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Abstract. This paper studies the population of chess players and the distribution
of their performances measured by Elo ratings and by computer analysis of moves.
Evidence that ratings have remained stable since the inception of the Elo system
in the 1970’s is given in three forms: (1) by showing that the population of strong
players fits a straightforward logistic-curve model without inflation, (2) by plotting
players’ average error against the FIDE category of tournaments over time, and (3)
by skill parameters from a model that employs computer analysis keeping a nearly
constant relation to Elo rating across that time. The distribution of the model’s
Intrinsic Performance Ratings can therefore be used to compare populations that
have limited interaction, such as between players in a national chess federation and
FIDE, and ascertain relative drift in their respective rating systems.

1 Introduction

Chess players form a dynamic population of varying skills, fortunes, and aging ten-
dencies, and participate in zero-sum contests. A numerical rating system based only on
the outcomes of the contests determines everyone’s place in the pecking order. There
is much vested interest in the accuracy and stability of the system, with significance
extending to other games besides chess and potentially wider areas. Several fundamen-
tal questions about the system lack easy answers: How accurate are the ratings? How
can we judge this? Have ratings inflated over time? How can different national rating
systems be compared with the FIDE system? How much variation in performance is
intrinsic to a given skill level?

This paper seeks statistical evidence beyond previous direct attempts to measure
the system’s features. We examine player-rating distributions across time since the
inception of the Elo rating system by the World Chess Federation (FIDE) in 1971. We
continue work by Haworth, DiFatta, and Regan [1,2,3,4] on measuring performance ‘in-
trinsically’ by the quality of moves chosen rather than the results of games. The models
in this work have adjustable parameters that correspond to skill levels calibrated to the
Elo scale. We have also measured aggregate error rates judged by computer analysis of
entire tournaments, and plotted them against the Elo rating category of the tournament.
Major findings of this paper extend the basic result of [4] that ratings have remained
stable since the 1970’s, contrary to the popular wisdom of extensive rating inflation.
Section 5 extends that work to the Elo scale, while the other sections present indepen-
dent supporting material. Related previous work [5,6,7] is discussed below.
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2 Ratings and Distributions

The Elo rating system, which originated for chess but is now used by many other games
and sports, provides rules for updating ratings based on performance in games against
other Elo-rated players, and for bringing new (initially ‘unrated’) players into the sys-
tem. In chess, they have a numerical scale where 2800 is achieved by a handful of top
players today, 2700 is needed for most highest-level tournament invitations, 2600 is a
‘strong’ grandmaster (GM), while 2500 is typical of most GM’s, 2400 of International
Masters, 2300 of FIDE Masters, and 2200 of masters in national federations. We em-
phasize that the ratings serve two primary purposes:

1. to indicate a position in the world ranking, and
2. to indicate a level of skill.

These two purposes lead to different interpretations of what it means for “inflation” to
occur. According to view 1, 2700 historically meant what the neighborhood of 2800
means now: being among the very best, a true world championship challenger. As late
as 1981, Anatoly Karpov topped the ratings at 2695, so no one had 2700, while today
there are forty-five players 2700 and higher, some of whom have never been invited to
an elite event. Under this view, inflation has occurred ipso-facto.

While view 2 is fundamental and has always had adherents, for a long time it had
no reliable benchmarks. The rating system itself does not supply an intrinsic meaning
for the numbers and does not care about their value: arbitrarily add 1000 to every figure
in 1971 and subsequent initialization of new players, and relative order today would
be identical. However, recent work [4] provides a benchmark to calibrate the Elo scale
to games analyzed in the years 2006–2009, and finds that ratings fifteen and thirty
years earlier largely correspond to the same benchmark positions. In particular, today’s
echelon of over forty 2700+ players all give the same or better statistics in this paper
than Anatoli Karpov and Viktor Korchnoi in their prime. We consider that two further
objections to view 2 might take the following forms.

(a) If Karpov and Korchnoi had access to today’s computerized databases and more
extensive opening publications, they would have played (say) 50 to 100 points
higher—as Kasparov did as the 1980’s progressed.

(b) Karpov and Korchnoi were supreme strategists whose strategic insight and depth
of play does not show up in ply-limited computer analysis.

We answer (a) by saying we are concerned only with the quality of moves made on the
board, irrespective of whether and how they are prepared. Regarding also (b) we find
that today’s elite make fewer clear mistakes than their forebears. This factor impacts
skill apart from strategic depth. The model from [4] used in this paper finds a natural
weighting for the relative importance of avoiding mistakes.

Our position in subscribing to view 2 is summed up as today’s players deserve their
ratings. The numerical rating should have a fixed meaning apart from giving a player’s
rank in the world pecking order. In subsequent sections we present the following ev-
idence that there has been no inflation, and that the models used for our conclusions
produce reasonable distributions of chess performances.
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– The proportion of Master-level ratings accords exactly with what is predicted from
the growth in population alone, without adjusting for inflation.

– A version, called AE for “average error,” of the “average difference” (AD) statis-
tic used by Guid and Bratko [5] (see also [6,7]) to compare world championship
matches. An important scaling discovery leads to Scaled Average Error (SAE).
Our work shows that tournaments of a given category have seen a fairly constant
(S)AE over time.

– “Intrinsic Ratings” as judged from computer analysis have likewise remained rela-
tively constant as a function of Elo rating over time—for this we refine the method
by Regan and Haworth [4].

– Intrinsic Ratings for the world’s top players have increased steadily since the mid-
1800s, mirroring the way records have improved in many other sports and human
endeavors.

– Intrinsic Performance Ratings (IPR’s) for players in events fall into similar distribu-
tions as assumed for Tournament Performance Ratings (TPR’s) in the rating model,
with somewhat higher variance. They can also judge inflation or deflation between
two rating systems, such as those between FIDE and a national federation much of
whose population has little experience in FIDE-rated events.

The last item bolsters the Regan-Haworth model [4] as a reliable indicator of perfor-
mance, and therefore enhances the significance of the third and fourth items.

The persistence of rating controversies after many years of the standard analysis of
rating curves and populations calls to mind the proverbial elephant that six blind men
are trying to picture. Our non-standard analyses may take the hind legs, but since they
all agree, we feelm we understand the elephant. Besides providing new insight into
distributional analysis of chess performances, the general nature of our tools allows
application in other games and fields besides chess.

3 Population Statistics

Highlighted by the seminal work of de Solla Price on the metrics of science [8], re-
searchers have gained an understanding of the growth of human expertise in various
subjects. In an environment with no limits on resources for growth, de Solla Price
showed that the rate of growth is proportional to the population,

dN

dt
∼ aN, (1)

which yields an exponential growth curve. For example, this holds for a population
of academic scientists, each expected to graduate some number a > 1 of students as
new academic scientists. However, this growth cannot last forever, as it would lead
to a day when the projected number of scientists would be greater than the total world
population. Indeed, Goodstein [9] showed that the growth of PhD’s in physics produced
each year in the United States stopped being exponential around 1970, and now remains
at a constant level of about 1000.

The theory of the growth of a population under limiting factors has been successful
in other subjects, especially in biology. Since the work by Verhulst [10] it has been
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widely verified that in an environment with limited resources the growth of animals
(for instance tigers on an island) can be well described by a logistic function

N(t) =
Nmax

(1 + a(exp)−bt)
arising from

dN

dt
∼ aN − bN2, (2)

where bN2 represents a part responsible for a decrease of a growth due to an overpop-
ulation, which is quadratic insofar as every animal interacts, for instance fights for re-
sources, with every other animal. We demonstrate that this classic model also describes
the growth of the total number of chess players in time with a high degree of fit.

We use a minimum rating of 2203—which FIDE for the first three Elo decades
rounded up to 2205—because the rating floor and the start rating of new players have
been significantly reduced from 2200 which was used for many years.

Fig. 1. Growth of number of players rated at least 2203 since 1971

Figure 1 shows the number of 2203+ rated players, and a curve obtained for some
particular values of a, b, and Nmax. Since there are many data points and only three pa-
rameters, the fit is striking. This implies that the growth of the number of chess players
can be explained without a need to postulate inflation.

4 Average Error and Results by Tournament Categories

The first author has run automated analysis of almost every major event in chess history,
using the program RYBKA 3 [11] to fixed reported depth 13 ply1 in Single-PV mode.

1 That RYBKA versions often report the depth as -2 or -1 in UCI feedback has fueled speculation
that the true depth here is 16, while the first author finds it on a par in playing strength with
some other prominent programs fixed to depths in the 17–20 range.
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This mode is similar to how Guid and Bratko [5] operated the program CRAFTY to
depth (only) 12, and how others have run other programs since. Game turns 1–8, turns
where RYBKA reported a more than 3.00 advantage already at the previous move, and
turns involved in repetitions are weeded out.

The analysis computations have included all round-robin events of Category 11 or
higher, using all events given categories in the ChessBase Big 2010 database plus The
Week In Chess supplements through TWIC 893 12/19/11. The categories are the aver-
age rating of players in the event taken in blocks of 25 points; for instance, category 11
means the average rating is between 2500 and 2525, while category 15 means 2600–
2625.

For every move that is not equivalent to RYBKA’s top move, the “error” is taken as
the value of the present position minus the value after the move played. The errors over
a game or player-performance or an entire tournament are summed and divided by the
number of moves (those not weeded out) to make the “Average Error” (AE) statistic.
Besides including moves 9–12 and using Rybka depth 13 with a [−3.00,+3.00] eval-
uation range rather than CRAFTY depth 12 with a [−2.00,+2.00] range, our statistic
differs from [5] in not attempting to judge the “complexity” of a position, and in several
incidental ways.

For large numbers of games, AD or AE seems to give a reasonable measure of play-
ing quality, beyond relative ranking as shown in [6]. When aggregated for all tourna-
ments in a span of years, the figures were in fact used to make scale corrections for
the in-depth mode presented in the next section. When AE is plotted against the turn
number, sharply greater error for turns approaching the standard Move 40 time con-
trol is evident; then comes a sharp drop back to previous levels after Move 41. When
AE is plotted against the advantage or disadvantage for the player to move, in intervals
of 0.10 or 0.05 pawns, a scaling pattern emerges. The AE for advantage 0.51–0.60 is
almost double that for near-equality 0.01–0.10, while for -0.51 to -0.60 it is regularly
more than double.

It would seem strange to conclude that strong masters play only half as well when
ahead or behind by half a Pawn as even. Rather this seems to be evidence that human
players perceive differences in value in proportion to the overall advantage for one side.
This yields a log-log kind of scaling, with an additive constant that tests place close to 1,
so we used 1. This is reflected in the definition of the scaled difference δi in Equation 3
below, since 1/(1 + |z|) in the body of a definite integral produces ln(1 + |z|). This
produces Scaled Average Error (SAE).

Figure 2 shows AE (called R3 for “raw” and the 3.00 evaluation cutoff) and SAE
(SC3), while Figure 3 shows how both figures increase markedly toward the standard
Move 40 time control and then level off. For these plots the tournaments were divided
into historical “eras” E5 for 1970–1984, E6 for 1985–1999, E7 for 2000–2009, and
E8 for 2010–. The tournaments totaled 57,610 games, from which 3,607,107 moves
were analyzed (not counting moves 1–8 of each game which were skipped) and over
3.3 million retained within the cutoff. Category 10 and lower tournaments that were
also analyzed bring the numbers over 60,000 games and 4.0 million moves with over
3.7 million retained. Almost all work was done on two quad-core Windows PC’s with
analysis scripted via the Arena GUI v1.99 and v2.01.
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Fig. 2. Plot of raw AE vs. advantage for player to move, and flattening to SAE

Fig. 3. Plot of AE and SAE by turn number

Figures 4 and 5 below graph SAE for all tournaments by year as a four-year moving
average, the latter covering moves 17–32 only. The five lines represent categories 11–
12 (FIDE Elo 2500–2549 average rating), 13–14 (2550–2599), 15–16 (2600–2649),
17–18 (2650–2699), and 19–20 (2700–2749). There were several category 21 events in
1996–2001, none in 2002–2006, and several 21 and 22 events since 2007; the overall
averages of the two groups are plotted as X for 2001 and 2011. The lowest category has
the highest SAE and therefore appears at the top.
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Fig. 4. SAE by tournament category, 4-yr. moving avg., 1971–2011

Fig. 5. SAE by category for moves 17–32 only, 4-yr. moving avg., 1971–2011

Despite yearly variations the graphs allow drawing two clear conclusions: (1) the
categories do correspond to different levels of SAE, and (2) the lines by-and-large do
not slope up to the right as would indicate inflation. Indeed, the downslope of SAE
for categories above 2650 suggests some deflation since 1990. Since the SAE statistic
depends on how tactically challenging a game is, and thus does not indicate skill by
itself, we need a more intensive mode of analysis in order to judge skill directly.
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5 Intrinsic Ratings over Time

Haworth [1,2] and with DiFatta and Regan [3,12,4] developed models of fallible de-
cision agents that can be trained on players’ games and calibrated to a wide range of
skill levels. Their main difference from [5,6,7] is the use of Multi-PV analysis to obtain
authoritative values for all reasonable options, not just the top move(s) and the move
played. Thus each move is evaluated in the full context of available options. The paper
[6] gives evidence that for relative rankings of players, good results can be obtained
even with relatively low search depths, and this is confirmed by [7]. However, we ar-
gue that for an intrinsic standard of quality by which to judge possible rating drift, one
needs greater depth, the full move context, and a variety of scientific approaches. The
papers [3,12] apply Bayesian analysis to characterize the performance of human players
using a spectrum of reference fallible agents. The work reported in [4] and this paper
uses a method patterned on multinomial Bernoulli trials, and obtains a corresponding
spectrum.

The scaling of AE was found important for quality of fit, and henceforth AE means
SAE. It is important to note that SAE from the last section does not directly carry
over to intrinsic ratings in this section, because here we employ the full move analysis
of Multi-PV data. They may be expected to correspond in large samples such as all
tournaments in a range of years for a given category, but here we are considering smaller
samples from a single event or a single player in a single event, and at this stage we
are studying those with more intensive data. What we do instead is use statistical fits
of parameters called s, c to generate projections AEe for every position, and use the
aggregate projected AEe on a reference suite of positions as our “standard candle” to
index to the Elo scale.

We also generate projected standard deviations, and hence projected confidence in-
tervals, for AEe (and also the first-move match statistic MMe) as shown below. This
in turn yields projected confidence intervals for the intrinsic ratings. Preliminary testing
with randomly-generated subsets of the training data suggest that the actual deviations
in real-world data are bounded by a factor of 1.15 for the MM statistic and 1.4 for AE,
and these are signified by a subscripted a for ‘actual’ in tables below. The projections
represent the ideal case of zero modeling error, so we regard the difference shown by
the tests as empirical indication of the present level of modeling error.

Models of this kind function in one direction by taking in game analyses and using
statistical fitting to generate values of the skill parameters to indicate the intrinsic level
of the games. They function in the other direction by taking pre-set values of the skill
parameters and generating a probability distribution of next moves by an agent of that
skill profile. The defining equation of the particular model used in [4], relating the
probability pi of the i-th alternative move to p0 for the best move and its difference in
value, is

log(1/pi)

log(1/p0)
= e−(

δ
s )

c

, where δi =

∫ v0

vi

1

1 + |z|dz. (3)

Here when the value v0 of the best move and vi of the i-th move have the same sign,
the integral giving the scaled difference simplifies to | log(1 + v0)− log(1 + vi)|. Note
that this employs the empirically-determined scaling law from the last section.
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The skill parameters are called s for “sensitivity” and c for “consistency” because
s when small can enlarge small differences in value, while c when large sharply cuts
down the probability of poor moves. The equation solved directly for pi becomes

pi = pα0 where α = e−(
δ
s )

c

. (4)

The constraint
∑

i pi = 1 thus determines all values. By fitting these derived probabili-
ties to actual frequencies of move choice in training data, we can find values of s and c
corresponding to the training set.

Each Elo century mark 2700, 2600, 2500, . . . is represented by the training set com-
prising all available games under standard time controls in round-robin or small-Swiss
(such as no more than 54 players for 9 rounds) in which both players were rated within
10 points of the mark, in the three different time periods 2006–2009, 1991–1994, and
1976–1979. In [4], it was observed that the computed values of c stayed within a rel-
atively narrow range, and gave a good linear fit to Elo rating by themselves. Thus it
was reasonable to impose that fit and then do a single-parameter regression on s. The
“central s, c artery” created this way thus gives a clear linear relation to Elo rating.

Here we take a more direct route by computing from any (s, c) a single value that
corresponds to an Elo rating. The value is the expected error per move on the union of
the training sets. We denote it by AEe, and note that it, the expected number MMe of
matches to the computer’s first-listed move, and projected standard deviations for these
two quantities, are given by these formulas:

MMe =
∑T

t=1 p0.t, σMMe =
√∑T

t=1 p0,t(1− p0,t)

AEe = 1
T

∑T
t=1

∑
i≥1 pi,tδi,t, σAEe =

√
1
T

∑T
t=1

∑
i≥1 pi,t(1− pi,t)δi,t.

(5)

The first table gives the values of AEe that were obtained by first fitting the training data
for 2006–09, to obtain s, c, then computing the expectation for the union of the training
sets. It was found that a smaller set R of moves comprising the games of the 2005 and
2007 world championship tournaments and the 2006 world championship match gave
identical results to the fourth decimal place, so R was used as the fixed reference set.

Table 1. Correspondence between Elo rating from 2006–2009 and projected Average Error

Elo 2700 2600 2500 2400 2300 2200
AEe .0572 .0624 .0689 .0749 .0843 .0883

A straightforward linear fit then yields the rule to produce the Elo rating for any
(s, c), which we call an “Intrinsic Performance Rating” (IPR) when the (s, c) are ob-
tained by analyzing the games of a particular event and player(s).

IPR = 3571− 15413 ·AEe. (6)

This expresses, incidentally, that at least from the vantage of the RYBKA 3 run to re-
ported depth 13, perfect play has a rating under 3600. This is reasonable when one
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considers that if a 2800 player such as Vladimir Kramnik is able to draw one game in
fifty, the opponent can never have a higher rating than that.

Using equation (6), we reprise the main table from [4], this time with the correspond-
ing Elo ratings from the above formulas. The left-hand side gives the original fits, while
the right-hand side corresponds to the “central artery” discussed above. The middle
of the table is our first instance of the following procedure for estimating confidence
intervals for the IRP derived from any test set.

1. Do a regression on the test set T to fit sT , cT .
2. Use sT , cT to project AEe on the reference set R (not on T ), and derive IPRT via

equation (6).
3. Use sT , cT on the test set T only to project σT = σAEe .
4. Output [IPRT − 2σT , IPRT + 2σT ] as the proposed “95%” confidence interval.

As noted toward the start of this section, early testing suggests replacing σT by σa =
1.4σT to get an “actual” 95% confidence interval given the model as it stands. Hence,
we show both ranges.

In this case, the test sets T are the training sets themselves for the Elo century points
in three different four-year intervals. These give the results in Table 2.

Table 2. Elo correspondence in three four-year intervals

2006–2009
Elo s c IPR 2σe range 2σa range #moves cfit sfit IPRfit

2700 .078 .502 2690 2648–2731 2632–2748 7,032 .513 .080 2698
2600 .092 .523 2611 2570–2652 2553–2668 7,807 .506 .089 2589
2500 .092 .491 2510 2480–2541 2468–2553 16,773 .499 .093 2528
2400 .098 .483 2422 2393–2452 2381–2464 20,277 .492 .100 2435
2300 .108 .475 2293 2257–2328 2243–2342 17,632 .485 .111 2304
2200 .123 .490 2213 2170–2257 2153–2274 11,386 .478 .120 2192
2100 .134 .486 2099 2048–2150 2028–2170 9,728 .471 .130 2072
2000 .139 .454 1909 1853–1966 1830–1989 9,471 464 .143 1922
1900 .159 .474 1834 1790–1878 1769–1893 16,195 .457 .153 1802
1800 .146 .442 1785 1741–1830 1723–1848 15,930 .450 .149 1801
1700 .153 .439 1707 1642–1772 1616–1798 8,429 .443 .155 1712
1600 .165 .431 1561 1496–1625 1470–1651 9,050 .436 .168 1565

1991–1994
2700 .079 .487 2630 2576–2683 2555–2704 4,954 .513 .084 2659
2600 .092 .533 2639 2608–2670 2596–2682 13,425 .506 .087 2609
2500 .098 .500 2482 2453–2512 2441–2524 18,124 .499 .092 2537
2400 .101 .484 2396 2365–2426 2353–2438 19,968 .492 .103 2406
2300 .116 .480 2237 2204–2270 2191–2284 20,717 .485 .117 2248
2200 .122 .477 2169 2136–2202 2123–2215 21,637 .478 .122 2173

1976–1979
2600 .094 .543 2647 2615–2678 2602–2691 11,457 .506 .087 2609
2500 .094 .512 2559 2524–2594 2509–2609 11,220 .499 .091 2547
2400 .099 .479 2397 2363–2431 2350–2444 16,635 .492 .103 2406
2300 .121 .502 2277 2240–2313 2226–2328 15,284 .485 .116 2257
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Table 3. Intrinsic Ratings of Category 21 and higher standard tournaments

Event cat: Elo IPR 2σe range 2σa range IPR-Elo #moves
Las Palmas 1996 21: 2756 2697 2612–2781 2579–2815 -59 1,760
Linares 1998 21: 2752 2715 2651–2780 2625–2805 -37 2,717
Linares 2000 21: 2751 2728 2645–2810 2612–2843 -23 1,636
Dortmund 2001 21: 2755 2752 2760–2834 2637–2866 -3 1,593
Mexico 2007 21: 2751 2708 2647–2769 2623–2793 -43 3,213
Morelia-Linares 2008 21: 2755 2855 2808–2903 2789–2922 +100 3,453
Nanjing 2008 21: 2751 2766 2691–2842 2660–2873 +15 1,936
Bilbao GSF 2008 21: 2768 2801 2731–2872 2702–2900 +33 2,013
Linares 2009 21: 2755 2750 2696–2803 2675–2825 -5 3,830
Sofia M-Tel 2009 21: 2754 2711 2626–2795 2592–2829 -51 1,937
Nanjing 2009 21: 2763 2715 2644–2785 2616–2814 -48 2,192
Moscow Tal Mem. 2009 21: 2763 2731 2663–2800 2635–2827 -32 2,706
Linares 2010 21: 2757 2681 2607–2756 2577–2786 -76 2,135
Nanjing 2010 21: 2766 2748 2674–2821 2645–2850 -18 1,988
Shanghai 2010 21: 2759 2829 2727–2931 2686–2972 +70 920
Bilbao 2010 22: 2789 2904 2822–2987 2788–3020 +115 1,060
Moscow Tal Mem. 2010 21: 2757 2690 2629–2750 2604–2775 -67 3,493
Bazna 2011 21: 2757 2750 2675–2825 2645–2855 -7 1,885
Sao Paulo/Bilbao 2011 22: 2780 2626 2539–2713 2504–2748 -154 1,998
Moscow Tal Mem. 2011 22: 2776 2807 2755–2860 2734–2881 +31 3,401
Averages 21: 2761 2748 -13 2,293
Weighted by moves 21: 2760 2745 -15.6
Aggregate run, all moves 21: 2760 2744 2729–2760 2722–2766 -16 45,870

Table 4. Some other events, for comparison to Table 3

Event cat: Elo IPR 2σe range 2σa range IPR-Elo #moves
Montreal 1979 15: 2622 2588 2534–2642 2513–2663 -34 4,732
Linares 1993 18: 2676 2522 2469–2574 2449–2595 -154 6,129
Linares 1994 18: 2685 2517 2461–2574 2438–2596 -168 5,536
Dortmund 1995 17: 2657 2680 2615–2744 2589–2770 +23 2,459
Dortmund 1996 18: 2676 2593 2518–2667 2489–2697 -83 2,796
Dortmund 1997 18: 2699 2639 2569–2709 2541–2737 -60 2,583
Dortmund 1998 18: 2699 2655 2579–2732 2548–2762 -44 2,284
Dortmund 1999 19: 2705 2749 2655–2844 2617–2882 +44 1,364
Sarajevo 1999 19: 2703 2664 2592–2737 2563–2766 +19 2,755
San Luis 2005 20: 2738 2657 2597–2716 2574–2740 -81 3,694
Corus 2006 19: 2715 2736 2693–2779 2676–2797 +21 5,800
Sofia M-Tel 2006 20: 2744 2744 2678–2810 2651–2836 0 2,197
Corus 2007 19: 2717 2763 2716–2811 2697–2829 +46 5,095
Sofia M-Tel 2007 19: 2725 2576 2482–2670 2445–2708 -149 2,184
Sofia M-Tel 2008 20: 2737 2690 2605–2775 2571–2809 -47 1,869
London Classic 2010 20: 2725 2668 2594–2742 2565–2771 -57 2,312



Understanding Distributions of Chess Performances 241

The entries vary around the Elo century marks, as is to be expected from a linear
fit. Some points in the 1600–2100 range are anomalous, and this may owe to various
factors pertaining to the quality of the games. Only the Elo 2200 through 2700 data for
2006–2009 were used in the linear fit for the ratings. Of course, there is error from the
regression, but we do not know whether it adds to or mitigates the estimates σAEe of
placement of the linear regression points. For uniformity with later performance testing,
we show only the latter error here. Despite these elements of uncertainty, the table still

Table 5. Comparison of FIDE and CFC ratings, TPR’s, and IPR’s for 2011 Canadian Open

Name Can R FIDE R TPR IPR IPR-TPR 2σe range 2σa range #moves
Arencibia 2537 2476 2745 2723 -22 2491–2956 2398–3049 273
Benjamin 2641 2553 2688 2412 -276 2196–2629 2110–2715 373
Bluvshtein 2634 2611 2622 2533 -89 2323–2744 2239–2828 316
Bojkov 2544 2544 2595 2154 -441 1765–2543 1610–2698 219
Calugar 2437 2247 2144 2301 +157 2091–2512 2007–2596 327
Cheng 2500 2385 2661 2728 +67 2502–2954 2411–3044 297
Cummings 2459 2350 2473 2833 +360 2683–2983 2623–3043 322
Fedorowicz 2508 2454 2422 2390 -32 2088–2692 1967–2813 199
Gerzhoy 2647 2483 2622 2963 +341 2802–3124 2738–3189 211
Golod 2576 2582 2582 2638 +56 2376–2899 2272–3003 218
Hebert 2486 2414 2519 2789 +270 2598–2979 2522–3055 285
Krnan 2470 2390 2651 2694 +43 2488–2900 2405–2982 266
Krush 2578 2487 2539 2497 -42 2217–2717 2189–2805 316
Meszaros 2409 2418 2278 2413 +133 2219–2607 2141–2684 337
Mikhalevski 2664 2569 2519 2616 +96 2412–2820 2330–2902 248
Milicevic 2400 2288 2352 2113 -240 1799–2426 1674–2552 214
Mulyar 2422 2410 2412 2636 +224 2483–2788 2422–2849 378
Noritsyn 2597 2425 2563 2394 -171 2166–2621 2075–2713 286
Pechenkin 2408 2297 2309 2648 +339 2439–2857 2355–2940 311
Perelshteyn 2532 2534 2650 2629 -21 2425–2833 2343–2915 258
Perez Rod’z 2467 2467 2676 2627 -49 2321–2933 2198–3056 195
Plotkin 2411 2243 2260 2715 +455 2570–2861 2512–2919 330
Regan 2422 2409 2268 2525 +257 2323–2728 2242–2809 356
Rozentalis 2614 2571 2666 2721 +55 2528–2913 2452–2990 291
Sambuev 2739 2528 2571 2677 +106 2499–2855 2428–2926 400
Samsonkin 2532 2378 2707 2535 -172 2267–2802 2159–2910 233
Sapozhnikov 2424 2295 2480 2404 -76 2203–2605 2122–2685 341
Shabalov 2618 2577 2549 2639 +90 2417–2861 2328–2590 262
Thavandiran 2447 2320 2607 2622 +15 2360–2884 2255–2989 254
Yoos 2439 2373 2289 1939 -350 1607–2271 1474–2404 268
Zenyuk 2429 2222 2342 2790 +448 2606–2975 2532–3049 229
Averages 2516 2429 2508 2558 +50
Std. Dev. 92 157 218

Whole event: 149 Restricted to FIDE-rated players: 115
Average 2144 2142 2117 2203 2211 2139
Std. Dev. 258 261 379 345 229 220
Wtd. avgs. IPR CanR FIDE R
By games 2156 2154 2134 2219 2221 2147
By moves 2173 2172 2161 2242 2236 2161
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supports a conclusion of no overall inflation. Because the fit was done with data from
2006–2009 only, inflation would show up as, for instance, 2600- and 2500-rated players
from earlier years having higher IPR’s than players with those ratings today.

Further support for our positions comes from IPR’s of entire tournaments. Table 3
shows all twenty Category 21 or higher round-robin tournaments ever played under
standard time controls, while Table 4 shows some others for comparison.

The IPR’s are on-balance below the tournament average ratings, but the latter’s ag-
gregate is just within the narrower confidence interval of the aggregate IPR. The re-
gressions are not linear, so the parity of the aggregate run with the weighted average is
notable. The comparison events are selective but still show no inflationary trend.

6 Distributions of Performances

Our final experiment analyzed all 624 available games from 647 played at the 2011
Canadian Open, including all by players with FIDE ratings 2400 and above, which
form an unbiased sample. Table 5 shows the IPR’s and compares them to Chess Feder-
ation of Canada ratings before and after the event, FIDE ratings before, and the tourna-
ment performance ratings (TPR’s) based on the CFC ratings. The final two columns are
the confidence intervals for the IPR alone. The final rows summarize the sample, the
whole event (152 players minus 3 early withdrawals leaving 149), and the whole event
weighted by number of games played and number of analyzed moves. The bottom-right
restricts to the 115 players who had FIDE ratings before the event. From the results we
may conclude the following.

1. The IPR’s have similar overall average to the Canadian ratings, especially under
weighting by games or moves.

2. FIDE ratings of Canadian players are deflated relative to apparent skill. This is
commonly believed to be due to a lack of playing opportunities in FIDE-rated events.

3. The IPR’s have higher deviations from their own mean than the TPR’s.
4. The IPR’s have large deviation, and yet several TPR’s fall outside even the 2.8-

sigma range. This may constrain the usefulness of the IPR as an estimator of the TPR.

7 Conclusions

We have shown multiple, separate, and novel pieces of evidence that the Elo system
employed by FIDE has remained stable in relation to intrinsic skill level. We have
shown that the population of master-level players closely fits a model that has an im-
portant scientific pedigree, under conditions of no inflation. We have shown that ratings
as reflected in tournament categories have no overall inflationary trend relative to two
measures of skill, the simple AE statistic on a large scale embracing (nearly) all tourna-
ments with at least 2500 average rating since 1971, and the more-intensive IPR statistic
for some tournaments. We have also furthered the correspondence between Elo cen-
tury marks and our model’s fitted skill parameters shown in [4]. The IPR statistic is the
weightiest evidence, but it is important that the other factors give it independent support.
Given this stability in the FIDE system, we can promote the use of our tools in adjusting
members of national federations with their own rating pools to the international scale.
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We anticipate further development of the methods in this paper. It is possible that
some rating systems being tested as alternatives to Elo in the recent Kaggle competitions
sponsored by Sonas [13,14] may yield better correspondences to our models.
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