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Abstract. breakthrough is a recent race-based board game usually
played on a 8×8 board. We describe a method to solve 6×5 boards based
on (1) race patterns and (2) an extension of Job-Level Proof Number
Search (JLPNS).

Using race patterns is a new domain-specific technique that allows
early endgame detection. The patterns we use enable us to prune posi-
tions safely and statically as far as 7 moves from the end.

For the purpose of solving Breakthrough we also present an exten-
sion of the parallel algorithm JLPNS, viz. when a PN search is used as
the underlying job. In this extension, partial results are regularly sent
by the clients to the server.

1 Introduction

In this paper, we address the use of parallelization to solve games. We use the
game breakthrough [10] as a testbed for our experiments with parallel solving
algorithms.

breakthrough has already been used as a testbed in other work [20,9]. It
is an interesting game which offers new challenges to the AI community. We
therefore also try to improve on domain-specific techniques. To this effect, we
present the idea of race patterns, a new kind of static patterns that allow to detect
a win several moves before the actual game ends. The use of race patterns has
some links with the use of threats when solving go-moku [1]. However, the
threats used in go-moku by Allis were designed to select a small number of
moves to search, whereas the race patterns are designed to stop the search early.

Research on parallel game-tree search was initially mainly about the paral-
lelization of the Alpha-Beta algorithm. A survey on the parallelization of Alpha-
Beta can be found in Mark Brockington’s PhD thesis [4]. Other sources about
the use of transposition tables in parallel game-tree search and Alpha-Beta are
Feldmann et al.’s paper [8] and Kishimoto and Schaeffer’s paper [12].

More recently, the work on the parallelization of game-tree search algorithms
has addressed the parallelization of Monte-Carlo Tree Search algorithms [5,6,7]

Other related works deal with the parallelization of PDS [14,13] and of Depth
First Proof Number search (DF-PN) [11]. A technique to reduce the memory
usage of DF-PN is the garbage collection of solved trees [15].
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Previous attempts at parallelizing the Proof Number Search (PNS) algorithm
used randomization [16] or a specialized algorithm called at the leaves of the
main search tree [21].

Proof-Number search and parallel algorithms were also already successfully
used in solving Checkers [18,19].

In this paper we focus on the parallelization of the PN2 algorithm. The PN2

algorithm has enabled to solve complex games such as fanorona [17]. Our goal
is to solve such games faster with a similar but parallel algorithm.

The second section is about PNS, Job-Level Proof Number Search (JLPNS)
and our algorithm Parallel PN2 (PPN2). The third section deals with race pat-
terns at breakthrough and the fourth section details experimental results.
Finally, section five contains a discussion and a conclusion.

2 Job-Level Proof Number Search

In this section we start presenting PNS (2.1). Then we recall the parallelization
of PNS with Job-Level parallelization (2.2). The third section (2.3) presents our
Parallel PN2 algorithm.

2.1 Proof Number Search

PNS was proposed by Allis et al. [2] The goal of the algorithm is to solve se-
quential perfect information games. Starting from the root position, it develops
a tree in a best first manner. PNS uses the concept of effort numbers to compare
leaves.

Effort numbers are associated to nodes in the search tree and try to quantify
the progress made towards some goal. Specifically in PNS, two effort numbers
are used: (1) the proof number PN of a node n estimates the remaining effort
to prove that n is winning for Max, and (2) the disproof number DN estimates
the remaining effort to prove a win for Min. Originally, the PN (respectively the
DN) of a node n was a lower bound on the number of node expansions needed
below n to prove that n is a Max win (respectively a Max loss). When the PN
reaches 0 (respectively ∞), the DN reaches ∞ (respectively 0), and the node has
been proved to be a Max win (respectively a Max loss).

The PN and DN are recursively defined as shown in Table 1 where Win
(respectively Lose) designate a terminal node corresponding to a position won
by Max (respectively Min), Frontier designate a non-expanded non-terminal leaf
node. Max (respectively Min) designate an expanded internal node with Max
(respectively Min) to play.

To select which node to expand next, Allis et al. defined the set of most proving
nodes [2] and showed that it is possible to select one of them by the following
descent procedure. Iterate until a Frontier node is reached: when at a Max node,
select a child minimizing PN; when at a Min node, select a child minimizing
DN.
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Table 1. Determination of effort numbers for PNS

Node type PN DN

Win 0 ∞
Lose ∞ 0
Frontier 1 1
Max minc∈chil(n) PN(c)

∑
c∈chil(n) DN(c)

Min
∑

c∈chil(n) PN(c) minc∈chil(n) DN(c)

2.2 Job-Level Parallelization

Job-Level Proof Number Search [21] has been used to solve connect6 positions.
The principle is to have a main Proof Number Search tree, but instead of having
plain leaves, a solver is called at each leaf in order to evaluate it.

In order to avoid having several clients trying to prove the same leaf, JLPNS
uses a virtual-loss mechanism.1 When a leaf is sent to a client, it is temporarily
assumed to be proved a loss until the client returns a meaningful result.

A disadvantage of the virtual-loss mechanism is that it is possible for a node
to be considered losing for some time, but then to be updated to a non-solved
state. Stating this otherwise, 0 and ∞ are no longer attractor values for the
proof and disproof numbers.

An advantage of the approach taken by JLPNS is that it allows an easy paral-
lelization over a distributed system with a very small communication overhead.

2.3 Parallel PN2

The principle of the PN2 algorithm [1,3] is to develop another PN search at each
leaf of the main PN search tree in order to have more informed proof and disproof
numbers. For PPN2 search, the PN search tree at the leaves is developed on a
remote client. There are at least three differences between PPN2 and JLPNS.

A first difference is that the PPN2 algorithm that is called at the leaves is
also a Proof Number Search instead of a specialized solver as in JLPNS. As a
result, partial results from the unfinished remote search in one client can be sent
back to the server to update the main PNS tree in order to influence the next
searches of the other clients.

A second difference is that we do not use the virtual loss mechanism to avoid
currently computed leaves but a flag on these leaves. First, in our technique,
a node is never considered to be losing unless it has actually been proved to
be losing, thus 0 and ∞ remain attractors. Then, noting that the set of most-
proving nodes usually contains several nodes, our technique ensures that we will
pick tasks from the set of most-proving nodes of the current tree. Finally, the

1 The authors of JLPNS also tried a virtual-win policy and a greedy mechanism which
are conceptually similar to virtual-loss [21].
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virtual-loss mechanism does not fit well with the partial result update described
in the preceding paragraph.

A third difference is that, our algorithm also has breakthrough-specific
knowledge: it uses the mobility heuristic and race patterns defined in Section 3.3.

Just as in PN2, the size of the remote tree can either be fixed or a function
of the size of the main search tree.

The main algorithm which is run on the server, is described in Algorithm 1.
It consists in receiving results from the clients and updating the tree according
to these results. A result can either be a partial result or a final result. In both
cases, we need to update the proof and disproof numbers of the concerned leaf
with the result. We also update recursively its ancesters. When the result is final,
however, we expand the tree and need to find a new not reserved leaf for the
now idle client. Finding a not reserved leaf is done by a backtracking algorithm
where the choice points are the nodes with several children minimizing the proof
or disproof number.

Algorithm 1. Main algorithm.
while root is not proved do

receive result r from any client c
if r is a partial result then

update the PN and DN with r
else

expand the tree
update the PN and DN with r
if root is proved then

break
end if
find the most proving and not reserved leaf l
reserve leaf l
send the position at l to client c

end if
end while
collect and discard the remaining client messages
send stop to all clients

The remote algorithm which is run on the clients is described in Algorithm 2.
It consists in (1) developing a PNS tree until a given threshold and (2) regularly
sending partial results to the server.

3 breakthrough and Race Patterns

In this section we discuss the rules of breakthrough (3.1), the retrograde
analysis for small boards (3.2), and the race patterns (3.3).

3.1 Rules of breakthrough

breakthrough is race game invented in 2001 by Dan Troyka. The game is
played on a rectangular board of size 8× 8. Each player starts with two rows of
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Algorithm 2. Remote algorithm.
while the stop message is not received do

receive a position, a player and a threshold N from the server
while root is not proved and number of descents is less than N do

if the number of descent is a multiple of a parameter p then
send as partial results to the server the current PN and the DN of the root

end if
expand the tree using Proof Number Search

end while
send the definitive results to the server

end while

pawns situated on opposite borders as shown in Figure 1(a). The pawns progress
in opposite direction and the first player to bring a pawn to the opposite last
row wins the game. A pawn can (1) always move diagonally forward possibly
capturing an opponent pawn and (2) move forward one cell only if the cell is
empty (Figure 1(b)).

(a) Starting position on size 5 × 5. (b) Possible movements.

Fig. 1. Rules for the game breakthrough

breakthrough was originally designed to be played on a 7 × 7 board but
was adapted to participate in the 8× 8 board game-design competition which it
won [10].

3.2 Retrograde Analysis for Small Boards

The state space complexity of breakthrough on a board m × n with m ≥ 2
and n ≥ 4 can be upper bounded by the following formula 22m × 3(n−2)m. This
formula derives from the fact that each cell on the top row can only be empty
or Black, each cell on the bottom row can only be empty or White, and all three
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possibilities are available for cells in the n− 2 central rows. This upper bound is
relatively accurate for boards with a small height, but it includes positions that
cannot be reached from the standard starting position as it does not take into
account the fact that each player has at most 2m pieces. As a result, the upper
bound is rather loose for larger boards.

Jan Haugland used retrograde analysis to solve breakthrough on small
boards.2 The largest sizes solved by his program were 5 × 5 and 3 × 7, both
turned out to be a second-player win.

To reduce the state space complexity and ease the retrograde analysis, Haug-
land avoided to store positions that could be won in one move. That is, positions
with a pawn on the one but last row were not stored. It allows to reduce the
state space complexity to 24m × 3(n−4)m. The reduction factor is r = 3

2

2m which
is r = 58 when m = 5.

3.3 Race Patterns

After a couple of games played, human players start to obtain some feeling for
tactics in breakthrough. It allows the experimented player to spot a win-
ning path sometimes as early as 15 plies before the actual game end. A game
of breakthrough proceeds as follows, in the opening, the players strive to
control the center or to obtain a strong outpost on the opponent’s side without
exchanging many pieces. Then, the players perform waiting moves until one of
them enters a zugzwang position and need to weaken his3 structure. The oppo-
nent will now try to take advantage of the breach, usually the attack involves
sacrificing one or two pawns to force the opponent’s defense to collapse. Thus,
at this point both players could break through if the opponent passed, and the
paths of both are usually disjoint, therefore it is necessary to count the number
of moves needed by both players and the quickest to arrive wins (Figure 3(a) is
an example of such a situation).

As we can see, detecting an early win involves looking separately at the possi-
ble winning paths of both players and deciding which is the shortest. Formalizing
this technique can improve the playing level of an artificial player or the perfor-
mance of a solver.

Defining Race Patterns. We define race patterns that allow to spot such
winning paths. To be able to deal softly with the left and right sides of the
board, we will consider a generalization of breakthrough with walls.4 Walls
are static cells which can neither be traversed nor occupied by any player.

In the following, we assume that we are looking for a winning path for player
White. Formally, a pattern for player White is a two dimensional matrix in which
each element is of one of the following type {occupied, free, passive, crossable,
don’t care}. The representation and the relationship between these types is pre-
sented in Figure 2. A cell of type passive should not contain a black pawn to
2 Available on http://www.neutreeko.net/neutreeko.htm.
3 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.
4 This generalization was used in the 2011 GGP competition.

http://www.neutreeko.net/neutreeko.htm
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Occupied Free

Passive

Crossable

Dont’t care

Fig. 2. Pattern representation. An arrow from a to b indicates that any cell satisfying
a satisfies b.

Table 2. Checking race patterns for White

Occupied Free Passive Crossable Don’t Care

White Pawn � � � � �
Empty cell � � � �
Black Pawn � �
Wall � �

begin with, but it will not be necessary for any white pawn to cross it. On the
other hand it should be allowed to bring a white pawn on a cell of type crossable,
so it cannot be a wall but it could already hold a white or a black pawn.

To verify whether a pattern is matched on a given board, we first extend
the board borders with walls and then check for each possible pattern location
that every cell is compatible as defined by Table 2. For instance, if the attacking
player is White, then a white pawn will match any cell type in the pattern. Stated
otherwise, if the pattern cell corresponding to a black pawn is not Crossable or
Don’t Care, then the pattern does not match.

The order of a race pattern is defined as the maximal number of pass moves
that Black is allowed to do before White wins in the restricted position desig-
nated by the race patterns.

We compute for each player the lowest-order matching race pattern and if
they only intersect on don’t care cells, we know the outcome of the game. For
instance in Figure 3(a), we can see that White has two-move second-player win
pattern (Figure 3(b)) and that Black has a three-move first-player win pattern
(Figure 3(c)). Given that player Black does neither have a one-move nor a two-
move race pattern, we may conclude that the position is a white win. It is thus
possible to statically solve this position four moves before the actual game end.

In general, this technique allows to solve positions 2 × n moves before the
actual game end, only if we have access to every n-move race pattern. However,
a position cannot be solved this way if its solution tree involves a zugzwang.
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(a) Sample game with
Black to play. White player
can force a win.

(b) Two-move second
player win pattern.

(c) Three-move first
player win pattern.

Fig. 3. Early win detection using race patterns. White can match pattern (b) and
Black can match pattern (c)

In our experiments, we used 26 handwritten patterns of order up to 2. The
biggest patterns we used were 4 × 3 such as the one presented in Figure 3(b).
We do not have yet a tool for automatic correctness checking, therefore we had
to limit the number of patterns used to keep confidence in their correctness.

4 Experimental Results

Experiments are done on a network of Linux computers connected with Gigabyte
switches. The network area includes 17 computers with 3.2 GHz Intel i5 quad
core CPU with 4 GB of RAM. The master is run alone on one of these computers.
The maximum number of clients is set to 16 × 4.

In the following experiments, we report the total time needed to solve the
starting position of a breakthrough game of various sizes. We also report the
number of nodes expanded and touched that were needed in Algorithm 1.

A node is expanded when all of its children have been added to the tree. In
our server-side implementation, one node is expanded per iteration. The number
of nodes expanded is proportional to the memory needed to store the PN tree on
the server side. It also corresponds to the total number of tasks that have been
sent to the clients. For a touched node, we only store the proof and disproof
numbers as given by a client search. In contrast, an expanded node also needs to
store a pointer to every child. As a result touched nodes take much less memory
than expanded nodes. We bounded the number of descents in one search in the
clients to 1k or 100k, so memory resources in the clients were never a problem
in these experiments.

4.1 Scalability

Table 3 gives the time needed in seconds, the number of expanded and touched
nodes saved on the server side to solve the 4× 5 game with the PPN2 algorithm
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Table 3. Time needed, number of expanded and touched nodes for the PPN2 with
fixed search size on 4× 5 board with 1k descents at most in the remote search. Partial
results were sent from a client every 100 descents.

Clients Time Speed-up Expanded Touched

1 3397s 107k 915k
4 1559s 2.2 126k 1073k
8 803s 4.2 130k 1106k
16 472s 7.2 152k 1298k
32 305s 11.1 196k 1651k
64 186s 18.3 232k 1930k

with 1k descents in the clients. Solving 4 × 5 with 64 clients with 100k descents
in each remote search takes 577 seconds, while with 10k descents in each remote
search, it takes 216 seconds. Therefore, increasing the number of descents in
the remote search does not necessarily improve the solving time. In contrast,
performing 100 descents in each remote search made it necessary to go over 1m
descents in the main search which is quite memory consuming.

From Table 3 we can see , that the number of expanded nodes on the server
increases as the number of clients rises. Stated otherwise, running many clients in
parallel makes it harder to avoid unnecessary work. This is an expected behavior
in a parallel algorithm. Nevertheless, the time needed to solve the position also
decreases steadily as the number of clients rises. The speedup factor with 8 and
64 clients compared to 1 single client are respectively 4 and 18. So, we may
conclude that although the algorithm is not perfectly parallelizable, the scaling
factor is satisfactory.

4.2 Partial Results Updates

Table 4 gives the time needed in seconds, the number of expanded and touched
nodes saved in memory to solve the 4 × 5 game with the PPN2 algorithm with
partial results. The first column gives the partial results frequency. Each solved
position turned to be a second-player win.

As we can see, sending partial results makes it possible to direct better the
search but also increases the communication overhead. It is therefore needed
to find a balance between spending too much time in communications and not
taking advantage of the information available. In this setting, sending partial
results every 100 descents in the client seems the best compromise. When using
partial informations, the solving time is less dependent to the search size.

4.3 Patterns

Table 5 gives the time in seconds and the number of expanded nodes needed
to solve different games with the PPN2 algorithm with partial results, fixed
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Table 4. Time needed, number of expanded and touched nodes for PPN2 algorithm
with partial results and fixed remote search size of 1k descents on 4×5 board, involving
64 clients.

Partial Time Expanded Touched

None 263s 324k 2645k
500 233s 281k 2336k
250 205s 253k 2105k
100 186s 232k 1930k
50 190s 233k 1944k
25 201s 243k 2023k
12 193s 223k 1855k

search size and some patterns. The patterns we used allowed to solve statically
a position up to 4 moves before the game end, 26 patterns were hand-written for
this purpose. Checking whether a pattern can be matched on a given position is
done in the most naive way and implementing more efficient pattern matching
techniques is left as future work.

Using race patterns, the solving time is divided by 5.96 for the 4 × 5 board
with 1k search, and by 9.85 for the 5×5 board. It takes 927 seconds to solve the
5 × 5 board with 1k search in the clients. Without patterns, 5 × 5 board with
1k search fails with 1 million nodes saved and goes beyond the server allowable
memory with 2 million nodes.

Combining PPN2 and race patterns allows us to solve the 6×5 board in 25,638
seconds (i.e., 7 hours 7 minutes 18 seconds) with 10k search and in 47,134 seconds
(i.e., 13 hours 5 minutes 34 seconds) with 100k search.

As we can see, using race patterns makes it unnecessary to examine many
positions in the main search. Race patterns also allow for a time reduction of
one order of magnitude on boards of small sizes and probably more on larger
boards.

Table 5. Time needed and number of expanded nodes for the PPN2 algorithm with
partial results, fixed remote search size and patterns with 64 clients

Board size Search size Patterns Time Expanded

5 × 4 1k No 2s 4132
5 × 4 1k Yes 1s 72

4 × 5 1k No 161s 241k
4 × 5 1k Yes 27s 4k

5 × 5 1k Yes 927s 78k
5 × 5 100k No 29,170s 208k
5 × 5 100k Yes 2959s 3k

6 × 5 10k Yes 25,638s 14k
6 × 5 100k Yes 47,134s 21k
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5 Discussion and Conclusion

In this paper, we have defined race patterns and used them to ease the solving
of breakthrough positions. Indeed, in our experiments, using race patterns
typically allows to examine about two orders of magnitude fewer positions. We
have also shown how to parallelize successfully the PN2 algorithm. The PPN2

algorithm associated to race patterns has enabled to solve 6×5 breakthrough:
the game is a second-player win. We have found that on the smaller 4× 5 board
the speedup due to parallelization is important until at least 64 clients.

In future work, we will try to solve breakthrough for larger sizes. The race
patterns used in this work had been devised by hand, but it is impractical if
we need many more patterns to solve statically positions earlier. We therefore
need to devise an algorithm to generate the race patterns and check them for
correctness automatically.

Zugzwang positions are still difficult to solve. Indeed, no winning race pattern
will be found in a zugzwang position, so an extension of the concept of race
patterns to be compatible with zugzwang positions or an orthogonal technique
would be desirable.

We will also apply the Parallel PN2 algorithm to other games. Moreover we
will try to enhance the algorithm itself in order to have even greater speedups.
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