
Synchronized Flow-Based Evacuation Route Planning�

Manki Min

Dept. of EECS, South Dakota State University, Brookings, SD 57007, USA
manki.min@sdstate.edu

Abstract. When a disaster occurs, we need a routing plan to evacuate all the peo-
ple in the affected area as soon as possible. For this purpose, we can model the
transportation network as a graph of nodes and edges with occupancy on nodes
and capacity and travel time on edges, where nodes represent places such as cities
and edges represent roads. Given a transportation network graph, we can compute
routes to evacuate all the people in the dangerous area by selecting paths from the
source nodes (the nodes of which residents need to be evacuated) to the destina-
tion nodes (the nodes where the evacuees can be transported to). With capacity
and travel time constraints on the roads (or edges), calculation of the evacuation
time on the graph requires the use of time-expanded graphs. The use of time-
expanded graphs, which are merely duplications of the given graph flagged with
discrete time stamps, explodes the time and space complexities of the calculation
of evacuation times. This drawback results in low scalability, especially when
the evacuation time or the number of evacuees is relatively big compared to the
size of the graph, such as the number of nodes, edges, and paths. In this paper,
we present a scalable algorithm, SYNChronized FLOw Evacuation(SyncFloE),
to plan the evacuation routes based on synchronized flows. The novel concept of
synchronized flows replaces the use of time-expanded graphs and provides higher
scalability in terms of the evacuation time or the number of evacuees. SyncFloE
has computation time that only depends on the number of source nodes and the
size of the graph itself, such as the number of nodes, edges, and paths. The com-
putational results that support our claim are presented and discussed.

1 Introduction

With recently increasing occurrence of disasters such as hurricanes, tsunamis, earth-
quakes, and nuclear meltdowns all over the globe, the more importance is put on the
efficient and effective operation of evacuation process. When such a disaster happens,
the people who stay in the area that can be affected by the disaster (this area is will be
different depending on the types of the disasters) need to move to safer places (often
times shelters). Since there can be a lot of people that need to be evacuated, without
the help of well-established evacuation routes it will be a very time-consuming and in-
effective evacuation. Depending on the types of the disasters, the time that we have to
compute such evacuation routes and at the same time the time that the last evacuees
are evacuated, called evacuation time, can vary. Nonetheless, regardless of the type of

� Research is partly supported by NSF Award CCF-0729182.

X. Wang et al. (Eds.): WASA 2012, LNCS 7405, pp. 411–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



412 M. Min

disasters, the algorithm must be scalable so that reasonable amount of time could be
used to compute the evacuation routes and the evacuation time could be minimized.

The computation of the evacuation routes and evacuation time is based on the ab-
straction of the transportation network as a graph of nodes and edges with occupancy
on nodes and capacity and travel time on edges, where nodes represent places such
as cities and edges represent roads. Given a transportation network graph, we can
compute routes to evacuate all the people in the dangerous area by selecting paths
from the source nodes to the destination nodes. In this paper, we present our scal-
able algorithm, SYNChronized FLOw Evacuation (SyncFloE), which can compute the
evacuation time without the help of time- expanded graphs. There are algorithms to
compute the evacuation time in literature, but they are not scalable due to the fact that
either they are based on time-expanded graphs or their computations repeat over time.
SyncFloE uses the novel concept of Synchronized Flow to replace the use of the time-
expanded graphs and/or the repetitions over time. A synchronized flow is the flow of
evacuees from the source node(s) to destination node(s) that can have the same evac-
uation time by redistributing the evacuees over the paths along the flow from either
the same source node or different source nodes. To ensure the computation of accurate
evacuation times, we need to introduce Virtual Evacuees into the synchronized flows.
Virtual evacuees are the evacuees that do not actually exist and they are added to the
synchronized flow just to make the synchronized flow have the same evacuation time
for all the paths.

Our contribution in this work is three-fold: firstly, our algorithm provides a new ef-
ficient way to compute the evacuation time and plan the evacuation routes. SyncFloE
can compute the evacuation time extremely quickly so it can be directly used in real
evacuation situation. This real-time calculation with the latest information about the
roads and the cities (or places) will ensure always the most accurate evacuation routes.
Secondly, our algorithm can be used in the computation of contraflow-based evacuation
routes. In one of our previous work, we presented algorithms for the computation of
contraflow-based evacuation routes and one of them is using the evacuation routes in
its computation of contraflows. This algorithm inherits the scalability from evacuation
routing algorithms and the existing evacuation routing algorithms cannot make it scal-
able. In addition, we are planning to extend SyncFloE to design another efficient and
effective contraflow-based evacuation routing algorithm. Thirdly, the novel concept of
synchronized flows will make a very powerful tool in the network flow study. In case
of single packet routing, only the information of the edge such as the travel time or the
capacity is required in the routing. However when we consider multiple packet routing,
there’s more than just the edge information in the routing computation and the syn-
chronized flows (or time-expanded graphs as an old way) will play the key role in the
routing.

The rest of this paper is as follows: Section 2 will define the problem of evacuation
routing and discuss briefly the existing algorithms. In section 3, the novel concept of
synchronized flows are explained and discussed. The algorithm SyncFloE is introduced
in section 4 and explained. The computation results are presented and discussed in
section 5 and section 6 concludes this paper.



Synchronized Flow-Based Evacuation Route Planning 413

2 Related Work

Given a transportation network graph of nodes and edges with occupancy on nodes and
capacity and travel time on edges, where nodes represent places such as cities and edges
represent roads, the evacuation routing problem is to find the routes, in other words a
set of paths, for evacuation so that the time the last evacuees arrive the destination,
called the evacuation time, become minimum. The evacuation routing problem and the
traditional network routing problem are two different problems in the following reason:
the traditional network routing problem considers the routing for single packet and so
each edge will be used at most once for the packet and hence the attributes of the edges
are enough for the routing computation. However the evacuation routing problem has
multiple packets and an edge can be used more than once over time and hence the
attributes of the edges are not enough for the computation. One way or another, we
need to take care of this time-related attributes and the easiest way is to use the time-
expanded graphs which are the duplications of the same graph tagged with discrete
time-stamps with proper inter-links between them. Or one can record the usage logs for
each edge and the logs become bigger as the evacuation time grows. This difference
makes the use of traditional routing algorithms for evacuation routing impractical.

There isn’t much work toward the evacuation routing in literature. Capacity Con-
strained Routing Planner (CCRP) [7–9] and its improvement CCRP++ [11] are reported
in literature. CCRP is simply repeated operations of Dijkstra’ shortest path algorithm in
time-expanded graphs. The algorithm finds the shortest path that is available at current
time repeatedly and if it cannot find a path, it increases the current time and continues
finding the shortest paths until there is no more evacuees. Since CCRP is based on the
time-expanded graphs, 1) it is not scalable, and 2) even worse its running time will also
depend on how many duplications the time-expanded graphs have. It is not easy to have
a tight estimation of the evacuation time (this number is the number of the duplica-
tions) before actually running the algorithm, and this is a kind of dilemma. CCRP++
was proposed as an improvement to CCRP and CCRP++ has much shorter running time
than CCRP by reducing the number of shortest path findings. The algorithm uses the
maximum capacity of each shortest path found and keeps the usage logs for each edge
so that later when the same path is found, it can start from the earliest available time.
Anyway CCRP++ also uses the time attributes and its computational complexity is not
free from the inherent dependency to the evacuation time. As discussed in section 5,
as the evacuation time increases, more precisely as the number of paths that are used
grows, the running time becomes extremely higher. Even for a graph with 100 nodes
and roughly 300 edges, it takes impractically long time.

We proposed our algorithm Quickiest Path Evacuation Routing (QPER) in [10]. The
quickest path is the path that gives the minimum evacuation time when combined with
the existing paths by redistributing evacuees. QPER is using quickest paths instead of
shortest paths and hence the number of paths that are used in the evacuation is much
smaller in QPER than CCRP++ and the running time of QPER is more scalable than
CCRP++. QPER is finding the evacuation routes for a single source node and this result
became the motivation of this work, synchronized flows.

Slightly different focuses have been put on works in [1, 3, 4]. In [1], the authors
discussed the problem of lane-based routing to minimize the traffic delay. The main



414 M. Min

effort of the proposed work is focused on the minimization of the crossing conflicts at
the intersections of the roads. In this work, they considered maximum flow (which will
give the maximum constant rate of evacuation flow) to solve the problem and hence
it may not lead to an evacuation routing with minimum evacuation time. The quick-
est transshipment problem in [3] is the problem of minimizing the number of paths
to complete the transshipment with demands that exceeds the capacity of the network
capacity. By only minimizing the number of paths, we may not be able to get the mini-
mum evacuation time, so this problem cannot be applied to our problem. [4] presents an
extensive survey of the mathematical modelling of evacuation problems with different
goals under different network configurations.

3 Synchronized Flows

In this section, we explain the synchronized flow that is the basis of the proposed
algorithm.

t

1 C ,2T 1 T 2

p
1

p
2

s

C ,

j

1s1

t 1

s2

t 2

t 11C ,1

C ,2 t 22
t 12C ,1

C ,2 t 21

C ,1 T 1 T 2C ,2

p
1

p
2

s

(a) (b)

Fig. 1. Multiple paths in a synchronized flow

Let’s begin with the simplest case when a source node has more than one paths as
in figure 1 (a). In this case, we can freely redistribute the evacuees from one path to
another to make the evacuation times of the two paths equal as in figure 2 (a). The
combined evacuation time (CET) [10] is computed as follows:

CET =
n+ C1 · T1 + C2 · T2

C1 + C2
− 1 (1)

where n is the number of evacuees in the source node, C and T represent capacity
and travel time of each path and the evacuation time of the source node is �CET �.
This free redistribution of evacuees is possible at any time as long as the source node
still has remaining evacuees and this separates the two cases in figure 1. In (b), the
paths from different source nodes cannot have freely redistributed evacuees. In addition,
the redistribution of evacuees and the resulting equalized evacuation time distinguish
the evacuation routing from the traditional network routing. Figure 2 shows the arrival



Synchronized Flow-Based Evacuation Route Planning 415

CET1 T 2

C2

C1

0 T

ΔΕΤ

2

C1

t 11 t 21 T 2 1ET2ETT 1

SET 1

SET 2

0

ΔΕΤ

C

CET

2

C1

t 11 t 21 T 2 T 1

SET 2

SET 1

1ET0

C

(a) (b) (c)

Fig. 2. Arrival Graph

graphs that represent the flows of evacuees that arrive the destination nodes and the joint
node of the two paths if there’s any.

Now let’s consider the multiple paths from different source nodes as in figure 1 (b).
In this case, unfortunately we cannot directly apply the CET calculation to equalize
the evacuation times, instead we have two evacuation times. In this figure, the black
colored node j is the joint node between two paths in different synchronized flows and
s1 has path p1 and s2 has path p2. p1 has capacity of C1 and travel time of T1 and the
travel time on p1 from s1 to j is t11 and the travel time from j to t1 is t12. We can
observe that the grey-shaded are in the arrival graph (figure 2 (b)) is wasted and if we
could move some of the rightmost evacuees from s1 in the upper box to this grey area,
we would reduce the evacuation time of s1. In fact, we need to look at the thick lines
which shows the ending time of each path to get the same evacuation time, we call such
ending time as synchronized ending time (SET). After the end time of the leftmost box
(representing arrival at the joint node) until SET2, we can put evacuees and still get the
two evacuation times equal. Note that when we move the evacuees from s1 to s2, then
SET1 will also change and so does SET2. As a result of this redistribution, we get figure
(c) and we get CET less than ET1 (Evacuation Time of s1) and we can say those two
paths to have synchronized flow. Still the grey-shaded area exists in (c) and this means
that we need to put virtual evacuees into synchronize flows on those two paths.

The concept of virtual evacuees is the key point in synchronizing flows on the paths
from the different source nodes. Next we discuss the six cases of synchronizing flows,
two for the paths from the same source and four for the paths from different sources.
Before we begin, let’s define some notations.

– For a node n, n.id means the id of n, n.Occ means the occupancy (or the number
of people staying) of n, n.pSF means the list of SF (Synchronized Flow) that pass
through n, and n.pSF (FId) means the SF in n.pSF with the flow id of FId.

– For a path p, p.Cp means the capacity of the path p, p.TT means the travel time of
the path p;
p.Src means the origin node of the path p and p.Dst means arrival node.

– For a synchronized flow SF , SF.CpSum means the sum of capacities of paths in
SF , SF.CpTTSum means the sum of products of capacity and travel time;
SF.Srcs is the list of source nodes that evacuates along SF , SF.FId is the flow
id of SF ;



416 M. Min

SF.EV is the number of evacuees on SF , SF.V E is the number of virtual evac-
uees, and SF.ET is the evacuation time of SF .
n.pSF (FId) maintains minΔT , minC, maxΔT , and maxC that are used to cal-
culate SETs.
For a node n in a path p, we maintain minΔT/maxΔT and minC/maxC to be
the minimum/maximum value of T − t among the paths in n.pSF with maximum
capacity and its corresponding capacity among all the paths on the synchronized
flow with flow id of FId that pass through n, where T is p.TT and t is the travel
time on p from p.Src to n;
n.pSF (FId) has SET of n.pSF (FId).ET −n.pSF (FId).maxΔT if FId is the
flow id of p and n.pSF (FId).ET − n.pSF (FId).minΔT otherwise.

– S means the set of source nodes and T means the set of destination nodes of the
evacuation.

– ΔN means the number of evacuees that need to be moved from one path to another,
V irtEvac means the number of virtual evacuees.

CET

N

CO

Δ

0

ΔΕΤSET

C

CET

O

Δ

CN

0

ΔΕΤSET

C

CET

O

CN

Δ SET

0

C

CET

O

CN

Δ SET

0

C

Case 3 Case 4 Case 5 Case 6

Fig. 3. Arrival graphs for cases 3 ∼ 6

Let’s say p is the path that is newly added to the graph.

Case 1: If p.Src does not have any synchronized flow yet and p.Dst ∈ T , we
can simply make the path to have a new synchronized flow SF such that SF.FId :=

p.Src.id, SF.CpSum := p.Cp, SF.CpTTSum := p.TT , SF.EV = p.Src.Occ, SF.ET =

(SF.EV + SF.CpTTSum)/SF.CpSum− 1, and SF.Srcs := {p.Src}. There is no ΔN
nor V irtEvac.

Case 2: If p.Src has the synchronized flow SF , we can add p into SF such that
SF.CpSum := SF.CpSum + p.Cp, SF.CpTTSum := SF.CpTTSum + p.Cp · p.TT ,
SF.ET = (SF.EV +SF.V E+SF.CpTTSum)/SF.CpSum−1, and SF.Srcs := SF.Srcs

∪{p.Src}. There is no ΔN nor V irtEvac.

Case 3 (subcase of case 1): if p has a joint node j which has a synchronized flow
SFold, then V irtEvac can be calculated as follows:
jSFN = j.PSF (SF.FId), jSFO = j.PSF (SFold.F Id),

CN = p.Cp, CO = min(jSFO .minC,CN ),

ΔET = SF.ET − jSFO .ET,



Synchronized Flow-Based Evacuation Route Planning 417

ΔSET = ΔET − (jSFN .maxT − jSFO .minT ),

ΔN1 =
CN · CO

CN + CO
·ΔET, ΔN2 = CO · (ΔET −ΔSET ),

CSO = SFold.CpSum.

V irtEvac =

{
CSO · ΔN1

CO
−ΔN1, if ΔN1 ≥ CN ·ΔSET,

CSO · (ΔSET − ΔN2
CN

+ ΔN2
CO

)−ΔN2, o.w.

Case 4 (subcase of case 2): if p.Dst ∈ T and p has a joint node j which has a
synchronized flow SFold, then V irtEvac can be calculated as follows:
CN = SF.CpSum.

V irtEvac =

{
CSO · ΔN1

CO
−ΔN1, if ΔN1 ≥ CN ·ΔSET,

CSO · (ΔSET − ΔN2
CN

+ ΔN2
CO

)−ΔN2, o.w.

The undefined variables are defined in the same way as case 3.

Case 5: If p.Dst = j /∈ T and p.Src does not have a synchronized flow yet and j
has another synchronized flow SFold, then V irtEvac can be calculated as follows:
ΔSET = p.TT − (jSFO .ET − jSFO .minT ).

V irtEvac =

{
CSO · p.Src.Occ− p.Src.Occ, if ΔSET ≤ 0,
(CSO +ΔSET ) · p.Src.Occ− p.Src.Occ, o.w.

The undefined variables are defined in the same way as case 4.

Case 6 (subcase of case 2): If p.Dst = j /∈ T and p.Src has a synchronized flow
SF and j has another synchronized flow SFold, then V irtEvac can be calculated as
follows:
ΔSET = p.TT − (jSFO .ET − jSFO .minT ),

ΔN2 = CN ·CO
CN+CO

· (ΔETΔSET ).

V irtEvac =

{
CSO · ΔN1

CO
−ΔN1, if ΔSET ≤ 0,

CSO · (ΔSET + ΔN2
CO

)−ΔN2, o.w.

The undefined variables are defined in the same way as case 4 or 3.

The proof of the correctness of the above formula is omitted due to the space limitation.
However it is derived from the observation that the redistribution of evacuees is possible
only when the evacuees are available. The condition in cases 3 ∼ 6 basically means that
the SET of the old synchronized flow at the joint node is greater than the SET of the new
synchronized flow so that the redistribution can happen right after the old synchronized
flow ends passing by the joint node. Otherwise we need to put a pause time before
redistributing the evacuees as in figure 3 case 3 or 4.

4 Synchronized Flow Evacuation (SyncFloE)

Figure 6 shows our novel algorithm SyncFloE. As we can see from the description,
computation time of SyncFloE will depend on the number of shortest paths with up-
dated available capacities of edges and it does not depend on any other factor such as
the number of evacuees, capacities of the edges (and hence the capacities of the paths),



418 M. Min

Initialization
1: S:= the set of source nodes, PS:= the set of poorest source nodes, T := the set of destina-

tions.
2: preEvactime := curEvacTime := ∞.

Iteration1 while a shortest path p from a node s ∈ PS to a node t ∈ T is found using available
capacities of edges:
1: if (p.TT > preEvacTime)
2: PS := PS \ {s}.
3: else
4: (preEvactime, curEvacTime) = manipulate(p, S, PS, T , preEvacTime, curEvacTime).

Iteration2 while a shortest path p from a node s ∈ PS to a node t /∈ T is found:
1: (preEvactime, curEvacTime) = manipulate(p, S, PS, T , preEvacTime, CurEvacTime).

Fig. 4. SyncFloE

and so on. This independence gives our algorithm dramatically improved scalability and
we believe that this is a lower bound for the computational complexity of evacuation
routing.

Adding a path p into a synchronized flow SF involves updating SF.CpTTSum,
SF.CpSum, SF.EV , SF.V E, and SF.ET . In addition, tracking all the nodes in p,
the synchronized flows passing the node n will be updated; if the flow is not already
included in n.pSF , then include SF into n.pSF , add p.Src into SF.Srcs, update
minΔT , minC, maxΔT , maxC properly as discussed in section 3. The removal of
p from SF is almost reverse activity of the addition; rolls back the minΔT , minC,
maxΔT , maxC, removes SF from n.pSF if it was included by the path addition, re-
moves p.Src from SF.Srcs if it was included by the path addition, and finally restores
SF.CpSum, SF.CpTTSum, SF.EV , SF.V E, SF.ET .

Merging two synchronized flows (SFN into SFO) involves adding SFN .CpSum,
SFN .EV , SFN .V E, and SFN .CpTTSum to SFO.CpSum, SFO.EV , SFO.V E,
and SFO.CpTTSum and adding SFN .Srcs into SFO.Srcs. Split of a synchronized
flow into two flows is almost reverse activity of merging; rolls back the two synchro-
nized flows to the ones before the merging, and removes p.Src from SFN .Srcs if it
was included by the merging.

After adding/removing a path into a synchronized flow or merging/splitting two syn-
chronized flows, we calculate the evacuation time of the whole graph by calculating
the evacuation time of each synchronized flow and updating evacuation time of the
source nodes that belong to the synchronized flow. Then curEvacTime becomes the
maximum evacuation time calculated and preEvacTime is the evacuation time of the
previous calculation. The curEvacTime and preEvacTime updated after the calculation
of evacuation time are used to determine whether or not to roll back the changes that
we introduced into the graph. When rolling back the changes, the source node of the
path will be removed from the poorest source node to give a chance to the other poorest
source nodes. If the poorest source node list becomes empty or there are no more paths,
the algorithm terminates.



Synchronized Flow-Based Evacuation Route Planning 419

1: if p.Dst ∈ T ,
2: if p.Src has a synchronized flow SFnew, // case 2
3: add p into SFnew.
4: if (curEvacTime > preEvacTime), remove p from SFnew , and PS = PS \ {p.Src}.
5: else if p has a joint node with another synchronized flow SFold, // case 4
6: calculate VirtualEvac using Case 4, add VirtEvac to SFold, and merge SFnew into

SFold.
7: if (curEvacTime > preEvacTime), remove VirtEvac from SFold, and split SFnew from

SFold, and PS = PS \ {p.Src}.
8: else, // case 1
9: add p into a new synchronized flow SFp.Src.id.

10: if p has a joint node with another synchronized flow SFold, // case 3
11: calculate VirtEvac using Case 3, add VirtEvac to SFold, and merge SFs.id into SFold.
12: if (curEvacTime > preEvacTime), remove VirtEvac from SFold, and split SFp.Src.id

from SFold, and PS = PS \ {p.Src}.
13: else
14: if s has a synchronized flow SFnew , // case 2
15: add p into SFnew.
16: if (curEvacTime > preEvacTime), remove p from SFnew , and PS = PS \ {p.Src}.
17: else if p has a joint node with another synchronized flow SFold, // case 6
18: calculate VirtEvac using Case 6, add VirtEvac to SFold, and merge SFnew into SFold.
19: if (curEvacTime > preEvacTime), remove VirtEvac from SFold, and split SFnew from

SFold, and PS = PS \ {p.Src}.
20: else, // case 5
21: calculate VirtEvac using Case 5, add VirtEvac to SFold, and add p into SFold

22: if (curEvacTime > preEvacTime), remove VirtEvac from SFold, and remove p from
SFold, and PS = PS \ {p.Src}.

Fig. 5. Manipulate(p, S, PS, T , preEvacTime, curEvacTime)

SyncFloE repeatedly calls manipulate function (figure 5) which will have activities
such as addition (or removal) of a path into a synchronized flow and merge (or split)
of two synchronized flows. The computational complexity of manipulate function is
bounded by the computational complexity of those activities that are bounded by the
number of node because in all activities, we simply traverse the nodes at most once.

In this paper we haven’t included the construction of evacuation routes but it can be
obtained by storing additional information such as paths, when the path is used, etc.
With the additional information we can easily reconstruct the paths and the flows that
depict the evacuation routes.

5 Computational Results

We implemented two algorithms, CCRP++ and SyncFloE. For comparisons, we ran-
domly generated n nodes in a n × n area with random occupancy for each node, with
the value of n in {100, 200, 300, 400, 500, 1000, 5000, 10000}. The number of the
source nodes, ms, and the destination nodes, mt, are randomly determined between 1
and 10 and between 1 and 5, respectively. Then the point of the disaster is randomly



420 M. Min

generated and the ms nodes that are closest to the disaster point are marked as source
nodes and the mt nodes farthest from the disaster point are marked as destination nodes.
For each source node, randomly pick edges to generate at least one path. Up to 1.5 ∼
3 times n edges are generated randomly. Each edge is assigned random capacity in be-
tween 1 and 5 and travel time proportional to the distance between two endpoint nodes.
And we ran each transportation network setting 10 times to get the average results. For
the computation we used gcc and g++ as compilers on a Linux machine with dual 2.33
GHz dual core CPU’s and 4GB of RAM.

Table 1. CCRP++ VS SyncFloE

Capacity CCRP++ SyncFloE
Range Evac. Time Comp. Time Evac. Time Comp. Time
1 ∼ 5 8787 12498.6 9105 0.02

10 ∼ 50 5719 21.21 6527 0.02
100 ∼ 500 5656 0.4 6216 0.02

Evacuation Time of SyncFloE Computation Time of SyncFloE

Fig. 6. Computational results of SyncFloE

CCRP++ was not run for all network settings, in fact for most settings CCRP++
took too long time, so we are just presenting one interesting results that explains why
CCRP++ is not scalable. We ran CCRP++ for a rather small sized network with 500
nodes (including 7 source nodes and 4 destination nodes) and 829 edges. To evacuate
19856 evacuees from the 7 source nodes to 4 destination nodes took 12498.6 seconds
while SyncFloE took 0.02 seconds. However when we multiplied each edge’s capacity
by ten so that CCRP++ finds less paths, it took 21.21 seconds while SyncFloE took
0.02 seconds. When we multiplied the edge capacities by ten again, CCRP++ took 0.4
seconds and SyncFloE still runs in 0.02 seconds. For this network setting, the compu-
tation time has increased by at least 50 times with the decrease of the edge capacity; 50
times from 100 to 10, and 500 times from 10 to 1. The evacuation time of CCRP++ was
slightly better than that of SyncFloE and we think it might be the result of inaccurate
update of synchronized flows that pass through each node and careful investigation in
this direction is one of our future works. The evacuation time and computation time
comparison of two algorithms is given in table 1.



Synchronized Flow-Based Evacuation Route Planning 421

Table 2. Evacuation Time and Computation Time by SyncFloE

run index n Evac. Comp. n Evac. Comp. n Evac. Comp. n Evac. Comp.
1 100 887 0.01+ 200 2785 0.01+ 300 3037 0.01 400 8648 0.02
2 100 1354 0.01+ 200 4498 0.01+ 300 1420 0.01+ 400 10911 0.01+

3 100 3069 0.01+ 200 4185 0.01+ 300 3659 0.01 400 15792 0.01+

4 100 1674 0.01+ 200 7310 0.01+ 300 5695 0.01 400 3858 0.01
5 100 1901 0.01+ 200 2681 0.01+ 300 8951 0.01+ 400 2482 0.02
6 100 7988 0.01+ 200 5930 0.01+ 300 11213 0.01+ 400 5159 0.01
7 100 1775 0.01+ 200 2618 0.01+ 300 15340 0.01+ 400 6530 0.01
8 100 11861 0.01+ 200 4364 0.01+ 300 4936 0.01+ 400 8964 0.01
9 100 987 0.01+ 200 12413 0.01+ 300 4044 0.01+ 400 13808 0.03

10 100 1697 0.01+ 200 5114 0.01+ 300 6223 0.01 400 7206 0.02

1 500 9105 0.02 1000 7861 0.11 5000 118409 1.15 10000 136811 7.63
2 500 7431 0.02 1000 11520 0.12 5000 107008 1.51 10000 157855 7.79
3 500 7865 0.04 1000 11665 0.1 5000 86369 1.15 10000 145413 5.18
4 500 8541 0.01 1000 12399 0.11 5000 64732 1.72 10000 148794 8.61
5 500 11536 0.01 1000 13540 0.01 5000 50052 1.72 10000 137801 4.28
6 500 10387 0.02 1000 13299 0.1 5000 90902 2.22 10000 107904 8.15
7 500 2688 0.02 1000 10651 0.14 5000 67160 2.17 10000 137496 7.66
8 500 3680 0.01 1000 10025 0.12 5000 117433 2.62 10000 120094 7.69
9 500 7950 0.02 1000 20953 0.07 5000 86681 1.63 10000 137625 5.57

10 500 8028 0.03 1000 14223 0.02 5000 74652 0.93 10000 136771 7.86
+ the running time was shorter than 0.01 seconds.

The results of SyncFloE is given in table 2 and the average values over 10 runs
were plotted on the graphs in figure 6). The computation time of SyncFloE for smaller
sized networks with up to 1000 nodes was extremely short as less than one second. The
increase rate of computation time up to 1000 nodes is negligible but it starts to grow
from more than 1000 nodes by at most 20 times; less than 20 times from 1000 to 5000
and four times from 5000 to 10000. This increase of computation time at large-scale
networks is inevitable since with more edges, we can expect to have more paths and
as a result the algorithm will run longer. This result confirms that the computational
complexity of our algorithm depends on the number of paths.

The evacuation time also increases in a similar pattern as the computation time and
this is because as the number of nodes grows, the graph will have more edges and
longer paths. In fact, when the number of nodes was increased by ten times from 1000,
the evacuation time became roughly ten times bigger. However when the number of
nodes is small as 500 or less, the number of evacuees will play more important role in
determining the evacuation time and hence we don’t observe the similar increase pattern
for the evacuation time.

6 Conclusions

In this paper, we proposed a truly scalable algorithm for evacuation routing that is not
affected by factors outside of the graph itself such as the number of evacuees and the
capacity of the paths used. The existing algorithms in literature, CCRP and CCRP++
were not scalable in most cases due to their dependency on the timed information such
as in time-expanded graphs or in repeated computations of the same path over time. The
virtual evacuees were added to the synchronized flows to equalize the evacuation times
of different paths. This process gets rid of the dependency on the timed information by



422 M. Min

allowing paths from different source nodes to be grouped as a synchronized flow. We
strongly believe that our novel concept of synchronized flow will play a very important
role in the evacuation routing in the future.

Our future works include the careful revision on the implementation of SyncFloE
and the more thorough study on the synchronized flows and the design of contraflow
evacuation routing based on the synchronized flows. We expect to improve the perfor-
mance in terms of the evacuation time by carefully revising the implementation espe-
cially regarding correct logging of synchronized flows on the nodes, correct roll backs
of changes, and more careful calculation of the virtual evacuees.

References

1. Cova, T.J., Johnson, J.P.: A network flow model for lane-based evacuation routing. Trans-
portation Research Part A 37, 579–604 (2003)

2. Yang, F., Yan, X., Xu, K.: Evacuation Flow Assignment based on Improved MCMF Algo-
rithm. In: Proc. First International Conference on Intelligent Networks and Intelligent Sys-
tems, pp. 637–640 (2008)

3. Fleischer, L.K.: Faster Algorithms For The Quickest Transshipment Problem. SIAM J.
Optim. 12/1, 18–35 (2001)

4. Hamacher, H.W., Tjandra, S.A.: Mathematical Modelling of Evacuation Problems: A State
of Art. Technical Report Nr. 24, Berichte des Fraunhofer ITWM (2001)

5. Kim, S., Shekhar, S.: Contraflow Network Reconfiguration for Evacuation Planning: A Sum-
mary of Results. In: Proc. Proceedings of the 13th ACM Symposium on Advances in Geo-
graphic Information Systems, pp. 250–259 (2005)

6. Kim, S., Shenkhar, S., Min, M.: Contraflow Transportation Network Reconfiguration for
Evacuation Route Planning. IEEE Transactions on Knowledge and Data Engineering 20/8,
1115–1129 (2008)

7. Lu, Q., Huang, Y., Shekhar, S.: Evacuation Planning: A Capacity Constrained Routing Ap-
proach. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J., Madhusudan,
T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 111–125. Springer, Heidelberg (2003)

8. Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for Evacuation
Planning: A Summary of Results. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 291–307. Springer, Heidelberg (2005)

9. Lu, Q., George, B., Shekhar, S.: Evacuation Route Planning: Scalable Heuristics. In: Proc.
15th International Symposium on Advances in Geographic Information Systems (2007)

10. Min, M., Neupane, B.C.: An Evacuation Planner Algorithm in Flat Time Graphs. In: Proc.
of ACM International Conference on Ubiquitous Information Management and Communi-
cation, ICUIMC (2011)

11. Yin, D.: A Scalable Heuristic for Evacuation Planning in Large Road Network. In: Proc. the
Second International Workshop on Computational Transportation Science, pp. 19–24 (2009)


	Synchronized Flow-Based Evacuation Route Planning

	Introduction
	Related Work
	Synchronized Flows
	Synchronized Flow Evacuation (SyncFloE)
	Computational Results
	Conclusions
	References





