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Abstract. In this paper, we apply temporal difference (TD) learning to Connect6, 
and successfully use TD(0) to improve the strength of a Connect6 program, 
NCTU6. The program won several computer Connect6 tournaments and also 
many man-machine Connect6 tournaments from 2006 to 2011. From our 
experiments, the best improved version of TD learning achieves about a 58% win 
rate against the original NCTU6 program. This paper discusses three 
implementation issues that improve the program. The program has a convincing 
performance in removing winning/losing moves via threat-space search in TD 
learning.  

1 Introduction 

Temporal difference (TD) learning [13][15], a kind of reinforcement learning, is a 
model-free method for adjusting the state values of the subsequent evaluations. This 
method has been applied to computer games such as Backgammon [18], Checkers [11], 
Chess [3], Shogi [4], Go [13] and Chinese Chess [20]. TD learning has been 
demonstrated to improve world class game-playing programs in the two following 
cases, TD-GAMMON [18] using TD(λ) and CHINOOK [11] using TDLeaf.  

In this paper, we apply TD learning to Connect6, and successfully use TD(0) to 
improve the strength of a Connect6 program, NCTU6. NCTU6 won the gold medal in 
the Connect6 tournaments [7][17][23][25] several times from 2006 to 2011, and 
defeated many top-level human Connect6 players [8][16][29] in man-machine 
Connect6 championships from 2008 to 2011.  

Our experiments showed that the best version of TD learning obtained about a 58% 
win rate against the original NCTU6 program. The results demonstrated that TD(0) 
learning can also be used to improve a high-performance world-class game-playing 
program.  

In this paper, we discuss three implementation issues for TD learning, (a) selecting 
features, (b) removing winning/losing moves (found by threat-space search, which will 
be described in Section 4), and (c) using the moves played by strong human players for 
training. Our experiments demonstrate that the issue (b) is quite significant to improve 
the playing strength of NCTU6.  

This paper is organized as follows. Section 2 reviews the game Connect6 and the 
program NCTU6. Section 3 reviews TD learning including TDLeaf and bootstrapping, 
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and describes our design of TD learning for Connect6. Section 4 discusses all the 
implementation issues of using TD learning, and Section 5 shows the experimental 
results. Section 6 provides concluding remarks.  

2 Connect6 and NCTU6 

Connect6 [22][27] is a kind of six-in-a-row game that was introduced by Wu et al. Two 
players, named Black and White in this paper, alternately place two black and white 
stones respectively on empty intersections of a Go board (a 19×19 board) in each turn. 
Black plays first and places one stone initially. The first player who obtains six 
consecutive stones of his own horizontally, vertically, or diagonally wins. The game has 
been played in one of tournaments held in Computer Olympiads [23][25] (as well as in 
some other tournaments [7][17]) since 2006. 

From [22][27], we know that threats are the key to winning Connect6 (like Go-Moku 
[1][2] and Renju [10]). According to their definitions, a position is t-threat against the 
opponent, if and only if t is the smallest number of stones that the opponent needs to 
place to prevent from losing the game on the next move. A move is called a 1-threat 
(also called single-threat) move if the position after the move is 1-threat, a 2-threat 
(double-threat) move if 2-threat, and a 3-threat (triple-threat) move if 3-threat. In 
Connect6, one player clearly wins by a 3-threat-or-more move. 

In Connect6, many line patterns (abbreviated as patterns in this paper), such as live-l 
and dead-l, can grow into threats. As defined in [22][27], live-l (dead-l) of a player can 
turn into 2-threat (1-threat) if the player places (4 – l) additional stones. For example, 
live-3 (dead-3) can turn into a 2-threat (1-threat) after one additional stone is placed. 

In [22][27], a type of winning strategy, called Victory by Continuous 
Double-Threat-or-more moves (VCDT) is described. The idea is to win by making 
continuously double-threat moves and ending by a triple-threat-or-more move or 
connecting up to six in all variations. It is similar to Victory by Continuous Four (VCF), 
a term used in the Renju community [10]. Similarly, the type of winning strategy with 
additional single-threat moves allowed is called Victory by Continuous 
Single-Threat-or-more moves (VCST). In the communities of Connect6 (Renju also), 
professionals are commonly keen to find these strategies, if there exists any.  

Some of the authors developed a lambda-based [19] threat-space search (TSS) 
technique in [24], named relevance-zone-oriented proof (RZOP) search, to find these 
winning strategies, VCDTs or VCSTs, efficiently and accurately in most of the cases in 
which there exists any. The RZOP search was incorporated into a Connect6 program, 
named NCTU6, which won several computer Connect6 tournaments and man-machine 
Connect6 tournaments [7][8][16][17][23][25][29] from 2006 to 2011. When finding no 
winning strategies, NCTU6 [26] is back to use alpha-beta search to find the best move. 
In the alpha-beta search tree [6], the leaf values are estimated by an evaluation function, 
and the values of the internal nodes are calculated in the mini-max manner.  

In order to make the search more accurate, NCTU6 used the RZOP search [24] to 
find the winning/losing moves in most nodes in the alpha-beta search. The underlying 
principle is to avoid choosing losing moves. For extra RZOP search, the averaged time 
for node evaluation/expansion in alpha-beta search is long. Hence, the number of nodes 
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in alpha-beta search is relatively small, about 50-500 per second in NCTU6, and the 
depth of the tree is small too, only about four in NCTU6. Since the alpha-beta search 
tree is small, a more sophisticated node evaluation/expansion was used to make the 
search more accurate. In this paper, such a search with heavy node computation is said 
to be coarse-grained. In contrast, strong Chinese-Chess programs (similar to Chess 
programs) are fine-grained, normally expanding about a million nodes per second and 
searching deeply.  

  

Fig. 1. An example of evaluating V(s) for Black 

In NCTU6, the evaluation function of positions can be viewed as a function of 
features, such as threats, live-ls and dead-ls. Although the function was actually quite 
complicated, we modified it into a linear combination of features [5] for TD learning. In 
the example in Figure 1, Black has 1 single-threat, 2 live-2s and 7 live-1s, and White has 
1 live-3, 2 dead-2s and 5 live-1s (note that dead-1 is not discussed in this paper for 
clarity). Given feature weights, NCTU6 evaluates the value of the position for Black in 
Figure 1 as 1 ൈ ଵ்ݓ ൅ 2 ൈ ௅ଶݓ ൅ 7 ൈ ௅ଵݓ ൅ 1 ൈ ௅ଷିݓ ൅ 2 ൈ ஽ଶିݓ ൅ 5 ൈ  ௅ଵିݓ

where ݓ௙ is the weight of feature f, which indicates n-threat by ܶ݊, live-n (dead-n) by (݊ܦ) ݊ܮ, and the opponent’s features by – ݂. Note that for 2-threat we use 1 ൈ  ,ଶ்ݓ
instead of 2 ൈ   is ݏ denote a vector of feature weights. Thus, the value of a position ߠ and ,ݏ ሻ denote a vector of feature numbers in a position (or state)ݏଵ. Let ߮ሺ்ݓ

 ܸሺݏሻ ൌ ߮ሺݏሻ ·  (1) ߠ

In the example in Figure 1, ߮ሺݏሻ ൌ ሾ1,2,7,1,2,5ሿ , if the vector of features is ሾܶ1, ,2ܮ ,1ܮ െ3ܮ, െ2ܦ, െ1ܮሿ.  
In the original NCTU6, the weights ߠ were hand-tuned from some experiences of 

games against the top-level human players. However, as the number of features grew, it 
became hard to produce these weights accurately. The goal of this paper is to use TD 
learning to help adjust these weights automatically.  

3 TD Learning for Connect6 

This section first reviews TD learning and TDLeaf/bootstrapping in Subsections 3.1 
and 3.2 respectively, and then describes our design for TD learning in Subsection 3.3.  



124 I-C. Wu et al. 

3.1 TD Learning  

As described in Section 1, TD learning is a kind of reinforcement learning. In TD(0) 
(see [13][15]), the value function ܸ of a state is used to approximate the expected 
return, instead of waiting until the complete return has been observed. The error 
between states ݏ௧ and ݏ௧ାଵ is ߜ௧ ൌ ௧ାଵݎ ൅ ܸሺݏ௧ାଵሻ െ ܸሺݏ௧ሻ, where ݎ௧ାଵ is the reward 
at time ݐ ൅ 1. In Connect6 as well as some other computer games, the reward, say 1 for 
winning and –1 for losing, is obtained at the end game, and the reward is zero during the 
game playing. For clarity, for the end state (or the end game) ்ݏ, let the value of ܸሺ்ݏሻ 
be ்ݎ . Then, the error is simplified as ߜ௧ ൌ ܸሺݏ௧ାଵሻ െ ܸሺݏ௧ሻ. The value of ܸሺݏ௧ሻ in 
TD(0) is expected to be adjusted by the following value difference ∆ܸሺݏ௧ሻ,  

 ∆ܸሺݏ௧ሻ ൌ ௧ߜߙ ൌ ௧ାଵሻݏ൫ܸሺߙ െ ܸሺݏ௧ሻ൯ (2) 

where ߙ is a step-size parameter to control the learning rate. For general TD(ߣ) (also 
see [13][15]), the value difference is  

 ∆ܸሺݏ௧ሻ ൌ ߙ ቌሺ1 െ ሻߣ ෍ ௧ା௡ሻݏ௡ିଵܸሺߣ ൅ ሻ்ି௧ିଵ்ݏ௧ିଵܸሺି்ߣ
௡ୀଵ െ ܸሺݏ௧ሻቍ. (3) 

Note that the TD(1) learning is similar to the learning with Monte-Carlo tree search.  
In order to correct the value ܸሺݏ௧ሻ by the difference ∆ܸሺݏ௧ሻ, we can adjust the 

feature weights ߠ by a difference ∆ߠ based on ׏ఏܸሺݏ௧ሻ. For linear TD(0) learning, 
where ܸሺݏ௧ሻ is linear like formula (1), the difference ∆ߠ is  

ߠ∆  ൌ ∆ܸሺݏ௧ሻ߮ሺݏ௧ሻ ൌ  ௧ሻ  (4)ݏ௧߮ሺߜߙ

In order to control the learning rate better, the above difference is modified with 
normalization, like the NLMS [14], as follows.  

ߠ∆  ൌ ∆ܸሺݏ௧ሻ ߮ሺݏ௧ሻԡ߮ሺݏ௧ሻԡଶ ൌ ௧ߜߙ ߮ሺݏ௧ሻԡ߮ሺݏ௧ሻԡଶ   (5) 

3.2 TDLeaf and Bootstrapping 

The researchers in [3] proposed the so-called TDLeaf to improve the weights of the 
features for their Chess program KNIGHTCAP. The method is to run the normal 
alpha-beta search and choose the leaves of the principal variation (PV) for TD learning, 
instead of the roots. However, as pointed out by [21], the method has the following 
three drawbacks. First, only one update is used for each search and other information is 
wasted. Second, the updates are only based on the positions of best play, which may not 
represent all the moves. Third, the target search is accurate only when both the player 
and opponent are strong.  

In order to solve these problems, the researchers in [21] proposed a new method for 
bootstrapping from the minimax game-tree search. In their method, for all subtrees of 
the search, if their PVs are available, nodes on PVs are used for training. Note that their 
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method can be extended to alpha-beta search. Thus, they update many nodes with PVs 
in the search tree, rather than a single node, and the outcome of a deep search is used for 
training, instead of the outcome of a subsequent search.  

3.3 Our TD Learning  

Although the bootstrapping method seems promising, our design of TD learning for 
NCTU6 brings us back to the original TD(0) learning as explained below (see the last 
paragraph). Now, we want to describe the necessity of using a two-ply update, ∆ܸሺݏ௧ሻ ൌ ௧ାଶሻݏ൫ܸሺߙ െ ܸሺݏ௧ሻ൯, instead of a one-ply update as in formula (2). In a 
one-ply update, updating the nodes between both players may cause overweighting the 
updates, since the player to move has always one move less (less advantage) than  
the other. Thus, the phenomenon of overweighting may cause a large fluctuation of the 
evaluated values. This problem is even more serious for Connect6 (recall two stones 
per move). Our algorithm for TD(0) is designed based on Silver’s (cf. Algorithm 3 in 
[13]) as follows.  

 

Algorithm TD(0) Learning Applied to NCTU6 
Procedure TD_Learning(n) Procedure Greedy(board, ε)

1: 
2: 
3: 
4: 
5: 
6: 

i = 0 
while i < n do 

board.Initialize() 
SelfPlay(board) 
i++ 

end while 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11:
12:
13: 
14: 

if Bernoulli(ε) = 1 then return Random(board) 
if board.BlackToPlay() then 
  a* = Pass; V* = 0 
  for all a ∈ board.Legal() do 
    board.Play(a) 
    V = Eval(board) 
    if V ൒ V* then 
      V* = V; a* = a 
    end if 
    board.Undo() 
  end for 
else // omitted for White to play 
end if 
return a* 

end procedure 

Procedure SelfPlay(board) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

t = 0 
V0,φ0 = Eval(board) 
while not board.Terminal() do 
  at = Greedy(board,ε) 
  board.Play(at) 
  t++ 
  Vt, φt = Eval(board) 
  if t ൒ 2 then 
    δ= Vt - Vt-2 
    Norm = ||φt-2[i]||2 
    for all i ∈φt-2 do 
      θ[i] += αδφt-2[i] / Norm  
    end for 
  end if 
end while

end procedure 

Procedure Eval(board)
1: 
2: 
3: 
4: 
5: 
6: 
7: 

φ = board.GetFeatures() 
v = 0 
for all i ∈φ do 

v += φ[i]θ[i] 
end for 
V = 1/(1+e-v) 
return V, φ 

end procedure end procedure
 

Our TD learning performs n training games by calling TD_Learning(n). In each 
training game, we initialize the state (or board) by board.Initialize(), which selects 
initial boards from our database, mainly selected from Little Golem [9]. Then, we call 
the procedure SelfPlay(board), to make the subsequent moves of a game.  

This procedure SelfPlay(board) plays on its own by repeatedly calling 
Greedy(board,ε) to make moves. The procedure Greedy(board,ε) selects a move 
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according to the so-called ε-Greedy policy [13][15]. The ε-Greedy policy is to play at 
random with probability ε, as in Line 1 of this procedure, and to play the best move with 
probability (1-ε), as in Lines 2 to 14 (the case of White to play is omitted). The best 
move (or action) is chosen among all moves of which the values are determined by the 
evaluation procedure Eval.  

The procedure Eval returns the state value and the vector of feature numbers of the 
board. As formula (1), the value function ܸሺݏሻ ൌ ߮ሺݏሻ ·  is evaluated in Lines 1 to 5 ߠ
and adjusted into the range [0,1] by a function 1/ሺ1 ൅ ݁ି௏ሺ௦ሻሻ in Line 6. In case that 
Black (White) wins, the procedure Eval returns the state value one (zero).  

Now, let us compare TD(0) with the bootstrapping method [21]. As described in 
Section 2, the search tree in NCTU6 is coarse-grained and shallow (the averaged depth 
of the tree is only about four). Consider the PV in a tree search, {ݏ଴, ݏଵ, ݏଶ, ݏଷ, ݏସ}, 
where ݏ଴ is the root and ݏସ is a leaf. Due to two-ply updates, we can only update both 
from ݏସ  to ݏ଴  and from ݏସ  to ݏଶ  in the bootstrapping method. For many of other 
subtrees, if their PVs are available, say {ݏଵ, ݏଶ, ݏଷ, ݏସ}, we can only update from ݏସ to ݏଶ. According to our analysis on NCTU6, only about 400 updates can be used for 
training in an alpha-beta search tree with 10,000 nodes expanded. In contrast, 10,000 
updates can be used for training in TD(0), when 10,000 nodes expanded. Thus, TD(0) 
apparently has more updates than bootstrapping.  

4 Implementation Issues  

This section discusses three issues when implementing the linear TD(0) learning for 
Connect6. These issues include (a) selecting features, (b) removing winning/losing 
moves found by threat-space search, and (c) using moves played by strong human 
players. These issues are discussed in the following three subsections respectively.  

4.1 Feature Selection 

As described above, this paper modifies the evaluation function into a linear 
combination of features, including the types of patterns, the distance of the patterns 
from the board center (or border), the direction of the pattern, and the game stages.  

As described in Section 2, the types of patterns mainly include 1-threat, 2-threat, 
live-3 to live-1, dead-3 to dead-1, etc. In fact, there are more complex patterns, such as 
the pattern with live-1 and dead-2 at the same time. For example, the diagonal line 
containing two white stones in Figure 1 includes both dead-2 and live-1 at the same 
time. This pattern is actually stronger than dead-2 and live-1. However, for clarity of 
discussion, such patterns are disregarded in this paper.  

Some other important features related to patterns are discussed as follows. The 
patterns on the border of the board tend to threaten the opponent less. The diagonal line 
patterns tend to be stronger, since diagonal line patterns normally cover a larger 
territory for attacking.  

Next, we want to investigate features in different stages. Like some other games, 
such as Chinese Chess, the playing strategies in the three stages, opening, middle-game 
and end-game, are somewhat different. So, in our TD learning, the moves and features 
are also treated differently in the three stages. For instance, according to top-level 
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human players, live-2 in the opening is more important than in the end-game, since 
threats are not many in the opening.  

4.2 Threat Space Search  

It is a really important issue to remove winning/losing moves found by threat-space 
search (TSS). The key reason is that these losing moves are removed and not evaluated 
in alpha-beta search (like what NCTU6 does). Training these moves becomes noise in 
learning. In Connect6, it is a well-known strategy for players not to abuse playing 
2-threats or 1-threats, if no winning strategies are found yet. Just like Go, beginners are 
taught not to abuse playing atari. Although the authors of NCTU6 [26] knew the idea 
upon designing, it was hard to tune the weights by hand. This is also one of the 
motivations of this paper.  

 

Fig. 2. Avoiding winning/losing paths 

 

If we do not remove these moves, the TD learning tends to make the weights of 
1-threats or 2-threats excessively high. In the case that one player wins by a VCDT in 
the TD learning, the player plays many 2-threat moves in the last moves of the training 
games as shown in Figure 2. Consequently, 2-threat is wrongly regarded as a rather 
important feature and therefore adjusted to be overweighed.  

In order to solve this problem, we propose to use TSS, the RZOP search [24] also 
used in NCTU6, to remove those winning/losing moves near the end as above. More 
specifically, TSS is performed to check winning of the position before running Greedy 
in Line 4 of SelfPlay, and once a winning move is found, SelfPlay terminates the game 
and restarts another training game. One minor drawback of this approach is the higher 
computation time for training, since the times spent on TSS are longer than node 
evaluation/expansion.  

4.3 Learning from the Games Played by Strong Human Players 

In Subsection 3.3, our TD learning program uses the procedure Greedy to make a move 
by the ε-Greedy policy. It is also an interesting issue to use the games played by strong 
human players, instead of using Greedy, as in [12]. Namely, in Line 4 of SelfPlay, 
Greedy is replaced by a routine which retrieves moves from the game record. This 
paper collected the games, about 30,197 games, where at least one of the players was 
ranked with points higher than 1800 from Little Golem [9]. The collection of records of 
these games is called the expert collection in this paper.  
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One advantage of using these games for learning is to spend less time on making a 
move. In order to remove winning/losing moves by TSS, we used a preprocessor to run 
TSS backwards from the leaf. Normally, TSS runs faster on winning/losing positions 
than the positions without winning/losing. Since running TSS backwards is performed 
on at most one position without winning/losing, the computation time is lower than that 
for running TSS forwards as in the algorithm in Subsection 3.3. A second advantage is 
to let the program learn to play like these players, if possible. For example, these 
players usually do not abuse playing 1-threats or 2-threats.  

5 Experiments 

In this section, we first describe our experimental environment in Subsection 5.1. Then, 
we analyze our experiments in different aspects, including stages, threat-space search, 
and training games, which are discussed in Subsections 5.2 to 5.4, respectively. Finally, 
we summarize and discuss the experimental results in Subsection 5.5.  

5.1 Experimental Environment 

In our experiments, we used TD(0) learning as shown in the algorithm in Subsection 
3.3. We set ߙ ൌ 0.1 and ߝ ൌ 0.1. The number of features in total was about 500.  

In our experiments, we measured the strength of the program learned from TD 
learning like [11] as follows. After finishing TD learning, we replaced the original 
feature weights of NCTU6 by the trained feature weights. Let NCTU6-TD denote the 
NCTU6 with the newly trained feature weights. In order to compare the strength of 
NCTU6-TD with that of the original NCTU6, we selected 176 popular openings from 
the expert collection. Namely, the openings that were played in at least 30 games in the 
collection. For each selected opening, let NCTU6-TD play twice against NCTU6, one 
for Black and the other for White, respectively. Thus, NCTU6-TD played 352 games 
against NCTU6 in total. NCTU6-TD obtained 2 points for a win, 1 for a draw, and 
nothing for a loss. The win rate was the total obtained points divided by 704, after 
finishing all the 352 games.  

For each experiment of TD learning, all feature weights were initialized to 0 (zero 
knowledge), and the numbers of training games we ran were 0, 100, 300, 1000, 3000, 
10000 and 30000. Since it took long times to do the experiments, we used the volunteer 
computing system in a job-level manner as described in [28].  

5.2 Stages  

As mentioned in Subsection 4.1, the playing strategies in the three stages, opening, 
middle-game, and end-game, are somewhat different. In our experiments, the first 10 
moves in a game were considered to be played in the opening, the next 20 moves were 
in the middle-game, and the rest were in the end-game.  

In this subsection, we tried four versions of stages for comparisons. The first 
version, called 1-stage, was to have one stage only. The second version, called 3-stage, 
was to have three stages as above. Thus, each feature had the different weights in 
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different stages in 3-stage, but the same in 1-stage. The third version, called 
hybrid-3-stage, was to use the feature weights of the original NCTU6 in opening, but 
use the feature weights trained by the second version in both middle-game and 
end-game. The fourth version, called hybrid-2-stage, was the same as hybrid-3-stage 
except that middle-game and end-game are combined into one stage.  

 

 

Fig. 3. The win rates for TD learning with different versions of stages 

Figure 3 demonstrates the experimental results for the four different versions. In all 
of these experiments, we removed moves via TSS (namely the RZOP search) as 
described in Subsection 4.2. The results showed that both hybrid-2-stage and 
hybrid-3-stage were consistently better than 1-stage and 3-stage. The best was the one 
after 3000 training games in hybrid-3-stage. In our analysis, we observed two reasons 
for the phenomenon (of being the best) as follows. First, in opening, the features for 
those threats or patterns far away from the center were rarely used and therefore trained 
only few times. Thus, it became hard to learn these feature weights well in the first two 
versions. Second, for TD(0) learning, it was slow to learn the feature weights in 
opening since the learning propagation from end-game to opening was slow. Thus, the 
features in opening were relatively hard to learn.  

For both hybrid-2-stage and hybrid-3-stage, hybrid-3-stage performed better for 
3000 training games or more, but worse for less than 3000, for the following reason. 
Since hybrid-3-stage had more features, the learning rate was much slower. However, 
hybrid-3-stage performed better if there were sufficient training games.  

5.3 Threat Space Search 

As explained in Subsection 4.2, threat-space search (TSS) is a quite important issue. 
Figure 4 shows the results for TD learning with and without removing winning/losing 
moves found by TSS (namely the RZOP search [24]). In all of these experiments, we 
used hybrid-3-stage as above. 

The results demonstrated significant and consistent improvements in all cases. The 
win rates with TSS (used to remove winning/losing moves) were about at least 7.1% 
higher than those without TSS. From the results, we may conclude that TSS plays a 
quite significant role in the TD learning.  
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Fig. 4. The win rates for TD learning with and without using TSS 

Table 1. The weights of features learned from TD learning with/without TSS 

Feature Weights With TSS 
Without 
TSS ்ܹଶ 0.52982 1.73220 ்ܹଵ 0.51070 0.83796 ௅ܹଷ 0.49358 0.73046 ஽ܹଷ 0.27506 0.25531 ௅ܹଶ 0.20028 0.07715 

 

Table 1 shows the weights of the features, 2-threats, 1-threat, live-3, dead-3, and 
live-2, learned from the TD learning with and without using TSS. The result clearly 
shows that the weight of 2-threat was high relatively to others ( ்ܹଶ is nearly double of ்ܹଵ) in TD learning without TSS.  

5.4 Training Games 

As described in Subsection 4.3, selecting training games is a delicate issue for TD 
learning. The experiments in this subsection were done to investigate this issue by 
considering TD learning that (1) used the game records in the expert collection and that 
(2) used ߝ-Greedy to generate moves. In addition, for each case, we also considered TD 
learning with and without TSS (removing winning/losing moves).  

Figure 5 showed the results for four kinds of TD learning. In all of these experiments 
we also used hybrid-3-stage as above. Still, it also showed that the TD learning with 
TSS was consistently and clearly better than the learning without TSS.  

Below we consider using TSS. The results showed that the TD learning with ߝ-Greedy was slightly better than that with the expert collection for 1000 to 10,000 
training games. In the case of using 30,000 training games, the TD learning with the 
expert collection was slightly better. Since the collection included about 30,000 games 
only, it was unsure about whether the win rate would be higher for more games.  
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Fig. 5. The win rates for TD learning using ε-Greedy and the expert collection 

5.5 Discussion 

From Subsections 5.2 to 5.4, we may conclude that TD learning with TSS (used to 
remove winning/losing moves) is the most important factor to improve the strength. 
The win rates with TSS were at least 7.1% higher than those without it. Using the 
version of hybrid-3-stage also helps improve TD learning. The merit of using the expert 
collection is unclear yet.  

 

 

Fig. 6. The win rates for TD learning with more different training games 

In the rest of this subsection, we discuss the convergence and computation times for 
training. In order to see whether TD learning in our experiments converges, we also ran 
6000, 15000, 20000 and 25000 training games for the experiment with 
hybrid-3-stage,ε-Greedy, and TSS. Figure 6 shows that these values converged around 
53-58% after running more than 3000 training games. 

As for the training times, Table 2 showed the total times spent on training 10,000 
games by using TSS or not, and by using the expert collection or not. Apparently, the 
versions with TSS ran much more slowly than the ones without TSS, due to the extra 
TSS overhead. Here, we consider the two versions with TSS. The one with the expert 
collection ran much faster than that with ߝ-Greedy, since we removed winning/losing 
moves backwards from the leaves in the former, as explained in Subsection 4.2.  
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Table 2. The comparison of the time spent with/without TSS 

TD Learning  Times for 10,000 training games ε-Greedy with TSS 677 min. (or 11 hr. 17 min.) ε-Greedy without TSS 31 min.
Expert collection with TSS 32 min.
Expert collection without TSS 2 min.

 

6 Conclusion 

In this paper, we demonstrate a solid application of TD(0) learning for Connect6. We 
successfully use TD(0) learning to improve the strength of NCTU6, a Connect6 
program. Our experiments showed that the best version, improved via our TD learning 
method, obtained about a 58% win rate against the original NCTU6 program.  

This paper also discusses several issues of implementing TD learning. From them 
we may conclude that TD learning plays a quite important role to remove 
winning/losing moves found by TSS (namely the RZOP search used in NCTU6). Our 
experiments demonstrated significant and consistent improvements in all cases. Using 
the version of hybrid-3-stage also helps improve TD learning. The merit of using the 
professional collection is unclear. 

Although the bootstrapping method was not tried, this paper demonstrated that 
TD(0) learning worked sufficiently well for NCTU6. From this paper, it is conjectured 
that TD(0) should also work for other programs with coarse-grained and shallow search 
trees, though the comparison between TD(0) and bootstrapping is still to be performed 
in the future.  
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