
ECMAF: An Event-Based Cross-Layer Service

Monitoring and Adaptation Framework

Chrysostomos Zeginis, Konstantina Konsolaki,
Kyriakos Kritikos, and Dimitris Plexousakis

Department of Computer Science, University of Crete, Greece
and Information Systems Laboratory, ICS-FORTH, Greece

{zegchris,konsolak,kritikos,dp}@ics.forth.gr

Abstract. Although several techniques have been proposed towards
monitoring and adaptation of Service-Based Applications (SBAs), few of
them deal with cross-layer issues. This paper proposes a framework, able
to monitor and adapt SBAs across all functional layers. This is achieved
by using techniques, such as event monitoring and logging, event-pattern
detection, and mapping between event patterns and appropriate adap-
tation strategies. In addition, a taxonomy of adaptation-related events
and a meta-model describing the dependencies among the SBA layers are
introduced in order to “capture” the cross-layer dimension of the frame-
work. Finally, a specific case study is used to illustrate its functionality.

Keywords: event, monitoring, adaptation, cross-layer, service, pattern,
Event-Calculus, non-functional.

1 Introduction

Web services are an emerging technology attracting a lot of attention from both
academia and industry in recent years. Thus, more and more businesses adopt
them to facilitate and automate their business processes. However, once services
and business processes become operational, several emerging issues must be con-
sidered throughout the life-cycle of a Service-Based Application (SBA), such as
the ones concerning service monitoring and adaptation. These two processes
are tightly connected and result in improving and customizing non-performing
services, so as to adapt to the context changes and satisfy new requirements.

As far as monitoring is concerned, SBAs need to be managed and monitored,
so that stakeholders have a clear view of how services perform within their op-
erational environment, take management decisions, and perform control actions
to modify and adjust their behavior. In [5], Web service monitoring is defined as
the process of collecting and reporting relevant information about Web service
execution and evolution. Many monitoring approaches have been proposed, most
of them focusing on measuring QoS metrics, gathered on the basis of SLAs, given
that an SLA dictates what are the service obligations in terms of performance.
The measured metrics are then compared with the corresponding SLA bounds
to detect possible violations.

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 147–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 C. Zeginis et al.

Furthermore, the dynamic and ever-changing nature of the business and phys-
ical environment requires Web services to be highly reactive and adaptive to the
changes and variations they are subjected to. They should be equipped with
mechanisms to ensure that they can adapt to meet changing requirements. Such
changes are identified, detected, and foreseen in the running SBA during the
monitoring process. In [10] Web service adaptation is defined as a process of
modifying SBAs so as to satisfy new requirements dictated by environmental
changes on the basis of adaptation strategies designed by the system integrator.

However, it is critical that monitoring and adaptation occur across all the SBA
functional layers, as they are adopted by many projects, such as the S-cube
(http://www.s-cube-network.eu) and SLA@SOI (http://sla-at-soi.eu);
namely the Business Process Management layer (BPM), the Service Composi-
tion and Coordination layer (SCC) and the Service Infrastructure layer (SI).
These layers are closely related and many dependencies exist among them. A
thorough review of current monitoring and adaptation techniques [25] reveals
that these techniques are very fragmented. Although current approaches cover
a wide spectrum of monitoring and adaptation [19,2,3], few of them deal with
cross-layer issues. The latter ones either do not provide a concrete solution to
the problem [12], or do not take into consideration all SBA layers [9,22], or do
not elaborate on monitoring issues [26].

In this paper, a cross-layer monitoring and adaptation framework is out-
lined that is based on monitored events. In addition, a layer-based taxonomy of
adaptation-related events and a meta-model describing the dependencies among
components of a cross-layer system are introduced to pinpoint the need for such
a type of framework. The main strengths of this approach are the ability to
handle both functional and non-functional service properties and the use of a
reasoning tool deriving appropriate adaptation strategies by exploiting a set of
rules. Furthermore, it has also proactive adaptation capabilities using pattern
detection techniques and can be easily distributed into many computer nodes.
In Section 2 a comparison table clearly states the advantages of this work.

The rest of the paper is structured as follows. Section 2 summarizes the related
work. Section 3 introduces the proposed taxonomy of adaptation-related events.
Section 4 presents the dependency model. Section 5 presents the proposed frame-
work, while Section 6 exemplifies how this framework supports the case study.
Finally, some concluding remarks and future work directions are presented in
Section 7.

2 Related Work

The need for monitoring different functional and non-functional requirements, as
well as taking adaptation actions is widely recognized by industry and academia,
as a means of improving SBAs. There are several works that propose monitoring
and adaptation architectures but most of them only focus on the SCC layer.

Baresi et al. [4] present an approach for self-healing of BPEL processes. This
approach is based on Dynamo [3] monitoring framework along with an AOP ex-
tension of ActiveBPEL and a monitoring and recovery subsystem using Drools

http://www.s-cube-network.eu
http://sla-at-soi.eu

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 149

ECA rules. A composition designer provides assertions for invoking, receiving or
picking activities in the business process. These assertions can be specified using
two domain specific languages (WSCoL and WSReL). The problem of selecting
alternative services and dealing with possible interface mismatches when for-
warding a request to an alternative endpoint recovery is not explicitly addressed.
Additionally, the recovery rules cannot be changed dynamically, as they need to
be compiled off line.

The VieDAME environment [19] extends the ActiveBPEL engine to enable
BPEL process monitoring and partner service substitution based on various
strategies. The services are selected according to defined selectors. VieDAME
requires service registration in a repository and marking services to be monitored
and eventually substituted as replaceable. It uses an engine adapter to extend
the engine’s functionality, but does not explicitly address fault handling.

Barbon et al. [2] present an event-based monitoring approach, developed
within the Astro project, which also extends the ActiveBPEL engine and defines
RTML, an executable monitoring language to specify SBA properties. Events are
combined by exploiting past-time temporal logics and statistical functions. Mon-
itors run in parallel with the BPEL process as independent software modules ver-
ifying the guarantee terms by intercepting the input or output messages received
or sent by the process. This work does not allow for dynamic (re-)configuration
of the monitoring system in terms of rules and meta-level parameters.

In [24,17] the authors present an approach towards extending WS-Agreement
[1]. This approach supports monitoring of functional and non-functional proper-
ties. EC-Assertion is introduced to specify service guarantees in terms of differ-
ent types of events, which is defined by a separate XML schema. It is based on
Event Calculus (EC) [23]. By proceeding in parallel with the business process
execution, it leads to less impact on performance but also to a smaller degree of
responsiveness in discovering erroneous situations.

Farrel et al. [8] present an SLA-based monitoring approach exploiting EC as
the underlying formalism. This approach addresses the utility computing do-
main, where the cornerstone aspect is to provide resources with certain qual-
ity characteristics. Contracts are defined based on contract patterns, which are
then axiomatized using EC. Then, the effects of critical events on the contract
state/evolution are defined. The respective framework is based on a particu-
lar architecture and comprises an analyzer managing the contract analysis and
reporting, and a visualizer representing the SLA monitoring results.

A platform for developing, deploying, and executing SBAs is proposed in
[6], incorporating tools and facilities for checking, monitoring, and enforcing
service requirements expressed in WS-Policy notations. The Colombo platform
comes with a module that manages policy assertions. Apart from evaluating
the assertions attached to particular service-related entities at both design and
runtime, the framework provides the means for policy enforcement, e.g., it may
approve a message’s delivery of a message, reject it, or defer further processing.

Despite the previous layer-specific approaches, some approaches towards cross-
layer service monitoring and adaptation have been proposed. Gjørven et al. [9]

150 C. Zeginis et al.

propose a coarse-grained approach, which exploits mechanisms across two layers
(Service Interface and Application corresponding to ours SCC and SI layers) in a
coordinated fashion. Kazhamiakin et al. [12] define appropriate mechanisms and
techniques to address the adaptation requirements and constitute an integrated
cross-layer framework. Both approaches tackle the problem in an inflexible man-
ner, as the adaptation logic is predefined and static. Popescu et al. [22] provide
support for dynamic cross-layer adaptation using adaptation templates, com-
posed either directly, through invocations of WSDL operations or indirectly,
through events. This approach, though, does not consider the Infrastructure
layer. Finally, Zengin et al. [26] introduce an adaptation manager (CLAM) that
can deal with cross- and multi-layer adaptation problems. This approach ranks
a set of adaptation paths, after constructing and adaptation tree starting form
an initial adaptation trigger at any of the three SBA layers.

A summary of all the aforementioned approaches is presented in Table 1. The
approaches are compared according to their (cross-layer) monitoring and adap-
tation capabilities, dynamicity, intrusiveness and timeliness. These properties ac-
quire a different meaning towards monitoring and adaptation. The dynamicity of
a monitoring framework concerns the ability of the framework to change monitor-
ing properties during the execution of the process whereas the dynamicity of an
adaptation framework allows additions and deletions of adaptation rules. More-
over approaches which perform monitoring by weaving code that implements
the required checks inside the code of the system that is being monitored are
concerned as intrusive approaches. Regarding adaptation approaches, a frame-
work is intrusive whether the applied adaptation actions change the process.
We assume that intrusiveness is not desirable for monitoring unlike adaptation.
The timeliness of monitoring system presents the ability of the framework to
signal violations of the monitoring properties the time they occur and not after
the termination of the instance. On the other hand timeliness of an adaptation
framework is about the proactive or the reactive execution of the adaptation
actions. Furthermore the kind and the scope of the monitored information is
provided. The former one refer to the functional and non functional properties
of a SBA while the latter one to instance or class application of the approach.
Finally, the last two properties refer to the availability of a dependency meta-
model describing the dependencies among the SBA layers and a taxonomy of
monitored events.

As shown in Table 1 few of current monitoring and adaptation approaches deal
with cross-layer issues [9,22,26]. These works focus mainly on adaptation process
and lack some important properties that ECMAF efficiently address, such as
proactive adaptation, functional and non-functional aspects consideration and
wide scope, enriched with a dependency meta-model and an event taxonomy.

3 Taxonomy of Adaptation-Related Monitored Events

Many of the proposed monitoring approaches can detect different event types.
These events deliver information about the SBA evolution and context change.

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 151

Table 1. Comparison Table

They are used to indicate whether the SBA execution evolves normally and
whether there are some deviations or even violations of the desired or expected
functionality. Most events are recurring during service executions and usually
with the same order. Thus, it is desirable to introduce a taxonomy of monitored
events to enable the mapping between these events and the suitable adaptation
strategies as well as the event derivation applied in the proposed framework.

The taxonomies of common monitored events proposed are either generic or
domain-specific (e.g. real-time SBAs). [22] introduces an event taxonomy for three
possible application layers: organization, behavior and service, to semi-automate
the discovery and selection of adaptation templates needed to fulfil complex adap-
tation requirements. [14] categorizes monitored events into Interface-level mis-
matches, i.e., services with similar functionality but through different WSDL
interfaces, and Protocol-level mismatches, i.e., mismatches concerning the order
or number of supplied and required messages.

The proposed high-level event taxonomy is based on two different criteria:
a) the affected SBA layer and b) the service aspect concerned (functional, non-
functional). The affected layer concerns the three functional layers analyzed in
Section 1, while the service aspect concerns the service functional and non-
functional characteristics [20]. The former ones detail the operational aspects
that define the overall service behavior, such as the way and time it is invoked,
while the latter concern quality attributes (e.g., response time and throughput).
Its main advantage upon the other taxonomies is that it fits perfectly to the
adopted SBA layers as well as the consideration of both functional and non-
functional service aspects.

152 C. Zeginis et al.

Fig. 1 illustrates the proposed taxonomy of adaptation-related events for the
three functional SBA layers. Indicatively, at the BPM layer there are classified
mismatches regarding the business process, such as KPI violations or monitored
events stemming from modifications at this layer (e.g., business goal or process
model modifications). At the SCC layer, monitored events focus on mismatches
about service execution and QoS violations, such as I/O failures and SLA vio-
lations. Finally, at the SI layer, events mainly concern device failures affecting
the overall SBA, such as limited resources or network failures.

Functional

� Limited resources
� Software failure
� Network failure
� Server failure
� Sensor failure
� Disk failure
� Other device failure

Service Infrastructure Layer

Non Functional

� Software failure
� Network failure
� Device failure

Functional

� I/O failure
� Binding mismatch
� Functionality mismatch
� Invocation timeout mismatch
� Protocol-Level mismatch
� Interface-Level mismatch

Service Composition & Coordination Layer

Non Functional

� (Internal) SLA
violation

Functional

� Unforeseen execution
� Business goal modification
� Context modification
� Process model modification

Business Process Management Layer

Non Functional

� Cost change
� KPI violation

Fig. 1. Taxonomy of adaptation-related monitored events

4 Dependency Meta-model

When faults occur, it is imperative to be able to detect the root of the problem
by following a process, usually called root-cause analysis. Such a process benefits
from the use of a specific model called dependency model. This model should de-
scribe both the functional and non-functional dependencies between the system
components across all possible layers to enable the detection of the component
causing the fault through a top-down traversal of the respective dependencies,
starting from the component where the problem is detected. Dependency mod-
els should also allow a bottom-up traversal of the respective dependencies. Such
a traversal is essential so as to enable the derivation of events at higher-layers
with respect to the events occuring at lower levels. Moreover, dependency models
should be able to describe both static as well as dynamic component dependen-
cies. The former are usually known and established at design time, while the
latter are detected and created at runtime. Dependencies may also change dur-
ing the lifetime of a SBA or system. For example, the memory requirements for
installing a service may be different from those related to the service execution.

Dependency models must also conform to a particular structure and must
be described in a formal way so as to enable reasoning on them. To this end, a

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 153

novel dependency meta-model is proposed in this paper, which has been specified
through the OWL ontology and is depicted in Fig. 2. This meta-model has been
carefully designed to capture all the relevant aspects of component dependencies.

The central concept in this meta-model is Dependency, which is characterized
by the following four main properties [13]: a) strength: how strong (optional or
mandatory) is the dependency between two or more components, b) formaliza-
tion: what is the dependency’s degree of formalization which directly relates to
the automation degree with respect to the dependency’s capturing, c) criticality:
how critical is to capture this dependency, d) and period : what is the time pe-
riod for which this dependency holds. Dependencies can be either Functional or
NonFunctional. Functional dependencies exist between functional components,
while non-functional dependencies typically exist between non-functional com-
ponents. Both the FunctionalComponent and NonFunctionalComponent concept
are sub-concepts of Component. Functional components are characterized by two
main properties: a) type: indicating if the component is a hardware, software,
or logical entity (e.g. service, activity), and b) activity: if the component can
be directly queried or instrumented or requires the existence of an intermediary
for obtaining the component’s information. On the other hand, a non-functional
component can be either a QoSAttribute or QoSMetric.

Non-functional dependencies can be Qualitative or Quantitative. Both depen-
dency types can be expressed with the OWL-Q [16] semantic, non-functional
based service description language, which has been slightly extended to enable
the description of process and infrastructural quality attributes and metrics.
Fig. 2 shows with black color which novel non-functional concepts have been
introduced and with grey color which were the original OWL-Q concepts. Quali-
tative dependencies between two non-functional components describe particular,
general non-functional relationships which can be either only qualitatively as-
sessed, or also quantitatively assessed through e.g. instrumentation but their
quantitative dependency model holds only for particular systems and services.
Such a type of dependencies is characterized by two main properties: a) valueDi-
rection: indicating that the value of the first non-functional component changes
in the same or opposite way with respect to the value of the second one; b) val-
ueImpact : describes the impact that the first non-functional component’s value
has on the second non-functional component’s value.

The OWL-Q extensions introduced allow the description of quantitative de-
pendencies across the same or different layers. In particular, three different met-
ric types have been introduced: ProcessMetrics, ServiceMetrics, and InfrMetrics,
where each metric type not only corresponds to one of the respective layers con-
sidered but also measures a particular QoSAttribute and applies to particular
functional components at this layer. Similarly, a QoSAttribute can be either a
ProcessAttribute, a ServiceAttribute, or an InfrAttribute. Each metric can then
be measured through the application of a Function on other metrics at the same
or lower layers. For example, a ProcessMetric can be measured through process,
service, and infrastructural metrics and concerns a particular process component,
such as the process itself or one of its activities. It must be noted that OWL-Q

154 C. Zeginis et al.

Fig. 2. The dependency meta-model

is already capable of describing the way both single and composite metrics can
be computed from measurement directives and other metrics, respectively.

Therefore, OWL-Q allows for the description of both quantitative and quali-
tative cross-layer metric models. Quantitative models can be exploited not only
for monitoring but also for conformance checking as they do not only allow the
calculation of the values of the metrics at the higher levels from the values of
metrics at the same or lower levels, but also the comparison of the computed
values against the stated requirements. On the other hand, qualitative models
allow inspecting the correctness of the monitored values, as e.g. particular qual-
itative dependencies may not be respected by the monitored values of specific
quality components, produced by particular error-prone sources of information.

5 Monitoring and Adaptation Framework

Fig. 3 presents the architecture of the proposed cross-layer monitoring and adap-
tation framework. This framework comprises a Monitoring Engine able to collect
the monitored events during the service execution, an Adaptation Engine able
to perform adaptation actions, and an Execution Engine. The first two engines
communicate with each other via events through a publish/subscribe mechanism.

Monitoring Engine. The Monitoring Engine comprises a Monitor Manager
and a number of individual Monitoring Components. Each of the latter com-
ponents is assigned to detect events at a specific SBA layer and immediately
deliver them to the Monitor Manager. The Monitor Manager, in turn, continu-
ously delivers information about the service execution produced by the Execution
Engine while collecting events from the Monitoring Components. The Monitor

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 155

Manager communicates with the Translator via a publish/subscribe mechanism.
A needed monitored event is delivered to the Translator as soon as it is detected.
It is imperative to send the events in the order that they are received so as to
have an as reliable as possible pattern matching mechanism. As there are many
Monitoring Components delivering events, specific techniques are required to
ensure this, such as event timing [18] and clock synchronization [15].

Fig. 3. Architecture of Monitoring and Adaptation framework

Adaptation Engine. The Adaptation Engine comprises a number of compo-
nents supported by suitable repositories:

– The Translator, also incorporating a subscribe mechanism, receives the
events sent by the Monitor Manager and translates them into a suitable
format required by the Event Pattern Detector and Reasoner components.

– It is very common that failures at the SI layer lead to other failures and
violations both at the same and higher layers, forming a chain of monitored
events. So, it is desirable to detect those event patterns causing service fail-
ures by exploiting specific mechanisms (e.g. pattern matching ones [11]).
These patterns are detected by the Event Pattern Detector.
Our approach relies on using such a technique to detect dynamically patterns
of monitored events to prevent other chains of events from occurring. As such,
it enables the proactive service adaptation by mapping the detected patterns
to suitable adaptation strategies. For example, having received two moni-
tored events the Event Pattern Detector detects a specific pattern composed
of one more event. This pattern is mapped to an adaptation strategy, and
then, this mapping is translated into a rule that is passed to the Reasoner.

156 C. Zeginis et al.

The adaptation strategy which is finally derived from the Reasoner, into an
appropriate format, prevents the third event from occurring. A Database
supplies the needed information for the mapping and the translation.

– The Reasoner receives events from the Translator and rules from the Event
Pattern Detector, and derives an adaptation strategy to be performed by the
Adaptation Manager. The rules provide the required data to perform the
derivation, supported by a Knowledge Base (KB), containing the appropriate
information to take the right decision.

– The Adaptation Manager executes the adaptation strategy exported by
the Reasoner with the aid of two components. The Infrastructure Man-
ager is able to treat malfunctions regarding the SI layer, which is the main
source of many service failures, and the Model Repository supplies the
appropriate information, such as service descriptions and requirements, layer
dependencies, and metric and SLA models, so as to fulfil the supported adap-
tation strategies. The Execution Engine is called to support the adaptation
process, especially for strategies regarding the BPM and SCC layers.

The main benefits of the monitoring and adaptation framework are as follows:

– Distributed workload. As there are layer-specific Monitoring Compo-
nents that pass monitored events to the Monitor Manager, monitoring is
distributed among the available monitoring mechanisms. In addition, there
can be many computer nodes with a separate Monitoring and Infrastructure
Manager component, that can a handle a portion of the whole monitoring
and adaptation workload, as depicted in Fig. 4.

– Extensibility. As services evolve, new monitoring and adaptation tech-
niques are required in order to cope with continuous context changes and
other unpredictable malfunctions. This framework can integrate such tech-
niques with the existing ones, while preserving its functionality and integrity.

– Cross-layer capability. The framework is able to support all three SBA
functional layers. It incorporates mechanisms to detect events across all lay-
ers and derive additional events using pattern matching techniques.

– Pro-active adaptation. The use of pattern matching techniques, as well
as the mapping between patterns and adaptation strategies allows for proac-
tively adapting the SBA.

Some preliminary implementation solutions have already been investigated. As
far as the monitoring is concerned we plan to use the Astro project [2], which
has already been discussed in Section 2. In addition, we have decided to use
the ESPER language (http://esper.codehaus.org) for the specification of
the events and the pattern detection process. ESPER provide efficient event
processing, comprehensive pattern detection and publish/subscribe capabilities.
Finally, the reasoning process can be efficiently accomplished by the powerful
EC-Jess Reasoner [21], which translates Event Calculus axioms into Jess rules
and then encodes the domain description as a Jess program. Its main benefits
are that it handles Event Calculus rules and produces models as output. The
joining of these mechanisms as well as other gaps filling within this framework
is in our future plans.

http://esper.codehaus.org

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 157

Fig. 4. Distributed workload performed by a computer node

6 Traffic Management Case Study

This case study describes a traffic management system designed to manage nor-
mal traffic situations as well as emergency cases [7]. Such emergency case han-
dling includes several different actions, such as directing the rescue forces to the
accident location and managing traffic deviations. Fig. 6 and Fig. 5 respectively
illustrate these two cases. Each figure depicts the three functional layers. In
both cases, workflow tasks are executed either manually or by mapping them on
(Web) services. Each service is then mapped to the appropriate infrastructure.

The actors involved are traffic managers, i.e., individuals accountable for enti-
ties controlling the traffic management system, generic rescue forces (e.g., police
and ambulances), and citizens, such as motorists and pedestrians.

Fig. 6 illustrates normal traffic conditions, where the system tries to optimize
some parameters such as total noise, overall throughput, and air pollution. In
particular, the system shall consider different needs, such as the ones of pedes-
trians and motorists, and other factors like heavy traffic, public events, school
and working hours, holidays or public regulations which may alter traffic de-
mand and needs during conditions that do not involve emergencies. The system
interrupts the Normal Traffic Situation process, when an accident happens, and
jumps to the Critical Traffic Situation subprocess.

Fig. 5 depicts a critical traffic situation, in which a serious car accident occurs
at a central road. In particular, the involved citizens inform the traffic manager
that must control the overall traffic situation (control traffic devices, inform
citizens) and assess the incident so as to inform the appropriate rescue forces
about the accident and direct them to the specific location. Moreover, the traffic
manager monitors the environment variables, such as air pollution and noise.
Different adaptation actions must be taken by the traffic manager as well as by
the rescue forces, such as:

– Traffic management device reconfiguration (e.g., traffic lights) by the traffic
manager, in order to reduce stop-and-go traffic. This should also help to keep
air pollution low, even if it is not critical during emergency situations.

– Accident reporting to citizens via their devices (e.g, GPS, mobile phones)
by the traffic manager to avoid traffic congestion at the accident location.

158 C. Zeginis et al.

B
P

M
 L

a
y
e
r

S
C

C
 L

a
y
e

r
S
I
L
a
y
e

r

Citizens
inform traffic

manager

Call- SMS
Service

Calendar
Service

Assessment
Service Manually

Device
configuration –

GPS/SMS Service

Device
Configuration

Service

Mobile
Phone

Database Server --

Software
Network Devices

Wireless/GPS
Mobile Phone

Software
Network
Devices
Wireless

Check for
high hours
and days

Assess
incident

Go to
accident's
location

Devices
reconfiguration

–
Inform citizens

Take
adaptation
actions to

control
situation

Inform traffic
manager
situation
handled

Rescue
Forces
Actions

Traffic
Manager
Actions

Complete
emergency
Handling –

Everything Back
to normal

Information
Service

Database
Server

Fig. 5. Critical traffic situation

– Traffic closing/limiting to or from the involved location by the rescue forces.
– Traffic deviation by the rescue forces through alternative places not intended

for heavy traffic.

After a complete emergency handling, there is a gradual return back to the
normal situation. The rescue forces inform the traffic manager, who updates the
system and informs the citizens through their devices.

As already discussed, there are various dependencies among the three SBA
layers. The occurrence of a failure at one layer may result in a failure at other
layers. This work aims at locating the failure event and taking adaptation actions
in order to prevent its spread at the others layers, as soon as possible.

KPI
violation

SLA
violation

B
P

M
 L

a
y
e

r
S
C

C
 L

a
y
e

r
S
I
L
a
y
e

r

AAccident
? Critical

Situation

Yes

No Monitor
environmental

variables

Check for
heavy traffic

Check
for

accident

Check for high
traffic hours

and days

Assess
situation A

Handling
needed?

Traffic
management

device
configuration

Yes

No

Accident
Information

Service

Air pollution,
Noise

Measurement
Service

Calendar
Service

Traffic
Service

Assessment
Service

Device
Configuration

Service

Database
-

Server

Pollution
-

Noise Sensors
Database

Sensor
-

Server
Server

Software Network
Devices WirelessMain

Memory
Failure

I/O
Failure

Fig. 6. Layers’ interaction during normal traffic conditions

Fig. 6 presents an illustrative example. Suppose that a KPI exists dictating
that the maximum duration of the process should be less than 10 seconds. Fur-
ther, suppose that an SLA exists for the assessment service AS dictating that its
maximum execution time must be less than 6 seconds. Thus, as it can be seen,

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 159

a violation of the respective SLA constraint may cause a violation to the KPI,
by considering that the previous process activities do not run longer than 3 sec-
onds. It must also be indicated that AS’s execution time is inverse proportional
to the main memory size and the CPU percentage allocated for its execution.
Moreover, there is a low limit for the main memory allocated, after which the
SLA violation will be unavoidable as the service behavior will be unpredictable
and even if it does not fail it will certainly take a long time to execute. In fact,
after 2 seconds from the AS’s execution, the main memory allocated to it has
indeed surpassed the low level of 50 MB.

A Monitoring Component, running at the server where AS is executed, detects
that the available main memory is not sufficient (SI layer) for AS. At the same
time, another Monitoring Component detects that there is an I/O failure at the
SCC layer as AS has produced a wrong output. Both events are first sent to the
Translator, which transforms them to the appropriate format and sends them
to the Reasoner. Based on the two events received, a specific rule is fired which
derives that the best strategy is to execute another instance of the AS service
at a more powerful server and with a better memory and CPU allocation. The
suitability of the strategy lies on the fact that by executing a “better” service
instance and with better allocation for the hardware resources, the probability
that the SLA is not violated becomes very high (as we do not know if another
failure may occur in the near future regarding the new instance) and in this way
also the KPI violation may be avoided. Such a rule has been derived by the Event
Pattern Detector based on the previous history log and has been already inserted
into the Reasoner. The derived strategy is sent to the Adaptation Manager which
executes it with the assistance of the Infrastructure Manager and the Execution
Engine.

As can be understood, ECMAF handles perfectly such a cross-layer scenario.
The adaptation actions performed are the appropriate ones, based on the event
history and the current context. Moreover, the dependencies among the layers
are clearly discerned.

7 Conclusions and Future Work

To sum up, this paper describes a framework that is able to detect monitored
events across the three functional layers of a SBA and derive suitable adapta-
tion strategies through a reasoning mechanism. The communication between the
monitoring and adaptation engines is achieved by a publish/subscribe mecha-
nism. In addition to the framework’s description, a taxonomy of adaptation-
related events and a dependency meta-model between the system components
across all functional SBA layers are provided, in order to pinpoint the need
for such a cross-layer approach. The main benefits of this approach are that it
can handle both functional and non-functional service aspects, as well as it can
proactively adapt the SBA across all the functional layers.

The following future directions are planned. First, developing such a dis-
tributed cross-layer monitoring and adaptation framework, using existing tech-
nologies and mechanisms and extending them if necessary. Second, extending

160 C. Zeginis et al.

the current taxonomy of adaptation-related events, exploiting additional aspects.
Third, extending the proposed dependency meta-model. Finally, experimentally
evaluating and optimizing the framework.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube).

References

1. Andrieux, A., et al.: Web Services Agreement Specification (March 2007),
http://forge.gridforum.org/sf/docman/do/downloadDocument/

projects.graap-wg/docman.root.published documents.web

services agreement specifica/doc14574

2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time Monitoring of In-
stances and Classes of Web Service Compositions. In: ICWS, pp. 63–71. IEEE
(2006)

3. Baresi, L., Guinea, S.: Dynamo: Dynamic Monitoring of WS-BPEL Processes.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 478–483. Springer, Heidelberg (2005)

4. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL Processes with Dynamo and
the JBoss Rule Engine. In: ESSPE 2007 in conjunction with the 6th ESEC/FSE
joint meeting, pp. 11–20. ACM (2007)

5. Benbernou, S., Cavallaro, L., Hacid, M.S., Kazhamiakin, R., Kecskemeti, G., Pazat,
J.L., Silvestri, F., Uhlig, M., Wetzstein, B.: PO-JRA-1.2.1, State of the Art Re-
port, Gap Analysis of Knowledge on Principles, Techniques and Methodologies for
Monitoring and Adaptation of SBAs. Tech. rep., S-cube (July 2008)

6. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.:
Colombo: Lightweight middleware for service-oriented computing. IBM Systems
Journal 44(4), 799–820 (2005)

7. Di Nitto, E., Mazza, V., Mocci, A.: Collection of industrial best practices, scenarios
and business cases (2009)

8. Farrell, A., Sergot, M., Salle, M., Bartolini, C.: Using the Event Calculus for the
Performance Monitoring of Service-Level Agreements for Utility Computing. In:
WEC, vol. 6. Citeseer (2004)

9. Gjørven, E., Rouvoy, R., Eliassen, F.: Cross-layer self-adaptation of service-oriented
architectures. In: MW4SOC, pp. 37–42. ACM (2008)

10. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proac-
tive Self-adaptation of Service-Based Applications Based on Online Testing. In:
Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377,
pp. 122–133. Springer, Heidelberg (2008)

11. Karp, R.M., Rabin, M.: Efficient randomized pattern-matching algorithms. IBM
Journal Research and Development 31(2), 249–260 (1987)

12. Kazhamiakin, R., Pistore, M., Zengin, A.: Cross-Layer Adaptation and Monitor-
ing of Service-Based Applications. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 325–334. Springer, Heidelberg
(2010)

13. Keller, A., Blumenthal, U., Kar, G.: Classification and Computation of Dependen-
cies for Distributed Management. In: ISCC. IEEE, Antibes (2000)

http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.graap-wg/docman.root.published_documents.web_services_agreement_specifica/doc14574
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.graap-wg/docman.root.published_documents.web_services_agreement_specifica/doc14574
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.graap-wg/docman.root.published_documents.web_services_agreement_specifica/doc14574

An Event-Based Cross-Layer Service Monitoring and Adaptation Framework 161

14. Kongdenfha, W., Motahari-Nezhad, H.R., Benatallah, B., Casati, F., Saint-Paul,
R.: Mismatch Patterns and Adaptation Aspects: A Foundation for Rapid Devel-
opment of Web Service Adapters. IEEE Trans. Serv. Comput. 2, 94–107 (2009)

15. Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time sys-
tems. IEEE Trans. Computers 36(8), 933–940 (1987),
http://dblp.uni-trier.de/db/journals/tc/tc36.html#KopetzO87

16. Kritikos, K., Plexousakis, D.: Semantic QoS Metric Matching. In: ECOWS. IEEE
Computer Society, Zurich (2006)

17. Mahbub, K., Spanoudakis, G.: Monitoring WS-Agreements: An Event Calculus-
Based Approach. Springer (2007)

18. Mok, A.K., Liu, G.: Efficient run-time monitoring of timing constraints. In: IEEE
Real-Time and Embedded Technology and Applications Symposium, p. 252 (1997)

19. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: WWW, pp. 815–824. ACM (2008)

20. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson, Prentice Hall
(2008)

21. Patkos, T., Plexousakis, D.: DECKT: Epistemic Reasoning for Ambient Intelli-
gence. ERCIM News (84), 30–31 (2011)

22. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven
Adaptation of Multi-Layer Applications using Templates. In: SASO (October 2010)

23. Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

24. Spanoudakis, G., Mahbub, K.: Non-Intrusive Monitoring of Service-Based Systems.
International Journal of Cooperative Information Systems 15(3), 325–358 (2006)

25. Zeginis, C.: Monitoring the QoS of Web Services using SLAs - Computing metrics
for composed services. Master’s thesis, University of Crete, Greece (2009),
http://www.csd.uoc.gr/~zegchris/master_thesis.pdf

26. Zengin, A., Marconi, A., Pistore, M.: CLAM: Cross-layer Adaptation Manager for
Service-Based Applications. In: QASBA 2011, pp. 21–27. ACM (2011)

http://dblp.uni-trier.de/db/journals/tc/tc36.html#KopetzO87
http://www.csd.uoc.gr/~zegchris/master_thesis.pdf

	ECMAF: An Event-Based Cross-Layer Service Monitoring and Adaptation Framework
	Introduction
	Related Work
	Taxonomy of Adaptation-Related Monitored Events
	Dependency Meta-model
	Monitoring and Adaptation Framework
	Traffic Management Case Study
	Conclusions and Future Work
	References

