences into the model achieves lazy teaching in context of on-line learning,
also, the human expert can intervene in case of erroneous detections.

For future research, testing the network prototype implementation on real-
world network data is necessary. This includes comparison to other existing
methods and long-term testing. Also, binary classification is insufficient for prac-
tical scenarios because the abnormality of an alert does not reflect its potential
impact. For example, scanning attempts are not as harmful as successful code
injections. Clustering of similar alerts is a reasonable approach here. Further-
more, throughput performance can still be optimized if parallelization or GPU-
offloading is considered.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Apache 2.0 Documentation: Apache Module mod_rewrite (2011),
http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html (Online; accessed
April 28, 2011)

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

An On-Line Learning Statistical Model to Detect Malicious Web Requests 37

3. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion
detection. In: CCS 1999: Proceedings of the 6th ACM Conference on Computer
and Communications Security, pp. 1–7. ACM, New York (1999)

4. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order markov
models. J. Artif. Int. Res. 22(1), 385–421 (2004)

5. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (Standard) (January 2005),
http://www.ietf.org/rfc/rfc3986.txt

6. Chan-Tin, E., Feldman, D., Hopper, N., Kim, Y.: The Frog-Boiling Attack: Limita-
tions of Anomaly Detection for Secure Network Coordinate Systems. In: Chen, Y.,
Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009. LNICST, vol. 19, pp. 448–458.
Springer, Heidelberg (2009)

7. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications 32, 396–402 (1984)

8. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: ICML 2006, pp. 233–240. ACM, New York (2006)

9. Düssel, P., Gehl, C., Laskov, P., Rieck, K.: Incorporation of Application Layer
Protocol Syntax into Anomaly Detection. In: Sekar, R., Pujari, A.K. (eds.) ICISS
2008. LNCS, vol. 5352, pp. 188–202. Springer, Heidelberg (2008)

10. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley-
Interscience (2000)

11. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard) (June
1999), http://www.ietf.org/rfc/rfc2616.txt, updated by RFCs 2817, 5785

12. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Active learning for network intrusion
detection. In: Proceedings of the 2nd ACM Workshop on Security and Artificial
Intelligence, AISec 2009, pp. 47–54. ACM, New York (2009)

13. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2006)

14. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning dfa representations of
http for protecting web applications. Comput. Netw. 51, 1239–1255 (2007)

15. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, 2nd
edn., vol. II. Addison-Wesley (1981)

16. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: CCS 2003:
Proceedings of the 10th ACM Conference on Computer and Communications Se-
curity, pp. 251–261. ACM, New York (2003)

17. Krueger, T., Gehl, C., Rieck, K., Laskov, P.: Tokdoc: a self-healing web applica-
tion firewall. In: SAC 2010: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 1846–1853. ACM, New York (2010)

18. Ma, J., Liu, X., Wang, Q., Dai, G.: Compression-based web anomaly detection
model. In: 2010 IEEE 29th International Performance Computing and Communi-
cations Conference (IPCCC) (December 2010)

19. Maggi, F., Robertson, W., Kruegel, C., Vigna, G.: Protecting a Moving Target:
Addressing Web Application Concept Drift. In: Kirda, E., Jha, S., Balzarotti, D.
(eds.) RAID 2009. LNCS, vol. 5758, pp. 21–40. Springer, Heidelberg (2009)

20. Metasploit: The Metasploit Project (2011), http://www.metasploit.com/ (Online;
accessed April 30, 2011)

21. MITRE Corporation: Common Vulnerabilites and Exposures (2011),
http://cve.mitre.org/ (Online; accessed May 12, 2011)

22. MITRE Corporation: Common Weakness Enumeration (2011),
http://cwe.mitre.org/ (Online; accessed April 28, 2011)

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.metasploit.com/
http://cve.mitre.org/
http://cwe.mitre.org/

38 H. Lampesberger et al.

23. Moffat, A.: Implementing the ppm data compression scheme. IEEE Transactions
on Communications 38(11), 1917–1921 (1990)

24. Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: Mcpad: A multiple classifier
system for accurate payload-based anomaly detection. Computer Networks 53(6),
864–881 (2009); traffic Classification and Its Applications to Modern Networks

25. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the First Con-
ference on First Workshop on Hot Topics in Understanding Botnets. USENIX
Association, Berkeley (2007)

26. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.: Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS),
San Diego, CA (February 2006)

27. Robertson, W., Maggi, F., Kruegel, C., Vigna, G.: Effective anomaly detection
with scarce training data. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS), San Diego, CA (February 2010)

28. Salomon, D.: Data Compression: The Complete Reference. Springer, Heidelberg
(2007)

29. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for
network intrusion detection. In: IEEE Symposium on Security and Privacy, pp.
305–316 (2010)

30. Song, Y., Keromytis, A.D., Stolfo, S.J.: Spectrogram: A mixture-of-markov-chains
model for anomaly detection in web traffic. In: Proc. of Network and Distributed
System Security Symposium, NDSS (2009)

31. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer-Verlag New York, Inc., Secaucus (2005)

32. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, pp. 255–264. ACM, New York (2002)

33. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Re-
sistant to Mimicry Attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 226–248. Springer, Heidelberg (2006)

34. Wang, K., Stolfo, S.J.: Anomalous Payload-Based Network Intrusion Detection.
In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
203–222. Springer, Heidelberg (2004)

35. Welford, B.P.: Note on a method for calculating corrected sums of squares and
products. Technometrics 4(3), 419–420 (1962)

36. Wojtczuk, R.: Libnids (2011), http://libnids.sourceforge.net/ (Online; ac-
cessed May 9, 2011)

http://libnids.sourceforge.net/

Secure Configuration of Intrusion Detection

Sensors for Changing Enterprise Systems

Gaspar Modelo-Howard, Jevin Sweval, and Saurabh Bagchi

Dependable Computing Systems Laboratory, Purdue University
465 Northwestern Avenue, West Lafayette, IN 47907, USA

{gmodeloh,jsweval,sbagchi}@purdue.edu

Abstract. Current attacks to distributed systems involve multiple steps,
due to attackers usually taking multiple actions to achieve their goals.
Such attacks are called multi-stage attacks and have the ultimate goal
to compromise a critical asset for the victim. An example would be com-
promising a web server, then achieve a series of intermediary steps (such
as compromising a developer’s box thanks to a vulnerable PHP module
and connecting to a FTP server with gained credentials) to ultimately
connect to a database where user credentials are stored. Current detec-
tion systems are not capable of analyzing the multi-step attack scenario.
In this document we present a distributed detection framework based
on a probabilistic reasoning engine that communicates to detection sen-
sors and can achieve two goals: (1) protect the critical asset by detecting
multi-stage attacks and (2) tune sensors according to the changing envi-
ronment of the distributed system monitored by the distributed frame-
work. As shown in the experiments, the framework reduces the number
of false positives that it would otherwise report if it were only considering
alerts from a single detector and the reconfiguration of sensors allows the
framework to detect attacks that take advantage of the changing system
environment.

Keywords: Distributed intrusion detection, multi-stage attacks,
Bayesian reasoning, sensor reconfiguration.

1 Introduction

Current computer attacks against distributed systems involve multiple steps,
thanks to attackers usually taking multiple actions to achieve their ultimate
goal to compromise a critical asset. Such attacks are called multi-stage attacks
(MSA). As today’s enterprise systems are structured to protect their critical as-
sets, such as, a mission-critical service or private databases, by placing them in-
side the periphery, MSAs have gained prominence. Examples include the breach
of a large payment processing firm [1] and the breaches published by the U.S.
Department of Health & Human Services [24]. MSAs are characterized by pro-
gressively achieving intermediate attack steps and progressing using these as
stepping stones to achieve the ultimate goal(s). Thus, prior to the critical asset
being compromised, multiple components are compromised. Logically, therefore,

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 39–58, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

40 G. Modelo-Howard, J. Sweval, and S. Bagchi

to detect MSAs, it would be desirable to detect the security state of various
components in an enterprise distributed system—the outward facing services as
well as those placed inside the periphery. Further, the security state needs to
be inferred from the alerts provided by intrusion detection sensors (henceforth,
shortened as “sensors”) deployed in various parts of the system.
In the context of MSAs against distributed systems, this is challenging be-

cause sensors are designed and deployed without consideration for assimilating
inputs from multiple detectors to determine how an MSA is spreading through
the protected system. Prior work has shown that it is possible to determine the
choice and placement of sensors in a systematic manner and at runtime, perform
inferencing based on alerts from the sensors to determine the security state of
the protected system components [7]1. In achieving this, the solutions have per-
formed characterization of individual sensors prior to deployment, in terms of
their capability to detect specific attack step goals. At runtime, inferencing has
been performed on the basis of the evidence—the alerts from the sensors—to
determine the unobservable variables—the security state of the different compo-
nents of the protected system. The sensors may be either network-based sensors,
which observe incoming or outgoing network traffic, or host-based sensors, which
observe activities within a host.
However, no existing solution has handled the various sources of dynamism

that are to be expected in large-scale protected systems deployed in enterprise
settings. The underlying protected system itself changes with time, with the
addition or deletion of hosts, ports, software applications, or changes in connec-
tivity between hosts. A static solution is likely to miss new attacks possible in the
changed configuration of the protected system as well as throw off false alarms
for attack steps that are just not possible under the changed configuration. The
nature of attacks may also change with time or the anticipated frequencies of
attack paths may turn out to be not completely accurate based on attack traces
observed at runtime. Existing solutions cannot update their ”beliefs” in an ef-
ficient manner and are therefore likely to be less accurate. Finally, when the
compromise of a critical asset appears imminent, fast reconfiguration of existing
sensors (such as, turning on some rules) may be needed to increase the certainty
about the security state of the critical asset. Our contribution in this paper
is to show how the choice and placement of sensors can be updated through
incremental processing when the above kinds of dynamism occur.
The solution we propose in this paper calledDistributed Intrusion and Attack

Detection System (DIADS) is to have a central inferencing engine, which has a
model of MSAs as attack graphs. DIADS creates a Bayesian Network (BN) out
of an attack graph and observable (or evidence) nodes in the attack graph are
mapped from sensor alerts. It receives inputs from the sensors and performs in-
ferencing to determine whether a rechoosing or replacement of sensors is needed.
Further, it can reconfigure existing sensors, by turning on or off rules or event

1 In this paper, we will refer to the distributed enterprise system that is being protected
as the protected system and the set of sensors embedded in various components of
the protected system as the sensor system.

Secure Configuration of Intrusion Detection Sensors 41

(a) Time to match a packet (b) Diagram for DIADS

Fig. 1. (a) Results from curve fitting the data points from the Snort experiment. (b)
General block diagram of the proposed DIADS. A wrapper (software) is used to allow
communication from the sensors (circles labeled D1 to D4) and firewall to the reasoning
engine and viceversa (only for sensors).

definitions based on the changed circumstances. Thus, the inferencing engine has
a two-way communication path with the sensors. DIADS determines changes to
the protected system by parsing changes to firewall rules at network points as
well as at individual hosts and updates the BN accordingly. If on the basis of
current evidence, it determines that a critical asset (also synonymously referred
to as a crown jewel) will imminently be compromised, it determines what further
sensors close to the asset should be chosen, or equivalently, what further rules
in an already active sensor should be turned on.
One may think that a perfectly acceptable, and a much simpler, solution is

to activate all the available sensors and turn on all the available rules at any
sensor. Thus, there will be no reason to react to dynamic changes of the three
types mentioned above. However, this will impose too high an overhead on the
protected system in terms of the amount of computational resources that will be
required and the frequency of false alerts that will be generated. For example, we
determine empirically that for the popular Snort IDS [19] turning on the default
set of rules will cause it to potentially take 85 seconds to match a single packet
(corresponding to 9700 rules in Figure 1a). Therefore there is the motivation
to dynamically reconfigure the sensors according to the activity observed in the
network.
To sum up, in this paper we make the following contributions:

1. We design a distributed intrusion detection system that can choose and place
sensors in a distributed system to increase the certainty of knowledge about
the security state of the critical assets in the system.

2. We imbue our solution with the ability to evolve with changes to the pro-
tected system as well as the kinds of attacks seen in the system.

3. Through domain-specific optimizations, we make our reasoning engine fast
enough that it can perform reconfiguration of existing sensors while a multi-
stage attack (MSA) is coursing through the protected system.

42 G. Modelo-Howard, J. Sweval, and S. Bagchi

We structure the remainder of this paper as follows. In Section 2 we review
previous work on distributed intrusion detection systems (DIDS), MSA, and
probabilistic approaches to intrusion detection. Section 3 states the problem
studied and the threat model considered. Section 4 presents the proposed DI-
ADS framework to detect MSAs and to reconfigure detection sensors, including
a description of the different components and algorithms used. In Section 5
we provide a description of the experiments performed along with the results.
Finally, Section 6 provides conclusions and future work.

2 Related Work

There has been previous work on developing and proposing DIDSs. Early ex-
amples of these systems are [20], [17], [26], and [21]. A starting point for DIDSs
is the collaboration between Lawrence Livermore National Labs, U.S. Air Force
and other organizations [20]. It represented the first attempt to physically dis-
tribute the detection mechanism, while centralizing the analysis phase in a single
component, running a rule-based system.
Another distributed IDS is EMERALD [17]. It is a signature- and anomaly-

based distributed IDS with statistical analysis capabilities (rule-based and
Bayesian inference). The communication among sensors and monitors is struc-
tured in a hierarchy. NetSTAT [26] is a network-based IDS modeling intrusions
as state transition diagrams and the target network as hypergraphs. By using
both models, the system prioritizes which network events to monitor. AAFID
[21] is a distributed framework based on software agents to collect and analyze
data and used as a platform to develop intrusion detection techniques. An inter-
esting policy-based proposal based on the popular Bro IDS [15] was presented
in [6], using intrusion detection sensors in a distributed, collaborative manner.
Unfortunately there has not been much discussion about DIDS in the last few

years so the impact of more complex distributed systems on the detection capa-
bilities of IDS as well as the evolution of MSAs has been somewhat neglected.
Previous work has primarily concentrated on increasing the accuracy of IDSs by
improving their true positive (TP) rate on single step attacks. Additionally, it
does not consider the dynamic nature of the protected system, one of our focus
areas.
Previous work has considered MSAs [9], [10] but within a limited scope. [9]

proposes an offline-method to correlate alerts using an attack graph, to improve
detection rate, while reducing false positive (FP) and false negative (FN) rates.
It is a rule-based method and does not consider a probabilistic approach. [10]
presents a formal conceptual model based on Interval Temporal Logic (ITL) to
express the temporal properties of MSAs.
A principal component for our framework is an attack graph, from which to

create a corresponding Bayesian network. An example of previous work on using
attack graphs for intrusion detection is found in [4]. Other works have previously
focused on using attack graphs to evaluate (offline) the vulnerability state of the
computer system [27].

Secure Configuration of Intrusion Detection Sensors 43

Bayesian networks have been used for intrusion detection, examples include
[7] and [5]. [7] models the potential attacks to a target network using a Bayesian
network to determine (off-line) a set of detectors to protect the network. [5]
presents a method based on Dynamic Bayesian networks to include the temporal
properties of attacks in a distributed system.
Alert correlation is an area related to intrusion detection, that has received

the attention of the research community. Schemes in this area can be classified
under two basic groups: schemes that require patterns of actual attacks and/or
alert interdependencies, and schemes that do not. Members of the first group
include [11], [12], and [13]. Our proposed framework, can be classified as part
of the first group. The second group of correlation schemes works without any
specific knowledge of attacks. Examples include [25], [18].
In [11], the authors present a formal framework for alert correlation that con-

structs attack graphs by correlating individual alerts on the basis of the prerequi-
sites and consequences manually associated to each alert. [12] presents techniques
to learn attack strategies from correlated attack graphs. The basic idea is to com-
pute how similar different attack graphs are by using error tolerant subgraph iso-
morphism detection. In [13] the authors built on the results from the previous
two papers, integrating two alert correlation methods: correlation based on pre-
requisites and consequences of attacks and those based on similarity between alert
attribute values. They used the results to hypothesize and reason about single at-
tacks possibly missed by the IDSs. There are several similarities between their
approach and ours. We both represent attack scenarios as graphs, assume attack
steps are usually not isolated but rather part of an MSA. Still, there are also sev-
eral differences between their alert correlation approach and ours. In a nutshell,
our approach is adaptive, provides a larger visibility of the target network, follows
a probabilistic model, and works online, while theirs is not.

3 Problem Statement and Threat Model

In this paper, we answer two fundamental questions:

(1) How to update the configuration of sensors in an enterprise distributed sys-
tem (i.e., one with many hosts and software applications and hence attack injec-
tion points) based on updated information that is obtained after the protected
system and the sensor system have been deployed.
(2) When the imminent threat to a critical asset(s) is high, how to reconfigure
existing sensors (such as, by activating new rules) to increase confidence in the
estimate of the security state of the critical asset(s).
In terms of the model for the protected system, all the components fall target

network under a single administrative domain and therefore, there is complete
trust between the owners of the different assets.
The profile of the attackers includes highly motivated individuals that might

have an economical incentive to compromise the distributed system. Attackers
follow a multi-step approach to compromise a resource or acquire data. It could
start with some reconnaissance, followed by exploitation of different hosts or

44 G. Modelo-Howard, J. Sweval, and S. Bagchi

services in the target network. This description also fits the cases where attack
sources are botnets and malware, that does not include human intervention. We
do not address intruders who steal data by physically connecting to a host (for
example, an insider’s attack using a USB memory stick).
In our framework, one or more critical assets are identified in the protected

system by the system owner and become the main protection objective of our
DIADS framework. Each critical asset is represented in the BN as a leaf node.
An example of a critical asset is a database that contains personally identifiable
information (PII). The above statement does not preclude having sensors that
detect attacks at other assets (such as, at a network ingress point), but our
inferencing uses such sensors to provide evidence of attacks leading up to a
potential compromise of the critical assets. Also, our DIADS framework is not
attempting to create better intrusion detection sensors; rather it is seeking to
use existing sensors intelligently to obtain a better estimate of the security state
of critical assets in an enterprise distributed system.
We consider only multi-stage attacks (MSAs) to distributed systems. An im-

portant example is an MSA to a three-tier system (web / application logic /
database) which might allow an attacker to launch HTTP-based attacks to ul-
timately reach the database and the information stored in it.

4 DIADS Framework

In this document we propose a distributed intrusion detection framework that
includes two components: (1) a probabilistic reasoning engine and (2) a network
of detection sensors to detect various stages of MSAs, as shown in Figure 1b. The
second component comprises off-the-shelf sensors, augmented with a standard
wrapper that allows the sensor to send alerts to the reasoning engine and receive
commands back from the reasoning engine. The architecture is able to alert
intrusion events related to potential MSAs and determine if any critical asset has
been compromised, or is under imminent likelihood of being compromised based
on current evidence of the spread of the attack. It also allows for reconfiguration
of sensors according to changes to the protected system that is being monitored
by the DIADS. Through this architecture, the DIADS can reduce the number of
false positives that it would report if it were independently considering each step
of the MSA. A block diagram of the proposed architecture is shown in Figure 2.
The reasoning engine represents different possible MSAs as a single Bayesian

network, which is updated according to events reported by the detection sensors
and the changing network configuration. The probabilistic engine can also re-
quest more information from sensors when necessary. The reasoning engine can
estimate the security state of the critical assets given partial information about
multi-stage attacks and from imperfect or noisy sensors.
The reasoning engine also collects background information about the dis-

tributed system so the model can be updated. As a starting point, we should
consider the network and policy configurations stored in a firewall. The fire-
wall can be at a network ingress-egress point as well as at individual hosts. The

Secure Configuration of Intrusion Detection Sensors 45

Fig. 2. Diagram of the proposed framework, providing details on the components of
the reasoning engine

firewall configuration indicates which components are allowed to communicate
with which components and thus has an important determining effect on the
structure of the attack graph, and consequently, on the structure of the BN.

4.1 Probabilistic Reasoning Engine

To build our reasoning engine, we use Bayesian Network (BN), which is a popular
probabilistic graphical model. It is a macro-language, representing joint distri-
butions compactly by using a set of local relationships between random variables
and specified by a graph. A key point is that the missing edges in the graph im-
ply the conditional independence between the corresponding nodes. BN captures
the characteristic in real-world data of locality of influence, the idea that most
variables are influenced by only a few others. [7] shows the implications of this.
Bayesian networks combine graph theory with statistical techniques to model

MSA scenarios. In our framework, we use an attack graph to create the struc-
ture of the BN, a directed acyclical graph. Each node in the graph represents a
vulnerability, more specifically, a 3-tuple: host × port × vulnerability existing in
the target network. This means that the service running on that host and listen-
ing on that port has that vulnerability. The edges between nodes represent the
direct precondition relationship between the attack steps. The BN also includes
nodes to represent intrusion detection sensors. An edge A → D from an attack
step node to a sensor node represents the possibility of the sensor detecting that
attack step, with the CPT quantifying the accuracy and precision of the detec-
tion. Each node is parametrized by a set of probability values and represented
as a conditional probability tables (CPT). Proposed in previous work [7] and also
suggested by [5], the Bayesian network representation can unify the information
available from multiple sensors, in order to determine if an MSA is occurring.

46 G. Modelo-Howard, J. Sweval, and S. Bagchi

��������	

�	���

���� ���	
�

��������

������

���� ���	
�

�����������

�����������

���������

������

������������

����	��
���� ���	
�

����������

���� ���	
�

��������

������

Fig. 3. The framework uses four algorithms, three to update the reasoning engine and
one to reconfigure the detection sensors

There are several benefits of using Bayesian networks. First, it can be a more
appropriate representation of reality than deterministic approaches, accounting
for several sources of uncertainty—noisy sensors, unknown intentions of the ad-
versary affecting the path of the MSA, and unknown difficulty of transitioning
from one attack step node to the next. A potential drawback of probabilistic
models is the combinatorial explosion faced when computing a joint probability
distribution. In our work, we address this issue by using the Noisy-OR model [16]
to represent the CPTs. Further details are provided in section 4.5. Our DIADS
framework is composed of four algorithms, which are schematically shown in
Figure 3. Pseudo-code for algorithms 1, 2, and 4 are provided in the Appendix.

4.2 Algorithm 1: BN Update to Structure Based on Firewall Rule
Changes

The algorithm produces a list of nodes and edges that should be added to (Va, Ea)
or deleted from (Vd, Ed) the Bayesian network to represent changes to the pro-
tected system. We use changes to firewall rules as a proxy for the changes to the
protected system. The firewalls can be at a network ingress-egress point or at
individual hosts in the system.
The message passed from the Firewall to the reasoning engine has the fol-

lowing structure: message = < number, srcIPaddr, destIPaddr, portnumber,
action, ruletype > where number refers to the order of the rule in the firewall
table. srcIPaddr and destIPaddr are the IP addresses for the source and desti-
nation of communication; portnumber is the TCP or UDP port number (16-bits
in IPv4); action is one of three options: allow, deny or drop; and ruletype refers
to the change made to the rule table: adding a new rule, modifying an existing
rule or deleting an existing rule. For the purposes of our experiments, we only
considered firewall rule tables composed of allow rules followed by a denyall
rule. So effectively, the rule table creates a policy where allowed communication
is explicitly defined and everything else not defined, is denied.
The algorithm can be divided into four parts: how to select the nodes and

edges to be added, if the rule has type add (lines 1 to 11); how to select the nodes
and edges to be deleted, if the rule has type delete (lines 13 to 29); checking for

Secure Configuration of Intrusion Detection Sensors 47

�

���� ����	
� �
�������� �	����

�� ���� �
����� ������

�� �
�� �������� ������

�� �
�� ������ ������

�� ��� �
����� ������

 � !"� �������� ������

�� !"� ������ ������

#� ���� $%!���� ������

�� ���� ���� �
���

(a) Firewall rule table (b) Bayesian network

Fig. 4. Impact of changes to a firewall rule. A new rule (No.7) in the firewall table
changes the topology of the Bayesian network. Two of the four new edges, shown
as dashed lines, will be removed by the algorithm since they lead to a cycle. A BN
node is actually host × port × vulnerability, but here for simplicity, we have a single
vulnerability per service (i.e. per host × port).

the resulting changes to the BN to not introduce cycles and to confirm that the
resulting nodes are part of a path to the nodes representing the critical assets
(lines 31 to 37); and finally, the converting the destIPaddr:port nodes into their
corresponding address:port:vulnerability nodes in the BN.
When a rule has type add or delete, the algorithm checks if the source and

destination addresses are new to the BN or already exist. If a node exists, then
the edges shared with its parents (line 4) or its children (line 7) should be
included to the set of edges to add (Ea). Also, the edge explicitly defined by the
rule is included in (Ea). If a node is new, then it should be added to the set of
nodes to add (Va). A similar approach (but with opposite results) is used for
case when a rule has type delete.
The algorithm then checks the nodes and edges in the resulting BN by running

Depth First Search (DFS) to determine if the nodes have a path to the critical
assets. If the nodes do not, then they are pruned. DFS also checks if the addition
creates any cycles and if so, the back edges are deleted. The first is an important
optimization focusing the attention of DIADS to the critical assets and limiting
the growth of the BN.
Finally, the algorithm transforms the nodes in the sets Va and Vd to nodes in

the BN. It does this by doing a lookup in a matrix R that maps the host × port to
the vulnerability. It acquires the raw data for this from the National Vulnerability
Database (NVD) [23], a public repository of vulnerability management data.
As an example, consider a distributed system connected to the Internet, with

three computers: a web server (accessible from the Internet), a database server
and a desktop computer. The database server and the desktop computer are
connected to the same subnet, while the web server is connected to a separate

48 G. Modelo-Howard, J. Sweval, and S. Bagchi

Fig. 5. Example for algorithm 02: initialization of BN CPT. To add a new parent (C)
to an existing node (A), we create the marginal probability Pr(C) from its CVSS (base
metric) value and use it to update the new CPT of A.

subnet (DMZ). All computers are protected by a network-based firewall and the
rule table is shown in Figure 4a. A Bayesian network can be built from the table,
as shown in Figure 4b. The critical asset is the database server and for simplicity
purposes, we have assumed one existing vulnerability per host.
If the rule any −− > FTP:21 allow is now added to the network firewall

because a new FTP server has been deployed and connected to the DMZ network,
the resulting Bayesian network is shown in Figure 4b. A new node, Vuln FTP, is
added and will have five edges. Four are inbound, created from the added rule
and one outbound, from rule No. 1 in the table. The inbound edges from nodes
Vuln Web and Vuln DB are not included in the final Bayesian network as they
make the graph cyclical.

4.3 Algorithm 2: Initialization of BN CPTs Based on Firewall
Changes

Algorithm 2 produces a list of CPTs for the changed nodes, i.e., nodes for which
there is an increase or reduction in the number of parents of the nodes, according
to the output from Algorithm 1. To update the CPT, we use the base metric
value of the CV SS score [3] of the node (corresponding to a vulnerability) to be
added or removed and divide it by 10 to use it as its marginal probability value.
Then if the resulting CPT is for an existing node, we take max(newProb(vi) +
Δ, oldProb(vi)). Figure 5 shows an example of how we use the formula.
In figure 5, first a new parent node C is added to an existing node A in the BN.

We take the base metric score (7) of the vulnerability corresponding to node C
and divide it by 10. Then use the formulamax(Prob(C)+Δ, oldProb(A|previous
evidence)) to create the new CPT. In our experiments, we use Δ = 0.05. Figure
5 also shows the CPT when node C is later removed. The base metric score of
the other parent node (B) is used to update the CPT.

4.4 Algorithm 3: BN Update of CPT Based on Incremental Trace
Data

The alerts received by the reasoning engine from the individual sensors are used
to update the CPTs in the Bayesian network in an incremental manner. To

Secure Configuration of Intrusion Detection Sensors 49

achieve this, this algorithm uses the set of alerts received during a window of
time and the matrix R, that maps the existing vulnerabilities in the system to
their corresponding hosts and ports. The output of the algorithm is the set of
CPTs with the updated values.
The algorithm uses a popular and powerful model known as Noisy-OR [16]

to represent each CPT. Noisy-OR allows us to specify the CPT of a node with
n parents, using with n+ 1 parameters as opposed to 2n for binary nodes. This
prevents the exponential growth experienced by the CPT of a node when the
number of parents (n) is large. The Noisy-OR model assumes that effect of
each parent on the CPT of the edge to the child node (vi) is independent from
that of the other parents and is sufficient to produce the effect (represented by
the child node) in the absence of all other parents. An additional parent node is
added to capture all other causes that were not modeled explicitly. The marginal
probability of this node is 1− p0. Then the CPT can be built with the following
formula, where C represents a combination of the values for the parents of the
child node:

Prob(vi|C) = 1−(1−p0)
∏

A=parent(vi)∈C

(1− Prob(vi|A = T,Others = F)

1− p0

)
(1)

4.5 Algorithm 4: Update Choice of Sensors Based on Runtime
Inference

The final algorithm of our framework is used to reconfigure the detection sensors.
This includes adding and removing sensors, as well as reconfiguring existing ones.
The high level objective is to reduce the uncertainty of knowing if the critical
asset has been achieved or not. The algorithm works by looking at the alerts
received and uses them as evidence to compute the posterior probability of each
Bayesian network node that corresponds to the critical asset.
The first step of the algorithm (line 1) is to compute the posterior probability

for the critical asset, given the evidence received from the currently enabled
sensors in the system. If the value is larger than a threshold (determined by
the system administrator), this is taken as indication that the critical asset
is likely to be compromised and therefore greater certainty is needed in the
determination of the security state. Therefore, the algorithm measures (lines 3
and 4) the impact of candidate sensors, which are close to the detected alerts
and the critical asset. A radius can be set a priori in terms of the number of
edges away from a particular node to determine the candidate set of sensors.
Previous work [7] has shown that the effect of a sensor on a Bayesian network
node fades beyond 2-3 hops and thus this restriction appears reasonable.
The algorithm determines a new set of detectors by using the Fully Polyno-

mial Time Approximation Scheme (FPTAS) presented in [8] for the problem of
determining the placement of intrusion detection sensors. The same cost bound
is maintained which will prevent the algorithm from blissfully adding new sen-
sors. This problem has been mapped to the 0-1 Knapsack problem for which a

50 G. Modelo-Howard, J. Sweval, and S. Bagchi

Fig. 6. Connectivity graph for testing scenario, showing the TCP ports enabled for
communication between different hosts. The shaded nodes represent the critical asset
(databases) in the protected system.

dynamic programming solution (FPTAS) exists that runs in pseudo-polynomial
time (running time scales up as the solution approaches the optimal). The algo-
rithm finishes by comparing the set of current detectors with the new set. The
delta between the sets indicates the set of detectors to be disabled or enabled,
which is output by the algorithm.

5 Experiments and Results

5.1 Experimental Setup

For our experiments, we used attacks against a real-world distributed system
which is part of an NSF Center at our university and serves content and simula-
tion tools for an engineering domain for thousands of users. The system includes
fifteen hosts that include two environments, one for production and another for
development of applications and staging prior to moving them to the production
environment. Each environment includes a web server, an application server and
a database server. A team of developers’ and consultants’ computers have access
to subsets of both environments. Communication between all hosts is controlled
by firewall rules at each host. The corresponding connectivity graph is shown in
Figure 6.
In our experiments, the database servers are the critical assets to protect. A

strong motivation to pick the databases is their role to store critical information
for the organization. We created a Bayesian Network (BN) from the distributed
system by first generating a list of the vulnerabilities found by the OpenVAS [14]
vulnerability scanner on servers and client machines. Each vulnerability was then
mapped to a node in the BN by associating it to the host and service(port) where
the vulnerability was found. Finally, the nodes were connected according to the
connectivity information for the distributed system. The BN had 345 nodes and

Secure Configuration of Intrusion Detection Sensors 51

1948 edges. We then pruned the BN to only include high risk vulnerabilities,
according to OpenVAS, as these ones are the primary vectors used by attackers
to compromise systems. The final BN had 90 nodes and 582 edges.
We provide comparative results between DIADS (our algorithms presented

in this paper) and a static and heuristic-driven choice of sensors. All results are
presented as Receiver Operating Characteristics or ROC curves [22]. The curve is
a graphical plot of the tradeoff between true positive rate (TPR, detection rate)
and the false positive rate (FPR, false alerts) for a detector. The different points
in the ROC curves are generated by varying the threshold for the probability
value for the BN nodes corresponding to the critical assets.
We had a total of 18 possible sensors; 3 sensors for each of the web server,

application server, and database server, in both the development and the pro-
duction environments. They are all generic sensors with signatures customized to
detect the class of attack into which the corresponding (vulnerability) node can
be categorized. For all experiments, for both baseline and DIADS, we constrain
the algorithms to pick a set of 6 from 18 possible detectors.
It is important to note that DIADS’ goal is to improve the performance of

a set of detectors, by considering temporal information (i.e. when detectors are
sending alerts about a progressing attack or when changes occur to the dis-
tributed system). For our experiments, we defined detectors with adequate but
not perfect performance (in terms of TP and FP). It is not our goal to improve
the performance of individual detectors.

5.2 Experiment 1: Dynamic Reconfiguration of Detection Sensor

The first experiment compared the performance between a dynamic reconfigu-
ration of sensors and an static set of sensors, all close to the database servers.
The static setup follows the intuitive decision of turning on all the sensors at
the critical assets, in this case the database servers. To test both setups, we use
an attack scenario that had the following progress: the attack started from the
Internet, compromised the production web server, from where to compromise
the applications server and then elevate permissions, and finally compromise the
database server. Further details for all attack scenarios and the Bayesian network
used in all experiments, are provided in [2].
In this experiment, a set of alerts are generated for the first three steps of

the attack scenario. This set serves as evidence and is provided to the reasoning
engine for DIADS to recompute the set of sensors. As shown in Figure 7, the
dynamic reconfiguration setup outperforms the static configuration of sensors.
The area under the continuous line (dynamic) is greater than the area under the
dotted line (static) by 16% (AreaDIADS = 0.7810 and Areabaseline = 0.6728).
This also means, the dynamic setup provides a higher detection rate at points
when both setups have the same false alarm rate.
A notable point is that the difference between both setups is not large. This

should be expected as the static setup is concentrated around the database
servers (the critical asset and final setup in the attack scenario) while the dy-
namic setup is scattered around the protected system.

52 G. Modelo-Howard, J. Sweval, and S. Bagchi

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

Fig. 7. Performance comparison between dynamic configuration of DIDS and a set of
detectors monitoring only DB servers

5.3 Experiment 2: Dynamism from Firewall Rules Changes

Experiment 2 tested the performance of the dynamic and static setups as changes
were made to the firewall rule table of the protected system. We considered two
real scenarios: (1) removing from the system a host belonging to a developer and
(2) adding a direct communication path is created from a consulant’s host to the
database server, in the development environment (in this case, the consultant
determined some changes to the database schema had to be tried out in the
development environment prior to unveiling it on production). For the static
configuration, one sensor was deployed on each host in both development and
production environments.
For the first firewall change where a developer’s host was removed, we tested

both setups using an attack scenario starting from another developer’s host.
This represents the increasingly common client-side attacks. The attack starts
as the developer visits a malicious website that installs some malware on the
host. Then permissions are elevated thanks to another existing vulnerability in
the developer’s host. Then a vulnerability in the database server (production)
is exploited and finally another vulnerability is used to access the data in the
database. For the second firewall change where a direct communication path
is created, we used a different attack scenario. The attack starts from another
developer’s host that also visits a malicious website and malware is installed
in the host. Then a vulnerability in the web server (development) is exploited,
after which the application server and finally the database server, all part of the
development environment, are compromised.
For DIADS, the BN was modified based on the firewall rule changes and the

dynamic programming algorithm picked the set of detectors after receiving the
alerts at the start of the attack - the starting point being the same as in the
static case.
Results from this experiment are shown in Figures 8a and 8b. The dynamic

reconfiguration setup performs better under both attack scenarios than the static
configuration. The area under the curve is greater by 32.7% (AreaDIADS =

Secure Configuration of Intrusion Detection Sensors 53

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(a) Removing a host

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(b) Opening ports to DB server

Fig. 8. Impact on topology changes. (a) Removing a host (developer) from network.
(b) Allowing direct access between the consultant box and the DB development server.

0.6809 and Areabaseline = 0.5132) in the scenario when a host is removed and
20% (AreaDIADS = 0.7659 and Areabaseline = 0.6383) in the scenario when a
direct access is set up between a consultant box and the DB development server.
We consider the most interesting result to be in Figure 8b, where both setups
show similar performance at the start. Both lines in the ROC curve have similar
slopes, which is expected as the dynamic and static setups share 4 out of the 6
initial sensors. But as the alerts from the first three attack steps are provided to
the reasoning engine in the dynamic setup, three sensors are reconfigured. This
is the cause of the difference in performance, as shown in the ROC cuve.

5.4 Experiment 3: Dynamism with Attack Spreading

The goal of this experiment was to see if DIADS can reconfigure sensors on the fly
as an attack spreads through the protected system. We used two different attack
scenarios: (1) one starting from the Internet and (2) another starting from the
internal network, a developer’s host. An attack starting from the internal network
usually requires less steps to reach the critical asset than attacks starting from
the Internet. The static configuration picks sensors as in the earlier experiment
2 (one for each host).
The results are presented in Figures 9a and 9b for the two attack scenarios.

In the attack starting from the Internet, the static setup shows a lower false
alerts rate than the dynamic setup. But as evidence is provided, the ROC curve
shows that the dynamic setup improves its performance. The curve shows the
importance of taking into account the alerts from the initial stages of the attack
to improve the performance of detection system. The improvement over the static
setup, in terms of the area under the curve, is 23% (AreaDIADS = 0.7845 and
Areabaseline = 0.6366). During the experiments, 4 of the 6 original sensors are
replaced by the reasoning engine.
For the attack starting from internal network, the ROC curve in Figure 9b

shows a similar performance between both setups. Three of the six

54 G. Modelo-Howard, J. Sweval, and S. Bagchi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(a) Attack from the Internet

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(b) Attack from the internal net-
work

Fig. 9. Comparison between our dynamic technique and a static setup for two attacks
scenarios. The dynamic reconfiguration technique allows to reconfigure the detection
sensors as alerts from the initial steps of the attacks are received.

sensors selected for the static setup are on the attack path and are quite ac-
curate. Therefore, though DIADS outperforms the static setup, the advantage
is not very large (11% where AreaDIADS = 0.7964 and Areabaseline = 0.7128).
This experiment shows promise that inferencing in BN can be done fast enough
relative to the speed of attacks. Of course, further experimentation is needed
with a variety of attacks (and attack speeds).

6 Conclusions and Future Work

Current attacks to distributed systems involve multiple steps, with the ultimate
goal of compromising a critical asset such as a database where important data
is stored for an organization. In this paper, we presented a distributed intrusion
detection system called DIADS that picks and places sensors in a protected
system, decreasing the uncertainty inherent in estimating the security state of
the critical assets in the system. DIADS has the ability to evolve when changes
are made to the topology of the protected system and with further evidence
coming in the form of alers while the deployed system is operational.
Future work will include experimenting further with the size of the Bayesian

network. We consider we made reasonable assumptions when pruning the
Bayesian network, such as only including high risk vulnerabilities as nodes. Still,
as the size of the CPTs for the nodes in the Bayesian network grows expo-
nentially in terms of the number of nodes’ parents, we would like to answer the
question of whether inferencing can be done fast enough. Another area to explore
is the impact of evasion techniques or attacks directly targeted against DIADS.
If an attacker has complete knowledge of our model, she might launch attacks
to falsely cause reconfiguration of our sensors away from the attack paths.

Secure Configuration of Intrusion Detection Sensors 55

Acknowledgment. The work described in this paper was conducted under
partial funding by Northrop Grumman Information Systems under the Northrop
Grumman Cybersecurity Research Consortium. We acknowledge the help of Dr.
Kenneth Brancik and Dr. Donald Steiner of Northrop Grumman in formulating
the problem and identifying how the solution integrates in an enterprise security
architecture.

References

1. Acohido, B.: Hackers breach Heartland Payment credit card system. USA Today
(January 2009)

2. Addendum: Secure Configuration of Intrusion Detection Sensors,
http://sites.google.com/site/securecomm11msa/

3. Forum of Incident Response and Security Teams: Common Vulnerability Scoring
System (CVSS), http://www.first.org/cvss/

4. Foo, B., Wu, Y., Mao, Y., Bagchi, S., Spafford, E.: ADEPTS: Adaptive Intrusion
Response Using Attack Graphs in an E-Commerce Environment. In: International
Conference on Dependable Systems and Networks, pp. 508–517. IEEE Computer
Society (2005)

5. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic bayesian network. In: 4th ACM Workshop on Quality of Protection, pp.
23–30. ACM, New York (2008)

6. Kreibich, C., Sommer, R.: Policy-controlled Event Management for Distributed
Intrusion Detection. In: 4th Int. Workshop on Distributed Event Based Systems
(2005)

7. Modelo-Howard, G., Bagchi, S., Lebanon, G.: Determining Placement of Intrusion
Detectors for a Distributed Application through Bayesian Network Modeling. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 271–290. Springer, Heidelberg (2008)

8. Modelo-Howard, G., Bagchi, S., Lebanon, G.: Approximation Algorithms for De-
termining Placement of Intrusion Detectors. CERIAS Tech. Report 2011-01 (2011)

9. Noel, S., Robertson, E., Jajodia, S.: Correlating Intrusion Events and Building
Attack Scenarios Through Attack Graph Distances. In: 20th Annual Computer
Security Applications Conference, pp. 350–359. IEEE Computer Society, New York
(2004)

10. Nowicka, E., Zawada, M.: Modeling Temporal Properties of Multi-event Attack
Signatures in Interval Temporal Logic. In: IEEE/IST Workshop on Monitoring,
Attack Detection and Mitigation (2006)

11. Ning, P., Cui, Y., Reeves, D.: Constructing attack scenarios through correlation of
intrusion alerts. In: 9th ACM Conf. Computer and Communications Security, pp.
245–254. ACM Press, New York (2002)

12. Ning, P., Xu, D.: Learning attack strategies from intrusion alerts. In: 10th ACM
Conf. Computer and Communications Security, pp. 200–209. ACM Press, New
York (2003)

13. Ning, P., Xu, D., Healey, C., St. Amant, R.: Building Attack Scenarios through
Integration of Complementary Alert Correlation Method. In: Network and Dis-
tributed System Security Symposium (2004)

14. OpenVAS. The Open Vulnerability Assessment System, http://www.openvas.org

http://sites.google.com/site/securecomm11msa/
http://www.first.org/cvss/
http://www.openvas.org

56 G. Modelo-Howard, J. Sweval, and S. Bagchi

15. Paxson, V.: Bro: a system for detecting network intruders in real-time. J. Comp.
Net. 31, 2435–2463 (1999)

16. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

17. Porras, P., Neumann, P.: EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In: 20th National Information Systems Security Con-
ference, pp. 353–365 (1997)

18. Qin, X., Lee, W.: Statistical Causality Analysis of INFOSEC Alert Data. In: Vigna,
G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 73–93. Springer,
Heidelberg (2003)

19. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: 13th Confer-
ence on Systems Administration, pp. 229–238. USENIX (1999)

20. Snapp, S., et al.: DIDS (Distributed Intrusion Detection System) - Motivation,
Architecture, and An Early Prototype. In: 14th National Computer Security Con-
ferenc, pp. 167–176 (1991)

21. Spafford, E., Zamboni, D.: Intrusion detection using autonomous agents. J. Comp.
Net. 34, 547–570 (2000)

22. Swets, J.: The Relative Operating Characteristic in Psychology. Science 182, 990–
1000 (1973)

23. U.S. Department of Commerce. National Vulnerability Database,
http://nvd.nist.gov/

24. U.S. Department of Health & Human Services: Health Information Privacy:
Breaches Affecting 500 or More Individuals,
http://www.hhs.gov/ocr/privacy/hipaa/administrative/

breachnotificationrule/postedbreaches.html

25. Valdes, A., Skinner, K.: Probabilistic Alert Correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

26. Vigna, G., Kemmerer, R.: NetSTAT: A Network-based Intrusion Detection System.
J. Comp. Sec. 7, 37–71 (1999)

27. Wing, J.: Scenario graphs applied to network security. In: Qian, Y., Tipper, D.,
Krishnamurthy, P., Joshi, J. (eds.) Information Assurance: Dependability and Se-
curity in Networked Systems. Morgan Kaufmann, San Francisco (2007)

http://nvd.nist.gov/
http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/postedbreaches.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/postedbreaches.html

Secure Configuration of Intrusion Detection Sensors 57

Appendix: Algorithms

Algorithm 1 message,A)

Input: message m = (number, srcIPaddr, destIPaddr, portnumber, action,
ruletype) . This input represents an addition, change, or deletion of a firewall
rule; Adjacency matrix representation of Bayesian network BNet = (V,E) consists
of a |V |x|V | matrix A = (aij) such that aij = 1 if (i, j) ∈ E otherwise aij = 0

Output: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to
add, Ed = set of edges to delete

1: //case when a rule is added
2: if ruletype = add then
3: if srcIPaddr : ∗ in A then
4: add all (parents(srcIPaddr : ∗), srcIPaddr : ∗) to Ea

5: end if
6: if destIPaddr : port in A then
7: add all (destIPaddr : port, children(destIPaddr : port)) to Ea

8: else
9: add Ea ← (srcIPaddr : ∗, destIPaddr : port)
10: end if
11: end if
12: // case when a rule is deleted
13: if ruletype = delete then
14: add Ed ← (srcIPaddr : ∗, destIPaddr : port)
15: if srcIPaddr : ∗ in A then
16: if notparents(srcIPaddr : ∗) then
17: add Vd ← srcIPaddr : ∗
18: else
19: add all (parents(srcIPaddr : ∗), srcIPaddr : ∗) to Ed

20: end if
21: end if
22: if destIPaddr : port in A then
23: if notchildren(destIPaddr : port) then
24: add Vd ← destIPaddr : port
25: else
26: add all (destIPaddr : port, children(destIPaddr : port)) to Ed

27: end if
28: end if
29: end if
30: // check if new edge creates a path to the end goal and if node creates a cycle
31: for all address : port ∈ V ∪ Va do
32: run DFS from address : port
33: if not(address : port� VCA) then
34: remove address : port from Va

35: end if
36: add backedges to Ed

37: end for
38: // convert address:port node to address:port:vulnerability node
39: for all address : port ∈ Va do
40: if vulnerability(address : port) ∈ NVD then
41: update address : port to address : port : vulnerability(vi) in Va and Ea

42: else
43: remove address : port from Va

44: end if
45: end for
46: for all address : port ∈ Vd do
47: search BNET and replace for corresponding address : port : vulnerablity(vi)
48: end for
49: return Va, Vd, Ea, Ed

. BN-Structure-Update (

58 G. Modelo-Howard, J. Sweval, and S. Bagchi

Algorithm 2. BNet-CPT-Update (Va, Vd, Ea, Ed)

Input: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to
add, Ed = set of edges to delete

Output: SCPT = set of CPTs to update
1: for all vi ∈ Va do
2: new Prob(vi) = CV SS(vi)/10
3: add each outedge(vi) ∈ Ea

4: for all children(vi) do
5: update CPT using max(newProb(vi) +Δ, oldProb(vi))
6: end for
7: end for
8: for all (vi, vj) ∈ Ea do
9: new Prob(vi) = CV SS(vi)/10
10: add each (vi, vj) ∈ Ea

11: for all children(vi) do
12: update CPT using max(newProb(vi) +Δ, oldProb(vi))
13: end for
14: end for
15: for all vi ∈ Vd do
16: new Prob(vi) = CV SS(vi)/10
17: remove all inedge(vi) and outedge(vi)
18: for all children(vi) do
19: update CPT using max(newProb(vi) +Δ, oldProb(vi))
20: end for
21: end for
22: for all (vi, vj) ∈ Ed do
23: new Prob(vi) = CV SS(vi)/10
24: remove all (vi, vj) ∈ Ed

25: for all vj do
26: update CPT using max(newProb(vi) +Δ, oldProb(vi))
27: end for
28: end for

Algorithm 3. Sensor-Reconfiguration (E,Detectorsexisting)

Input: E = evidence, represented by set of alerts received; Detectorsexisting = set of
detectors currently enabled

Output: set of nodes to enable/disable. Nodes correspond to <
address, port, vulnerability > tuple so can be mapped to a detection sen-
sor

1: compute a = Prob(critical asset |E)
2: if a > threshold then
3: Create set of candidate sensors close to E and critical asset
4: Run FPTAS(BN)
5: end if
6: Detectorsdisable = |Detectorsexisting −DetectorsFPTAS|
7: return DetectorsFPTAS, Detectorsdisable

K2C: Cryptographic Cloud Storage with Lazy
Revocation and Anonymous Access �

Saman Zarandioon1, Danfeng (Daphne) Yao2, and Vinod Ganapathy1

1 Department of Computer Science, Rutgers University,
Piscataway, NJ 08854

samanz,vinodg@cs.rutgers.edu
2 Department of Computer Science, Virginia Tech,

Blacksburg, VA 24060
danfeng@cs.vt.edu

Abstract. Security and privacy concerns hinder the adoption of cloud storage
and computing in sensitive environments. We present a user-centric privacy-
preserving cryptographic access control protocol called K2C (Key To Cloud) that
enables end-users to securely store, share, and manage their sensitive data in an
untrusted cloud storage anonymously. K2C is scalable and supports the lazy re-
vocation. It can be easily implemented on top of existing cloud services and APIs
– we demonstrate its prototype based on Amazon S3 API.

K2C is realized through our new cryptographic key-updating scheme, referred
to as AB-HKU. The main advantage of the AB-HKU scheme is that it supports
efficient delegation and revocation of privileges for hierarchies without requiring
complex cryptographic data structures. We analyze the security and performance
of our access control protocol, and provide an open source implementation. Two
cryptographic libraries, Hierarchical Identity-Based Encryption and Key-Policy
Attribute-Based Encryption, developed in this project are useful beyond the spe-
cific cloud security problem studied.

Keywords: Cloud, Untrusted Storage, Access Control, Mashup, Security, Web.

1 Introduction

In industries such as health-care, insurance and financial organizations, which deal with
sensitive data, the question of how to ensure data security and privacy in cloud environ-
ments is crucial [19,28] and even of legal concerns. For example, in the health-care
industry the privacy and security of protected health information (PHI) need to be guar-
anteed according to HIPAA (Health Insurance Portability and Accountability Act)[1]
requirements.

To take advantage of public clouds, data owners must upload their data to commer-
cial cloud providers which are usually outside of their trusted domain. Therefore, they
need a way to protect the confidentiality of their sensitive data from cloud providers.
Moreover, in many cases, data owners also play the role of content provider for other
parties. Following the naming convention used in [29,31], we refer to the parties that

� This work has been supported in part by DHS CCICADA and NSF grants CNS-0831186,
CNS-0953638, CNS-0831268, CNS-0915394, CNS-0931992, and CNS-0952128.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 59–76, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

60 S. Zarandioon, D. Yao, and V. Ganapathy

consume data owner’s data as data consumers or end-users. For example, a healthcare
provider (data owner) may need to let a medical doctor (data consumer) access medical
record of his patient. Even a data consumer may recursively play the role of data owner
on its own. A medical doctor may want to share part of his patient’s medical record
with his secretary or nurse. Therefore, there is a need for a decentralized, scalable and
flexible way to control access to cloud data without fully relying on the cloud providers.

In this paper we design and implement a scalable, user-centric, and privacy-
preserving access control framework for untrusted cloud storage. Our framework pro-
tects the confidentiality and integrity of stored data as well as the privacy of end-users.
It is also implementable on top of existing cloud services and APIs. (Design goals in
more details are presented in Section 3.1) .

Traditional access control techniques are based on the assumption that the server is
in the trusted domain of the data owner and therefore an omniscient reference monitor
can be used to enforce access policies against authenticated users. However, in cloud-
based services this assumption usually does not hold and therefore these solutions are
not applicable. Cryptographic access control techniques designed for shared/untrusted
file systems are potential candidates for clouds. In these approaches, the data stored
on untrusted storage is encrypted and the corresponding decryption keys are disclosed
only to the authorized users. Therefore, the confidentiality of data is protected against
untrusted storage as well as unauthorized users.

However, the existing solutions [23,24,25] have scalability limitations that hinder
their adoption in the cloud-storage settings. For example, until recently finding a cryp-
tographic approach that simultaneously supports fine-granularity, scalability, and data
confidentiality was an open problem. In [31], Shucheng Yu et al addressed this open
problem by introducing a novel protocol which closes this gap. Another scalability
issue, which we address in this paper, is related to access revocation. To eliminate re-
encryptions required as part of access revocation, a technique called lazy revocation is
widely adopted by existing cryptographic filesystems [12,26,27]. Lazy re-encryption
delays required re-encryptions until the next write access 1. In practice, lazy revoca-
tion eliminates extra re-encryptions as write access requires the client to re-encrypt the
data anyway. Therefore, lazy revocation significantly improves the performance at the
cost of slightly lowered security. To support lazy revocation, cryptographic access con-
trol protocols need to use a key-updating scheme which provides key regression. Key
regression enables a user holding a new key to derive an older key.

Despite the recent developments on untrusted cloud storage, current key-updating
schemes are still inadequate in terms of usability and efficiency. Specifically, existing
key-updating schemes [12], especially for access hierarchies, are not scalable as they
require complex data structures such as cryptographic trees [23] or linked lists [25]
(section 2). These cryptographic data structures need to be updated after each revoca-
tion. Since most of the existing cloud storage services have very simple APIs which al-
low only storing and updating key-value pairs, implementation of existing key-updating
schemes on top of existing commercial clouds is inefficient and unscalable.

1 Lazy re-encryption, adopted by [31], delays re-encryptions till next (read or write) access.
Since in regular workloads read accesses are significantly more than write accesses, the per-
formance gain by lazy revocation is drastically more than that of lazy re-encryption.

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 61

We introduce a new key-updating scheme called AB-HKU which is scalable and
also supports access hierarchies without requiring complex data structures. Our AB-
HKU scheme enables us to support lazy revocation without requiring any change in
the existing cloud APIs. We also introduce a new signature scheme for Key-Policy
Attribute-Based Encryption [22] called AB-SIGN. We then apply these new crypto-
graphic schemes to achieve scalable and anonymous information sharing in existing
commercial cloud storage services. We provide an implementation of the proposed pro-
tocols and perform extensive experimental evaluation on cloud storage environments.
Our technical contributions are summarized as follows:

– We introduce a new scalable and secure key-updating scheme for access hierar-
chies.

– We design and implement a scalable and privacy-preserving access control frame-
work for existing untrusted cloud services. Our framework supports lazy revocation
and access hierarchies.

– We present a signature scheme for Key-Policy Attribute-Based Encryption [22].
Using our signature scheme, users can prove that they own a key that its policy
satisfies with a set of attributes, without revealing their identity or credentials.

– We provide the first open source implementation of cryptographic libraries for
Hierarchical Identity-Based Encryption [6] and Key-Policy Attribute-Based En-
cryption [8] schemes. They are useful beyond the specific cloud storage problem
studied.

Our paper is organized as follows. In Section 2 we introduce our new key-updating
scheme and prove its security. In Section 3 we explain our access control protocol and
discuss its features and security guarantees. Then, in Section 4 we discuss the imple-
mentation details of our cryptographic libraries and access control framework and eval-
uate its performance. In Section 5 we discuss the related work. Conclusions and future
work are given in Section 6.

2 Key Updating Schemes for Access Hierarchies

In this section we present an efficient secure key-updating scheme that supports hi-
erarchies. First, we provide a formal definition for secure key-updating schemes for
hierarchical access. Then, we give a concrete construction of a key-updating scheme
based on the use of attribute-based encryption scheme. Our solution supports both key
revocation and hierarchical delegation of secret access keys. Our secure cloud storage
framework for easy sharing and revocation, described in Section 3, is built based on
those two key properties.

2.1 Background

Lazy revocation, first introduced in Cephues [20], is a technique which reduces the
overhead of revocation at the price of slightly lowered security [23]. When a user’s read
access right on a file is revoked, lazy revocation allows to postpone re-encryption of that

62 S. Zarandioon, D. Yao, and V. Ganapathy

file until the next change. Lazy revocation has been adopted by all majors cryptographic
file systems [12,26,27]. However, it also causes fragmentation of encryption keys in ac-
cess hierarchies. Therefore, a user receiving the most recent key of an access hierarchy
should be able to compute the older keys in order to decrypt files that are not yet re-
encrypted by the most recent key, a capability that is referred to as key regression [21].
Key-updating schemes [12] are cryptographic schemes which support key regression.

Another key management issue that we need to address is related to access hierar-
chies. A user owning access key of a specific hierarchy class should be able to decrypt
all objects belonging to that hierarchy as well as all lower hierarchies. Key manage-
ment schemes for hierarchies generate keys that satisfy this requirement. Key-updating
schemes enable users to move backward in time dimension and decrypt data objects
encrypted by older keys, whereas key management schemes for hierarchies let users
traverse space forward and decrypt data objects encrypted by keys which correspond to
lower hierarchies. Access control protocols that are coupled with folder structure of file
system ([23]) and need support for lazy revocation, require schemes that let the users
simultaneously traverse time backward and space forward. For example, a user holding
the most recent version of an access key for folder /a should be able to decrypt a file
located at /a/b/c which is encrypted by an older key.

In [12], Backes et al formalize key-updating schemes. They also analyze and evalu-
ate existing protocols that support key regression, but none of these protocols support
hierarchies. In [15,16], Blanton et al formalize key management schemes for hierar-
chies, study existing protocols and introduce an efficient protocol for managing keys
in hierarchies. But all of these schemes and protocols are static with respect to time,
as they do not support key-updating/regression. Therefore, none of these schemes are
capable of handling key regression and hierarchies simultaneously.

To our knowledge, the only work on key regression (lazy revocation) in hierarchies
is [23], in which Grolimund et al introduced the concept of Cryptree, a tree constructed
by symmetric and asymmetric cryptographic links. In Cryptree, a user holding a clear-
ance key pointing to a folder can traverse a sequence of cryptographic links to derive
access keys to all of its sub-folders and files. Moreover, the structure of the Cryptree
lets the protocol delay re-encryption of data until the next update; thus supports lazy
revocation. However, for the reasons that we explain in Section 5, the complexity of
required data structure and its high performance cost for large volume of data makes its
implementation on top of existing cloud services unscalable and inefficient.

2.2 Model and Definitions in HKU Scheme

In this section we present a formal definition for Hierarchical Key Updating (HKU)
Schemes and its security. Let T = (V,E,O) be a tree that represent a hierarchical ac-
cess structure. More general access class hierarchies in which partially ordered access
classes are represented by a DAG are studied in [16]. In our work, we are only inter-
ested in a special case where DAG is a tree. Each vertex vi in V = {v0, v1, ..., vn}
corresponds to an access class. v0 is the root and an edge e = (vi, vj) ∈ E implies that
vi class is the parent of class vj .

For example, top secret, secret, confidential, and unclassified form a hierarchy of
access classes, where the root top secret access class is the parent of the secret access

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 63

class. In a more complex access tree, a parent access class may have two or more child
access classes. For example, a root Enterprise access class may have Marketing, Man-
ufacturing, and R & D as its child access classes. We sometimes refer to access class as
class, and use terms node, vertex and access class interchangeably.

O is a set of sensitive data objects, each object o is associated with exactly one access
class V(o). In this model, any subject that can assume access rights at class vi is also
permitted to access any object assigned to a vertex that is a descendant of vi.

The following definitions introduce the concept of time into our model.

Definition 1. The local time at vertex vi is an integer ti that increases (elapses) every
time access rights of a subject to that class is revoked.

Definition 2. The global time associated with node vi is a vector τi = (t0, ..., tj , .., ti)
where tj is the local time of jth vertex on the path from root to vertex vi on the access
tree T .

Two instances of global time are comparable only if the vertices that they belong to
are identical or one of them is the ancestor of the other one; We say τi < τj iff τi and
τj are comparable and all common components of τi are less then the corresponding
components in τj . Similarly, we define comparative operators=, >, ≤, and ≥.

Definition 3. A Hierarchical Key-Updating (HKU) Scheme consists of a root user and
end users. An end user may be a reader, a writer, or both. There are five polynomial
time algorithms HKU = (Init, Derive, Encrypt, Decrypt, Update) defined as follows.

– Init(1k, T) is a randomized process run by the root user which takes as inputs
a security parameter k and an access hierarchy tree T and then generates and
publishes a set of public parameters Pub and outputs the root key Kv0,⊥. It also
initializes the state parameters including the value of local time at each vertex.

– Derive(T,K(vi,τi), vj) is a randomized process run by the root user, reader or
writer which using the private key K(vi,τi) of vi at time τi derives a private key
of target class vj at its current global time τj according to T . Derive computes the
requested key only if vi is an ancestor of vj and τj = τi; otherwise, it outputs null
(⊥).

– Revoke(T, vi) run by the root user, reader or writer, increments the local time ti of
vi by one, updates other state variables, and returns the updated tree T ′.

– Encrypt(T, ok) is a randomized algorithm called by writer that encrypts the data
object ok and returns the encrypted object C.

– Decrypt(K(vi;τi), C) is a deterministic process run by reader which takes a key and
an encrypted object as inputs and returns the corresponding object in plaintext.
This function can decrypt C only if it belongs to the same or a descendant of the
access class that the key belongs to and the time that ok is encrypted at is less than
or equal to τi; otherwise, it outputs null (⊥).

Definition 3 is a generalization of the definition of key-updating schemes in [12] and
the definition of key allocation schemes for hierarchies in [16]. If we assign to T a
tree of depth 1 where its leaves are a set of groups (i.e, remove heirarchies), our def-
inition reduces to a key-updating scheme defined in [12] and if we remove the update

64 S. Zarandioon, D. Yao, and V. Ganapathy

process and the time dimension, our scheme reduces to key allocation scheme for hier-
archies defined in [16]. Intuitively, a hierarchical key-updating scheme is secure if all
polynomial time adversaries have at most a negligible advantage to break the ciphertext
encrypted with the current-time key of a target class, assuming that the adversaries do
not belong to higher (ancestor) target classes in the hierarchy, or possess keys for earlier
time periods. The formal definition of the security model of hierarchical key-updating
schemes is provided in the technical report [32]. In this model the adversary chooses
her target at the beginning of the game and then adaptively queries the scheme.

2.3 AB-HKU Scheme

In this section, we present a concrete construction for HKU scheme called AB-HKU.
This scheme is based on the use of bilinear map and the difficulty of the Bilinear
Diffie-Hellman problem. Our solution is realized on top of the Key-Policy Attribute-
Based Encryption scheme (KP-ABE) [22] and invokes KP-ABE operations including
SETUP ABE, KEYGEN ABE for private key generation, ENCRYPT ABE for data en-
cryption, and DECRYPT ABE for decryption.

– Init(1k, T)

1. The root user runs the SETUP ABE process with 1k as security parameter to
generate ABE public parameters and the master key MK. Publishes the ABE
public parameters as Pubabe.

2. Calls KEYGEN ABE procedure using MK as the secret key and “L0 =
v0” as its policy. Outputs the result as the root key (K(v0,⊥)= KEY-
GEN ABE(MK, L0 = v0)).

3. To each vertex in T adds a local time variable ti initialized to zero.

– Derive(T,K(vi; τi), vj) is run by a user (root user, reader, or writer) with secret
key K(vi; τi) at time τi to obtain the private key for node vj .
If class vj is not a descendant of class vi, or the time τi is not equal to current time
τj associated with vj , then return null. Otherwise, denote (u1, u2, ..., un) as the list
of vertices in the path from vi to vj ; denote (tu1 , tu2 , ..., tun , tvj) on T as the list of
current local time values of intermediate vertices (including vj); and let d represent
the depth of vi.
The user performs the following operations.
1. Construct the access tree T ′ which corresponds to the following Boolean ex-

pression: (Ld.v attribute represents vertex in d-th level, Ld.t represents its cur-
rent local time and ∧ is conjunction operator.)

(L(d+1).v = u1 ∧ ... ∧ L(d+n).v = un

∧L(d+ n+ 1).v = vj) ∧
(L(d+1).t ≤ τu1 ∧ ... ∧ L(d+n).t ≤ τun

∧L(vj).t ≤ τvj) (1)

This Boolean expression restricts access to objects that belong to node vj or its
descendants and are created at current time or before.

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 65

2. Denote the access tree of K(vi,τi) by T . Using the procedure for delegation of
private key in [22], add the access tree T ′ to the root of K(vi, τi), increase its
threshold by one, update and calculate the private parameters associated to the
root according the protocol. In implementation section we provide more details
on this procedure.

3. Output the resulting access tree and parameters as a private key K(vj , τj) for
vj .

– Encrypt(T, ok): Denote vi as the access class that object ok belongs to.
(vi = V(ok)). Denote (v0, u1, u2, ..., un, vi) as vi’s path and τi =
(tv0 , tu1 , tu2 , ..., tun , tvi) as its current time according to T . A writer encrypts ok
as follows.

1. Set the attribute set γ as follows. The attribute set is used as the public key for
encryption.

γ = {L0.v = v0, ..., Ln.v =n, Ln+1.v = vi,

L0.t = tv0 , ..., Ln.t = tun , Ln+1.t = tvi} (2)

2. Use ABE encryption procedure to encrypt ok with attribute set γ and return the
resulting encrypted object. (C = ENCRYPT ABE(Pubabe, γ, ok)).

– Decrypt(K(vi,τi), C). The reader decrypts as follows.

1. If the encrypted object C does not belong to the same access class vi as the key
K(vi,τi) or one of its descendants, or the time when C is encrypted is later than
the time τi when the key is generated, then return null (⊥).

2. Otherwise, run ABE decryption procedure and return its result as output (ok=
DECRYPT ABE(K(vi,τi), C)).

– Revoke (T, vi) is run by a user to increment the local time of vi by one and then
returns the updated tree T ′.)

The correctness of our HKU scheme follows the correctness of the key policy ABE
scheme [22] and is omitted here.

Theorem 1. Assuming the hardness of the Decisional BDH, AB-HKU is a secure hier-
archical key-updating scheme.

Proof. Proof is presented in the technical report [32].

3 K2C Protocol

We describe the application of our hierarchical key-updating scheme in realizing a se-
cure and scalable cloud access control protocol that supports easy sharing and revoca-
tion on hierarchically organized resources. We also analyze the security of our protocol.

66 S. Zarandioon, D. Yao, and V. Ganapathy

3.1 Design Goals

Below we list the design goals of our K2C access control protocol:

– Security: Our protocol must protect the confidentiality and integrity of stored data
against cloud providers and unauthorized end-users. Meaning that the stored data
should be readable for authorized users only and any unauthorized change to the
data should be prevented or detectable.

– Privacy-preserving: Access rights of a specific end-user as well as his usage trends
should not be visible to other users or cloud service providers.

– Efficiency and Scalability: To avoid unjustified cost of re-encryption, the protocol
should support lazy revocation. Also, the complexity of operations should be inde-
pendent of number of data objects and users in the system. This ensures that the
protocol will not affect the scalability of existing cloud services.

– Flexibility: The protocol should allow data owners and end-users to organize and
manage their data in hierarchies similar to conventional file systems. Directories
also represent access class hierarchies, users who have access to a directory/folder
also assume the same access to all files and directories below that directory. Also,
they should be able to grant/revoke part of their access rights to/from other users in
a decentralized and scalable manner.

– Simplicity and Extensibility: Last but not the least, the protocol should be simple
enough to be efficiently implementable on top of existing commercial cloud APIs.

We assume end-users have secure communication channels, limited computation power
and storage required for authenticating each other and performing client-side key dis-
tribution in a synchronous or asynchronous manner.

Security Model. We assume that the root user, representing the data owner, is trusted.
The cloud providers are honest-but-curious (aka semi-honest), who follow the proto-
col and faithfully execute the operations, but may actively attempt to gain additional
knowledge, such as the sensitive data stored in the cloud. An adversary may attempt to
perform unauthorized read or write access against the stored data, or attempt to learn the
identities of readers or writers. For example, end-users may try to perform unauthorized
read or write operations on stored data objects. To perform their attacks, unauthorized
users may use their existing access keys for other objects and categories or cooperate
with other unauthorized users and cloud providers to derive/guess credentials required
to perform unauthorized access. Similarly, cloud providers may try to read or modify
stored data or learn about the identities of the end uers. Cloud providers may collude
with each other or some unauthorized end-users to break the security of K2C. We as-
sume communication channels between participants are secure (e.g., SSL).

3.2 A Signature Scheme for KP-ABE

K2C requires a signature scheme to 1) enable the readers to verify the integrity of
data and ensure that it is produced by an authorized writer, 2) enable the cloud service
providers to validate incoming requests and block unauthorized accesses. However, the
original paper which introduces KP-ABE [22] does not present any signature scheme.
In this section we introduce an attribute-based signature scheme called AB-SIGN which

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 67

enables the verifier to ensure that a signature is produced by a user whose access policy
is satisfiable by a set of attributes without learning the signer’s identity.

Definition 4. AB-SIGN is a signature scheme for key-policy attribute-based encryption
that its signing and verification methods are defined as follows. Let’s say that the signer
has a key K for policy P , and wants to sign message M. The verifier needs to verify
that the signature is generated by a signer whose key policy satisfies attribute set A.

Signing: From K derive a key (K ′) which corresponds to a policy which is the con-
catenation of P and (@S = M) (@S is a reserved attribute for signatures). Send the
derived key to the verifier as the signature.

Verification: Generate a random token and encrypt it using the attribute set A∪{@S =
M} and then decrypt the result using a key which is equal to the signature. If the result
is equal to the original token the signature is valid (i.e. the attribute set A satisfies the
signer’s key policy.)

To prevent an attacker from using the signature method to derive a valid access key,
we need to reserve the attribute ‘@S’ for signature. The security of AB-SIGNscheme in
terms of unforgeability follows immediately from the security of KP-ABE scheme.

3.3 Protocol Description

In this section we provide the details of K2C protocol. The protocol runs between the
root user, end-user (reader or writer), and the cloud providers. The root user may be
a system administrator in the data owner’s organization, who can specify the access
privileges of end-users. The end-users may further delegate their access privileges to
other individuals for easy sharing. We achieve the revocation of privilege by encoding
the validity period in the private keys of users and advancing time with respect to the
target hierarchy or data object. Another advantage of our K2C framework for use in
cloud storage is the support of anonymous access.

As illustrated in Figure 1, K2C requires three repositories: Meta-data Directory,
Data Store and Key-store.

– Meta-data Directory: All meta-data associated with hierarchies and data objects
are maintained in this repository. K2C requires two properties for each object: Read
Access Revision (RAR) and Write Access Revision (WAR). These two properties
play the role of local time in AB-HKU for read and write access, respectively. In
order to compute Read/Write Access Revision Vectors (which correspond to global
time instances in K2C), the cloud provider that hosts Meta-data Directory needs
to provide an API for querying RAR and WAR values of multiple directories in a
single request. All existing cloud-based databases such as Amazon SimpleDB [3],
Microsoft Azure SQL [10], and Google’s AppEngine [5] database (Bigtable [18]))
satisfy this requirement and therefore qualify to host a K2C Meta-data Directory.
For our experiments we use Amazon SimpleDB [3].

68 S. Zarandioon, D. Yao, and V. Ganapathy

Fig. 1. Illustration of all major participants of K2C. Following K2C protocol, end-users can en-
force access control on their own data without fully trusting or relying on the cloud providers.
In K2C, keys are distributed and managed in a distributed fashion. Solid arrows represent access
delegation.

– Data Store: This repository contains the actual content of each data object. Any
cloud key-value based storage system such as Amazon S3 [2] can be used as
K2C Data Store. In K2C, keys are hierarchical path name of data objects and val-
ues are the actual content of corresponding data objects. Cloud key-value storage
providers are tuned for high throughput and low storage cost; these features make
them a good candidate for K2C Data Store2.

– Key-store: All read/write access keys of end-users are kept in their secure local
repository called Key-store.

Initial Setup: To setup K2C, the root user needs to follow the steps listed below:

1. Sign up for cloud services required for hosting Meta-data Directory and Data Store.
2. Run Init procedure according to AB-HKU scheme to generate public parameters

and the master key.
3. Save the master key and public parameters in the root’s Key-store.
4. Share the public parameters with the cloud service providers that support K2C re-

quest authorization.
5. Create an entry in Meta-date Directory that corresponds to the root directory. The

WAR and RAR numbers of the root directory entry are initialized to zero.

Basic Operations: There are four basic operations in our protocol: write, read, dele-
gate, and revoke. Each basic operation leads to calls to Meta-data directory and/or Data
Store. We present the high-level steps involved in these operations below. Other op-
erations such as create/remove/rename for directories and data objects can be defined

2 Note that using key-value storage for Meta-data Directory is not efficient as computing
WAR/RAR vector leads to multiple calls to the cloud storage system.

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 69

Fig. 2. Write operation

similarly. K2C requires that each request be signed by user’s access key for the target
object using our AB-SIGN operation. This requirement enables cloud providers which
support K2C to block unauthorized request. We refer to this property as K2C request
authorization.

– Write: To write into a specific data object, the end-user needs to perform the fol-
lowing steps (See also Figure 2).

1. Retrieve the required write access key from the local Key-store.
2. Query Meta-data directory to get read access revision (RAR) vector of the tar-

get object.
3. Using AB-HKU scheme, encrypt the data by the retrieved RAR vector and its

path.
4. Using AB-SIGN scheme, sign the data by his write access key.
5. Construct a key-value pair where the key is equal to the path of data object and

the value is the encrypted data and corresponding signature. Store the pair in
Data Store.

– Read: To read a specific data object stored using K2C protocol, the end-user needs
to do the following (See also Figure 3). To ensure the data is produced by an au-
thorized writer, the reader needs to validate the corresponding signature using AB-
SIGN signature scheme. Then the reader can decrypt the data using its read access
key and AB-HKUscheme.

70 S. Zarandioon, D. Yao, and V. Ganapathy

Fig. 3. Read Operation

1. Retrieve the required read access key from the local Key-store.
2. Using AB-HKU scheme and the read access key, decrypt the encrypted data.
3. Using AB-SIGN signature scheme, validate the signature to ensure that data is

produced by a user who has the proper write access.
4. Return the decrypted data.

– Delegation: Delegation operation can be run by a user to authorize another user a
subset of his access privileges. It requires three input parameters: the identity of the
delegatee, the resource path, and access type (read/write). The steps required for
this operation are listed below:
1. From the local Key-store, get the access key that matches the target resource

path and access type.
2. Query Meta-date Directory to get the read/write access revision (RAR/WAR)

vector of target resource.
3. Run Derive operation, as defined in AB-HKU scheme, to generate the required

access key.
4. Send the generated access key to the delegatee through a secure communication

channel.
– Revocation: To revoke a user’s access on a specific directory or data object, the

authorized user needs to make a signed request to the Meta-data Directory to in-
crease the corresponding access revision number. To ensure the integrity of access
revision numbers, these entries should be signed by the requester.

3.4 Security Analysis

In this section we state the security guarantees provided by K2C protocol. More detailed
proofs and analysis can be found in our full version [32].

Confidentiality: Our solution ensures that only the users who have the most recent
version of the access key of the data object or one of its ancestor directories can decrypt

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 71

it. The confidentiality of stored data is protected under our protocol because writers al-
ways encrypt the data objects by their path and most recent read access revision (RAR)
vector according to AB-HKU scheme. The cloud provider or other unauthorized users
cannot gain any information that helps them to guess the access key of unauthorized
data objects.

Collusion-resistance: of KP-ABE guarantees that unauthorized users and malicious
cloud service providers cannot collude to guess access key to an unauthorized data
object.

Integrity: The integrity of stored data is preserved. This guarantee is realized by re-
quiring writers to sign the data by their write access key using AB-SIGN scheme. We re-
quire readers to validate writer’s signature to ensure that it is produced by an authorized
writer (i.e. a user with write access to that data object or on of its parent directories). Be-
cause meta-data entries stored in the Meta-data Directory are also required to be signed
by the end-users, any unauthorized change in Meta-data Directory is detectable by the
reader.

Anonymity: The end users are anonymous to each other and to the cloud providers.
The signatures used in the our authorization do not contain any identify information.
During the course of protocol, the end-users do not reveal any information about their
credentials. AB-SIGN signatures bound to the data objects and requests, include only
attributes related to the location and global time of those objects.

4 Implementation and Evaluation

We give our implementation of K2C framework and the required cryptographic li-
braries. We present our experimental results on accessing Amazon cloud storage [2,3]
using K2C framework.

4.1 Key-Policy Attribute-Based Crypto Library

To support lazy-revocation and hierarchies, K2C uses our AB-HKU scheme that is based
on Key-Policy Attribute-Based encryption scheme [22]. But, we were not able to find
any implementation of KP-ABE 3. Therefore, we develop a general KP-ABE crypto-
graphic library and release it as an independent open source project [8]. In this section,
we provide a short overview of this library.

Our library implements the KP-ABE scheme. We also fix a non-trivial limitation ex-
isted in the construction of [22]. KP-ABE is a large universe construction, meaning that
it does not require the attributes to be fixed during the initialization process. However,
the maximum number of attributes should be known in advance – a limitation which is
not desirable in many practical cases. To overcome this limitation, we adopt the random
oracle model [13] and replace function T (X) (used in the Setup phase) by a secure hash
function. This modification also improves the efficiency of the library. Therefore, our
library does not put any limitation on the number of attributes that can be used in the
system. We support numerical attributes and comparisons [14].

3 The open source implementation of Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [14] which was presented in the original paper [14] is available at [9]. However, CP-
ABE is not applicable in our protocol.

72 S. Zarandioon, D. Yao, and V. Ganapathy

In our library, policies are defined recursively and represented using an S-Expression
(LISP-like expression) as follows:⎧⎪⎪⎨⎪⎪⎩

a = v a is a symbolic attribute
(c a v) a is a numerical attribute &

c is a comparative operator
([t | and | or] p1 p2 . . . pn) Composite policy

The first and second types correspond to a simple policy for symbolic and numer-
ical attributes, respectively. The third type represents policies which are composed of
a set of policies (i. e. p1, p2, . . . , pn) proceeded by a threshold. Composed polices get
satisfied only if the number of satisfied polices in that list is more than or equal to
the specified threshold. The threshold can be one of the following three items: an in-
teger threshold t ∈ [1, n], and, or. For example, (and role=manager (> age
18)) is a composite policy which gets satisfied only when the value of attribute role
is equal to manager and the value of the numerical attribute age is greater than 18.
More implementation details are presented in the technical report [32].

4.2 K2C Framework and Performance Evaluation

In this section we present the high-level architecture of K2C framework. We also pro-
vide some experimental results that show its performance in an existing commercial
cloud storage.

Simplicity and extendability are two major design goals of K2C framework.
K2C framework is independent of any specific cloud provider. It has two simple in-
terfaces which abstract away the details of the cloud providers: IDataStore and
IMetadataDirectory. A new cloud service provider can be supported easily by
implementing these interfaces. Out of the box, K2C framework comes with a data store
driver for Amazon S3 and a meta-data directory driver which uses Amazon SimpleDB.
To make it easier for the developers to learn and use our framework, we expose its ser-
vices through a set of APIs which are very similar to the Java APIs for accessing the
file system. The source code is published at [7].

To evaluate the performance of K2C framework/protocol, we used the default drivers
(Amazon S3 [2] data store driver and Amazon SimpleDB [3] meta-data directory driver)
and ran our experiments on a machine with the following configuration: Intel Core 2
CPU, 2.53GHz, 2.90 GB RAM, Microsoft Windows XP 2002 SP2.

Figure 4 shows the time required for users in different access levels to perform read
and write operations against the data objects of size 1KB belonging to directories in
different hierarchical levels. Reported costs for each operation include computational
time required for cryptographic operations (Symmetric and KP-ABE) as well as round
trip time for HTTP calls to the cloud servers. As these diagrams show, users with higher
level access (e.g. the root user) can perform read and write operations more efficiently,
a property which is normally desirable4. Access time increases linearly as the access
level of users decreases. Also this figure shows that access time for both read and write

4 In Cyptree, high-level users have higher access time as they have to traverse longer crypto-
graphic lists to find the access key (See Section 5).

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 73

Fig. 4. Cost of read/write operation on objects which belong to different hierarchy levels per-
formed by users with different access levels. The size of data objects are 1 KB.

Fig. 5. Read/write access time for the root user as the size of data objects increase

operations increases linearly as the hierarchy level of object increases. The reason be-
hind this linear increase is that encryption/deception time in KP-ABE is a function of
number of attributes and the number of attributes associated with data objects linearly
increases as their hierarchy level increases. Another observation is that write operations
are more expensive than reads. This overload for write operations is partly due to an
extra http call to Meta-data Directory required for retrieving the latest RAR vector.

Figure 5 shows the cost of read and write access as the size of data object increases.
Since in our experiments the actual data is encrypted using the symmetric-key encryp-
tion scheme AES (Advanced Encryption Standard) and only the key is encrypted using
KP-ABE, these statistics reflect the time required by AES to encrypt the data as the data
size increases.

5 Related Work

There are two general key management approaches which are used in the existing cryp-
tographic file systems: 1) classic access control list (e.g., [23,24]) requires maintaining a
key list along with each file. This approach supports fine-granularity but is not scalable.
2) grouping files and assigning the same access key to each group (e.g., [25]). This

74 S. Zarandioon, D. Yao, and V. Ganapathy

approach is more scalable but provides coarse-grained access control. This trade-off
makes these solutions unsuitable for clouds where we need a fine-grained and scal-
able access control mechanism. In [31], Shucheng Yu et al introduced a novel approach
which addresses this trade-off by proposing a fine-grained and scalable access control
protocol. Their solution uses lazy re-encryption to statistically reduce the number of re-
encryptions required after access revocation. They use proxy re-encryption (PRE) [17]
to off-load the task of re-encryption to cloud servers. In our solution, we adopt lazy
revocation to eliminate these re-encryptions. In [30], Xiong et al introduce a protocol
for securing end-to-end content distribution when delivery services are involved.

Lazy revocation was first introduced in Cephues [20] to eliminate re-encryption re-
quired for each revocation at the cost of slightly lowered security. Lazy revocation,
which is widely being used in recent cryptographic file systems [25,26,27], requires a
key-updating scheme to support key regression. Key-updating schemes are studied and
formalized in [12]. In [23], Grolimund et al introduced Cryptree which can support ac-
cess hierarchies and lazy revocation simultaneously. However, due to the explicit and
physical dependency of these links, file system operations – especially revocations – re-
quire updating large number of these cryptographic links. For example, the revocation
of write privilege requires updating O(n) keys, where n is the number of data objects
contained in that folder and its sub-folders. Therefore, revocation of write access for a
folder containing many files is relatively slow as all the links that connect to the con-
tained sub-folders and files need to be updated.

Moreover, in Cryptree, since key derivation requires traversing cryptographic links,
key derivation time is a function of distance of data objects to the folder that the user has
access to. Therefore, users with access to high-level folders (e.g. root user) have slower
read access. For a specific user read access time depends on the location of the data
object, but intuitively we expect the read access time to be independent of the location of
the data object. Another limitation of this approach is that Cryptree does not support the
delegation of administrative rights and assumes that granting and revoking access rights
are done by a single administrator, an assumption which is usually unrealistic in the
context of Cloud Storage, as we expect non-centralized administration of data. In this
paper we introduced a scalable key updating scheme for hierarchies which addresses
these shortcomings and enables us to build a cryptographic access control supporting
lazy revocation.

6 Conclusion and Future Work

We presented a novel key-updating scheme that can be used to enhance the scalability
and performance of cryptographic cloud storages by adopting lazy revocation. We also
designed a new digital signature scheme that enables cloud providers to ensure that
requests are submitted by authorized end-users, without learning their identities. Using
our key-updating and signature scheme, we developed, implemented, and evaluated a
scalable cryptographic access control protocol for hierarchically organized data. We
plan to improve the efficiency of K2C, and to enhance our access control protocol by
using proxy re-encryption [11] to off-load key distribution task to the cloud [31]. We
are also investigating application of our key-updating scheme in existing cryptographic
file systems and webtops [33].

K2C: Cryptographic Cloud Storage with Lazy Revocation and Anonymous Access 75

Acknowledgments. The first author would like to thank the help of professors at Bahai
Institute for Higher Education (BIHE [4]), Aidin Behroozi and Gurpreet Singh.

References

1. 104th United States Congress. Health Insurance Portability and Accountability Act of 1996
(HIPPA), http://aspe.hhs.gov/admnsimp/pl104191.html

2. Amazon S3, http://aws.amazon.com/s3/
3. Amazon SimpleDB, http://aws.amazon.com/simpledb/
4. BIHE, http://bihe.org/
5. Google App Engine, http://appengine.google.com
6. HIBE Crypto Library, https://sourceforge.net/projects/hibe
7. K2C Framework, https://sourceforge.net/projects/key2cloud/
8. KP-ABE Crypto Library, https://sourceforge.net/projects/kpabe.
9. Open Source Implementation of CP-ABE, http://acsc.cs.utexas.edu/cpabe/

10. SQL Data Services/Azure Services Platform,
http://www.microsoft.com/azure/data.mspx

11. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. In: NDSS, pp. 29–43 (2005)

12. Backes, M., Cachin, C., Oprea, A.: Secure Key-Updating for Lazy Revocation. In: Research
Report RZ 3627, IBM Research, pp. 327–346. Springer, Heidelberg (2005)

13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications
Security, CCS 1993, pp. 62–73. ACM (1993)

14. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: Pro-
ceedings of the 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE
Computer Society, Washington, DC (2007)

15. Blanton, M.: Key Management in Hierarchical Access Control Systems, 2007. PhD Thesis,
Purdue University (August 2007)

16. Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and Efficient Key Management for Access
Hierarchies. In: Proceedings of the ACM Conference on Computer and Communications
Security (2005)

17. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryptography.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidel-
berg (1998)

18. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. In: Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation, vol. 7,
pp. 205–218 (2006)

19. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J.: Controlling
Data in the Cloud: Outsourcing Computation without Outsourcing Control. In: Proceedings
of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, pp. 85–90. ACM,
New York (2009)

20. Fu, K.: Group sharing and random access in cryptographic storage file systems. Technical
report, Masters thesis, MIT (1999)

21. Fu, K., Kamara, S., Kohno, T.: Key regression: Enabling efficient key distribution for secure
distributed storage. In: NDSS (2006)

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, pp. 89–98. ACM, New York (2006)

http://aspe.hhs.gov/admnsimp/pl104191.html
http://aws.amazon.com/s3/
http://aws.amazon.com/simpledb/
http://bihe.org/
http://appengine.google.com
https://sourceforge.net/projects/hibe
https://sourceforge.net/projects/key2cloud/
https://sourceforge.net/projects/kpabe
http://acsc.cs.utexas.edu/cpabe/
http://www.microsoft.com/azure/data.mspx

76 S. Zarandioon, D. Yao, and V. Ganapathy

23. Grolimund, D., Meisser, L., Schmid, S., Wattenhofer, R.: Cryptree: A folder tree structure
for cryptographic file systems. In: Proceedings of the 25th IEEE Symposium on Reliable
Distributed Systems, pp. 189–198. IEEE Computer Society, Washington, DC (2006)

24. Goh, E.J., Shacham, H., Modadugu, N., Boneh, D.: Sirius: Securing remote untrusted stor-
age. In: NDSS, pp. 131–145 (2003)

25. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable secure file
sharing on untrusted storage (2003)

26. Riedel, E., Kallahalla, M., Swaminathan, R.: A framework for evaluating storage system
security. In: Proceedings of the 1st USENIX Conference on File and Storage Technologies,
FAST 2002. USENIX Association, Berkeley (2002)

27. Stanton, P., Yurcik, W., Brumbaugh, L.: Protecting multimedia data in storage: A survey of
techniques emphasizing encryption. In: IS and T/SPIE International Symposium Electronic
Imaging/Storage and Retrieval Methods and Applications for Multimedia, pp. 18–29 (2005)

28. Takabi, H., Joshi, J.B.D., Ahn, G.-J.: Security and Privacy Challenges in Cloud Computing
Environments. IEEE Security and Privacy 8, 24–31 (2010)

29. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling Public Verifiability and Data Dynam-
ics for Storage Security in Cloud Computing. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

30. Xiong, H., Zhang, X., Zhu, W., Yao, D.: CloudSeal: End-to-End Content Protection in Cloud-
Based Storage and Delivery Services. In: Rajarajan, M., et al. (eds.) SecureComm 2011.
LNICST, vol. 96, pp. 483–492. Springer, Heidelberg (2012)

31. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proceedings of the 29th Conference on Information Commu-
nications, INFOCOM 2010, pp. 534–542. IEEE Computer Society Press, Piscataway (2010)

32. Zarandioon, S., Yao, D., Ganapathy, V.: K2C: Cryptographic Cloud Storage With Lazy Re-
vocation and Anonymous Access. Technical report, Rutgers University. DCS-tr-688

33. Zarandioon, S.: Zaranux, http://zaranux.com/

http://zaranux.com/

Analyzing the Gold Star Scheme

in a Split Tor Network

Benedikt Westermann1, Pern Hui Chia1, and Dogan Kesdogan1,2

1 Q2S�, NTNU, 7491 Trondheim, Norway
2 Chair for IT Security, FB5, University of Siegen, 57068 Siegen, Germany

{westermann,chia,kesdogan}@q2s.ntnu.no

Abstract. Tor is an anonymity network and two challenges in Tor are (i)
to overcome the scalability problems of Tor’s current network information
distribution scheme, and (ii) to motivate users to become operators of
nodes. Several solutions have been proposed to address these challenges.
We investigate the ramifications of combining two seemingly promising
proposals, i.e., splitting the Tor network into several sub-networks (for
better scalability), while using the Gold Star scheme (for motivating
users to become node operators). Through simulation, we show that the
sub-networks are likely to end up in a state of highly imbalanced division
of size and bandwidth. This threatens the security and worsens the scal-
ability problem of Tor. We identify the ratio of nodes given a gold star
and the fact that a gold star is solely awarded based on a node’s band-
width, being highly skewed in practice, as two factors that contribute to
an imbalanced split. We explore several potential mitigating strategies
and discuss their strengths and shortcomings.

Keywords: Tor, Incentive Schemes, Gold Star, Split Network.

1 Introduction

Anonymous communication deals with concealing who is communicating with
whom and is an important building block for privacy enhancing technologies.
One of the most popular anonymity networks is Tor [6]. Here, two actively dis-
cussed problems are the issue of scalability and the challenge to motivate more
users to become operators of Tor relays. The scalability problem of Tor stems
from its current information distribution scheme, which provides every user the
full view of the entire network. In [12], the authors predicted that more band-
width will be used to distribute the network information than for the actual
anonymization process in the near future. Various approaches have been pro-
posed to improve the scalability of Tor, most often by limiting the number of
relays a user needs to know (i.e., a partial view of the network). Danezis and
Syverson investigated the impact of providing users only a partial view of the

� “Centre for Quantifiable Quality of Service in Communication Systems (Q2S), Cen-
tre of Excellence”, appointed by the Research Council of Norway, is funded by the
research council, NTNU and UNINETT. http://www.q2s.ntnu.no

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 77–95, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

78 B. Westermann, P.H. Chia, and D. Kesdogan

anonymity network in [5] and highlighted the problems in doing so. They stated
that “[..] while scaling such systems [as Tor assuming a partial view] can main-
tain adequate anonymity in the face of route fingerprinting, splitting the network
outright may be more desirable”[5, p.156]
Interestingly, even though splitting the network seems to be a clean and

straight-forward solution, there can be ramifications, such as an unintended com-
petition among the sub-networks, e.g., for high bandwidth nodes, or, as pointed
out in [5], a malicious entity trying to influence the split to take advantage of it.
In this paper, we analyze the consequences of splitting the Tor network in the

presence of the gold star (GS) incentive scheme, proposed in [17] to motivate
more users to operate a relay. We show that splitting the Tor network while using
the GS scheme in individual sub-networks is likely to give a highly imbalanced
division of relays and total available bandwidth. This threatens not only the
users’ anonymity, but also worsens the scalability of Tor. We identify the ratio of
relays given a GS and the bandwidth based GS policy as two factors contributing
to an imbalanced split. We explore several potential mitigation strategies and
put forward some recommendations.
Our paper is structured as follows. In Section 2, we first detail on prior works

related to the scalability issue and incentives schemes in Tor. Next, we describe
our simulation design, scenarios, assumptions and dataset used in Section 3, and
present the simulation results in Section 4 together with a series of robustness
checks to our simulation model. We explore and discuss about several potential
mitigation strategies in Section 5 before concluding.

2 Background and Related Work

The general idea of Tor is to hide a user within a large set of users, the so-called
anonymity set [19], which is the set of all participants. Tor routes the data of
an Tor client through several Tor relays using layered encryption, and thereby
hides the relation between the Tor client and the data receiver from other parties,
such as the ISPs. In Tor, a path through the network is known as a circuit. The
relays used in a circuit are selected automatically by an Tor client. Each circuit
is capable of anonymizing multiple TCP connections simultaneously.

2.1 Distributing the Network Information

Being an overlay network, Tor needs to inform the Tor client about different
relays in the network. Tor does this currently by providing a global view of the
network to all Tor clients. The global view, stored in a data structure called con-
sensus document, is generated and distributed as follows. Each relay is required
to upload a detailed description of itself (referred to as descriptor) to all known
directory authorities. Every hour, the directory authorities agree on the state
of the network based on the descriptors they received and publish an hourly
consensus document. The document (together with new or updated descriptors
of different relays) is downloaded by the directory mirrors. Each Tor client in

Analyzing the Gold Star Scheme in a Split Tor Network 79

turn downloads the consensus document and new (or updated) descriptors of
individual relays from a directory mirror, or directly from a directory authority
if no known directory mirror is available. This causes a quadratic distribution
cost which does not scale [26,12].
To overcome the problem, several proposals have been made, mainly with the

use of a distributed hash table (DHT). An early proposal, which use a DHT to dis-
tribute the network information, was presented in the first version of Tarzan [9].
In [8], however, the authors substituted the DHT with a gossip algorithm, which
provides a full view of the network to the client applications. The importance
of having a full view in Tarzan was later shown by Danezis and Clayton [4].
Nevertheless, having a full view, Tarzan faces a similar scalability issue as Tor.
Another approach to distribute information using a DHT was proposed with
Salsa [16] by Nambiar and Wright. But it was shown by Mittal and Borisov
in [13] that Salsa is not as secure as claimed due to the information leakage
introduced by redundant lookups in the DHT. Westermann et al. used a DHT
based on Kademlia [11] to lookup nodes in an anonymity network [26]. Contrary
to Salsa, only the servers are present in the DHT. The users use a small set of
servers which they trust to perform node lookups. Additionally, the results are
not immediately used to build a connection. This prevents timing correlations.
In [18], Panchenko et al. showed that this approach does not provide enough
security in big networks as an attacker can significantly bias the node selection.
A more recent approach, named Torsk, was proposed by McLachlan et al. [12].

Torsk is also based on a Kademlia DHT, but it uses additional certificates to
verify that a node is the legitimate holder of a key based on the technique pro-
posed in [22]. Furthermore, each node maintains a signed list of lookup buddies.
A circuit is built by iteratively asking the buddies of the last node in a circuit
to lookup a random ID. The lookup returns a list of verifiable nodes within the
close neighborhood of the queried ID. The client then randomly selects a node
from the list to extend the circuit. Another DHT based approach called Nisan
was proposed by Panchenko et al. [18]. Nisan relies on a chord ring [21] for node
lookups. Contrary to a classic chord lookup, nodes are asked for their finger table
instead of the closest nodes to a given value. By doing so, a single node cannot
learn about the ID a client is looking for. To provide more protection against
active attacks by colluding nodes (e.g., by only returning a finger table with
colluding malicious nodes), the authors proposed a bound check of the finger
table. Yet, Wang et al. [23] showed that both Torsk and Nisan leak information,
allowing the attacker to reduce the users’ anonymity.
Mittal et al. [14] proposed ShadowWalker – another scheme to address the

scalability problem in anonymity networks. The nodes for a circuit are selected
by performing a random walk through the network. Only the last nodes in
the random walk are used for circuit building so to improve performance and
anonymity. Route capture attacks and manipulation to select malicious nodes
are countered with the so-called shadows, which maintain and attest the finger
table of shadowed nodes independently. But Schuchard et al. showed in [20] that
ShadowWalker is not as secure as claimed. Yet, they noted that the impact of

80 B. Westermann, P.H. Chia, and D. Kesdogan

their attacks can be mitigated by modifying the parameters and the consensus
requirements slightly.
In [15] Mittal et al. move towards a new direction to overcome the scala-

bility problem with the use of private information retrieval (PIR) techniques.
The authors suggested two different solutions based on PIR. The first solution
utilizes the current directory servers for the distribution of the network infor-
mation. Here, Tor clients download a small block of descriptors of (untrusted
non-authoritative) directory server. Due to PIR, the directory server does not
learn which block has been downloaded by the Tor client. The second solution
relies on the client’s guards, being the trusted entry points to the Tor network,
to fetch the descriptors for a circuit. Both solutions have in common that a Tor
client only downloads a small set of descriptors. Thereby, PIR ensures that only
the Tor client knows which descriptor has been downloaded. The authors show
that both solutions scale sufficiently to overcome the Tor’s scalability problem.
An analytical study was performed by Danezis and Syverson in [5] extending

from the work in [4]. The authors analyzed the impact of providing only a partial
view to individual users in anonymity networks. Their analysis shows that with
a partial view scheme, the anonymity set can be drastically reduced by just
knowing two nodes in a path. They also discussed the potentials of splitting the
Tor network (favoring it over a partial view scheme) but noted the importance of
a secure split to avoid exploitation by malicious parties. Related to the problem
of a secure split is a work of Dingledine and Syverson [7] where the authors
worked on the problem of building reliable mix cascade networks. They suggested
assigning mixes to cascades in an unpredictable but verifiable fashion based on
random inputs from all mixes. This helps among others to prevent malicious
mixes from targeting a specific cascade.
Considering the various approaches proposed, their complexity and the po-

tential attacks, it seems that splitting the Tor network into several sub-networks
is an interesting option to investigate more throughly.

2.2 Motivating the Users to become Relay Operators

Another challenge in anonymity networks is to motivate enough users to become
a node operator. In Tor, relays are mostly operated by volunteers who hardly get
any benefits for doing so. Despite a growing number of users, it is difficult to find
enough independent relays and operators in Tor [17]. Several incentive schemes
have been proposed to address this challenge and can be generally categorized
into two classes: incentive-by-money and incentive-by-performance.
Incentive-by-money schemes include JonDonym’s payment system [24,25],

PAR [2] and XPay [3]. We omitted the details of these schemes here, instead, we
focus on incentive-by-performance schemes.
Two incentive-by-performance schemes are the gold star scheme [17] and

Braids [10]. The basic idea of the gold star scheme is to prioritize the traffic
of useful relays by assigning a gold star (GS) to a fraction of the most useful
relays. In [17] the authors assigned a GS to the 87.5% best performing relays. A
relay having a GS (abbreviated as GS-relay) is entitled to extend a prioritized

Analyzing the Gold Star Scheme in a Split Tor Network 81

circuit to another GS-relay. If the whole circuit consists of only GS-relays, the
traffic is prioritized resulting in an improved performance, e.g., lower response
times or a higher bandwidth. One disadvantage of the GS scheme is that a pri-
oritized circuit can only be initiated by a GS-relay. Therefore, the anonymity set
for such a circuit is limited to the GS-relays only.
On the other hand, Braids proposes to distinguish the traffic in three different

classes: low latency, high throughput, and normal [10]. In order to route the traffic
in the low latency or the high throughput class, a client has to provide a relay
with tickets. Tickets are distributed freely to all users, but the number is limited
and bound to an expiry date. By enabling the relays to convert the collected
tickets into new tickets, operators can route more of their own traffic in the low-
latency or high-throughput class than the non-contributing Tor clients. Contrary
to the GS scheme, prioritized traffic does not necessarily stem from a relay.

3 Simulation Design

In this paper, we investigate by simulations the outcomes of combining the two
viable strategies: splitting the Tor network and the GS scheme. We detail on the
simulation design, assumptions and dataset used in this section.

3.1 Basic Assumptions and Simulation Scenarios

We focus on the scenario where the Tor network is split into two sub-networks1

and the relays are incentivized to contribute through separate GS schemes in
individual sub-networks. Our simulation builds on two basic assumptions:

A1: GS Policy Is Publicly Known. Ngan et al. [17] suggested that the GSs
are assigned (by directory authorities) in the consensus document. As the
consensus document is publicly available, we assume that operators can learn
about the details of the GS policy and can determine if he can obtain a relay
in a particular sub-network reliably.

A2: GS Performance Is Estimable from Average Bandwidth
of GS-Relays.We estimated the GS performance within a sub-network using
the average observed bandwidth of GS-relays. We checked the suitability of the
average observed bandwidth, obtainable from the descriptors of the relays, as
a performance estimator by measuring its correlation with the average down-
load time2. We obtained a Pearson correlation factor of -0.71 (with 280 data
points corresponding to the daily average values from 03/27 to 12/31/2010),
indicating a strong (negative) linear correlation.

We model the operators to decide if they should switch to another sub-network
with the following decision rules:

1 We present the results of splitting into more than 2 sub-networks in the appendix.
2 Average download time measures the time Tor clients need to download files of
different sizes and is available on the Tor Metrics Portal [1].

82 B. Westermann, P.H. Chia, and D. Kesdogan

– If a relay has no GS and can become a GS-relay in a particular sub-network, it
switches to this sub-network. We basically assume that the GS is an incentive
for relays and they are eager to get one.

– If a relay can get a GS in multiple sub-networks, it chooses the sub-network
that provides the best service according to its objective.

We distinguish between two different objectives: performance-maximizing and
anonymity-maximizing. If a GS-relay is performance-maximizing, it chooses to
join the sub-network that provides the best performance, i.e., one with the
highest average observed bandwidth. If a GS-relay is anonymity-maximizing, it
chooses to join the sub-network having the most GS-relays. It is important to
note that a prioritized circuit can only be initiated by a GS-relay and therefore
the sender anonymity set is limited only to the set of GS-relays.
We augment the simulation dynamics with two additional decision factors,

which serve to test the robustness of our basic model. First, we consider the case
where a relay switches to another sub-network only if the expected improvement,
according to his objective is higher than a threshold γ. If the improvement is
lower than γ, the relay will switch only with a probability equals to the ratio of
improvement over γ. This models a cost for switching (e.g., extra configuration
effort) and the reluctance to switch if the expected improvement in performance
(or anonymity set) is small. We consider also a random decision factor, where
an relay will with probability θ ignore the usual decision rules and switch to
a random network (even when it cannot retrieve a GS there). This models the
bounded rationality of the operators, especially in the event that the GS scheme
is hard to predict in practice.

3.2 Simulation Details

Network State. To mimic the real life scenario, we ran our simulation based
on Tor’s actual network state as given in the consensus document published on
09/30/2010 at 6pm (GMT). The document describes 2136 active relays, each of
which comes with a different observed bandwidth.
Figure 1(a) depicts the CDF of the observed bandwidth, that appears in the

descriptors of the individual relays. The distribution is skewed: the top 17% of
the relays actually provide 83% of the total available bandwidth.
To evaluate the effect of the skewed bandwidth distribution, we repeated

most of our simulation scenarios assuming a uniform bandwidth distribution
(see Figure 1). The uniform distribution was constructed such that the mean
equals the average observed bandwidth. The number of relays equals 2136. We
investigated also the effect of network size by scaling up the original network to
have 10 times as many relays.

Simulation Flow. In the initialization phase of each simulation run, the relays
are first ranked according to their observed bandwidth and assigned into different
sub-networks in turns. Let {r1, . . . , rN} be the set of relays ranked in decreasing
observed bandwidth, and let {S1, . . . , SM} be the set of sub-networks available,

Analyzing the Gold Star Scheme in a Split Tor Network 83

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 10 100 1000 10000

F
(x

)

x: bandwidth in KB/s

original

(a) original distribution

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 200 400 600 800 1000

F
(x

)

x: bandwidth in KB/s

uniform

(b) uniform distribution

Fig. 1. Bandwidth distributions among the relays

repeat
pick a random relay
determine the sub-network relay is currently in, say Sk

determine if relay will switch to another sub-network
if relay switches then

stablek ← 0
else

stablek ← stablek + 1
end if
round ← round +1

until ∀j ∈ [1,M] stablej > STABILITY, or round > ROUNDmax

Fig. 2. The Simulation Flow

then the set of relays assigned to sub-network Sj is given by {ri | i mod M = j}.
This gives us a near-balanced division of relays and bandwidth in the initial state.
The simulation then proceeds as shown in Figure 2. Note that a relay is randomly
selected per round (independent of the sub-networks) to check if it will switch
to another sub-network given different objectives, θ and γ values. We repeated
each simulation run 30 times to obtain the average outcomes.

4 Results

We present the findings from our simulation in the following.

4.1 Basic Simulation Model

We started our simulation by assuming that the operators are performance-
maximizing, i.e., they will switch to another sub-network given a better per-
formance, no matter the extent of improvement of the new sub-network. This
simplistic scenario enables us to gauge the basic consequences of splitting the

84 B. Westermann, P.H. Chia, and D. Kesdogan

Tor network while having the GS scheme in place. We investigate the robustness
of our findings with several extended models in Section 4.3.
We first simulated the case where GS ratio (GSR) equals 87.5% as proposed

in [17]. We assumed here that the Tor network is split into two sub-networks
(A and B). Figure 3(a) depicts the size and total available bandwidth of sub-
network A during the course of a simulation run. The simulation began with a
near-balanced state in terms of size and total available bandwidth. In the first
few thousand rounds, however, sub-network A started to attract more and more
relays from sub-network B. This initial rush caused sub-network A to be highly
dominating both in terms of size and bandwidth, and could lead to a collapse of
sub-network B. At one point, sub-network B consisted of 875 relays (40%) and
had mere 3% share of the total available bandwidth (35.45 MB/s). There is a
considerable risk that sub-network B will stop to be functional. With a low share
of bandwidth, it can only support few Tor clients. This in turn causes a small
anonymity set and may drive away the Tor users.
The initial rush was followed by a reversal in switching direction. By in-

specting the simulation log, we found that this was led by the low-to-medium
bandwidth relays which began to realize that they could obtain a GS in the sub-
network B. The migration of the low-to-medium bandwidth relays caused the
medium bandwidth relays to gradually lose their GS (due to a fixed GSR), and
thus followed suit. The simulation ended with the stability count being reached,
i.e., when no relay switched for consecutive 2400 rounds. In the final state, sub-
network A consisted of only 558 relays (26.12%) but had a large share of the
total available bandwidth, 972.1 MB/s (87.9%). Meanwhile, sub-network B con-
sisted of 1578 relays (73.88%) but was providing only 133.81 MB/s (12.1%).
The distribution of relays and total available bandwidth was highly uneven. The
distribution of exit bandwidth, considering the flags of the relays in the con-
sensus document, corresponds roughly to the case of total available bandwidth.
Sub-network A and B have 87.3% and 12.7% of the total exit bandwidth re-
spectively. The situation is slightly different with respect to guard relays. Both
sub-networks have a similar share of the total number of guard relays (sub-
network A has a 51% share), but the division of guard bandwidth is again highly
uneven (the guards in sub-network A actually provide 93.0% of the total guard
bandwidth).
Figure 3(b) presents the CDFs of relays’ bandwidth in separate sub-networks

in the final state. Most notable is the absence of the medium bandwidth relays
represented by the horizontal line in the mid area of the CDF of sub-network A.
Such an imbalanced split increases the risk of a user being deanonymized:

the higher the fraction of bandwidth some relays provide, the higher is their
probability of being selected as end-points of a circuit. Tor cannot provide any
anonymity against an operator who holds the first and the last position in a
circuit. An attacker with some high-bandwidth relays could enter sub-network B,
where they can provide a higher fraction of bandwidth more easily, to attempt
deanonymizing the users.

Analyzing the Gold Star Scheme in a Split Tor Network 85

0

20

40

60

80

100

0 20 40 60 80 100

p
e
rc
e
n
ta

g
e

1000× rounds

size
bandwidth

(a) Share of relays and total available bandwidth
by sub-network A in the course of simulation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 10 100 1000 10000

F
(x

)

x: bandwidth in KB/s

A
B

(b) Final bandwidth CDFs

Fig. 3. Simulating the basic model with GSR=87.5% as originally proposed in [17]

0

20

40

60

80

100

12.5 25 37.5 50 62.5 75 87.5

si
z
e
in

p
e
rc
e
n
ta

g
e

gold star ratio

original
big net
uniform

(a) Impact on size

0

20

40

60

80

100

12.5 25 37.5 50 62.5 75 87.5b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

gold star ratio

original
big net
uniform

(b) Impact on total avail. bandwidth

Fig. 4. The effect of GSR, number of relays and bandwidth distribution on the share of
size and total available bandwidth. Both figures plot the state of the larger sub-network.

Independent of the risk to anonymity, the scalability problem is also worsened
in sub-network B which has many relays, but on average provide only 87 KB/s
(with a maximum of 330 KB/s).

4.2 Probing the Reasons of an Uneven Split

Different GSRs.We then simulated the basic model with other GSRs, ranging
from 12.5% to 87.5%, to investigate the effect of GSR on the distribution of relays
and total available bandwidth among the sub-networks. We found that the GSR
has a significant effect on network size, as shown in Figure 4(a). The higher the
GSR, the more uneven is the size of the sub-networks. This is mainly by the fact
that the number of relays, which have a potential incentive to switch to a better
sub-network, increases with a higher GSR.

Increased Number of Relays.We re-ran the simulation with a scaled-up Tor
network with 10 times as many relays (following the same bandwidth distribu-
tion) as in the consensus document. As shown in the Figure 4, an increased
number of relays has little or no effect to the simulation outcomes.

86 B. Westermann, P.H. Chia, and D. Kesdogan

Bandwidth Distribution. Next, we considered a hypothetical set of relays
where the relays’ bandwidth follows a uniform distribution. The benefits of this
can be seen in Figure 4. Although the sub-networks become more uneven in terms
of size as the GSR increases, we see that with a uniform bandwidth distribution,
the share of the total available bandwidth between the 2 sub-networks maintains
at an even ratio (around 50%-60%).

Summary. The results show that the GSR has a significant impact on the
distribution of relays among the sub-networks. The bandwidth distribution of
relays, on the other hand, affects the share of the total available bandwidth.
As relays are rewarded solely based on the bandwidth they and their peers

provide, we observed that the high-bandwidth relays prefer to gather in the
same sub-network. Given the bandwidth distribution is skewed, the self-sorting
of the high-bandwidth relays causes a highly uneven division of total available
bandwidth. Interestingly also, an increased number of relays has only minimal
effect on the distribution of relays and bandwidth.

4.3 Extended Models for Robustness Check

Switching Costs. Previously, we have assumed that the operators would prefer
to switch to another sub-network whenever there is a slight improvement in per-
formance. In practice, however, switching incurs a cost. Besides the configuration
effort, other reasons, such as a good prior experience, perceived anonymity or
trust for some specific set of relays, could render an operator to prefer remain-
ing in his sub-network. To model such inertia, we simulated a threshold based
switching strategy. Consider a threshold of γ, an operator switches to another
sub-network (with certainty) if the improvement in performance δ is greater than
or equal to γ. Meanwhile, if the improvement δ is smaller γ, we model that the
operator to switch with a probability of δ/γ.
We plot the simulation outcomes in Figure 5. Comparing to the outcomes

when GSR = 50% and 87.5% in Figure 4, we observe that the effect of having a
switching threshold is minimal. A switching cost delays but does not deter the
operators from switching for self-interests. Our previous findings on the effect of
different GSR and bandwidth distribution also remain applicable. The counter-
intuitive ‘delays-but-does-not-deter’ result could be partly due to the fact that
we have used a probabilistic decision rule when the expected improvement in
performance is below a specific threshold instead of a clear-cut switch or not de-
cision. Yet, we note that the eventual switching of relays is also attributed to the
dynamics of performance improvement. Specifically, the switching of a GS-relay
(with either a deterministic or probabilistic decision) increases the bandwidth of
the destined sub-network, while decreasing the performance of the origin sub-
network. This increases the expected improvement in performance for relays
remaining in the origin sub-network, inducing them to switch in turn.

Bounded Rationality / Complex GS Policy. Our basic model assumes
that all operators could estimate the policy for GS-relays and determine if they
can retrieve a GS in individual sub-networks. In practice, it may not be trivial

Analyzing the Gold Star Scheme in a Split Tor Network 87

0

20

40

60

80

100

0% 10% 20% 50%

si
z
e
in

p
e
rc
e
n
ta

g
e

γ

(a) Impact on size

0

20

40

60

80

100

0% 10% 20% 50%b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

γ

uniform GSR=87.5
original GSR=87.5
uniform GSR=50.0
original GSR=50.0

(b) Impact on bandwidth

Fig. 5. The effect of threshold based switching on the distribution of relays and total
available bandwidth. Both figures plot the state of the larger sub-network.

for all operators to do so (bounded rationality). A complex (or hidden) GS
policy could also cause many operators to be uninformed (or indifferent) of
the ‘better’ sub-network. We investigated whether the problem of uneven split
remains considering a random decision factor where an operator ignores the
usual decision rules and joins a sub-network randomly with probability θ.
Figure 6 shows that when a majority of relays decide randomly, the division

becomes more even. A more even split is expected when θ is large, since the
bigger sub-network has a higher chance to lose a relay due to the uniform se-
lection of a relay from all relays. Additionally, if many relays decide randomly,
the effect of self-sorting among the relays (high-bandwidth relays prefer to be
with high-bandwidth peers) reduces. The relays in a sub-network become more
heterogeneous in terms of bandwidth and this contributes to an even division of
total available bandwidth.
While the problem of uneven split seems to disappear as θ increases, we note

that this may not be desirable. A large θ in Tor translates into a GS policy that
is hidden or too complex to be predictable by the relay operators. This in turn
takes away the incentives for becoming a relay operator, defeating the purpose
of implementing the GS scheme in the first place.

Anonymity-Maximizing Operators. So far we have assumed that Tor’s users
are performance-maximizing, not considering the anonymity that a sub-network
provides. We regard this as a reasonable assumption for relays not having a
GS (denoted as NGS-relays) and the Tor clients as long as the network split is
not too extreme3. With several hundreds of thousands of users in today’s Tor
network, the anonymity set can be seen as sufficiently large. The situation is,
however, different for GS-relays as their anonymity set is limited to only the
GS-relays. When an attacker observes a prioritized circuit, he knows that one
of the GS-relays in a particular sub-network has initiated it, thus it can be
more critical for the GS-relays to consider the anonymity factor. We study the
effect of the anonymity-maximizing objective of GS-relays here. For NGS-relays,

3 When the distribution of relays is extremely uneven, there is a good chance that the
smaller sub-network collapses as users see their anonymity threatened.

88 B. Westermann, P.H. Chia, and D. Kesdogan

0

20

40

60

80

100

0% 2% 5% 10%25%50%75%100%

si
z
e
in

p
e
rc
e
n
ta

g
e

θ

uniform GSR=87.5

original GSR=87.5

uniform GSR=50.0

original GSR=50.0

(a) Impact on size

0

20

40

60

80

100

0% 2% 5% 10%25%50%75%100%b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

θ

uniform GSR=87.5

original GSR=87.5

uniform GSR=50.0

original GSR=50.0

(b) Impact on bandwidth

Fig. 6. The effect of random switching decision on the distribution of relays and total
available bandwidth. The figures show the sub-network with the lower share of total
available bandwidth.

the objective remains to switch to a sub-network where it can retrieve a GS.
Meanwhile, we model the GS-relays to prefer switching to a sub-network with
the largest anonymity set (i.e., one with the highest number of GS-relays). If
two sub-networks have the same number of GS-relays, a GS-relay chooses the
sub-network with the best performance.
Figure 7 depicts that the course of a simulation run where relays are all

anonymity-maximizing. The simulation started with an initial rush to one sub-
network (hereafter, sub-network A). The over-crowding in sub-network A caused
the low-to-medium bandwidth GS-relays to lose their GS and to switch in the
reverse direction in order to (re)gain a GS. The migration of low-to-medium
bandwidth relays in turn caused the medium bandwidth relays to also gradually
lose their GS (due to a fixed GSR) and thus followed suit. Thus far, this has
been similar to the case as shown in Figure 3(a). The situation, however, started
to differ when the migration of medium bandwidth relays caused sub-network B
to have a higher number of GS-relays (i.e., a larger anonymity set). This made
even the high bandwidth GS-relays to prefer joining sub-network B as it would
provide better anonymity. However, the arrival of high bandwidth GS-relays in
sub-network B caused the low-to-medium bandwidth GS-relays to start losing
their GS again, and decided to return to sub-network A. The same process then
repeated itself, which explains the oscillating nature of the share of total relays
and total available bandwidth.
Notice that at the extreme cases during the course of simulation, the smaller

sub-network has only a <5% share of total available bandwidth and can thus be
expected to support only few Tor clients. This hints on a small anonymity set
and may drive away the remaining Tor relays and Tor clients. Thus, the risk of
a failed network split remains even with anonymity-maximizing relays.
Additionally, we simulated the case where there is a mix of performance- and

anonymity-maximizing relays. Let the fraction of performance-maximizing relays
be φ. With GSR = 87.5% and φ = 40%, we observed that the oscillating nature
of the share of size and total available bandwidth disappeared. Meanwhile, when
GSR = 50% and φ = 40%, we observed the oscillating outcomes occasionally

Analyzing the Gold Star Scheme in a Split Tor Network 89

0

20

40

60

80

100

0 20 40 60 80 100

p
e
rc
e
n
ta

g
e

1000× rounds

size bandwidth

Fig. 7. The course of simulation where all relays are anonymity-maximizing

0

20

40

60

80

100

0% 20% 40% 60% 80%100%

si
z
e
in

p
e
rc
e
n
ta

g
e

φ

(a) Impact on size

0

20

40

60

80

100

0% 20% 40% 60% 80%100%b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

φ

uniform GSR=87.5

original GSR=87.5

uniform GSR=50.0

original GSR=50.0

(b) Impact on bandwidth

Fig. 8. The effect of having a mixture of performance- and anonymity-maximizing
relays. φ denotes the fraction of performance-maximizing relays. With a low φ, the
confidence intervals are big, indicating an oscillating nature of the simulation outcomes.

but not when φ ≥ 60%. This holds for both simulation cases using the original
bandwidth distribution and a uniform distribution. Most interestingly, when
40 ≤ φ ≤ 60%, high bandwidth relays no longer gather in a single sub-network

5 Discussion

A highly imbalanced split of the Tor network has multiple serious implications.
First, the scalability problem, being the original motivation for a split of the Tor
network, can become worse in a sub-network that is large in size but has a low
share of total available bandwidth. Secondly, the higher the fraction of bandwidth
some relays provide, the higher is their chance of being the endpoints of a Tor
circuit. In the event of an uneven split, the risk of a user being deanonymized is
higher within the low-bandwidth sub-network as malicious relays can enter the
sub-network, where they can provide a higher fraction of bandwidth more easily.

Global GS Scheme. An interesting question is whether an uneven split will
still occur considering a global GS scheme, rather than separate GS schemes in
individual sub-networks. In the worst case of an uneven split, all GS-relays will
gather in one sub-network with the number of relays equals:

90 B. Westermann, P.H. Chia, and D. Kesdogan

N ·GSR�+
⌊
(1−GSR) ·N

M

⌋
,

where N is the number of all relays and M is the number of sub-networks.
We observed the worst case outcome in our simulation as soon as one

sub-network provides better performance and anonymity than the others, in-
dependent of the GSR, the relays’ objective, and the underlying bandwidth
distribution. A global GS scheme therefore does not help the situation.

Fixed Sub-network. We investigated the possibility of having a fraction of
relays that do not switch from their assigned sub-networks (either by encouraging
them to be cooperative or prohibiting them to switch at all). Figure 9 shows
the outcomes where a fraction σ of Tor relays, selected in descending order of
bandwidth or randomly from all Tor relays, do not switch from their assigned
sub-networks. An even (40-60%) share of relays and total available bandwidth
is only possible by fixing the sub-networks for the top 10% high-bandwidth
relays. However, an even split is not achievable even with σ = 50% if relays
are selected randomly to have fixed sub-networks. An alternative is to assign
all Tor operators into sub-networks (randomly) while disallowing self-switching
completely (see the case when σ = 100r).
Fixing the sub-networks for some percentage of the top high-bandwidth Tor

relays, or (randomly) assigning all relays to sub-networks, are hence two pos-
sible solutions. These require an effective way to force a relay to stay in one
sub-network. Additionally, assigning the ORs to one sub-network can raise mul-
tiple concerns. For instance, whether the Tor operators would be discouraged if
their volunteering effort is ‘punished’ by not being able to choose their preferred
sub-network freely. There may also be questions, e.g., on fairness, transparency,
and security, if the assignment of sub-networks by a centralized authority is
not completely random. A way to address such questions can be found in [7],
where the authors proposed assigning mixes to cascades in a unpredictable but
verifiable fashion. However, their approach deals mainly with mixes and cas-
cades. Porting it to the problem of a fair and secure assignment of relays to
sub-networks may warrant further investigation.

An Appropriate GSR.We note that a GSR of 87.5% is not optimal in a split
network setup as it leads to an uneven share of relays. Our simulations indicate
that a GSR of roughly 1

M , where M equals the number of sub-networks, seems
to be a good choice to avoid a uneven split.4 A lower GSR trades off the risk of
an uneven split with a reduced anonymity set for the GS-relays.

Alternative GS Criteria. On top of an even distribution of relays, it is also
necessary to have the relays distributed across the sub-networks independently
from the bandwidth they provide, to ensure an even distribution of total available
bandwidth. This is, however, not possible if a GS is granted based on the relay’s

4 Simulation outcomes for M = 3 and 4 sub-networks are included in the appendix.
For example, in Figure 11, one can see that for M = 4, the largest sub-network gets
about 30% close to the 1

4
share of relays.

Analyzing the Gold Star Scheme in a Split Tor Network 91

0

20

40

60

80

100

100r
50r

30r
25r

10r
0 1 5 10 25 30

si
z
e
in

p
e
rc
e
n
ta

g
e

σ in percentage

original GSR=87.5
original GSR=50.0

(a) Impact on size

0

20

40

60

80

100

100r
50r

30r
25r

10r
0 1 5 10 25 30b

a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

σ in percentage

original GSR=87.5
original GSR=50.0

(b) Impact on bandwidth

Fig. 9. The effect of having a fraction σ of relays, selected randomly (denoted with a
suffix ‘r’) or in descending order of bandwidth, that do not switch from their assigned
sub-network

bandwidth only, as high-bandwidth relays will gather in the same sub-network.
Given that the GS scheme is introduced to motivate more users to become
relay operators, using other requirements for awarding the GS will work. By
having several independent requirements, relays in a sub-network can be more
heterogeneous with respect to bandwidth.
To test our intuition, we re-ran the simulations using the basic model and

assigned a value xi to every relay ri, which was sampled from a random variable
X . In practice, xi could be computed from any suitable properties, including
the uptime, location or reputation of a relay. We then measured the usefulness
of a relay by combining the relay’s xi value and its bandwidth, as shown in
Equation 1, to decide if a relay ri is eligible for a GS. In Equation 1, pi denotes
the fraction of relays providing less bandwidth as the relay ri, and fi is the
fraction of relays that have a lower x value than ri.

ui = ω · pi + (1 − ω) · fi (1)

The weights for pi and fi was controlled using the variable ω. We used two differ-
ent distributions of X : (i) a uniform distribution, X ∼ U(0, N), and (ii) a heavy-
tailed distribution constructed based on the skewed bandwidth distribution in
Figure 1(a). We note that the xi value of each relay is drawn independently of
its bandwidth.
Figure 10 shows that when ω is low (i.e., when the usefulness of a relay depends

largely on the random value xi), the division of total available bandwidth is even.
The sub-networks also have a similar share of guards and exit relays, both in
terms of number and bandwidth (not depicted). Meanwhile, as ω increases (i.e.,
as the usefulness depends more on the bandwidth of a Tor relay), the problem of
an uneven distribution of bandwidth arises. This highlights that the GS criteria
should not be solely dependent on the bandwidth, which is highly skewed in
practice. We suggest to assign a GS based on the usefulness of a relay which
can be a combination of multiple bandwidth-independent properties to ensure a
good mix of relays with heterogeneous bandwidth in each sub-network.

92 B. Westermann, P.H. Chia, and D. Kesdogan

0

20

40

60

80

100

0% 11%20%33%50%66%80%89%

si
z
e
in

p
e
rc
e
n
ta

g
e

ω

original,X ∼ U(0,N)
original,X ∼ heavy tail

(a) Impact on size

0

20

40

60

80

100

0% 11%20%33%50%66%80%89%b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

ω

original,X ∼ U(0, N)
original,X ∼ heavy tail

(b) Impact on bandwidth

Fig. 10. Varying the dependence of the GS criteria (i.e., the usefulness measure) on
the relay’s bandwidth. With ω = 0%, the GS criteria is independent of the relay’s
bandwidth, while with ω = 100% it depends on the relay’s bandwidth only.

It is important to note that the relays with the highest u-values will again
gather in one particular sub-network. However, the impact can be minimized
with a careful selection of factors contributing to the usefulness, u measure. For
example, by having a usefulness measure that is distributed uniformly among
the relays, we can expect the effect of the self-sorting to be less prominent.
This has been exemplified by the hypothetical scenario where there is a uniform
distribution of bandwidth among the relays, as shown in Figure 4.

6 Conclusions

In this paper, we have analyzed the consequences of applying the Gold Star (GS)
scheme in a split Tor network. While our simulation model has abstracted away
the Tor clients, guards and exit relays for simplicity purposes, we have refrained
ourselves from unrealistic assumptions besides taking into consideration a large
number of different simulation scenarios.
We showed that applying the GS scheme directly in the setting of a split

Tor network can lead to extremely imbalanced sub-networks both in terms of
the share of relays and total available bandwidth. This threatens the users’
anonymity and worsens the scalability problem of Tor.
In search of mitigation measures, we identified the ratio of relays given a GS

(GSR) to be the main factor of an uneven distribution of relays across the sub-
networks. By decreasing the GSR to 1

M , whereM is the number of sub-networks,
we observed a near-balanced division of relays into the sub-networks.
Meanwhile, fixing the sub-network of some percentage of high-bandwidth re-

lays or assigning all relays randomly, may represent two solutions for an even
distribution of bandwidth across the sub-networks. Yet, while technically viable,
fixing the sub-network of some or all relays can raise multiple concerns, including
on respecting the contributors’ choice and fairness.
A self-regulating solution can be achieved by changing how Tor would assign

a GS to a relay. We showed that the imbalanced division of total available band-
width can be addressed by designing a different set of GS criteria, for example by

Analyzing the Gold Star Scheme in a Split Tor Network 93

measuring the usefulness of a relay based on multiple bandwidth-independent
properties, to improve the heterogeneity of relays in individual sub-networks.

References

1. Tor metric portal, http://metrics.torproject.org (last visited February 2011)
2. Androulaki, E., Raykova, M., Srivatsan, S., Stavrou, A., Bellovin, S.M.: PAR: Pay-

ment for Anonymous Routing. In: Borisov, N., Goldberg, I. (eds.) PETS 2008.
LNCS, vol. 5134, pp. 219–236. Springer, Heidelberg (2008)

3. Chen, Y., Sion, R., Carbunar, B.: XPay: practical anonymous payments for tor
routing and other networked services. In: WPES, pp. 41–50. ACM (2009)

4. Danezis, G., Clayton, R.: Route fingerprinting in anonymous communications. In:
Peer-to-Peer Computing, pp. 69–72. IEEE Computer Society (2006)

5. Danezis, G., Syverson, P.F.: Bridging and Fingerprinting: Epistemic Attacks on
Route Selection. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134,
pp. 151–166. Springer, Heidelberg (2008)

6. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security, pp. 303–320. USENIX (2004)

7. Dingledine, R., Syverson, P.F.: Reliable MIX Cascade Networks Through Rep-
utation. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 253–268. Springer,
Heidelberg (2003)

8. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer. In:
CCS, pp. 193–206. ACM (2002)

9. Freedman, M.J., Sit, E., Cates, J., Morris, R.: Introducing Tarzan, a Peer-to-Peer
Anonymizing Network Layer. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 121–129. Springer, Heidelberg (2002)

10. Jansen, R., Hopper, N., Kim, Y.: Recruiting new tor relays with braids. In: CCS,
pp. 319–328. ACM (2010)

11. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

12. McLachlan, J., Tran, A., Hopper, N., Kim, Y.: Scalable onion routing with torsk.
In: CCS, pp. 590–599. ACM (2009)

13. Mittal, P., Borisov, N.: Information leaks in structured peer-to-peer anonymous
communication systems. In: CCS, pp. 267–278. ACM (2008)

14. Mittal, P., Borisov, N.: Shadowwalker: peer-to-peer anonymous communication
using redundant structured topologies. In: CCS, pp. 161–172. ACM (2009)

15. Mittal, P., Olumofin, F., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: Scal-
able anonymous communication using private information retrieval. In: USENIX
Security (2011)

16. Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity.
In: CCS, pp. 17–26. ACM (2006)

17. “Johnny” Ngan, T.-W., Dingledine, R., Wallach, D.S.: Building Incentives into
Tor. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 238–256. Springer, Heidelberg
(2010)

18. Panchenko, A., Richter, S., Rache, A.: Nisan: network information service for
anonymization networks. In: CCS, pp. 141–150. ACM (2009)

19. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management - a consolidated proposal for ter-
minology, v0.31 (February 2008)

http://metrics.torproject.org

94 B. Westermann, P.H. Chia, and D. Kesdogan

20. Schuchard, M., Dean, A.W., Heorhiadi, V., Hopper, N., Kim, Y.: Balancing the
shadows. In: WPES, pp. 1–10. ACM (2010)

21. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, pp.
149–160 (2001)

22. Wang, P., Hopper, N., Osipkov, I., Kim, Y.: Myrmic: Secure and robust DHT
Routing. Technical report, Uni. of Minnesota DTC Research (2006)

23. Wang, Q., Mittal, P., Borisov, N.: In search of an anonymous and secure lookup:
attacks on structured peer-to-peer anonymous communication systems. In: CCS,
pp. 308–318. ACM (2010)

24. Wendolsky, R.: A volume-based accounting system for fixed-route mix cascade
systems. In: Bamberger Beiträge zur Wirtschaftsinformatik und angewandten In-
formatik, pp. 26–33 (February 2008)

25. Westermann, B.: Security Analysis of AN.ON’s Payment Scheme. In: Jøsang, A.,
Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 255–270.
Springer, Heidelberg (2009)

26. Westermann, B., Panchenko, A., Pimenidis, L.: A Kademlia-Based Node Lookup
System for Anonymization Networks. In: Park, J.H., Chen, H.-H., Atiquzzaman,
M., Lee, C., Kim, T.-H., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 179–189.
Springer, Heidelberg (2009)

Analyzing the Gold Star Scheme in a Split Tor Network 95

Appendix

We simulated also the scenarios where the network is split into M = 3 or 4 sub-
networks. As shown in Figure 11, the distribution of relays and total available
bandwidth is uneven, same as the case when M = 2.

0

20

40

60

80

100

12.5 25 37.5 50 62.5 75 87.5

si
z
e
in

p
e
rc
e
n
ta

g
e

gold star ratio

original
uniform

(a) Impact on size (3 sub-networks)

0

20

40

60

80

100

12.5 25 37.5 50 62.5 75 87.5b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

gold star ratio

original
uniform

(b) Impact on total avail. bandwidth

0

20

40

60

80

100

12.5 25 37.5 50 62.5 75 87.5

si
z
e
in

p
e
rc
e
n
ta

g
e

gold star ratio

original
uniform

(c) Impact on size (4 sub-networks)

0

20

40

60

80

100

12.5 25 37.5 50 62.5 75 87.5b
a
n
d
w
id
th

in
p
e
rc
e
n
ta

g
e

gold star ratio

original
uniform

(d) Impact on total avail. bandwidth

Fig. 11. The figures show the impact of different GSRs in the basic model when the
network is split into M > 2 sub-networks. Figures a) and b) show the outcomes of
a split into 3 sub-networks, while figures c) and d) show the outcomes of a split into
4 sub-networks. All of them plot the state of the largest sub-network at the end of
simulation. The distribution of relays and total available bandwidth is uneven. The
largest sub-network attracted more than 1

M
of the relays but got less than 20% of the

total available bandwidth.

Location Privacy and Attacker Knowledge:
Who Are We Fighting against?

Rinku Dewri

Department of Computer Science
University of Denver, Denver CO 80208, USA

rdewri@cs.du.edu

Abstract. Location privacy research has received wide attention in the
past few years owing to the growing popularity of location-based applica-
tions, and the skepticism thereof on the collection of location information.
A large section of this research is directed towards mechanisms based on
location obfuscation. The primary motivation for this engagement comes
from the relatively well researched area of database privacy. Researchers
in this sibling domain have indicated multiple times that any notion of
privacy is incomplete without explicit statements on the capabilities of
an attacker. The question we ask in the context of location privacy is
whether the attacker we are fighting against exists or not. In this paper,
we provide a classification of attacker knowledge, and explore what im-
plication does a certain form of knowledge has on location privacy. We
argue that the use of cloaking regions can adversely impact the preserva-
tion of privacy in the presence of approximate location knowledge, and
demonstrate how perturbation based mechanisms can instead be useful.

Keywords: location privacy, differential privacy, query approximations.

1 Introduction

Location based applications are geared towards providing services tailored to the
current location of a user. These applications utilize the positioning capabilities
of a mobile device to determine the current location of the user, and customize
query results to include neighboring points of interests. Wide acceptance of per-
sonal digital assistants and the advancements in wireless cellular technology have
opened up countless possibilities in this business paradigm. Potential applica-
tions can range from proximity based notifications to tracking business resources.
A wireless carrier typically serves as a channel between the user and the location
content provider.

The potential advantages of location based applications is not difficult to re-
alize. However, location knowledge is often perceived as personal information.
It remains an open question whether the benefits of these applications can out-
weigh the underlying privacy risks. A similar question has been around for more
than a decade in the field of database privacy. Databases hosting our personal
information can serve as data mining grounds to facilitate research studies in

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 96–115, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 97

a variety of fields. At the same time, the same information in the hands of an
adversary can have alarming ramifications. Database privacy preservation is an
ongoing effort to design data sharing methods in order to prevent such an ad-
versary from making personal inferences using the shared data [1,2,3]. Drawing
inspiration from these efforts, location based applications have been argued to
be usable without communicating precise location data to the content provider.

Location obfuscation is a widely researched technique to achieve location pri-
vacy. The fundamental idea here is to process location based queries relative to
a sufficiently larger region, also known as a cloaking region, compared to one
where a user can be uniquely located. For instance, a cloaking region can be
generated to include k users, including the one making the query [4]. Multiple
algorithms have been proposed to generate such a k-anonymous cloaking region
[5,6]. However, as demonstrated in the case of database privacy, obfuscating
private data without understanding the capabilities of the attacker can be un-
productive [7,8,9]. A privacy preserving mechanism is not better or worse than
another. It is the adversary who is weaker or stronger. The background knowl-
edge of the attacker must be known (or at least assumed) in order to demonstrate
the privacy guarantees of a mechanism.

We begin this work by identifying the primary form of attacker knowledge
targeted by most location obfuscation techniques. This knowledge relates to an
attacker being able to determine the true locations of a certain subset of users.
Using a case by case analysis of what this attacker can achieve from queries
made using true locations and queries made using cloaking regions, we argue
that “location privacy” is a misused term in this context. The use of cloaking
regions is motivated by the need to introduce ambiguity in correlating a user
to a query. However, if an attacker does not have any location knowledge of
the users, then location information in a query cannot be used to map it to a
user. The attacker must posses at least approximate location knowledge about
the user, to be able to exploit the location information in a query. On the other
hand, if true location knowledge is present, then there is no location privacy. In
fact, what is being offered is query privacy. We treat the two forms of privacy
differently – location privacy meaning hiding the location and query privacy
meaning preventing the mapping of a query to a user.

We also justify that cloaking regions are insufficient in preserving privacy when
an attacker has approximate location knowledge. Although cloaking regions do
not directly disclose the true locations, we believe that no privacy mechanism
should enable an attacker to improve upon the existing background knowledge.
The knowledge gain should be formally bounded in the worst case. Towards this
end, we explore the possibility of using perturbed locations to issue queries and
propose a perturbation method based on differential privacy [10]. Differential
privacy works under the principle that the chances of being a victim of a privacy
breach should not increase substantially due to the inclusion of ones private
information in a shared data set. The perturbed location is differentially k-
anonymous, in the sense that the probability ratio of any two of the k users is

98 R. Dewri

bounded. Empirical results are provided to demonstrate that such queries can
retrieve a significantly large subset of the actual query results.

The remainder of the paper is organized as follows. Section 2 initiates our
discussion on attacker capabilities, and the affect on location and query privacy.
Section 3 presents our approach to address a form of attacker knowledge based
on approximate locations of the users. Section 4 presents some empirical results
on the effectiveness of the approach in generating useful query results. Section
5 lists some related work in this area, followed by references to future work in
Section 6.

2 Attacker Class

Classification of attacker knowledge is crucial in order to provide a comprehen-
sive statement on the privacy preserving properties of an obfuscation technique.
To consider the extremes, location obfuscation in the presence of an “oracle” at-
tacker, or an attacker with effectively no background knowledge, is only going to
degrade the quality of service. Other intermediate scenarios also exist where lo-
cation obfuscation cannot achieve one or both of location and query privacy. We
begin with two forms of background knowledge that an attacker is likely to have.

The first form of background knowledge is related to the location of users. An
adversary that has information on the locations of any individual(s) is referred
to here as a locator. Further, a perfect locator knows exact coordinates of the
users, while an approximate locator has approximate knowledge (an area instead
of exact coordinates) on the locations. The second form of knowledge is related
to the identity of users issuing the queries. We refer to any adversary that has
access to the query database as a holder. A perfect holder in this case would be
an adversary who knows the identity of the person who issued a query.

There are multiple permutations in which these two forms of knowledge may
be present in an adversary. While each form in itself states how much an attacker
knows about the locations or queries of the users, respectively, the objective is
to avoid the inference or improvement of one form of knowledge using existing
knowledge of the other form. Hence, given a certain level of background knowl-
edge, we consider a privacy breach to have occurred if and only if the adversary
gains additional knowledge. Gaining additional knowledge in this case refers to
instances such as a perfect locator becoming a perfect holder (and vice versa),
or an approximate locator improving its location approximations.

Location based service users communicate location information as part their
queries. The location information can be in the form of precise GPS coordi-
nates, the resulting query being processed thereafter with respect to a point in
space. Such queries are also referred to as point queries. However, due to the
implications on privacy, precise locations are obfuscated using a cloaking region.
Queries in this case are processed on a geographic range, therefore referred to
as range queries. We begin with point queries and put the two forms of attacker
knowledge in perspective with respect to such queries. Some of the observations
in the following section are well-known in the community. We present them here
for the sake of completeness.

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 99

2.1 Point Queries

A point query is where exact geographic coordinates are communicated along
with the query. A query database in this case contains the precise location of
users, among other parameters of the queries. It is a straightforward observation
that no location privacy can be achieved in the presence of a perfect locator, and
no query privacy can be achieved in the presence of a perfect holder. Nonetheless,
query privacy is preserved in the case of a perfect locator. However, as an im-
mediate consequence of point queries, location privacy is violated even when the
adversary is only a perfect holder. A perfect holder in this case performs a iden-
tity to location mapping using the location information in the query database.
A perfect locator must also be at least a holder to effectuate a breach of query
privacy. In this case, the adversary uses the location knowledge to determine
the corresponding query of the user in the database. The perfect locator here
covers situations such as restricted space identification and observation based
identification [4]. A simple holder with access to the query database alone is no
threat to either location or query privacy of the users.

The effectiveness of point queries in the presence of approximate locators has
not been evaluated yet. Point queries can be potentially harmless depending
on the extent of the adversary’s approximation. For instance, an approximate
locator with an approximation of a few hundred meters is stronger than one
with an approximation of a city block. The exact extent of knowledge is difficult
to estimate. We shall discuss later how point queries can still be effectively
generated in the presence of approximate locators.

2.2 Range Queries

A range query is where a query region is associated with the query. Query results
are generated assuming that the user may be located anywhere inside the region.
The query region serves as a cloak for the user, and is generated following some
established privacy principle. For instance, a k-anonymous cloaking region would
encompass at least k users inside it. Large cloaking regions would potentially
result in the communication of a larger result set and degrade the QoS levels
of the system. Hence, the obfuscation algorithm tries to achieve the privacy
principle within the smallest possible area. In the following, we present a case
by case overview of which privacy aspect does a range query help preserve, and
under what form of adversarial knowledge.

Perfect Locator. Since a perfect locator knows the location of a user, use of
a cloaking region does not help hide the location of the user. Query privacy is
preserved in the absence of access to the query database. This implies that no
privacy breach (in the sense of gaining additional knowledge) can occur in the
presence of this type of adversary. Point queries can in fact be used instead of a
range query, in order to improve the quality of service.

100 R. Dewri

Approximate Locator. Cloaking regions also do not help achieve better loca-
tion privacy from an approximate locator. The approximation of the adversary on
the user’s location is what determines the location privacy level. Point queries
can again be used here, given that the adversary has no access to the query
database. In other words, no location privacy violation can occur as a side-effect
of the user using the service.

Perfect Holder. No query privacy is possible in the presence of a perfect
holder. Location privacy violation is certain since the cloaking regions present
in the queries provide approximate location knowledge to the adversary. The
cloaking regions can potentially reveal more precise information as well. Note
that a privacy principle such as k-anonymity is meant to prevent the association
of a user to the issued query – any of the k users could have issued the query.
However, such a principle is irrelevant in the case of a perfect holder. A better
principle to enforce would be location diversity [11,12]. This would guarantee
that zones with multiple levels of sensitivity are present within the cloaking
region, thereby preventing further location based inferences. Request locality is
another issue to address. This situation occurs when different likelihoods can be
estimated for issuing the query from different areas within the cloaking region.

Holder. A simple holder with no location based knowledge is unable to cor-
relate a cloaking region to a specific user. Both location and query privacy are
preserved. This is the weakest form of an adversary. Note that an adversary who
is not a perfect or approximate locator cannot determine if a user is inside a
cloaking region. Hence, a range query might as well be replaced with a point
query.

Perfect Locator and Perfect Holder. As in the case of point queries, no
level of obfuscation can hide the location and query of a user from this form of
an adversary.

Perfect Locator and Holder. The location of a user is already known to
this kind of an adversary. It is easy to determine the set of queries that could
have potentially originated from a certain user. However, query privacy violation
can be prevented if the cloaking region can generate an ambiguous mapping
between a query and the user. This is achieved by anonymity principles such as
k-anonymity. In fact, obfuscation methods that generate minimal k-anonymous
cloaking regions assume the existence of a perfect locator with precise location
knowledge of at least k users. This assumption implies that location obfuscation
is used here to preserve query privacy, and not necessarily any form of location
privacy. Query privacy, however, can also be preserved by issuing a point query
using the true location of one of the k users. This can produce a relatively
accurate result set if the bounding rectangle of the k users is not excessively
large. The result sets would differ much for larger bounding rectangles, in which
case the communication costs may itself be too high for acceptable range query
processing.

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 101

Fig. 1. Location privacy breach as a result of using cloaking regions

Approximate Locator and Perfect Holder. Approximate locators have the
ability to correlate a user with a geographic region. The size of this region is
not constant, and is an attribute related to the adversary’s background knowl-
edge. Under such a scenario, it becomes difficult to create a cloaking region that
encompasses the entire area within the locator’s approximation. Hence, it is pos-
sible that a perfect holder uses the cloaking region in a query to narrow down the
geographic region where the user is located. Cloaking regions can therefore pro-
vide additional location knowledge to an adversary, thereby leading to a location
privacy breach.

Approximate Locator and Holder. While cloaking regions are sufficient (al-
though perhaps not always required) to handle a perfect locator and holder, their
use starts to have a detrimental affect in the presence of approximate locators.
As depicted in Fig. 1, a k-anonymous cloaking region may allow an approximate
locator to improve upon the location knowledge of more than just the query
issuer. The problem is eliminated only if the cloaking region is guaranteed to
encompass the approximated regions corresponding to each of the k users. Un-
fortunately, it is difficult to judge the extent of knowledge that an adversary
possesses. This case presents us with a situation where the obfuscation method
helps preserve query privacy but can potentially lead to a breach in location
privacy.

Note that most privacy preservation attempts address perfect locators and
holders. Therefore, the term “location privacy” seems to have been misused, in
the sense that true location knowledge is already assumed to be known to the
adversary. Query privacy is a more appropriate term to use in this context.

We summarize below the conclusions that can be drawn from the discussion
in the preceding sections.

102 R. Dewri

1. Neither location privacy nor query privacy can be preserved in the presence
of a perfect locator and a perfect holder.

2. Point queries pose privacy threats in the presence of a perfect locator and
holder.

3. Cloaking regions help preserve query privacy in the presence of a perfect
locator and holder.

4. Range queries may be replaceable by point queries in the above case.
5. Cloaking regions can provide query privacy in the presence of an approxi-

mate locator and holder, but do not guarantee protection against a location
privacy breach.

3 Approximate Locators

Current location obfuscation techniques based on cloaking regions are insuffi-
cient, and undesirable, in location privacy preservation. This arises from the
fact that perfect locators represent a very strong class of attackers. For instance,
acquiring the exact geographic coordinates of a user would require satellite based
monitoring capabilities. Further, not much can be done with location obfusca-
tion once an adversary gains access to such information. A more plausible form
of adversary is represented by an approximate locator. Approximate location
knowledge can be obtained by a variety of means – device communication logs
such as cell towers used, public records such as parking violations, or social
engineering methods such as a “water-cooler conversation.” Preserving location
privacy in this context dwells upon the problem of preventing an attacker from
reducing the margin of location error using external references of a user’s activ-
ities (such as in a location based service log).

Recall that cloaking regions are insufficient in providing location privacy
against an approximate attacker. Hence, we revert back to point queries and
analyze if they can be used in a manner that preserves location privacy. Per-
turbation of user locations is the basis of this analysis. An attacker can identify
common areas between a cloaking region and an approximate location in order
to improve the approximation. This is possible because cloaking regions always
cover the true location of the querying user (amongst others). However, a per-
turbed location is a single point in space that could have been generated by any
user in a given set.

Queries based on perturbed locations can result in an inaccurate result set.
However, if the perturbations are reasonably close to the actual location, then
the query results can also be assumed to be close enough to the true set. There
is definitely an inherent trade-off involved between the accuracy of the result set
and the location perturbations. We postpone the analysis of this trade-off for a
later stage and focus on the generation of the perturbations themselves.

A trivial method to perturb a user’s location would be to use the centroid of
a k-anonymous cloaking region while issuing the query. An adversary with exact
location information can employ an inversion attack to determine the set of k
locations used to arrive at the perturbed coordinates. An inversion attack would

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 103

centroid of cloaking region

cloaking region
(minimum bounding

rectangle)

all users must be
inside this region

Fig. 2. Improving location approximations using the centroid of the cloaking region

involve re-computing the centroid of the bounding rectangle derived from differ-
ent sets of k location coordinates, with the objective of matching the coordinate
in the query. Note that we do not consider any privacy parameter (including k)
to be hidden from the attacker. Executing an inversion attack is not straight-
forward for an approximate locator. Depending on the size of the k-anonymous
cloaking region, the centroid can also serve as a good estimate of a user’s lo-
cation and possibly generate a significantly accurate set of results. However, as
depicted in Fig. 2, owing to the equi-distance property of the centroid, its ability
to prevent a location privacy breach is still questionable. In the figure, the grey
area bounded by the solid line represents the largest possible region that can be
a bounding rectangle (users can be anywhere in the approximate regions) and
has a centroid same as the true minimum bounding rectangle. This improves the
location approximation corresponding to two of the users. The applicability of
other notions of a centroid remains to be explored.

Our approach is motivated by the requirement to provide probabilistic bounds
on what an adversary can learn from the perturbed location. We adopt the
differential privacy approach in statistical databases in this context [10].

3.1 Location Perturbation

Let lp be the perturbed location corresponding to a true location lt, denoted as
lt → lp. A location is assumed to have two components, denoted by the non-
negative x and y coordinates. Let l1, ..., lk be a set of k points, one of which is
lt. The method of choosing these k points is discussed in the next section. We
would generate the perturbed location lp = (xp, yp) such that

Pr(xi → xp) ≤ eεPr(xj → xp) and

104 R. Dewri

Pr(yi → yp) ≤ eεPr(yj → yp)

where ε ≥ 0 and i, j ∈ {1, ..., k}. We achieve this property by using a Laplace
distribution with scale λ > 0 to perturb a location li = (xi, yi) such that

Pr(xi → xp) =
1
2λ

e−
|xi−xp|

λ and

Pr(yi → yp) =
1
2λ

e−
|yi−yp|

λ .

Based on the following observation, λ is set at (maxnxn−minnxn)/ε to generate
xp, and set at (maxnyn − minnyn)/ε to generate yp. lp is obtained as (xp, yp).

Observation: Without loss of generality, let c denote a generic component of a
location. Using the triangle inequality, we can write |cj −cp| ≤ |cj −ci|+ |ci−cp|.
After rearrangement, dividing by λ, raising as a power of e and multiplying by
1/2λ, we get

1
2λ

e−
|ci−cp|

λ ≤ 1
2λ

e−
|cj−cp|

λ e
|cj−ci|

λ , or

Pr(ci → cp) ≤ Pr(cj → cp)e
|cj−ci|

λ .

We therefore have

Pr(xi → xp) ≤ Pr(xj → xp)e
|xj−xi|

λ and

Pr(yi → yp) ≤ Pr(yj → yp)e
|yj−yi|

λ ,

and the power of the exponent is bounded as

Pr(xi → xp) ≤ Pr(xj → xp)e
maxnxn−minnxn

λ and

Pr(yi → yp) ≤ Pr(yj → yp)e
maxnyn−minnyn

λ .

Using the Laplace distributed noise also ensures that

Pr(ci → cp) ≥ e−εPr(cj → cp).

The following inequalities verify that the desired property can be achieved for
any component c in li and lj .

e−ε ≤ Pr(ci→cp)
Pr(cj→cp) ≤ eε

⇐⇒ eε ≥ Pr(cj→cp)
Pr(ci→cp) ≥ e−ε with ε ≥ 0.

Hence, the probability of a location coordinate generating a certain perturbed
value is always within a factor eε of the probability of some other location (in the
set of k points) generating the same perturbed value. In the k-anonymity sense,
any of the k points could have been used to generate the perturbed location.

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 105

3.2 Selecting a Perturbation

A perturbed location for a query point can be chosen using the above method.
However, the distribution of the k points can affect the proximity of the per-
turbed location to the true coordinates. Further, the k points should be chosen
to preserve reciprocity [6,13]. In other words, the same set should be chosen
irrespective of which of the k locations is the query point. This is achieved by
dividing the users into buckets of size k, the set being chosen as the bucket to
which the query point belongs. Each of the k points is subjected to perturbation,
and the one having the minimum average distance to all points in the set is cho-
sen as the location to issue the query. Given a perturbed location, the k points
are probabilistically identical (within a factor of eε) irrespective of which one
was used to perform the perturbation. Hence, choosing the one with minimum
average distance to all points does not risk an inversion attack. Note that the
context of the application still plays a crucial role. If the user base is relatively
sparse, i.e. the k users are distributed over a significantly large area, then the
generated perturbation will be far away from the true location. A cloaking region
could also be unacceptably large in this case.

Algorithm 1 lists the pseudo code of the approach. The function returns a
perturbed location of a user U . Lines 1 to 11 determine the k size bucket to
which the user belongs. The buckets are formed based on the Hilbert indices of
the users. The locality preserving properties of Hilbert curves ensure (although
not necessarily optimal) the formation of buckets with users that are at close
proximity to each other. Error checks and boundary conditions are not shown

Algorithm 1. Location Perturbation
Require: User U with associated k.
Ensure: A perturbed location for U .
1: H = set of all users sorted by their Hilbert index
2: repeat
3: D = φ
4: for all (u ∈ H in order) do
5: D = D ∪ {u}
6: if (|D| = k) then
7: break
8: end if
9: end for

10: H = H−D
11: until (U ∈ D)
12: L = {location of u ∈ D}
13: Lp = φ
14: for all (l ∈ L) do
15: lp =perturbed l
16: Lp = Lp ∪ {lp}
17: end for
18: return lp ∈ Lp such that lp has minimum average distance from L

106 R. Dewri

in the code. For instance, if a user belongs to the last bucket and its size is less
than k, then the last bucket should be merged with the previous one. Lines 14
to 17 compute a perturbed value corresponding to the location of every user in
the bucket. Each component c of a location is perturbed to c−λsign(rnd) ln(1−
2|rnd|), where rnd is a random value between −0.5 and 0.5 drawn from a uniform
distribution, and λ is set as described in the previous section. This makes the
perturbation Laplace distributed around c.

3.3 Evaluating the Perturbation

Cloaking regions guarantee that the results generated for a location based query
will contain the results corresponding to the location of the user. Such a claim
cannot be made for queries issued with a perturbed location. However, it remains
to be evaluated how different is the result set when generated with respect to the
true location, compared to that generated with respect to a perturbed location.
Differences in the result may or may not exist depending on the density of the
queried objects, and the distance of the perturbed location from the true one. A
Knn-query, for instance, on sparsely distributed objects (e.g. hospitals) is likely
to generate a larger subset of common results. On the other hand, for densely
distributed objects, this likelihood reduces. K here is the number of nearest
neighbor objects to retrieve corresponding to a location. Note that we use a
lower case k for the computation of a perturbed location.

Result set similarity can also be measured with respect to the distances to
the retrieved objects. Under this measure, two result sets are considered similar
if, corresponding to every object in one set, there exists an object in the other
set that is equi-distant from the queried location. This perspective of result
similarity applies well to proximity based queries – nearest gas stations, nearest
restaurants, nearest friends – where the distance to the object carries more weight
than attributes of the objects. Result set similarity using common subsets is
relevant in queries where the retrieved objects must be ordered using user-stated
preferences – nearest K cheapest gas stations.

A third measure is also possible using the distance of the perturbed location
from the true location. Assuming that the service provider guarantees that the
result set is accurate relative to the query point, a user wanting complete ac-
curacy will have to travel from the current location to the perturbed point. It
is therefore worth investigating how far is the generated perturbation from the
current location of the user.

Although we are not stating any theoretical bounds on these metrics at this
stage, intuition says that query processing relative to well-formed perturbed
locations will not be futile. As the first step, the following three metrics are used
to evaluate the effectiveness of our approach [14].

1. Nearness: Fraction of perturbations at close proximity to the true location.
2. Displacement: Let O = {o1, ..., oK} be the objects retrieved by a Knn-query

relative to the true location of user U , and O′ = {o′1, ..., o′K} be the objects

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 107

retrieved relative to the perturbed location. The displacement is then given
as

K∑
i=1

dist(o′i,U) −
K∑

i=1

dist(oi,U),

dist(·) being a distance function. The minimum possible displacement is zero.
3. Resemblance: Fraction of common objects between O and O′, given as

|O ∩ O′|
|O| .

4 Empirical Results

We have generated a trace data set using a simulator that operates multiple
mobile objects based on real-world road network information available from the
National Mapping Division of the US Geological Survey. We use an area of ap-
proximately 168 km2 in the Chamblee region of Georgia, USA for this study
(Fig. 3). Three road types are identified based on the available data – express-
way, arterial and collector. Real traffic volume data is used to determine the
number of users on the different road types [4]. The total number of users on
a road type vary proportionately to the total length and traffic volume of the
road type, and reciprocally to the average speed. The mean speed, standard de-
viation and traffic volumes on the road types are shown in the figure. Using the
number of users on each road type, the simulator randomly places them on the
network and moves them around. The users move with a speed drawn from a
normal distribution, randomly making turns and changing speed at junctions.
The simulator maintains the traffic volume statistics while moving the users.

The used traffic volume information results in 8,558 users with 34% on ex-
pressways, 8% on arterial roads and 58% on collector roads. The trace data
consists of multiple records spanning one hour of simulated time. A record is
made up of a time stamp, user identifier, and x and y coordinates of the user’s
location. The granularity of the data is maintained such that the Euclidean dis-
tance between successive locations of the same user is approximately 100 meters.
Each user has an associated k value drawn from the range [2, 50] by using a Zipf
distribution favoring higher values and with the exponent 0.6. The trace data
is sorted by the time stamp of records. The first minute of records is used for
initialization. Location coordinates in each record thereafter are subjected to
perturbation. Over 4,000,000 records are processed during a pass of the trace
data.

Queried objects are distributed randomly over the entire map based on a
density value (number of objects per km2). A Knn-query is issued relative to
every perturbed location. Displacement is measured using a Euclidean distance
metric. The entire map is assumed to be on a grid of 214 × 214 cells (a cell at
every meter) while calculating the Hilbert indices [15]. Objects in the same cell
have the same Hilbert index. All simulation results are obtained on a 2.8GHz
Quad-Core Intel Xeon machine with 8GB memory and running Mac OSX 10.6.7.

108 R. Dewri

expressway
mean=90 km/h

std.dev.=20 km/h
traffic vol.=2916.6 cars/hr

arterial
mean=60 km/h

std.dev.=15 km/h
traffic vol.=916.6 cars/hr

collector
mean=50 km/h

std.dev=10 km/h
traffic vol.=250 cars/hr

Fig. 3. Simulation performed over an area of Chamblee, GA, USA

Table 1. Percentage of anonymization attempts where perturbed location is at close
proximity to true location

ε ≤ 1000m ≤ 500m ≤ 100m

0.01 1.05 0.37 0.01
0.1 36.61 13.70 1.00
0.3 84.16 48.33 4.64
0.5 93.79 64.53 7.81
1.0 97.41 76.10 11.89
2.0 98.11 79.91 14.42

Fig. 4 shows the number of perturbations that resulted in the perturbed point
being generated within 5000 meters of the user’s actual location. A value of
ε = 0.01 effectuates to saying that two users should effectively have the same
probability of generating the perturbation (eε = 1.01). This is difficult to achieve
for most values of k. As the ε value approaches 0.5 (e0.5 = 1.65), we see a
useful distribution. At this point, more than 90% of the perturbations are within
1000 meters of the true location (Table 1). 60% of the points are in a much
closer proximity of 500 meters. The numbers increase favorably with increasing
ε. However, higher values of ε reduce the practical significance of the approach.
For instance, with ε = 2.0, we are already willing to accept a factor of 7 difference
in the probability estimates. Nonetheless, it is promising to see that significantly
high nearness values are possible with smaller values of ε as well.

Fig. 5 shows the resemblance and displacement values corresponding to differ-
ent values of K (the number of nearest neighbors to retrieve) and density. The
values are averaged over the the total number of requests processed (4484683). A

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 109

ε
=

0
.
1

ε
=

0
.
3

ε
=

0
.
5

ε
=

1
.
0

ε
=

2
.
0

D
i
s
t
a
n
c
e

o
f

p
e
r
t
u
r
b
e
d

l
o
c
a
t
i
o
n

f
r
o
m

t
r
u
e

l
o
c
a
t
i
o
n

(
i
n

m
e
t
e
r
s
)

Frequency

ε
=

0
.
0
1

F
ig

.4
.
N

um
be

r
of

an
on

ym
iz

at
io

n
at

te
m

pt
s

w
he

re
th

e
pe

rt
ur

be
d

lo
ca

ti
on

is
w

it
hi

n
50

00
m

et
er

s
of

th
e

tr
ue

lo
ca

ti
on

.
P
er

tu
rb

ed
lo

ca
ti

on
is

w
it

hi
n

10
00

m
et

er
s

fo
r

m
or

e
th

an
90

%
of

th
e

at
te

m
pt

s
w

it
h

ε
=

0
.5

.
T
ot

al
nu

m
be

r
of

an
on

ym
iz

at
io

n
at

te
m

pt
s

=
44

84
68

3.

110 R. Dewri

K

(
t
h
e

n
u
m
b
e
r

o
f

n
e
a
r
e
s
t

n
e
i
g
h
b
o
r
s

t
o

s
e
a
r
c
h
)

Average resemblance

Average displacement (in meters)

r
e
s
e
m
b
l
a
n
c
e

d
i
s
p
l
a
c
e
m
e
n
t

d

=

0
.
1

d

=

0
.
3

d

=

0
.
5

d

=

1
.
0

d

=

2
.
0

d

=

5
.
0

F
ig

.5
.

A
ve

ra
ge

re
se

m
bl

an
ce

an
d

di
sp

la
ce

m
en

t
va

lu
es

fo
r

K
n
n
-q

ue
ri
es

on
ob

je
ct

s
di

st
ri

bu
te

d
w

it
h

va
ri
ou

s
de

ns
it
y

d
.
P
er

tu
rb

at
io

ns
ar

e
ge

ne
ra

te
d

w
it

h
ε

=
0
.5

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 111

density of 0.1 results in 25 objects across the entire region (sparsely distributed),
while a value such as 5 results in 980 objects (densely distributed). Subset sim-
ilarity (resemblance) is over 80% on the average. However, the metric shows a
slow decreasing trend as objects become more densely situated. The chances of
finding points of interest in the neighborhood increases as they become more
closely packed. The displacement is still minimal in this case. Differences in the
distance are within a mere 5 meters for the simulated objects. Query results on
sparse objects can be comparatively distant, but still acceptable. The number of
objects to retrieve has an influence in this case. While the resemblance values are
more or less similar, displacement is comparatively higher when a smaller num-
ber of objects are retrieved on sparse objects. A nearest neighbor search (K = 1)
still retrieves the same object on more than 80% of the queries processed.

5 Related Work

Location obfuscation has been earlier achieved either through the use of dummy
queries or cloaking regions. In the dummy query method, a user hides its actual
query (with the true location) amongst a set of additional queries with incorrect
locations [16,17]. The user’s actual location is one amongst the locations in the
query set. Using false dummies affect query privacy if user locations are known
to the attacker. Cheng et al. propose a data model to augment uncertainty to
location data using circular regions around all objects [18]. They use imprecise
queries that hide the location of the query issuer and yield probabilistic results,
modeled as the amount of overlap between the query range and circular region
around the queried objects. Yiu et al. propose an incremental nearest neighbor
processing algorithm to retrieve query results [19]. The process starts with an
anchor, a location different from that of the user, and it proceeds until an accu-
rate query result can be reported. Trusted third party based approaches rely on
an anonymizer that creates spatial regions to hide the true location of users. The
anonymizer communicates this region to the content provider and then filters
the result set accordingly. Gedik and Liu develop a location privacy architec-
ture where each user can specify a minimum anonymity level, and maximum
temporal and spatial tolerances while creating the cloaking regions [5]. Ghinita
et al. propose a decentralized architecture to construct an anonymous spatial
region, and eliminate the need for the centralized anonymizer [20]. Kalnis et al.
propose that all obfuscation methods should satisfy the reciprocity property [6].
This prevents inversion attacks where knowledge of the underlying anonymizing
algorithm can be used to identify the actual object. Mokbel et al. explore query
processing of different types on spatial regions – private queries over public data,
public queries over private data, and private queries over private data [21]. Lee et
al. explore privacy concerns in path queries where source and destination inputs
may reveal personal information about users [22]. They propose the notion of
obfuscated path queries where multiple sources and destinations are specified to
hide the true inputs. Xu and Cai argue that the impact of a privacy parameter,
such as k, on the level of privacy is often difficult to perceive. They treat privacy

112 R. Dewri

as a feeling-based property and propose using the popularity of a public region
as the privacy level [23]. Each user specifies a spatial region as its privacy index,
and the cloaking region for the user must at least have the same popularity as
that of the specified region. An entropy based computation is used to define the
popularity of a spatial region. Soriano et al. show that the privacy assurances
of this model do not hold when the adversary possesses footprint knowledge on
the spatial regions over time [24]. Shokri et al. propose a framework to quantify
location privacy based on the expected estimation error of an adversary [25].

Data transformation is another method to prevent the inference of locations.
Agrawal et al. propose an encryption technique called OPES (Order Preserving
Encryption Scheme) that allows comparison operations to be directly applied on
encrypted data [26]. Operand decryption is however required for computing SUM
and AVG. Wong et al. overcome this drawback by developing an asymmetric
scalar-product preserving encryption [27]. This allows the preservation of relative
distances between database points. Khoshgozaran et al. employ Hilbert curves
to transform the data points and then answer queries in the transformed space
[14]. The parameters of the transformation, called the Space Decryption Key, is
assumed to be not known to an adversary. A new paradigm in location privacy
is based on private information retrieval (PIR) techniques. Khoshgozaran et
al. propose K nearest neighbor queries that can be reduced to a set of PIR
block retrievals [28]. These retrievals can be performed using a tamper-resistant
processor located at the server so that the content provider is oblivious of the
retrieved blocks. Papadopoulos et al. further warrant the need to retrieve the
same number of blocks across queries [29].

6 Conclusions

Obfuscated locations can provide the means to access a location based service
without risking privacy breaches. The strength of the obfuscation itself is depen-
dent on the background knowledge of the attacker. Cloaking regions can be used
to provide query privacy, but at the same time, can also enable an attacker with
approximate location knowledge to improve its approximations. We propose a
method based on location perturbation to address such attackers. Perturbed lo-
cations are generated using a Laplace distributed noise function in a way such
that any user, from a set of k users, is likely to be the query issuer within a
parameterized bound. Empirical evaluation shows that the perturbed locations
can still serve as promising query points. A high fraction of the actual result set
can be retrieved, or otherwise, similarity in distances to the points of interest
can be achieved.

Resolution of bad perturbations is an issue that remains to be explored. These
are perturbations that are significantly far away from the true locations. While
their occurrence has not been found to be very high in the empirical study, it needs
to be determined if they can be eliminated altogether. Reducing the value of k may
have a positive impact, but at the expense of reduced anonymity. In addition, the k
value is only used to determine a set of close neighbors that can be used to compute

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 113

a noise level for the perturbations. Its may be possible to adaptively choose the
value based on the proximity of the perturbations to the true locations. Further,
the result set similarity could be improved upon by using queries from multiple
perturbed locations. Decentralized computation of the perturbations should not
be difficult, given a framework to determine the k users.

We have not considered another possible form of adversarial knowledge in this
study. These adversaries, called crossholders, posses knowledge on the identity
of individuals who did not issue a certain query. Consequently, a k-anonymous
cloaking region in this case is (k − n)-anonymous, where n is the number of
individuals that the adversary can eliminate. k-anonymity can still be achieved
by ensuring the cloaking region is (k + n)-anonymous. As in the case of approx-
imate locators, the difficulty lies in determining the attacker’s extent of knowl-
edge – the value of n. The perturbation based approach demonstrated here is
also weak against such adversaries, specifically because of the underlying usage
of k-anonymity. The dependence on k can be removed by using the maximum
L1-norm distance between all users in the variance computation. However, such
high levels of variance can make the perturbed locations significantly distant
from the true locations, and effectively useless in generating relevant results.

References

1. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient Full-Domain k-
Anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 49–60 (2005)

2. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian Multidimensional K-
Anonymity. In: Proceedings of the 22nd International Conference in Data Engi-
neering, p. 25 (2006)

3. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE
Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

4. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: Proceedings of the 1st International
Conference on Mobile Systems, Applications, and Services, pp. 31–42 (2003)

5. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-Anonymity:
Architecture and Algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18
(2008)

6. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing Location-Based
Identity Inference in Anonymous Spatial Queries. IEEE Transactions on Knowledge
and Data Engineering 19(12), 1719–1733 (2007)

7. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: �–Diversity:
Privacy Beyond k–Anonymity. In: Proceedings of the 22nd International Confer-
ence on Data Engineering, p. 24 (2006)

8. Li, N., Li, T., Venkatasubramanian, S.: t–Closeness: Privacy Beyond k–Anonymity
and �–Diversity. In: Proceedings of the 23rd International Conference on Data
Engineering, pp. 106–115 (2007)

114 R. Dewri

9. Wong, R.C., Fu, A.W., Wang, K., Pei, J.: Minimality Attack in Privacy Preserving
Data Publishing. In: Proceedings of the 33rd International Conference on Very
Large Data Bases, pp. 543–554 (2007)

10. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

11. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting Anonymous Location Queries
in Mobile Environments with Privacy Grid. In: Proceedings of the 17th Interna-
tional World Wide Web Conference, pp. 237–246 (2008)

12. Xue, M., Kalnis, P., Pung, H.K.: Location Diversity: Enhanced Privacy Protection
in Location Based Services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma,
K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)

13. Ghinita, G., Zhao, K., Papadias, D., Kalnis, P.: A Reciprocal Framework for Spatial
k-Anonymity. Journal of Information Systems 35(3), 299–314 (2010)

14. Khoshgozaran, A., Shahabi, C.: Blind Evaluation of Nearest Neighbor Queries Us-
ing Space Transformation to Preserve Location Privacy. In: Papadias, D., Zhang,
D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidel-
berg (2007)

15. Liu, X., Schrack, G.: Encoding and Decoding the Hilbert Order. Software-Practice
and Experience 26(12), 1335–1346 (1996)

16. Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous Communication Technique
Using Dummies for Location-Based Services. In: Proceedings of the IEEE Interna-
tional Conference on Pervasive Services, pp. 88–97 (2005)

17. Duckham, M., Kulik, L.: A Formal Model of Obfuscation and Negotiation for
Location Privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE
2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

18. Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving User Location Privacy
in Mobile Data Management Infrastructures. In: Danezis, G., Golle, P. (eds.) PET
2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)

19. Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: SpaceTwist: Managing the Trade-
Offs Among Location Privacy, Query Performance, and Query Accuracy in Mobile
Services. In: Proceedings of the 24th International Conference on Data Engineering,
pp. 366–375 (2008)

20. Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: Anonymous Location-Based
Queries in Distributed Mobile Systems. In: Proceedings of the 16th International
Conference on World Wide Web, pp. 371–380 (2007)

21. Mokbel, M.F., Chow, C., Aref, W.G.: The New Casper: Query Processing for Lo-
cation Services Without Compromising Privacy. In: Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases, pp. 763–774 (2006)

22. Lee, K.C.K., Lee, W.C., Leong, H.V., Zheng, B.: OPAQUE: Protecting Path Pri-
vacy in Directions Search. In: Proceedings of the 25th International Conference on
Data Engineering, pp. 1271–1274 (2009)

23. Xu, T., Cai, Y.: Feeling-Based Location Privacy Protection for Location-Based
Services. In: Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security, pp. 348–357 (2009)

24. Marconi, L., Di Pietro, R., Crispo, B., Conti, M.: Time Warp: How Time Affects
Privacy in LBSs. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS,
vol. 6476, pp. 325–339. Springer, Heidelberg (2010)

25. Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying Lo-
cation Privacy. In: Proceedings of the 32nd IEEE Symposium on Security and
Privacy, pp. 247–262 (2011)

Location Privacy and Attacker Knowledge: Who Are We Fighting against? 115

26. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order Preserving Encryption for
Numeric Data. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 563–574 (2004)

27. Wong, W.K., Cheung, D.W., Kao, B., Mamouslis, N.: Secure kNN Computation
on Encrypted Databases. In: Proceedings of the 35th SIGMOD International Con-
ference on Management of Data, pp. 139–152 (2009)

28. Khoshgozaran, A., Shahabi, C., Shirani-Mehr, H.: Location Privacy: Going beyond
k-Anonymity, Cloaking and Anonymizers. Journal of Knowledge and Information
Systems 26(3), 435–465 (2011)

29. Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest Neighbor Search with Strong
Location Privacy. VLDB Endowment 3(1-2), 619–629 (2010)

Insecurity in Public-Safety Communications:

APCO Project 25

Stephen Glass1, Vallipuram Muthukkumarasamy2,
Marius Portmann1, and Matthew Robert

1 NICTA, Queensland Research Laboratory, Brisbane, Australia
2 Griffith University, Gold Coast, Australia

stephen.glass@nicta.com.au,marius.portmann@nicta.com.au,
v.muthu@griffith.edu.au,matt.robert@gmail.com

Abstract. APCO Project 25 (P25) radio networks are perhaps the most
widely-deployed digital radio technology currently in use by emergency
first-responders across the world. This paper presents the results of an
investigation into the security aspects of the P25 communication pro-
tocol. The investigation uses a new software-defined radio approach to
expose the vulnerabilities of the lowest layers of the protocol stack. We
identify a number of serious security flaws which lead to practical attacks
that can compromise the confidentiality, integrity and availability of P25
networks.

Keywords: communications networks, wireless network security, secu-
rity analysis.

1 Introduction

Emergency and public-safety communications systems are increasingly making
use of digital technologies such as Terrestrial Trunked Radio (TETRA) and
APCO Project 25 (P25). Compared to the analogue land mobile radio systems
that preceded them these digital systems claim improved radio spectrum use, in-
creased geographical coverage, centralized channel management (trunking) and
support for both voice and data services. A key advantage to digital systems is
that they enable secure operation that ensures the confidentiality of voice and
data traffic using proven cryptographic ciphers. As a result these systems have
a reputation for being much more secure than analogue systems. In this paper
we present the results of a critical security analysis of the P25 protocols and
identify a number of flaws that lead directly to practical and effective attacks.
These attacks include bypassing the authentication and access control mecha-
nism, disabling specific nodes at will and the passive recovery of the encryption
keys for some of the standard ciphers. We also describe in detail a widely-used
proprietary P25 cipher system and show the encryption key can be recovered
with only a relatively small effort. To the best of our knowledge this is the first
time this cipher has been described.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 116–133, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Insecurity in Public-Safety Communications: APCO Project 25 117

1.1 Structure of the Paper

The structure of this paper is as follows: section 2 provides a brief background
to P25 and the structure of P25 network traffic. Section 3 describes the moti-
vation for the software radio approach used and describes the software tools we
constructed for the investigation. Section 4 outlines the flaws we identified in
the protocol. Section 5 the most effective attacks which result from these flaws.
In section 6 we discuss related work and conclude in section 7.

2 APCO Project 25

P25-based systems are used by first-responder emergency services across the US,
Canada, Australia and New Zealand. P25 radio systems may be used in simplex
mode (i.e. without any infrastructure) but are typically used in infrastructure-
based networks and consist of both fixed and mobile equipment as shown in figure
1. The mobile radios (MRs) are either hand-portable or vehicle-mounted and
paired with a mobile data terminal (MDT) for accessing data services. The fixed
station (FS) fulfills the roles of base station, key management facility (KMF),
trunking controller and repeater. The FS may also provide data services and
gateways to the public switched telephone network, automatic branch exchanges
and other radio systems.
The P25 standard is jointly administered by the Telecommunications Indus-

try Association (TIA) and the American National Standards Institute (ANSI)

Fixed Station (FS)

Key
Management
Facility (KMF)

Data
Interface
(Gateways)

Interconnect
Interface
(PSTN)

Inter-
System
Interface

Mobile Radio (MR)

Mobile Data Terminal (MDT)

Mobile Radio (MR)

Fig. 1. P25 System Components

118 S. Glass et al.

and ensures interoperability of equipment from different manufacturers. The
P25 Common Air Interface (CAI) defines the modulation techniques, frame
types and physical layer representations that must be implemented by all P25-
compliant radios [1]. In the existing P25 standard CAI traffic is exchanged
at 9600 bps using either 4-level frequency-shift keying (FSK) modulation in
a 12.5 kHz half-duplex channel or π

4 differential quadrature phase-shift keying
(DQPSK) modulation in a 6.125 kHz half-duplex channel. To accommodate the
limited data rate, voice transmissions make use of the IMBE vocoder to en-
code voice traffic into compressed voice codewords; where each 88-bit codeword
represents 20ms of uncompressed speech.

Voice Superframe
(360ms compressed speech)

HDU LDU1 LDU2

Frame Sync Network ID VC1 VC2 VC3 VC4 VC5 VC6 VC7 VC8 Low-Speed Data VC9

TDULDU1 LDU2

Non-voice Payload

...

Fig. 2. P25 Voice Transmission Frame Structure

All P25 voice and data traffic is transported by data-link layer frames which
are known as data units (DUs). Data traffic uses variable-length packet data units
(PDUs) whereas voice transmissions use a variety of fixed-size frames that occur
in a fixed structure. Figure 2 shows the structure of a voice transmission. Each
voice transmission begins with a header data unit (HDU), followed by a number
of voice superframes which carry the compressed voice traffic. That is followed
by a terminator data unit (TDU). Each superframe is composed of alternating
logical data unit 1 (LDU1) and logical data unit 2 (LDU2) frames; each of which
contains nine IMBE compressed voice codewords and differ only in the meaning
attached to the non-voice payload of each frame.

3 Approach to Security Analysis

The purpose of the security analysis is to identify any security flaws present
in the protocol. The adversary model we presume is that of an external at-
tacker who has complete access to the message transmissions but who has no
knowledge of the encryption keys in use. We begin by studying the standard
to identify possible vulnerabilities, and progress to study the traffic in a real
test-bed network. Unfortunately, in commercially-available equipment, low-level
access to the protocol stack is not usually available. Re-purposing commercial

Insecurity in Public-Safety Communications: APCO Project 25 119

P25 equipment is difficult because device programming specifications are either
unavailable or available only when entering into non-disclosure agreements. This
approach is further complicated because P25 equipment often employs a degree
of security-through-obscurity and tamper-proofing measures. These problems
motivated the investigation to adopt the use of a novel software-defined radio
(SDR) or software radio approach. An SDR is one in which the majority of the
signal processing is done in software as opposed to purpose-designed electronic
circuits. This approach enables us to examine and manipulate message traffic at
the physical and data-link layers of the protocol stack. The principal advantage
of this technique is that the SDR is not constrained to the behaviours expected
from commercial equipment and can be used to expose flaws, implement attacks
and prototype countermeasures. The software radio approach can also assist in
reverse-engineering protocols, which are undocumented and would otherwise not
be available for analysis (an example of this is discussed in Section 5.3).

3.1 Software-Defined Radio Implementation

To facilitate the investigation we have developed software tools that allow us
to create, transmit, receive and analyse P25 message traffic. The software tools
are built using the GNU Radio framework [2]. This is a free software frame-
work for writing software radios in C++ and Python and is available under the
terms of the GNU Public License. The GNU Radio framework provides a large
collection of signal-processing blocks which transform their input signal(s) into
output signal(s) in a well-defined way. Blocks can even be combined into a func-
tioning software radio using a graphical, direct-manipulation editor called the
GNU Radio Companion (GRC). Using the GNU Radio framework provides a
robust signal-processing framework and ensures hardware independence because
GNU Radio can make use of common abstractions to communicate with a wide
variety of signal sources and sinks.

ADC

DAC

Radio
Frequency
Interface

Digital
Signal

Processing
Antenna

P25
Protocol
Handling

PC USRP

Fig. 3. Block Diagram View of Software Radio

Figure 3 shows a block diagram of the software radio. A host PC is responsible
for the P25 data-link layer and the digital signal processing needed for the phys-
ical layer whilst an SDR provides the means of converting digital samples to and
from radio frequency signals. The actual SDR is a Universal Software Radio Pe-
ripheral (USRP) [3]; this is a low-cost device that has been purpose-designed to

120 S. Glass et al.

work with the GNU Radio framework. The USRP provides for high-speed ana-
logue/digital and digital/analogue conversion and implements a radio frequency
interface that is responsible for amplification and frequency conversion from the
baseband to the appropriate part of the radio spectrum. This is achieved using
a daughterboard which, in this instance, provides receive and transmit capabil-
ities for the UHF frequency bands used in public-safety communications. The
digital samples are passed between the host PC and USRP via either a USB2
or a Gigabit Ethernet interface.

3.2 P25 Receiver

The USRP can process approximately 6 MHz of the radio spectrum at one time,
allowing hundreds of P25 signals to be processed simultaneously. This makes it
a useful tool for both security analysis and network monitoring because network
traffic can be captured, monitored and analysed to assist in identifying security
flaws or diagnosing operational problems. The P25 Receiver itself is a hybrid
Python/C++ program that allows for message traffic to be captured off the air
for storage and analysis. The P25 Receiver can be thought of as comprising four
main stages:

1. Filtering to select a particular channel of interest and performing frequency
translation to produce a series of baseband samples.

2. Demodulation transforms the baseband samples into a stream of dibit sym-
bols using a 4-level frequency shift keying (4FSK) demodulator.

3. Decoding recovers the P25 data-link frames from the symbol stream. This
requires a custom signal-processing block to identify frame boundaries and
re-construct the frame bodies, de-interleaving and applying forward error-
correction.

4. Distribution of the resulting traffic for further processing. CAI traffic can be
distributed via the Internet or intranet using a CAI-in-UDP encapsulation1.
This traffic can be multicast or unicast to listeners that perform tasks such as
audio decoding, message logging, re-transmission or detailed traffic analysis.

To assist with the inspection and analysis of P25 network traffic a plug-in module
for the WireShark protocol analyzer has been contributed by Michael Ossman.
This plug-in allows P25 traffic to be analyzed and filtered using WiresShark. A
detailed description of an earlier version of the P25 Receiver can be found in [4].

3.3 P25 Transmitter

The P25 transmitter is also a hybrid Python/C++ program which accepts P25
data-link frames as its input and produces a P25 radio signal as its output. These
frames are read from file and encoded into a symbol stream that is modulated
and amplified before being sent to the USRP. The use of pre-prepared files for
the input was chosen because message traffic can be prepared in advance and

1 IANA has registered UDP port 8062 for use by the CAI-in-UDP encapsulation.

Insecurity in Public-Safety Communications: APCO Project 25 121

4FSK
Modulator USRPAmplifierFM

Modulator
Symbol
Filter

Capture
File

Fig. 4. Block Diagram view of P25 4-Level FSK Transmitter

offers precise control over how and when the message traffic is to be injected.
The format of the P25 input file is chosen to be the same as that used by
the WireShark protocol analyzer. This means that traffic captured by the P25
receiver can be re-injected with little effort. A block diagram for the transmitter
is shown in figure 4 that shows how the signal-processing blocks are connected
together.

4 Security Flaws in P25

Although P25 supports the use of cryptographically sound ciphers such as AES
and 3DES the use of such ciphers alone is not sufficient to ensure secure opera-
tion. In this section we summarize the security flaws that we have identified in
the P25 specifications.

4.1 Optional Encryption

Possibly the most important shortcoming of P25 is that the use of secure commu-
nications is optional. For mobile radios (MRs) an additional hardware module or
firmware upgrade is usually required before encryption can be used. As we discuss
later (§4.6), the security protocols of P25 do not provide an effective authenti-
cation mechanism and cannot establish the authenticity of a message. Although
it is an inter-operability advantage to be able to fall back to un-encrypted or
even analogue modes of operation one of the most severe consequences is that all
radios must process messages that are sent in the clear. Therefore, an adversary
can inject messages into the network which are in the clear and rely on network
devices and infrastructure handling them as though they are legitimate. This
exposes radios to the risk of “fuzzing” attacks by adversaries who can create
illegal traffic that is intended to crash or otherwise compromise the integrity of
radios.

4.2 Flawed Authentication and Access Control Mechanism

Authentication and access control seek to restrict access to the network to users
who are suitably authorized. The original P25 standard did not mandate an
authentication and access control mechanism but has been amended to include
an optional authentication mechanism [5]. This a relatively recent development
and has not yet been widely implemented. The result is that the vast major-
ity of P25 systems do not have any means by which to prevent unauthorized

122 S. Glass et al.

access. The authentication mechanism defined by P25 uses a cryptographic chal-
lenge/response protocol to authenticate the Mobile Radios (MRs) and the Fixed
Station (FS). This provides for one-way authentication (MR to FS) and mutual
authentication (MR to FS and FS to MR).
The one-way Radio Authentication (RA) protocol is shown in protocol 1.

In this protocol a unique secret key KMR is shared between the MR and an
Authentication Centre (AuC). Authentication begins in response to the MR
sending a registration request to the FS. In step 1 the AuC generates an 80
bit random seed RS and 128 bit authentication key KS and sends them to the
FS. The authentication key KS is derived from RS using the AM1 procedure
(which zero-pads RS to the AES block size and encrypts it under KMR). In step
2 the FS generates a 40 bit random challenge RAND1 which is sent with RS to
the MR. At this point the MR can compute RES1 by using RS to derive KS

and encrypting RAND1 using the AM2 procedure (which zero-pads RAND1
to the AES block size and encrypts it under KS). At this point the FS can
compare RES1 against the value it has computed. If, the two values match the
MR is considered to be authenticated and registered successfully; otherwise the
registration attempt is rejected. An extension of this protocol allows for Mutual
Authentication (MA).

Protocol 1. Radio Authentication Protocol
1 AuC → FS :KS = AM1KMR(RS), RS
2 FS → MS :RAND1, RS
3 MR → FS : RES1 = AM2KS (RAND1)

There is, however, a serious security flaw present in this authentication and
access control mechanism. The authentication process decouples authentication
and key agreement — successful authentication does not establish a session
key but instead merely changes the state of the association to the authenticated
state. This is a consequence of the the optional status of both the authentication
and encryption services which can be used completely independently of each
other. An adversary can monitor the channel and learn the identity of MRs
that have already registered successfully and then assume those identities. The
assumption that an adversary cannot discover the identities of registered stations
or easily change their identity maybe valid for typical commercial systems but
for a software radio it is trivial to monitor traffic and assume the identity of
registered stations. As a result this mechanism provides absolutely no defence
against an intruder.

4.3 Flawed Key Hierarchy

Serious security flaws are present in the design of the key hierarchy used by P25.
Most importantly, the standards do not mandate a key hierarchy that ensures
that individual associations have their own unique encryption key. Instead a

Insecurity in Public-Safety Communications: APCO Project 25 123

single traffic encryption key (TEK) is shared by a number of MRs that are
known as a cryptogroup. A single MR may belong to several cryptogroups and
so a number of these TEKs can be programmed into a MR. This allows for
some radios to be programmed with keys not present in others and preserves
operational security between unrelated groups. The transmitter identifies which
encryption key is in use by means of a sixteen-bit key id (KID) that is transmitted
in the plain as part of the header data unit (HDU) and repeated as part of the
logical data unit 2 (LDU2) non-voice payload. The second level of keys in the key
hierarchy are the Key Encryption Keys (KEKs) used by the KMF to perform an
over-the-air re-keying (OTAR) operation in which an MR’s encryption keys can
be remotely re-programmed [6]. The KEKs are used by the KMF only for the
distribution of encryption keys and encryption of other OTAR messages. The
initial KEKs are bootstrapped into the MRs using a hardware device known as
a keyloader whereas further TEKs/KEKs programmed using OTAR messages.
The use of a single TEK for many different transmissions/users means that

all traffic encrypted under that key can be decrypted as the result of a suc-
cessful key-recovery attack. This effect is compounded because the same traffic
encryption key is likely to remain in use for an extended period of time. This
is because key management can be a problem when there are many devices and
key changes must be co-ordinated across many different groups. The difficulty of
this task means that it tends to be performed infrequently. Australian emergency
responders, for example, do not use OTAR and usually change their TEKs on an
annual basis. The combined effect is that an adversary has a significant incentive
to recover an encryption key because a successful key recovery will reveal the
contents of a large amount of traffic. They also have a large amount of time in
which to do so and, once the encryption key is discovered, have complete access
to traffic in real-time.
Another serious problem with using a single key for an entire cryptogroup

means that any station can masquerade as any other within the same cryp-
togroup. Although this is principally an insider attack it presents problems when
an MR is stolen. The key plus the transmitter’s station identity is assumed to
be sufficient to authenticate a station. When a MR is stolen it is quite possible
for an adversary to change the device’s identity whilst preserving encryption
keys. The theft of an MR can be mitigated in several ways. Firstly, OTAR al-
lows for the TEKs of legitimate stations to be changed in response to a reported
theft; if the stolen radio is within radio range and remains powered then OTAR
permits the keys present in the stolen radio to be erased remotely. The second
line of defence are the physical security and anti-tampering measures of the MR
itself. It is typical for an MR to employ tamper-proofing measures that erase the
encryption keys to prevent their recovery.

4.4 Weak Encryption

P25 allows for the use of several optional cipher systems including DES, 3DES
and AES. Some of these cipher systems employ weak cryptographic ciphers that
are subject to key-recovery attacks. At the time of writing the cipher in most

124 S. Glass et al.

widespread use is DES in OFB mode[7]. Although it is marked for “backward
compatibility” by TIA several factors favour DES-OFB and militate against the
use of the other, more secure, ciphers such as 3DES and AES:

– DES-OFB is the only cipher that manufacturers must implement in order
to comply with the specification,

– users frequently encounter interoperability problems when using optional
features of equipment from different manufacturers and

– the export of certain US-manufactured devices (such as AES-capable key-
loaders) requires an export license for shipping outside of the US and Canada.

These factors entrench the use of the DES-OFB cipher system which remains
in widespread use. DES has remained largely resistant to cryptographic attacks
but, because of its limited key size, exhaustive key search attacks have proven to
be very effective. Using specialized hardware such attacks can now be conducted
very quickly using only modest resources.

4.5 No Guarantee of Message Freshness

P25 is also vulnerable to message replay attacks. The adversary can record mes-
sages and re-inject them into the system at a later time. To protect against replay
attacks requires an authenticated nonce, sequence number or timing information
to be included in the messages so that replayed messages can be detected by the
receiver and ignored. Data frames can optionally meet these requirements using
a monotonically-increasing message number (MN) and a MAC computed across
the MN and message payload. Unfortunately, the optional nature of these protec-
tions permits an adversary to construct traffic which misrepresents its identity
and indicates that no MN is present.

4.6 Flawed Message Authenticity and Integrity Mechanism

We have already alluded to the fact that there is no explicit guarantee of au-
thenticity for voice traffic; this is a direct consequence of the optional status of
the encryption protocol. Data messages are usually protected only with cyclic
redundancy checks (CRCs) computed over the ciphertext of the frame and sent
in the plain. These offer no protection against message modification and replay
attacks. As an option for data traffic, P25 allows for the use of DES/CBC to
compute message authentication codes (MACs) to authenticate the values of
some data and control frames. The CBC/MAC protocol is, however, optional
and can easily be bypassed (see §5.2).

5 Security Attacks and Defences in P25

The security flaws present in the P25 protocol introduce the threat of attacks
and this section identifies the threats and, where possible, the proposed coun-
termeasures. The experimental method consists of identifying security threats in

Insecurity in Public-Safety Communications: APCO Project 25 125

the behavior of the P25 network using a simple test-bed that consists of a single
P25 transceiver used together with the SDR P25 implementation. A repeater
was not available for testing and so a simplex UHF radio channel is used to
empirically verify the attacks.

5.1 Denial of Service - The Inhibit Attack

In all radio systems there are denial-of-service risks at the physical layer through
collision jamming and other attacks. In digital and trunked systems such as P25
there are new threats from attacks directed at the network control protocol. The
Inhibit attack makes use of the anti-theft measures of the P25 standard to dis-
able legitimate nodes. The P25 protocol contains an anti-theft mechanism which
is intended to prevent a stolen radio being used by an adversary. This feature is
known colloquially as “stun” and is implemented by sending a special abbrevi-
ated PDU known as a Trunk Signaling Data Unit (TSDU) to the device. The
payload of the TSDU is an “inhibit” Extended Function Command (XFC) the
structure of which is shown in figure 5. Once a radio has been stunned by the re-
ceipt of an inhibit command the standard requires that it remains in-operational
and unresponsive to the operator console or device programming interface until it
receives an “uninhibit” XFC on the frequency it received the inhibit. The attack
exploits the lack of any guarantee of authenticity for the frame Inhibit/Uninhibit
types. The adversary simply directs “inhibit” commands towards legitimate sta-
tions causing them to become disabled without any explanation. The format
of the XFC is shown in figure 5. Note that the XFC message payload may be
sent either encrypted (P=1) or un-encrypted (P=0) and that there is no explicit
means of authenticating the inhibit command.
The inhibit function presents a serious threat to availability and does not

provide a satisfactory anti-theft measure because a thief can uninibit the radio
themselves. For this reason some manufacturers allow for radios to be configured

octet 0 LB P OpCode Plain
XFC ($24)

1 Manufacturer’s ID Encrypted (P=1)
2 Class($00) Encrypted (P=1)
3 Operand Encrypted (P=1)
Inhibit($7F)/Uninhibit($7E)

4 Destination Address Encrypted (P=1)
5

6

7 Source Address Encrypted (P=1)
8

9

10 CRC Plain
11

Fig. 5. Extended Function Command

126 S. Glass et al.

to ignore inhibit commands. This is often a configuration option that can be set
for each MR using the equipment’s programming interface. Allowing inhibit to
be disabled is intended to mitigate the threat of DoS attacks but does so at the
cost of negating the anti-theft measure.

5.2 Message-Modification Attack

The weak authenticity and integrity provisions of P25 expose it to threat of
message modification attacks. A message modification attack can detect the
presence of MAC-protected frames, remove the MAC and substitute a CRC in
its place. The receiver will accept such frames as legitimate even though they do
not possess the MAC because they conform to the specification. A two-bit field
is present in the frame header and indicates whether the frame has no checksum,
a CRC or a cryptographic MAC. Although this field is encrypted the adversary
can detect the presence or absence of the MAC based on frame size. The use of
stream ciphers means that an adversary can perform a simple XOR operation to
change the state of these bits. Thus messages can be modified by an adversary
to remove the MAC without the receiver’s knowledge and without possessing
the encryption key. The only remedial measure is to make the use of MACs
mandatory as the strongest authenticity and integrity mechanism available in
the standard and ignore all traffic which is not suitably protected. Unfortunately
such a move would still fail to protect voice traffic and would not be compatible
with existing equipment.

5.3 Key Recovery by Exhaustive Key Search

The use of weak ciphers by P25 equipment makes it possible to recover the
encryption key using an exhaustive search. DES is no longer regarded as secure
because an exhaustive key search can be mounted to recover the encryption
key. Motorola’s proprietary Advanced Digital Privacy (ADP) cipher, which is
described here for what we believe to be the first time, uses a 40 bit key and
is considerably less secure than even DES/OFB. In this section we will describe
how this attack can be conducted to recover encryption keys.

Known-Plaintext. The exhaustive key search presented here exploits the fact
that voice messages contain a known-plaintext that occurs at known locations
in the message. These arise because, when a voice message is finished but there
are unused voice codewords in the current frame, the transmitter is required to
complete the LDU with silence codewords [1, §8.2.3]. A similar process, known as
audio muting, occurs at the beginning of voice transmissions and results in the
first few voice codewords being encoded as silence Our observations have shown
that audio muting provides 4 silence silence voice codewords at the beginning
of a transmission. If an adversary can correctly identify a silence codeword then
they can reveal 11 consecutive octets of keystream. An adversary monitoring
a voice transmission can identify the first and/or last frame in a transmission

Insecurity in Public-Safety Communications: APCO Project 25 127

and those codewords which have the highest probability of being silence. Ex-
haustively searching for the key which generates the appropriate keystream is
possible when the key space is small enough and allows the adversary to discover
the encryption key.

DES/OFB. The DES/OFB cipher system is the only cipher system which
the standard declares to be a mandatory option. That is, equipment suppliers
must be able to offer DES/OFB as an option on their equipment in order to
pass the compliance testing. DES has a 56 bit key which means a key space
of approximately 7 × 1016 unique keys. On average an adversary would search
half of the key space before discovering the key. Exhaustively searching this key
space is computationally intensive but modern hardware makes such a strategy
possible. To conduct an exhaustive key search against DES/OFB the known-
plaintext must be chosen carefully so that 16 sequential octets of keystream are
revealed; these must be aligned on a 64 bit boundary and represent the input
and output of a single DES/OFB encryption operation. Given these two blocks
an exhaustive key search simply encrypts the input value using DES/ECB under
every possible key until the actual output value is found.
When using the beginning of a captured transmission for an exhaustive key

search we can use the fact that the VC1 and VC2 voice codewords at the start of
the LDU 1 are silent to reveal such blocks 4 and 5 of the DES/OFB keystream.
The presence of silence in the voice codewords at the start of the transmission
make this the preferred choice. The situation is slightly more complex when
using the codewords at the end of the LDU1 or LDU2 because they will be silent
only with a given probability distribution. The uses of these latter codewords is
further complicated because of the presence of two octets of non-voice payload
which are unknown to the adversary. The example for an LDU1 is shown in
figure 6 and a similar situation exists at the end of the LDU2. This doesn’t pose
a serious problem because the exhaustive key search will produce 216 candidate
blocks which can be verified simply by repeating the encryption and matching
the resulting block to the ciphertext revealed by the known plaintext.
A commodity 2.5GHz Intel Core i7 processor can easily compute one million

DES keys per second in software using the OpenSSL library. This is, however,
optimized for the case of encrypting the key with large volumes of traffic and not
key searching. A bit-sliced implementation carefully optimized for key searching
can reach in excess of twenty-eight million keys/second. Even so, DES is not
trivially defeated. Even at one hundred million keys per second it will take almost
twenty-three years to search the whole key space. It is possible to achieve much
better performance using dedicated hardware and many processors running in
parallel. In 1998 the EFF constructed an ASIC-based device that could search
the DES keyspace within 9 days at a cost of 250,000 US$ [8]. Since then the cost
of computation has fallen and efficient DES cores have been developed such as
the core developed by the UCL Crypto Group at the University of Lovain-la-
Neuve which is optimized for such key searches [9,10]. This core has been used
in COPACABANA— a recent FPGA-based device that can exhaustively search
the DES key space within nine days at a cost of just 10,000 US$ [11].

128 S. Glass et al.

Voice Codeword 8 LSD Voice Codeword 9

DES Block 14DES Block 13 DES Block 15

Unknown

64 bit DES block

88 bit IMBE codeword

⊕ ⊕ ⊕

Fig. 6. Presence of Non-Voice Data in Encryption Schedule

ADP. Advanced Digital Privacy (ADP) is a proprietary cipher system that
is available on some Motorola equipment as a firmware upgrade. There is no
publicly available documentation describing the ADP and so we have reverse-
engineered the cipher to discover how it operates. We know from the user inter-
face of the radio management software that the ADP cipher has a 40 bit key.
This appears to have been chosen to meet the now-defunct US export restric-
tions for cryptographic products. The size of the keyspace is much too small to
protect traffic from an exhaustive keyspace search.
We conducted our investigation using traffic captured from a Motorola XTS

5000 hand-held radio with the ADP cipher option enabled. A transmission was
made that consisted of audio silence and was sent without encryption. Inspection
of the first transmission showed that the radio was correctly transmitting the
silence codeword values as required by both the CAI and the IMBE vocoder
specification [12]. A second transmission also of audio silence was made using
ADP under a known encryption key. ADP is rumoured to make use of the RC4
cipher and so we subjected the encrypted message to a simple analysis in which
different combinations of the key and IV are used to generate 2048 octets of
keystream. The resulting keystream is compared with the presumed keystream
from an encrypted frame and the result scored on the number of mismatches to
the expected silence plaintext.
We confirmed that the cipher used by ADP is RC4 in which 40 bit secret key

is combined with the 64 bit IV to form a 104 bit encryption key. The RC4 cipher
is used produce 484 octets of keystream which is used to encrypt/decrypt the
payload of the voice superframe. The operation of the ADP cipher is outlined in
figure 7. ADP appears to makes use of RC4 in a secure fashion and:

– ADPappends the IV to the secret key to make the encryption key making it
difficult for an observer to identify frames encoded under weak keys — one
of the key flaws common to many RC4 implementations.

Insecurity in Public-Safety Communications: APCO Project 25 129

Keystream

Secret
Key

Initialization
Vector

40 bits 64 bits

256 Octets Discarded

Plaintext

RC4

XOR Ciphertext

Fig. 7. ADP Cipher Encryption

– ADP discards the initial 256 octets of the keystream which have been shown
to be correlated with the encryption key. In this ADP has followed the advice
on the correct use of the RC4 cipher.

Exhaustive key search for ADP consists of using a silence codeword to recover
the probable keystream and then using the IV for the message to search every
one of the possible 240 (≈ 1 × 1012) secret keys to find one which generates
that keystream. Searching a keyspace of this size in software is well within the
capabilities of ordinary commodity processors. Table 1 shows several processors
and the number of millions of keystream/s that each processor core is capable
of searching.

Table 1. Performance of ADP exhaustive key search

Processor Clock Speed Cores/CPU VC1 keys/s
GHz ×106

Intel Core 2 Duo 1.2 2 .270
Intel Core 2 Duo 2.2 2 .475
Intel Core i7 2.6 2 .632

AMD Opteron 252 2.6 2 .375

Each of the processors identified uses an optimized RC4 implementation and
generates sufficient keystream to decode the VC1 of the initial LDU1 frame. On
a single core of a dual-core Intel i7 processor the search will take, on average,
10.6 days. The search time is inversely proportional to the total number of CPU
cores used to conduct the search. An alternative approach is to make use of
the computational capability of commonly-available GPUs which use a single

130 S. Glass et al.

instruction/multiple data (SIMD) architecture and can process many threads in
parallel. We have investigated RC4 on GPUs and the best results improve on
the performance of CPU implementations by a factor of between 3 and 5 which,
allowing for hardware differences, are in general agreement with those of Li et
al. [13]. Although this is a significant improvement these performance figures
represent an extremely disappointing result and fall a long way short of the capa-
bility of the hardware. The problems in performance are explained principally by
the very low occupation of the GPU by the RC4 implementation. The implemen-
tation is making use of just 6% of the available computational resources but is
constrained by the memory limitations of the GPU device. RC4 implementations
that are able to make more effective use of the GPU’s computational resources
have the potential to be much faster. Alternatively, an FPGA implementation
of the RC4 cipher running on the Cube FPGA cluster can search the entire 40
bit key space in just three minutes [14]. This implementation is approximately
four times faster per FPGA core than the same search running on a single CPU
core.

Operational Responses to Exhaustive Key Search. A response to the
threat of exhaustive key search adopted by some operators is to change the
encryption keys relatively frequently. This reduces the time available for the
adversary to search the keyspace, increases the amount of searching they must
do and limits the amount of traffic that may be disclosed once the key is com-
promised. The P25 Over-The-Air-Rekeying (OTAR) protocol simplifies the key
management process and allows MR equipment to be rapidly re-keyed.
Unfortunately, when using a weak cipher such as DES frequent re-keying does

not significantly increase the work for the adversary. Even if an adversary can
search only a small percentage of the keyspace they are likely to discover the
key within a reasonable time as long as they re-start the search every time the
key is changed because there is a uniform probability of picking a key within the
adversary’s search space. If P (e) be the probability of choosing a key outside
of the search space of the adversary then the probability P (d) of picking a key
within the adversary’s search space after n re-keying attempts is given by:

P (d) = 1− P (e)n (1)

The problem for the adversary is that searching in this way is not guaranteed
to discover the key whereas searching the whole key space is. This suggests the
adversary is better off storing all rekeying messages and decrypting them in turn
once the original key is discovered. Unfortunately, enough of the rekeying packet
is sent in the plain to allow them to be identified and stored — permitting
complete decryption once the original key has been found.
A final warning relates to the use of OTAR with weak encryption keys. An

adversary that can store OTAR frames can use the subsequent discovery of a
TEK to provide a known plaintext and then repeat the search to recover the
KEK. Once in possession of the KEK they will be able not just to monitor all
traffic but to re-program the encryption keys used throughout the network.

Insecurity in Public-Safety Communications: APCO Project 25 131

6 Related Work

Clark et al. have also conducted an analysis of the security weaknesses present
in the P25 protocol [15]. They identify the lack of authentication on voice and
most other types of data traffic as being a significant problem, propose a novel
attack against location privacy that can be used to locate a radio even when
its user is not actively using the radio and discuss a physical layer jamming
technique that can be used to perform denial-of-service attacks. These are all
significant problems and largely complimentary in nature to those discussed here.
The investigation of Clark et al. also makes use of the same SDR software that
is presented in this paper as the basis of their investigation. The independent
application of the SDR software demonstrates the utility of the approach when
applied to the critical security analysis of wireless networks.
Another closely-related body of work is that of Project 54 conducted by the

University of New Hampshire [16]. The focus of Project 54 is on in-car human
computer interaction to provide police cruisers with an integrated environment in
which communications Project 54 has implemented a P25 base station by pairing
a PC with a conventional radio transceiver [17]. Ramsey et al. implemented this
data transmitter for P25 using a conventional radio transceiver. The baseband
signal is captured from the radio transceiver using the PC soundcard and the
remaining signal processing stages are performed in software [18].
The RC4 cipher as used in ADP is also the basis for the flawed Wired Equiv-

alent Privacy (WEP) used in IEEE 802.11. WEP does not correctly use the
RC4 cipher and is subject to the weak-key attack of Fluhrer et al. [19] and
Mantin [20]. The contrast with ADP is quite marked because ADP avoids the
mistakes in the use of RC4 that were made by the designers of WEP. In other
respects the P25 security protocol has similar weaknesses to the WEP flaws de-
scribed by Borisov et al. [21]: the access control and authentication mechanism
that is trivially by-passed, there are no guarantees of message freshness and the
integrity controls are insufficient to protect against deliberate damage.

7 Conclusions

P25 radio systems are more secure than conventional analogue radio systems
but not nearly as secure as the term “encrypted” would imply. The most serious
security flaw in P25 is the optional nature of the security protocol, however
even when the security protocol is used several serious security flaws present the
design of P25 cryptographic protections, remain:

– Weak encryption permits an attacker to recover the encryption key, and
frequent re-keying is not an effective defence.

– There is no effective authentication and access control mechanism.
– The lack of a key hierarchy means that a single key is used to encrypt traffic
between many users over many sessions.

– The integrity, authenticity and freshness of traffic cannot be ensured even
when the security protocol is in use.

– Serious denial-of-service threats against individual stations are possible.

132 S. Glass et al.

The contribution of this paper is in several parts: firstly, we have applied the
techniques of software-defined radio to enable the study and network security
analysis. This approach has the potential to expose network traffic at all layers
of the protocol stack. Secondly we have identified a number of serious security
flaws that are present in the P25 protocol and described attacks which exploit
them.

Acknowledgments. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council through the ICT Centre of
Excellence program.

References

1. Project 25 FDMA Common Air Interface Description. Number TIA-102.BAAA-A.
Telecommunications Industry Association, 2500 Wilson Boulevard, Arlington, VA
22201, USA (September 2003)

2. GNU Radio. Project website, http://www.gnuradio.org

3. Ettus research llc, Company website, http://www.ettus.com

4. Glass, S., Muthukkumarasamy, V., Portmann, M.: A software-defined radio receiver
for APCO Project 25 signals. In: IWCMC 2009: Proceedings of the 2009 Interna-
tional Conference on Wireless Communications and Mobile Computing, pp. 67–72.
ACM, New York (2009)

5. Project 25 — Digital Land Mobile Radio — Link Layer Authentication. Number
TIA-102.AACE. Telecommunications Industry Association, 2500 Wilson Boule-
vard, Arlington, VA 22201, USA (December 2005)

6. Project 25 Over-The-Air-Rekeying(OTAR)Operational Description. Number TIA-
102.AACB. Telecommunications Industry Association, 2500 Wilson Boulevard, Ar-
lington, VA 22201, USA (January 2002)

7. Project 25 DES Encryption Protocol. Number TIA/EIA-102.AAAA-A. Telecom-
munications Industry Association, 2500 Wilson Boulevard, Arlington, VA 22201,
USA (2001)

8. Loukides, M., Gilmore, J.: Cracking DES: Secrets of Encryption Research, Wiretap
Politics and Chip Design. O’Reilly & Associates, Inc., Sebastopol (1998),
http://cryptome.org/cracking-des/cracking-des.html

9. Rouvroy, G., Standaert, F.-X., Quisquater, J.-J., Legat, J.-D.: Design Strategies
and Modified Descriptions to Optimize Cipher FPGA Implementations: Fast and
Compact Results for DES and Triple-DES. In: Cheung, P.Y.K., Constantinides,
G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 181–193. Springer, Heidelberg (2003),
doi:10.1007/978-3-540-45234-8 19

10. Rouvroy, G., Standaert, F.-X., Quisquater, J.-J., Legat, J.-D.: Efficient uses of FP-
GAs for implementations of DES and its experimental linear cryptanalysis. IEEE
Transactions on Computers 52(4), 473–482 (2003)

11. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with
COPACOBANA –A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

http://www.gnuradio.org
http://www.ettus.com
http://cryptome.org/cracking-des/cracking-des.html

Insecurity in Public-Safety Communications: APCO Project 25 133

12. Project 25 Vocoder Description. Number ANSI/TIA/EIA-102.BABA-1998.
Telecommunications Industry Association, 2500 Wilson Boulevard, Arlington, VA
22201, USA (May 1998)

13. Li, C., Wu, H., Chen, S., Li, X., Guo, D.: Efficient implementation for MD5-RC4
encryption using GPU with CUDA. In: 3rd International Conference on Anti-
Counterfeiting, Security, and Identification in Communication (ASID 2009), pp.
167–170 (August 2009)

14. Mencer, O., Tsoi, K.H., Craimer, S., Todman, T., Luk, W., Wong, M.Y., Leong,
P.H.W.: Cube: A 512-FPGA cluster. In: 5th Southern Conference on Pro-
grammable Logic, SPL 2009, pp. 51–57 (April 2009)

15. Clark, S., Metzger, P., Wasserman, Z., Xu, K., Blaze, M.A.: Security weaknesses in
the APCO Project 25 two-way radio system. Technical Report MS-CIS-10-34, Uni-
versity of Pennsylvania (2010), http://repository.upenn.edu/cis_reports/944

16. Project 54. Project website, http://project54.unh.edu
17. Kun, A.L., Thomas Miller III, W., Lenharth, W.H.: Computers in police cruisers.

IEEE Pervasive Computing 3(4), 34–41 (2004)
18. Ramsey, E.R., Thomas Miller III, W., Kun, A.L.: A software-based implementation

of an APCO Project 25 compliant packet data transmitter. In: 2008 IEEE Interna-
tional Conference on Technologies for Homeland Security, Boston, MA, May 12-13.
Institute of Electrical and Electronics Engineers (2008)

19. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

20. Mantin, I.: A Practical Attack on the Fixed RC4 in the WEP Mode. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 395–411. Springer, Heidelberg
(2005)

21. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: Proceedings of the 7th Annual International Mobile Com-
puting and Networking Conference, pp. 180–189. ACM SIGMOBIL, ACM Press,
New York, NY (2001)

http://repository.upenn.edu/cis_reports/944
http://project54.unh.edu

Behavioral Mimicry Covert Communication

Seyed Ali Ahmadzadeh and Gordon Agnew

Department of Electrical and Computer Engineering,
University of Waterloo,

Waterloo, ON, Canada, N2L 3G1
{ahmadzdh,gbagnew}@uwaterloo.ca

Abstract. In this paper, the use of structural behavior of communica-
tion protocols (e.g., CSMA) in designing new covert channels is inves-
tigated. In this way, the covert transmitter adopts the communication
protocol architecture to control its overt traffic flow yet with different
parameters that give it enough freedom to embed the covert message
in its overt traffic. A salient feature of this scheme is that its rate in-
creases in proportion with the overt capacity of the system. In addition,
the paper presents a new covert channel for the wireless environment
that mimics the structural behavior of CSMA protocol. The parameters
of the proposed scheme are optimized in order to maximize the channel
rate, stealthiness and robustness. Finally, the performance of the pro-
posed scheme is analyzed from security, reliability and communication
rate point of view.

Keywords: Covert communication, information hiding, wireless
security.

1 Introduction

Covert communication often refers to the process of communicating data through
a channel that is neither designed, nor intended to transfer information [13]. The
primary use of covert channelswas to allow information to be leaked to anunautho-
rized recipient by exploiting weaknesses in conventional communication systems.
In general, two major forms of covert channels are defined in the literature.

One category involves direct or indirect storage of the covert message into cer-
tain portion of the network traffic (i.e., storage channels) [9]. The other category
(i.e. timing channels) [7], targets some typical characteristics of the system (e.g.,
inter-packet delays) to exploit normal behavior of the system and open a covert
channel. In this way, the receiver can interpret the covert transmitter’s message
by analyzing the system behavior. This classification can be extended by iden-
tifying new channels such as counting channels [8] in which the number and the
frequency of events come into play instead of the occurrence of an isolated event.
Kemmer [12] identified three necessary conditions for existence of a covert chan-

nel. (i) a global resource that is shared between the receiver and the sender of the
covert message, (ii) ability to modify the shared resource and, (iii) a method to
achieve synchronization between the sender and the receiver. The wireless envi-
ronment provides all three conditions making it a perfect medium for a wide range

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 134–153, 2012.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Behavioral Mimicry Covert Communication 135

of covert channels, some of them are yet to be found [3,14,19]. In [1] a covert chan-
nel based on jamming over slotted ALOHA was introduced in which the covert
transmitter jams specific packets in the network. The receiver decodes the covert
message through the packet loss pattern of the system. A covert channel based on
splitting tree algorithmwas introduce in [15]. This approach exploits splitting tree
collision resolution algorithm by reconfiguring the covert transmitter to choose a
particular path in the splitting tree according to the covert message. The receiver
on the other hand, decodes the covert message through the relative position of the
covert transmitter in the tree. Later,Wang et al. [20] extended the above approach
into an anonymous covert channel in which the receiver decodes the covert mes-
sage using a specific votingmechanism that considers the probabilistic decisions of
multiple covert transmitters within the collision resolution algorithm. In [10] the
authors investigate the application of the covert transmitter’s inter-packet arrival
time patters in order to synchronize the covert transmitter and the covert receiver
in the DCFmode of the IEEE 802.11 protocol. Their scheme was based on a round
of training where both the transmitter and the receiver adapt themselves with the
network and generate a codebook in order to embed the covert message into the
transmitter’s inter-packet arrival time.
Although the above covert communication schemes provide secure and stealth

communication channels, they trade the achievable rate of the channel in favor
of reliability and secrecy of the channel. The synchronization between the covert
transmitter and the covert receiver is also a challenging issue as covert channels
are often one-way channels with no universal time reference available in the
channel. Moreover, wide variety of covert communication schemes [4, 5, 6, 16],
focus on long-term statistical properties of the covert transmitter and aim to
keep the transmitter’s statistical finger prints as close as possible to a legitimate
transmitter. However, to achieve this goal, the covert transmitter has to deviate
from typical short-term behaviors of a legitimate source. Therefore, a system
observer may be able to detect the covert transmitter and uncover the existence
of the covert channel.
In this paper, we presented a new approach that systematically exploits the

probabilistic nature of access control protocols in communication networks to
open a covert channel in the system. To this end, we turn our attention to the
structural behavior of communication protocols and design a covert transmitter
that mimics not only long-term statistical behaviors of a legitimate node but also
reacts to the temporal changes in the system similar to a typical transmitter. A
salient feature of the proposed covert channel is that its rate increases linearly
with the overt channel rate of the system.
The rest of the paper is organized as follows. In Section 2, the principles of

the system under study are reviewed followed by a detailed description of the
proposed covert channel in Section 3. Section 4 contains a discussion on how
the proposed covert transmitter and the covert receiver are tuned in order to
mimic the behavior of legitimate nodes. The performance analysis and numerical
results are presented in Section 5. Section 6 concludes the paper.

136 S.A. Ahmadzadeh and G. Agnew

2 System Model

IEEE 802.11 [11] is one of the most popular wireless communication protocols.
It uses the carrier sense multiple access / collision avoidance (CSMA/CA) tech-
nique in order to share the wireless channel among multiple users.
In CSMA/CA, the wireless channel is divided into small time periods called

time slots. Users constantly check the channel to detect transmission activi-
ties. If the channel is busy, each user selects a backoff time (measured in slot
times) randomly in the interval [0, W), where W is the size of the contention
window. This backoff timer is decreased any time that the channel is sensed
idle for a specific period of time called DIFS (i.e., Distributed Inter-Frame
Space). The timer stops if the channel gets busy again and when it reached
zero, a packet is transmitted and the receiver acknowledges the packet after a
period of SIFS (i.e., Short Inter-Frame Space). The size of the contention win-
dow is set to Wmin following each successful transmission, and is doubled after
each unsuccessful transmission. The expansion stops when the size of the con-
tention window reaches Wmax and remains constant until the transmission is
successful.
Through the rest of the paper it is assumed that the covert receiver is aware of

the covert transmitter’s identity and shares a wireless channel with several users
in the system (including the covert transmitter). The terms covert receiver and
receiver and also covert transmitter and transmitter are used interchangeably.
It is also assumed that each packet contains the identity of its transmitter (e.g.,
the source address field in IEEE 802.11).

3 Behavioral Mimicry Covert Communication

In principle, the behavioral mimicry covert communication is based on adopting
the structure of the medium access control protocol, in use by ordinary users
in the system, and modify it in such a way that gives the covert transmitter
enough freedom to embed the covert message into its overt traffic. It is noted
that most access control protocols in communication networks, bring some kind
of randomness into the system in order to provide each user with a fair share
of resources of the system. By adopting the structure of the communication
protocol, one can benefit from the aforementioned random behavior and opens
a new covert channel in the system.
Inspired by this observation, in this section, a new covert communication

scheme is presented which is based on mimicking the structural behaviors of
CSMA/CA algorithm. The proposed scheme is primarily designed for wireless
protocols such as IEEE 802.11, however it can be extended to other communica-
tion models that involve multiple access techniques and shared mediums. First, a
fixed rate version of the proposed scheme is discussed in order to highlight main
properties of the covert system. Then, an advanced modification of the proposed
scheme is presented that adapts its rate according to the channel condition.

Behavioral Mimicry Covert Communication 137

3.1 Fixed Rate Covert Communication (FRCC)

FRCC scheme is basically a timing covert channel that benefits from the channel
activities of a subset of users in the system (i.e., the covert set) as clock ticks for a
virtual clock called covert clock. The covert message is embedded into the covert
transmitter’s contention window which is controlled by the covert clock. The
covert receiver also maintains its own covert clock by observing the same channel
activities of members of the covert set. It is noted that due to the broadcast
nature of the wireless environment, all users that share the same channel can
overhear the transmitted packets. This only requires that both sides track the
same set of users and are equipped with proper error correction methods in
case a mismatch happens between the transmitter and the receiver. Hence, the
transmitter and the receiver can observe the channel activities of the same set
of users and increment their clock synchronously. In this way, upon receiving a
packet from the covert transmitter, the receiver evaluates the value of its covert
clock and decodes the embedded message.
Let S be the subset of network users in which their packet transmissions are

considered as clock ticks. The covert set can be preset in the covert transmitter
and the covert receiver or may be generated dynamically. For instance, it can be a
set of users that their MAC addresses, or the hash values of their MAC addresses
have certain properties. Also, a user can be included into S if its position is inside
an acceptable region in the system (user position can be obtained from its signal
power or using smart antenna techniques).
Figure 1 depicts how the transmitter embeds the covert message into its con-

tention window and synchronizes the contention window with the covert clock.
Let ω be a covert message from the covert message set Ω. Each covert message
is associated to a unique state in the first stage of the transmitter’s transmission
window. Hence, the size of the message set is equal to the initial size of the
transmitter’s transmission window (i.e., T0). For simplicity and without loss of
generality, let’s assume Ω = {0, 1, ..., T0 − 1}. Hence, the message ω ∈ Ω corre-
sponds to the state m0

ω in Figure 1. It is noted that for any message set Γ of
size T0, one can find a one-to-one mapping that transforms Γ to Ω.
For instance, suppose T0 = 4 and the transmitter intends to transmit the bi-

nary sequence B over the covert channel. The transmitter generates the message
set Γ = {00, 01, 10, 11} and splits B into smaller items of size two, where each
item is a member of Γ . It is noted that the binary to decimal conversion is a
mapping that transforms Γ to Ω. In fact, one can recognize the similarity of the
above example to the concept of modulation in digital communication [18].
Each communication block starts with a successful packet transmission by

the covert transmitter. Then, the transmitter begins to monitor the channel to
catch packets from members of S. For each packet, the transmitter’s clock is
incremented by one unit and it moves down one state (i.e., to the left in Figure
1) in its transmission window. The covert transmitter sends its next packet when
it reaches to the last state of the transmission window to mark the value of its
covert clock which is observed by the covert receiver. It is noted that the covert

138 S.A. Ahmadzadeh and G. Agnew

Select next covert message (i.e, ω)

m
0
0 m

0
1

m
0
T0−1

Stage 0

Select a path that exhaust T0 − ω clock ticks before the next stage

m
1
0 m

1
1

m
1
T0−1

Stage 1

m
α
0 m

α
1

m
α

T0−1 Stage α

m
α+1

0 m
α+1

1
m

α+1

T0−1
m

α+1

T0
m

α+1

T(α+1)−1

Select a path that exhausts Tα − ω clock ticks before the next stage

m
M
0 m

M
1

m
M

T0−1 m
M

T0
m

M

TM−1

Select a path that exhaust TM − ω clock ticks before the next stage

1− P PS PS

1− P PS PS

P

Ps

Ps

Ps

Ps

Ps Ps

1− P PS PS

α stages

1− P PS PS PS PS

P

Ps

Ps

Ps

Ps

Ps Ps

Ps

Ps

Ps Ps

1− P PS PS PS PS

Expansion continues in each step

Ps

Ps

Ps

Ps

Ps
Ps

Ps

Ps

Ps
Ps

P

Fig. 1. Covert message transmission. PS is the probability of a successful transmission
by members of S.

transmitter can recognize multiple transmissions of a single packet using the
packet’s sequence number field.
Similarly, at the other end of the channel, the covert receiver monitors the

channel for successful transmissions of members of the covert set and maintains
the same covert clock value as the covert transmitter. In this way, when the
covert receiver detects a packet from the covert transmitter, it reads the value
of its covert clock and decodes the corresponding covert message. The receiver
then resets its clock and monitors the channel in order to receive the next covert
message. It is worth noting that this scheme does not affect the usual packet
transmission of the receiver or other nodes in the system. The transmitter also
is able to maintain its overt communication except that its contention window
is controlled by the covert clock.
However, if the covert transmitter fails to transmit the packet on the proper

time slot (e.g., due to collision with other nodes), the covert transmitter expands
its contention window and selects another transmission slot to send its packet.

Behavioral Mimicry Covert Communication 139

Algorithm 1. FRCC transmission sequence.

/* i is the covert transmitter’s current stage index.
function Success = sendpkt(Ti,message)
wait(message);
Success = transmit pkt();
if Success then

return true
else

wait(Ti −message);
return false

end if

The reason for the covert transmitter to expand its contention window is two
fold. First of all, it is essential for the covert transmitter to achieve maximum
stealthiness and does not behave differently as compared to other nodes in the
system. In the traditional CSMA/CA protocol, each node expands its contention
window and waits for a random amount of time before retransmitting its packets.
The covert transmitter should not be exempted from this rule, otherwise it would
be easy to detect the covert channel. Thus, the size of the covert transmitter’s
contention window in the ith transmission stage is calculated as follows:

Ti =

⎧⎨
⎩

T0 0 ≤ i ≤ α
2Ti−1 α < i ≤ M
TM i > M

(1)

Where M is the index of the last stage in which the transmitter expands its
contention window. The parameter α is a design parameter of the proposed
scheme and will be explained in the Section 4. Algorithm (1) shows how the
covert clock is used in order to transmit a covert message. Here, the wait()
function exhausts certain number of clock ticks before it returns the control to
the main process, and the transmit pkt() routine transmits the packet through
the channel and returns true if the actual receiver of the packet acknowledges
the reception of the packet.
In addition to achieve stealthiness, expanding the transmitter’s contention

window plays a major role in synchronizing end peers of the covert channel. In
fact, as the covert message is embedded in the covert clock, both nodes require
accurate knowledge on the current state of the covert clock if they are about to
communicate effectively. To this end, following each unsuccessful packet trans-
mission attempt, the transmitter waits for exactly Ti − ω clock ticks before ex-
panding its contention window and moving to the next stage. Hence, the covert
clock is equal to

∑i−1
j=0 Tj at the beginning of the (i)

th stage regardless of the
value of the covert message. The receiver removes this offset from the value of
its covert clock (i.e., Cr) in order to decode the covert message. Thus,

ω = Cr mod T0. (2)

140 S.A. Ahmadzadeh and G. Agnew

Algorithm 2. Covert transmitter function of FRCC.

/* PRNG(n) generates a random bit stream of length n.
i = 0; ωs = ω; T−1 = T0;
repeat

if α < i < M then
bi = PRNG(i− α);
Ti = 2i−α.T0;
ωs = (bi||ω);

else
Ti = Ti−1;

end if
Success = sendpkt(Ti, ωs);
i = i+ 1;

until Success

Algorithm 3. Covert transmitter function of ARCC.

/* getbit() returns extra information bits to be concatenated to the original message.

i = 0; ωs = ω; T−1 = T0;
repeat

if α < i < M then
bi = getbit(i);
Ti = 2i−α.T0;
ωs = (bi||ωs);

else
Ti = Ti−1;

end if
Success = sendpkt(Ti, ωs);
i = i+ 1;

until Success

It is worth nothing that exhausting T0 − ω clock ticks (instead of Ti −ω) at the
end of each stage also satisfies the synchronization criteria, however it deviates
the covert transmitter’s behavior from an ordinary user in the system. Hence, it
is not an option for a stealth channel design.
As the size of the transmitter’s contention window increases, there are more

states in each stage that correspond to a particular message. For instance, if
Ti = kT0, there exist k states in the stage i that corresponds to the message ω
(i.e., mi

ω, m
i
T0+ω,..., m

i
(k−1)T0+ω). In FRCC scheme, the transmitter randomly

picks one of the aforementioned states and moves to the next stage. Algorithm
(2) depicts the transmitter’s function of FRCC.

3.2 Adaptive Rate Covert Communication (ARCC)

In order to achieve stealthiness, the covert transmitter has to expand its con-
tention window after each unsuccessful transmission attempt. In principle, by
doubling the contention window in each expansion, the covert transmitter may

Behavioral Mimicry Covert Communication 141

add an additional information bit to the original message and increase the covert
channel rate. ARCC scheme is designed to exploit the extra capacity and increase
the covert communication rate. However, the rate increase comes at the price of
reducing the reliability of the covert channel especially for the extra bits that
are added to the original message. In other words, in order to decode the covert
message, the receiver has to account not only for the value of the covert clock,
but also it has to keep track of how many bits of information is added into the
original message. Algorithm 3 depicts the transmission procedure of ARCC.
To decode the message, the covert receiver first decodes the original message

according to Equation (2). Then, it checks the existence of extra information bits
by removing the effect of first α stages from its covert clock. If Cr is still positive,
it means that the transmitter had more than α unsuccessful re-transmission
attempts, and it had to expand its contention window. The receiver counts the
number of expansions by removing multiples of Ti from the value of the covert
clock and decodes extra bits. Algorithm (4) depicts ARCC decoding process.

Algorithm 4. ARCC decoding at the receiver.

function message = decode(Cr)
/* First decode the original message ωo

ωo = Cr mod T0;
Cr = Cr − ωo;
/* Decode the additional message ωa

if Cr < αT0 then
return ωo

else
Cr = Cr − αT0;
for i = 1 to M − α do

if Cr < 2iTi then
ωa = Cr

T0
;

return (ωa||ωo)
else

Cr = Cr − 2iTi;
end if

end for
Cr = Cr mod 2MT0;
ωa = Cr

T0
;

return (ωa||ωo)
end if

4 System Parameters

In this section, different parameters of the proposed covert communication
scheme are derived. The main idea is to optimize these parameters to achieve
maximum stealthiness (i.e., similar characteristics as compared to other nodes
in the system) and maximum channel rate. From Figure 1, it can be observed
that the proposed scheme mimics the same principles as a regular CSMA/CA
system. Hence, to harmonies the behavioral fingerprints of these systems, it is

142 S.A. Ahmadzadeh and G. Agnew

Fig. 2. Two-dimensional Markov model of the binary backoff scheme in CSMA/CA.
In each stage Wi is the size of the contention window where Wi = 2iWmin [2]

important to derive the parameters of a regular CSMA transmitter and then
adapt the covert transmitter to resemble the same characteristics.
Figure 2 depicts the two-dimensional Markov chain model for the binary back-

off algorithm which is widely used for performance analysis of IEEE 802.11 MAC
architecture [2]. Each state of this Markov process is represented by an ordered
pair (s, b), where b represents the current state of the backoff counter and s rep-
resents the backoff stage of a given station. Using the above model, it is easy
to verify that the collision probability p for a given user and the probability of
transmitting a packet (i.e., q) can be written as [2]:

p = 1− (1 − σ)(1 − q)N−2, (3)

q =
2

1 +Wmin + pWmin

∑n−1
k=0 (2p)

k
. (4)

Where, N is the number of users, σ is the transmission probability of the covert
transmitter, andWmin is the minimum size of the contention window for regular
users in the system. It is noted that the very first property of a transmitter is its
transmission rate. Hence, if the covert transmitter has a different transmission
rate as compared to a regular user in the system, it can be easily detected by
a system observer. Therefore, the transmission rate of the covert transmitter is
restricted to be the same as the transmission rate of regular users in the system
(i.e., σ = q). Thus, one can rewrite Equation (3) as follows:

p = 1− (1− q)N−1. (5)

Behavioral Mimicry Covert Communication 143

Let d0r be the average number of time slots that each regular user has to wait
before its first transmission (i.e., i = 0). Thus,

d0r =
Wmin − 1

2
. (6)

On the other hand, the covert transmitter needs ω ∈ {0, 1, ..., T0 − 1} successful
packet transmissions from members of the covert set before it can send a packet
to mark the value of the covert clock. Let π be the probability of a successful
packet transmission of a user in the system. Hence, π = q(1 − q)N−1 and the
probability of a successful transmission by members of the covert set can be
derived as:

PS = |S| × π. (7)

Therefore, the average number of slots that the transmitter has to wait before
its first transmission attempt (i.e., d0c) can be written as the average number of
slots in which the transmitter observes ω packets from members of S. Thus,

d0c =
1

T0

T0−1∑
ω=0

∞∑
n=ω

n.

(
n− 1
ω − 1

)
Pω−1
S .(1− PS)

n−ω.PS

(1)
=

1

T0

T0−1∑
ω=0

∞∑
x=0

(x + ω).

(
x+ ω − 1
ω − 1

)
Pω
S .(1 − PS)

x

=
1

T0

T0−1∑
ω=0

[∞∑
x=0

x.

(
x+ ω − 1
ω − 1

)
Pω
S .(1−PS)

x+ω.
∞∑
x=0

(
x+ ω − 1
ω − 1

)
Pω
S .(1−PS)

x
]

(2)
=

1

T0

T0−1∑
ω=0

[∞∑
x=0

x.

(
x+ ω − 1
ω − 1

)
Pω
S .(1− PS)

x + ω
]

(3)
=

1

T0

T0−1∑
ω=0

[ω(1− PS)

PS
+ ω

]
=

T0 − 1
2PS

. (8)

Where (1) comes from x = n−ω, and (2) and (3) are based on the definition of
the negative binomial distribution [17].
In order to emulate an ordinary user in the system, the covert transmitter

has to spend, on average, the same number of slots before its first transmission
attempt as compared to any regular user in the system. To this end, by combining
Equations (6) and (8), the proper value of the initial transmission window of the
covert transmitter can be derived as:

T0 = PS(Wmin − 1) + 1. (9)

Hence, the covert transmitter and regular users in the system, on average, wait
for the same number of slots prior to their first packet transmission attempt.

144 S.A. Ahmadzadeh and G. Agnew

On the other hand, in order to maintain synchronization with the covert re-
ceiver, following each unsuccessful transmission, the transmitter resets the covert
clock to

∑i−1
j=0 Tj where i is the number of unsuccessful transmission attempts

for the current packet (Figure 1). This re-synchronization task accounts for ad-
ditional delay for the transmitter as compared to regular users in the system.
Thus, if the transmitter doubles the size of its contention window after each
unsuccessful transmission, the number of slots that the covert transmitter waits
between consecutive packet transmissions may deviate from the same parame-
ter of ordinary users. This difference in behavior can be detected by a system
observer exposing the existence of the covert channel.
To combat this problem, the transmitter postpones expanding its transmis-

sion window for α stages. Where α is selected such that the average number of
slots between the last successful packet transmission and the αth re-transmission
attempt to send a new packet converges for both ordinary users and the covert
transmitter. Hence, the covert transmitter controls the delay between retrans-
mission attempts in order to compensate for the additional delay due to the
synchronization process.
Since the transmitter does not expand its transmission window up to the

stage α, the average number of slots between the last successful transmission
and the ith re-transmission attempt for a new packet (i ≤ α) can be written
as the average number of slots to observe iT0 + ω packets from members of S.
Thus, similar to the calculation of Equation (8):

dic =
1

T0

(i+1)T0−1∑
t=iT0

∞∑
n=t

n.

(
n− 1
t− 1

)
P t−1
S .(1− PS)

n−t.PS

=
(2i+ 1)T0 − 1

2PS
. (10)

Similarly, a regular user, on average, spends Wi−1
2 slots in the stage i before

retransmitting the packet. It also spends one slot trying to transmit the packet
at the end of each stage. Hence, the average number of slots between the last
successful transmission and the ith retransmission attempt for a new packet is:

dir =

i∑
j=0

Wj − 1
2

+ i =
Wmin(2

i+1 − 1) + i− 1
2

. (11)

Therefore, α can be derived as the index of the last stage in which the transmitter
spends more slots, on average, trying to transmit a packet as compared to a
regular user. Thus,

α = max
i>0

{i| dir ≤ dic}

= max
i>0

{i|
(2i+1 − 2i− 2

i
≤ 2− 3PS

PSWmin

)
} (12)

Behavioral Mimicry Covert Communication 145

Table 1. System PHY Parameters

Parameters Selected Values

Slot Time 20 μs
SIFS 10 μs
DIFS 50 μs

Transmission Rate 1 Mbps
Payload Size 1500 Bytes

5 Performance Analysis

In this section the performance of the proposed covert communication scheme
is analyzed from security, reliability and achievable rate point of view. Table 1
contains the basic parameters of the system under study in this section. The
performance analysis is performed on four distinct scenarios to cover networks
with different sizes and system parameters. For each scenario, the parameters of
the covert system are calculated based on the discussion in Section 4. Table 2
contains the corresponding parameters of each scenario.

Table 2. Covert Communication Simulation Scenarios

Parameter SC1 SC2 SC3 SC4

Number of users (N) 25 35 50 15
Size of the covert set (|S|) 16 21 33 10

Covert transmitter min window size (T0) 4 7 8 4
Expansion postpone parameter (α) 1 1 1 1

Regular user min window size (Wmin) 16 32 32 16
Number of back off stages (M) 6 5 5 6

5.1 Detection and Stealthiness of the Covert Channel

As the covert receiver is a complete passive entity in the proposed scheme, it is
undetectable even if the covert channel is detected. Indeed, since the transmitter
does not need to know the receiver’s identity, the receiver is safe in case that the
transmitter’s information is revealed to a system observer.
There are several different statistical tests to detect a covert channel and

distinguish abnormal behaviors of a covert transmitter. One of the most well
known approaches is the Kolmogorov-Smirnov test (KS-test) [17]. This test has
been used in detecting the watermarked inter-packet delays and is a major tool
in detecting timing covert channels [6].
Let S(x) and F (x) be the distribution of inter-packet delays of the covert

transmitter’s traffic and the legitimate traffic of the same system respectively.
The KS-test is defined as:

146 S.A. Ahmadzadeh and G. Agnew

Fig. 3. Kolmogorov-Smirnov test for different scenarios

Hs = sup
x

|S(x)− F (x)|. (13)

The difference between the distribution of inter-packet delays of the traffic orig-
inated from a regular user and the covert transmitter is depicted in Figure 3.
According to the graph, the difference between two parameters is less than 5%
at its peak which is an acceptable margin for the KS-test [16]. Such a small
difference, makes it extremely difficult for an observer to detect any abnormal
behavior in the system based on first level statistical tests such as the KS-test.
In addition, Figure 3 highlights how the transmitter systematically adapts

its behavior in order to emulate the transmission pattern of ordinary users in
the system. It is noted that the transmitter postpones its transmission window
expansion for α stages in order to compensate for the extra delay caused by the
synchronization process. Hence, the transmitter experiences lower inter-packet
delays during the first α stages of the transmission process (i.e., the first peak of
the graph). As the transmitter begins expanding its transmission window, the
inter-packet delay of the transmitter’s traffic increases faster than the delays of
the regular traffic of the system (i.e., the second extreme point of the graph).
This ends when the contention window of ordinary users are large enough such
that the waiting times of the transmitter and regular users converge.
Another widely used statistical measure to detect timing covert channels is the

regularity test [4] . In principle, the variance of the inter-packet delays changes
over time due to different conditions of the network. In fact, regular users in the
system have the same reaction to sudden events in the system such as packet
loss or collision. However, as the covert transmitter is committed to transmit a
particular covert message, it may not be able to react to network events similar to
other nodes in the system. The regularity test is meant to detect such a behavior
and track covert activities. To calculate the regularity test score, samples of the
inter-packet delays are collected and then spread into multiple sets of size γ. The
regularity score (i.e., Hr) is derived as follows:

Behavioral Mimicry Covert Communication 147

Fig. 4. Regularity test for different scenarios

Hr = std(
|σi − σj |

σi
), ∀i, j, i < j. (14)

Where std is the standard deviation operation and σi is the standard deviation
of the ith set of inter-packet delays. High regularity scores means large variance
in inter-packet delays of each set while the low value ofHr depicts a set of regular
inter-packet delays that is likely to carry covert information.
Figure 4 shows the regularity score of the covert transmitter and also ordinary

users for γ = 50. According to the graph, the covert transmitter’s regularity score
is extremely close to the regular users’ score in all four scenarios. In other words,
the covert transmitter has managed to blend itself into the crowd well enough
that a simple regularity test can not detect the existence of the covert channel.
The key in maintaining the regularity score is the packet transmission mech-

anism of the covert transmitter and the covert clock. It is noted that the covert
clock increases based on activities of other nodes in the system. Hence, if the chan-
nel condition changes in a way that other users have to wait for a longer period of
time between consecutive transmissions (e.g., reduction of channel capacity, high
error rates, etc), the covert clock advances with a slower paste leading to larger
inter-packet delays for the covert transmitter as well. Such an adaptive behavior
is an advantage of the proposed scheme as compared to other similar techniques
that aim to artificially increase their regularity score by switching the transmission
mode after a certain amount of time [16] or replaying a part of previously sampled
legitimate traffic and switch from one sample to another periodically [4].

5.2 Reliability

Two independent packet loss events are considered in order to evaluate the ro-
bustness of the proposed scheme. The first error event is due to failure in detect-
ing packets from members of the covert set. Such an event directly affects the
value of the covert clock in one side of the channel leading to erroneous decoding

148 S.A. Ahmadzadeh and G. Agnew

Fig. 5. Covert channel bit error rate based on the packet loss ratio of the packets from
members of the covert set. Results are presented for the first scenario in Table 2, using
FRCC scheme.

at the receiver. The second error event is caused by loosing the transmitter’s
packet at the covert receiver. If this happens, the covert receiver continues on
incrementing its clock value while the transmitter resets its covert clock for the
next round of transmission. Hence, the transmitter and the receiver loose syn-
chronization and the covert channel becomes noisy.
There are several methods to reduce the effect of the aforementioned packet

loss events on the performance of the proposed scheme. First of all, in most
communication protocols, each packet is acknowledged by the actual receiver of
the packet where the Ack message contains the sequence number and the source
of the original packet. Thus, the receiver or the transmitter can learn about a
packet by detecting either the packet or the corresponding Ack message.
Channel coding [18] is an alternative approach to combat the mismatch in

the covert clocks of the transmitter and the receiver. In this way, the covert
transmitter encodes the original message (e.g., a binary sequence B) into a coded
message which is more resilient against channel errors. Then, the coded message
is modulated into covert messages based on the approach explained in section 3
to be transmitted over the covert channel using FRCC or ARCC schemes. In this
section, a rate 1/3 convolutional code with the generator matrix [47; 53; 75] and a
rate 1/4 convolutional code with the generator matrix [17; 13; 13; 15] are used in
order to analyze the effect of channel coding on the performance of the proposed
scheme. Due to the space limitation, the numerical results are presented for the
first scenario in Table 2 using FRCC scheme.
Figure 5 depicts the covert channel bit error rate (BER) based on the ratio of

the packet loss frommembers of the covert set. For each coding scheme, the graph
depicts two extreme scenarios from packet loss view point. (i) the transmitter

Behavioral Mimicry Covert Communication 149

Fig. 6. Covert channel bit error rate due to the loss of transmitter’s packets at the
receiver. Packets from members of the covert set are subjected to error with packet
loss rate 0 for dotted lines, 0.1 for solid lines, and 0.2 for dashed lines. Results are
presented for the first scenario in Table 2, using FRCC scheme.

and the receiver have the same chance of loosing a packet from members of
the covert set (i.e., equal error case). It is noted that the packet loss events for
the receiver and the transmitter are assumed to be independent. (ii) only one
of the receiver or the transmitter experiences packet loss from members of S
(i.e., single error case). It is easy to verify that picking either the receiver or the
transmitter in this case, does not change BER of the covert channel. In this way,
all other possible scenarios are covered as their corresponding BER is bounded by
the aforementioned extreme cases. The graph also illustrates that the channel
coding can effectively improve the robustness of the proposed scheme against
packet loss from members of the covert set. For instance, if both the receiver
and the transmitter experience 15% packet loss from members of the covert set
(i.e., equal error case), the BER of the covert channel drops from 0.1 (for the
uncoded scenario) down to 0.035 for the rate 1/3 channel code and even further
to 0.015 if the rate 1/4 code is used.
Figure 6 depicts the BER of the covert channel when the covert transmitter’s

traffic is also subject to error. Loosing the transmitter’s packet at the receiver
affects the synchronization between the two end points of the covert channel. It
is noted that the covert receiver can learn about lost packets and re-synchronize
itself with the transmitter when it gets a new packet from the transmitter (e.g.,
using the sequence number field of the new packet). However, the covert messages
that were transmitted between the last received transmitter’s packet and the new
packet from the covert transmitter would be lost.

150 S.A. Ahmadzadeh and G. Agnew

Fig. 7. Achievable rate of the proposed covert channel. Dashed lines show the extra
capacity of ARCC scheme.

Plots in Figure 6 are grouped based on the ratio of the packet loss from
members of the covert set. In all groups, it is assumed that the covert transmitter
and the covert receiver experience the same packet loss ratio from members of
the covert set (equal error case). Each group consists of three plots (one for
the uncoded scenario, and two for the rate 1/3 and the rate 1/4 convolutional
codes). Remarkably, if the receiver and the transmitter enjoy lossless channels
from members of the covert set, the selected channel codes are strong enough
to correct all errors caused by missing the transmitter’s packets at the receiver.
Hence, those plots are not reported in the graph.
By comparing the plots in Figure 5 and Figure 6, it can be observed that the

BER of the covert channel increases much faster with the error from members
of the covert set as compared to the error caused by loosing the transmitter’s
packet at the reviver. The flat plots of Figure 6 confirms this observation proving
that the dominant factor in the reliability of the proposed scheme is in fact the
packet loss from members of the covert set. This is due to the fact that the covert
receiver can learn about the exact position and the number of lost packets from
the covert transmitter (e.g., using the sequence number field of the transmitter
packets), and use this information in order to improve the performance of the
channel coding schemes that are being used in the system

5.3 Communication Rate

Figure 7 shows the achievable rate of the proposed scheme. The graph also
illustrates that the channel rate increases linearly with the capacity of the com-
munication channel. In fact, the covert channel is capable of achieving relatively
high covert rates without compromising the security of the channel. The graph
also depicts that it is possible to boost the capacity of the covert channel even
further using ARCC scheme.

Behavioral Mimicry Covert Communication 151

Fig. 8. Overt traffic communication rate of the system

Figure 8 depicts the overt communication rate of the transmitter and regular
users in the system. According to the discussion in Section 4, the parameters
of the proposed scheme are calculated based on the assumption that the covert
transmitter has the same transmission probability as other users in the system.
This assumption is crucial in order to prevent a system observer from tracking
the transmitter based on its overt traffic rate. Figure 8 confirms the validity
of this assumption as in all scenarios, the transmitter conveys the same overt
transmission rate than other nodes in the system.

6 Conclusion

In this paper the concept of behavioral mimicry covert communication was intro-
duced. In this way, it is possible to adopt a communication protocol and modify
it in such a way that gives the covert transmitter enough freedom to embed a
covert message into its overt traffic with minimum deviation from characteristics
of a regular user of the same protocol. The paper also presents a new covert chan-
nel which is based on mimicking the structural behavior of CSMA/CA algorithm
in the wireless environment.
The covert transmitter adopts CSMA/CA protocol so that the transmitter’s

contention window is controlled by a virtual clock called the covert clock. The
covert clock is linked to the channel activities of all or a subset of regular nodes
in the system using the broadcast nature of the wireless environment. These
activities are observed by the covert transmitter and the covert receiver in order
to synchronize their covert clocks and communicate through the covert channel.
One important feature of the proposed scheme is that its rate linearly increases
with the overt rate of the communication channel. Moreover, the covert trans-

152 S.A. Ahmadzadeh and G. Agnew

mitter and the covert receiver can maintain their overt channel rate like typical
users in the system.
The performance of the proposed covert communication scheme is analyzed

from stealthiness, reliability and communication capacity aspects showing that
the proposed scheme has similar long term (statistical) and short term (tem-
poral) characteristics as compared to legitimate traffic of the network. The nu-
merical results also verify that the proposed scheme achieves relatively high
communication rates with outstanding security and reliability scores.

References

1. Bhadra, S., Bodas, S., Shakkottai, S., Vishwanath, S.: Communication Through
Jamming Over a Slotted ALOHA Channel. IEEE Transactions on Information
Theory 54(11), 5257 (2008)

2. Bianchi, G., et al.: Performance analysis of the IEEE 802.11 distributed coordina-
tion function. IEEE Journal on Selected Areas in Communications 18(3), 535–547
(2000)

3. Butti, L., Veysset, F.: Wi-Fi Advanced Stealth. In: Proc. Black Hat, US (August
2006)

4. Cabuk, S., Brodley, C., Shields, C.: IP covert timing channels: design and detection.
In: Proceedings of the 11th ACM Conference on Computer and Communications
Security, pp. 178–187. ACM (2004)

5. Calhoun Jr., T., Cao, X., Li, Y., Beyah, R.: An 802.11 MAC layer covert channel.
Wireless Communications and Mobile Computing

6. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based
approach. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 307–316. ACM (2007)

7. Girling, C.: Covert channels in LAN’s. IEEE Transactions on Software Engineer-
ing 13(2), 292–296 (1987)

8. Gray III, J.: Countermeasures and tradeoffs for a class of covert timing channel.
Hong Kong University of Science and Technology Technical report (1994)

9. Handel, T., Sandford, M.: Hiding Data in the OSI network Model. In: Anderson,
R. (ed.) IH 1996. LNCS, vol. 1174, pp. 23–38. Springer, Heidelberg (1996)

10. Holloway, R.: Covert DCF - A DCF Based Covert Timing Channe. 802.11 Net-
works. Master’s thesis, Georgia State University, Atlanta, Georgia (2010)

11. IEEE: IEEE Standard for Wireless LANMedium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications (1997)

12. Kemmerer, R.: Shared resource matrix methodology: An approach to identi-
fying storage and timing channels. ACM Transactions on Computer Systems
(TOCS) 1(3), 277 (1983)

13. Lampson, B.: A note on the confinement problem. Communications of the
ACM 16(10), 613–615 (1973)

14. Li, S., Ephremides, A.: A Network Layer Covert Channel in Adhoc Wireless Net-
works. In: 1st IEEE Conference on Sensor and Ad Hoc Communications and Net-
works (SECON), pp. 88–96 (2004)

15. Li, S., Ephremides, A.: A covert channel in MAC protocols based on splitting
algorithms. In: 2005 IEEE Wireless Communications and Networking Conference,
pp. 1168–1173 (2005)

Behavioral Mimicry Covert Communication 153

16. Liu, Y., Ghosal, D., Armknecht, F., Sadeghi, A.-R., Schulz, S., Katzenbeisser, S.:
Hide and Seek in Time — Robust Covert Timing Channels. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 120–135. Springer, Heidelberg (2009)

17. Papoulis, A., Pillai, S., Unnikrishna, S.: Probability, random variables, and stochas-
tic processes. McGraw-Hill, New York (2002)

18. Proakis, J., Salehi, M.: Digital communications. McGraw-Hill, New York (2001)
19. Szczypiorski, K.: HICCUPS: Hidden communication system for corrupted net-

works. In: International Multi-Conference on Advanced Computer Systems, pp.
31–40 (2003)

20. Wang, Z., Deng, J., Lee, R., Princeton, P.: Mutual anonymous communications:
a new covert channel based on splitting tree MAC. In: 26th IEEE International
Conference on Computer Communications, IEEE INFOCOM 2007, pp. 2531–2535
(2007)

Defense against Spectrum Sensing Data

Falsification Attacks in Cognitive Radio
Networks

Chowdhury Sayeed Hyder, Brendan Grebur, and Li Xiao

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48823, USA
{hydercho,greburbr,lxiao}@cse.msu.edu

Abstract. IEEE 802.22 is the first standard based on the concept of
cognitive radio. It recommends collaborative spectrum sensing to avoid
the unreliability of individual spectrum sensing while detecting primary
user signals. However, it opens an opportunity for attackers to exploit
the decision making process by sending false reports. In this paper, we
address security issues regarding distributed node sensing in the 802.22
standard and discuss how attackers can modify or manipulate their sens-
ing result independently or collaboratively. This problem is commonly
known as spectrum sensing data falsification (SSDF) attack or Byzantine
attack. To counter the different attacking strategies, we propose a repu-
tation based clustering algorithm that does not require prior knowledge
of attacker distribution or complete identification of malicious users. We
compare the performance of our algorithm against existing approaches
across a wide range of attacking scenarios. Our proposed algorithm dis-
plays a significantly reduced error rate in decision making compared to
current methods. It also identifies a large portion of the attacking nodes
and greatly minimizes the false detection rate of honest nodes.

Keywords: Cognitive Radio Network, SSDF attack, 802.22.

1 Introduction

As wireless devices are dominating the methods in which people communicate
with one another, the necessary resources to support these conveniences are
being ever harder to obtain. In contrast, licensed bandwidth spectrums often go
underutilized as demands for those services shift temporally or spatially. Static
spectrum allocation cannot efficiently support the demand of such pervasive
wireless devices. To combat this salient impedance, the concept of Cognitive
Radio Networks (CRN) has been proposed [9].
In order to maximize radio spectrum usage, CRNs utilize an opportunistic

approach to allocate frequencies. Under the scheme, two types of users exist:
primary users (PU) and secondary users (SU). Individuals who have obtained a
license to broadcast in a fixed spectrum range are classified as primary users. On

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 154–171, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Defense against SSDF Attacks in CRN 155

the other hand, secondary users attempt to “fill in the gaps” by utilizing unused
spectrums. The users complement each other allowing maximal utilization of a
specified spectrum.
Naturally, complications arise as secondary users must release a spectrum

when the primary user for that channel starts to transmit. Several research
groups are working to develop standards to meet these requirements. 802.22, the
first CR based network standard, defines a centralized, single hop, point to multi-
point communication standard for wireless regional area network (WRAN). This
standard defines the implementation of opportunistic spectrum sharing (OSS) by
outlining how/when wireless devices are able to utilize temporarily idle bands
in a licensed radio spectrum. The proposal also defines the cellular like com-
munication interface between a base station (BS) and secondary users called
Consumer Premise Equipments (CPE). The BS is responsible for controlling the
spectrum usage and channel assignment to CPEs. All CPEs in a cell must peri-
odically monitor primary user signals and leverage the distributed sensing power
of CPEs through continual spectrum reports obtained from secondary users.
To coordinate the process, a centralized BS collects sensing information from

the secondary users residing in the cell. Each user submits a hypothesis regard-
ing whether they suspect the primary user is transmitting. As radio waves are
affected by physical barriers or environmental conditions, the detection accuracy
of any node within sensing range of the PU’s signal varies from time to time. Mal-
functions associated with the sensing equipment may also influence the node’s
observed measurements. From the hypotheses supplied by the secondary users,
the BS must decide on the actual state of the associated spectrum. Once a de-
cision is made, the base station can inform SUs and revoke permission for those
users currently transmitting on that spectrum.
Due to its unique characteristics, CRNs face new security threats in addition

to the common existing security challenges in wireless network. One typical type
of attack is the Spectrum Sensing Data Falsification (SSDF) attack or Byzantine
attack. During such an assault, the malicious user compromises one or more of
the secondary users and may begin sending modified sensing results to the BS.
In this way, an attacker tries to influence the BS into producing a wrong decision
about the channel status. Compromised nodes may work independently or may
collaborate to reduce spectrum utilization and degrade overall performance of
the network.
Constructing a decision-making strategy that mitigates the impact of both

types of attackers will prove invaluable as the reach of CRNs expands into more
places. By strengthening the base station against malicious or malfunctioning
users, the interference produced from CRNs will be minimized, potentially expe-
diting the implementation of such network alternatives. Ultimately, both users
and businesses can reap the benefits of efficient radio spectrum usage through
CRNs.
There are very limited research works that address SSDF attack and related

security problems. Existing approaches like [1], [8], [10] mainly consider indepen-
dent malicious attack. However, these approaches either require prior informa-

156 C.S. Hyder, B. Grebur, and L. Xiao

tion of attackers (e.g. number of attackers [10], attackers’ distribution, attack-
ing strategy [8] etc.) or depend on careful threshold selection [1]. For instance,
algorithm in [10] does not work in presence of multiple attackers. Similarly,
performance of the algorithm proposed in [1] degrades significantly if incorrect
threshold is chosen. To our best knowledge, we find only one paper [2] that
handles both independent and collaborative attacks. This approach uses a rep-
utation based method to limit the error rate in deciding channel status and in
identifying attackers. Although its identification rate of attackers is high, it also
misdetects a large number of honest users as attackers. Additionally, this ap-
proach fails to defend against collaborative attack and error rate (i.e. number of
incorrect decision) increases almost linearly with number of attackers.
On the contrary, we propose an adaptive reputation based clustering algorithm

to defend against both independent and collaborative SSDF attack that does not
require any prior information about number of attackers or attacking strategies.
The whole process goes through a sequence of steps in each time step. To start
with, the algorithm clusters the nodes based on the sensing history and initial
reputation of nodes. Each cluster takes its decision about the channel status ac-
cording to the relative closeness of nodes from the median of that cluster. Finally,
channel status is decided on majority of clusters’ decision. At the end of the time
step, the final decision is propagated back to the clusters and then to the individual
nodes. Each node is assigned a share (positive or negative) of the final decision and
the reputation of each node is adjusted based on its participation in the decision
making process. The adjusted reputation of nodes is used to adjust the number of
clusters for the next step. In this way, the algorithm works through several steps
in forward and backward direction in each time step and recursively updates the
clusters and the reputation of nodes. We compare performance of our algorithm
with that of the algorithm proposed in [2] under different attacking scenarios. Our
algorithm handles SSDF attack significantly better than the one in [2] and mini-
mizes error in deciding channel status. Our algorithm also identifies a significant
number of attackers while keeping the misdetection rate to a minimum level.
The next section explores various approaches currently proposed and specifi-

cally identifies their limitations in the problem domain. Section 3 formally defines
the problem area including the setup used to measure each method. Section 4
describes a high-level overview of our proposed method mainly focusing on de-
sign choices. Section 5 covers a detailed description of the algorithm. Section 6
compares the results with current methods and Section 7 concludes with contri-
butions and future work.

2 Related Work

Until recently, security issues in CRN have not been addressed well in research
works. However, in this section, we present existing solutions to combat against
SSDF attack into three categories - reputation-based, neighborhood distance
based, and artificial intelligence approaches.

Defense against SSDF Attacks in CRN 157

2.1 Reputation Based Approaches

Wang et al. [8] propose an onion peeling approach based on bayesian statistics
to assign suspicion levels for all nodes in the network. If the suspicion level of
any node exceeds a certain threshold, it is marked as malicious and removed
from decision making. They tested their heuristic based approach for false alarm
attacks, miss detection attacks, and combinations thereof. However, they assume
that base station has prior knowledge about the activities of attackers which is
not very common. Without such information, the thresholds are approximated,
resulting in significant false detections of attackers.
Chen et al. [3] propose a hybrid method named weighted sequential probability

ratio test (WSPRT) that combines reputation and a sequential probability ratio
test to identify malicious or faulty units. This method outperforms standard
fusion center decision making strategies, including OR, AND, and SPRT during
simulations in both minimizing missed detections and maximizing the correct
sensing ratio. However, WSPRT was only tested against attackers utilizing an
always-false or always-free response. Such methods represent an unsophisticated
attack strategy that is not likely to reflect encountered attackers. The method
also requires an additional number of secondary user sensing reports to generate
the final fusion center hypothesis, which can impede the overall performance of
the system and potentially cause primary user interference.
Recently, Rawat et. al. in [2] explores independent and collaborative SSDF

attacks. They determined optimal attacking strategies for collaborating attack-
ers where the fusion center cannot possibly discriminate between honest and
attacking CRs. A mathematically rigorous analysis of detection performance is
carried out using the Kullback-Leibler divergence (KLD). According to their
result, in presence of 50% independent attackers, fusion center cannot differen-
tiate the difference between the honest users and the attackers. However, for
collaborative attack, this ratio reduces to 35%. Furthermore, they proposed a
simple reputation-based method to identify attackers. A major weakness of the
method stems from its massive misdetection of attackers during the identification
stage. The proposed method uses a relatively small sensing window for analyzing
reporting patterns to identify attackers. Under such limited time spans, tempo-
rary sensing errors of honest users cause their sensing signatures to deviate from
the consensus. As more honest users are removed from the voting process, the
method leaves the responsibility of final decision making up to only a few users.
In such scenarios, the system is left in an extremely fragile state. Any attack on
the remaining users causes the entire cell to be compromised. In addition, the
method’s probability of error increases dramatically when as little as 35% of the
nodes are collaborating in attacks.

2.2 Data Mining Approaches

In [1], a new approach based on K-neighborhood distance algorithm is presented
to detect independent malicious users. The approach does not need any prior
knowledge of attacker distribution and exposes attackers across multiple sensing

158 C.S. Hyder, B. Grebur, and L. Xiao

rounds. However, when attackers collaborate and have secondary user data, they
can successfully evade detection.
Further work has been done by [6] in establishing a more robust fusion cen-

ter decision algorithm. Specifically, particular pieces of sensing information are
used to validate the primary user hypothesis presented by each secondary user.
Information regarding PU positioning and path loss to the secondary user can
corroborate the hypothesis. The compiled set of sensory reports are analyzed us-
ing a biweight estimate and median absolute deviation to calculate magnitudes,
which are then compared against thresholds to identify the attackers.
The proposed method dramatically increases misdetections when using incor-

rect static thresholds. Inaccurately identified secondary users could be excluded
from the decision making process, resulting in a PU signal being ignored. Ulti-
mately, the correct setting of the detection thresholds can only be achieved with
prior knowledge of attacker distribution. Again, the information is unlikely to
be available.

2.3 Artificial Intelligence Approaches

Clancy et al. [4] take a practical look into devising security for the physical
transport layer of CRNs, focusing on CRs with artificial intelligence. When im-
plementing such schemes, the CRs are highly susceptible to short-term and long-
term manipulations caused by corrupted sensory data, altered node statistics,
and inaccurate beliefs regarding the current environment. The paper addresses a
series of steps to combat these sensitive areas by assuming a noisy environment,
implementing levels of common sense, and programmatically resetting learned
values to avoid extended corruption from attackers. They offer up the use of
swarm behavior in determining a global decision on whether a sensed signal was
actually generated by a primary user, along with a trust-based scheme. The
proposals on how these CRs should operate in the field are presented without
details for verification. They also did not address how to incorporate this new
information into the current 802.22 system.
The current state of research holds very few proposals that work on realistic

knowledge of the operating environment. Approximating these values fundamen-
tally skews the proposed approaches’ effectiveness. Furthermore, misidentifica-
tion of attackers could also severely impact the effectiveness of strategies. Such
considerations must be respected to develop a truly robust scheme. Ultimately,
the approaches will need to face real attacks while producing acceptable error
rates. In this paper, we explore strategies that exhibit these characteristics with-
out being hindered by any assumptions of the operating environment or attacker
strategy.

3 System Model

In this section, we briefly describe the topology of the CR network. We explain
how the BS operates and takes decision regarding channel status from collective

Defense against SSDF Attacks in CRN 159

sensing reports. We also formulate different attacking models and analyze how
they exploit the decision mechanism of BS.
The BS is the central authority to coordinate and control the operation of

all secondary nodes in its cell. BS instructs SUs to sense a channel according
to the standard. Each node uses the same spectrum sensing technique for PU
detection. Spectrum sensing itself is an ongoing research topic and is out of
the scope of this paper. For simplicity, we assume that secondary users use the
threshold based energy detection technique for spectrum sensing and all nodes
use the same threshold provided by the BS. All nodes prepare their reports based
on sensing and send their sensing results. However, different sensing techniques
offer different levels of detection accuracy and may affect the sensing decision.
Later in the results section, we perform simulation with varying sensing accuracy.
BS then decides the channel status considering the sensing results from all the
nodes. We also assume that users have no knowledge about the actual channel
status.
We consider two types of users in the network - honest users and dishonest

users. In each time slot, honest SUs sense the channel, compare the sensed energy
with the threshold, and decide independently about the channel status. Finally,
they report their sensed status to the BS without any alteration.
On the other hand, the dishonest users alter their sensed results and send it

to BS. They can be selfish or malicious based on their intention. We commonly
term them as ‘attackers’. A selfish attacker has a different perspective from a
malicious one. From a selfish attacker’s point of view, the goal is to make the
base station take a wrong decision about the idle channel so that it may utilize
the spectrum opportunity. As a result, spectrum utilization will be significantly
reduced. On the contrary, a malicious attacker’s goal is not only to minimize the
spectrum utilization, but also degrade the network performance. The latter one
is more harmful than the former since it will also increase the interference with
primary users.
Base stations usually take decisions based on an OR rule (if any of the nodes

sense channel busy, BS decides a busy channel). This approach is very conser-
vative in the sense that one single attacker or even a malfunctioning node can
reduce the spectrum utilization. Another common approach is to decide accord-
ing to majority voting. This resolves the spectrum underutilization problem but
significantly increases the misdetection rate. Also, it becomes vulnerable when
attackers collaboratively decide their attacking strategy.

3.1 Honest User Model

We assume that even an honest user cannot detect PU presence 100% accurately.
We define false alarm as the probability of sensing presence of PU when it is
actually not transmitting and we define misdetection as the probability of not
sensing PU when it is operating. Let us assume that the probability of false
alarm and misdetection rate of a user are Pfa and Pmd respectively.

Pfa = P (ui = 1|H0), Pmd = P (ui = 0|H1)

160 C.S. Hyder, B. Grebur, and L. Xiao

where H0 and H1 denote the channel idle and busy status and ui represents the
sensed result by user i.
As explained, honest users do not change their sensing results. Let us assume

that vi represents the report sent to BS by user i.

P (vi = 1|ui = 1) = 1, P (vi = 0|ui = 1) = 0

P (vi = 0|ui = 0) = 1, P (vi = 1|ui = 0) = 0

Accordingly, we can calculate the detection probability of an honest user using
Equation 1.

Pd = P (vi = 0|H0)P (H0) + P (vi = 1|H1)P (H1)

= (1− Pfa)PI + (1− Pmd)PB (1)

Here, Pd denotes the probability of accurate detection of channel status by any
honest user and PI and PB denote the idle and busy rate of the channel respec-
tively.

3.2 Attack Model

We assume that there exist at most M (α = M/N ≤ 50%) attackers and the
remaining users are honest, completely unaware of the presence of attackers.
We do not consider the number of attackers more than 50% because it is not
productive to study a network where a majority of nodes are attackers. We
consider attackers devise their plan independently or collaboratively.

Independent Attack. Each attacker node changes its sensing result with prob-
ability Pmal. As a result, the detection probability of an attacker changes.

Pm
d = [(1− Pmal)(1 − Pfa) + PmalPfa]PI

+ [(1− Pmal)(1 − Pmd) + PmalPmd]PB (2)

Here, Pm
d denotes the detection probability of an attacker while working in-

dependently. Similarly, we can find the false alarm probability of an attacker
(Pm

fa).

Collaborative Attack. In case of a collaborative SSDF attack, attackers ex-
change their sensing information and decide their response collaboratively. We
study different collaboration strategies to see their impacts on decision making
of BS. Let us assume that Qm

d and Qm
fa denote the detection probability and

false alarm probability of attackers. To start with, we follow the same collabora-
tion strategy used in [2]. Attackers follow ‘L out of M’ rule to decide their final
decision where ‘L’ is determined according to [2]. In this case, Qm

d and Qm
fa will

be

Defense against SSDF Attacks in CRN 161

Qm
d =

M∑
i=L

(
M

i

)
(Pm

d)
i(1− Pm

d)
M−i

Qm
fa =

M∑
i=L

(
M

i

)
(Pm

fa)
i(1 − Pm

fa)
M−i (3)

Here, L is defined in [2]

L = min(M,
⌈ M

1 + β

⌉
) where β =

ln
Pfa

Pd

ln 1−Pd

1−Pfa

The second attacking strategy we consider here is termed as ‘Going Against MA-
jority (GAMA)’. Each attacker shares its true sensing result and in collaboration
with other attackers decides against the majority sensing result with a certain
probability. For example, if 2 attackers sense the channel idle and 1 user senses
the channel busy, all 3 attackers report the busy status of the channel to the
BS. The idea behind this attacking strategy is that sensing results of majority
nodes may reflect the actual channel status. So, when the attackers collaborate,
they change the sensing result of the majority and go against that. It may help
them manipulate BS taking a wrong decision. In this case, L = M/2+1 and the
collaborative detection probability will be

Qm
d =

M∑
i=L

(
M

i

)
(1− Pd)

i(Pd)
M−i

Qm
fa =

M∑
i=L

(
M

i

)
(1− Pfa)

i(Pfa)
M−i (4)

Third, we also investigate the impact of collaboration among subgroups. In
this approach, we assume that attackers exist in small groups, and each group
changes their sensing result according to the first approach. Finally, one group
is chosen randomly and all the attackers in that group report the same sens-
ing result. This approach tries to attack in small groups without exposing all
collaborators at a time.

4 Algorithm Design - Attackers vs BS

In this section, we discuss the viewpoints of attackers and BS and explain the
defense mechanism taken by BS to defend against different attacking strategies.
As stated in Section 3, attackers’ detection rate varies with their strategy and is
different from that of honest users. So, if the attackers can successfully manip-
ulate the decision making process, detection rate will be significantly low, error
rate in decision making will be high and spectrum utilization will be degraded.
From the attackers’ point of view, the more error they make in decision mak-

ing, the more successful they are. So, the most common attacking strategy is to

162 C.S. Hyder, B. Grebur, and L. Xiao

falsify about channel status in every time step and send it to BS. In collaborative
attack, since attackers share their information, they may have better idea about
the actual channel status and devise their attacking plan in a more effective way.
The collaboration makes it easier to manipulate the BS decision mechanism than
independent attack and increases their success rate. However, if the malicious
users try to strengthen their attacks and continuously send false channel status,
the pattern of their sensing report will be almost the same. In this way, their
sensing history will be significantly different from honest users and will be easily
identifiable. So, the best attacking strategy is to attack occasionally or try to
behave like an honest user otherwise. In summary, attackers’ success depends on
attacking frequency (i.e. when to attack) and how long they can attack without
being identified. Together, all attackers can follow the same plan and can make
the decision making process more complicated.

Fig. 1. Reputation Distribution

Now, from BS’s point of view, its decision mechanism should be robust and
capable of defending against any attacking strategy adopted by any number of
malicious users. However, BS does not have any exact information about the
attacking strategies or number of attackers. The only information available to
BS is the sensing reports sent by users. So, the defense mechanism should be able
to nullify (or at least reduce) the impact of collaboration of attackers, identify
them and quarantine them from the decision process.
Accordingly, we design an adaptive reputation based clustering (ARC) algo-

rithm to defend against both types of SSDF attack. The algorithm works against
the intention and motivation of malicious users and tries to nullify their influ-
ence on the final decision. To reduce the impact of attackers, we create clusters
so that nodes with similar sensing history will be in the same cluster. Then,
each cluster has only one vote to cast and channel status is decided based on
majority voting of clusters. The idea behind this defense mechanism is that if
the attackers attack frequently, attackers and honest nodes will be in separate

Defense against SSDF Attacks in CRN 163

clusters due to their different sensing reports. Also, collaboration of attackers
will not help to increase the error rate since each cluster has only one vote.
The key to attackers’ success is to avoid being in the same cluster and take

control of the majority of the clusters. To handle these issues, we introduce dis-
tance weighted voting in a cluster and a feedback component in each node’s
reputation. Voting power of each node in the cluster is inversely proportional to
its distance from the median of that cluster. Similarly, each node gets reputa-
tion inversely proportional to its distance from the median of that cluster. By
distributing the reputation based on distance from the median, nodes are only
impacted relative to their ‘confidence’ of that group (see Figure 1). Furthermore,
from the next round, nodes’ modified reputation is also used to cluster nodes in
addition to sensing history. In this way, even if an attacker and an honest user
incorrectly fall in the same cluster, attackers cannot establish their decision. Fur-
thermore, as time goes, the distance between an honest user and an attacker will
be amplified due to the joint consideration of reputation and sensing history.

5 Adaptive Reputation Based Clustering (ARC)
Algorithm

In this section, we explain our adaptive reputation based clustering (ARC) al-
gorithm in detail. The algorithm goes through a sequence of phases to reach
the final decision. The phase sequences are illustrated in Figure 2. In the first
phase, the BS collects the sensing result from all the nodes. BS maintains sens-
ing history of all nodes for last d time steps. In the next phase, partitioning
around medoids (PAM) algorithm is applied on the sensing reports to create k
equal sized virtual clusters. In the third phase, each cluster makes its decision
based on the response of each individual node and their relative distance from
the median of that cluster. Then the final decision is made based on majority
voting of clusters. The final result is then used to adjust the number of clusters
and to update the reputation of all nodes.
One of the key features in our algorithm is how we reach the final decision and

use that decision recursively to update the clustering. The information flow of
our algorithm from one step to another in each time step is depicted in Figure 3.
The BS considers the most recent d sensing reports of each node in addition to
their reputation during cluster formation. To enable this recursive approach, we

Fig. 2. Different Phases of the Algorithm

164 C.S. Hyder, B. Grebur, and L. Xiao

add an extra dimension to the sensing report of all nodes. This extra dimension
represents the current reputation of that node (see Figure 3). So, each node
provides a d+1 dimensional vector (X1 = [r1,1, x1,1, ... xd,1]) for cluster formation
where the first dimension represents reputation and the remaining ones represent
sensing report of last d time steps. Initially, all nodes are assigned the same
reputation value.
Each cluster then finalizes its decision about channel status in a unique way.

Only last round sensing report of each node in the cluster is considered. However,
each response is weighted with an impact factor that is inversely proportional
to the distance between the node and the median of that cluster. The impact
factor of a node j at time t denoted by Ij(t) is defined as

Ij(t) =
1

dt(j,mi)

wheremi is the median of the cluster i and dt(j,mi) denotes the distance between
node j and median mi of the same cluster at time t. Nodes closer to median have
higher influence in decision making than the far ones. Accordingly, the cluster
voting vi(t) at time t is determined by Equation 5.

vi(t) =

∑N/k
j=1 Ij(t) ∗ yj(t)∑N/k

j=1 Ij(t)
(5)

Here, yj(t) is the sensing report of node j at time t which takes value from {0,1}.
After each cluster finalizes its decision, the BS makes the final decision v(t) on

the basis of majority voting among the valid clusters. If the reputation score of
a cluster goes below a threshold, they cannot vote and all the nodes are marked
as attackers. Therefore, v(t) =
2 ∗

∑k
i=1 vi(t)/k�.

Fig. 3. Cluster Voting and Reputation Propagation

Defense against SSDF Attacks in CRN 165

At the end of every time step, the base station updates number of clusters
and reputation of all nodes according to the algorithm. The final result is propa-
gated back to the clusters, and then to the individual nodes. If the final decision
matches with the cluster decision, the cluster gets a positive feedback, and it
gets negative feedback otherwise. Similarly, if a node’s decision matches with its
cluster decision, it gets positive feedback while it receives negative feedback for
a mismatch. Each node’s reputation is then adjusted according to Equation 6.

rj = rj +Π(vi(t), v(t)) ∗
∑N/k

j=1 Π(vi(t), yj(t)) ∗ Ij(t)∑N/k
j=1 Ij(t)

(6)

where rj denotes the reputation of node jandΠ(a, b) is an indicator function
that returns 1 if a equals b, it returns -1 otherwise.
The final result is also used to adjust the number of clusters. Initially, we start

with 5 clusters with 5 random medoids. After each step, if all clusters pass the
validation (i.e. reputation score exceeds threshold ε), we increment the number
of clusters and continue the same process. Otherwise, we remove all the nodes
in the cluster that fails the test.

6 Results

In this section we discuss results from the implementation of our proposed
method, specifically comparing its effectiveness against a previously proposed
method in [2]. We compare the two across both independent and collaborative
attacks, as well as various probabilities of attack under a range of sensing con-
ditions.
For each test, the methods are run over the same number of time steps, in

this case 80 frames. For each time frame, the methods must produce a final

Fig. 4. QE , QD, QF with varying number of attackers (Collaborative SSDF Attack)

166 C.S. Hyder, B. Grebur, and L. Xiao

hypothesis, which is compared against actual transmission state of the primary
user to determine the method’s probability of error (QE). Rates for the correct
detection of attacking nodes (QD) and the incorrect detection of honest users
as attackers (QF) are also reported at the end of the test. Each test is then
repeated 10 times with an average of the values displayed in the graphs. A
test consists of randomly generated reports for each secondary user, adhering to
labeled probability distributions. For validation test, we consider ε = 0.5.

6.1 Collaborative Attack

First, we tested each method against a collaborative byzantine attack (see Figure
4), where the number of malicious users range from 10 to 50 out of 100 total
secondary users. The byzantine attackers utilize the decision-making algorithm
defined in [2]. Malicious users attack with Pmal = 1. Sensing probabilities for
correctly detecting a signal and falsely detecting a signal were set to Pd = 0.9
and Pfa = 0.1 respectively.

Fig. 5. QE, QD, QF with varying attacking probability (Collaborative SSDF Attack)

Our proposed method outperforms consistently with respect to (QE) showing
a markedly decreased error rate until roughly 50% of the population becomes
attackers. Once the population contains a majority of malicious users, it is im-
possible for any sensing strategy to sustain an error rate under 50%. The base
stations are incapable of distinguishing between honest users and attackers. They
can only resort to a blind guess for each sensing round. The Rawat method shows
a high QD initially but quickly diminishes after 20% of nodes are attackers. At
approximately the same attacker concentration, our method exceeds and main-
tains a marked increase in identifying attackers. Conversely, the Rawat method
begins with a significant false detection rate (QF) while our method minimizes
this rate across the entire range of attackers. Maintaining a low misdetection rate

Defense against SSDF Attacks in CRN 167

Fig. 6. QE, QD, QF with varying detection probability (Collaborative SSDF Attack)

Fig. 7. QE, QD, QF with varying detection probability (Subgroup SSDF Attack)

allows our method to maximize honest user reports and mitigate the impact of
attackers even under heavy attacks. A second set of measurements observed the
impact of collaborating malicious users when varying their probability of attack.
Malicious users can utilize this technique to escape detection from high dimen-
sional clustering methods. In Figure 5, attackers produce on average less than
20% error rates while the Rawat method sustains significant errors. Regard-
less of attacking rate, our method consistently identifies 50% of the attackers.
The Rawat method exhibits an unusually high attacker misdetection rate, which
likely leads to the high error rate.
Depending on environmental conditions, the achievable sensing rates of pri-

mary user signals can vary dramatically. The next test looks at consequences of

168 C.S. Hyder, B. Grebur, and L. Xiao

Fig. 8. QE, QD, QF with varying detection probability (GAMA SSDF Attack)

variable sensor accuracy (see Figure 6). Here, 35 collaborating malicious users
attack during each sensing frame, and we can see the impact these sensing condi-
tions have on the overall effectiveness of a byzantine attack. Both methods begin
with relatively high error rates, as the sensing reports of honest users resemble
that of attackers due to the inaccurate sensor readings. Once sensing errors fall
below 65%, our proposed method shows a linear decrease in the Hypothesis error
rate. The Rawat method takes significantly longer, approximately 80% detection
rates, before error rates begin to decline.
We also test our algorithm in case of subgroup collaborative attack (see Figure

7). As the number of attacker increases, QE increases slightly in our algorithm
while QE reaches almost 40% in the reputation method. As expected, both their
true detection and false detection rate is high. On the other hand, QD is about
65% and QF is almost negligible in our algorithm.
We find interesting results for attackers with GAMA strategy. In case of our

algorithm, QE is 0 and only increases when the number of attackers exceeds 37.
On the other hand, QE increases almost linearly with the number of attackers
in reputation based method. We get similar results in true and false detection
rate. The results are plotted in Figure 8.

6.2 Independent Attack

In the next step, we compare the performance of our algorithm with reputation
based scheme in [2] for independent SSDF attacks. In this attack, attackers do
not collaborate to exchange their reports. Each attacker works independently to
maximize its goal. Figure 9 shows the error rate of two algorithms with varying
number of attackers. We keep the attacking probability Pmal = 1. Also, proba-
bilities for true and false detection of a signal are set to Pd = 0.9 and Pfa = 0.1.

Defense against SSDF Attacks in CRN 169

Fig. 9. QE, QD, QF with varying number of attackers (Independent SSDF Attack)

Fig. 10. QE, QD, QF with varying attacking probability (Independent SSDF Attack)

Our algorithm performs better up to 45 attackers and then slightly degrades its
performance over their algorithm. On the other hand, our algorithm performs
moderately to detect malicious attackers while their algorithm consistently iden-
tifies attackers with high precision. However, their algorithm eliminates a large
number of honest users incorrectly. Figure 9 shows that about 40% honest users
are miss identified as attacker. On the other hand, false detection rate of our
algorithm is almost negligible. Although the reputation based algorithm per-
forms better in detecting attacker than our algorithm, they misidentified a large
number of honest users as attackers making their algorithm less effective.
Similarly, we run the simulation for independent SSDF attacks with vary-

ing attacking probability. We vary the attacking probability from 0.5 to 1 and

170 C.S. Hyder, B. Grebur, and L. Xiao

Fig. 11. QE, QD, QF with varying detection probability (Independent SSDF Attack)

plot QE , QE , and QF in 10 for our algorithm and reputation based algorithm
proposed in [2]. Again, our algorithm performs better in decision making (see
Figure 10). Error rate of our algorithm is almost negligible while their algorithm
makes approximately 20% incorrect decisions about the channel status. The true
attacker detection rate is almost the same for both algorithms. However, their
algorithm constantly eliminates 60% of honest nodes as attackers for any attack-
ing probability ranging between 0.5 and 1.0. On the other hand, our algorithm
performs significantly better and keeps a false detection rate close to zero.
Next, we vary the detection probability of nodes from 0.5 to 1.0 and plot

QE , QD and QF in Figure 11 for our algorithm and reputation based algorithm
proposed in [2]. As usual, the error rate of our algorithm outperforms their
algorithm. Also, our algorithm performs better in terms of misidentification of
attackers. However, their algorithm identifies almost all attackers irrespective of
the detection probability. On the other hand, our algorithm gradually increases
the true detection rate with the increase of detection probability.

7 Conclusion

In this paper, we discussed one of the major security problems afflicting CRNs
and proposed a reputation based clustering algorithm to defend against these
attacks. We use reputation of nodes in addition to their sensing history to form
clusters and then adjust reputation based on the cluster output. This recursive
approach is tested in the presence of independent and collaborative spectrum
sensing data falsification attacks. We compared the performance of our algo-
rithm with existing approaches. With respect to current approaches, our algo-
rithm significantly reduces the error rate in the final decision making process,
thus increasing spectrum utilization. The false detection rate by our algorithm
is almost negligible, while true attacker detection rate performs reasonably well.

Defense against SSDF Attacks in CRN 171

However, the initial number of clusters plays an important role in overall perfor-
mance of the algorithm. Also, it will be interesting to analyze the performance of
the algorithm if attackers can overhear the honest users and decide accordingly.
We will address these issues in future.

References

1. Li, H., Han, Z.: Catching Attackers for Collaborative Spectrum Sensing in Cogni-
tive Radio Systems: An Abnormality Detection Approach. In: IEEE Symposium
on New Frontiers in Dynamic Spectrum, pp. 1–12 (2010)

2. Rawat, A.S., Anand, P., Chen, H., Varshney, P.K.: Collaborative Spectrum Sensing
in the Presence of Byzantine Attacks in Cognitive Radio Networks. IEEE Trans-
actions on Signal Processing 59(2), 774–786 (2011)

3. Chen, R., Park, J.-M., Bian, K.: Robust Distributed Spectrum Sensing in Cognitive
Radio Networks. In: INFOCOM: The 27th Conference on Computer Communica-
tions, pp. 1876–1884. IEEE (2008)

4. Clancy, T.C., Goergen, N.: Security in Cognitive Radio Networks: Threats and
Mitigation. In: Cognitive Radio Oriented Wireless Networks and Communications
(CrownCom), pp. 1–8 (2008)

5. Bian, K., Park, J.-M.J.: Security vulnerabilities in IEEE 802.22. In: Proceedings of
the 4th Annual International Conference on Wireless Internet, WICON 2008, pp.
9:1–9:9 (2008)

6. Kaligineedi, P., Khabbazian, M., Bhargava, V.K.: Malicious User Detection in
a Cognitive Radio Cooperative Sensing System. IEEE Transactions on Wireless
Communications 9, 2488–2497 (2010)

7. Chen, R., Park, J.-M., Hou, Y.T., Reed, J.H.: Toward secure distributed spectrum
sensing in cognitive radio networks. IEEE Communications Magazine 46, 50–55
(2008)

8. Wang, W., Li, H., Sun, Y., Han, Z.: CatchIt: Detect Malicious Nodes in Collabora-
tive Spectrum Sensing. In: Global Telecommunications Conference, GLOBECOM
2009, pp. 1–6. IEEE (2009)

9. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: A survey on spectrum man-
agement in cognitive radio networks. IEEE Communications Magazine 46, 40–48
(2008)

10. Wang, W., Li, H., Sun, Y., Han, Z.: Attack-proof collaborative spectrum sensing
in cognitive radio networks. In: 43rd Annual Conference on Information Sciences
and Systems (March 2009)

On Detection of Erratic Arguments

Jin Han, Qiang Yan, Robert H. Deng, and Debin Gao

Singapore Management University, Singapore
{jin.han.2007,qiang.yan.2008,robertdeng,dbgao}@smu.edu.sg

Abstract. Due to the erratic nature, the value of a function argu-
ment in one normal program execution could become illegal in another
normal execution context. Attacks utilizing such erratic arguments are
able to evade detections as fine-grained context information is unavail-
able in many existing detection schemes. In order to obtain such fine-
grained context information, a precise model on the internal program
states has to be built, which is impractical especially monitoring a closed
source program alone. In this paper, we propose an intrusion detection
scheme which builds on two diverse programs providing semantically-
close functionality. Our model learns underlying semantic correlation of
the argument values in these programs, and consequently gains more
accurate context information compared to existing schemes. Through
experiments, we show that such context information is effective in detect-
ing attacks which manipulate erratic arguments with comparable false
positive rates.

Keywords: Intrusion detection, system call argument, diversity

1 Introduction

Host-based anomaly detection techniques based on behaviors of programs in
terms of system call sequences were first proposed by Forrest et al. [8], and
improved and extended by a number of research work [7,9,13,14,19,23]. The
normal-behavior models of the applications are learnt from the behaviors ob-
served during a training phase; while during detection, any deviations from the
established models are interpreted as attacks to the programs monitored. Later
research [2,17,20,24] further enhanced the behavioral model by capturing the
information of system call arguments.
Early schemes [17,20,24] model the argument behavior at the granularity of

different system calls, i.e., each system call (e.g., open, read, write) is assigned
with a profile. The granularity is then improved by differentiating the instances
of the same system call when their call stacks are different [2]. For example,
the legitimate arguments of open@callstack1 and open@callstack2 are as-
signed with different profiles so that they can be tested differently in the detec-
tion phase. However, since other context information is not captured during the
training, an adversary is able to evade the detection of these existing schemes.
Consider the following example code which assumes to contain a buffer overflow
vulnerability:

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 172–189, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

On Detection of Erratic Arguments 173

int uid = geteuid();

char buf[128];

char* filename;

...

if (uid == 0)

filename = "/www/admin/configure.ini";

else

filename = "/www/user/configure.ini";

int fd = open(filename, O_RDWR);

write(fd, buf, sizeof(buf));

As illustrated in the example code, the system call open accepts two different
parameter values in the training phase, both of which correspond to the same
call stack. According to the existing schemes [2,17,24], both of these strings
will be treated as legitimate values during detection. Thus, an attack which
overflows buf and changes uid to 0 will be able to get the administrator privilege
while evading detection. Such a situation is more common in modern software
applications where code modules are extensively reused. Call stack is not able
to tell a difference in the privilege in different executions.
The fundamental difficulty in detecting such attacks stems from the erratic

property of function arguments. More formally, all legitimate values observed in
different normal program executions are not necessarily legitimate at a particular
execution. In a particular execution context, only a subset of the values (possibly
one) is legitimate while others could potentially be malicious.
This problem seems deceptively simple. The fine-grained context information,

which is required to differentiate the legitimate values at run-time, is difficult to
gather when training merely one program [2,17,24], especially when the source
code is not provided. Even for schemes which utilize two diverse applications,
their model cannot be simply extended to detect such attacks. For example,
hidden Markov models used in [10,11,12] (to train the normal-behavior profiles
of the system call sequences) are only able to handle finite states, while the space
of argument values is usually infinite.
In this paper, we propose an intrusion detection scheme which builds on two

diverse programs providing semantically-close functionalities. Our model learns
the underlying semantic correlation of the argument values in these programs to
detect attacks manipulating erratic arguments, which are recognized as normal
inputs by existing schemes. Specifically, we make the following contributions:

– We provide a formal approach of detecting attacks utilizing erratic argu-
ments, by learning relations of the function arguments between programs
providing semantically-close functionalities.

– We utilize taint analysis to further refine the detection model, which elimi-
nates the coincident relations to decrease the false positive rates.

– We implement a prototype of our scheme and present a detailed experimental
evaluation. The evaluation demonstrates that a number of real attacks which
are hard to detect by existing schemes can be effectively detected using
our technique. Specifically, it is shown that our detection model not only

174 J. Han et al.

detects sophisticated attacks on security-critical data, but also detects some
Denial-of-Service attacks which are not addressed by existing techniques,
with comparable false alarm rates.

2 Diversity Detection Model

In this section, we first introduce the framework of our detection approach, which
is followed by the definitions of the argument relations. Different algorithms are
then provided to train the behavioral model for different types of arguments.

2.1 Overview

Figure 1 illustrates the basic idea of how our intrusion detection system (IDS) is
constructed. We regard two diverse software having semantically-close function-
alities if they provide same services. Examples of such diverse software could be
web servers like Apache and Lighttpd, or office software like Adobe PDF Reader
and Foxit PDF Reader. Similar to existing diversity-based intrusion detection
techniques, the framework in Figure 1 utilizes two diverse software providing
semantically-close functionalities to build the behavioral model, base on the
observations that these software cannot be successfully exploited by the same
attack [15].
In this paper, we focus on building a normal-behavior model by extracting

the function arguments of both applications. Since these applications provide
semantically-close functionalities, there are semantic relations between the be-
haviors of these applications when they process the same input. Such seman-
tic relations will exhibit as the relations between the related function
calls and their argument values. For example, two web servers processing
the same HTTP request need to access the same local file on the disk. Thus,
consequently, there should be functions in both applications whose argument
values contain the same file name. In the following, we will briefly introduce how
our model captures the argument relations between the two diverse applications.

IDS

Application 1

Application 2

System call sequences
with parameters

System
call se

quenc
es

with p
arame

ters

sa
m

e
in

pu
t

(p
ot

en
tia

lly
m

al
ic

io
us

)

Fig. 1. Our diversity IDS framework

On Detection of Erratic Arguments 175

Once the argument relations are trained, they will be utilized to detect attacks
that attempt to fool traditional IDS with erratic function arguments.
In the model of Figure 1, the same inputs, which are assumed to be free of

attacks in the training phase, are passed to both of these applications (app1,
app2). In order to process the input, each of these applications will invoke a
series of system calls (for each input):

S1 = 〈s1,1, s1,2, ..., s1,l1〉 S2 = 〈s2,1, s2,2, ..., s2,l2〉 (1)

Each system call si,j has a vector of arguments. In the training phase, all in-
formation for each si,j will be recorded by corresponding monitor module of
appi, and is used to extract the information of the arguments. Specifically, in our
model, each argument is identified by:

argi,x where i ∈ {1, 2},
x = 〈index, type, s name, callstack〉.

In the above representation, i in argi,x indicates this argument appears in the
trace of appi. index is the position of this argument in the corresponding system
call, whose name is s name; type is the type of the argument (e.g. string or inte-
ger); callstack stores the call stack information of the corresponding invocation
of this particular system call.
In the training phase, we first obtain a pair of system call traces (S1, S2) for

each input. With all pairs of the system call traces, we then get a set of argument
pairs. For each argument pair (arg1,p, arg2,q), arg1,p is an argument in app1, which
is identified by a unique set of 〈index, type, s name, callstack〉 appearing in the
training set, and arg2,q is defined similarly. From the training data, we collect
a set of value pairs Valuep,q for each argument pair, where Valuep,q = {(v1, v2)|
arg1,p = v1, arg2,q = v2}. According to Valuep,q, we then produce a database of
relations R = {〈arg1,p R arg2,q〉}. This relation set R is finally utilized to detect
whether there is any violation for each pair of parameter values. If the relation
of a pair of parameter instances (〈arg1,p = vx〉 and 〈arg2,q = vy〉) does not satisfy
the corresponding 〈arg1,p R arg2,q〉 in R, the IDS will raise an alarm.

2.2 Relationships of the Arguments

In our model, we focus on two most common types of system call arguments
– string and integer, the definitions of which follow the standard definition in
programming language: a string is a sequence of zero or more characters followed
by a NULL (“\0”) character; while an integer is a numeric variable holding whole
numbers.
We define binary relation R that captures the relationship between two system

call arguments in the diverse applications. The relation between two arguments
is expressed as 〈arg1 R arg2〉, where arg1 is a particular argument in the first
application, and arg2 is a particular argument in the second application. Differ-
ent sets of candidate relations are given to string and integer since these two
argument types have different characteristics.
We provide the following basic relations for string arguments:

176 J. Han et al.

• equal captures equality relation of the given two arguments, e.g., the file name
passed to an open system call in app1 could be the same as the file name passed
to another open (or stat64) system call in app2.

• samePrefix(n) indicates that the two string arguments have the same prefix,
the length of which is at least n. For example, if arg1 = "/home/usr/xyz" and
arg2 = "/home/usr/abc", then 〈arg1 samePrefix(10) arg2〉 holds.

• sameSuffix(n) indicates that the two string arguments have the same suffix
substring with length at least n.

• contain means that the second argument is a substring of the first argument.

• partOf is the reverse of contain relation, in which the first argument is a
substring of the second argument.

Note that for the same pair of arguments, more than one of the above rela-
tions may hold. For example, if arg1 = "/home/configure.ini" and arg2 =
"/home/conf.ini", then both 〈arg1 samePrefix(10) arg2〉 and 〈arg1 sameSuffix(4)
arg2〉 hold. The above five relations defined are sufficient to cover the binary re-
lations of string arguments proposed in existing approaches, which are defined
for modeling the binary relations of arguments in a single program, such as
isWithinDir, hasSameDirAs, hasSameExtensionAs [2].
For integer arguments, we use a polynomial equation to represent the relation

of the two arguments. That is, let x = arg1 and y = arg2 (or x = arg2 and y =
arg1), the following equation holds:

y = cmxm + cm−1x
m−1 + ...+ c1x+ c0 (2)

For example, for the two malloc calls which create a memory region to store
the uri string parsed from the same request, the parameter values of these two
malloc could have the form y = 1 ·x+ c0. The value of c0 may not be 0 because
the internal structures which store the uri are different in these two programs.
Note that in Equation (2), when c1 = 1 and ∀i �= 1, ci = 0, then arg1 = arg2.
In our model, this equal relation between numeric arguments is able to capture
most relations of flag arguments (such as O_RDONLY and O_RDWR), because they
usually appear as the same in the diverse software providing semantically-close
functionalities.
Polynomial relation does not cover all the binary relations between two integer

arguments, e.g., exponential relation or bitwise relation may also exist under
some circumstances. In our current model, we only preserve polynomial relation
for integer parameters as it is the most common relation we observed in real
applications.

2.3 Training Algorithms

The training procedure can be generally divided into three stages: argument pair
extraction, relation acquisition and relation refinement.

On Detection of Erratic Arguments 177

Argument Pair Extraction. In this first stage, our purpose is to extract a
set of Valuep,q for each pair of 〈arg1,p, arg2,q〉. Each Valuep,q set will contain all
the value pairs occurred in the whole training procedure. All the sets of Valuep,q
will then be used to train the relation R between 〈arg1,p, arg2,q〉. The algorithm
of extracting each pair of arguments and its corresponding values are given in
Algorithm 1, after which a set PV= {(arg1,p, arg2,q,Valuep,q)} will be collected.
This PV set will then be used as input in Algorithm 2 and Algorithm 3.

Algorithm 1. Argument-pair extraction

1: for each (S1, S2) pair in the training set do
2: for each s1,j in S1 and each s2,k in S2 do
3: if comparable(s1,j , s2,k) then
4: for each arg1,p belonging to s1,j , and each arg2,q belonging to s2,k do
5: v1 = value of arg1,p
6: v2 = value of arg2,q
7: if (arg1,p.type = arg2,q.type) then
8: if (arg1,p, arg2,q,Valuep,q) already exists in PV then
9: add (v1, v2) to Valuep,q if (v1, v2) �∈ Valuep,q
10: else
11: Valuep,q = {(v1, v2)}
12: add (arg1,p, arg2,q,Valuep,q) to PV

13: end if
14: end if
15: end for
16: end if
17: end for
18: end for

This step is critical to the rest of the training procedure. The amount of all
the combinations of 〈arg1,p, arg2,q〉 could be huge, however, we only consider argu-
ment pairs which appear in comparable function calls (as shown in line 3 of Algo-
rithm 1). We define comparable function calls as those who have the same function
names or whose functionalities are semantically related. For example, system calls
open and stat64 are comparable, and library calls malloc, calloc and realloc
are comparable. System calls like setuid and open are not comparable since their
functionalities are not semantically related. Our current implementation of Algo-
rithm 1 reads in a configuration file that specifies which function calls are com-
parable. This configuration file is carefully constructed according to the platform
on which the target applications are running. Our current implementation only
considers the Linux operating system with GNU C library.

Relation Acquisition. The next step is to learn the relations between each
pair of arguments gained by Algorithm 1. Here we introduce two algorithms for
learning the relations: Algorithm 2 is used to learn the relations between two
string arguments; while Algorithm 3 is for integer arguments. We use ∅ to denote
that there is no relation between two arguments (arg1 ∅ arg2).

178 J. Han et al.

Algorithm 2. String-relation learning

Require: set PV.
1: for each (arg1,p, arg2,q,Valuep,q) in PV do
2: if arg1,p.type = arg2,q.type = string then
3: for each (v1, v2) in Valuep,q do
4: calculate R ∈{equal, samePrefix(n), sameSuffix(n), contain, partOf, ∅}, which

satisfies v1 R v2.
5: if R �= ∅ then
6: for each Rc that 〈arg1,p,Rc, arg2,q〉 ∈ R do
7: if R conflicts with Rc then
8: remove all 〈arg1,p,Rc, arg2,q〉 in R

9: add 〈arg1,p, ∅, arg2,q〉 to R

10: else
11: add 〈arg1,p,R, arg2,q〉 to R

12: end if
13: end for
14: else if 〈arg1,p, ∅, arg2,q〉 �∈ R then
15: add 〈arg1,p, ∅, arg2,q〉 to R

16: end if
17: end for
18: end if
19: end for

Note that there is an update procedure in the learning process of Algorithm 2
for the relation of samePrefix(n) and sameSuffix(n), which is not shown in the
algorithm. Take samePrefix(n) for example, suppose the existing relation for
arg1, arg2 in R is samePrefix(nold) and the new learnt relation is samePrefix(nnew).
The new relation of arg1, arg2 in R will be updated as samePrefix(min(nold, nnew)).
Another important detail not shown in Algorithm 2 is that, a threshold N

can be set for the relations samePrefix(n) and sameSuffix(n), to reduce the false
positives caused by small n. During learning, if the calculated n < N , then set
R = ∅. And different N should be assigned for samePrefix(n) and sameSuffix(n).
Also note that a set of confliction rules for the relations is needed in Algorithm 2
(at line 7). Generally, ∅ conflicts with other relations, and equal, contain, partOf
conflict with each other since the equal relation will always be verified first.
In Algorithm 3, the given order m should be at least 2, and should not be too

large so as to avoid the overfitting problem. m can also be dynamically adjusted
according to the size of each Valuep,q. However, the value of m should be at most
Valuep,q.size− 1 in order to have enough value pairs for solving the equation set
and leave at least one value pair to verify the results.
The whole learning process is optimized by utilizing the ∅ relations. The PV

set does not need to be fully computed before running Algorithm 2 and Algo-
rithm 3. If 〈arg1,p ∅ arg2,q〉 already appears in R, then the remaining instances of
〈arg1,p, arg2,q〉 do not need to be added into PV. The ∅ relations will be dropped
at the end of the training.

On Detection of Erratic Arguments 179

Algorithm 3. Integer-relation learning

Require: set PV, order m.
1: for each (arg1,p, arg2,q,Valuep,q) in PV do
2: if arg1,p.type = arg2,q.type = integer then
3: if Valuep,q.size < m then
4: add 〈arg1,p, ∅, arg2,q〉 to R

5: else
6: use the first m pairs of (v1, v2) in Valuep,q to solve the equation set of

Equation (2) to get (cm, ..., c0), for both (x = arg1,p, y = arg2,q) and (x =
arg2,q, y = arg1,p).

7: if the equation set is solvable then
8: R = {x, y, (cm, ..., c0)}
9: for each (v1, v2) left in Valuep,q do
10: if Equation (2) does not hold then
11: R = ∅
12: end if
13: end for
14: add 〈arg1,p,R, arg2,q〉 to R

15: else
16: add 〈arg1,p, ∅, arg2,q〉 to R

17: end if
18: end if
19: end if
20: end for

2.4 Model Refinement

In this subsection, we include an additional training phase to refine the relations
we have obtained by the above algorithms. The relations R gained by using
previous algorithms are patterns on the values we observed. However, certain
trained relations may be due to the coincidence in the training data set, which
could cause false alarms in detection. Thus, it will be better if we can remove
those trained patterns in R which are not caused by the semantic relations
between the two diverse applications.
However, it is not an easy task to validate the semantic relations of arguments

and refine the trained model. Even with the source code, it is difficult for a
human to capture the exact semantic meaning of a given function in a complex
application. Thus, to automatically capture the semantic meanings of functions
without the source code is an even harder problem. One way of learning the
semantic relations between arguments is to use taint analysis [22]. Since the
semantics of different set of function calls vary a lot, the detailed method of
carrying out taint analysis needs to be customized accordingly. It is difficult to
design a universal solution to perform the taint analysis for all the function calls.
In our current work, we develop a method of mapping memory management

library calls (such as malloc, free, realloc, etc.) of two diverse web servers,
according to the semantics gained by taint analysis. The basic idea is as fol-
lows: First of all, by tainting the request stream sent from client, we gain the

180 J. Han et al.

knowledge that which portions of the request are mapped to which heap memory
regions. Since these memory regions are created by the corresponding memory
library calls, each library call can be correlated with a certain portion of the
request. We mapped the two memory library calls (e.g., one malloc in Apache
and one calloc in Lighttpd) whose memory regions store the same part of the
request (e.g. the uri). We then preserve the argument relations that belong to
the mapped library calls, and remove other unmapped relations from R. The
implementation detail is given in Section 3, the effect of such refinement will be
further evaluated in Section 4.

2.5 Detection

After the relation set R is trained, the detection phase is quite straightforward.
During detection, for each argument pair (arg1,p, arg2,q) appears in R, each in-
stance of (arg1,p = vx, arg2,q = vy) will be tested. If an instance does not satisfy
the corresponding 〈arg1,p R arg2,q〉 in R, the IDS will raise an alarm. Although
the complexity of the training is relatively high, the detection only involves sim-
ple and fast computation. The main cost of detection depends on the cost of
monitoring and logging the function calls.

3 Implementation

We have implemented our approach on Ubuntu 8.04 (Linux kernel 2.6.24). The
implementation consists of two online components and an offline component.
The two online components are both monitor modules (referred to as tracer),

one of which is used to trace system calls, the other is used to trace library
calls of the monitored programs. For the system call tracer, we utilize ptrace to
intercept each system call made by the monitored program and log the following
information: (a) the PC value from where the system call was invoked, (b) values
of arguments, and (c) the call stack information which contains a set of absolute
return addresses. For the library call tracer, we modify the GNU C library (glibc)
under Ubuntu to output similar information for a selected set of library calls.
Since the backtracemethod cannot be used within the implementation of some
library calls such as malloc, we implement our own backtrace method in the
glibc to log the call stack information.
Each time when the monitored program starts, all the base addresses of its

loaded shared libraries are also recorded, which is retrieved from corresponding
/proc/[pid]/maps. These addresses will be used to convert the absolute ad-
dresses in the call stack recorded by the tracer to relative addresses, in the form
of [libname+offset]. By having relative call stacks, we are able to identify the
same instance of function call across different runs of the same program.
The offline component of our implementation includes the parsers of the logged

traces and the training module that implements the algorithms in Section 2. As
mentioned earlier, a configuration file is also provided to the training module,
which specifies the function calls that are comparable. The implementation of
the offline component is about 3.5K LOC.

On Detection of Erratic Arguments 181

For the model refinement part in the training, we utilize TEMU [1] to carry
out the taint analysis. Web server programs running in TEMU are provided
with tainted request stream and tainted local disk files, and the instructions of
the monitored web server will be recorded when processing each request. The
recorded instruction traces are then translated by the trace_reader tool in
Vine [1] and used as inputs to the trace parsers we implemented. According to
the taint information in the trace files, our trace parser will be able to extract
the information that each memory library calls is related to which part of the
request stream (or is related to which file on the disk). Then two library calls
(in two diverse servers) which are related to the same part of the request (or
the same local file) are recorded as the mapped library calls as mentioned in the
previous section. This TEMU trace parser is around 1K LOC.

4 Evaluation

In this section, we first investigate the effectiveness of our approach in detect-
ing real attacks and then analyze the false alarm rates. Performance overheads
for intrusion detection are also discussed. All experiments are conducted under
Ubuntu 8.04 and the training and testing are performed in offline mode.

4.1 Detection Effectiveness

Since the code injection attacks have been extensively addressed in prior re-
search [7,8,9,13,14,19,23], we focus on evaluating the detection effectiveness of
our model against attacks on security-critical data utilizing erratic arguments.
Table 1 lists the set of attacks tested in our evaluation. The first two attacks
in Table 1 are detectable by our approach since they both violate the string
argument relations trained in our model, while the other two attacks in Table 1
violate the integer argument relations.

Table 1. Selected Non-control-flow Attacks

Reference
Vulnerable

Attack Description
Alternative Detected?

Program Program (type)

S.Chen et al. [4] Ghttpd
stack overflow to

Null-httpd
Yes

overwrite filename data (string)

S.Chen et al. [4] Null-httpd
heap overflow to corrupt

Ghttpd
Yes

cgi-bin configuration string (string)

S.Chen et al. [4] Wu-ftpd
format string attack to

Pure-ftpd
Yes

overwrite userid data (integer)

CVE-2008-4298 Lighttpd
memory leak via

Cherokee httpd
Yes

duplicate request headers (integer)

182 J. Han et al.

Detection of Anomalous String Arguments.

The first attack in Table 1 exploits a stack overflow vulnerability in Ghttpd’s
logging function [4], which occurs in the following code fragment in function
serverconnection():

1: if (strstr(ptr, "/.."))

2: reject the request;

3: log(...);

4: if (strstr(ptr, "cgi-bin"))

5: execve(ptr, ...)

In the above code, ptr is a char pointer to the string of URL requested by a
remote client. The first two lines in the code are used to check the absence of
“/..” in the URL, before the CGI request is parsed and handled in line 4–
5. The stack buffer overflow vulnerability is in function log(), where a long
user input string can overrun a 200-byte stack buffer. Chen et al. [4] man-
aged to construct a stealthy attack which changes ptr to point to a string
cgi-bin/../../../../bin/sh by exploiting the vulnerability in log(). Their
attack neither injects code nor alters the return address, thus, it is difficult to
be detected by most of existing models.
Our approach is able to detect this attack. During training, our model learns

the equal relation between the first parameter of execve in Ghttpd and the pa-
rameter of corresponding execve in Null-httpd (in function cgi_main()). Since
this relation is later violated when this attack has successfully changed the value
of ptr in Ghttpd, an alarm is raised by the IDS.
Although this attack is also detectable by the dataflow model [2], their mech-

anism is different. Their system first learns that all files executed at line 5 should
be within the "cgi-bin" directory. The attack is detected when it accesses a
file outside this directory. However, such isWithinDir [2] relation (trained by
monitoring the program itself) may not be sufficient in practical scenarios. For
example, in typical business applications, files under the same directory may
have different access policies. A user x is only allowed to execute program A
under the directory, but not program B. Due to the overflow attack, adversary
with the privilege of user x is able to gain the access to program B. Under such a
scenario, the isWithinDir relation will not be able to detect such attacks since
all the programs are under the same directory, while our model is still able to
detect attacks in cases like these.

The second attack in Table 1 targets on a heap overflow vulnerability exists
in Null-httpd. This vulnerability is triggered when a special POST command
is received by the server. This vulnerability can be used to corrupt the CGI-
BIN configuration of Null-httpd and will result in root compromise without
executing any external code. In the attack illustrated by Chen et al. [4], two
POST commands are issued to precisely overwrite four characters in the CGI-
BIN configuration so that it is changed from "/usr/local/httpd /cgi-bin\0"

to "/bin\0". After the corruption, /bin/sh can be started as a CGI program
and any shell command can be sent as the standard input to /bin/sh.

On Detection of Erratic Arguments 183

This attack cannot be easily detected by control-flow schemes
[7,8,9,13,14,19,23], and is not addressed by the dataflow scheme [2]. How-
ever, our diversity model is able to detect such an intrusion due to the same
reason in the first attack – the equal relation (of the first parameter of the two
execve calls in Null-httpd and in Ghttpd) learnt during training, is violated
when Null-httpd is exploited.

Note that although both of these two servers (Ghttpd and Null-httpd) have
vulnerabilities, we can still use them together to build our diversity detection
model because their vulnerabilities are not exploitable by the same attack code.
In general, the probability that the same vulnerability exists in two diverse
applications providing semantically-close functionalities is very low [15].

Detection of Anomalous Integer Arguments.

The third attack in Table 1 exploits a format string vulnerability in Wu-ftpd.
The vulnerable code fragment is within the getdatasock() function:

1: seteuid(0);

2: setsockopt(...);

...

3: seteuid(pw->pw_uid);

The above function is invoked when a user issues data transfer commands, such
as downloading or uploading a file. It requires root privilege in order to perform
the setsockopt() operation. Thus, the privilege is temporarily escalated using
seteuid(0) and then changed back by the second seteuid(). The data struc-
ture pw->pw_uid is a cached copy of the user ID saved on the heap. The attack
proposed in [4] exploits the format-string vulnerability to change pw->pw_uid to
0, which maintains the root privilege for the attacker so that arbitrary files can
be uploaded and downloaded by the attacker as a root user.
Our model detects this attack when monitoring Wu-ftpd together with Pure-

ftpd. Since the two servers have the same configurations, the parameter of
seteuid()1 function call on line 3 in Wu-ftpd always has the same value as the
parameter of the seteuid() calls in function doport3() in Pure-ftpd. These
integer parameter relations are violated when the adversary overflow the heap
to change pw->pw_uid to 0.

The fourth attack in Table 1 exploits a memory leak vulnerability exists in
Lighttpd. When a duplicated field appears in a request header (e.g., “User-Agent
:Mozilla/4.0” and “User-Agent:MSIE/8.0” both appear in the header), the
http_request_parse() method in Lighttpd will allocate a memory region to
store the content of the second field (i.e., MSIE/8.0), but will not recycle this
resource afterwards. An adversary can utilize this vulnerability to consume the
memory of the server running Lighttpd by sending many requests with duplicate
fields (with a maximum field length of 2KB).

1 The underlying system call invoked is setresuid32().

184 J. Han et al.

Such Denial-of-Service attack cannot be directly detected by the existing ap-
proaches which train on a single server, especially when the total memory con-
sumed is not large enough to cause any exception. The difficulty comes from the
memory management behaviors of these web servers. For the most commonly
used servers (such as Apache, Lighttpd, etc.), the allocated memory will be
reused in processing the following requests and never be explicitly freed. Thus,
for both normal request and attack request processing, only memory allocation
methods (such as malloc, realloc ...) are observed, no deallocation method
(such as free) will appear in the library call sequences obtained. This makes it
difficult for an IDS to precisely model the memory behaviors, as it requires sim-
ulating the complex internal memory management of these server applications.
Our diversity IDS is able to learn the integer argument relations of the cor-

responding memory allocation calls in the two servers monitored. To be spe-
cific, the IDS learns that 16 pairs of the parameter values to the malloc and
realloc calls of Lighttpd and Cherokee servers are equal or have fixed difference
(which is actually due to the size difference of the internal structures in these two
servers). In the detection phase, the IDS detects the memory leak attack imme-
diately when the attack request causes one of Lighttpd’s malloc parameter to
increase (in buffer_copy_string_len() invoked by http_request_parse()),
which violates the integer relations that have been trained in the model.

4.2 False Alarm Analysis

There are three pairs of programs in Table 1. All of them are used to evaluate
the false alarm rates of our approach, as shown in Table 2. Two pairs of them
are http servers (Lighttpd and Cherokee, Ghttpd and Null-httpd), which are
configured to hold the same content of the web site of our university. In the
training phase, the two web servers in the same pair are provided with the same
series of requests (10K requests) obtained from the real log of our university’s
web server. In the detection phase, another set of requests (50K requests) from
the logs are sent to these servers to evaluate the false alarm rates. Applications
in the third pair are FTP server programs (Wu-ftpd and Pure-ftpd). Since we
do not have the access to the log of large amount of real FTP requests, we
configure these two FTP servers to hold the files downloaded from GNU FTP2,
and simulate the requests by randomly issuing commands (such as put, get,
dir, passive, type, etc.) for random files or directories on the servers.
We construct two different experiments to test our false alarm rates (as shown

in Table 2 and Table 3). The first experiment only focuses on monitoring the
system calls and their arguments so that it can be compared with existing ap-
proaches which also utilize system call arguments [2,17] (e.g., the result of the
dataflow model [2] shows the false positive rate of the tested HTTP server
is 64.12 × 10−5, and the rate for SSH server is 0.02 × 10−5). Note that the
rates shown in Table 2 are “raw” false alarm rates, i.e., the fraction of system
calls that caused violations, without combining the same type of violations. For

2 GNU Software FTP server, ftp.gnu.org/gnu

ftp.gnu.org/gnu

On Detection of Erratic Arguments 185

Table 2. False alarm rate

Diverse Programs
Training Trace Detection Trace False alarm rates

of Sys calls (×105) # of Sys calls (×105) (×10−5)

Pair 1
Lighttpd 2.29 10.90

0.826
Cherokee httpd 5.19 24.35

Pair 2
Ghttpd 7.24 39.51

1.948
Null httpd 20.62 98.57

Pair 3
Wu ftpd 10.78 54.15

0.617
Pure ftpd 4.37 12.96

Table 3. Model refinement by taint analysis

Programs
Training Trace Detection Trace False alarm rates (×10−5)

of Lib calls (×105) # of Lib calls (×105) Original After Refine

Lighttpd 2.31 11.06
5.286 1.762

Cherokee 0.46 2.27

example, the false alarm rate for Lighttpd in Table 2 is 0.826 × 10−5, which
means that one false alarm will be raised for every 100K system calls processed.
This indicates that one out of 10K requests will cause false alarms, as on average
10.9 system calls are invoked to process one request for Lighttpd.
The results show that the second pair of applications have much higher false

alarm rate than the other two pairs, as in Table 2. We investigated the reason for
this higher false alarm rate, and found that this is due to the fact that during the
training, there are several coincident contain relations for the string arguments
between Ghttpd and Null-httpd, which are violated in the detection phase for
benign requests. Our current implementation of the training algorithm regards
two string arguments as contain as long as their values satisfy this relation, even
if these pair of arguments only appear once in the training. However, some rules
in the training phase could be added to further decrease the false alarm rate. For
example, any string relations should have at least two instances of value pairs in
the training phase so that one instance of values is used to set up the relation
and other values can be used to validate the relation in the training (and any
argument pairs which only have one instance should be regarded as ∅ relation in
R). Such modification could reduce the false positives of our model but should
be carefully designed so that it would not decrease the detection capability as
well. Investigation on this trade-off is left as future work.
In the second experiment (as shown in Table 3), we investigate the false pos-

itive rate when our model monitors the memory management library calls of
the diverse applications. Note that different from Table 2, only library calls are
considered in Table 3. We further investigate the effectiveness on false positive
reduction by refining our model using taint analysis. The result shows that af-
ter removing the library call argument patterns which are not mapped by the
semantic relations, the false positive rate decreases. It is possible to refine the

186 J. Han et al.

Table 4. Program size and model size

Programs Program Size (Kbytes) String Relations Integer Relations

Pair 1
Lighttpd 767.9

143 367
Cherokee httpd 1165.7

Pair 2
Ghttpd 43.6

120 342
Null httpd 34.3

Pair 3
Wu ftpd 385.3

171 496
Pure ftpd 87.8

relations of other arguments by using taint analysis. However, since the seman-
tics of different set of library/system call arguments vary, taint analysis needs
to be carefully customized accordingly.

4.3 Performance Overheads

Table 4 shows the size of the programs used in our evaluation, along with the
model sizes in terms of the number of relations learnt. Note that the sizes of
the programs in the first pair include some of their own shared libraries. This is
because part of the functionalities of these servers are compiled as shared libraries
in default (e.g., many of the commonly used functions in cherokee are compiled
in libcherokee-base.so and libcherokee-server.so), which is different from
standalone programs. It can be seen from the table that the size of our models
are relatively small compared to the sizes of the programs.
We also studied the time cost of our model for both learning and detection

phases, which is illustrated in Table 5. The original size of the training traces
were between 110MB and 526MB, consisting of 0.2 to 2 million system calls.
As shown in Table 5, we measure the performance overheads of monitoring the
system calls and library calls, which is the dominate overhead during detection.
It shows that the overheads of monitoring system calls could be quite high for
web servers (up to 83.4%). The overhead is mainly due to our system call tracer.
As explained in Section 3, our monitor module utilizes ptrace for system call
interception with our own implementation of the backtrace which records the
call stack information of each system call. Similar overhead was also reported by
existing approach [2] using ptrace. This cost can be reduced to less than 6% [9],
by a kernel implementation of the interceptor.

Table 5. Training time and detection overhead

Programs Training time
Detection Overheads

Monitoring sys calls Monitoring lib calls

Lighttpd & Cherokee 93.8 sec 29.10% 18.38%

Ghttpd & Null-httpd 1620.9 sec 83.39% 11.41%

Wu-ftpd & Pure-ftpd 2091.3 sec 17.56% 1.37%

On Detection of Erratic Arguments 187

5 Related Work

In this section, we summarize the related work from two perspectives: one is
traditional intrusion detection schemes, the other is diversity-based detection
schemes.
Traditional intrusion detection techniques [5,7,8,9,13,14,19,23,26] mainly fo-

cus on utilizing only system call sequences to detect code injection attacks.
Recent works [2,17,18,20,24] further incorporate system call argument informa-
tion to defend against attacks which do not modify control flows. However, these
approaches have difficulties in deciding which legitimate argument value is really
benign, when multiple legitimate values appear in the training phase.
Early works on software diversity construct intrusion tolerance systems [3,21]

with software providing semantically-close functionalities. This architecture
is then utilized for developing diversity-based intrusion detection tech-
niques [6,10,11,16,25]. Most of these techniques use Commercial Off-The-Shelf
(COTS) software to build the detection models. Among those schemes, the tech-
niques proposed by Just et al. [16] and Totel et al. [25] are output voting schemes,
which only compare the final outputs (HTTP status codes and files) of the di-
verse software to detect intrusions. However, as many of the intrusions may not
result in observable deviation in the responses of those server software, such
intrusions can evade detections of these techniques.
Behavioral Distance model by Gao et al. [10,11] was later proposed to defend

against stealthy attacks which are not addressed by both the output voting
schemes and traditional intrusion detection techniques which only monitor single
application. However, since hidden Markov model used in their scheme (to train
the normal-behavior profiles of the system call sequences) is only able to handle
finite states, their model cannot be simply extended to detect attacks utilizing
erratic arguments.
Our approach is the first work that captures underlying semantic correlation

of the argument values in diverse programs. Our model gains more accurate
context information compared to existing schemes. Such context information
is critical in detecting sophisticated attacks on security-critical data utilizing
erratic arguments. When deployed, our model can be combined with the existing
system call sequence or control flow models to defend against a wider range of
attacks.

6 Conclusions

In this paper, we propose an anomaly detection model to detect erratic-argument
attacks which are recognized as normal inputs by the existing techniques. Our ap-
proach utilizes the function arguments of two diverse applications which provide
semantically-close functionalities. Different from existing techniques, our model
learns the relations of the function arguments between the two applications,
which naturally captures more accurate context information. In the evaluation,
we show that our model is able to detect real attack manipulating the value of

188 J. Han et al.

erratic arguments, with a moderate false alarm rate. The main limitation of our
scheme is the additional cost on the management of diverse software. However,
such a cost could be negligible for some existing fault-tolerant system where
diverse software have already been deployed to prevent simultaneous failure.

References

1. TEMU and Vine. The BitBlaze Dynamic Analysis Component,
http://bitblaze.cs.berkeley.edu

2. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, pp. 48–62 (2006)

3. Chen, L., Avizienis, A.: N-version programming: A fault-tolerance approach to
reliability of software operation. In: Digest of 8th International Symposium on
Fault-Tolerant Computing (FTCS), pp. 3–9 (June 1978)

4. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th Conference on USENIX Security
Symposium, p. 12 (2005)

5. Lam, L.C., Chiueh, T.-c.: Automatic Extraction of Accurate Application-Specific
Sandboxing Policy. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004.
LNCS, vol. 3224, pp. 1–20. Springer, Heidelberg (2004)

6. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J.,
Nguyen-Tuong, A., Hiser, J.: N-variant systems: a secretless framework for security
through diversity. In: Proceedings of the 15th Conference on USENIX Security
Symposium (2006)

7. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection
using call stack information. In: Proceedings of the 2003 IEEE Symposium on
Security and Privacy (2003)

8. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy,
p. 120 (1996)

9. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for
anomaly detection. In: Proceedings of the 11th ACM Conference on Computer
and Communications Security, pp. 318–329 (2004)

10. Gao, D., Reiter, M.K., Song, D.: Behavioral Distance for Intrusion Detection. In:
Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 63–81. Springer,
Heidelberg (2006)

11. Gao, D., Reiter, M.K., Song, D.: Behavioral Distance Measurement Using Hidden
Markov Models. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 19–40. Springer, Heidelberg (2006)

12. Gao, D., Reiter, M.K., Song, D.: Beyond output voting: Detecting compromised
replicas using HMM-based behavioral distance. IEEE Transactions on Dependable
and Secure Computing (TDSC) (July 2008)

13. Ghosh, A.K., Schwartzbard, A.: A study in using neural networks for anomaly
and misuse detection. In: Proceedings of the 8th Conference on USENIX Security
Symposium, p. 12 (1999)

14. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In:
Proceedings of the Network and Distributed System Security Symposium (2004)

15. Han, J., Gao, D., Deng, R.H.: On the Effectiveness of Software Diversity: A System-
atic Study on Real-World Vulnerabilities. In: Flegel, U., Bruschi, D. (eds.) DIMVA
2009. LNCS, vol. 5587, pp. 127–146. Springer, Heidelberg (2009)

http://bitblaze.cs.berkeley.edu

On Detection of Erratic Arguments 189

16. Just, J.E., Reynolds, J.C., Clough, L.A., Danforth, M., Levitt, K.N., Maglich, R.,
Rowe, J.: Learning Unknown Attacks - A Start. In: Wespi, A., Vigna, G., Deri, L.
(eds.) RAID 2002. LNCS, vol. 2516, pp. 158–176. Springer, Heidelberg (2002)

17. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous
System Call Arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 326–343. Springer, Heidelberg (2003)

18. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing (TDSC) 7, 381–395 (2010)

19. Michael, C.C., Ghosh, A.: Simple, state-based approaches to program-based
anomaly detection. ACM Transactions on Information and System Security (TIS-
SEC) 5(3), 203–237 (2002)

20. Provos, N.: Improving host security with system call policies. In: Proceedings of
the 12th Conference on USENIX Security Symposium, p. 18 (2003)

21. Reynolds, J., Just, J., Lawson, E., Clough, L., Maglich, R.: The design and imple-
mentation of an intrusion tolerant system. In: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, DSN (2002)

22. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy,
pp. 317–331 (2010)

23. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method
for detecting anomalous program behaviors. In: Proceedings of the 2001 IEEE
Symposium on Security and Privacy, p. 144 (2001)

24. Tandon, G., Chan, P.: Learning rules from system call arguments and sequences for
anomaly detection. In: Workshop on Data Mining for Computer Security (2003)

25. Totel, E., Majorczyk, F., Mé, L.: COTS Diversity Based Intrusion Detection and
Application to Web Servers. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 43–62. Springer, Heidelberg (2006)

26. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, p. 156 (2001)

SA3: Automatic Semantic Aware Attribution
Analysis of Remote Exploits

Deguang Kong1,2, Donghai Tian1, Peng Liu1, and Dinghao Wu1

1 College of Information Sciences and Technology, Pennsylvania State University,
University Park, PA 16802,

{dkong,dtian,pliu,dwu}@ist.psu.edu
2 Dept. of Computer Science and Engineering, University of Texas at Arlington, TX, 76013

Abstract. Web services have been greatly threatened by remote exploit code at-
tacks, where maliciously crafted HTTP requests are used to inject binary code to
compromise web servers and web applications. In practice, besides detection of
such attacks, attack attribution analysis, i.e., to automatically categorize exploits
or to determine whether an exploit is a variant of an attack from the past, is also
very important. In this paper, we present SA3, an exploit code attribution analysis
which combines semantic analysis and statistical analysis to automatically cate-
gorize a given exploit code. SA3 extracts semantic features from an exploit code
through data anomaly analysis, and then attributes the exploit to an appropriate
class based on our statistical model derived from a Markov model. We evaluate
SA3 over a comprehensive set of shellcode collected from Metasploit and other
polymorphic engines. Experimental results show that SA3 is effective and effi-
cient. The attribution analysis accuracy can be over 90% in different parameter
settings with false positive rate no more than 4.5%. To our knowledge, SA3 is the
first work combining semantic analysis with statistical analysis for exploit code
attribution analysis.

Keywords: Remote Exploit, Shellcode, Attribution, Mixture of Markov Model.

1 Introduction

A great number of code injection attacks (e.g., buffer overflow attacks, format string at-
tacks) are used by crafted HTTP requests to compromise different kinds of web services
or web applications. From the CERT [1] and SecurityFocus [2] statistics, the remote
code injection attack is still one of the major attacks these days. In (remote) code injec-
tion attacks, malicious HTTP requests/replies can be forged to inject malicious code by
masquerading as normal requests/replies. Different kinds of shellcode are representa-
tives of exploit code, which can be injected into target services or applications through
network connections. Worms can take advantage of these exploit code for infections
and propagations. In this paper, the exploit code we focus on is remote shellcode which
can be used as the payload of a packet to spread via HTTP requests. Throughout the
paper, we use the terms remote exploit code and shellcode interchangeably.

There are mainly two types of techniques used for shellcode analysis and detec-
tion: the emulation-based approach and statistics-based approach. The emulation based

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 190–208, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 191

approach (e.g., [3,4]) emulates the executions of instruction sequences, and thus shell-
code’s behaviors are exposed in the virtual running environment. However, it is antago-
nized by many kinds of anti-emulation techniques [5]. For example, drive-by
downloads web attacks [6], which target memory corruption vulnerabilities, have to
prepare the environment before their successful launch. Improper emulations of the ex-
ecution context will lead to incorrect executions of instruction sequences, and thus fail
to expose specific specific behaviors.

Statistical analysis is another promising method used in network intrusion detection
systems including the remote shellcode detection and analysis [7,8]. The basic idea of
the statistical approach is to extract the distinguished features to differentiate between
the normal packets and various malicious packets. The payload of a packet and the
payload header information (e.g., port number, protocol field) can be used as features
for classification. The disadvantage of the statistical approach is that it usually lacks
clear semantic information correlated with the packets whose contents may result in
malicious behaviors, and therefore it can also be evaded by different kinds of anti-
statistic approaches [7,8].

From the analysis above, we can see current exploit code detection and analysis ap-
proaches are still quite limited. Meanwhile, lots of shellcode variants appeared in the
past several years according to AV-test’s statistics [9]. Thus in this paper we present
an automatic semantic aware attribution analysis of remote exploits. The significance
of such analysis is that it provides more information about an attack in addition to
detecting the attack. The attribution analysis can be used in, for example, a shellcode
scanner to identify different types of shellcode variants. As far as we know, such shell-
code attribution analysis is still lacking in the literature. Note that Hu et al [10] present
a function-call graph based approach to index the large malware repositories, which
can be viewed as a kind of malware attribution analysis. Our motivation is similar to
theirs, but our work is more specific for shellcode attribution analysis. Compared with
shellcode detection, our work focuses more on automatically categorizing exploits and
determining whether an exploit is a variant of an attack from the past. We believe this
is also important besides telling whether a piece of code is malicious or not.

Exploit code attribution poses several challenges. First, the emulation based ap-
proach cannot be directly applied to this problem because we need quantitative metrics
to measure the distances of different exploit code. Second, we cannot fully rely on the
statistical approach because it is deceptive once the statistical features (e.g., the number
of specific instructions or system calls) fail to reflect the security-critical operations,
which are probably highly related with the shellcode behaviors. Third, how to extract
the semantics which determine the shellcode attribution remains an open question. The
emulation based approach seems a good candidate for extracting the behaviors of dif-
ferent shellcode. However, it can miss trivial differences existed in the behaviors of
different classes of shellcode. For example, self-contained exploit code [4] often ex-
hibits same behaviors by following the routine of “decrypt-loop” mode. Furthermore, if
specific behaviors are absent in the emulation environment, it could produce more false
negatives. Also, the time cost for the emulation based approach is usually very high
compared with static analysis.

192 D. Kong et al.

Our Approach. We present SA3, a novel automatic Semantic Aware Attribution Analy-
sis of remote exploit code. SA3 first makes semantic analysis on the payload of packets,
and then a Markov-based model is used to model each type of shellcode. Specifically,
for semantic analysis, we use static data anomaly analysis on the packet payload; for
statistic analysis, we use a two-way of Mixture Markov model. The statistical model
is based on the refined exploit code sequences, which are pruned from the whole code
sequences in the framework of static analysis. Once the model is built, any new code
can be fed into the model to get an attribution analysis result.

One important characteristic of our work is that we use the “features” acquired from
semantic analysis for attribution analysis. We present SA3 based on an observation
that the attribution for a piece of exploit code has great correlations with the exploit
code’s semantic characteristics (e.g., the opcode sequence, the instruction sequence)
and also its statistical characteristics (e.g., the number of instructions, the out-degree of
control flow graph). The changes of the semantics also cause the changes of the statistic
exposure in shellcode instructions. This observation motivates us to consider about the
integration of semantic analysis with statistical analysis by taking advantages of both
of them.

Our work stands between the semantic analysis and statistical analysis. Instead of
using dynamic emulation techniques introduced before, our work uses the static data
anomaly analysis by making static analysis on the instruction sequences. The advantage
of this approach is to capture the semantics of the exploit code with moderate time
cost. Also, it will not be attacked by anti-emulation techniques [5]. Compared with
only emulation based approach, our work can also overcome some inherent defects
(e.g., different shellcode may expose similar behaviors) by introducing the statistical
analysis. Compared with only statistical based approach, our analysis is more robust by
incorporating the semantics to avoid “black-box” learning.

Contributions. The main merits of SA3 are listed as follows. To our knowledge, our ap-
proach is the first work to make exploit code attribution analysis by combining semantic
analysis with statistical analysis. Semantic analysis is used for extracting the semantic-
binding code with certain malicious intent. Statistical features can help to capture the
“whole” view of a packet from macroscopic point. These two different views comple-
ment each other. Our evaluation shows that our analysis result is better than purely
statistical approach, which also refutes the conclusion of “impossibility of modeling
polymorphic shellcode [11]” in some degree.

The rest of this paper is organized as follows. First of all, we formalize the problem
in Section 2. Next we show our approach SA3 in Section 3, followed by evaluation in
Section 4. Then we introduce the related work in Section 5. Finally, we conclude the
paper in Section 6.

2 Problem Statement and Analysis

2.1 Problem Formalization

Let I(i ∈ I) be a set of different classes of exploit code; and D(1 ≤ j ≤ D) be the
total number of instances (variants) generated from a certain class. We use Sij to denote

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 193

Fig. 1. A demonstration of polymorphic shellcode instance

the jth exploit code instance generated from class wi, i.e., Sij ∈ wi. For example, in
reality, a set of different types of exploit code can be generated from different polymor-
phic shellcode engines I = {Clet,CountDown,Pex,Tapion, ...}. Different instances
of the same type of exploit code can be generated using complicated obfuscation tech-
niques like polymorphism and metamorphism [12].

Definition 1. Exploit Code Attribution Problem
(1) For lots of exploit code instances Sij , how to generate a profiling for each cate-

gory wi;
(2) For an unknown exploit code s, what is the attribution of s? That is, find i such

that s ∈ wi.

2.2 The Challenge of the Problem

According to the definition of exploit code attribution problem, Problem (1) is a training
problem in shellcode classification and Problem (2) is an recognition problem after a
profiling for each category of exploit code is built. Problem (1) is the key step while
Problem (2) can be easily solved after the learning model is built in Problem (1). These
two problems match well with the standard machine learning problem. Naturally, we
refer to machine learning techniques for a solution.

From above analysis, it seems any statistical approach can work in the context of ex-
ploit code attribution analysis. However, the statistics-based approach may not produce
promising results. Song et al. [11] conclude that it is impossible to model the polymor-
phic shellcode (See Fig. 1 for an example). Polymorphic shellcode accounts the largest
part of the exploit code, and therefore, modeling all of the exploit code (e.g., for at-
tribution analysis) is much more difficult. Next, we will briefly explain why modeling
polymorphic shellcode instances is difficult. The contents of the polymorphic shellcode
instances usually consist of several parts: NOP part (sled), decoder part, encrypted pay-
load part, return address part and padding part (Fig. 1). Modeling the NOP part may
amount to modeling random instructions because many instructions are semantically
equivalent to “NOP.” For example, for the shellcode generated by CLET [13], there are
55 kinds of sled used in the “NOP” part. In the return address part, there are also many
variations of the target address by adding padding bytes before it. In the padding part,
the binary code can be filled in, without influencing the execution results. For obfus-
cation purpose, the padding bytes may have similar distribution to the normal traffic
distribution. In the decoding part, different encryption keys can generate different en-
crypted exploit code. Clearly, due to great varieties in each part of polymorphic exploit
code, the variations for a whole exploit code packet can be even larger. These great vari-
ations may result in, (R1) no fix patterns exposed in a whole packet; (R2) the attribution
analysis process misguided by padding bytes and noisy bytes.

194 D. Kong et al.

(a)

(b)

(c)

(d)

Fig. 2. Varieties of shellcode instances. (a) Pex (each of 100 instances is 344 bytes); (b) CLET
(each of 100 instances is 168 bytes); (c) Pex refined shellcode after semantic analysis (corre-
sponding to (a), each is 60 bytes); (d) CLET refined shellcode after semantic analysis (corre-
sponding to (b), each is 60 bytes). Each pixel of the image represents a byte obtained from a
shellcode instance

Fig. 2 shows two examples of shellcode varieties. Fig. 2(a) shows a spectral image,
where each pixel represents a byte from a shellcode sequence generated from polymor-
phic engine Pex [14]. Each row is corresponding to a shellcode sequence with 344 bytes
in length, and totally 100 instances form the image. Similarly, Fig. 2(b) shows the spec-
tral image formed by 100 sequences generated from polymorphic engine CLET [13],
where each row is a shellcode sequence of 168-byte in length. Clearly, these images
demonstrate great varieties of different bytes in exploit code, which imply that the shell-
code attribution analysis is a challenging problem.

3 Approach

In Fig. 3, we describe the framework of SA3 . The core modules of SA3 are Seman-
tic Analysis Module, and Statistical Analysis Module. More detailedly, we use Data
Anomaly Analysis in the Semantic Analysis Module and a Two-way Mixture of Markov
Model in the Statistical Analysis Module.

The whole workflow of SA3 can be divided into training stage (with the real line)
and the recognition stage (with the dashed line). First of all, the same type of exploit
code instances are fed into the semantic analysis module, and data anomaly analysis
are conducted on them. We get the refined exploit code instances, which are actually
the instruction sequences pruned of useless instructions. Next, a two-way Mixture of
Markov Model is built on the refined input instruction sequences. We construct a mix-
ture of Markov Model corresponding to each category of exploit code. When a new

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 195

Exploit code
instances

A suspected exploit
code instance

Data anomaly
analysis

Refined exploit
code instances

Mixture Markov
Model

Exploit code
instances

Exploit code
instances

Refined exploit
code instances
Refined exploit
code instances

Attribution
result

Fig. 3. SA3 flow graph (real line for training stage, dashed line for recognition stage)

exploit code instance comes, it will be first analyzed through the data anomaly analysis
module. Thus the refined code sequences are distilled as the input to the two-way mix-
ture of Markov Model. The decision result is obtained by attributing the exploit code
sequence to the one with the most fitting value.

Semantic Module. For each category of the input instruction sequences, we prune
semantic-unrelated code existed in the code sequences. Data anomaly analysis is used
to capture the “semantics” of the exploit code through preserving the useful instructions
while pruning the useless ones which are probably containing padding and noisy bytes
in the packets. This module is used for solution of R2 presented in Section §2.2.

Statistical Module. For the pruned instruction sequences, a two-way Mixture of Markov
Model is built for the solution of R1 (Section §2.2). On one hand, it is not very clear
what kind of relationship exists in the instruction sequences. On the other hand, Markov
model is very suitable to model the uncertainty existed in different context. Thus, we
refer to a two-way Mixture Markov model, to model relationships between the instruc-
tion sequences. The property of “two-way mixture model” makes it more robust and
powerful to represent the varieties of different categories of code.

3.1 What Is the Semantics Used in Exploit Code?

Data Anomaly Analysis. We observe that certain control and data flow information
remain invariable to implement certain functions in the exploit code. We call those
control and data flow information as “semantic.” The data anomaly analysis is used to
capture those semantics, because it can preserve the useful instructions by pruning the
useless ones which contain padding and noisy bytes.

First of all, we use disassemble analysis to analyze the input binary instruction se-
quences. In this paper, what we focus on is HTTP message flows. In an HTTP request
message, malicious payload only exists in Request-URI and Request-Body of the whole
flow [15]. We extract these two parts from the HTTP flows for further semantic anal-
ysis. Then we make disassemble analysis on these input sequences. If the disassemble
module finds consecutive instructions in the input sequences, it generates the disas-
semble instruction sequences as output. An instruction sequence is a sequence of CPU
instructions which has only one entry point. A valid instruction sequence should have
at least one execution path from the entry point to another instruction within the se-
quence. Since we do not know the entry point of the code when the code is present in
the byte sequences, we explore an improved recursive traversal disassemble algorithm

196 D. Kong et al.

Code fragment after useful
instruction extraction

.
0: sub $ecx,$ecx
2: sub $ecx, -50
5 call 00000009
b: pop $esi
c: xor [$esi+E],C2817B82
13: sub $esi,-4
16: loopd 0000000C
18: jle 0000002B
1c: push -7E
1e: jle 0000005D
20: jge 0000003D
4a: push 36
4c: mov $ecx,F7EAA52F

..

.
2B C9 83 E9 B0 E8 FF FF FF FF C0 5E 81 76 0E 82
7B 81 C2 83 EE FC E2 F4 7E 11 6A 8F 6A 82 7E 3D
7D 1B 0D 0A AE A6 5F 0D 0A 87 BE F0 FD C7 FA 7A
6E 49 CD 63 0D 0A 9D A2 7A 6A 8B 09 4F 0D 0A C3
6C 4A 41 5B 2E FF 41 B6 85 BA 4B CF 83 B9 6A 36
B9 2F A5 EA F7 9E 0D 0A 9D A6 7A 6A A4 09 77 CA

Example of Input packet content

0: 2BC9
2: 83E9 B0
5: E8 FFFFFFFF
b: 5E
c: 8176 0E 827B81C2
13: 83EE FC
16: E2 F4
18: 7E 11
1c: 6A 82
1e: 7E 3D
20: 7D 1B
4a: 6A 36
4c: B9 2FA5EAF7

inc ecx; (41)
pop ebx; (5B)
inc [dword cs:ecx-4A]; (2E FF41 B6)

Byte code of the
code fragment

Fig. 4. A motivating example to show the procedure of semantic analysis on the input code
sequence

introduced by Wang et al. [15] to disassemble the input instruction sequences. For an
N -byte sequence, the time complexity of disassemble algorithm is O(N).

After disassemble analysis, it may generate zero, one, or multiple instruction se-
quences, which do not necessarily correspond to real code. Next, we distill useful in-
structions by pruning useless instructions using the technique introduced in SigFree [15].
Useless instructions are those illegal and redundant byte sequences. By using the code
abstraction, a static analysis technique, we can emulate the executions of instruction
sequences. There are possibly 6 states in the state transition graph generated from the
code sequences. State U represents undefined variable state; state D represents defined
but not referenced variable state and state R represents defined and referenced variable
state. The other three abnormal states are defined as follows: state DD represents ab-
normal state define-define, state UR represents abnormal state undefine-reference, and
state DU represents abnormal state define-undefine. Basically, the pruned useless byte
sequences correspond to three kinds of dataflow anomalies: UR, DD, DU. When there
is an undefine-reference anomaly (i.e., a variable is referenced before it is ever assigned
with a value) in an execution path, the instruction which causes the “reference” is a
useless instruction. When there is a define-define anomaly (i.e., a variable is assigned
a value twice) or define-undefine anomaly (i.e., a defined variable is later set by an un-
defined variable), the instruction that caused the former “define” is also considered as
a useless instruction. Since crafted noisy bytes in the packets typically do not contain
useful instructions, such irrelevant bytes in the packets are filtered out after the useful
instruction extraction phase. The remaining instructions are likely to be related to the
semantics of the code kept in the exploit code sequences.

Here, we further explain our motivation for useful instruction extraction. From our
observations, lots of “useful instructoins” are left invariant across different shellcode in-
stances even after complicated obfuscations (e.g., “junk insertion,” “instruction replace-
ment”). For padding and noisy bytes, they still can be assembled into code sequences.
However, usually it lacks clear meanings and correlated relations for those coincidental
instruction sequences. Thus, they will be pruned after rigorous data flow anomaly anal-
ysis. Moreover, we note that the remaining useful code sequences are more likely to be
similar to those from the same category instead of those from the other categories.

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 197

Motivating Example. An example of polymorphic code analysis is shown in Fig. 4.
Here the leftmost part is the original packet content in binary, the middle part and the
right part are the disassemble code and its corresponding binary code of the useful
instructions after removing useless ones, respectively. For example, the disassembly
code inc ecx appeared in address 42 is pruned because ecx is defined again in address
4c to produce a define-define anomaly. In address 44, the contents in the memory cell
with address ecx-4A is referenced without being defined beforehand. Thus we prune
this instruction because it produces an undefine-reference anomaly.

Figs. 2(c) and 2(d) show two other examples. Fig. 2(c) gives the spectral image
formed by the remaining instructions of 100 instances corresponding to Fig. 2(a). Sim-
ilarly, Fig. 2(d) gives the spectral image formed by the remaining instructions of 100
instances corresponding to Fig. 2(b). In both images, each pixel represents a byte from
the remaining instructions. Clearly, the lengths of the preserved code sequences are
decreased. More importantly, the fixed patterns in the original code sequences are pre-
served while the bytes located in different positions with large varieties are cut off.

From the above polymorphic shellcode example (Fig. 4) and other instances, we find
that the remaining code sequences usually consist of the following features: (F1) getPC:
the code to get the current program counter, usually contains opcode “call” or “fstenv”;
(F2) Iteration: a polymorphic exploit code usually performs iterations over encrypted
shellcode using the operations like loop, rep and the variants of such instructions (e.g.,
loopz, loope, loopnz); (F3) Jump: a polymorphic exploit code is probable to contain
conditional/unconditional branch statements (e.g., jmp, jnz, je); (F4) Decryption: for
the encrypted shellcode, certain machine instructions (e.g., or, xor) are more often to
be found in decryption routines since decryption needs to decrypt the shellcode before
execution. These features are preserved after semantic analysis, which can be further
used for statistical modeling. We believe these features help to capture the category of
shellcode, and they may exist in most of the self-contained exploit code.

It may be attempting to use (F2, F4) as the only feature for category analysis. For-
tunately, we also have other useful instructions preserved except for the features (F1,
F2, F3, F4). This motivates us to use the statistical model for capturing the differ-
ences across various exploit codes as much as possible. For non self-contained code,
not all features (e.g., F2, F1) exist in the shellcode (e.g, code generated from Avoid
UTF8/tolower [4]) because of the absence of GetPC and self-reference operations. In
these cases, the remaining instruction sequences still can be taken as good indicators
for shellcode category analysis since noisy bytes are filtered. The pruned bytes are more
likely to mislead the state-of-the-art statistics-based learning approaches (e.g., N-gram
based learning [16], Markov Chain [8], Support Vector Machine [6]) for category anal-
ysis or detection. Note the length of code sequence can be viewed as the dimensions
for the training code sequences. To prune useless instruction also means to reduce the
dimension of training data This makes the machine learning module much easier and
more accurate by alleviating the difficulty of “curse of dimensionality [17]”.

3.2 What Is the Statistics Used for Modeling?

Why Use Markov Model? Let Y be the set of single bytes and Y i denote the set of
i-byte sequences. X = Y ∪ Y 2 ∪ Y 3 ∪ Y 4 is the token set in our system because a

198 D. Kong et al.

83C6 01 96 40 96 46

forward p-dependence backward q-dependence

Fig. 5. Explanation of dependence in Markov Model

token in a useful instruction contains at most four bytes (e.g., “AAFFFFFF”), which
corresponds to the word size of 32-bit systems. A Markov chain [18] is a sequence
of random variables X1, X2, X3, ..., satisfying the Markov property: given the present
state, the future and past states are independent. More formally, probabilityPr(Xn+1 =
x|X1 = x1, X2 = x2, ..., Xn = xn) = Pr(Xn+1 = x|Xn = xn), where xi is the
value for each state Xi, and Pr(Xn+1 = x|Xn = xn) is the conditional probability
for transition from state Xn to Xn+1. The possible values of Xi form a countable set S
called the state space of the chain. We observe that there are close relations among the
code tokens in the refined instruction sequences. Markov Chain [18] is a good candidate
to model uncertain dependencies in different contexts. In the context of code sequence
analysis, each token in a sequence can be viewed as a state in a Markov Chain. We
assume a token in a sequence is dependent on the token in front and also the token
next because of the great dependencies existed in the code sequences of the nearest
neighbors. To be exact, the dependency of token xj on xi is the co-occurance of token
xj and xi. If xi appeared in front of xj in the same sequence, we call xj is forward
dependent on xi. Otherwise, if xi appeared after xj in the same sequence, we call xj is
backward dependent on xi. 1-order Markov chain requires the nth token in a chain is
only dependent on the (n − 1)th token. However, in real code segment, the nth token
can be dependent on the (n − 1)th, (n − 2)th, ..., (n − p)th tokens in a sequence, and
also related to (n + 1)th, (n + 2)th, ..., (n + q)th tokens. We do not know what is the
value of p and q beforehand.

In our model we define two kinds of relationships to represent those bidirectional de-
pendence. We call our Markov-derived model as a Two Way Mixture Markov (TWMM)
Model. First, we define the forward dependence, i.e., nth token is depended on consec-
utive p tokens in front. Next, we define the backward dependence, i.e., nth token is
dependent on the next consecutive q tokens. Then parameters πi(i = 1, 2) are used to
make a balance between them, where π1 + π2 = 1. Fig. 5 shows an example, where to-
ken 96 is forward dependent on p (p = 2) tokens (83C6, 01) in front, and also backward
dependent on next q (q = 3) tokens (40, 96, 46).

Model Construction. First, we construct a TWMM model for each category of code
sequences. Second, after a new code sequence is fed into the model, we attribute it to
the class with the highest fitting value. However, if the highest fitting value is still less
than a certain threshold, we will attribute it to the normal sequence. Here the fitting
value is the accumulation of probabilities, which reflects the matching score from a
code sequence to the model.

Next we show how to compute the probability for a code sequence. The proba-
bility of a code sequence can be decomposed into the product of the probability of
each token in a sequence. For different tokens appeared, there is a transition matrix
to label the probability from one token to another. Hence, p-forward tokens’ transition

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 199

probability to a specific token is the probability from front p tokens’ transition probabil-
ity to this token. Similarly, q-backward tokens’ transition probability to a specific token
is the probability from next q tokens’ transition to this token. In forward model, the
ith token’s probability is computed through product of the p-forward tokens’ transition
probability to this token. Similarly, in backward model, the ith token’s probability is
computed through the product of the q-backward tokens’ transition probability to this
token. Since the probability is a product of p(Ln − p) values in the forward model, and
a product of q(Ln − q) values in the backward model, where Ln is the length for the
nth code sequence. Therefore, the p(Ln−p) root is needed for computing the sequence
probability in forward model and q(Ln − q) root is needed in backward model.

More formally, let xn,i denote the ith token in the nth sequence, A1(xn,i|xn,j ; θ1)
denote the transition probability from token xn,j to token xn,i in forward model θ1,
A2(xn,i|xn,j ; θ2) denote the transition probability from token xn,j to token xn,i in
backward model θ2. Since the same token can be transferred to different tokens, the
sum of such transition probability should be normalized to 1, i.e.,∑

xn,i

Ak(xn,i|xn,j ; θk) = 1 (k = 1, 2). (1)

Let g(xn|θ1) and g(xn|θ2) denote the probability for the nth sequence’s matching
scores in the forward model and backward model, respectively. Thus we have

g(xn|θ1) =

⎛⎝ Ln∏
i=p+1

Ln−p∏
j=i−p

A1(xn,i|xn,j ; θ1)

⎞⎠
1

(Ln−p)p

(2)

g(xn|θ2) =

⎛⎝Ln−q∏
i=1

i+q∏
j=i+1

A2(xn,i|xn,j ; θ2)

⎞⎠
1

(Ln−q)q

(3)

Next, by combing g(xn|θ1) and g(xn|θ2) in a balanced way, we have Gn to denote the
matching score for nth sequence, i.e.,

Gn =
2∑

k=1

πkg(xn|θk), (4)

where π1 + π2 = 1. To obtain the solution for this model means to estimate the pa-
rameters in Eq. (4). Suppose we have N sequences for each category, thus the object
function G to be optimized is the product of the likelihood for each sequence Gn, i.e.,

G =

N∏
n=1

2∑
k=1

πkg(xn|θk). (5)

Model Solution. Here we show how to solve Eq.(5). The object function G is to be
maximized to fit the model according to the principle of maximum likelihood estima-
tion [19]. From the point view of optimization techniques, the object function is not

200 D. Kong et al.

concave in terms of the mixture of two different Markov chains, thus directly setting
the first order derivatives on the likelihood does not work. This model is also different
from the standard mixture model which requires the same format of sub-models in a
mixture model. Thus we use the Expectation Maximum (EM) algorithm [20] to iter-
atively maximize the likelihood function with a gradient descent algorithm. The EM
algorithm usually takes two steps, Expectation Step and Maximization Step. At each
step, the model’s likelihood function is updated in the direction of gradient ascent, and
this process is iterated until the likelihood converges. The monotonic property makes
this approach effective for the solution of many non-convex optimization problems.
Next we show how to train our model with the EM algorithm.

First, we construct the affiliated function [20]

W (Θ,Q) =

N∑
n=1

2∑
k=1

Qnk log
πkg(xn|θk)

Qnk
, (6)

where Qnk works as the hidden variable to denote the weight of data point n in terms

of model k, and
2∑

k=1

Qnk = 1. Since the log function is a concave function, according

to the Jensen’s inequality,1 we have log(
∑

x) ≥
∑
log x. Thus logG ≥ W (Θ,Q).

The maximization of the object function G in Eq. (5) is equivalent to the maximiza-
tion of Eq. (6) because Eq. (6) is the new lower bound of the likelihood function
to be maximized. Let Θ denote the parameters in the transition probability matrix
Ak(xn,i|xn,j ; θk)(1 ≤ k ≤ 2), Q denote the hidden variable set Qnk. Let Θt and
Qt denote each group of parameters used in the tth iteration in the parameter estima-
tion process. During the maximization step, the object function of Eq. (6) is required to
be monotonically increased. Based on this, we obtain

W (Θt, Qt) ≤ W (Θt+1, Qt) ≤ W (Θt+1, Qt+1), (7)

which can be solved by using the Lagrange Multipliers [21] to find the stationary points
with argmax

Θ
W (Θ,Qt) and argmax

Q
W (Θt+1, Q) satisfied in each step.

Let C(xn,i|xn,j) denote the frequency of token transition from xn,j to xn,i in nth
sequence. Naturally, we use C(·|xn,j) to denote the frequency of the token transition
from xn,j to any tokens in the nth sequence of the model. To solve Eq.(7), we obtain
solutions in Eqs. (8–9). The complete training algorithm is shown in the table below.

Qnk =
πkg(xn|θk)
2∑

k=1

πkg(xn|θk)
, πk =

N∑
n=1

Qnk

N
, (8)

1 For any concave function f(x), if the balanced parameter t satisfies 0 < t < 1, we have
f(tx1 + (1− t)x2) � tf(x1) + (1− t)f(x2).

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 201

Ak(xi|xj ; θk) =

N∑
n=1

Qnk

Ln(Ln−λk)
C(xn,i|xn,j)

N∑
n=1

Qnk

Ln(Ln−λk)
C(·|xn,j)

, λ1 = p, λ2 = q. (9)

Algorithm 1. EM training Algorithm
Input: Instruction sequences I0, I1, I2, ..., In of each category, ε is the parameter used for con-

vergence decision.
Output: Parameters (Θ,Q) for each category.
Procedure:
1: Initialize πk, Ak(xn,i|xn,j ; θk), Qnk(1 ≤ k ≤ 2)
2: Compute the probability for each sequence to obtain W (Θt, Qt) with Eq.(6)
3: update Qnk,πk with Eq.(8); update Ak(xn,i|xn,j) with Eq.(9)
4: if W (Θt+1, Qt+1)−W (Θt, Qt) < ε then
5: The algorithm converges, stop training
6: else
7: goto Step 2
8: end if

The above Markov-derived model has a large state space (232), and thus it seems im-
practical for code sequence recognition. Fortunately, lots of tokens never or seldom
appear in the state space, and this gives us the opportunity to greatly decrease the state
space. First, we ignore never appeared tokens and prune seldom appeared tokens by
setting a threshold. It leads to sparse items in the whole state space and very sparse
transition matrices. Second, we use the data structure of hash table for storage of state
transition probabilities in order to reduce the computation cost.

4 Evaluation

We test our system offline on massive polymorphic exploit code packets and on HTTP
normal reply/request traces. First of all, we evaluate our approach on different kinds of
exploit code in terms of false negatives and false positives, and then we compare our
approach with the approach free of any semantic analysis before attribution analysis.
Next, we evaluate our approach in terms of computation time cost. Finally, we discuss
the advantages and limitations of our approach.

The massive polymorphic exploit code packets are generated by the metasploit [14]
framework (e.g., PexFnstenvSub, Pex, ShikataGaNai), and also from polymorphic en-
gines (e.g., CLET [13], ADMmutate [22], JempiScodes [23]). CLET, ADMmutate,
JempiScodes and ShikataGaNai are advanced polymorphic engines which obfuscate
the decryption routines by metamorphism such as instruction replacement and garbage
insertion. CLET uses spectrum analysis to counterattack the byte distribution analysis.
Opcodes of the “xor” and “fnstenv” instruction are frequently found in the decryp-
tion routine of PexFnstenvSub and also in getting the values of register of the pro-
gram counter (GetPC). Pex uses xor decoders and relative call to get PC. The normal

202 D. Kong et al.

HTTP traffic contains 300,000 messages collected for three weeks at seven worksta-
tions owned by seven different individuals in our lab’s computers. To collect the traffic,
a client-side proxy monitoring incoming and outgoing HTTP traffic is deployed un-
derneath the web server. Those 300,000 messages contain various types of non-attack
data including JavaScript, HTML, XML, PDF, Flash and multimedia data, which ren-
der diverse and realistic traffic typically found in the wild. We run our experiments on
a 2.4GHz Intel Quad-Core machine with 2GB RAM, running Windows XP SP2.

4.1 Attribution Analysis Results

First, we evaluate our approach in different parameter settings in terms of different
combinations of p and q. Second, we compare our approach with the approach free of
making any semantic analysis beforehand. Here we do not discuss much about data
anomaly analysis, since they have been well studied in previous researches [15,24].

Exploit Code Attribution. For each category of exploit code, we generate a corre-
sponding TWMM Model, and then the new packets are fed into the model to eval-
uate the false positives and false negatives. We use 5-fold cross validation to train the
model and get the false negatives by matching the packet with the corresponding model.
During the packet attribution phase, a threshold is set to decide the attribution for this
packet. The threshold will both influence the false positives and false negatives in the
ROC curve. As is shown in Fig. 6, for different combinations of p and q, we can get
different results by setting different thresholds. Another factor to influence the attribu-
tion analysis result is the setting of the parameters p and q. There are many choices of
(p, q) combinations since p and q can be freely selected if we do not know any prior
knowledge of the structures of code sequences. It is not realistic to brute-force search all
possible (p, q) combinations. From our observations, for each token, the tokens close in
distance have much more influential power on it. That means p and q can be set to small
numbers. We do not know exactly which is the best to achieve the optimal results. In
our evaluation, tentatively, we select p, q ∈ {2, 4}. From the results on different datasets
in Fig. 6, we can infer that token relevances are different on different datasets. Besides
the parameters which influence the attribution results, the attribution analysis accuracy
varies depending on the “nature” of the exploit code. On all six datasets, the detection
accuracy can reach to above 90% in different parameter settings. This is a good indictor
to show the effectiveness of our approach. The false positive rate is up to 4.5% at most.
We may further bootstrap the misclassified packets to increase the analysis accuracy in
our future work. .

Comparison with Approach without Semantic Analysis. We compare our approach
with the approach free of any semantic analysis beforehand. The same TWMM model
is constructed for the original packets but without any semantic analysis before the
attribution analysis. In the approach without any semantic analysis, the tokens used are
all one-byte tokens because we do not have any prior knowledge about the minimum
semantic cell used in the whole code sequence. Note that the changes of combinations
of (p, q) do not make much difference for detection accuracy and false negative rate in
our attribution analysis, thus we set p = 2, q = 2 when making a comparison with the
approach without semantic analysis. The results are also shown in Fig. 6. Our semantic

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 203

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
A

cc
ur

ac
y

p=2,q=2
p=2,q=4
p=4,q=4
Without Filtering

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
A

cc
ur

ac
y

p=2,q=2
p=2,q=4
p=4,q=4
Without Filtering

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
A

cc
ur

ac
y

p=2,q=2
p=2,q=4
p=4,q=4
Without Filtering

(c)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
A

cc
ur

ac
y

p=2,q=2
p=2,q=4
p=4,q=4
Without Filtering

(d)

0 0.01 0.02 0.03 0.04 0.05 0.06
0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
A

cc
ur

ac
y

p=2,q=2
p=2,q=4
p=4,q=4
Without Filtering

(e)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
A

cc
ur

ac
y

p=2,q=2
p=2,q=4
p=4,q=4
Without Filtering

(f)

Fig. 6. Comparisons of semantic aware approach with the approach without filtering noises on six
data sets: (a) CLET; (b) ADMutate; (c) PexFnstenvSub; (d) JemipiScodes; (e) Pex; (f) Shikata-
GaNai

204 D. Kong et al.

Table 1. Average Time Cost for Each Packet (millisecond)

Polymorphic engine Training time Decision time
CLet 5,213 7.2

Admutate 4,142 3.2
PexFnstenvMov 3,829 4.5

JempiScodes 2,487 6.8
Pex 3,152 4.1

ShiKataGaNai 7,650 4.3

aware approach outperforms the approach without semantic analysis on all six data sets,
and the detection accuracy can be boosted more than 10% on all six data sets with nearly
the same false positives. The promising results show that our semantic aware attribution
analysis is effective and much better than the approach free of semantic analysis.

4.2 Performance Evaluation

Table 1 shows the time cost during the training phase and decision phase. The training
time is the average time cost for each packet used in training, which includes the time
of semantic analysis and also the time used for the training process of statistical model.
The decision time is the average time cost for packet recognition, also including the
time for semantic analysis. The training time cost is high due to the EM algorithm used
in mixture Markov model. The EM algorithm usually needs hundreds times of iterations
before convergence especially when data do not fit a model very well (e.g., exploit code
instances generated from ShiKataGaNai). It also takes time in the semantic analysis
module, but the time cost for semantic analysis is negligible compared with the EM
algorithm in the training process. Fortunately, in order to reduce the time cost, we can
conduct the training process offline before the recognition phase.

4.3 Discussion

Here we further discuss the strengths and limitations of our approach.

Strengths. First of all, our approach can filter noises through semantic analysis in the
code sequences, and thus it has very good noise tolerance. Second, our approach is
very robust to many different kinds of attacks (e.g., coincidental-pattern attacks [25],
the token-fit attacks [26], allergy attacks [27]) due to the semantic analysis module ap-
plied. Moreover, our approach explores the semantic features to the classification process
which leverages the “semantics” to increase attribution analysis accuracy. This opens a
door to combine the semantic analysis with statistical analysis for practical tasks.

Limitations. First of all, since our semantic module is based on static analysis, we
cannot handle some state-of-the-art code obfuscation techniques (e.g., branch-function
obfuscation) in the semantic module, which may mislead the feature generations be-
fore statistical analysis. This can be solved by referring to more complicated semantic
aware static/dynamic analysis techniques (e.g., symbolic execution, type inferences).
Secondly, for non-self contained exploit code [4], sometimes we fail to capture the fea-
tures of such code before statistical analysis. The code may mislead the classifier to

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 205

make the wrong decision results. This is also a problem that state-of-the-art statistical
learning techniques cannot handle. Finally, during the training phase, it may be diffi-
cult to get many (e.g., 300, 400) training data for each category in a real deployment
environment. The attribution results may decay due to lack of training instances. Fortu-
nately, compared with other models (e.g., Support Vector Machine), Markov model has
stronger recognition ability even with scare training data (e.g., 10, 20). That is why we
use Markov-derived model in our statistical modeling module.

5 Related Work

There is a large body of work in the area of exploit code analysis and detection. We
focus on two areas most related to our work: semantics-based approaches for malware
especially exploit code analysis, and statistics-based approaches for those analysis.

Semantics-Based Approaches. Malware including exploit code analysis has received
considerable attention from different research views. Various kinds of semantic tech-
niques have been explored by making static or dynamic analysis on the binary code
for malware detection. Emulation-based approaches [4,28] can be used to detect poly-
morphic shellcode by emulating the code execution to recognize specific behaviors
(e.g., decryption routines) through dynamic analysis. Libemu [3] is another attempt
to achieve shellcode analysis through code emulations. Gu et al. [29] present a new ma-
licious shellcode detection methodology by analyzing snapshots of the processs virtual
memory before input data are consumed. However, these emulation-based techniques
can be antagonized by many anti-emulation techniques [5]. In our work, we use the
static data anomaly techniques introduced in SigFree [15] to extract the semantics from
the malicious code sequences. Another similar work to the semantic module we use
is STIIL [24], which uses static taint and initialization analysis to detect exploit code
embedded in data streams/requests targeting web services. Christodorescu et al. [30]
present a dependency-graph based approach to mining the malicious behaviors present
in a known malware that are not present in a set of benign programs, which can be
used by malware detectors to detect malware variants. Also, Christodorescu et al. [31]
use a trace semantics to characterize the behaviors of malware as well as the program
being checked for infection, and use abstract interpretation to “hide” irrelevant aspects
of these behaviors for malware detection/classification. The motivation of our work is
very similar to these works, but ours is specific to exploit code category analysis, and
more importantly, we present a novel approach for attribution analysis which combines
the semantic analysis with statistical analysis. Spector [32] is a shellcode analysis sys-
tem that uses symbolic execution to extract the sequence of library calls and low-level
execution traces generated by shellcode. TaintCheck [33] exploits dynamic dataflow
and taint analysis techniques to help find the malicious input and infer the properties of
worms. Kruegel et al. [34] present a technique based on the control flow structural in-
formation to identify the structural similarities between different worm mutations. This
work is close to our technique in that it analyzes the variants of worms, but they target
worms, not exploit code.

206 D. Kong et al.

Statistics-Based Approaches. Song et al. [23] study the possibility of deriving a model
for representing the general class of code that corresponds to all possible decryption
routines, and conclude that it is infeasible. Our work combines the semantic anal-
ysis and statistical analysis for exploit code attribution analysis, making it robust to
many noise-injection attacks (e.g., allergy attack [27]). Different statistical model have
been explored for intrusion detection systems, e.g., n-gram model [16] used in traffic
anomaly detection, Markov chain model [8] used for web traffic anomaly detection and
support vector machine [6] used for detection of drive-by-downloads attacks. A game-
theoretical analysis on how a detection algorithm and an adversary could adapt to each
other in an adversarial environment is introduced by Pedro et al. [35]. For exploit code
attribution analysis, pure statistical approach may not produce very good results due to
lack of semantic information. Recent work SAS [36] has looked at the combinations
of semantic and statistical analysis to generate signatures for polymorphic worm detec-
tion. In contrast, our work is motivated for exploit code attribution analysis instead of
for polymorphic worm detection, and the statistical model is also different, leading to
different strategies used for classification and detection.

6 Conclusion

In this paper, we present SA3, an automatic exploit code attribution analysis system. On
the testing datasets, our approach outperforms the pure statistics-based approach with
much better accuracy. To our knowledge, this is the first work that combines semantics
and statistics for exploit code attribution analysis.

Acknowledgments. This work was partially supported by AFOSR FA9550-07-1-0527
(MURI), ARO W911NF-09-1-0525 (MURI), and NSF CNS-0905131.

References

1. CRET: Computer emergency response team, http://www.cret.org/
2. Securityfocus, http://www.securityfocus.com/
3. Baecher, P., Koetter, M.: Getting around non-executable stack (and fix),

http://libemu.carnivore.it/
4. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-Based Detection of Non-

self-contained Polymorphic Shellcode. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

5. Bania, P.: Evading network-level emulation,
http://packetstormsecurity.org/papers/bypass/

6. Konrad Rieck, T.K., Dewald, A.: Cujo: Efficient detection and prevention of drive-by-
download attacks. In: Proc. of 26th Annual Computer Security Applications Conference,
ACSAC (2010)

7. Wang, K., Cretu, G.F., Stolfo, S.J.: Anomalous Payload-Based Worm Detection and Sig-
nature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp.
227–246. Springer, Heidelberg (2006)

8. Song, Y., Keromytis, A.D., Stolfo, S.J.: Spectrogram: A mixture of Markov chains model
for anomaly detection in web traffic. In: Proceedings of the Network and Distributed System
Security Symposium (2009)

http://www.cret.org/
http://www.securityfocus.com/
http://libemu.carnivore.it/
http://packetstormsecurity.org/papers/bypass/

SA3: Automatic Semantic Aware Attribution Analysis of Remote Exploits 207

9. AV-test, http://www.av-test.org/
10. Hu, X., Chiueh, T.-C, Shin, K.G.: Large-scale malware indexing using function-call graphs.

In: ACM Conference on Computer and Communications Security, pp. 611–620 (2009)
11. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the infeasibility of

modeling polymorphic shellcode. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS), pp. 541–551 (2007)

12. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. In:
Technical Report 148. University of Auckland (1997)

13. Detristan, T., Ulenspiegel, T., Malcom, Y., Superbus, M., Underduk, V.: Polymorphic shell-
code engine using spectrum analysis,
http://www.phrack.org/show.php?p=61&a=9

14. Moore, H.: The metasploit project, http://www.metasploit.com
15. Wang, X., Pan, C.C., Liu, P., Zhu, S.: SigFree: A signature-free buffer overflow attack

blocker. In: 15th Usenix Security Symposium (2006)
16. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Resistant to

Mimicry Attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 226–
248. Springer, Heidelberg (2006)

17. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press
(1961)

18. Meyn, S.P., Tweedie, R.: Markov Chains and Stochastic Stability. Cambridge University
Press (2005)

19. Aldrich, J.: R.A. Fisher and the making of maximum likelihood 1912-1922. Statistical Sci-
ence 12, 162–176 (1997)

20. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, 1–38 (1977)

21. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Cambridge (1999)
22. Macaulay, S.: Admmutate: Polymorphic shellcode engine,

http://www.ktwo.ca/security.html
23. Jemiscode: Jemiscodes - a polymorphic shellcode generator,

http://www.shellcode.com.ar/en/proyectos.html
24. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: STILL: Exploit code detection via static taint and ini-

tialization analyses. In: Proceedings of Annual Computer Security Applications Conference,
ACSAC (2008)

25. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack resilience. In: IEEE Symposium on Se-
curity and Privacy (2006)

26. Newsome, J., Karp, B., Song, D.: Polygraph: Automatic signature generation for polymor-
phic worms. In: IEEE Symposium on Security and Privacy (2005)

27. Chung, S.P., Mok, A.K.: Advanced Allergy Attacks: Does a Corpus Really Help? In:
Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 236–255.
Springer, Heidelberg (2007)

28. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network–Level Polymorphic Shell-
code Detection Using Emulation. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS,
vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

29. Gu, B., Bai, X., Yang, Z., Champion, A.C., Xuan, D.: Malicious shellcode detection with
virtual memory snapshots. In: INFOCOM, pp. 974–982 (2010)

30. Christodorescu, M., Kruegel, C., Jha, S.: Mining specifications of malicious behavior. In:
Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2007), pp. 5–14. ACM Press, New York (2007)

http://www.av-test.org/
http://www.phrack.org/show.php?p=61&a=9
http://www.metasploit.com
http://www.ktwo.ca/security.html
http://www.shellcode.com.ar/en/proyectos.html

208 D. Kong et al.

31. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach to mal-
ware detection. In: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2007), pp. 377–388. ACM Press, New York
(2007)

32. Borders, K., Prakash, A., Zielinski, M.: Spector: Automatically analyzing shell code. In:
Proceedings of the 23rd Annual Computer Security Applications Conference, pp. 501–514
(2007)

33. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In: Proceedings of Network and Dis-
tributed System Security Symposium (2005)

34. Krugel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic Worm Detection
Using Structural Information of Executables. In: Valdes, A., Zamboni, D. (eds.) RAID 2005.
LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

35. Pedro, N.D., Domingos, P., Sumit, M., Verma, S.D.: Adversarial classification. In: 10th ACM
SIGKDD Conference On Knowledge Discovery and Data Mining, pp. 99–108 (2004)

36. Kong, D., Jhi, Y.-C., Gong, T., Zhu, S., Liu, P., Xi, H.: SAS: Semantics Aware Signature
Generation for Polymorphic Worm Detection. In: Jajodia, S., Zhou, J. (eds.) SecureComm
2010. LNICST, vol. 50, pp. 1–19. Springer, Heidelberg (2010)

Time-Traveling Forensic Analysis of VM-Based

High-Interaction Honeypots

Deepa Srinivasan and Xuxian Jiang

Department of Computer Science
North Carolina State University

dsriniv@ncsu.edu, jiang@cs.ncsu.edu

Abstract. Honeypots have proven to be an effective tool to capture
computer intrusions (or malware infections) and analyze their exploita-
tion techniques. However, forensic analysis of compromised honeypots
is largely an ad-hoc and manual process. In this paper, we propose
Timescope, a system that applies and extends recent advances in deter-
ministic record and replay to high-interaction honeypots for extensible,
fine-grained forensic analysis. In particular, we propose and implement a
number of systematic analysis modules in Timescope, including contam-
ination graph generator, transient evidence recoverer, shellcode extractor
and break-in reconstructor, to facilitate honeypot forensics. These anal-
ysis modules can “travel back in time” to investigate various aspects
of computer intrusions or malware infections during different execution
time windows. We have developed Timescope based on the open-source
QEMU virtual machine monitor and the evaluation with a number of real
malware infections shows the practicality and effectiveness of Timescope.

Keywords: Honeypots, Virtualization, Forensic Analysis.

1 Introduction

Honeypots have been used as an effective tool to capture and analyze computer
intrusions and malware infections [29, 35]. For example, by running a commod-
ity system, a high-interaction honeypot is typically designed to host vulnerable
services (that can be remotely exploited), and in the meantime also contains
additional monitoring software [4] to record intruders’ behavior. By allowing in-
truders to completely take over the system and monitoring their behavior, we
can better understand the motivations and techniques behind the intrusion. This
is helpful as it will raise the awareness of network situation and lead to better
design and development of next-generation intrusion detection systems (IDSs)
and anti-malware software.
Forensic analysis of honeypots, though critical for the success of honeypot

deployment, is still largely an ad-hoc, time-consuming process and ultimately
affected by the type of data collected from honeypots. To better utilize honey-
pots and facilitate their forensic analysis, we argue that there is a need for a

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 209–226, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

210 D. Srinivasan and X. Jiang

“time-traveling” capability in existing honeypots. By doing so, a security ana-
lyst will be given an opportunity to apply a new analysis method that may not
be available during the time when the honeypot was deployed. Moreover, by re-
peatedly “traveling back in time”, multiple phases of analysis can be performed,
either in parallel or sequentially. In the sequential case, one replay session can
also be based on results from previous replay runs.
To “rewind” a honeypot’s execution, an intuitive network-level approach would

be to replay the captured network traffic targeting the honeypot system (since
the honeypot is remotely compromised). However, due to inherent sources of
non-determinism in modern systems and software, by simply replaying the cap-
tured network packets, we may not be able to obtain the same execution of the
honeypot system. From another perspective, a number of system-level deter-
ministic record and replay (R&R) approaches have been proposed for a variety
of purposes, including fault tolerance [10], application debugging [1] and secu-
rity analysis [13,16]. Recording and replaying a VM is well-suited for honeypots
since we can capture and reproduce the entire system’s execution. However,
most prior VM R&R systems are not suitable for high-interaction honeypots
because either they do not support commodity OSes or require extensive OS-
level customization, or they heavily rely on proprietary virtual machine monitors
(VMMs) [1, 13]. Moreover, there is a lack of honeypot-specific forensic analysis
modules that can take advantage of VM R&R capability.
In this paper, we present Timescope – a time-traveling high-interaction hon-

eypot system designed for extensible, fine-grained forensic analysis. Leveraging
previous insights from VM-level R&R systems, we have developed an open-source
tool, hoping to engage the security community and benefit related research efforts
that may require similar features.1 In addition, we have extended our system by
developing a number of honeypot-specific analysis modules: contamination graph
generator (I), transient evidence recoverer (II), shellcode extractor (II), and break-
in reconstructor (IV). These modules are applied only during honeypot execution
replay sessions and placed externally so that the replay itself is not perturbed.
By allowing the analysis modules to “travel back in time”, it addresses key ques-
tions in honeypot forensic investigations, such as: “what are the contaminations
or damages caused by an intrusion?”; “what intermediate evidence (e.g., files
and directories), if any, has been erased by the attacker?”; “how is the attack
launched?”. We have implemented Timescope and these analysis modules based
on the open-source QEMU VMM [8] and enabled multi-faceted, inter-related
malware forensic analysis during multiple replay sessions. Our evaluation with
a number of attack scenarios, including real-world worm programs and kernel
rootkits, shows the practicality and effectiveness of Timescope to repeatedly
and comprehensively analyze past intrusions. The experiments are enabled by
repeatedly rewinding the honeypot’s execution, not based on the log from one
single run.

1 The source code, to be released in September 2011, will be available in one of the
co-authors’ websites.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 211

2 System Design

To better analyze compromised honeypots, our goal is to design an extensible
investigation framework that is tailored for honeypot forensics. Specifically, the
framework is intended to greatly facilitate an analyst to effectively reveal various
aspects of honeypot intrusions. In the following, we examine two main require-
ments for our investigation framework.

– Transparency. Our analysis framework must work with a commodity OS
without requiring any changes to the OS itself. This is needed because a
high-interaction honeypot will run environments that are representative of
production workloads. Also, due to the potential presence of multiple vul-
nerabilities in various services running in the honeypot and the need for
monitoring attackers’ behavior after the break-in, the framework should al-
low for the capture of the execution of the entire honeypot system, instead
of a selected few applications.

– Extensibility and Flexibility. The framework needs to be extensible to sup-
port various analysis modules, each examining a particular aspect of an in-
trusion. In other words, it can flexibly yield itself for instrumentation during
replays to enable in-depth forensic analysis. Further, any analysis module
that is supported in this framework should not perturb the deterministic
execution in a replay session.

Certainly, our design should also meet the basic honeypot requirement in provid-
ing a “true” computer system to attackers and reliably recording the honeypot
execution for later replay. For example, to maintain the reliability of logging, we
need to avoid deploying any visible logging components inside the honeypot as
they can be potentially compromised once the honeypot is taken over. And the
collected log should not be placed within the honeypot. Also, the presence of the
framework and various analysis modules should not be exposed to an attacker.
In this paper, we assume that after compromising a honeypot, the attacker can

obtain the highest privilege level inside the honeypot. We envision the scenario
that an attacker exploits a vulnerability in a honeypot-hosted network daemon
(or a client-side software such as the web browser) and then gains control of the
system. After that, the attacker might deploy a rootkit to hide the intrusion.
Due to the leverage of the virtualization layer for honeypot hosting, we assume
a trusted VMM that provides necessary VM isolation (see Section 5).

2.1 Timescope Framework

The overall architecture of our system is shown in Figure 1. In essence, it in-
volves the fundamental VM record and replay support. Note that such support
can be applied at different levels in a running computer system such as for
individual processes or the entire machine. Due to the need for transparently
supporting honeypots on commodity hardware, we implement it at the system
virtualization layer such that the execution of an entire honeypot VM can be cap-
tured and replayed. Among various virtualization techniques available (such as

212 D. Srinivasan and X. Jiang

Log

Virtual Machine Monitor (VMM) Recording

Honeypot

User Applications

Guest Kernel

User Applications

Guest Kernel

VMM

User Applications

Guest Kernel

VMM

User Applications

Guest Kernel

VMM

result result result

analysis 2 analysis nanalysis 1

VM Record

VM Replay (session 1) VM Replay (session 2) VM Replay (session n)

Fig. 1. Timescope enables time-traveling forensic analysis of honeypots

para-virtualization, hardware virtualization etc.), we choose software-based full
virtualization and leverage dynamic binary translation (implemented in VMware
[6], VirtualBox [5], and QEMU [8]) which offers great flexibility for implementa-
tion of analysis modules. While it introduces high overhead over native system
performance, this is acceptable for honeypot purposes.
Timescope operates in two different modes: VM record logs the honeypot’s

execution and periodically takes a number of snapshots (or checkpoints that
contain processor, hardware devices and memory states); VM replay starts from
a chosen snapshot, then re-executes or rolls forward using the collected log to
deterministically reproduce the execution. Note that most events in the system
are deterministic (e.g. memory loads/stores and arithmetic operations). As such,
they do not need to be logged. Instead, the system will just re-execute these
events in the same way during replay as it did during VM record.
More specifically, if we abstract the entire guest as a simple VM process, its

execution is influenced by the input it receives from external entities (such as
I/O devices) and the response (including the run-time environment) from the un-
derlying hypervisor (such as asynchronous I/O, timers, and virtual interrupts).
Note that emulating guest VMs as processes will still introduce non-determinism
in the VM itself and this should be addressed as shown in Section 3. To interact
with external entities, it eventually uses the services also provided by the hyper-
visor (either through certain I/O operations or hypercalls). As a result, during a
VM record phase, we can just collect these influence factors or non-deterministic
inputs in a log file. During the VM replay phase, we can re-execute the same
sequence of instructions with the same input from the collected log and repro-
duce its execution, including the detailed attack sequence in the honeypot’s past
execution. Certainly, when the non-deterministic inputs are collected, we also

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 213

need to record the related timestamps, which is not based on wall clock time
but on the virtual time lapsed since the honeypot started its initial execution.
We point out that the output to external devices or peripherals will not affect
VM replay and hence need not be saved. In fact, the output can be reconstructed
as a by-product during the VM replay. This has the benefit of reducing the log
volume – which is especially the case when the honeypot happens to run some
I/O-intensive workloads.

2.2 Analysis Modules

With the development of companion analysis modules in Timescope, an analyst
can travel back in time and investigate an attack when it is happening. Anal-
ysis sessions can be started from different snapshots to perform specific data
collection within different time windows or use results from previous analysis
sessions. In the remainder of this section, we describe four representative anal-
ysis modules that can be flexibly plugged into the framework during a replay
session. One example attack scenario is that of a vulnerable service (e.g., the
Apache web server) running in a honeypot that is compromised. After the com-
promise, the attacker escalates his privilege to root and installs a kernel rootkit.
We assume the intrusion is observed by an administrator who notices some sus-
picious activity of the honeypot and denotes this detection point by DP. Then,
we launch analysis sessions with these modules sequentially, each running in its
own replay session.

Contamination graph generator (module I). The goal of this analysis module
is to help obtain a high-level view of attackers’ behavior by developing a con-
tamination graph. As pointed out in [24], this graph allows us to identify which
process was potentially exploited that led to the detection point. For this, the
necessary logs can be collected by instrumenting the VMM’s dynamic translation
layer to intercept and log all system calls made by all processes running inside
the honeypot. Note that these system calls are captured in the replay session,
not the record session! Along with each system call, we also record the virtual
CPU time to identify when the call was intercepted and the address of the in-
struction that is causing the system call. This analysis module helps address the
question: “What time window in a honeypot’s execution is interesting for fur-
ther analysis?” Note the narrow-down of the time window for detailed analysis
is helpful to perform targeted forensic analysis. As a result, with the generated
contamination graph, we can identify a starting (ST) and ending (EN) points
and the execution within [ST, EN] warrants further investigation.

Transient evidence recoverer (module II). Given a time window, this analysis
module aims to recover attack evidence that may be erased during the intrusion.
For example, during an intrusion, it is likely that the attack may create tempo-
rary files (that contain intermediate computation results) or manipulate some
system state for various malicious purposes (e.g., opening a backdoor). As part
of the investigation process, it is extremely helpful to uncover all files that may
be erased or manipulated and inspect the recovered content to better understand
the attacker’s motivations.

214 D. Srinivasan and X. Jiang

Shellcode extractor (module III). In certain attack scenarios, there is also a
need to identify and extract the injected shellcode in memory. Note the shellcode
is typically transient and will not be saved in the disk. Yet, it is the first attack
code executed after successfully exploiting the vulnerability in the honeypot. In
this analysis module, we aim to keep track of the untrusted network input and
identify the set of data that is being executed as code. And this set of data is
considered as the shellcode. It is also possible that a DP might be generated due
to the shellcode execution, (e.g., an abnormal entry of logging a /bin//sh pro-
cess creation from the Apache web server). In our implementation, we leverage
existing efforts on dynamic taint analysis [28] and more details will be presented
in Section 3.2. Further, during a secondary run, this analysis module scans each
incoming network message that is read by the exploited process to identify the
timestamp when the shellcode is injected as well as the very moment the shell-
code is about to execute. This allows us to precisely locate the time window of the
code injection attack and aids in further analysis to reconstruct and understand
the vulnerability that was exploited.

Break-in reconstructor (module IV). The goal of this module is to perform
fine-grained analysis to understand how the execution of malicious, injected code
hijacks control flow and tampers with any system resources or objects in process
and kernel memory. Specifically, in the case of kernel rootkits, when the injected
malicious code executes, this module generates a log of all memory reads and
writes along with the memory contents. This collected log can then be analyzed
offline, in combination with the binary of the kernel being compromised, to de-
velop a profile of the injected code’s execution. With this module, we can “zoom
in” to monitor and analyze the execution of the injected attack code and apply
in-depth fine-grained analysis techniques. Thus, Timescope re-creates temporary
memory states and enables selective application of heavyweight techniques such
as execution profiling and improves their efficiency.
Finally, we note that forensic analysis is essentially an iterative process. Based

on results from previous phases, it is often the case that one may want to re-run
another analysis but with a different time window of the honeypot’s execution.
Timescope greatly facilitates such analysis with its extensible framework.

3 Implementation

We have implemented Timescope based on the open-source QEMU version 0.12.3
[8]. As mentioned earlier, due to the lack of a suitable open-source record and
replay implementation, we have to implement it from scratch. On top of that, we
further implement four honeypot-specific analysis modules. The dynamic binary
translation architecture in QEMU and its readily available source code make
it convenient for our implementation. Our development environment is a 32-bit
x86 Ubuntu 9.10 running Linux kernel 2.6.31-20.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 215

3.1 QEMU Record and Replay

In QEMU, a VM runs based on the emulated computer hardware and I/O de-
vices. Also for each running VM, there is a corresponding user-level process on
the host system. At its core, QEMU translates guest instructions in batches (ba-
sic blocks) and the resultant host instructions are known as translation blocks
(TBs). The translated TBs are then executed from a “main loop”. For optimized
execution, it employs a technique known as “direct block chaining” [8], where
TBs that have been previously translated can be re-used. When a device emula-
tor module in QEMU requires the attention of the CPU, it asynchronously calls
a function to signal that an interrupt is pending to be serviced. This causes the
main execution loop to exit and service the I/O. QEMU also uses a host timer
(by default, the real-time clock) to break periodically from the main loop and
perform actions such as refreshing user displays and updating virtual time.
This design brings an interesting observation in our implementation: if we en-

able R&R for the QEMU process, we can achieve the R&R for the emulated VM.
We believe this design choice is different from previous VM-based R&R frame-
works [13, 16, 30]. However, from another perspective, QEMU itself is a regular
but complex user-level program whose design introduces non-determinism in the
execution of a guest OS. This violates our requirement for a deterministic R&R!
Specifically, its execution is influenced by external sources of non-determinism
such as host OS timer facilities, device interrupts and asynchronous I/O.
To make the QEMU execution deterministic, we need to capture all external

inputs. For this, we use a technique known as function interposition. We notice
that the interface to access these external inputs is the glibc library, which is
loaded dynamically and all glibc symbols are resolved at run-time. As a result,
we can provide a wrapper for all functions that will be used by QEMU to in-
tercept these dependent glibc calls. During the VM record run, these function
calls first invoke the corresponding function in glibc and then record the values
of its output parameters and return value. During the VM replay run, the wrap-
per functions simply return the previously recorded output parameters and the
return value from the R&R log.
There is also a subtle issue related to time in QEMU. In particular, QEMU

issues the “rdtsc” instruction to read the timestamp counter from the host hard-
ware. For our purpose, we replace the code to this instruction with an equivalent
wrapper function. QEMU’s default behavior is optimized for performance - the
virtual CPU’s instructions are executed in a highly optimized loop and excep-
tions (such as device interrupts) are processed asynchronously. This causes non-
deterministic guest OS behavior. Instead for our implementation, we configure
QEMU such that one instruction will be executed in a fixed period of virtual
time. Moreover, I/O interrupts are checked and serviced only at the end of a
TB’s execution. With that, there is no need to rely on the host timer, which is
a major source of non-determinism in the original QEMU system.
By addressing the QEMU-inherent non-determinism and logging the exter-

nal input, our implementation enables deterministic VM record and replay. Also
from our implementation experience, there are additional details that are worth

216 D. Srinivasan and X. Jiang

mentioning. For example, to support R&R checkpoints, we use the built-in VM
snapshot feature in QEMU, but modify it to save and retrieve VM state images
to and from a separate file on the host filesystem. Also, our current implementa-
tion disables the asynchronous I/O support in QEMU which leads to additional
performance penalty (Section 4), but makes our implementation easier since it
only requires a single thread of execution to be recorded and replayed. Note
that this limitation is not inherent in our approach and can be effectively elimi-
nated [7]. Finally, during a replay session, all output from the virtual honeypot
to the serial port is allowed to pass through, so that an analyst can “view” the
honeypot’s execution progress.

3.2 Analysis Modules

To demonstrate Timescope’s time-traveling analysis capabilities, we have im-
plemented four analysis modules. These modules all operate outside the virtual
machine honeypot. Further, they all execute in replay sessions thus enabling
time-traveling forensic analysis. The modules we developed examine different
aspects of an intrusion, including contamination graph generation, transient ev-
idence recovery, shellcode extraction, and break-in reconstruction.

Contamination graph generator This analysis module typically runs immedi-
ately after a suspicious detection point (DP) has been identified. In particular, we
replay the VM execution and apply virtual machine introspection techniques [20]
to collect all system calls invoked by all processes running inside the honeypot.
At a high level, whenever the honeypot executes an int 0x80/sysenter instruc-
tion, it indicates that a system call is being requested by a process within the
honeypot. By examining the honeypot’s virtual registers, the system call and
corresponding arguments can be identified and reported. This process may fur-
ther involve examination of the honeypot’s memory and interpretation of the
name of the running process that invoked the system call and other system call
arguments. We point out that the interception and interpretation of guest system
calls at the VMM level has been implemented in a few other systems [15,20]. It is
interesting to note that all these techniques operate in a live system. Timescope
instead travels back in time and operates in a replayed “live” system.

Transient evidence recoverer As described in Section 2.2, given a starting
time (ST) and ending time (EN), this analysis module aims to capture all file
write activities, copy these files (including the modified content) out, and save
them on the host filesystem. By doing so, one can tell the list of files that
have been modified or removed by a particular process and all deleted files can
still be recovered for later analysis. For this, we first keep track of the open
file descriptors within the time window between ST and EN. In particular, our
implementation extends the system call interception in the first analysis module:
Whenever a sys open() system call is being invoked within the time window, we
retrieve the file name and when the corresponding call returns, we obtain the
file descriptor. We also track sys close() during this time window to discard
file descriptors that are no longer valid. The list of file names and descriptors is
maintained on a per-process basis. When a sys write() is intercepted, the size and

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 217

address of the buffer being written is retrieved from the EDX and ECX registers
of the virtual CPU respectively. The entire buffer is then retrieved from the VM
physical memory and stored to a corresponding file (referred to as recovered file)
in a specified directory on the host file system. The name of the recovered file
contains the process name that is writing to it and the file descriptor. If this file
was opened within the specified time window, we store the name of the file along
with the data. Thus, by looking at a recovered file, one can tell the name of the
file in the honeypot that is being modified, the corresponding file descriptor and
the data that was written. If the file was opened before the ST time window,
our current implementation will search through the system call log generated in
the first analysis module. Therefore, we are able to selectively create past states
of the honeypot’s execution.

Shellcode extractor Shellcode is typically the first attack code executed in an
intrusion. However, the shellcode itself is not saved in the disk and hence will not
be captured by previous analysis modules. In our implementation, we leverage
dynamic taint analysis techniques [28,33] to extract the attack code from mem-
ory. Specifically, all incoming network packets (via the virtual NE2000 device in
our current implementation) are tagged as tainted. And the taint information
will be propagated based on the instructions that operate on the tainted input.
Further, by instrumenting the call, jmp, and ret, we can monitor the illegal use of
the tainted data. In particular, if any of the targets in call, jmp or ret are tainted,
we know the attack code is about to execute. And the execution of tainted data
will be collected as the shellcode for analysis. In our implementation, we ex-
tract the malicious code by collecting a trace of tainted instructions that are
executed by QEMU. Using the addresses of these instructions and the running
process (as per the CR3 register), we further record related context information
about the shellcode, such as the name of the compromised process. Once the
shellcode has been identified, this module can be re-run in a secondary analysis
session to identify at which point in the exploited process’ execution, this data
was injected and understand how the data triggers the vulnerability. For remote
code injection attacks, we monitor the returns from the sys read() calls made by
the exploited process and compare the buffer that is read into memory. When
a match is found, the corresponding timestamp value and contents of the buffer
are stored to a file on the host OS. This needs to be executed only up to the
point when the first shellcode instruction is ready to execute.

Break-in reconstructor Once the injected malicious code has been identified
and extracted, this module generates an instruction execution trace. The trace
will be considered a working exploit against the vulnerability that leads to the
honeypot break-in. In our implementation, we further perform execution profil-
ing of the identified malicious code. For example, in our experiments with kernel
rootkits (Section 4.2), we leverage it and apply the combat tracking technique
described in PoKeR [34] to profile rootkit execution within a given time window
([ST, EN]). In particular, for a subset of instructions identified thus, all memory
reads and writes and their contents, are recorded in a log on the host OS. Then,
with the combat tracking technique, the kernel rootkit’s execution profile can

218 D. Srinivasan and X. Jiang

be obtained to reveal how kernel objects and control flow have been tampered
with. Note that while the experiment is conducted in the context of kernel-level
code injection, it can be readily extended to user-level code injection as well.

4 Evaluation

This section presents experimental results from our prototype implementation
of Timescope. We demonstrate the accuracy of our R&R implementation and
time-traveling forensic analysis capabilities. We also measure the performance
overhead introduced by our framework.

4.1 R&R Accuracy

To evaluate the accuracy and effectiveness of our prototype R&R implementa-
tion, we took two measures. First, during a replay session, in each system call
wrapper function, our prototype performs a self-check to make sure that the
requested system call number and its input parameters always match the next
one stored in the R&R log. Our experiments confirmed the correctness of our
prototype. Note this self-checking process is costly in terms of performance and
thus it is present only in debug builds of the prototype. Second, during several
tests of VM runs and their corresponding replay sessions, we collect all instruc-
tions (organized as basic blocks) executed by the honeypot and save them in two
separate log files. By literally performing a file comparison between the two, we
verify that the same instructions are executed in the same order, thus yielding
deterministic replay.

4.2 Time-traveling Analysis

To demonstrate the effectiveness of our prototype, we have launched four syn-
thetic attacks. The first one intentionally tests our second analysis module by
verifying the recovery of an intermediate file with randomly generated content.
For the rest, we utilized real-world malware, including a worm (Slapper [11])
and two rootkits (adore-ng [26] and SucKIT [32]), to understand their behaviors
and test all developed analysis modules. Here, we summarize three of them.

Experiment 1: Intermediate evidence recovery In the first experiment, we
show the ability of Timescope to re-create past, non-predictable temporary state
and retrieve the content from a replay session for comparison. Specifically, we
intentionally create a program that will generate an intermediate file with 1 MB
random data. The file will be uploaded to a remote server and then immediately
deleted. In the experiment, the run of this program is captured in a VM record
session. In a replay session, we aim to uncover the content of the intermediate
file using the second analysis module and compare with the copy saved in the
remote server. Our manual verification indicates the uncovered file has the same
md5sum from the server copy.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 219

229089914982
rm −rf /tmp/.bugtraq.c

229168436128

/usr/lib/gcc−lib/i386−redhat−linux/3.2/cc1
−lang−c −v −iprefix

230379424260

/usr/bin/as −V −Qy −o

/tmp/ccBWSjFl.o /tmp/cc8FAmCz.s

/tmp/cclHaBFS.ld

229151593612

/usr/bin/uudecode −o

/tmp/.bugtraq.c /tmp/.uubugtraq

httpd

/tmp/ccBWSjFl.o

/tmp/.bugtraq 192.168.10.2
230522592036

2287203867146

bash −i

229166113134
gcc −B /usr/bin/ −v −o

228715486850

/bin//sh

−−eh−frame−hdr

230458369906
/usr/lib/gcc−lib/i386−

redhat−linux/3.2/collect2

/tmp/.uubugtraq

/tmp/.bugtraq.c

/tmp/.bugtraq /tmp/.bugtraq.c
−lcrypto

/tmp/cc8FAmCz.s

/tmp/cc4MfwqY.o

/tmp/ccOUzBj4.c 230459271402
/usr/bin/ld

/tmp/.bugtraq

Fig. 2. The contamination graph of Slapper worm reconstructed from a Timescope-
based replay session

Experiment 2: Slapper worm analysis In this experiment, we demonstrate
the time-traveling analysis capabilities of Timescope for a code injection attack
(Slapper worm). Particularly, we setup a Timescope Redhat Linux 8.0 honeypot
(in our isolated lab network) running a vulnerable Apache server (version 1.3.22),
along with mod ssl support that has a buffer overflow vulnerability exploited by
Slapper. From another physical machine, we launch the Slapper worm and direct
it to infect the honeypot. On the honeypot, we detect the presence of the worm by
monitoring processes running and notice the process “.bugtraq”. At this point,
we pause the honeypot VM and retrieve the R&R log.
Our analysis is performed using multiple replay sessions using the previously

described analysis modules (Section 2.2). We start a replay session with the first
analysis module and using the results, we apply the backtracking algorithm [24],
to generate a contamination graph (Fig. 2) of the Slapper infection. In this graph,
an oval represents a process; a rectangle represents a file. The numbers in each
oval represent the virtual timestamp at which the system call to execute the
corresponding process was intercepted. The graph illustrates how the suspect
process “.bugtraq” came to exist and shows that the httpd (Apache) process
was compromised to spawn a shell process. We point out our analysis result is
consistent with other Slapper analyses [20, 31].

220 D. Srinivasan and X. Jiang

(.bugtraq process
Detection Point

is observed)

VM Record

Snapshot

(error_log, ssl_engine_log) *

Data written to
2 files by httpd

(including Slapper source code) *
as, bash, ld, cc, uudecode
Data written to 8 files by

/bin//sh *
httpd spawned .bugtraq process

is launched *
VM Replay
session 1

VM Replay
session 2

VM Replay
session 3

VM Replay
session 4

Attack began with
malicious input *

Honeypot execution timeline

Fig. 3. Timescope-based multi-phase time-traveling forensic analysis of Slapper in-
fection: The replay sessions are run only for the time window indicated by the solid
regions in the execution timeline; results obtained during a replay session are indicated
by asterisks

Next, we start another replay session with the second analysis module. This
replay session focuses on a time window specified by two virtual timestamp values
(ST - when the “/bin//sh” process is spawned; EN - when the “.bugtraq” process
is launched). Our results show that there are 8 files that have been written to
(including the entire decoded Slapper source code), and their contents are stored
externally as part of analysis results. Using the third analysis module, we extract
the injected shellcode in memory that invoked the “/bin//sh” process. For this,
we extract the address of the instruction in the httpd process that caused the
sys execve() to spawn the shell process. We execute a Timescope replay session
to collect the instruction trace of the honeypot and search for this instruction
address (and the process memory layout identified by the CR3 value). Then, we
can identify the basic block of instructions that causes this shell to be spawned.
Using a secondary run of the shellcode extractor, we further identify the times-

tamp when the malicious code was injected into the process. With that, we
identify a new time window for further analysis - from the time this injection
occurred in the vulnerable process until the time the shell process was spawned.
With the new time window, we execute another Timescope replay session with
the second analysis module and we can interestingly identify two files that are
modified (including 2 log entries written to Apache’s error log). As reported
in [31], such behavior is related to the nature of the vulnerability exploited by
Slapper. Putting it all together, Fig. 3 shows a more complete picture of the
Slapper worm infection. Specifically, it depicts various events of interest along a
timeline in the honeypot’s execution.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 221

Accessing

kernel memory

for writing

0xc7026092: mov %ebx,%eax

0xc7026094: sub $0x804f040,%eax

0xc7026099: lea 0x8050198(%eax),%edx

0xc702609f: mov %edx,0xec(%ebx)

0xc70260a5: lea 0x80502d9(%eax),%edx
.......

0xc7026073: mov −0x10(%ebp),%edi

0xc7026076: rep stos %al,%es:(%edi)

0xc7026078: call 0xc702440b

0xc702440b: call 0xc7024414

0xc7024414: pop %eax

0xc7024415: ret

0xc70261b7: mov 0x10(%ebp),%edx

0xc70261ba: mov (%edx),%eax

0xc70261bc: mov %ebx,(%eax)

0xc70261be: mov 0x4(%edx),%eax

0xc70261c1: mov %ebx,(%eax)

0xc70261c3: add $0x1c,%esp

0xc70261c6: pop %ebx

0xc70261c7: pop %esi

0xc70261c8: pop %edi

0xc70261c9: leave

0xc70261ca: ret

0xc7026044: push %ebp

0xc7026045: mov %esp,%ebp

0xc7026047: push %edi

0xc7026048: push %esi

0xc7026049: push %ebx

0xc702604a: sub $0x1c,%esp

0xc702604d: mov 0x8(%ebp),%ebx

0xc7026050: lea 0x8050e0b(%ebx),%eax

0xc7026056: mov %eax,−0x10(%ebp)
.......

.......

Injecting code

into kernel memory

....
41284574626 [sys_oldolduname 59]

....
41284665890 [sys_lseek 19]: fd 3; offset 0xc037d400; origin 0
41284666202 [sys_read 3]: 3
41284666722 [sys_lseek 19]: fd 3; offset 0xc01090dc; origin 0
41284667034 [sys_read 3]: 3
....
41284691124 [sys_query_module 167]: module
....
41285184390 [sys_lseek 19]: fd 3; offset 0xc0302d1c; origin 0
41285184702 [sys_read 3]: fd 3
....
41285185218 [sys_lseek 19]: fd 3; offset 0xc0302d1c; origin 0
41285185530 [sys_write 4]: fd 3 Size: 4
....
41285195942 [sys_oldolduname 59]
....
41285196362 [sys_lseek 19]: fd 3; offset 0xc7024400; origin 0

....
41285210682 [sys_lseek 19]: fd 3; offset 0xc0302d1c; origin 0
41285210994 [sys_write 4]: fd 3 Size: 4
....
41285211526 [sys_oldolduname 59]
....
41285252480 [sys_socket 102]1: family 2; type 3; protocol 6
41285256270 [sys_fork 2]:
....
41285308920 [sys_exit 1]

41284560802 [sys_getpid 20]

41285196674 [sys_write 4]: fd 3 Size: 7627

41284594728 [sys_open 5]: /dev/kmem; flags O_RDWR

Malicious code identified for profilingSystem call log entries extracted for malicious "install" process

Virtual time [Syscall name & number] Interpreted arguments

Fig. 4. SucKIT rootkit analysis using Timescope

Experiment 3: SucKIT rootkit analysis In this experiment, we aim to demon-
strate how Timescope’s replay-based forensic analysis techniques can be used
to analyze intermediate memory states in the honeypot. For this, we use the
SucKIT kernel rootkit to attack a honeypot VM. Presuming the scenario of a
compromised root password, we launch this attack by logging remotely to the
honeypot VM (running in an isolated lab environment), downloading the rootkit
and executing a script to install it. To analyze this attack, we run a replay ses-
sion with the first analysis module and notice the root login and the subsequent
commands that were executed (with the sys execve() system call). A subset of
the log is shown in Fig. 4. In particular, we notice the command “install” run by
the attacker and that it opens the file /dev/kmem which, gives complete write
access to the root user to write to arbitrary locations in the kernel memory.
To highlight a subset of the execution profiling analysis, consider the lines in-
dicating that the kernel memory is being overwritten as shown in Fig. 4. These
lines indicate kernel memory being overwritten from the ranges 0xc7024400 to
0xc70261cb. Hence, to perform execution profiling, we use the fourth analysis
module and generate a log of memory reads and writes and their contents for in-
structions fetched from addresses in these ranges when the processor is in kernel
mode. Fig. 4 shows a subset of the instruction trace extracted in this range that
is analyzed in detail. We can then run the log through PoKeR’s combat-tracking

222 D. Srinivasan and X. Jiang

Table 1. Performance overhead in a VM record session

Benchmark Configuration Relative performance with QEMU

nbench Default 0.97x - 1.39x

gzip Compress 250 MB file 1.05x

ApacheBench ab -c3 -t60 1.62x

algorithm to identify the set of kernel objects being manipulated by the SucKIT
rootkit. One interesting observation we would like to note in Fig. 4 is that the
“install” user process is issuing a sys oldolduname() system call, when in reality,
the rootkit overwrote the address of this system call handler in the kernel mul-
tiple times to use it for allocating kernel memory, injecting rootkit code in the
kernel space, and hijacking kernel control flow. By combining different analysis
modules in our system, we are able to understand the purposes of tampering
with these data structures in the kernel memory.

4.3 Performance

After demonstrating the accuracy and effectiveness of our prototype, we then
measure its performance overhead. In particular, as we are less concerned with
the overhead during a replay session, we mainly measure the recording overhead.
All the experiments were done with the Timescope honeypot running on a Dell
Precision T1500 system with an Intel Core i7 2.8 GHz CPU and 4 GB physical
memory. In our measurement, we ran three different benchmarks - Linux nbench
[3], ApacheBench [2] and gzip. The configurations of these benchmarks as well
as the results are summarized in Table 1. Each test was run 10 times and the
averages are used to assess the overhead, compared to the default QEMU 0.12.3.
From the table, our evaluation indicates that recording introduces low over-

head for the computation-intensive nbench - this is as expected, since most of the
execution does not involve external interaction (or involvement of the recording
layer). The slowest one in this suite is the “Assignment” test with a relative per-
formance of 1.39x. In a couple of other tests, a minor speedup is noticed, which
is due to the variation of different runs. Our evaluation indicates that recording
introduces low overhead for the computation-intensive nbench (0.97x - 1.39x of
the default QEMU performance). This is as expected, since most of the execution
does not involve external interaction (or involvement of the recording layer). For
the gzip test, we generated a 250MB file with random data and compressed it,
and find that gzip performs at 1.05x of the default QEMU performance. In the
case of ApacheBench, it performs at 1.62x of the default QEMU - this is a largely
I/O-driven workload, hence the recording software is capturing large amounts
of system activity. Though the performance overhead may seem high for normal
production systems, we consider it is acceptable for honeypot purposes. From
another perspective, the performance overhead is introduced due to certain sim-
plifications we made in the implementation - e.g. disabling asynchronous I/O
which could be addressed using other techniques [7].

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 223

5 Discussion

In this section, we describe current limitations in our prototype and possible
solutions to mitigate them. Our honeypot framework shares certain limitations
with other VM-based intrusion detection systems - the presence of the VMM
can be detected by an attacker. However, recent tests have shown that only a
small percentage [12] of malware currently perform such checks. Also, with the
popularity of virtualized platforms, they may also appear attractive to existing
malware. Moreover, recent work [7,23] shows promising ways to detect the change
in a malware’s execution in a virtual environment from a native one and adapt
accordingly the underlying VMM layer to handle such difference. In this case,
R&R could be leveraged to resume the malware’s execution from the point of
detection, with the VMM code now adapted to avoid detection and resume the
malware analysis. Similar to other VMM-based security research efforts [16, 17,
18, 20, 21], we assume a trustworthy VMM and this is supported with recent
progress in improving the hypervisor security [25, 27, 38].
Our analysis modules can also be further extended. For example, it will be

helpful to develop extensions with the ability of launching a “go live” session
during a replay. That is, instead of executing based on input from the log, the
VM resumes real execution from a checkpoint state during a replay. Also, another
example will be the development of “what-if” analysis modules that could alter
certain input to the VM or its state and determine its effects. This will prove
useful for developing and testing defense mechanisms. However, this will require
a “live” session of the honeypot and would possibly need network packets to be
replayed, depending on the kind of attack.

6 Related Work

In traditional host-based high-interaction honeypots, monitoring software (e.g.,
Sebek [4]) is introduced into the honeypot environment and the logs generated
from it are used for forensic analysis. As another example, the Forensix [19]
system targets answering various queries related to an intrusion by collecting
detailed system information and enabling the resultant log for fast retrieval of
queried data. Such systems are limited in re-creating past temporary state (such
as memory state) and applying new data collection mechanisms. From another
perspective, to address the issue of tamper-resistant forensic analysis while still
collecting semantic-rich information, honeypots can be installed as virtual ma-
chines and the monitoring software operates at the VMM or hypervisor layer
(e.g., by leveraging virtual machine introspection techniques [18, 20]).
Further, the use of virtualization significantly improves deployment and man-

agement of honeypots and many honeypot systems have leveraged virtualization
to monitor and analyze new attacker techniques [22, 36, 37]. In Timescope, by
using VM-based R&R and introducing forensic analysis modules in the VMM
layer, one can rewind the honeypot’s execution and examine past states of the
honeypot in a transparent and non-perturbing manner.

224 D. Srinivasan and X. Jiang

The use of R&R has been proposed previously for a variety of purposes. For
example, application cloning [9] aims to capture an application’s execution and
replay it to its clone on another machine. Aftersight [13] presents the general case
for decoupled intrusion detection analysis so that production workloads’ perfor-
mance are not impacted by heavyweight analysis techniques. Similarly, Cross-
cut [14], allows replay logs to be “sliced” along time and abstraction boundaries.
Both Aftersight and Crosscut implement the record feature based on a pro-
prietary VMM, which significantly limits the capability to customize existing
forensic analysis modules or prevents the development of new ones. ReVirt [16]
presents a similar VM-based R&R system, but requires a heavily para-virtualized
guest OS kernel for the R&R capability. Argos [33], originally developed for cap-
turing zero-day attacks with system-wide taint analysis, has been extended for
VM R&R. By leveraging and extending the insights from these R&R systems,
we have additionally developed a number of R&R-empowered interdependent
investigation modules for honeypot-specific forensic analysis (four of them have
been demonstrated in the paper).
Meanwhile, it is worth mentioning that our approach to implement R&R is

different from most previous ones, i.e., the host-based virtualization approach
taken by QEMU will introduce non-determinism in the VM systems. Accord-
ingly, we have to address such non-determinism to enable desirable R&R for
honeypot analysis purposes. Also, our analysis modules are tailored for use in
multiple-stage forensic analysis of honeypots. The development and deployment
of a series of interdependent forensic analysis modules are helpful to construct a
comprehensive picture of an intrusion. As a result, our system helps to address
key questions in honeypot forensic analysis: “At what point in the execution of
a honeypot should we retrieve its state for forensic analysis?” “Should a broader
or narrower time window of the honeypot’s execution be considered for further
analysis?” “What data structures in memory were tampered by the intrusion?”

7 Conclusion

Honeypots are a valuable tool for intrusion and malware infection analysis. In
this paper, we present Timescope, a honeypot record and replay system that
greatly enhances existing ways to perform forensic analysis of honeypots. Par-
ticularly, by allowing (potentially new) analysis methods to “travel back in time”,
Timescope offers great flexibility in the types of intrusion analysis that can be
done. We have developed a QEMU-based prototype and four representative anal-
ysis modules. Our evaluation with a number of synthetic honeypot attacks has
demonstrated its effectiveness by repeatedly rewinding the honeypot’s execution
and comprehensively revealing various aspects of honeypot intrusions.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their insightful comments that helped improve the presentation of this
paper. This work was supported in part by the US Air Force Office of Scientific
Research (AFOSR) under Contract FA9550-10-1-0099 and the US National Sci-
ence Foundation (NSF) under Grants 0852131, 0855297, 0855036, 0910767, and
0952640. Any opinions, findings, and conclusions or recommendations expressed

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 225

in this material are those of the authors and do not necessarily reflect the views
of the AFOSR and the NSF.

References

1. The Amazing VM Record/Replay Feature in VMware Workstation 6,
http://blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html

2. Apache HTTP Server Benchmarking Tool,
http://httpd.apache.org/docs/2.0/programs/ab.html

3. Linux/Unix nbench, http://www.tux.org/~mayer/linux/bmark.html
4. Sebek Project, http://projects.honeynet.org/sebek/
5. VirtualBox, http://www.virtualbox.org
6. VMware Inc., http://www.vmware.com
7. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient

Detection of Split Personalities in Malware. In: Proceedings of the 17th Annual
Network and Distributed System Security Symposium (2010)

8. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proceedings of
the 2005 USENIX Annual Technical Conference (2005)

9. Bergheaud, P., Subhraveti, D., Vertes, M.: Fault Tolerance in Multiprocessor Sys-
tems Via Application Cloning. In: Proceedings of the 27th IEEE International
Conference on Distributed Computing Systems (2007)

10. Bressoud, T.C., Schneider, F.B.: Hypervisor-based Fault Tolerance. In: Proceedings
of the 15th ACM Symposium on Operating Systems Principles (1995)

11. CERT/CC: CERT Advisory CA-2002-27 Apache/mod ssl Worm,
http://www.cert.org/advisories/CA-2002-27.html

12. Chen, X., Andersen, J., Mao, Z.M., Bailey, M.D., Nazario, J.: Towards an Under-
standing of Anti-Virtualization and Anti-Debugging Behavior in Modern Malware.
In: Proceedings of the 38th Annual IEEE International Conference on Dependable
Systems and Networks (2008)

13. Chow, J., Garfinkel, T., Chen, P.M.: Decoupling Dynamic Program Analysis from
Execution in Virtual Environments. In: Proceedings of the USENIX 2008 Annual
Technical Conference (2008)

14. Chow, J., Lucchetti, D., Garfinkel, T., Lefebvre, G., Gardner, R., Mason, J., Small,
S., Chen, P.M.: Multi-stage Replay with Crosscut. In: Proceedings of the 6th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(2010)

15. Dinaburg, A., Royal, P., Sharif, M.I., Lee, W.: Ether: Malware Analysis via Hard-
ware Virtualization Extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security (2008)

16. Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: Enabling Intrusion
Analysis through Virtual-machine Logging and Replay. ACM SIGOPS Operating
Systems Review 36 (2002)

17. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual
Machine-Based Platform for Trusted Computing. In: Proceedings of the 19th Sym-
posium on Operating System Principles (2003)

18. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Proceedings of the 10th Annual Network and
Distributed Systems Security Symposium (2003)

19. Goel, A., Feng, W., Maier, D., Feng, W., Walpole, J.: Forensix: A Robust, High-
performance Reconstruction System. In: Proceedings of the 25th IEEE Interna-
tional Conference on Distributed Computing Systems Workshops (2005)

http://blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.tux.org/~mayer/linux/bmark.html
http://projects.honeynet.org/sebek/
http://www.virtualbox.org
http://www.vmware.com
http://www.cert.org/advisories/CA-2002-27.html

226 D. Srinivasan and X. Jiang

20. Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction
Honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

21. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection Through VMM-Based
“Out-of-the-Box” Semantic View Reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (2007)

22. Jiang, X., Xu, D.: Collapsar: A VM-based Architecture for Network Attack Deten-
tion Center. In: Proceedings of the 13th USENIX Security Symposium (2004)

23. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating Emulation-
Resistant Malware. In: Proceedings of the 2nd Workshop on Virtual Machine Se-
curity (2009)

24. King, S.T., Chen, P.M.: Backtracking Intrusions. ACM SIGOPS Operating Sys-
tems Review 37 (2003)

25. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal Verification of an OS Kernel. In: Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (2009)

26. LWN: A New Adore Root Kit, http://lwn.net/Articles/75990
27. Murray, D.G., Milos, G., Hand, S.: Improving Xen Security through Disaggrega-

tion. In: Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (2008)

28. Newsome, J., Song, D.: DynamicTaint Analysis: AutomaticDetection, Analysis, and
Signature Generation of Exploit Attacks on Commodity Software. In: Proceedings
of the 12th Annual Network and Distributed Systems Security Symposium (2005)

29. Northcutt, S., Novak, J.: Network Intrusion Detection: An Analyst’s Handbook,
2nd edn. New Riders Publishing (2000)

30. de Oliveira, D.A.S., Crandall, J.R., Wassermann, G., Wu, S.F., Su, Z., Chong,
F.T.: ExecRecorder: VM-based Full-system Replay for Attack Analysis and Sys-
tem Recovery. In: Proceedings of the 1st Workshop on Architectural and System
Support for Improving Software Dependability (2006)

31. Perriot, F., Szor, P.: An Analysis of the Slapper Worm Exploit,
http://www.symantec.com/avcenter/reference/analysis.slapper.worm.pdf

32. Phrack: Linux On-the-fly Kernel Patching without LKM,
http://www.phrack.org/issues.html?id=7&issue=58

33. Portokalidis, G., Slowinska, A., Bos, H.: Argos: An Emulator for Fingerprinting
Zero-Day Attacks. In: Proceedings of the 1st ACM European Conference on Com-
puter Systems (2006)

34. Riley, R., Jiang, X., Xu, D.: Multi-aspect Profiling of Kernel Rootkit Behavior. In:
Proceedings of the 4th ACM European Conference on Computer Systems (2009)

35. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Professional (2002)
36. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker,

G.M., Savage, S.: Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm. ACM SIGOPS Operating Systems Review 39 (2005)

37. Wang, Y.M., Beck, D., Jiang, X., Roussev, R.: Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites that Exploit Browser Vulnerabilities. In: Pro-
ceedings of the 13th Annual Symposium on Network and Distributed System Se-
curity (2006)

38. Wang, Z., Jiang, X.: HyperSafe: A Lightweight Approach to Provide Lifetime Hy-
pervisor Control-Flow Integrity. In: Proceedings of the 2010 IEEE Symposium on
Security and Privacy (2010)

http://lwn.net/Articles/75990
http://www.symantec.com/avcenter/reference/analysis.slapper.worm.pdf
http://www.phrack.org/issues.html?id=7&issue=58

Optimistic Fair Exchange of Ring Signatures

Lie Qu, Guilin Wang, and Yi Mu

Center for Computer and Information Security Research,
School of Computer Science and Software Engineering,

University of Wollongong, Wollongong,
NSW 2522, Australia

{lq594,guilin,ymu}@uow.edu.au

Abstract. An optimistic fair exchange (OFE) protocol is an effective
tool helping two parties exchange their digital items in an equitable way
with assistance of a trusted third party, called arbitrator, who is only
required if needed. In previous studies, fair exchange is usually carried
out between individual parties. When fair exchange is carried out be-
tween two members from distinct groups, anonymity of the signer in a
group could be necessary for achieving better privacy. In this paper, we
consider optimistic fair exchange of ring signatures (OFERS), i.e. two
members from two different groups can exchange their ring signatures in
a fair way with ambiguous signers. Each user in these groups has its own
public-private key pair and is able to sign a message on behalf of its own
group anonymously. We first define the security model of OFERS in the
multi-user setting under adaptive chosen message, chosen-key and chosen
public-key attacks. Then, based on verifiably encrypted ring signatures
(VERS) we construct a concrete scheme by combining the technologies of
ring signatures, public-key encryption and proof of knowledge. Finally,
we show that our OFERS solution is provably secure in our security
model, and preserving signer-ambiguity of ring signatures. To the best
of our knowledge, this is the first (formal) work on this topic.

Keywords: optimistic fair exchange, ring signatures, privacy, verifiably
encrypted signatures (VES).

1 Introduction

The concept of optimistic fair exchange (OFE) was first proposed by Asokan
et al. [1]. By executing an OFE protocol, two parties in networks are able to
fairly exchange their digital signatures with some help from an off-line trusted
third party (TTP). An OFE protocol usually has at least the properties: fair-
ness, non-repudiation and optimism. Fairness ensures that, if an honest party
does not get a valid signature of the other party at the end of a fair exchange
protocol, the other party cannot get that either. That is, either both two par-
ties get each other’s valid signature, or neither of them gets anything valuable.
Non-repudiation guarantees that any party in a fair exchange protocol cannot
repudiate or refute a valid signature after the protocol executed successfully. To
reduce the load of the TTP, Asokan et al. proposed optimistic fair exchange [1].

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 227–242, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

228 L. Qu, G. Wang, and Y. Mu

In an OFE protocol, there is an off-line TTP, called arbitrator, who acts as a
judge to settle the dispute between two parties and should only be involved when
the protocol does not run correctly (e.g. some parties cheating or communication
channel interrupted). The rare involvement of a TTP makes the fair exchange
protocol more efficient and secure.
An conventional way to build optimistic fair exchange protocols is verifiably

encrypted signature (VES), which was formally defined by Boneh et al. [2]. A
VES is an ordinary signature encrypted using the public key of a TTP, together
with a verifiable proof showing the validity of the encryption. Suppose Alice and
Bob exchange their signatures on a message. Due to mutual distrust, neither
of them wants to send his or her signature first. To solve this dilemma, Alice
can send a VES generated under a TTP’s public key to Bob first. Then, Bob is
able to verify the validity of the VES together with a proof showing that Alice’s
signature encrypted in the VES can be recovered by the TTP, but cannot obtain
the original signature from Alice unless Bob sends his own signature to Alice.
After that, if Alice refuses to reveal Bob her signature, Bob can ask the TTP to
decrypt Alice’s VES and obtain her original signature.
In some cases, the anonymity of participants in fair exchange might be im-

portant in order to protect participants’ privacy. For example, in the developed
commercial society, the personal preferences of negotiators in business contract
signing usually influence the terms of the final agreement. If a trading company
A has the old contract signing records of an employee as a negotiator in another
company B which is a potential trade cooperator of A, A can use these records
to generalize the negotiator’s trading habits, by which the company A might
get advantages in the future contract negotiation with the company B. Hence
it is desirable that the employees who have the right to independently sign a
contract on behalf of their own company can sign contracts anonymously, which
will prevent other companies from knowing the signer’s trading habits. To this
end, ring signatures invented by Rivest et al. [3] are the good primitive to pro-
vide the property signer-ambiguity, which was formally defined by Abe et al. [8].
Informally, in a ring signature scheme, the public keys of a group of users are
collected spontaneously to form a public-key list. When a signer signs a message
on behalf of such a ring, he uses the public-key list and adds his own private
key as a glue value to issue a ring signature. A verifier cannot tell who the real
signer is, because the ring signature is validated using all the public keys of the
ring without revealing any information about who produced it.
In this paper, we study optimistic fair exchange of ring signatures (OFERS), in

which users in each ring can fairly exchange their ring signatures with ambiguous
signers for the other ring. To the best of our knowledge, this is the first work on
the topic to present a formal security model of OFERS and a concrete solution
with provable security. After introducing some preliminaries in Section 2, we first
rigorously define the security model of OFERS in the multi-user setting under
adaptive chosen message, chosen-key and chosen public-key attacks (Section 3).
This is done by updating the formal models of OFE [5,6] in the scenario of ring
signatures. Secondly, we present a concrete OFERS scheme (Section 4), which

Optimistic Fair Exchange of Ring Signatures 229

is constructed from verifiably encrypted ring signatures (VERS) based on Abe
et al.’s scheme [8] under a TTP’s public key, together with a proof of knowledge
showing the validity of the original ring signature’s encryption. Theoretically,
any CCA2-secure [7] public-key encryption scheme can be used as such a proof
of knowledge always exists (but may be not efficient). To provide practicality
and high efficiency, Camenisch and Shoup’s CCA2-secure encryption scheme [19]
is particularly selected in the proposed scheme. Then, we formally show that the
proposed OFERS solution is provably secure in our security model (Section 5).
As the VES technique is employed, a notable feature of our scheme is that any
holder (not necessarily the signer) of a valid ring signature can verifiably encrypt
the ring signature to get a VERS without using any secret information from the
signer. Due to this feature, our scheme not only preserves signer-ambiguity [8]
of ring signatures, but also allows a signer to delegate a proxy (e.g. his/her
secretary) to run OFERS after he/she produced a ring signature in advance.
Finally, we discuss some extensions of our results and point out future work
(Section 6).

2 Preliminaries

In this section, we introduce the technologies used in our OFERS scheme.

2.1 Ring Signature of All Discrete-Log Case

Abe et al. proposed an abstract scheme of a ring signature and several concrete
examples in [8]. For the sake of simplicity, we choose the ring signature scheme of
all discrete-log case in [8] as our signature scheme. And Abe et al. have proved
that this ring signature scheme is unconditionally signer-ambiguous and exis-
tential unforgeability against adaptive chosen message and chosen public-key
attacks. The details of the scheme are shown below:
Let pi, qi be large primes, 〈gi〉 denote a prime subgroup of Z

∗
pi
generated by gi

whose order is qi. Let yi = gxi

i mod pi, where xi is the secret key and (yi, pi, qi, gi)
is the public key. Hi : {0, 1}∗ → Zqi denotes a collision-resistant hash function.
L is a list of (yi, pi, qi, gi), where i = 0, ..., n− 1 and n = |L|. A signer with the
secret key xk generates a ring signature on a message m under L as follows:

1. Randomly select α ∈ Zqk and compute ck+1 = Hk+1(L,m, gαk mod pk).
2. For i = k + 1, ..., n − 1, 0, ..., k − 1, randomly select si ∈ Zqi and compute

ci+1 = Hi+1(L,m, gsii ycii mod pi), and then sk = α− xkck mod qk.
3. Send the verifier (c0, s0, s1, ..., sn−1) as the resulting ring signature on the
message m under the public-key list L.

For i = 0, ..., n − 1, the verifier computes ei = gsii ycii mod pi, and then ci+1 =
Hi+1(L,m, ei) if i �= n − 1. The verifier accepts the ring signature if c0 =
H0(L,m, en−1), otherwise rejects.

230 L. Qu, G. Wang, and Y. Mu

2.2 Zero-knowledge Proof

In [9], Ateniese introduced an underlying proof of the equality of discrete log-
arithms, which is used for constructing verifiably encrypted signatures. In [11],
Camenisch and Michels proposed a concrete scheme to prove the equality of dis-
crete logarithms from different groups under the strong RSA assumption [12,13].
In this paper, we modify Camenisch and Michels’ proof as our zero-knowledge
proof so as to build a verifiably encrypted signature scheme based on Abe et al.
[8]’s ring signature introduced above. Camenisch and Michels’ proof is denoted

by PK{(α, β) : y1
G1= gα1 ∧ y2

G2= gα2 ∧ ỹ
Z
∗
n= hβ

1h
α
2 ∧ (−2l < α < 2l)}. The details

of the proof are shown below:
n is the product of two sufficiently large safe primes and must be large enough

to avoid factoring. h1 and h2 are two random elements with large order from
Zn. Let G1 and G2 be two distinct groups of orders q1 and q2 such that 2

l+1 <
min(q1, q2), where l is an integer, and g1 and g2 are the generators of G1 and

G2 respectively. Let y1
G1= gx1 and y2

G2= gx2 , ε > 1 is a security parameter which
controls the tightness of the statistical zero-knowledgeness. If −2(l−2)/ε < x <
2(l−2)/ε, the prover can convince the verifier that logy1

g1 = logy2
g2 in Z by the

following steps:

1. The prover randomly chooses r ∈ Zn and computes ỹ = hr
1h

x
2 mod n, then

randomly selects r1 ∈ {−2l−2, ..., 2l−2} and r2 ∈ {−(n2k)ε, ..., (n2k)ε}, where
k is the length of bits of the verifier’s challenge, and computes the commit-
ments: t1 = gr11 , t2 = gr12 , and t3 = hr2

1 hr1
2 . After that, the prover sends

(t1, t2, t3) to the verifier.
2. The verifier returns a random challenge c ∈ {0, 1}k.
3. The prover computes the responses s1 = r1 − cx and s2 = r2 − cr in Z, then
sends (s1, s2) to the verifier.

4. The verifier accepts the proof if and only if −2l−1 < s1 < 2l−1, t1 = gs11 yc1,
t2 = gs12 yc2 and t3 = hs2

1 hs1
2 ỹc hold.

Note that the proof above is based on the strong RSA assumption. The prover
should not know the factoring of n. Hence n, h1, h2 might be generated by the
verifier or a trusted third party. Before executing the proof, the prover should
check whether n is the product of two safe primes (see [14] for details) and
whether h1 and h2 have large order (see [15] for details). To convert this in-
teractive proof into a signature form on a message m, the prover can use a
suitable hash function h(·), which is agreed by the verifier, to compute the hash
value of all the public information instead of the verifier’s challenge c (e.g.
c = h(m||ỹ||y1||y2||g1||g2||t1||t2||t3)).

2.3 Encryption Scheme

In [9], Ateniese proposed a method to construct verifiably encrypted signatures
by encrypting an ordinary signature using some specific public-key cryptosys-
tems and giving a proof showing the validity of the signature’s encryption. In

Optimistic Fair Exchange of Ring Signatures 231

such cryptosystems (e.g. Naccache-Stern [16], Okamoto-Uchiyama [17] and Pail-
lier [18] public-key cryptosystems), computing a discrete logarithm using the
secret key is an easy task, but without the secret key, it is still hard. However,
all these public-key cryptosystems above do not satisfy the high level security
which protects against adaptive chosen-ciphertext attacks (CCA2). In [19], Ca-
menisch and Shoup proposed an adaptation of Paillier cryptosystem, which is
proven secure against adaptive chosen ciphertext attacks under the decisional
composite residuosity assumption [18]. To achieve the high level security, we
use Camenisch and Shoup’s scheme as our encryption scheme, which is briefly
described as follows:

1. Randomly select two Sophie Germain primes p′ and q′, where p′ �= q′, and
compute safe primes p = 2p′ + 1, q = 2q′ + 1 and n = pq. Then randomly
select x1, x2, x3 ∈R [n

2/4] 1 and g′ ∈ Z
∗
n2 , and compute g = (g′)2n, y1 = gx1

1 ,
y2 = gx2

2 , y3 = gx3

3 . Let h = (1 + n mod n2) ∈ Z
∗
n2 , abs: Z

∗
n2 → Z

∗
n2 map

(a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and to
(a mod n2) otherwise. Obviously for any v ∈ Z

∗
n2 , v2 = (abs(v))2 holds. H

is a collision-resistant hash function. A label L is some public information
added to the ciphertext (e.g. user’s identity or expiration time). The public
key is (n, g, y1, y2, y3), and the private key is (x1, x2, x3).

2. To encrypt a message m ∈ [n] with a label L ∈ {0, 1}∗, randomly select
r ∈R [n/4] and compute u = gr, e = yr1h

m and v = abs((y2y
H(u,e,L)
3)r). The

triple (u, e, v) is the resulting ciphertext.

3. To decrypt a ciphertext (u, e, v), first check whether abs(v) = v and
u2(x2+H(u,e,L)x3) = v2. If fail, output reject, otherwise compute m̂ =
(e/ux1)2t, where t = 2−1 mod n. If m̂ is of the form hm for some m ∈ [n],
then output m, otherwise output reject.

Recall the ring signature scheme presented in Section 2.1. Suppose the signer
generates a ring signature (c0, s0, s1, ..., sn−1). In the verification of this signa-
ture, the verifier needs to compute ei = gsii ycii , where i = 0, 1, ..., n− 1. In order
to convert the ring signature into a verifiably encrypted ring signature (VERS),
the signer sends the verifier wi = gsii instead of si and encrypts si using a TTP’s
public key. The verifier can do the verification by computing ei = wiy

ci
i instead,

but si is ‘hidden’ in wi since in this ring signature scheme computing a discrete
logarithm is hard, which means the verifier has not got the full ring signature
yet. Beside that, the signer needs to give a zero-knowledge proof for convincing
the verifier that the encrypted si is just the si hidden in wi. Note that encrypting
only one value in (s0, s1, ..., sn−1) can also ensure the initial ring signature hid-
den partially, which means the verifier still cannot draw the full ring signature
from the partially encrypted ring signature even though he gets the most parts
of the initial ring signature. Encrypting one value makes the cost of generating
a VERS does not depend on the size of the public-key list, which improves the
efficiency of the generation of a VERS.

1 For a positive integer a, [a] denotes the set {0, 1, ..., a− 1}.

232 L. Qu, G. Wang, and Y. Mu

To produce a verifiably encrypted ring signature, suppose the signer ran-
domly chooses su, where 0 � u � n − 1, from (s0, s1, ..., sn−1) as the hid-
den value, and encrypts su using Camenisch and Shoup’s encryption scheme
above. Let (n, g, y1, y2, y3, h) be the public key of a TTP. H is a collision-resistant
hash function, and L is the public label. The signer computes su’s ciphertext

u = gt, e = y1
thsu , v = abs((y2y

H(u,e,L)
3)t), where t ∈R [n/4]. After that, by

modifying the zero-knowledge proof introduced in Section 2.2, the signer gives
a non-interactive proof: PK{(su, t, r) : w = gsuu ∧ u2 = g2t ∧ e2 = y1

2th2su ∧
v2 = (y2y

H(u,e,L)
3)2t∧ ŵ = hr

1h
su
2 ∧−2l < su < 2l} to convince the verifier that the

TTP can extract su using its secret key and recover the original ring signature
completely. Note that anyone beside the signer has the capability to convert a
valid ring signature into a VERS without knowing any secret information from
the signer. The property signer-ambiguity [8] is well preserved since the hidden
value can be arbitrarily chosen in (s0, ..., sn−1) and no secret of the signer is
needed for producing a VERS based on a given ring signature. In our verifiably
encrypted ring signature scheme, for the sake of simplicity, we specify sn−1 as
the hidden value encrypted using a TTP’s public key no matter who the signer
is. The details are shown in Section 4.

3 Security Definitions

In [5], Dodis et al. presented a formal security model of optimistic fair exchange
under adaptive chosen message attacks in a multi-user setting, in which the
optimistic fair exchange protocol can be executed between different signers and
different verifiers. That is, multiple pairs of users can run the two-party fair
exchange protocol without compromising security. In adaptive chosen message
attacks [20], an adversary can access the signing oracle by asking for signatures
on arbitrary messages. In ring signatures, there are multiple users belonging to
each public-key list. So the multi-user setting is necessary for fair exchange of
ring signatures. Furthermore, Huang et al. [6] extended Dodis et al.’s model by
considering chosen-key model, i.e. an adversary may win a computational game
if it is allowed to employ some public keys without knowing the corresponding
private keys. By providing this extra flexibility, the chosen-key model is stronger
than the certified-key model (shown in [6]). In addition, we also consider chosen
public-key attacks in the setting of ring signatures, which is proposed by Abe
et al. [8]. In chosen public-key attacks, any adversary who wants to forge a
ring signature is only allowed to use arbitrary subsets of the initially considered
public-key list to access the signing oracle, but cannot append new public keys to
the initial public-key list. Therefore, in our security definitions specified below,
all the four factors above are addressed in the setting of OFERS as a whole.

Definition 1. (Syntax) Optimistic fair exchange of ring signatures

(OFERS) consists of seven probabilistic polynomial-time algorithms.

Optimistic Fair Exchange of Ring Signatures 233

– SetupTTP: On input a security parameter Param, the arbitrator executes
the algorithm to generate a public-private key pair (APK, ASK) and some
auxiliary information if necessary.

– SetupUser: On input Param and (optionally) the arbitrator’s public key
with the auxiliary information, the algorithm outputs public-private key pairs
(PKi, SKi) for every user in the ring. The public keys form a public-key
list L.

– RSig(m, L, SKs): A signer Us in the ring executes the algorithm by in-
putting a message m, a public-keys list L including PKs and its correspond-
ing private key SKs, then outputs a ring signature σ.

– RVer(m, L, σ): On input a message m, a ring signature σ on m under a
public-key list L, a verifier executes the algorithm to output either 1 or 0,
which means accept or reject respectively.

– PRSig(m, L, σ, APK): On input a message m, a signer’s public-key list
L, a ring signature σ on m under L, and the arbitrator’s public key APK,
the algorithm outputs a verifiably partial ring signature θ.

– PRVer(m, L, θ, APK): On input a message m, a signer’s public-key list
L, a verifiably partial ring signature θ on m under L, and the arbitrator’s
public key APK, the verifier executes the algorithm to output either 1 or 0,
which means accept or reject respectively.

– Res(m, L, θ, ASK): The resolution algorithm is executed by the arbitrator
if the verifier does not receive the full ring signature σ from the signer ring,
but has got the corresponding verifiably partial ring signature θ. On input a
message m, a signer’s public-key list L and a verifiably partial ring signature
θ on m under L, if θ is valid and the verifier has fulfilled its obligation to
the signer, the arbitrator extracts the full ring signature σ from θ using its
private key ASK and reveals it to the verifier, otherwise rejects.

Since there are three roles (signer, verifier, arbitrator) in OFERS, we should
consider how each role may violate different aspects of security, i.e. different se-
curity properties. Here we require the arbitrator should not be able to cheat some
participant by colluding with the other participant in the protocol since such a
collusive adversarial arbitrator can break the fair exchange trivially. Moreover,
the property signer-ambiguity should also be addressed as it is the heritage of
ring signatures.

Security Against Signers: For the fairness to verifiers, it is required that ex-
cept negligible probability, any probabilistic polynomial-time (PPT) adversarial
signer A should be not able to generate a verifiably partial ring signature, which
can be accepted by verifiers, but cannot be recovered to a valid full ring signa-
ture by an honest arbitrator. The property is formally defined by the following
game:

SetupTTP(Param) −→ (ASK,APK)
(m,L∗, θ)←− AORes(APK)

σ ←− Res(m,L∗, θ, ASK)
Success of A = [PRVer(m,L∗, θ, APK)=1 ∧ RVer(m,L∗, σ)=0]

234 L. Qu, G. Wang, and Y. Mu

where ORes denotes a resolution oracle, which takes as input a verifiably partial
ring signature on a message m under a public-key list L, and outputs a full ring
signature σ on m under L. In this game, the adversary A is allowed to arbitrarily
(i.e. not necessarily following the key generation algorithm) generate public keys
to form a list L∗. For each public key in L∗, A may not know the corresponding
private key. The chosen-key model is therefore accommodated here.

Definition 2 (Security Against Signers). Optimistic fair exchange of ring sig-
natures is said to be secure against signers if there is no PPT adversarial
signer A who wins the game above with non-negligible probability.

Security Against Verifiers: The property of security against verifiers requires
that, without help from the signer or the arbitrator, any PPT adversarial verifier
B should not be able to extract a full ring signature from the corresponding
verifiably partial ring signature with non-negligible probability. The property is
formally defined by the following game:

SetupTTP(Param) −→ (ASK,APK)
SetupUser(Param) −→ (SKi, PKi)

(m,L′, σ)←− BOPRSig ,ORes(APK,L)
Success of B = [RVer(m,L′, σ)=1 ∧ (m,L′, ·) /∈ Query(B, ORes)]

where L′ is an arbitrary subset of the initial public-key list L consisting of all
the PKi, the oracle ORes has been defined in the previous game, and the partial
ring signature signing oracle OPRSig , given as input a message m and a public
key list L′′, outputs a verifiably partial ring signature on m under L′′ using
the arbitrator’s public key APK. The Query(B, ORes) is the set of valid queries
which B asks to ORes. In this game, B can ask the arbitrator for resolving any
verifiably partial ring signature with respect to any sublist of L. Note that here
chosen-public key attacks are considered, as the adversary B is only required to
output a valid ring signature under L′ which is a subset of L but not necessarily
L. Moreover, L′ does not contain any public key generated by B. Otherwise, B
can win the game above trivially.

Definition 3 (Security Against Verifiers). Optimistic fair exchange of ring sig-
natures is said to be secure against verifiers if there is no PPT adversarial
verifier B who wins the game above with non-negligible probability.

Security Against the Arbitrator: For the fairness to signers, the property of
security against the arbitrator requires that except negligible probability, any
PPT adversarial arbitrator C should not be able to produce a full ring signature
without demanding the signer to generate a verifiably partial ring signatures.
The property is formally defined by the following game:

SetupUser(Param) −→ (PKi, SKi)
(ASK∗, APK)←− C(L)

(m,L′, σ)←− COPRSig(ASK∗, APK,L)
Success of C = [RVer(m,L′, σ)=1 ∧ (m,L′) /∈ Query(C, OPRSig)]

Optimistic Fair Exchange of Ring Signatures 235

where the oracles ORes, OPRSig , the public-key lists L′ and L have been de-
scribed in the previous games, and ASK∗ is the state information of C, which
may not correspond to the arbitrator’s public key APK. Query(C, OPRSig) is the
set of valid queries which C asks to OPRSig . We remark that this game considers
both chosen-key and chosen public-key attacks in the multi-user setting, as the
adversary C (a malicious arbitrator) does not need to know the corresponding
private key of the public key APK and can choose any sublist L′ of the initial
public-key list to forge a ring signature.

Definition 4 (Security Against the Arbitrator). Optimistic fair exchange of ring
signatures is said to be secure against the arbitrator if there is no PPT
adversarial arbitrator C who wins the game above with non-negligible probability.
In [8], Abe et al. specified the security definition of signer-ambiguity. In our
OFERS scheme, the signer should be still ambiguous in its own ring. By updat-
ing Abe et al.’s definition in the setting of OFERS, we formally define signer-
ambiguity as follows:

Definition 5 (Signer Ambiguity). Let L = {PKi} be an initial public-key list,
where each PKi is generated by running SetupUser → (PKi, SKi), and APK
be the arbitrator’s public key generated by running SetupTTP → (APK,ASK).
An OFERS protocol is called perfectly signer-ambiguous, if for any message
m, any public-key list L, any public key APK of the arbitrator, any valid full
ring signature σ ← RSign(m,L, SKs), and an associated verifiably partial ring
signature θ ← PRSig(m,L, σ,APK), where SKs is the signer’s private key,
given (m,L, θ, σ, APK), any unbound adversary D outputs index i such that
SKs = SKi with probability exactly 1

|L| , where |L| denotes the size of L.

Remark 1. Comparing with Abe et al.’s perfect signer-ambiguity [8] for ring
signatures, we also provide the verifiably partial ring signature θ of a full ring
signature σ to the adversary D, which allows D acquiring more information to
break signer-ambiguity. In fact, this is necessary because the signer-ambiguity in
ring signatures does not always guarantee the same property for OFERS (refer
to the counterexample discussion in Section 5). As the unbound adversary D
can derive all private keys from L, the above definition essentially means that
for fixed (m,L,APK), the distributions of θ and σ generated by using any
private key SKi are identical. In addition, Definition 5 specifies perfect signer-
ambiguity, and it can be easily extended to define statistical and computational
signer-ambiguity, two weaker versions of ambiguity.

4 The Scheme

In our OFERS scheme, we use verifiably encrypted ring signatures (VERS) to
construct verifiably partial ring signatures. In this section, we first present how
to produce a VERS, and then give an optimistic fair exchange protocol of ring
signatures. The generation and verification of ring signatures are similar to Abe

236 L. Qu, G. Wang, and Y. Mu

et al.’s ring signature in all discrete-log case (see Section 2.1) except some limi-
tation of selecting α and si. For the sake of simplicity, in our VERS scheme, we
always encrypt the last si, i.e. sn−1, as the hidden value. Obviously this does not
affect the scheme’s security since any si in (s0, ..., sn−1) can be the hidden value
no matter who the signer is. Then we use Camenisch and Shoup’s CCA2-secure
encryption scheme and give a proof:

PK{(sn−1, t, r) : w = g
sn−1

n−1 ∧ u2 = g2t ∧ e2 = y1
2th2sn−1 ∧ v2 = (y2y

H(u,e,L)
3)2t∧

ŵ = hr
1h

sn−1

2 ∧ −2l < sn−1 < 2l}
for convincing the verifier the validity of the encryption (see Section 2.3).

4.1 Verifiably Encrypted Ring Signature

The generation of a VERS consists of two steps. One is producing a conven-
tional ring signature consisting of three algorithms denoted by RS = (RKG,
Sig, Ver), the other is encrypting the ring signature consisting of three algo-
rithms denoted by EN = (Gen, Enc, Dec) with a zero-knowledge showing the
validity of the ring signature’s encryption. Suppose there are two rings called
RI and RJ . Ui and Uj denote the users in these two rings respectively. A signer
Uk in the ring RI sends a VERS on a message m to a verifier in the ring RJ .
LI and LJ denote the public-key list of the ring RI and RJ , and nI = |LI | and
nJ = |LJ | denote the size of LI and LJ respectively.

SetupTTP: On input the security parameter Param, the arbitrator executes
the key generation algorithm to output the public key (n, g, y1, y2, y3, h) and the
private key (x1, x2, x3) under Camenisch and Shoup’s encryption scheme [19]. qA
denotes the order of g, and l is an integer such that 2l+1 < qA. Meanwhile, the ar-
bitrator generates h1, h2 and n, which are used in the zero-knowledge proof intro-
duced in Section 2.2 (the modulus n must be large enough to avoid factoring but
does not need to depend on Param) and publishes (n, g, y1, y2, y3, h, h1, h2, n, l).

SetupUser: The setup of users is similar to the ring signature scheme in Section
2.1. For the user Ui, let yi = gxi

i mod pi, where the order of gi is qi > 2l+1.
xi is the secret key and (yi, pi, qi, gi) is the public key. Hi : {0, 1}∗ → Zqi is a
collision-resistant hash function.

RSign: The signer Uk in the ring RI signs a message m by executing the algo-
rithm below:

1. Randomly select α ∈ Zqk , and compute ck+1 = Hk+1(LI ,m, gαk mod pk).
2. For i = k + 1, . . . , nI − 1, 0, 1, . . . , k − 1, randomly select si ∈ (−2(l−2)/ε,
2(l−2)/ε), and compute ci+1 = Hi+1(LI ,m, gsii ycii mod pi).

3. Compute sk = α − xkck mod qk, where sk ∈ (−2(l−2)/ε, 2(l−2)/ε). If sk /∈
(−2(l−2)/ε, 2(l−2)/ε), properly reselect α and run the Step 1 to 3 again
until sk lies in the right interval. The resulting ring signature is σI =
(c0, s0, . . . , snI−1).

Optimistic Fair Exchange of Ring Signatures 237

RVer: For i = 0, . . . , nI − 1, the verifier computes ei = gsii ycii mod pi, then com-
pute ci+1 = Hi+1(LI ,m, ei) if i �= nI − 1. If c0 = H0(LI ,m, enI−1), the verifier
accepts σI as a valid ring signature, reject otherwise.

PRSig: The algorithm is used for converting a full ring signature σI to a verifi-
ably encrypted ring signature θI . Let ĥ : {0, 1}∗ → {0, 1}η be a collision-resistant
hash function and the public label L = m||LI .

1. Compute w = g
snI−1

nI−1 and encrypt snI−1 by computing

u = gt, e = yt1h
snI−1 , v = abs(y2y

H(u,e,L)
3)t

under Camenisch and Shoup’s encryption scheme.
2. Randomly select r ∈ Zn, r1 ∈ (−2l−2, 2l−2), r2 ∈ (−(n2η)ε, (n2η)ε) and

r3 ∈ (−(n2η)ε, (n2η)ε), compute ŵ = hr
1h

snI−1

2 mod n and t1 = gr1nI−1, t2 =

hr2
1 hr1

2 , u
′ = g

r3 , e′ = y1
r3hr1 and v′ = (y2y

H(u,e,L)
3)

r3
in their own groups.

3. Compute ĉ = ĥ(LI ,m,w, ŵ, u, e, v, gnI−1, g, h1, h2, t1, t2, u
′2, e′2, v′2) and v1 =

r1 − ĉsnI−1, v2 = r2 − ĉr, v3 = r3 − ĉt in Z. The resulting VERS is θI =
(c0, s0, ..., snI−2, w, u, e, v, ŵ, ĉ, t1, t2, u

′, e′, v′, v1, v2, v3).

PRVer: The verifier first computes ĉ′ = ĥ(LI ,m,w, ŵ, u, e, v, gnI−1, g, h1, h2,

gv1nI−1w
ĉ, hv2

1 hv1
2 ŵĉ, g2v3u2ĉ, y1

2v3h2v1e2ĉ, (y2y
H(u,e,L)
3)2v3v2ĉ), and checks whether

ĉ′ = ĉ and −2l−1 < v1 < 2l−1. If any condition does not hold, outputs the
VERS θI is invalid, otherwise computes ei = gsii ycii for i = 0, . . . , nI − 2 and
enI−1 = wy

cnI−1

nI−1 , and then computes ci+1 = Hi+1(LI ,m, ei) if i �= nI − 1. If c0
= H0(LI ,m, enI−1), the verifier accepts θI , reject otherwise.

Res: After the verifier shows a proof that he has fillfulled his obligation to
the signer, the arbitrator decrypts the ciphertext (u, e, v) using its secret key
(x1, x2, x3) to extract snI−1, and reveals the full ring signature σI to the verifier.

4.2 Optimistic Fair Exchange of Ring Signatures

By applying the verifiably encrypted ring signature scheme above, an optimistic
fair exchange protocol of ring signatures can easily be set up. Suppose two users
Ui and Uj in the rings RI and RJ respectively exchange their ring signatures on
a message m. The optimistic fair exchange protocol proceeds as follows:

1. Ui computes his ring signature σI=RSign(m,LI, SKi), and converts this
ring signature into a VERS θI=PRSig(m,LI , σI , APK) using the arbitra-
tor’s public key APK, then sends θI to RJ .

2. Uj checks whether PRVer(m,LI , θI , APK)= 1. If no, Uj quits, otherwise
Uj computes his ring signature σJ and sends it to RI .

3. Ui checks whether RVer(m,LJ , σJ)=1, if no, Ui stops the protocol, other-
wise Ui sends σI to RJ .

238 L. Qu, G. Wang, and Y. Mu

4. Uj checks whether RVer(m,LI , σI)=1, if yes, Uj accepts this ring signature.
If σI is invalid or Uj receives nothing from RI , Uj sends the arbitrator θI and
σJ to apply for resolution. The arbitrator first checks whether σJ is valid,
if yes, the arbitrator runs the algorithm Res(m,LI , θI , ASK) to recover σI ,
then sends σI to RJ and σJ to RI . If σJ is invalid, the arbitrator will send
a signal to both RI and RJ to inform Ui and Uj that the protocol has been
terminated.

Note that after Step 1, Uj can decide to carry on the protocol at any time he
wants, which might give Uj some advantages. To solve this problem, before the
protocol runs, Ui and Uj can set up a time point at which the protocol must be
completed.

5 Security Proof

In this session, we prove that our OFE protocol for ring signatures is secure in
the multi-user setting under adaptive chosen message, chosen-key and chosen
public-key attacks. Let RS = (RKG, RSig, RVer) denote Abe et al.’s ring
signature scheme, EN=(Gen, Enc, Dec) denote Camenisch-Shoup public-key
encryption scheme, and π be a non-interactive zero-knowledge proof showing the
proper encryption of a full ring signature. We have the following theorem:

Theorem 1: The proposed optimistic fair exchange of ring signatures is secure,
i.e. satisfies Definitions 2-5, if the underlying RS is secure with signer-ambiguity
and existential unforgeability against adaptive chosen message and chosen public-
key attacks, EN is secure against adaptive chosen ciphertext attacks (CCA2),
and π is a simulation-sound non-interactive zero-knowledge proof.

Proof. Security against signers: In our OFERS protocol, a valid verifiably
encrypted ring signature θ = (c0, s0, s1, · · · , sn−2, w, u, e, v, ŵ, ĉ, t1, t2, u

′, e′, v′, v1,
v2, v3) consists of three parts. The first part (c0, s0, s1, · · · , sn−2, w) is a ‘ring
signature’, where sn−1 is hidden in w = g

sn−1

n−1 . The second part (u, e, v) is the
ciphertext of encrypting sn−1 under the arbitrator’s public key, where u = gt,

e=yt1h
sn−1 and v=abs(y2y

H(u,e,L)
3)t for some t. The third part (ŵ, ĉ, t1, t2, u

′, e′, v′,
v1, v2, v3) provides a non-interactive zero-knowledge proof:

π = PK{(sn−1, t, r) : w = g
sn−1

n−1 ∧u2 = g2t∧ e2 = y1
2th2sn−1 ∧ v2 = (y2y

H(u,e,L)
3)2t

∧ ŵ = hr
1h

sn−1

2 ∧−2l < sn−1 < 2l},

which shows that the encrypted sn−1 is the same value hidden in w. Suppose an
adversary A breaks the security against signers in our OFERS protocol by forg-
ing a VERS θ = (c0, s0, s1, · · · , sn−2, w, u, e, v, ŵ, ĉ, t1, t2, u

′, e′, v′, v1, v2, v3) w.r.t

a public-key list L∗ generated by himself, where w = g
sn−1

n−1 but e = yt1h
s′n−1 for

Optimistic Fair Exchange of Ring Signatures 239

s′n−1�=sn−1. For each public key in L
∗,Amay not know the corresponding private

key. According to Definition 2, A wins the game of security against signers if and
only if the corresponding full ring signature of θ is σ=(c0, s0, s1, ..., sn−2, sn−1)
and (u, e, v) is decrypted to get s′n−1, where s

′
n−1 �=sn−1. However, this is infea-

sible due to the soundness of the zero-knowledge proof π. Hence our OFERS
protocol is secure against signers if π is a non-interactive zero-knowledge proof
(NIZK).

Security against verifiers: Suppose an adversarial verifier B breaks the
security against verifiers in the proposed OFERS protocol. We now construct a
distinguisher B̄, who can successfully distinguish the encryption of two messages
with the same length of its choice from a challenger in the CCA2 game for
Camenisch-Shoup encryption scheme with non-negligible probability. Note that
B̄ is allowed to access the decryption oracle ODec of the encryption scheme.
According to Definition 3, B wins the game of security against verifiers if B
produces a valid ring signature σ on a message m under a public-key list L′

without asking the resolution oracle ORes any query (m,L′, θ). As (m,L′, σ) is
a successful forgery of B, the situation that B did not ask any corresponding
VERS θ of σ via the partial ring signature signing oracle OPRSig is negligible
due to security against the arbitrator proved below. Hence we require that B
gets θ from OPRSig here. Now we show how to construct B̄ in detail.
For the given target Camenisch-Shoup encryption scheme EN=(Gen, Enc,

Dec) with the public key APK, the distinguisher B̄ repeatedly executes Abe et
al.’s key generation algorithm,RKG → {PKi, SKi}, to form a public-key list L.
Then B̄ sends (APK,L) to B as the input of the OFERS protocol. Let k be the
total number of the queries that B issues to OPRSig . After arbitrarily selecting
j from {1, 2, ..., k}, B̄ simulates OPRSig ’s response to each query (mi, Li) issued
by B, where i = 1, 2, ..., k, Li ⊆ L and ni = |Li|, as follows:

1. If i �= j, B̄ signs the message mi w.r.t Li using the private key SK0 to
generate a ring signature σi = RSig(mi, Li, SK0) = (ci0 , si0 , ..., sini−1) and

returns a VERS θi = (ci0 , si0 , ..., sini−2 , wi, εi, πi), where wi = g
sini−1

ini−1
and

εi = EncAPK(sini−1) under Camenisch-Shoup encryption scheme, and πi

is a NIZK proof showing that εi encrypts the same value hidden in wi, i.e.
sini−1 .

2. If i = j, B̄ computes σi = RSig(mi, Li, SK0) = (ci0 , si0 , ..., sini−1) and
chooses a proper ŝini−1 in the same interval of sini−1 but sini−1 �= ŝini−1 .

Then B̄ sets ṡ1 = sini−1 and ṡ0 = ŝini−1 and sends ṡ1 and ṡ0 to its
CCA2 challenger. The challenger returns a ciphertext εb, which equals
either EncAPK(sini−1) or EncAPK(ŝini−1). After that, B̄ returns θi =

(ci0 , si0 , ..., sini−2 , wi, εi, πi), where wi = g
sini−1

ini−1
, εi = εb, and πi is a simu-

lated NIZK proof showing that εi encrypts the same value hidden in wi.

The distinguisher B̄ simulates the resolution oracle ORes’s response to B’s queries
(mi, Li, θi) using the decryption oracle ODec as follows:

240 L. Qu, G. Wang, and Y. Mu

1. If πi is valid and Li �= Lj , B̄ asks ODec to extract the plaintext sini−1 from
εi and returns the ring signature σi = (ci0 , si0 , ..., sini−1) on mi under Li.

2. If πi is valid and Li = Lj, B̄ checks whether mi = mj . If yes, B̄ aborts the
simulation and sends a random bit to its CCA2 challenger. Otherwise, B̄ asks
ODec to extract the plaintext sini−1 from εi and returns the ring signature
σi = (ci0 , si0 , ..., sini−1) on mi under Li.

3. If πi is invalid, B̄ returns B a random value.

If εb = EncAPK(ŝini−1) (i.e. b = 0), θi looks valid but, in fact, σi =
(ci0 , si0 , ..., ŝini−1) is not a valid ring signature because of ŝini−1 �= sini−1 . The
probability of B forging a valid ring signature on mj is therefore negligible. If
εb = EncAPK(sini−1) (i.e. b = 1), εj is an valid encryption of sini−1 which is
a part of a valid ring signature on mj . The attack environment required by B
is perfectly simulated. Suppose (m,L′, σ) is the forgery of B, if m = mj and
L′ = Lj , B̄ outputs 1 and wins the CCA2 game by indicating that ṡ1 = sini−1 is

the plaintext of εb, otherwise B̄ sends a random bit to the CCA2 challenger. Con-
sequently, if B wins the game of security against verifiers with a non-negligible
probability, B̄’s advantage against its CCA2 challenger is also non-negligible.
Hence our OFERS protocol is secure against verifiers if the underlying encryp-
tion scheme EN is CCA2-secure.

Security against the arbitrator: Suppose an adversarial arbitrator C
breaks the security against the arbitrator in the proposed OFERS protocol.
We construct a forger C̄ for Abe et al.’s ring signature scheme RS = (RKG,
RSig, RVer) with access to a signing oracle ORSig .
For the initial public-key list L given to the forger C̄, the adversarial arbitrator

C takes L as input and then outputs (ASK∗, APK), where APK is set as the
arbitrator’s public key for Camenisch-Shoup encryption scheme, and ASK∗ is
the state information which may not correspond to APK. (ASK∗, APK,L)
is the input of the OFERS protocol. After that, C begins to ask queries to
the partial ring signature signing oracle OPRSig , for which the responses can
be perfectly simulated by C̄ using ORSig : For any message mi and any sublist
L′′ ⊆ L, C̄ asks its signing oracle ORSig to get a ring signature σi, then encrypts
σi under APK to get a VERS θi and generates the NIZK proof πi. Finally,
C outputs the forgery (m′, σ′) such that RVer(m′, L′, σ′) = 1 and (m′, L′) /∈
Query(C, OPRSig), which means C̄ never asks ORSig to response a valid ring
signature on m′ w.r.t L′. In our OFERS protocol, σ′ is just the conventional ring
signature onm′ w.r.t L′, so C̄ has succeeded for obtaining σ′ as the forgery of the
message m′ without asking the signing oracle ORSig . It is contradictory to the
existential unforgeability of Abe et al.’s ring signature scheme against adaptive
chosen message and chosen public-key attacks. Hence our OFERS protocol must
be secure against the arbitrator.

Signer ambiguity: Suppose that our OFERS protocol does not meet signer
ambiguity, which means that there is an unbound adversary D can tell which
private key SKs was used to produce a given tuple (m,L, θ, σ, APK) with the
probability not equal to 1/|L|. Then, from D we now construct an adversary D̄

Optimistic Fair Exchange of Ring Signatures 241

that breaks signer ambiguity of Abe et al.’s ring signature scheme, which thus
leads to a contradiction. For a given initial public-key list L in Abe et al.’s scheme
we run the key generation algorithm of Chamenisch-Shoup encryption scheme
to get the arbitrator’s key pair (ASK,APK). For a target (m,L, σ,APK), D̄
runs PRSig algorithm to get θ, i.e. θ ← PRSig(m,L, σ,APK). By forwarding
(m,L, θ, σ, APK) to D, D̄ just outputs the index returned by D as its guess
which private key was used to issue (m,L, σ,APK). It is easy to see that D̄
breaks the signer-ambiguity of Abe et al.’s ring signature scheme with the exact
same probability as D breaks the signer-ambiguity of our OFERS protocol. ��
Remark 2. In the proofs above, we do not give the specific details about the
underlying (Abe et al.’s) ring signature scheme and (Camenisch and Shoup’s)
encryption scheme, as our construction (specified in Section 4) can be extended
to a generic scheme, i.e. based on any secure ring signature scheme and en-
cryption scheme, the associated proofs can be obtained by simply adapting the
proofs above. In addition, from our proofs we can see that a secure ring signa-
ture scheme with signer-ambiguity does not necessarily guarantee an OFERS
protocol preserving the same property. The counterexample is very simple: just
modify our OFERS protocol such that the VERS θ includes a public key PKi

which indicates that the private key SKi was used to issue the corresponding
ring signature σ. For this scheme, it is not difficult to see that the proofs for
the first three properties still hold, but not for signer-ambiguity since, with the
reminder PKi, the adversary can tell with the probability 1 that SKi was used
to issue a tuple (m,L, θ, σ, APK). Further discussions on these two issues will
be given in the full version of the paper.

6 Conclusion

In this paper, for achieving better privacy in optimistic fair exchange, we present
the first solution of optimistic fair exchange of ring signatures (OFERS) by first
formally defining its security model in the multi-user setting under adaptive cho-
sen message, chosen-key, and chosen public-key attacks. We have also proposed
a concrete scheme of verifiably encrypted ring signature (VERS) and used it to
build an optimistic fair exchange protocol. The proposed scheme is proved to
be secure against signers, verifiers and the arbitrator and satisfy the property
signer-ambiguity under our security definitions. As future work, it is interesting
to design efficient OFERS protocols for different types of signatures, such as Abe
et al.’s RSA-based ring signatures or mixed-type ring signatures [8], and achieve
other more security properties in OFERS, e.g. abuse-freeness.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS 1997 Proceedings of the 4th ACM Conference on Computer and Communi-
cations Security, pp. 7–17 (1997)

2. Boneh, D., Gentry, C., Lynn, B.: Aggregate and Verifiably Encrypted Signatures
from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
416–432. Springer, Heidelberg (2003)

242 L. Qu, G. Wang, and Y. Mu

3. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

4. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communication 18, 593–610 (2000)

5. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic Fair Exchange in a Multi-user Set-
ting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133.
Springer, Heidelberg (2007)

6. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient Optimistic Fair Exchange
Secure in the Multi-user Setting and Chosen-Key Model without Random Ora-
cles. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer,
Heidelberg (2008)

7. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

8. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

9. Ateniese, G.: Verifiable Encryption of Digital Signatures and Appliciation. ACM
Transactions on Information and System Security 7, 1–20 (2004)

10. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

11. Camenisch, J., Michels, M.: Separability and Efficiency for Generic Group Signa-
ture Schemes (Extended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 413–430. Springer, Heidelberg (1999)

12. Barić, N., Pfitzmann, B.: Collision-Free Accumulators and Fail-Stop Signature
Schemes without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

13. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

14. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number Is the Prod-
uct of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107–122. Springer, Heidelberg (1999)

15. Gennaro, R., Krawczyk, H., Rabin, T.: RSA-Based Undeniable Signatures. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer,
Heidelberg (1997)

16. Naccache, D., Stern, J.: A new public key cryptosystem based on higher resudues.
In: 5th ACM Conference on Computer and Communications Security, pp. 59–66
(1998)

17. Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Fac-
toring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318.
Springer, Heidelberg (1998)

18. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

19. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–
144. Springer, Heidelberg (2003)

20. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secrue against
adaptive chosen-message attacks. SIAM Journal on Computing 17, 281–308 (1988)

Efficient U-Prove Implementation

for Anonymous Credentials on Smart Cards

Wojciech Mostowski� and Pim Vullers��

Institute for Computing and Information Sciences,
Digital Security group, Radboud University Nijmegen, The Netherlands

{woj,pim}@cs.ru.nl
http://www.ru.nl/ds/

Abstract. In this paper we discuss an efficient implementation of an-
onymous credentials on smart cards. In general, privacy-preserving pro-
tocols are computationally intensive and require the use of advanced
cryptography. Implementing such protocols for smart cards involves a
trade-off between the requirements of the protocol and the capabilities
of the smart card. In this context we concentrate on the implementation
of Microsoft’s U-Prove technology on the MULTOS smart card platform.
Our implementation aims at making the smart card independent of any
other resources, either computational or storage. In contrast, Microsoft
suggests an alternative approach based on device-protected tokens which
only uses the smart card as a security add-on. Given our very good per-
formance results we argue that our approach should be considered in
favour of Microsoft’s one. Furthermore we provide a brief comparison
between Java Card and MULTOS which illustrates our choice to imple-
ment this technology on the latter more flexible and low-level platform
rather than the former.

Keywords: anonymous credentials, smart cards, U-Prove, MULTOS,
Java Card.

1 Introduction

An effort to provide citizens with electronic signature (e-signature) capable iden-
tity cards is currently in progress in many European Union countries. The first
countries to introduce such cards were Belgium and Estonia. More recently
(November 2010) Germany introduced a new generation identity card [8] for
their citizens, which also provides a limited form of anonymous attributes for
improved privacy. Although Dutch identity cards already contain a chip with per-
sonal data, like in the e-passport, there is no e-signature functionality available
yet. The Dutch government is currently working on adding e-signature capability,
and possibly support for attributes, to such a card.
The e-signature application on the identity cards serves two major purposes.

First, what is in the name, they can be used to digitally sign documents, for

� Sponsored by the NL-Net Foundation through the OV-chipkaart project.
�� Sponsored by Trans Link Systems/Open Ticketing.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 243–260, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

http://www.ru.nl/ds/

244 W. Mostowski and P. Vullers

example tax return forms. Next, and probably most, they are used to provide
strong authentication of the owner of the card, mainly for logging into govern-
mental web services. But this use of signing or authentication certificates also
involves a restriction of this use case. In the Netherlands the use of the social
security number, which is integrated in the identity card, is by law only allowed
within the government domain.
Therefore we study methods of authentication and authorisation which pre-

serve the privacy of the card holder and restrict linkability of card uses. For
example, the card holder may wish to prove his age category (an adult over
18 or a senior over 65) without revealing his actual date of birth. One way to
achieve this is to use attributes instead of identities. A number of technolo-
gies [2,6,9] have been developed based on this idea, but the main focus has been
on the cryptography and less on (efficient) implementations. The implementa-
tions which have been made are mainly for ordinary computers. Our research
focuses on implementing and using such technologies on smart cards. This ap-
proach offers various new use cases, but also faces difficulties due to the limited
capabilities of smart card platforms and hardware.
The work that we present here targets the U-Prove technology developed by

Brands [6] and now owned and marketed by Microsoft [5]. Out of the existing
privacy-aware protocols [5, 7, 11], this one has not yet been implemented on a
smart card in its current specification. The current U-Prove specification [22]
does support the use of a smart card as an additional protection device. In this
scenario the card performs only a fraction of the protocol run. This is motiv-
ated by the constrained resources of smart cards and was already described by
Brands in 2000 [6]. In Table 1 this approach is compared with our approach
which offers the full protocol implementation on a smart card. We provide the
full implementation of the U-Prove protocols to solve the main disadvantage of
Microsoft’s approach: the smart card cannot be used independently, since it is
tied to computational (and storage) resources external to the card. This means
that it requires a specific, card matching terminal, like the card owner’s PC, to
run the protocols.

Table 1. Comparison between Microsoft’s device-protected U-Prove token approach
and our U-Prove token on a smart card approach

Microsoft’s approach our approach

characteristics add-on security measure full protocol implementation

card stores single device-protection attribute all attributes, other token values

card computes short zero-knowledge proof for
the device-protection attribute

complete presentation proof

advantages fast, lightweight, protect any
number of dynamically issued
tokens using pre-issued devices

independent use of the card, no
need to trust the terminal

disadvantages trusted terminal required requires more card resources (?)

Anonymous Credentials on Smart Cards 245

For performance our primary goal was to keep the running times of the pro-
tocol on the card sufficient for on-line use.1 Despite the obvious efficiency concern
caused by our choice to implement the full U-Prove protocols on a smart card, we
managed to provide a very efficient implementation. Our worst-case execution
time of the protocol on the card (with five attributes) is 0.87 seconds. Configur-
ing the implementation for a smaller number of attributes improves this running
time considerably. This makes our implementation efficient enough to be pos-
sibly considered also for the use in e-ticketing, where transactions with a card
should be at or below 0.3 seconds.2 This discards the disadvantage of our ap-
proach mentioned in Table 1, offering an overall better solution than Microsoft’s
approach. Thus, Microsoft is advised to change its approach to smart card sup-
port for U-Prove. Our good result is mostly due to the choice of the smart card
implementation platform. Because of its more convenient API, we used a MUL-
TOS smart card [16] in favour of the more popular Java Card platform [14].
The former has been overlooked as a prototyping platform whereas the latter
exhibited questionable efficiency in some previous privacy-friendly protocol im-
plementations [4, 25, 28].
The rest of this paper is organised as follows. Section 2 provides the neces-

sary background on privacy-preserving protocols, related work, and open smart
card platforms. We describe our MULTOS U-Prove implementation in Section 3,
focusing on the implementation challenges without explaining the U-Prove pro-
tocols in detail.3 Section 4 discusses the results of our work and compares Java
Card with MULTOS. Further steps in our research on privacy-preserving proto-
cols are presented in Section 5, and finally Section 6 concludes the paper.

2 Background

Before diving into our implementation of U-Prove we first introduce anonymous
credentials and some alternatives for the U-Prove technology. Furthermore we
provide some background information on smart cards and explain why we opted
for the MULTOS platform instead of the more popular Java Card platform.

2.1 Anonymous Credentials

A credential is an attestation of qualification, competence, or authority issued
by a third party, the issuer, to an individual. This individual, the prover, can
subsequently use this credential to prove/demonstrate his qualification, compet-
ence, or authority to another party, the verifier. Examples of credentials are
a membership certificate, such as a passport or employee card, or some kind

1 The proving scenario should be fast (less then a second) whereas the less frequently
run issuance scenario can take a few seconds to complete a transaction.

2 http://www.smartcardalliance.org/resources/lib/

Transit Financial Linkages WP.pdf
3 A detailed description of the protocols can be found in the U-Prove cryptographic
specification [5] and the mathematical background is addressed in Brands’ book [6].

http://www.smartcardalliance.org/resources/lib/Transit_Financial_Linkages_WP.pdf
http://www.smartcardalliance.org/resources/lib/Transit_Financial_Linkages_WP.pdf

246 W. Mostowski and P. Vullers

of ticket to obtain some service, such as a cinema ticket or a public transport
ticket. These credentials are often bound to a specific person, by means of a
name and/or picture (e.g. for a passport or public transport year pass), but this
is not necessarily the case (e.g. for a paper train ticket).
Anonymous credentials have the same properties as any other credentials,

except that they do not reveal the identity of the prover, i.e. they provide au-
thorisation without identification. In the real world this is fairly common, think
of coins or public transport tickets, but in the digital world this concept is rare.
This is mostly because the authenticity of a credential is usually achieved by
using digital signatures which uniquely identify the issuer and prover. It is how-
ever possible to achieve anonymous digital credentials by using more advanced
cryptography, as described for the first time by Chaum [13] in 1984. In the re-
mainder of this section we will introduce a number of recent technologies which
provide anonymous credentials.

U-Prove. Stefan Brands provided the first integral description of the U-Prove
technology in his thesis [6] in 2000, after which he founded the company Cre-
dentica in 2002 to implement and sell this technology. Microsoft acquired Cre-
dentica in 2008 and published the U-Prove protocol specification [5] in 2010
under the Open Specification Promise4 together with open source reference soft-
ware development kits (SDKs) in C# and Java.
The U-Prove technology is centred around a so-called U-Prove token. This

token serves as a pseudonym for the prover. It contains a number of attributes
which can be selectively disclosed to a verifier. Hence the prover decides which
attributes to show and which to withhold (e.g. one can reveal the birth date,
but not the residence address). Besides the attributes the token contains two
information fields, one defined by the issuer, and one by the prover. These fields
are always disclosed and can be used to provide some meta data such as a validity
date of the token. Finally there is the token’s public-key, which aggregates all
information in the token, and a signature from the issuer over this public-key to
ensure the authenticity.
A previous attempt to implement this technology on a smart card by Tews

and Jacobs [28], based on Brands’ description [6], resulted in a highly involved
application with running times in the order of 5–10 seconds which make it not
really usable in practice. Our implementation, which we describe in Section 3,
not only has a much better performance but is also, except from some minimal
limitations, compatible with the development kits released recently by Microsoft.

Idemix and DAA. Identity mixer (Idemix) is an anonymous credential system,
based on the Camenisch-Lysyanskaya anonymous credentials scheme [9, 10, 19]
developed at IBM Research in Zürich that enables strong authentication and
privacy at the same time. The first prototype [11] was developed in 2002 and
has been improved over the years. An open source Java implementation of Idemix
was released in 2010 as part of the Open Innovation Initiative.5

4 http://www.microsoft.com/interop/osp/
5 http://www.zurich.ibm.com/news/10/innovation.html

http://www.microsoft.com/interop/osp/
http://www.zurich.ibm.com/news/10/innovation.html

Anonymous Credentials on Smart Cards 247

Direct anonymous attestation (DAA) [7] is a technology based on Idemix. It
allows a user to convince a verifier that she uses a platform that has embedded
a certified hardware module.6 The protocol protects the user’s privacy: if she
talks to the same verifier twice, the verifier is not able to tell whether or not he
communicates with the same user as before or with a different one.
In 2009 Bichsel et al. [4] implemented Idemix on a Java Card whereas Sterckx

et al. [25] did the same for DAA. They provide the first proper implementations
of anonymous credentials on smart cards. The major drawback of these imple-
mentations is the running time of several seconds which is still too much for
being really practical.

Self-blindable Credentials. The idea behind the self-blindable credentials by
Verheul [29] is that every time a credential is used it is blinded such that two
occurrences of the same credential cannot be recognised. This in contrast to
the U-Prove token which is the same in each transaction, and hence serves as a
pseudonym. The benefit of this approach is that the use of such credentials is
untraceable. Furthermore they can be efficiently implemented on a smart card [2,
17] using elliptic curve cryptography (ECC), providing the best performance
results thus far.
The drawback is that, due to the untraceable nature of this technology, in-

corporating revocation is hard and very costly [18]. Furthermore, ECC support
on smart cards is very limited making prototyping very hard. Finally, the tech-
nology is fairly new compared to U-Prove and Idemix, and not backed by a big
company which offers support for it.

German Identity Card. The protocols that we have described so far are (to
the best of our knowledge) the only candidates providing anonymity by design
and ones that could be implemented on a smart card. However, we should also
shortly mention an approach of the German identity card that is actually im-
plemented and being rolled out since November 2010, where a limited form of
anonymous attribute use is achieved by altering the existing ECC based elec-
tronic identity protocols by sharing private ECC keys across large batches of
cards [3]. The protocol itself provides restricted access to the card by means
of the so-called card verifiable certificate mechanism [8] and allows for select-
ive disclosure of attributes, depending on the rights specified in the certificate
(e.g. an alcohol shop is only authorised to check for the “over 18” attribute).
Signed attributes are partly anonymous because of the sharing of the signing
keys between batches of cards, such that a signature cannot be linked to a single
card.

2.2 Smart Cards

One of the goals of our research is to assess how fast privacy-friendly protocols are
when run on a smart card. Hence implementing our prototypes requires an open

6 DAA has been adopted in 2004 by the Trusted Computing Group in the Trusted
Platform Module specification as the method for remote authentication of a hardware
module.

248 W. Mostowski and P. Vullers

smart card platform that also provides the necessary cryptographic hardware
support – previous research [28] clearly shows that, in terms of performance,
purely software based prototypes are not sufficient for realistic use. In practice
that leaves us with two possible smart card platforms, Java Card and MULTOS,
described below. We motivate the use of the latter one for the work presented
in this paper.
Regardless of the programming technology, all smart cards provide the same

external functionality. A smart card is an embedded device that communicates
with the environment through Application Protocol Data Units (APDUs) – byte
arrays formatted according to the ISO7816 specification. Most notably, the AP-
DUs constrain the communication payload to roughly 256 bytes in each direc-
tion for a single APDU exchange. The permanent storage of the card (E2PROM
memory) is considered highly secure, accessible only through the APDU com-
mands offered by the application, which in turn are subject to any authentication
and secure messaging requirements that the card application may impose.

Java Card. Java Card is a now well-established smart card platform based
on a tailored, cut-down version of Java (hence the name) [14]. One of the main
features of Java Card is software interoperability. On top of the operating sys-
tem of the card resides a Java Card virtual machine, compliant with the official
specification [27], that executes Java byte code. In parallel, the platform defines
the Java Card API [26] that provides the developer an interface to the hardware
of the smart card. In terms of the programming and deployment of applications
Java Cards are (almost) fully independent of the underlying hardware and op-
erating system of the card. Large numbers of actual smart card products are
implemented on Java Cards based on a variety of chips coming from different
manufactures. Precise data on the number of deployed Java Cards or MULTOS
cards are hard to find, but the Java Card Forum7 claims there are already over
a billion Java Cards in use.
The Java Card API is carefully designed to support the smart card en-

vironment and has several built-in security features. For example, it provides
predefined Java classes for hardware supported cryptographic key storage (with
possible internal encryption). To account for different hardware profiles of a card,
parts of the Java Card API implementation are made optional. For example, one
card may support both RSA and ECC in hardware and expose this functional-
ity through the API, while another card may only support RSA, in which case
all API calls related to ECC are not available and report a corresponding Java
exception instead.
This brings us to the main shortcoming of the Java Card platform from our

point of view. The Java Card API is predefined and closed. Any hardware
functionality that is not exposed through the imposed Java Card API, is not
accessible to the developer by any other means. For example, for RSA based
cryptography it is only possible to generate public and private keys of predefined

7 http://www.javacardforum.org/

http://www.javacardforum.org/

Anonymous Credentials on Smart Cards 249

RSA lengths (512, 1024 bits, etc.) and perform full RSA de-/encryption or sign-
ing with these keys according to standard protocols, such as RSA-PKCS. The
more primitive operations that build up RSA operations, such as modulo prime
inverse or exponentiation, are not available. Since all of the protocols that we
are interested in require access to such cryptographic operations (in large mod-
ulo prime and/or EC domains), this is a practical show stopper. We are not
the only ones to note this. For example, in [25] similar problems regarding the
development of DAA on a Java Card are reported. Even more, an efficient im-
plementation of the e-passport standard [8] on a Java Card also requires cryp-
tographic routines not anticipated by the standard Java Card API. In this case,
due to high demand, Java Card producers decided to enrich the Java Card API
with proprietary extensions to support e-passport standards [21]. But this only
solves the problem for one application type and, moreover, makes the platform
non-interoperable.

MULTOS. The design principles of the MULTOS platform [16,20] are similar
to those of Java Card. A hardware independent execution platform is run on
top of the operating system of the card. Similarly to Java Card byte-code, a
MULTOS card executes specific op-codes of the MULTOS Execution Language
(MEL) and exposes smart card specific interfaces to the developers through
dedicated MEL op-codes. These op-codes already provide a full and detailed API
to the card’s hardware. Most of the primitive operations that the hardware can
possibly support are reflected in the corresponding MEL op-codes. Thus, MEL
provides the full base for programming MULTOS cards, and a skilled developer
can easily write programs for the card already in the MEL assembly. However,
the MULTOS development tools also provide programming interfaces to C and
Java. Applications in these languages are translated/compiled by the tools into
MEL op-codes and can then be run on a card.
Similar to the Java Card API routines, some of the MEL op-codes are spe-

cified to be optional, mostly ones responsible for cryptographic operations. A
particular MULTOS card may or may not support the optional op-codes. For
our implementation we used development cards based on the SLE66 chip from
Infineon. This particular MULTOS implementation [1] supports a wide range of
modulo arithmetic operations, a range which is sufficient to fully support all of
the U-Prove calculations. This is the main reason to choose MULTOS in the
context of this work – its more low-level and flexible API as opposed to less
flexible and more high level Java Card API.
Our choice is to use the MULTOS C interface to do our prototype imple-

mentation of U-Prove. For simple smart card applications the C interface seems
to provide an easier programming environment than Java, and although C pro-
gramming platforms are not type safe by definition (as opposed to Java), per
application memory safety is guaranteed by the MULTOS platform, regardless
of the high-level language used during development.

250 W. Mostowski and P. Vullers

3 Implementing U-Prove for Smart Cards

U-Prove consists of two protocols. We briefly introduce these protocols here.
A detailed description of the protocols and the necessary computations can be
found in the U-Prove cryptographic specification [5].
During the first protocol, the issuing protocol, the U-Prove token is construc-

ted by combining the public key of the issuer with the attributes. To authenticate
this token it is signed by the issuer. However, just signing the token would allow
the issuer to later recognise the resulting signed token. Therefore a blind signa-
ture scheme [12] is applied such that the issuer does not learn the exact value of
the resulting signature. As a result of this protocol the prover now has a signed
token containing his attributes.
The second protocol, the presenting or proving protocol, is used to present a

number of attributes from the token. During this protocol the prover presents
his token to a verifier together with a selection of its attributes. To verify the
authenticity of the token the verifier checks the signature of the issuer. Finally the
prover needs to prove that the presented attributes are actually the attributes
contained in the token (and thus the signed attributes). For this purpose the
prover constructs a zero-knowledge proof [15] in which he proves that he knows
all the attributes contained in the token, including those not disclosed to the
verifier. Due to the zero-knowledge properties of the proof the verifier does not
learn anything about the attributes not disclosed to him. He is, however, able to
verify, using the proof and the disclosed attributes, that the attributes actually
correspond to those stored in the token.

3.1 U-Prove and Smart Cards

The use of U-Prove in combination with a smart card was already envisioned
by Brands [6] and published by Microsoft in the latest release of the U-Prove
cryptographic specification [22]. Their idea is to use a smart card (or even any
trusted computing device) as a manner of protecting U-Prove tokens, which
they then call device-protected tokens. This is achieved by having the device
contribute one attribute to the token. The actual value of this attribute is, like
a private key, only known by the device and will always be hidden. Therefore
the device is required during the proving protocol, since a prover has to prove
knowledge of all attributes contained in a token.
Besides adding an additional layer of protection the U-Prove technology over-

view [24] describes a number of other benefits gained when using device-protected
tokens. For example, a device can be used to enforce dynamic policies or pre-
vent the use of a token at a blacklisted website. It also helps to enforce non-
transferability of tokens by having the prover authenticate to the device before
allowing it to be used in a protocol interaction. Another option, especially inter-
esting for smart cards, is to use the device as a carrier, or secure roaming store,
for entire U-Prove tokens and not one attribute. This way the U-Prove token is
always available when needed.

Anonymous Credentials on Smart Cards 251

This last feature of a device-protected U-Prove token has one major drawback,
namely one will need to trust the device that is used to perform the proving
protocol. This is because the actual attribute values are used during the com-
putation steps of this protocol. Hence the device must release all information,
except its own special attribute, during a protocol run. When using a personal
computer this might be acceptable, but in scenarios where the device should
be used directly with a verifier, for example at a public transport gate, or at a
vending machine for cigarettes, this turns out to be problematic. Since these are
the areas of use which are most interesting for us, we decided to develop our own
implementation of the full prover protocol specification on a smart card instead
of using Microsoft’s more limited approach.

3.2 U-Prove on MULTOS

A very general view of our implementation of the U-Prove technology is that
it provides storage for preloaded (e.g. cryptographic domain parameters) and
calculated (e.g. generated keys) values of the protocols, as well as attribute
storage, and, more importantly, a sequence of hash and modulo prime arithmetic
operations to execute the corresponding stages of the protocols. These arithmetic
operations are the core of the performance considerations of our implementation.
A few hashing operations are executed and multiple exponents over numbers in
a large prime field have to be calculated during a proving protocol run. For
example, the commitment a to blinding values wi is calculated according to the
following formula.

a = H(hw0

∏
i∈U

gwi

i mod p) (1)

Here U is the set of attributes not to be disclosed, hence disclosing less attrib-
utes requires more exponentiation and multiplications modulo prime number p.
The range of these calculations is also restricted by the limits of our MULTOS
implementation platform. Namely, on our development cards we are limited to a
modulus size of 1024 bits for modulo arithmetic,8 and SHA-1 is the only built-in
hashing algorithm available. Although this may sound restrictive, it also makes
the choice of the U-Prove protocol configuration (protocol parameters) for our
implementation easy. We have simply chosen to implement the protocols using
the domain parameters fixed to the same ones as in the default configuration
of the official U-Prove SDK reference implementation and official U-Prove test
vectors [23], that is 1024 bits for modulus size and SHA-1 for hashing to match
with the capabilities of the card.
To make the U-Prove protocol calculations efficient the smart card memory

issues have be to taken into account. The first and most important aspect of
developing any smart card application is the allocation of memory. The two
rules of thumb are:

8 The card actually supports up to 2048 bits, but then during exponentiation only
small enough exponents can be used, a requirement which the U-Prove operations
do not satisfy.

252 W. Mostowski and P. Vullers

1. the total memory allocation should be optimised, and
2. to prevent memory exhaustion during operation there should be no dynamic
memory allocation.

Furthermore, for any smart card platform the developer is usually offered a
few kilobytes of RAM memory, which is normally used for fast “scratch-pad”
computations and whose contents disappear on every power down (in MULTOS
this is called session memory). The other kind of memory is the E2PROM, which
provides the permanent storage for the card (in MULTOS called static memory).
Substantially more E2PROM than RAM is usually available on a card, in the
range of tens of kilobytes. However, it is slower than RAM, especially during
writing. Moreover, on the hardware level E2PROM is updated in block mode,
hence repeated updating of single bytes of this memory (e.g. with a for loop)
further hinders efficiency.
Considering the size of the U-Prove data that is used in the protocols and

the requirements of the MULTOS cryptographic routines (all data for a cryp-
tographic operation needs to be in one continuous array) the first thing to take
care of is a careful split of the card data between E2PROM and RAM. Only 960
bytes of RAM are available on our development cards, compared to 36 kilobytes
of E2PROM. The most frequent use case of the card is the execution of the
proving protocol, hence this is where good use of RAM is highly desirable. For
that we limited the maximum number of stored attributes to 5 and then we
ensured that all data participating in the proving protocol is allocated in RAM,
as shown in Listing 1.1. After this the total RAM requirement for this protocol
is 756 bytes, which just safely fits within the RAM available on the card.

Listing 1.1. Declaration of the variables residing in RAM

#pragma melsession // These vars will sit in RAM

union {
... // Overlapping temporary storage for other parts of the protocol
unsigned char array[328];

} temp ram; // Temporary storage, 328 bytes needed in the worst case

unsigned char UD[MAX ATTR]; // Attribute disclosure selection, 5 bytes

NUMBER QSIZE w i[MAX ATTR + 1]; // w0, . . . , wn (total 6*21 bytes)
NUMBER QSIZE r i[MAX ATTR + 1]; // r0, . . . , rn (total 6*21 bytes)

NUMBER QSIZE a, c; // a and c values (2*21 bytes)
NUMBER PSIZE t; // Another temporary storage (129 bytes)

#pragma melstatic // The following will sit in E2PROM
...

Anonymous Credentials on Smart Cards 253

Listing 1.2. The function to compute commitment a from (1)

void computeCommitmentA(void) {
ModularExponentiation(QSIZE BYTES, PSIZE BYTES,

w i[0].number, p.number, h.number, t.number);
for(int i = 0; i < MAX ATTR; i++) {

if(UD[i]) continue; // i is in D, not interested
ModularExponentiation(QSIZE BYTES, PSIZE BYTES,

w i[i+1].number, p.number, g i[i+1].number, temp ram.vars.a.number);
ModularMultiplication(PSIZE BYTES,

t.number, temp ram.vars.a.number, p.number);
}

// t now contains hw0
∏

i∈U gwi
i mod p

int len = putNumberIntoArray(PSIZE BYTES, t.number, temp ram.array);

// a = H(t) (mod q)
SHA1(len, a.number, temp ram.array);
ModularReduction(QSIZE BYTES, QSIZE BYTES, a.number, q.number);

}

The initialisation and issuance protocol require more scratch-pad memory
than the available RAM, hence we were forced to use E2PROM there. Moreover,
the issuance protocol makes use of E2PROM for permanent storage of the issued
U-Prove token and other permanent protocol parameters (prime numbers p, q,
etc.). Because of the block mode characteristics of E2PROM updates mentioned
before, it is particularly important to use predefined MEL functionality for block
operations (e.g. ADDN, COPYN, etc.). This way the E2PROM memory is up-
dated in block mode by the platform and execution speed can be maintained. In
contrast, updating E2PROM one byte at a time with a for loop causes dramatic
performance loss – for updates of kilobytes of memory execution time is counted
in seconds. The size of E2PROM is not an issue – 36kB is more than sufficient
to store the static data of a U-Prove token with 5 attributes each sized at the
maximum of 255 bytes.
This completes the efficiency considerations for our implementation. Other-

wise the implementation of the U-Prove protocols is rather straightforward in
the MULTOS environment and mostly entails direct calls to the MULTOS API.
An example is given in Listing 1.2, which computes formula (1).

3.3 Integration into the Microsoft U-Prove SDK

The previous section described the implementation of the U-Prove protocols
which mainly concerns storage and the mathematical computations. This is,
however, not sufficient to use it in combination with Microsoft’s U-Prove SDK.
We need to bridge between the high-level Java interfaces defined in this SDK
and the low-level APDU interface of the smart card.

254 W. Mostowski and P. Vullers

We designed the low-level APDU interface to be as simple as possible. Essen-
tially it has to provide three types of functionality: (1) sending data to the card,
(2) ask the card to perform the necessary computations, and (3) retrieve the
results from the card. The second type of the interface functionality is easiest,
we just defined an APDU instruction for each of the steps in the protocols. For
transferring data to and from the card we restricted the values to the maximum
amount of data that can be transferred in one APDU (255 bytes). This allows
us to just define one APDU instruction per variable, parametrised only with the
index if needed (for example gi), for setting or getting a value.
Finally we need to bind this low level APDU API to the interfaces and data

types provided by the U-Prove SDK. Luckily the SDK just uses byte arrays
for the external access to the data types such that no additional conversion
is needed. The only thing that needs to be done for a data type, for example
IssuerParameters, is that the setter and getter have to be divided into the indi-
vidual APDU instructions, for example the setPublicKey and setEncodingBytes
instructions.
All this functionality has been combined into a single Java class which provides

setters and getters for the data stored on the card as well as methods for the
protocol steps. Using the Java built-in smart card library it serves as an interface
between our MULTOS implementation and the Microsoft SDK.

4 Results and Performance Analysis

The two most important factors for us to test in our U-Prove implementation
were correctness of the protocol calculations (obviously) and the speed. Testing
the correctness was fairly easy. Since we interfaced our card to Microsoft’s U-
Prove SDK we could simply test it by invoking the protocol runs from the
SDK and check the results. During the first stages of the development partial
protocol calculations were verified with the test vectors provided with the U-
Prove SDK [23]. In the whole process a few corner case problems with our
calculations surfaced that required minor corrections.
As we stated in the previous section, for speed we concentrated our imple-

mentation efforts on the every day use case of the application, i.e. the attribute
proving protocol. However, we also strived to optimise the rest of the protocols
to maintain speed also during the initialisation and issuance parts. For the per-
formance analysis, we executed a number of full protocol runs (initialisation,
issuance, proving) on the card in various configurations. First of all we varied
the number of stored attributes on the card, then within this attribute range we
varied the number of (un)disclosed attributes. As shown in Figure 1 this resulted
in a running time of 3.6 and 5.5 seconds for the issuance of a U-Prove token with
respectively 2 and 5 attributes. The dark grey area on the graph indicates the
core running time of the protocol calculations on the card, whereas light grey
indicates the remaining overhead. This overhead consists of transferring data to
the card and communicating the results of the protocol run between the card
and PC.

Anonymous Credentials on Smart Cards 255

3095
3623

4181

4808

5489

2281 2521
2784 2933 3131

1 2 3 4 5

#
a
tt
ri
b
u
te
s

0

6000

time (ms)

Fig. 1. U-Prove token issuance times (: computation, : overhead)

Correspondingly, the cumulative results for the attribute proving protocol
are shown in Figure 2. What can be seen in these graphs is that under “full
load” our implementation executes the complete proving protocol in just under
0.9 seconds (graph 2(b)). In this worst-case scenario 5 attributes are stored on
the card, none of which are disclosed during the protocol run. In other words,
the U-Prove token is only validated for its authenticity without revealing any
attribute data. Such a scenario is not very likely to occur in reality. In a more
likely scenario at least one or two attributes are going to be disclosed and we
can also assume that a U-Prove token will contain less attributes (or, that a
large number of attributes can be split into several separate U-Prove tokens). As
the graphs show, reducing the number of stored attributes improves the running
time at a rate of 100 milliseconds per attribute, and also that the performance
increases along with increasing the number of disclosed attributes, roughly 50
milliseconds per each extra disclosed attribute. Overall, this brings the total

550
487

433
372

304
245

0 1 2

#
d
is
cl
o
se
d

0

1000

time (ms)

(a) 2 stored attributes

869
814

764
708

651
594

648
586

530
469

406
343

0 1 2 3 4 5

#
d
is
cl
o
se
d

0

1000

time (ms)

(b) 5 stored attributes

Fig. 2. Attribute proving times for different configurations (/ : same as in Fig. 1)

256 W. Mostowski and P. Vullers

execution time for a two attribute token disclosing one attribute to under 0.5
seconds (graph 2(a)).
One of the reasons to justify the Microsoft’s device protected approach as

described in Section 3.1 are possible resource issues with smart cards (limited
storage space and limited speed). Our performance results undermine this argu-
ment. The worst case execution time of the proving part is 0.87 seconds. This
not only makes the card implementation fast enough to be usable in general,
it also makes it usable for “field” applications, e.g. dispensing machines. Even
more, for smaller numbers of smaller attributes the running times become almost
acceptable for use in public transport/e-ticketing, where the commonly required
card transaction times should stay below 0.3 seconds. We also see a potential to
improve the running times using faster smart card hardware, we elaborate on
this in the upcoming section. Overall, these good results strongly justify the idea
to use U-Prove standalone on a smart card rather than to use Microsoft’s device-
protected token approach, which now has no obvious functional or performance
advantages over our approach.
Furthermore, excluding our own previous work on implementing ECC-based

self-blindable signatures on a smart card [2,17] our performance results are by far
better than all the previously reported results for anonymous credentials imple-
mented on smart cards. One of the first attempts within our group to implement
a U-Prove like protocol on a Java Card [28] resulted in running times closing to
10 seconds for a setup closely corresponding to ours. The DAA protocol was also
implemented on a Java Card by Sterckx et al. [25] with the running times of close
to 4 seconds for the DAA signing protocol. In [4] yet another implementation of
anonymous credentials on a Java Card is reported with running times of around
7–10 seconds. Our MULTOS U-Prove implementation is simply way faster.
The only limitations of our implementation are imposed by the limited re-

sources of the MULTOS smart card. We had to limit the prime modulus size to
1024 bits, use only SHA-1 hashing, and because of the available RAM (<1kB) on
the card we could only allow for the maximum of 5 attributes, each one up to 255
bytes in size. Otherwise our implementation is fully flexible and provides full U-
Prove functionality, including the smart card features described in Section 3.1.
However, it is not uncommon for modern smart cards to support up to 2048
bits for modulus size and 2 kilobytes of RAM, only no such MULTOS cards
were available to us. In the following we make some speculative performance
estimations based on tests performed with Java Cards that we have.

4.1 MULTOS vs. Java Card

As we already stated in Section 2.2 providing an efficient implementation of U-
Prove on a Java Card is currently not possible, mainly because of the inflexible
Java Card API. However, we can use Java Card to do further (speculative)
performance analysis.
Our Java Cards are implemented on the SmartMX hardware platform from

NXP, which provides excellent hardware cryptographic support (2048 bit RSA
and 320 bit ECC), and is considered state of the art when it comes to speed.

Anonymous Credentials on Smart Cards 257

By running comparative speed tests between our Infineon SLE66 MULTOS card
and a brand new NXP SmartMX (JCOP31) Java Card we estimate two things:

1. How fast a sibling implementation, equal in terms of the supported protocol
parameters, would be on the SmartMX chip?

2. How fast would an implementation supporting greater modulus size and
more attributes would be on the SmartMX chip?

For this we simply compared the speed of raw SHA-1 and RSA operations
between the two platforms, operating both on RAM and E2PROM. The res-
ults are shown in Table 2, the running times are expressed in milliseconds for
100 iterations of each test, for example a single SHA-1 execution storing the
results in RAM for the first case (MULTOS card on a contact interface) takes
51.2 milliseconds on average. More generally and roughly speaking, the JCOP31
card is 4 times faster for SHA-1, and 1.3 to 1.5 times faster for RSA-1024, de-
pending on the target memory. Although exact estimations are not possible, we
speculate that the attribute proving part with the same protocol parameters as
our MULTOS implementation could be improved by a factor of 2 making the
worst execution time for 5 attributes stay below 0.5 seconds. We also estimate
that for the 2 attribute configuration the running times would drop below the 0.3
seconds required for public transport and e-ticketing applications. As for the im-
plementation supporting larger modulus size and more attributes, the JCOP31
card drops its performance going from RSA-1024 to RSA-2048 by the factor of
2 to 2.5. Based on this we believe that the proving part of the protocol would be
within 2 seconds realm for 2048 bit modulus size and 10 attributes. This would
still be faster than any of the existing Java Card anonymous credentials imple-
mentations that only support modulus sizes smaller than 2048 with reasonable
efficiency.
Yet again this stresses the Java Card shortcoming of the limited hardware

interface provided by the API – had the API been more flexible, our speculative
figures above would probably be factual. Although this issue has been brought
up before and we know that the smart card industry is very well aware of this
problem, we see hardly any improvements in this respect. The MULTOS plat-

Table 2. Performance comparison between MULTOS on an Infineon SLE66 chip and
JCOP31 on a NXP SmartMX chip (time in milliseconds for 100 successive operations)

MULTOS JCOP31

contact wireless contact wireless

SHA-1 RAM 5120 5274 1110 1136

SHA-1 E2PROM 6125 6308 1442 1466

RSA-1024 RAM 1016 1060 772 777

RSA-1024 E2PROM 2936 3041 1941 1952

RSA-2048 RAM 14289 14898 1926 1950

RSA-2048 E2PROM 17237 17956 3838 3865

258 W. Mostowski and P. Vullers

form proved itself very strong here with its flexible API design. What MULTOS
is lacking from our point of view is wider hardware support for cryptography
other than RSA and DES. In our own privacy-friendly protocol designs we rely
heavily on ECC, and although the MULTOS API specification supports ECC,
no MULTOS cards with hardware ECC support are currently available to us
for small scale development. Finally, we find the size of the RAM (960 bytes)
available on the MULTOS development cards a little bit of a limiting factor to
fully commit to MULTOS as our prototyping framework.

5 Ongoing Research

In our research we continue to look for efficient solutions for privacy-friendly
smart card applications. For this we develop our own protocols as well as explore
the existing ones. Both require prototypes for feasibility and efficiency analysis.
One of the by-products of the work presented in this paper is the discovery
of the MULTOS cards as an efficient implementation platform for this kind of
protocols.
Hence, the obvious next step is to investigate the implementation of the Idemix

protocol suite on a MULTOS card. Idemix has been already implemented on
a Java Card [4] and despite the best effort of the implementers to maintain
reasonable efficiency the running times still leave room for improvement in our
opinion. Idemix has more features and is more complex than U-Prove and more
involved computations are required, so clearly we do not expect an equally fast
implementation as the one we just presented, but we certainly believe we can
considerably improve over the current Java Card Idemix implementation.
In [2,17] we presented an efficient Java Card implementation of our own pro-

tocol based on ECC and self-blindable signatures. This protocol provides a very
strong anonymity property, however our implementation, despite the achieved
efficiency, still suffers from the inability to fully utilise the hardware capabilities
of the card hidden beyond the Java Card API. Here, a MULTOS card with full
ECC support would provide further improvement possibilities. When (if at all)
such cards are available to us we will certainly investigate these possibilities.
In parallel to this protocol and speed quest we also develop case studies and

a demo suite for on-line use of anonymous credentials. To this end, we are im-
plementing a general framework in the form of a browser plug-in for smart card
enabled web services. This framework will be targeted for the set of anonymity
friendly protocols under our consideration and will allow us to do more prac-
tical comparative studies between the different anonymous credential approaches
exemplified by suitable demos.

6 Conclusion

We have presented an efficient MULTOS implementation of the U-Prove techno-
logy that allows to run the complete prover side of the protocols on a smart card.
This provides an anonymity friendly credentials mechanism for users of such a

Anonymous Credentials on Smart Cards 259

smart card, with full independence from authentication resources external to the
smart card. From the user perspective, the most performance sensitive part of
the protocol is attribute proving. Here, the achieved worst-case running times of
0.87 seconds for the whole set of attributes clearly establishes the practical usab-
ility of our implementation. Our performance results also strongly support our
idea to use a stand-alone U-Prove smart card rather than the Microsoft device-
protection approach, which seems to overlook the current capabilities of smart
cards. One other thing that seems to be overlooked by scientists and smart card
developers is the existence of the MULTOS smart card platform. During our
work it proved itself highly flexible and reasonably fast, hence our next steps are
to implement and assess the performance of other anonymity friendly protocols,
primarily Idemix, in a (MULTOS) smart card setting.

Acknowledgements. We are grateful to Jaap-Henk Hoepman, Bart Jacobs,
Christian Paquin, Erik Poll and the anonymous reviewers for their valuable
comments which helped to improve this work.

References

1. MULTOS implementation report. Tech. Rep. MAO-DOC-TEC-010 v1.36a, MAO-
SCO Limited (February 2010)

2. Batina, L., Hoepman, J.-H., Jacobs, B., Mostowski, W., Vullers, P.: Developing
Efficient Blinded Attribute Certificates on Smart Cards via Pairings. In: Gollmann,
D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp.
209–222. Springer, Heidelberg (2010)

3. Bender, J., Kügler, D., Margraf, M., Naumann, I.: Privacy-friendly revocation man-
agement without unique chip identifiers for the German national ID card. Com-
puter Fraud & Security (September 2010)

4. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stand-
ard Java Card. In: Computer and Communications Security – CCS 2009, pp. 600–
610. ACM (November 2009)

5. Brands, S., Paquin, C.: U-Prove cryptographic specification v1.0. Tech. rep., Mi-
crosoft Corporation (March 2010)

6. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press (August 2000)

7. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In:
Pfitzmann, B., Liu, P. (eds.) Computer and Communications Security – CCS 2004,
pp. 132–145. ACM (October 2004)

8. Bundesamt für Sicherheit in der Informationstechnik: Advanced security mechan-
isms for machine readable travel documents, Version 2.05. Tech. Rep. TR-03110,
German Federal Office for Information Security (BSI), Bonn, Germany (2010)

9. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable An-
onymous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

10. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

260 W. Mostowski and P. Vullers

11. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Computer and Communications Security – CCS
2002, pp. 21–30. ACM (November 2002)

12. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.
(eds.) Advances in Cryptology – CRYPTO 1982. pp. 199–203. Plemum Publishing
(1983)

13. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Communications of the ACM 28, 1030–1044 (1985)

14. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Java. Addison-Wesley (June 2000)

15. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

16. France-Massey, T.: MULTOS – the high security smart card OS. Tech. rep., MAO-
SCO Limited (September 2005)

17. Hoepman, J.H., Jacobs, B., Vullers, P.: Privacy and security issues in e-ticketing
– Optimisation of smart card-based attribute-proving. In: Cortier, V., Ryan, M.,
Shmatikov, V. (eds.) Foundations of Security and Privacy – FCS-PrivMod 2010
(July 2010) (informal)

18. Hoepman, J.H., Lueks, W., Vullers, P.: Revoking self-blindable credentials (2011)
19. Lysyanskaya, A.A.: Signature schemes and applications to cryptographic protocol

design. Ph.D. thesis, Massachusetts Institute of Technology (September 2002)
20. MAOSCO Limited: MULTOS Developer’s Reference Manual (October 2009)
21. NXP Semiconductors: Smart solutions for smart services (z-card 2009). NXP Lit-

erature, Document 75016728 (2009)
22. Paquin, C.: U-Prove cryptographic specification v1.1. Tech. rep., Microsoft Cor-

poration (February 2011)
23. Paquin, C.: U-Prove cryptographic test vectors v1.1. Tech. rep., Microsoft Corpor-

ation (February 2011)
24. Paquin, C.: U-Prove technology overview v1.1. Tech. rep., Microsoft Corporation

(February 2011)
25. Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation

of anonymous credentials on Java Card smart cards. In: Information Forensics and
Security – WIFS 2009, pp. 106–110. IEEE (September 2009)

26. Sun Microsystems, Inc.: Java Card 2.2.2 Application Programming Interface Spe-
cification (March 2006)

27. Sun Microsystems, Inc.: Java Card 2.2.2 Virtual Machine Specification (March
2006)

28. Tews, H., Jacobs, B.: Performance Issues of Selective Disclosure and Blinded Issuing
Protocols on Java Card. In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell,
C.J., Quisquater, J.-J. (eds.) WISTP 2009. LNCS, vol. 5746, pp. 95–111. Springer,
Heidelberg (2009)

29. Verheul, E.R.: Self-Blindable Credential Certificates from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–550. Springer, Heidel-
berg (2001)

Multi-party Private Web Search

with Untrusted Partners

Cristina Romero-Tris, Jordi Castellà-Roca, and Alexandre Viejo

Universitat Rovira i Virgili, UNESCO Chair in Data Privacy
Departament d’Enginyeria Informàtica i Matemàtiques

Av. Päısos Catalans 26, E-43007 Tarragona, Spain
{cristina.romero,jordi.castella,alexandre.viejo}@urv.cat

Abstract. Web search engines are tools employed to find specific infor-
mation in the Internet. However, they also represent a threat for the
privacy of their users. This happens because the web search engines
store and analyze the personal information that the users reveal in their
queries. In order to avoid this privacy threat, it is necessary to provide
mechanisms that protect the users of these tools.

In this paper, we propose a multi-party protocol that protects the
privacy of the user not only in front of the web search engine, but also
in front of dishonest internal users. Our scheme outperforms similar pro-
posals in terms of computation and communication.

Keywords: privacy, web search engines, private information retrieval.

1 Introduction

Search on the Internet is a frequent activity for many users throughout the world.
Web search engines (WSEs) are tools which allow information retrieval from this
huge repository of data. There are many WSEs in the market, such as Google,
Bing, Yahoo, etc.
When a user wants to search a term in a WSE, she types the keywords and

submits her query. Then, the WSE applies information retrieval techniques to
select and rank the results. After that, the user evaluates the list of pages and
gets the information.
Along with this process, the WSE builds a profile of this user based on her

queries. For example, in its Privacy Center [1], Google states that its servers
automatically record requests made by users. These “server logs” include user’s
query, IP address, browser type, browser language, date and time of the request
and a reference to one or more cookies that may uniquely identify the user’s
browser.
Google uses cookies for several purposes such as identifying the users in or-

der to improve their search results and track their trends, and also storing their
preferences. Google also uses the cookies in its advertising services to help com-
panies serve and manage the promotion of their products across the web. This
is called AdSense and it represents a large source of income for Google.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 261–280, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

262 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

Besides the financial gain for WSEs, profiling is a threat for the privacy of
the user. The different logs stored by a WSE contain sensitive data that can be
combined to disclose information of a certain individual. In order to do that,
it is necessary to find the identity of the user. One way of doing it is to use
the IP address and the cookies stored in the logs. Thus, queries that come from
the same IP address or from a browser with a certain cookie are used to build
the same profile. Note that users cannot rely on deleting the cookies and on
the use of different IP addresses. The renewal policy of dynamic IP addresses
depends on the network operator. Furthermore, some users might require static
IP addresses.
In addition to IP addresses and cookies, people can reveal their personal

identity in their queries. In fact, [2] indicates that 94.82% of users have searched
their own name at least once. Moreover, many other queries such as the place
where they live, their job, or even the car they drive, can also be a method of
tracing users and revealing their identity.
Once a user is identified, the WSE can link her identity with the queries

she made. According to [2], around 85% of users have searched for information
that they would not want their parents or their employers to know about. For
example, queries about health, sexual orientation, politics, religion, etc. can be
considered extremely sensitive information for the owners. Hence, the queries of
a user should be protected and never revealed to third parties.
Some incidents in the past have shown that WSEs are not capable of pro-

tecting the privacy of the users. For example, in 2006 AOL released a file with
twenty million searches generated by its users [3]. This incident had serious
consequences since personally identifiable information was present in many of
the queries. Another example of privacy risks with WSEs is the subpoena that
Google suffered in 2006 [4]. On that occasion, the Justice Department of U.S.A.
tried to compel Google to provide millions of Internet search records.
Such events indicate that users should not trust the companies behind the

WSEs. Therefore, it is necessary to propose alternatives that prevent the WSEs
from knowing the sensitive information of the users.

2 Previous Work

The problem of private web search has been widely discussed in previous litera-
ture. In this section, the main contributions to this subject are described.
The problem introduced in this paper is similar to the Private Information

Retrieval (PIR) problem [5]. However, PIR protocols are not suitable for WSEs
because they assume that the server which holds the database collaborates with
the user. In the WSE scenario this assumption cannot be made because WSEs
have no motivation to protect the privacy of the users since it would limit its
profiling objectives.
Another solution to maintain the privacy of the users is to use a proxy. There

are several companies (e.g. Scroogle [6], anonymizer.com [7]) that offer a service
in which the clients can redirect the traffic to their servers. As a result, requests

Multi-party Private Web Search with Untrusted Partners 263

seem to be originated by these servers and have no reference to the IP address
of the client. Nevertheless, this is not the best solution to protect the privacy of
the users because profiling could be done at the proxy, hence, instead of trusting
the WSE, users have to trust the proxy.
Onion routing is a technique to establish anonymous channels that preserve

the privacy of the users. An example of this is the Tor anonymity network which
is described in [8]. The authors in [9] propose to use the anonymous channels
to submit queries to the WSE. The main drawback of this scheme is that the
encryption and decryption process at the onion routers make the search process
too slow. According to [9], the cost of submitting one query to Google is about
10 seconds on average. This means that users would spend 25 times longer doing
each query. This query delay is very high for a tool that is expected to be used
quite frequently.
Another alternative is the use of a query obfuscation protocol such as GooPIR

[10] or TrackMeNot [11]. These protocols generate a stream of automated queries
where the real queries are blended into. As a result, the WSE is not able to create
a correct profile. GooPIR uses a Thesaurus to obtain the words which are mixed
with the real queries. Consequently, the fake queries are single words, while full
sentences are not addressed. TrackMeNot is a plugin for Mozilla Firefox that
generates dynamic queries using RSS feedback. These queries can be words or
sentences, and they are periodically submitted to the WSE.
These obfuscation protocols have a major disadvantage: machine-generated

queries do not have the same features as the human-generated queries. The
works presented in [12] and [13] argue that it is possible to distinguish real
queries from automated queries. For example, [13] develops a classifier which is
very accurate in identifying TrackMeNot queries, with a mean of misclassification
around 0.02%.
Another approach is to use a multi-party protocol, which is not affected by

the misclassification issue of the single-party ones. Besides, they are generally
faster than the schemes based on anonymous channels. In this kind of protocols,
a group of users is created. Then, a user asks another component of the group
to submit her query and send back the result.
In [14], the authors propose a multi-party protocol named Useless User Profile

(UUP). The basic idea beneath this system is that a central node puts users
into dynamic groups where they securely exchange their queries. As a result,
each user submits a partner’s query and not her own and, hence, she obtains a
distorted profile. This protocol achieves a query delay of 5.2 seconds. This time
significantly outperforms previous proposals. However, the UUP protocol has a
major disadvantage. It is not secure in presence of malicious internal users. This
means that a dishonest user can learn the queries of the rest of members of the
group.
The authors of [15] use an scenario which is similar to the one proposed in

[14]. However, they argue that the level of security of [14] is not sufficient. Hence,
they modify the UUP protocol in order to be resilient against some attacks. Nev-
ertheless, the drawback of their proposal is that it uses expensive cryptographic

264 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

tools (i.e. double encryptions) that introduce an unaffordable query delay. In
fact, the authors remark that executing their protocol is twice as expensive as
in [14].
Finally, another similar approach is presented in [16] and [17]. The idea of both

proposals is to minimize the role that the central node plays in the protocol. On
one hand, [16] proposes to use a preestablished network with the topology of a
complete graph. On the other hand, [17] proposes to employ already developed
social networks (e.g. Facebook).
The main drawback of both proposals is that the groups are static (same

members in every execution of the protocol). This means that their protocols
are more vulnerable in front of an internal attack (e.g. the attacks proposed in
[15]).

2.1 Contribution and Plan of This Paper

In this paper, we present a new multi-party protocol that protects the privacy
of the users against web search engines and against dishonest internal users.
Regarding similar approaches, we propose a protocol which increases the level
of security of [14], and requires less computation and communication than [15].
Section 3 introduces the background and tools that the protocol uses. Section

4 describes the scenario and the privacy requirements. The protocol is detailed
on Section 5. Section 6 and 7 analyze its privacy and performance respectively.
Finally, Section 8 concludes the paper and reports some future work.

3 Background and Notation

3.1 n-out-of-n Threshold ElGamal Encryption

In cryptographic multi-party protocols, some operations must be computed
jointly by different users. In an n-out-of-n threshold ElGamal encryption (see
[18] for more details), n users have a distributed public key y and the correspond-
ing secret key α is divided into n shares αi, where no single party knows the
entire secret. Using this protocol, a certain message m can be encrypted using
the public key y and the decryption can be performed only if all n users col-
laborate in the decryption process. Key generation, encryption and decryption
process are next described.

Key Generation. First, a large random prime p is generated, where p = 2q+1
and q is a prime number too. Also, a generator g of the multiplicative group Z

∗
q

is chosen.
Then, each user generates a random private key αi ∈ Z

∗
q and publishes yi =

gαi . The common public key is computed as y =
∏n

i=1 yi = gα, where α =
α1 + . . .+ αn.

Multi-party Private Web Search with Untrusted Partners 265

Message Encryption. Message encryption can be performed using the stan-
dard ElGamal encryption function [19]. Given a message m and a public key y,
a random value r is generated and the ciphertext is computed as follows:

Ey(m, r) = c = (c1, c2) = (gr,m · yr)

Message Decryption. Given a message encrypted with the public key y,
Ey(m, r) = (c1, c2), user Ui can decrypt that value as follows:
Each user j �= i publishes c1αj . Then, Ui can recover message m in the

following way:

m =
c2

c1αi(
∏

j 	=i c1
αj)

This decryption can be verified by each participant by performing a proof of
equality of discrete logarithms [20].

3.2 ElGamal Re-masking

The re-masking operation performs some computations over an encrypted value.
In this way, its cleartext does not change but the re-masked message is not
linkable to the same message before re-masking.
Given an ElGamal ciphertext Ey(m, r), it can be re-masked by computing

[21]:

Ey(m, r) · Ey(1, r
′)

For r′ ∈ Z
∗
q randomly chosen and where · stands for the component-wise scalar

product (ElGamal ciphertext can be viewed as a vector with two components).
The resulting ciphertext corresponds to the same cleartext m.

3.3 Optimized Arbitrary Size (OAS) Benes

A Benes permutation network (PN) [22] is a directed graph with N inputs and
N outputs, denoted as PN (N). It is able to realize every possible permutation
of N elements.
A Benes PN is composed by a set of 2 x 2 switches. These switches have a

binary control signal b ∈ {0, 1} which determines the internal state and, hence,
the output. The two possible states of a 2 x 2 switch are depicted in Figure 1(a).
The problem with a Benes PN is that the size of the network must be a power

of 2. In order to have an Arbitrary Sized (AS) Benes network [23], it is necessary
to introduce a 3 x 3 network like Figure 1(b) shows. Using 2 x 2 switches and 3
x 3 networks recursively it is possible to construct a network of any size.
Optimized Arbitrary Size (OAS) Benes [24] is an extension of AS Benes that

reduces the number of necessary switches in the network. The way of constructing
the OAS-Benes depends on the parameter N :

266 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

(a) States of a 2 x 2 switch (b) 3 x 3 network

Fig. 1. Basic elements of an OAS-Benes

– If N is even, the OAS-Benes PN (N) is built recursively from two even OAS-
Benes of N

2 -dimension called sub-networks. The sub-networks are not di-
rectly connected to the inputs and outputs. Instead of that, they are con-
nected to N − 1 input-output switches, as Figure 2(a) shows.

– If N is odd, the OAS-Benes PN (N) is composed by an upper
⌊
N
2

⌋
even OAS-

Benes, and a lower
⌈
N
2

⌉
odd OAS-Benes. The sub-networks are not directly

connected to the inputs and outputs. In this case, the first N − 1 inputs are
connected to

⌊
N
2

⌋
switches, and the first N − 1 outputs are connected to⌊

N
2

⌋
switches. Figure 2(b) illustrates this construction.

(a) for even N (b) for odd N

Fig. 2. Construction of OAS-Benes

According to the way that an OAS-Benes is constructed, it is possible to ac-
count the minimum number of switches required to satisfy a permutation of N
elements. The formula to calculate the minimum number of switches is:

S(N) =

⎧⎨
⎩
(N − 1) + 2 ∗ S(N2) if N is even

2 ∗
⌊
N
2

⌋
+ S(

⌈
N
2

⌉
) + S(

⌊
N
2

⌋
) if N is odd

Where S(1) = 0, S(2) = 1, S(3) = 3

Multi-party OAS-Benes. OAS-Benes can be used to perform a joint permu-
tation. This means that the switches of the OAS-Benes can be distributed among
a group of n users trying to realize a permutation of N inputs. However, this
must be done is such a way that no user knows the overall permutation between
the inputs and the outputs.
According to [24], a secure permutation (where no user knows the overall

permutation) requires minimally t OAS-Benes PN (N), where t depends on the

Multi-party Private Web Search with Untrusted Partners 267

minimum number of honest users that the system requires. The t OAS-Benes
PN (N) are fairly divided in n adjacent stages. Then, stage i (for i ∈ 1, . . . , n) is
assigned to user i. Since the construction of the OAS-Benes is mechanical, the
users can build it without any cooperation between them or from another entity.
In order to obtain a secure permutation, the condition that must be satisfied

is that the honest users control, at least, S (N) switches. We denote as λ the
minimum number of honest users that the system requires. For example, consider
a scenario with n = 6 users, N = 8 inputs and, at least, λ = 3 honest users.
The number of switches of one OAS-Benes PN (8) is S (8) = 17. According to
[24], the λ = 3 honest users must control 17 or more switches. This means that
every user must control

⌈
17
3

⌉
= 6 switches. Therefore, the scheme needs at least

(6 switches per user × 6 users) = 36 switches that will be fairly divided among
the n users. Consequently, the system requires t =

⌈
36
17

⌉
= 3 OAS-Benes PN (8).

We propose the next formula in order to calculate the number of OAS-Benes
required in a scheme with n users, N inputs, and λ honest users.

t =

⎡⎢⎢⎢
n ·
⌈
S(N)
λ

⌉
S (N)

⎤⎥⎥⎥
3.4 Plaintext Equivalence Proof (PEP)

PEP [25] is an honest-verifier zero-knowledge proof protocol based on a variant
of the Schnorr signature algorithm [26]. The purpose of this protocol is to prove
that two different ciphertexts are the encryption of the same message.
Two ElGamal ciphertexts (c1a, c2a) = (g

ra ,ma ·yra) and (c1b, c2b) = (grb ,mb ·
yrb) for some ra, rb ∈ Z

∗
q are plaintext equivalent if ma = mb. Let:

• α = ra − rb
• k = H(y || g || c1a || c2a || c1b || c2b), where H (·) is a cryptographic hash
function, and || is the concatenation operator.

• G = g · yk
• Y = c1a

c1b
· (c2ac2b

)k = (g · yk)α

Fig. 3. PEP protocol

In order to prove that (c1a, c2a) ≡ (c1b, c2b), the prover must demonstrate knowl-
edge of α by executing the protocol of Figure 3.

268 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

3.5 Disjunctive PEP (DISPEP)

DISPEP [25] is an extension of the PEP protocol. In this case, a user proves that
one of two different ciphertexts is a re-masked version of another ciphertext.
Let (c1a, c2a) = (g

ra ,ma · yra) and (c1b, c2b) = (grb ,mb · yrb) be two different
ElGamal ciphertexts. Then, one of them is a re-masking of another ciphertext
(c1, c2) = (gr,m·yr) for some ra, rb, r ∈ Z

∗
q ifma = m ormb = m. For i ∈ {a, b},

let:

• βi = r − ri
• ki = H(y || g || c1 || c2 || c1i || c2i)
• Gi = g · yki

• Yi =
c1
c1i

· (c2
c2i
)ki = (g · yki)βi

In order to prove whether ma = m or mb = m, the prover must demonstrate
knowledge of βi by executing the protocol of Figure 4. Without loss of generality,
in Figure 4, we assume that the prover is showing ma = m.

Fig. 4. DISPEP protocol

4 System Model

4.1 Entities

The protocol is executed in a scenario with three entities:

– Users. Individuals who submit queries to the WSE. We assume that in our
scenario there are honest and dishonest users. The motivation of the honest
users is to protect their own privacy. The motivation of the dishonest users
is to learn the queries of the honest users.

– Central node. It is the entity that organizes the users into groups. Its main
objective is to distribute the information that users need in order to contact
the other members of the group.

– Web search engine. It is the server that holds the database. As previously
mentioned, WSEs have no motivation to protect the privacy of their users.

Multi-party Private Web Search with Untrusted Partners 269

4.2 Protocol Overview

The idea of the protocol is to create a group of users who collaborate in order
to make searchs in a WSE. Instead of submitting her own query, a user U asks
another member of the group to submit it and send the results back. At the
same time, U submits the query of another user of the group. As a result, the
WSE cannot create a reliable profile of any particular individual.
The protocol requires that neither the WSE nor the users of the group learn

which query belongs to each user. In order to do this, the users execute a multi-
party protocol that works as follows: a central node creates a group of n users.
Then, the required OAS-Benes networks are fairly distributed among the n users.
After that, each user encrypts and broadcasts her query. The list of encrypted
queries is passed from each user to the next. In her turn, each user re-masks
and permutates the list of ciphertexts at every switch that she was assigned.
Furthermore, for every switch she uses PEP and DISPEP protocols to prove to
the rest of users that the outputs are re-ordered and re-masked versions of the
inputs.
The final result is that the users obtain a list of ciphertexts that cannot be

linked to the original list. Then, each user decrypts one different query, submits
it to the WSE and broadcast the result.

4.3 Privacy Requirements

In order to guarantee the privacy of the users, the scheme must fulfill the fol-
lowing requirements:

– The users cannot link any query with the user who generated it.
– The central node cannot link any query with the user who generated it.
– The WSE is not able to construct a reliable profile of any user.

5 Protocol Description

The protocol is composed by four phases that the users execute sequentially.

5.1 Group Setup

Every user who wants to submit a query to the WSE, contacts the central node.
When the central node has received n requests, it creates a group {U1, . . . , Un}.
Then, the n users are notified that they belong to the same group. The users
receive a message with the size of the group (n) and the position that every com-
ponent has been randomly assigned (i = 1, . . . , n). Each position is associated
with the IP address and the port where the user is listening. This information al-
lows the users to establish a communication channel between them. The central
node is no longer needed.

270 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

5.2 Permutation Network Distribution

As stated in section 3.3, t OAS-Benes networks are necessary to perform a secure
permutation. The number of inputs of the networks equals the number of users
N = n, which is also the same as the number of queries. Regarding the number
of honest users, the parameter is always fixed at λ = 2. The reason for this choice
requires a privacy analysis and, hence, is later detailed in Section 7.1.
Knowing the parameters n, N , and λ, the users calculate the value of t using

the formula defined on Section 3.3. The construction of the t OAS-Benes PN (n)

is mechanical. This means that users do not need to exchange any information.
As long as they know the parameters t and n, they know the arrangement of the
switches in the t OAS-Benes PN (n). Therefore, they can fairly divide them in n
adjacent stages.
According to the positions assigned in the previous phase, user Ui is respon-

sible for the switches that correspond to the i-th stage. Each stage is formed by
d switches, where d = t

n · S(n) on average.
We denote as sil the l-th switch of the i-th user for i = 1, . . . , n and l = 1, . . . , d.

We also define a function Φ (i, l) that, given an output of a switch, returns the
input of the next switch that must follow. The result is given according to the
arrangement of the switches in the PNs. Figure 5 illustrates the operation of this
function.

Fig. 5. Correlation between the outputs of a switch and the inputs of the next

5.3 Group Key Generation

1. Users {U1, . . . , Un} agree on a large prime p where p = 2q + 1 and q is a
prime too. Next, they pick an element g ∈ Z

∗
q of order q.

2. In order to generate the group key, each user Ui performs the following steps:
(a) Generates a random number ai ∈ Z

∗
q .

(b) Calculates her own share yi = gai mod p.
(c) Broadcasts a commitment to her share hi = H (yi), where H is a one-way

function.
(d) Broadcasts yi to the other members of the group.
(e) Checks that hj = H (yj) for j = (1, . . . , n).
(f) Calculates the group key using the received shares:

y =
∏

1≤j≤n yj = ga1 · ga2 · . . . · gan

Multi-party Private Web Search with Untrusted Partners 271

5.4 Anonymous Query Retrieval

For i = 1, . . . , n, each user Ui performs the following operations:

1. Ui generates a random value ri and uses the group key y to encrypt her
query mi:

Ey(mi, ri) = (c1i, c2i) = c0i

2. Ui sends c
0
i to the other members Uj , for ∀j �= i.

3. For every switch sil (l = (1, . . . , d)) with two inputs denoted as c2l−1
i−1 and

c2li−1 received from Ui−1 (note that the inputs for the switches of U1 are the
initial ciphertexts {c01, . . . , c0n}):
(a) Ui re-masks the cryptograms c

2l−1
i−1 and c2li−1. She obtains a re-encrypted

version e2l−1
i−1 and e2li−1 using the re-masking algorithm defined in sec-

tion 3.2.
(b) Ui randomly chooses bi,l ∈ {0, 1} to determine the state of the switch

sil as in Figure 1(a). According to this state, she obtains a re-ordered

version of the ciphertexts e
π(2l−1)
i−1 and e

π(2l)
i−1 .

(c) Ui broadcasts {cΦ(i,2l−1), cΦ(i,2l)} = {eπ(2l−1)
i−1 , e

π(2l)
i−1 }

(d) Assuming:
c2l−1
i−1 = Ey(m1, r1), c2li−1 = Ey(m2, r2)

e
π(2l−1)
i−1 = Ey(m

′
1, r

′
1), e

π(2l)
i−1 = Ey(m

′
2, r

′
2)

Ui must demonstrate that e
π(2l−1)
i−1 and e

π(2l)
i−1 are re-masked and re-

ordered versions of c2l−1
i−1 and c2li−1. This is equivalent to proving the

two following statements:
I. (m2 = m′

2) ∨ (m2 = m′
1).

This can be proved using the DISPEP protocol of Section 3.5.
II. m1 ·m2 = m′

1 ·m′
2.

Ui computes c = Ey(m1 ·m2, r1 + r2) and c′ = Ey(m
′
1 ·m′

2, r
′
1 + r′2),

and uses the PEP protocol (Section 3.4) to prove that c and c′ are
plaintext equivalent.

All the other users Uj (∀j �= i) verify the proofs.
4. Let us denote {c1, . . . , cn} the resulting list of re-masked and re-ordered
ciphertexts. At this point, each user Ui owns those n values. Then, user Ui

decrypts the value ci that corresponds to a query mi generated by one of
the group members. Note that due to the re-masking and permutation steps,
probably mi does not correspond to mi (the query that has been generated
by Ui).
Decryption of a certain ci requires that all n users participate by sending
their corresponding shares to user Ui. According to that, Ui receives (c1i)

αj

from Uj , for j = (1, . . . , n) and j �= i. Then, Ui computes her own share
(c1i)

αi . Finally, Ui retrieves m
i by computing:

mi =
c2i

c1αi

i (
∏

j 	=i c1
αj

i)

272 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

6 Privacy Analysis

This section analyzes the behaviour of the protocol regarding the privacy require-
ments that appear on Section 4.3. Basically, these requirements demand that,
at the end of the protocol, no query can be linked to the user who generated it.
The system is analyzed in the presence of the three dishonest entities that may

participate in the protocol: dishonest user, dishonest central node and dishonest
web search engine.

6.1 Dishonest User

The ElGamal cryptosystem is sematically secure under the Decisional Diffie-
Hellman assumption. This means that a dishonest user cannot know if two dif-
ferent ciphertexts will result into the same cleartext after decryption.
Therefore, every time that a ciphertext ci crosses a switch, it is re-masked and

permutated, and the attacker can only link the result to ci by random guessing,
with probability of success 1/2. This probability exponentially decreases for every
switch that the ciphertext crosses.
In the case of an attacker that only knows the inputs and the final outputs of

the protocol, the intermediate re-maskings and permutations prevent her from
finding the links between them. Hence, given a particular user, the probability
of correctly linking her with a decrypted query is 1/n.
Let us consider the case where a dishonest user successfully learns the query

of another component of the group. This means that she is able to link one
input of the permutation networks with one of the outputs. This attack may be
conducted if one of the following conditions is fulfilled.

1. The dishonest user knows the secret group key. In this case, the attacker can
decrypt the queries at any step of the protocol.

2. The dishonest user ignores the key but knows the overall permutation. In this
case, the attacker waits until the ciphertexts are decrypted. Then, she can
link every query with the original ciphertexts and, hence, with their sources.

Regarding the first condition, the attacker can only recover the secret key if
she compromises the n − 1 other members of the group. The generation of the
group key is distributed among the participants using the n-out-of-n threshold
ElGamal key generation explained on Section 3.1. One of the characteristics of
this scheme is that, if there is even a single honest user, the secret key cannot
be reconstructed.
Another alternative in order to learn the secret key is to maliciously alter

the key generation phase. In this phase, each user generates her share yi = gai ,
then she broadcasts a commitment to that share using a cryptographic function
H (yi), and then she sends yi in a new message. A dishonest user may change
her choice of share after receiving the shares of the other participants, before
sending her own. This dishonest user calculates her share y′j = gaj/

∏n−1
i=1 yi =

gaj−a1−···−an−1 and broadcasts it. As a result, the group key is computed as
y = gaj and, hence, the dishonest user knows the secret group key.

Multi-party Private Web Search with Untrusted Partners 273

In order for this attack to be successful and remain undetected, the dishonest
user must be able to find collisions in the hash function. This means that she must
find a value y′j for which her previous commitment is still valid (i.e., H (yi) =
H (y′i)). Nowadays, the probability of finding a collision in a reasonable amount
of time using a cryptographic hash function such as SHA-2, is almost negligible.
Regarding the second condition, the use of OAS-Benes PNs guarantees that

the permutation remains random and private. The requirement that must be
satisfied is that there must be at least one permutation network controlled by
honest users. This means that the proposed scheme needs a quantity of PNs that
depends on the minimum number of honest users required to run the protocol.
More specifically, the quantity of PNs that the scheme needs is the number that
satisfies the following condition: in any possible distribution of stages among the
users, the amount of switches controlled by the t honest users equals, at least,
the number of switches composing one OAS-Benes PN. If this requirement is
fulfilled, according to [24], the permutation is secure and remains secret to all
the participants. Then, it is not possible to backtrace a permutation to find the
original input.

6.2 Dishonest Central Node

The central node creates the groups of users. This entity only participates in
the initial phase of the protocol, before the users exchange any message. Since it
ignores any further communication between the users, the central node cannot
link any query to the source.
However, consider the case where a central node is in control of at least n− 1

machines. Then, this entity could group a single honest user with n− 1 users in
its control. In this case, even if the protocol is thoroughly followed, the privacy
of the honest user is lost. This happens because, at the end of the protocol, the
queries are revealed and the central node can identify which query belongs to
the honest user. In a similar situation, an attacker could send many requests to
the central node such that it is likely that she controls a large fraction of the
group.
In order to prevent these attacks, the authors of [15] propose a solution that

can be straightforwardly applied to our protocol. Their solution consists in a
joint coin tossing scheme that uniformly distributes the parties controlled by
the central node among all the groups executing the protocol. However, their
proposal has two obstacles that may affect its practical deployment:

1. The number of parties controlled by the central node must be small in com-
parison with the number of users ready to execute the protocol at a certain
time. In [15], the authors consider the case of millions of users running the
protocol, while the dishonest central node only controls a few thousands of
them.

2. Executing the joint coin tossing scheme is expensive. Therefore, [15] pro-
poses to reuse the groups in several consecutive executions of the protocol.
However, the users of the same group may not want to submit another query

274 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

at the same time. On the other hand, sharing a group several times with the
same user increases the probability of learning one of her queries.

6.3 Dishonest Web Search Engine

The objective of the WSE is to gather the queries of the users in order to build
their profiles. In the proposed protocol, the WSE only participates in the last
phase. The WSE receives the queries from all the members of the group and
returns the results.
The WSE can link each query with the user who submitted it and include

that information on her profile. Since a user Ui does not submit her own query
but the query of another participant, her profile is distorted. Hence, after several
executions of the protocol, the profile of Ui that the WSE owns is useless.

7 Performance Analysis

The objective of this section is to analyze the performance of our proposal and to
compare the results with other similar proposals. Our proposal is compared with
two similar approaches: the scheme proposed by [14] and the scheme presented
in [15]. Since the work presented in [15] does not include simulations nor a query
delay estimation in a real environment, we decided to analyze the protocols
theoretically. For this purpose, we analyze the protocol regarding the required
computation time and the number of messages that need to be exchanged.

7.1 Parameter Selection

Prior to the comparisons, three parameters of the system must be defined: the
size of the group (n), the key length, and the number of OAS-Benes (t).

Size of the Group and Key Length. In the proposed protocol, the privacy
of the users in front of the WSE increases with the size of the group. This means
that the bigger size of the group, the more privacy the members obtain.
However, in practice, the size of the group is bounded by the time that users

must wait in order to create the group. In order to minimize the query delay,
the creation of the group must be quick. According to [14], Google answers 1157
queries per second. The queries can be modeled using a Poisson distribution.
This allows to calculate the probability of forming a group of n users in a certain
amount of time. After several tests with n = 3, n = 4, n = 5 and n = 10, the
authors of [14] conclude that n = 3 is the most realistic group size. As stated
in [14], the probability of forming a group of n = 3 users in a hundredth of a
second is close to 1.
For this reason, in the subsequent performance analysis we present the results

obtained for n = 3 users. For a more complete comparison, we also show the
results for a group size of n = 4 and n = 5 users.

Multi-party Private Web Search with Untrusted Partners 275

Regarding the key length, according to [14] and [27], a 1024-bit key length is
considered computationally safe. In addition, the work presented in [28] argues
that a query is formed on average by 2.3 words and 15.5 characters. Assuming
that a single Unicode character uses 2 bytes, a query would require 31 bytes on
average. A key of 1024 bits can encrypt up to 128 bytes. This indicates that a
system that employs a 1024-bit key length can accept queries with approximately
64 characters, a significantly higher value than the average query size.

Minimum Number of OAS-Benes PNs. The minimum number of OAS-
Benes PNs, denoted as (t), is calculated according to the formula defined on
Section 3.3. This formula depends on the size of the group (n), the number of
inputs (N) and the minimum number of honest users (λ).
The selection of the size of the group (n) is explained above. The number of

inputs equals the size of the group (N = n), because the inputs are the queries
that every user generates. Nevertheless, the minimum number of honest users
requires a further analyis.
Our scheme must be able to provide privacy in the worst possible conditions.

That is, when the number of dishonest users is large in comparison with the
number of honest users. However, the smaller the parameter λ is, the more
OAS-Benes PNs are required and the higher the query delay grows. Hence, the
value of λ must minimize the query delay wihout sacrificing the privacy of the
users.
The minimum value for the number of honest users is λ = 1. However, this

value does not guarantee the privacy of the users. As stated in Section 6.2,
in a scenario with a single honest user and n − 1 dihonest users, even if the
permutation is perfectly secure, the privacy of the honest user is lost. Note that
a coalition of n − 1 dishonest users can easily identify which of the n queries
belongs to the honest user.
The next possible minimum value is λ = 2. This value defines the worst case

scenario in which our scheme can provide privacy. In this case, the n−2 dishonest
users have a probability of 0.5 of learning the query of the honest users.
In summary, we fix the parameter λ = 2 as the minimum number of honest

users that our protocol requires.

7.2 Analysis of the Computation Time

Next, we analyze the computation time needed in the execution of [14], [15] and
our proposal. More specifically, we focus on the amount of modular exponentia-
tions that every user must perform in each execution of the protocol.
There are some parts of the protocol of [15] that employ a double encryption.

This means that some modular exponentiations are performed modulus a 2048-
bit integer value, instead of using a 1024-bit modulus like [14] and our proposal
do. In order to compare the time required by a 1024-bit and a 2048-bit mod-
ular exponentiation, we executed a simulation that performed both operations.

276 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

The simulation revealed that, in the same conditions, a 1024-bit modular ex-
ponentiation takes 22 ms on average, while a 2048-bit modular exponentiation
takes 172 ms on average.
Table 1 shows the theoretical computation time needed by modular expo-

nentiations in each protocol. The τ1024 denotes the time required to make one
1024-bit modular exponentiation. The τ2048 denotes the time required to make
one 2048-bit modular exponentiation.

Table 1. Modular exponentiations average time for one user

Castellà et al. [14] (3n+ 3) · τ1024
Lindell et al. [15] 6n · τ1024 + 5n · τ2048 − τ1024 + 2 · τ2048
Our Proposal

(
n+ 3 + 25·t·S(n)

n

)
· τ1024

Figure 6 shows the calculated times for a group size of 3, 4 and 5 users. The
results indicate that [14] obtains the lowest computation time. This happens
because [14] does not use any mechanism to protect the participants against
dishonest users. Since [15] uses double encryptions and our proposal uses zero-
knowledge proofs, the computation times are higher. However, the results indi-
cate that, regarding the modular exponentiations cost, our proposal outperforms
the protocol of [15]. For example, for n = 3 users, our proposal requires approx-
imately one second more of computation time than [14], while [15] needs 3 more
seconds than [14].

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5

T
im

e
in

 m
s

Number of users

Castella et al.
Lindell et al.

Our proposal

Fig. 6. Comparison of modular exponentiations times per user

Multi-party Private Web Search with Untrusted Partners 277

7.3 Analysis of the Number of Messages

In order to analyze the performance of the protocol, another relevant parameter
is the usage of the network. Table 7.3 reflects the number of messages that every
user sends in each execution of the protocol.

Table 2. Average number of messages sent by each user

Castellà et al. [14] 3n− 1− 2
n

Lindell et al. [15] 4n− 2− 2
n

Our Proposal 4n− 4

Figure 7 represents the number of messages sent when 3, 4 or 5 users jointly
execute the protocol. Although the number of messages is similar in the three
proposals, the results indicate that the number of messages sent in [14] is lower
than in [15] and in our proposal. The results also indicate that our proposal
requires less message deliveries than [15].

 6

 8

 10

 12

 14

 16

 18

3 4 5

M
es

sa
ge

s
se

nt
 o

ve
r

th
e

ne
tw

or
k

Number of users

Castella et al.
Lindell et al.

Our proposal

Fig. 7. Comparison of messages sent in each protocol per user

7.4 Additional Remarks

There is another difference between the protocol of [15] and our proposal that
affects the performance. In [15], in order to detect a dishonest user, the par-
ticipants must wait until the last phase of the protocol (i.e., when the last

278 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

user broadcasts the results). At this point, if they detect any irregularity, the
honest users discard the obtained results and begin a new execution with a new
group.
On the other hand, our proposal is able to detect a misbehaviour earlier.

For example, if the first user is dishonest, her misbehaviour can be detected
immediately after she sends her zero-knowledge proofs. After the detection, the
rest of users logout and start a new execution.
In conclusion, in the presence of one or more dishonest users, the users waste

more time running the protocol of [15] than if they execute our proposal.

8 Conclusions and Future Work

Users frequently reveal personal information in the queries that they submit to
WSEs. WSEs store this information and use it to improve the search results and
for targeted advertising. In order to avoid this situation, this paper proposes a
protocol that protects the privacy of the users from web search profiling.
The proposed protocol has been analyzed in terms of privacy and performance.

The privacy analysis shows that the users are protected in front of the WSE and
of dishonest internal users. Regarding the performance, the protocol ouperforms
similar proposals with the same level of privacy.
The future work will focus on two different lines. The first line is the imple-

mentation of the proposed protocol and deployment in a real scenario. Making
simulations in this scenario will allow to estimate the real query delay and com-
pare its performance results with similar proposals. The second line of future
work will focus on the search of a peer-to-peer solution that does not require the
use of a central node in order to create the groups.

Disclaimer and Acknowledgments

The authors are with the UNESCO Chair in Data Privacy, but they are solely
responsible for the views expressed in this paper, which do not necessarily reflect
the position of UNESCO nor commit that organization. This work was partly
supported by the Spanish Ministry of Science and Innovation through projects
TSI2007-65406-C03-01 “E-AEGIS”, CONSOLIDER CSD2007-00004 “ARES”
and PT-430000-2010-31 “Audit Transparency Voting Process”, and by the Gov-
ernment of Catalonia under grant 2009 SGR 1135.

References

1. Google Privacy Center (2011), http://www.google.com/privacy
2. Conti, G., Sobiesk, E.: An honest man has nothing to fear: user perceptions on

web-based information disclosure. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, pp. 112–121 (2007)

http://www.google.com/privacy

Multi-party Private Web Search with Untrusted Partners 279

3. Barbaro, M., Zeller, T.: A Face is Exposed for AOL Searcher No. 4417749. New
York Times (August 2006)

4. Hafner, K., Richtel, M.: Google Resists U.S. Subpoena of Search Data. New York
Times (January 2006)

5. Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Information
Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

6. Scroogle (2011), http://scroogle.org
7. Anonymizer (2011), http://www.anonymizer.com
8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion

router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
p. 21 (2004)

9. Saint-Jean, F., Johnson, A., Boneh, D., Feigenbaum, J.: Private Web Search. In:
Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society – WPES
2007, pp. 84–90 (2007)

10. Domingo-Ferrer, J., Solanas, A., Castellà-Roca, J.: h(k)-private information re-
trieval from privacy-uncooperative queryable databases. Journal of Online Infor-
mation Review 33(4), 720–744 (2009)

11. TrackMeNot (2011), http://mrl.nyu.edu/dhowe/trackmenot
12. Chow, R., Golle, P.: Faking contextual data for fun, profit, and privacy. In: Pro-

ceedings of the 8th ACM Workshop on Privacy in the Electronic Society – WPES
2009, pp. 105–108 (2009)

13. Peddinti, S.T., Saxena, N.: On the Privacy of Web Search Based on Query Obfus-
cation: A Case Study of TrackMeNot. In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 19–37. Springer, Heidelberg (2010)

14. Castellà-Roca, J., Viejo, A., Herrera-Joancomart́ı, J.: Preserving user’s privacy in
web search engines. Computer Communications 32(13-14), 1541–1551 (2009)

15. Lindell, Y., Waisbard, E.: Private Web Search with Malicious Adversaries. In:
Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 220–235.
Springer, Heidelberg (2010)

16. Reiter, M., Rubin, A.: Crowds: anonymity for Web transactions. ACM Transactions
on Information and System Security 1(1), 66–92 (1998)

17. Viejo, A., Castellà-Roca, J.: Using social networks to distort users’ profiles gener-
ated by web search engines. Computer Networks 54(9), 1343–1357 (2010)

18. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

19. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

20. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

21. Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999)

22. Waksman, A.: A Permutation Network. Journal of the ACM 15(1), 159–163 (1968)
23. Opferman, D., Tsao-Wu, N.: On A class of Rearrangeable Switching Networks. Bell

Systems Technical Journal 50(5), 1579–1618 (1971)
24. Soo, W.H., Samsudin, A., Goh, A.: Efficient Mental Card Shuffling via Optimised

Arbitrary-Sized Benes Permutation Network. In: Chan, A.H., Gligor, V.D. (eds.)
ISC 2002. LNCS, vol. 2433, pp. 446–458. Springer, Heidelberg (2002)

http://scroogle.org
http://www.anonymizer.com
http://mrl.nyu.edu/dhowe/trackmenot

280 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

25. Jakobsson, M., Juels, A.: Millimix: mixing in small batches. DIMACS Technical
report 99-33 (1999)

26. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy 4, 161–174 (1991)

27. Recommendation for Key Management, Special Publication 800–57 Part 1, NIST
(2007)

28. Kamvar, M., Baluja, S.: A large scale study of wireless search behavior: Google
mobile search. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 701–709 (2006)

v -CAPS: A Confidentiality

and Anonymity Preserving Routing
Protocol for Content-Based

Publish-Subscribe Networks

Amiya Kumar Maji and Saurabh Bagchi

Dependable Computing Systems Lab (DCSL)
School of Electrical and Computer Engineering
Purdue University, West Lafayette Indiana, USA

{amaji,sbagchi}@purdue.edu

Abstract. Content-based Publish-Subscribe (CBPS) is a widely used
communication paradigm where publishers “publish” messages and a set
of subscribers receive these messages based on their interests through
filtering and routing by an intermediate set of brokers. CBPS has proven
to be suitable for many-to-many communication offering flexibility and
efficiency in communications between a dynamic set of publishers and
subscribers. We are interested in using CBPS in healthcare settings to
disseminate health-related information (drug interactions, diagnostic in-
formation on diseases) to large numbers of subscribers in a confidentiality-
preserving manner. Confidentiality in CBPS requires that the message
be hidden from brokers whereas the brokers need the message to compute
routing decisions. Previous approaches to achieve these conflicting goals
suffer from significant shortcomings—misrouting, lesser expressivity of
subscriber interests, high execution time, and high message overhead.
Our solution, titled v -CAPS, achieves the competing goals while avoid-
ing the previous problems. In v -CAPS, the trusted publishers extract the
routing information based on the message and the brokers keep minimal
information needed to perform local routing. The routing information
is cryptographically secured so that curious brokers or other subscribers
cannot learn about the recipients. Our experiments show that v -CAPS
has comparable end-to-end message latency to a baseline insecure CBPS
system with unencrypted routing vectors. However, the cost of hiding
the routing vectors from the brokers is significantly higher.

Keywords: content-based publish subscribe, privacy, anonymity, mes-
sage latency.

1 Introduction

With the growing demand for adaptive and intelligent communication networks,
content-based publish subscribe (CBPS) has gained significant attention in the

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 281–302, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

282 A.K. Maji and S. Bagchi

research community over the last decade. Publish-subscribe in general is a com-
munication technique whereby publishers “publish” messages and a set of sub-
scribers receive these messages. This is more efficient than a publisher sending
multiple point-to-point messages to each subscriber. Publish-subscribe offers a
degree of decoupling between the publishers and the subscribers—a network of
brokers together route the messages from a publisher to the correct set of sub-
scribers. In traditional publish-subscribe systems, the subscribers express their
interest in certain topics of messages and each message is published on one or
more topics. Thus, conceptually, routing of messages to the subscribers is simple.
CBPS systems, which followed the development of traditional publish-

subscribe systems, offer greater flexibility to the subscribers to express their
interests. In CBPS systems, the subscriber defines a filter (a logical expression)
on the content of a message, such as, a diabetic patient may be interested in avail-
ability of a drug named ‘Glucotrol’ where the store zip code is either ‘47901’ or
‘47902’ and unit price is less than ‘$1’. Only messages matching the filter will
be delivered to our hypothetical patient. Here the brokers execute more sophis-
ticated algorithms for matching messages with constraints on attribute values
in the filter (such as sub-string, equality, inequality). Typically, a hierarchy of
brokers arranged in layers perform progressive filtering of the messages till they
reach the correct set of subscribers. CBPS systems have seen significant research
activity over the years resulting in excellent algorithms for filter matching, filter
propagation through the broker network, and minimization of delivery latency
[2], [4], [5], [6], [10]. These systems have also had mature industrial deployments
[1], [2].
However, CBPS systems rely heavily on the integrity of brokers. Wang et al.

[19] have shown that achieving message confidentiality, integrity, and auditabil-
ity in the presence of malicious brokers is a challenging assignment. Consider
the following scenario: Our hypothetical patient Jane is infected with HIV. She
wants to subscribe for drug availability and preventive care newsletters for her
disease from an online health information exchange that uses CBPS for content
delivery. Due to the sensitivity of her disease, Jane doesn’t want the brokers to
learn about her subscription. Similarly, Dr. Watson, a publisher in the health in-
formation exchange, doesn’t want to divulge contents of his messages to the bro-
kers. But normal functioning of CBPS requires that the brokers should inspect
both pieces of information (notifications and subscriptions) to route messages.
We term the ensuing paradoxical problem—that of computing routing decisions
based on encrypted notification and subscriptions—the secure routing problem
(PA). To further illustrate the complexity of this problem, let us assume that
we have “magically” found a solution to PA. However, to encrypt a notification,
the publisher must know the precise set of subscribers that receive a notification
and share a group key with them. This violates the publisher-subscriber decou-
pling property of CBPS. Furthermore, the set of subscribers is a function of the
notification and may change with every message. We term this problem—that of
dynamic group discovery and key exchange among publishers and subscribers—
dynamic subscriber group management problem (PB). An anonymity-preserving

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 283

solution, like Tor [9], works well for single source to single destination, but not
in the case when multiple patients need to subscribe to the same information,
unbeknownst to others.
In this paper, we present v -CAPS, a routing protocol guaranteeing

Confidentiality of messages and Anonymity of subscribers in the presence of
untrusted brokers in content-based Publish-Subscribe networks. In essence, our
protocol solves the problem PA mentioned in the previous paragraph. Our cur-
rent work assumes a solution exists for the problem PB so that for each notifica-
tion, a key can be shared with a dynamically determined group of subscribers.
Candidate solutions are available in [13]. A simplistic, but workable, solution will
be to have a single key shared by each publisher with all the subscribers. Our
brokers are curious in that they wish to inspect the messages and the recipients
of messages, but are otherwise well-behaved in that they perform their routing
decisions correctly. One can argue that the adversary model we consider is more
insidious of the two—clear denial of service due to dropping the messages can be
detected more easily. This class of privacy-preserving CBPS systems has been
motivated by others in the literature [12], [15], [16].
Several researchers have tried to address PA by using cryptographic tech-

niques like computation on encrypted data [15], commutative encryption [16],
or homomorphic encryption [12]. However, all of these approaches have their
shortcomings—false positives or misrouting [15], lesser expressivity of subscriber
interests or filters [12], [15], [16], high execution time [12], [15], and high mes-
sage overhead [12], [15]. We make the important observation that routing in
content-based publish-subscribe networks does not necessarily require inspec-
tion of the whole message. Instead, if a trusted publisher extracts the routing
information from a message before encrypting it, then the problem reduces to
hiding this information from malicious brokers. In our solution approach, the
publisher looks at the commonality of interests among subscribers and encodes
the routing information in the form of a routing vector (hence, the letter “v”
in the name of our protocol). The routing vector (RV) is added to the header
of a message and it allows brokers to compute their receiver lists. We present
two versions of our protocol—one where the RV is left unencrypted (termed the
RV protocol), and the second where the RV is further encrypted to achieve both
confidentiality and anonymity (termed Secure RV or SRV protocol). Our sim-
ple approach eliminates the need for complex cryptographic operations, thereby,
making it possible to incorporate the full generality of filters in baseline CBPS
systems, with low computational overhead on the brokers. Our experimental
results show that RV performs nearly as fast as a baseline CBPS in terms of
latency. Achieving perfect anonymity (which we do through the SRV protocol),
however, is significantly more costly and practical only for medium-sized net-
works. Unlike earlier approaches, the choice of encryption schemes is flexible in
v -CAPS and continuing advances in faster content matching will render v -CAPS
more efficient. For all practical purposes, v -CAPS does not have false positives
(subject to the non-collision guarantees of cryptographic hash functions). The
concessions that v -CAPS makes are added execution overhead at the publisher

284 A.K. Maji and S. Bagchi

and some loss of decoupling between publishers and subscribers. However, the
partial loss of decoupling has added advantage of auditability and enforcement
of access control on subscriber interests.
The rest of the paper is organized as follows. Since a major portion of our

protocol is described based on terminology used in Siena [4], a baseline CBPS
system (i.e., without any privacy guarantee), we present the necessary back-
ground in Section 2. In Section 3, we highlight security goals, threat model, and
assumptions in the proposed scheme. Section 4 presents the design of v -CAPS,
guaranteeing message confidentiality. An enhanced protocol for incorporating
subscriber anonymity is illustrated next. The protocol description is followed by
an experimental evaluation of v -CAPS on a wide-area deployment. Finally, we
discuss some unsolved design issues and conclude the paper.

2 Background

Content-Based Publish-Subscribe (CBPS) is an asynchronous communication
paradigm where a message is routed based on its content instead of a fixed
destination address. Typically, three types of nodes form the backbone of a
CBPS network. These are – publishers, the entities that send a message into the
network; subscribers, the entities that express their intention to receive messages
with certain content; and brokers, the intermediate nodes that route messages
from the publishers to the subscribers. Typically there are multiple levels of
brokers between the publishers and the subscribers. CBPS has been shown to
be an effective communication stratum under various scenarios — publishers
and subscribers are linked transiently, fine-grained expression of interest can be
made by subscribers, and some publishers and subscribers are ephemeral. It has
been shown that CBPS is capable of delivering messages with low latency and
of scaling to a large number of publishers and subscribers [2], [5]. The messages
generated by publishers are termed as notifications. A notification consists of a
collection of attributes and their values. Each element in this collection is a three-
tuple <attributeName, attributeValue, attributeType>. E.g. a sample notification
regarding available appointment schedule for Dr. Watson may look as follows:

wardName cardiology string

wardId 2131 integer

docName Dr. Watson string

totalSlots 20 integer

apptSlots list of slots list datetime

timeStamp 01/05/2011 09:00AM datetime

The notification indicates that Dr. Watson in cardiology ward has 20 available
appointment slots for the week (list for which is also given in the notification).
The collection of attribute names and their data types define the schema of a
notification.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 285

A subscriber in a CBPS network may request for messages with certain
attribute values. The interest of a subscriber is represented by a set of con-
straints over the attributes. Each attribute constraint is defined as a four tuple
<attributeName, operator, value, attributeType>, where operator can be any
boolean operator like =, ! =, >, <, etc. or string operators like prefix, suffix,
substring etc. For clarity of representation, we shall, however, denote attribute
constraints as logical expressions in subsequent discussions and assume that the
attribute type will be clear from the context. For example, an attribute constraint
for the notification shown above may be wardName="cardiology". A filter over
a notification schema is defined as a conjunction of one or more attribute con-
straints, e.g., (wardName="cardiology")∧(docName="Dr. Watson") is a filter
for receiving appointment slots for Dr. Watson in Cardiology ward. A subscriber
may subscribe with one or more filters which are propagated from the subscriber
to the publishers through the set of brokers. The notifications, on the other hand,
are routed from the publishers to the matching subscribers through progressive
filtering at different levels of brokers. We say that a notification matches a fil-
ter if all its attribute constraints are satisfied by the notification. Clearly, the
filter (wardName="cardiology")∧(docName="Dr. Watson") matches the noti-
fication shown above.
Commonality between filters in the CBPS network is computed by a cover-

ing relationship as in [4]. We define that a filter F1 covers a filter F2, denoted
F2 ≺ F1 iff all the notifications that match F2 also match F1. For example,
if F1 = (wardName="cardiology") and F2 = (wardName="cardiology") ∧
(docName="Dr. Watson"), then F2 ≺ F1. Loosely speaking, filter F2 is less per-
missive, i.e. stricter, than filter F1. Notice that, in the general case, notification
sets of two filters may not overlap. Hence, the covering relation imposes a partial
order on the set of filters. For efficient propagation of subscriptions and notifica-
tions, each broker in the CBPS network maintains two data structures—a filter
poset and the subscriber list for each filter. The filter poset is the partially or-
dered set of filters received by a broker from its lower level brokers or subscribers,
whereas, the subscriber list stores the set of subscribers for each filter.

2.1 Filter Posets

The filter posets, which denote partial ordering between filters at a broker, are
represented as a collection of directed trees. In the tree an edge is drawn from
filter F1 to F2 (F1 → F2), iff F2 ≺ F1. The root of a tree is termed as the
root filter. Essentially, root filters are the set of filters that are not covered by
any other filter. These trees may have overlap between themselves (i.e. they
share some branches). However, the overall collection of trees form a directed
acyclic graph (DAG). For notification forwarding decisions, each of the filters
in the filter posets is associated with a set of recipients. A recipient may be
either a subscriber or a next hop broker. For example, consider the simple net-
work shown in Fig. 1. Here P is the publisher, B1, B2, B3 are the brokers
and S1, S2, S3, S4 are the subscribers with filters F1, F2, F3, F4 respectively.

286 A.K. Maji and S. Bagchi

Fig. 1. An Example CBPS Network

We assume the covering
relationship between fil-
ters to be F2 ≺ F1 ≺
F3 while F4 is indepen-
dent w.r.t. other filters.
The filter poset and the
recipient list at each of
the brokers in the net-
work are displayed along-
side each broker in Fig. 1.
The distinction be-

tween filter posets in v -
CAPS and in baseline
CBPS (Siena) lies in the
content of each filter node. While each filter node in Siena contains a plaintext
filter, filter nodes in v -CAPS store encrypted filters along with a unique filter
ID. Additionally, each publisher in our protocol also stores the list of its filters
and their covering relations in the form of filter posets. However, the publisher
does not save recipient list for each filter. It is the responsibility of the brokers
to maintain subscriber lists. The advantage of this design choice is that a pub-
lisher need not remember the topology of the network. It only remembers filters
corresponding to the notifications it publishes. To avoid ambiguity, in further
discussions of v -CAPS, we call the DAG representation of partially ordered list
of filters at the publisher as the Publisher Filter Poset (PFPoset)and those at
the brokers as Broker Filter Posets (BFPoset).

3 v-CAPS Basics

Our solution for confidentiality and anonymity preserving routing in CBPS net-
works, entitled v -CAPS, solves the secure routing problem (PA) by introducing
modified separation of duties for participating nodes (publishers, subscribers,
brokers) and adding a level of indirection in filter matching. The protocol is
built upon a typical publish-subscribe infrastructure, handles the full generality
of baseline CBPS subscriptions, and does not require the presence of trusted
third parties. The confidentiality and privacy goals of the proposed system are
as follows:

1. Notification Confidentiality: No one except the publisher of a notification
and its authorized subscribers can view the message content.

2. Subscription Confidentiality : No one except the subscriber and the publisher
to whom it subscribes can know the content of a filter.

3. Subscriber Anonymity : A subscriber receiving notification N does not know
other recipients (subscribers) of N .

4. Filter Anonymity : During routing, a broker can learn about matching be-
tween a notification and only those filters that are in its BFPoset. This en-
sures that the brokers have a very limited knowledge of which other brokers
or subscribers receive a notification.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 287

To satisfy the above security goals, we introduce two routing protocols named
Routing Vector (RV) protocol and Secure Routing Vector (SRV) protocol. RV
guarantees security goals (1) and (2). However, a resourceful attacker may be
able to subvert goals (3) and (4) in RV. SRV, on the other hand, achieves all
the security goals (1)–(4). We begin our protocol description in Section 4 by
explaining RV and then highlight how we extend it to SRV in Section 5.

3.1 Threat Model and other Assumptions

We assume that the publishers and subscribers trust each other, but the sub-
scribers do not trust each other. The brokers in the network may be malicious.
We confine ourselves to an “honest but curious” model of the brokers. We assume
that the brokers may try to learn the contents of a notification or subscription.
It may also try to infer the mapping between a publisher and a subscriber. But
the brokers follow the routing protocol correctly, i.e. it always forwards the no-
tifications to the legitimate recipients as computed by the proposed scheme. We
note that non-delivery of messages by malicious brokers can be easily detected
by occasional rendezvous between publishers and subscribers. Appropriate legal
actions may be taken to discourage such brokers. Similarly, notifications deliv-
ered by a malicious broker to illegitimate subscribers are unusable without the
group key(s). However, “curiosity” of brokers leading to traffic analysis, etc. is
challenging to detect and thwart. The threat model is, therefore, both practical
and challenging. Earlier secure-CBPS schemes [11], [12], [15] are also built on
this adversary model.
We assume that brokers in the CBPS network pre-compute a spanning tree

connecting all the brokers and publishers. During subscription propagation, a
filter is forwarded along the reverse edges of this spanning tree toward specific
publishers. In case of a hierarchical broker network, the overlay network is equiv-
alent to the spanning tree. Details of building a distributed spanning tree may
be found in earlier work by Dalal and Metcalfe [8] and we omit the details in
our protocol description.

3.2 Design Principles in v-CAPS

Our solution is motivated by two key observations.First, matching a notification
against filters is several orders of magnitude faster in plaintext than matching
on encrypted data [15], [12]. Therefore, it is desirable to compute filter matching
against notifications in plaintext, rather than doing this at the brokers. Second,
the brokers in baseline CBPS compute recipient lists of a notification based
on a match that each broker computes. If the matching decision is added to a
notification as a header, the untrusted brokers no longer need to inspect contents
of notifications or filters to compute recipient lists.

288 A.K. Maji and S. Bagchi

4 v-CAPS Primitives

4.1 Subscribe

The subscription protocol allows subscribers to propagate their interests through-
out the pub-sub network and to establish appropriate routes for receiving noti-
fications. In our scheme, subscription consists of two stages. The first stage in-
volves communication between the subscriber and the publisher and the second
stage involves communication between the subscriber and the brokers. Details
of the two stages are given below.

Stage I: Contact Publisher When a subscriber (S) joins the pub-sub network,
it first registers itself with its preferred publisher(s) (P) through an auxiliary
channel. Publisher verifies the identity of the subscriber and provides it with an
authorization token. When the subscriber wants to receive notifications matching
a given filter, it contacts the publisher with its authorization token and the filter
(F). On receipt of F , the publisher computes as follows:
1. Does F exist in its PFPoset?

NO: (i) Assign a unique filter ID, IDF to F ; ii) Add F to its PFPoset; (iii)

Compute its parents (Fparent) and children (Fchild) sets

YES: (i) Lookup IDF ; (ii) Compute Fparent and Fchild

2. Compute subscription token Tsub as:

Tsub := <parents>Fparent</parents><children>Fchild</children>

<filter>IDF |Eks(F)</filter>

3. Send Tsub to the subscriber through an auxiliary point-to-point channel.

Note that E is any standard encryption function and ks is the secret key used
by a publisher to encrypt subscriptions and is known only to the publisher. The
presence of Eks(F) in the subscription request is not necessary for our content-
based routing scheme. However, we store a copy of the encrypted filters at the
brokers for the purpose of failure-recovery of the publisher.

Stage II: Propagate Subscription In this stage, the subscription token is prop-
agated upstream through the broker network such that each broker updates its
filter posets. After receiving Tsub from the publisher, the subscriber contacts
the broker (Bs) it is connected to with Tsub. During subscription propagation,
upon receipt of Tsub from a downstream node xi, every broker Bi performs the
following:
1. Does IDF exist in its BFPoset?

NO: (i) Let, local parent list, Lparent = nodes(BFPoset) ∩ Fparent, and local

children list, Lchild = nodes(BFPoset)∩Fchild; (ii) Add IDF to BFPoset; (iii) Update

parents and children edges of IDF ; (iv) Add xi to recipient list of IDF

(v) If (Lparent = φ)

Replace xi in Tsub with Bi; Forward Tsub along the reverse edges of

the spanning tree.

YES: (i) Add xi to recipient list of IDF

If the condition (Lparent = φ) in step (v) above is not satisfied, it means Bi

has already propagated a more general filter than F and Tsub is not forwarded.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 289

On the other hand, satisfying this condition implies F is the root of some filter
chain at Bi and it needs to be forwarded along the reverse edges of the spanning
tree. Note that the addition of F at some broker may lead to compaction of
filters, which we explain with the following example.

(a) Before joining of S6 (b) After joining of S6

Fig. 2. Subscription Forwarding: Before and After Joining of S6

Consider the network in Fig. 2(a) consisting of a publisher (P), eight brokers
(B1–B8), and six subscribers (S1–S6) with the given spanning tree. The filters
for S1 to S5 are F1–F5 respectively. Now S6 wants to subscribe with the filter F2.
The covering relation among the filters is assumed to be (F4 ≺ F2), (F5 ≺ F2),
and (F2 ≺ F3) (readers may use the filter graph beside P in Fig. 2(a) as a quick
reference). By transitivity (F4 ≺ F3), (F5 ≺ F3). The filter posets at each of the
brokers and the publisher before joining of S6 are shown in Fig. 2(a). When P
receives the request it computes F2pred = {3} and F2succ = {4, 5} and includes
these in a token TS6 that it provides to S6. When B8 receives TS6 it finds that
it has no filter that belongs to F2pred but F5 is in F2succ . So it adds F2 as a root
filter and marks F5 as its child. S6 is added to the newly created recipient list
of F2. TS6 is now propagated to B3. Since F2pred = {3} and F3 is already in B3,
TS6 is not propagated any further. However, F2 is inserted into the BFPoset at
B3. Both F5 and F2 at B3 have B8 as the recipient and (F5 ≺ F2). This invokes
a compaction of BFPoset of B3. First, B8 is removed from the recipient list of F5

leaving it with no recipients. Therefore, F5 is also removed from the filter poset
at B3. With this the routing path for S6 is established. The final filter posets
are shown in Fig. 2(b).

4.2 Publish

The publish protocol is initiated at the publisher. The publisher is responsible
for extracting the routing information from a notification before sending it into
the network. Hence, the publishers in v -CAPS first match a notification against
the filters in PFPoset. The algorithm that we use for plaintext filter matching
at publishers is the Siena Fast Forwarding (SFF) algorithm [5]. The function
Msff (N,PFPoset) = Fmatch takes the plaintext notificationN and PFPoset as

290 A.K. Maji and S. Bagchi

its inputs and produces a list of matching filter IDs (Fmatch). Fmatch is now added
as a header to the notification and is termed RV. In the next step, the publisher
with the help of group manager, computes the group keyKN for a notification N
and encrypts the notification. The notification sent into the network by publisher
looks as:

Ne =<RV>Fmatch</RV><Payload>EKN (N)</Payload>

The publisher now forwards Ne to broker B1. The fact that the brokers do not
have to do matching of filters against encrypted notifications allows us to avoid
enormous performance penalties of computation on encrypted content. It may be
argued that our scheme adds significant overhead on the publisher due to filter
matching (as compared to baseline CBPS). But this is a practical approach con-
sidering publishers can be run on machines with sufficient computation power.
Carzaniga et al. [5] have shown that even for a million subscriptions, plaintext
filter matching typically takes time in the order of 10 ms on a desktop computer
with 512MB of RAM. Our experiments also bear out this fact. Additionally, if fil-
ter matching is performed at each broker, this may lead to significant redundant
computation as the brokers contain overlapping sets of filters.

4.3 Match

The Match() operation in v -CAPS is performed by brokers during notification
delivery and its objective is to determine the list of receivers to forward the noti-
fication to. This operation is simplified by the fact that the publisher has already
computed the RV and included it in the notification. The Match() operation at
a broker Bi is done with the following simple steps:

Let receivers RBi = φ

for each IDF in RV

if (IDF ∈ BFPoset) RBi = RBi ∪ receivers(IDF)

end for

Bi now forwards the encrypted notification to all the nodes in RBi . The
brokers do not alter any part of the notification Ne and forwards an identical
copy to all the recipients. Thus, for correct routing, a broker does not need to
know either the content of a message or filters. Instead, routing may be performed
using filter IDs generated by the publisher.

5 Secure Routing Vector (SRV) Protocol

The RV protocol presented in Section 4 achieves notification and subscription
confidentiality (security goals 1 and 2) with the help of filter indirection and en-
cryption. However, it does not guarantee security goals 3 (subscriber anonymity)
and 4 (filter anonymity). Let us consider the following scenarios that may arise
in the example in Figure 2(b):

1. S2, a curious subscriber in our CBPS network, learns by external means
that S6 also receives notifications matching filter F2. After receiving Ne from B5,
S2 can easily identify S6 as the other recipient of Ne. This violates subscriber
anonymity.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 291

2. B2, a malicious broker learns by external means that B3 subscribed to
filter F3. When, it receives Ne with RV={1, 2, 3}, it can easily identify B3 as
a recipient of Ne. Notice that filter F3 is not even in the BFPoset of B2. This
violates filter anonymity.
From the examples above, let us now formulate the requirements of the SRV

protocol. First, the RV should be encrypted in such a manner that, even if
two notifications (N1, N2) both contain filter F2 in the RV, it should generate
different ciphertexts. This would help preserve subscriber anonymity. Second,
the RV should be encrypted in such a manner that, a broker can only com-
pute {BFPoset ∩ RVenc}. But it cannot learn which other filter IDs are in the
encrypted RVenc. This ensures filter anonymity. We adapt a prior solution on
matching keywords in encrypted documents [18] to meet the last two require-
ments. The resultant solution is the SRV protocol. Before illustrating details of
SRV, let us present a brief overview of the cryptographic technique in [18].

5.1 Background

Problem Statement: Assume, Alice has a set of secret documents D1, D2,
.., Dk, where document Di contains mi words and every word is n bytes long.
She encrypts these documents as Z1, Z2, .., Zk and stores them on an untrusted
file server Bob. Later, she wants to retrieve the documents containing an n-byte
word w∗. However, Alice is reluctant to disclose either w∗ or the encryption keys
of Z1, .., Zk to Bob. So, Alice sends a query containing an encrypted keyword
x∗ = Ekey(w

∗) to Bob. How can Bob find the precise set of encrypted documents
Z = {Zi|Di contains w

∗} matching this query?
Solution: For clarity of representation, we abstract the encryption and match
algorithms as a collection of functions. Interested readers may find the details of
this algorithm in [18].
Let, Di = {w1.w2....wmi} (. denotes concatenation) is a plaintext document

containing words w1, w2, .., wmi ; w
∗ is a search word; and keys is a collec-

tion of secrets held by Alice (to be explained later). The secure search problem
mentioned above can be solved by the following three functions:

– E (Di, keys) is an encryption function that converts Di to Zi where Zi =
{c1.c2....cmi} and cj is a ciphertext for word wj . E () can be used with differ-
ent pseudorandom sequences to produce different encrypted versions of Di

for multiple encryptions.
– F (w∗, keys) is a cryptographic function that creates a search token Q∗ =

{x∗, k∗} from w∗. Here, x∗ is referred to as the encrypted search word, and
k∗ is referred to as the search key for w∗.

– M (Zi, Q
∗) is a match function which returns true iff w∗ appears in Di

(using the above definition of Q∗ which contains x∗, the encrypted keyword
of w∗).

Internally, E (), F (), and M () use a standard encryption function (e.g. AES), a
cryptographic hash function (e.g. SHA1), and a pseudorandom number generator
as their building blocks.

292 A.K. Maji and S. Bagchi

Secrets Used: The algorithm uses three secrets, i.e., keys = {kw, k′, kseed}. kw
is a secret key for AES, k′ is a key for the cryptographic hash function, and kseed
is the seed for the pseudorandom number generator. All these secrets are stored
by Alice and none of these is disclosed to Bob.

5.2 SRV Overview

In SRV, our trusted publishers are equivalent to Alice and the brokers to Bob.
Let us first assign each of the filter nodes in PFPoset with a n-byte ID. Each
notification Ni now contains ni matching filter IDs in RV. Each RV can be
considered as a document Di that is ni words long. We wish to restrict our
brokers so that they can learn whether a filter IDF appears in RV iff IDF is in
BFPoset. This can be achieved by encrypting RV using E and sharing the search
token for filter IDF with legitimate brokers. These search tokens are distributed
during subscription stage of SRV. During notification forwarding, M is used
to check the presence of filter IDF in the encrypted RV. As in Section 5.1,
publishers store the secret keys kw, k

′, and kseed. Let us now illustrate how we
extend each of the primitives in RV for confidentiality and anonymity preserving
routing. For brevity, we only highlight the additional steps needed in SRV.

5.3 Subscribe

Stage I: Contact Publisher After step 1 in RV, the publisher computes as
follows (here the subscriber has subscribed with filter IDF , which has parents
in the PFPoset Fparent and children Fchild):

2. Compute F ′
parent = E (Fparent, keys) and F ′

child = E (Fchild, keys)

3. Compute query token for filter IDF as:

QIDF = F (IDF , keys) = {xIDF , kIDF }
4. Compute subscription token T ′

sub as:

T ′
sub := <parents>F ′

parent</parents><children>F
′
child</children>

<filter>xIDF |kIDF |Eks(F)</filter>

5. Send T ′
sub to the subscriber.

Note that the parents and children lists are encrypted to disallow the brokers
from learning filter IDs that are not in their BFPoset. Since, subscribe is a one-
time cost, the overhead of computing F ′

parent and F ′
child is not a performance

bottleneck, however, it is essential for achieving security goals 3 and 4.
Stage II: Propagate Subscription BFPoset filter nodes in SRV contain QIDF =
{xIDF , kIDF } instead of IDF in RV protocol. Upon receipt of T ′

sub from node
ni, every broker Bi computes as follows:

1. Does xIDF exist in BFPoset?

NO: i) Compute local parent list

L′
parent = {xIDFi

|M (F ′
parent, QIDFi

) = true}
ii) Compute local children list

L′
child = {xIDFi

|M (F ′
child, QIDFi

) = true}
iii) Add {xIDF , kIDF } to BFPoset

iv) Update parent and children edges using L′
parent and L′

child

v) Follow step (iv) onwards as in RV (refer Section 4.1)

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 293

Note that the steps (i) and (ii) are necessary here since F ′
parent and F ′

child are
encrypted.

5.4 Publish

To send a notification N into the network, a publisher first computes the match-
ing filters Fmatch = Msff (N,PFPoset) as in RV. It then encrypts RV using E
as:

SRV = F ′
match = E (Fmatch, keys)

The added overhead at the publisher, in comparison with RV, is the computation
of E (Fmatch, keys). Our experimental results suggest that this overhead is only
a small fraction of the end-to-end latency.

5.5 Match

Similar to RV, the objective of Match() is to compute the recipient list for a
notification Ne. However, encrypting the routing vector makes this operation
significantly more complex compared to the RV protocol. Upon receipt of a
notification Ne with SRV = F ′

match, the broker first needs to compute the local
match list L′

match, where
L′

match = {xIDFi
|xIDFi

∈ BFPoset and M (F ′
match, QIDFi

) = true}
Hidden under the abstraction of M , this is the most expensive part of our SRV
protocol. The simple approach to compute L′

match would be to search for every
filter in the BFPoset in every filter in the SRV. However, this would require a
computation time ofm×n matching operations, where m = number of filter IDs
in F ′

match and n = number of filter nodes in BFPoset. We reduce this cost by
applying the following heuristics: (i) If a root filter with ID ri does not match any
entry in the SRV, i.e. M (F ′

match, Qri) = false, then the broker does not do a
search in the sub-tree of BFPoset rooted at ri. This is based upon the observation
that, if a message matches a certain filter F , then it must also match a root filter
R above F . However, the performance gain of this optimization is dependent on
the mix of filters in the network. If the covering between filters is high, then this
heuristic would help. But, for a broker with lots of isolated filters (hence with a
large number of root filters), this does not give significant improvement.
(ii) During computation of SRV match, if the broker observes that all its child
brokers are already in the current receiver list, then it need not computeMatch()
any further as all its child brokers must get that notification. This helps in
reducing the SRV match times of the higher level brokers in a hierarchical broker
network, which tend to have many filters and most often forward a message along
all its downstream edges.
Once L′

match is computed by a broker Bi, the recipient list can be generated
trivially. The controlled searching property of [18] ensures that a broker can
only learn about the presence of its own filters in SRV and hence we are able
to guarantee filter anonymity. Moreover, the encryption algorithm also ensures
that if N1 and N2 both match filter F , the cipher IDs of IDF in SRV1, and
SRV2 are different. This helps us in protecting subscriber anonymity.

294 A.K. Maji and S. Bagchi

6 Experimental Results

We evaluated the performance of our protocols against baseline CBPS (Siena)
with respect to end-to-end latency and computation time for notifications in a
wide-area deployment. We implemented all the three protocols Baseline, RV,
and SRV and deployed them on PlanetLab [14]—a worldwide computer systems
testbed. Our experiments involve sending upto 100,000 subscription messages
from the subscribers over a wide-area network, which, to the best of our knowl-
edge, are the largest scale experiments on CBPS.

6.1 Experimental Setup

In our experiments, we created a hierarchical broker network with 4 levels (re-
fer Fig. 3(a)). Each of the brokers in the top three levels were considered to
have a fanout of 3, whereas, the leaf brokers were randomly connected to the
subscribers. This constituted a broker network with 40 nodes. Each broker was
hosted on a separate machine at Purdue University, 28 of which belonged to two
clusters in our research group and the rest on public desktops in one of Purdue
University laboratories. The reason for this choice of machines over PlanetLab
machines is to reduce the sources of variability. We placed the less demanding
subscriber processes on PlanetLab nodes.

(a) Layout of Nodes (b) Notification Popularity Distribution

Fig. 3. Experimental Setup and Workload Properties

At present, we generate notifications from a single publisher, with an interval
of 3–5 seconds between successive notifications. The number of publishers can be
easily increased with independent BFPoset data structures for each. The pub-
lisher was hosted on a desktop computer with 2GB RAM and 2.13GHz dual-core
CPU running Ubuntu Linux 10.04. The subscribers were hosted on PlanetLab
machines situated at widely varying geographical locations. We ran our exper-
iments with upto 1000 subscribers hosted on 50 PlanetLab machines (i.e. 20
subscriber processes per machine). Each subscriber subscribed with 1–200 filters
with a uniform random distribution, generating 100,000 subscriptions in our
largest workload. In total, the experiments involved coordination between 1132
processes running on 91 machines over the Internet. All processes were run as
user processes with default priority.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 295

Workload Details. Since, there is no publicly available real-life workload for
CBPS systems, we used ssbg, a component of the Siena software suite [3], to
generate our workload. Attribute names for filters and notifications were chosen
from a dictionary of 200 words. Each filter contained between 1 and 4 attribute
constraints, while each notification contained between 1 and 9 attributes. For
simplicity, all the attributes were defined to be of Integer type and their val-
ues were uniformly distributed in the range of [1 − 100]. Note that different
subscribers may have overlapping subscriptions. We, henceforth, use the term
subscriptions to define a set of filters from one subscriber, which may contain
duplicate filters aggregated across all subscribers, and filters to define a set of
unique filters. Using ssbg, we generated a total of five workloads with 100, 500,
1000, 5000, and 10000 filters respectively. Each subscriber now subscribed with a
random subset of the filters, with uniform distribution in [1−200]. This generated
the final workloads having 1000, 5000, 10000, 50000, and 100000 subscriptions
respectively. Each workload contained 200 notifications. Due to the large number
of subscriptions, this generated a significant number of notifications received by
the subscribers (between 5459 and 125418 notifications at the subscriber end for
the smallest and largest workloads respectively). Fig. 3(b) shows the popularity
distribution of each notification. Based on the popularity distribution of notifi-
cations we classified them into three categories, namely, popular, moderate, and
esoteric, where popular matches the most number of subscriptions and so on.

Latency Measurement. Latency, a simple concept in computer networks, is
difficult to measure in wide-area networks. This is primarily due to coarse-grained
clock synchronization accuracy over the Internet. In PlanetLab, we found that a
large number of nodes had clock drifts in the range of seconds or even minutes.
This compelled us to devise an alternative strategy for measuring end-to-end la-
tency. In our experiments, prior to sending notifications, all the subscribers estab-
lish a dedicated connection to an acknowledgement server (ackServer) running on
the publisher machine. After receiving a notification, the subscribers immediately
forward anACKwith the notification ID and timestamp of notification. On receiv-
ing an ACK, the ackServer computes the total time spent by looking at the ACK
timestamp. For future discussions, we define this closed-loop latency (from noti-
fication generation to receipt of ACK) as our end-to-end latency. To estimate the
network RTT of PlanetLab nodes, the ackServer also periodically sends a times-
tamped packet to these nodes every 30 seconds which is reflected back by the sub-
scriber nodes. We do not deduct RTT/2 from end-to-end latency as the network
links were found to be asymmetric. Despite this, due to fluctuations of network la-
tencies to and from PlanetLab nodes, we had to do some filtering of noisy points,
where the estimated noise was greater than 5 ms.

Other Implementation Details. The length of filter ID was chosen to be 16
bytes as this is also the block size of AES.We used an implementation of Siena
Fast Forwarding algorithm [5], as the plaintext filter matching engine in all three
protocols. For cryptographic operations we used the CryptoPP library [7] and
built our networking code using C++ Sockets Library [17].

296 A.K. Maji and S. Bagchi

6.2 Evaluating Recurring Costs

In v -CAPS, we try to achieve low computational cost for routing while guaran-
teeing confidentiality and anonymity. In this subsection, we present results for
per notification cost.

(a) Baseline

(b) RV

(c) SRV

Fig. 4. End-to-end Latency of Notification
Forwarding for Different Protocols with
100,000 Subscriptions

End-to-end Latency. One of the
crucial metrics for CBPS systems is to
deliver notifications to the subscribers
as fast as possible. In figures 4(a)–
4(c), we present the end-to-end la-
tency (as defined in 6.1) of different
types of notifications for each of the
protocols. The results are obtained
from our experiments on the largest
workload, i.e., 100,000 subscriptions.
The X-axis represents various nodes
on PlanetLab sorted according to
their network RTT, while the Y-axis
shows end-to-end latency in millisec-
onds. It can be seen from figures 4(a)
and 4(b) that end-to-end latencies for
baseline and RV are very similar. In
baseline, end-to-end latency for all the
nodes is within 5 ms of network RTT,
whereas, in RV, this is within 10 ms
of network RTT. There is no signifi-
cant difference in end-to-end latencies
with varying popularity type of notifi-
cation. In baseline, all the three pop-
ularity types overlap on the same line
and in RV, popular notifications have
marginally higher latency than mod-
erate and esoteric.
End-to-end latency in SRV, is how-

ever significantly higher than net-
work RTT. This happens due to large
matching time at the brokers. Latency
also varies widely across popularity
of notifications—popular notifications
being the highest, followed by moder-
ate and esoteric. The primary reason
for this is the length of SRV for these categories. One of the key findings from our
results is that achieving anonymity is significantly costlier than confidentiality
alone. Our current implementation of RV has only marginally higher end-to-end
latency than baseline. RV can be further improved by compressing the header
and thereby reducing networking overhead due to increased size.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 297

Computation Time. In figures 5(a)–5(c), we show the total computational
cost of notifications with increasing workload size. The computational cost in-
cludes both cost at the publisher (for generating RV) and at the brokers (for
matching). In each plot, we compare the performance of three protocols. The
large magnitude of SRV cost necessitated use of a secondary Y-axis. We vary
workload sizes along the X-axis, while the Y-axis represents time in ms. The
bars for baseline and RV follow similar pattern across all popularity types. Even
with the largest workload, the difference in computational time between RV and
baseline is only 3 ms.

(a) Esoteric

(b) Moderate

(c) Popular

Fig. 5. Computational Cost for Notifica-
tions with Increasing Number of Subscrip-
tions. Note the use of two separate Y-axes
due to widely varying values–the left axis
for baseline and RV and the right axis for
SRV.

For SRV, computation time in-
creases with increasing workload size
as expected. However, the difference
in computation time across popularity
types is much more prominent (∼1500
ms for popular, ∼560 ms for moderate,
and ∼220 ms for esoteric in our largest
workload). This is because the num-
ber of matching filters is significantly
different in the three categories (pop-
ular > moderate > esoteric) and the
cost of processing at a broker for each
filter is high in SRV. Contrary to a
possible criticism, the cost at the pub-
lisher is quite low. Though this con-
stituted the largest fraction of over-
all computation time in RV, it is only
marginally higher than the computa-
tion time in baseline (within 1.5 ms)
even for 100,000 subscriptions. For
SRV, the cost at the publisher (∼4 ms
for 100,000) is three orders of mag-
nitude lower than the cost at brokers
(∼1500 ms for popular at 100,000).

6.3 Evaluating One-time Costs

In this section, we evaluate the cost of
registering a new subscription at pub-
lishers and brokers. At the publisher,
cost of a new subscription amounts
to adding the filter in PFPoset, re-
organizing PFPoset edges, and com-
puting encrypted parent and children
lists. At brokers, this is the cost of
evaluating local parent and children
lists, reorganizing BFPoset edges, and

298 A.K. Maji and S. Bagchi

in some cases, propagating the subscription up the broker hierarchy. Notice that
since subscriptions from different subscribers may contain duplication of the
same filter(s), majority of the subscriptions involve only a lookup operation at
publisher and brokers incurring very small overhead (in the order of a hundredth
of a millisecond). In figures 6(a) and 6(b), we consider cost of adding new filters
only. The X-axis in both the figures represent number of filters already existing
at a broker or a publisher. We grouped this into buckets of size 200, i.e. when
number of existing filters is (0, 200], (200, 400], etc. The point 400 represents
the range (200, 400] and so on. The Y-axis represents computation time for
adding a new filter in milliseconds. For brokers, the number of filters at a broker
was upto 3400 while at the publisher it was 9400 for workload size of 100,000
subscriptions.
It can be seen from Fig. 6(a) that the cost of adding a new filter at a broker is

much higher in SRV (∼230ms for the largest workload). This is insignificant in RV
(< 1ms), since, subscription propagation in RV involves only lookup operations.
For baseline the cost was ∼25ms for our largest workload. The RV cost is lower
because the publisher has already done the processing to figure out which will
be the parent and children filter nodes in the BFPoset, while in the baseline, the
broker has to compute this. The slow subscription processing in SRV may not
be a severe bottleneck because this is a one-time cost incurred only when a filter
is entered for the first time and over time, most subscriptions result in duplicate
filters.

(a) Cost at Brokers (b) Cost at Publisher

Fig. 6. Cost for Adding a New Filter at Brokers and Publishers

Fig. 6(b) shows the cost of adding a new filter in RV and SRV with increasing
number of filters in PFPoset. The cost in SRV(RV) reaches upto 100(120) ms
for 9200 filters. To reduce this cost, the publisher may also pre-load a set of
known subscriptions in its PFPoset. The costs for RV and SRV are comparable
because the same processing happens at the publisher; the slight differences (in
fact SRV is faster) is explained by the different orders in which filters arrive at
the publishers and the fact that different mix of existing filters affect processing
time.

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 299

6.4 Message Overhead

During notification forwarding, we measured the length of RV(SRV) in each no-
tification, where RV length is defined as the number of filterIDs in RV. This
gives us an estimate on the message overhead of v -CAPS over baseline CBPS.
Our experimental results are presented in Fig. 7. Since both RV and SRV proto-
col have identical header lengths, we show only one plot for both of them. The
X-axis here represents various workload sizes. Since our experiments involved
synthetic payloads for each notification, comparing the header with the payload
as a measure of overhead will be misleading. We, therefore, normalized the to-
tal header size (Num notifications×RV or SRV Length×16 bytes) by the total
number of subscribers receiving each notification. This represents the average
number of additional bytes spent per subscriber for a given class of notification.
This cost is displayed by the line plots in Fig. 7. It is encouraging to find that
the cost per subscriber is less than 4 bytes in all cases. One may argue that for
a small notification with lots of non-overlapping subscriptions (i.e. with a long
RV) message overhead is substantial. This cost is indispensable since filter IDs in
v -CAPS are equivalent to virtual “destination addresses.” A possible improve-
ment would be to add filter coverage information in the header (RV), so that,
during notification propagation, the brokers only forward relevant portions of
the RV to lower level brokers.

7 Related Work

Fig. 7. Message Overhead for Routing in
RV(SRV) with Increasing Workload Size

Over the past decade and a half,
publish-subscribe has been extensively
studied as an efficient model of com-
munication. Security in CBPS sys-
tems have been achieved under differ-
ent settings—different network topolo-
gies, varying degrees of trust between
the communicating entities, and vary-
ing flexibility of subscription predi-
cates. Another significant problem—
that of key management in such a dy-
namic environment has been studied in [13]. Majority of these approaches have
the goal of securing CBPS against the vulnerability of malicious brokers. They
balance this source of vulnerability against the common CBPS design in which
brokers need to examine the content of messages to make routing decisions. In
[15], the authors adapted the schemes presented in [18] and other techniques on
computation on encrypted data. They build a confidentiality-preserving CBPS
system that supports equality, inequality, and range matches for numeric at-
tributes, and keyword searches for strings. The experimental results show that for
1,000 subscriptions, compared to the corresponding insecure operations, equal-
ity is 6 times more expensive, inequality is 1.7-3.0 times more expensive, and
range matching is 6 times more expensive. Apart from the computation cost,

300 A.K. Maji and S. Bagchi

this scheme suffers from three other significant drawbacks—restrictive filters on
subscriber interests, high communication overhead (the encrypted message is 15
times the size of the plaintext message), and false positives for filter matching. On
the other hand, [12] addresses privacy in CBPS by applying Paillier homomor-
phic encryption for equality, and inequality matches on numeric attributes. This
scheme performs filter matching with two primitives—1) blinding the attribute
value for subscriptions and notifications at the publisher, and 2) matching the
blinded values in filters and notifications. The authors have not presented any
implementation of their protocol in a publish-subscribe system. However, stan-
dalone experimental results for the cryptographic operations show that blinding
one attribute value at the publisher takes 10-15 ms for a key length of 1024 bits
and matching between one blinded attribute value and one blinded constraint
takes 100μs. Apart from these, complexity of key management and large message
size are other drawbacks of this solution. Another research work, presented by
Molva et al., try to achieve confidential routing in CBPS using multiple layer
commutative encryption (MLCE). The protocol computes matching between a
filter and a notification by comparing their encrypted strings. As a result, this
solution is limited to equality matches. Moreover, for a k-layer commutative en-
cryption, a broker would be required to know the sender or recipient of a message
at distance k from itself. Similarly, while propagating the messages downstream,
a broker would be required to encrypt it separately with each of the recipients’
(at distance k) keys. Ion et al. [11] used Attribute-based Encryption (ABE) and
multi-user Searchable Data Encryption (SDE) to achieve confidentiality of no-
tifications and filters without losing any decoupling property of CBPS. Their
scheme, however, needs the presence of a trusted authority which our solution
does not. Due to absence of experimental results in [11] we cannot compare the
performance of this scheme with ours.

8 Discussion and Future Work

Our design and implementation of v -CAPS shows that it is possible to support
privacy in CBPS. In other words, it is possible to handle the balance between the
need to route by the brokers, and that the brokers are not trusted and may be
curious. We achieve this without sacrificing the generality of filters in baseline
CBPS. Further, we achieve this with acceptable overhead (in terms of time)
over the baseline CBPS, if one is willing to accept a slight risk of the broker
getting to know which other brokers will see a message, which may happen with
the unencrypted routing vectors. However, if we want to eliminate this risk, we
have to perform matching of encrypted filters with encrypted routing vectors,
which is significantly more costly—for 10,000 filters, the end-to-end latency is
just under 1.5 sec. However, we believe that there are two promising directions
to resolve this problem. First, the matching algorithm at the broker can be
easily parallelized—each entry in the secure routing vector (SRV) is matched
in parallel. Thus, brokers running on multi-core machines can leverage this.
Second, the publishers can send a hierarchical SRV, which will allow the broker

v -CAPS A Confidentiality and Anonymity Preserving Routing Protocol 301

to perform the simple optimization that if a routing vector does not match a
filter, it will not match any filter in the sub-tree rooted at that filter.
Our work has not addressed the issue of fault tolerance, either at the brokers

or at the publishers. A practical system needs to handle crash failures of both en-
tities. Fault tolerance for broker failures is orthogonal to the privacy requirement
of CBPS and we believe v -CAPS can be easily applied to a baseline CBPS that
has redundancy to deal with broker failures. To handle publisher failures, the
system needs to be able to recreate the publisher filter poset. This information
is conceptually contained in the union of the filter posets at all the brokers. The
challenge will be in gathering them in an efficient manner. The leaf brokers can
potentially violate the anonymity requirement of the subscribers because they
are directly forwarding messages to the subscribers. Hence, to achieve subscriber
anonymity from leaf brokers, it will be required to interpose an anonymizing net-
work between these entities. This anonymizing network will have no notion of
the filters of the subscribers.

References

1. Barnett, D.: Publish-subscribe model connects tokyo highways. Web article,
http://www.industrial-embedded.com/articles/barnett/

2. Bhola, S., Strom, R.E., Bagchi, S., Zhao, Y., Auerbach, J.S.: Exactly-once delivery
in a content-based publish-subscribe system. In: DSN 2002: Proceedings of the 2002
International Conference on Dependable Systems and Networks, pp. 7–16 (2002)

3. Carzaniga, A.: Siena download. Web article,
http://www.inf.usi.ch/carzaniga/siena/forwarding/index.html

4. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19(3), 332–383
(2001)

5. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: Proceedings
of ACM SIGCOMM 2003, Karlsruhe, Germany, pp. 163–174 (August 2003)

6. Chandramouli, B., Yang, J., Agarwal, P.K., Yu, A., Zheng, Y.: Prosem: scalable
wide-area publish/subscribe. In: SIGMOD 2008: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pp. 1315–1318 (2008)

7. Crypto++ library - a free c++ class library of cryptographic schemes. Web article,
http://www.cryptopp.com/

8. Dalal, Y.K., Metcalfe, R.M.: Reverse path forwarding of broadcast packets. Com-
munications of the ACM 21(12), 1040–1048 (1978)

9. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
SSYM 2004, vol. 13, p. 21 (2004)

10. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

11. Ion, M., Russello, G., Crispo, B.: Supporting Publication and Subscription Confi-
dentiality in Pub/Sub Networks. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010.
LNICST, vol. 50, pp. 272–289. Springer, Heidelberg (2010)

12. Nabeel, M., Ning Shang, E.B.: Privacy-preserving filtering and covering in content-
based publish subscribe systems. Tech. rep., Purdue University (June 2009)

http://www.industrial-embedded.com/articles/barnett/
http://www.inf.usi.ch/carzaniga/siena/forwarding/index.html
http://www.cryptopp.com/

302 A.K. Maji and S. Bagchi

13. Opyrchal, L., Prakash, A.: Secure distribution of events in content-based publish
subscribe systems. In: SSYM 2001: Proceedings of the 10th Conference on USENIX
Security Symposium, p. 21 (2001)

14. Planetlab: An open platform for developing, deploying, and accessing planetary-
scale services. Web article, http://www.planet-lab.org/

15. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based pub-
lish/subscribe infrastructures. In: Securecomm and Workshops 2006, August 28-
September 1, pp. 1–11 (2006)

16. Shikfa, A., Önen, M., Molva, R.: Privacy-Preserving Content-Based Pub-
lish/Subscribe Networks. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT,
vol. 297, pp. 270–282. Springer, Heidelberg (2009)

17. C++ sockets library: A class library wrapping the berkeley sockets c api. Web
article, http://www.alhem.net/Sockets/index.html

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55
(2000)

19. Wang, C., Carzaniga, A., Evans, D., Wolf, A.: Security issues and requirements
for internet-scale publish-subscribe systems. In: HICSS 2002: Proceedings of the
35th Annual Hawaii International Conference on System Sciences, pp. 3940–3947
(January 2002)

http://www.planet-lab.org/
http://www.alhem.net/Sockets/index.html

Delay Fast Packets (DFP):
Prevention of DNS Cache Poisoning

Shimrit Tzur-David, Kiril Lashchiver, Danny Dolev�, and Tal Anker

School of Computer Science
The Hebrew University Of Jerusalem

{shimritd,kiril,dolev,anker}@cs.huji.ac.il

Abstract. The Domain Name System (DNS) protocol is used as a naming sys-
tem for computers, services, or any other network resource. This paper presents
a solution for the cache poisoning attack in which the attacker inserts incorrect
data into the DNS cache. In order to successfully poison the cache, the attacker re-
sponse must beat the real response in the race back to the local DNS server. In our
model, we assume an eavesdropping attacker that can construct a response that is
identical to the legal response. The primary aim of our solution is to construct a
normal profile of the round trip time from when the request is sent until the ar-
rival of the response, and then to search for anomalies of the constructed profile.
In order to poison the cache of a DNS server, the attacker has to know the source
port and the Transaction ID (TID) of the request. As far as we know, all current
solutions which do not change the protocol, assume an attacker that cannot see
the request and therefore has to guess the TID. All these solutions try to increase
entropy in order to make the guesswork harder. In our strict model, increasing
entropy is useless. We in no way claim that our scheme is flawless. Nevertheless,
this effort represents the first step towards preserving the DNS cache assuming
an eavesdropping attacker.

Keywords: DNS, Cache poisoning attack, Web security.

1 Introduction

The Domain Name System (DNS) [1], [2] is a hierarchical naming system built on a
distributed database for computers, services, or any resource connected to the Internet
or a private network. The DNS distributes the responsibility of assigning domain names
and mapping those names to IP addresses by designating authoritative name servers
for each domain. Authoritative name servers are responsible for the domains in their
jurisdiction. In general, the DNS also stores other types of information, such as a list of
mail servers that accept email for a given Internet domain. This role of the DNS puts it
in a sensitive spot. The user must trust the DNS server to return the correct result for
his request. If the DNS server sends an incorrect IP address to the user, the user will
access a different site while assuming he is accessing the site he intended to access. This
problem becomes more severe with the DNS caching system that is used by the DNS

� Danny Dolev is Incumbent of the Berthold Badler Chair in Computer Science. This research
was supported in part by the Israeli Science Foundation (ISF) Grant number 1685/07.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 303–318, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

304 S. Tzur-David et al.

servers for speeding up the requests’ processing. Attackers search for opportunities to
place faulty records into the DNS’s cache. Once the attacker manages to implant such a
record (that is to poison the cache), every user that requests this (poisoned) record will
receive an IP address of a malicious site.

The DNS protocol usually uses User Datagram Protocol (UDP) as a forth level pro-
tocol for its data communication. If for some reason the request or the response fails to
reach its destination, the DNS Server simply issues another request. For such a case, the
DNS Server needs to be able to handle the situation that arises from packet delays, as
these may be accidently interpreted as packet losses. The DNS operates in a straightfor-
ward approach. It simply accepts and caches the first valid response (that is, a response
from an authoritative server) and ignores all other responses. This is a drawback in the
DNS security and a gateway for attackers to poison the cache. (See [3].)

Pharming occurs when an attacker redirects a web site’s traffic to a bogus web site.
Pharming is the primary risk associated with cache poisoning. Attackers employ pharm-
ing for four primary reasons [4]: identity theft, distribution of malware, dissemination
of false information, and man-in-the-middle attacks.

This paper presents a Delay Fast Packets (DFP) algorithm which detects and pre-
vents attempts of cache poisoning attacks. In order to successfully poison the cache, the
attacker response must beat the real response (from an authoritative server) in the race
back to the DNS resolver, which is the local DNS server that originated the request. In
our model, we assume an eavesdropping attacker. The attacker can generate a response
that is identical to the real response. Since the window of opportunity is short, the at-
tacker tries to send a response as soon as possible and usually does so much faster than
it takes the authoritative server to generate a response. Our DFP algorithm identifies that
exact point by analyzing the distribution of the round trip time (RTT) from the moment
the request leaves the resolver to the time the resolver gets the response. This distribu-
tion is saved for each potential authoritative server. When the algorithm identifies an
anomaly in the RTT of a response, it delays the response for a short interval and waits
for another response of the same request to arrive. If no additional response arrives in
that interval, the delayed response is sent to the resolver.

Our contributions are two-fold. Firstly, we prevent attacks under a very strict model
against a powerful adversary. To our knowledge, we are the first to introduce an engine
that does not change the DNS protocol and which still assumes an eavesdropping at-
tacker that has all the information it needs in order to generate a valid response. DNS
requests and responses today are completely unencrypted and are broadcast to any at-
tacker who cares to look. Anybody with access to the copper infrastructure can eaves-
drop. Moreover, most of this wiring is relatively unprotected and easy to access. In fact,
this strict model has a significant impact on the motivation behind solutions that encrypt
the DNS packets (e.g. [5]). Existing solutions that do not change the DNS protocol do
not defend a DNS server in such model (as detailed in Section 3). In addition to the
strict model, our solution can be implemented as a black box that gets each request
right after it leaves the resolver. Therefore, no modifications are required, neither to the
DNS protocol nor to the BIND (Berkeley Internet Name Domain) server code.

The rest of this paper is organized as follows. Section 2 describes the cache poisoning
attack and the common approach to prevent it. Section 3 presents the state of the art

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 305

algorithms against a cache poisoning attack. Section 4 presents our algorithm. Section
5 details the considerations we examined when we chose the algorithm parameters.
Section 6 presents our experimental results, and Section 7 concludes this paper.

2 Cache Poisoning

When a client waits for a DNS response, it will only accept the information returned if
it includes the client’s correct source port and address in addition to the correct DNS
transaction ID. These three pieces of information are the only form of authentication
used to accept DNS responses. Knowing the source IP is straightforward as we know the
address of the name server to be queried. The source port, however, and the transaction
ID present a challenge. BIND often reuses the same source port for queries on behalf of
the same name server, therefore discovering the source port is not a hard task [6]. The
only real obstacle that stands between the attacker and a successful cache poisoning
is the transaction ID field in the DNS protocol. Therefore, the attackers look for weak
spots in the protocol implementation that can allow them to make a good guess of the
transaction ID and, in this way, interfere with the traffic. In this section we present the
methods used by the attacker to overcome this obstacle.

BIND (Berkeley Internet Name Domain) [7] is the most commonly used Domain
Name System (DNS) server on the Internet. The earliest BIND servers did very little
to address security. In order to avoid a same transaction ID repeating at the same time
in the network, the server used an “Increment by One” method. Each new query was
issued with the previous transactionID+ 1. Guessing the transaction ID in such a case
is a fairly easy job. This weakness was patched and the new BIND versions issue a
random transaction ID to every new query. In the new version (BIND 9), the transaction
ID is a randomly generated number, or more precisely, the transaction ID is a pseudo
random generated number. The algorithm that generates the IDs in each of the BIND
versions is open to the public and can be easily obtained and studied. As shown in [8],
in many of the BIND 9 versions, the algorithm is weak and the next random number
can be derived from the previous one. This particular problem was fixed in the 9.5.0
BIND version. Here, in order to guess the correct transaction ID, an attacker can use
the birthday paradox. The attacker first simultaneously sends a large quantity of packets
to the DNS server requesting the same Domain Name. The DNS server generates the
same number of queries and sends them to the authority server. The attacker generates
the same amount of DNS bogus responses with a random transaction ID. The birthday
paradox dictates that a few hundred packets will suffice to promise a 50% success rate
where there will be a match of the transaction ID with at least one query and one bogus
response. This leads to a successful poisoning of the cache to the DNS server. Such
an attack was fully described in [9]. The birthday attack guaranties high chances of
success with a relatively low number of packets required. In regular packet spoofing, if
the attacker sends N responses for one query, the probability of success is N

T where T
is the total number of packets possible (in the DNS case T = 216 − 1 = 65535). In the
birthday paradox attack, the attacker only needs to match one of the requests to one of
the responses. The probability of success can be calculated by the following formula:

P(success) = 1− 1(1− 1
T)(1−

2
T)...(1−

N−1
T) = 1− T !

T N(T−N)!
.

306 S. Tzur-David et al.

The power of the birthday paradox attack over the regular packet spoofing attack is that
it requires a relatively small number of packets in order to make a successful attack. A
mere 300 packets guarantees 50% success, while 750 packets guarantees a 99% success
rate. In the regular packet spoofing attack, 750 packets only guarantees a 750

65535 = 1.14%
success rate. The birthday paradox attack shows that even a randomly generated trans-
action ID used in the latest BIND versions is vulnerable to brute-force attacks.

The big security news of Summer 2008 has been Dan Kaminsky’s discovery of a
serious vulnerability in DNS servers [10]. In this exploit, the attacker causes the target
name server to query for random host names at the target domain. The attacker can
spoof a response to the target server including an answer for the query, an authority
server record, and an additional record for that server, causing the target name server to
insert the additional record into the cache.

There are several solutions available for the problem of a cache poisoning attack as
presented in Section 3. In our algorithm we assume the attacker knows the transaction
ID, source port, or any other information from the request needed in order to generate
a valid response. In contrary to other solutions, we are not trying to increase entropy,
rather we assume it is known to the attacker. The presented algorithm detects anomalies
in the RTT of the responses. Since in order to get into the cache, a spoofed response has
to arrive before the correct one, the RTT of those responses is shorter than it usually is
and therefore is considered anomalous.

3 Related Work

There are several available solutions on how to prevent cache poisoning attacks and
attempts. In this section we present some of them. BIND is the most widely used DNS
software over the Internet [1], [2], and therefore it is a constant target to attackers’
attacks. New versions and version updates are constantly being released constantly with
new updates and patches for bugs and security issues. Therefore the easiest way to
enhance the security of a local DNS server is to run the most recent version of BIND.

DNS security solutions can be categorized into two categories. The solutions in the
first category extend the existing DNS protocol. Solutions in the second category re-
quire massive changes and thus new DNS servers deployment. Since a large-scale de-
ployment may not be reached in the near future, an extensive search is made in order to
design solutions that do not require new deployment.

A lot of effort has been spent in trying to make the DNS transaction ID more ran-
dom and less predictable [11], [12]. Ultimately, such efforts are insufficient since with
only 16 bits to fight over, a determined attacker can use a purely random attack, or
even a constant attack, and theoretically, eventually, and statistically speaking, break
through the requestor’s defenses. Most of the research these days is based on increasing
the entropy of DNS queries in order to make forging a valid response more difficult.
In [13] [14], the authors describe a method by which an initiator can improve transac-
tion identity using the 0x20 bit in DNS labels. This idea uses the question section to
add random bits to the query. DNS servers do not care if the question is presented in
upper or lower case, and therefore a combination of the cases can provide the essential
random bits to the query. In practice, all question sections in responses are exact copies

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 307

of question sections from requests. The difference between lower and upper case let-
ter is the 0x20 bit. Therefore, for any character in the domain name in the question,
a request initiator can randomly choose this bit and the transaction ID can be effec-
tively lengthened beyond 16 bits. The effectiveness of this algorithm is a function of
the length of the domain. In the Random prefix [15], [16] method, the authors propose
to use wildcard Domain Names to increase the entropy. For example, if a user wants to
resolve the “www.example.com”, the DNS server will generate a random prefix for the
query and send “ra1bc3twqj.www.example.com”. The authoritative DNS server returns
the same domain name with the “www.example.com” IP address. This method using a
prefix length of 10 will generate in the region of log2 3610 ≈ 52 bits. In another solution,
presented in [17], the authors extend the DNS query ID with up to 63 alpha-numeric
characters into the query/response question name (QNAME) making the range of pos-
sible transactions IDs so large that any brute force guessing or birthday attack attempts
are futile.

Most name-servers, prior to the patches released on July 2008, always sent out their
queries from port 53. Therefore, another direction is to also randomize the source
port [18], [19], [12]. In this method, the name server uses a random source port for
his query. The name server cannot use an entire UDP port space, however, even an ex-
tra 10 or 11 bits of randomness is many times greater. A DNS source port randomization
becomes vulnerable if the DNS traffic is behind NAT. NAT cancels the DNS source port
randomization by translating source ports to non-random ports.

Since the DNS protocol does not include any security, Domain Name System Se-
curity Extensions (DNSSEC) [20] were developed as described in RFC 3833 [21].
DNSSEC was designed to prevent cache poisoning by having all its answers digitally
signed, thereby allowing the correctness and the completeness of the data to be easily
verified. DNSSEC is a new protocol and only lately have some of its critical pieces
been formally defined. Using DNSSEC necessarily means deploying new servers or
reinstalling the protocol in the existing ones. Consequently, deploying the protocol on
large-scale networks becomes a challenging task. DNSSEC introduces new security
issues such as chain of trust problems, timing and synchronization attacks, Denial of
Service amplification, increased computational load, and a range of key management
issues as presented in [22].

DNSCurve [5] is an alternative to DNSSEC. DNSCurve uses high-speed elliptic
curve cryptography, and simplifies the key management problem that affects DNSSEC.
There is not much documentation on DNSCurve, but like DNSSec, it is hard to deploy.

4 The DFP Algorithm

The primary aim of the DFP algorithm is to estimate the RTT (Round Trip Time)
between the DNS Server and each of the authoritative servers it encounters and to
delay the responses that are arriving too fast according to the approximation. Further-
more, the processing time for each service type (MX, A, AAAA, CNAME, PTR etc...)
might have different lengths, such as in a case due to a more extensive database search
on the authoritative side. Therefore, the DFP algorithm estimates the RTT for each

308 S. Tzur-David et al.

service type the authoritative server can provide. For each authoritative server and ser-
vice type, the estimated RTT predicts the average time needed for the next response to
arrive. If for any reason, a response comes too soon, according to the DFP algorithm,
the DNS Server waits for a certain amount of time before it forwards the response to
the requestor. If another valid response arrives in that window of time, both responses
are dropped, and a new request is generated (as is done when a regular DNS packet loss
occurred). If the attacker is persistent and sends a response for each request, the user
experiences DoS (Denial of Service) attack, since the DFP algorithm will not pass any
of the responses back to the user. In this case, the user does not get the service, but at
least he is also not exposed to more harmful attacks such as fishing and theft of critical
information. Moreover, under the assumption of an eavesdropping attacker and with-
out changing the DNS protocol, we believe that there is no solution that can also solve
the DoS problem. A simple cache poisoning attack with an eavesdropping attacker is
presented in Figure 1. A local name server that is deployed with the DFP engine is not
vulnerable to a cache poisoning attack as shown in Figure 2.

Attacker eavesdrops
and sends response

Local Name Server
(LNS)

Authoritative Name Server
(ANS)

1. LNS sends request
2. LNS gets response from Attacker
3. LNS saves response in cache
4. LNS gets response from ANS

Attacker

Fig. 1. Cache Poisoning Example

1. LNS sends request
2. DFP records departure time
3. DFP gets too fast response from attacker
4. DFP delays the too fast response
5. DFP gets response from ANS
6. DFP drops both response

Attacker eavesdrops
and sends response

Local Name Server
(LNS)

Authoritative Name Server
(ANS)

Attacker

Fig. 2. DFP Operation

Algorithm 1 presents a simplified pseudo-code that demonstrates the idea of the DFP
algorithm. In the case of a multiple packet attack, the algorithm closes the request after
the first duplicate response, so any other response will not have a corresponding request
and, thus, will be dropped. Another issue we have to consider is the legal too fast packets
that might affect the RTT estimations. In the case where there are no attacks, those
too fast packets can mark a change in the topology of the network and therefore must
be considered in the RTT estimations. However, in the case of possible attacks, the
algorithm should not include them in the estimations, as they may be an attempt of the
attacker to lower our RTT estimations in order to make a successful attack in the near
future. Therefore, too fast packets must not affect the RTT until the algorithm verifies
their authenticity. This functionality is omitted from the the pseudo-code in order to
save its simplicity.

The algorithm was tested on real traffic from the local DNS server of our university.
The traffic contains 385,000 DNS requests.

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 309

Algorithm 1. DFP - Delay Fast Packets
1: PacketDictionary.Init() //mapping responses to request
2: StatsDictionary.Init() //save auth. server statistics
3: loop
4: NewPacket ⇐ Sni f f DNSPacket()
5: key ⇐ GetKey(NewPacket.Auth− server,NewPacket.TransactionID,NewPacket.Type)
6: if NewPacket.isQuery() then
7: PacketDictionaly.put(key,NewPacket)
8: else
9: RequestPacket ⇐ PacketDictionary.get(key)

10: if RequestPacket == NULL then
11: Drop(NewPacket)
12: else
13: if RequestPacket.hasDelayedResponse() then
14: Drop(DelayedResponse)
15: PacketDictionary.clear(key)
16: Drop(NewPacket)
17: else
18: RTT ⇐ NewPacket.TimeO f Arrival−RequestPacket.TimeO f Send
19: DelayTime ⇐ AuthServerStats.AddSample(RT T,NewPacket.Auth −

Server,NewPacket.Type)
20: DelayPacket(DelayTime)
21: PacketDictionary.clear(key)
22: end if
23: end if
24: end if
25: end loop

AddSample(RTT, Auth-Server, Type)
1: AuthServerStats= StatsDictionary.get(Auth−Server+Type)
2: if AuthServerStats== NULL then
3: AuthServerStats=CreateStat(key)
4: AuthServerStats.EstimatedRT T ⇐ RT T
5: AuthServerStats.DevRT T ⇐ 0
6: end if
7: AuthServerStats.EstimatedRT T ⇐ (1−α)×AuthServerStats.EstimatedRT T +α×RT T
8: AuthServerStats.DevRT T ⇐ (1 − β) × AuthServerStats.DevRT T + β × |RT T −

AuthServerStats.EstimatedRT T |
9: if RT T < AuthServerStats.EstimatedRT T − AuthServerStats.DevRT T ×

AuthServerStats.FactorWindow then
10: return (AuthServerStats.EstimatedRT T + AuthServerStats.DevRT T ×

AuthServerStats.FactorWindow)−RT T
11: else
12: return 0
13: end if

310 S. Tzur-David et al.

The DFP algorithm uses two hash tables. PacketDictionary maps between the outgo-
ing requests and the incoming responses; StatsDictionary stores the statistics for each
authoritative DNS server. On each packet arrival, a key is constructed from the author-
itative server IP, the transaction ID, and the packet type. If the packet is a request, the
packet is saved, by its key, in the PACKETDICTIONARY hash table. If the packet is
a response, the corresponding DNS request is retrieved, once again, by the same key.
The scenario when no matching request is found, that is, there is a response with no
request, can be a result of two cases. One, the attacker sends multiple responses and
the request was previously cleared. Two, there is a response without a request. In both
cases, this condition can never be fulfilled unless there is an attack on (or a bug in) the
DNS server; therefore, the packet is dropped. If the corresponding request has a delayed
response (a too fast response was previously arrived to that request), the algorithm re-
moves the request from the PACKETDICTIONARY hash table and drops both responses.
In the normal case, where both the response and the request are found, the algorithm
calculates the RTT between the local DNS server and the authoritative DNS server by
measuring the time difference between the time the request is sent to the arrival of the
response. Note that the RTT is calculated for each authoritative server and service type.
It then calculates the ESTIMATEDRTT DEVRTT and estimates the normal window. If,
however, the packet is too fast, it is delayed for d milliseconds, where d is the deviation
between the RTT and the upper bound of the estimated normal window. Otherwise, the
response is immediately sent to the server to be saved in the cache.

5 Design Parameters

The DFP algorithm uses the following formula in order to detect too fast packets:
RTT < EstimatedRTT −DevRTT ×FactorWindow. Each DNS response that arrives
too soon according to the formula is considered suspicious and delayed, thereby al-
lowing time for another possible response with the same transaction id to arrive. The
variables in the formula are controlled by three parameters: α, β and FactorWindow.
The performance of the DFP algorithm, in terms of speed, detection accuracy, and mem-
ory consumption, depends on how well these parameters are configured. In this section
we describe the considerations and the experiments that led us to choose the values for
these three parameters.

5.1 The Window Parameters

The Window is the time interval in which response arrivals are considered normal.
Each response that arrives before the window begins is considered suspicious. Each
pair of authoritative server and request type has its own window. For example, for
www.abc.com authoritative DNS server with type A, the window might begin 3400
ms after the request is sent, while for type MX it might begin after 3800 ms. The Win-
dow Starting Point is the beginning of the window. Each response arriving before
the starting point is considered as a too fast packet. Respectively, the Window Ending
Point is the end of the window and each response arriving after the ending point will be
considered as a too slow packet. A false alarm occurs when a packet originated by the

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 311

Fig. 3. The window Parameters

authoritative server arrives before the window starting point. Every false alarm causes
the DNS server to store the packet in memory for a short time and release it only after
it is safe. Figure 3 presents these parameters over the time axis. The sending time of a
specific request is tsend request . The average of the arrivals times of all legal responses
for the specific request type and authoritative name server is tavg responses. This average
has margins that define the window’s starting point and ending point. Any response that
arrives between tsend request to Wstart point is considered too fast and any response that ar-
rives after Wend point is considered too slow. Some authoritative servers are infrequently
requested and due to the dynamics of the network the DFP algorithm might not have
enough samples in a certain point to create a distribution. The algorithm either takes the
minimum values of the window starting point and window ending point, if they exist,
or it takes the minimum values of an authoritative name server from the same parent
domain.

The window has a very dynamic nature. Its starting point constantly changes and
shifts on the time axis. This is due to the dynamic nature of the internet network and
the constant changes in the RTT of the arriving requests. The window starting point
dictates which packets are considered too fast, and which thus need to be delayed, and
which packets are within the normal time boundary and can therefore immediately pass
through. An attacker might try to influence the location of the window by flooding the
authoritative server. In this case, the latency of the responses from the flooded author-
itative server increases and the window is shifted to the right, resulting in a delayed
starting point and fewer chances to successfully poison the DNS cache. In order to ad-
just the parameters that define the window starting point, there are two observations to
consider:

– An early starting point allows more packets to pass through without a delay. The
DNS server does not need to delay too many suspected packets (until it is safe
to pass them on) and therefore the latency is reduced. However, the window of
opportunities is increased, and a potential attacker can hit just above the starting
point and pass the filter without triggering an alarm.

– A late starting point delays more packets since it considers them as too fast packets.
This configuration hardens the attacker cache poisoning attempt since in order to
avoid the DFP filter he has to compete on a small time interval. However, a late
starting point forces the DNS server to delay many packets, considering them as
potential threats. The major consideration of this configuration is the larger memory
consumption and a slower response of the DNS server to the users.

312 S. Tzur-David et al.

In the following sections (5.2 and 5.3) we refer to α, β and the FactorWindow.
We perform a set of experiments in order to demonstrate the influence of each of the
parameters on the window starting point and hence on the tradeoff between the number
of false alarms and the probability of detecting and preventing a potential attack.

5.2 α and β Considerations

The two parameters influencing the EstimatedRTT and the DevRTT parameters in the
DFP algorithm are α and β. They determine the weight of the new RTT sample against
the history, thereby influencing the window starting point. In order to find how α and
β influence the number of fast packets detected by the DFP algorithm, we conducted
several experiments on real traffic without any attempted attacks. In each experiment
we measured the number of false positives alarms. The following figures 4, 5, 6 demon-
strate the results of the experiments, using different values of α and β. In order to clearly
demonstrate the results, the graphs present only 100 packets that represent the general
case.
Note: The FactorWindow parameter is set to 2 in each of the following experiments.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 4. α=0.125, β=0.25

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 5. α=0.875, β=0.75

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 6. α=0.2, β=0.4

In each of the experiments, the newest sample is given a much higher weight since
it is better at predicting the future RTT. Figure 4, deals with the case of low values
of α and β. Low α and β values, as in TCP RTT estimation, smooth the estimated
RTT function, since more weight is given to the history of the samples rather than to
the newest sample (in comparison to higher values of α and β). For each peak in the
sampled RTT, the DevRTT rises. (Note, for example, the peak in the sample RTT and
the rise of DevRTT at packet number 10.) As a result, the window starting point be-
comes low. This situation allows potentially malicious responses a wider window of
opportunity to attack the DNS server. Only two packets were considered too fast in
this configuration. The graph shows that those packets’ RTT time exceeded the starting
point. In Figure 5, we used high values of α and β. High values give most of the weight
to the newest sample. Hence, the RTT deviation is very small and the window starting

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 313

point is extremely late, making DNS attacks attempts very hard to succeed. However,
this situation also creates many false alarms as any fluctuation in the RTT will probably
put the new sample before the window starting point. We see that in this configuration
about 20% of the packets were considered too fast. Figure 6 deals with the case of
medium values of α and β. The values of α and β are the median of the ‘Low’ and ‘High’
configurations. As expected, the window starting point in this case is later than in the
‘Low’ configuration and the RTT deviation is higher than in the ‘High’ configuration.
We see that in this configuration five of the packets were considered too fast.

Our experiments show that most of the time the deviation of the RTT is relatively low.
Therefore the created starting point is rather high. The change in the deviation occurs
when an extremely slow packet arrives. In this situation, the window starting point is
lowered for a short period of time and possible attacks have a higher chance of success.
However, as we can see from the results, slow packets seldom arrive. In consideration
of memory consumption, it is important to prevent false alarms that might be created by
valid too fast packets. Thus, for those, the ‘Low’ version should be chosen. However, if
the local DNS server can afford saving more too fast packets, the better configuration is
the one that prevents more attacks, and in that case it is better to choose the ‘Medium’
or even (if memory is not a problem) the ‘High’ configuration.

5.3 FactorWindow Considerations

After setting up the α and β parameters, the configuration of the FactorWindow param-
eter should be determined. This parameter goal is to lower the starting point created by
α and β. As before, the tradeoff between the number of false alarms and the probability
of a successful attack dictates which value will be chosen. Figures 7, 8 and 9 present
the FactorWindow influence on the window starting point. As above, in order to clearly
demonstrate the results, the graphs present only 100 packets that represent the general
case.
Note: The α and β parameters are set to 0.125 and 0.25 respectively in each of the
following experiments.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 7. Factor Window = 1

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 8. Factor Window = 2

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 9. Factor Window = 3

314 S. Tzur-David et al.

Figure 7 deals with the case where FactorWindow= 1. FactorWindow= 1 means
that the window starting point is modified only by α and β. Therefore the created start-
ing point is high and the probability for a packet to come before the starting point is
respectively high. In this case, many packets will have to be delayed. We see that in this
configuration, about 30% of the packets are considered too fast packets.

In Figure 8 we used FactorWindow= 2, i.e. the starting point is two estimated de-
viations from the estimated RTT. Using the ‘Chebyshev inequality’ the probability for
a packet to exceed the starting point is less than 1

4 . However, in practice, the bound is
tighter. Our experiments show that only about 1

10 of the packets are considered as too
fast.

Figure 9 deals with the case where FactorWindow= 3. Again, using the ‘Chebyshev
inequality’ the probability for a packet to exceed the starting point is less than 1

9 , but in
practice, almost no packet exceeds the starting point. The window starting point is so
low that an attacker can easily intrude even without knowing that a detection and pre-
vention DFP algorithm is running. In this configuration, only one packet is considered
too fast.

The main consideration for choosing the configuration of the FactorWindow param-
eter is, again, the tradeoff between the number of false positives and the probability of
a successful attack. By analyzing our results, we conclude that the best value for the
FactorWindow2 is 2.

5.4 Slow Packets Consideration

The main assumption of the DFP algorithm is that the deviation from the EstimatedRTT
approximates zero. This assumption was proven to be true in many experiments carried
out on real traffic. But in some cases, the deviation rises for short periods of time. In
those moments, the attacker gets an opportunity for a successful attack since many
too fast packets fall after the window starting point of : EstimatedRTT −DevRTT ×
FactorWindow bound and are therefore considered normal.

This situation occurs after a very slow packet is received. The too slow packet creates
a temporary increment of the deviation and lowers the starting point, as seen in Figures
10 and 11. The starting point returns to normal parameters after a few packets, when
the influence of the too slow packet weakens. The temporary lowering of the starting
point creates an opportunity for a attacker to attack the DNS server.

The way to prevent this weakness is to eliminate the too slow packets from the cal-
culation of the deviation, thereby preventing the temporary lowering of the starting
point. However, the DFP algorithm must take into consideration the possibility of rapid
changes in the network characteristics or topology. Thus, DFP distinguishes between
seldom too slow packets to a real tendency and the too slow packets are considered
accordingly. An attacker cannot reduce the algorithm starting point by sending slow
responses. The original response is likely to arrive before any spoofed slow response
and therefore either the spoofed response is just dropped (if it arrives after the window
ending point) or both the original and spoofed responses are dropped (if the spoofed
response arrives within the window). In either case, the spoofed response is not consid-
ered when calculating the distribution parameters. Another option the attacker has is to
flood a specific authoritative server in order to force slow responses from that server. As

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 315

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

Request#

T
im

e
(m

ill
is

)
Sampled
Estimated
STD
Starting Point
Ending Point

Fig. 10. Low Starting Point

0 20 40 60 80 100
−2000

−1000

0

1000

2000

3000

4000

5000

6000

Request#

T
im

e
(m

ill
is

)

Sampled
Estimated
STD
Starting Point
Ending Point

Fig. 11. Negative Starting Point

a result, the window starting point in the local name server is reduced and the attacker
can send a spoofed response without being delayed. The DFP engine does not handle
these kinds of combined attacks.

5.5 Imitation of the DFP Profile

An eavesdropping attacker may adopt the DFP algorithm and imitate the same profiles.
Afterwards, the attacker can apply fine control on the issuing time of forged DNS re-
sponses to make them reach the server after the starting point. In order to successfully
poison the cache, the attacker’s response needs to arrive before the real response. The
RTTs are distributed normally, therefore, if x is the arrival time of the attacker response
and tget response is the arrival time of the real response, the probability of a successful
attack (after standardizing x) is

∫ tget response

Wstart point

1√
2π

e
1
2 x2

dx .

We can see, there are two factors that influence the odds of a successful attack, the win-
dow starting point and the arrival time of the real response. We have no control over the
arrival time of the real response, but we can decrease the FactorWindow to narrow the
window of opportunity of the attacker. This scenario demonstrates the tradeoff between
memory and accuracy.

6 Experimental Results

The results are measured by two factors, memory consumption and accuracy. Usually,
there is a tradeoff between these two factors. In our case this tradeoff is insignificant.

6.1 Memory Consumptions

The main consideration in choosing the best configuration for the DFP algorithms is
to prevent attacks. In order to prevent attacks, the starting point should be as tight as

316 S. Tzur-David et al.

possible to the estimated RTT. However a tight starting point might create many false
alarms (as explained above). In this section we present how different starting point
values affect the memory consumption. We examined three configurations. In the first
one, α= 0.125, β= 0.25; in the second, α= 0.2, β= 0.4; and in the third configuration,
α = 0.875, β = 0.75. Figure 12 presents the percentage of packets that are considered
too fast in each of the configurations.

conf 1 conf 2 conf 3
0

5

10

15

20

25

30

35

40

45

P
er

ce
nt

 o
f T

oo
 F

as
t P

ac
ke

ts

Factor Window = 1
Factor Window = 2

Fig. 12. Percentage of Fast Packets

conf 1 conf 2 conf 3
0

10

20

30

40

50

60

70

K
B

Factor Window = 1
Factor Window = 2

Fig. 13. Memory Consumption

The DNS payload has a limit of 512 bytes (for IPv4). Our experiments show that
an average response is about 155 bytes long. The DFP algorithm must allocate those
bytes in memory for each delayed packet, usually for about few hundred ms, until the
response is either released or dropped. The memory consumption depends on the in-
bound rate of the local DNS server. The university DNS server can only handle a few
dozen responses in parallel. Since this server might not represent the general case, Fig-
ure 13 estimates how many KB the DFP algorithm consumes assuming it handles 1000
responses in parallel. As we can see, even for the most wasteful configuration, the mem-
ory consumption is no more than 65KB on average and 215KB in the worst case. Thus,
memory consumption is not a limiting factor even for busier servers.

The presented algorithm was implemented and tested on real traffic collected from
our university DNS Server. The traffic was sniffed and saved in pcap files that were
later used for different configurations testing and analysis. The traffic was filtered to
contain only DNS responses with an authoritative flag on. For each of the samples, the
algorithm calculates the EstimatedRTT, the DevRTT, and with a given FactorWindow,
it deduces which packets are considered to be too fast.

6.2 Attacks Detection

In order to test the DFP algorithm we planted a few random duplicate response packets
with random arrival times in the tested traffic. The spoofed responses arrived before the
real responses. The DFP algorithm with the above configuration was able to classify
all of the attacks as too fast packets and therefore delayed them until the real result

Delay Fast Packets (DFP): Prevention of DNS Cache Poisoning 317

arrived. We believe that there were no real attempts to attack our university local DNS
server while the samples were captured, since no duplicate packets were found beside
the faked packets planted by us. Unfortunately, we cannot compare our results to other
solutions since all other solutions fail to protect the DNS server from cache poisoning
attack on our strict model.

7 Conclusions

This paper presents the DFP algorithm against DNS cache poisoning attacks. The al-
gorithm assumes an eavesdropping attacker that can see the request and therefore can
easily create and send a spoofed response. Our algorithm measures statistics per author-
itative server and type of query in order to build a profile about the RTT distribution for
these two parameters. Since, in order to get into the cache, a spoofed response has to
arrive before the correct one, the RTT of those responses is shorter than it usually is and
therefore, out of the constructed profile. We showed that the algorithm is scalable and
its memory consumption can fit in a standard cache.

The weak spot of the DFP engine is its vulnerability to a DoS attack (in the case
where the attacker repeatedly sends spoofed responses). In our future work, we will
integrate the DFP engine with a mechanism that detects these repetitive spoofed re-
sponses and instead of just dropping duplicate responses, it will save a copy of each
unique response and choose the correct one according to various considerations.

References

1. Dns, http://www.ietf.org/rfc/rfc1034.txt
2. Dns, http://www.ietf.org/rfc/rfc1035.txt
3. Schuba, C.: Addressing weaknesses in the domain name system protocol. Master’s thesis

(August 1993)
4. Hyatt, R.: Keeping dns trustworthy. The ISSA Journal, 37–38 (2006)
5. Bernstein, D.J.: Dnscurve, http://dnscurve.org/
6. Sainstitute: Attacking the dns protocol security paper (2003)
7. Terry, D.B., Painter, M., Riggle, D.W., Zhou, S.: The berkeley internet name domain server.

EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-84-182 (May
1984), http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5957.html

8. Klein, A.: Bind 9 dns cache poisoning (2007)
9. Stewart, J.: Dns cache poisoning - the next generation (2003)

10. Kaminsky, D.: The kamisky bug, http://dankaminsky.com/
11. Internet Systems Consortium, I.: “Bind 9” (2003), http://www.bind9.net/
12. Powerdns (2011), http://doc.powerdns.com/
13. Vixie, P., Dagon, D.: Use of bit 0x20 in dns labels to improve transaction identity (2008),

http://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
14. Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased dns forgery resistance

through 0x20-bit encoding: security via leet queries. In: Proceedings of the 15th ACM Con-
ference on Computer and Communications Security, CCS 2008, pp. 211–222. ACM, New
York (2008), http://doi.acm.org/10.1145/1455770.1455798

15. Perdisci, R., Antonakakis, M., Lee, W.: Solving the dns cache poisoning problem without
changing the protocol (2008)

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://dnscurve.org/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5957.html
http://dankaminsky.com/
http://www.bind9.net/
http://doc.powerdns.com/
http://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
http://doi.acm.org/10.1145/1455770.1455798

318 S. Tzur-David et al.

16. Perdisci, R., Antonakakis, M., Luo, X., Lee, W.: Wsec dns: Protecting recursive dns resolvers
from poisoning attacks. In: DSN, pp. 3–12. IEEE (2009),
http://dblp.uni-trier.de/db/conf/dsn/dsn2009.html#PerdisciALL09

17. Hoy, J.G.: Measures for making dns more resilient against forged answers (2008),
http://www.jhsoft.com/dns-xqid.html

18. Hubert, A., van Mook, R.: Anti dns spoofing - extended query id, xqid (2008),
http://tools.ietf.org/html/draft-ietf-dnsext-forgery-resilience-10

19. djbdns (2004), http://cr.yp.to/djbdns.html
20. Dnssec, http://www.dnssec.net/
21. Atkins, D., Austein, R.: Threat analysis of the domain name system, dns (2004),

http://www.ietf.org/rfc/rfc3833.txt
22. Ariyapperuma, S., Mitchell, C.J.: Security vulnerabilities in dns and dnssec. In: Proceedings

of the The Second International Conference on Availability, Reliability and Security, pp.
335–342. IEEE Computer Society, Washington, DC (2007),
http://portal.acm.org/citation.cfm?id=1249254.1250514

http://dblp.uni-trier.de/db/conf/dsn/dsn2009.html#PerdisciALL09
http://www.jhsoft.com/dns-xqid.html
http://tools.ietf.org/html/draft-ietf-dnsext-forgery-resilience-10
http://cr.yp.to/djbdns.html
http://www.dnssec.net/
http://www.ietf.org/rfc/rfc3833.txt
http://portal.acm.org/citation.cfm?id=1249254.1250514

Unilateral Antidotes to DNS Poisoning

Amir Herzberg and Haya Shulman

Department of Computer Science
Bar Ilan University

Ramat Gan
Israel

{amir.herzberg,haya.shulman}@gmail.com

Abstract. We investigate defenses against DNS cache poisoning focus-
ing on mechanisms that can be readily deployed unilaterally by the re-
solving organisation, preferably in a single gateway or a proxy. DNS
poisoning is (still) a major threat to Internet security; determined spoof-
ing attackers are often able to circumvent currently deployed antidotes
such as port randomisation. The adoption of DNSSEC, which would foil
DNS poisoning, remains a long-term challenge.

We discuss limitations of the prominent resolver-only defenses, mainly
port and IP randomisation, 0x20 encoding and birthday protection. We
then present two new (unilateral) defenses: the sandwich antidote and
the NAT antidote. The defenses are simple, effective and efficient, and
can be implemented in a gateway connecting the resolver to the Internet.

The sandwich antidote is composed of two phases: poisoning-attack
detection and then prevention. The NAT antidote adds entropy to DNS
requests by switching the resolver’s IP address to a random address (be-
longing to the same autonomous system). Finally, we show how to imple-
ment the birthday protection mechanism in the gateway, thus allowing
to restrict the number of DNS requests with the same query to 1 even
when the resolver does not support this.

Keywords: secure dns, dns poisoning, network security.

1 Introduction

Correct and efficient operation of the DNS is essential for the operation of the
Internet. However, there is a long history of vulnerabilities and exploits related
to DNS; for some of the early works, see the seminal papers of Vixie [30] and
Bellovin [7,8].
In the recent years, the most significant attack on the Domain Name System

is DNS poisoning by a spoofing attacker. The spoofer tries to provide the DNS
resolver with misleading mappings (e.g., map VIC-Bank.com to an IP address
controlled by the attacker), by sending a fake (spoofed) response to a domain
name query. The DNS poisoning scenario by a spoofing adversary typically as-
sumes either an open recursive resolver, i.e., one that provides services to clients
outside of its network, or a compromised client on the local network (LAN),

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 319–336, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

320 A. Herzberg and H. Shulman

e.g., a zombie; the DNS poisoning model is in Figure 1. DNS poisoning can be
used as a building block facilitating many other attacks, such as the injection of
malware, phishing, website hijacking/defacing and denial of service.
When the DNS resolver receives a DNS response, it usually follows the rec-

ommendations in [18] and checks that the validation fields match the fields in
one of the pending DNS requests. The DNS request contains several validation
fields, e.g., transaction ID, which are also copied to the DNS response by the
authoritative name server. The local DNS resolver that issued the DNS query
validates that those fields appear correctly in the DNS response. If all the fields
in the DNS response are correct, the response is cached and then sent to the
client that issued the request. Otherwise, if one of the fields is incorrect, the DNS
resolver ignores response. Once the DNS response is cached, the attacker has to
wait until the TTL (time to live) expires so that it can initiate the attack again.
Although poisoning attacks on DNS were known to be devastating, this threat

was believed to be impractical, since frequently accessed domain names typically
reside in the cache of the DNS resolver, thus preventing the attacker from poi-
soning those domains of interest. Furthermore, if the legitimate response from
the authentic DNS server arrives before the forgery sent by the attacker, forgery
attempt fails, as the resolver will cache the first response and ignore the rest.
This situation changed when Kaminsky presented an improved attack [20,10],

with two critical improvements. The first improvement was to control the time
at which the resolver sends queries (to which the attacker wishes to respond),
by sending to the resolver queries for a (non-existing) host name, e.g., with a
random or sequential prefix of the domain name. The second improvement was
to add, in the spoofed responses sent to the resolver, a type NS DNS record
(specifying a new name for the domain name server) and/or a type A ‘glue’
DNS record (specifying the IP address of the new domain name server). These
records poison the resolver’s entries for a specific host in the victim’s domain,
e.g., the victim’s name server itself. Hence, if the attack succeeds once (for one
record), the adversary controls the entire name space of the victim. If the attack
fails for a given host name (prefix), the attacker can repeat with new (random)
prefix.
Using these two improvements attackers can often poison the DNS entry for

the victim domain (e.g., VIC-Bank.com) within few seconds, when the only unpre-
dictable field in the DNS response is the 16-bit ID field, thus allowing devastating
attacks on many Internet applications (see [20,10]).
As a result of Kaminsky attack, it became obvious that changes are needed

to prevent DNS poisoning. Indeed, major DNS resolvers were quickly patched
to support source port randomisation, i.e., use and validate random source ports
for each request or at least for each destination IP. Resolvers were also improved
to support birthday protection: prevent or limit1 duplicate concurrent requests.
Both of these defenses were proposed by Bernstein already in [9].

1 Complete prevention of duplicate queries may have significant overhead on popular
resolver implementations, hence most implementations only limit duplicates.

Unilateral Antidotes to DNS Poisoning 321

However, as noted by [21,14], a determined attacker with sufficient bandwidth,
e.g., controlling a large amount of compromised machines on the Internet, could
still send a sufficient number of responses to have a forged DNS response ac-
cepted with high probability. Furthermore, port randomisation is often annihi-
lated due to port-mangling by NAT devices between the resolver and the Internet
[17,26,12].
Additional, easy to deploy defense requiring changes to the local DNS resolver

only, RFC 5452 [18], specifies that DNS resolvers should, where possible, not only
choose a random source port, but also choose a random source IP address and a
random authoritative server IP address for each query. The resolver should then
validate that the same IP addresses are used in the response. If the resolver uses
a set of NS IP addresses, and the authoritative name server uses a set of ND

IP addresses, then the space of identifiers is increased by a factor of NS · ND.
However, the impact is usually modest, as NS is often only one, and ND is at
most three.
Indeed, recent studies, [19,16], indicate that DNS is not well protected against

poisoning attacks and that the vast majority of organisations with an Internet
presence are still vulnerable to DNS poisoning attacks. In particular, the ongoing
attacks on DNS infrastructure, e.g., AT&T, Comcast and Rollingstone [32,11,23],
motivate inspection of the ‘easy-to-deploy’, unilateral defenses such as those
against spoofing adversaries.
Cryptographic defenses, e.g., DNSSEC [4,6,5], offer protection against a

stronger man-in-the-middle adversary, and are thus a preferable alternative over
defenses against spoofers. However, their deployment remains to be seen due
to the significant changes that they introduce to the current DNS infrastruc-
ture. Recent survey results, [19,16], reveal that some fundamental capabilities
required for adoption of DNSSEC, e.g., support of queries over TCP and sup-
port of EDNS0 [29], are not fully deployed. Furthermore, common to the defenses
against MitM adversaries is the requirement for a cooperation and support of
the mechanism by both parties to the DNS transaction, which is a significant
overhaul. In contrast, unilateral defenses against spoofers allow an organisation
or an ISP to integrate the defense, without relying on the support by the other
end to the DNS transaction.
In this work, we focus on antidotes to DNS poisoning that require modification

to the local DNS resolver only, which, preferably, can also be implemented in
a router/firewall machine connecting the resolver to the Internet (we discuss
advantages of firewall based defenses in Section 1.1).
Our proposed defenses meet all the proposed design guidelines of [24]: (1) the

prevention techniques should require no change to the DNS protocol; (2) should
not introduce service disruption; (3) the solution should be completely backward
compatible with existing DNS servers, and transparent to users; and finally (4)
it should make poisoning attacks infeasible.
Our first technique is the sandwich antidote, presented in Section 3. This is an

efficient and simple procedure, based on a two stage defense: upon the receipt of
a forged DNS response, an attack is detected; then, the attack is prevented by

322 A. Herzberg and H. Shulman

Fig. 1. Simple configuration for DNS poisoning by a spoofing adversary (Eve) on the
Internet: client Alice uses a resolver connected to the Internet. The resolvers make
queries to authoritative name servers, via the Internet. We consider a blind/spoofing
adversary Eve, connected to the Internet. The adversary may also control some ‘puppet’
connected to the same local area network as Alice and the resolver.

discarding the ‘malicious’ DNS responses and accepting only a valid authentic
DNS response.
Our second technique is the NAT antidote, Section 4. The NAT antidote

extends the existing Network Address Translation devices and adds entropy to
DNS requests, thus significantly increasing the amount of forged packets that
the attacker is required to generate in order to produce the correct forged DNS
response.
We also show how to implement the birthday protection in firewall. The mech-

anism restricts the number of outgoing DNS requests for the same query to 1,
even if the local DNS resolver does not limit concurrent requests for the same
resource record.
We implemented our proposed defenses in linux gatway, and tested their com-

patibility by querying the real DNS servers on the Internet. Implementing solu-
tions in the gateway has several advantages, over implementations in the resolver
itself, which we discuss in Section 3.

1.1 Firewall-Based Defense Mechanisms

Anti-poisoning defenses implemented in firewall have several advantages over
defenses in the resolver:

– Integration Challenges: resolver software may not be amenable to modifica-
tion due to complexity or due to it being proprietary, while modifications
in the firewall are simpler, as firewalls already have built in tools to capture
packets. The modification can be made in a small user-space program (as
we did for our experimental validation of the prevention techniques), which
is much simpler than modifying the resolver.

Unilateral Antidotes to DNS Poisoning 323

– One Firewall Protects Many: one firewall, e.g., of ISP, can protect all the DNS
resolvers, e.g., of ISP’s clients, without the need to integrate the changes in
all the local DNS resolvers.

– Modular Design: If a DNS server is replaced, or a new server is added, there
is no need to integrate the modification each time.

– Security Feature: for firewall vendors, adding another security feature is an
important added value.

1.2 Contributions and Organisation

We present two practical and efficient defense mechanisms against DNS poison-
ing, that require changes only to the local DNS resolver and protect the local
DNS resolver against poisoning attacks by spoofing adversaries. Our defenses
can be implemented in the firewall. The sandwich antidote (Section 3) is simple
to implement and integrate in a gateway which connects the network to the
Internet, requires modest resources, and can provide sufficient entropy to make
poisoning infeasible. The NAT antidote (Section 4) is very simple to deploy,
with almost negligible overhead, and in many cases, provided a significant num-
ber of client IP addresses are available, can significantly improve defense against
poisoning.
In Section 2 we discuss and compare recently proposed antidotes to DNS

poisoning.
Finally, in Section 5, we show how birthday protection can be efficiently im-

plemented in a firewall, which is significant since most existing resolvers only
limit the amount of duplicates, e.g., to 200.
We present the implementations of our proposed defenses in Linux based

firewall.

2 Proposed Antidotes to DNS Poisoning

In this sectionwe briefly review proposed anti-poisoning defenses against spoofers,
that require integration on the side of the local DNS resolver only. These tech-
niques can be broadly categorised as follows: (1) mechanisms that increase en-
tropy in DNS packets (subsection 2.1), and (2) mechanisms that inspect the DNS
responses to detect forgery (subsection 2.2).

2.1 Entropy Increasing Mechanisms

Unilateral entropy increasing mechanisms, most notably: source port randomi-
sation (SPR) [9], source/destination IP address randomisation (IPR) and DNS
0x20 encoding [14], add more randomness to DNS packets, in order to make
it more difficult for the spoofing adversary to craft a valid DNS response, that
would get accepted and cached by the local DNS resolver. In order to produce
a successful forgery the attacker has to guess all the values in the validation
fields correctly. The more random values pertain in the DNS requests, the lower

324 A. Herzberg and H. Shulman

the probability of the attacker to produce a successful guess. Entropy increasing
mechanisms do not try to identify forgery attacks and respond to them, but
attempt to increase the difficulty of producing a successful forgery.
Unfortunately, the number of fields in the DNS packet, that could be used

to add randomness, is limited: the transaction ID field in the DNS packet, the
source port, source/destination IP addresses, and the choice of upper/lower case
for the query (since DNS is case-insensitive; this is the field used by DNS 0x20
encoding).

Port Randomisation. Following to Kaminsky attack, [20], the need to patch
the DNS resolvers to send DNS requests from random ports became apparent.
Using random source ports adds another 16 bits of entropy, resulting in a search
space of 216×216 = 234 bits, which makes successful poisoning significantly more
difficult to achieve.
Unfortunately, source port randomisation (SPR) is resource intensive, and as

noted in [13,15] may be inappropriate for busy DNS servers or embedded devices.
In addition, as pointed out by [14], determined attackers can overcome source
port randomisation, by sending large amounts of traffic, e.g., from many zombie
computers, thus covering all the search space and eventually producing a valid
DNS response. Therefore, enhancing DNS security using SPR and transaction
ID alone may not suffice.
Furthermore, many (or most) DNS resolvers are located behind NAT devices,

and as [12,10] noted, NAT devices that use sequential assignment of external
ports, may expose (even the patched) local DNS resolvers, to poisoning attacks,
since NAT could reduce source port randomisation implemented by the local
resolvers.

IP Randomisation. IP addresses are known to be a scarce resource on the
Internet. IP address is composed of 32 bits, resulting in at most 232 possible
addresses. Due to this shortcoming, the DNS resolvers are often allocated a single
IP address, and authority DNS servers are allocated at most 3 IP addresses.
This can increase the search space of the attacker by at most a factor of 1 × 3,
which does not offer sufficient protection. In addition, the DNS resolvers that are
located behind NAT devices, which is the typical case, lose the IP randomisation,
even if they are allocated several IP addresses.

DNS 0x20 Encoding. Dagon et al. [14] present an innovative technique, 0x20-
encoding, for improving DNS defense by increasing entropy of DNS queries
against poisoning by spoofed responses. The technique is based on an observa-
tion that domain names are case insensitive, however, most authoritative servers
copy the string of the domain name from the incoming request to the response
they send back, exactly as sent - preserving the case of each letter. They sug-
gest to randomly toggle the case of letters of which the domain name consists,
and validate them in response. If the domain name d contains l(d) alphabetic
characters, this increases the space of identifiers by factor of X(d) = 2l(d), e.g.,
X(www.google.com) = 212 and X(a9.com) = 24.

Unilateral Antidotes to DNS Poisoning 325

Note that in Kaminsky-style attacks, the query is for a non-existing do-
main name chosen by the attacker, e.g., to poison addresses in the domain
google.com, an attacker may issue a query for r.google.com where r ∈R

{0, . . . , 9}8 is a random string of 8 digits, resulting in a domain name with only
9 letters, i.e., factor of only X = 29; namely, 0x20 encoding is less effective
for domain names containing few letters - which are often the most important
domains, e.g., the Top Level Domains (TLDs) such as .com and .uk.
Although 0x20 encoding, as presented by Dagon et al., introduces significant

extra entropy to DNS requests, an attacker may still be able to poison ‘high value’
domain names with a rather small factor of poisoned responses. Therefore, there
is need in alternative or additional technique to protect the TLDs and other
domain names containing only few letters, e.g., a9.com.

2.2 Forgery Detection Mechanisms

The ‘forgery detection’ mechanisms follow two approaches: the collaborative ap-
proach and techniques from machine learning. According to the collaborative
approach the authenticity of a DNS response is validated by distributing the
DNS requests across hosts in the system, e.g., [22,25,28], or by consulting a set
of trusted peers, [31], and then, e.g., taking the majority answer. CoDNS, Con-
fiDNS and DoX, [22,25,31], send the requests to several peers in a peer-to-peer
network and accept the first DNS response; if the first response is forged, it is
still accepted. DepenDNS, [28], queries several DNS resolvers, and accepts the
DNS response of the majority. DepenDNS relies on open recursive DNS resolvers
to obtain DNS responses; open recursion DNS services are known to expose DNS
to attacks. Furthermore, recently, [2] showed that DepenDNS does not protect
DNS against poisoning attacks. The common shortcomings of the collaborative
approach are most notably the performance penalty, i.e., additional processing
and communication delays, that they introduce to every DNS request, even when
the system is not under attack, and the significant infrastructure that is required
for deployment. In addition, techniques that are based on distributing the DNS
request to several nodes, e.g., [22], are also exposed to cache poisoning attacks,
as the first DNS response that arrives is accepted.
A recent technique, by Antonakakis et al [3], employs mechanisms from ma-

chine learning to identify suspicious IP addresses. Specifically, [3] designed a
centralised poisoning detection system called Anax, which is based on the ob-
servation that DNS records direct users to a known set of NS records, while
poisoned records redirect users to new IP addresses, outside of the victim’s ad-
dress space. However, deployment requires trust in one central entity that should
be consulted to establish authenticity of the DNS responses. In addition, this
mechanism also introduces delays and may have false positives, e.g., if an au-
thority DNS server was moved to a new IP address for load distribution.

326 A. Herzberg and H. Shulman

3 The Sandwich Antidote to DNS Poisoning

Both categories, the increasing entropy (Section 2.1) and the forgery detection
(Section 2.2) mechanisms, have different shortcomings and most importantly:
the DNS cache poisoning problem is not yet solved, thus motivating further
investigation of anti-poisoning defenses.
In this section we present an anti-poisoning defense technique, the sandwich

antidote, designated to run in a gateway (or a proxy), behind which the local
DNS resolver is located, and should filter DNS traffic. The sandwich antidote is
applied only to DNS packets and is based on first detecting and then activating
the prevention module, to counter poisoning attempts. As a result, the mech-
anism does not impose performance overhead, and is only applied when DNS
cache poisoning attack is detected. The sandwich antidote maintains a table that
stores all outbound DNS requests, prior to forwarding them. It also keeps track
of the inbound DNS responses, and matches them against the pending DNS re-
quests. If a corresponding DNS request exists, and the DNS response is correct,
i.e., all the validation fields match the corresponding values in the DNS request,
then the entry is removed from the table and the response is forwarded to the
DNS resolver.
A poisoning attack is detected when one of the validation fields, e.g., trans-

action ID, in a DNS response does not match2 the corresponding value in the
pending DNS request, in which case, the prevention module is activated. During
the course of the poisoning attack many invalid DNS responses for some DNS
request may arrive. Among these incorrect responses a valid response may ap-
pear, however, with high probability this can be a forged response generated
by the attacker. Therefore, once an attack was detected, i.e., an incorrect DNS
response was received for some pending query, the mechanism should not rely
on that (seemingly correct) DNS response, since it can be merely a successful
forgery sent by the attacker.
Once activated, the sandwich antidote issues three DNS requests, substituting

the original DNS request sent by the resolver: (1) a DNS request for the requested
resource record, prepended with some random string, e.g., if the original DNS
request was for x.y.com, then after receiving an invalid DNS response for query
x.y.com, the mechanism should issue a request for randomString1.x.y.com; (2)
a DNS request for the original resource record, i.e., x.y.com as above; (3) a
DNS request for randomString2.x.y.com, where randomString2 is a randomly
selected string, and x.y.com is the RR as appeared in the original DNS request.
The sandwich antidote expects to receive correct DNS responses to all three

requests and in the same order in which the requests were sent. Specifically,
it checks that the DNS responses to the above requests are correct, and arrive
in the same order, in which the requests were sent. This mechanism is based
on the observation that it may be possible to generate a single correct DNS

2 Note that when generating a DNS response, the DNS servers copy the validation
fields from the DNS request accurately, thus it is guaranteed that the validation
fields should appear correct in the authentic DNS response.

Unilateral Antidotes to DNS Poisoning 327

response, to a potentially adversarial query. However, generating three correct
DNS responses, where the first and third are random, should not be feasible, let
alone ensuring that all three are received in the same order in which they were
sent. The authentic responses to those three DNS requests above should be: (1)
an nxdomain (i.e., with high probability the hostname randomString1.x.y.com
does not exist) or an NS RR, i.e., a referral to a name server lower in hierarchy,
e.g., from ns.com to ns.y.com; (2) an A RR (IP address for x.y.com, or an
NS RR, i.e., a referral to the DNS lower in hierarchy; (3) same as (1) above,
i.e., an nxdomain or an NS RR. Note that as a result of this ‘order preserving’
mechanism, where the original query is between two queries prepended with a
random prefix, we coin this mechanism the ‘sandwich antidote’.
Once correct DNS responses arrive in the required order, for all three DNS

requests, the mechanism removes the pending DNS requests from the table and
returns the DNS response to the DNS resolver. The sandwich mechanism ignores
the responses if they arrive in an incorrect order, or if the validation fields do
not match. The diagram describing the functionality of the sandwich antidote
is in Figure 3. Due to length restrictions, the pseudo-code appears in the full
version of the paper.
Note that similarly to other unilateral defenses, such as SPR or 0x20 encoding,

the sandwich antidote does not offer protection when it is implemented in a
resolver (or a firewall) which uses a higher level resolver as a forwarder, e.g.,
receives services from the resolver of an ISP.
In subsequent sections we present a detailed design of the sandwich mech-

anism. We discuss the additional overhead that our mechanism inflicts on the
gateway and analyse the impact of the sandwich mechanism on the probability
of the attacker to produce a successful forgery. We also show that our mecha-
nism does not expose the DNS resolver (or its clients) to denial of service (DoS)
attacks.

3.1 Detailed Design

In order to keep track of the outbound DNS requests and to record the poison-
ing attempts, the mechanism maintains two tables: the table T that stores all
outbound DNS requests (for which a valid DNS response has not arrived yet),
and the table A that maintains the DNS requests for which poisoning attempts
were detected.
Table T is illustrated in Table 1. The table which is indexed by a hash function

h applied on the query field of the DNS request. Upon arrival of a DNS request
Req, the hash h(Req.query) is stored in table T and is mapped to the valida-
tion fields, i.e., source port srcPort, source/destination IP addresses srcIP and
dstIP , and DNS 0x20 encoding bits X :

T[h(Req.query)]=(srcPort||srcIP ||dstIP ||X). Namely, the table T is composed
of the indices column containing a digest of the query, and a column for each
‘validation’ field, and a serial number (which is used to locate the entry in T from

328 A. Herzberg and H. Shulman

table A). Table T can contain entries with the same index3, i.e., when several
DNS requests for the same RR were issued simultaneously.
Table A is illustrated in Table 2. Table A maintains DNS requests which

were issued once forgery attempt was detected for some DNS request. Table A
is composed of indices column h(Req.query), a column containing a fingerprint,
i.e., the result of a PRF (pseudo-random function) f applied on the entropy
fields T[h(Req.query)]=fK(srcPort||srcIP ||dstIP ||X), and a column containing
a serial number pointing to the corresponding entry in T (required to generate
the DNS response once responses for corresponding entries in A were received).
Specifically, once an invalid DNS response arrives for an existing, pending DNS
request, the mechanism issues three DNS requests, and stores them in A.
The diagram, in Figure 3, describes the functionality of the sandwich antidote.

Upon receipt of a DNS response, in step (1), the mechanism checks if an entry
for that query exists in table A, in 2, step (2).
If no matching entry exists in A, however a corresponding DNS requests is

stored in T , Table 1, step (3), i.e., the DNS request was issued, the DNS response
is checked (the validation fields are compared against those in the pending DNS
request), step (4). If the response is correct, it is sent to resolver, and the pending
DNS request is removed from table T . If the response is incorrect, e.g., the
destination port in the response does not match the source port in the DNS
request, attack is detected, and prevention module is triggered. Specifically, the
mechanism issues three DNS requests, such that the DNS request containing
the original query, is sent between two other DNS requests that contain random
strings prepended to the original query: (a) $1.||Resp.query, (b) Resp.query, (c)
$2.||Resp.query, s.t., request (b) contains the original query as appeared in the
DNS request, and (a) and (c) contain the original request prepended with distinct
random strings $1 and $2. These queries are stored in table A, and further DNS
responses for that query will be processed against these entries in A.
If a matching entry exists in A, an attack was detected, i.e., at least one

DNS response containing wrong values in the validation fields was received; the
mechanism should not accept the DNS response as is, but should apply a special
processing described next. In this case, the mechanism first checks that the
validation fields match against those in the corresponding entry in A, step (5),
and that the DNS response arrived in the correct order, i.e., according to the
order in which the DNS requests were sent, step (6).
We implemented steps (5) and (6) as a state machine, Figure 2. The state

machine is activated following to attack detection and transmission of three DNS
requests (as above). The state machine transits to subsequent states following
to successful receipt of the DNS response, i.e., in order and correct. The state
machine halts when step 4., Figure 2, is reached. Then the DNS response, for

3 Following to Kaminsky attack, DNS resolvers were patched to support birthday
protection, we extend more on this in Section 5, and we also show a gateway based
mechanism to restrict the number of outstanding DNS requests to 1 to prevent the
birthday paradox.

Unilateral Antidotes to DNS Poisoning 329

Fig. 2. The state machine of the sandwich antidote, that corresponds to steps (5) and
(6) in Figure 3

Table 1. Sample entries, containing the DNS request sent by the DNS resolver, in the
table T maintained by the sandwich antidote mechanism running at the gateway; for
simplicity the entries are presented using ASCII characters

Index Serial number Transaction ID Source IP Destination IP Source port 0x20 encoding
h(‘WWw.GOoGLe.COM’) i 12567 1.2.3.4 5.6.7.8 55555 110110110111
h(‘WwW.yAhOO.coM’) i + 1 35783 1.2.3.4 7.8.9.7 61345 10101011001
h(‘Www.msn.COm’) i + 2 22344 1.2.3.3 2.6.8.3 24580 100000110

Table 2. Sample entries in table A, containing the DNS request sent by the sandwich
antidote mechanism, running at the gateway, once forgery attempt was detected for
DNS query ‘www.google.com’; for simplicity the entries are presented using ASCII
characters

Index Serial Fingerprint
number

h(‘wAKjfruEHa.WWw.GOoGLe.COM’) i.1 fK(12567||1.2.3.4||5.6.7.8||44563||0110000111110110110111)
h(‘wWw.gOOGlE.cOm’) i.2 fK(23455||1.2.3.4||5.6.7.8||1089||010011101010)

h(‘OknfDEJFNa.wwW.gOogle.CoM’) i.3 fK(12577||1.2.3.4||5.6.7.8||54333||1000111110001010000101)

the corresponding DNS request stored in T , is sent to the DNS resolver, and the
respective entries are removed from A and T .

3.2 Sandwich Implementation in Firewall

We implemented the sandwich antidote in C and ran it as a user-space program
on Linux Netfilter (kernel 2.6) operating system. We added two rules to iptables
firewall, one to capture all outbound packets destined to port 53 and another
to capture all inbound packets originating from port 53. The kernel passed the
captured packets to the implementation, which queued them, and applied to
each packet the processing described in Section 3.1.
We tested that the sandwich antidote does not impose overhead to DNS or

other traffic and that it does not ‘break’ the DNS functionality in two settings:
without poisoning attack and when under attack.

Compatibility with DNS Infrastructure. When our resolver was configured
to use a forwarder, in some cases the responses did not arrive in correct order.
This is due to the fact that many domains were already in cache of the for-
warder, while the two random queries did not exist. Thus the two responses for

330 A. Herzberg and H. Shulman

“$1.”||Resp.query
Resp.query
“$2.”||Resp.query
Add to A each request

“$1.”||Resp.query
Resp.query
“$2.”||Resp.query
Add to A each request

Resp.query

Resp
Resp

Resp.query

Resp

Resp.query

Resp.query

Resp
Resp

Resp
Resp

Resp.query

Resp
Resp

Resp
Resp

Resp
Resp
Resp

Resp
Resp
Resp

Resp

Resp.query

Fig. 3. A flow of the defense mechanism in firewall of the local resolver. The flow
describes the steps taken by the firewall upon arrival of each DNS response.

random queries would arrive after the response to the original DNS request. To
adapt the mechanism to such settings, where the local resolver uses a forwarder,
we modified the implementation to issue the requests twice. Specifically, if the
responses do not arrive in correct order, the same three DNS requests (random,
original, random) are issued again.

Efficiency. When no attack is detected, the mechanism does not impose de-
lays on other (non-DNS) traffic. The delays on DNS packets were in order of
few microseconds. To reduce even these (negligible) delays we added a slight
optimisation to our original design: we modified the firewall rule to duplicate
the outbound DNS packets, then to forward, in parallel, the DNS packet to the
destination (on the Internet) and a copy thereof for processing to the user-space
implementation.

4 The NAT Antidote

RFC 5452 [18] recommends that when sending a query, DNS resolvers should use
a random source IP address (from a list of IP addresses allocated to the resolver)
and a random destination IP address (from the list of addresses of authoritative
servers for the domain). Upon receiving a response, resolvers should validate it
matches the query, in their source and destination IP addresses (as well as in
the resolver’s port, DNS query identifier, and case-sensitive query). Validation

Unilateral Antidotes to DNS Poisoning 331

Fig. 4. Statistics of the top 100,000 domains according to Alexa, and the addresses’
block range allocated to them

of IP addresses increases the entropy and makes poisoning by spoofed responses
harder. Specifically, if nR (nA) is the number of addresses used for resolver
(respectively, authority DNS), then the improvement is by factor nR × nA.
However, typically, only a small number of IP addresses nR, nA are used for

resolver and authority DNS; e.g., Dagon et al. [14] mention typical values of
nR = 1 and nA = 3. Clearly, increasing nR and nA would improve resistance to
poisoning; however, IP addresses is a scarce, expensive resource, hence allocating
additional IP addresses to the DNS servers is hard to justify. On the other hand,
often, a domain may have multiple IP addresses used for other purposes (not
resolver), e.g., an ISP may have many IP addresses allocated to clients, and a
company may have special IP addresses allocated to different publicly-available
servers. The NAT antidotes takes advantage of such addresses. Specifically, we
show how to add IP addresses to DNS resolver without allocating additional IP
addresses. The idea is to reuse IP addresses already allocated to the network.
Hence this method works for networks that have a large set of public IP ad-
dresses; fortunately, this holds for networks of many organisations and ISPs; see
Figure 4 summarising the IP range blocks for top 100, 000 domains according to
Alexa [1], which we used in order to form a dataset. We gathered this informa-
tion by running a script on the list of domains (freely available on Alexa); the
script employed the whois service in order to obtain the IP address block of the
domain. According to our survey the median is at 211 which indicates that most
domains have a sufficiently large block of IP addresses. The deployment of NAT
antidote only requires modifications in the router(s) connecting the organisation
to the Internet, much like commonly used network address translation (NAT)
and firewall devices. Indeed, sometimes all that is required is to use existing
overloading many-to-many NAT functionality.

332 A. Herzberg and H. Shulman

Fig. 5. The NAT Antidote, implementing the defense against DNS cache poisoning by
increasing the amount of source IP addresses, used by the local DNS resolver, to the
number of addresses allocated to the network. The NAT antidotes connects a network
(e.g., 5.6.7.0/24) to the Internet. The NAT maps a DNS request, sent by the resolver
to authority DNS, to a random IP address in the network; the NAT also changes the
source port to some random, free port number, and saves this entry to a table. This
allows the NAT to change the destination IP and port, in the DNS response, to the
values that were originally used by the local DNS resolver.

If necessary, implementation is similar to NAT, using tools such as iptables.
Figure 5 illustrates typical operation of the NAT antidote.

4.1 NAT Implementation in Firewall

The NAT antidote is a variant of many-to-many, overloading NAT functionality,
i.e., mapping a set of internal IP addresses to a set of external IP address. Upon
receiving a DNS request (to port 53), the firewall would perform a special type
of Network Address Translation function. Specifically, it changes the IP address,
of the outbound DNS requests, to a random IP address in the available range,
stores the mapping (between the source IP, source Port, destination IP), and
forwards the packet to the DNS server. When the DNS response arrives, the
firewall locates the corresponding entry according to the destination IP and
port, and changes the destination port and IP address to those that were used
by the resolver. It then removes the stored entry and sends the DNS response;
see Figure 5.

5 Birthday Paradox and Protection

Originally, DNS servers did not restrict the number of simultaneous, multiple
DNS requests for the same IP address. This allowed a mathematical paradox,
known as the ”Birthday Paradox”, to reduce the number of DNS responses
required for a successful poisoning. To exploit the birthday paradox one has to
send a sufficient number of queries to a DNS server, while sending an equal

Unilateral Antidotes to DNS Poisoning 333

number of forged DNS responses at the same time. The greater the number of
outgoing DNS requests, the greater the probability that the attacker will match
one of those requests with a forged DNS response. As an example assume that
only the transaction ID (16 bits long) is randomised in the DNS request, and
that the attacker sends n responses to a DNS request; the success probability of
a match of one the responses with the DNS request is n

216 . If the attacker issues
n requests for the same domain, and sends n responses, then the probability of
a collision of one of the responses with one of the DNS request (with a random

transaction ID) is: 1−
(
1− 1

216

)n(n−1)/2

. For instance, for n = 300 there is a 50%

success probability for a match and for n = 700 there is almost 100% success,
while without the birthday paradox the success probability is 700/216 = 0.01,
e.g., see [27].
Following to Kaminsky attack, many DNS resolvers were also improved to

support birthday protection: prevent or limit 4 duplicate concurrent requests.
In subsequent section we suggest a mechanism that completely prevents the
birthday paradox.

5.1 Birthday Protection

Spoofing attacker can significantly increase its success probability of poisoning
the cache of local DNS resolver by issuing a number of DNS requests for the same
resource record, thus taking advantage of the birthday paradox. Birthday protec-
tion limits the number of concurrent DNS requests for the same record. However,
not all DNS servers implement birthday protection, or sufficiently restrict the
number of DNS queries. We suggest to implement the birthday protection mech-
anism in the firewall, without requiring modification to the local resolver itself.
The idea is to limit multiple duplicate DNS requests, for the same RR (resource
record) to one, by having the firewall return a single DNS response, i.e., the first
one that arrives, and to ignore the rest.
The birthday protection mechanism should run at the gateway (or a proxy

DNS server, through which the local resolver will issue DNS requests and receive
DNS responses). The gateway should capture DNS requests and responses, by
adding appropriate rules to the firewall, and should keep track of the outbound
DNS requests. Specifically, when a packet destined to port 53 enters the network
interface card (NIC) eth0, (as in Figure 1), the firewall captures and queues it
for processing by a waiting userspace birthday protection mechanism implemen-
tation. The mechanism maintains a table (see Table 3 for sample entries) of DNS
requests and when a new request arrives it is stored in the table. The mechanism
then checks if a DNS request with the same query already exists in table. If the
request is new and does not exist in a table, the first flag is set to 1, i.e., this
is the first DNS request. Then the birthday protection mechanism forwards it
to the designated recipient; otherwise, the first is set to 0 and the request is

4 Complete prevention of duplicate queries may have a significant overhead, hence
many implementations only limit duplicates, e.g., to 200.

334 A. Herzberg and H. Shulman

discarded. When a DNS response arrives from 53 the firewall passes it to the
birthday protection mechanism. If a matching entry exists with a flag set to 1
the mechanism processes the response (otherwise ignores it). Taking only the re-
sponse that matches the first query is important to prevent the attack exploiting
the birthday paradox. For each entry in a table with a query that matches the
query in the DNS response, the mechanism constructs a DNS response with the
fields, e.g., port, source/destination IP, that correspond to the values in table,
and uses the same answer field value from the DNS response that it received; it
then sends the responses and removes the corresponding entries from the table.
All future DNS responses for that RR will be ignored (since no matching entry
exists in the table).
It may seem that the mechanism should only return the response to one of the

matching DNS requests, and ignore the rest of the requests. However, depending
on the implementation of the DNS resolver, when several clients make requests
for the same resource record (RR), the resolver does not return the first (cached)
response to the other clients, but waits for the corresponding response to arrive.
Therefore, our mechanism crafts a matching DNS response to every pending
DNS request. Therefore, our mechanism returns a matching DNS response to
each pending entry.

Table 3. Sample entries in the table maintained by the birthday protection mechanism;
for simplicity the entries are presented using ASCII characters

Index Query ID source IP destination IP source Port 0x20 Encoding first
h(‘www.google.com’) 12567 1.2.3.4 5.6.7.8 55555 1101101101 1
h(‘www.google.com’) 2234 1.2.3.4 5.6.7.9 3112 1101100011 0

6 Conclusions

Currently, many DNS resolvers are still vulnerable to DNS poisoning attacks by
determined adversaries, only requiring from them the ability to spoof packets.
DNS poisoning can be used for a wide range of devastating attacks, hence, it
is essential to develop interim solutions, to ensure security until the long-term
cryptographic DNS-security mechanisms are widely deployed. Preferably, such
interim antidotes to DNS poisoning should require changes only in the resolver,
or, better yet, only in the gateway connecting the resolver to the Internet.
We investigated unilateral defenses against the DNS cache poisoning by spoof-

ing adversaries, and presented new and improved mechanisms. Our central con-
tribution is the sandwich antidote to DNS poisoning, which operates in two
phases: detecting and then preventing poisoning attacks. We also presented the
NAT antidote, which enhances DNS security by increasing the entropy in DNS
packets for most subnets by a factor of 211, by picking a random source IP ad-
dress from a pool of addresses available to the organisation. These solutions can
be easily deployed in gateways (we present proof of concept code), to provide
immediate defense against DNS poisoning.

Unilateral Antidotes to DNS Poisoning 335

References

1. The web information company, http://www.alexa.com/

2. AlFardan, N.J., Paterson, K.G.: An Analysis of DepenDNS. In: Burmester, M.,
Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 31–38.
Springer, Heidelberg (2011)

3. Antonakakis, M., Dagon, D., Luo, X., Perdisci, R., Lee, W., Bellmor, J.: A Central-
ized Monitoring Infrastructure for Improving DNS Security. In: Jha, S., Sommer,
R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 18–37. Springer, Heidel-
berg (2010)

4. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduc-
tion and Requirements. RFC 4033 (2005)

5. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Protocol Modifications
for the DNS Security Extensions. RFC 4035 (Proposed Standard), Updated by
RFC 4470 (March 2005)

6. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Resource Records for
the DNS Security Extensions. RFC 4034 (Proposed Standard), Updated by RFC
4470 (March 2005)

7. Bellovin, S.M.: Security problems in the TCP/IP protocol suite. Computer Com-
munication Review 19(2), 32–48 (1989)

8. Bellovin, S.M.: Using the domain name system for system break-ins. In: Proceed-
ings of the 5th Symposium on UNIX Security, pp. 199–208. USENIX Association,
Berkeley (1995)

9. Bernstein, D.J.: DNS Forgery (November 2002), Internet publication at
http://cr.yp.to/djbdns/forgery.html

10. CERT. Multiple DNS implementations vulnerable to cache poisoning. Technical
Report Vulnerability Note 800113, CERT (2008)

11. CNET News. Major outage hits comcast customers (2010),
http://news.cnet.com/8301-1023_3-20023949-93.html

12. Cross, T.: (updated) DNS cache poisoning and network address translation. Post
at IBM’s Frequency X blog (July 2008),
http://blogs.iss.net/archive/dnsnat.html

13. Dagon, D., Antonakakis, M., Day, K., Luo, X., Lee, C.P., Lee, W.: Recursive DNS
architectures and vulnerability implications. In: Sixteenth Network and Distributed
Systems Security (NDSS) Symposium. The Internet Society (2009)

14. Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased DNS forgery
resistance through 0x20-bit encoding: security via leet queries. In: Ning, P., Syver-
son, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications Se-
curity, pp. 211–222. ACM (2008)

15. Vixie, P., Dagon, D.: Setting dns’s hair on fire (July 2008),
http://www.usenix.org/events/sec08/tech/

16. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication across network
address translators. In: USENIX Annual Technical Conference, General Track.
USENIX (2005)

17. Hubert, A., van Mook, R.: Measures for Making DNSMore Resilient against Forged
Answers. RFC 5452 (January 2009)

18. Infoblox. Sixth annual DNS survey (2010),
http://www.infoblox.com/content/dam/infoblox/documents/press-releases/

dns-survey-2010-press-release.pdf?orgSearch=google.com

http://www.alexa.com/
http://cr.yp.to/djbdns/forgery.html
http://news.cnet.com/8301-1023_3-20023949-93.html
http://blogs.iss.net/archive/dnsnat.html
http://www.usenix.org/events/sec08/tech/
http://www.infoblox.com/content/dam/infoblox/documents/press-releases/dns-survey-2010-press-release.pdf?orgSearch=google.com
http://www.infoblox.com/content/dam/infoblox/documents/press-releases/dns-survey-2010-press-release.pdf?orgSearch=google.com

336 A. Herzberg and H. Shulman

19. Kaminsky, D.: It’s the end of the cache as we know it. Presentation at Blackhat
Briefings (August 2008)

20. Markoff, J.: Leaks in patch for web security hole. Cryptology ePrint Archive, Re-
port 2010/449 (2008),
http://www.nytimes.com/2008/08/09/technology/09flaw.html?r=1

21. Park, K.S., Pai, V.S., Peterson, L., Wang, Z.: CoDNS: Improving DNS performance
and reliability via cooperative lookups. In: Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation, vol. 6, p. 14. USENIX
Association (2004)

22. PCWorld: Glitch knocks rollingstone.com offline (2010),
http://www.pcworld.com/article/189966/

glitch knocks rollingstonecom offline.html

23. Perdisci, R., Antonakakis, M., Lee, W.: Solving the dns cache poisoning problem
without changing the protocol (2008)

24. Poole, L., Pai, V.S.: ConfiDNS: leveraging scale and history to improve DNS secu-
rity. In: Proceedings of the 3rd Conference on USENIX Workshop on Real, Large
Distributed Systems, vol. 3, p. 3. USENIX Association (2006)

25. Rosenberg, J., Weinberger, J., Huitema, C., Mahy, R.: STUN - Simple Traversal of
User Datagram Protocol (UDP) Through Network Address Translators (NATs).
RFC 3489 (2003)

26. Sisson, G.: DNS survey (2010),
http://dns.measurement-factory.com/surveys/201010/

27. Stewart, J.: DNS cache poisoning - the next generation
28. Sun, H.-M., Chang, W.-H., Chang, S.-Y., Lin, Y.-H.: DepenDNS: Dependable

Mechanism against DNS Cache Poisoning. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 174–188. Springer, Heidelberg (2009)

29. Vixie, P.: Extension Mechanisms for DNS (EDNS0). RFC 2671 (1999)
30. Vixie, P.: DNS and BIND security issues. In: Proceedings of the 5th Symposium

on UNIX Security, pp. 209–216. USENIX Association, Berkeley (1995)
31. Yuan, L., Kant, K., Mohapatra, P., Chuah, C.N.: DoX: A peer-to-peer antidote for

DNS cache poisoning attacks. In: IEEE International Conference on Communica-
tions, ICC 2006, vol. 5, pp. 2345–2350. IEEE (2006)

32. ZDay. Hd moore pwned with his own DNS exploit, vulnerable AT&T DNS servers
to blame (2008),
http://www.zdnet.com/blog/security/hd-moore-pwned-with-his-own-dns-

exploit-vulnerable-at-t-dns-servers-to-blame/1608

http://www.nytimes.com/2008/08/09/technology/09flaw.html?r=1
http://www.pcworld.com/article/189966/glitch_knocks_rollingstonecom_offline.html
http://www.pcworld.com/article/189966/glitch_knocks_rollingstonecom_offline.html
http://dns.measurement-factory.com/surveys/201010/
http://www.zdnet.com/blog/security/hd-moore-pwned-with-his-own-dns-exploit-vulnerable-at-t-dns-servers-to-blame/1608
http://www.zdnet.com/blog/security/hd-moore-pwned-with-his-own-dns-exploit-vulnerable-at-t-dns-servers-to-blame/1608

Security Analysis of Leap-of-Faith Protocols

Viet Pham1 and Tuomas Aura2

1 Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
viet.pham.2010@rhul.ac.uk

2 Aalto University, P.O.Box 15400, FI-00076 Aalto, Finland
tuomas.aura@aalto.fi

Abstract. Over the Internet, cryptographically strong authentication
is normally achieved with support of PKIs or pre-configured databases
of bindings from identifiers to credentials (e.g., DNS to public keys).
These are, however, expensive and not scalable solutions. Alternatively,
Leap-of-Faith (LoF) provides authentication without additional infras-
tructure. It allows one endpoint to learn its peer’s identifier-to-credential
binding during first time communication, then stores that binding for
future authentication. One successful application of LoF is SSH server
authentication, encouraging its introduction to other protocols.

In this paper we analyze the security of LoF protocols. Various as-
pects are discussed to show that several proposed LoF protocols have
weaker security than SSH, and that their security also depends on design
and implementation details. Several protocols were analyzed, including
SSH, TLS, BTNS, and HIP, revealing attacks such as impersonation,
man-in-the-middle attacks, and credentials flooding. Consequently, ad-
ditional mechanisms and best practices are proposed to strengthen LoF
applications.

Keywords: leap-of-faith, authentication, key management, SSH, TLS,
BTNS IPsec, HIP, decentralized system, infrastructureless.

1 Introduction

Due to physical separation, Internet communication suffers from identity-spoofing
attacks, such as impersonation and man-in-the-middle (MitM). When two parties
communicate, they need a way to name each other. Each party is represented by
a communication identifier. For example, in telnet remote login, the communi-
cating parties are the server and the client user (not the client computer). The
server is identified by its DNS name or IP address, whereas the client user is iden-
tified by a username. However, since telnet transmits username and password in
plaintext across the Internet, these identifiers could be easily spoofed.
To prevent identity-spoofing attacks, there are authentication methods based

on cryptographic credentials. Each credential is owned by one entity and can be
used to verify its identity. For instance, in public-key authentication, public keys
are used as credentials. To facilitate authentication, the identifier of an entity
must be mapped to that entity’s credential. When someone claims to have an

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 337–355, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

338 V. Pham and T. Aura

identifier, the authenticator can use the corresponding credential to verify the
ownership. The main problem with authentication is to maintain such kind of
identifier-to-credetial mappings, or security bindings in our terminology.
Authentication should be strong in the sense that all bindings accepted by the

authenticator are correct. In distributed systems, strong authentication is usually
supported by a trusted third party (TTP) or a public-key infrastructure (PKI).
For example, in TLS, each binding is represented by a certificate. Each certificate
must be signed by a certificate authority (CA) within the PKI hierarchy, and
its correctness could be securely verified given the public key of the root CA.
Similarly, symmetric-key systems like Kerberos provides strong authentication
[1] using a key distribution center (KDC) as a TTP. The strong authentication
with a PKI or TTP, however, does not come without costs:

– Registration effort: correct bindings must be registered with the CA or TTP,
which requires administrative effort [2]. For example, the TTP administrator
must carefully perform background check on the binding owner, or otherwise
attacks are possible, e.g., [3].

– Cost: as a business process, each registration incurs a cost to the registering
party to have its binding certified. Most individuals and many businesses are
unwilling to pay such fees especially for local or temporary IT systems.

– Scalability: with the current size of the Internet, no TTP is capable of main-
taining a database of bindings for every network entity. This is especially
true in peer-to-peer communication in which all endpoints are equal the
their number can be very large.

These limitations have led to a search for alternative forms of authentication.
One possibility is recommendation systems with PGP Web of Trust [4] as an
early example. In these systems, the reliance on the trustworthiness of CAs is
replaced by trust between people based on experiences and recommendations.
As certification of bindings is decentralized to a community rather than a single
PKI hierarchy, the registration and management costs could be lower. However,
modelling of trust in these systems requires complicated mathematical tech-
niques (e.g. [5]) and their applicability to non-human entities like computers is
still unclear. Also, both the authenticator and the peer being authenticated must
be in the same community, making it less scalable globally.
Another idea is the use of self-certifying identifiers. An identifier is gener-

ated by evaluating some collision-resistant function f on a credential, so that
the mappings between identifiers and credentials are one-to-one, hence avoiding
impersonation. As identifiers can be generated locally, no third party is needed
and there is no administrative overhead. This idea works well when identifiers
can include arbitrary bit strings, for instance, in the SEND protocol [6] with
cryptographically generated address [7,8]. In contrast, user-interactive applica-
tions require human-readable identifiers, which cannot be arbitrary hash values.
Identity-based cryptography [9] attempts to solve this, but still requires a TTP,
i.e., a private key generator and thus suffers from similar problems as PKI.
In this paper, we focus on the Leap-of-Faith (LoF) method as an alternative to

strong authentication. LoF is familiar to most university users from SSH server

Security Analysis of Leap-of-Faith Protocols 339

authentication, which can be used without pre-distributed keys or certificates.
This paper is motivated by the fact that there are many proposals to imitate
the SSH authentication in many other protocols. Our goal is to understand why
the relatively weak LoF principle has been successful in SSH and whether it will
readily extend to other protocols that operate with slightly different assumptions.
This kind of analysis is important because security mechanisms often fail when
they are taken outside their original operating environment.
In section 2 we describe the LoF principle in detail. Then, section 3 discusses

several security considerations associated with LoF. These considerations are
applied in section 4 to 7 to analyze the security of several protocols that make
use of LoF. Evidently, we present a number of weaknesses on these protocols.
Finally, we propose in section 8 a number of mechanisms to strengthen the
security of this authentication method.

2 Leap of Faith

Due to aforementioned limitations, strong authentication is sometimes not fea-
sible. Arkko and Nikander [10] report the emergence of new weak or infrastruc-
tureless authentication techniques as a workaround. The weak techniques could
be used in settings where there is no sufficient information or infrastructure to
establish a trust chain for strong authentication [10, 1]. One such technique is
the LoF mechanism, which can be summarized as follows:

– First communication and leap of faith: When the authenticator and its peer
communicate for the first time, the authenticator is unable to securely au-
thenticate the peer. It takes the identifier and credential presented by the
peer, checks that the identifier is new, and locally stores this identifier-to-
credential binding.

– Subsequent communication: In any subsequent communication between the
authenticator and the same peer, the communication channel is authenti-
cated using the stored binding.

The security of LoF relies on an important assumption that the attacker is
unlikely to be present during the first communication. If the accepted binding
is correct, all subsequent communication will be secure. Clearly, LoF does not
provide strong security and the level of assurance depends on the details of the
communication network and the types of attackers that one is trying to defend
against.
In the classical computer security model, LoF is unquestionably insecure. In

practice, it has been applied in several contexts. The most prominent one is
SSH. Another common situation is access to web sites whose TLS certificate is
not signed by a recognized CA and the client user chooses to store it for future
authentication. Also, when a user downloads and installs a web browser or an
operating system, a list of root certificates or code signing keys is configured on
that user’s machine. Most users do not bother to verify offline the correctness of
these certificates, and thus the LoF mechanism is applied.

340 V. Pham and T. Aura

It is also worth comparing LoF to a related idea, first-come-first-serve alloca-
tion of identifiers. For example, free email service and online forums allow new
users to create a name-to-credential binding for any name that has not been
previously allocated. That part is similar to LoF. The difference is that, in LoF,
there are some external criteria, such as the DNS hierarchy or IP address allo-
cation, that could in theory be used to determine offline whether the binding is
correct or not. In first-come-first-serve, there are no such external criteria and
the authenticator itself allocates the names to its peers.

3 Security Considerations

The main advantage of LoF is that no third party is required. However, this
implies a lack of knowledge for strong authentication. Without the LoF assump-
tion, impersonation and/or MitM attacks are possible. Indeed, if the attacker
appears in the first communication, he might claim the peer’s identifier and give
his own credential to the authenticator. Since the authenticator cannot distin-
guish an attacker from a honest peer, the attacker’s binding would be naively
accepted. Several factors exist that influence the likelihood of this incident, as
follows.

LoF scenarios. In the design of LoF protocols, two components exist: the
communication initiator and the LoF maker (authenticator). We devise a num-
ber of possible designs based on these components. In particular, two scenar-
ios exist for the communication initiator, denoted as Init = {fixed, either},
that is, communication could be initiated by a fixed endpoint (e.g., in client-
server model), or by either endpoint (e.g., in peer-to-peer model). Meanwhile,
the LoF maker(s) could be one of the following: the communication initia-
tor, the responder, a fixed endpoint, or both endpoints. We denote these as
LoFMaker = {initiator, responder, fixed, both}. The Cartesian product Init×
LoFMaker produces the set of LoF scenarios for our concern. Note that we may
purge out the element (fixed, fixed) as it is covered by (fixed, initiator) and
(fixed, responder). For convenience, we denote each scenario by the initials of
its components, e.g., (FB) stands for (fixed, both).
The above two components could be used to identify potential attacks that

might happen on each scenario, regardless of implementation details, purposes,
or operating environments. As an example, in scenario (FI) where the LoF maker
is the fixed initiator, the attacker must patiently wait for the first communication
to take place before he could impersonate the responder. In contrast, scenario
(FR) requires the responder to be the LoF maker, which allows an attacker to
easily initiate the first communication and impersonate the honest initiator to
the responder. Also in this scenario, MitM attacks are possible only if imper-
sonation in the other direction could be done. This might be the case if the
authentication in the opposite direction is insecure. In scenarios (FB) and (ER),
however, MitM attacks are always possible because LoF is used bidirectionally.
In overall, we summarize attacks on these scenarios as in Table 1.

Security Analysis of Leap-of-Faith Protocols 341

Table 1. Attacks against scenarios in Init× LoFMaker

Scenario Potential attacks

(FI) Intercept communication attempt ⇒ Impersonate the responder; MitM attacks
(if no strong authentication of the initiator)

(FR) Intercept communication attempt ⇒ Impersonate the initiator; MitM attacks (if
no strong authentication of the responder)
Initiate communication to the responder ⇒ Impersonate the initiator

(FB) Intercept communication attempt ⇒ Impersonate both; MitM attacks
Initiate communication to the responder ⇒ Impersonate the initiator

(EI) Intercept communication attempt ⇒ Impersonate the responder; MitM attacks
(if no strong authentication of the initiator)
Initiate communication to both ⇒ MitM attacks (if no strong authentication of
the initiator)

(ER) Initiate communication to both ⇒ Impersonate both; MitM attacks

(EF) Intercept communication attempt ⇒ Impersonate the initiator
Initiate communication to both ⇒ MitM attacks (if no strong authentication of
the responder)

(EB) Initiate communication to both ⇒ Impersonate both, MitM attacks

Binding multiple sessions. LoF follows the temporal separation principle [10]:
using some verification techniques, a communicating party can ensure that the
peer it communicates with at time t1 is the same as that at a previous time t0.
We call the period that such t1 may fall in as the authenticated period, denoted
by [t0, tend]. Applying to LoF principle, the first communication occurs at t0, and
subsequent communication should occur within [t0, tend]. Thus, to avoid future
attacks, the design goal is to make sure that tend → ∞.
To achieve this goal, LoF implementation must be able to verify credential

ownership, and that ownership must be unique. Otherwise, an attacker could
claim the credential and bypass the authentication, even during [t0, tend]. Ex-
amples include plaintext exchange of shared key as credential, since the attacker
can sniff the key and becomes its second owner. Moreover, only the authenti-
cated peer should be allowed to continue communication, or else the attacker
may intercept communication at a later time. For example, some systems allow
the transmission of signed session key. Although signed by the peer’s credential,
it can be sniffed by the attacker and used to inject valid messages.

Losses of bindings. Another threat to temporal separation is losses of security
bindings, due to storage failure, accidental deletion, re-installation, etc. If this
happens at the LoF authenticator side, future communication appears to be the
first communication, and thus the goal tend → ∞ fails. Moreover, events such
as storage failure often lead to the loss of many bindings, which causes many
first communication sessions to occur, thus increasing chances for attackers to
successfully intercept at least one session. Also, if the peer lost its credential, it
would have to create a new one, causing authentication failure. This may lead

342 V. Pham and T. Aura

to public announcement of the change to resolve failure, allowing attackers to
attack at a specific time with higher chance to intercept a first communication.

Authentication failures. A failure occurs when the authenticator receives a
credential that does not match the peer’s binding locally stored. In many cases
this implies an attack. For example, if the attacker appears only during the first
communication and gives his own credential, then failures would occur on sub-
sequent communication with the honest peer. Likewise, failures also happen if
attacks are mounted on subsequent communication instead of the first one. Au-
thentication failures may also be a result of losses of bindings. To resolve failures,
the authenticator must detect which scenario is the cause. However, since the
difference between these scenarios is subtle, the authenticator may either accept
the new binding that allows the attacker to impersonate the honest peer, or deny
the new binding of the honest peer and its legitimate communication.

Attack environment. Inherent characteristics of attack environments have
certain influences on the attacker’s success rate. In fact, there are several criteria
that the attacker must meet in order to mount an attack, including his location,
knowledge, and presence. If either route redirection or compromise of middle
nodes is possible, the attacker could be anywhere in the network. Otherwise, he
must be at either endpoint’s local network (e.g., neighbours, university students),
or on the route (e.g., ISP, intelligence agencies). The attacker might also need
knowledge about an endpoint, such as its online time, or IP address that is not
in the DNS and changes over time. The attacker’s presence is also important for
a successful attack, e.g., in MitM attacks, if an endpoint is mobile, the attacker
must move along with it during the attack.
Another characteristic is the frequency of first communication sessions, which

varies for each operating environment. The number of such sessions may be
driven by the densities of authenticators and parties being authenticated, which
is location-specific. It could also be influenced by the popularity of the LoF
protocol. For example, an application-layer LoF protocol may be less used than
a transport-layer LoF protocol. In addition, the dynamics of the community may
as well affect the number of first communication sessions. As the community
grows, or when there is churn [11], new pairs of peers and authenticators will be
introduced, allowing attacks on the LoF bootstrapping process.
On the other hand, the risk of being detected is a deterrent to the attacker.

This risk may be high given an effective attack detection mechanism. In certain
situations, IDS techniques such as fingerprint-based misuse detection [12, 4.5] or
anomaly-based detection [12, 4.4] could be used. To be feasible, these detection
techniques should exploit the difference between an attacker and the honest peer,
such as online time. Also, the honest peer and its authenticator may share some
information through out-of-band channels, such as telephone, which the attacker
is not aware of. These differences may result in the attacker’s strange behaviors
that make attack detection possible.

Binding multiple protocol layers. In some scenarios, the LoF protocol may
be used as a transport layer carrying traffic for higher-layer applications. It is

Security Analysis of Leap-of-Faith Protocols 343

possible that these layers are not aware of each other’s operation. In that case,
changes at the lower layer may not be visible to applications. If the attacker could
change the peer’s identifier and/or credential, the application would blindly con-
tinue the communication with the wrong endpoint. This happens, for example
when the application and the LoF protocol use DNS names and IP addresses as
identifiers, respectively. DNS spoofing would force the LoF protocol into using
a wrong peer IP address and wrong security binding. Even with higher-layer
authentication, this attack may still work if a mechanism such as plaintext pass-
word authentication is used, as password sniffing is possible.

First communication detectability. The ability to detect the first commu-
nication helps the attacker avoid being caught. When the attacker hijacks a
local network with many nodes, he might encounter many LoF connections. In-
herently, only a small fraction of these are first communication. Attacking all
connections clearly reveals the attacker’s presence, as most authentication ses-
sions will fail. Instead, selective attacks against only first communications allow
the attacker to stay stealthy.
Detectability may be facilitated by different factors. As an example, a LoF

protocol maybe designed with different messaging for first versus subsequent
communications. Also, the timing of first communications maybe leaked through
out-of-band channels, such as emails, SMS messages, or by historical statistics.
We devise in Figure 1 another detection method. First, the MitM attacker passes
on messages in between until (t0) when the authenticator successfully receives
its peer’s credential. He then waits until the authenticator responds (t1), and
check the waiting time t1 − t0 against ε, the expected response time from the
authenticator during a subsequent communication. If t1− t0 � ε, this is the first
communication, as t1 − t0 is the time for the user to decide whether to accept
the credential. Otherwise when t1 − t0 ≈ ε, no human decision is involved, and
that may imply subsequent communication.

0 Authenticator Attacker Peer
...

messages messages

t0 Authenticator Attacker Peer
credential credential

(subsequent communication) t1 Authenticator Attacker
response

t0 + ε ≈ t1

...

time

(first communication) t′1 Authenticator Attacker
response

Fig. 1. Timing method to detect LoF first communication

344 V. Pham and T. Aura

The above attack makes use of two assumptions. Firstly, human being is in-
volved in accepting/rejecting the credential. In fact, this applies to most LoF
protocols that have been developed. Secondly, upon realization of the first com-
munication, the attacker is able stop the authenticator from accepting the peer’s
credential and replace with that of his own. This attack exploits implementation
defects rather than protocol issues, e.g., in certain WWW browsers as detailed
in Section 5.

Performance issues. In most communication protocols, a communication state
needs to be remembered by at least one communicating party. This party must
store and perform lookup of state data in memory. This brings a chance for an
attacker to create a massive number of sessions whose state data would either
fill this party’s memory or exhaust its capacity for managing the data. An early
example is TCP, which suffers from SYN-flooding attacks [13]. LoF protocols are
no exception, as the authenticator must store the peer’s binding permanently
and is thus vulnerable to resource exhaustion attacks.

4 Secure Shell (SSH)

In the early days, remote login protocols such as telnet and rlogin sendzz
plaintext passwords over the networks where they could be sniffed. SSH [14] was
created specifically as a response to prevalent sniffing attacks, using encrypted
tunnels between the client and the server. SSH became popular because, thanks
to LoF, it can be installed locally at the client and server and avoids most of the
administrative overheads involved in strong server authentication.
The SSH server is identified by either its DNS name or IP address, with its

public key being the credential. When the client initiates a connection, it receives
the server’s public key PK. The client looks in its storage of bindings, e.g., a
known hosts file, for a key associated with the server’s identifier. If no key is
found, the session is the LoF first communication, and the client user is asked
whether to accept PK. If accepted, the binding from the server’s identifier to
PK is stored. In case the server’s key is already in known hosts, the server is
authenticated only if this stored key equals PK. Otherwise, the user would be
alerted of a potential attack and, depending on the implementation, the session
may be terminated.
SSH LoF has several characteristics that make it relatively secure. It follows

scenario (FI): the communication is always initiated by the client, and it is also
the only LoF authenticator. Although SSH is still vulnerable to MitM attacks,
these are difficult to implement. The adversary must wait for the first communi-
cation to take place to attack successfully. Meanwhile, most casual hackers are
unlikely to be on the communication route at the right time. More advanced
attacks that reroute the traffic via the attacker are easier to detect with an IDS
and will thus not last long. Mobile clients, on the other hand, have most likely
initialized their known hosts before roaming into insecure networks.
In another advantage, SSH is often comes as a single piece of software com-

prising both the security protocol and the terminal emulator. This eliminates

Security Analysis of Leap-of-Faith Protocols 345

the problems caused by lack of application awareness to lower-layer protection:
the SSH client takes care that the terminal sessions are consistently protected.
The exception is with SSH port forwarding, in which case SSH carries traffic for
other protocols such as SMTP, X11 or HTTP. Even then, the status of SSH is
still controlled by the user with a separate interface, e.g., an SSH client.
One critical feature in the design of SSH is that a passive observer cannot

distinguish between a first and a subsequent communication sessions. Thus, ei-
ther the attacker ceases to attack, or he must target all connections and risks
detection. In relatively static wired networks, the attacker may be able to spot
new client computers or users and target them. However, the more vulnerable
settings, such as open wireless networks, are actually difficult for the attacker be-
cause he cannot tell which clients are new. In such cases, an attack report policy
would certainly help detect the attacker’s presence. Also, the timing attack in
Figure 1 would not work as its second assumption fails for most SSH implemen-
tations, such as OpenSSH and PuTTY. Upon user acceptance, these software
force local storage of server’s public key, without further concern. Unless the
local program execution is intefered with, this storing process is unstoppable.
Despite above advantages, SSH also has some shortcomings. We recall that

SSH sessions usually have two layers of authentication: LoF authentication of
the server and password authentication of the client. The session key created
in the key exchange will be only bound to the to server credentials but not to
the user password or username. Hence, impersonation of the server is enough to
learn the session key. Also, the use of plaintext password means that a successful
attack against the LoF will also compromise the password. By using a challenge-
response protocol for client authentication and by binding the session key to the
client password these problems could be mitigated.
Another issue is that when the server private key is lost, the administrator

would notify users in public. The short period following this announcement would
be the best time for active attacks. The same problem may also emerge for
environments with high and predictable churn rates, e.g., university networks.
In such places, the attacker may know when new users appear in the network
and target their first SSH logins.

5 Transport Layer Security (TLS)

Similar to SSH, TLS provides, among other things, authentication and confiden-
tiality for peer-to-peer communication. While each peer is identified by its TLS
certificate, authentication is accomplished with support from a PKI hierarchy
of Certificate Authorities (CA). However, without such premises, LoF could be
introduced as an alternative. While authentication in TLS can be peer-to-peer
[15, F.1.1], we consider only its promient use nowadays, i.e., the client-server set-
ting represented by scenario (FI), such as with HTTP. Thus, the similar security
analysis of SSH regarding this scenario is also valid for TLS LoF.
Nevertheless, LoF TLS differs from SSH in other aspects. TLS is the transport-

layer protocol, providing security services for upper layers. This implies its

346 V. Pham and T. Aura

greater popularity than SSH which is mainly used for remote logins. For in-
stance, many WWW servers nowadays use TLS to provide security for HTTP,
however without a proper TLS certificate issued by a trusted CA. Thus, users
connecting to such servers via TLS would have to make leap-of-faith on the un-
recognisable certificates. Due to the inherent popularity of WWW usage, there
is a high chance for successful interception of a first communication session.
The fact that TLS is a transport-layer protocol also presents multiple-layer

binding issues in which users are unaware of lower layer attacks on TLS LoF.
This implementation issue appears, for instance, in popular software such as
Firefox and Safari, making the attack in Figure 1 feasible. In particular, when
Firefox receives an unverifiable server X.509 certificate, it displays a warning to
the WWW user. However, to be able to examine the certificate and accept/reject
it, the user must click on an Add exception... button, which triggers a recon-
nection to the server, again asking for its certificate. This latter certificate will
be presented to the user instead of the first one. With the timing method, the
attacker could detect the first communication, and is able to inject his own
certificate during the reconnection, thus succeed in impersonating the server.
Clearly, the difference between the two certificates is visible to TLS, but not to
the user.
Another concern with current implementations of TLS, most notably WWW

browsers, is the temporal separation principle, which signifies that a certificate,
once accepted, should be stored permanently. However, Firefox and Safari give
users an option, though non-default, to accept the TLS certificate for a particular
session only. Even worse, this is the default option in Google Chrome, which
implies that every connection is treated as the first communication, rendering
the WWW user highly vulnerable to attacks.

6 Better Than Nothing Security (BTNS) IPsec

Unlike SSH, IPsec is designed for protecting all different types of network traffic.
It operates at the Internet layer and establishes secure channels for IP packets,
transparent to upper layers. The main operation of IPsec is with the Internet Key
Exchange (IKE) protocol. Within this protocol [16, 1.2], public-key certificates
are used to facilitate peer authentication. IKE is also used to exchange a shared
keying material for establishing secure channels. The security of this material is
bound to the public keys of both endpoints using digital signatures.
Normally, IKE requires signed public-key certificates or a Kerberos server (in

the PKInit mode of IKE) to bind the public keys to the identifiers of the end
nodes. Inherently, this kind of infrastructure does not span globally. BTNS mode
of IPsec [17,18] is a proposed extenstion of IPsec that supports LoF. Its goal is
to perform anonymous encryption of communication and authentication within
one communications session. Since the specification of BTNS is still undergoing,
we have to make some assumptions in our discussion.

LoF scenarios. BTNS LoF may first appear to be similar to SSH. If used below
the telnet application, it provides comparable security to SSH. With fixed client

Security Analysis of Leap-of-Faith Protocols 347

and server roles, it follows scenario (FI). However, generic IPsec architecture does
not follow this kind of asymmetric thinking. Instead, BTNS seem to be specified
with scenario (EB) in mind where either endpoint can initiate the communication
and both make leaps of faith on each other. This allows the attacker to initiate a
first communication to any other node, causing that node to bind any previously
unbound name to the attacker’s credential. This way, the attacker can hijack a
server name at a client’s namespace before the client connects to the server.
As a remedy, BTNS could possibly be implemented in a more restricted way.

For example, the binding could be created only at the initiator, as in scenario
(EI). It may first appear that this will prevent the reversal of roles and teaching
the other party a false binding. However, in IPsec it is very difficult to be certain
which endpoint actually initiated the communication. This is because IPsec may
be triggered by another communication in opposite direction. A typical example
is FTP where the server initiates connections to the client. If only the FTP
data transfer is protected by BTNS IPsec, then the LoF initiator will appear
to be the server. Thus, an attacker can cause the FTP server to initiate a first
communication to his IP address, making attacks significantly more likely.
Similar reversals of IPsec initiator and responder roles occur in Windows

implementations of IPsec where a client workstation can be configured to be in
responder-only mode, i.e., to use IPsec only if the server initiates connections to
it. The role reversals are perfectly acceptable in IPsec with strong authentication
and fit well the symmetric design of the IPsec architecture. Authentication with
LoF, however, does not fit well into this setting. This is easiest to understand
in peer-to-peer protocols where there is no difference between client and server,
and scenario (FI) with fixed initiator is simply nonsensical.

Binding of protocol layers. As IPsec operates at IP layer, it introduces a
operation awareness problem to higher layers, causing a number of attacks [19],
especially when BTNS LoF is in use. One approach to resolve this is called
connection latching [20], which binds each upper-layer connection (e.g., TCP)
to the underlying IPsec channel protecting it. This ensures that changes in the
underlying IPsec channel would terminate the upper-layer connection. More im-
portantly, an interface is provided for upper layers to monitor IPsec connections.
Another approach is channel binding [21], which works when the higher-layer
application provides strong authentication of the peer. In that case, this strong
authentication is used to securely verify the public key received via BTNS. Both
mechanisms solve many of the security problems that we later identify in HIP,
such as the lack of binding among protocol layers.
Apart from host-to-host connections, IPsec can also be used to create tunnels

between security gateways or between a host and a gateway. These are actually
more common IPsec scenarios because they make up VPN tunnels. If BTNS is
used, IPsec and the application-layer connections are implemented on different
machines, making inter-layer binding methods such as connection latching and
channel binding infeasible. Given that BTNS IPsec have yet been deployed, it
is impossible to point out actual security failures. However, the possibility of

348 V. Pham and T. Aura

LoF-authenticated IPsec association expiring underneath a long-lived applica-
tion session is an important concern when specifying BTNS-based VPNs.

Managing security bindings. The intended transparency of IPsec to applica-
tion layers brings further issues when BTNS is used. Being blinded from IPsec
operation, user confirmation on the correctness of security binding and offline
recovery of authentication failures is typically impossible. Moreover, even if an
IPsec-awareness interface is implemented on end hosts, a user behind an IPsec
gateway will not be able to control the gateway and will not even know what
is causing the communication failure if the gateway detects change of peer key
and refuses to route further packets.
Secondly, an attacker can flood BTNS IPsec by repeating first communication

sessions between a target host or gateway and presenting each time a different
identifier and credential. The target will have to decide which bindings to store
and which to drop, but it has not feedback from the application layer on which
bindings correspond to application-layer sessions that still exist.
Thirdly, IPsec host mobility maybe problematic if BTNS authenticator, as

intended, stores a binding between the peer IP address and its credential (i.e.
public key). When the same IP address is reused by a different mobile device,
the authenticator will see that as an attack. Similarly, hosts behind a NAT share
the same IP address but have different credentials, which again will look like an
attack. This makes IP addresses unsuitable identifiers for BTNS bindings.

7 Host Identity Protocol (HIP)

HIP is similar to IPsec in that it provides network authentication transparently
to higher-layer applications. HIP also aims at mobility and multi-homing. To do
so, it inserts a host identity layer into the TCP/IP model, between the IP and the
transport layers. On this layer, each node is identified by a Host Identifier (HI),
which is actually a public key. This allows each HI to be self-certifying, which
avoids impersonation. Also, HIs replace IP addresses as communication identi-
fiers for upper-layer protocols, e.g., TCP. As a result, these protocols become
independent of IP address changes, thus supporting mobility and multi-homing.
The core of HIP is the base exchange [22]. It involves four messages, as shown

in Figure 2. Message I1 is used by the HIP initiator to trigger the connection. It
contains the hash of the responder’s HI, called Host Identity Tag (HIT). Then,
R1 and I2 are used to exchange the Diffie-Hellman key for the secure channel.
Also, the initiator includes in I2 its HI to allow the responder to authenticate
its messages. Finally, the message R2 completes the exchange.
Using HIs as identifiers, the problems mentioned in the previous section about

dynamic and non-unique IP addresses are irrelevant in HIP because the IP ad-
dress is only used for routing and not for security bindings. However, the problem
is at the application layer where DNS names are typically used as identifiers. In
this case, secure mapping from DNS names to HIs is needed. This should be
solved by a secure name resolution mechanisms such as DNSSec [23]. The ini-
tiator would look up the responder HIT in DNS and send its own DNS name in

Security Analysis of Leap-of-Faith Protocols 349

Fig. 2. A simplified operation of HIP

the I2 message, which the responder can verify from DNS. If both sides perform
the lookup from secure DNS, then strong authentication is achieved.
There are several difficulties with the use DNSSec in HIP. Firstly, while

DNSSec is being deployed, it still does not cover all Internet individual hosts.
Secondly, not all DNS servers support HIs in DNS records. Thirdly, IP address
lookup mechanisms may not necessarily support indirect mappings from DNS
name to HI to IP address. This may leave a HIP host with just the knowl-
edge of the peer’s IP address rather than HI. These are the situations where
LoF becomes an attractive option. The opportunistic mode (LoF) [24] in HIP
works as follows: the initiator sends a tentative message I1 to the responder,
which—if it supports HIP—responds with R1 and includes its DNS name (or
other application-layer identifier) as well as its HI in the message. The initiator
continues by revealing its own name in I2. Both may then store a mapping from
the name to the HI.

Exploiting the Symmetric Operation. The LoF protocol described above
corresponds to scenario (EB), which enables the attacker to connect to any hosts
and teach them false bindings. The initiator may also choose to be anonymous,
in which case the responder stores no binding. If this was taken as the only
allowed mode of operation, then it would correspond to scenario (EI), which is
slightly less vulnerable. There will nevertheless be the possibility of role reversal
attack similar to those against BTNS because of the symmetric nature of HIP.

LoF Bootstrapping Detection. Unlike the messaging design in SSH, the HIP
base exchange allows the attacker to detect the bootstrapping process (first
communication). Specifically, when the initiator does not know the responder
HI, it sends the I1 message with a null responder HIT. Seeing this null value, the
attacker can be certain that the first communication is happening. On the other
hand, with regard to the timing method in Figure 1, current implementations
of HIP such as OpenHIP and HIPL are invulnerable, since the acceptance of
credentials is an automatic process, i.e., it does not involve human decisions.

Problems of Transparency. HIP is designed as a general protocol operat-
ing in the middle of the TCP/IP model. Its implementation is independent of
higher-layer applications. Also, HIP provides an interface for these applications

350 V. Pham and T. Aura

to communicate across networks. Many legacy applications do not understand
HIP, as well as its protection. This is the main source of problems for HIP.
In HIP, authentication of the responder is simple. The initiator originates a

communication and specifies which HI it wishes to communicate with. If the re-
sponder uses a different HI, the connection will fail. Otherwise, only the owner of
the HI can successfully establish the HIP connection. Conversely, the responder
may not always authenticate the initiator. For example, if the initiator does not
provide its DNS name in the base exchange, it cannot be authenticated, and the
responder is left with an anonymous peer. Also, providing a name that cannot
be resolved achieves similar effect. The problem is, upper-layer applications are
not aware of this fact, and they may unintentionally use this connection. This
is mainly due to bad implementation and configuration of HIP.

Weak HI-to-LSI Mappings. A problem with HIP is that legacy applications
do not understand HI or HIT. HIP solves this by using Local Scope Identifiers
(LSIs). Depending on the application, an LSI could be in a form of an IPv4 or
IPv6 address. When the application wishes to communicate with a DNS name,
HIP returns an LSI as the result of a DNS query. This LSI locally represents the
actual peer, and is thus mapped to the peer’s IP address and (if available) HI.
When a connection is made to this LSI, HIP searches for a mapping of this LSI,
and performs the base exchange with the corresponding peer.
There are currently two main methods for LSI-to-HI mapping. The first

method uses a mapping list to perform lookup. When a new HI is recognized,
HIP picks a free LSI from its local pool and maps the two together. Since the
mapping list is bijective, authentication of LSIs is secure. In the second method,
the mapping is such that the LSI is the value of a function f on the HI. If f
were collision-resistant, then each LSI is a self-certifying. However, it is prob-
lematic that the range of LSIs is small. For example, a private IPv4 range such
as 10.0.0.0/24 may be used as LSIs. There are only 224, or approximately 16
millions possible LSIs, and it is easy to find two HIs that map to the same LSI.
Consequently, the attacker may trick the application into communicating with
him instead of the honest peer, since they are represented using the same LSI.
The above weaknesses open a number of attacks on HIP. In particular, we

consider impersonation attacks in a peer-to-peer model between Alice and Bob,
given that they have already bootstrapped LoF. We also assume that the HI-to-
LSI mapping is done using a function f instead of a mapping list. The attacker
starts by computing a HI that would map to the same LSI as Bob’s HI would.
Then, he establishes a HIP connection to Alice, using this new HI, which re-
sults in Alice mapping this HI to the LSI she used previously for representing
Bob. When Alice’s higher-layer application reconnects to Bob through such LSI,
HIP does not establish a new HIP connection to Bob, but simply forwards the
communication to the attacker’s HIP connection, making the attack successful.
In another attack variant, it may be possible to replace the underlying security

association in the middle of a higher-layer session. In some implementations
(e.g., OpenHIP), the HIP security association is discarded after an idle period.
However, the higher-layer communication has not necessarily terminated, e.g., it

Security Analysis of Leap-of-Faith Protocols 351

could happen during long TCP idle periods. When TCP becomes active again,
the HIP base exchange would again take place and the LSI would be rebound
to a different HI, e.g., using the above attack. Because the upper-layer protocol
is unaware of this change, an attacker may take over the connection. Also, since
the attacker hijacks the upper-layer connection in the middle of it, he avoids any
initial application-layer authentication that may have been initially required.

Exhausting LSI Namespace. In some HIP implementation, such as OpenHIP,
acceptance of security bindings is automatic, without user confirmation. This
allows potential exhaustion of the LSI space, which happens when the LoF maker
is the HIP responder or the attacker manages to reverse the roles of LoF initiator
and responder by triggering the target to be the initiator. In particular, the
attacker may create many HIs, and uses each of them to communicate with
a particular HIP responder. If this node uses a HI-to-LSI mapping list, there
are two problems. As the attacker continues to generate HIs, the LSI space
at the targeting HIP node will be filled up, resulting in dropping/rejecting of
legitimate bindings. Even if the LSI space is large enough (e.g., IPv6-like LSI),
it is questionable on how HIP manages such a large set of bindings efficiently.

8 Strengthening LoF Protocols

In previous sections, a security analysis shows that LoF brings certain security
to protocols for which it is applied. However, these protocols still have some
weaknesses that may lead to attacks, e.g., impersonation and MitM. The chance
that these attacks occur also varies from protocol to protocol, and environment
to environment. We now present several proposals that address the revealed
weaknesses and thus may strengthen the overall security of LoF protocols.

8.1 Multi-path Authentication

To cope with MitM attacks, [25] introduce an idea that statistically improves
the ability of detecting whether attacks are really happening. This idea is sim-
ilar to the requirements on vertex disjoint paths between two nodes. Basically,
communication between Alice and Bob is secure if there are n communication
paths between them, and there are t attackers such that n > 2t+ 1 [26, III].
The use of multiple paths could as well be applied to LoF protocols. The main

concern is the requirement of disjoint paths, which maybe problematic because
most network nodes have only one Internet connection. To simulate disjoint
paths, Alice needs secure communication to her friends, e.g., Carol and Dave,
each of which has a distinct connection to Bob. As an example, in SSH, Carol and
Dave could be SSH servers whose credentials are already in Alice’s known hosts.
Unlike in SSH, in other protocols such as TLS, HIP and BTNS, there might exist
public infrastructures whose security bindings could be securely verified, such as
public rendezvous servers in HIP, or small PKI hierarchies. These could as well
be used as Carol and Dave.

352 V. Pham and T. Aura

8.2 Resolving Authentication Failures

As previously mentioned, the main problem with authentication failures is the
difficulty in distinguishing their causes. In this section, we propose approaches
that could be used to resolve failures for some specific situations.
Firstly, we distinguish two scenarios in which attacks appear during LoF first

and subsequent communication, respectively. We notice that most attackers are
not always active, whereas in situations like the client-server model, the server is
always online. This gives a possible method: after the first communication, the
LoF authenticator (e.g. the client) keeps probing the peer (e.g. the server) for
its credential. These probes should be made at random times. Since the attacker
cannot guess when these happen, he cannot intercept all probes. This method is
especially effective with a mobile peer, because the attacker has to move along
with this peer to execute attacks. If the peer always answers with the same
credential, it is unlikely to be an attacker.
The second approach deals with the confusion in authentication failures caused

by either loss of private keys or attacks. To resolve this confusion, the system
administrator may provide information through out-of-band channels to users.
For example, consider a SSH server that lost its private key and is assigned a
new one. In this case, the administrator could tell a secret word to the users
over the phone and the SSH server could require the client to send this word
encrypted by the new public key. That way, the users are forced to contact the
administrator before they can reconnect to the server, and they cannot just click
ok to accept the new public key.

8.3 Best Practices for LoF Applications

Together the discussion of security considerations and the analysis of protocols
reveal several principles that a LoF application should satisfy. These best prac-
tices are important for protocol designers to consider when applying LoF into
their protocols. Also, they may be helpful during protocol implementation and
deployment. These principles are summarized in the following list:

– To prevent attacks on LoF first communication, the LoF responder should
not make any leap of faith. Note that care must be taken in determining the
actual initiator, for example when one endpoint uses an external protocol to
trigger LoF from the other endpoint.

– The decision to accept a security binding must be based on user confirmation.
This allows out-of-band information to support verification of the binding.
Also, it avoids flooding the LoF authenticator with security bindings.

– To facilitate attack detection, a credential accepted for communication must
be permanently stored, or removable only by advanced users.

– Within a communication session, the secure data channel must be bound
to all authentication processes. All credentials of both endpoints (e.g., keys,
passwords) must be involved in creating the session key. Thus, the secure
channel can only be compromised if all the involved authentication mecha-
nisms fail.

Security Analysis of Leap-of-Faith Protocols 353

– For application-independent LoF implementation, there should be an inter-
face (e.g., APIs) for applications to monitor its operation. Failures to do so
lead to exploitation of the application’s oblivion to changes such as session
restarts or policy changes.

– The LoF first communication must be made indistinguishable from the sub-
sequent ones to sniffing attackers. This forces attackers to perform attacks
on all connections, hence risking detection.

– Where possible, authentication over multiple paths should be used during
LoF bootstrapping or authentication failures, which defeats MitM attackers
that are not on all these paths.

– Attackers can sometimes predict the timing of the LoF first communica-
tion, e.g., after storage failures. In such cases, out-of-band channels (e.g.,
telephone, SMS) maybe needed to support the verification of the peer’s cre-
dential.

9 Conclusion

In this paper we study the security of the LoF mechanism as it is applied to
various network protocols. In principle, LoF allows the authenticator to simply
accept the peer’s binding during the first communication between them. This
binding is used to authenticate the same peer for later communication. The
security of this mechanism relies on the assumption that the LoF bootstrapping
process (first communication) is attacker-free.
We investigate why this rather weak authentication mechanism has been suc-

cessful in SSH. To do so, we consider different aspect of LoF protocols such as
the choice of initiator and LoF authenticator, temporal separation, binding of
multiple protocol layers, and performance issues. The environment where attacks
might occur is also taken into consideration. Using these aspects, we pointed out
some critical features that often shield SSH against attacks on the LoF first
communication. We also apply the same analysis to TLS and some other proto-
cols for which LoF has been proposed: BTNS IPsec, HIP. It turns out that the
security of LoF authentication in these protocols is not comparable to SSH and
that it depends heavily on the way the protocols are implemented and used.
The analysis reveals various attacks on these LoF protocols, including imper-

sonation, MitM attacks, and flooding of credentials. We then propose several
mechanisms to help reducing the success probability of these attacks, including
best-practice guidelines for the design of LoF protocols that should be considered
for this weak authentication to be reasonably secure.

Acknowledgements. This work was supported in part by the Academy of Fin-
land (project no. 135230). Also, the authors thank Carlos Cid and the anonymous
reviewers for helpful comments.

354 V. Pham and T. Aura

References

1. Kohl, J.T., Neuman, B.C., Ts’o, T.Y.: The Evolution of the Kerberos Authentica-
tion Service, pp. 78–94. IEEE Computer Society Press (1994)

2. VeriSign, Inc.: VeriSign Certification Practice Statement (2009),
http://www.verisign.com/repository/CPS/

3. Potter, B.: Dangerous URLs: Unicode & IDN (2005),
http://www.sciencedirect.com/science/article/B6VJG-4FVC3YD-6/2/

9d0fa84d322964a8c9ac42cba2936dea

4. Abdul-Rahman, A.: The PGP Trust Model. The Journal of Electronic Com-
merce 10(3), 27–31 (1997)

5. Jsang, A.: An Algebra for Assessing Trust in Certification Chains. In: Network and
Distributed Systems Security Symposium (NDSS 1999), San Diego, USA (1999)

6. Arkko, J. (ed.), Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery
(SEND). RFC 3971 (2005)

7. Aura, T.: Cryptographically Generated Addresses (CGA). RFC 3972 (2005)
8. Aura, T.: Cryptographically Generated Addresses (CGA). In: Boyd, C., Mao, W.

(eds.) ISC 2003. LNCS, vol. 2851, pp. 29–43. Springer, Heidelberg (2003)
9. Baek, J., Newmarch, J., Safavi-naini, R., Susilo, W.: A Survey of Identity-Based

Cryptography. In: Proc. of Australian Unix Users Group Annual Conference, pp.
95–102 (2004)

10. Arkko, J., Nikander, P.: Weak Authentication: How to Authenticate Unknown
Principals without Trusted Parties. In: Christianson, B., Crispo, B., Malcolm, J.A.,
Roe, M. (eds.) Security Protocols 2002. LNCS, vol. 2845, pp. 5–19. Springer, Hei-
delberg (2004)

11. Stutzbach, D., Rejaie, R.: Towards a Better Understanding of Churn in Peer-to-
Peer Networks. Department of Computer Science, University of Oregon (2004)

12. Mchugh, J.: Intrusion and Intrusion Detection. International Journal of Informa-
tion Security 1, 14–35 (2001)

13. Eddy, W.: TCP SYN Flooding Attacks and Common Mitigations. RFC 4987
(2007), http://tools.ietf.org/html/rfc4987

14. Ylonen, T.: SSH - Secure Login Connections over the Internet. In: Proceedings of
the 6th USENIX Security Symposium, pp. 37–42 (1996)

15. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (2008), http://tools.ietf.org/html/rfc5246

16. Kaufman, C.: Internet Key Exchange (IKEv2) Protocol. RFC 4306 (2005),
http://tools.ietf.org/html/rfc4306

17. Williams, N., Richardson, M.: Better-Than-Nothing Security: An Unauthenticated
Mode of IPsec. RFC 5386 (2008)

18. Touch, J., Black, D., Wang, Y.: Problem and Applicability Statement for Better-
Than-Nothing Security (BTNS). RFC 5387 (2008)

19. Aura, T., Roe, M., Mohammed, A.: Experiences with Host-to-Host IPsec. In: Chris-
tianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2005.
LNCS, vol. 4631, pp. 3–22. Springer, Heidelberg (2007)

20. Williams, N.: IPsec Channels: Connection Latching. Internet Drafts (2005),
http://www.ietf.org/id/draft-ietf-btns-connection-latching-11.txt

21. Williams, N.: On the Use of Channel Bindings to Secure Channels. RFC 5056
(2007), http://tools.ietf.org/html/rfc5056

22. Moskowitz, R., Nikander, P., Jokela, P. (ed.), Henderson, T.: Host Identity Proto-
col. RFC 5201 (2008), http://www.ietf.org/rfc/rfc5201.txt

http://www.verisign.com/repository/CPS/
http://www.sciencedirect.com/science/article/B6VJG-4FVC3YD-6/2/9d0fa84d322964a8c9ac42cba2936dea
http://www.sciencedirect.com/science/article/B6VJG-4FVC3YD-6/2/9d0fa84d322964a8c9ac42cba2936dea
http://tools.ietf.org/html/rfc4987
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4306
http://www.ietf.org/id/draft-ietf-btns-connection-latching-11.txt
http://tools.ietf.org/html/rfc5056
http://www.ietf.org/rfc/rfc5201.txt

Security Analysis of Leap-of-Faith Protocols 355

23. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduc-
tion and Requirements. RFC 4033 (2007)

24. Komu, M., Lindqvist, J.: Leap-of-Faith Security is Enough for IP Mobility. In:
Proceedings of the 6th IEEE Conference on Consumer Communications and Net-
working Conference, CCNC (2009)

25. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style Host
Authentication with Multi-Path Probing. In: Proceedings of the USENIX Annual
Technical Conference, Usenix ATC (2008)

26. Desmedt, Y.: Unconditionally Private and Reliable Communication in an Un-
trusted Network. In: IEEE Information Theory Workshop on Theory and Practice
in Information-Theoretic Security, pp. 38–41 (2005)

Secure and Practical Key Distribution

for RFID-Enabled Supply Chains

Tieyan Li1, Yingjiu Li2, and Guilin Wang3

1 Irdeto (Cloakware) Beijing, China
li.tieyan@irdeto.com

2 School of Information Systems, Singapore Management University,
Singapore 178902
yjli@smu.edu.sg

3 Centre for Computer and Information Security Research, School of Computer
Science and Software Engineering, University of Wollongong, Wollongong,

NSW 2522, Australia
Guilin@uow.edu.au

Abstract. In this paper, we present a fine-grained view of an RFID-
enabled supply chain and tackle the secure key distribution problem on
a peer-to-peer base. In our model, we focus on any pair of consecutive
parties along a supply chain, who agreed on a transaction and based
on which, certain RFID-tagged goods are to be transferred by a third
party from one party to the other as in common supply chain practice.
Under a strong adversary model, we identify and define the security re-
quirements with those parties during the delivery process. To meet the
security goal, we first propose a resilient secret sharing (RSS) scheme
for key distribution among the three parties and formally prove its secu-
rity against privacy and robustness adversaries. In our construction, the
shared (and recovered) secrets can further be utilized properly on pro-
viding other desirable security properties such as tag authenticity, acces-
sibility and privacy protection. Compared with existing approaches, our
work is more resilient, secure and provides richer features in supply chain
practice. Moreover, we discuss the parameterization issues and show the
flexibility on applying our work in real-world deployments.

Keywords: RFID, security, privacy, key distribution, secret sharing.

1 Introduction

Radio-frequency identification (RFID) is a wireless Automatic Identification and
Data Capture (AIDC) technology that has been widely deployed in many ap-
plications, especially in supply chain management. For dynamic RFID-enabled
supply chains, the parties in a supply chain are usually lack of pre-existing
trusted relationships. Unfortunately, almost all existing RFID privacy-enhanced
authentication protocols such as [9,8,6], assuming a central database on man-
aging all secret keys of the tags, may fail on delivering key information to the

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 356–372, 2012.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Key Distribution in Supply Chains 357

correct parties when a large scale of RFID tags move along dynamic supply
chains.
A practical solution to the key distribution problem is the secret sharing ap-

proach, where a tag key is split into a number of shares and the shares are
stored in multiple tags. Since the tag keys are stored in the tags directly, an
authorized party can collect enough shares and recover the keys, while an adver-
sary is assumed to have limited access to the tags such that s/he cannot collect
enough shares for recovering the keys. Since there is no need of distributing key
information among supply chain parties, this approach is particularly useful for
protecting RFID tags in dynamic supply chains.
A recent work in this direction is conducted by Juels, Pappu and Parno [4],

which we call the JPP mechanism for short. In this solution, a common key for
a batch of tags is split with (k, n)-Tiny Secret Sharing (TSS) scheme, and each
tag stores a tiny share together with its individual (encrypted) information. A
reader can recover the common key with access to at least k shares, and then
decrypt the information on each tag in the batch. Since the share is tiny enough
to fit in EPC tag, the proposed scheme is claimed to be suitable for practical
RFID-enabled supply chains. However, the JPP mechanism poses a threat on
the tags due to its weak adversary model, of which anyone who can scan the
tags, can recover the secret. Therefore, an adversary has the intension to stay
close to the tags for the convenience of scanning them, and recover the secret
for easy cloning the whole batch of the tags.
On observing the hardness on designing and deploying a uniform security

solution to multiple supply chain parties across geographically distinct organi-
zations, we tackle the security problem with goods delivery in RFID-enabled
supply chains from a focalized viewpoint. We look into the minimal (usually
transaction-based) unit of any supply chain on processing RFID-tagged goods
and focus on the security needs arisen from the involved parties. Based on the
unique view, we make three major contributions in this paper.

1. We focus on any pair of consecutive parties linked by a transaction and a
third party who delivers goods from one party to the other (as in common
supply chain practice, usually referred to as third party logistics, or 3PL).
We then identify and define the security requirements among those parties
during goods delivery under a strong adversary model.

2. We propose a resilient secret sharing (RSS) scheme for key distribution
among the three parties and prove its security in a formal way against both
privacy and robustness adversaries.

3. We design a specific construction using the RSS scheme, so that the shared
secrets are further utilized on providing additional security properties (be-
yond key distribution) such as tag authentication, accessibility and privacy
protection.

Compared with relevant approaches, our work demonstrates a number of advan-
tages in terms of resiliency, security and flexibility. Also, the generic scheme and
the specific construction proposed in this paper, are easily extendible for their
deployments in any realistic supply chain scenario.

358 T. Li, Y. Li, and G. Wang

The rest of this paper is organized as follows. In Section 2, we review secret
sharing approaches in RFID security realm. In Section 3, we describe a sce-
nario on secure goods delivery and the security properties associated with it. We
elaborate on our resilient secret sharing (RSS) scheme and prove its security in
Section 4. Following on, we present our construction based on the RSS scheme in
Section 5, and discuss parameterization issues in Section 6. Finally, we conclude
this paper and point out the future works.

2 Secret Sharing Approaches

On solving the key distribution problem in RFID-enabled supply chains, two
major secret sharing based approaches [5,4] were proposed.
The first work is the “Shamir Tag” [5] proposed by Langheinrich and Marti.

Based on a weak (w.r.t., “hit-and-run”) adversary model, the authors devised the
secret sharing mechanism to distribute the true ID of a tag across time and space
separately. The time-based mechanism splits the ID of a tag with Shamir’s secret
sharing scheme [12], and stores all the shares on the tag itself. Being queried, the
shares are released gradually and once all bit values of the shares are collected,
can the original ID of a tag be computed. However, the practicability on applying
the proposed mechanisms in supply chain is questionable as it takes either too
long on identifying a tag.
In USENIX Security 08, Juels, Pappu and Parno proposed a key sharing

mechanism (w.r.t., the JPP mechanism) [4] to enhance the practicality of the
early solution [5] by removing the constraints on the period of each tag being
read and the number of tags attached to each item. In the JPP mechanism,
a batch of tags share the same secret key, which is split into n shares using a
(k, n) tiny secret sharing (TSS) scheme, where k < n is a threshold. Anyone who
collects at least k shares can recover the secret. Similarly, the JPP mechanism
provides two solutions for its (k, n)-TSS scheme: one is “secret sharing across
space”, the other is “secret sharing across time”.
The JPP mechanism is particularly efficient for ownership transfer in RFID-

enabled supply chains since it eliminates the need for distributing a database of
tag keys among supply chain parties. The scheme is secure under the assumption
that an adversary cannot get access to enough shares for recovering a tag key in
the “open area” (e.g., retail stores or customer homes), while legitimate supply
chain parties can collect enough shares for recovering each tag key in the “closed
area” of a supply chain, to which the adversary does not have access. However,
the JPP mechanism works in end-to-end principle (regarding the starting and
ending points of a tagged item moving through a supply chain) that makes inter-
mediate supply chain parties unable to adjust the threshold of shares collected in
recovering tag keys. This renders the proposal either impractical w.r.t., stronger
adversary or insecure due to tag cloning attack.
We realized that it could be hard to deal with the complex security needs

of multiple parties (normally across multiple geographical and political regions)
in a global supply chain, we thus target on two adjacent parties in any supply

Key Distribution in Supply Chains 359

chain and a third party who transfers goods for these two parties. In common
practice in supply chain management, assuming these parties know each other via
some trust relationships such as a signed contract for their business transactions,
is more reasonable. We stress that such a peer-to-peer view of a supply chain
facilitates a more realistic and practical model than the global view, and based
on what, more precise security requirements can be defined and fulfilled. We
depict below such a scenario on delivering goods assisted with RFID technology.

3 Security Properties

In this section, we take for example a typical case for batch goods delivery as
used in standard supply chain practice. We then define the security properties
for each of the roles based on such a scenario.

3.1 Batch Goods Delivery Scenario

We consider three different roles in a simplified model: Alice, Bob and Carol.
Alice, denoted by A, is the sender of a batch of goods (e.g. a manufacturer);
Bob, denoted by B, is the receiver of the batch (e.g. a distributor who receives
the goods from A); and Carol, denoted by C, is the Third Party Logistics (3PL)
partner (e.g., a transporter or carrier of the goods from A to B).
Suppose A and B (and C) signed contracts for the purchase and delivery

of some goods beforehand. Now, the goods must be delivered securely from A
to B by C to fulfill the contracts. If each item of the goods is attached with
an RFID tag, a supply chain party can process the goods in an efficient way
(by scanning all items once in a whole). It is also desirable to provide necessary
security features such as anti-cloning without incurring much additional cost.

Fig. 1. Batch Goods Delivery from A to B, by C

As an example, Fig. 1 illustrates the scenario where a batch of 50 tags are
packed into 3 cases, including a 5× 5 case, a 4× 4 case and a 3× 3 case. These
cases are delivered from A to B via different physical flows by C (including

360 T. Li, Y. Li, and G. Wang

C1, C2, C3, respectively). While some shared information prepared by A can
be sent to B and C separately via the information flow. Facilitated with RFID
technology, C can scan all RFID tags periodically during delivery, until all of
them arrive at B. The scanning can be used to check the existence of all tags
in the batch. If any adversary exists in the delivery path, however, s/he may
clone some tags and thus replace authentic goods with counterfeited goods even
though the adversary may not be able to know the secret keys for decrypting the
tags’ contents as in the JPP mechanism. To address this concern, we propose to
tackle the RFID tags authentication problem in which nobody (even C) except
A and B can access the content of tags while C is enabled to check the existence
of all or most of the tags in the batch conveniently.
We identify two kinds of flows during the process of goods delivery. One is

the physical flow in which the goods are transported by C through containers
on ships or trucks. The other is the information flow between A, B and C.
Intuitively, we utilize the information collected from both flows for the purpose
of achieving desired security properties.

3.2 Desired Security Properties

We further identify the following security properties for guaranteeing secure
goods delivery in above scenario.

 Authenticity of tags in cases. C wants to authenticate the tags case
by case periodically. Other than authentication purpose, C has no more
advantage for her to access or even clone the tags. Both group authentication
(case based), and individual tag authentication are demanded for efficiency
or accuracy.

 Authenticity of tags in batch. B wants to authenticate the batch of tags
in a whole as the final verification. Being the new owner of the tags, B shall
grasp all (secret) information about the tags which include the ability to
update the tags.

 Accessibility of individual tags. Only B can obtain the secret informa-
tion for the accessibility of individual tags. C or other adversaries cannot
access or clone those tags.

 Privacy protection In the sense of protecting the tags’ identifiers, all tags’
IDs are encrypted by a secret key, which can only be recovered byB. Without
necessary authorization,C can not even access the encrypted information, let
along the decryption of such information. However, by scanning the tags, C
or any reader can still track the tags by the unique or unchanged temporary
identities. (In this paper, we consider the tracking problem a less important
issue than protecting tags’ identifiers themselves.)

In fact, the fundamental building block for all above listed properties is the “key
distribution” problem amongA, B andC. By designing a resilient secret sharing
(RSS) scheme in next section, we can make a nice construction for above scenario
so that A and C share a secret key solely for the authentication purpose, and
A and B share another key for all other security properties.

Key Distribution in Supply Chains 361

4 Resilient Secret Sharing Scheme

In order to achieve all the security properties, we work on key distribution first
and design a resilient secret sharing (RSS) scheme inspired by the JPP mecha-
nism. The proposed scheme contains the merits of the JPP mechanism in terms
of tiny shares and error-correcting code based secret sharing algorithm. It also
enhances the JPP mechanism with resiliency by collecting the shares from two
different sources (w.r.t., physical flow and information flow).

4.1 Preliminaries

We recall the JPP mechanism [4]: an n-party secret-sharing scheme is a pair of
algorithms Π = (Share,Recover) that operates over a message space X, where

 Share is a deterministic algorithm (if a fixed Reed-Solomon code is used, but
a probabilistic algorithm in [12]) that takes input x ∈ X and output the
n-vector S ←R Share(x), where Si ∈ {0, 1}∗. On invalid input x̂ /∈ X, Share
outputs an n-vector of the special (“undefined”) symbol ⊥.

 Recover is a deterministic algorithm that takes input S ∈ ({0, 1}∗
⋃
♦)n,

where♦ represents a share that has been erased (or is otherwise unavailable).
The output Recover(S) ∈ X

⋃
⊥, where ⊥ is a distinguished value indicating

a recovery failure.

Utilizing Error Correcting Code (ECC), a generalization of the secret sharing
schemes is defined as ΠECC = (ShareECC ,RecoverECC). An (n, k, d)Q-ECC op-

erates over an alphabet Σ of size |Σ| = Q. ShareECC maps Σk → Σn such that
the minimum Hamming distance in symbols between (valid) output vectors is d.
For such a share function (ShareECC), there is a corresponding recover function
(RecoverECC) that recovers a message successfully with up to (d − 1)/2 errors
or d− 1 erasures.
In our adversary model1, we consider two security requirements of secret shar-

ing: privacy and robustness. Given a limited number of shares, an attack against
privacy aims to recover the secret x shared among n parties. A robustness at-
tacker tries to tamper a number of shares such that a legal user cannot recover
the correct secret x. In formal, we give the following definitions.

Privacy. An ordinary adversary can actively attack the communication links.
In our scenario of secure goods delivery, as did in [4] we focus on underinformed
adversary, who has access to limited number of shares. Informally, privacy require
that such an underinformed adversary should not be able to recover the secret
unless he can get access to at least k correct shares. However, since we are work-
ing on gradated, rather than perfect or computational secret sharing schemes, an
adversary with limited number of shares may be able to get partial information
about the secret, though it cannot completely recover the secret itself. Moreover,

1 Our adversary model is adapted from [4], which in turn is obtained by extending the
model given in [1].

362 T. Li, Y. Li, and G. Wang

the more the shares the adversary gets, the more information it reveals. In the
following formal definition of privacy, oracle corrupt(S, i) is defined as a function
of (S, i), i.e., when the adversary submits i it will get Si, the i-th share of a
secret x.

Definition 1 (Privacy). Formally, we say a (k, n)-RSS scheme (Π,X) satisfies
(qp, tp, εp)-privacy w.r.t. underinformed attackers, if for any adversary A who can
make qp corrupt queries to acquire qp shares (Sp denotes the set of these qp
shares) corresponding to a shared secret x and can run within the time of tp,
A’s advantage to win the following experiment ExpPri

A , i.e., ExpPri
A outputs 1,

is not greater than εp:

AdvPri
A [Π,X]

�
= Pr[ExpPri

A = 1] ≤ εp. (1)

Experiment ExpPri
A

1) x ←R X

2) S = (S1, · · · , Si, · · · , Sn) ← Share(x)

3) x′ ← Acorrupt(S,·)(Sp : Sp ⊂ S ∧ |Sp| = qp)
4) Return ‘1’ if x = x′, else ‘0’.

Privacy Experiment

Note that different from computational secret sharing schemes, here (as well
as in Definition 2) we don’t specify the adversary A should be a probabilistic
polynomial time (PPT) algorithm. In contrast to the privacy definition given
in [4], we add the running time rp to parameterize an adversary. This makes
our definition more flexible and general, though our concrete scheme is secure
regardless the adversary’s running time (refer to Theorem 1). Moreover, we no-
tice that the indistinguishability game specified in Appendix B.1 of [4] is too
strong to be satisfied by ECC-based secret sharing schemes. The reason is that
given two secrets κ0 and κ1, adversary A can first run the encoding algorithm
to regenerate the corresponding codewords S0 and S1, i.e. the shares for κ0 and
κ1 respectively. As S0 and S1 must differ from each other for at least one index,
say j, then A makes oracle query corrupt(Sb, j) to get Sb

j . Finally, to win the

game A only needs to trivially guess b = 1 iff Sb
j ∈ S1.

Robustness. Informally, robustness means that the original secret can be re-
covered even if the adversary has tampered some of the shares corresponding to
such a shared secret.

Definition 2 (Robustness). Formally, we say a (k,n) RSS scheme (Π,X) is
(qr, tr, εr)-robust, if for any adversary A who can make qr corrupt queries to
get and tamper qr shares (those original and tampered qr shares form sets S′

r

and S′′
r respectively) of a shared secret x, which is selected by A itself, and has

Key Distribution in Supply Chains 363

running time within tr, A’s advantage to win the following experiment ExpRob
A ,

i.e., ExpRob
A outputs 1, is not greater than εr:

AdvRob
A [Π,X]

�
= Pr[ExpRob

A = 1] ≤ εr. (2)

Experiment ExpRob
A

1) x ← A, where x ∈ X

2) S = (S1, · · · , Si, · · · , Sn) ← Share(x)

3) S′′
r ← Acorrupt(S,·), where |S′′

r | = qr
4) x′ ← Recover{S′′

r ∪ (S − S′
r)}

5) Return ‘1’ if x �= x′, else ‘0’.

Robustness Experiment

4.2 RSS

Let’s first review McEliece’s secret sharing scheme based on Reed-Solomon (RS)
codes [7]. Let B = (b1, b2, . . . , bk) be the secret, where bi is an m-bit symbol in
GF(2m). There exists a unique codeword D in the (k, n)-RS code (n < 2m) with
D = (d1, d2, . . . , dn), where di = bi for 1 ≤ i ≤ k. Only the rest n − k symbols
{di|(k+1 ≤ i ≤ n)} are available for distribution to those sharing the secret. Of
all shares, at least k shares are required to recover the secret.
On a high level, our RSS scheme aims at achieving resiliency by combining

shares from both physical flow and information flow. Suppose we have only one
case containing r tags in the physical flow, and a database2 as the source of an
information flow. We naturally assign one portion of the shares (typically one
share for each tag) on the tags, and keep the other portion of the shares in the
database. To this end, for a (k, n)-RS code, we can assign r shares to r tags and
n − k − r shares to the database (assuming r < n − k). Further on, we require
that any single flow can not contribute enough shares on recovering the secret
(so, r < k and n− k− r < k). Thus, we roughly ensure the resiliency of the RSS
scheme on recovering a secret with shares contributed from both flows. Such an
RSS scheme can be illustrated in Fig. 2 as below.
Ideally, all r tags in a case can be scanned for sorting out all r shares. However,

100% reading is not typically guaranteed in practice as there always be some
(e.g., 2− 3%) reading failures in realistic RFID deployments. Suppose all but δ
tags are correctly scanned, we can obtain up to r − δ shares from the readings.
For tolerating the reading errors, our RSS scheme allows more shares contributed
from the information flow to compensate the missing shares in the physical flow.
To ensure our RSS scheme having this resiliency, δ more shares are required to
be stored in the database.

2 Note that an online database is not required in our scenario, as a partner’s database
(e.g., Partner A in Fig. 1) is only used to store the shares and pass the shares down
(to B and C) all in once.

364 T. Li, Y. Li, and G. Wang

Fig. 2. RSS scheme. A secret x is shared into n− k available shares, in which r shares
are distributed into r tags respectively and the other n− k − r shares are stored in a
database.

In ECC based secret sharing scheme, a share is a symbol in a codeword (e.g.,
in RS code), which is much shorter than the original secret. An adversary could
launch a guessing attack on trying all the possibilities of a missing share. For
instance, for a RS-code on GF(2m), such a guessing attack needs 2m brute force
trials. To defend against the guessing attack from attackers who are able to scan
all tags, the RSS scheme requires at least t shares contributed by the server in
any recovery operation. Thus, a brute force guessing attack may take at 2t×m to
recover the secret. I.e., if the system security parameter is set at 128 bits long,
and m = 16, then we have t = 8.
Combining above two requirements, the RSS scheme allocates at a minimum

t shares and a maximum t+δ shares to be stored in the database. Since we don’t
want the server to calculate the secret along by its shares, or even for brute force
attack, we require that k ≥ 2t+ δ. Our assumption is that the server may either
collect all tags in a case and be able to scan r ∼ r − δ tags, or collecting no
tag/case at all. As we require that the combination of r+ t shares from the tags
and database is enough to recover the original secret, so we set the threshold
k = r+ t. Also, k ≥ 2t+ δ implies that the number of tags r ≥ t+ δ. Otherwise,
the server is able to launch guessing attacks for guessing up to t− 1 shares.
Definition 3. A (k, n)m,t,r,δ-RSS scheme is a tuple (ΠECC,X), satisfying t ×
m ≥ τ (τ is the security parameter of the system), k = r + t and r ≥ t + δ,
n = 2r + 2t+ δ; such that ΠECC distributes n− k shares of a secret x ∈ X, to
the tags (totally r shares) and to the database (totally t + δ shares). Collecting
r−δ ∼ r shares from tags, and correspondingly t+δ ∼ t shares from the database,
suffices to recover x.
On the security of the defined RSS scheme above, we have the following.

Key Distribution in Supply Chains 365

Theorem 1. (a) For the (k, n)m,t,r,δ-RSS scheme (ΠECC,X), any underin-
formed adversary A’s advantage is bounded by εp such that

AdvPri
A [ΠECC ,X] ≤ εp ≤ 1/2m(k−qp), (3)

where qp ≤ k = r + t.
(b) For the (k, n)m,t,r,δ-RSS scheme (ΠECC,X), any adversary A with un-
bounded running time and making up to qr ≤ d/2 (or qr ≤ "(d− 1)/2#) corrup-
tions has advantage zero to win the experiment ExpRob

A . Namely,

AdvRob
A [ΠECC ,X] = εr = 0. (4)

Proof. (a) For any underinformed adversary A who has made qp ≤ k = r + t
corruptions, its total amount of information about the original secret x is upper-
bounded by (2m)qp . More specifically, for Reed-Solomon code, the adversary
A can only get qp linear equations to solve the k unknown elements in field
GF(2m) (i.e., k components of x [11]). As qp ≤ k, regardless A’s running time
its advantage εp to derive the secret x is bounded by 1/2

m(k−qp). So, Eq. (3)
follows.
(b) The result on robustness comes from the nature of Reed-Solomon code,

as it is an error-correcting code. Namely, an error-correcting code with design
distance d can be used to correct up to d/2 errors. Here, the adversary A has
tampered qr ≤ d/2 symbols. So, using any popular decoding algorithm (e.g.,
the decoding algorithm for alternant codes, specified on page 403 of [11]), these
errors can be identified and corrected efficiently. In other words, the legal user
(e.g. party B in our secure goods delivery scenario) is always able to recover
the original secret x from shares mixed with those tampered ones. Therefore,
regardless A’s running time its advantage εr in the experiment ExpRob

A is zero.
That is, Eq. (4) holds for any qr ≤ d/2 (or qr ≤ "(d− 1)/2#). �

5 Our Construction

Above we give a generalized definition and security proof of the RSS scheme, in
what follows we elaborate the constructions on applying the RSS scheme in a
typical case of secure goods delivery with batch RFID tags.
In our simplified example, we suppose there are totally R tags attached on

goods as a batch to be transferred from A to B, via C. The tags in the batch
are allocated equally into l cases, each having r tags (R = l × r). We assume
the batch has a suitable size such that r or R is not too big to be contained,
otherwise we can consider a batch as a number of blocks with suitable sizes,
which are to be processed as one unit. We then discuss a tag belonging to both
a case and a batch. More details are discussed in Section 6.

5.1 Secret Generation and Sharing

Before the delivery of goods, A generates the secrets x for the specific case and y
for the whole batch such that x, y ∈ X and |x| = |y| = τ , where τ is the security
parameter of the system.

366 T. Li, Y. Li, and G. Wang

At the case level, A employs a (k, n)m,t,r,δ-RSS scheme according to the def-
inition introduced in Section 4, to distribute the case secret x. For all r tags
in a case, A assigns one share to each tag. A also assigns t + δ shares to C to
facilitate the verification by C on such a case during delivery.
Similarly, at the batch level, A employs a (K,N)m,t,R,Δ-RSS scheme to dis-

tribute the batch secret y, assuming the security parameter and the size of the
shares are not changed. For all R tags in a batch, A assigns one share to each
tag. A then assigns t+Δ shares to B to facilitate the verification by B on the
whole batch.
With this setting, a tag is assigned two shares: one for the case and one for the

batch. Collecting the shares from the tags, C or B can recover the case secret
or batch secret respectively, together with their contributed shares given by A.
The schematic of the RSS construction is illustrated in Fig. 3.

Fig. 3. Schematic of RSS construction. The case secret x is shared for Case 1, in which
r shares are distributed into tags and the rest n−k−r shares are stored in the database
(to be assigned to C); the batch secret y is shared, in which R shares are distributed
into all tags in the batch and the rest N −K −R shares are stored in the database (to
be assigned to B). Thus, an encoded tag carries 2 shares.

5.2 Tag Encoding

For a specific tag i, we obtain its case share Sx
i ← ShareA−C(x) (1 ≤ i ≤ r)

and batch share Sy
j ← ShareA−B(y) (1 ≤ j ≤ R). As we work on GF(2m), the

size of a share could be m = 16 bits which is tiny (e.g., 32 bits in total for
carrying 2 shares [4]) and suitable to be embedded into an EPC C1G2 tag. In
practice, we shall prepare another 16 bits (or less) for making the shares in an
ordered sequence. Thus, for an EPC C1G2 tag, we can assign 48 lower significant
bits (LSBs) of the EPC memory bank for storing the sequence number and the

Key Distribution in Supply Chains 367

shares. For the other 48 bits, we can either leave them untouched for classification
purpose, or fill them with arbitrary random value for privacy purpose. Now we
denote the current value in the EPC memory as the pseudo-ID (or PID) of a
tag.

Tag ID Encryption. Suppose the original 96-bit EPC code, denoted as ID, is
moved from the “EPC Memory” Bank to the “User Memory” Bank. To provide
privacy protection to the EPC code, we store it in encrypted form, so that no
one can decrypt and obtain the original code without a proper key. As B will be
the next owner of the tags, we assign B the appropriate role of possessing the
proper secret to decrypt the real IDs of those tags. Since y is the only secret
shared and known between A and B, we derive the encryption key e from y
such that e = H(y), where H(.) is a cryptographic secure hash function. Then
we use e to encrypt the EPC code (in any authenticated encryption mode) and

obtain the encrypted and authenticated message ĨD = Enc Auth(e, ID), where
Enc Auth(.) is the authenticated encryption algorithm.

Tag PIN Generation. To achieve the authentication purpose, a tag’s Access
and Kill PINs, denoted as APIN and KPIN , are serving as the authenticators
by C or B on performing PIN-based authentication protocol as in [3]. Slightly
different from the protocol [3] on using a full (32-bit) Access PIN or Kill PIN for
authentication purpose, we hereby use the two halves of Access and Kill PINs of
a tag for the same purpose, such that C is refrained from either access or kill a
tag with its knowledge on the halves of PINs. While B can still authenticate and
access a tag individually, by deriving the full Access and Kill PINs. Apparently,
we can derive the PINs using the secrets (x and y) shared between A, B and
C. Note that various constructions are possible, we only introduce a specific
construction achieving above security properties for B and C. On a high level,
we generate half APIN and half KPIN with C’s secret x, and the other halves
with B’s secret y. We compute κC = H(x||PID) and κB = H(y||PID) for a
tag by reading its PID. We assign 16 lowest significant bits (LSBs) of κC as the
16 LSBs of APIN and the other 16 most significant bits (MSBs) of κC as the
16 LSBs of KPIN . Also, we assign 16 LSBs of κB as the 16 MSBs of APIN
and the other 16 MSBs of κB as the 16 MSBs of KPIN . Thus, we have

APIN = [APIN]31:16||[APIN]15:0 = [κB]15:0||[κC]15:0
KPIN = [KPIN]31:16||[KPIN]15:0 = [κB]31:16||[κC]31:16
Note that forC to conduct the PIN-based authentication, we expect a positive

or negative result from the tag indicating whether the correct halves of Access
and Kill PINs are presented to it3.
We are now ready to encode the tag by writing all generated codes into a tag.

Again, we write on tag the shares in the EPC memory, the encrypted EPC code
in the user memory, and the access and kill PINs in the reserved memory.

3 Although not fully conforming with current EPC C1 G2 specification, we argue
that achieving above half-PIN-based authentication on a tag is rather simple with a
re-designed circuit on the PIN logic, which is practical and costless.

368 T. Li, Y. Li, and G. Wang

5.3 Secret Recovery and Verification

During delivery, C would verify the tags in a case from time to time. Suppose
the total number of collected shares in a case is p, if r−δ ≤ p ≤ r, C can recover
the secret x by contributing up to t + r − p shares; if not, there is no enough
shares for C to recover the secret. Based on the secret value, C can generate
the halves of Access and Kill PINs for each tag as described above. C can then
authenticate each tag by performing the half-PIN-based authentication protocol
described above.
When all goods are delivered to B, B would verify the tags in the batch.

Similarly, suppose B collects P shares from all the cases. if R −Δ ≤ P ≤ R, B
can recover the secret y by contributing up to t+ R− P shares; if not, there is
no enough shares for B to recover the secret. Based on the secret value, B can
generate the other halves of Access and Kill PINs for each tag in the batch. B
can obtain from C the halves of Access and Kill PINs of each tag based on a
case, or generate by itself the half PINs by collecting all shares from C.
Whatsoever, B can access all the tags and even kill all the tags as the new

owner. Suppose B accesses a tag and reads its encrypted ID (ĨD), B can decrypt
and authenticate it with e from y and obtain the original EPC code of the tag.

5.4 Analysis and Comparison

We summarize the desired security properties in secure goods delivery and show
how they are achieved in our construction using the RSS scheme.

� Key distribution. Our RSS scheme ensures that only B and C can derive
the secrets they shared with A. Without additional share(s) from B and C,
no adversary can derive any secret by solely collecting shares from tags. A
securely distributes the secrets to B andC via both physical and information
flows.

� Authenticity. C can verify that most tags in a batch or case are presented,
and individually, every tag can be authenticated by C via half-PIN-based
authentication. Similarly, B can verify the whole batch together and authen-
ticate individual tags one by one.

� Accessibility & Anti-cloning. Only B can derive full Access and Kill PINs
for all of the tags in a batch, and thus can access the tags with proper PINs.
No adversary, including C, can derive the secrets and full PINs for accessing
or cloning the tags.

� Privacy Protection. Only B can obtain the original EPC code of a tag.
The privacy of the tag identifier is protected against C or any adversary.
As mentioned in Section 3.2, we regard the privacy problem of tracking the
pseudo-ID of a tag as a less important problem.

The secret sharing approaches present a new research direction on solving the
key distribution problem in RFID-enabled supply chains. Although the JPP
mechanism is the first applicable solution for RFID-enabled supply chains with-
out pre-sharing of secrets, it’s security level is not sufficient as mentioned earlier.

Key Distribution in Supply Chains 369

Our RSS scheme improves the security with additional shares contributed from
the information flow. Other than key distribution, our RSS construction provides
more desired security properties such as anti-cloning than the JPP mechanism.
The advantages of secret sharing approaches can be clearly demonstrated

by comparing with existing RFID authentication protocols [9,8,6]. These au-
thentication protocols are designed to have different security and efficiency fea-
tures with a common assumption that shared keys must exist between mutually
trusted parties, and that the tag keys are stored in a central database. Another
difference is that the protocol messages in these protocols are unlinkable between
authentication sessions.
Basically, all of them achieves authentication on individual tags, but not on

a batch of tags. Moreover, in a strong adversary model where tags can be cor-
rupted, all except our RSS scheme fail on providing anti-cloning feature as the
tags’ secrets are disclosed. Table 1 lists the major security features of our scheme
in comparison with traditional schemes.

Table 1. Comparison of Security Properties

Key Storage Authentication Anti-Cloning Type of Privacy
(DB/Tag) (Group/Tag) (Tag Corruption) (Unlinkability/ID Secrecy)

[9][8][6] Central DB Tag No Unlinkability

TSS [4] Tag Group No ID Secrecy

RSS Partner DB & Tag Group & Tag Yes ID Secrecy

6 Parameterization

In real-world implementation, the “Philips UCODE” Gen2 tag can be employed.
The tag has 512 bits of on-chip memory, containing a 96-bit EPC memory, a
32-bit TID memory, a 128-bit programmable user memory and a 64-bit reserved
memory for storing Access and Kill PINs. As required by our scheme, we shall
replace the original EPC code with the shares in EPC memory, and store the
encrypted (and authenticated) EPC code into the user memory.
As a running example, we suppose there are totally 100 tags in a batch which

are packed equally into 5 cases each having 20 tags exactly. At the case level,
our RSS scheme employs a (28, 60)-RSS Scheme so that given a case, we need
to collect at least 28 shares to recover the case secret. Our scheme works over
the field GF (216), so a share (codeword) should have 16 bits. At the beginning,
A generates uniformly at random a 448-bit secret x for C. The secret is then
encoded into 60 16-bit symbols with a (28, 60)-RS code. From which, 32 parity
symbols are ready to be shared. We assign exactly one share to each tag and
12 shares to C. In other words, without the shares from C, one can maximally
collect 20 shares from the tags so that s/he is not able to recover the secret
(even by brute force attacks). By contributing additional shares on recovering

370 T. Li, Y. Li, and G. Wang

the secret, above scheme allows C tolerate up to 4 or 20% reading errors on
scanning the tags in the case.
Similarly, at the batch level,A and B employ a (108, 236)-RSS scheme so that

one needs to collect at least 108 shares to recover the batch secret. A generates
uniformly at random a 1728-bit long secret y for B. Under the working field
GF (216), the secret is extended into 236 16-bit symbols with a (108, 236)-RS
code, of which 128 symbols are ready to be shared. Thus, we assign 28 shares to
B and 100 share to the tags. With this setting, no one, exceptB, can collect more
than 108 shares to successfully recover the secret. By contributing additional
shares on recovering the secret, above scheme allows B tolerate up to 20 or 20%
errors on scanning all the tags in the batch.
As an ECC algorithm requires the codewords be in an ordered sequence,

we shall assign the sequence numbers on the tags explicitly. For this reason,
we employ additional 16 bits in the EPC memory for the purpose of storing
an ordered sequence number. This allows a quite long (up to 65536) sequence
containing enough numbers of tags in a whole batch. To this end, we have used
up 48 LSBs of the EPC memory and left the other 48 MSBs untouched. At the
options of the adopters of our scheme, they can either retain these 48 MSBs
serving as the EPC header for rough classification purpose, or fill this field with
random values for privacy protection objective.
Moving forward, we work on encrypting the EPC code which is now set as

48 bits discarding the header. We hash the secret y with SHA-256 and take the
lowest significant 128 bits of the output as the encryption key. Then we apply
a block cipher (AES-128) in an authenticated encryption mode (e.g., OCB [10])
on the EPC code with padding bits. The 128-bit encrypted and authenticated
message is then stored in the user memory. Note that both the EPC memory and
the user memory have similar physical and deployment characteristics (regarding
the PIN-based lock, unlock, permalock, and PIN-based write operations on these
memory banks) according to EPCglobal C1 G2 standard [2]. To allow B update
the tags while pass the goods to some downstream players, our scheme requires
rewritable EPC memory and user memory on a Gen2 tag. Such a (re)write
operation is typically allowed in a secured state on interrogating a Gen2 tag,
which is transitioned from an open state by providing the correct Access PIN.
On implementing our scheme, we indicate that the 32-bit Access PIN and Kill
PIN are derived from both the shared secrets x and y by C and B respectively.
Also, it is not practical for C to access or kill a tag with the knowledge of the
halves of its PINs, since guessing the other half of the Access PIN needs 216 trials
on the tag, which could be efficiently prevented by tag manufactures’ disabling
the tag when multiple false PINs are presented.
Moreover, in real-world deployment, one has to know the total number of

tags R processed in a batch and the number of tags r in a case. Then s/he
determines the threshold values k and K on recovering the secrets, together
with the numbers of shares for the batch and cases respectively. In our running
example above, the tags are formatted with (28, 60)-RSS scheme for a case and
(108, 236)-RSS scheme for a batch. On choosing a proper threshold, k or K can

Key Distribution in Supply Chains 371

be set as the smallest value (e.g., k = 28, K = 108) that is a bit greater than
the total numbers of tags in a case or batch to guarantee the recovery of secrets
only with additional shares from C or B, instead of solely reading all tags in
a case or batch. On the other hand, n or N could also be chosen properly to
maximally tolerate reading errors (20% in our example) in a case or batch.
Last but not least, remind that we mentioned such a condition r ≥ t + δ in

the definition of our RSS scheme in Section 4. If there exists a relatively small
number of tags in a case, our RSS scheme can adjust the relevant parameters
in a resilient way. Without loss of security, we can put multiple shares on a tag
or enlarge the size of a single share to minimize the value of t. For instance, we
have no problem to deal with only 2 tags in a case with (8, 16)32,4,2,0-RSS scheme
with 2 shares on a tag or (4, 8)64,2,2,0-RSS scheme with one big share on a tag.
Pushing that to an extreme, for a case with only one tag, a (2, 4)96,1,1,0-RSS
scheme could be used for filling the EPC memory of the tag with a single share
to achieve a maximum 96-bit security.

7 Conclusion and Future Work

In this paper, we worked on pairing supply chain parties and proposed a resilient
secret sharing (RSS) scheme for distributing keying material in RFID-enabled
supply chains. The scheme is proved to be secure in terms of privacy and robust-
ness, and is resilient due to various access structures in sharing and recovering
a secret. Particularly, our construction, which is based on a practical case study
of “secure goods delivery”, provides a set of desired security properties for batch
RFID tags. Under proper parameter setting, our solution can be easily incor-
porated in standard RFID appliances and used in supply chain practice. Our
future work is to implement our solution in real world deployments such as 3rd

Party Logistics in which supply chain parties are inter-connected by EPCglobal
Network.

References

1. Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified ac-
count of classical secret-sharing goals. In: Proc. of the 14th Conference on Com-
puter and Communications Security, pp. 172–184 (2007)

2. EPCglobal. EPC radio-frequency identity protocols class-1 generation-2 UHF
RFID protocol for communications at 860 MHz-960 MHz, version 1.2.0 (October
2008)

3. Juels, A.: Strengthening epc tags against cloning. In: ACM Workshop on Wireless
Security – WiSe 2005 (2005)

4. Juels, A., Pappu, R., Parno, B.: Unidirectional key distribution across time and
space with applications to rfid security. In: 17th USENIX Security Symposium, pp.
75–90 (2008)

5. Langheinrich, M., Marti, R.: Practical Minimalist Cryptography for RFID Privacy.
IEEE Systems Journal, Special Issue on RFID Technology 1(2), 115–128 (2007)

372 T. Li, Y. Li, and G. Wang

6. Li, Y., Ding, X.: Protecting RFID Communications in Supply Chains. In: Proceed-
ings of the 2nd ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2007, pp. 234–241 (2007)

7. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Com-
munications of the ACM 24, 583–584 (1981)

8. Molnar, D., Wagner, D.: Privacy and Security in Library RFID: Issues, Practices,
and Architectures. In: Conference on Computer and Communications Security –
ACM CCS 2004, pp. 210–219 (2004)

9. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient Hash-Chain Based RFID Privacy
Protection Scheme. In: International Conference on Ubiquitous Computing – Ubi-
comp 2004 (2004)

10. Bellare, M., Rogaway, P., Black, J.: Ocb: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security (TISSEC) 6(3), 365–403 (2003)

11. Roman, S.: Coding and Information Theory. Graduate Texts in Mathematics,
vol. 134. Springer, Heidelberg (1992)

12. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

Towards a Deterministic Hierarchical

Key Predistribution for WSN
Using Complementary Fano Plane

Sarbari Mitra, Ratna Dutta, and Sourav Mukhopadhyay

Indian Institute of Technology, Kharagpur, India
sarbarimitra@gmail.com,

{ratna,sourav}@maths.iitkgp.ernet.in

Abstract. We propose a key pre-distribution scheme based on the com-
plementary design of a Fano plane. The nodes are arranged hierarchically
in the form of a 6-nary tree. Key predistribution follows a determinis-
tic approach. Each node in our scheme requires storing significantly less
number of secret keys. Our scheme provides better resiliency compared
to other existing schemes and reasonable connectivity as well. It can be
found that any two nodes are connected either directly or via a key-path.
Moreover, any number of nodes can be introduced in the network by as-
signing a few keys to the newly joined nodes only, without disturbing
the existing set-up of the network.

Keywords: complementary design, Fano plane, key predistribution.

1 Introduction

Sensor nodes are small, mobile, low-cost, battery powered and resource (such as
memory, power etc.)-constrained devices. They are deployed with high density in
the target region to form a Wireless Sensor Network (WSN). Due to their huge
application in many areas (home front to military operation), WSN has become
a burgeoning field nowadays. There are two types of WSNs: Distributed and
Hierarchical. In Distributed network all the nodes are assumed to be uniform
whereas Hierarchical network comprised of sensor nodes with different memory,
power, transmission range etc.
The sensor nodes are supposed to collect data from the environment and then

transmit them to the base station by communicating with other nodes within the
specified transmission range. This communication, when takes place in hostile
region, is intended to be secret, for which secret keys need to be given to the
nodes. One of the possible methods is online key agreement, but this is practically
infeasible as this approach is highly expensive. The other approach is to store
the keys to the nodes before their deployment, which is termed as key pre-
distribution. Key predistribution can be of three types: (i) Probabilistic- where
the keys are chosen randomly from the key pool and given to the nodes so that

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 373–388, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

374 S. Mitra, R. Dutta, and S. Mukhopadhyay

any two nodes share common key with certain probability, (ii) Deterministic-
the selection and assignment of keys to the nodes follow a certain pattern, and
(iii) Hybrid - which is a combination of the above two approaches.
The parameters of a key pre-distribution scheme are : (i) Scalability- when it

is required to introduce a few new nodes to the network, existing set-up should
not be disturbed, i.e., key-chains of the existing nodes should not be altered; (ii)
Storage- less number of keys should be stored in the nodes so that rest of the
memory can be used for computation; (iii) Resilience- how robust the network
is against node capture; (iv) Connectivity- most of the nodes should share secret
keys so that they can communicate secretly.
There are two extreme key pre-distribution schemes. First, is to store one mas-

ter key to all the nodes in the network. Connectivity of the resulting network is
very high as any two nodes can communicate but the network is not at all resilient.
Capture of any single node will reveal the secret master key. As a result, the whole
network cease to work. Second is to store a secret key for each pair of nodes in
the network. Then connectivity and resiliency both are optimal, but the storage
requirement is too expensive which is not affordable. Hence we observe that any
of the above cases is not suitable due to the fact that the parameters storage, re-
siliency and connectivity are contradictory in nature. To achieve a scheme which
optimizes all the parameters, authors have tried to get a trade-off between afore-
said parameters. We discuss literature survey in the following subsection.

1.1 Previous Work

Eschenauer and Gligor [7] were first to use random key pre-distribution in WSN.
The key distribution scheme proposed by them includes random selection of key
chains from the large key-pools and then assigning the keys to the nodes. Any
two nodes can communicate if they share a common key. The scheme is referred
to as the basic scheme. Later Chan, Perrig and Song [5] proposed q-composite
scheme which is a modified version of the basic scheme: any two nodes can
communicate if they share at least q common keys.
The main disadvantage of the aforesaid probabilistic schemes is that sharing

of common keys between any two nodes is not certain. On the contrary, the
schemes based on deterministic approach using combinatorial designs increases
the probability of key sharing between nodes to a greater extent. Naturally,
Combinatorial Design has become a useful technique of key pre-distribution.
Mitchell and Piper [11] were first to apply combinatorial design as one of the key
distribution techniques whereas Camptepe, Yener [1] introduced combinatorial
design for key predistribution in wireless sensor network. In this paper [1] two
combinatorial designs are considered: first is the symmetric (p2 + p + 1, p +
1, 1)-BIBD (or finite projective plane of order p) and the second is generalized
quadrangles. The advantage of this deterministic approach is that any two nodes
certainly share a common key, which improves the connectivity of the network
to significantly. The authors observed that the main drawback of deterministic
approach is that the scheme is not scalable as the network size N should satisfy
N ≤ p2+ p+1; if one wants to introduce some new nodes to the network which

Key Pre-distribution for WSN Using Complementary Fano Plane 375

exceeds the bound then p has to be raised to the next prime number (as the
existence of projective planes of order p is confirmed for only prime values of
p), which results in a much more larger network than what is required, and the
key-chains at each node have to be changed. It is also observed that generalized
quadrangles induce better scalable network and provide better resilience than
projective planes [2]. For the scalability, they have proposed a hybrid scheme
which improves the resilience, but the probability of any two nodes sharing a
common key is reduced.
In 2005, Lee and Stinson [8] proposed a scheme on group-divisible design

or Transversal design. It is noticed that the expected proportion that any two
nodes can communicate directly is 0.6 and almost 0.99995 portion of the nodes
can communicate either directly or via intermediate nodes. Chakrabarti et al.
[3] provided an example to show that out of 2401 nodes in a network 18% of
the links will be destroyed if only 10 nodes are captured. This is the main dis-
advantage of this scheme. Later, in 2008, the authors had developed quadratic
schemes [9] based on Transversal designs and referred the method described in [8]
as linear schemes. Their work suggests that the quadratic scheme provides best
resilience unless the number of compromised nodes is high. If the number of com-
promised nodes increases beyond 20, then linear scheme is preferred to quadratic
scheme for better resilience. Quadratic schemes in general provide better con-
nectivity than linear schemes. Both linear and quadratic schemes are preferred
to 2-composite scheme if shared-key-discovery is taken into consideration.
In 2005, Chakrabarti et al. [3] proposed a probabilistic key predistribution

scheme. Construction of the blocks were in the same manner as proposed by
Lee and Stinson in [8]. The sensor nodes are then formed by random merging of
the blocks, which consequently increases the probability of sharing common keys
between sensor nodes. Their scheme provides better resiliency as compared to
the Lee-Stinson scheme at the cost of large key-chain size in each node. Dong et
al. [6] proposed a scheme by considering 3-design as the underlying design. Keys
are assigned to the sensor nodes in the network by Möbius Planes. This scheme
provides better connectivity than that of the scheme proposed by Lee-Stinson
[9] and better storage as compared to Camptepe-Yener scheme [1]. The prime
drawback of the scheme is that resiliency reduces rapidly with the increasing
number of compromised nodes.
Ruj and Roy [12] proposed a deterministic key pre-distribution scheme based

on Partially Balanced Incomplete Block Design. The authors claim that this
scheme gives better resilience than that of [8] storing less than

√
N keys to the

nodes where N is the network size. But to store that many keys to the nodes,
for a very large network is also expensive.
It is observed that the schemes based on deterministic approach provide high

connectivity, but the storage is also very expensive and the schemes are not
scalable in most of the cases. On the contrary, the probabilistic schemes are
scalable but do not confirm high connectivity. Our target is to develop a scheme
which gives scalability in deterministic approach and also provides better values
for the other parameters.

376 S. Mitra, R. Dutta, and S. Mukhopadhyay

1.2 Our Contribution

Here we present a deterministic key pre-distribution scheme. We have used the
complementary design of the Fano plane, i.e., a symmetric (7, 4, 2) - BIBD as
our basic building block and map it repeatedly to design the whole network.
The network thus formed is heterogeneous, i.e., the nodes are assumed to be
placed hierarchically on the basis of computation power, the chance of getting
compromised etc.
The storage requirement for this scheme is significantly less (better) than

majority of the existing schemes. Storage is an important factor as we all know
that once the nodes are deployed to the target region, any external source of
power is not available. Moreover, increased memory consumption for storage
will decrease the computation power.
We emphasize that apart from storage-efficiency, this scheme provides rea-

sonable connectivity. The whole network is divided into 7 sub-networks each of
which forms a 6-nary tree-hierarchical structure. Most of the nodes in the same
sub-network are directly connected, but nodes from the different sub-networks
may be connected directly or via a key-path through the level 1 nodes (in the
worst possible case).
Apart from being cost-effective, storing significantly less number of keys leaks

very less information (in the form of secret keys) when captured. This leads to
improve the resilience of the network. Obtained results support the fact that
our scheme provides better resilience than the other similar schemes. Unlike the
existing deterministic key pre-distribution schemes, our scheme is flexible in the
sense that insertion of a large number of nodes can be done by adding only a
few keys to the newly joined nodes without disturbing the previously assigned
nodes.
Rest of the paper is organized in the following manner. Some definitions are

given in Section 2, the proposed scheme is discussed in detail in Section 3. Ob-
tained results are included in Section 4. Section 5 and Section 6 respectively
provides the connectivity and performance of the scheme following the conclud-
ing remarks in Section 7.

2 Preliminaries

Combinatorial Design is one of the mathematical tools used for key predistribu-
tion to the nodes. Some useful definitions from combinatorial designs are given
below:

Definition 2.01. A design is defined as a pair (X,A) such that (i) X is a set
of points or elements, (ii) A is a subset of the power set of X (i.e. Collection of
non-empty subsets of X)

Definition 2.02. A t-design is defined as a t - (v, k, λ) block design (with t ≤
k ≤ v) such that the following are satisfied (i) X = v , (ii) each block contains

Key Pre-distribution for WSN Using Complementary Fano Plane 377

k points, (iii) for any set of t points there are exactly λ blocks that contain all
these points.

Definition 2.03. A t-design with t = 2 is known as (v, k, λ)-Balanced Incom-
plete Block Design[BIBD].

Example 2.01. A (10, 4, 2)-BIBD has X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {(0, 1, 2, 3); (0, 1, 4, 5); (0, 2, 4, 6); (0, 3, 7, 8); (0, 5, 7, 9); (0, 6, 8, 9); (1, 2, 7, 8);

(1, 3, 6, 9); (1, 4, 7, 9); (1, 5, 6, 8); (2, 3, 5, 9); (2, 4, 8, 9); (2, 5, 6, 7); (3, 4, 5, 8);
(3, 4, 6, 7)}

Definition 2.04. A t-design with λ = 1 is known as Steiner system.

Example 2.02. A (9, 3, 1)-design has X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {(1, 2, 3); (4, 5, 6); (7, 8, 9); (1, 4, 7); (2, 5, 8); (3, 6, 9); (1, 5, 9);

(1, 6, 8); (2, 4, 9); (2, 6, 7); (3, 4, 8); (3, 5, 7)}

Definition 2.05. Finite symmetric projective plane of order n is defined as a
pair of set of n2 + n + 1 points and n2 + n + 1 lines, where each line contains
n+ 1 points and each point occurs in n+ 1 lines.

Definition 2.06. The Fano Plane is the projective plane of smallest order i.e.,
of order 2. It is a (7,3,1) BIBD and it can also be considered as a Steiner system.

Therefore, all the projective planes are Steiner systems.

Example 2.03. Projective plane of order 2, a (7, 3, 1)-BIBD, i.e.,the Fano plane
is as follows: X = {1, 2, 3, 4, 5, 6, 7}
A = {(1, 2, 3); (1, 4, 7); (1, 5, 6); (2, 4, 6); (2, 5, 7); (3, 4, 5); (3, 6, 7)}.

Example 2.04. Projective plane of order 3, a (13, 4, 1)-BIBD is as follows:
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
A = {(1, 2, 3, 4); (1, 5, 6, 7); (1, 8, 9, 10); (1, 11, 12, 13); (2, 5, 8, 11); (2, 6, 9, 13);

(2, 7, 10, 12); (3, 5, 10, 13); (3, 6, 8, 12); (3, 7, 9, 11); (4, 5, 9, 12); (4, 6, 10, 11);
(4, 7, 8, 13)}.

By complementary design we mean the design where each block is mapped to
another block such that they are mutually exclusive and exhaustive. The com-
plementary design of the Fano plane is a 2-(7,4,2) design,i.e., it is a symmetric
(7, 4, 2)-BIBD. From the structure it is clear that the design is no longer a Pro-
jective plane and obviously not a Steiner system either, as any pair of keys is
included in exactly two nodes.
Any design (X, A) can be mapped to a sensor network where the elements of

the set X represent the keys and the blocks of the set A correspond to sensor
nodes.

378 S. Mitra, R. Dutta, and S. Mukhopadhyay

3 Proposed Scheme

3.1 Key Predistribution to Seven Nodes

In this section we will discuss a particular Steiner system that is taken as a
basic building block to design our key predistribution in the hierarchical struc-
ture of nodes and then explain how it can be mapped to a sensor network.
Let us consider a 2 - (7, 4, 2) design where X = {1, 2, 3, 4, 5, 6, 7}. The blocks
are given by the set A = {(4, 5, 6, 7), (2, 3, 5, 6), (2, 3, 4, 7), (1, 3, 5, 7), (1, 3, 4, 6),
(1, 2, 6, 7), (1, 2, 4, 5)}. Note that each block shares exactly two common elements
with all other blocks. We map the system to the sensor network by considering
X to be the key-pool i.e. all the elements to be the keys and sets (blocks) in
A correspond to the key-chains of each sensor node. Here seven elements cor-
respond to seven keys and each block represents a sensor node (key chain of
the node). This assigns a set of seven keys to seven nodes such that all nodes
together contain exactly seven keys and any two are connected by exactly two
common keys.

3.2 Key Predistribution to the Tree Hierarchy

We label all the nodes and all the keys by 1, 2, 3, 4, In level 1, seven
keys {1, 2, 3, 4, 5, 6, 7} are distributed to the first seven nodes as described
above. Thus the key-rings assigned to the nodes 1, 2, 3, 4, 5, 6, 7 are respectively
{4, 5, 6, 7}, {2, 3, 5, 6}, {2, 3, 4, 7}, {1, 3, 5, 7}, {1, 3, 4, 6}, {1, 2, 6, 7}, {1, 2, 4, 5}.
Loosely speaking, the node-set {1, 2, 3, 4, 5, 6, 7} of these seven nodes form a 2-
(7, 4, 2) design in level 1. We refer the keys {1, 2, 3, 4, 5, 6, 7} chosen in level 1 as
level 1 keys. In level 2, node 1 forms a 2-(7, 4, 2) design with new six level 2 nodes
8, 9...13. A set of seven keys is required to complete the key set. Note that node

Table 1. Components of 2 - (7, 4, 2) designs formed by level 1 nodes

Node Node-set Key-set

node 1 {1, 8, 9, 10, 11, 12, 13} {4, 5, 6, 7, 8, 9, 10}

node 2 {2, 14, 15, 16, 17, 18, 19} {2, 3, 5, 6, 11, 12, 13}

node 3 {3, 20, 21, 22, 23, 24, 25} {2, 3, 4, 7, 14, 15, 16}

node 4 {4, 26, 27, 28, 29, 30, 31} {1, 3, 5, 7, 17, 18, 19}

node 5 {5, 32, 33, 34, 35, 36, 37} {1, 3, 4, 6, 20, 21, 22}

node 6 {6, 38, 39, 40, 41, 42, 43} {1, 2, 6, 7, 23, 24, 25}

node 7 {7, 44, 45, 46, 47, 48, 49} {1, 2, 4, 5, 26, 27, 28}

Key Pre-distribution for WSN Using Complementary Fano Plane 379

1 already contains the keys {4, 5, 6, 7}. We choose three new keys, say {8, 9, 10}
and take the key set {4, 5, 6, 7, 8, 9, 10} for the key predistribution among seven
nodes. We call the new keys 8, 9, 10 chosen in level 2 as level 2 keys. This process
is repeated for the other nodes of level 1. The 2 - (7, 4, 2) designs corresponding
to all the level 1 nodes are explicitly described in Table 1. In level 3, each of
level 2 nodes are attached to 6 new level 3 nodes and the corresponding key
chain is chosen in the same manner i.e. keeping the four keys same as the level 2
keys contained by level 2 nodes and adding three new level 3 keys. This process
is repeated until keys are assigned to all the nodes in the network. We provide
below the algorithm KPDistribution for assigning keys to the tree hierarchy as
explained above. We consider a hierarchical structure using a 6-nary tree for key
predistribution.
Let us consider a network having maximum N nodes. Let K denote the total

key-pool and l denote the maximum level in the hierarchical tree structure. The
four keys assigned to N[i] are stored in N[i][1],N[i][2], N[i][3], N[i][4] respectively.
Choose {u4, u5, u6 u7} ∈R K, where the symbol ∈R stands for random selection.

Algorithm. KPDistribution

i := 0;
N [1][1] := u4; N [1][2] := u5; N [1][3] := u6; N [1][4] := u7;
procedure KPDistribution (u1, u2, u3, u4)
X := {u4, u5, u6, u7} ;
Choose {u1, u2, u3} ∈R B where B ⊆ K −X, B is the set of unused keys
X := X ∪ {u1, u2, u3};

j := 6i+ 2;
N[j][1] := u2, N[j][2] := u3, N[j][3] := u5, N[j][4] := u6;
N[j+ 1][1] := u2; N[j+ 1][2] := u3; N[j + 1][3] := u4; N[j + 1][4] := u7;
N[j+ 2][1] := u1; N[j+ 2][2] := u3; N[j + 2][3] := u5; N[j + 2][4] := u7;
N[j+ 3][1] := u1; N[j+ 3][2] := u3; N[j + 3][3] := u4; N[j + 3][4] := u6;
N[j+ 4][1] := u1; N[j+ 4][2] := u2; N[j + 4][3] := u6; N[j + 4][4] := u7;
N[j+ 5][1] := u1; N[j+ 5][2] := u2; N[j + 5][3] := u4; N[j + 5][4] := u5;

p := 1; r := 1; s := 0; m := r + s;
while (p < l) do

r := r + 6p; s := s+ 6p−1;
p++;
for i := m to (r + s− 1) do in parallel

call KPDistribution (N[i][1],N[i][2],N[i][3],N[i][4])
end do

m := r + s;
end do
end KPDistribution

380 S. Mitra, R. Dutta, and S. Mukhopadhyay

Fig. 1. Key predistribution to a sub tree upto level 3

4 Results

Theorem 4.01. (a) Number of nodes in level j is nj = 7×6j−1 , ∀ j ∈ {1, �}
where l denotes the total number of levels present in the network.

(b) Total number of nodes in the network is Tnodes = 7
5 (6

� − 1).
(c) Number of keys that are used for the first time in level j is

kj = 21× 6j−2, ∀j ≥ 2; k1 = 7;

(d) Total number of keys in the network is K = 7 [1 + 3
5 (6

�−1 − 1)].
(e) Number of nodes to which a level i key is assigned to, is Ni = 2×{3l+1−i−1}

.

Key Pre-distribution for WSN Using Complementary Fano Plane 381

(f) The maximum level required to accommodate Tnodes number of nodes in the
network is l =
log(57Tnodes − 5)�.

Proof :

(a) The result holds trivially for i = 1.
Let us consider the following notations:

Level 1 nodes are denoted by N
(1)
i1

, i1 ∈ {1, 2, ... 7 }. Level 2 nodes are
denoted by N

(2)
i1,i2

, i1 ∈ {1, 2, ... 7 } , i2 ∈ {1, 2, ... 6 } , where N
(2)
i1,i2

represents the ith2 child at level 2 of ith1 node at level 1. Level t nodes are

denoted by N
(t)
i1,i2,...it

, i1 ∈ {1, 2, ... 7 } , i2, i3, ..., it ∈ {1, 2, ... 6 } .
Clearly total number of nodes in tth level is 7× (6× 6× ...× 6) (t− 1 times).

Fig. 2 illustrates the detailed hierarchical tree structure upto level 5.

1
)1(
iN

(2)
,11iN

2,
)2(
1iN 3,

)2(
1iN 4,

)2(
1iN

1,1,
)3(
1iN 2,1,

)3(
1iN 3,1,

)3(
1iN 4,1,

)3(
1iN 5,1,

)3(
1iN 6,1,

)3(
1iN

1,6,1,
)4(
1iN

2,6,1,
)4(
1iN 3,6,1,

)4(
1iN 4,6,1,

)4(
1iN 5,6,1,

)4(
1iN 6,6,1,

)4(
1iN

1,1,6,1,
)5(
1iN

2,1,6,1,
)5(
1iN 3,1,6,1,

)5(
1iN 4,1,6,1,

)5(
1iN 5,1,6,1,

)5(
1iN 6,1,6,1,

)5(
1iN

(2)
,61iN(2)

,51iN

Fig. 2. Hierarchical tree structure upto level 5

382 S. Mitra, R. Dutta, and S. Mukhopadhyay

(b) As the levels of the nodes are exhaustive and disjoint, we have

Tnodes = n1 + n2 + ...+ nl,

where l represents the total number of levels in the network. Thus

Tnodes =

j=t∑
j=1

nj = 7

l−1∑
j=0

6j.

Hence the result follows.

(c) k1 = 7 holds trivially, as level 1 contains only one Complementary Fano
plane consisting of seven keys.
Observed that, from level 2 onwards, each Complementary Fano plane in a
level includes six new nodes and three new keys in the following level. Hence

kj = 3× nj−1 , ∀ j ∈ { 2 , � },

where ni denotes the number of nodes in level i. The result follows on sub-
stitution of the expression for ni from (a).

(d) As the keys appearing for the first time in a particular level are exhaustive
and disjoint, we have

K = k1 + k2 + ...+ kl,

l being the total number of levels in the network. Thus

K =

j=t∑
j=1

kj = 7 + 21

l−2∑
j=0

6j

Hence the result follows.

(e) The key that appears for the first time in level i is contained in only one
Complementary Fano plane and hence goes to four nodes in level i. In (i +
1)th level, that key goes to each of the four Complementary Fano planes
corresponding to each of the previous level nodes and in each system, the
key is contained in three new nodes. Thus we observe that the nodes to
which a level i key is contained, form four ternary trees with their root in
level i. The number of nodes to which a level j key is assigned to is given by∑l

i=j 4× 3i−j . Hence the result follows.

(f) Follows directly from (b) ��

The results in (b),(d) and (f) establish inter-relationship between the total num-
ber of nodes, total number of keys and the maximum number of levels required
to accommodate all the nodes. Thus, when any two of them are known or given,
third one can be obtained. Result(e) helps us to calculate resilience, as will be
seen later in Section 6.

Key Pre-distribution for WSN Using Complementary Fano Plane 383

5 Connectivity

We now discuss how the nodes are connected by single-hop (direct) paths. From
the key distribution pattern among the nodes in the network, it is observed that
any two nodes can share at most 2 (i.e. 0 or 1 or 2) keys. So we summarize
below the possible cases as the following: Let A be any node from level ≤ k in
the network.

Case 0: The node B be chosen from level k. A shares 0 keys with B in level k
and hence A is not connected to any of its descendants in level ≥ k either.

Case 1: The node B be chosen from level k. A shares 1 key with B in level k.
In (k + 1)

th
level, B has six children namely : B1, B2, B3, B4, B5 and B6. A is

connected to exactly three of them by sharing only one key with each. Without
loss of generality, let us assume that A is connected to B1, B2, B3 and is not
connected to B4, B5, B6. To get the connectivity of the node A with the grand
children of B, i.e. Bij for i, j ∈ {1, 2 · · ·6} in level k+2, we observe the following
subcases:

Subcase 1.1: B1, B2 or B3 falls under Case 1 and same arguments hold as in
Case 1 with B := Bi, for i ∈ {1, 2, 3}; k := k + 1.

Subcase 1.2: B4, B5 or B6 falls under Case 0.

Case 2: The node C be chosen from level k. A shares 2 keys with C in level
K. In (k + 1)

th
level, C has six children namely, C1, C2, C3, C4, C5 and C6. A

shares only one key with exactly four of them, only one key with exactly one and
no key with the remaining one. Without loss of generality, let us assume that A
shares exactly one key with C1, C2, C3, C4, only one key with C5 and does not
share any key with C6.
To observe how node A is connected with the grand children of C, i.e., Cij for
i, j ∈ {1, 2 · · ·6} in level k + 2, we have the following sub cases:
Subcase 2.1: C1, C2, C3 or C4 fall under Case 1 and same arguments hold as
in Case 1 with B := Ci, for i ∈ 1, 2, 3, 4; k := k + 1.

Subcase 2.2: C5 falls under Case 2 and same arguments hold as in Case 1 with
C := C5; k := k + 1.
Subcase 2.3: C6 falls under Case 0.

Example:

Let us discuss here how we observe the connectivity of a particular node. Ac-
cording to above discussion we assume that the network consists of 4 levels of
nodes and keys.

Connectivity of a level 1 node (say N1). All the nodes of level 1 form a
2-(7, 4, 2) design, so each node is connected to the other six nodes, and each pair
of nodes shares exactly two common keys. Hence, N1 shares two keys with all
other six nodes at level 1, i.e. with N2, N3, N4, N5, N6 and N7.

384 S. Mitra, R. Dutta, and S. Mukhopadhyay

Now in level 2, N1 is connected to all its own six children by sharing two
common keys with each of them i.e. N1 shares two keys with its children in level
2. There are exactly one child of each level 1 node with which N1 shares two
keys. Therefore, number of nodes in level 2 with which N1 shares two common
keys is 12 and the number of nodes in level 2 with which N1 shares exactly one
common key is given by 24. Out of total 42 nodes in level 2, N1 is connected to
36 nodes.
In level 3, the number of nodes with which N1 shares two common keys is 12

and the number of nodes with which N1 shares exactly one common key is 120.
Thus, out of total 252 nodes in level 3, N1 is connected to 132 nodes.
Similarly in level 4, N1 is connected to 12 nodes by sharing two common keys

and 408 nodes by sharing exactly one key.
Hence out of total 1512 nodes in level 4, N1 is connected to 420 nodes. Total

number of nodes to which N1 is connected is = 6+36+132+420 = 594. As all
the level 1 nodes are uniform, any level 1 node is connected to 594 nodes out of
total 1813 nodes in the network. This implies that only one level 1 node is directly
connected to almost 32% of the nodes in the whole network. So, intuitively we
can say that all the nodes in the network is connected to at least one level 1
node.

Connectivity of a level 2 node (say N8). We note that out of seven nodes
in level 1, N8 shares two keys with exactly two nodes, no key with one node,
and only one key with the remaining four nodes. Therefore six nodes of level 1
are connected to N8.

N8 is one of the child of N1, therefore N8 shares two keys with the other five
children of N1 in level 2. Also N2 in level 1 shares two keys with N8, hence, out
of the six children of N2, one shares two keys, one no key and remaining only
one key with N8. Thus number of nodes with which N8 shares two keys in level
2 is 6 and the number of nodes with which N8 shares only one key in level 2 is
16. Thus total 22 nodes of level 2 are connected to N8.
Following similar arguments, N8 shares two keys with 12 nodes in level 3 and

the number of nodes with which N8 shares a common key is given by 72. Hence
N8 is connected to 84 nodes in level 3.
In level 4, N8 shares two keys with 12 nodes and one key with 264 nodes.

Thus N8 is connected to 276 nodes in level 4. Therefore N8 is connected to 376
nodes in the whole network. As all the level 2 nodes are uniform, any level 2
node is connected to 376 nodes in the network.
Similarly, we can calculate these values for other level nodes also, and intu-

itively we can predict that this scheme has reasonable connectivity.

6 Performance

We calculate resilience by the following formula proposed by Lee-Stinson [8]

fail(s) = 1 −
l∏

i=1

(
1 − Ni − 2

N − 2

)si

Key Pre-distribution for WSN Using Complementary Fano Plane 385

where fail(s) denotes the portion of total link failure when s number of nodes
are compromised; Ni denotes the number of nodes to which a level i key is
assigned to, si is the number of compromised nodes in the i

th level and s is the
total number of compromised nodes. Therefore we must have

∑l
i=1 si = s.

In our scheme, the nodes are arranged hierarchically in the network, i.e., the
lower level nodes (which are very less in number) are more powerful and hence
are less liable of getting compromised than higher level nodes (which are much
more in number).
The average values of fail(s) corresponding to certain values of s has been

listed in Table 2, which describes how the network collapses with increasing num-
ber of compromised nodes. This table shows that the proposed scheme provides
reasonable resilience.

Table 2. Network collapses with increasing number of compromised nodes

s fail(s) s fail(s) s fail(s)

10 0.017549 110 0.238873 450 0.718262

20 0.032655 120 0.252230 500 0.752019

30 0.056979 130 0.290375 550 0.800994

40 0.072504 140 0.302058 600 0.825032

50 0.112959 150 0.314306 650 0.850413

60 0.135263 200 0.396464 700 0.868336

70 0.149500 250 0.469364 750 0.884240

80 0.169968 300 0.574162 800 0.907102

90 0.207049 350 0.635533 850 0.918233

100 0.220104 400 0.679556 900 0.938538

In Table 3, we provide the comparison based on the performance of our scheme
with Lee-Stinson linear scheme [8], Chakrabarti et al. scheme [3], Ruj-Roy scheme
[12] and Lee-Stinson quadratic scheme [9], where Tnodes denotes total number
of nodes in the network and Tkeys denotes total number of keys present in each
node.
The comparison between the schemes has been shown graphically in Fig. 3 and

Fig. 4. In Fig. 3 we show the comparison of our scheme with Lee-Stinson linear
scheme [8], Chakrabarti et al. scheme [3], Ruj-Roy scheme [12] and Lee-Stinson
quadratic scheme [9] for less number of compromised nodes i.e. 1− 10 nodes. In

386 S. Mitra, R. Dutta, and S. Mukhopadhyay

Table 3. Comparison with some of the existing schemes

[8] [3] [12] [9] Ours

Tnodes 1849 2550 2415 2197 1813

Tkeys 30 ≤ 28 136 30 4

fail(10) 0.201070 0.213388 0.0724 0.297077 0.017549

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

fa
il(

s)

Number of compromised nodes (s)

 [3]

 [12]

 [8]

 [9]

 Ours

Fig. 3. Comparison of resilience for small number of compromised nodes

Fig. 4 we provide the comparison with Lee-Stinson linear scheme [8] and Lee-
Stinson quadratic scheme [9] for a large number (i.e., 10-200) of compromised
nodes. It is very clear from the figures that the networks based on other schemes
collapses very fast compared to ours.

Remarks. We feel that generalizing the scheme by considering the complemen-
tary design of any projective plane (instead of Fano plane) will improve the
connectivity of the network. This is due to the fact that complementary de-
sign of a (p2 + p + 1, p + 1, 1) projective plane is in the form of a symmetric
(p2 + p + 1, p2, p2 − p)-BIBD, i.e., a set of p2 keys are shared between p2 − p
nodes in the network, which increases by a greater extent with increasing values

Key Pre-distribution for WSN Using Complementary Fano Plane 387

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
fa

il(
s)

Number of compromised nodes (s)

 Ours
 [8]
 [9]

Fig. 4. Comparison of resilience for large number of compromised nodes

of p (a prime number). Thus, key-sharing between the nodes can be achieved
to the desired level for complementary design of higher order projective planes.
But we have to analyse the resilience of those schemes also. As our future work
we would like to achieve improved connectivity with a reasonable trade off with
resilience.

7 Conclusion

In this paper we have introduced a key predistribution scheme for wireless sensor
network based on Complementary Fano plane. Our approach is deterministic and
the sensor nodes are arranged hierarchically in the form of a 6-nary tree struc-
ture. The proposed scheme is significantly storage-efficient and has the flexibility
of introducing new sensor nodes by adding only a few keys to the joining nodes
without disturbing the existing set-up. We have analysed the connectivity of our
scheme and it was noticed that all the nodes in the network are well-connected.
It is observed that any node shares two keys with a considerable portion of the
network. Obtained results support that the resilience of the resulting network is
found better than some of the similar combinatorial design based schemes.

388 S. Mitra, R. Dutta, and S. Mukhopadhyay

References

1. Çamtepe, S.A., Yener, B.: Combinatorial Design of Key Distribution Mechanisms
for Wireless Sensor Networks. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva,
R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg
(2004)

2. Camptepe, S.A., Yener, B.: Combinatorial Design of Key Distribution Mechanisms
for Wireless Sensor Networks. IEEE/ACM Trans. Netw. 15(2), 346–358 (2007)

3. Chakrabarti, D., Maitra, S., Roy, B.: A Key Pre-distribution Scheme for Wire-
less Sensor Networks: Merging Blocks in Combinatorial Design. In: Zhou, J., López,
J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 89–103. Springer,
Heidelberg (2005)

4. Chakrabarti, D., Seberry, J.: Combinatorial Structures for Design of Wireless Sen-
sor Networks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,
pp. 365–374. Springer, Heidelberg (2006)

5. Chan, H., Perrig, A., Song, D.X.: Random Key Predistribution Schemes for Sen-
sor Network. In: IEEE Symposium on Security and Privacy, pp. 197–213. IEEE
Computer Society (2003)

6. Dong, J., Pei, D., Wang, X.: A Key Predistribution Scheme Based on 3-Designs.
In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp.
81–92. Springer, Heidelberg (2008)

7. Eschenauer, L., Gligor, V.D.: A Key-management Scheme for Distributed Sensor
Networks. In: ACM Conference on Computer Communications Security, pp. 41–47.
ACM (2002)

8. Lee, J., Stinson, D.R.: A Combinatorial Approach to Key Predistribution for Dis-
tributed Sensor Networks. In: IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1200–1205 (2005)

9. Lee, J., Stinson, D.R.: On The Construction of Practical Key Predistribution
Schemes for Distributed Sensor Networks Using Combinatorial Designs. ACM
Trans. Inf. Syst. Secur. 11(2) (2008)

10. Lee, J., Stinson, D.R.: Common Intersection Designs. International Journal of
Combinatorial Designs 14, 251–269 (2006)

11. Mitchell, C.J., Piper, F.: Key Storage in Sensor Networks. Discrete Applied Math-
ematics 21, 215–228 (1988)

12. Ruj, S., Roy, B.: Key Predistribution Using Partially Balanced Designs in Wireless
Sensor Networks. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo,
M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 431–445. Springer,
Heidelberg (2007)

Context-Related Access Control

for Mobile Caching

Zhi Xu1, Kun Bai2, Sencun Zhu1, Leslie Liu2, and Randy Moulic2

1 Pennsylvania State University, University Park PA 16802, USA
{zux103,szhu}@cse.psu.edu

2 IBM T.J. Watson Research, 19 Skyline Drive, Hawthorne NY 10532, USA
{kunbai,lesliu,rmoulic}@us.ibm.com

Abstract. Mobile caching is a popular technique that has been widely
applied in mobile applications to reduce the bandwidth usage, battery
consumption, and perceived lag. To protect the confidentiality of cached
data, the data with sensitive information has to be encrypted as it is
cached on mobile devices. Currently, several mobile platforms provide
encryption utilities which allow mobile applications to encrypt their local
caches. However, existing encryption utilities are too coarse-grained and
not directly applicable to dynamically enforcing fine-grained context-
related access control policies in context-aware mobile applications.

In this paper, we first show the necessity of new encryption schemes in
context-aware mobile applications by examples, and then propose three
encryption schemes for enforcing context-related access control policies
on cached data. The proposed encryption schemes adopt different cryp-
tographic techniques. By comparing the cache hit rate and communi-
cation gain, we analyze the impact of applying the proposed schemes
to the efficiency of the existing mobile cache management algorithm in
context-aware mobile applications. Further, we evaluate the performance
of these schemes through extensive simulations, and suggest the suitable
application scenarios for each scheme.

Keywords: Context-related access control, mobile caching, data en-
cryption schemes, context-aware mobile applications.

1 Introduction

1.1 Mobile Caching

Mobile caching is one of the most widely used techniques in web browsers, stream-
ing media applications, and data access applications on mobile devices [1] [2] [3].
Caching recently used data (e.g. routes, pictures of sights) on a mobile device can
help the mobile device to reduce the bandwidth usage, battery consumption, and
perceived lag.
As most third party mobile applications are only allowed to implement their

caches in the application space, one security concern for these mobile applications
is the confidentiality of cached data on mobile devices. The attacker may be

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 389–408, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

390 Z. Xu et al.

able to access the content of cached data easily if it is stored in plaintext. For
example, it has been shown in [4] that, all iPhones, iTouchs, and iPads running
iOS 4.0 or later versions log the user’s location information in plaintext to a
consolidated.db file. If the attacker can have access to an iPhone/iTouch/iPad or
its synchronized Mac/PC, he can easily map the movement of device using the
cached information in consolidated.db with tools, like iPhone Tracker.
To protect the confidentiality of cached data, the straightforward way is to

encrypt the sensitive data as it is cached on the mobile device. Several modern
mobile platforms provide encryption utilities which allow mobile applications to
encrypt their local caches, for example the data protection features in iOS 4, the
password-based encryption feature in BlackBerry OS, and the EncryptedLocal-
Store class in Adobe AIR.

1.2 Context-Aware Mobile Applications

In context-aware mobile applications, the application interacts with the user ac-
cording to its current context, which includes the current location of the mobile
device, the current state of the user, the current time, etc. [5] [6]. With the ad-
vances in portable devices and sensors, many context-aware mobile applications
have been introduced. For example, [7] proposed Smart Signs, a context-aware
guidance and messaging system providing guests customized route information;
[8] proposed a framework for mHealth in which the context-related policies are
applied when the physician attempts to access the patient’s Electronic Patient
Record (EPR); and [9] presents a mobile tourism application, TIP, which de-
livers information about sights based on the user’s current context.
Obviously, adopting mobile caching technique can also help improve the qual-

ity of service in these context-aware mobile applications. However, to enforce
context-related access control policies on cached data, the existing encryption
utilities are not directly applicable due to several unique challenges.
First, the data access policies to cached data (i.e., data file) in context-aware

mobile applications are fine-grained and context-related. Briefly, each data down-
loaded in the cache is associated with a unique context-related access control pol-
icy. Different data may have different access control policies. The cached data
accessible in the current context may no longer be allowed to access when the
context changes. Mostly, existing encryption utilities are coarse-grained and all
data cached in one application are encrypted with the same key. This key is usu-
ally generated basing on the application ID and user ID. Therefore, additional
extensions are required to suit for context-related policy enforcement.
Second, access control policy enforcement in context-aware mobile applica-

tions must be capable of reacting dynamically to the changes of context at run-
time, while keeping the efficiency of caching. Existing encryption utilities only
support one single context in the cache. When the context changes, the cached
data must be cleared. Especially, in mobile applications, the context of a mobile
device may change frequently. Erasing cached data whenever context changes
may greatly affect the efficiency of mobile caching. Otherwise, if the mobile

Context-Related Access Control for Mobile Caching 391

application is compromised, all cached data downloaded in both current context
and previous contexts will be leaked.
In this paper, we make the first effort to analyze the impact of enforcing

context-related access control policies on cached data to the efficiency of mobile
caching in context-aware mobile applications. Specifically,we present three en-
cryption schemes using different cryptographic techniques: Flush Scheme, Con-
text Based Encryption (CBE) Scheme, and Attribute-based Encryption (ABE)
Scheme. These schemes differ in the strategy to manage the cached data ac-
cording to context-related access control policies. Among these schemes, our
experiment results demonstrate that the CBE scheme is most suitable for mo-
bile applications in which the user is usually associated with a static set of
contexts and there is little data sharing among different contexts. For example,
in a mobile lab application, a scientist is assigned different data access privileges
when working on different projects and the project assignment does not change
frequently. The ABE scheme works best in mobile applications where the user’s
context changes frequently and some cached data are accessible in different con-
texts. For example, in the mHealth application, the context of a physician may
change frequently and unpredictable depending on the patient he is treating.

2 An Example of Context-Aware Mobile Health
Information Application

In this section, we present a context-awaremobile health information application,
shown in Figure 1, to explain the necessity of applying context-related access
control policies on cached data. Also, we show that new encryption schemes are
needed to provide confidentiality protection to cached data while allowing the
mobile application enjoying the benefits of mobile caching.
As shown in Figure 1, Dr. House is a physician who has a mobile device

(e.g. iPad) with a context-aware mobile health information (MHI) application
installed on the device. This MHI application allows Dr. House to download and
read documents on the mobile device via the application’s user interface. These
documents are stored in the hospital’s content server and protected by context-
related access control policies. In this application, the context is determined the
status of user, for example, the task Dr. House is performing, the current indoor
location of mobile device, the patient who is being treated.
The red trace in Figure 1 shows the trace of Dr. House during a typical work-

day. In different contexts during the trace, Dr. House will be assigned different
privileges by the authority. Here we present two types of documents with dif-
ferent context-related access control policies to show the necessity of applying
fine-grained access control on the mobile cache in this application.
One type of documents is the patient’s Electronic Patient Record (EPR). To

protect an individual patient’s privacy, a physician is allowed to read the patient’s
EPR if and only if he is treating this particular patient in the patient’s room.
For example, in the first visit to Ellen, the MHI application downloads Ellen’s
EPR onto the mobile device and saves it in the cache. When Dr. House leaves

392 Z. Xu et al.

Cafeteria

Office

Emergency Room

Alice

Inpatient Care

Ellen

David

Bob

Calvin

User
(Dr. House)

JustinFeye

Cache

Cache
Manger

OS

MHI App

App
Functions

Mobile Device

Content
Server

DB

Authority

Fig. 1. A mobile health information system

Ellen’s room, the Ellen’s EPR may stay in the cache but can not be accessed any
more because of context change. When Dr. House visits Ellen again, the MHI
application can display Ellen’s EPR by reading its copy in the cache.
The other type of documents is theOn-Duty Notes which contains instructions

of standardized operations in the hospital. Different to EPRs, on-duty notes are
less sensitive and it can be accessed in different contexts as long as Dr. House is
within the hospital. Thus, once downloaded into the cache, Dr. House is allowed
to access the copy in the cache during the whole trace.
By the comparison of EPRs and on-duty notes,we show that different data

cached by context-aware mobile applications on mobile devices may have dif-
ferent access control policies. Thus, fine-grained access control mechanisms are
required to enforce their context-related access control policies on cached data.

3 Models and Assumptions

3.1 Mobile Caching Model

The Mobile Device (e.g. a smartphone) is connected to a Content Server in
the client-server manner through wireless connection. In the mobile device, an
Application Cache is implemented as a part of application. It contains two com-
ponents: the Cache is the local storage keeping the cached data; and the Cache
Manager is the component managing the cached data. Functions of Cache Man-
ager include cache replacement [10], cache invalidation [11], etc. At the server
side, we assume that an access control system has been deployed on Content
Server to guard the data access request from mobile devices to DB. The Au-
thority is in charge of user authentication as well as maintaining context-related
data access policies. This generic network model has been applied in many mobile
information systems, such as [12].

Context-Related Access Control for Mobile Caching 393

Cache
Cache
Manger

AC
Manager

1. Matching
with Data id

2. Cache Miss

6. Dec request
(with Data Loc)

7. Read Data
(with Data Loc)

8. Decrypted Data
(if access allowed)
or Access Denied message

Context-aware Mobile App

Content
Server

3. Data Request
(with Data id)

4. Requested Data
(with content
encrypted)

5. Save Data in
Cache

(2) Cache Miss Scenario

Cache
Cache
Manger

AC
Manager

1. Matching
(with Data id)

2. Cache Hit
(return Data Loc)

3. Dec request
(with Data Loc)

4. Read Data
(with Data Loc)

5. Decrypted Data
(if access allowed)
or Access Denied message

(1) Cache Hit Scenario
Context-aware Mobile App

Fig. 2. Basic workflows of proposed system design

In Figure 2, we illustrate the workflow of mobile caching with enforcement of
context-related access control policies. We explain the workflow as follows,
Cache Hit Scenario: If the requested data is contained in the Cache (i.e. Cache
Hit), the Cache Manager will send the reference of data (i.e. the location of
encrypted data in the Cache) to the AC Manager for decryption. The AC Man-
ager will be able to decrypt this data if and only if the data access is allowed by
the context-related access control policies associated with this requested data.
Cache Miss Scenario: If the requested data is not contained in the Cache (i.e.
Cache Miss), the Cache Manager will send a data request to the Content Server.
If access granted, the Content Server will encrypt the requested data and send
the ciphertext back to the Cache Manager. The Cache Manager will first save
the received data in Cache and then request AC Manager for decryption.

3.2 Trust Model

In this paper, we trust the integrity of mobile platform and the context-aware
mobile application. Specifically, we assume that the mobile application and the
mobile platform will perform correctly as required. Also, we assume that the
authority is aware of the current context and the context change of mobile device.
In Dr. House’s example, this assumption means that the attacker (including Dr.
House) can not fool the Authority with fake context information (e.g. the current
location of device) so as to get desired data access privileges. Various location
identification (e.g. GSM/3G technology [13]), location tracking [14], location
verification techniques (e.g. Echo protocol [15]) can be applied.

394 Z. Xu et al.

We also assume that the compromise of mobile application or mobile platform
will be detected within the context in which the compromise happened. Due to
the character of mobile devices, such as easy to steal, the attacker may physi-
cally possess the mobile device and compromise not only the mobile applications
but also the mobile platform. In this case, it is inevitable that the attacker will
have access to all information stored on the mobile device, including the de-
cryption keys. However, various techniques can be applied to the integrity mea-
surement insurance and compromise detection, such as such as Trusted Mobile
Platform [16], integrity measurements [17] and hypervisor based isolation [18].

3.3 Adversary Model

In this work, the adversaries are nonconforming or curious users who try to
bypass the context-related access control policy enforcements and access the
content of data stored in the mobile cache. As the application cache is usually
implemented in application space, we assume that the adversaries can read and
copy the encrypted data in the cache. For example, the adversaries may plug the
smartphone to a desktop and copy all the content in the cache storage to the
desktop for analysis. However, without the correct decryption key, the attacker
cannot get the corresponding ciphertext.
When a data item is required and there exists a cache, the mobile application

will always check if there is a copy of requested data before sending a request to
the remote content server. Therefore, we assume that the attacker may attempt
to access data cached in the previous context by some featured functionalities,
such as the “go backward” button and “view history records” function.

3.4 Design Rationale

To enforce the context-related access control policies, one thought is to imple-
ment a reference monitor for mobile cache within the mobile application. How-
ever, implementing such a reference monitor is too complex and impractical.
First of all, this reference monitor will bing a high overhead. It has to keep a
detailed record of current context of mobile device, and download the associated
access control policies for every data within the cache. Second, the implemen-
tation is difficult because the reference monitor at mobile application has to be
the same as the reference monitor that is already deployed at content server.
Third, the context-related access control policies themselves are sensitive and
some companies do not allow downloading these policies from the authority.
Thus, we propose an approach that applies cryptographic techniques to en-

forcing context-related access control policies. Intuitively, once a data query is
approved, the content server will encrypt the requested data with its associated
context-related access control policy and send the ciphertext to the mobile ap-
plication. The encrypted data can be cached locally on the mobile device. At
the mobile application(client) side, the mobile application is given a decryp-
tion key generated basing on the current context by the authority. The mobile

Context-Related Access Control for Mobile Caching 395

application will decrypt data on-the-fly. The plaintext of data only appear in
the memory and will be deleted after usage.
Compared to the approach with reference monitor, the mobile application

in our approach only needs to maintain a decryption key corresponding to its
current context and perform decryption operations. When context changes, the
mobile application simply replace the outdated decryption key by the new de-
cryption key of the new context. Moreover, cached data will remain in the cache
in the CBE Scheme and ABE Scheme with even less negative impact to efficiency
of existing mobile caching schemes. Details of designs and implementations will
be introduced in later sections.

4 Proposed Schemes

To enforce context-related access control policies within the AC Manager, we
propose three cryptographic schemes: Flush Scheme, Context Based Encryption
(CBE) Scheme, and Attribute Based Encryption (ABE) Scheme. These schemes
differ in the strategy of policy enforcement and they perform best in different
application scenarios. Briefly,

– In the first (simplest) scheme, Flush Scheme, the user is only allowed to
cache data requested within the same context. When the context changes,
all existing cached data will be erased.

– In the second scheme, Context Based Encryption Scheme, the cached data
are encrypted basing on the context when they are downloaded from the
content server. When the context of mobile device changes, existing data in
the mobile cache will not be erased. If the mobile device change from context
A to context B and then back to context A, the cached data downloaded
previously in context A can still be accessed if it is still in the cache.

– In the third scheme, Attribute-Based Encryption Scheme, we adopt the
ciphertext-policy attribute-based encryption (CP-ABE) technique to further
improve the caching efficiency and flexibility by allowing possible sharing
among different contexts. For example, suppose that the data m is down-
loaded in context A, and it is allowed to be accessed by a mobile device in
both context A and B according to the context-related access control policy.
If the mobile device changes from context A to context B and m is in the
mobile cache, the user will be able to access the cached data m.

In the rest of section, we explain the motivation of proposed schemes and their
strategies to deal with context changes. Due to the space limit, the detailed
encryption and decryption procedures are not presented.

4.1 Scheme One: Flush Scheme

In Flush Scheme, the user is only allowed to cache data requested within the
current context. The Flush Scheme utilizes the context-based access control en-
forcement at the Content Server. If the downloading request of a data is allowed

396 Z. Xu et al.

at the Content server, the access to its cached copy of data should be allowed too
in the same context. However, whenever the context changes, the AC Manager
will erase all existing cached data.
The Flush Scheme can be implemented using Secret Key Cryptography (SKC).

For each context of a user, the Authority generates a random secret key Krand,
which will be sent to AC Manager. When context changes, the AC Manager
will replace the old context’s decryption key by the one of new context. In any
circumstances, the AC Manager only keep the decryption key of current context.
The cached data may be in the form of Mdata = (Cdata,T imedata exp,IDcontext,
Hash()).

4.2 Scheme Two: Context Based Encryption Scheme

In the Context Based Encryption (CBE) Scheme, the cached data are encrypted
based on the current context of user. When the context changes, the existing data
in the Cache will not be affected. The deletion of cached data in CBE scheme
is managed by the Cache Manger according to ordinary cache management
schemes, such as Latest Recent Used (LRU) scheme.
The decryption procedure in CBE Scheme involves two contexts. One is the

context in which the data is encrypted at Content Server and delivered to the
mobile cache. The other is the context in which the AC Manager tries to decrypt
the data. In the CBE Scheme, the decryption can be performed correctly if and
only if these two contexts are the same.
Here a context can be represented by a set of privileges assigned to this

particular user within this context or simply an ID assigned to this context. A
user may re-enter the same context multiple times. For instance, in the example
of MHI application, whenever Dr. House enters Ellen’s room, the context will
be the same. Thus, Dr. House will be able to read Ellen’s EPR directly from the
cache when revisiting Ellen’s room, if its encrypted copy is still in the cache.
The CBE Scheme can also be implemented using SKC. For each context of a

user, the Authority generates a secret key Kcontext based on the current context
of mobile device/user. When the user enters the same context, the assigned
decryption key will be the same as well. The cached data in CBE Scheme is in
the form of Mdata =(Cdata,T imedata exp,IDenc context, Hash()).

4.3 Scheme Three: Attribute-Based Encryption Scheme

In the third scheme,Attribute-Based Encryption Scheme, we adopt the ciphertext-
policy attribute-based encryption (CP-ABE) technique [19] to further improve
the caching efficiency and flexibility by allowing possible sharing among differ-
ent contexts. In the ABE Scheme, a cached data may be accessed in different
contexts as long as these contexts satisfy the data’s associated context-related
access control policies. For instance, in the example of MHI application, if the
On-Duty Notes is already in the cache, Dr. House will be able to access the
cached copy in different contexts during the trace. Because Dr. House is always
in the hospital in this example.

Context-Related Access Control for Mobile Caching 397

Specifically, in the ABE Scheme, the privileges of a user in a context is rep-
resented by a set of attributes. In each context, the user will be assigned a
decryption key generated by the attributes assigned to the current context. On
the other hand, the context-related access control policy associated with one
data is represented by an access structure A on a set of attributes. During the
encryption, the encryptor (i.e. Content Server) encrypts the plaintext of data
with A. In the AC Manager, the decryption can be performed correctly if and
only if the attributes of user’s decryption key satisfy the access structure A

associated with the ciphertext. Various CP-ABE schemes have been proposed,
currently we adopt the CP-ABE scheme introduced in [19] to describe how we
apply this scheme in our ABE Scheme. Specifically, the Authority first generates
a master keyMK and a public key PK. The public key PK will be given to the
Content Server and AC Manager on a mobile device. The master key MK will
never leave the Authority. When a context starts, the AC Manager will receive
a decryption key D which is generated based on the master key MK and the
set of attributes assigned to the user in this context.
When encrypting data, the Content Server encrypts the data content with

the public key PA and an access structure A. The ciphertext is now in the form
of Mdata = (Cdata,T imedata exp,IDcontext,A, Hash()). When decrypting data,
the AC Manager uses its current decryption key D, public key PK, and follows
the access structure A. Due to the space limit, please refer to [19] for details of
the CP-ABE scheme.

5 Simulation

In this section, we study the impact on existing mobile cache management
schemes when applying proposed encryption schemes to enforce context-related
access control policies on cached data. Specifically, we measure the changes of
efficiency of the underlying cache replacement algorithm that are caused by ap-
plying proposed schemes. Efficiency is critical to our proposed schemes. Because
enforcing context-related access control policies over the cached data may neu-
tralize the benefits gained by caching. If allowing mobile caching with access
control is too costly, people would prefer disallowing caching any sensitive data
on the mobile device. Each of proposed schemes has its own pros and cons in
terms of efficiency. Details of cost and benefit analysis are presented in appendix.

5.1 Simulation Setup

A Query Model with Context Changes. Existing query models proposed
to evaluate mobile caching algorithms do not take context into consideration.
Therefore, we present a new query model to simulate the user behavior in the
context-aware mobile application.
In our new query model, we use a sequence of ordered queries to represent

the data queries issued by one user within a period of time. Each query con-
sists of a data ID, a context ID, and a timestamp, representing respectively the

398 Z. Xu et al.

data requested, the current context, and the current time when the query is
raised. The ThinkTime between neighbor queries in the sequence by following
an Exponential distribution. The timestamp for the first query in the sequence
is zero.
To model the database protected by context-related access control policies

at content server, we crate a database and divide its data items into different
groups. Each group corresponds to one context. To model the case when data
may be accessible in two contexts, we randomly select a portion (p) of data in
each group and pair them. Those paired data will be considered as the equivalent
data items. For each group/context, we generate a set of queries satisfying a zpif
distribution on the data in the database. These sets of queries represent the data
queries generated by the user in different contexts.
The context change mode is application-specific and is usually derived from

traces of real user behavior [20] [21]. In this paper, we consider the general case
of context changes. Specifically, we create a Markov Chain model, in which the
states represent possible contexts of users and the state transitions represent the
context changes. Each state has one transition to itself, representing that the
next query will stay in the current context, and one transition to any other state
in the model, representing the context change. We assume that, if a context
change happen, the next query may be in any one state in the model with the
same probability. Formally, let S (s, s′ ∈ S) denotes the set of states in the
model, the context of current query is at X , the context of next query is at X ′,
and λ be the probability that the s′ will state in the same context. Then,

Pr(X ′ = s′|X = s) =

{
λ ifs′ = s
1−λ
|S|−1 s′ �= s

(1)

Parameters Selection. Four parameters are considered in simulations: cache
size, data sharing rate, context change rate, and time-to-live (TTL). Cache size
represents the resource constraint on mobile devices. Context change rate repre-
sents the dynamics of user’s status and the query pattern of user. Data sharing
rate describes the characteristic of data in DB. TTL defines the maximum length
of time a data item is allowed to cache locally. Table 1 presents the settings of
other parameters in simulations.

Efficiency Measurements. The efficiency metrics in the study are the Cache
Hit Rate (CHR) and the Communication Gain (CG). The cache hit rate is
computed by dividing the sum of the queries that are answered using Cache
by the sum of the total queries in the simulation. The communication gain is
computed by the data transmission saved by caching minus the data transmission
brought by synchronization between a mobile device and Authority. We compare
the three proposed schemes under different cache size, expiration time (i.e. Time-
To-Live), and context change frequency.
The CG is measured by counting the amount of data down-

loaded by mobile device with a sequence of queries. In the base case

Context-Related Access Control for Mobile Caching 399

Table 1. Simulation parameter settings

Parameter Setting

Query sequence length 1200

Zipf distribution θ=0.80

Number of context sets 4

Database size each context 1000

Cache size 20, ..., 400

ThinkTime (Tt) Exponential Distribution (mean=100s)

Data item size (the same size) 1KB, 15KB, 100KB

Data sharing distribution p=5%

(i.e. disallowing caching), the total amount of data downloaded is de-
noted by BaseAmount = (sequence length × data size). So, we com-
pute CG by Syn Cost + Comm Cost − BaseAmount. The Synchro-
nization Cost (Syn Cost) stands for context change information down-
loaded from Authority whenever context changes. That is Syn Cost =
(number of context changes) × (data downloaded per context change);
The Communication Cost(Comm Cost) stands for the amount of data
downloaded from Content Server with the sequence of queries. That is
Comm Cost = |Mdata| × (sequence length)× (1− CHR).
For comparison purpose, we ignore the cost for building a secured communica-

tion channel between a mobile device and authority. Also, we ignore the context
change request message sent from a mobile device to Authority. We just measure
the data required to transfer from Authority to a mobile device. Suppose the size
of original data is |Pdata|. For encryption and decryption, the Flush and CBE
scheme use the AES-128, and the ABE scheme uses the cpabe toolkit. In addi-
tion, SHA-1 is used for the one-way hash function. For each proposed scheme,
we calculate |update| (i.e. the new context information downloaded per context
change) and |Mdata| (i.e. the response from Content Server with the ciphertext
of requested data). Note that, in ABE scheme, the sizes of decryption key and
ciphertext depend on the number of attributes associated with the decryption
key and the access structure A, respectively. In our experiments, a decryption
is about 23.8 KB with 3 attributes and 94.4KB with 8 attributes. When A con-
tains 7 attributes, the size of ciphertext will be about 14.4KB larger than the
plaintext. When A contains 15 attributes, the size of ciphertext is about 15.2KB
more than the plaintext. For our discussion, we assume that the size of decryp-
tion key is 23.8KB (3 attributes case) and the size of ciphertext will increase
with 14.4KB (7 attributes case).

5.2 Experiment 1: CHR vs. Cache Size and Data Sharing Rate

In this experiment, we measure the performance of our proposed schemes with
different cache sizes. Considering the data sharing, we also measure its CHR
with three sharing rates (Hot, Cold, and Random). By sharing, we mean a data

400 Z. Xu et al.

item is allowed to be access by multiple set of contexts. As data queries follow a
zipf distribution [22], popular data items are data that are queried most.

– Hot-Sharing: randomly choose 50 (i.e. 5%× 1000) from the top 20% popular
data items;

– Cold-Sharing: randomly choose 50 from the 20% of least popular data items;
– Random-Sharing: randomly choose 50 from the whole DB;

As we can see from Figure 3(a), increasing the cache size may help improve the
CHR in the proposed schemes. Among these schemes, the ABE scheme always
achieves the highest CHR in all cache sizes, and the CBE scheme is close to
ABE scheme. Both CBE and ABE scheme have much higher CHR than Flush
scheme. Further, when the sharing rate increases, the ABE scheme gains more
advantages. For Flush scheme, we observe that the effect of increasing cache size
is affected by context changes. As shown in the Figure 3(a), when the cache size
increases to a threshold point, the CHR cannot be improved any more. This
is because the Flush scheme will empty the Cache whenever there is a context
change. When the cache size is big enough for any single context, increasing its
size will not improve the performance of CHR.

5.3 Experiment 2: CHR vs. Context Change Rate

In this experiment, we study the impact of increasing context change frequen-
cies on the CHR with different sized cache. Specifically, we measure CHR with
three cache sizes: 400(BIG), 200(MEDIUM), and 20(SMALL). The purpose is to
investigate the resistance to frequent context changes in proposed schemes. The
scheme resistant to frequent context changes will be suitable for applications in
dynamic environments. As the context change rate reflects the user’s behavior
pattern, the experiment results help the application developer to choose right
combination of schemes and cache sizes for different behavior patterns.
From the experiment results shown in Figure 3(b), the CBE and ABE schemes

are more resistant to context changes. To both CBE and ABE schemes, the cache
size is the dominating factor for CHR. To the contrary, Flush scheme highly relies
on the context change rate.
Furthermore, a careful comparison between CBE and ABE schemes shows

that the gap between these two are shrinking as the cache size increases. This
is because ABE scheme utilizes the space in cache more efficiently than CBE
scheme. Without sharing, data shared by multiple contexts may have several
copies in the Cache belonging to different context sets in CBE scheme. Therefore,
when the cache size is small, ABE scheme achieves more advantages. When the
cache size is big, the effect of cache space utilization is reduced.

5.4 Experiment 3: CHR vs. TTL

Time-To-Live (TTL) is the duration a data item is allowed to be cached on a
mobile device. TTL is determined by Authority when giving the permission as-
signment, and enforced at Content Server when sending the data. For Authority,

Context-Related Access Control for Mobile Caching 401

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cache Size

C
ac

he
 H

it
R

at
e

ABE Scheme(Cold)
ABE Scheme(Hot)
ABE Scheme(Random)
CBE scheme
Flush scheme

(a) The impact of changing cache size
to CHR

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

λ

C
ac

he
 H

it
R

at
e

Flush scheme(cache size=20)

Flush Scheme (cache size=200)

Flush Scheme (cache Size=400)

CBE scheme (cache size=20)

CBE scheme (cache size=200)

CBE scheme (cache size=400)

ABE scheme (cache size=20)

ABE scheme (cache size=200)

ABE scheme (cache size=400)

(b) The impact of context change rate
to CHR

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

TTL (s)

C
ac

he
 H

it
R

at
e

Flush scheme(λ=40)
Flush scheme(λ=70)
Flush scheme(λ=85)
CBE scheme(λ=40)
CBE scheme(λ=70)
CBE scheme(λ=85)
ABE scheme(λ=40)
ABE scheme(λ=70)
ABE scheme(λ=85)

(c) The impact of TTl to CHR

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5
x 10

4

Size of data (in KB)

C
om

m
un

ic
at

io
n

G
ai

n
(in

 K
B

)

Optimal of mobile caching (no access control)
Flush Scheme
CBE Scheme
ABE Scheme

(d) A comparison of CG with various
data size

Fig. 3. Evaluation of mcRBAC Schemes

he wants to assign the TTL “just long enough” for future data access. The idea
is quite similar to Belady’s optimal cache replacement algorithm, which always
discards the data that will not be needed for the longest time in the future. But,
the Authority sets TTL from perspective of security.
In this experiment, given a cache size, we would like to investigate how to

choose TTL according to user’s query pattern, i.e. the context change frequency.
The result will help us (1) understand the impact of TTL with different DB
access patterns in proposed schemes; (2) understand how to choose right TTL for
different DB types. A comparison combining all three schemes is in Figure 3(c).
From the experiment results of ABE and CBE schemes, we see that the CHR
keeps increasing as the TTL increases, because both schemes allow accessing data
cached in previous contexts. Therefore, keeping data in the cache for longer time
will result in higher CHR.
In the Flush scheme, the CHR increases to a threshold and then stops in-

creasing with the increase of TTL. This is because flush scheme will empty the
cache when context changes. Thus, the context change rate λ determines the
value of threshold in Flush scheme. As shown in the figure, the larger λ results

402 Z. Xu et al.

in higher maximum CHR. Therefore, when applying CBE or ABE schemes, one
may consider adjusting TTL as a way to improve the efficient of existing cache
management schemes, similar to the idea of using Adaptive TTL approach [23]
to maintain the cache coherency. when applying Flush scheme, user’s query pat-
tern (including context change pattern) should also be considered. A overly large
TTL will be a waste in Flush scheme. How to set an optimal TTL for a cached
data can be one of our future works.

5.5 Experiment 4: CG vs. Data File Size

In previous experiments, the ABE always achieves the highest CHR. However,
the size of cipher-text in ABE scheme is larger than in the other two schemes.
The purpose of this experiment is to show the tradeoff between CG and CHR
in different cache sizes. We present the results in Figure 3(d).
In this comparison, the optimal results are generated using the Hypothetical

Optimal Scheme with no access control. As shown in the figure, when data size
increases, the CG in all schemes increases. When the CG is below 0, it means
that it downloads more data than the case without caching. In such a case, it
would be better not to allow caching at all.
Flush scheme has very little overhead, however, the gain from CHR is also

little. When the size of data increases, the benefits of CHR become greater. CBE
scheme has little overhead but moderate CHR. Therefore, its CG is very close to
the optimal case. However, as the file sizes increases, the gap between these two
will increase because of the differences in CHR; ABE scheme has a high overhead
thus not suitable for cases when data size is small. However, when the data size
increases, the benefits of CHR starts to beat the overhead. When the file size
is greater than 30KB, the CG of ABE climbs to above 0. Also notice that, the
gap between ABE and CBE scheme is shrinking, meaning that the advantage
in CHR may be more important when the data size is big and the sharing rate
is high. If the sharing rate is not high, ABE scheme may not beat CBE scheme
by gaining from CHR improvement on allowing data sharing. Therefore, when
the data size is small, the Flush scheme and CBE scheme may be more suitable
in terms of CG. When the data size is moderate, CBE may be a better choice.
When the data size is huge, one may consider the ABE scheme. Because, in this
case, achieving better CHR has more direct effect to CG.

5.6 Experiment 5: CG vs. Context Change Rate

In Experiment 2, we have shown that, the ABE scheme has the best CHR when
context changes frequently. In perspective of CG, things may be different because
the great overhead of context changes in ABE scheme. In this experiment, we
study the impact of context change rate in the same setting as Experiment 2,
but now we compare schemes from the perspective of CG. The data size in this
experiment is fixed as 50 KB.
The result of comparison is shown in Figure 4. From the experiment results,

we can clearly see the tradeoff of applying different schemes. The Flush scheme

Context-Related Access Control for Mobile Caching 403

Fig. 4. The impact of context change rate to CG

has the lowest overhead, and yet its CHR is limited. To another extreme, the
ABE scheme can achieve highest CHR, and yet its overhead of context change
is too high. When context changes frequently or the gain from CHR is too little,
the CG of ABE scheme will be much below 0. The CBE scheme provides the
best CG in this experiment. As we can see from Figure 4, it is always close to
the optimal case. Therefore, when the cache size is small and data file is not
big, the CBE scheme would be the best choice. ABE scheme is more suitable for
cases with bigger data size. Flush scheme would perform best if the cache size
is big and the data sharing rate is small.

6 Related Work

6.1 Context-Related Access Control for Mobile Computing

In [24], a system called CRePE (Context-Related Policy Enforcing) is proposed,
which extends the permission checking of Android to support enforcing context-
related security policies at run-time. Differently, no permission checker is re-
quired in the proposed schemes. Instead, we rely on cryptographic techniques
and enforcing context-related security policies by carefully assign the user dif-
ferent decryption keys according to their contexts.
Also, in many research works, such as [25, 26], the authors consider context

as environment roles and propose context-related access control approaches by
extending the RBAC model with spatial and temporal information. For example,
[25] proposes a Spatial Role-based Access Control (SRBAC) model which allows
the authority to use location information in security policy definitions. [26]
proposes a GEO-RBAC model which allows securing the access to spatial data
in location-aware applications.

404 Z. Xu et al.

Different to these extended RBAC models, first of all, our work is more data-
oriented and focuses on enforcing the access control policy at the mobile device
side. Second, we rely on the deployed access control system to detect and enforce
the context change (i.e. updating the decryption key). The AC Manager does
not run as a reference monitor. Third, our focus is not about how the context of
mobile device changes. Instead, our proposed schemes focus on mechanisms of
enforcing context-related access control policies when the context changes.

6.2 Distributed Data Management

Many cryptographic techniques have been applied to enforce access control poli-
cies on distributed data. For example, [27] proposes a Fine-grained Distributed
data Access Control (FDAC) Scheme which applies Key-Policy Attribute-Based
Encryption (KP-ABE) to protect distributively stored sensed data in wireless
sensor networks. Different from the FDAC scheme in [27], the mobile device in
our design does not allow to encrypt or publish data. The mobile device only has
the decryption function and is limited by decryption key assigned. In addition,
[28] and [29] introduce the Attribute Based Messaging (ABM) system which al-
lows the message sender to specify allowed recipients with attribute-based access
control policies. Specifically, [29] discusses employing CP-ABE to provide end-
to-end confidentiality for ABM. [30] applies the ABM to secure the first response
coordination in mobile environment. Different from the push model in ABM, we
adopt the pull model in which the data request is generated by the mobile device
and responded by the server. Moreover, [29] focuses on recipients classified by
attributes. Differently, our focus is the same recipient with changing contexts.

6.3 Access Control on Mobile Devices

Some research works have been done to design access control systems for mobile
devices. For example, [31] proposes a mandatory access control (MAC)-based
mechanism on cellphone with the purpose of controlling the program accesses
to important system resources. [32] proposes the design of a trusted subsys-
tem which can be used to enforce MAC on mobile devices. [33] proposes a
TaintDroid system, which tracks the information-flow of privacy sensitive data
through third-party applications. [34] proposes a Porscha system, which en-
forces Digital Rights Management policies on smartphones. Both TaintDroid
and Porscha require to implement a reference monitor within the kernel of An-
droid platform.
In this work, we focus on enforcing context-related access control policies on

the application cache only. All components of access control are within the mo-
bile application space and implemented by the developer of context-aware mobile
app. Thus, our proposed schemes can be easily implemented on commodity mo-
bile devices with little modification and overhead.

Context-Related Access Control for Mobile Caching 405

7 Conclusion

We study the problem of enforcing context-related access control on cached
data in mobile devices. Specifically, we propose the design of three encryption
schemes adopting different cryptographic techniques. We present a quantitative
comparison of proposed schemes through analysis as well as simulations. We
show an application on commodity smart phones.
In our future work, we are planning to work on two directions: one direction

is to apply the proposed schemes to other context-aware mobile applications.
The other direction is to look for best cryptographic implementations suitable
for proposed schemes on different smartphone platforms.

References

1. Jiang, Z., Kleinrock, L.: Web prefetching in a mobile environment. IEEE Personal
Communications 5, 25–34 (1998)

2. Höpfner, H., Wendland, S., Mansour, E.: Data caching on mobile devices - the
experimental mymidp caching framework. In: Proc. of the 4th International Con-
ference on Software and Data Technologies (2009)

3. Apple, “Safari developer library: Storing data on the client”,
http://developer.apple.com/library/safari/

4. Allan, A., Warden, P.: Got an iphone or 3g ipad? apple is recording your moves
(2011), http://radar.oreilly.com/2011/04/apple-location-tracking.html

5. Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In:
Proc. of The Workshop on Mobile Computing Systems and Applications, pp. 85–
90. IEEE Computer Society (1994)

6. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W.
(ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

7. Lijding, M., Meratnia, N., Benz, H.: Smart signs show you the way. IO Vivat 22(4),
35–38 (2007)

8. Kyriacou, E.C., Pattichis, C., Pattichis, M.: An overview of recent health care
support systems for eemergency and mhealth applications. In: Proc. of 31st Annual
International Conference of the IEEE EMBS (2009)

9. Hinze, A., Buchanan, G.: Context-awareness in mobile tourist information systems:
Challenges for user interaction. In: Proc. Workshop on Context in Mobile HCI, in
Conjunction with Mobile HCI (2005)

10. Johnson, T., Shasha, D.: 2q: a low overhead high performance buffer management
replacement algorithm. In: Proc. of the 20th International Conference on Very
Large Databases (1994)

11. Cao, G.: A scalable low-latency cache invalidation strategy for mobile environ-
ments. IEEE Trans. on Knowl. and Data Eng. (2003)

12. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A role-based access control model and
reference implementation within a corporate intranet. ACM Trans. Inf. Syst. Se-
cur. 2, 34–64 (1999)

13. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:
Supporting location-based conditions in access control policies. In: Proc. of the
2006 ACM Symposium on Information, Computer and Communications Security,
ASIACCS 2006, pp. 212–222 (2006)

http://developer.apple.com/library/safari/
http://radar.oreilly.com/2011/04/apple-location-tracking.html

406 Z. Xu et al.

14. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: Proc. of the 6th Annual International Conference on Mobile Computing
and Networking, MobiCom 2000, pp. 32–43 (2000)

15. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proc.
of the ACM Workshop on Wireless Security (WiSe 2003), pp. 1–10 (2003)

16. N. DoCoMo, IBM, I. Corporation: Trusted mobile platform: Hardware architecture
description (2004)

17. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
integrity on mobile phone systems. In: Proc. of the 13th ACM Symposium on
Access Control Models and Technologies, SACMAT 2008, pp. 155–164 (2008)

18. Cox, L.P., Chen, P.M.: Pocket hypervisors: Opportunities and challenges. In: Proc.
of the Eighth IEEE Workshop on Mobile Computing Systems and Applications,
HOTMOBILE 2007, pp. 46–50 (2007)

19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proc. of the 2007 IEEE Symposium on Security and Privacy, SP 2007, pp.
321–334 (2007)

20. Chen, G., Kotz, D.: A survey of context-aware mobile computing research, Hanover,
NH, USA, Tech. Rep. (2000)

21. Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In:
Proc. of the IEEE International Conference on Computer Communications (IEEE
INFOCOM 2006) (2006)

22. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: Proc. of the Conference on Computer
Communications (IEEE Infocom 1999) (1999)

23. Cate, V.: Alex-a global file system. In: Proc. of USENIX File System Workshop
1992, pp. 1–12 (1992)

24. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-Related Policy Enforce-
ment for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

25. Hansen, F., Oleshchuk, V.: Srbac: A spatial role-based access control model for
mobile systems. In: Proc. of 7th Nordic Workshop on Secure IT Systems (2003)

26. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: Geo-rbac: A spatially aware
rbac, vol. 10. ACM (2007)

27. Yu, S., Ren, K., Lou, W.: Fdac: Toward fine-grained distributed data access control
in wireless sensor networks. In: Proc. of the IEEE International Conference on
Computer Communications (IEEE INFOCOM 2009), pp. 963–971 (2009)

28. Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using attribute-
based access control to enable attribute-based messaging. In: Proc. of the 22nd
Annual Computer Security Applications Conference, pp. 403–413 (2006)

29. Bobba, R., Fatemieh, O., Khan, F., Khan, A., Gunter, C.A., Khurana, H., Prab-
hakaran, M.: Attribute-based messaging: Access control and confidentiality. ACM
Transactions on Information and Systems Security, TISSEC (2010)

30. Weber, S.G.: Securing first response coordination with dynamic attribute-based
encryption. In: Proc. of World Congress on Privacy, Security, Trust and the Man-
agement of e-Business 2009 (2009)

31. Xie, L., Zhang, X., Chaugule, A., Jaeger, T., Zhu, S.: Designing system-level de-
fenses against cellphone malware. In: Proc. of the 28th IEEE International Sym-
posium on Reliable Distributed Systems, pp. 83–90 (2009)

32. Zhang, X., Seifert, J.-P., Sandhu, R.: Security enforcement model for distributed
usage control. In: Proc. of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, Sutc 2008 (2008)

Context-Related Access Control for Mobile Caching 407

33. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proc. of the USENIX Symposium on Operating Systems Design
and Implementation, OSDI (2010)

34. Ongtang, M., Butler, K., McDaniel, P.: Porscha: Policy oriented secure content
handling in android. In: Proc. of the 26th Annual Computer Security Applications
Conference, ACSAC (2010)

35. Bethencourt, J., Sahai, A., Waters, B.: The cpabe toolkit in advanced crypto soft-
ware collection, http://acsc.cs.utexas.edu/cpabe/

A Appendix

A.1 Security Analysis

Inter-Context Compromise Resistance. In both CBE and ABE schemes,
data downloaded in previous contexts may remain in the cache. If the mobile ap-
plication is compromised, the attacker may possess the decryption key of current
context. The content of cached data accessible in current context will be leaked
inevitably. However, in both schemes, the data leakage is limited to only cached
data that are accessible in the current context. Because the compromise will be
detected by the authority within the current context, only the decryption key of
current context is stored in the mobile application. Therefore, the attacker can
only possess the decryption key of current context.

Collusion Resilience. According to the adversary model, the attacker may
possess multiple mobile devices. In this case, it is critical for access control
schemes to be resilient to collusion attacks. That is, the attacker should not
be able to derive new decryption keys by keys he possessed. To defend against
collusion attacks, in the Flush Scheme, the context’s secret key Kcontext is ran-
domly chosen for each context thus collecting multiple keys will have no use at
all. Similarly, in the CBE Scheme, the keys are randomly generated basing on
a set of contexts instead of for every single context. Thus, the attacker will not
be able to use multiple decryption keys of different users or the same user to
generate a new decryption key. In the ABE Scheme, the collusion resilience is
provided by the CP-ABE scheme. For example, [19] adds randomness in the
data encryption and decryption key generation to prevent collusion attacks.

A.2 Computation Overhead Analysis

The major computation overhead is caused by performing decryption by AC
Manager. If there is a cache hit and the data is allowed to be accessed, both
Flush Scheme and CBE Scheme need one round decryption operation with a
secret key. If there is a cache hit by data id but the access is denied, both Flush
Scheme and CBE Scheme result in access denied by a simple value-based com-
parison. More expensively, CBE Scheme requires a decryption attempt to reveal
the feasibility of decryption. Because the ABE Scheme requires to perform a se-
ries of decryption operations following the access structure A. According to the

http://acsc.cs.utexas.edu/cpabe/

408 Z. Xu et al.

measurements in [19], the decryption workload depends greatly on the particular
access tree A and the set of attributes involved in the decryption. From the per-
spective of decryption algorithm implementation, the efficiency of elliptic curve
based operations is the key for the decryption speed.In [27], the author presented
an efficient implementation of elliptic curve based operations on sensors with low
computational capacity. Currently, the implementation we are using is the cpabe
toolkit implemented at Advanced Crypto Software Collection (ACSC) developed
by John Bethencourt, et al. [35].

A.3 Implementation Complexity Anslysis

Flush Scheme and CBE Scheme depend on SKC based decryption which is easy
to implement and has many efficient implementations already. The CP-ABE, on
which ABE Scheme relies, is relatively new compared to SKC and only have
several implementations provided by research groups.

A.4 Efficiency Metrics

Efficiency is critical to our proposed schemes. Because enforcing context-related
access control policies over the cached data may neutralize the benefits gained
by caching. If allowing mobile caching with access control is too costly, people
would prefer disallowing caching any sensitive data on the mobile device.

Cache Hit Rate (CHR). The Cache Hit Rate (CHR) is represented by the
percentage of data accesses that results in mobile cache. It is computed by di-
viding the sum of the queries that are answered using Cache by the sum of the
total queries in the simulation. Other performance metrics, such as query delay,
throughput, and data communication cost, all have a strong relation with CHR.

Communication Gain. Communication Gain (CG) measures the benefits of
applying a proposed scheme in terms of data downloaded. Applying access con-
trol may require extra data downloaded, because of the synchronization between
the Authority and the mobile device. To measure CG of a proposed scheme, we
count the overall data downloaded with a sequence of queries and then compare
it with that in the case without caching (i.e. base case). If the CG of a scheme is
negative, it means that applying this scheme will need to download even more
data than the base case.

Anonymity for Key-Trees with Adaptive

Adversaries�

Michael Beye1 and Thijs Veugen1,2

1 Information Security and Privacy Lab, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology,

The Netherlands
m.r.t.beye@tudelft.nl

2 Security Group, TNO, The Netherlands
thijs.veugen@tno.nl

Abstract. Hash-lock authentication protocols for Radio Frequency IDen-
tification (RFID) tags incur heavy search on the server. Key-trees have
been proposed as a way to reduce search times, but because partial keys
in such trees are shared, key compromise affects several tags. Buttyán [4]
and Beye and Veugen [3] devised trees to withstand such attacks, but as-
sumed adversaries to be non-adaptive, without access to side-channel in-
formation. We illustrate how in practice, side-channel information can be
used to attack the system.We also describe adaptive attacks that are easy
to mount and will significantly reduce tag anonymity. Theoretical analysis
of the implications on anonymity in key-trees leads to new requirements
and a new tree construction. Simulation is used to test its performance,
the results showing an improved resistance to adaptive attacks.

Keywords: RFID, Hash-lock protocol, key-tree, anonymity, anonymity
set, adaptive adversaries.

1 Introduction

We consider the problem of authenticating many Radio Frequency IDentification
(RFID) tags through hash-lock protocols, in an efficient way. The tags are au-
thenticated towards the reader through a challenge-response mechanism. Each
tag authenticates itself using some secret key combined with a random value. To
authenticate the tag, the reader will have to check the keys of all tags combined
with all possible random values, in order to find a match. Since this task is very
intensive for the reader, a key-tree is used. Each leaf of the tree represents a
tag, and each edge corresponds to a specific key. Every tag is assigned the keys
that lie on its path from the root of the tree (see Fig. 1). During the authenti-
cation protocol, a tag is authenticated step by step, i.e. edge by edge, such that
the computational load of the reader, and thus the total authentication time, is
lowered.
� Part of this research was performed at TNO for a master’s thesis for the University
of Utrecht (UU). Special thanks go to Gerard Tel (UU) for his advice, and to Harry
Fluks (TNO) for his work on the simulation code.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 409–425, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

410 M. Beye and T. Veugen

key 2 key 3

key A key B key C

key α

key D

key β

Tag 1Aα
(broken)

Anonymity
sets

key 1

Fig. 1. Key-tree with a single broken tag

However, the authentication mechanism should still remain secure. If hard-
ware level tampering is taken into account, keys that were assigned to compro-
mised tags can become known to the adversary. Because partial keys are shared
between neighboring tags in the tree, several additional tags may be partially
broken as well. How to construct the tree such that the impact to an average
tag’s anonymity will be minimal in case of one or more compromises?
In existing work on tree optimization [4, 3], adversaries are assumed not to

mount adaptive or side-channel attacks. However, we argue that in practice side-
channel information may be readily available, and we show how adaptive attacks
on the system can be mounted with minimal effort.
The main contribution of this paper is twofold. First, the effects of adaptive

and side-channel attacks on anonymity in key-trees are studied and distilled into
a new tree optimization problem. Because this problem is diametrically opposed
to Buttyán’s original optimization problem, a hybrid defense strategy is devised
and tested, to provide protection from both naive and adaptive / side-channel
attacks.
The layout of this paper is as follows: Section 2 will outline related work, with

a brief explanation of most relevant concepts. Section 3 will focus on side-channel
information, adaptive attackers and targeted attacks. Section 3.1 considers the
impact of such attacks on key-tree anonymity, and proposes a novel type of tree
as defence. Section 4 will evaluate the performance of this new construction by
means of simulations, and finally, conclusions are drawn in Section 5.

2 Related Work

Molnar was the first to propose using a tree of secrets for RFID tags [9]. Although
originally used for a system built around exclusive-OR and a pseudo-random
function, it can be applied to other challenge-response building blocks. Damg̊ard
and Østergaard Pedersen [5] use the same concept, but speak of correlated keys.
Nohara et al. in their “K-steps protocol” ([10], also dubbed NIBY) propose
to apply trees to the hash-lock setting. They use the term group IDs rather

Anonymity for Key-Trees with Adaptive Adversaries 411

than correlated keys, and their trees are unconventional (being of non-uniform
depth). Note that all these approaches use a sequence of group- and sub-group
IDs to narrow down a tag’s identity. As Molnar mentions, partial keys in such a
tree should be chosen independently and uniformly from a key space of sufficient
entropy. Failure to do so would make the system vulnerable to attack. If partial
keys are chosen properly, the adversary will have a large key space to search,
while the owner of the system can efficiently search through a limited subspace
(the actual tree).
The trade-off that exists between efficiency and security in tree-based pro-

tocols was already pointed out by Avoine [2], with respect to Molnar’s original
trees. Because tags share their partial keys, if one tag is compromised (i.e. has its
memory probed through invasive tampering), an adversary learns partial keys
for several other tags as well. This will enable him to decipher some of their
responses, resulting in reduced anonymity and facilitating tracking. Nohl and
Evans [11] try to quantify this more precisely. They distinguish between sce-
narios where compromised tags are chosen in a selective or a random way, and
compute the information leakage measured in bits. Their work is one of the few
that considers adaptive adversaries (those that selectively choose tags), although
not related to the construction of optimal key-trees.
A paper of particular interest is by Buttyán et al. [4], where the concept of

trees with variable branching factors is introduced, to better preserve anonymity
in case of attack. Anonymity in key-trees is expressed in terms of anonymity sets
(see Section 2.2). An optimization problem is formulated and solved, and the
performance of its solution is evaluated.
In [1], Buttyán et al. attempt to further improve the balance between com-

plexity and privacy in a new “group-based” authentication protocol. However,
because the first stage of this protocol includes an encryption of the tag’s per-
sonal ID, compromise of a group key would result in complete loss of anonymity
for all group members. In short, we believe that the results in [1] are flawed,
and that merging authentication steps into one step makes for more efficient
search, but by definition reduces preservation of anonymity (as follows from
results in [4]).
Beye and Veugen [3] also suggest improvements upon [4], by generalizing

Buttyán’s optimization problem. The resulting trees are provably optimal, and
greatly outperform Buttyán trees for some inputs. Beye and Veugen’s trees tend
to be slightly larger than required, allowing for future system expasion or tag
replacement. The results of [4] and [3] are summarized in Section 2.2.

2.1 Notation

This paper bases its notation on that of Buttyán in [4], but makes minor exten-
sions for adaptive adversaries:

– T = {t1, · · · , tN}: set of all tags in the system
– N : size of T , or actual number of tags in the system
– N ′: number of leaves in the tree (

∏
(B)), or maximum number of tags in the

system, N ′ ≥ N

412 M. Beye and T. Veugen

– c: number of compromised tags
– P (ti): helper function that returns the anonymity set to which tag ti belongs
– Pj : anonymity set j, 0 ≤ j ≤ �
– S: size of a given anonymity set
– T : the set of targeted tags, T ⊆ T
– S̄(T): average size over all anonymity sets for the members of T , in a given
configuration

– S̄〈−〉(c, T): S̄(T), averaged over all configurations of c compromised tags
across T (Definition 2)

– S̄0(c, T): lower bound for S̄(c, T), in the worst-case configuration of c com-
promised tags across T (see Definition 3)

– B = (b1, . . . , bd): a “branching factor vector” (or tuple), representing a tree
of depth d; furthermore, B\{b1, · · · , bx} denotes the vector (bx+1, . . . , bd)

– R(B): resistance to single member compromise for a tree with branching

factor vector B. R(B) ≡ S̄〈−〉(1,T)

N ≡ S̄0(1,T)
N

– Rc(B): resistance to c member compromise for a tree with branching factor
vector B, Rc(B) = S̄〈−〉(c, T)/N

–
∑
(B): shorthand for

∑d
i=1 bi, or the sum over all elements in B

–
∏
(B): shorthand for

∏d
i=1 bi, or the product over all elements in B

Sometimes T is left out of the notation, e.g. in S̄(c), when T = T . Similarly, c
is omitted in case of single member compromise (c = 1).

2.2 Key-Trees

Buttyán et al. noted that a time-anonymity trade-off exists, where narrow, deep
trees allow faster search, while wide, shallow trees provide more anonymity. Ob-
viously, if many tags share the same partial keys, many tags can be excluded
from the search space after each authentication stage, implying faster search.
The increased anonymity can be intuitively explained by the fact that when
partial keys are shared between fewer tags, the amount of information gained
by compromising a single tag is limited. Buttyán uses the concept of anonymity
sets (Pfitzmann and Köhntopp [12], Dı́az [6]) to quantify matters.

Definition 1. Assume a tag ti sends a given message m (or participates in a
protocol execution). For an observer O, the anonymity set P (ti) contains all
tags that O considers possible originators of m. Because all tags in P (ti) are
indistinguishable to O, ti is anonymous among the other tags in the set.

Anonymity sets provide a sliding scale for anonymity, where belonging to a
larger set implies a greater degree of anonymity. Total anonymity holds if the set
encompasses all possible originators in the whole system (one is indistinguishable
among all N tags in T), and belonging to a singleton set implies a complete lack
of anonymity.

Anonymity for Key-Trees with Adaptive Adversaries 413

To measure the level of anonymity offered by a tree, the level of anonymity pro-
vided to a randomly selected member is used. This expected size of the anonymity
set that a randomly selected member will belong to is denoted S̄ by Buttyán and
equals S̄(c, T) in our notation. One could also view it as the average anonymity
set size over all tags, as shown in Equation 1. Note that S̄ can be computed for
any given scenario where a tree is broken into anonymity sets.

S̄ =

N∑
i=1

|P (ti) |
N

=

�∑
j=1

|Pj |
N

|Pj | =
�∑

j=1

|Pj |2
N

, (1)

where P (ti) is a function that returns the anonymity set to which tag ti belongs,
Pj denotes an anonymity set and � is the number of sets. Set P0 is defined as
the set containing the compromised tag, e.g. in Figure 1 P0 = {t1Aα}. The sets
Pi, 1 ≤ i ≤ �, form a partitioning of T .
Buttyán then defines R, the resistance to single member compromise, as S̄

computed for a scenario where a single tag is broken, and then normalizing the
result (as in Dı́az [6]). Note that because we can freely order the anonymity
sets, c = 1 leads to a single unique configuration. With its range of [0, 1], R
is independent of N , allowing for easy comparison between systems of different
sizes.

R =
S̄

N
=

�∑
j=1

|Pj |2
N2

, (2)

where Pj denotes an anonymity set, � is the number of sets, d denotes tree
depth, and S̄ is computed for the (unique) scenario resulting from single member
compromise. Verify that, in this scenario, the number of sets � is indeed equal
to d+ 1.
Buttyán proposes the use of trees with different, independent branching fac-

tors on each level, sorted in descending order (as shown in Figure 1). We will
refer to such trees as “Buttyán trees”, and to trees with a constant branching
factor as “Classic trees”.
Trees will be described by their branching factor vectors B = (b1, . . . , bd),

where the variables bi (1 ≤ i ≤ d) are positive integers denoting the branching
factor at level i.
Buttyán et al. in [4] reach the conclusion that the branching factors near the

root contribute more to S̄ and R. For trees with variable branching factors this
means that a deep, top heavy Buttyán tree can potentially outperform a shallow
classic tree.
We rephrase Buttyán et al.’s optimization problem as:

Problem 1. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the lexicographically largest vector
B = (b1, . . . , bd) subject to the following constraints:

414 M. Beye and T. Veugen

∏
(B) =

d∏
i=1

bi = N , and
∑
(B) =

d∑
i=1

bi ≤ Dmax . (3)

Buttyán et al. provide a greedy algorithm that solves this problem recursively.
It starts with the prime factorization of N and tries to combine prime factors as
long as the sum (authentication time) remains acceptable.
However, Buttyán recognizes that trees need to stand up to more than single

tag compromise. Without going into mathematical detail, Buttyán suggests to
express S̄ for the general case in two different ways:

Definition 2. S̄〈−〉(c) expresses S̄(c) as the average over all
(
N
c

)
possible dis-

tributions of c compromised members across the tag set T .

Our notation is a natural extension of Buttyán’s S̄〈−〉, directly incorporating
c. Depending on how each successive member is picked from the tree, different
anonymity sets are broken down. Buttyán notes that computing S̄〈−〉 is hard,
and therefore suggests an alternative measure:

Definition 3. S̄0(c) represents the worst-case value of S̄(c) for all
(
N
c

)
possible

distributions of c compromised members across the tag set T .

Although not stated explicitly in [4], this worst-case value is attained in (any of)
the most uniform distributions of c compromised tags across T .

Proof. Assume that we are allowed to choose tags to be compromised sequen-
tially, with the aim to minimize the average anonymity set size. The first com-
promised tag leads to a unique configuration. Each subsequent compromised tag
leads to a new configuration, with more anonymity sets (of varying, decreasing
size). To minimize the average set size in the resulting configuration, the next
tag to be compromised should be chosen from (one of) the largest anonymity
set(s) in the current configuration. When sorting anonymity sets in ascending
order, we observe that this is equivalent to chooseing tags (as) uniformly (as
possible given the tree structure) across T . By induction, our claim holds for
any c. ��

Again, Buttyán’s notation S̄0 is generalized to directly incorporate c. Buttyán
correctly remarks that S̄0(c) is far easier to compute, and acts both as a lower
bound and an accurate approximation for S̄〈−〉(c).
A different tree construction was proposed by Beye and Veugen [3], who mod-

ify Buttyán’s optimisation problem to:

Problem 2. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the vector B = (b1, . . . , bd) that max-
imizes R(B) subject to the following constraints:

∏
(B) =

d∏
i=1

bi ≥ N , and
∑
(B) =

d∑
i=1

bi ≤ Dmax . (4)

Anonymity for Key-Trees with Adaptive Adversaries 415

The main idea is that the condition
∏
(B) = N is too strict and could lead to

inferior solutions. It is shown in [3] how key-trees can be optimized for Problem 2,
and that they indeed better retain anonymity when tags are compromised. The
number of leaves in the tree, N ′ =

∏
(B), will generally be larger than the actual

number N of current tags in the system, and therefore gives an additional buffer
of tag IDs which is useful when expanding the system, or replacing compromised
tags. Note that because a key-tree only needs to be constructed once (and as
a pre-computation stage), the efficiency of the tree-building algorithm is not
critical. However, both Buttyán’s algorithm, as that of Beye and Veugen are
sub-linear in the size of inputs N and Dmax.
The difference in output can be illustrated with the help of the examples in

Table 1:

– Set 1, borrowed from [4], shows that Buttyán’s algorithm is not optimal in
the setting of Problem 2. The output of Beye and Veugen’s algorithm is
lexicographically larger, although not much.

– In Set 2, the input contains relatively large primes. Buttyán’s algorithm can-
not improve upon the Classic tree at all, leaving much room for improvement
by Beye and Veugen’s algorithm. The difference in performance is about as
large as between the Classic and Buttyán trees in Set 1.

– For Set 3, Buttyán’s algorithm performs similarly and provides the same
output as Beye and Veugen’s algorithm. Set 3 is a relatively small example
to test whether a large bd has a positive effect on the entire tree.

Table 1. Test cases

Input Classic Buttyán Beye and Veugen Hourglass

Set 1: N = 27000, (30, 30, 30) (72, 5, 5, 5, 3) (73, 5, 3, 3, 3, 3), (70, 3, 3, 3, 2, 9),
Dmax = 90 N ′ = 29565 N ′ = 34020.

Set 2: N = 24389, (29, 29, 29) (29, 29, 29) (84, 4, 3, 3, 3, 3), (80, 4, 3, 3, 10),
Dmax = 100 N ′ = 27216 N ′ = 28800

Set 3: N = 1728, (12, 12, 12) (24, 4, 3, 3, 2) (24, 4, 3, 3, 2) (20, 4, 3, 9),
Dmax = 36 N ′ = 2160

3 Adaptive Adversaries

Buttyán et al. in [4] and Beye and Veugen in [3] assume their adversaries to be
non-adaptive and to select tags at random (naively). Their aim is to provide
optimal defense (by maximizing S̄〈−〉(c, T)) in the expected average case – a
uniformly random distribution of compromised tags.
We would like to model other possible lines of attack and see what is required

to best preserve anonymity in those cases. First of all, we wish to distinguish
the following two goals that an adversary may have:

416 M. Beye and T. Veugen

1. Universal tracking: an attacker wants to track any and all tags in the system.

2. Targeted tracking: an attacker wants to track certain tags in the system.

In both scenarios, naive attacks can be mounted by breaking tags at random,
thus reducing the expected anonymity set size of the average tag (S̄〈−〉(c, T) and
S̄〈−〉(c, T), respectively).
However, clever adversaries may employ additional knowledge to expedite

matters. In cryptographic literature, a side-channel attack is commonly defined
as “any attack based on information gained from the physical implementation
of a crypto-system, rather than theoretical weaknesses in the algorithms, which
is the aim of cryptanalysis.” The following formal definition is based on that of
Köpf and Basin’s [8]:

Definition 4. Let K be a finite set of secret inputs, M be a finite set of mes-
sages, and D be an arbitrary set. We model cryptographic systems as (consisting
of) functions of type F : K ×M → D, where we assume that F is invoked by
two collaborating callers. One caller is an honest agent that provides a secret
argument k ∈ K and the other caller is a malicious agent (the attacker) that
provides the argument m ∈ M . We assume that the attacker has no access to the
values of k and F (k,m), but that he can make physical observations about F ’s
implementation IF that are associated with the computation of F (k,m) (side-
channel information). The malicious agent performs an attack in order to gather
(side-channel) information for deducing k or narrowing down its possible values.
Such an attack consists of a sequence of attack steps, each with two parts: A
query phase in which the attacker decides on a message m and sends it to the
system, and a response phase in which he observes IF while it computes F (k,m).

In the setting of RFID key-trees, the most obvious example of side-channel infor-
mation is serialized issuing. RFID tags are delivered in batches and companies
often implement systems in a structured way. Adversaries that are interested in
breaking the keys belonging to a particular company, departement or person, will
often be able to easily learn some additional information about the RFID tags,
and consequently about the construction of the key-tree. Choosing keys from
the tree and assigned them to tags in such an orderly fashion can give rise to
strong correlations between date of issuing, physical location and key material.
Using this information, an attacker could mount the following attacks:

Ad 1. Universal tracking: to track all tags efficiently, an attacker will aim to make
the average anonymity set size over all tags (S̄) as small as possible. Assuming
that tags are distributed and compromised at random (no known side-channel
information can be exploited), the expected remaining anonymity after an at-
tack is equal to S̄〈−〉(c, T) (by definition). In some cases, an unknown order in
the tree (i.e. serialized issuing) can work against this adversary’s goals, by mak-
ing the spread of his compromised tags less uniform than he expects. However,
if the adversary manages to exploit such an underlying source of side-channel
information, it can help him to select his compromised tags with a more uniform
distribution. This will shift the results closer to the worst-case value S̄0(c, T).

Anonymity for Key-Trees with Adaptive Adversaries 417

Ad 2. Targeted tracking: when attacking a specific subset of tags T ⊂ T , without
side-channel information, the expected result S̄〈−〉(c, T) = S̄〈−〉(c, T); tags in T
are no different from the average tag. However, if the attacker is able to exploit
side-channel information, his efforts can be focussed on breaking tags in T (or in
branches that contain members of T). Note that breaking other tags does have
a limited impact : it reduces the set size for those tags (if any) in T which have
not had any of their keys revealed yet (and are thus in the same anonymity set).
Still, breaking tags in T itself has by far the largest impact.
Even worse, we argue that a stronger and more readily available source of

side-channel information exists, when considering adaptive attacks :

Definition 5. In an adaptive attack, the attacker can use the observations
made during his first n queries to IF to choose his message m for the n + 1st
query.

The most obvious adaptive attack in the current setting would be to test target
tags before deciding whether to compromise them or not. Because we already
assumed that our attacker has the capability to interrogate a tag and observe its
response (for the purpose of tracking), this type of attack would be almost trivial
to mount in practice. By simply interrogating a candidate tag, the adversary can
determine how many (and even which) keys it shares with his set of “already
known keys”.
An adaptive adversary has the ability to compromise only those tags that best

suit his purposes (i.e. do the most harm with a minimal c), making the following
attacks possible:

Ad 1. Universal tracking: if a candidate tag shares too many of its keys with
previously compromised tags, it can already be tracked to some extent. It does
not form a worthy target for actual compromise, because it would not yield
enough new keys. Only tags from unknown parts of the tree, that (mostly) use
unknown keys, will be compromised. The resulting distribution is more uniform
than the expected case, and more closely resembles the fully-uniform worst-case
distribution. The rapid breakdown of remaining large anonymity sets will push
anonymity metrics towards their worst-case value S̄0(c, T).
Ad 2. Targeted tracking: if a candidate tag replies with partial keys that are
known, it is located in a known part of the tree, and the tag is selected for
compromise. This focusses the efforts in a particular sub-tree and rapidly breaks
down the anonymity of this subset of tags. Although it would be hard for the at-
tacker (without additional knowledge) to choose which part of the tree to attack,
a (randomly selected) subset T can be attacked in particular. Attacks that com-
bine adaptive strategies with other side-channel information (e.g. exploitation
of serialized issuing) would have a serious impact the anonymity in specifically
chosen target sets.

To keep the input to our simulations manageable, we assume that tags in T are
adjacent tags in the tree. We believe this will fit (most) real-world sources of
side-channel knowledge. However, to model adversaries trying to track a subset

418 M. Beye and T. Veugen

T of a different shape (e.g. adaptive testing in a tree with no internal order), a
different model would be required.
We generalize S̄(c, T) to represent the anonymity provided to a randomly

selected tag ti ∈ T , for some target set T ⊆ T .

S̄(c, T) =
∑
i∈T

|P (ti) |
|T | , (5)

where P (ti) is a function that returns the anonymity set to which tag ti belongs.

Definition 6. S̄〈−〉(c, T) expresses S̄(c, T) as the average over all
(
N
c

)
possible

distributions of c compromised members across the tree T .

Definition 7. S̄0(c, T) represents the worst-case value of S̄(c, T) for all
(|T |

c

)
possible distributions of c compromised members across the (sub-)tree contain-
ing T .

The worst case for tags in T is attained for those scenarios where all c tags fall
into those branches containing members of T , and the spread of these tags is
(as close as possible to) uniform. If c ≥ |T |, then the remaining tags are spread
uniformly (so far as possible) over the remaining branches of the tree.

3.1 Theoretical Impact of Targeted Attacks

Buttyán notes that his result graph for S̄0(c, T)/N seems to “become a constant”
when c = b1. The same trend was observed in the simulation results in [3].
Buttyán mainly uses it to support his claim that the preservation of anonymity
relies mostly on the first element of the branching factor vector [4], while we use
this observation as our foundation for a better defense against targeted attacks.
First we expand upon the informal explanation of this observed behaviour given
in [3], which will clearly illustrate the impact of side-channel attacks.

Definition 8. We define a turning point of function S̄0(c, T)/N as a point
where its second derivative exhibits a jump discontinuity. In specific, the rate of
decline of S̄0(c, T)/N suddenly slows down by an order of magnitude.

Corollary 1. Let ci be the number of compromised tags for which S̄0(c, T)/N
reaches its i-th turning point. Then ci =

∏
(b1, b2, · · · , bi) (product of the first i

branching factors of B). The value of S̄0(ci, T)/N will equal R(B\{b1, b2, · · · , bi}),
in other words is determined only by the remaining branching factors, further down
in B.

Proof. Assume the worst-case scenario, where the distribution of broken tags
across T is always at its most uniform (by definition of S̄0(c, T)). This implies
that each subsequent tag to be broken, must come from (one of) the largest
remaining anonymity set(s). For c ≤ b1, each newly compromised tag will thus
come from a top-level branch containing zero compromised tags. Each com-
promise reveals one new top-level key, which was previously unknown to the

Anonymity for Key-Trees with Adaptive Adversaries 419

adversary. This key is shared with a whole top-level branch containing N
b1
tags,

and its compromise has a large impact on S̄0(c, T)/N .
For b1 < c ≤ b1 · b2, targets will again fall in the largest remaining sets, but

these are now housed in the second-level sub-trees and are much smaller than
before. All top-level and b1 of the second-level keys are known, so the following
b1 · b2 − 1 compromised tags each yield one new second-level key as the most
significant result. These keys are shared among less tags (N

b1·b2). Thus, each

additional compromise has a smaller impact on S̄0(c, T). Although S̄0(c, T)/N
does not actually become a constant, the speed of its decline changes drastically.
Such a turning point will occur whenever all keys from a given level � have

become known to the adversary. There are
∏
(b1, · · · , b�) such keys, so to reveal

them requires (in this worst-case) an equal amount of compromised tags. This
means that c1 = b1, c2 = b1 · b2, · · ·, cd =

∏
(B). In these cases, all sub-trees (τj

for 1 ≤ j ≤
∏
(b1, · · · , b�)) suspended below the branches on level � are identical,

and each contains exactly 1 broken tag. From the fact that all tags are housed in
an identical subtree, it follows that S̄0(c, T)/N for the whole tree is equal to the
local S̄0(1, τj)/N

′ for any j. By definition, S̄0(1, τj)/N (for a tree τj containing 1
broken tag) equals R(B′) (from Equation 2, also verified by observing a subtree
with one compromised member in Figure 1). However, the local S̄0(1, τj) and
R(B′) are based on τj ’s local B

′ = B\{b1, b2, · · · , b�} and N ′ =
∏
(b�+1, · · · , bd).

By induction on �, it follows that S̄0(c, T)/N for the whole tree T assumes
the values R(B\{b1}) (for c = c1), R(B\{b1, b2}) (for c = c2),· · ·,1 (for c = cd)
at its turning points. Hence, the remaining anonymity of the remaining tags is
dependent only on the remaining branching factors b�+1, · · · , bd further down in
the tree. ��

We expect a similar situation to hold for S̄<−>(c, T), although we cannot offer a
formal description. According to the Coupon Collector’s Problem [7], one would
need to break approximately b1 · log(b1) tags to hit each top-level branch once
(assuming branches contain sufficiently many tags, such that breaking tags does
not change the probabilities for each branch significantly). However, because tags
picked from other branches also (slightly) impact S̄〈−〉(c, T), we expect a turning
trajectory rather than an exact turning point. Still, we expect the rate of decline
for S̄<−>(c, T) to depend on the same factors as S̄0(c, T).
We have seen that given side-channel information, a target subset T can be

rapidly broken down into small anonymity sets. With a Universal Attack based
on side-channel information, attackers can cause S̄0(c, T) and S̄〈−〉(c, T) to reach
their turning points and associated low anonymity values prematurely. Beye &
Veugen’s Optimized Buttyán trees [3] remain the best defense in this case.
For Targeted Attacks, the situation in the branches containing T will strongly

resemble the one described in the previous paragraphs. Given enough side-
channel knowledge, directed attacks inside a smaller sub-tree ignore the top-
level branching factor(s). Because the adversary can pick tags from the right
branches accurately, the remaining branches offer little to no protection. We
therefore postulate that the values reached by S̄0(c, T) and S̄〈−〉(c, T) after the
turning points are most important, not when the turning points are reached.

420 M. Beye and T. Veugen

These values mostly depend on the tail end of B, not the head. Also, we feel
that the difference between belonging to a large and a medium anonymity set is
less critical than the difference between belonging to a small anonymity set, and
having no anonymity at all.

3.2 Hourglass Trees

Based on the conclusions of the previous section, we arrive at two conflicting
optimization problems. Maximizing the top branching factor is key in defend-
ing against Universal and naive attacks, while the lower branching factors play
a central role in defending against Targeted Attacks. Without making further
assumptions about real-world adversaries, an optimal way of allocating weights
cannot be found. To test our hypotheses experimentally, we propose the “Hour-
glass” tree shape. It is top-heavy like Buttyán or Beye & Veugen trees (to provide
defense against naive and Universal Attacks), but some weight has been shifted
to the lowest branching factor to defend against heavy Targeted Attacks. We
expect this tree shape to perform better in such scenarios, without sacrificing
too much of their strength versus Universal or naive attacks.
Without being able to formulate exact requirements for the tree shape, de-

signing a new tree-building algorithm is not possible. For the purpose of our
experiments we will manually adjust B as follows. The bottom branching factor
bd of Beye & Veugen’s Optimized Buttyán trees is normally between 2 and 4.
We will increase it to a value of around 9, by moving weight from the other bi,
which we expect will provide noticeable results. Note that in some cases, such
modification allows for the merging of other branching factors, resulting in a
more shallow tree (see Table 1).

4 Simulation

It has already been shown in [3] that Beye & Veugen’s trees can yield a lexi-
cographically larger B than Buttyán’s approach. We now want to evaluate our
Hourglass trees and compare them to Classic and Beye & Veugen trees. To do
this, we will compute anonymity measures for each of these tree shapes, under
different circumstances.

S̄0(c, T), S̄〈−〉(c, T) and S̄0(c, T) will be computed by iterating over all pos-
sible scenarios in an efficient way, and taking the (weighted) average and mini-
mum. We will estimate S̄〈−〉(c, T) by means of random sampling, for reasons of
tractability. Where applicable, anonimity measures for trees with N ′ > N tags
will be scaled by a factor N

N ′ as discussed in [3].
Side-channel knowledge (or adaptive behavior) is modeled by a probability P

for successfully applying knowledge to select a tag from T , where a higher P
represents more side-channel knowledge. In case of failure (probability 1−P), a
random tag is selected from the entire (uncompromised) population. Hence, the

total probability of selecting the (c+ 1)th tag from T equals P + |T |−c
N−c (1− P),

excluding the c tags that were previously compromised.

Anonymity for Key-Trees with Adaptive Adversaries 421

In our experiments, |T | = 100, while P = 0.1, 0.5 and 1.0. To approximate
S̄〈−〉(c, T), 10,000 random samples were taken and averaged. This resulted in a
smooth graph for all inputs, except where P = 0.1, for Sets 1 and 2. In these cases
100,000 samples were taken, leading to better results. Running all calculations
for 0 ≤ c ≤ 100 was still feasible on the hardware used (Pentium-IV 2.0GHz
running Windows XP).
Table 1 shows the three input sets for which we have evaluated the Classic,

Beye & Veugen and Hourglass trees.

4.1 Graphs for Naive Attacks

Figures 2, 3 and 4 show the performance of the different trees, in the case of
naive attacks (compromise at random, without side-channel knowledge). The
datasets are selected by relevance, and we discuss how these results relate to our
hypotheses and claims.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

4

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
0
(c

,T
)

Classic
Beye & Veugen (scaled)
Hourglass (scaled)

Fig. 2. S̄0(c, T) for Set 1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
0
(c

,T
)

Classic
Beye & Veugen (scaled)
Hourglass (scaled)

Fig. 3. S̄0(c, T) for Set 2

422 M. Beye and T. Veugen

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
<
−

>
(c

,T
)

Classic
Beye & Veugen
Hourglass (scaled)

Fig. 4. S̄〈−〉(c, T) for Set 3

Figure 2 shows the Beye & Veugen and Hourglass trees performing similarly
for Set 1, in terms of S̄0(c, T). The same trend was observed for Set 2 (Figure 3),
and for S〈−〉(c, T) in Set 3 (Figure 4). The fact that the differences between
Hourglass and Beye & Veugen trees is not large in the absence of side-channel
knowledge, again supports our claim that the value of S̄ depends mostly on the
first element of B. It also confirms our hypothesis that a small decrease in b1
does not have major negative impact on the anonymity in case of naive attacks.
The Hourglass tree shape seems to offer no benefit in the non-adaptive (naive)

scenario’s (as expected), and performs only slightly worse than the other trees
in terms of S〈−〉(c, T) (as in Figure 4).

4.2 Graphs for Targeted Attacks

Figures 5 and 6 show the results in case of Targeted Attacks (on a target subset
T of size 100, with the aid of side-channel knowledge or adaptive testing). Again,
a selection of result datasets is shown, based on relevance.
It is interesting to observe Classic trees performing very well in these sce-

nario’s, which is due to their large value of bd. As expected, superior results for
S̄0(c, T) are attained with Hourglass trees, second only to Classic Trees. They
outperform Beye & Veugen’s Optimized Buttyán trees significantly (Figure 6).
However, Beye & Veugen’s trees can perform better in terms of S̄〈−〉(c, T) at
low c values, as was the case for Set 3 (0 ≤ c ≤ 20) in Figure 5.
For S̄〈−〉(c, T), Hourglass trees under perform in scenarios with low side-

channel knowledge (P = 0.1). Although we did not expect this, it can be ex-
plained by the fact that the expected average distribution will remain closer to
uniform than in cases with more side-channel knowledge – in other words, we
remain close to a naive attack. For low P values, S̄〈−〉(c, T) behaves much like
S̄〈−〉(c, T), for which we have seen that Hourglass trees degrade performance
(slightly).
In case of higher side-channel knowledge, the strength of Hourglass trees be-

comes more apparent. An intersection point exists (see Figure 5), where

Anonymity for Key-Trees with Adaptive Adversaries 423

Hourglass trees start outperforming Beye & Veugen trees. This point arises ear-
lier when stronger side-channel knowledge is available. Indeed, for the worst-case
S̄0(c, T), P = 1.0, the turning point comes very early (c = 20), and the Hourglass
tree performs significantly better than its competitor (see Figure 5).

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
<
−

>
(c

,T
)

Classic
Beye & Veugen
Hourglass (scaled)

Fig. 5. S̄〈−〉(c, T) for Set 3, P = 1.0

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
0
(c

,T
)

Classic
Beye & Veugen (scaled)
Hourglass (scaled)

Fig. 6. S̄0(c, T) for Set 2

5 Conclusions and Future Work

Simulation results support our intuition with regards to our proposed anonymity
measures S̄0(c, T) and S̄〈−〉(c, T). They represent the anonymity in a target
subset T in the same way that S̄0(c, T) and S̄〈−〉(c, T) do for the whole tree T .
Their rate of decline is directly related to the branching factors. As anticipated,
the remaining anonymity in case of Targeted Attacks depends heavily on the
branching factors located in the tail of B. This means that maximizing S̄(c, T)
and S̄(c, T) are indeed contradicting goals, and real-world assumptions regarding
attackers will dictate where the emphasis should lie.

424 M. Beye and T. Veugen

The Beye & Veugen trees perform well in terms of S̄0(c, T) and S̄〈−〉(c, T), but
not for S̄0(c, T) and S̄〈−〉(c, T) with high side-channel knowledge and c values,
as we expected.
The proposedHourglass trees perform best in terms of S̄0(c, T) and S̄〈−〉(c, T),

but only with high side-channel knowledge and c values. Their performance in
terms of S̄0(c, T) and S̄〈−〉(c, T) is only slightly below that of Beye & Veugen
trees. To summarize: if we expect heavy Targeted Attacks, Hourglass trees will
provide prolonged protection, at only a small “cost” in overall anonymity in
other attack scenarios.

Some possible directions for future work are:

– Better simulation of real-world scenarios, specifically side-channel knowledge
and adversarial behavior. For example modeling non-continuous target sets,
and realistically estimating the size of target sets, minimum and maximum
values for c, and the amount and nature of side-channel knowledge available
to adversaries.

– Given the trade-off between maximizing S̄(c, T) and S̄(c, T), find a way to
prioritise between defending against targeted and general attacks, and design
an algorithm to optimize trees accordingly.

– Look into new measures for anonymity which do not show absolute declines,
but the ratio between current anonymity set size and the decline caused by
the next tag being compromised. This would fit the idea that a decline in
set size from 1,000 to 999 does not have the same impact as going from a
set of size 2 to having no anonymity at all.

References

1. Avoine, G., Buttyán, L., Holczer, T., Vajda, I.: Group-based private authentication.
In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks, pp. 1–6 (2007)

2. Avoine, G., Dysli, E., Oechslin, P.: Reducing Time Complexity in RFID Sys-
tems. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306.
Springer, Heidelberg (2006)

3. Beye, M., Veugen, T.: Improved Anonymity for Key-trees. Cryptology ePrint
Archive (2011)

4. Buttyán, L., Holczer, T., Vajda, I.: Optimal Key-Trees for Tree-Based Private
Authentication. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp.
332–350. Springer, Heidelberg (2006)

5. Damg̊ard, I., Pedersen, M.Ø.: RFID Security: Tradeoffs between Security and Ef-
ficiency. Cryptology ePrint Archive, Report 2006/234 (2006)

6. Dı́az, C.: Anonymity Metrics Revisited. In: Dolev, S., Ostrovsky, R., Pfitzmann,
A. (eds.) Anonymous Communication and its Applications. Dagstuhl Seminar Pro-
ceedings, vol. 05411, Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl (2006)

7. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors, caching
algorithms and self-organizing search. Discrete Appl. Math. 39(3), 207–229 (1992)

Anonymity for Key-Trees with Adaptive Adversaries 425

8. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: ACM Conference on Computer and Communications Security, pp. 286–
296 (2007)

9. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices,
and architectures. In: CCS 2004: Proceedings of the 11th ACM Conference on
Computer and Communications Security, pp. 210–219. ACM, New York (2004)

10. Nohara, Y., Nakamura, T., Baba, K., Inoue, S., Yasuura, H.: Unlinkable iden-
tification for large-scale rfid systems. Information and Media Technologies 1(2),
1182–1190 (2006)

11. Nohl, K., Evans, D.: Quantifying Information Leakage in Tree-Based Hash Proto-
cols (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 228–237. Springer, Heidelberg (2006)

12. Pfitzmann, A., Köhntopp, M.: Anonymity, Unobservability, and Pseudonymity -
A Proposal for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

Analyzing the Hardware Costs of Different

Security-Layer Variants
for a Low-Cost RFID Tag�

Thomas Plos and Martin Feldhofer

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Thomas.Plos,Martin.Feldhofer}@iaik.tugraz.at

Abstract. Radio-frequency identification (RFID) technology is the en-
abler for the future Internet of Things (IoT) where security will play an
important role. In this work, we evaluate the costs of adding different
security-layer variants that are based on symmetric cryptography to a
low-cost RFID tag. In contrast to related work, we do not only consider
the costs of the cryptographic-algorithm implementation, but also the
costs that relate to protocol handling of the security layer. Further we
show that using a tag architecture based on a low-resource 8-bit micro-
controller is highly advantageous. Such an approach is not only flexibility
but also allows combining the implementation of protocol and crypto-
graphic algorithm on the microcontroller. Expensive resources like mem-
ory can be easily reused, lowering the overall hardware costs. We have
synthesized the security-enabled tag for a 130 nm CMOS technology, us-
ing the cryptographic algorithms AES and NOEKEON to demonstrate
the effectiveness of our approach. Average power consumption of the mi-
crocontroller is 2�W at a clock frequency of 106 kHz. Hardware costs of
the security-layer variants range from about 1100GEs using NOEKEON
to 4500GEs using AES.

Keywords: Low-cost RFID tag, 8-bit microcontroller, AES, NOEKEON,
security layer, low power consumption.

1 Introduction

Over the last years, radio-frequency identification (RFID) technology has found
its way into many applications of our daily life. The integration of RFID func-
tionality into the latest smart phones (e.g. Nexus S, Blackberry Bold 9900)
emphasizes the relevance of this technology. An upcoming application that re-
lies on RFID technology is the Internet of Things (IoT). The vision of the future
IoT is that every object has communication capabilities by equipping it with

� This work has been supported by the Austrian Government through the research
program FIT-IT Trust in IT Systems under the Project Number 820843 (Project
CRYPTA) and by the European Commission through the ICT programme under
contract ICT-2007-216676 (ECRYPT II).

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 426–435, 2012.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Analyzing the Hardware Costs of Different Security-Layer Variants 427

an RFID tag. An important aspect of the IoT is security [5]. Equipping every
object with a tag presumes that they are cheap in price, making the integration
of security a challenging task.

A typical RFID system mainly consists of three components: a back-end
database, a reader, and one or more tags. The reader is connected to the back-
end database and communicates with the tags contactlessly by means of a radio-
frequency (RF) field. A tag is a small microchip attached to an antenna that
receives its data and probably the clock signal from the RF field emitted by the
reader. So-called passive tags also receive their power from the RF field.

The emergence of the IoT will not only pave the way for new applications
but will also require to have additional functionality available on the tags. Such
additional functionality comprises for example file management and security
features, which increases the control complexity on the tag. Today’s RFID tags
use state machines fixed in hardware for handling their control tasks. As soon
as the control complexity increases, the state-machine approach is no longer
practical and even inefficient. Using a microcontroller approach instead that is
more flexible seems to be favorable [13,14]. Having a microcontroller on the tag
for handling the control tasks, allows reusing it for computing cryptographic
algorithms that are necessary for the security features.

Our contribution in this paper is twofold and deals with the integration of
security on low-cost RFID tags. Firstly, we analyze the benefits of having a
combined implementation of protocol handling and cryptographic algorithm on
a microcontroller. We demonstrate this by using a synthesizable 8-bit microcon-
troller that is optimized for low-resource usage. Secondly, we define three dif-
ferent security-layer variants using the block ciphers AES and NOEKEON and
evaluate the hardware costs introduced by them. In contrast to related work, not
only the costs of the cryptographic-algorithm implementation alone are consid-
ered, but also the costs that arise from protocol handling of the security layer.
Our results underline that protocol handling constitutes a significant cost factor
and must not be neglected.

The remainder of this paper is structured as follows. In Section 2 we present
a system overview of our low-cost tag. Section 3 gives details about the deployed
security-layer variants and Section 4 describes the concept for realizing them on
the tag. The implementation results are provided in Section 5. Conclusions are
drawn in Section 6.

2 System Overview

RFID tags consist of a small microchip attached to an antenna. The microchip
contains an analog front-end and a digital part. Complexity of the digital part
ranges from simple state machines with a small EEPROM for storing its unique
identifier (UID), to contactless smart cards with powerful microcontrollers and
special coprocessors. Powerful microcontrollers as they are found in contactless
smart cards are not suitable for our low-cost tag. They consume too much power
and require too much hardware resources. Hence, we are using a self-designed

428 T. Plos and M. Feldhofer

8-bit microcontroller for our tag that is optimized for low-resource usage. A
preliminary version of the microcontroller has been published in [12].

Our tag uses the ISO14443 standard for communication and operates in the
high frequency range at a carrier frequency of 13.56MHz. Low-level functional-
ity is implemented according to ISO14443-3 [6]. High-level functionality is im-
plemented according to ISO14443-4 [9] and uses a block-transmission protocol
for exchanging application data as specified in ISO7816-4 [7]. The digital part of
our tag mainly consists of five components: the framing logic, the low-resource
8-bit microcontroller, the bus arbiter, the EEPROM, and the true-random num-
ber generator (TRNG). The framing logic is connected to the analog front-end
and provides a byte interface to the microcontroller. Low-level commands that
are time critical are directly handled by the framing logic, commands on higher
level are forwarded to the microcontroller. The 8-bit microcontroller is the cen-
tral part of our security-enabled tag and controls all other components of the
digital part through an Advanced Microcontroller Bus Architecture (AMBA)
Advanced Peripheral Bus (APB) [1]. The APB is managed by the bus arbiter.

High-level protocol functionality of the tag, including commands for security
and file-management operations, as well as the cryptographic algorithm itself
are entirely implemented in the program memory of the microcontroller. Hence,
there is no dedicated coprocessor that handles encryption or decryption of data
as typically found in the design of security-enabled tags. Random data that is
required for security operations is generated within the TRNG and transferred
to the memory of the microcontroller over the APB. The EEPROM is divided
into files and is used for storing configuration data of the tag, the UID, the cipher
key, and user data. Files are handled through file-management operations that
allow selecting a file, reading from a file, or writing to a file. Depending on the
file, different access rights are granted.

3 Security Layer

Two security services have been selected for implementation on our tag to quan-
tify the costs of adding security functionality. The two security services are tag
authentication and reader authentication. Tag authentication ensures originality
of the tag to prevent simple cloning of. Reader authentication ensures originality
of the reader to restrict access to certain resources on the tag.

The security services are based on a challenge-response protocol using sym-
metric cryptography as defined in ISO9798-2 [8]. We have selected two different
cryptographic algorithms for the security services: AES [11] and NOEKEON [2].
Both algorithms are block ciphers with a block size of n = 128 bits. Selecting two
different block ciphers allows analyzing their influence on the overall implemen-
tation costs. AES has been chosen because it is standardized and provides high
security. NOEKEON has been selected since it provides a good trade off between
security and resource usage (encryption and decryption function of NOEKEON
can be implemented with very little overhead). Using symmetric cryptography
requires that reader and tag share a secret key K. The key can be stored on

Analyzing the Hardware Costs of Different Security-Layer Variants 429

EK (rR | rT)
TagReader

AT_CMD(rR)

K K

Fig. 1. Tag authentication

AR_CMD(EK (rT | rR))
TagReader

rT

K K
RQ_CMD

OK/FAIL

Fig. 2. Reader authentication

the tag, for example, during a personalization phase that is performed within a
protected environment (i.e. it can be assumed that there is no adversary).

Tag Authentication. The basic principle of tag authentication is illustrated
in Figure 1. The reader sends a randomly-selected challenge rR with a length
of n

2 bits through a tag-authenticate command (AT CMD) to the tag. After
receiving rR from the reader, the tag generates itself a random number rT of the
same length, and encrypts the concatenation of the two random numbers rR | rT
under the secret key K. The encrypted value is then sent to the reader, which
can decrypt it with its secret key. If both reader and tag use the same secret key,
the decrypted value will contain the random number rR that has initially been
selected by the reader, and the tag is treated as authentic.

Reader Authentication. The second security services is reader authenti-
cation, which is depicted in Figure 2. The reader sends a request command
(RQ CMD) to the tag, which in turn generates a random number rT with a
length of n

2 bits that is transmitted to the reader. It is important to note that
the tag has to store rT internally to be able to verify later whether the reader
is authentic or not (consumes n

2 bits of memory). After receiving rT the reader
generates its own random number rR (also with a length of n

2 bits), and en-
crypts the concatenation of the two random values rT | rR (position of random
numbers is interchanged compared to tag authentication) using its secret key K.
As next step, the encrypted value is transmitted through a reader-authenticate
command (AR CMD) to the tag, which decrypts the value using its secret key.
When both reader and tag use the same secret key K, the decrypted value will
contain the random number rT initially selected by the tag, and the reader is
treated as authentic. Alternatively, the reader can also decrypt rT | rR instead
of encrypting it. This has the advantage that the tag only needs to support
encryption and not encryption and decryption, which makes for block ciphers
like AES a significant difference in terms of resource usage. The tag finalizes the
authentication step by sending a message to the reader with the status of the
authentication process (OK or FAIL).

Security-Layer Variants. For a detailed analysis of the costs caused by adding
a security layer to our tag, three security-layer variants are considered. The first
variant (named Variant 1 in the following) only supports tag authentication.
Thus, the tag needs to implement the encryption function of the block cipher

430 T. Plos and M. Feldhofer

and to handle one additional command. This is the least-expensive scenario.
The second variant (Variant 2) realizes both services tag authentication and
reader authentication. For reader authentication, the alternative method previ-
ously described is used, where the reader decrypts the value rT | rR. Hence,
the tag needs only to implement the encryption function of the block cipher.
Three additional reader commands have to be handled by the tag and memory
for storing rT inside the tag has to be provided. The third security-layer vari-
ant (Variant 3) is the most expensive one. Tag and reader authentication are
supported. As in case of Variant 2, three additional reader commands need to
be handled and memory inside the tag has to be reserved for storing rT . How-
ever, the important difference to Variant 2 is that the reader-authentication
approach is used that requires the tag to support also the decryption function
of the block cipher. In order to prevent potential attacks on protocol level such
as reader-impersonation, every tag should use a different secret key K. Further,
the tag accepts an AR CMD only if it directly follows a RQ CMD (i.e. using an
AT CMD after the RQ CMD aborts the reader-authentication process).

4 Concept for Implementing the Security-Layer Variants

The way we implement the security-layer variants on our tag differs from the tra-
ditional approach typically found in related work, where protocol handling and
cryptographic algorithm are implemented separately. There, protocol handling
is implemented in a control state machine fixed in hardware and the crypto-
graphic algorithm is implemented within a coprocessor that is highly optimized
for low-resource usage. A schematic view of this approach is given in Figure 3.
As already shown in various publications, for example in the work of Yan et al.
[13] and Yu et al. [14], using a programable controller for handling complex
control tasks on RFID tags is advantageous. The design becomes more flexible,
easier to maintain, and faster to adapt.

Our tag uses also a programable approach for handling the complex parts of
the protocol (high-level protocol). Complex parts of the protocol include for ex-
ample: reconstructing chained reader commands, handling file-access commands,
and managing configuration-parameters of the tag. Moreover, when adding a se-
curity layer, control complexity further increases. Generation of random values
has to be triggered and the values have to be transferred to concerning locations
in memory. Encryption and decryption of data has to be initiated and results
have to be checked. Combining the security layer with existing tag functional-
ity like handling file-access commands and managing configuration parameters
also increases control complexity. Hence, we only use a fixed state machine in
hardware (called framing logic) for time-critical commands that require low con-
trol complexity (low-level protocol) and whose functionality is typically fixed.
Complex protocol parts are processed by an 8-bit microcontroller optimized for
low-resource usage, which can be reused for computing cryptographic algorithms
as well. A schematic view of this combined approach is presented in Figure 4.
The program code of the microcontroller contains both the implementation of

Analyzing the Hardware Costs of Different Security-Layer Variants 431

Control state
machine

Cryptographic
coprocessor

A
na

lo
g

fr
on

t-e
nd

Cryptographic
algorithm

Control signals

Data signals

Low level protocol
+

High-level protocol

Registers Registers

Fig. 3. Traditional approach where proto-
col handling and cryptographic algorithm
are implemented separately

Framing
logic

A
na

lo
g

fr
on

t-e
nd

High-level protocol
+

Cryptographic algorithm

Control signals

Data signals

Low-level protocol

Program
code

Registers

Registers

Low-resource 8-bit
microcontroller

Fig. 4. Combined approach where high-
level protocol and cryptographic algo-
rithm are handled by a low-resource
microcontroller

the high-level protocol and the cryptographic algorithm. Another benefit of this
combined approach is the easier and more efficient reuse of costly resources like
memory (registers of the microcontroller).

5 Implementation Results

We have implemented the three security-layer variants previously described using
the block ciphers AES and NOEKEON, respectively. For each block cipher,
various versions with different optimization targets are used. Implementation
results are given for a 130 nm CMOS process technology [3] after place and route
using Cadence RTL compiler and involve all components of the tag’s digital part
excluding TRNG and EEPROM.

Central element of our tag is a synthesizable 8-bit microcontroller optimized
for low-resource usage. The microcontroller is based on a Harvard architecture
using an 8-bit wide data memory (register file) and a 16-bit wide program mem-
ory (program ROM). Depending on the targeted application, up to 64 registers
can be included into the register file (specified during synthesis). The program
ROM is realized as look-up table and contains the instructions that the micro-
controller should execute. Size of the program ROM is also flexible and can be at
maximum 128kB. Synthesizing the microcontroller core (control unit, program
counter, and arithmetic-logic unit (ALU)) without register file and program
ROM for a 130 nm process technology results in a chip area of 1067GEs. A pre-
liminary version of the microcontroller has been published in [12] to which we
refer for more details.

5.1 Implementation Results of AES and NOEKEON

The two block ciphers AES and NOEKEON have been used for realizing the
security-layer variants described in Section 3. For each cipher, three different
optimization targets have been used: fast, balanced, and small. The target fast
aims for shortest execution time of the cipher by using techniques like code dupli-
cation and loop unrolling, balanced provides a good trade off between execution

432 T. Plos and M. Feldhofer

Table 1. Implementation results of the block ciphers AES and NOEKEON

Algorithm
Optimization

Encryption Decryption Code size
Utilized

target registers

[clock cycles] [clock cycles] [bytes] -

AES
fast 3149 4570 2034 39

balanced 3369 5101 1816 39
small 5104 8286 1602 39

AES fast 3070 n/a 1050 39
(encr. only) small 4270 n/a 858 39

NOEKEON
fast 3817 3785 980 35

balanced 5839 5824 532 25
small 7563 7546 414 23

NOEKEON fast 3805 n/a 652 35
(encr. only) small 7553 n/a 382 23

time and code size, and small is optimized for minimal code size where as many
operations as possible are handled through function calls that can be reused.
Encryption function and decryption function of both ciphers are implemented.
Moreover, for security-layer variants Variant 1 and Variant 2, also encryption-
only versions of the two algorithms are realized (with targets fast and small).
Data that needs to be encrypted or decrypted is located in the register file of the
microcontroller. The cipher key is stored in the EEPROM and has to be loaded
each time during processing of data.

A summary of the implementation results is presented in Table 1. The AES
implementations used in this work are similar to the ones published in [12].
In contrast to AES, NOEKEON requires only bit-wise Boolean operations and
cyclic shifts which can be implemented with compact code size. No large look-
up tables are required. We are using NOEKEON in indirect mode that applies
an additional key schedule to increase resistance against related-key attacks.
The key schedule in indirect mode can be precomputed, since the operation is
independent of the processed data and all rounds use the same key. Hence, a lot
of computation time can be saved when storing the precomputed working key
in the EEPROM instead of the original cipher key.

5.2 Implementation Results of the Security-Layer Variants

Adding security to our tag influences mainly register-file size and ROM size of the
microcontroller. For simplification, costs introduced by the TRNG and through
storing additional data like the cipher key in the EEPROM are neglected. These
costs are independent of the selected security-layer variant and the chosen block
cipher.

Our tag with advanced file-management functionality utilizes 45 8-bit registers
in the register file and 2214 bytes of code in the ROM for high-level protocol
handling. Synthesizing the microcontroller with this configuration for our 130nm
target technology results in a chip size of roughly 9 kGEs (after place and route).

Analyzing the Hardware Costs of Different Security-Layer Variants 433

Only 9 of the 45 registers are permanently used for handling the protocol (e.g.
to store status of tag and parameters). The remaining 36 registers are used
for temporarily storing data (e.g. to reassemble chained reader commands) and
can be reused when computing cryptographic algorithms. Since the computation
of AES on our microcontroller requires 39 registers, only 3 additional registers
are necessary when combining the computation of protocol and cryptographic
algorithm. When using NOEKEON, no additional registers are necessary. Even
the “largest” NOEKEON version consumes only 35 registers and fits within the
36 registers that can be reused from protocol handling.

When selecting a security layer based on Variant 2 or Variant 3 that involves
reader authentication, additional registers are required for storing the random
number rT . Since rT has a length of n

2 = 64bits, 8 additional registers are neces-
sary. As a result, the total number of utilized registers increases to a maximum
of 56 registers when reader authentication is supported and AES is used, and 53
registers when NOEKEON is used.

For determining the overall costs of the different security-layer variants, not
only the size of the register file but also the size of the ROM has to be considered.
ROM size is influenced by the security-layer variants through two parameters:
the implementation of the block cipher and handling of the additional reader
commands. Information about the code size of the different block-cipher imple-
mentations have already been given in Section 5.1. The required code size for
handling the additional reader commands depends on the security-layer variant
and ranges from 250 bytes for Variant 1 to 460 bytes for Variant 2.

Synthesizing our tag with the different security-layer variants for a 130nm
process technology gives actual numbers about the area requirements in hard-
ware. The register file of the microcontroller is built up with latches to minimize
chip area. The ROM of the microcontroller is implemented as look-up table
which gets mapped by the synthesis tool to an unstructured mass of standard
cells. Detailed synthesis results after place and route obtained with Cadence
RTL compiler are provided in Table 2. The least-expensive security-layer vari-
ant, which is Variant 1 with the code-size optimized version of NOEKEON,
results in an area overhead of 1074GEs. The most-expensive security-layer vari-
ant, which is Variant 3 with the speed-optimized version of AES, leads to an
overhead of 4465GEs.

When considering only the area requirement of the block-cipher implemen-
tation, AES encryption function and decryption function can be realized with
2772GEs. Implementing the encryption-only version costs less than 1600GEs.
This is a consequence of heavily reusing registers that are normally utilized for
handling the protocol. The so far smallest AES coprocessor implementation has
been reported by Feldhofer et al. [4] and consumes about 3400GEs. The small-
est encryption-only version of AES, recently published by Moradi et al. [10], has
a size of 2400GEs. NOEKEON comes at much lower costs. The smallest version
of NOEKEON containing encryption and decryption function counts 751GEs.
Comparison with related work is difficult since we could not find any published
low-resource hardware implementation of NOEKEON.

434 T. Plos and M. Feldhofer

Table 2. Overhead costs introduced by the different security-layer variants

Security layer
Protocol Block-cipher Total
costs costs costs

Variant Algorithm
Regi- Code

Total
Regi- Code

Total
sters size sters size

- [bytes] [GEs] - [bytes] [GEs] [GEs]

AES

Variant 1
fast 0 250 500 3 1050 1614 2115
small 0 250 500 3 858 1517 2017

Variant 2
fast 8 460 1257 3 1050 1678 2935
small 8 460 1257 3 858 1615 2872

Variant 3
fast 8 452 1165 3 2034 3300 4465
balanced 8 452 1165 3 1816 2981 4146
small 8 452 1165 3 1602 2772 3937

NOEKEON

Variant 1
fast 0 250 500 0 652 887 1387
small 0 250 500 0 382 574 1074

Variant 2
fast 8 460 1283 0 652 1041 2323
small 8 460 1283 0 382 660 1943

Variant 3
fast 8 452 1191 0 980 1545 2736
balanced 8 452 1191 0 532 883 2074
small 8 452 1191 0 414 751 1942

Costs introduced by handling the additional reader commands and potentially
storing the random number rT range from 500GEs to 1283GEs. Although of-
ten neglected in related work, handling the protocol part of the security layer
constitutes a significant portion of the overall costs and can even be the domi-
nating factor. An example is Variant 2 with the code-size optimized version of
NOEKEON, where 66% of the overhead costs are caused by the implementation
of the protocol.

Simulating our microcontroller with the most-expensive security-layer variant
(Variant 3 with speed-optimized version of AES) gives an average power con-
sumption of 2 �W at a clock frequency of 106kHz and a voltage of 1.2V. This
value is very low since the microcontroller is highly optimized for low power
consumption. Another advantage that arises from the combined implementation
of protocol handling and cryptographic algorithm on the microcontroller is that
no additional power is consumed for handling the security layer. When using a
dedicated coprocessor, additional power would be required during computation
of the cryptographic algorithm.

6 Conclusion

In this work we have evaluated the hardware overhead that arises from inte-
grating different security-layer variants into a low-cost RFID tag. The security-
layer variants are based on the cryptographic algorithms AES and NOEKEON.

Analyzing the Hardware Costs of Different Security-Layer Variants 435

We have used a combined implementation of high-level protocol handling and
cryptographic algorithm on a low-resource 8-bit microcontroller. This combined
approach provides high flexibility and allows reusing registers of the microcon-
troller that are only temporarily used during protocol handling. In that way AES
encryption function can be implemented with an overhead of about 1600GEs
and NOEKEON encryption function with an overhead of about 600GEs when
using a 130 nm CMOS technology. The microcontroller has a power consumption
of 2 �W at a clock frequency of 106 kHz. Total costs of the security-layer variants
range from 1100GEs to 4500GEs and consider also the protocol handling of the
security layer. Protocol handling can make up a significant part of the total costs
and must not be neglected.

References

1. ARM Ltd. AMBA Advanced Microcontroller Bus Architecture Specification
(1997), http://www.arm.com

2. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: NOEKEON
(2000), http://gro.noekeon.org/Noekeon-spec.pdf

3. Faraday Technology Corporation. Faraday FSA0A C 0.13 μm ASIC Standard Cell
Library (2004), http://www.faraday-tech.com

4. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEEE Proceedings on Information Security (1) (October 2005)

5. Giusto, D., Iera, A., Morabito, G., Atzori, L.: The Internet of Things - 20th Tyrrhe-
nian Workshop on Digital Communications. Springer, Heidelberg (2010)

6. International Organization for Standardization (ISO). ISO/IEC 14443-3: Identifi-
cation Cards - Contactless Integrated Circuit(s) Cards - Proximity Cards - Part3:
Initialization and Anticollision (2001)

7. ISO/IEC. 7816-4: Information technology - Identification cards - Integrated cir-
cuit(s) cards with contacts - Part 4: Interindustry commands for interchange (1995)

8. ISO/IEC. 9798-2: Information technology – Security techniques – Entity authen-
tication – Mechanisms using symmetric encipherment algorithms (1999)

9. ISO/IEC. 14443-4: Identification Cards - Contactless Integrated Circuit(s) Cards
- Proximity Cards - Part4: Transmission Protocol (2008)

10. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

11. National Institute of Standards and Technology (NIST). FIPS-197: Advanced En-
cryption Standard (November 2001)

12. Plos, T., Groß, H., Feldhofer, M.: Implementation of Symmetric Algorithms on a
Synthesizable 8-Bit Microcontroller Targeting Passive RFID Tags. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 114–129. Springer,
Heidelberg (2011)

13. Yan, H., Jianyun, H., Qiang, L., Hao, M.: Design of low-power baseband-processor
for RFID tag. In: International Symposium on Applications and the Internet Work-
shops (SAINT 2006). IEEE Computer Society (January 2006)

14. Yu, Y., Yang, Y., Yan, N., Min, H.: A Novel Design of Secure RFID Tag Baseband.
In: RFID Convocation (2007)

http://www.arm.com
http://gro.noekeon.org/Noekeon-spec.pdf
http://www.faraday-tech.com

Preventing Secret Data Leakage from Foreign

Mappings in Virtual Machines

Hanjun Gao1, Lina Wang1,2, Wei Liu1, Yang Peng1, and Hao Zhang1

1 School of Computer Science, Wuhan University, Wuhan 430072, China
ghjwhu@sina.com

2 The Key Laboratory of Aerospace Information and Trusted Computing,
Ministry of Education, Wuhan, 430072, China

Abstract. The foreign mapping mechanism of Xen is used in privileged
virtual machines (VM) for platform management. With help of it, a priv-
ileged VM can map arbitrary machine frames of memory from a specific
VM into its page tables. This leaves a vulnerability that malware may
compromise the secrecy of normal VMs by exploiting the foreign map-
ping mechanism. To address this privacy exposure, we present a novel
application’s memory privacy protection (AMP2) scheme by exploiting
hypervisor. In AMP2, an application can protect its memory privacy by
registering its address space into hypervisor; before the application exists
or cancels its protection, any foreign mapping to protected pages will be
disabled. With these measures, AMP2 prevents sensitive data leakage
when malware attempts to eavesdrop them by exploiting foreign map-
ping. Finally, extensive experiments are performed to validate AMP2.
The experimental results show that AMP2 achieves strong privacy resi-
lency while incurs only 2% extra overhead for CPU workloads.

Keywords: Direct Foreign mappings, Virtual machine, Hyprevisor, Pri-
vacy, Secrecy, Data leakage.

1 Introduction

In recent years, virtual machine monitors (VMMs, or hypervisor) have been
widely adopted in modern computing systems, such as Xen[1], VMware[2] and
KVM[3] etc. The distinguishing security features of hypervisor, especially in VM
introspection (VMI), have aroused many researchers’ attentions. For example,
Livewire[4] proposes the concept of VM introspection and applies it in the field
of intrusion detection. AntFarm[5], Xenprobes[6], XenAccess[7] and VMwall[8]
incorporates VM introspection to monitor real-time memory status and disk ac-
tivity of Guest OS, and consequently infer guest-internal events, such as running
processes, file-system operation and network connections etc. VMwatcher[9] is
implemented for detecting malwares and kernel rootkits, which are difficult to
be done in conventional methods. SBCFI[10] is used to protect the control flow
integrity of guest OS and improve its reliability and security. With the help of hy-
pervisor, Lycosid[11], Patagonix[12] and Manitou[13] can effectively detect and

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 436–445, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Preventing Secret Data 437

identify hidden processes.These efforts effectively exploit the fact that hypervisor
can easily fetch memory pages from the target guest OS.

Related Work. In spite of various managemental gains as illustrated above due
to the privileged ability in Xen hypervisor, we observe that it is also desirable to
enforce some restrictions to this privilege to avoid misuse and/or abuse. In Xen
hypervisor, any software running in the Dom0 use-space can obtain arbitrary
memory pages by making direct foreign mappings. This non-restricted memory
sharing mechanism may potentially undermine the privacy of guest OS. For
instance, when a user logs in his bank account, his account’s password will be
temporarily stored somewhere in the memory, and malware residing in Dom0
may eavesdrop the password by performing direct foreign mappings. Murrayet
al. [14] suggested to remove all uses of the direct foreign mapping operation
from Dom0 user-space to protect the privacy of virtual machine. Unfortunately,
Dom0 is designed to serve as a managing domain, and a simple removal of all
uses may undermine its availability and corrupt other security measures such as
VM introspection which has been widely used to solve system security problems
(e.g.,[4,5,6,7,8,9,10,11,12,13,15]).

Several efforts have been devoted to privacy protection of virtual machines
without significantly undermining their availability. Yang and Shin proposed
SP3[16] which exploits hypervisor to prevent application information from unau-
thorized exposure and does not require the operating system to be trustable. And
Chen et al[17] also proposed their scheme to protect the privacy and integiety of
application data based on the same assumptions. However, if malware resides in
Xen’s privileged domain, it can still eavesdrops the application data by foreign
mapping. Borders etal. proposed Storage Capsules [18] which allow users to view
and edit sensitive files in a compromised machine without leaking confidential
data. The key technique is to take a checkpoint of current system state and dis-
able device output. When editing files and re-encrypting are done, the system is
restored to original state and device output is resumed. However, this methodol-
ogy leaves the gap that if storage capsules are equipped in Xen, malware residing
in Dom0 can steal confidential data by foreign mapping.

Our Contributions. In this paper, we propose a novel scheme to protect ap-
plication’s memory privacy in DomU even when there are malwares attempting
to eavesdrop them by direct foreign mappings. The scheme is called applica-
tion’s memory privacy protection (AMP2) which is designed to mainly protect
data resided in memory, such as decrypted secrets, password entered to login
bank account etc. Whereas files stored on disk are out of our concern, because
they can be properly protected via encryption. Compared to the SP3 [16], the
Overshadow[17] and the Storage Capsules [18] proposals, our methodology makes
special efforts to protect secret data in the case that malware resides in priv-
ileged domain(Dom0) in Xen, which enables our scheme to be complementary
to these above three proposals and to provide stronger privacy protection.To
keep availability, instead of removing the foreign mappings as in the Murray
et al. solution [14], our scheme restricted them in a way such that a memory

438 H. Gao et al.

page allocated to protected application is unable to be mapped by Dom0 or any
other privileged domains. To this end, we present a kernel module to accept
the request from the user-space and created a hypercall to send the protection
request to the hypervisor. Also, we carefully strengthen the page table updating
handler to intercept any mapping operation so that it can dynamically protect
application’s memory pages.

2 AMP2 Scheme

In AMP2, when an application needs to be protected, it issues the request to
hypervisor. Hypervisor maintains a protected applications memory page counter
table (AMPC table) which is used to keep the page counters registered by the
application.1 When foreign mapping to DomU’s pages occur, hypervisor will look
up AMPC table to get the counters and decide whether the foreign mapping can
be done. At the same time, AMP2 also maintains a foreign mapping tracking
table (FMT table) to record all foreign mapping operations. If a memory page
which has been mapped by foreign mapping is dynamically allocated to a pro-
tected application, the previous foreign mapping will be redirected to some other
public page, such as shared info page etc, and the relevant entries in FMT table
will be cleared too. Finally, AMP2 must be aware of the events of application
exiting, memory protection canceling and DomU destroying, and consequently
update AMPC table lest legitimate foreign mapping cannot be performed.

0x0f0x0a0x080x05

0x00

0x08

0x10 0x18

0x40

0x09

0x07 0x0c

0x20 0x28 0x30 0x38

mfn

PTE’s address

Fig. 1. Foreign mapping tracking table, FMT table

In the following, we illustrate with an example how AMP2 works. It is as-
sumed that Dom0 has first 4 page out of a total 16 ones and the rest belongs to
DomU. AMP2 intercepts all foreign mapping operations and maintains a FMT

1 In our scheme, the AMPC table’s size is proportional to that of machine memory,
and one memory page correspond one entry in AMPC table. When a memory page
is registered, the corresponding entry in AMPC table is increased by 1. It is possible
that multiple processes sharing the same memory pages register its memory space
for protection. In this case, the values of some entries are larger than one.

Preventing Secret Data 439

The page table of Application 1

MFN ATTR

0x07

0x08

0x0a

0x0c

VFN

0x23

0x20

0x21

0x22

0 0 0

0 0 1

2 0 1

1 1 0

The AMPC table

0

1

1

0

MFN
(row/col) 0

0

321

3

2

1

The page table of Application 2

MFN ATTR

0x06

0x08

0x0b

0x0d

VFN

0x23

0x20

0x21

0x22

Machine memoryMFN

0x0e

XXX: normal0x0d

Password: secret0x0c

XXX: normal0x0b

XXX: normal0x0a

0x09
Bank_account:
top secret0x08

XXX: normal0x07

Tel No.: sensitive0x06

0x05

0x04

0x0f

0x00

0x08

0x40

0x38

The FMT table

MFN

PTE s
address

0x20

Fig. 2. AMP2 example

table to record these operations, as shown in Figure 1. This FMT table shows
that seven machine page frames in DomU have been mapped by Dom0 and these
records are stored in a red-black tree, where the key of node represents the for-
eign mapped machine frame number (mfn). Taking the root as an example, the
page frame 0x09 has been foreign mapped 3 times by Dom0, and the correspond-
ing PTEs’ machine addresses are 0x00, 0x08 and 0x40 respectively, all at page
frame 0x0.Figure 2 shows the process that AMP2 protects applications’ memory
pages when they apply protection to hypervisor. In the figure, there are two
applications applying protection to the hypervisor. They occupy seven pages in
total, the mfn of which are 0x6, 0x7, 0x8, 0xa, 0xb, 0xc and 0xd respectively. The
corresponding entries in AMPC table are increased by 1, except 0x8, which is
increased by 2 because it is occupied by two applications simultaneously. Then,
AMP2 look up FMT table to check whether these pages have been recorded.
In our example, there are four pages having been foreign mapped, the mfn of
which are 0x7, 0x8, 0xa, and 0xc, respectively. Base on the mfns, AMP2 can
quickly locate the target nodes and remove them from FMT table. Meantime,
AMP2 can easily get corresponding PTE’s address and modify PTE to redirect
to public page, such as shared info page etc.

3 AMP2 Design

3.1 Restricted Foreign Mapping

When a foreign mapping opeartion occurs, AMP2 captures it and parses the
mapped machine page frame number (mfn) and the corresponding PTE’s ad-
dress. Then it checks whether the mapped page’s counter in AMPC table is

440 H. Gao et al.

above zero or not, which shows that whether some applications have applied
protection. If the counter is more than zero, AMP2 fails this mapping request.
Otherwise the mapping can be performed and the operation is recorded in FMT
table. The reason to maintain FMT table is that, with FMT’s help, AMP2 can
effectively redirect previous established foreign mappings when an application,
which is not protected before, requests for protection.

3.2 Application Applying for Protection

In the hypervisor-based implementation, we define a hypercall for applications
to issue protection requests.When AMP2 is aware of the protection request, it
firstly obtains the head of the list virtual memory area (that is mmap) and the
page global directory (pgd) base on the PID of the application, and then parses
the mfn of the occupied pages,including page directory, page table, and currently
occupied machine frames. Secondly, AMP2 updates AMPC table according to
these mfns (The index of AMPC table is mfn, and the value of the table en-
try represents the counters). Because the request is for protection, the value of
corresponding enntries is increased by 1.

In morden OS, the memory page is allocated to a process until it is actually
needed. Therefore, AMP2 will capture all the events of normal pages mapping in
DomU, retrieve the page allocated to the protected application, and eventually
register it for protection in the application’s runtime. The detail is illustrated in
section 4. At last, AMP2 looks up FMT table to check whether there exists any
recorded mapping. If a mapping is found in FMT table, AMP2 will modify the
mapping to redirect to the public page, such as shared info page which is designed
for share infomation between Dom0 and DomU. Furthermore, any child process
created by the protected application will also be automatically protected.

3.3 AMP2 Page Table Updating

AMP2 page table updating extends the interface of Xen’s. We implement
our checking logic by intercepting all Xen’s page table updating routines.
In these routines, the eventual control structure to be handled is a simple
pair:〈ptr, val〉,the ptr is machine address of PTE, and the val is new contents
(the key is mfn) of PTE. Figure 3 illustrates the AMP2 page table updating
framework. It first checks the P (present) bit of val to determine that the updat-
ing is mapping or unmapping. If it is a mapping operation, and even is a foreign
mapping operation, AMP2 will ensure that the counter of entry whose index is
val.mfn in AMPC table is equal 0. Only in this case, the foreign mapping can
be performed and meantime the operation will be recorded in FMT table.(In
the opposite case, the foreign mapping failed.) Otherwise, if it is a normal guest
domain page mapping, AMP2 will check whether the ptr (that is machine ad-
dress of PTE) locates in a protected process’s address space or not. If it does,
AMP2 will increase the page’s counter by 1 in AMPC table based on the val.mfn.
In the meantime, AMP2 checks against FMT table to redirect previous foreign
mapping to a public page if this memory page had been foreign mapped before.

Preventing Secret Data 441

Is mapping or unmapping?

Start: (ptr, val, dom)

y n

Is foreign
mapping?

Is privileged
Domain?

Chcek the counter
of val.mfn against
AMPC table

y n

n

Foreign
mapping failed

Update FMT table
to record the

foreign mapping
and perform it

y

Dose ptr belong
to a protected
process?

y

Update AMPC table
for protection and
redirect previous
foreign mapping

nomal page
map

n

Chcek val.mfn
against FMT

table

y

Update the
FMT table

nomal page
unmap

match Dose not
match

n

Dose ptr belong
to a protected
process?

y

Update MPC
table to cancel
protection

nomal page
unmap

n

Fig. 3. AMP2 page table updating

On the other hand, if the updating is an umapping operation, and it is from a
privileged domain, AMP2 will check the val.mfn against FMT table. If a record
is found, it is shown that this is a foreign unmapping operation. And AMP2

will clear the relevant entry in FMT table based on the mfn. Otherwise, if the
unmapping is from the guest domain and the address of PTE belongs to a
protected application, AMP2 will update AMPC table to cancel the memory
page’s protection.

4 AMP2 Implementation

In order to accept the request for protection from the application, we provide
a hypercall and a kernel module. User explicitly issues a register request, which
triggers the kernel module. Handler in the module parses corresponding page
tables based on the pid, wraps up all mfns as a request, and invokes the hypercall
to pass the request to AMP2. It increases the corresponding entries in AMPC
table and check whether the pages for protection have been mapped by Dom0
in the past. If it is, AMP2 will redirect the foreign mapping to other public page
such as shared info page in read-only mode for security.

Due to on-demand paging, it is insufficient to only protect the pages which the
application actively registers. We add codes into the Xen’s handler responsible
for PTE updates to protect the memory page which is dynamically allocated
to the application. In the para-virtualization, OS can update a PTE either by
using hypercall, or with the help of writeable page table. Either way, the hyper-
visor can intercept PTE updates. It is no doubt that hypercall always trap into
hypervisor by definition. Meantime, a modification to a PTE incurs a page fault
which always traps into hypervior too. Therefore, we modify the Xen’s handler
for PTE updates to achieve our goal. The relevant modified handlers include
do mmu update, do update va mapping, and ptwr emulated update.

In AMP2, besides explicitly canceling its protection by issuing a hypercall,
the exit of a protected application also results in canceling protection. Therefore,

442 H. Gao et al.

AMP2 needs to intercept page unmaping events for lifting the page’s protection.
Unfortunately, normal page unmapping goes through a fast path for the sake
of optimization and never traps into hypervisor. The only exception is that the
page unmapping caused by foreign mappings. The reason is that Xen modifies
the mm struct.context of an application to add a has foreign mappings field in
it. When the page unmapping occurs, the system call will check whether the field
is set. If it not, hypervisor will unpin the page table. It means that modifying
the page table will not trigger any page fault. If it is set, clearing the PTE will
arouse the page fault and the hypervisor will emulate this direct page table write.
Therefore, we also add an is protected filed in that structure (mm struct.context)
and modify the do exit handler to implement our check logic.

Finally, when a domain exits, the relevant resources allocated to it will be
recycled, and the protection about an application in the very domain will also
consequently be lifted. Therefore, we modifiy the resources recycling routine,
especially the memory pages recycling handler: relinquish memory, to clear cor-
responding entries in AMPC table to lift protection when a domain exit.

5 Evaluation

In this section, we first analytically examine the security guarantees provided by
AMP2. Then we measure the performance overhead. The machine used in our
evaluation has a 3.0 GHZ Core 2 processor with 1GB of RAM. The version of
hypervisor is Xen 3.3.0, and the kernel’s version is XenoLinux 2.6.18. There are
two virtual machine instances(one is Dom0, the other is DomU). Xen allocates
512 MB of RAM to Dom0, and the rest is allocated to DomU.

5.1 Security Analysis

As memtioned above, FMT table and AMPC table are key data structures to
achieve our goal. Therefore, the integrity of them(including codes of AMP2)
should be guaranteed. According to our design, all of them are kept in hypervi-
sor space, which runs in the highest privileged level. And there is no supported
method to modify the Xen code in runtime even taking control over Dom0. In
other words, it is difficult to bypass AMP2 by patching out its check codes or
tampering data structures without recompiling the Xen. Although there was a
backdoor to subvert hyperviosr by overwriting Xen code and data structures by
conducting DMA to Xen’s memory[19], and it is indeed a real threat to AMP2.
Fortunately, however, Wang[20] proposed HyperSafe that endows Xen hyper-
visors with a unique self-protection capability to provide lifetime controlflow
integrity. With the help of HyperSafe, the integrity of AMP2 can be effectively
protected.

In real usage, whenever an application needs to make sensitive operations, it
just applies a protection request to AMP2. And before the application exists or
cancels its protection, any foreign mapping to protected pages will be disabled.
And the pages which are foreign mapped before will be redirected. Therefore,
AMP2 don’t detect whether malware is running in Dom0 or hides its presence.

Preventing Secret Data 443

5.2 Performance Evaluation

To evaluate the performance overhead introduced by AMP2, we measured the
runtime overhead with some CPU and memory intensive workloads, including
two programs from the SPEC CPU 2000 integer benchmarks, and two other real
world applications.

Fig. 4. Applications performance normalized to native Linux. (The numbers on top of
bars represent runtime of applications normalized to native Linux without Xen).

We tested the application’s performance in the guest OS in three scenarios:
native Linux, Xen with and without AMP2. First, we executed these applica-
tions in native Linux and measured the runtime. Then, these applications were
executed in Xen without AMP2. Last, we measured the runtime overhead in the
Xen with AMP2. The final performance result is shown in Figure 4. The perfor-
mance overhead is presented as a relative runtime normalized to native Linux.
Since these applications run in the guest OS, the mainly performance penalty
comes from PTE updating, maintaining AMPC table and checking against FMT
table. Therefore, the performance of an application with a frequent page table
updating will be influenced dramatically. Overall, AMP2 increases applications
execution time by only 2% CPU workloads.

Another possible performance penalty may exist in the foreign mapping in
Dom0. When the foreign mapping request is sent to hypervisor, AMP2 will
search FMT table, and decide whether the mapping can be performed. And if
the mapping is valid, AMP2 will record the pair of pte’s address and target mfn.
Figure 5 shows the times consumed to execute foreign mapping in Dom0. We
tested 16 sets of data in total, ranging from two pages to thirty-two pages, and
compared the consumed time. As the mapped pages increase, the size of FMT
table and the time consumed to manipulate it increase too. However, using for-
eign mapping to map large amount pages is not always needed except for security
reasons, so we can tolerate the performance penalty in most circumstances.

444 H. Gao et al.

Fig. 5. Normalized performance of foreign mapping (The x-axis shows the page num-
bers mapped, and the y-axis shows the times consumed to complete foreign mappings)

6 Conclusion

This paper proposed AMP2 to protect the application’s memory data privacy
from malware’s evil eavesdropping via foreign mapping. When foreign mappings
to DomU pages occur, hypervisor will decide whether the mappings can be done
based on security requirements. We detailed the modifications and extensions
made to hypervisor. To protect the target application, we presented a kernel
module to accept the request from the user-space and created a hypercall to
send the protection request to hypervisor. Finally, we strengthened the page
table updating handler to intercept any mapping operation so that it can dy-
namically protect application’s memory pages. Extensive practical experiments
were carried out and the results shows that AMP2 can successfully protect the
memory data privacy without significant performance penalties.

Acknowledgement. The authors would like to thank my colleagues and the
anonymous reviewers for their insightful feedback. This work is supported by
National Natural Science Foundation of China under Grant No. 60970114.

References

1. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the Art of Virtualization. In:
19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing,
pp. 164–177 (2003)

2. Waldspurger, C.A.: Memory resource management in VMware ESX Server. In: 5th
Symposium on Operating Systems Design and Implementation (OSDI), New York,
pp. 181–194 (2002)

3. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual
machine monitor. In: The 2007 Ottawa Linux Symposium, Ottawa, pp. 225–230
(2007)

4. Garfinkel, T., Rosenblum, M.: A Virtual machine Introspection-Based Architec-
ture for Intrusion Detection. In: 10th Network and Distributed System Security
Symposium (NDSS), San Diego, pp. 191–206 (2003)

Preventing Secret Data 445

5. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: Tracking pro-
cesses in a virtual machine environment. In: Proceedings of the 2006 Annual
USENIX Technical Conference, Boston, pp. 1–14 (2006)

6. Quynh, N.A., Suzaki, K.: Xenprobe: A lightweight user-space probing framework
for xen virtual machine. In: USENIX Annual Technical Conference, San Diego
(2007)

7. Payne, B.D., Carbone, M., Lee, W.: Secure and Flexible Monitoring of Virtual
machines. In: The Annual Computer Security Applications Conference (ACSAC),
Miami Beach, pp. 385–397 (2007)

8. Srivastava, A., Giffin, J.: Tamper-Resistant, Application-Aware Blocking of Mali-
cious Network Connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.)
RAID 2008. LNCS, vol. 5230, pp. 39–58. Springer, Heidelberg (2008)

9. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection through VMM-based
”out-of-the-box” Semantic View Reconstruction. In: 14th ACM Conference on
Computer and Communications Security (CCS), Alexandria (2007)

10. Petroni, N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow
Attacks. In: 14th ACM Conference on Computer and Communications Security,
CCS, Alexandria (2007)

11. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-
cess detection and identification using Lycosid. In: International Conference on
Virtual Execution Environments (VEE), New York, pp. 91–100 (2008)

12. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: 17th Conference on Security Symposium (USENIX SECU-
RITY), San Jose, pp. 243–258 (2008)

13. Litty, L., Lie, D.: Manitou: A layer-below approach to fighting malware. In: The
Workshop on Architectural and System Support for Improving Software Depend-
ability (ASID), pp. 6–11, San Jose (2006)

14. Murray, D.G., Milos, G., Hand, S.: Improving Xen Security through Disaggrega-
tion. In: 4th International Conference on Virtual Execution Environments (VEE),
New York, pp. 151–160 (2008)

15. Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction
Honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

16. Yang, J., Shin, K.: Using hypervisor to provide Data Secrey for User Applications
on a Per-Page Basis. In: Proc. of the 4th International Conference on Virtual
Execution Environments (VEE), New York, pp. 71–80 (2008)

17. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, et al.: Over-
shadow: A Virtualization-Based Approach to Retrofitting Protection in Commod-
ity Operating Systems. In: Proc. of the 13th Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Seattle (2008)

18. Borders, K., Weele, E.V., Lau, B., Prakash, A.: Protecting Confidential Data on
Personal Computers with Storage Capsules. In: 18th USENIX Security Symposium
(USENIX SECURITY), Montreal (2009)

19. Wojtczuk, R.: Subverting the Xen Hypervisor. In: Black Hat, USA (2008)
20. Wang, Z., Jiang, X.: HyperSafe: A Lightweight Approach to Provide Lifetime Hy-

pervisor Control-Flow Integrity. In: Proc. of the 31st IEEE Symposium on Security
& Privacy (SSP), Oakland (2010)

Winning with DNS Failures: Strategies
for Faster Botnet Detection�

Sandeep Yadav and A.L. Narasimha Reddy

Department of Electrical and Computer Engineering, Texas A&M University
sandeepy@tamu.edu, reddy@ece.tamu.edu

Abstract. Botnets such as Conficker and Torpig utilize high entropy domains
for fluxing and evasion. Bots may query a large number of domains, some of
which may fail. In this paper, we present techniques where the failed domain
queries (NXDOMAIN) may be utilized for: (i) Speeding up the present detection
strategies which rely only on successful DNS domains. (ii) Detecting Command
and Control (C&C) server addresses through features such as temporal correla-
tion and information entropy of both successful and failed domains. We apply
our technique to a Tier-1 ISP dataset obtained from South Asia, and a campus
DNS trace, and thus validate our methods by detecting Conficker botnet IPs and
other anomalies with a false positive rate as low as 0.02%. Our technique can be
applied at the edge of an autonomous system for real-time detection.

Keywords: Botnet, Domain-fluxing, DNS, Failures.

1 Introduction

Botnets have been used for spamming, phishing, DDoS (Distributed Denial of Service)
attacks. Some botnets such as Kraken/Bobax, Torpig [8], and Conficker [6] utilize flux-
ing techniques, where the domain name of a C&C server changes rapidly (domain flux-
ing) or the IP address for a domain name is altered (IP fluxing). To automate the domain
name generation for fluxing, botnet owners rely on generating domain names algorith-
mically. The domain names thus formed, comprise of alphanumeric characters chosen
randomly, and which thus exhibit high information entropy. As the domain names for
the C&C servers are short lived, and as only a fraction of this large set of domains may
be used for actual DNS use, blacklisting techniques prove ineffective in countering such
fluxing botnets.

Reverse engineering of bot executables may yield the domain name generation al-
gorithm and subsequently the domain names that a bot may query in the future. These
domain names may be blacklisted or pre-registered in advance by security researchers.
Domain fluxing botnets overcome this vulnerability by choosing to generate a large
number of names, where only a few of them may host the C&C server. The large
number of domain names is expected to overwhelm the pre-registration by others and
potentially provide a cover for the actual name of the C&C server used by the botnet.

� This work is supported in part by a Qatar National Research Foundation grant, Qatar Telecom,
and NSF grants 0702012 and 0621410.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 446–459, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Winning with DNS Failures: Strategies for Faster Botnet Detection 447

Botnets that employ domain fluxing can be characterized by the following two im-
portant features: (a) The alphanumeric distribution or entropy of the domain names for
C&C servers is considerably different from human generated names. (b) The bots gen-
erate many failed DNS queries as many of the algorithmically generated domain names
may not be registered or not available as C&C servers. We exploit these two important
properties to detect botnets with very low latency, where we define latency as the num-
ber of domain names required for successful anomaly detection (or the time taken to
collect those domains).

With our approach, we analyze successful DNS queries, and the failed DNS queries
within the vicinity of the successful queries, thus exploiting their features to not only de-
tect the C&C servers of those botnets faster, but also simultaneously detect bots within
the network. While our detection mechanism is designed specifically to detect domain
fluxing botnets by utilizing DNS failures, previous approaches relying only on domain
entropy analysis can still be used in the event that there are no DNS failures. By analyz-
ing the failed queries along with the successful queries, we increase the data available
for analysis and hence speed up the detection process. While our technique can be used
online (or in real-time), we focus on a trace-driven evaluation methodology here to
keep the explanation simpler. Additionally, our analysis is based only on DNS network
traffic, thereby reducing resource requirements, in comparison to techniques relying on
general network traffic analysis.

When individual clients/hosts query a resolver, the failed queries can potentially be
attributed to the presence of bots on that client and the successful queries close to the
failures can be assumed to be related with high confidence. However, when queries
are forwarded to a resolver from another local resolver or a DNS query aggregator,
the queries from many clients can be grouped together and relating failed queries to
other successful queries in the query stream becomes problematic. Our approach is
cognizant of this difficulty and is capable of producing accurate results in the presence
of aggregated query streams.

The main contributions of this work are:

• We utilize the failures around successful DNS queries and the entropy of the do-
mains belonging to such queries, for detecting botnets with lower latency compared
to previous techniques.

• We propose and evaluate a speeding technique which correlates DNS domain query
failures for faster detection of domain fluxing botnets’ C&C server IPs. We utilize
temporal correlation between DNS queries and entropy-based correlation between
domain names, for speedier detection.

• We show through a trace driven analysis that the proposed techniques can consider-
ably speed up the detection of botnets that generate many DNS query failures. This
in turn will constrain the domain name generation algorithms further if they want
to evade detection by techniques such as proposed here.

We apply our techniques to two datasets. The first is a Tier-1 ISP dataset obtained
from South Asia, captured for a period of approximately one day. Additionally, we
analyze a university campus DNS trace captured over a month. The datasets consist
of botnets validated through previous techniques applied to the trace [11]. Based on

448 S. Yadav and A.L.N. Reddy

our analysis, we detect the presence of the recently discovered Conficker botnet. Our
experiments indicate a false positive rate as low as 0.02% with a high detection rate.
Our evaluation also yields how different features characterizing botnets can be varied,
to assist a network administrator in tuning these parameters for their network(s).

The rest of this paper is organized as follows. Section 2 discusses the related work
on botnet detection. In section 3, we discuss our methodology for detection of domain-
fluxing botnets, as well as propose an alternate correlation criteria for speeding the state-
of-the-art detection techniques. The results have been outlined in section 4 followed by
the discussion on the limitations and security loopholes that attackers may exploit, in
section 5. Finally, we draw the conclusions and highlight the future work in section 6.

2 Related Work

Alphabet entropy measures to detect algorithmically generated botnets by using suc-
cessful domain name queries mapping to IP addresses, are proposed in [11]. Jiang et.
al. [4] use DNS failures to determine suspicious activity within the local autonomous
system. Their technique analyzes bipartite graphs between failed DNS domain names
and querying clients, to determine connected components with anomalous activity. Our
approach, additionally, analyzes related successful queries and detects the botnet C&C
servers along with the bots. The authors in [13] analyze unproductive network traffic of
multiple protocols to classify malicious hosts based on features such as rate of failed
traffic generation, entropy of ports used etc. In our work, we do not require training of
data, and only rely on DNS based features for botnet detection.

Botnet identification using DNS has been explored in [9] where the authors uti-
lize query rates based features of successful and failed DNS queries, to identify botnet
anomalies. [10] detects new bots based on the similarity in querying behavior for known
malicious hosts. Our technique does not rely on query rates and can detect botnets even
if each bot queries for an independent botnet C&C server’s domain names. Previous
work on botnet detection has also examined the correlation of network activity between
time and space as exhibited by users within a network [3]. We, however, use only the
DNS traffic for detecting botnet activity, drastically reducing the resource requirements.
Also, DNS security has been investigated in a number of recent studies [12] which have
focused on DNS indirection and cache poisoning prevention.

IP addresses

Initial set of

IP address

Degree of an

failed DNS queries

successful and
Correlation between

SEN filter

FEN filter

Candidate
malicious
IP addresses

F1

F2

F3

F4

Fig. 1. Filtering steps

Winning with DNS Failures: Strategies for Faster Botnet Detection 449

3 Methodology

In this section, we describe our technique for detecting botnets through DNS traffic
analysis using successful and failed DNS queries. We also highlight correlating failed
domains, for speedier detection of malicious IP addresses. Our primary goal is to detect
the IP address of a domain fluxing botnet’s C&C server. As a consequence of our anal-
ysis, we obtain the bots within the local network, and the domain names belonging to
the botnet, thus exposing the botnet altogether. To discover anomalous IP address(es),
we exploit multiple features such as the botnet structure and the temporal correlation
between DNS query patterns of participating bots. Prior to analyzing the DNS traffic,
we use a white-list for filtering out known benign DNS queries (details in section 4),
leveraging a more accurate analysis.

3.1 Filtering Steps

Figure 1 demonstrates the steps involved in narrowing down the set of IP addresses that
are returned in DNS response packets (post white-listing), to a relatively smaller list
of anomalous IP addresses. With each filter, we select a fraction of the input supplied
by the previous filter, reducing the subsequent work. In the following subsections, we
describe each filter applied for a candidate C&C IP address (denoted by cncip) resulting
in cncip being discarded as legitimate or subject to additional filters. The measures
employed by each filter, are either computed using select or all the time windows in
which the candidate IP address occurs. The typical time bin/window length used in our
trace is subjective to the dataset in consideration. For evaluation presented in section
4, we typically use a 128 sec window (64 sec symmetric about cncip). The following
subsections detail how each measure is computed.

Degree of an IP Address (Dcncip). Domain fluxing is characterized by multiple do-
main names mapping to an IP address. We define the degree of an IP address as the
number of domain names that map to a cncip. As a first filter, we use the degree (F1

in Figure 1) to separate a set of IP addresses more likely to exhibit botnet like domain
fluxing. For a given IP address, this number may vary based on the length of the trace
analyzed. For instance, an IP address analyzed for an hour may have five domain names
mapping to it. However, if analyzed for two hours, eight domain names may map to
it, which includes previously expired domain names. While we consider the IPs which
have a degree of at least two, we vary Dcncip to evaluate how quickly we detect anoma-
lies. For a typical analysis, we use a degree threshold of eight, independent of the time
for which a candidate IP address is analyzed. Thus, the filter F1 can be bypassed if an
IP has less than eight domain names mapping to it. However, this puts a constraint on
the fluxing that a botnet server can exhibit. It should be noted that, Content Distribu-
tion Networks (CDNs) also have a high degree. However, CDNs get separated through
additional filters as described ahead.

Correlation Metric (Corrcncip). As introduced earlier, bots generate burst of DNS
queries, a fraction of which may fail. Thus, we exploit the temporal correlation between
DNS successes and failures to identify malicious behavior. On observing a time window

450 S. Yadav and A.L.N. Reddy

of DNS queries for a bot, we may observe the presence of failures, more frequently, than
for legitimate clients. It is represented by filter F2 in Figure 1.

The correlation metric (Corrcncip) for a candidate IP address is computed as the
probability of observing at least one failed DNS query in a time bin, given that cncip
was returned as an answer to a successful DNS query in the same bin. For detection, we
heuristically choose the threshold as 0.5 implying that majority of windows in which a
cncip appears, should also have failures for it to be considered a meaningful anomaly.
In section 4, we study how the false positives decrease on increasing this threshold or
when the correlation metric changes upon restricting our analysis to windows with more
failures.

We use the following equation to compute this metric:

Corrcncip =

∑
Time bins with (Scncip ∩ Fclient)

Time bins with Scncip
(1)

where Scncip denotes the boolean condition of whether cncip occurs in a time bin.
Fclient refers to the boolean variable indicating the presence of at least one failure in the
corresponding time bin for the client. The correlation metric is computed with the time
series of all clients which receive cncip as the DNS response address. This metric may
not be sufficient in topologies comprising of DNS aggregators where the temporal co-
occurrence of DNS failures and successes is more frequent. Further developed measures
limit the errors produced due to DNS aggregators.

Succeeding Domain Set Entropy (SENcncip). We use edit distance as a metric for
determining the similarity between a pair of domain names. Algorithmically generated
domains exhibit a high value for this metric, owing to limited similarity between a given
pair of domains. However, domain names observed for a legitimate entity, frequently
have repeated occurrence of certain characters, which lower the computed normalized
edit distance (or the entropy associated with the entity), as substantiated by [11]. For
instance, a pair of domain names such as www.google.com, ns.google.com have a lower
normalized edit distance than a pair like jswrts.ws, yvqcbtvztpm.cc, as observed for
Conficker.

Edit distance is defined as an integral value indicating the number of transforma-
tions required to convert a given string to the other. The type of eligible transformations
include addition, deletion, and modification of a character. We use the normalized edit
distance measure computed as the Levenshtein edit distance [5] between a pair of strings
normalized by the length of the longer string. The entropy of domains mapping to an IP
address (and hence successful DNS queries), SENcncip, is determined by computing
the normalized edit distance between every pair of domains that map to cncip (taken
from set with cardinality |Dcncip|), and averaged over all such pairs. Therefore, the
complexity of entropy calculation is O(n2) where n is the number of domain names
successfully mapping to an IP address over the duration of analysis. This duration is
defined either in terms of a pre-determined time, or the first few successful domains
encountered for a given cncip. Once SENcncip is computed, if it exceeds a threshold
(reserved for highly domain fluxing entities), we consider it for further analysis. Our
evaluation shows that while high SENcncip IPs may be detected easily, even enitities

Winning with DNS Failures: Strategies for Faster Botnet Detection 451

with relatively low entropy are detected with small false positive rates, making it diffi-
cult for botnet owners to improve their domain generation algorithm (DGA).

Failing Domain Set Entropy (FENcncip). For a botnet, the domain name generation
algorithm for failed domain names is no different than the domain names successfully
resolved. The features expressed through alphanumeric characters composing the failed
and successful DNS queries generated by a botnet, are therefore very similar. Thus, the
failed domain names can help reduce the latency of analysis and improve detection
since many more names can be analyzed in a shorter period of time, when associated
with the succeeding queries.

To compute the entropy of failed domain names (denoted as FENcncip), we analyze
the failing queries that occur in the vicinity of a successful DNS query. Our hypothesis
is as follows. For a bot issuing a burst of DNS queries to determine the C&C server ad-
dress, the entropy of failed DNS queries present in the burst, is of the same order as the
entropy of the successful queries. We again use the normalized edit distance for deter-
mining the entropy of failed domain names present in a time bin containing successful
query resolution. It is symmetric about the time instant where cncip was observed. It
is noteworthy that all failed DNS queries present in the time bin, may not be related
to the successful DNS query. Such queries deviate the output. The noise is especially
amplified at DNS aggregators which query on behalf of several individual local clients.
Thus, choosing an appropriate time window length is critical for accurate analysis. Dur-
ing evaluation, we show how changing window size affects the performance.

To compute the failed domain entropy (FEN) for a candidate C&C IP address, we
use the following equation:

FENcncip =

∑
(FENclient)

Number of clients
(2)

whereFENclient is the FEN value computed by examining client’s time series of query
generation, with respect to cncip. To elaborate, the failed query entropy for a client is
computed between pairs of strings (failed domain names) present within every time
window in which cncip occurs. Subsequently, all such FEN values are averaged thus
giving FENcncip. The computation of this entropy requires at least two failed domain
names within the window of consideration. A higher number of failures increase the
confidence in the computed FEN value for that window implying that botnets are de-
tected more accurately. Alternately, individual failed queries can be directly compared
with the candidate successful domain names to compute the edit distance relevant to
each failed domain name. We have evaluated both approaches and obtained similar re-
sults. Owing to space constraints, we only report on one of the approaches.

To further filter the candidate set of anomalous IP addresses, we consider only those
addresses with FENcncip greater than a threshold. We choose a conservative thresh-
old to avoid ignoring genuine anomalies. To apply our hypothesis of the proximity of
SENcncip and FENcncip, we use the following inequality to further eliminate false
positives:

(SENcncip − δ) ≤ FENcncip ≤ (SENcncip + δ) (3)

452 S. Yadav and A.L.N. Reddy

where δ represents a small bound or the proximity within which FENcncip and
SENcncip are expected to lie. To choose an appropriate δ, we compute the standard
deviation σ of entropy for domains belonging to the known botnet IPs present in our
dataset. Thereby, we choose δ as 3σ.

From the above description, the temporal correlation and entropy related parame-
ters are analyzed and IPs satisfying the outlined malicious criteria, help in identifying
bots within the network as well. In an autonomous system, where the DNS queries are
observed from local clients and DNS aggregators, our technique may be applied re-
cursively at the aggregator, yielding the bots which use the aggregator as their DNS
recursive resolver.

3.2 Correlating Failures for Improved Latency

Here, we present an alternate strategy for speeding up the detection technique which
relies only on successful queries. The work in [11] emphasizes upon applying statisti-
cal techniques such as K-L divergence, Jaccard Index, and Edit distance, to the set of
successful domains for a cncip (SQcncip). Through evaluation, it is shown that a large
set improves the accuracy of anomaly detection. However, accumulating a larger set
requires a considerable amount of time. Therefore, we propose supplementing the set
SQcncip with failed queries that occur within the vicinity of successful DNS queries.
The resulting set is accumulated faster, decreasing the latency of analysis by an order
of magnitude.

The detection technique proposed in this work provides the basis for associating the
queries with successes viz. temporally. In addition to temporal characteristics, to im-
prove the quality of failed domain name set, we propose considering only those failing
domains within the time window, whose entropy characteristics are similar to the suc-
cessful domain set. Such similarity parameters for entropy can help identify a DGA.
Here, we explore supplementing SQcncip with these two main features. Additional fea-
tures as described for detection can also be used.

To realize the faster accumulation of relevant domains, we compute the entropy (nor-
malized edit distance) between a failed domain name and each of the successful DNS
domain names discovered under analysis. A domain yielding an entropy value close to
the average SEN (or the entropy of successful domains) is considered relevant. The
measure of closeness is defined using eqn. 3 as described above. For this particular
experiment, we choose δ = σ. We note that such marginally expensive computation
for identifying relevant domains may improve latency and accuracy. We evaluate this

Table 1. Trace description

ISP trace Campus trace
Trace collection period Nov 03-04, 2009 Aug 22 - Sep 22, 2010
Total number of DNS sessions 1.61 M 112.7 M
White-listed sessions 770.23 K 54.4 M
Total number of failed DNS packets after white-listing 57.72 K 1.28 M
IP addresses analyzed for maliciousness 9948 74.7 K (per segment avg.)
Number of clients (or aggregators) 8472 1735 (per segment avg.)

Winning with DNS Failures: Strategies for Faster Botnet Detection 453

correlation strategy for Conficker’s C&C server addresses in section 4. Note that the
analysis of discarded failed domain names identifies irrelevant queries belonging to
services like qq.com and ask.com while few excluded domains belong to Conficker,
strengthening our confidence in the new set.

4 Results

We validate our technique using the DNS datasets described below. For our analysis, we
consider only DNS type A records. Several DNS blacklist based services utilize the A
record to verify whether an IP address, domain name, or an executable (a feature used
by McAfee) is present in the blacklists. To exclude these queries from analysis, we
white-list a total of 31 trusted second-level domain names including several blacklist
services, Content Distribution Network services (such as akamai.net, cloudfront.net)
and popular domains (such as google.com, facebook.com). The white-list helps us focus
on other potentially malicious domains, in addition to refining the failed domains set
used for analysis. Additionally, we avoid processing answers with RFC 1918 (private)
addresses [7].

4.1 Data Sets

Table 1 details the traces used for analysis. The 20-hour long ISP trace contains known
malicious IPs belonging to the Conficker botnet. Using a blacklist, we obtain a set of
100 odd IPs labelled malicious, which we further verify manually by checking against
exhaustive databases such as robtex.com and mywot.com. We believe that these two
sources provide us with the most recent information concerning the queried domains or
IP addresses. The 19 IPs obtained post verification with the above sources, contain two
IP addresses hosting adult websites. We disregard these as non-fluxing behavior. One
C&C address apparently belongs to the domain-fluxing Kraken/Bobax botnet (based
on the domain names we see). However, the Kraken C&C address has a degree of only
two. The 16 remaining IPs belong to Conficker, some of which are sinkhole servers [1].
Nonetheless, we consider them as anomalous as they help keep the botnet alive. As a
result, we consider the remaining 9931 IPs as legitimate. Note that all IPs considered
for ground truth evaluation, have a degree of at least two.

We also use a DNS trace captured at a primary recursive resolver of a university
network. We divide the month-long trace into approximately week-long segments and
present our results on randomly chosen segments. Each segment contains an average of
295K IP addresses returned as DNS responses (after white-listing). As table 1 shows,
approximately 75K IP addresses have degree Dcncip > 2. For the campus trace, we use
the C&C server information from the ISP trace to obtain 29 IP addresses (out of 75K),
labelled as malicious. Since the ground truth information for the ISP trace is relatively
old, we again verify this set manually. As a result, we are left with four Conficker C&C
addresses which are common with those present in the ISP trace.

4.2 Latency Comparison

The latency of detection is expressed in terms of the number of successful domain
names required to analyze and detect a rogue server accurately. Figure 2(a) shows the

454 S. Yadav and A.L.N. Reddy

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

50 100 200 500

T
im

e
(s

ec
)

Number of domains

[ISPTr] Class I (S only)
[ISPTr] Class I (S+F)

[ISPTr] Class II (S only)

[ISPTr] Class II (S+F)
[CamTr] Class I (S only)

[CamTr] Class I (S+F)

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

C
um

ul
at

iv
e

de
te

ct
ed

 fr
ac

tio
n

Time (sec)

Conficker (S)
Conficker (S+F)

(b)

Fig. 2. Latency comparison (a) for different number of domain names. (b) for 200 domain names.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
et

ec
tio

n
ra

te
 fo

r
flu

xi
ng

 b
ot

ne
t I

P
s

(%
)

False positive rate (%)

CM : 0.25
(0.54,83.33)CM : 0.50

(0.23,83.33)

CM : 0.75
(0.04,83.33)

(a)

 0.001

 0.01

 0.1

 1

One or more
failures

Two or more
failures

Four or more
failures

C
or

re
la

tio
n

m
ea

su
re

Benign IPs
Malicious IPs

(b)

Fig. 3. (a) ROC curve for changing correlation thresholds. (b) Correlation comparison for chang-
ing flux behavior.

gain obtained in terms of time taken to collect a set of botnet domain names. The figure
shows two classes of botnet IPs that we observe. Class I represents those C&C server
addresses where domain fluxing yielded both successful and failed queries. However,
for the C&C server in Class II, the bots issued none or very few failed DNS queries. In
our ISP trace with more than 50 domain names mapping to it, we find eight C&C server
addresses belonging to Class I and two belonging to Class II. Also, we observe that all
four C&C addresses in the analyzed campus trace segment belong to Class I.

Figure 2(a) shows the improved latency for the average time taken by Class I or II
addresses. From the figure, we observe that when failed domain names are correlated
with successful DNS domains, the time taken to collect 50, 100, 200 or 500 domain
names is considerably reduced. Especially, for 500 domain names, we see a gain of
an order of magnitude when the time of collection reduces from approximately 54000
secs to only 4600 secs. With Class II, however, we do not observe any gain since no
failures help in supplementing the set of successful botnet domains. Thus, we infer
that in context of applying statistical techniques for anomaly detection, the proposed
correlation mechanism can significantly reduce the time to collect input required for

Winning with DNS Failures: Strategies for Faster Botnet Detection 455

analysis of Class I C&C addresses. Note that we do not obtain 500 successful domains
for the Class II address. The analysis with the campus trace follows analogous behavior.
However, we plot the latency observed when correlating failures with successes, using
the criterion highlighted in section 3.2. We also note a higher initial latency for domain
name collection, owing to slower traffic seen for a campus (Tier-4) as compared to
a Tier-1 network trace. Although, the time of collection is reduced considerably even
with the campus trace. For instance, we observe 100 domains are collected 10K seconds
faster than when using only successful DNS traffic.

While figure 2(a) shows average time taken for Class I and II anomalous entities,
figure 2(b) shows the pace at which those anomalies are detected, for the specific case
of 200 domain names. From the figure, we see that using the both successful and failed
DNS domains, we can detect more than 80% of the total IP addresses, an order of
magnitude faster than when using only the successful ones. We note that the cumulative
detection reaches 100% because of the presence of Class II address.

From the figures, we conclude that considering failed domain names assists in speed-
ing up detection of domain-fluxing botnet. While speeding up the detection through
methods presented in [11], the worst case detection latency is same as the original la-
tency where only domains from SQcncip are used. We also transform botnet detection
to a real-time detection approach through the speeding mechanism presented above, as
well as through the detection strategy.

4.3 Effect of the Correlation Parameter

We evaluate the significance of using the correlation as a feature for anomaly detection.
Figure 3(a) represents the Receiver Operating Curve (ROC) curve for changing thresh-
olds for correlation between DNS successes and failures. The ROC curve shows a de-
crease in false positive rate with a decreasing detection rate, when increasing Corrcncip
thresholds. A higher threshold requirement would imply that failures coincide with the
successful queries more frequently. We would expect benign IP addresses to have a low
correlation value. Hence, increasing the threshold results in decreasing false positives.
For this particular experiment, we note detecting a maximum of 12 (out of 17 C&C
IPs) as the remaining IPs do not have enough domain names for analysis (at least eight
domains). We also note a maximum false positive rate of only 0.6% which primarily
comprises of legitimate IPs with relatively lower entropy than seen for fluxing botnets
and few failures within the window of analysis (that is, a correlation value just above
the threshold). In contrast, fluxing botnets usually have a high number of failed domain
names within the corresponding bin. Note that the false positives include ISP’s intra-AS
DNS resolution queries where the hosts have been assigned random-appearing domain
names.

4.4 Correlation vs Number of DNS Failures

Through this experiment, we aim to study the behavior seen for malicious IPs, in terms
of the number of failed domain names generated. Figure 3(b) shows the correlation
observed for malicious and benign IPs. We compute the correlation for three cases
where we expect at least one, two or four failures to occur within the same window, as

456 S. Yadav and A.L.N. Reddy

the cncip. The figure shows a decrease in correlation, for both benign and legitimate
IPs, though the correlation reduces only slightly for the malicious set. Such a study
implies that the correlation criteria may be adapted towards highly fluxing botnets while
keeping fewer false positives.

4.5 Variation in Entropy

We evaluate the impact of information entropy expressed by the domains which map to
a candidate cncip (that is, SENcncip). The effect of changing the entropy thresholds for
considering a cncip is shown through an ROC curve as in Figure 4. The figure shows
an increase in the detection rate and the false positive rate as the threshold for entropy
is decreased. This is in line with the observation that for a low threshold, several sets of
domain names, and in particular those for CDNs satisfy the filters used for detection.
Analogous to the performance with varying correlation threshold, the maximum false
positive rate observed is 0.52%. Analysis of false positives reveals DNSBL services
(redcondor), popular websites (sina.com.cn which offer multiple services), DNS and
HTTP servers providing service to multiple entities, blogging services (blogspot) and
CDN addresses. For instance, we observe redcondor IPs labelled malicious when the
entropy thresholds are 0.35 or lower, indicating that even though correlation may be
high for this DNSBL service, the entropy helps distinguish it from actual anomalies,
when using higher thresholds. In section 5, we discuss how botnets may attempt to
fool our detection approach into generating domains with low entropy. Note that we
determine the detection rate over the 12 detectable botnet IPs, as discussed previously.

4.6 Size of Time Bin

The impact of varying the size of time bins is shown in Table 2. In all experiments,
we observe that false positives increase with larger time bins. The wider bins allow a
higher possibility of inclusion of failures within the corresponding cncip bin, resulting
in an increased Corrcncip value. Thus, more candidate IP addresses meet the criteria
set by filter F2 (in figure 1) and the ones with high entropy may be incorrectly labelled

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
et

ec
tio

n
ra

te
 fo

r
flu

xi
ng

 b
ot

ne
t I

P
s

(%
)

False positive rate (%)

SEN : 0.25
(0.52,91.67)

SEN : 0.50
(0.36,91.67)

SEN : 0.75
(0.06,83.33)

Fig. 4. Performance with changing entropy thresholds

Table 2. Impact of changing time bin
size

Window size 4 8 16 32 64 128 256
(sec)

ISP trace
FPR (%) 0.022 0.043 0.043 0.097 0.173 0.259 0.302
TPR (%) 75.0 75.0 75.0 75.0 75.0 83.33 83.33

Campus trace
FPR (%) 0.021 0.039 0.084 0.120 0.209 0.434 0.752
TPR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Winning with DNS Failures: Strategies for Faster Botnet Detection 457

malicious. From the table, we also observe that smaller window sizes result in fewer
IP addresses being detected within the ISP trace. An inference of this observation is
that bots spread their DNS queries making temporal correlation between failures and
successes difficult. The false positive rate, however, is less than 0.3% for ISP trace (and
0.75% for campus trace) for all experiments making the choice of larger windows pos-
sible. However, the marginal or no increase in detection rate and false positive rate, for
the change in window size from 4 secs to 128 secs implies that a window as small as
4 secs may be sufficient for detecting a domain-fluxing botnet like Conficker. Note that
the false positives for the campus trace are higher when compared to the ISP trace, as
we frequently observe DNSBL based NXDOMAIN failures within the campus dataset.
Such DNSBL failures affect the correlation/entropy parameters resulting in more be-
nign IPs classified as malicious.

Dyndns is a service for generating customizable/random temporary domain names.
In the ISP trace, we observe several random sub-domains for dyndns which exhibit high
entropy characteristics, with several failures belonging to this service. Our detection
mechanism designates these IP addresses as benign owing to presence of temporally
distant failures, reinforcing our hypothesis of utilizing temporal correlation of failed
domains for anomaly detection through the use of small time bins. We also limit our
study to a maximum bin size of 256 seconds as fast-fluxing botnets have low DNS
Time-To-Live (TTL) values.

5 Discussion

In this work, we detect Conficker C&C addresses which exhibit high entropy owing
to randomized distribution of alphanumeric characters composing the domain names.
However, to evade our detection mechanism, botnet owners may alter the way domain
names are composed. For instance, our separate study has observed combination of
dictionary words being used as an alternate way of domain-fluxing. Some example
domain names that we observe for a botnet are haireconomy.ru, greedycake.ru and
empirekey.ru [2]. The information entropy computed for a set of such domain names
indicates that owing to high edit distance values, such domain names can still be distin-
guished through entropy analysis.

To validate the robustness of our approach, we artificially inject domain queries as
observed above, with some of them failing and some domain names successfully map-
ping to a reserved address. We randomly choose clients to insert such DNS queries.
Based on our study, we still detect the simulated anomalies with similar experiment
parameters as used previously for evaluation. Also, in future if botnet owners formulate
a DGA where the observed entropy is lower than that observed for fluxing botnet de-
tected in this work, our detection mechanism can detect them with low false positives,
as hinted by figure 4.

A direct weakness of our detection strategy is reliance on failed domain names. Our
experiments are based on analyzing the first few successful domain names and thus
correlating failures that are present in their vicinity. In the event that no failures are
present, or failures that occur right after the window of analysis, our detection strategy
may fail in which case switching to the algorithm for correlating failures to supplement

458 S. Yadav and A.L.N. Reddy

the set SQcncip would help. Thus, a combination of both the strategies presented in
this work may be useful for fast anomaly detection. It is possible to generate DNS
queries slowly such that the failed queries are outside the time window considered in
our scheme. Such an approach, however, will slow down the bot in identifying its C&C
server and hence constraining the botnet writer again.

Our technique for detection can be mapped back to detect individual bots that issued
the queries for a malicious cncip. For instance, with our campus trace analysis, we
observe 12 hosts within our AS querying for three of the four C&C addresses, and 10
hosts (subset of the 12 above) querying for the remaining C&C address. While the Tier-
1 ISP trace may not have individual clients (we would mostly observe aggregators), the
mechanism applied for a smaller-sized network or when applied recursively, may result
in more accurate detection of anomalies and bots, owing to a better DNS failure signal.

6 Conclusion

In this paper, we proposed methodologies for utilizing failed domain names in the quest
for rapid detection of a fluxing botnet’s C&C server, the bots within the local network,
and the related domain names, and thus revealing the botnet infrastructure. Utilizing
only DNS traffic, we reduce the resource requirement for botnet detection. We also
considerably reduce the latency of detection when compared to previous techniques.
For faster detection, we utilize not only the entropy of the domain names successfully
mapping to an IP address, but also that of the correlated failed DNS queries occurring
within the vicinity of the succeeding DNS query. With our technique, we achieve a false
positive rate as low as 0.02% with a high detection rate. As a future work, we plan to
utilize SERVER FAILURE based DNS failures, or failures related to the name servers,
as a means for detecting botnets which exhibit double fast flux.

References

1. Conficker Working Group,
http://www.confickerworkinggroup.org/
wiki/pmwiki.php/ANY/FAQ#toc5

2. New Technique Spots Sneaky Botnets,
http://mobile.darkreading.com/9292/show/
4711c9403b772e7281ae08cee69758cc&t=
461a4a89abc0a0c761234d11086f5003

3. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting Malware In-
fection Through IDS-Driven Dialog Correlation. In: Proc. of the 16th USENIX Security
Symposium (Security 2007) (August 2007)

4. Jiang, N., Cao, J., Jin, Y., Li, L.E., Zhang, Z.-L.: Identifying Suspicious Activities Through
DNS Failure Graph Analysis. In: IEEE Conference on Network Protocols (2010)

5. Manning, C.D., Raghavan, P., Schutze, H.: An Information to Information Retrieval. Cam-
bridge University Press (2009)

6. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C Analysis. Technical report,
http://mtc.sri.com/Conficker/addendumC/

7. Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., Lear, E.: Address Allocation for
Private Internets (1996), http://www.ietf.org/rfc/rfc1918.txt

http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/FAQ#toc5
http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/FAQ#toc5
http://mobile.darkreading.com/9292/show/4711c9403b772e7281ae08cee69758cc&t=461a4a89abc0a0c761234d11086f5003
http://mobile.darkreading.com/9292/show/4711c9403b772e7281ae08cee69758cc&t=461a4a89abc0a0c761234d11086f5003
http://mobile.darkreading.com/9292/show/4711c9403b772e7281ae08cee69758cc&t=461a4a89abc0a0c761234d11086f5003
http://mtc.sri.com/Conficker/addendumC/
http://www.ietf.org/rfc/rfc1918.txt

Winning with DNS Failures: Strategies for Faster Botnet Detection 459

8. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R.,
Kruegel, C., Vigna, G.: Your Botnet is My Botnet: Analysis of a Botnet Takeover. In: ACM
Conference on Computer and Communications Security (CCS) (November 2009)

9. Villamarı́n-Salomón, R., Brustoloni, J.C.: Identifying Botnets Using Anomaly Detection
Techniques Applied to DNS Traffic. In: Consumer Communications and Networking Con-
ference (2008)

10. Villamarı́n-Salomón, R., Brustoloni, J.C.: Bayesian Bot Detection Based on DNS Traffic
Similarity. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009,
pp. 2035–2041. ACM, New York (2009)

11. Yadav, S., Reddy, A.K.K., Reddy, A.L.N., Ranjan, S.: Detecting Algorithmically Generated
Malicious Domain Names. In: Internet Measurement Conference (2010)

12. Yadav, S., Reddy, A.N.: MiND: Misdirected dNs packet Detector. In: IASTED Computer
and Information Security (2010)

13. Zhu, Z., Yegneswaran, V., Chen, Y.: Using Failure Information Analysis to Detect Enterprise
Zombies. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009. LNICST, vol. 19,
pp. 185–206. Springer, Heidelberg (2009)

Trading Elephants for Ants: Efficient

Post-attack Reconstitution

Meixing Le, Zhaohui Wang, Quan Jia, Angelos Stavrou,
Anup K. Ghosh, and Sushil Jajodia�

Center for Secure Information Systems,
George Mason University, Fairfax, VA

{mlep,zwange,qjia,astavrou,aghosh1,jajodia}@gmu.edu

Abstract. While security has become a first-class consideration in sys-
tems’ design and operation, most of the commercial and research efforts
have been focused on detection, prevention, and forensic analysis of at-
tacks. Relatively little work has gone into efficient recovery of application
and data after a compromise. Administrators and end-users are faced
with the arduous task of cleansing the affected machines. Restoring the
system using snapshot is disruptive and it can lead to data loss.

In this paper, we present a reconstitution framework that records
inter-application communications; by logging only inter-application
events, we trade our capability for data provenance and recovery within
an application, for performance and the capability to recover long after
the intrusion. To achieve this, we employ novel algorithms that com-
pute the data provenance dependencies from the application interactions
while minimizing the required state we maintain for system reconstitu-
tion. Our experiments show that our prototype requires two to three
orders of magnitude less storage for recovery.

Keywords: Data Provenance, Causal Dependency, System Recovery.

1 Introduction

Computing has evolved into a necessary component for business, government,
and military environments. Logistics, transportation, finance, intelligence, mod-
ern combat systems all depend on the correct operation of computer systems.
Despite intense efforts towards improving software and network security, com-
puters continue to be routinely compromised and exploited. Moreover, even when
intrusions are detected, recovery happens long after the actual attack takes place.

� This work is sponsored in part by US National Science Foundation (NSF) grant CNS-
TC 0915291 and AFOSR MURI grant 107151AA “MURI: Autonomic Recovery of
Enterprise-wide Systems After Attack or Failure with Forward Correction.” Sushil
Jajodia and Meixing Le were partially supported by the National Science Foundation
under grants CCF-103987 and CT-20013A, and by the Army Research Office DURIP
award W911NF-09-01-0352. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 460–469, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Trading Elephants for Ants: Efficient Post-attack Reconstitution 461

Administrators and end-users spend considerable time and effort “cleaning
up” after the attacks. The standard practice consists of little more than re-
formatting the disk, re-installing the operating system, and recovering user data
from the most recent backup1. This is a time-consuming, error-prone process
that is disruptive to end-users and enterprise operations.

The most recent work on system recovery is Retro [20]. Similar to Taser [5]
and Solitude [7], Retro maintains an action history graph to capture the depen-
dencies among system actor and objects (files) at multiple levels of abstraction.
Contrary to all of these process-level recording approaches, our goal is to recover
but also minimize the maintained system state by abstracting the low-level ac-
tivities in the system trading-off recovery granularity. Instead of maintaining
a voluminous log of low-level system activity including the input and return
values of system calls, we attempt to simplify the causal dependencies which
determines the log size. Our provenance graph maintains relations between ob-
jects only when those relations are necessary for potential future recovery. Last
but not least, containers2 abstract the execution of applications on physical ma-
chines.

Our approach attempts to lay a strong foundation to prevent cross-application
contamination and provide efficient system reconstitution. To accomplish this,
we designed a two-pronged architecture: on one hand, we record the data ex-
changed between contained applications; on the other hand, we leverage these
logs to compute the application and user data provenance and use that informa-
tion to recover. A challenging trade-off is the choice of the monitoring granularity.
Using the finest possible granularity, the execution of every function call can be
inspected and logged to obtain the most detailed knowledge of information flow.
However, the computation and storage cost of recording and analyzing these
events is prohibitively high for many applications and especially so over long
periods of time. In contrast, many administrators rely solely on system and ap-
plication logs for recovery. These logs usually offer a coarse-grain view that lacks
sufficient information for analysis. Moreover, they are susceptible to tampering
by attackers. To avoid these pitfalls, we only record application activities as con-
tainer data exchanges. Therefore, we trade our capability for taint-tracking and
recovery within a container for far lower processing and storage overhead.

As shown in experimental results, our system does not impose prohibitive
logging or storage requirements: by selectively storing information based on data
provenance, we provide better recovery for less storage when compared to pure
versioning file systems, interval based backup or system snapshots. Finally, our
recovery algorithm is able to reconstitute a typical desktop system even after the
launch of hundreds of application instances long after the initial corruption. We
demonstrate through different user studies, that the hourly temporary recovery
log for a typical Desktop remains below 250MB and the persistent state is only

1 For example, CERT’s instruction on recovering compromised Unix and Windows
NT systems: http://www.cert.org/tech_tips/root_compromise.html

2 We use VEEs, VEs, and containers as abbreviations for Virtualized Execution
Environments.

http://www.cert.org/tech_tips/root_compromise.html

462 M. Le et al.

12MB for over 65 hours of collected data. This is between two to three orders or
magnitude less information collected and stored compared to all prior research.

2 Related Work

The use of virtualization technologies for system monitoring and recovery has
received a lot of attention [2,15]. In Revirt [2], a virtual machine snapshot en-
capsulates the entire system. By recording VM-to-host interactions the system
stored a full OS-level replay of the entire duration of the attack. To enhance
forensic analysis of intrusions, Goel et al. introduced Forensix [4], a system for
forensic discovery and history reconstruction by monitoring a selected set of
system calls. The Taser [5] recovery system was more geared towards tracking
the propagation of an intrusion in a system, and it did not use virtualization to
isolate processes. This allows intrusions quickly spreading in the entire system.
Moreover, having to track all OS events, they generate enormous amounts of
event data that have to be stored and analyzed. Solitude [7] used chroot jails
that are limited mostly on the file system level. It cannot provide any strict kernel
enforced isolation guarantees so that taint propagation through other channels
such as memory, IPC is still possible. Contrary to Solitude, our approach en-
forces kernel-level separation so that isolate application instances bottom up in
terms of memory, network, file system isolations.

Retro [20] re-executes the suspect actions to restore legitimate actions. It
uses an action history graph to capture the dependencies among system actor
and objects (files) at multiple levels of abstraction. Compared to Retro, we uses
lightweight virtualization to encapsulate each application instance, and our aim
is to minimize the maintained system state by abstracting the low-level activities
in the system trading-off recovery granularity. We trade the recovery granularity
for better performance compared to the 4-150GB per day for log storage. Api-
ary [12] used isolation on the file system and display layer to seamlessly isolate
processes.

Taint analysis and system recovery using dependencies were also studied in
[8,6,10,17]. There are other works [3,19] provide more accurate and efficient taint
analysis, but all of them either incur high analysis overhead. Finally, researchers
have used file versioning systems [13,11,18] to create file snapshots at block level
to support recovery.

3 Threat Model and Isolation

3.1 Threat Model

Software vulnerabilities and the increasing installation of new applications and
browser plug-ins are at the root of security risks. Malicious programs stealthily
download and execute foreign code corrupting other files, sending out confiden-
tial information, etc. Most of these attacks are detected long after the initial
intrusion take place. In our system, we use containers to isolate applications and

Trading Elephants for Ants: Efficient Post-attack Reconstitution 463

track their data communications over the entire duration of their life-cycle. We
assume the attacks cannot break out of the container and corrupt the underlying
system kernel as loading an kernel module in a container is prohibited. Further-
more, we assume that the point of intrusion (a tainted input) is provided to us by
an external entity which can be an anti-virus or an intrusion detection system.
We are also very conservative in marking tainted entities: containers become
tainted after reading malicious files or receiving malicious network messages. All
the output files and messages of a tainted container are considered tainted.

3.2 Container-Based Isolation

A container is a group of processes running on top of the same kernel as host
within the same isolation zone. Starting up with a container template, an empty
container will have all the necessary system processes of a working OS. These are
all virtualized processes which is different from those on the host OS. This isola-
tion is enforced by OpenVZ at kernel level. In our system, we put each application
instance in a dedicated container. Process in one container can not communicate
with or even be aware of the processes running in another container. The only
allowed ways of data communication between containers is through networking
or file sharing, and we record these events in our logs.

Inter Process Communication (IPC): For IPCs in our system, most of them
such as dbus can be done within the isolated container. For X11 service IPCs, we
choose to convert them to socket communications while all other inter-container
IPCs are disabled. Therefore, for all IPCs in our system, either we do not trace
them since they occur within one container, or we record them if they are the
network events across containers. Without such isolation, it is easier for a process
to taint another through IPCs, and it will be even worse if there is no mechanism
to monitor these events on such a system.

Networking: Lightweight virtualization shares the same network processing
code among containers but tags network related data (i.e. packets, socket objects
in kernel) to achieve namespace isolation. Therefore, each VEE has its own
independent network namespace. Namespace checks are enforced by kernel before
any packet processing. Thus, network attacks that target applications or services
running in one VEE won’t affect the services running in the rest of the VEEs.
With network isolation, each application instance has its own IP address.

Stackable File System: Unionfs [21] is a stackable file system service so that
allow us to create one base template and share it among all containers, and this
lowers the disk requirement. The base template is mounted to each container
as read-only root “/” while a dedicated write-enabled layer is mounted on top
of the root allowing each container to store its state in a separate directory.
All the containers share one “shared directory”, therefore our system has the
same functionality as the normal desktop systems. Whereas, all the interactions
with this directory are monitored, and it is expected that containers only store
persistent user data in this directory and all system related and temp files are
stored within the containers’ isolated file systems.

464 M. Le et al.

4 System Architecture

The overall system architecture is illustrated in Figure 1. Each application in-
stance is running inside a VEE. We adopted the kernel probe [9] on the host
OS to log system calls, and we monitor all the system call that can convey data
between containers, which includes most file system related operations and net-
work operations. The logs cannot be tampered by any process running in the
containers.

4.1 Computing Provenance from Logs

The recorded system call logs offer a low-level view of all the container com-
munications and data exchange including those with the host OS. Such view,
however, does not immediately reveal the high-level and semantic dependencies
among the containers. To produce the high-level view, we summarize and dis-
till the raw system call entries into semantic objects (VEEs, files) and actions
(read, write, overwrite, send via network). The summarized logs expose the logi-
cal events happening across the containers. We do the log summarization on the
fly, and only keep the provenance information which will be discussed next as a
high-level view of system events for recovery purpose. By doing this, we largely
reduce the storage requirement for logs.

A Single Machine

In-kernel Logging at System Call Interface

Kernel

VEE 1 VEE 2 VEE 3

Firefox
Process

OpenOffice
Writer Process

UnionFS Kernel
Module

Raw Log
Entries

Summarized
Semantic
EventsHardware

Recovery

Gedit
Process

Online
Taint Analysis

Provenance
Graph

Fig. 1. Overall system architecture: application in-
stances are confined inside containers. Logging, anal-
ysis, and recovery are performed on the same host.

Here, we use the term
provenance [16,1,14] to
refer to the process of trac-
ing and recording the origin
of data and its propagation
in the system. To be more
precise, here we clarify what
provenance means for file
versions and the container
states. The provenance of a
file (at a certain version) is
defined to be all the actions
that modified any present
portion of this file from its
initial version.Modifications
of sections that are not cur-
rently present (i.e. discarded
or overwritten) are not part of the file provenance. On the other hand, the prove-
nance of a container is the union of the provenance of all the input (files, network,
and user input) of this container.

Intuitively, the inputs of containers can be categorized into three types: read-
ing shared files, receiving network messages, and user input. We assume that
user input can be implicitly trusted since our protection is geared towards desk-
top users that have no incentive in harming themselves. We monitor the other
two types of inputs.

Trading Elephants for Ants: Efficient Post-attack Reconstitution 465

4.2 Modeling States Using Provenance

By examining the provenance of files and containers, we can quantify a con-
tainer’s life-cycle into states. We use these states to track the containers’ prove-
nance set and create new file versions. To avoid unnecessary versioning, we fur-
ther divide each container state into Input Sub-state and Output Sub-state.
Each container state can only begin with new input, and output does not cause
state transition. If the container receives continuous input events, it remains the
Input Sub-state. The state of a container is changed only when the container is
in the Output Sub-state and receives new input. An input is considered “old” if
it has been already read in the past (for example, reading the same unmodified
file twice). In case of old input, the provenance set does not need updating.

All containers are initiated from the same clean template. The container can
become tainted only after it is potentially contaminated by some malicious or
tainted input(s). Any tainted input causes a container to transit from the clean
state to a tainted state. Since we do not know which input is malicious in advance,
we treat all new inputs as the start point of a potential malicious input. For
an input event, we check the provenance of this event given the state of the
container. If all the previous information contributed to the event is already
included in the container’s provenance set, the container will not change its
state since the provenance set will not change. If the input is a new event to the
container, its state may be changed depending on whether the container is in
Output Sub-state.

Traditionally, a new file version is generated whenever a container updates a
file. Contrary, in our system, even if the container writes to the same file several
times under the same state, we will only keep one version of this file. This is
because, while we remain in the same container state, all file versions generated
under this container state are either clean or tainted.

4.3 Recovery Using Provenance Graphs

Using the above model, the provenance of each file version is associated with a
set of container states that have contributed to the content of that file. Therefore,
files inherit the provenance of the container at that state. For the provenance of
a container, subsequent states inherit the provenance set of previous states (in
terms of time). Using these states, as well as the inherited relationships among
them, we can construct the provenance graph of the system. In the provenance
graph G=<V,E>, each node v ∈ V represents a state of a container or a version
of a file or a network message. Each edge e ∈ E represents an input/output or
state transition relation between the two nodes, which indicates a taint prop-
agation path. Different states of the container are represented by the nodes
in the graph, and they are connected by edges indicating the state transition.
Each version of a file is a separate node also, and so are different messages. By
traversing the graph in the opposite direction of the arrows, we can easily get
the provenance of a file or message.

466 M. Le et al.

Because of the strong isolation provided by our system, the only possible ways
of cross-container communication is through shared files and network communi-
cations. The provenance graph provides a concise representation of the container
interactions enabling recovery even long time after the intrusion. The main idea
is that, when given an initial intrusion point, we traverse the provenance graph
to identify files and containers that have been tainted and require reconstitution
from the latest recorded clean version.

5 Performance Evaluation

We implemented a fully working prototype of our system with OpenVZ. We
performed several experiments in order to quantify the storage requirements of
our system and the gains of using provenance for both storage and the capability
to recover files when compared our system to both interval-based backup and
pure file versioning. Our evaluation platform consisted of a 2.0GHz Pentium 4
CPU and 1GB of memory. The host OS was running CentOS 5 with a customized
2.6.24 kernel. OpenVZ containers are created from an Ubuntu 8.04 template.

5.1 User Study Using Real Deployment

We tested our prototype system under the load generated from typical desktop
users. Five students were selected for the user study over a period of 7 days. The
tested applications in VEEs include two web browsers (Firefox and Opera), two
text editors (gedit and emacs), PDF reader (evince), and the Open Office suite
(including writer, calc, impress, draw, math). In total, 218 VEEs were created
in the experiments: 104 web browser VEEs, 47 Open Office VEEs, 40 text editor
VEEs, and 27 PDF reader VEEs.

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

St
or
ag
e
Si
ze

(M
B
)

Accumulative Hourly

accumulative provenance graph size raw log size

Fig. 2. Hourly Provenance Graph Generation

Our system transparently
monitors the shared files
without having to keep ver-
sions of files that are inter-
mediate or non-persistent.
For all the 87 shared files in
our experiment (73 of which
were downloaded from In-
ternet), the total file size
is about 52MB. Our system
created 152 backup files for
the 10 days operations, with
a total size of 43MB. The
size of raw system logs with
all the system calls which is comparable to other systems is 13.1 GB. After pre-
serving only the log entries about the shared directory and Internet activities,
the log size is only 604MB. Finally, we only need 12MB of storage to maintain
provenance information for recovery after 10 days operation. This is less than

Trading Elephants for Ants: Efficient Post-attack Reconstitution 467

1/1000 of the original size. In this experiment, we generated the provenance
graph from the non-summarized 604MB logs offline, it took 36 seconds to finish,
which is mostly used to read the logs.

5.2 Hourly Provenance Graph Generation

In this experiment, we picked 65 hours of raw system logs in our user study. At
the end of each hour, we ran our provenance generation algorithm, and updated
the existing provenance graph with the new hourly information. Figure 2 depicts
the storage space needed for hourly provenance graph generation. The maximum
size of raw logs for one hour was less than 250MB. After each hour the analyzed
raw logs were discarded, therefore, the total storage space for logs needed by our
approach for 65 hours was still below 250MB. In addition, the bottom columns
show the accumulative size of the provenance graph. As time pass, the size of the
graph increased, however, even after 65 hours, the total size of the provenance
graph was just around 10MB. From this figure, we can see the benefits of our
approach in terms of state we have to maintain for recovery. For a typical system,
it possible for us to recover data from an attack many days after the initial
incident.

5.3 Versioning FS and Timed Backups

Here, we measured the storage overhead and the ability to recover informa-
tion among interval-based backup systems, pure versioning file systems and our
provenance-based approach. Interval-based backup approach takes periodic sys-
tem snapshots, but the application and file information is lost from the last
known good snapshot point. Pure versioning file systems keep every versions of
files, so they require an enormous storage space. Our approach can always re-
store a corrupted file to the most recent clean version, if such exists. In contrast,
interval-based backup can only partially recover files because it cannot differen-
tiate between tainted and clean files after infection. Of course, the comparison
of versioning and interval-based backup systems depends a lot on the system

0

40

80

120

160

200

2days 4days 6days 8days 10days

N
um

be
r
of

Fi
le
Ve

rs
io
ns

File versions needed based on shared folder
Timed backup (1 hour interval) JCS backup file versions Regular versioning file system

Fig. 3. Comparison of storage over-
head for different backup approaches

0

10

20

30

40

50

60

70

2days 4days 6days 8days 10days

N
um

be
r
of

Fi
le
s

Loss of file recovery capability

30min 1hour 2hours 8hours 1day

Fig. 4. Loss of file recovery capability
for interval-based backup

468 M. Le et al.

usage but it is always the case that the versioning file system requires at least as
much storage as the time-interval system. Both systems do not keep provenance
information and thus cannot identify the proper versions of files to restore.

We compare the versioning storage overhead of shared files in terms of number
of file versions. Figure 3 depicts the corresponding storage overhead comparison
among interval-based backup, our approach, and regular versioning file systems.
Using the provenance information, after 10 days, we can eliminate 53 versions
of files compared to regular versioning file systems without losing any recovery
information. The time interval based approach (1 hour interval) stored 22 ver-
sions less. Unfortunately, this difference in storage has an impact on the ability
to recover files: Figure 4 shows the recovery ability lost in interval-based ap-
proach. We varied the backup time intervals to cover different backup scenarios.
Although we were fairly aggressive in keeping data, for a 30 minutes interval,
after 10 days, this approach lost 16 versions files, which means there are 16
possible cases that a tainted file can not be restored to the most recent clean
version. Our results show that as we increase the time interval, less storage is
required for backup. However, this diminishes the ability to recover data.

6 Conclusions

We presented a reconstitution framework that aims to provide fast and consis-
tent recovery long after a corruption has taken place. We chose to log application
events at the container level rather than the process-level offering a trade-off
between finer-grain data recovery within an application for lower state require-
ments. We show through user studies, that the hourly temporary recovery log for
a typical Desktop remains below 250MB and the persistent provenance graph is
only 12MB for over 65 hours of collected data. To achieve this state reduction,
we proposed a new method for generating data provenance graphs based on the
state of the containers and interactions using files and network events. Recovery
is feasible even after the launch of hundreds of desktop applications instances
following the initial corruption.

References

1. Buneman, P., Khanna, S., Tan, W.-C.: Data Provenance: Some Basic Issues. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 87–93. Springer,
Heidelberg (2000)

2. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: Enabling
intrusion analysis through virtual-machine logging and replay. ACM SIGOPS Op-
erating Systems Review (2002)

3. Goel, A., Farhadi, K., Po, K., Feng, W.-C.: Reconstructing system state for intru-
sion analysis. ACM SIGOPS Operating Systems Review (2008)

4. Goel, A., Feng, W.-C., Maier, D., Walpole, J.: Forensix: A robust, high-performance
reconstruction system. In: 25th IEEE International Conference on Distributed
Computing Systems Workshops (2005)

Trading Elephants for Ants: Efficient Post-attack Reconstitution 469

5. Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recovery
system. In: SOSP 2005: Proceedings of the 20th ACM Symposium on Operating
Systems Principles (2005)

6. Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the future: A framework
for automatic malware removal and system repair. In: ACSAC 2006: Proceedings
of 22nd Annual Computer Security Applications Conference (2006)

7. Jain, S., Shafique, F., Djeric, V., Goel, A.: Application-level isolation and recovery
with solitude. In: Eurosys 2008: Proceedings of the 3rd ACM SIGOPS European
Conference on Computer Systems (2008)

8. King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP 2003: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles (2003)

9. Krishnakumar, R.: Kernel korner: kprobes a kernel debugger. Linux Journal (2005)
10. Liu, P., Ammann, P., Jajodia, S.: Rewriting histories: Recovering from malicious

transactions. Distributed Parallel Databases 8, 7–40 (2000)
11. Peterson, Z., Burns, R.: Ext3cow: a time-shifting file system for regulatory com-

pliance. Transactions on Storage 1, 190–212 (2005)
12. Potter, S., Nieh, J.: Apiary: Easy-to-use desktop application fault containment

on commodity operating systems. In: ATC 2010: USENIX 2010 Annual Technical
Conference (2010)

13. Santry, D.S., Feeley, M.J., Hutchinson, N.C., Veitch, A.C., Carton, R.W., Ofir,
J.: Deciding when to forget in the elephant file system. ACM SIGOPS Operating
Systems Review 33, 110–123 (1999)

14. Seltzer, M., Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Ledlie, J.:
Provenance-aware storage systems. In: USENIX ATC 2006: Proceedings of the
USENIX Annual Technical Conference (2006)

15. Sharif, M., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: CCS 2009: Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (2009)

16. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance techniques.
Technical report, Computer Science Department, Indiana University, Bloomington
IN 47405 (2005)

17. Sriranjani, S., Venkatesan, S.: Forensic analysis of file system intrusions using im-
proved backtracking. In: IWIA 2005: Proceedings of the Third IEEE International
Workshop on Information Assurance (2005)

18. Soules, C.A.N., Goodson, G.R., Strunk, J.D., Ganger, G.R.: Metadata efficiency in
versioning file systems. In: FAST 2003: Proceedings of the 2nd USENIX Conference
on File and Storage Technologies (2003)

19. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. In: ASPLOS 2004: Proceedings of the 11th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (2004)

20. Taesoo Kim, N.Z., Wang, X., Kaashoek, M.F.: Intrusion recovery using selective
re-execution. In: OSDI 2010: Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (2010)

21. Unionfs, http://www.am-utils.org/project-unionfs.html

http://www.am-utils.org/project-unionfs.html

Privacy-Preserving Online Mixing of High

Integrity Mobile Multi-user Data

Akshay Dua, Nirupama Bulusu, and Wu-chang Feng

Portland State University
{akshay,nbulusu,wuchang}@cs.pdx.edu

Abstract. Crowd-sourced sensing systems facilitate unprecedented in-
sight into our local environments by leveraging voluntarily contributed
data from the impressive array of smartphone sensors (GPS, audio, im-
age, accelerometer, etc.). However, user participation in crowd-sourced
sensing will be inhibited if people cannot trust the system to maintain
their privacy. On the other hand, data modified for privacy may be of
limited use to the system without mechanisms to verify integrity. In this
paper, we present an interactive proof protocol that allows an interme-
diary to convince a data consumer that it is accurately performing a
privacy-preserving transformation mixing inputs from multiple expected
sources, but without revealing those inputs. Additionally, we discuss pri-
vacy transformation functions that are compatible with the protocol, and
show that the protocol introduces very little overhead, making it ideal
for real-time crowd-sourced data collection.

Keywords: privacy, integrity, interactive proofs, participatory sensing.

1 Introduction

Crowd-sourced sensing systemsmust protect the privacy of all data sources, whilst
also providing integrity guarantees for the collected data. Data obtained from the
crowd can enable novel people-centric applications in health care, traffic, and envi-
ronmental monitoring systems [17,15,13]. User contribution of sensitive data such
as location may be inhibited due to privacy concerns. One way to protect user pri-
vacy is to perform a privacy-preserving transformation, such as mixing, on the raw
data collected from mobile users. But this may engender reluctance to trust the
integrity of the transformation in the consumer. The conundrum here is that it
is difficult to prove the transformation’s integrity without revealing the raw data
and compromising the privacy of data sources. Thus, integrity and privacy wind
up as dueling goals of a crowd-sourced sensing system.

Most prior approaches have either proposed novel transformation functions to
provide privacy [8, 16], or proposed mechanisms to verify data integrity [7], but
have not addressed both problems simultaneously. VPriv [14] is the only prior
work that attempts to offer both integrity and privacy using an additive ho-
momorphic commitment scheme, for the application scenario of computing tolls
over paths taken by vehicles. But its integrity is limited to additive functions,
while its privacy is limited by the need for random spot checks.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 470–479, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Privacy-Preserving Online Mixing 471

Our previous work [6] provided a mechanism to verify the integrity of privacy-
preserving transformations of data from an individual source without revealing
the raw data. But it did not address the problem of verifying the integrity of
privacy-preserving transformations that mix data from multiple data sources.
Mixing data from multiple users, as opposed to performing transformations on
data from a single user, is essential to ensuring better privacy for all users [8].
However, simultaneously achieving privacy and integrity with mixing is not triv-
ial. It is reasonable to assume a user’s vested interest in her own privacy, but not
necessarily in the privacy of others. Thus, the integrity verification must now be
robust to any privacy threats that stem from a collusion between a data source
and the data consumer.

In this paper, we address the problem of privacy-preserving online mixing of
mobile multi-user data. Our work uses the system model illustrated in Fig. 1. It
assumes that multiple independent data sources or producers forward their raw
data to a trusted privacy proxy. The proxy then performs a privacy-preserving
transformation on the received data and forwards the result to a data consumer.
Here, the proxy is analogous to a Tor mix-node [5], which mixes data from
multiple sources to provide anonymity. Note that the proxy is trusted by the
sources but not by the consumer.

Our goal is to enable the privacy proxy to assure the data consumer that, the
result it publishes is indeed the output of a given privacy-preserving transfor-
mation on data from multiple expected sources as input (integrity guarantee),
without having to provide that input to the consumer (privacy guarantee). The
contributions of this paper include:

– An interactive proof protocol [10], using which, only an honest privacy proxy
can convince a data consumer that it is correctly computing a given privacy-
preserving transformation that mixes data from multiple users. Most impor-
tantly, the proof requires the proxy to send the consumer only the output of
the transformation. Since the inputs — sensitive data contributed by partic-
ipants — are never sent to the consumer, each participant’s privacy remains
protected (Section 4).

– Demonstrating privacy-preserving transformations whose integrity can be
proved using our interactive proof protocol (Section 5).

– Deriving the overhead introduced by the protocol. We show that the over-
head is a fraction of the complexity of the privacy-preserving transformation
being computed by the proxy (Section 6)

2 Problem Statement

Only an honest privacy proxy P should be able to convince a data consumer
C that it is indeed publishing the result of a privacy-preserving transformation
function fpriv on data Dj = {d1j , d2j , ..., dnj} received from a set of sources
S = {s1, s2, ..., sn} in interval j (Fig. 1). C receives the result pj = fpriv(Dj),
but never the data Dj . Essentially, the following must be satisfied:

472 A. Dua, N. Bulusu, and W.-c. Feng

– Integrity requirement. C must be convinced with high probability that
pj = fpriv(Dj) only if P is honest

– Privacy requirement. C must not be able to learn or verify that Dj =
{d1j , d2j , ..., dnj}

s2

s1

sn

P

Dj = d1j , ..., dnj

pj = fpriv(Dj)

C

accept pj ,
challenge P

d1j

d2j

dnj

pj

Fig. 1. System model

3 Threat Model

The design of our protocol aims to both prevent a malicious data consumer
C from discovering any raw data D contributed by any of the sources S, and
prevent a malicious privacy proxy P from using either alternate transformation
functions besides fpriv, or data besides D, or both.

Insiders pose significant risks to the system. We assume that the data con-
sumer is an adversary of privacy, but not of integrity. This is reasonable be-
cause the data consumer C has a vested interest in the integrity of the privacy-
preserving transformation. Further, we assume that the privacy proxy P is an
adversary of integrity, but not of privacy. The reason being, that the data sources
trust P to protect their privacy, but the consumer may not trust P to preserve
data integrity. An implication of the above adversarial model is that P and C
do not collude in any way. Since sources could contribute bogus information to
skew the collected data, they are considered adversaries of integrity. Our proof
protocol alone, however, is not designed to address the threat of fabricated data
from the sources. The proof only guarantees that the output of a privacy trans-
formation was computed using inputs from S, but the integrity of those inputs
— the sensory data collected by S – cannot be guaranteed by our protocol. Our
earlier work [7] describes the design and implementation of a trusted sensing
platform that can be used to address this issue.

We do not consider denial-of-service attacks in which communicating parties
P , C, and S can potentially suppress responses that are expected by others. Nor
do we consider threats from eavesdropping adversaries that can be mitigated by
standard network security protocols, like TLS.

Our work focuses on the integrity and privacy of content rather than their
origin. Thus, attacks that could reveal or alter the origin of a message are not

Privacy-Preserving Online Mixing 473

Table 1. Normal Operation

si P

interval j : sense dij
if j mod h = 0,
choose random m from [0, h− 1]
set m = m+ j

if j = m,
save [dij , j]

si → P : dij P → C: pj = fpriv(dij)

... ...

considered. Directing traffic from S through a mix network like Tor [5] and using
anonymous group signatures [3] for authentication can mitigate such attacks.

Finally, we assume that C and sources in S honestly execute the protocol since
C has a vested interest in collecting high-integrity data, and S has a vested in-
terest in protecting personal privacy. Nevertheless, C is free to perform offline
privacy attacks on the data received from P . Mitigation strategies for such at-
tacks have been addressed in the security analysis of our prior work [6], and are
not discussed in this paper.

4 Interactive Proof Protocol

As shown in Fig. 1, after receiving pj, C may randomly choose to issue a challenge
that will require P to prove that it is honestly computing fpriv using inputs from
sources S. This challenge message marks the beginning of the interactive proof
protocol. After the proof, C will be convinced about the integrity of the data
with high probability only when P is honest, but not otherwise.

4.1 Preliminaries

For the protocol to work, we require a shared symmetric key kic between the
source si and the data consumer C, a key kip between si and privacy proxy P ,
and a buffer at si that is large enough to store data collected in b distinct inter-
vals. Where encryption/decryption is necessary, the notation Enckic and Deckic

indicate a symmetric encryption and decryption algorithm (e.g. AES) using key
kic. Additionally, we need the privacy-preserving transformation function fpriv
to satisfy the following condition: given an obfuscation function g(r, x) that ob-
fuscates input x using random number r that we call the obfuscation key, we
require that

fpriv(g(r, x1j), ..., g(r, xmj)) = g(r, fpriv(x1j , ..., xmj)) (1)

So for example, let g(r, x) = r · x, and fpriv(x1j , ..., xmj) = mean(x1j , ..., xmj)
then,

474 A. Dua, N. Bulusu, and W.-c. Feng

fpriv(g(r, x1j), ..., g(r, xmj)) = mean(r · x1j , ..., r · xmj)

= r ·mean(x1j , ..., xmj)

= g(r, fpriv(x1j , ..., xmj))

Here, the privacy-preserving transformation is simply a mean of its inputs (raw
data from sources) and we can see that this particular transformation satisfies
Equation (1). What is significant, is that Equation (1) establishes a relation-
ship between the transformed value, and obfuscated raw data from sources. This
relationship is fundamental to the success of our protocol because it gives us
the ability to check the integrity of the published data without requiring the
potentially sensitive raw data from sources.

Data sources must, however, provide obfuscated data to the consumer during
the protocol. Fortunately, without the obfuscation key, the consumer may have
no way to extract the correct raw data, especially because the key changes every
interval. Further, even if there was a way, say by using an oracle, the consumer
could only ever extract raw data for half the number of intervals in which it
challenges the proxy. So, if C challenges 4 out of 10 intervals, then using the
oracle it could extract raw data for 2 intervals.

4.2 Protocol Details

Table 1 shows the normal operation of source si, which, continuously picks a
random interval j from every h, and saves the corresponding data in its buffer.
Once the buffer is full, si is ready to participate in the interactive proof protocol.
We explain later how each source si picks the same j.

The interactive proof protocol begins once C randomly issues one of two
challenges to P (via S, see Tab. 2). On receiving a response, C performs one of
two different tests to check the response’s integrity.

Both tests are performed using obfuscated raw data from sources in S or from
their chosen leader slead (more on this later). Note that P does not know which
test will be performed until it has responded. Thus, P ’s initial response acts as
a bit commitment [2]. The tests serve three purposes:

1. Allow an honest P to pass either test with the same response, but force a
dishonest P to create a different response for each. Since a dishonest P does
not know which test is going to be performed, its chances of passing are 1/2.
If P repeatedly passes, then C has more confidence in P ’s honesty.

2. Make sure that obfuscated raw data from S and the corresponding obfusca-
tion key are not simultaneously available to C during any given challenge.
If that were the case, C could extract the raw sensitive data from the obfus-
cated values. We can see, that during Challenge 1, C has the obfuscation
key but not the obfuscated data. Where as in Challenge 2, its vice versa.

3. Use one test to check that a published transformed value was indeed com-
puted using raw data from si, and the other to check that the privacy-
preserving transformation computed by P was indeed fpriv. Test 1 does

Privacy-Preserving Online Mixing 475

Table 2. Interactive proof protocol

Sources S = {s1, ..., sn} C

for each si ∈ S,
With probability 1/2:
C → si: Enckic (Challenge 1)
OR, C → si: Enckic (Challenge 2)

at each si ∈ S,
decrypt challenge
Pick random number r
randomly choose saved interval l, l ≤ j

Sources S = {s1, ..., sn} P

at each si ∈ S,
si → P : Mi0 = Enckip (g(r, dil))

Ol = Deck1p (M10), ..., Decknp(Mn0)
P → C: p = fpriv(Ol)

Sources S = {s1, ..., sn} C

if Challenge 1,
slead → C: M1 = Encklead,c

(r, l)
else,
at each si ∈ S,
si → C: Mi2 = Enckic (g(ri, dil))

M1 OR M12, ...,Mn2

Test 1 (if Challenge 1):
r, l = Decklead,c

(M1)
if p �= g(r, pl),
reject

Test 2 (if Challenge 2):
Ol = Deck1c (M12), ..., Decknc(Mn2)
if p �= fpriv(Ol),
reject

the former while Test 2 does the latter. Test 1 compares fpriv(Ol)
?
=

g(r, fpriv(Dl)), where Ol is obfuscated sensory data, and Dl is raw sensory
data for a past interval l. This will be true only if source si created Ol by ob-
fuscatingDl. Test 2 compares the transformed value sent by P with fpriv(Ol)
computed by C. Since C is computing fpriv on data received directly from
the sources, this comparison will be true only if P computed fpriv as well.

Once the interactive proof is complete, si purges the respective interval of data
from its buffer, thus making room for more. In the interest of clarity, we have
omitted the use of digital signatures for authentication.

One question remains: how does one get all the sources to pick the same saved
interval j, same challenge interval l, and random number r? With the correct r,
j, and l, each source can obfuscate and forward its own data to C as shown in
Tab. 2.

476 A. Dua, N. Bulusu, and W.-c. Feng

Table 3. Initialization phase

Sources S = {s1, ..., sn}
establish shared group key kg
establish leader slead ∈ S
slead broadcasts Minit = Enckg (rseed, b, h)
at each si ∈ S,
set rseed, b, h = Deckg (Minit)
initialize PRNG with rseed
allocate buffer for b intervals of data

We can get all the sources to pick the same random numbers if each one uses
the same Pseudo-Random Number Generator (PRNG) with the same random
seeds. The random seed could be securely communicated (via P) to each source
by another that is picked to be the leader (slead). For secure communication
among sources, a group key will need to be established [12]. To reliably elect a
leader, a communication-efficient stable leader election protocol can be used [1].

Once the secure communication channels are established, the elected leader
can broadcast (via P) the protocol’s various parameters — the random seed, size
of the buffer b, and sampling frame size h — to the rest of the sources during
an initialization phase (Table 3).

5 Privacy-Preserving Transformations

We do not attempt to define what precisely is a privacy-preserving transforma-
tion. Rather, we claim that if such a transformation satisfies Equation (1), then
the entity computing the transformation can provide proofs of integrity for the
result without disclosing the inputs. The question is, what privacy-preserving
transformations satisfy Equation (1)?

Fig. 2. Spatial Cloaking

While providing an exhaustive list (or cat-
egory) of privacy-preserving transformations
satisfying Equation (1) is out of the scope of
this paper, we present one whose computa-
tional integrity can be proven using our proto-
col. The privacy-preserving transformation in
question is a cloaking algorithm similar to the
one by Gruteser and Grunwald [11] intended
for use in Location Based Services (LBS). The
idea is to spatially cloak a set of GPS coordi-
nates published by participants, and return an
area (e.g., a quadrant) that includes at least
kmin of them. Here, kmin quantifies the amount of anonymity desired. Specifi-
cally, it enforces the fact that each participant’s location cannot be distinguished
from at least kmin − 1 others.

Privacy-Preserving Online Mixing 477

The privacy-preserving transformation fpriv is the function that takes the
GPS coordinates as input and returns the respective area (see Fig. 2) as output.
Unlike the original algorithm, where the fpriv returned a quadrant, we define
an fpriv that returns a circular area (x, y, u), where (x, y) is the center of that
circle, and u is its radius. Formally, we define fpriv as:

fpriv((x1, y1, 0), ..., (xn, yn, 0)) = (xc, yc, uc) (2)

Intuitively, the privacy transformation above returns a circle large enough to
cover all the circles provided as input. A participant’s coordinates are thus ex-
pressed not as points, but as circles whose radii are zero. We now define the
obfuscation function g as: g(r, (x, y, u)) = (x+ r, y + r, u).

Intuitively again, the obfuscation function moves the input circle by r units
in the x and y dimensions. Using the above definitions for fpriv and g in the left
and right hand side of Equation (1) we have: Since fpriv and g satisfy Equation

fpriv(g(r, (x1, y1, 0)), ..., g(r, (xn, yn, 0)))

=fpriv((x1 + r, y1 + r, 0), ..., (xn + r, yn + r, 0))

=(xc + r, yc + r, uc)

g(r, fpriv((x1, y1, 0), ..., (xn, yn, 0)))

=g(r, (xc, yc, uc))

=(xc + r, yc + r, uc)

(1), our interactive proof protocol is applicable in this LBS scenario.

6 Overhead

We now present an analysis of the overhead imposed by our protocol. We will
show that the introduced overhead is a fraction of the complexity of the privacy-
preserving transformation computed by the proxy P . Our baseline is a data
collection system like PoolView [8], where privacy guarantees are provided with-
out integrity guarantees. The overhead then, is due to all computations and
message exchanges required to perform the interactive proof of integrity while
preserving privacy (Table 2). Also, note that we are mainly interested in the
overhead of the more expensive challenge where in addition to P , C must also
compute fpriv. Our result, therefore, is the worst case bound for overhead as it
assumes that every challenge from C is the more expensive one, when in reality
that will only be true during approximately half the challenges.

We define tb as the time it takes for baseline operation: sources in S send
data to P , which computes fpriv over that data and forwards the result to C.
We define tc as tb + tproof where tproof is the time it takes to complete the
interactive proof. Then, overhead to = tc − tb = tproof . Now,

tb = tfpriv +
rttSP

2
+

rttPC

2

where, tfpriv is the time it takes to compute the privacy transformation, and rttij
is the round-trip time between i and j. We have excluded minor computations
such as a data source randomly choosing and saving an interval of data in its
buffer. Also,

tc = 3 tfpriv + 2 rttSP + 2 rttPC + δ

478 A. Dua, N. Bulusu, and W.-c. Feng

where δ includes symmetric encryption or decryption operations performed on
raw data values, and the computation of the simple obfuscation function g(r, x).

Subtracting tc from tb we get overhead:

to = 2 tfpriv +
3 rttSP

2
+

3 rttPC

2
+ δ

Note that the overhead to is applicable only in those intervals in which the
data consumer issues a challenge. The probability P (challenge) with which the
consumer issues a challenge during any given interval is 1/h (Section). Further,
if the round-trip, encryption, and decryption times are negligible compared to
the privacy transformation fpriv, then to ≈ 2 tfpriv. With this in mind, the
expected overhead of our protocol after I intervals of data collection is,

E(overhead) = I × to × P (challenge) =
2I tfpriv

h

It is important to note that if the data publishing interval is larger than
E(overhead), then the entire proof will finish before the sources disseminate the
next interval of data. Thus, causing no perceptible delay in data publication.

7 Conclusion

Crowd-sourced sensing can revolutionize applications from intelligent transporta-
tion to health care monitoring, but confronts the challenge of maintaining user
privacy to encourage contribution of data, while maintaining data integrity to
encourage governmental and citizen use of that data. We have proposed the first
solution using interactive proofs that allows an intermediary to convince a data
consumer that it is accurately performing a privacy-preserving transformation
that mixes inputs from multiple data sources, without providing those inputs to
the consumer. The proposed protocol preserves the privacy advantages of mix-
ing data from multiple sources, while being robust to privacy threats that arise
from collusion between a data source and a consumer during integrity verifica-
tion. The key idea is that unlike traditional interactive proofs with one prover
(privacy proxy) and one verifier (data consumer), ours involves a collaboration
between the verifier and all additional parties that wants to protect their pri-
vacy (data sources) to keep the prover in check. We have analyzed the protocol
overhead and discussed compatible privacy-preserving transformations.

Acknowledgments. This work was supported by the National Science Foun-
dation under grants CISE-0747442 and CNS-1017034. We would like to thank
Tom Shrimpton for his feedback on the interactive proof protocol.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable Leader Elec-
tion (Extended Abstract). In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp.
108–122. Springer, Heidelberg (2001)

Privacy-Preserving Online Mixing 479

2. Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Multiparty Computations Ensuring
Privacy of Each Party’s Input and Correctness of the Result. In: Pomerance, C.
(ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988)

3. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

4. Consolvo, S., McDonald, D., Toscos, T., Chen, M., Froehlich, J., Harrison, B.,
Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., et al.: Activity sensing in the
wild: a field trial of ubifit garden. In: Proceeding of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing Systems, pp. 1797–1806.
ACM (2008)

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: USENIX Security, p. 21. USENIX Association, Berkeley (2004)

6. Dua, A., Bulusu, N., Feng, W.: Catching Cheats with Interactive Proofs: Privacy-
preserving Crowd-sourced. Data Collection Without Compromising Integrity
(2010)

7. Dua, A., Bulusu, N., Feng, W., Hu, W.: Towards Trustworthy Participatory Sens-
ing. In: HotSec 2009: Proceedings of the 4th USENIX Workshop on Hot Topics in
Security. USENIX Association, Berkeley (2009)

8. Ganti, R., Pham, N., Tsai, Y., Abdelzaher, T.: PoolView: stream privacy for grass-
roots participatory sensing. In: Proceedings of ACM SenSys, Raleigh, North Car-
olina, pp. 281–294. ACM (2008)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, p. 304. ACM (1985)

11. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42. ACM (2003)

12. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. Jour-
nal of Cryptology 20(1), 85–113 (2007)

13. Paulos, E., Honicky, R., Goodman, E.: Sensing atmosphere. In: Workshop on Sens-
ing on Everyday Mobile Phones in Support of Participatory Research. Citeseer
(2007)

14. Popa, R., Balakrishnan, H., Blumberg, A.: VPriv: Protecting privacy in location-
based vehicular services. In: Proceedings of the 18th USENIX Security Symposium
(2009)

15. Reddy, S., Parker, A., Hyman, J., Burke, J., Estrin, D., Hansen, M.: Image brows-
ing, processing, and clustering for participatory sensing: lessons from a DietSense
prototype. In: ACM SenSys, Cork, Ireland, pp. 13–17. ACM (2007)

16. Shi, J., Zhang, R., Liu, Y., Zhang, Y.: PriSense: Privacy-Preserving Data Aggre-
gation in People-Centric Urban Sensing Systems. In: IEEE INFOCOM (2010)

17. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H.,
Toledo, S., Eriksson, J.: VTrack: accurate, energy-aware road traffic delay estima-
tion using mobile phones. In: Proceedings of the 7th ACMConference on Embedded
Networked Sensor Systems, pp. 85–98. ACM (2009)

Symbolic Analysis for Security

of Roaming Protocols in Mobile Networks
[Extended Abstract]

Chunyu Tang, David A. Naumann�, and Susanne Wetzel

Stevens Institute of Technology, Hoboken NJ 07030 USA

Abstract. Both GSM (2G) and UMTS (3G) wireless standards are
deployed worldwide. Like the 4G standard now appearing, these stan-
dards provide for mobile devices with differing capabilities to roam be-
tween providers or technologies. This poses serious challenges in ensuring
authentication and other security properties. Automated analysis of se-
curity properties is needed to cope with the large number of possible
scenarios. While some attacks exploit weaknesses in cryptographic func-
tions, many attacks exploit flaws or other features of the protocol design.
The latter attacks can be found using symbolic (Dolev-Yao) models. This
paper demonstrates the use of a fully automatic tool to exhaustively an-
alyze symbolic models of GSM, UMTS, and the respective roaming pro-
tocols. The results include the demonstration of known attacks as well
as the confirmation of expected properties.

Keywords: Mobile networks, GSM, UMTS, roaming protocols, secu-
rity, authentication, secrecy, symbolic modeling, automated analysis.

1 Introduction

Starting in the early 90s, the Global System forMobile Communications (GSM)—
also referred to as second generation (2G) technology—became a main stan-
dard for mobile telecommunication. Recently, phone carriers have started to build
fourth generation (4G) networks. Given the evolution of the telecommunication
standards and devices, enabling secure roaming and handover is at the core of pro-
viding service to mobile subscribers.1 This includes roaming and handover within
one technology as well as across technologies.

While Universal Mobile Telecommunications System (UMTS)—also called
third generation (3G)—allows for the interoperation with GSM, its successor
is to support many more options. Analyzing the security of all possible combina-
tions of interoperating scenarios by hand is a rather tedious undertaking. While
for the interoperation between GSM and UMTS six different scenarios had to
be investigated, this number grows an order of magnitude for 4G.

� Tang and Naumann were supported by US NSF award CCF-0915611.
1 The term handover refers to mechanisms for mobility of an ongoing phone call or
data exchange; roaming refers to mobility while no such service is currently active.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 480–490, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Symbolic Analysis for Security of Roaming Protocols in Mobile Networks 481

This paper explores an approach that allows for a structured exploration of
specified security properties in the various contexts. The first contribution is to
provide formal models of the main security components of both the GSM and
UMTS standards (Sects. 3 and 4), together with the specification of required
authenticity and secrecy properties. The second contribution is to show that one
can automate the checking of the various (roaming) scenarios to see whether
or not specified security properties hold—thus replacing the tedious checking
of all possible combinations by hand (Sect. 5). The automated analysis finds
several known attacks, and does not miss known attacks except those that exploit
weaknesses in cryptographic functions. The feasibility study in this paper lays
the basis for a formal modeling and automated analysis of 4G and its manifold
associated roaming and handover scenarios.

2 Related Work

The security of the mobile communication standards has been studied exten-
sively both in the context of the standardization efforts [19] and outside by the
greater research and user community. For example, [8] noted that GSM is sus-
ceptible to a false base station attack. Recently, Nohl et al. demonstrated that
it is possible to eavesdrop on GSM communication in practice with rather lit-
tle effort. Attacks on GSM ciphers were devised by, for example, Golic [9], and
Dunkelman et al. [6]—the latter of which is also of relevance in the context of
UMTS security. Aside from general assessments of UMTS security (e.g., [16]),
or works focusing on UMTS encryption and integrity mechanisms (e.g., [16,11]),
one main focus in UMTS is on security in the context of roaming and handover
(e.g., [14, 15, 13]).

In this paper we focus on the analysis of protocols in the symbolic or Dolev-
Yao model, which assumes perfect cryptography: an encrypted message can be
decrypted only with the appropriate key, hash functions do not have collisions,
etc. The attacker has complete control over the network: it can introduce, alter,
replay, and delete any message. Several open-source protocol analyzers have
seen extensive use; we mention selected examples. Taha et al. [17] analyze the
handover schemes and the pre-authentication handover protocol in IEEE 802.16e
standard (Mobile WiMAX) using the Scyther tool. They find the attacker can
obtain the keys in both protocols. Taha et al. [18] analyze the privacy and key
management protocol in IEEE 802.16 (PKMv1) and 802.16e (PKMv2) using
Scyther. They find a pseudonymity attack in both protocols, and an attack
violating the data secrecy in PKMv1. Lim et al. [12] propose a handover protocol
for WLAN, WiBro and UMTS, and verify it using AVISPA. Bouassida et al. [4]
analyze the key management architecture for hierarchical group protocols using
AVISPA, and find an attack on the members promotion protocol. Other relevant
tools are LySa [3] and protocol analyzers of Meadows et al. [7].

In this work we use the ProVerif tool (PV for short). Chang and Shmatikov [5]
use PV to analyze the Bluetooth device pairing protocols; They confirm the
offline guessing attack [10] and discover an attack scenario for a then-proposed

482 C. Tang, D.A. Naumann, and S. Wetzel

Fig. 1. GSM message se-
quence diagram [19,13] Fig. 2. UMTS message sequence diagram [19,13]

Simple Pairing protocol. Abadi et al. use PV to analyze the Just Fast Key
protocol [1]. Blanchet and Chaudhuri [2] use PV to analyze a protocol for secure
file sharing on untrusted storage.

3 Review of GSM, UMTS, and Roaming

3.1 GSM

When connecting to a Base Station (BS) of a Servicing Network (SN), a Mobile
Station (MS) first transmits its Temporary Mobile Subscriber Identity (TMSI)
as well as its CAPabilities (CAP), i.e., the encryption algorithms it supports to
the SN. In case the SN does not recognize the TMSI (i.e., the SN cannot resolve
the received TMSI to a unique International Mobile Subscriber Identity (IMSI),
the SN will require the MS to send its unique IMSI. A SN may be the MS’s
wireless service provider, i.e., its Home Network (HN) or a Foreign Network
(FN). A MS might receive service from a FN in areas where its HN does not
provide service. Based on the IMSI, the SN will then request an authentication
vector from the MS’s HN (see Message 5 in Fig. 1).

The MS and HN share a long-term symmetric secret key Ki . Using this pre-
shared secret key Ki and a random nonce RAND , the HN generates an authen-
tication vector consisting of the three components RAND , XRES , and a session
key Kc. (The details of the algorithms A3 and A8 [19] which are used to compute
the XRES and Kc are not important in the context of this paper.) Upon receiv-
ing the authentication vector (Message 6), the SN starts a challenge-response
type exchange with the MS. Specifically, the SN sends the challenge RAND to
the MS (Message 7). Based on the received RAND and the pre-shared key Ki

stored on its SIM card, the MS computes the session key Kc as well as a re-
sponse RES to the received challenge RAND . Subsequently, the MS sends the

Symbolic Analysis for Security of Roaming Protocols in Mobile Networks 483

computed response RES to the SN. If RES matches the response XRES (which
the SN received from the HN as part of the authentication vector) then the MS
has successfully authenticated itself to the SN. Then the SN moves on to decide
which encryption algorithm will be used to encrypt the communication on the
air interface between the SN and the MS (based on the CAP it received from
the MS earlier). The SN informs the MS of its choice (Message 9) and starts the
(possibly encrypted) communication.

Security in GSM: The protocol described above assures the SN of the au-
thenticity of the MS in case the response RES received from the MS matches
XRES received from the HN. Only an MS holding the pre-shared key Ki will
be able to compute the correct result RES in response to the random challenge
RAND (assuming the security of algorithms A3 and A8). However, GSM does
not provide any assurance for the MS that it is in fact connected to a legitimate
BS of the SN. The false base station attack is a man-in-the-middle attack [8],
i.e., the false BS sits in between the MS and the legitimate BS, pretending to
be a legitimate BS when communication with the MS and pretending to be a
legitimate MS when communicating with the actual BS. Since the MS sends its
capabilities CAP in the clear, it is possible for a false BS to intercept and modify
that information before forwarding it to a legitimate BS. In particular, it can
change the capabilities CAP it received from the MS so that the legitimate BS
will believe that the MS cannot support encryption. Consequently, the false BS
will be able to listen in and arbitrarily modify the unencrypted communication
between the MS and the legitimate BS.

3.2 UMTS

Establishing a connection to a BS of a SN in UMTS follows the same principles
as those in GSM. The main differences lie in that those specified in UMTS are
intended to provide mutual authentication of the MS and the SN and they also
include mechanisms to support integrity protection and to establish freshness
guarantees. Specifically, upon receiving an authentication request from the SN
(Message 5 in Fig. 2), the HN computes an authentication vector that is more
extensive than the one issued in GSM. In addition to determining a challenge
response pair RAND and XRES , in UMTS the HN also computes a Message
Authentication Code (MAC), a Ciphering Key (CK), an Integrity Protection
Key (IK), an Anonymity Key (AK), a Sequence Number (SQN) as well as an
Authentication Management Field (AMF).

Upon receiving the authentication vector (Message 6), the SN initiates the
challenge response exchange with the MS. Unlike in GSM, the MS receives the
Authentication Token (AUTN) as part of Message 7 which allows the MS to
determine whether or not this is a fresh authentication challenge. Upon receiving
the response RES from the MS (Message 8), the SN checks whether or not it
matches XRES . If so, then the MS has successfully authenticated to the SN. The
SN then proceeds to deciding on the encryption algorithm. In contrast to GSM,
in UMTS the SN includes the CAP (MS’s encryption and integrity protection
capabilities) in its message to the MS as it received them as part of Message 1.

484 C. Tang, D.A. Naumann, and S. Wetzel

Fig. 3. UMTS subscriber roams into mixed network (blocks GSM I–IV, UMTS I–IV
are protocol components in Figs. 1, 2) [19,13]

Message 9 is integrity protected. Based on Message 9, the MS can verify that the
SN received the CAP as the MS sent them. In addition, the integrity protecting
as part of Message 9 allows the SN to authenticate itself to the MS.

Security in UMTS: The MS has correctly authenticated to the SN if RES
matches XRES . The authentication of the SN to the MS requires two compo-
nents to be present: the freshness of AUTN (sent in Message 7)—preventing the
replay of authentication data—and a correctly integrity protected Message 9.

3.3 Roaming between GSM and UMTS

The UMTS standard defines roaming mechanisms to allow a GSM MS to connect
to a UMTS infrastructure as well as for a UMTS MS to connect to a GSM
infrastructure. The assumptions are that the respective MSs support both the
GSM and UMTS radio interfaces and provide for both the GSM and UMTS
encryption and integrity protection mechanisms.

For the discussion of roaming scenarios it is necessary to distinguish two com-
ponents of the SN: the BS and the Mobile Switching Center (MSC). Depending
on whether the BS and MSC are of GSM or UMTS technology, they are referred
to as GSM/UMTS MSC and GSM/UMTS BS. There are six roaming scenarios:

1. A UMTS MS roams to a SN with a UMTS BS and UMTS MSC. This case
is equivalent to regular UMTS operation.

2. A GSM MS roams to a SN with a GSM BS and GSM MSC. This case is
equivalent to regular GSM operation.

3. A UMTS MS roams to a SN with a GSM BS and GSM MSC.
4. A GSM MS roams to a SN with a UMTS BS and UMTS MSC.
5. A UMTS MS roams to a SN with a GSM BS and a UMTS MSC. See Fig. 3.
6. A GSM MS roams to a SN with a GSM BS and a UMTS MSC. This case

is equivalent to regular GSM operation. I.e., the UMTS MSC will act as a
GSM MSC.

Security in Roaming: Scenarios (3) and (5) are prone to the false base station
attack as the GSM cipher command is not integrity protected and does not
include the MS’s CAP. Furthermore, as shown in [13,14] it is possible to mount
an asynchronous man-in-the-middle attack in an all UMTS environment.

Symbolic Analysis for Security of Roaming Protocols in Mobile Networks 485

Fig. 4. GSM annotated in accord with our model, omitting TMSI/ID Request and
adding a first message of data traffic

4 Modeling and Analyzing GSM and UMTS in ProVerif

4.1 GSM Model

Fig. 4 augments the protocol diagram of Fig. 1, as a guide to our model. The
TMSI and ID request messages are omitted. When a MS first roams into a FN,
an IMSI is always requested. Labels, like cap ms and cap sn for the first message,
are the names of the relevant variables in the processes that model protocol roles.
Besides variable names, the other augmentation is the addition of events (the
dashed boxes). These are instrumentation used in order to specify authenticity
properties as so-called correspondence assertions, which are the standard tech-
nique for formal specification of authenticity properties. Such properties take the
form “if event E happens then event F must have happened previously”. For
example, whenever the SN decides to proceed with communication, using a par-
ticular Kc , because it successfully verified the response to a challenge, then that
MS must indeed have sent the response and computed Kc for itself. An event
is like a message—sent to an omniscient observer—with a tag indicating what
kind of event, together with parameters like the specific IMSI and Kc. Events
are not visible to the attacker, nor can they be generated by the attacker.

The HN, SN, and MS communicate over two shared channels declared in line
1 in Fig. 5. Traffic on the private channel is not accessible to the attacker; in our
model, this channel is used by the SN and HN. Messages on a non-private channel
can be copied, deleted, and fabricated by the attacker. We declare additional
types and define a number of (distinct) constant values in lines 2–3. In lines
4–7, the cryptographic functions are declared and their algebraic properties are

486 C. Tang, D.A. Naumann, and S. Wetzel

1 f r e e pubChannel : channe l . f r e e s ecu r eChanne l : channe l [p r i v a t e] .
2 type key . type i d e n t . type nonce . type msgHdr . type r e s p . type s e s sKey .
3 const CAP : msgHdr . const ID : msgHdr . const AV REQ : msgHdr
4 fun a3 (nonce , key) : r e s p . fun a8 (nonce , key) : s e s sKey .
5 fun s en c r yp t (b i t s t r i n g , s e s sKey) : b i t s t r i n g .
6 reduc f o r a l l m: b i t s t r i n g , k : s e s sKey ; s d e c r yp t (s en c r yp t (m, k) , k) = m.
7 reduc e n c Cap a b i l i t y () = t r u e ; e n cC a pa b i l i t y () = f a l s e .
8 t a b l e keys (i d en t , key) . (∗ Tab l e s a r e not a c c e s s i b l e to the a t t a c k e r . ∗)
9 f r e e pay l oad : b i t s t r i n g [p r i v a t e] . (∗ not i n i t i a l l y known to a t t a c k e r ∗)

10 f r e e s e c r e tK c : b i t s t r i n g [p r i v a t e] . (∗ a s e c r e t to be p r o t e c t ed by Kc∗)

Fig. 5. Excerpts from declarations for GSM

defined by equations. There are two equations in line 7 for encCapability so that
the MS process can choose whether its capability includes encryption or not.

The main process forks multiple sessions for each kind of process. Fig. 6 shows
the complete code of the processes. An instance of processMS models the initial
activation of a MS followed by a single attempt at authentication. In lines 3–4,
MS generates a fresh IMSI and a fresh Ki ; in line 5 these are inserted in the
table. Fresh values (keyword new) are unguessable by the attacker. In line 6, the
MS decides on its encryption capability. The analysis will consider all possible
executions, which thus include those where MS has encryption and those where
it does not. In lines 8–9 the MS sends its capability and IMSI. Notice that
the channel itself is not typed. The message in line 8 is the header literal CAP
paired with boolean cap ms; the one in line 9 pairs the ID header with a value
of type ident. In line 10, the process waits until a message is available on the
public channel. The message must match the designated format or the process
terminates prematurely. PV statically checks types, which helps the user avoid
modeling errors. However, PV ignores types during analysis. This enables PV to
detect type flaw attacks. The events in lines 13 and 16 instrument the process
to facilitate specification of security properties.

To be able to specify secrecy of data traffic following authentication, the model
includes message payload declared in line 9 in Fig. 5. The SN encrypts payload, or
not, based on the choice received in line 22 in Fig. 6. If encryption is not chosen,
an event in line 34 records that fact. In line 41, HN uses the get operation on
the private table of IMSI/Ki pairs for registered MSs.

Specifying and Analyzing Authenticity and Secrecy: We will consider in
detail the following specifications:

1 query a t t a ck e r (pay l oad) .
2 query a t t a ck e r (pay l oad) � event (d i s a b l eEn c) .
3 query a t t a ck e r (s e c r e tK c) .
4 query i d : i d en t , k : s e s sKey ; event (endSN(id , k)) � event (begSN (id , k)) .
5 query i d : i d en t , k : s e s sKey ; event (endMS(id , k)) � event (begMS(id , k)) .

Line 1 says that payload remains secret. This is not a requirement for GSM; the
attacker can certainly obtain payload, e.g., if the MS is not capable of encryption.
PV finds such attack trace. The conditional property in line 2 does express a
requirement: if the attacker obtains the secret payload then the event disableEnc

must have previously taken place in the SN. This query is indeed proved by PV.

Symbolic Analysis for Security of Roaming Protocols in Mobile Networks 487

1 l e t processMS =
2 (∗ r e g i s t r a t i o n and s e tup ∗)
3 new ims i ms : i d e n t ;
4 new k i : key ;
5 i n s e r t keys (ims i ms , k i) ; (∗ pre−sha r ed i d e n t i t y and key ∗)
6 l e t cap ms : bool = en cCa pa b i l i t y () i n (∗ choose c a p a b i l i t y ∗)
7 (∗ the p r o t o c o l ∗)
8 out (pubChannel , (CAP, cap ms)) ; (∗ [Message 1] ∗)
9 out (pubChannel , (ID , ims i ms)) ; (∗ [Message 2] ∗)

10 i n (pubChannel , (=CHALLENGE , rand ms : nonce)) ; (∗ [Message 5] ∗)
11 l e t r e s ms : r e s p = a3 (rand ms , k i) i n (∗ compute r e s p on s e ∗)
12 l e t kc ms : s e s sKey = a8 (rand ms , k i) i n
13 event begSN (ims i ms , kc ms) ; (∗MS i s a u t h e n t i c a t i n g i t s e l f to SN∗)
14 out (pubChannel , (RES , r e s ms)) ; (∗ [Message 6] ∗)
15 i n (pubChannel , (=CMC, enab leEnc ms : bool)) ; (∗ [Message 7] ∗)
16 event endMS(ims i ms , kc ms) ;
17 i n (pubChannel , (=MSG, msg ms : b i t s t r i n g)) ; (∗ [Message 8] ∗)
18 out (pubChannel , s e n c r yp t (s ec r e tKc , kc ms)) ;
19 i f enab leEnc ms = t r u e then
20 l e t msgcontent : b i t s t r i n g = sdec r yp t (msg ms , kc ms) i n 0 .
21 l e t processSN =
22 i n (pubChannel , (=CAP, cap sn : bool)) ; (∗ [Message 1] ∗)
23 i n (pubChannel , (=ID , im s i s n : i d e n t)) ; (∗ [Message 2] ∗)
24 out (s ecu r eChanne l , (AV REQ , im s i s n)) ; (∗ [Message 3] ∗)
25 i n (s ecu r eChanne l , (∗ [Message 4] ∗)
26 (=AV, im s i h n s n : i d en t , r and sn : nonce , x r e s s n : resp , kc sn : s e s sKey)) ;
27 out (pubChannel , (CHALLENGE , rand sn)) ; (∗ [Message 5] ∗)
28 i n (pubChannel , (=RES , r e s s n : r e s p)) ; (∗ [Message 6] ∗)
29 i f r e s s n = x r e s s n then (∗Check r e s p o n s e ∗)
30 event endSN(im s i h n s n , kc sn) ;
31 event begMS(im s i h n s n , kc sn) ;
32 out (pubChannel , (CMC, cap sn)) ; (∗ [Message 7] ∗)
33 i f cap sn = f a l s e then
34 event d i s a b l eEn c ;
35 out (pubChannel , (MSG, pay l oad)) (∗ [Message 8] ∗)
36 e l s e
37 out (pubChannel , (MSG, s en c r yp t (pay load , kc sn))) . (∗ [Message 8] ∗)
38 l e t processHN =
39 i n (s ecu r eChanne l , (=AV REQ , im s i h n : i d e n t)) ; (∗ [Message 3] ∗)
40 new rand hn : nonce ; (∗ Genera te a f r e s h random number∗)
41 get keys (= ims i hn , k i h n) i n (∗ attempt to l ook up key ∗)
42 l e t x r e s h n : r e s p = a3 (rand hn , k i h n) i n (∗ compute XRES and Kc∗)
43 l e t kc hn : s e s sKey = a8 (rand hn , k i h n) i n
44 out (s ecu r eChanne l , (AV, ims i hn , rand hn , x r e s hn , kc hn)) . (∗ [Message 4] ∗)

Fig. 6. Processes for GSM, with reference to Fig. 4

Another requirement is that Ki and Kc remain secret—regardless of whether
encryption is enabled. We declare another secret in line 10 in Fig. 5 and specify
that the attacker does not obtain it. Then we introduce an extra message in line
18 of the MS process, and it is sent regardless of whether encryption is enabled.
The query in line 3 is successful, which implies that Kc remains secret since
otherwise the attacker would obtain secretKc. The property is unconditional:
the key remains secret regardless of whether encryption is chosen. Furthermore,
because Kc is computed as a function of RAND , which is sent in the clear, and
Ki , secrecy of Kc implies secrecy of Ki .

Line 4 says that whenever the event endSN occurs with some arguments id and
k , there must have been a prior occurrence of event begSN with the same argu-
ments. The former event happens only following successful check of the expected

488 C. Tang, D.A. Naumann, and S. Wetzel

response from MS. This query says that if the SN believes it has established a
session key Kc associated with an MS using this particular IMSI, for which the
HN has provided a challenge and expected response, then indeed there is a MS
that reached that stage of its protocol role, for that IMSI and Kc . The event
endSN occurs only following successful verification in the SN, as that is the step
that is intended to establish authentication. The event begSN is placed in the MS
process just before it sends the response, i.e., after it has computed the Kc to
which the event refers. The event should not be placed later in the MS process,
because successful verification by the SN does not give the SN evidence that MS
has progressed any further.

The protocol is not intended to authenticate the SN to MS (see Sect. 3.1).
However, to gain confidence in our model we check that property. For the query
in line 5 above, PV does find a trace that violates the property.

A more interesting man-in-the-middle scenario is the one PV finds in violation
of the first secrecy condition above, query attacker(payload). The MS sends out
its encryption capability and identification. The attacker intercepts the capabil-
ity message and changes it to no-encryption, so the SN receives the modified
capability. The HN generates the authentication vector and sends it to the SN.
The one-way challenge-response between the SN and MS succeeds. Since the SN
receives no-encryption from the attacker, it decides not to use encryption.

4.2 Modeling and Analyzing UMTS

As with GSM, we omit the TMSI and ID Request messages. We also abstract
from the SQN and AMF. UMTS authentication establishes the CK and the
IK , so these are included in the parameters of the events. The secrecy and au-
thentication properties are specified similarly as in the GSM model. The simple
secrecy property, attacker(payload), fails: as in GSM, the MS can choose no-
encryption, and regardless of the choice the attacker can modify the capability
message to claim the MS has no encryption. However, if the MS chooses the
capability of encryption and the attacker modifies that, this will be detected by
the MS which will stop responding. PV proves the conditional secrecy property
attacker(payload)�event(disableEnc) as well as secrecy of CK and IK (using the
idiom explained in Sect. 4.1). It also proves authentication in both directions:

query d : i d en t , c : c ipherKey , i : i n t egKey ; event (endSN(d , c , i))� event (begSN (d , c , i)) .
query d : i d en t , c : c ipherKey , i : i n t egKey ; event (endMS(d , c , i))� event (begMS(d , c , i)) .

5 Modeling and Analyzing GSM/UMTS Roaming

As described in Sect. 3.3, there are six different roaming scenarios, three of which
are basically the same as GSM or UMTS from the perspective of security. Of
the other three cases, numbers (3–5), case (5) is the most interesting.

In case (5), to support GSM BS, the SN converts the UMTS keys into a
GSM session key. The CMC message does not include the received encryption
capability and is not integrity protected. To communicate with GSM BS, the

Symbolic Analysis for Security of Roaming Protocols in Mobile Networks 489

MS converts the UMTS keys into a GSM session key. Then the MS performs the
steps in GSM block IV. The HN is modeled exactly the same as in UMTS.

Since the SN authenticates the MS as in UMTS authentication, the events
begMS and endMS use UMTS keys in the authentication property specification:

1 query a t t a ck e r (pay l oad) .
2 query a t t a ck e r (pay l oad) � event (d i s a b l eEn c) .
3 query d : i d en t , c : c ipherKey , i : i n t egKey ;
4 event (endSN(d , c , i)) � event (begSN (d , c , i)) .
5 query d : i d en t , k : s e s sKey ; event (endMS(d , k)) � event (begMS(d , k)) .

The query of secrecy of payload in line 1 fails and PV finds a trace similar to
the one we describe for the same query against GSM. The required properties
in lines 2–4 are proved, as is key secrecy.

What is interesting is that the required authentication property in line 5 is
violated. In the attack trace, the attacker first acts as a BS to intercept the CAP
message and replace it with no-encryption. The attacker forwards the challenge
and response. The MS receives the CMC message which is forged by the attacker.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the Pi Calculus. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 340–354. Springer, Heidelberg
(2004)

2. Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure
file sharing on untrusted storage. In: IEEE Symp. on Sec. and Priv. (2008)

3. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Automatic vali-
dation of protocol narration. In: IEEE CSFW, pp. 126–140 (2003)

4. Bouassida, M.S., Chridi, N., Chrisment, I., Festor, O., Vigneron, L.: Automated
verification of a key management architecture for hierarchical group protocols.
Annals of Telecommunications (2007)

5. Chang, R., Shmatikov, V.: Formal analysis of authentication in Bluetooth device
pairing. In: FCS-ARSPA (2007)

6. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

7. Escobar, S., Meadows, C., Meseguer, J.: State Space Reduction in the Maude-
NRL Protocol Analyzer. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 548–562. Springer, Heidelberg (2008)

8. Fox, D.: Der IMSI catcher. In: DuD Datenschutz und Datensicherheit (2002)
9. Golić, J.D.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.) EU-

ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)
10. Jakobsson, M., Wetzel, S.: Security Weaknesses in Bluetooth. In: Naccache, D.

(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 176–191. Springer, Heidelberg (2001)
11. Mitchell, C.J., Knudsen, L.R.: An analysis of the 3GPP-MAC scheme. In: WCC

(2001)
12. Lim, S.-H., Bang, K.-S., Yi, O., Lim, J.: A Secure Handover Protocol Design in

Wireless Networks with Formal Verification. In: Boavida, F., Monteiro, E., Mascolo,
S., Koucheryavy, Y. (eds.) WWIC 2007. LNCS, vol. 4517, pp. 67–78. Springer,
Heidelberg (2007)

490 C. Tang, D.A. Naumann, and S. Wetzel

13. Meyer, U.: Secure Roaming and Handover Procedures in Wireless Access Networks.
PhD thesis, Darmstadt University of Technology, Germany (2005)

14. Meyer, U., Wetzel, S.: A man-in-the-middle attack on UMTS. In: ACM WiSec, pp.
90–97 (2004)

15. Meyer, U., Wetzel, S.: On the impact of GSM encryption and man-in-the-middle
attacks on the security of interoperating GSM/UMTS networks. In: IEEE Sympo-
sium on Personal, Indoor and Mobile Radio Communications (2004)

16. Niemi, V., Nynberg, K.: UMTS Security. Wiley (2003)
17. Taha, A., Abdel-Hamid, A., Tahar, S.: Formal analysis of the handover schemes in

mobile WiMAX networks. In: Conf. on Wireless and Optical Comm. Net. (2009)
18. Taha, A., Abdel-Hamid, A., Tahar, S.: Formal verification of IEEE 802.16 security

sublayer using Scyther tool. In: IFIP N2S 2009, pp. 1–6 (2009)
19. 3GPP The mobile broadband standard, http://www.3gpp.org/specifications

http://www.3gpp.org/specifications

CloudSeal: End-to-End Content Protection

in Cloud-Based Storage and Delivery Services

Huijun Xiong1, Xinwen Zhang2, Wei Zhu2, and Danfeng Yao1

1 Computer Science Department, Virginia Tech, Blacksburg, VA, USA
{huijun,danfeng}@cs.vt.edu

2 Huawei Research Center, Santa Clara, CA, USA
{xinwen.zhang,wei.zhu}@huawei.com

Abstract. Recent years have seen the trend to leverage cloud-based ser-
vices for large scale content storage, processing, and distribution. Secu-
rity and privacy are among top concerns for public cloud environments.
Towards the end-to-end content confidentiality protection, we propose
CloudSeal, a scheme for securely sharing and distributing data via cloud-
based data storage and content delivery services (e.g., Amazon S3 and
CloudFront). CloudSeal ensures the confidentiality of content stored in
public cloud storage services, by encrypting it before sharing at the cloud.
To achieve flexible access control policies, CloudSeal further adopts k-
out-of-n secret sharing and broadcast revocation mechanisms to renew
shared secrets, e.g., when a user joins or leaves a content sharing group.
Most importantly, CloudSeal leverages proxy re-encryption algorithm to
transfer part of stored cipher content in the cloud, which can be de-
crypted by a valid user with updated secret keys. We achieve this prop-
erty without modifying most of the encrypted content. This feature is
critical for the efficiency of content distribution.

Keywords: Cloud computing, content delivery network, proxy-based
re-encryption, secret sharing.

1 Introduction

Security issues have been one of the top concerns for cloud computing [1], despite
the increase in cloud usage. Among them, how to maintain the confidentiality
and privacy of outsourced content in the public cloud remains a challenging
task. The issue becomes more difficult with flexible content processing and shar-
ing among Internet users through cloud-based services. For confidentiality, a
content provider should encrypt her content with keys that are out of the reach
of the cloud provider. Content accessible to different users should be encrypted
with different keys to distinguish their privileges. Key management may be com-
plex when the content is shared by many users with different privileges. Previous
work has studied such problems in conventional distributed environments [2, 3].
For large scale cloud-based content sharing and distribution services, there are
additional new requirements besides key management as explained in the follow-
ing. First, the accessible content of a user may change dynamically, e.g., based

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 491–500, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

492 H. Xiong et al.

on the content provider’s security policy or the user’s subscription information.
Each piece of content may be shared by different users or groups, and users may
belong to multiple groups. Second, encrypting the same content with different
keys not only results in multiple redundant copies of the content in the cloud
storage, but also diminishes the efficiency of content delivery via the distribution
network.

Multicast security [4] aims to address the confidentiality of content sharing.
However, in conventional multicast and broadcast settings, there are only two
types of entities involved: multicast/broadcast center and users, and the center
is the content provider or is fully trusted by the content provider. Their setting
differs from our new cloud-based content delivery model, which requires a semi-
honest cloud provider to assist the content provider and the users.

In cloud-based content storage and delivery services, the cloud provider pro-
vides two cloud-based services: content storage service and content delivery net-
work service. By using them, the content provider is able to provide large-scale
content sharing services to groups of subscribers through the public cloud. Sub-
scribers consume the content by software installed on their host machines, such
as a video player to play a digital movie file. It has been widely recognized
that content security should be mainly relied on content providers who use the
cloud-based services, instead of cloud service providers [5].

In this paper, we propose CloudSeal, an end-to-end solution for content con-
fidentiality protection in the storage and delivery via cloud computing. By end-
to-end, we mean that content is encrypted at cloud-based storage and delivery
channels, and only authorized end users can decrypt it. We uniquely leverage
several algorithms to achieve flexible security and efficient storage and distri-
bution, including proxy re-encryption, k-out-of-n secret sharing, and broadcast
revocation schemes. By proxy re-encryption algorithm, a content provider can
transfer its initially encrypted content to the ciphertext so that only authorized
subscribers can decrypt. To reduce the workload of content re-encryption, the
content provider employs a proxy running at cloud side to perform content re-
encryption in the cloud. The content provider generates new re-encryption keys
upon user joining or leaving.

In CloudSeal, when there is a request from a subscriber, the proxy first checks
if the content in the cloud storage is encrypted with the latest re-encryption key
from the content provider. If yes, the content can be downloaded via the content
delivery service interface; otherwise, the proxy first invalidates any encrypted
form of the target content via the delivery service, re-encrypts the content with
the latest re-encryption key, and then authorizes the access. Therefore, there
is only one encrypted copy of the content stored in cloud storage, and deliv-
ery network only serves contents encrypted with the latest re-encryption key.
CloudSeal efficiently splits the ciphertext of the content into two parts. The re-
encryption operation is only performed on a very small part, and the massive
part remains unchanged. This feature enables efficient cache mechanism during
content distribution.

CloudSeal: End-to-End Content Protection 493

The access control in CloudSeal is enforced by distributing a shared secret
key to authorized users, with which re-encrypted content can only be decrypted.
CloudSeal separates the distribution of the shared secret key from that of the
content and re-encryption keys. Therefore, it supports flexible authorization poli-
cies. Only authorized users can obtain the shared secret key, and the content
provider maintains the control of issuing new keys whenever needed. CloudSeal
leverages k-out-of-n secret sharing and broadcast revocation mechanisms to re-
new the shared secret key to achieve scalability. Due to space limits, We refer the
readers to the full version of our paper for more details on the implementation
and evaluation of CloudSeal [6].

2 Model and System Goals

Threat Model Three types of parties are involved in our system: content provider,
cloud provider, and subscriber. CloudSeal trusts the content provider and sub-
scribers. Specifically, only the content rendering application or agent running on
a subscriber’s device is trusted, e.g., it does not release the content decryption
key and any clear content to unauthorized parties, and it physically removes de-
cryption key when the user leaves a group or is revoked by the content provider.
We consider the cloud service provider to be honest but curious or semi-honest;
that is, it follows the protocol and operations defined in CloudSeal, but it may
actively attempt to gain knowledge of cleartext of the content. The content de-
livery service is also semi-trusted: it is curious to sniff content distributed and
cached in the network, but it honestly performs all the operations and satisfies
the quality of services, e. g., specified in service level agreement between the
content provider and the delivery service provider. In addition, the cloud in-
frastructure (hardware and software) may be exploited by attackers who aim to
expose the stored content [7].

We summarize the security and system objectives of CloudSeal as follows.

– CloudSeal should ensure data confidentiality when stored in cloud even under
the collusion between the cloud provider and subscribers.

– CloudSeal should support dynamic system state, i. e., a user may choose to
join or leave a group, or be revoked from a group by the content provider at
any time.

– CloudSeal should support forward and backward security. For backward se-
curity, a user who leaves the group or is revoked from the group cannot
access any data published after leaving or revocation. For forward security,
a user cannot access any content that is published before she joins.

Beyond these security objectives, CloudSeal aims to achieve the following perfor-
mance requirements. CloudSeal should preserve the efficiency of content delivery
network. In particular, it is desirable for the network to store a single copy of
encrypted content at each state for content integrity and distribution efficiency.
Content decryption should not affect user experience at the device side, e. g.,
the speed of decrypting the video streaming should not be significantly lower
than that of decoding.

494 H. Xiong et al.

Fig. 1. CloudSeal overview

3 CloudSeal Scheme Details

In this section, we first give an overview of CloudSeal, and then present details of
the operations for content distribution and user management. Security properties
of CloudSeal are then discussed.

3.1 Overview

Figure 1 shows the architecture of CloudSeal with three main parties: cloud
provider, content provider, and subscribers.

– Cloud Provider provides two public cloud services: storage service for content
storing and content delivery network for content distribution. It also provides
virtual infrastructure to host application services, which can be used by the
content provider to manipulate content stored in the cloud, or by content
subscribers to retrieve content.

– Content Provider provides content to groups of subscribers, as well as user
management. It uses cloud-based service from the cloud provider to store
and distribute content.

– Subscriber is able to access to the content stored in the cloud if she success-
fully subscribes to the content provider. The subscriber can decrypt delivered
content and consume it with local software.

Operations of CloudSeal are across two planes: data plane and control plane. In
the data plane, we describe the implementations of content operations, including
system setup, content publishing, proxy re-encryption, and content retrieving,
along with involved cryptographic algorithms; in the control plane, we describe
user management including user subscription – when a new user joins a group,
and user revocation – when a user leaves or is revoked from a group. Our scheme
utilizes the proxy re-encryption scheme proposed by Ateniese et al. [8] and the
secret sharing scheme in [9].

CloudSeal: End-to-End Content Protection 495

3.2 Preliminary

Bilinear Maps [10,11]: Let G, GT be two multiplicative cyclic groups of prime
order p, we say e is a bilinear map if: (1) computative actions in G and GT are
efficient; (2) for all α, β ∈ Zr of prime order r, we have e(gα, gβ) = e(g, g)αβ; (3)
for any g ∈ G, e is non-degenerate, i.e., e(g, g) �= 1.

Secret Sharing [12, 9]: A k-out-of-n threshold secret sharing scheme is that
a secret S ∈ Zr shared by n users can be recovered, if the number of the secret
shares exceeds the threshold k. The scheme utilizes a random polynomial P of
degree k− 1, where P (x) ∈ Zr and P (0) = S. Given any k shares < x0, P (x0) >
, ..., < xk−1, P (xk−1) >, one can use Lagrange interpolation formulas as follows
to recover P (0):

P (0) =

k−1∑
i=0

λiP (xi), where λi =
∏
j 	=i

xj

xj − xi
(1)

Proxy Re-encryption [8]: A proxy re-encryption algorithm transforms ci-
phertext ck1 to ciphertext ck2 with a key rkk1→k2 without revealing the corre-
sponding cleartext, where ck1 and ck2 can only be decrypted by different key k1
and k2, respectively, and rkk1→k2 is a re-key issued by another party, e.g., the
originator of ciphertext ck1.

3.3 CloudSeal Operations

Our cryptographic operations are described below. Our notation used in this
paper is shown in Table 1.

Table 1. Notation

Term Notation Term Notation

PK content provider’s public key P polynomial formula
SK content provider’s secret key xi user i’s ID
uk shared secret key for a group P (xi) polynomial value of user i
rkSK→uk re-encryption key M original content
k number of shares to recover uk h a temporary secret of content provider

System Setup is called by the content provider to prepare the cryptographic
system for content encryption and re-encryption. The content provider first
chooses system public parameters params, namely g ∈ G and a bilinear map e.
It chooses a secret key SK ∈ Zr and public key PK = gSK ∈ G. The content
provider keeps SK secret. This setup is performed by the content provider for
each group of users. The content provider chooses an integer k and a list L of
polynomials of degree k − 1 with coefficients randomly chosen from Zr, which
are kept secret. The number of users who can be revoked at the same time is
k − 1.

496 H. Xiong et al.

Content Publishing is followed by the content provider to publish its con-
tent to the public cloud. The content provider encrypts the content M before
publishing it to public cloud with the secret key SK and params as shown in Al-
gorithm 1. The resulting encrypted content has two components (uSK , v), both
are stored in the content storage service by the application service via cloud
APIs. uSK depends on the random secret h and content provider’s secret key
SK, while v depends on both h and the content. Usually, uSK is much smaller
than v.

Algorithm 1: Enc(params, M, SK)
step1: Choose a random secret h ∈ Zr; let Z denote e(g, g);
step2: Compute Zh = e(g, gh) = e(g, g)h ∈ GT , uSK = gSK·h; erase h;
step3: Output ciphertext of content M : (uSK , v) = (gSK·h,MZh).

Content Retrieving is for subscribers to access content stored in the public
cloud. Two algorithms – Re Key and Re Enc – are involved in this process. The
Re Key algorithm is where content provider generates a content re-encryption
key rkSK→uk with its secret key SK and the current decryption key uk. Details
are shown as follows.

Algorithm 2: Re Key(params, SK, uk)

step1: Given params, SK, uk, the content provider computes rkSK→uk = guk/SK .

Upon request, the application service re-encrypts the target cipher content
(uSK , v) with the following Re Enc algorithm.

Algorithm 3: Re Enc((uSK , v), params)
step1: Obtain the newest rkSK→uk from the content provider;
step2: Calculate uuk = e(rkSK→uk, uSK) = e(rkSK→uk, g

SK·h) = e(g, g)uk·h

= Zuk·h;
step3: Output re-encrypted content (uuk, v).

The application service stores uuk in the content storage service and allows
the download of the cipher content. uuk and v can be cached in the content
delivery network for download. The re-encryption is only performed on uSK .
Because uSK is independent of the content M , CloudSeal saves the processing
time and storage I/O cost between the application service and storage service.

When the system state is changed, i.e., the shared secret key is updated from
uk to uk′. Once the new secret key is updated to authorized users (explained
next), the content provider generates the re-key rkSK→uk′ by running Re Key
algorithm and sends the key to the application service for content re-encryption
with Re Enc algorithm. The new cipher content is (uuk′ , v). The user can then
download uuk′ from the cloud storage service, and v from the content delivery
network. uuk is invalidated from the content delivery network by the application
service before the download for backward security.

CloudSeal: End-to-End Content Protection 497

After a user obtains the encrypted content (uuk, v), she follows Algorithm
4 below to decrypt the cipher with her current secret key uk. The user either
obtains the secret key uk from the content provider when she first joins or
computes it (described in User Subscription next).

Algorithm 4: Decrypt((uuk, v), uk)

step1: Given uuk and uk, compute u
1/uk
uk = (Zuk·h)1/uk = Zh;

step2: Calculate M = v/Zh = (MZh)/Zh = M ;
step3: Output original content M .

User Subscription happens when a user join a group. Successful subscription
authorizes a user’s access to protected content. To prevent a new user from
accessing content published before joining (forward security), a new key is gen-
erated and distributed to the new user. To update remaining users’ secret key, a
share of secret of the new user is generated and broadcasted to the entire group
as follows. For the ease of description, we assume that k = 2 in what follows.
Our algorithm can be generalized for any arbitrary k values.

– Upon receiving a join request from a new user, the content provider obtains
the first polynomial P ′ = ax + b on list L, and calculates key uk′ = P ′(0);
uk′ is sent to the new user in a secure channel.

– The content provider assigns the new user a unique identity xi ∈ Zr and her
share of secret from polynomial P ′(xi), along with xi’s values for the other
polynomials on list L. The content provider sends these polynomial values,
except for P ′(xi), to the new user for future key updating. P ′ is removed
from the list L.

– The content provider broadcasts < xi, P
′(xi) > to the current group mem-

bers for new key generation.
– For each current group member xj , upon receiving < xi, P

′(xi) > from the
content provider, she calculates the new key with her share of secret P ′(xj)
for P ′ that was received when xj joined earlier. This user can recover the new
secret key uk′ = P ′(0) = b by calculating P ′(0) =

xj

xj−xi
P ′(xi)+

xi

xi−xj
P ′(xj)

according to Equation 1.

User Revocation happens when a subscriber leaves a group or is revoked by
the content provider. Our revocation scheme is based on k-out-of-n threshold
secret sharing scheme.

– Case I: There are k−1 users to be revoked at one time. The content provider
revokes k − 1 users with shares P (x1), P (x2), ..., P (xk−1), respectively. The
content provider broadcasts the shares of secrets and identities of these users
< x1, P (x1) >,< x2, P (x2) >, ..., < xk−1, P (xk−1) > to the entire group.
Each user x in the group combines her share of secret < x, P (x) > with
these k−1 shares, to interpolate the new secret key uk′ = P (0). The content
provider uses uk′ as the new shared secret key to generate re-encryption key
for non-revoked users.

498 H. Xiong et al.

– Case II: There are t users to be revoked, where t < k − 1. The content
provider performs the revocation by sending the t shares of secret and addi-
tional k− t− 1 shares of the secret of polynomial P. These additional shares
are values different from any existing users.

Polynomial P is then removed from the list L. If the list L is empty, the content
provider adds new polynomials, as well as computes and distributes correspond-
ing secret shares to current subscribers (for future interpolation purposes).

3.4 Security Analysis

Because published content is encrypted before being stored in the cloud storage
service, and the system secret key SK is never released from the content provider,
CloudSeal achieves the confidentiality of data in the public cloud. Furthermore,
in any system state, with received re-encryption key rkSK→uk, the cloud service
provider or an attacker cannot decrypt the cipher content. CloudSeal ensures
that for any content access, the application service always uses the latest re-
encryption key derived from the latest user secret key by the content provider,
therefore only authorized users can decrypt the cipher content in any system
state. By controlling the issuing of secret keys to authorized users, the content
provider maintains the control of security policies.

Our re-encryption algorithm utilizes the proxy re-encryption proposed in [8],
which has been proven to be secure against the Decisional Bilinear Diffie-Hellman
Inversion problem. Besides, this re-encryption algorithm is resistant against col-
lusion between users and the cloud provider according to. This guarantees that
the secret key of content provider is safe even either the user or the cloud provider
obtains both re-encryption key and user’s decryption key.

CloudSeal is able to protect content forward and backward security by in-
tegrating proxy re-encryption and k-out-of-n secret sharing scheme. When an
user joining or leaving event happens in the group, CloudSeal clears old content
stored in content delivery network and alters content to be delivered with up-
dated decryption key. Therefore, new users can not decrypt the old content by
the new key; revoked users can not decrypt the new content with their old keys.

Leveraging content delivery network, CloudSeal uniquely achieves content pro-
tection and distribution efficiency. When the system state changes, only a small
part of a cipher content needs to be re-encrypted, such that most of the content
object can be cached in cloud and shared by users. The separation of content
operations (data plane) and user management operations (control plane) further
enables flexible and scalable deployment of CloudSeal in the cloud and highly
distributed environment.

4 Related Work

Several security solutions have been recently developed for securing the cloud [13,
14, 15, 16], including secure data access, data privacy, and operations on en-
crypted data. With similar security concerns in cloud service, Yu et al. [15]

CloudSeal: End-to-End Content Protection 499

proposed an attribute based access control policy to securely outsource sensitive
user data to the cloud. CloudSeal is different from their approach in that: Cloud-
Seal only allows a content provider to perform the Re Key operation, and our
proxy re-encryption is performed directly on part of the cipher content. There-
fore, directly applying their approach in the problem that we target here is not
practical, as their ciphertext data is customized for different users. Essentially,
efficient data distribution with common ciphertext that can be cached in content
delivery network is not the goal of [15].

Secure storage system is an important application of proxy re-encryption [8,
17]. CloudSeal is based on the scheme proposed in [8], where the authors build
an encrypted file storage with an access control proxy in charge of data access
according to their proxy re-encryption methods. In comparison, we deploy the
re-encryption algorithm in a unique cloud-based content delivery application.
CloudSeal also supports the k-out-of-n secret sharing for efficient user-revocation
purposes.

Secure multicast communication [18, 4, 19, 20] and conditional access sys-
tems [21] address similar security problems as ours in distributing content to
dynamic user groups and key management. Proxy re-encryption and k-out-of-
n mechanisms are also used to solve these problems. The problem solved by
CloudSeal is different from them due to the cache properties in content delivery
network, which requires more efficient and flexible secure content delivery and
user management mechanisms.

5 Conclusion and Future Work

We design CloudSeal, an end-to-end content confidentiality protection mecha-
nism for large-scale content storage and distribution systems over public cloud
infrastructure. By leveraging advanced cryptographic algorithms including proxy
re-encryption, threshold secret sharing, and broadcast revocation, CloudSeal ad-
dresses unique challenges of efficient cipher content transformation, cipher con-
tent cache in delivery network, and scalable user and key management. We have
implemented a prototype of CloudSeal based on Amazon EC2, S3, and Cloud-
Front services. Our initial evaluation results demonstrate that CloudSeal can
provide efficient and scalable secure content storage and delivery in cloud-based
storage and content delivery network. The details of our implementation and
evaluation can be found in [6]. For future work, we plan to investigate practical
and scalable browser-based methods for distributing secret information from the
content provider to the subscribers.

References

1. Cloud Computing, an IDC update (2010),
http://www.slideshare.net/JorFigOr/cloud-computing-2010-an-idc-update

2. Koglin, Y., Yao, D., Bertino, E.: Secure Content Distribution by Parallel Processing
from Cooperative Intermediaries. IEEE Transactions on Parallel and Distributed
Systems 19(5), 615–626 (2008)

http://www.slideshare.net/JorFigOr/cloud-computing-2010-an-idc-update

500 H. Xiong et al.

3. Yao, D., Koglin, Y., Bertino, E., Tamassia, R.: Decentralized Authorization and
Data Security in Web Content Delivery. In: Proc. ACM Symp. on Applied Com-
puting (SAC), pp. 1654–1661 (2007)

4. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
Security: A Taxonomy and Some Efficient Constructions. In: Proceedings of IN-
FOCOM (March 1999)

5. AWS Customer Agreement (2011), http://aws.amazon.com/agreement/
6. Xiong, H., Zhang, X., Zhu, W., Yao, D.: CloudSeal: End-to-End Content Protection

in Cloud-based Storage and Delivery Services. Technical report, Huawei Research
(2011)

7. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My cloud!
Exploring Information Leakage in Third-Party Compute Clouds. In: Proceedings
of ACM Conference on Computer and Communications Security (2009)

8. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. ACM Trans. Inf. Syst.
Secur. 9, 1–30 (2006)

9. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.)
FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

10. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

12. Shamir, A.: How to Share A Secret. Commun. ACM 22 (November 1979)
13. Li, M., Yu, S., Cao, N., Lou, W.: Authorized Private Keyword Search over En-

crypted Personal Health Records in Cloud Computing. In: Proceedings of The
31st Int’l Conference on Distributed Computing Systems, ICDCS 2011 (2011)

14. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public Auditing for
Data Storage Security in Cloud Computing. In: Proceedings of INFOCOM (2010)

15. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving Secure, Scalable, and Fine-grained
Data Access Control in Cloud Computing. In: Proceedings of INFOCOM (2010)

16. Zarandioon, S., Yao, D., Ganapathy, V.: K2C: Cryptographic Cloud Storage With
Lazy Revocation and Anonymous Access. In: Rajarajan, M., et al. (eds.) Se-
cureComm 2011. LNICST, vol. 96, pp. 59–76. Springer, Heidelberg (2012)

17. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable
Secure File Sharing on Untrusted Storage. In: Proceedings of FAST, Berkeley, CA,
USA (2003)

18. Wong, C.K., Gouda, M., Lam, S.S.: Secure Group Communications Using Key
Graphs. IEEE/ACM Trans. Netw. (2000)

19. Briscoe, B.: MARKS: Zero Side Effect Multicast Key Management Using Arbi-
trarily Revealed Key Sequences. In: Rizzo, L., Fdida, S. (eds.) NGC 1999. LNCS,
vol. 1736, pp. 301–320. Springer, Heidelberg (1999)

20. Briscoe, B.: Nark: Receiver-based Multicast Non-repudiation and Key Manage-
ment. In: Proceedings of ACM Conference on Electronic Commerce, EC 1999
(1999)

21. Traynor, P., Butler, K.R.B., Enck, W., McDaniel, P.: Realizing Massive-Scale Con-
ditional Access Systems Through Attribute-Based Cryptosystems. In: NDSS (2008)

http://aws.amazon.com/agreement/

Call Behavioral Analysis to Thwart SPIT

Attacks on VoIP Networks

Hemant Sengar1, Xinyuan Wang2, and Arthur Nichols1

1 Technology Development Dept., Windstream Communications, Greenville,
SC 29601

{Hemant.Sengar,Arthur.Nichols}@windstream.com
2 Dept. of Computer Science, George Mason University, Fairfax, VA 22030

xwangc@gmu.edu

Abstract. The threat of voice spam, commonly known as Spam over
Internet Telephony (SPIT) is a real and contemporary problem. If the
problem remains unchecked then it may become as potent as email spam
today. In this paper, we present two approaches to detect and prevent
SPITting over the Internet. Both of our approaches are based on the
anomaly detection of the distributions of selected call features (i.e., day
and time of calling, call durations etc.). The first approach uses Maha-
lanobis Distance as a summarization tool and it is able to reliably detect
individual spam VoIP calls at a microscopic level. The second approach
is designed to detect groups of (potentially collaborating) VoIP spam
calls at a macroscopic level. By computing entropy of call durations of
groups of calls, we are able to build profile of normal calls and reliably
detect the deviation from normal human call behavior that are caused
by bulk spam calls. We empirically validate our VoIP spam call detec-
tion approaches with real VoIP call traces obtained from a VoIP service
provider network. Our experimental results show that call feature dis-
tributions can be used to build a fairly general and effective anomalous
call behavior detection framework.

Keywords: Voice Spam, SPIT, VoIP, Behavioral Analysis.

1 Introduction

In Japan where the VoIP market is more mature than USA has witnessed some
recent voice spam attacks. The SoftbankBB, a VoIP service provider with 4.6
million users, has reported 3 incidents of spam attacks within its own network [9].
Similarly, Columbia University at New York experienced voice spam attack, with
someone accessing the SIP proxy server and “war dialing” a lot of IP phone
extensions [10]. Technically, it is easier for the spammer to generate unsolicited
bulk VoIP calls and target multiple VoIP subscribers than generating spam calls
over PSTN. As the number of VoIP subscribers hits a critical mass, it is expected
that VoIP spam will emerge as a potentially serious threat. If the SPIT problem
is not effectively addressed, it may become as rampant as email spam today and
hinder the deployment of IP telephony.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 501–510, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

502 H. Sengar, X. Wang, and A. Nichols

The Internet Engineering Task Force (IETF)’s RFC [7] analyzed the voice
spam problem in SIP environment and examined various potential solutions for
solving the email spam problem. Unfortunately, many of the anti-spam solutions
that have been proposed or deployed are either heavily influenced by or directly
inherited from the email spam world. For example, the anti-spam solutions based
on computational puzzles [7] try to frustrate the VoIP spam call generator by
requiring it to solve some computational puzzles. While such methods require
modification of the underlying signaling protocol, they are not effective against
distributed VoIP spam call generation where multiple powerful PCs are com-
promised into zombies and used for generating bulk spam calls. The Turing
tests [7, 11] based approaches, on the other hand, require manual and active
involvement of callers, which is not intuitive and may scare away many poten-
tial users. The solutions relying on social network [2, 14] and caller’s reputation
value [8, 5, 1] require infrastructure changes and modifications of SIP UAs, yet
they are susceptible to malicious reputation poisoning. The anti-spam solutions
based on a trusted third party [4] are not scalable. Similarly, it is hard to apply
the content based filtering [3] to voice spam since the real-time voice content
analysis and is exceedingly difficult. Recently, Wu et al. [13] proposed a spam
detection approach involving user-feedback and semi-supervised clustering tech-
nique to differentiate between spam and legitimate calls. However, the current
generation of telephone sets do not provide an option to give feedback of a call
to service provider’s system. In summary, voice spam problem can not be effec-
tively addressed by simple adaption of existing email spam solutions or asking
for overhauling of network infrastructure and signaling protocols.

In this paper, we propose two approaches for detecting VoIP spam calls. Both
approaches build normal call behavior upon distribution of selected call char-
acteristics (e.g., day and time of the call, call duration) and neither of them
requires callee’s feedback or modification of the underlying signaling protocol.
Compared with existing VoIP spam defenses, our proposed approaches have the
following advantages:

– They are transparent to end users, and they do not require any explicit feed-
back from the end users or modification of the underlying signaling protocols
or UAs.

– They are designed to detect both sporadic and bulk VoIP spam calls. The
proposed approach is able to suppress VoIP spam calls from local, authenti-
cated callers.

We empirically evaluated our VoIP spam detection approaches using real VoIP
call traces, and our results show that our approaches are effective in detecting
both individual and bulk VoIP spam calls.

The remainder of the paper is structured as follows. In section 2, we establish
the baseline of normal VoIP call behavior. In section 3, we present our first
approach to detect individual local misbehaving callers. In Section 4, we discuss
how to distinguish normal human generated calls from bulk machine generated
spam calls based on entropy measurement of call duration. Section 5 concludes
the paper.

Call Behavioral Analysis to Thwart SPIT Attacks on VoIP Networks 503

2 Baseline of Normal VoIP Call Behavior

In this section, we establish the baseline of normal VoIP call behavior. Specifi-
cally, we used the call logs collected from a VoIP network of NuVox Communica-
tions, a voice service provider in Southeast and Midwest regions of the USA [6].
The seven days (July 21 - 25, July 28, and August 04’ 2009) call logs were col-
lected from a Class-V switch located at Winter Haven, Florida. The call logs
correspond to VoIP calls made by subscribers of Orlando and Tampa cities in
Florida. Figure 1 shows the call arrivals and the distribution of call duration
characteristics of two days (21st-22nd July’09). Each of the call logs are of 24
hours duration starting at the midnight. The logs of 21st and 22nd July contain
56259 and 51625 successfully completed calls, respectively.

0 2 4 6 8

x 10
4

0

100

200

C
al

l A
rr

iv
al

s

VoIP Calls at Class−V Switch (Winter Haven, FL)

0 2 4 6 8

x 10
4

0

2

4

6
x 10

4

time (seconds) [60 sec. Bin]C
u

m
u

la
ti

ve
 C

al
l A

rr
iv

al
s

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

Number of Bins [15 sec. Each]

F
re

q
u

en
cy

Distribution of Call Durations

21st July
22nd July

(a.) Call Arrivals (21st July) (b.) Call Arrivals (22nd July) (c.) Distribution of Call

Durations

Fig. 1. Call Arrivals and Distribution of Call Durations

Call Duration Probability Distribution. The call logs for VoIP traffic
traces are analyzed to obtain call duration distribution. As shown in Figure 1
(c.), we observe that ≈ 50% of the calls complete within a minute. The measured
call durations are used to calculate the mean μ and standard deviation σ. The
mean and standard deviation pair (μ, σ) [in seconds] for the 21st-22nd July VoIP
traces are found to be (111.87, 264.04), and (115.83, 283.58), respectively.

3 Detecting Individual Misbehaving Subscriber

In this section, we focus on detecting individual misbehaving VoIP subscribers
who are local and authenticated to the protected VoIP network. A VoIP caller
can be classified as local or external subscriber based on the following attributes:
1) the source IP and the status of REGISTERmessage – the successfully completed
REGISTER transaction lets us know that this particular subscriber is local (i.e.,
subscriber account is maintained by the service provider) and also from where to
expect next outbound call request; 2) the SIP URI and the source IP of INVITE
call requests that do not have corresponding REGISTERmessages – these inbound
call requests represent external unauthenticated subscribers and the source IP
determines whether the request is from one of the peering partners or known
business SIP trunking customers.

504 H. Sengar, X. Wang, and A. Nichols

Discriminant Analysis Based on Mahalanobis Distance: The spam de-
tection module (collocated with the session border controller) detects abnormal
call behavior of individual local subscribers in the collection of past calling data
points, going through a process consisting of two phases: the training phase and
the testing phase. During the training phase, for each of the local subscribers
we collect day, time of calling, and call duration for successfully completed calls.
Since each subscribers calling behavior is quite different, we need a common base
to make comparison and find out how individual subscribers deviate from the
base. This common base is known as a reference pattern.

Later, the whole day is divided into small time periods of ΔT (= 15 min.)
where individual subscriber’s call behavior is compared with common reference
pattern. The common reference pattern can be assumed to belong to a virtual
user generating exactly 5 calls within each time window. The call arrivals are
assumed to be poisson distributed with mean of 180 sec., and the call durations
are exponentially distributed with mean talk time of 60 sec. Within a time
window if a subscriber has less than 5 calls, we ignore that time window as this
low call-rate cannot be a spam call behavior. Otherwise, using the Mahalanobis
distance, we measure the distance between two multivariate data sets. In the
training phase, the measured distances are used to derive a threshold i.e., an
upper bound of distance values considered to be a normal call behavior. In the
testing phase, we determine if the measured distance of a time window falls
beyond a threshold value raising an alarm.

More formally, now assume that on a particular day of the first week
and within a particular time window we have observed n realizations of a
d−dimensional random variable. From the data set we get a data matrix χ(n×d)

χ =

⎛⎜⎝ x11 . . . x1d

...
...

...
xn1 . . . xnd

⎞⎟⎠
The row xi = (xi1, . . . , xid) ∈ R

d denotes the ith observation of a d-dimensional
random variable χ ∈ R

d. The center of gravity of the n observations in R
d is

given by the vector x of the means xj of the d variables:

x =

⎛⎜⎝x1

...
xd

⎞⎟⎠ = n−1χT 1n

The dispersion of the n observations can be characterized by the covariance
matrix of the d variables:

S = n−1χTχ− xxT

This matrix can equivalently be defined by

S =
1

n
Σn

i=1(xi − x)(xi − x)T

Call Behavioral Analysis to Thwart SPIT Attacks on VoIP Networks 505

Now our task is to compare the observed data matrix χp(n×d) with the reference
data matrix χq(m × d) and find out how calls within a particular time window
is correlated with the reference. We use Mahalanobis distance to measure the
similarity between two data matrix [12]. The Mahalanobis distance between two
populations p and q is defined as:

dpq = {(xp − xq)
TΣ−1(xp − xq)}

1
2

where Σ is pooled unbiased covariance matrix

Σ = [(n− 1)Sp + (m− 1)Sq]/(n+m− 2)

Threshold Determination. In the training phase, the distribution of measured
Mahalanobis distances are used to calculate the mean μ of all observed distances.
To set an upper bound on distance values that may act as a threshold, we use
dthresh. = μ + n ∗ μ, where n � 0. The value of n defines a confidence band
where subscriber’s calls falling in the region are treated as normal calls. Beyond
this normal region, the observed distances are abnormal raising an alarm. The
lower value of n governs the detection sensitivity, however at the cost of more
false alarms.

White Listing to Suppress VoIP Spam Calls From Local, Authenti-
cated Callers. Based on the normal call profile and the determined threshold,
we can determine if an outgoing call from local caller is normal or not. We can
further put any active local caller into a dynamic white list if most of its calls are
determined normal. This would allow us to suppress VoIP spam calls from those
local callers that are not in the dynamic white list. This suppression should only
be used when it is determined local callers have issued bulk spam calls.

Empirical Validation: To demonstrate the applicability of the proposed
method, we analyzed the call behavior of ≈ 50 subscribers. As a representative
sample, from the 21st July call log we randomly selected six local subscribers of
varying call rate. The per subscriber data set derived from the successfully com-
pleted calls within a particular time window is used to calculate the Mahalanobis
distance.

Each individual subscriber is compared with the reference data set to get
a whole day’s distribution of Mahalanobis distance. This comparison is a part
of training phase where we determine as how far a subscriber’s legitimate call
behavior may deviate from the reference data set as shown in Figure 2. The
average of all distance values is found to be 1.21. It is used to derive an upper
bound (i.e., dthresh. = 1.21+4∗1.21 = 6.05) beyond that calls are assumed to be
abnormal. In our experiments we observe that the confidence band of 4 ∗μ (i.e.,
n = 4) achieves high detection sensitivity with no false alarms. The so obtained
threshold value is used to detect misbehavior of callers in the testing phase. The
call logs of July 28 and August 04 are used as testing data set. Figure 3 a.), b.)
and c.) plot the two whole day’s data points for subscribers User4, User5, and
User6, respectively. In the testing phse, for each individual time windows where

506 H. Sengar, X. Wang, and A. Nichols

0 2 4 6

x 10
4

0

100

200

300

400

500

Call Arrival Time (sec.)

C
al

l D
u

ra
ti

o
n

 (
se

c.
)

Call Behavior of Subscriber User4

0 1 2 3 4 5 6 7

x 10
4

0

500

1000

1500

2000

2500

3000

3500
Call Behavior of Subscriber User5

Call Arrival Time (sec.)

C
al

l D
u

ra
ti

o
n

 (
se

c.
)

0 2 4 6 8

x 10
4

0

500

1000

1500

2000
Call Behavior of Subscriber User6

Call Arrival Time (sec.)

C
al

l D
u

ra
ti

o
n

 (
se

c.
)

(a.) Call Behavior of User4 (b.) Call Behavior of User5 (c.) Call Behavior of User6

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

Time (sec.)

M
ah

al
an

o
b

is
 D

is
ta

n
ce

Mahalanobis Distance Measurement − User4

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6
Mahalanobis Distance Measurement − User5

Time (sec.)

M
ah

al
an

o
b

is
 D

is
ta

n
ce

0 2 4 6 8

x 10
4

0

1

2

3

4

5

6
Mahalanobis Distance Measurement − User6

Time (sec.)

M
ah

al
an

o
b

is
 D

is
ta

n
ce

(d.) Distance Measurement (e.) Distance Measurement (f.) Distance Measurement

– User4 – User5 – User6

Fig. 2. Distance Measurement To Determine Threshold Value [Training Phase]

we observe at least 5 calls is compared with the common reference data set to
compute a similarity value using Mahalanobis distance as shown in Figure 3 c.),
d.) and e.). We observe that for both of these days, the distance values remain
well below the threshold value.

Now we mix 20 attack instances (each at an hour apart) within the 28th July
call log and each attack instance consists of 20 spam calls. The call arrivals
are assumed to be poisson distributed with mean of 30 sec., and the call dura-
tions are exponentially distributed with mean talk time of 15 sec. The measured
effectiveness of Mahalanobis distance classifier is summarized in Table 1.

4 Detecting Groups of Misbehaving Calls

The proposed scheme in the previous section is to detect abnormal call behav-
ior of authenticated (i.e., local) callers at an individual level. In this section, we
develop an entropy-based approach to detect unusual call behavior at an aggre-
gated level irrespective of being local or external subscribers. The basic insight is
that if a number of callers misbehave by performing low-rate attacks, it is possible
that at an individual level the call behavior may seem benign, however at aggre-
gated level, the entropy-based approach sums up these individual low-rate spam
attacks leading to an efficient and easier detection mechanism without maintain-
ing call behavior profiles for unknown and unauthenticated external callers and
thus avoiding unnecessary lookups and excessive entries in the database.

Few Observations. In the case of spam attacks, the machine generated bulk
calls will either be answered by subscribers (i.e., humans) or end up at the

Call Behavioral Analysis to Thwart SPIT Attacks on VoIP Networks 507

0 2 4 6 8

x 10
4

0

200

400

600

800

1000

Call Arrival Time (sec.)

C
al

l D
u

ra
ti

o
n

 (
se

c.
)

Call Behavior of Subscriber User4

28 July
4 August

0 2 4 6 8

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Call Arrival Time (sec.)

C
al

l D
u

ra
ti

o
n

 (
se

c.
)

Call Behavior of Subscriber User5

28 July
4 August

0 2 4 6 8

x 10
4

0

500

1000

1500

2000

Call Arrival Time (sec.)

C
al

l D
u

ra
ti

o
n

 (
se

c.
)

Call Behavior of Subscriber User6

28 July
4 August

(a.) Call Behavior of User4 (b.) Call Behavior of User5 (c.) Call Behavior of User6

0 2 4 6 8

x 10
4

0

1

2

3

4

5

6

7

Time (sec.)

M
ah

al
an

o
b

is
 D

is
ta

n
ce

Mahalanobis Distance Measurement − User4

28 July
4 August

0 2 4 6 8

x 10
4

0

1

2

3

4

5

6

7
Mahalanobis Distance Measurement − User5

Time (sec.)

M
ah

al
an

o
b

is
 D

is
ta

n
ce

28 July
4 August

0 2 4 6 8

x 10
4

0

1

2

3

4

5

6

7
Mahalanobis Distance Measurement − User6

Time (sec.)

M
ah

al
an

o
b

is
 D

is
ta

n
ce

28 July
4 August

(d.) Distance Measurement (e.) Distance Measurement (f.) Distance Measurement

– User4 – User5 – User6

Fig. 3. Distance Measurement To Detect Unusual Calling Behavior [Testing Phase]

voicemail system. If the spam calls are answered by subscribers then the aver-
age of call durations is expected to be short compared to other regular calls.
Therefore, during the attack, the average of call durations will fall. Further, if
the spam calls are answered by a voicemail system, still we are expected to ob-
serve unusual behavior. Generally, a voicemail system allows voice recording of
only few minutes (a typical value is of 2− 3 minutes). At the expiration of voice
recording timer, the voicemail system terminates the call. Hence, many of the
calls will be having a constant call duration.

Entropy Classifier. The entropy classifier component makes spam attack de-
tection based on entropy measurement of call durations. The call durations are
binned into N contiguous bins (of varying lengths). We can interpret the bins
as the states xi of a discrete random variable X , where p(X = xi) = pi. The
entropy of the random variable X is then

H [p] = −
∑
i

p(xi)lnp(xi) (1)

Distributions p(xi) that are sharply peaked around a few bins will have a rela-
tively low entropy, whereas those that are spread more evenly across many bins
will have higher entropy. For example, if the entropy is low for our selected at-
tribute of call duration then it indicates predictable patterns of the abnormal call
behavior. It could be due to short call durations are skewed toward few selected
lower-side bins or may be constant call durations have filled up one (or few)
particular bin(s). However, if the measured entropy is high (i.e., call durations

508 H. Sengar, X. Wang, and A. Nichols

Table 1. Performance of Mahalanobis Distance Classifier∗

20 Attack Instances Introduced in the Whole Day Traffic of 28th July
Calls/ΔT User1 User2 User3 User4 User5 User6

Spam Attack Detection Probability [Poisson arrival mean = 30 sec.]

20 100% 95% 100% 95% 95% 90%
15 100% 85% 90% 75% 80% 75%
10 100% 80% 85% 70% 75% 70%

Spam Attack Detection Probability [Poisson arrival mean = 20 sec.]

20 100% 85% 95% 80% 85% 80%
15 100% 80% 90% 80% 75% 80%
10 100% 70% 80% 70% 75% 75%

Spam Attack Detection Probability [Poisson arrival mean = 15 sec.]

20 100% 80% 90% 80% 80% 80%
15 100% 80% 90% 80% 75% 75%
10 100% 80% 85% 65% 75% 75%

∗
Without removing the outlier data points.

are distributed across bins), it indicates the irregular or unpredictable behavior
of human conversations.

Entropy Measurement of Call Durations. In our experiments, the binning
of call duration data points use 61 contiguous bins. The first 60 bins are of 15
sec. each and the last 61th bin is a default bin to capture all call durations that
are longer than 15 minutes. However, it should be noted that the choice of fine
granular bins is more accurate in classifying the attacks since it leads to a better
estimate of the entropy. In our study of call duration entropy, we divide the
whole day in three separate time zones based on the observation of call arrival
rate. The first time zone starts at midnight and ends at 9:00 AM. In this time
zone the call arrival rate is very low (e.g., see Figure 1).

The entropy estimation is based on 30 minutes time window to make sure that
we collect enough data points. As the time increases, the call rate also increases
resulting in the growing trend of entropy. The second time zone represents usual

0 2 4 6 8

x 10
4

0.5

1

1.5

2

2.5

3

time (seconds)

E
n

tr
o

p
y

21st July
22nd July
time zone

9:00 AM 6:00 PM

30 Min
Window

1 Min
Window

15 Min
Window

3.5 4 4.5 5 5.5 6

x 10
4

1

1.5

2

2.5

3

time (seconds) [9:00 AM − 6:00 PM]

E
n

tr
o

p
y

50 Spam Attack Instances in Original Call Trace

10 CPS Attack
20 CPS Attack
Without Attack

(a.) Entropy Measurement (b.) Entropy Measurement Under Spam Attack

Fig. 4. Entropy Measurement

Call Behavioral Analysis to Thwart SPIT Attacks on VoIP Networks 509

working hours between 9:00 AM and 6:00 PM where call rate is usually high.
In this time zone we use 1 minute time window for entropy estimation. In our
analysis, we find that the busy hour entropy remained confined between 2.0 and
3.0 as shown in Figure 4 (a). The third time zone starts at 6:00 PM and ends at
midnight. In this time zone, we use 15 minutes time window for entropy mea-
surement that generally varies between 2.0 and 2.5. The off-peak hour entropy
is more unpredictable (especially between midnight to 9:00 AM).

Determination of Entropy Cutoff Scores. To use entropy measures for
spam attack classification, based on previous collected data during the training
period, we build a entropy profile of call durations with respect to time. The
measured entropy is used to set a cutoff score and if the test score (during the
testing period) is greater than or equal to the cutoff score, the call requests
are classified as human generated. If the test score is less than the cutoff score,
the call requests are classified as malicious spam calls. The cutoff score and its
relation with time is an important parameter in determining the false positive
and true positive rates of the entropy classifier. Since in the first time zone the
call rate is very low so to avoid detection, most of the attacks are expected
to occur during the busy hour of call traffic where malicious calls can easily
hide among legitimate call traffic. Our focus is mainly on this time segment.
Note that with the proper setting of threshold values, there will be no false
alarm (i.e., false positive) under normal conditions. However, to balance both
false positives and false negatives, we set our entropy threshold at 1.75. In two
day’s call log analysis we observed that out of 1082 observations, 4 observations
had entropy value below the threshold value of 1.75. Therefore, 0.37% times the
entropy value falls below the threshold value and thus giving us false alarms.

Empirical Evaluation of the Entropy Classifier: Now we empirically eval-
uate the effectiveness of the proposed entropy classifier in terms of its spam
detection accuracy. In our experiments, we made the following three assump-
tions: 1.) during busy-hour spam attack, 95% calls are answered by humans and
the remaining 5% by the voicemail system; 2.) for simplistic reason we assume
that the human answered call durations are exponentially distributed with mean
talk time of 15 sec.; and 3.) the voicemail system’s recording time limit is of 2
minutes. After 2 minutes of recording, the voicemail calls are terminated by the
voicemail system.

In our experiments, the call logs are used to generate call requests and used
as the normal background traffic. Later, this traffic is randomly mixed with the
spam traffic of varying call rates. For example, during the busy hour between
9:00 AM to 6:00 PM, we introduce 50 individual spam attack instances of 10, 20,
30, 40 and 50 calls per second. Each of these attack instances lasts for a small
time period of 30 seconds and thus introducing 300, 600, 900, 1200, and 1500
spam calls per attack instances. Figure 4 (b) shows 50 individual attack instances
(three times two individual attack instances fell within the same time window).
These attack instances belong to two different call rates of 10 and 20 CPS. Under
spam attack, we could observe as how entropy drops from those representing the

510 H. Sengar, X. Wang, and A. Nichols

normal call behavior. To measure false negatives, we use detection probability
that is defined as the percentage of the successful identified attack instances over
the total launched attacks in one set of experiments. The results demonstrate
that our proposed entropy classifier is able to reliably detect aggregated (≥ 20
calls per second) VoIP spam calls with no more than 0.37% false positive rate.

5 Conclusion

SPIT is touted as the next biggest spam threat after email spam. To mitigate
the potential threat of voice spam, this paper proposed two complementing and
yet practical schemes. The first scheme, which is based on Mahalanobis distance,
can detect unusual call behavior at the individual subscriber level. The second
approach utilized entropy of call durations to detect spam attack at an aggre-
gated level. It can detect spam attacks when a group of subscribers misbehave.
The empirical results of our study show that it is feasible for a VoIP service
provider to detect VoIP spam attacks irrespective of whether it is launched from
within an enterprise network, peering partners or from subscribers.

References
1. Balasubramaniyan, V., Ahamad, M., Park, H.: CallRank: Combating SPIT Using

Call Duration, Social Networks and Global Reputation. In: The Fourth Conference
on Email and Anti-Spam (2007)

2. Dantu, R., Kolan, P.: Detecting spam in voip networks. In: Proceedings of the Steps
to Reducing Unwanted Traffic on the Internet on Steps to Reducing Unwanted
Traffic on the Internet Workshop (2005)

3. Graham-Rowe, D.: A Sentinel to Screen Phone Calls (2006),
http://www.technologyreview.com/communications/17300/?a=f

4. Kayote Networks. The Threat of SPIT (2007), http://www.kayote.com/
5. Niccolini, S., Tartarelli, S., Stiemerling, M., Srivastava, S.: SIP Extensions for

SPIT identification. draft-niccolini-sipping-feedback-spit-03, IETF Network Work-
ing Group (2007) (work in progress)

6. NuVox Communications. Service Provider (2009), http://www.nuvox.com
7. Rosenberg, J., Jennings, C.: The Session Initiation Protocol (SIP) and Spam. RFC

5039, IETF Network Working Group (2008)
8. SIPERA. Sipera IPCS: Products to Address VoIP Vulnerabilities (April 2007),

http://www.sipera.com/index.php?action=products,default
9. VOIPSA. Confirmed cases of SPIT. Mailing list (2006),

http://www.voipsa.org/pipermail/voipsec voipsa.org/

2006-March/001326.html
10. VOIPSA. VoIP Attacks in the News (2007),

http://voipsa.org/blog/category/voip-attacks-in-the-news/
11. Wikipedia. Turing test (2009), http://en.wikipedia.org/wiki/Turing_test
12. Wikipedia. Mahalanobis distance (2010),

http://en.wikipedia.org/wiki/Mahalanobis_distance
13. Wu, Y.-S., Bagchi, S., Singh, N., Wita, R.: Spam Detection in Voice-Over-IP Calls

through Semi-Supervised Clustering. In: IEEE Dependable Systems and Networks
Conference (DSN 2009) (June-July 2009)

14. Rebahi, Y., Al-Hezmi, A.: Spam Prevention for Voice over IP. Technical report
(2007),
http://colleges.ksu.edu.sa/ComputerSciences/Documents/NITS/ID143.pdf

http://www.technologyreview.com/communications/17300/?a=f
http://www.kayote.com/
http://www.nuvox.com
http://www.sipera.com/index.php?action=products,default
http://www.voipsa.org/pipermail/voipsec_voipsa.org/2006-March/001326.html
http://www.voipsa.org/pipermail/voipsec_voipsa.org/2006-March/001326.html
http://voipsa.org/blog/category/voip-attacks-in-the-news/
http://en.wikipedia.org/wiki/Turing_test
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://colleges.ksu.edu.sa/ComputerSciences/Documents/NITS/ID143.pdf

T-CUP: A TPM-Based Code Update Protocol

Enabling Attestations for Sensor Networks

Steffen Wagner1, Christoph Krauß1, and Claudia Eckert2

1 Fraunhofer Research Institution AISEC, Garching, Germany
{steffen.wagner,christoph.krauss}@aisec.fraunhofer.de

2 TU München, Dpt. of Computer Science, Chair for IT Security, Garching, Germany
claudia.eckert@in.tum.de

Abstract. In this paper, we propose a secure code update protocol for
TPM-equipped sensor nodes, which enables these nodes to prove their
trustworthiness to other nodes using efficient attestation protocols. As
main contribution, the protocol provides mechanisms to maintain the
ability of performing efficient attestation protocols after a code update,
although these protocols assume a trusted system state which never
changes. We also present a proof of concept implementation on IRIS
sensor nodes, which we have equipped with Atmel TPMs, and discuss
the security of our protocol.

Keywords: Wireless Sensor Network, Security, Node Compromise, TPM,
Attestation, Secure Code Update.

1 Introduction

Wireless sensor networks (WSNs) [1] can be used for various security-critical
applications, such as military surveillance. Sensor nodes with embedded sens-
ing, computation, and wireless communication capabilities monitor the physical
world and send data through multi-hop communication to a central base station.
The resources of a sensor node are severely constrained since they are mainly
designed to be cheap and battery-powered.

Since sensor nodes are often deployed in unattended and even hostile envi-
ronments, node compromise is a serious issue. By compromising a sensor node,
an adversary gets full access to data such as cryptographic keys stored on the
node. Especially sensor nodes which perform special tasks for other sensor nodes
(e.g., key management) are a valuable target. One approach to protect the cryp-
tographic keys on such nodes is the use of a Trusted Platform Module (TPM)
[15]. The TPM is basically a smartcard and can be used to create a secure stor-
age and execution environment. The TPM additionally provides mechanisms to
realize attestation protocols where the sensor nodes can prove that no adversary
has tampered with their components.

However, previously proposed attestation protocols for WSNs, e.g., in [9], rely
on a trusted system state which never changes. The main idea is to use the TPM
to cryptographically bind certain attestation values (e.g., symmetric keys) to a
trusted initial platform configuration. The platform configuration is validated

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 511–521, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

512 S. Wagner, C. Krauß, and C. Eckert

during each boot process by calculating hash values for bootloader (acting as
Core Root of Trust for Measurement (CRTM)), operating system (OS), and all
installed applications and comparing them with references values protected by
the TPM. Only if they match, access to the attestation values is possible. Thus,
any code update, which might be necessary to patch security vulnerabilities or
add new functionalities, would result in a different system state which prevents
successful attestations.

In this paper, we present T-CUP, a secure code update protocol which en-
ables TPM-based attestation protocols and provides mechanisms to validate the
authenticity, integrity, and freshness of the wirelessly transmitted code update.
We also present a proof of concept implementation and security discussion.

2 Related Work

Existing over-the-air programming (OTAP) protocols, such as Deluge [7], Infuse
[2], or MNP [10], mainly focus on the (efficiency of the) update procedure, but
do not consider security. In [4,3,12,13,8], code update protocols with security
mechanisms have been proposed which are often based on an existing OTAP
protocol, mostly Deluge. Secured hash chains are used to ensure authenticity and
integrity of the individual parts of the code update. Because of the chaining, only
the first hash needs to be protected by some cryptographic mechanism. However,
the key used to protect this hash value must not be accessible by an adversary
since this would enable him to create false code updates. In [4,3,12,14], digital
signatures are used for this purpose which have much higher computational
costs than symmetric approaches. The protocols proposed in [13,8] are solely
based on symmetric (hash-based) mechanisms. However, all previously proposed
protocols are not directly applicable to update TPM-equipped sensor nodes while
maintaining the ability to perform attestations.

The use of a TPM for attestation protocols in hybrid WSNs where only a
minority of special sensor nodes are equipped with a TPM has initially been
introduced by Krauß et al. [9]. They propose two attestation protocols which
either enable a single node (including the base station) or multiple sensor nodes
to simultaneously verify the trustworthiness of a TPM-equipped sensor node.
The main idea is to use the Sealing function of the TPM to bind certain attes-
tation values (symmetric keys or values of a hash chain) to an initial trustworthy
platform configuration. However, code updates are not considered.

Using the TPM in WSNs has been also proposed in [5] and [6] where all sensor
nodes of a WSN are equipped with a TPM to perform public key cryptography.

3 Setting and Notation

In this section, we explain the setting and define the notation for our protocol.

3.1 Setting

We consider a hybrid WSN consisting of a large number of common cluster sensor
nodes (CNs) and very few TPM-equipped cluster head (CH) nodes. CHsperform

T-CUP: TPM-Based Code Updates and Attestations 513

special tasks and services for a certain number of CNs. Data is sent via multi-
hop communication to one central base station (BS) which is assumed to be
trustworthy, i.e., cannot be compromised.

Before node deployment, BS and all CHs are initialized in a trusted environ-
ment. The TPM of each CH is initialized by generating asymmetric key pairs
which are only used within the TPM and marked as “non-migratable”, i.e., the
private key cannot be extracted from the TPM. These asymmetric keys are used
by the sealing function of the TPM to cryptographically bind shared symmet-
ric keys between BS and the CHs to an initial trusted system state. Likewise,
a timestamp which indicates the current version of the system software is also
bound to the trusted system state.

Furthermore, we assume an adversary which tries to compromise a CH by
attacking the code update protocol. The adversary can either try to physically
compromise a CH or by performing attacks via the wireless channel. In the first
case, the adversary directly tries to read out stored data such as cryptographic
keys or tries to re-program the node with his own malicious code. In the latter
case, the adversary can perform attacks such as eavesdropping on the wireless
communication, manipulate transmitted packets, inject new or replay old pack-
ets. However, we assume that an adversary is not able to break cryptographic
algorithms, e.g., decrypting encrypted messages without knowing the key or in-
verting hash functions. The adversary is also not able to access cryptographic
keys which are protected by the TPM or reset the TPM.

3.2 Notation

Cluster heads are denoted as CHi with i = 1, . . . , a and the cluster nodes as
CNj with j = 1, . . . , b, where b � a (cf. [9]).

A symmetric key K between the BS and the CHi is referred to as KBS,CHi .
Since the current version of the TPM does not support symmetric cryptographic
operations internally, we allow this key to be stored in RAM for a short time.

Applying a cryptographic hash function H on data m is denoted with H(m).
A one-way hash chain [11] stored on a CH is denoted with CCH = cCH

0 , . . . , cCH
n .

A hash chain is a sequence of n hash values, each of fixed length l, generated by a
hash function H : {0, 1}∗ → {0, 1}l by applying the hash function H successively
on a seed value c0, such that cν+1 = H(cν), with ν = 0, 1, . . . , n−2, n− 1.

A specific system state of a TPM-equipped cluster head CHi is referred to
as platform configuration PCHi

:= (PCR[0], . . . ,PCR[p])CHi
and stored as in-

tegrity measurement values μ in the platform configuration registers (PCRs) of
the TPM. To store the value of a measured (software) component in a PCR,
the existing value is not replaced, but combined with the new value using
PCRExtend(PCR[i], μ), which is specified as PCR[i] ← SHA1(PCR[i] ||μ) [15].

For our protocol, we define two platform configurations referred to as full

and reduced platform configuration. The full platform configuration P
(0,...,p)
CHi

uses
at least two PCRs and must consider all software layers up to the OS and
application layer (cf. Fig. 1, left). Similarly, we denote the reduced platform

514 S. Wagner, C. Krauß, and C. Eckert

configuration as P
(0,...,r)
CHi

, which uses r<p registers and only considers the static
trusted components up to the bootloader (cf. Fig. 1, right).

Cluster Head

T-CUP Security Layer

Hardware Components

Program Image

Bootloader

Application

Data Dissemination Protocol

Operating System

Fig. 1. T-CUP Security Layer on Cluster Head

Data m can be cryptographically bound to a specific platform configuration
P by using the TPM Seal command, which we call Seal for the sake of simplicity.
Using the TPM Unseal command (or simply Unseal), the TPM decrypts m only
if the platform configuration has not been modified. Given a non-migratable
asymmetric key pair (eCHi , dCHi) we denote the sealing of data m to the plat-

form configuration PCHi
with {m}eCHi

PCHi
= Seal(PCHi

, eCHi ,m). For unsealing the

sealed data {m}eCHi

PCHi
, it is necessary that the current platform configuration P ′

CHi

is equal to PCHi
: m = Unseal(P ′

CHi
=PCHi

, dCHi , {m}eCHi

PCHi
).

4 Protocol Description

In this section, we describe the concept of our proposed code update protocol.

4.1 The T-CUP Header

The code update is divided into pages pg0 to pgT , i.e., upd=(pg0 || . . . || pgT),
as depicted in Fig. 2. To ensure the authenticity of such a code update, we define
a T-CUP Header, which is shown in detail on the right of Fig. 2. This header
includes the number of pages T , a timestamp ts, a chain of hashes and an HMAC
(hmac upd) for the complete code update.

The cryptographic values of the T-CUPHeader are calculated as follows: First,
the HMAC hmac upd, which allows to verify the authenticity and integrity of
the complete code update, is calculated using the shared symmetric key KBS,CHi

between BS and CHi (here simply K):

hmac upd = HMAC(K,upd) = HMAC(K, (pg0 || . . . || pgT)) . (1)

After that, the chain of hashes is then generated in reversed order as shown in
Fig. 2 (right): For page T−1, the hash is created as hT = H(pgT ||hmac upd),
i.e., by concatenating the data of page T with the HMAC of the complete code

T-CUP: TPM-Based Code Updates and Attestations 515

code update

Header

thd

Verification

T-CUP header (thd)

C
alculation

Fig. 2. Code update and T-CUP Header with chained hashes

update and hashing the result using a one way-hash function H . Starting from
page T−2, the hash value hi is created by concatenating the data of page i with
the previously cacluated hash hi+1 and hashing the resulting value:

hi = H(pg〈i〉 ||hi+1) . (2)

Finally, a second HMAC, which is referred to as hmac pg0 and includes the
T-CUP Header (particularly, hash h1 and the timestamp) as well as the first
page (with index 0), is generated (and stored in the code update header):

hmac pg0 = HMAC(K, (thd || pg0)) . (3)

For the verification of the code update (cf. Fig. 2, left), we start with checking
the HMAC hmac pg0, which authenticates the T-CUP Header. The timestamp
is compared with the sealed reference value to check the freshness. With the hash
chain, we are able to validate the authenticity and integrity of the following parts
of the code update page by page (cf. Section 4.3).

4.2 The T-CUP Security Layer

In addition to the T-CUP Header that protects the wirelessly transmitted code
update, we also specify a T-CUP Security Layer beneath the OS (cf. Fig. 1). This
layer protects the sensitive information stored on the CHs during a code update
and maintains the ability to access sealed data even after the code update.

The general idea behind the T-CUP Security Layer results from the need to
protect the sensitive information during a code update and preserve the trusted
system state in order to access these information after the code update. The

516 S. Wagner, C. Krauß, and C. Eckert

reason for preserving the trusted state is that the data is sealed to the initial
trusted system state, which is changed by the code update. As a consequence,
if the information was still sealed to the old platform configuration, it could
not be unsealed after the update, which would make attestations impossible.
But obviously, if the sensitive information was unsealed before the code update
is performed, the sensor node and the attestation could be easily compromised.
That is why all sensitive information need to be sealed even during a code update.

Thus, we define the T-CUP Security Layer as a reduced platform configura-
tion for sealing data during a code update, which only considers those compo-
nents that are not affected and modified by the code update, i.e., the CRTM, the
bootloader, and the hardware components. Note that for our proof of concept
implementation we assume that (one of the components of) TOSBoot is trust-
worthy since it acts as CRTM. For real implementations, we suggest a hardware
CRTM to increase security

4.3 The T-CUP Protocol Steps

In this section, we describe the protocol steps of T-CUP in detail. The T-CUP
protocol can be divided into three phases: (P1) Initialization and Dissemination,
(P2) Validation and Preparation, and (P3) Verification and Processing. In the
first phase, the code update is generated on the base station and distributed to
CHs. In the second and third phase, CHs checks the authenticity, integrity, and
freshness, prepares for the necessary reboot, and processes the code update after
an additional verification. During the code update, all sensitive information is
sealed to the security layer. It is resealed to the new full platform configuration
after the code update is installed.

In Phase 1 (cf. Table 1), the base station first generates the program binary
(P1.1) and then creates the T-CUP Header as described in Section 4.1 by set-
ting the number of pages and timestamp in the T-CUP Header (P1.2) and by
calculating the HMAC for the complete code update hmac upd, the hash chain
for the code update pages, and the HMAC for the first page hmac pg0 (P1.3 –
P1.5). After that, the code update is disseminated in the network (P1.6).

In Phase 2 (cf. Table 2), the cluster head validates the code update (P2(a))
and prepares for the reboot (P2(b)). Thus, when the dissemination is initiated
by the base station, CH eventually receives hmac pg0 and page 0 (P2.1). To
verify the HMAC for the first page, CH first unseals the shared key KBS,CHi

(P2.2), which is only possible if the node is still in a trustworthy system state:

KBS,CHi = Unseal(P
(0,...,p)
CHi

, dCHi , {KBS,CHi}e
CHi

P
(0,...,p)
CHi

) . (4)

With the unsealed key, the cluster head can recalculate the HMAC and compare
it with the reference value hmac pg0 from the global header (P2.3):

hmac pg0
?
= HMAC(KBS,CHi , thd || pg0) . (5)

If the values are identical, the authenticity and integrity of page 0, the head of the
hash chain, and the timestamp in the T-CUP Header is successfully validated.

T-CUP: TPM-Based Code Updates and Attestations 517

Table 1. Phase 1: Initialization on Base Station

Step Node Data Action/Description

P1(a): Initialization

P1.1 BS binary code creates program binary

P1.2 BS #pages,
timestamp

sets number of pages and time-
stamp

P1.3 BS hmac upd

= MAC
KBS,CHi
upd

creates a HMAC for the complete
code update with the symmetric
key KBS,CHi

P1.4 BS hi creates hash values for each page

P1.5 BS hmac pg0 creates a HMAC for page 0

P1(b): Dissemination

P1.6 BS →CHi upd disseminates code update

Otherwise, the code update protocol stops. To verify the freshness of the code
update, the CH extracts the authenticated timestamp in step P2.4 and compares
it with the sealed reference value. If the extracted timestamp indicates a more
recent program binary, the current reference value is replaced with the timestamp
from the code update (after sealing it). Otherwise, the protocol aborts since the
code update is outdated.

After the validation of the T-CUP Header, CH requests the complete code
update page by page and verifies the elements of the hash chain (P2.5), which
ensure the integrity and authenticity of the included pages, by recalculating each
value and comparing it with the expected result (cf. Section 4.1).

After CH has received the complete code update, it starts preparing for the
reboot in order to program the new image by sealing the shared key KBS,CHi to
the security layer in step P2.6:

{KBS,CHi}e
CHi

P
(0,...,r)
CHi

= Seal(P
(0,...,r)
CHi

, eCHi ,KBS,CHi) . (6)

CH also seals the HMAC for the complete code update to the reduced platform
configuration (P2.7) to be able to verify the image after the reboot:

{hmac upd}eCHi

P
(0,...,r)
CHi

= Seal(P
(0,...,r)
CHi

, eCHi , hmac upd) . (7)

The second HMAC hmac upd allows for an efficient verification of the complete
code update again after the reboot, because it 1) is already implicitly authenti-
cated, 2) requires only one calculation instead of calculating again all values of
the hash chain, and 3) occupies less space. Thus, hmac upd effectively preserves
the effort already invested in authenticating and verifying the complete hash
chain page by page.

As the final step of the preparation, CH reseals all sensitive information m,
e.g., the attestation values such as a symmetric key, to the security layer (P2.8):

518 S. Wagner, C. Krauß, and C. Eckert

Table 2. Phase 2: Validation and Preparation

Step Node Data Action/Description

P2(a): Validation

P2.1 CHi hmac pg0, page 0 receives page 0 and hmac pg0

P2.2 CHi KBS,CHi unseals the symmetric key

P2.3 CHi hmac pg0 checks the HMAC

P2.4 CHi timestamp checks timestamp

P2.5 CHi upd receives complete upd page by page
and validates each hash value

P2(b): Preparation

P2.6 CHi {KBS,CHi}e
CHi

P
(0,...,r)
CHi

reseals the symmetric key to the se-
curity layer

P2.7 CHi {hmac upd}eCHi

P
(0,...,r)
CHi

seals the HMAC for the complete
code update to the security layer

P2.8 CHi {m}eCHi

P
′(0,...,p)
CHi

→ {m}eCHi

P
′(0,...,r)
CHi

reseals the sensitive information to
the security layer

{m}eCHi

P
(0,...,r)
CHi

= Seal(P
(0,...,r)
CHi

, eCHi ,m)

= Seal(P
(0,...,r)
CHi

, eCHi ,Unseal(P
(0,...,p)
CHi

, dCHi , {m}eCHi

P
(0,...,p)
CHi

)) .
(8)

After resealing, CH reboots and executes the bootloader.
In Phase 3 (cf. Table 3), CH verifies the code update again to check if it

is still unmodified (P3(a)) and processes the verified update (P3(b)). For the
verification, the CRTM starts with measuring the security layer to create a

reduced platform configuration P
′(0,...,r)
CHi

(P3.1). This platform configuration has
to match the platform configuration, which has been specified to seal the shared
key before the reboot, in order to unseal it (P3.2):

KBS,CHi = Unseal(P
′(0,...,r)
CHi

, dCHi , {KBS,CHi}d
CHi

P
′(0,...,r)
CHi

) . (9)

That is only the case if the security layer is still unmodified, i.e., if the equation

P
′(0,...,r)
CHi

= P
(0,...,r)
CHi

holds. CH also unseals the HMAC for the complete update
(P3.3), where the same condition applies:

hmac upd = Unseal(P
′(0,...,r)
CHi

, dCHi , {hmac upd}dCHi

P
′(0,...,r)
CHi

) . (10)

For the verification of the code update stored in memory, a fresh HMAC is
calculated and compared with the unsealed HMAC reference value:

hmac upd = MAC
KBS,CHi

upd
?
= HMAC(KBS,CHi , upd) . (11)

Once the trustworthiness of the security layer and the code update is verified,
the bootloader copys the binary to the program memory (P3.5). After that,

T-CUP: TPM-Based Code Updates and Attestations 519

Table 3. Phase 3: Verification and Processing

Step Node Data Action/Description

P3(a): Verification

P3.1 CHi P
′(0,...,r)
CHi

measures the security layer

P3.2 CHi KBS,CHi unseals the symmetric key

P3.3 CHi MAC
KBS,CHi
upd unseals the HMAC

P3.4 CHi upd,MAC
KBS,CHi
upd uses the symmetric key to compare

the unsealed MAC with a freshly
calculated HMAC of the upd

P3(b): Processing

P3.5 CHi upd copies update to program memory

P3.6 CHi P
′(0,...,p)
CHi

measures remaining components for
a full platform configuration

P3.7 CHi {KBS,CHi}e
CHi

P
(0,...,p)
CHi

CHi seals KBS,CHi to the new
trusted full platform configuration

P3.8 CHi {m}eCHi

P
′(0,...,r)
CHi

→ {m}eCHi

P
′(0,...,p)
CHi

reseals the sensitive information to
the new trusted full platform con-
figuration P ′

it measures the remaining software components and creates the full platform
configuration, which includes the OS and application components. Using this
new trusted full platform configuration, CH finally reseals the shared symmetric
key (P3.7) as well as all other sensitive information (P3.8).

5 Implementation

As proof of concept, we implemented T-CUP on IRIS sensor nodes, which we
connected with Atmel AT97SC3204T TPMs via I2C, by extending the current
de-facto standard code dissemination protocol Deluge [7] and the boot loader
TOSBoot from TinyOS [16]. The T-CUP Image Format extends the specifica-
tion of a Deluge image with the cryptographic information of the T-CUP Header
to enable the verification of the authenticity, integrity, and freshness of the dis-
tributed code update. Based on the T-CUP Image Format specification, we have
implemented the T-CUP protocol as (1) an interface script for the base station
and (2) T-CUP components for CHs. The new T-CUP interface script tos-tcup is
based on the Deluge interface script tos-deluge and can be used to initialize CHs
prior to deployment, i.e., the cryptographic keys are generated and symmetric
keys and initial timestamps are sealed to the initial trusted platform configura-
tion. The T-CUP components for CHs consists of the TPM driver and extended
Deluge and TOSBoot components for the dissemination and reprogramming.

6 Security Discussion

In this section, we evaluate the security of T-CUP. We first discuss an adversary
performing attacks via the wireless channel and then an adversary that physically
tampers with a CH (cf. Section 3.1).

520 S. Wagner, C. Krauß, and C. Eckert

To compromise a CH via wireless channel, an adversary can try to send his own
malicious code update to CH. Lets assume that an adversary is able to do this. A
code update which is accepted by CH must contain a valid hmac upd. Since we
assume an adversary is not able to break cryptographic algorithms (cf. Section
3.1), the adversary must be in possession of the symmetric key shared between
BS and CH. To get access to the required key, the adversary must have either
compromised BS or CH. However, this is a contradiction to the assumption that
BS is trustworthy and that all keys on a CH are protected by the TPM. Thus,
an adversary cannot inject his own malicious code update. The same applies to
manipulations of eavesdropped valid code update sent by BS.

An adversary could also try to replay and install a valid old code update which
is known to possess certain weaknesses, e.g., possible buffer overflows. However,
CH verifies the freshness by comparing the timestamp in the header, which is
protected by hmac pg0, with the sealed reference value. Thus, an adversary
would have to manipulate that timestamp and create a valid hmac pg0 which is
a contradiction to our assumptions already mentioned above.

Now we consider the case where an adversary has physical access to CH
and tries to compromise it. The adversary can try to manipulate the software
components of a CH (cf. Fig. 1) to get access to the cryptographic keys. However,
we assume that runtime attacks such as buffer overflows are not possible. Thus,
an adversary has to install his malicious code and reboot CH. But after the
reboot, the platform configuration has changed and the TPM denies access to
the sealed cryptographic keys preventing a successful compromise.

Instead of manipulating the installed software, the adversary might tamper
with a code update stored in the flash memory before it gets installed. However,
CH verifies hmac upd before the code update is installed. Thus, an adversary
would have to forge the correct HMAC for the manipulated code update. But
this would also require the adversary to break cryptography, compromise BS, or
access TPM-protected keys which is contradictory to our assumptions.

The adversary might also try to exploit the (re)sealing to different platform
configurations and the security layer. First, keys are sealed to the initial platform
configuration which is assumed to be trustworthy. Thus, an adversary cannot
perform successful manipulations during the unsealing and resealing of the keys
to the security layer before a new update is installed. After a reboot, only the
integrity of the security layer, including the CRTM and all necessary security
services such as the HMAC engine, is checked. Thus, an adversary could the-
oretically manipulate the other software components above the security layer,
i.e., OS and application components. However, this would have no effect, be-
cause the new trusted code update (since hmac upd is valid) is installed by the
security layer and overwrites the malicious code. Thus, also the resealing to the
new platform configuration is performed when CH is in a trustworthy state.

7 Conclusion

In this paper, we presented T-CUP, a TPM-based code update protocol to secure
distributed program images while still enabling attestation protocols based on

T-CUP: TPM-Based Code Updates and Attestations 521

binding keys to a trusted initial platform configuration. T-CUP provides mech-
anisms to validate the authenticity, integrity, and freshness of the wirelessly
transmitted code update. To enable attestations, we introduced a new “virtual”
security layer beneath the OS where attestation values are temporarily bound
to during an update. Our protocol is based on efficient cryptographic primi-
tives such as hash functions and MACs to avoid computational intensive digital
signatures and unnecessary large messages. We also presented the feasibility of
T-CUP in a proof of concept implementation and discussed the security of our
protocol. T-CUP can handle an adversary attacking via the the wireless channel
as well as an adversary which directly tampers with a CH using physical access.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 40(8), 102–114 (2002)

2. Arumugam, M.U.: Infuse: a TDMA based reprogramming service for sensor net-
works. In: SenSys (2004)

3. Deng, J., Han, R., Mishra, S.: Secure code distribution in dynamically pro-
grammable wireless sensor networks. In: IPSN (2006)

4. Dutta, P.K., Hui, J.W., Chu, D.C., Culler, D.E.: Securing the Deluge Network
Programming System. In: IPSN (2006)

5. Hu, W., Corke, P., Shih, W.C., Overs, L.: secFleck: A Public Key Technology
Platform for Wireless Sensor Networks. In: Roedig, U., Sreenan, C.J. (eds.) EWSN
2009. LNCS, vol. 5432, pp. 296–311. Springer, Heidelberg (2009)

6. Hu, W., Tan, H., Corke, P., Shih, W.C., Jha, S.: Toward trusted wireless sensor
networks. TOSN 7(1) (2010)

7. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: SenSys (2004)

8. Kim, D.H., Gandhi, R., Narasimhan, P.: Castor: Secure code updates using sym-
metric cryptosystems. In: Real-Time Systems Symposium (2007)

9. Krauß, C., Stumpf, F., Eckert, C.: Detecting Node Compromise in Hybrid Wire-
less Sensor Networks Using Attestation Techniques. In: Stajano, F., Meadows, C.,
Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 203–217. Springer,
Heidelberg (2007)

10. Kulkarni, S.S., Wang, L.: MNP: Multihop Network Reprogramming Service for
Sensor Networks. In: ICDCS (2005)

11. Lamport, L.: Password authentication with insecure communication. Communica-
tions of the ACM 24(11), 770–772 (1981)

12. Lanigan, P.E., Gandhi, R., Narasimhan, P.: Secure dissemination of code updates
in sensor networks. In: SenSys (2005)

13. Lee, S., Kim, H., Chung, K.: Hash-based secure sensor network programming
method without public key cryptography. In: Worksh. on World-Sensor-Web (2006)

14. Liu, A., Oh, Y.-H., Ning, P.: Secure and dos-resistant code dissemination in wireless
sensor networks using seluge. In: IPSN (2008)

15. Trusted Computing Group. Trusted Platform Module (TPM) Specifications,
https://www.trustedcomputinggroup.org/specs/TPM

16. University of California Berkeley: TinyOS, http://www.tinyos.net/

https://www.trustedcomputinggroup.org/specs/TPM
http://www.tinyos.net/

Build and Test Your Own Network

Configuration

Saeed Al-Haj, Padmalochan Bera, and Ehab Al-Shaer

University of North Carolina Charlotte, Charlotte NC 28223, USA
{salhaj,bpadmalo,ealshaer}@uncc.edu

Abstract. Access control policies play a critical role in the security of
enterprise networks deployed with variety of policy-based devices (e.g.,
routers, firewalls, and IPSec). Usually, the security policies are config-
ured in the network devices in a distributed fashion through sets of ac-
cess control lists (ACL). However, the increasing complexity of access
control configurations due to larger networks and longer policies makes
configuration errors inevitable. Incorrect policy configuration makes the
network vulnerable to different attacks and security breaches. In this
paper, we present an imperative framework, namely, ConfigLEGO, that
provides an open programming platform for building the network security
configuration globally and analyzing it systematically. The ConfigLEGO
engine uses Binary Decision Diagram (BDD) to build a Boolean model
that represents the global system behaviors including all possible inter-
action between various components in extensible and scalable manner.
Our tool also provides a C/C++ API as a software wrapper on top of
the BDD engine to allow users in defining topology, configurations, and
reachability, and then analyzing in various abstraction levels, without
requiring knowledge of BDD representation or operations.

Keywords: Imperative analysis, BDDs, Formal methods, Network con-
figuration.

1 Introduction

The extensive use of various network services and applications (e.g., telnet, ssh,
http, etc.) for accessing network resources forces enterprise networks to deploy
policy based security configurations. However, most of the enterprise networks
face security threats due to incorrect policy configurations. Recent studies re-
veal that more than 62% of network failures today are due to security miscon-
figuration. These misconfigurations may cause major network failures such as
reachability problems, security violations, and introducing vulnerabilities. An
enterprise LAN consists of a set of network domains connected through various
interface routers. The security policies of such networks are configured in the
security devices (like, routers, firewalls, IPSec, etc.) through set of access con-
trol lists (ACLs) in a distributed manner. The global network configuration may
contain several types of conflicts (redundancy, shadowing, spuriousness, etc.) in
different levels (intra-policy, inter-policy) [1] which may violate the end-to-end

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 522–532, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Build and Test Your Own Network Configuration 523

security of the network. Moreover, there may exist several reachability problems
depending on flow-, domain-, and network-level constraints. Thus, the major
challenge to the network administrators/developers is to comprehensively build
and analyze the security configurations in a flexible and efficient manner.

In this paper, we present an imperative framework, namely, ConfigLEGO that
allows users to comprehensively specify, implement, and diagnose network con-
figurations based on user requirements. ConfigLEGO internally uses an efficient
binary decision diagram (BDD) structure to compactly represent the network
configuration and further uses the configuration BDDs for analysis. On the other
hand, ConfigLEGO provides a C/C++ programming interface that acts as a soft-
ware wrapper on top of the BDD engine to selectively compose different BDDs
for systematic evaluation. ConfigLEGO is named after the famous Lego toy. In
a Lego toy, one can build a complex design from a set of basic components.
ConfigLEGO provides all basic components to design a network, and allows the
user to build and test his own network by putting all components together and
by writing the queries he needs to check the validity of configuration properties.
ConfigLEGO hides BDDs complexity and allows users to analyze the network
without requiring previous knowledge about BDD representation or operations.

Compared to other declarative modeling languages/systems, ConfigLEGO is
the first BDD-based engine that provides a generic C/C++ programming inter-
face for configuration modeling, abstraction, and analysis in usable and scalable
manner. Compared to other network management tools like COOLAID [2], Con-
figLEGO provides libraries for comprehensively creating and analyzing network
configurations based on user requirements.

In terms of diagnosability, ConfigLEGO can evaluate various configuration
problems such as follows:

– Network reachability, intra- and inter-firewall misconfigurations, flow-level,
path-level and domain-level network traffic reachability.

– Inferring configuration problems using a sequence of evaluation results.
– Analyzing network configuration and testing whether the current configura-

tion meets the provided risk requirements.

The remaining sections of the paper are organized as follows: Section 2 describes
the architecture of ConfigLEGO ; Section 3 introduces different examples verified
using ConfigLEGO. This section also describes the formalization of the examples
in Boolean logic using efficient BDD representation; Section 4 discusses the eval-
uation and experimental results; Section 5 is the related work; Finally, conclusion
and future work have been presented in Section 6.

2 Architecture of ConfigLEGO

The presented ConfigLEGO system (refer Figure 1) consists of two major mod-
ules: Internal Module and User Program Module. The Internal Module is the
core of the system which has two components; ConfigLEGO Engine and the
ConfigLEGO API. ConfigLEGO Engine is responsible for modeling the device

524 S. Al-Haj, P. Bera, and E. Al-Shaer

Fig. 1. ConfigLEGO System Architecture

configuration (behavior of each device such as, domains, routers, firewalls etc.),
topology, and the network using efficient BDD representation. The engine builds
a BDD for each device and each path in the network. It can also provide a BDD
for the entire network depending on user requirement. A complete set of func-
tions for managing internal module is defined in ConfigLEGO API. It provides
an interface to the User Program Module to use ConfigLEGO system.

The user only needs a basic knowledge of the available functions in the API
to write his/her program for analyzing/diagnosing a network.

2.1 ConfigLEGO Internal Module

ConfigLEGO parses the device configuration files and builds a BDD structure
for each device. Then, it allows to define the links between the device BDDs and
different access paths depending on the network topology specification. This
network configuration can be formalized as a network access model.

Definition 1 [Network Access Model]: A network access model is defined
as a 3-tuple NG = 〈N, I, F 〉, where,

– N is a finite set of network devices. Network devices (N) can be of three
types: NR- network routers; NF - firewalls and NE- end point devices
(hosts/domains) represented as an IP address block. Each device is asso-
ciated to several connecting interfaces which are identified by an IP address.

– I ⊆ N ×N is a finite set of network links between devices, such that for
every physical link between N1 and N2 there is a pair of lines or channels:
I12 = 〈N1, N2〉 and I21 = 〈N2, N1〉.

– F is a finite set of access control lists (ACL) associated to different devices.

Modeling Network Configuration. Each device configuration in the network
has to be modeled in BDD for modeling the network configuration. More details

Build and Test Your Own Network Configuration 525

about modeling devices configuration can be found in [3]. After modeling devices
configuration, we model the complete network considering the topology and the
combined effect of the routing and firewall rules. ConfigLEGO allows users to
specify the topology using C/C++ programming constructs. It is represented
as a formal network access model, NG〈N, I, F 〉 as described in the last section.
Then, we formalize the combined effect of firewall rules along different access
routes between source and destination. In this process, the notion of Access
Routes and Access Route Policy have been introduced.

Definition 2 [Access Route]: An Access Route AR
(S,D)
i is defined as a se-

quence of devices (N1, N2, ..., Nk) from source S to destination D in the network
where, each 〈Ni, Ni+1〉 ∈ I and D is reachable from S through S,N1, N2,, D.
This corresponds to the physical topology of the network.

Definition 3 [Access Route Policy]: An Access Route Policy (ARP (S,D))
between a source S and destination D is a combined model of the distributed
policy rules along all possible access routes (AR

(S,D)
1 , ..., AR

(S,D)
n) between a

source S and a destination D. It is represented as a Boolean function:

ARP (S,D) = (P
AR

(S,D)
1

∨ P
AR

(S,D)
2

∨ . . . ∨ P
AR

(S,D)
n

)

such that P
AR

(S,D)
i

=
∧

N∈ARi
PN
a . This represents the logical access path.

Here, P
AR

(S,D)
i

(along the route ARi) is represented as the conjunction of poli-

cies for all devices in that route. Then, we represent the complete access route
policy ARP (S,D) between a source S and a destination D as disjunction of all
P
AR

(S,D)
i

for access route ARi. We describe the modeling of logical access paths

between a specified pair of source and destination. However, depending on user
requirement, ConfigLEGO is also capable of generating the combined network
model considering all possible source and destination pairs in the network. For
basic reachability analysis, the presented ConfigLEGO framework checks the
conjunction of the BDDs along the access route as specified. On the other hand,
for imperative analysis, it uses the sequence of reachability results. Section 3
shows the verification of such analysis with different examples.

ConfigLEGO Engine in Figure 1 utilizes the compact canonical format that
BDDs provide to encode the device configuration file into a BDD representation.
This will be used later by the ConfigLEGO API for providing a convenient
interface to the user writing his own program. A partial set of the functions
provided by ConfigLEGO API are shown in Table 1. The functions support
three phases of network’s design: (1) Components Installation, (2) Components
Connection, and (3) Testing and Validation.

2.2 User Program Module

In this module, the user can provide network specifications in C/C++ program-
ming language. The ConfigLEGO API supports user’s program module by pro-
viding a set of functions that will be used by a user to construct a network. For

526 S. Al-Haj, P. Bera, and E. Al-Shaer

Table 1. ConfigLEGO API Functions

Definitions and Func-
tion Names

Description

Network N To create a new network N

Firewall F(“policy.txt”) creates a firewall that has policy defined in policy.txt
text file

Router R(“rtable.txt”) creates a router that has routing table defined in
rtable.txt text file

IPSec G(“policy.txt”) creates an IPSec device that has policy defined in
policy.txt text file

Domain D(“domain.txt”) creates a domain D that has an address and a network
mask defined in domain.txt test file

Host H(“host.txt”) creates a host H that has an address defined in host.txt
test file

Rule r creates a BDD representation for a firewall rule

link(C1, interface1, C2, in-
terface2)

links components C1 and C2 through interface1 and
interface2 respectively

buildDeviceBDD() builds a BDD for each device in the network

buildGlobalBDD() builds a BDD for the network

checkFlow(S, source-port,
D, dest-port)

checks flows between source and destination using
specified ports and returns a BDD that represents the
computed flows

printFlows(B, n) print the first n flows that satisfy the BDD B

getPathObjects(src, dst,
vec, TYPE)

returns a vector vec of objects of type TY PE along the
path between source src and destination dst, TYPE
can be FIREWALL, ROUTER, IPSEC, or IDS

policy() returns the BDD representation for a firewall/router

a firewall, it contains the policy rules and two interfaces while it contains a rout-
ing table and up to 16 interfaces for a router. The configuration file is assigned
logically to the proper device in the initialization statement in the program. To
give a clear explanation how ConfigLEGO system works, we provide several code
segments throughout the paper, where each segment solves a specific problem.

Any user program starts with initializing a network N stated as follows:

Network N;

Given a configuration file for each device, it can be added to the network N. A
firewall F1 with configuration file “f1.txt” can be defined firewall as follows:

Firewall F1("f1.txt");

Other devices (routers, IPSec, etc.) can be added to the network similarly. After
adding all components in the network N, the next step is to connect the compo-
nents by introducing links between them. The connections between components
are installed. Link(. . .) function is used to link two components as follows:

N.link(D1, ANY_IFACE, F1, 1);

Build and Test Your Own Network Configuration 527

Here, domain D1 (any interface) is linked to firewall F1 (interface 1).
After linking all components in network N, a BDD for the network and each

device are generated by invoking the statements:

N.buildDeviceBDD(); N.buildGlobalBDD();

3 Verification Examples

In this section, we provide examples for showing the usability of ConfigLEGO.
The examples are categorized as: Basic Analysis and Imperative Analysis.

3.1 Basic Analysis

ConfigLEGO can perform various security analysis, such as, reachability, intra-
policy conflicts, and inter-policy conflicts. Due to the space limitation, we will
show an example on reachability verification.

A traffic C is reachable to a distention node/domain D from a source
node/domain S along an access route 〈S,Ri, Fk, D〉, iff the traffic is allowed
by the routing table rule T j

i [BDD for router Ri and port j] and the firewall
policy Fk along that route. It can be formalized as follows:

reachable(C, S,D) : (C ⇒
∧

(i,j)∈P

T j
i) ∧ (C ⇒

∧
(i,k)∈P

Fk).

ConfigLEGO checks the reachability by analyzing the BDDs for routers and
firewalls along an access route between specified source and destination domain.
This can be checked by the following statement:

T = N.checkFlow(src, src-port, dst, dst-port);

CheckFlow(. . .) returns a BDD, T , that represents the computed flows between
a source src and a destination dst considering source and destination ports as
provided in the function call. If the resultant BDD T is bddfalse, then there is no
flow between source and destination. Flow computations are performed based on
the AccessRoute and AccessRoutePolicy defined in section 2.1. ConfigLEGO
can analyze the reachability between all source hosts and a single destinations
or between all sources and all destinations by calling checkFlow(. . .) function
inside a loop. The following example checks the reachability between all source
hosts and a single destination D1:

// hSize is the number of hosts

int hSize = allHosts.size();BDD T, TC=TRUE;

for(i = 0; i < hSize; i++){

T = N.checkFlow(*allHosts[i], ANY, D1, ANY);

TC = TC | T;

if(T != bddfalse)

cout<<"Reachable from Host "<<i; }

528 S. Al-Haj, P. Bera, and E. Al-Shaer

Here, two BDDs, T and TC, are computed. T represents all flows from a host to
a destination D1, and TC is the BDD for the complete representation from all
hosts to the destination D1. An example of further analysis is to compare two
hosts in term of the incoming traffic. Here, the BDD TC is the disjunction of all
BDDs T , the operator | is overloaded to perform BDD ”OR” operation.

3.2 Imperative Configurations Analysis

The ConfigLEGO system is capable of analyzing different imperative cases using
sequence of evaluation steps which is one of the unique features of the system.
The use of loops and conditional statements allows the users to comprehensively
analyze these imperative queries.

Path Conflict Analysis for Firewalls. First, we introduce the formalization
of shadow-free and spurious-free relations based on inter-policy firewall conflicts.

Lemma 1: Shadow-free and spurious-free are transitive relations. Assume Si
a, S

j
a

and Sk
a are upstream to downstream firewall policies in a path P , the following

is always true:

[(¬Si
a ∧ Sj

a) = false]
∧

[(¬Sj
a ∧ Sk

a) = false] ⇒ [(¬Si
a ∧ Sk

a) = false]

We formalize Path Conflicts using path-shadowing and path-spuriousness.

Definition 4 [Path Conflict]: Assuming Si
a to Sn

a are the firewall policies from
upstream to downstream in the path from x to y, a path conflict(x,y) between
any two firewalls is represented as follows:

Path Shadowing(x,y): ∨
i=1..(n−1) and i∈path(x,y)

(¬Si
a ∧ Si+1

a) �= false

Path Spuriousness: ∨
i=1..(n−1) and i∈path(x,y)

(Si
a ∧ ¬Si+1

a) �= false

ConfigLEGO checks this type of path conflicts as a sequence of steps (under a
loop), where each step checks the conflicts between a pair of BDDs. The following
code finds path shadowing between a source and a destination.

N.getPathObjects(src, dst, fwVec, FIREWALL);

for(i = 0 ; i < fwVec.size()-1 ; i++)

if(!fwVec[i].policy() & fwVec[i+1].policy()){

cout<<"Path Shadowing"; break; }

Here, getPathObjects(. . .) function returns a vector, fwV ec, of all firewall ob-
jects between a source src and a destination dst. A pair of consecutive firewalls is
checked for shadowing. The conflict is reported once found, the loop is stopped.

Build and Test Your Own Network Configuration 529

Reachability Requirement Verification. In large networks, some subnets
are restricted to communicate with others, which is known as least privilege
principle. For example, in a university network, student subnet is not allowed to
use resources allocated for staff subnet. Network administrator can enforce least
privilege by defining a reachability requirement matrix. Requirement matrix tells
for each subnet which subnets are allowed to reach which signifies the soundness
of the system. The soundness of a configuration can be defined as:

Definition 5 [Soundness]: a network configuration C is sound if, for all do-
mains x and y, all possible paths from x to y are subset of the requirement
matrix REQ. Formally, soundness can be defined as follows:

∀x∀y(reachable(x, y) ∧ src(x) ∧ dest(y)) → REQ[x][y] = true

The following example verifies connection requirements between domains:

int domSize = allDomains.size();

int Req[domSize][domSize]; BDD T;

for(int i = 0; i < domSize; i++)

for(int j = 0; j < domSize; j++)

if(i != j){

T=N.checkFlow(*allDomains[i], ANY, *allDomains[j], ANY);

if((T != bddfalse && Req[i][j] == 0) ||

(T == bddfalse && Req[i][j] == 1))

cout<<"Reachability Violation"; }

Here, Req is the requirement matrix. If Req[i][j] is ZERO, then subnets i and j
are not allowed to communicate.

4 Performance Evaluation

The various modules of ConfigLEGO framework have been implemented in
C/C++ programming language using BuDDy2.2 package [4] and tested on a
machine with a 1.8 GHz core 2 CPU and 2GB memory. Parsers have been de-
veloped for device configuration files. For evaluating imperative examples, Con-
figLEGO analyzes a combination of device’s BDDs (using loop and conditional
statements) and infer about the configuration issues under consideration.

ConfigLEGO is evaluated with respect to time and space requirements. The
framework has been tested under 100 different network configurations in more
than 20 different test networks with up to 5000 nodes and 50 thousands of
policy rules under each configuration. Table 2 shows the experimental results
with different test cases. We have thoroughly analyzed the impact of network
size and policy rules on network building time and configuration diagnosis time.

Impact of Network Size and Policy Rules on Space Requirement and
Network Building Time: The space requirement basically covers the total
BDD size for the network. ConfigLEGO framework creates a BDD for each

530 S. Al-Haj, P. Bera, and E. Al-Shaer

Table 2. Evaluation Results

Network
Size

Total
No. of
Rules

BDD
Size
(Mb)

Network
Building
Time (sec)

Configuration Analysis and Di-
agnosis Time (sec)
Reachab-
ility

Flow anal-
ysis

Distributed
Path Conflict

500 5000 1.6 0.665 0.235 0.65 0.37

1000 8500 3.2 1.325 0.43 1.32 1.33

1500 15000 4.6 1.95 0.65 1.89 3.2

2000 22500 6.3 2.67 0.885 2.5 5.32

3000 32500 9.65 3.92 1.38 3.78 11.27

4000 40125 12.7 5.12 1.82 5.25 21.5

5000 48755 15.8 6.34 2.33 6.52 32.12

network device by parsing the associated policy rule file. Thus, BDD size is
linearly dependent on both network and policy size. Table 2 shows that space
requirement lies within 15 MB for 5000 nodes and total of 50000 policy rules
which is reasonably good for large networks.

Network model building time is almost linearly dependent on both network
and policy rule size. It can be observed that this time lies within 7 seconds for
5000 nodes with 50000 policy rules.

Impact of Network Size and Policy Rules on Configuration Diagnosis
Time: ConfigLEGO framework evaluates different configuration problems using
Boolean satisfiability analysis of the network and device BDDs. The impact of
network size on the evaluation time varies based on the problem complexity.

Reachability Analysis: ConfigLEGO checks the conjunction of all BDDs along
a specified access. Thus, the reachability analysis time is linearly dependent on
the number of nodes along that access path.

Flow Level Reachability: ConfigLEGO checks flow level reachability under a
specific traffic flow Ck by evaluating BDDs for all routers (in a loop) and the
destination firewall along the specified path P . For path level unreachability,
ConfigLEGO analyzes all possible flows in a path P from node i to node j.
Thus, the complexity of flow level reachability problem can be represented as
O(Tpathreachability∗k), where, Tpathreachability indicates the flow level reachability
analysis time (for a specific flow) and k indicates the total flows. Table 2 shows
the average flow level analysis time which lies within 6.5 seconds for 5000 nodes
and 50000 policy rules.

The space and time requirement shows that the framework is scalable for
large scale networks. The uniqueness of ConfigLEGO framework lies in compre-
hensive use of C/C++ programming language features and use of efficient BDD
representation for systematically diagnosing different configuration problems.

5 Related Work

Researchers proposed different high level security policy languages and frame-
works for automated management and modeling network configurations. FLIP [5],

Build and Test Your Own Network Configuration 531

is a high level conflict-free firewall policy language for enforcing access control
based security and ensuring seamless configuration management. In FLIP, secu-
rity policies are defined as high level service oriented goals, which can be trans-
lated automatically into access control rules. However, it limits in comprehen-
sively specifying and analyzing the global network configuration with imperative
queries. Chen et al. present a framework called COOLAID [2] for comprehen-
sive management of network configurations by embedding knowledge bases from
different network users. COOLAID uses a declarative framework for integrat-
ing explicit knowledge bases derived from low level network configurations and
then reason about misconfigurations based on high level intents. However, this
work does not provide the libraries for performing fine-grained security analysis
and applications on top of the network configurations. This is an important re-
quirement for providing diagnosability and provability of network configurations.
Secondly, the scalability of network configuration management and automation
have not been analyzed in these tools. Al-shaer et al. proposed a BDD based
framework, ConfigChecker [3], for end-to-end verification of network reachabil-
ity. Narain et al. [6] proposed a SAT-based approach for security configuration
analysis. However, none of the earlier approaches provide an open interface for
security configuration analysis.

The literature survey reveals the need of a framework that allows users to
build the network configuration comprehensively as well as systematically ana-
lyze various configuration problems with imperative queries. Towards this goal,
we develop the ConfigLEGO system exploiting the advantages of C/C++ pro-
gramming language features and efficient BDD structure. The expressiveness,
composability, and reusability features of ConfigLEGO allows user to compre-
hensively specify the network configuration and diagnosis requirements.

6 Conclusion and Future Work

In large scale networks, it is hard to find and debug misconfigurations and ana-
lyze security requirements manually. Thus, there is a need of an automated tool
for finding and reasoning such misconfigurations in an abstract and comprehen-
sive way. In this paper, we presented an imperative framework for comprehen-
sively analyzing and diagnosing the network configurations. The framework is
implemented in a tool called ConfigLEGO. It allows users to write C/C++ pro-
gram that captures network specifications and implement the required analysis.
This makes ConfigLEGO a convenient tool to use. For the purpose of analy-
sis and diagnosis, ConfigLEGO uses an efficient BDD engine, this engine hides
BDDs complexity and does not require previous knowledge about BDDs repre-
sentation and operations. The efficiency of the framework has been evaluated rig-
orously with different network and policy rule sizes. In future, the ConfigLEGO
framework can be extended for finer-grained security analysis like, role based
access control and risk based policy configuration in enterprise networks.

532 S. Al-Haj, P. Bera, and E. Al-Shaer

References

1. Al-Shaer, E.S., Hamed, H.H.: Discovery of Policy Anomalies in Distributed Fire-
walls. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China, pp. 2605–2626
(March 2004)

2. Chen, X., Mao, Y., Mao, Z.M., Van der Merwe, J.: Declarative Configuration Man-
agement for Complex and Dynamic Networks. In: Proceedings of ACM CoNEXT
(2010)

3. Al-Shaer, E., Marrero, W., El-Atway, A., AlBadani, K.: Network Configuration in
a Box: Towards End-to-End Verification of Network Reachability and Security. In:
Proceedings of ICNP 2009, Princeton, NY, USA, pp. 123–132 (2009)

4. Lind-Nielsen, J.: The BuDDy OBDD package,
http://sourceforge.net/projects/buddy/

5. Zhang, B., Al-Shaer, E.S., Jagadeesan, R., Riely, J., Pitcher, C.: Specifications of A
High-level Conflict-Free Firewall Policy Language for Multi-domain Networks. In:
Proceedings of ACM SACMAT 2007, France, pp. 185–194 (June 2007)

6. Narain, S., Levin, G., Malik, S., Kaul, V.: Declarative Infrastructure Configuration
Synthesis and Debugging. Journal of Network and Systems Management 16, 235–258
(2008)

http://sourceforge.net/projects/buddy/

PP2db: A Privacy-Preserving, P2P-Based

Scalable Storage System for Mobile Networks

Manuel Crotti, Diego Ferri, Francesco Gringoli,
Manuel Peli, and Luca Salgarelli�

University of Brescia - Italy
{firstname.lastname}@ing.unibs.it

Abstract. Reputation-based systems that handle millions of users face
the problem of simultaneously supporting privacy and trust in an efficient
way. In order to scale, often existing systems either sacrifice privacy to
preserve trust, or vice versa. The introduction of advanced cryptographic
techniques such as Group Signatures might offer a solution, but their
applicability to large, distributed systems such as P2P-based ones has yet
to be proved. In this paper we introduce PP2db, a privacy-preserving,
scalable and distributed storage system targeted at mobile networks,
specifically designed to support the anonymous but trusted exchange of
Quality of Experience (QoE) information. In such case-study, QoE data
is exchanged among users so as to make informed decisions on which
network to select at any given time. We demonstrate that by enriching a
P2P database with Group Signatures it is possible to create distributed
storage mechanisms that guarantee privacy-preserving features, while
offering strong trust at the group level. Furthermore, we demonstrate
that the resulting architecture can scale in a realistic mobile network
scenario to handle millions of users.

Keywords: Trust, anonymity, secure P2P, databases, mobile networks.

1 Introduction

Reputation-based systems have been recently proposed to drive the deploy-
ment of next-generation mobile communication services, where users with multi-
interface terminals dynamically select the best available network service based
on the evaluation of historical Quality of Experience (QoE) data, saved by the
community [1]. QoE is an indication of how well the system meets the end user’s
needs, providing a measure of the end-to-end performance at the service level
from the end user’s perspective [2].

Two major building blocks are at the base of such vision: a storage system for
historical QoE data that can scale to millions of users, typical of modern wide-
area mobile networks; and a mechanism that while protecting the user’s privacy
when posting relevant QoE data to the community, guarantees that only people
belonging to the community itself can indeed provide such data. The last issue

� This work was funded in part by the E.U. FP7 project “PERIMETER”.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 533–542, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

534 M. Crotti et al.

is almost an oxymoron, expressing the need for two colliding requirements: on
one hand, protecting the user’s privacy, possibly through anonymization, while
on the other hand ensuring the community that the QoE data provided by each
user can be trusted, therefore requiring some form of identification.

In this paper we present the design and evaluation of PP2db – Privacy-
Preserving, Peer-to-Peer (PP 2) distributed Data Base: a mobile, distributed
storage system for QoE data with privacy preservation features that aims at
solving the issues described above. Besides defining the general architecture, we
analyze its scalability, showing how it can scale to millions of users, making it
applicable to current and future mobile networks.

While we designed PP2db with QoE-based mobile networks in mind, its flexi-
ble, scalable, P2P-based architecture makes it amenable to different applications,
wherever large communities share data that needs to be trusted, while preserving
the privacy of the users. Therefore PP2db can easily find applications in fields
such as social networking, community networks, Internet of Things, and any
large scale feedback-based application. We make our software freely available for
download under an Open Source license at [3].

The rest of this paper is organized as follows. Section 2 describes the high-level
requirements and goals pursued by our architecture. Section 3 introduces the two
main building blocks which we used to design and implement PP2db. Section 4
describes the PP2db architecture internals, while we analyze its scalability in
Section 5. Finally, Section 6 concludes the paper.

2 Rationale, Goals and Design Choices

The mobile telecommunication market is very diverse in its offerings to final
users. Consumers can choose among large sets of service providers, technological
means (WiFi, UMTS in its many incarnations, second generation technologies,
etc.), subscription plans and add-on services. The recent introduction of com-
munity networks makes the selection of the “right” service even more complex,
especially in large cities.

Several research projects have proposed in the recent past approaches to solve
this issue by letting end users make informed decisions through their multi-
interface devices so as to be always best connected: one example can be found
in [4] or, more recently, in [1]. Most of these technologies require users to share
with other users information about their Quality of Experience, i.e., indication
of how well each service met their specific needs. Through the analysis of QoE
data made available by other users, terminals should then be able to automate
their service-selection process, always obtaining the service that better suits their
needs.

Such an infrastructure to store and share QoE data must satisfy several high-
level requirements. The storage system should be scalable enough to handle
the growing numbers of mobile users, where a regional service must sustain tens
of millions of users. Feedback collected from users should be protected from
pollution: for example, a malicious network operator should not be able to alter

PP2db: A Privacy-Preserving, P2P-Based Scalable Storage System 535

in their favor QoE data in order to bias the users’ choices. Finally, the privacy
of end users should be preserved, both against operators and other users. In
fact, posting QoE data together with identity-related information could open the
door to retaliation from network operators, in case the QoE feedback is negative
with respect to the services they offer. It could also expose private details: for
example, stating that “the free WiFi service under the Eiffel tower in Paris is
very good on Fridays” would expose one’s location at a specific time.

The first and second requirements call for a distributed, scalable storage archi-
tecture. The architecture we propose is based on a Peer-to-Peer storage system.

The second and third requirements are in conflict with each other: while some
form of identification is necessary to satisfy the second requirement, anonymiza-
tion is paramount to achieve the third one. In order to strike a balance between
the two, PP2db relies on the use of a somewhat recent set of cryptographic
authentication techniques, called Group Signatures.

In the following Section we briefly describe the basics of these two fundamental
building blocks we used in designing PP2db.

3 Background

3.1 XPeer

XPeer [5] is a P2P distributed database based on a hybrid P2P architecture.
In XPeer data is stored and managed in XML format, and can be retrieved
using XQuery [6]. The system automatically redistributes the workload over its
overlay network by means of self-organizing algorithms, therefore providing for
scalability.

The overlay network of the XPeer system is a tree structure. The leaf nodes
are called peers and the inner nodes are called superpeers. Each peer stores a
portion of the distributed database in XML format and each superpeer stores
indexes for data retrieving. Figure 1 (left) depicts a two-levels overlay network.
Peers, after registering with a superpeer, retrieve data following two steps: query
compilation and query execution.

The query compilation phase involves a peer P1 that submits a query to
superpeer SP1, which in turn returns to P1 the list of peers that possess the

Superpeer1

Node1 Node2

Superpeer2

Node3 Node4

Root Superpeer

Node5 Node6 Node7

Peer1 Peer3Peer2 Peer4 Peer6Peer5

Superpeer1

Node1 Node2

Superpeer2

Node3 Node4

Root Superpeer

Node5 Node6 Node7

Peer1 Peer2 Peer4Peer3 Peer6Peer5

Superpeer1

Node1 Node2

Superpeer2

Node3 Node4

Root Superpeer

Node5 Node6 Node7

Peer1 Peer3Peer2 Peer4 Peer6Peer5

Fig. 1. XPeer Overlay Network (left), query compilation (center), query execution
(right)

536 M. Crotti et al.

requested data. At this point P1 starts executing the query, which is split
into sub-queries that are sent to the corresponding peers Pi. Once the results
arrive, P1 joins them generating the requested response.

Each peer stores and maintains its own data: whenever a change is committed
to the local XML, the peer sends a TreeGuide update message to the superpeer
it is connected to, so that the relevant indexing information can be updated in
the entire XPeer overlay.

3.2 Group Signatures

A group signature scheme (GS) is a relatively new digital signature scheme with
enhanced privacy features [7]. Only group members can sign messages anony-
mously on behalf of the group, each one using a private and non disclosable
member secret key (MSK). On the contrary, everyone having access to the group
public key (GPK) can verify the validity of the produced group signatures. A
trusted group manager holds the group secret key (GSK), and is responsible for
setting up the group, adding new members, revoking their membership, etc.

The first Provably–Secure and Dynamic GS scheme was introduced by Ate-
niese et al. [8]. From here on we will simply refer to it as ACJT. After ACJT,
Membership Revocation received a good deal of attention. One of the most pop-
ular techniques that offer this capability has been consolidated by Camenisch
and Groth [9] and we will refer to it as CG in the following.

4 The PP2db Architecture

PP2db realizes a highly scalable, distributed storage architecture with privacy-
preserving capabilities, amenable by design to support the sharing of QoE-
information as described in Section 2.

A schematic representation of PP2db is given in Figure 2 (left). The P2P
network at the center of the picture is accessed by users in a given group that
either want to 1) anonymously upload new group data or 2) collect existing
records and verify that they have been inserted by authorized users belonging
to the same group. To this end the information in the P2P network is made
of entangled pairs of (record, signature): thanks to this approach anyone can
verify and trust a record; furthermore if, for some reason, a legitimate record is
found as evidence of a user’s misbehaving, the identity of the posting user can be
eventually disclosed by the group manager after “opening” the associated group
signature.

In PP2db the nodes that build the P2P overlay do not take part of any users’
group, i.e., a SP can not add data to the network even if it is compromised. For
the same reason we do not consider in the following analysis the way SPs are
connected and how they mutually authenticate, and we exclude the overheads
due to this kind of traffic from our investigation.

A peer connects to PP2db via a power-up signaling procedure. Once con-
nected, the it can carry out the following operations, as shown in Figure 2 (left):

PP2db: A Privacy-Preserving, P2P-Based Scalable Storage System 537

SP

SPRoot SP

Peer C

Peer D

Peer A

OK Update

Sig Verified

NO Update

Sig WRONG

Data

G. Sig

Query DB

Data Accepted

Sig Verified

Successful Write

Write failure Successful
 Read

PP2db

3

2

2

2

P P P

SP

TreeGuide
Update

G. Sig.

Data

Data

G. Sig.
3

1

TreeGuide
Update

G. Sig.

Data

1

Query DB

Data Discarded

Sig WRONG

 Read Failure

Peer B

Data

G. Sig

P P PP P P

1

2

3

1

D

d

User motion in
the network

Area of interest
for QoE data

Wide-area
mobile network

Fig. 2. Left: Schematic model of the PP2db architecture. – Right: QoE-enabled mo-
bile network model adopted for PP2db.

READ. Peer A (upper right) queries the PP2db network for a given
record/group, executing a PP2db MetaSearch operation and receiving back
PP2db Meta-SearchAnswer messages. After following the procedure outlined
in Section 3.1, the network returns (record, signature) pairs within PP2db
QueryResult messages. The Peer will keep the data only if the group signa-
ture is valid, discarding it otherwise (lower right).

WRITE. Peer C (lower left) signs a message with its private group key and
sends the pair (record, signature), together with the group name and the
TreeGuide update, to a SP through the PP2db MetaUpdate procedure. Upon
successful verification of the group signature, the SP makes the data available
to the PP2db network, otherwise the TreeGuide update is discarded (upper
left).

4.1 XPeer-Based Storage Module

The storage module of PP2db is based on XPeer for the collection and sharing
of QoE data. Feedback coming from participating user terminals is converted
in XML and stored in the local PP2db database of the same terminals. Each
of the QoE fields that will be shared with community users is paired with its
corresponding group signature that is stored in a properly reserved field of the
XML schema. After each change of the local database, a TreeGuide update
message is spread through the XPeer network in order to update the tree-guide
of superpeers [5].

538 M. Crotti et al.

Data can be retrieved through XQuery (see Section 3.1 for details) and a user
can query the XPeer network asking for a list of service providers that meets her
quality standards (e.g., “PRIVACY RATING=SECURE and not
COST RATING=EXPENSIVE”).

4.2 Combining XPeer with Group Signatures

For PP2db we developed a new framework that integrates group signature ser-
vices and we made it available under an Open Source license [3]. We chose Java
because i) it is straightforwardly enabled on the majority of platforms that sup-
port Sun’s Java Virtual Machine ii) XPeer is Java based and iii) no similar
framework was released before. We opted to not bind it to any specific group
signature scheme, so that new schemes can be easily adapted: for this paper
we integrated the two aforementioned schemes ACJT and CG. The framework
was designed to extend the Java Cryptography Architecture (JCA) [10]. To this
end we reviewed the GS schemes that cannot for construction be mapped to
the services already offered by the JCA and we implemented two different pro-
tocols: one for “signature” operations (sign, verify, open); another for group
“maintenance” operations (setup, join, revoke).

We then reviewed the codebase of XPeer and we changed the way data is read
and written: for each write operation a signature is added by the client that is
pushing the data; the same signature will be verified against the group certificate
for each following read operation.

5 Performance of PP2db: Scalability

The scalability of PP2db is affected by two main factors: the amount of com-
putational resources required by each terminal that participates in the system,
and the amount of network traffic generated by the architecture while in use. We
start by describing the reference scenario for our evaluation, which we derived
from the QoE-enabled mobile network architecture defined in [1].

5.1 Application of PP2db to a Mobile Network Scenario:
A QoE-Enabled Mobile Network

Our scenario models a QoE-enabled wide area mobile network, albeit with some
simplifications. We assume that users are uniformly distributed in a circle of
diameter D, as shown in Figure 2 (right). While in this circle, users are randomly
moving of uniform motion.

Every time a terminal powers up, its PP2db instance connects to a superpeer
and gets access to the distributed storage system. Users are regularly asked to
rate their mobile service experience. Such ratings are injected into PP2db in the
form of Quality of Experience (QoE) reports, which represent a moving average
of the ratings expressed by the user for a given service at a given location over
time.

PP2db: A Privacy-Preserving, P2P-Based Scalable Storage System 539

At the same time, terminals collect through PP2db both past and present
QoE reports relevant for their location and produced by other users in the same
geographic area. We define this “area of interest” as a circle of radius d and the
user’s location as the centre of this smaller circle. With this information, users
are able to decide which connection is best suited to their needs, for example,
whether to prefer lower price or higher reliability.

We imagine for our analysis a very simple PP2db scenario, where the hierar-
chical tree is made of one Root superpeer on top of a single layer of superpeers.
All peers are then clustered around them. In accordance with our model, both
peers and superpeers are uniformely distributed in the network.

Table 1. Network and system parameters used in our PP2db mobile network scenario

Symbol Description Value

P , SP , R Peer, superpeer, Root
K # of SP whose father is R 100
D Network diameter 1000 (Km)

d(≤ D)
Diameter of network portion of interest to current user for
QoE purposes

1 (Km)

N Total number of users in the mobile network 120 (Million)
Pa Fraction of active users (powered-on terminals) 50%
n Active users in area of interest d 60
T Interval between two subsequent QoE writes 60 (s)

h
Fraction of users in area of interest that have relevant QoE
data to share

5%, 20%, 50%

In Table 1 we show the symbols of the parameters we adopted for our model,
and the values we assigned to them.

Several of the values we assigned to the parameters were derived using the
statistical data for modern 3G networks taken from [11]. We consider in our
model a relatively large country (D = 1000km) with four operators, each of
them with 30 million subscribed users (total N = 120M). At any given time,
half of the users are active. As we have already noted, the users are uniformely
distributed in the network circle, and move of randomly uniform motion at a
speed uniformly distributed between 0 and 30km/h (0 − 8.3m/s). A couple of
simple formulas let us derive the number of active users in each “area of interest”
at any given time (n = 30), and the number of powerups/downs in such area
(694 · (d/D)2).

We conservatively assume that each user writes to the PP2db storage system
updated QoE data every T = 60sec, regardless of where they are. Each user will
request QoE data any time it crosses a new area of interest. In our experiments,
we consider three cases regarding the fraction of users in each area of interest
that can respond with relevant QoE data to a query. We identify such parameter
with h, and consider for it values of 5, 20 and 50%.

540 M. Crotti et al.

Table 2. PP2db message size and overheads for each basic operation

Symbol Description Value

M1 PP2db power-up/down signalling message size 1.5 (kB)
M2 PP2db MetaUpdate message size 36 (kB)
M3 PP2db MetaSearch message size 3.7 (kB)
M4 PP2db MetaSearchAnswer message size 2 (kB)
M5 PP2db QueryResult message size 5 (kB)

Power up and connect to SP 8 ·M1 + 2 ·M2

Power down 2 ·M1 +M2

TreeGuide update 2 ·M1 + 2 ·M2

Query Compilation (K +1) ·M3 +K ·M4

Query Execution h · (2 ·M1 +M5)

Messages exchanged among PP2db-enabled nodes are either for signalling or
exchanging meta-data. We classify them according to the procedures defined in
Section 4. We computed their size by tracing an active PP2db network in our
laboratory, and report them with symbols M1 through M5 in Table 2. Finally,
simple formulas link the parameters and message sizes expressed above to the
total traffic generated by the QoE storage system for each of the read/write
operations defined in Section 4.

5.2 Computational Overheads

We have analyzed all the primitives that we implemented in the PP2db Group
Signature Java framework to profile their computational costs. The space allowed
for this paper does not allow us to report on our findings. In extreme summary,
all operations that are executed by mobile terminals are independent on the
number of users in the system, therefore PP2db can scale indefinitely in
size with respect to the computational burden imposed on each mobile
terminal. Please refer to [12] for more details.

5.3 Network Traffic Overheads

The characterization of the message overheads introduced by the various group
signatures schemes that PP2db implements is fully described in [12]. Here, for
space constraints, we just use the numerical values that were derived in that
technical report.

For group signatures we suppose that every mobile user belongs to the same
GS group, because we are interested in the study of the performance of our
system in the whole network of a particular mobile operator. For this evaluation,
we used signatures of 1024 bits equivalent security. In terms of revocation (GC
signature scheme), we considered a base value of 5% of users revoked in a solar
year, i.e., 5% of the subscribers to a given operator will switch to another one
each year.

PP2db: A Privacy-Preserving, P2P-Based Scalable Storage System 541

Table 3. Scalability of PP2db in three privacy-preserving configurations

h = 5% h = 20% h = 50%
Privacy protection Bandwidth Mb/s (overhead)

PP2db with no security 1.79 1.93 2.22
PP2db with ACJT GS 1.81 (1.18%) 1.98 (2.59%) 2.30 (3.60%)
PP2db with CG GS 1.82 (1.68%) 1.98 (2.59%) 2.30 (3.60%)

Applying the message overhead of [12] to the parameters and formulas de-
scribed in Tables 1 and 2, we obtain the amount of bandwidth occupied by
PP2db messages in any given QoE area of interest (diameter d), as shown in
Table 3.

The first result worth commenting is that the overhead introduced by PP2db
alone is quite sustainable by modern mobile networking infrastructures, gener-
ating only up to 2.22 Mb/s of traffic in a network area of a 1km radius when
no privacy protection scheme is activated. When 5% of users have relevant QoE
data, this value drops to 1.79 Mb/s.

Quite surprisingly, such an overhead remains well under control even when
privacy protection is enabled and a large fraction of users (h = 50%) responds
to PP2db queries: in this case the use of group signatures introduces an extra
3.60% overhead, generating 2.3 Mb/s of PP2db traffic. Note that in the case
of CG, the impact of handling revocation for 5% of the users is next to null,
amounting to an extra 0.5% of overhead only in the case of h = 5%. Note that
such sustainable bandwidth figures were obtained by forcing users to rate QoE
every minute (T = 60sec), which is really an inflated estimate.

The system presents no other visible limits since all relations in the model
are linear. Therefore, PP2db introduces manageable network overheads
when used in privacy-preserving QoE storage architectures for modern
mobile networks.

6 Conclusions

In this paper we presented PP2db, a privacy-preserving, scalable storage system
for mobile networks. We designed it to support an emerging requirement of
modern multi-operator, multi-interface mobile network architectures, such as
the one described in [1], where there is the need to store QoE data in a scalable
and privacy-preserving way, while ensuring trust at the group level.

Our analysis shows that PP2db scales quite well to support such requirements
in modern mobile networks with millions of users, even when its overhead are
evaluated in highly dynamic (h = 50%) and densely populated environments. As
far as we know, PP2db is the first system to combine strong trust at the group
level through Group Signatures, anonymity and distributed storage systems in
a highly scalable architecture.

542 M. Crotti et al.

Although PP2db was designed with these expressed targets in mind, its fea-
tures make it amenable to many other scalable storage applications where privacy
must be coupled with trust, such as online social services, community services,
media-sharing applications, and, in general, new distributed applications in con-
texts such as the Internet of Things.

We make PP2db available under an Open Source license at [3].

References

1. PERIMETER - User-centric paradigm for seamless mobility in future internet.
STREP, EU FP7 Grant No. 224024, http://www.ict-perimeter.eu/

2. Architecture & Transport Working Group. Tripleplay Services Quality of Experi-
ence (QoE) Requirements. TR-126, DSL Forum (December 2006)

3. PP2db: A Privacy-Protected, P2P-based Scalable Storage System for Mobile Net-
works, http://www.ing.unibs.it/ntw/tools/pp2db

4. Andersson, K.: Always Best Served and Managed. Technical report, Lulea Univ.
of Technology (2007)

5. Sartiani, C., Manghi, P., Ghelli, G., Conforti, G.: XPeer: A Self-Organizing XML
P2P Database System. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y.,
Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 456–465. Springer, Heidelberg
(2004)

6. XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery
7. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT

1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
8. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure

Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

9. Camenisch, J., Groth, J.: Group Signatures: Better Efficiency and New Theoretical
Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

10. Sun Microsystem. Java Cryptography Architecture Reference Guide for JavaTM
Platform Standard Edition 6

11. Tonesi, D., Salgarelli, L., Sun, Y., La Porta, T.F.: Evaluation of signaling loads in
3GPP networks. IEEE Wireless Communications 15(1), 92–100 (2008)

12. Ferri, D.: Secure P2P Storage Systems: Techniques and Architectures. Technical
report, University of Brescia, M.Sc. Thesis (2010)

http://www.ict-perimeter.eu/
http://www.ing.unibs.it/ntw/tools/pp2db
http://www.w3.org/TR/xquery

NetFlow Based Network Protection

Vojtech Krmicek1 and Jan Vykopal2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
vojtec@ics.muni.cz

2 Institute of Computer Science, Masaryk University, Brno, Czech Republic
vykopal@ics.muni.cz

Abstract. Protecting network perimeter against adversaries both from
inside and outside is a crucial task for nowadays network administrators.
Inspecting all network traffic by traditional deep packet inspection is very
resource intensive task in high speed networks and scalable solutions are
needed. In our work, we describe network protection system based on
NetFlow data. It uses hardware accelerated monitoring center (HAMOC)
for inspecting network traffic, generating NetFlow data and also for ac-
tive filtration/blocking of malicious traffic. Active network protection use
case against brute force dictionary attacks is presented and also other
network protection use cases are discussed. Main contribution of this
work are: (i) scalable solution suitable for current high-speed networks
(10Gbps and more), (ii) use of hadrware accelerated HAMOC platform
performing both monitoring and traffic filtering, (iii) light-weight alter-
native using software tools instead of hardware platform suitable for
protection of networks with lower amount of traffic.

Keywords: active network defense, NetFlow, flowmonitoring, HAMOC.

1 Motivation

Information and communication infrastructure is an integral part of nowadays
IT world and provides a wide set of crucial services used in everyday life. There-
fore it is necessary to use, study and develop new technologies securing this
infrastructure, especially against frequent network attacks from Internet world.
Such technologies include firewalls, intrusion detection/prevention systems, vul-
nerability scanners, network access control systems, honeypots, etc. Although it
is necessary to provide security also inside monitored network, we will focus on
securing observed network against network threats from outside in the following.

Network-based intrusion detection and prevention systems are deployed to
serve for this purpose. The malicious traffic is traditionally detected by deep
packet inspection: the payload is searched for signatures of known attacks. How-
ever, this is very resource-intensive task and scalability is a growing problem in
present large and multigigabit networks. On the contrary, intrusion detection
based on an analysis of network flows scales well and is capable to capture some
kinds of attacks [3]. So we are focused on research of NetFlow monitoring and
intrusion prevention.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 543–546, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

544 V. Krmicek and J. Vykopal

2 Used Technologies

2.1 NetFlow Monitoring

A network flow (NetFlow) is defined as unidirectional sequence of packets with
some common properties that pass through a network device, e. g., IP addresses,
protocol and ports [2]. These flow statistics were originally generated by routers
and switches for accounting and management purposes only. Nowadays there
are many network devices (including stand-alone probes) exporting NetFlow
for network behaviour analysis and anomaly detection too. Using flow-based
approach the detection is feasible even in 10 gigabit networks without any packet
loss because the flow exporting process inspects only packet headers, not the
entire payload. In our experience of deploying and running many NetFlow probes
at campus network, NetFlow monitoring is very usable and powerful tool.

2.2 Hardware-Accelerated Monitoring Center

In our work, we use Hardware-Accelerated Monitoring Center (HAMOC) plat-
form [1] to perform both network traffic monitoring (NetFlow/IPFIX acquisition
and deep packet inspection) and network traffic filtering at high speed networks
(10Gbps). This platform provides hardware acceleration to already available and
well-known monitoring applications.

The HAMOC is based on commodity PC platform. The lack of computing
power for high-speed network applications is solved by COMBO hardware ac-
celerator performing time critical operations. Used FPGA technology enables
flexible firmware changes according to specific demands in particular tasks.

A set of network monitoring tools was tuned and tested with HAMOC plat-
form to be able to proceed 10Gb/s traffic at line rate, including traffic analysis
tools (tcpdump, tcpreplay, Wireshark) and deep packet inspection tools (Snort,
Bro, Sucirata, OpenDPI). The HAMOC platform provides also filtration capa-
bility with possibility to change filtration rules without packet loss and traffic
distribution among multiple processors to increase computational power.

2.3 Light-Weighted Alternative

An alternative suitable for deployment in the lower speed networks (up to
1Gb/s) is a usage of software probe (fProbe1, nProbe2) for NetFlow acquisi-
tion and Linux iptables as traffic blocking tool instead of hardware platform
HAMOC. This software variant is also able to protect observed network against
network threats, but it is limited by various factors, e.g., incomplete traffic statis-
tics during heavy attacks ((D)DoS) and inaccurate timestamps of network flows.

1 http://fprobe.sourceforge.net/
2 http://www.ntop.org/nProbe.html

http://fprobe.sourceforge.net/
http://www.ntop.org/nProbe.html

NetFlow Based Network Protection 545

3 Active Network Protection Scenarios

NetFlow based network protection can be built up from various components. In
our research we focus on the following scenarios:

1. NetFlow probe(s) + collector + RTBH – Several probes exports NetFlow to
the central collector where the analysis is done, the detection module can
set Remotely Triggered Black Hole Filtering (RTBH) [4] at routers.

2. HAMOC running NetFlow probe and firewall – NetFlow acquisition, storage
and detection as well as attack prevention is done at the HAMOC center.

3. HAMOC running quarantine – To protect users from phishing, all traffic
destined to the known phishing websites is redirected to quarantine by HTTP
proxy running at the HAMOC center.

4. HAMOC running NetFlow probe, collector and attack tools – Similar to the
second scenario, but HAMOC is capable of conducting a counterattack.

5. HAMOC running NetFlow probe, collector and traffic limiter – Similar to
the second scenario, but HAMOC is capable of limiting traffic incoming from
the attack source.

The second scenario is described in a detail in the following section.

4 Use Case: Active Protection against Network Attacks

One of a possible application of the HAMOC platform is a network protection
against various types of network threats and attacks. HAMOC is deployed as
a NetFlow probe and packet filter (see Figure 1) at the borders of network.
Acquired NetFlow data are sent to the NetFlow collector where are stored and
analyzed by a detection tool. If an attack is found, the detection tool sends an
event to the control center. The center assesses the severity of the event and
issues a command to the packet filter running in HAMOC.

An example scenario of network protection against SSH brute-force attack
follows:

1. the attacker probes the protected network for SSH servers by TCP SYN
scanning,

2. the attacker starts brute-force attack against the SSH service running at the
hosts that responded in the previous step,

3. TCP SYN scans and the brute-force attack are found by detection tool (plu-
gin for the NetFlow collector), which processed acquired NetFlow data; these
events are sent to the control center,

4. the control center processes the events, and as a result, instruments HAMOC
to block all TCP traffic from the attacker’s IP address to the TCP/22 port
in the protected network,

5. the attacker continues with the brute-force attack but all SSH packets in-
coming to the protected network are dropped.

546 V. Krmicek and J. Vykopal

Fig. 1. NetFlow based network protection using HAMOC platform

5 Conclusion

In this work, we have presented NetFlow based active network protection. Net-
work protection system was implemented in high-speed networks by using Net-
Flow monitoring and hardware accelerated monitoring center (HAMOC). Cur-
rent work is focused on detailed system evaluation in both laboratory testbed
and real network. The quality of network protection, system performance during
heavy attacks and protection against new network threats are subjects of future
research.

References

[1] Celeda, P., Krejci, R., Bariencik, J., Elich, M., Krmicek, V.: Cesnet technical report
9/2010 (2010), http://www.cesnet.cz/doc/techzpravy/2010/hamoc/

[2] Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informa-
tional) (October 2004), http://www.ietf.org/rfc/rfc3954.txt

[3] Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., Stiller, B.: An
Overview of IP Flow-Based Intrusion Detection. IEEE Communications Surveys
& Tutorials 12(3), 343–356 (2010), http://doc.utwente.nl/72752/

[4] Cisco Systems. Remotely triggered black hole filtering, Whitepaper (2005),
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/

ps6642/prod white paper0900aecd80313fac.pdf

http://www.cesnet.cz/doc/techzpravy/2010/hamoc/
http://www.ietf.org/rfc/rfc3954.txt
http://doc.utwente.nl/72752/
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6642/prod_white_paper0900aecd80313fac.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6642/prod_white_paper0900aecd80313fac.pdf

Author Index

Agnew, Gordon 134
Ahmadzadeh, Seyed Ali 134
Al-Haj, Saeed 522
Al-Shaer, Ehab 522
Anker, Tal 303
Aura, Tuomas 337

Bagchi, Saurabh 39, 281
Bai, Kun 389
Bera, Padmalochan 522
Beye, Michael 409
Bulusu, Nirupama 470

Castellà-Roca, Jordi 261
Chia, Pern Hui 77
Crotti, Manuel 533

Deng, Robert H. 172
Dewri, Rinku 96
Dolev, Danny 303
Dua, Akshay 470
Dutta, Ratna 373

Eckert, Claudia 511

Feldhofer, Martin 426
Feng, Wu-chang 470
Ferri, Diego 533

Ganapathy, Vinod 59
Gao, Debin 172
Gao, Hanjun 436
Ghosh, Anup K. 460
Glass, Stephen 116
Grebur, Brendan 154
Gringoli, Francesco 533

Han, Jin 172
Hermann, Eckehard 19
Herzberg, Amir 319
Hyder, Chowdhury Sayeed 154

Jaffe, David 1
Jajodia, Sushil 460
Jia, Quan 460
Jiang, Xuxian 209

Kesdogan, Dogan 77
Kong, Deguang 190
Krauß, Christoph 511
Krmicek, Vojtech 543

Lampesberger, Harald 19
Lashchiver, Kiril 303
Le, Meixing 460
Li, Tieyan 356
Li, Yingjiu 356
Liu, Leslie 389
Liu, Peng 190
Liu, Wei 436

Maji, Amiya Kumar 281
Mao, Z. Morley 1
Mitra, Sarbari 373
Modelo-Howard, Gaspar 39
Mostowski, Wojciech 243
Moulic, Randy 389
Mu, Yi 227
Mukhopadhyay, Sourav 373
Muthukkumarasamy, Vallipuram 116

Naumann, David A. 480
Nichols, Arthur 501

Peli, Manuel 533
Peng, Yang 436
Pham, Viet 337
Plos, Thomas 426
Portmann, Marius 116

Qian, Zhiyun 1
Qu, Lie 227

Rayes, Ammar 1
Reddy, A.L. Narasimha 446
Robert, Matthew 116
Romero-Tris, Cristina 261

Salgarelli, Luca 533
Sengar, Hemant 501
Shulman, Haya 319
Srinivasan, Deepa 209

548 Author Index

Stavrou, Angelos 460
Sweval, Jevin 39

Tang, Chunyu 480
Tian, Donghai 190
Tzur-David, Shimrit 303

Veugen, Thijs 409
Viejo, Alexandre 261
Vullers, Pim 243
Vykopal, Jan 543

Wagner, Steffen 511
Wang, Guilin 227, 356
Wang, Lina 436
Wang, Xinyuan 501
Wang, Zhaohui 460
Westermann, Benedikt 77
Wetzel, Susanne 480

Winter, Philipp 19
Wu, Dinghao 190

Xiao, Li 154
Xiong, Huijun 491
Xu, Zhi 389

Yadav, Sandeep 446
Yan, Qiang 172
Yao, Danfeng 491
Yao, Danfeng (Daphne) 59

Zarandioon, Saman 59
Zeilinger, Markus 19
Zhang, Hao 436
Zhang, Xinwen 491
Zhu, Sencun 389
Zhu, Wei 491

	Title
	Preface
	Organization
	Table of Contents
	Network Intrusion Detection
	Designing Scalable and Effective Decision Supportfor Mitigating Attacks in Large Enterprise Networks
	Introduction
	Network Device Diversity in Real Networks
	The Framework
	Problem Formulation - Optimization
	Overview
	An Example
	Objectives
	Constraints

	Implementation
	Correctness Verification

	Evaluation
	Real Network Based Evaluation
	Simulation-Based Evaluation
	Enabling User Interactivity

	Related Work
	Discussion
	Conclusions and Future Work
	References

	An On-Line Learning Statistical Model to DetectMalicious Web Requests
	Introduction
	HTTP and Web Security
	Intrusion Detection
	Related Work
	Scope of This Work

	Methodology
	A Request is a Sequence of Symbols
	Prediction by Partial Matching
	Detecting Outliers
	On-line Learning Strategy

	Implementation
	Network Operation

	Experiments
	Evaluation Data
	Results
	Evasion Strategies

	Conclusion and Future Work
	References

	Secure Configuration of Intrusion DetectionSensors for Changing Enterprise Systems
	Introduction
	Related Work
	Problem Statement and Threat Model
	DIADS Framework
	Probabilistic Reasoning Engine
	Algorithm 1: BN Update to Structure Based on Firewall Rule Changes
	Algorithm 2: Initialization of BN CPTs Based on Firewall Changes
	Algorithm 3: BN Update of CPT Based on Incremental Trace Data
	Algorithm 4: Update Choice of Sensors Based on Runtime Inference

	Experiments and Results
	Experimental Setup
	Experiment 1: Dynamic Reconfiguration of Detection Sensor
	Experiment 2: Dynamism from Firewall Rules Changes
	Experiment 3: Dynamism with Attack Spreading

	Conclusions and Future Work
	References

	Anonymity and Privacy (I)
	K2C: Cryptographic Cloud Storage with LazyRevocation and Anonymous Access
	Introduction
	Key Updating Schemes for Access Hierarchies
	Background
	Model and Definitions in HKU Scheme
	AB-HKU Scheme

	K2C Protocol
	Design Goals
	A Signature Scheme for KP-ABE
	Protocol Description
	Security Analysis

	Implementation and Evaluation
	Key-Policy Attribute-Based Crypto Library
	K2C Framework and Performance Evaluation

	Related Work
	Conclusion and Future Work
	References

	Analyzing the Gold Star Schemein a Split Tor Network
	Introduction
	Background and Related Work
	Distributing the Network Information
	Motivating the Users to become Relay Operators

	Simulation Design
	Basic Assumptions and Simulation Scenarios
	Simulation Details

	Results
	Basic Simulation Model
	Probing the Reasons of an Uneven Split
	Extended Models for Robustness Check

	Discussion
	Conclusions
	References

	Location Privacy and Attacker Knowledge:Who Are We Fighting against?
	Introduction
	Attacker Class
	Point Queries
	Range Queries

	Approximate Locators
	Location Perturbation
	Selecting a Perturbation
	Evaluating the Perturbation

	Empirical Results
	Related Work
	Conclusions
	References

	Wireless Security (I)
	Insecurity in Public-Safety Communications:APCO Project 25
	Introduction
	Structure of the Paper

	APCO Project 25
	Approach to Security Analysis
	Software-Defined Radio Implementation
	P25 Receiver
	P25 Transmitter

	Security Flaws in P25
	Optional Encryption
	Flawed Authentication and Access Control Mechanism
	Flawed Key Hierarchy
	Weak Encryption
	No Guarantee of Message Freshness
	Flawed Message Authenticity and Integrity Mechanism

	Security Attacks and Defences in P25
	Denial of Service - The Inhibit Attack
	Message-Modification Attack
	Key Recovery by Exhaustive Key Search
	Known-Plaintext.
	DES/OFB.
	ADP.
	Operational Responses to Exhaustive Key Search.

	Related Work
	Conclusions
	References

	Behavioral Mimicry Covert Communication
	Introduction
	System Model
	Behavioral Mimicry Covert Communication
	Fixed Rate Covert Communication (FRCC)
	Adaptive Rate Covert Communication (ARCC)

	System Parameters
	Performance Analysis
	Detection and Stealthiness of the Covert Channel
	Reliability
	Communication Rate

	Conclusion
	References

	Defense against Spectrum Sensing DataFalsification Attacks in Cognitive Radio Networks
	Introduction
	Related Work
	Reputation Based Approaches
	Data Mining Approaches
	Artificial Intelligence Approaches

	System Model
	Honest User Model
	Attack Model
	Independent Attack.
	Collaborative Attack.

	Algorithm Design - Attackers vs BS
	Adaptive Reputation Based Clustering (ARC) Algorithm
	Results
	Collaborative Attack
	Independent Attack

	Conclusion
	References

	System Security
	On Detection of Erratic Arguments
	Introduction
	Diversity Detection Model
	Overview
	Relationships of the Arguments
	Training Algorithms
	Model Refinement
	Detection

	Implementation
	Evaluation
	Detection Effectiveness
	False Alarm Analysis
	Performance Overheads

	Related Work
	Conclusions
	References

	SA3: Automatic Semantic Aware AttributionAnalysis of Remote Exploits
	Introduction
	Problem Statement and Analysis
	Problem Formalization
	The Challenge of the Problem

	Approach
	What Is the Semantics Used in Exploit Code?
	What Is the Statistics Used for Modeling?

	Evaluation
	Attribution Analysis Results
	Performance Evaluation
	Discussion

	Related Work
	Conclusion
	References

	Time-Traveling Forensic Analysis of VM-BasedHigh-Interaction Honeypots
	Introduction
	System Design
	Timescope Framework
	Analysis Modules

	Implementation
	QEMU Record and Replay
	Analysis Modules

	Evaluation
	R&R Accuracy
	Time-traveling Analysis
	Performance

	Discussion
	Related Work
	Conclusion
	References

	Anonymity and Privacy (II)
	Optimistic Fair Exchange of Ring Signatures
	Introduction
	Preliminaries
	Ring Signature of All Discrete-Log Case
	Zero-knowledge Proof
	Encryption Scheme

	Security Definitions
	The Scheme
	Verifiably Encrypted Ring Signature
	Optimistic Fair Exchange of Ring Signatures

	Security Proof
	Conclusion
	References

	Efficient U-Prove Implementationfor Anonymous Credentials on Smart Cards
	Introduction
	Background
	Anonymous Credentials
	Smart Cards

	Implementing U-Prove for Smart Cards
	U-Prove and Smart Cards
	U-Prove on MULTOS
	Integration into the Microsoft U-Prove SDK

	Results and Performance Analysis
	MULTOS vs. Java Card

	Ongoing Research
	Conclusion
	References

	Multi-party Private Web Searchwith Untrusted Partners
	Introduction
	Previous Work
	Contribution and Plan of This Paper

	Background and Notation
	n-out-of-n Threshold ElGamal Encryption
	Key Generation.
	Message Encryption.
	Message Decryption.

	ElGamal Re-masking
	Optimized Arbitrary Size (OAS) Benes
	Multi-party OAS-Benes.

	Plaintext Equivalence Proof (PEP)
	Disjunctive PEP (DISPEP)

	System Model
	Entities
	Protocol Overview
	Privacy Requirements

	Protocol Description
	Group Setup
	Permutation Network Distribution
	Group Key Generation
	Anonymous Query Retrieval

	Privacy Analysis
	Dishonest User
	Dishonest Central Node
	Dishonest Web Search Engine

	Performance Analysis
	Parameter Selection
	Size of the Group and Key Length.
	Minimum Number of OAS-Benes PNs.

	Analysis of the Computation Time
	Analysis of the Number of Messages
	Additional Remarks

	Conclusions and Future Work
	References

	DNS and Routing Security
	v-CAPS: A Confidentialityand Anonymity Preserving Routing Protocol for Content-Based Publish-Subscribe Networks
	Introduction
	Background
	Filter Posets

	v-CAPS Basics
	Threat Model and other Assumptions
	Design Principles in v-CAPS

	v-CAPS Primitives
	Subscribe
	Publish
	Match

	Secure Routing Vector (SRV) Protocol
	Background
	SRV Overview
	Subscribe
	Publish
	Match

	Experimental Results
	Experimental Setup
	Workload Details.
	Latency Measurement.
	Other Implementation Details.

	Evaluating Recurring Costs
	End-to-end Latency.
	Computation Time.

	Evaluating One-time Costs
	Message Overhead

	Related Work
	Discussion and Future Work
	References

	Delay Fast Packets (DFP):Prevention of DNS Cache Poisoning
	Introduction
	Cache Poisoning
	Related Work
	The DFP Algorithm
	Design Parameters
	The Window Parameters
	 and Considerations
	FactorWindow Considerations
	Slow Packets Consideration
	Imitation of the DFP Profile

	Experimental Results
	Memory Consumptions
	Attacks Detection

	Conclusions
	References

	Unilateral Antidotes to DNS Poisoning
	Introduction
	Firewall-Based Defense Mechanisms
	Contributions and Organisation

	Proposed Antidotes to DNS Poisoning
	Entropy Increasing Mechanisms
	Forgery Detection Mechanisms

	The Sandwich Antidote to DNS Poisoning
	Detailed Design
	Sandwich Implementation in Firewall

	The NAT Antidote
	NAT Implementation in Firewall

	Birthday Paradox and Protection
	Birthday Protection

	Conclusions
	References

	Key Management
	Security Analysis of Leap-of-Faith Protocols
	Introduction
	Leap of Faith
	Security Considerations
	Secure Shell (SSH)
	Transport Layer Security (TLS)
	Better Than Nothing Security (BTNS) IPsec
	Host Identity Protocol (HIP)
	Strengthening LoF Protocols
	Multi-path Authentication
	Resolving Authentication Failures
	Best Practices for LoF Applications

	Conclusion
	References

	Secure and Practical Key Distributionfor RFID-Enabled Supply Chains
	Introduction
	Secret Sharing Approaches
	Security Properties
	Batch Goods Delivery Scenario
	Desired Security Properties

	Resilient Secret Sharing Scheme
	Preliminaries
	RSS

	Our Construction
	Secret Generation and Sharing
	Tag Encoding
	Secret Recovery and Verification
	Analysis and Comparison

	Parameterization
	Conclusion and Future Work
	References

	Towards a Deterministic Hierarchical Key Predistribution for WSN Using Complementary Fano Plane
	Introduction
	Previous Work
	Our Contribution

	Preliminaries
	Proposed Scheme
	Key Predistribution to Seven Nodes
	Key Predistribution to the Tree Hierarchy

	Results
	Connectivity
	Connectivity of a level 1 node (say N1).
	Connectivity of a level 2 node (say N8).

	Performance
	Conclusion
	References

	Wireless Security (II)
	Context-Related Access Controlfor Mobile Caching
	Introduction
	Mobile Caching
	Context-Aware Mobile Applications

	An Example of Context-Aware Mobile Health Information Application
	Models and Assumptions
	Mobile Caching Model
	Trust Model
	Adversary Model
	Design Rationale

	Proposed Schemes
	Scheme One: Flush Scheme
	Scheme Two: Context Based Encryption Scheme
	Scheme Three: Attribute-Based Encryption Scheme

	Simulation
	Simulation Setup
	Experiment 1: CHR vs. Cache Size and Data Sharing Rate
	Experiment 2: CHR vs. Context Change Rate
	Experiment 3: CHR vs. TTL
	Experiment 4: CG vs. Data File Size
	Experiment 5: CG vs. Context Change Rate

	Related Work
	Context-Related Access Control for Mobile Computing
	Distributed Data Management
	Access Control on Mobile Devices

	Conclusion
	References

	Anonymity for Key-Trees with AdaptiveAdversaries
	Introduction
	Related Work
	Notation
	Key-Trees

	Adaptive Adversaries
	Theoretical Impact of Targeted Attacks
	Hourglass Trees

	Simulation
	Graphs for Naive Attacks
	Graphs for Targeted Attacks

	Conclusions and Future Work
	References

	Short Papers
	Analyzing the Hardware Costs of DifferentSecurity-Layer Variants for a Low-Cost RFID Tag
	Introduction
	System Overview
	Security Layer
	Concept for Implementing the Security-Layer Variants
	Implementation Results
	Implementation Results of AES and NOEKEON
	Implementation Results of the Security-Layer Variants

	Conclusion
	References

	Preventing Secret Data Leakage from ForeignMappings in Virtual Machines
	Introduction
	AMP2 Scheme
	AMP2 Design
	Restricted Foreign Mapping
	Application Applying for Protection
	AMP2 Page Table Updating

	AMP2 Implementation
	Evaluation
	Security Analysis
	Performance Evaluation

	Conclusion
	References

	Winning with DNS Failures: Strategiesfor Faster Botnet Detection
	Introduction
	Related Work
	Methodology
	Filtering Steps
	Degree of an IP Address (Dcncip).
	Correlation Metric (Corrcncip).
	Succeeding Domain Set Entropy (SENcncip).
	Failing Domain Set Entropy (FENcncip).

	Correlating Failures for Improved Latency

	Results
	Data Sets
	Latency Comparison
	Effect of the Correlation Parameter
	Correlation vs Number of DNS Failures
	Variation in Entropy
	Size of Time Bin

	Discussion
	Conclusion
	References

	Trading Elephants for Ants: EfficientPost-attack Reconstitution
	Introduction
	Related Work
	Threat Model and Isolation
	Threat Model
	Container-Based Isolation

	System Architecture
	Computing Provenance from Logs
	Modeling States Using Provenance
	Recovery Using Provenance Graphs

	Performance Evaluation
	User Study Using Real Deployment
	Hourly Provenance Graph Generation
	Versioning FS and Timed Backups

	Conclusions
	References

	Privacy-Preserving Online Mixing of HighIntegrity Mobile Multi-user Data
	Introduction
	Problem Statement
	Threat Model
	Interactive Proof Protocol
	Preliminaries
	Protocol Details

	Privacy-Preserving Transformations
	Overhead
	Conclusion
	References

	Symbolic Analysis for Securityof Roaming Protocols in Mobile Networks
	Introduction
	Related Work
	Review of GSM, UMTS, and Roaming
	GSM
	UMTS
	Roaming between GSM and UMTS

	Modeling and Analyzing GSM and UMTS in ProVerif
	GSM Model
	Modeling and Analyzing UMTS

	Modeling and Analyzing GSM/UMTS Roaming
	References

	CloudSeal: End-to-End Content Protectionin Cloud-Based Storage and Delivery Services
	Introduction
	Model and System Goals
	CloudSeal Scheme Details
	Overview
	Preliminary
	 CloudSeal Operations
	Security Analysis

	Related Work
	Conclusion and Future Work
	References

	Call Behavioral Analysis to Thwart SPITAttacks on VoIP Networks
	Introduction
	Baseline of Normal VoIP Call Behavior
	Detecting Individual Misbehaving Subscriber
	Detecting Groups of Misbehaving Calls
	Conclusion
	References

	T-CUP: A TPM-Based Code Update ProtocolEnabling Attestations for Sensor Networks
	Introduction
	Related Work
	Setting and Notation
	Setting
	Notation

	Protocol Description
	The T-CUP Header
	The T-CUP Security Layer
	The T-CUP Protocol Steps

	Implementation
	Security Discussion
	Conclusion
	References

	Build and Test Your Own Network Configuration
	Introduction
	Architecture of ConfigLEGO
	ConfigLEGO Internal Module
	User Program Module

	Verification Examples
	Basic Analysis
	Imperative Configurations Analysis

	Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

	PP2db: A Privacy-Preserving, P2P-BasedScalable Storage System for Mobile Networks
	Introduction
	Rationale, Goals and Design Choices
	Background
	XPeer
	Group Signatures

	The PP2db Architecture
	XPeer-Based Storage Module
	Combining XPeer with Group Signatures

	Performance of PP2db: Scalability
	Application of PP2db to a Mobile Network Scenario: A QoE-Enabled Mobile Network
	Computational Overheads
	Network Traffic Overheads

	Conclusions
	References

	NetFlow Based Network Protection
	Motivation
	Used Technologies
	NetFlow Monitoring
	Hardware-Accelerated Monitoring Center
	Light-Weighted Alternative

	Active Network Protection Scenarios
	Use Case: Active Protection against Network Attacks
	Conclusion
	References

	Author Index

