
H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 121–133, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Temporal Difference Learning for Connect6

I-Chen Wu, Hsin-Ti Tsai, Hung-Hsuan Lin, Yi-Shan Lin,
Chieh-Min Chang, and Ping-Hung Lin

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
{icwu,fs751130,stanleylin,yslin,aup,bhlin}@java.csie.nctu.edu.tw

Abstract. In this paper, we apply temporal difference (TD) learning to Connect6,
and successfully use TD(0) to improve the strength of a Connect6 program,
NCTU6. The program won several computer Connect6 tournaments and also
many man-machine Connect6 tournaments from 2006 to 2011. From our
experiments, the best improved version of TD learning achieves about a 58% win
rate against the original NCTU6 program. This paper discusses three
implementation issues that improve the program. The program has a convincing
performance in removing winning/losing moves via threat-space search in TD
learning.

1 Introduction

Temporal difference (TD) learning [13][15], a kind of reinforcement learning, is a
model-free method for adjusting the state values of the subsequent evaluations. This
method has been applied to computer games such as Backgammon [18], Checkers [11],
Chess [3], Shogi [4], Go [13] and Chinese Chess [20]. TD learning has been
demonstrated to improve world class game-playing programs in the two following
cases, TD-GAMMON [18] using TD(λ) and CHINOOK [11] using TDLeaf.

In this paper, we apply TD learning to Connect6, and successfully use TD(0) to
improve the strength of a Connect6 program, NCTU6. NCTU6 won the gold medal in
the Connect6 tournaments [7][17][23][25] several times from 2006 to 2011, and
defeated many top-level human Connect6 players [8][16][29] in man-machine
Connect6 championships from 2008 to 2011.

Our experiments showed that the best version of TD learning obtained about a 58%
win rate against the original NCTU6 program. The results demonstrated that TD(0)
learning can also be used to improve a high-performance world-class game-playing
program.

In this paper, we discuss three implementation issues for TD learning, (a) selecting
features, (b) removing winning/losing moves (found by threat-space search, which will
be described in Section 4), and (c) using the moves played by strong human players for
training. Our experiments demonstrate that the issue (b) is quite significant to improve
the playing strength of NCTU6.

This paper is organized as follows. Section 2 reviews the game Connect6 and the
program NCTU6. Section 3 reviews TD learning including TDLeaf and bootstrapping,

122 I-C. Wu et al.

and describes our design of TD learning for Connect6. Section 4 discusses all the
implementation issues of using TD learning, and Section 5 shows the experimental
results. Section 6 provides concluding remarks.

2 Connect6 and NCTU6

Connect6 [22][27] is a kind of six-in-a-row game that was introduced by Wu et al. Two
players, named Black and White in this paper, alternately place two black and white
stones respectively on empty intersections of a Go board (a 19×19 board) in each turn.
Black plays first and places one stone initially. The first player who obtains six
consecutive stones of his own horizontally, vertically, or diagonally wins. The game has
been played in one of tournaments held in Computer Olympiads [23][25] (as well as in
some other tournaments [7][17]) since 2006.

From [22][27], we know that threats are the key to winning Connect6 (like Go-Moku
[1][2] and Renju [10]). According to their definitions, a position is t-threat against the
opponent, if and only if t is the smallest number of stones that the opponent needs to
place to prevent from losing the game on the next move. A move is called a 1-threat
(also called single-threat) move if the position after the move is 1-threat, a 2-threat
(double-threat) move if 2-threat, and a 3-threat (triple-threat) move if 3-threat. In
Connect6, one player clearly wins by a 3-threat-or-more move.

In Connect6, many line patterns (abbreviated as patterns in this paper), such as live-l
and dead-l, can grow into threats. As defined in [22][27], live-l (dead-l) of a player can
turn into 2-threat (1-threat) if the player places (4 – l) additional stones. For example,
live-3 (dead-3) can turn into a 2-threat (1-threat) after one additional stone is placed.

In [22][27], a type of winning strategy, called Victory by Continuous
Double-Threat-or-more moves (VCDT) is described. The idea is to win by making
continuously double-threat moves and ending by a triple-threat-or-more move or
connecting up to six in all variations. It is similar to Victory by Continuous Four (VCF),
a term used in the Renju community [10]. Similarly, the type of winning strategy with
additional single-threat moves allowed is called Victory by Continuous
Single-Threat-or-more moves (VCST). In the communities of Connect6 (Renju also),
professionals are commonly keen to find these strategies, if there exists any.

Some of the authors developed a lambda-based [19] threat-space search (TSS)
technique in [24], named relevance-zone-oriented proof (RZOP) search, to find these
winning strategies, VCDTs or VCSTs, efficiently and accurately in most of the cases in
which there exists any. The RZOP search was incorporated into a Connect6 program,
named NCTU6, which won several computer Connect6 tournaments and man-machine
Connect6 tournaments [7][8][16][17][23][25][29] from 2006 to 2011. When finding no
winning strategies, NCTU6 [26] is back to use alpha-beta search to find the best move.
In the alpha-beta search tree [6], the leaf values are estimated by an evaluation function,
and the values of the internal nodes are calculated in the mini-max manner.

In order to make the search more accurate, NCTU6 used the RZOP search [24] to
find the winning/losing moves in most nodes in the alpha-beta search. The underlying
principle is to avoid choosing losing moves. For extra RZOP search, the averaged time
for node evaluation/expansion in alpha-beta search is long. Hence, the number of nodes

 Temporal Difference Learning for Connect6 123

in alpha-beta search is relatively small, about 50-500 per second in NCTU6, and the
depth of the tree is small too, only about four in NCTU6. Since the alpha-beta search
tree is small, a more sophisticated node evaluation/expansion was used to make the
search more accurate. In this paper, such a search with heavy node computation is said
to be coarse-grained. In contrast, strong Chinese-Chess programs (similar to Chess
programs) are fine-grained, normally expanding about a million nodes per second and
searching deeply.

Fig. 1. An example of evaluating V(s) for Black

In NCTU6, the evaluation function of positions can be viewed as a function of
features, such as threats, live-ls and dead-ls. Although the function was actually quite
complicated, we modified it into a linear combination of features [5] for TD learning. In
the example in Figure 1, Black has 1 single-threat, 2 live-2s and 7 live-1s, and White has
1 live-3, 2 dead-2s and 5 live-1s (note that dead-1 is not discussed in this paper for
clarity). Given feature weights, NCTU6 evaluates the value of the position for Black in
Figure 1 as 1 ൈ ଵ்ݓ ൅ 2 ൈ ௅ଶݓ ൅ 7 ൈ ௅ଵݓ ൅ 1 ൈ ௅ଷିݓ ൅ 2 ൈ ஽ଶିݓ ൅ 5 ൈ ௅ଵିݓ

where ݓ௙ is the weight of feature f, which indicates n-threat by ܶ݊, live-n (dead-n) by (݊ܦ) ݊ܮ, and the opponent’s features by – ݂. Note that for 2-threat we use 1 ൈ ,ଶ்ݓ
instead of 2 ൈ is ݏ denote a vector of feature weights. Thus, the value of a position ߠ and ,ݏ ሻ denote a vector of feature numbers in a position (or state)ݏଵ. Let ߮ሺ்ݓ

 ܸሺݏሻ ൌ ߮ሺݏሻ · (1) ߠ

In the example in Figure 1, ߮ሺݏሻ ൌ ሾ1,2,7,1,2,5ሿ , if the vector of features is ሾܶ1, ,2ܮ ,1ܮ െ3ܮ, െ2ܦ, െ1ܮሿ.
In the original NCTU6, the weights ߠ were hand-tuned from some experiences of

games against the top-level human players. However, as the number of features grew, it
became hard to produce these weights accurately. The goal of this paper is to use TD
learning to help adjust these weights automatically.

3 TD Learning for Connect6

This section first reviews TD learning and TDLeaf/bootstrapping in Subsections 3.1
and 3.2 respectively, and then describes our design for TD learning in Subsection 3.3.

124 I-C. Wu et al.

3.1 TD Learning

As described in Section 1, TD learning is a kind of reinforcement learning. In TD(0)
(see [13][15]), the value function ܸ of a state is used to approximate the expected
return, instead of waiting until the complete return has been observed. The error
between states ݏ௧ and ݏ௧ାଵ is ߜ௧ ൌ ௧ାଵݎ ൅ ܸሺݏ௧ାଵሻ െ ܸሺݏ௧ሻ, where ݎ௧ାଵ is the reward
at time ݐ ൅ 1. In Connect6 as well as some other computer games, the reward, say 1 for
winning and –1 for losing, is obtained at the end game, and the reward is zero during the
game playing. For clarity, for the end state (or the end game) ்ݏ, let the value of ܸሺ்ݏሻ
be ்ݎ . Then, the error is simplified as ߜ௧ ൌ ܸሺݏ௧ାଵሻ െ ܸሺݏ௧ሻ. The value of ܸሺݏ௧ሻ in
TD(0) is expected to be adjusted by the following value difference ∆ܸሺݏ௧ሻ,

 ∆ܸሺݏ௧ሻ ൌ ௧ߜߙ ൌ ௧ାଵሻݏ൫ܸሺߙ െ ܸሺݏ௧ሻ൯ (2)

where ߙ is a step-size parameter to control the learning rate. For general TD(ߣ) (also
see [13][15]), the value difference is

 ∆ܸሺݏ௧ሻ ൌ ߙ ቌሺ1 െ ሻߣ ෍ ௧ା௡ሻݏ௡ିଵܸሺߣ ൅ ሻ்ି௧ିଵ்ݏ௧ିଵܸሺି்ߣ
௡ୀଵ െ ܸሺݏ௧ሻቍ. (3)

Note that the TD(1) learning is similar to the learning with Monte-Carlo tree search.
In order to correct the value ܸሺݏ௧ሻ by the difference ∆ܸሺݏ௧ሻ, we can adjust the

feature weights ߠ by a difference ∆ߠ based on ׏ఏܸሺݏ௧ሻ. For linear TD(0) learning,
where ܸሺݏ௧ሻ is linear like formula (1), the difference ∆ߠ is

ߠ∆ ൌ ∆ܸሺݏ௧ሻ߮ሺݏ௧ሻ ൌ ௧ሻ (4)ݏ௧߮ሺߜߙ

In order to control the learning rate better, the above difference is modified with
normalization, like the NLMS [14], as follows.

ߠ∆ ൌ ∆ܸሺݏ௧ሻ ߮ሺݏ௧ሻԡ߮ሺݏ௧ሻԡଶ ൌ ௧ߜߙ ߮ሺݏ௧ሻԡ߮ሺݏ௧ሻԡଶ (5)

3.2 TDLeaf and Bootstrapping

The researchers in [3] proposed the so-called TDLeaf to improve the weights of the
features for their Chess program KNIGHTCAP. The method is to run the normal
alpha-beta search and choose the leaves of the principal variation (PV) for TD learning,
instead of the roots. However, as pointed out by [21], the method has the following
three drawbacks. First, only one update is used for each search and other information is
wasted. Second, the updates are only based on the positions of best play, which may not
represent all the moves. Third, the target search is accurate only when both the player
and opponent are strong.

In order to solve these problems, the researchers in [21] proposed a new method for
bootstrapping from the minimax game-tree search. In their method, for all subtrees of
the search, if their PVs are available, nodes on PVs are used for training. Note that their

 Temporal Difference Learning for Connect6 125

method can be extended to alpha-beta search. Thus, they update many nodes with PVs
in the search tree, rather than a single node, and the outcome of a deep search is used for
training, instead of the outcome of a subsequent search.

3.3 Our TD Learning

Although the bootstrapping method seems promising, our design of TD learning for
NCTU6 brings us back to the original TD(0) learning as explained below (see the last
paragraph). Now, we want to describe the necessity of using a two-ply update, ∆ܸሺݏ௧ሻ ൌ ௧ାଶሻݏ൫ܸሺߙ െ ܸሺݏ௧ሻ൯, instead of a one-ply update as in formula (2). In a
one-ply update, updating the nodes between both players may cause overweighting the
updates, since the player to move has always one move less (less advantage) than
the other. Thus, the phenomenon of overweighting may cause a large fluctuation of the
evaluated values. This problem is even more serious for Connect6 (recall two stones
per move). Our algorithm for TD(0) is designed based on Silver’s (cf. Algorithm 3 in
[13]) as follows.

Algorithm TD(0) Learning Applied to NCTU6
Procedure TD_Learning(n) Procedure Greedy(board, ε)

1:
2:
3:
4:
5:
6:

i = 0
while i < n do

board.Initialize()
SelfPlay(board)
i++

end while

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

if Bernoulli(ε) = 1 then return Random(board)
if board.BlackToPlay() then
 a* = Pass; V* = 0
 for all a ∈ board.Legal() do
 board.Play(a)
 V = Eval(board)
 if V ൒ V* then
 V* = V; a* = a
 end if
 board.Undo()
 end for
else // omitted for White to play
end if
return a*

end procedure

Procedure SelfPlay(board)
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

t = 0
V0,φ0 = Eval(board)
while not board.Terminal() do
 at = Greedy(board,ε)
 board.Play(at)
 t++
 Vt, φt = Eval(board)
 if t ൒ 2 then
 δ= Vt - Vt-2
 Norm = ||φt-2[i]||2
 for all i ∈φt-2 do
 θ[i] += αδφt-2[i] / Norm
 end for
 end if
end while

end procedure

Procedure Eval(board)
1:
2:
3:
4:
5:
6:
7:

φ = board.GetFeatures()
v = 0
for all i ∈φ do

v += φ[i]θ[i]
end for
V = 1/(1+e-v)
return V, φ

end procedure end procedure

Our TD learning performs n training games by calling TD_Learning(n). In each
training game, we initialize the state (or board) by board.Initialize(), which selects
initial boards from our database, mainly selected from Little Golem [9]. Then, we call
the procedure SelfPlay(board), to make the subsequent moves of a game.

This procedure SelfPlay(board) plays on its own by repeatedly calling
Greedy(board,ε) to make moves. The procedure Greedy(board,ε) selects a move

126 I-C. Wu et al.

according to the so-called ε-Greedy policy [13][15]. The ε-Greedy policy is to play at
random with probability ε, as in Line 1 of this procedure, and to play the best move with
probability (1-ε), as in Lines 2 to 14 (the case of White to play is omitted). The best
move (or action) is chosen among all moves of which the values are determined by the
evaluation procedure Eval.

The procedure Eval returns the state value and the vector of feature numbers of the
board. As formula (1), the value function ܸሺݏሻ ൌ ߮ሺݏሻ · is evaluated in Lines 1 to 5 ߠ
and adjusted into the range [0,1] by a function 1/ሺ1 ൅ ݁ି௏ሺ௦ሻሻ in Line 6. In case that
Black (White) wins, the procedure Eval returns the state value one (zero).

Now, let us compare TD(0) with the bootstrapping method [21]. As described in
Section 2, the search tree in NCTU6 is coarse-grained and shallow (the averaged depth
of the tree is only about four). Consider the PV in a tree search, {ݏ଴, ݏଵ, ݏଶ, ݏଷ, ݏସ},
where ݏ଴ is the root and ݏସ is a leaf. Due to two-ply updates, we can only update both
from ݏସ to ݏ଴ and from ݏସ to ݏଶ in the bootstrapping method. For many of other
subtrees, if their PVs are available, say {ݏଵ, ݏଶ, ݏଷ, ݏସ}, we can only update from ݏସ to ݏଶ. According to our analysis on NCTU6, only about 400 updates can be used for
training in an alpha-beta search tree with 10,000 nodes expanded. In contrast, 10,000
updates can be used for training in TD(0), when 10,000 nodes expanded. Thus, TD(0)
apparently has more updates than bootstrapping.

4 Implementation Issues

This section discusses three issues when implementing the linear TD(0) learning for
Connect6. These issues include (a) selecting features, (b) removing winning/losing
moves found by threat-space search, and (c) using moves played by strong human
players. These issues are discussed in the following three subsections respectively.

4.1 Feature Selection

As described above, this paper modifies the evaluation function into a linear
combination of features, including the types of patterns, the distance of the patterns
from the board center (or border), the direction of the pattern, and the game stages.

As described in Section 2, the types of patterns mainly include 1-threat, 2-threat,
live-3 to live-1, dead-3 to dead-1, etc. In fact, there are more complex patterns, such as
the pattern with live-1 and dead-2 at the same time. For example, the diagonal line
containing two white stones in Figure 1 includes both dead-2 and live-1 at the same
time. This pattern is actually stronger than dead-2 and live-1. However, for clarity of
discussion, such patterns are disregarded in this paper.

Some other important features related to patterns are discussed as follows. The
patterns on the border of the board tend to threaten the opponent less. The diagonal line
patterns tend to be stronger, since diagonal line patterns normally cover a larger
territory for attacking.

Next, we want to investigate features in different stages. Like some other games,
such as Chinese Chess, the playing strategies in the three stages, opening, middle-game
and end-game, are somewhat different. So, in our TD learning, the moves and features
are also treated differently in the three stages. For instance, according to top-level

 Temporal Difference Learning for Connect6 127

human players, live-2 in the opening is more important than in the end-game, since
threats are not many in the opening.

4.2 Threat Space Search

It is a really important issue to remove winning/losing moves found by threat-space
search (TSS). The key reason is that these losing moves are removed and not evaluated
in alpha-beta search (like what NCTU6 does). Training these moves becomes noise in
learning. In Connect6, it is a well-known strategy for players not to abuse playing
2-threats or 1-threats, if no winning strategies are found yet. Just like Go, beginners are
taught not to abuse playing atari. Although the authors of NCTU6 [26] knew the idea
upon designing, it was hard to tune the weights by hand. This is also one of the
motivations of this paper.

Fig. 2. Avoiding winning/losing paths

If we do not remove these moves, the TD learning tends to make the weights of
1-threats or 2-threats excessively high. In the case that one player wins by a VCDT in
the TD learning, the player plays many 2-threat moves in the last moves of the training
games as shown in Figure 2. Consequently, 2-threat is wrongly regarded as a rather
important feature and therefore adjusted to be overweighed.

In order to solve this problem, we propose to use TSS, the RZOP search [24] also
used in NCTU6, to remove those winning/losing moves near the end as above. More
specifically, TSS is performed to check winning of the position before running Greedy
in Line 4 of SelfPlay, and once a winning move is found, SelfPlay terminates the game
and restarts another training game. One minor drawback of this approach is the higher
computation time for training, since the times spent on TSS are longer than node
evaluation/expansion.

4.3 Learning from the Games Played by Strong Human Players

In Subsection 3.3, our TD learning program uses the procedure Greedy to make a move
by the ε-Greedy policy. It is also an interesting issue to use the games played by strong
human players, instead of using Greedy, as in [12]. Namely, in Line 4 of SelfPlay,
Greedy is replaced by a routine which retrieves moves from the game record. This
paper collected the games, about 30,197 games, where at least one of the players was
ranked with points higher than 1800 from Little Golem [9]. The collection of records of
these games is called the expert collection in this paper.

128 I-C. Wu et al.

One advantage of using these games for learning is to spend less time on making a
move. In order to remove winning/losing moves by TSS, we used a preprocessor to run
TSS backwards from the leaf. Normally, TSS runs faster on winning/losing positions
than the positions without winning/losing. Since running TSS backwards is performed
on at most one position without winning/losing, the computation time is lower than that
for running TSS forwards as in the algorithm in Subsection 3.3. A second advantage is
to let the program learn to play like these players, if possible. For example, these
players usually do not abuse playing 1-threats or 2-threats.

5 Experiments

In this section, we first describe our experimental environment in Subsection 5.1. Then,
we analyze our experiments in different aspects, including stages, threat-space search,
and training games, which are discussed in Subsections 5.2 to 5.4, respectively. Finally,
we summarize and discuss the experimental results in Subsection 5.5.

5.1 Experimental Environment

In our experiments, we used TD(0) learning as shown in the algorithm in Subsection
3.3. We set ߙ ൌ 0.1 and ߝ ൌ 0.1. The number of features in total was about 500.

In our experiments, we measured the strength of the program learned from TD
learning like [11] as follows. After finishing TD learning, we replaced the original
feature weights of NCTU6 by the trained feature weights. Let NCTU6-TD denote the
NCTU6 with the newly trained feature weights. In order to compare the strength of
NCTU6-TD with that of the original NCTU6, we selected 176 popular openings from
the expert collection. Namely, the openings that were played in at least 30 games in the
collection. For each selected opening, let NCTU6-TD play twice against NCTU6, one
for Black and the other for White, respectively. Thus, NCTU6-TD played 352 games
against NCTU6 in total. NCTU6-TD obtained 2 points for a win, 1 for a draw, and
nothing for a loss. The win rate was the total obtained points divided by 704, after
finishing all the 352 games.

For each experiment of TD learning, all feature weights were initialized to 0 (zero
knowledge), and the numbers of training games we ran were 0, 100, 300, 1000, 3000,
10000 and 30000. Since it took long times to do the experiments, we used the volunteer
computing system in a job-level manner as described in [28].

5.2 Stages

As mentioned in Subsection 4.1, the playing strategies in the three stages, opening,
middle-game, and end-game, are somewhat different. In our experiments, the first 10
moves in a game were considered to be played in the opening, the next 20 moves were
in the middle-game, and the rest were in the end-game.

In this subsection, we tried four versions of stages for comparisons. The first
version, called 1-stage, was to have one stage only. The second version, called 3-stage,
was to have three stages as above. Thus, each feature had the different weights in

 Temporal Difference Learning for Connect6 129

different stages in 3-stage, but the same in 1-stage. The third version, called
hybrid-3-stage, was to use the feature weights of the original NCTU6 in opening, but
use the feature weights trained by the second version in both middle-game and
end-game. The fourth version, called hybrid-2-stage, was the same as hybrid-3-stage
except that middle-game and end-game are combined into one stage.

Fig. 3. The win rates for TD learning with different versions of stages

Figure 3 demonstrates the experimental results for the four different versions. In all
of these experiments, we removed moves via TSS (namely the RZOP search) as
described in Subsection 4.2. The results showed that both hybrid-2-stage and
hybrid-3-stage were consistently better than 1-stage and 3-stage. The best was the one
after 3000 training games in hybrid-3-stage. In our analysis, we observed two reasons
for the phenomenon (of being the best) as follows. First, in opening, the features for
those threats or patterns far away from the center were rarely used and therefore trained
only few times. Thus, it became hard to learn these feature weights well in the first two
versions. Second, for TD(0) learning, it was slow to learn the feature weights in
opening since the learning propagation from end-game to opening was slow. Thus, the
features in opening were relatively hard to learn.

For both hybrid-2-stage and hybrid-3-stage, hybrid-3-stage performed better for
3000 training games or more, but worse for less than 3000, for the following reason.
Since hybrid-3-stage had more features, the learning rate was much slower. However,
hybrid-3-stage performed better if there were sufficient training games.

5.3 Threat Space Search

As explained in Subsection 4.2, threat-space search (TSS) is a quite important issue.
Figure 4 shows the results for TD learning with and without removing winning/losing
moves found by TSS (namely the RZOP search [24]). In all of these experiments, we
used hybrid-3-stage as above.

The results demonstrated significant and consistent improvements in all cases. The
win rates with TSS (used to remove winning/losing moves) were about at least 7.1%
higher than those without TSS. From the results, we may conclude that TSS plays a
quite significant role in the TD learning.

10
20
30
40
50
60

0 100 300 1000 3000 10000 30000

W
in

 r
at

e

Number of training games

hybrid-3-stage hybrid-2-stage 3-stage 1-stage

130 I-C. Wu et al.

Fig. 4. The win rates for TD learning with and without using TSS

Table 1. The weights of features learned from TD learning with/without TSS

Feature Weights With TSS
Without
TSS ்ܹଶ 0.52982 1.73220 ்ܹଵ 0.51070 0.83796 ௅ܹଷ 0.49358 0.73046 ஽ܹଷ 0.27506 0.25531 ௅ܹଶ 0.20028 0.07715

Table 1 shows the weights of the features, 2-threats, 1-threat, live-3, dead-3, and
live-2, learned from the TD learning with and without using TSS. The result clearly
shows that the weight of 2-threat was high relatively to others (்ܹଶ is nearly double of ்ܹଵ) in TD learning without TSS.

5.4 Training Games

As described in Subsection 4.3, selecting training games is a delicate issue for TD
learning. The experiments in this subsection were done to investigate this issue by
considering TD learning that (1) used the game records in the expert collection and that
(2) used ߝ-Greedy to generate moves. In addition, for each case, we also considered TD
learning with and without TSS (removing winning/losing moves).

Figure 5 showed the results for four kinds of TD learning. In all of these experiments
we also used hybrid-3-stage as above. Still, it also showed that the TD learning with
TSS was consistently and clearly better than the learning without TSS.

Below we consider using TSS. The results showed that the TD learning with ߝ-Greedy was slightly better than that with the expert collection for 1000 to 10,000
training games. In the case of using 30,000 training games, the TD learning with the
expert collection was slightly better. Since the collection included about 30,000 games
only, it was unsure about whether the win rate would be higher for more games.

20

30

40

50

60

0 100 300 1000 3000 10000 30000

W
in

 r
at

e

Number of training games

with TSS without TSS

 Temporal Difference Learning for Connect6 131

Fig. 5. The win rates for TD learning using ε-Greedy and the expert collection

5.5 Discussion

From Subsections 5.2 to 5.4, we may conclude that TD learning with TSS (used to
remove winning/losing moves) is the most important factor to improve the strength.
The win rates with TSS were at least 7.1% higher than those without it. Using the
version of hybrid-3-stage also helps improve TD learning. The merit of using the expert
collection is unclear yet.

Fig. 6. The win rates for TD learning with more different training games

In the rest of this subsection, we discuss the convergence and computation times for
training. In order to see whether TD learning in our experiments converges, we also ran
6000, 15000, 20000 and 25000 training games for the experiment with
hybrid-3-stage,ε-Greedy, and TSS. Figure 6 shows that these values converged around
53-58% after running more than 3000 training games.

As for the training times, Table 2 showed the total times spent on training 10,000
games by using TSS or not, and by using the expert collection or not. Apparently, the
versions with TSS ran much more slowly than the ones without TSS, due to the extra
TSS overhead. Here, we consider the two versions with TSS. The one with the expert
collection ran much faster than that with ߝ-Greedy, since we removed winning/losing
moves backwards from the leaves in the former, as explained in Subsection 4.2.

20

30

40

50

60

0 100 300 1000 3000 6000 10000 15000 20000 25000 30000

W
in

 r
at

e

Number of training games

ε ε

132 I-C. Wu et al.

Table 2. The comparison of the time spent with/without TSS

TD Learning Times for 10,000 training games ε-Greedy with TSS 677 min. (or 11 hr. 17 min.) ε-Greedy without TSS 31 min.
Expert collection with TSS 32 min.
Expert collection without TSS 2 min.

6 Conclusion

In this paper, we demonstrate a solid application of TD(0) learning for Connect6. We
successfully use TD(0) learning to improve the strength of NCTU6, a Connect6
program. Our experiments showed that the best version, improved via our TD learning
method, obtained about a 58% win rate against the original NCTU6 program.

This paper also discusses several issues of implementing TD learning. From them
we may conclude that TD learning plays a quite important role to remove
winning/losing moves found by TSS (namely the RZOP search used in NCTU6). Our
experiments demonstrated significant and consistent improvements in all cases. Using
the version of hybrid-3-stage also helps improve TD learning. The merit of using the
professional collection is unclear.

Although the bootstrapping method was not tried, this paper demonstrated that
TD(0) learning worked sufficiently well for NCTU6. From this paper, it is conjectured
that TD(0) should also work for other programs with coarse-grained and shallow search
trees, though the comparison between TD(0) and bootstrapping is still to be performed
in the future.

Acknowledgement. The authors would like to thank the anonymous referees for their
valuable comments, and thank the National Science Council of the Republic of China
(Taiwan) for financial support of this research under contract numbers NSC
97-2221-E-009-126-MY3, NSC 99-2221-E-009-102-MY3 and NSC 99-2221-
E-009-104 -MY3.

References

[1] Allis, L.V., van den Herik, H.J., Huntjens, M.P.H.: Go-Moku Solved by New Search
Techniques. Computational Intelligence 12, 7–23 (1996)

[2] Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence, Ph.D. Thesis,
University of Limburg, Maastricht (1994)

[3] Baxter, J., Tridgell, A., Weaver, L.: Learning to Play Chess Using Temporal Differences.
Machine Learning 40(3), 243–263 (2000)

[4] Beal, D.F., Smith, M.C.: First Results from Using Temporal Difference Learning in Shogi.
In: van den Herik, H.J., Iida, H. (eds.) CG 1998. LNCS, vol. 1558, pp. 113–125. Springer,
Heidelberg (1999)

 Temporal Difference Learning for Connect6 133

[5] Buro, M.: From Simple Features to Sophisticated Evaluation Functions. In: van den Herik,
H.J., Iida, H. (eds.) CG 1998. LNCS, vol. 1558, pp. 126–145. Springer, Heidelberg (1999)

[6] Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelligence 6,
293–326 (1975)

[7] Lin, H.-H., Sun, D.-J., Wu, I.-C., Yen, S.-J.: The 2010 TAAI Computer-Game
Tournaments. ICGA Journal 34(1), 51–55 (2011)

[8] Lin, P.-H., Wu, I.-C.: NCTU6 Wins in the Man-Machine Connect6 Championship 2009.
ICGA Journal 32(4), 230–233 (2009)

[9] Golem, L.: Online Connect6 games (2006), http://www.littlegolem.net/
[10] Renju International Federation, The International Rules of Renju (1998),

http://www.renju.nu/rifrules.htm
[11] Schaeffer, J., Hlynka, M., Jussila, V.: Temporal Difference Learning Applied to a

High-Performance Game-Playing Program. In: Proceedings of the 17th International Joint
Conference on Artificial Intelligence, pp. 529–534 (August 2001)

[12] Schraudolph, N.N., Dayan, P., Sejnowski, T.J.: Learning to Evaluate Go Positions via
Temporal Difference Methods. In: Baba, N., Jain, L. (eds.) Computational Intelligence in
Games, vol. 62. Springer, Berlin (2001)

[13] Silver, D.: Reinforcement Learning and Simulation-Based Search in Computer Go, Ph.D.
Dissertation, Dept. Comput. Sci., Univ. Alberta, Edmonton, AB, Canada (2009)

[14] Simon, H.: Adaptive Filter Theory. Prentice Hall (2002)
[15] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,

Cambridge (1998)
[16] Taiwan Connect6 Association, Connect6 homepage (2007),

http://www.connect6.org/
[17] TCGA Association, TCGA Computer Game Tournaments,

http://tcga.ndhu.edu.tw/TCGA2011/
[18] Tesauro, G.: TD-Gammon, a Self-Teaching Backgammon Program, Achieves

Master-Level Play. Neural Computation 6, 215–219 (1994)
[19] Thomsen, T.: Lambda-Search in Game Trees - with Application to Go. ICGA Journal 23,

203–217 (2000)
[20] Trinh, T., Bashi, A., Deshpande, N.: Temporal Difference Learning in Chinese Chess. In:

Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 612–618.
Springer, Heidelberg (1998)

[21] Veness, J., Silver, D., Uther, W., Blair, A.: Bootstrapping from Game Tree Search. In:
Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (eds.), Advances
in Neural Information Processing Systems 22. pp. 1937–1945 (2009)

[22] Wu, I.-C., Huang, D.-Y.: A New Family of k-in-a-Row Games. In: van den Herik, H.J.,
Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M(J.) (eds.) CG 2005. LNCS, vol. 4250, pp.
180–194. Springer, Heidelberg (2006)

[23] Wu, I.-C., Lin, P.-H.: NCTU6-Lite Wins Connect6 Tournament. ICGA Journal
(SCI) 31(4), 240–243 (2008)

[24] Wu, I.-C., Lin, P.-H.: Relevance-Zone-Oriented Proof Search for Connect6. IEEE
Transaction Computer Intelligence AI Games 2(3) (September 2010)

[25] Wu, I.-C., Yen, S.-J.: NCTU6 Wins Connect6 Tournament. ICGA Journal (SCI) 29(3),
157–159 (2006)

[26] Wu, I.-C., et al.: The Search Techniques in NCTU6 (in preparation)
[27] Wu, I.-C., Huang, D.-Y., Chang, H.-C.: Connect6. ICGA Journal 28(4), 234–242 (2006)
[28] Wu, I.-C., Lin, H.-H., Lin, P.-H., Sun, D.-J., Chan, Y.-C., Chen, B.-T.: Job-Level

Proof-Number Search for Connect6. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG
2010. LNCS, vol. 6515, pp. 11–22. Springer, Heidelberg (2011)

[29] Wu, I.-C., Lin, Y.-S., Tsai, H.-T., Lin, P.-H.: The Man-Machine Connect6 Championship
2011. ICGA Journal 34(2), 103–106 (2011)

	Temporal Difference Learning for Connect6
	Introduction
	Connect6 and NCTU6
	TD Learning for Connect6
	TD Learning
	TDLeaf and Bootstrapping
	Our TD Learning

	Implementation Issues
	Feature Selection
	Threat Space Search
	Learning from the Games Played by Strong Human Players

	Experiments
	Experimental Environment
	Stages
	Threat Space Search
	Training Games
	Discussion

	Conclusion
	References

