
H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 108–120, 2012.
© Springer-Verlag Berlin Heidelberg 2012

4*4-Pattern and Bayesian Learning in Monte-Carlo Go*

Jiao Wang, Shiyuan Li, Jitong Chen, Xin Wei, Huizhan Lv, and Xinhe Xu

College of Information Science and Engineering Northeastern University
wangjiao@ise.neu.edu.cn

Abstract. The paper proposes a new model of pattern, namely the 4*4-Pattern,
to improve MCTS (Monte-Carlo Tree Search) in computer Go. A 4*4-Pattern
provides a larger coverage space and more essential information than the
original 3*3-Pattern. Nevertheless the latter is currently widely used. Due to the
lack of a central symmetry, it takes greater challenges to apply a 4*4-Pattern
compared to a 3*3-Pattern. Many details of a 4*4-Pattern implementation are
presented, including classification, multiple matching, coding sequences, and
fast lookup. Additionally, Bayesian 4*4-Pattern learning is introduced, and 4*4-
Pattern libraries are automatically generated from a vast amount of professional
game records. The results of our experiments show that the use of 4*4-Patterns
can improve MCTS in 19*19 Go to some extent, in particular when supported
by 4*4-Pattern libraries generated by Bayesian learning.

1 Introduction

Go is an ancient board game for two players; it originated in China over 2000 years
ago. The game still enjoys a great popularity all over the world [11]. Go has long been
considered as the most difficult challenge in the field of Artificial Intelligence and is
considerably more difficult than Chess [2]. Given the abundance of problems, and the
diversity of possible solutions, computer Go is an attractive research domain for
Artificial Intelligence.

Computer Go began in the 1960s with the prevailing static method preferred during
the early days. This method chooses a handful of appropriate moves combined them
with fast localized tactical searches, see, e.g., GNU GO [8]. Recently, some advanced
theories led to a breakthrough performance in computer Go [6], e.g., by Monte-Carlo
Tree Search and the Upper Confidence bound for Trees (UCT). At present, the best
Go programs running on a cluster are ranked as 2 dan-3kyu.

Currently, the research on enhancements of the MCTS implementation mainly
focuses on three key areas, i.e., tree search, random simulation games, and machine
learning [12]. Some heuristic algorithms and pruning algorithms, as well as the
domain knowledge enhancement methods are described in [4]. The formulation and
the use of a pattern is a well-known technique in computer Go [14]. An example is the
program GNU GO with its handcrafted pattern database for move selection. Patterns

* The material in this paper is based upon work supported by the NSFC-MSRA Joint Research

Fund under Grant 60971057.

 4*4-Pattern and Bayesian Learning in Monte-Carlo Go 109

are also used in MCTS programs to improve the quality of the random simulation
games [5], e.g., in MOGO and FUEGO. The typical patterns applied in MCTS are
handcrafted 3*3-Patterns with many limitations.

A novel 4*4-Pattern model is proposed in this paper. It can be easily implemented
in random simulation games and generated by Bayesian learning from professional
game records. Experimental results show that the 4*4-Pattern is much better than 3*3-
Pattern. We consider it an improvement of MCTS.

The paper is organized as follows. Section 2 analyzes the possibility of 4*4-
Patterns and then introduces its basic idea. Section 3 describes the necessary
operations of the 4*4-Patterns. Additionally, offline 4*4-Pattern-learning based on the
Bayesian method is introduced in Section 4. Section 5 shows some experimental
results of the 4*4-Patterns. Finally, the conclusion is presented in Section 6.

2 Motivation

Below we describe the 3*3-Pattern background (2.1) and the possibility of 4*4-
Patterns.

2.1 The 3*3-Pattern Background

The 3*3-Pattern is nowadays widely used in the move generator in random games.
They can improve the quality of random games to some extent so as to enhance the
overall performance of the UCT search. In their implementation, the 3*3-Pattern in
MOGO is handcrafted [5], whereas FUEGO adopts some hard-coded disciplines [3].
Some examples of 3*3-Patterns are shown below.

Fig. 1. Two examples of a 3*3-Pattern. The left one is the pattern with the move in center of the
board. In the right one, the move is on the board edge.

As can be seen in Fig. 1, a 3*3-Pattern is quite straightforward. However, the
coverage space of a 3*3-Pattern is limited. Thus, the information provided is meager
when considering the huge board space. For example, some classic situations, such as
a jump or a diagonal move are inextricable by a 3*3-Pattern due to the space
limitation.

2.2 Possibility of 4*4-Patterns

We discuss two items in particular: (1) memory limitations and (2) multiple matching.

• Memory Limitations

The major limitation of a 3*3-Pattern and the central symmetry characteristic would
suggest expanding the area to a 5*5-Pattern. However, the coverage space of a

110 J. Wang et al.

5*5-Pattern contains in total 24 points except the central point. Each point has three
possible status, i.e., empty point, black point, and white point, so a 5*5-Pattern
requires at least 324 bits memory space (approximately 33G byte) to store all the
information. The amount of memory demand is not affordable for common
computers, so the external disk memory has to be used comparable to an endgame
database in Chess [13]. Nevertheless, it is not a preferable way because the high
frequency reading may immensely reduce the efficiency of random games, which are
executed thousands of times in UCT search [9]. So, we may conclude that a 5*5-
Pattern is not applicable on personal computers at present.

Considering the coverage-space defect of a 3*3-Pattern and the memory limitations
of the 5*5-Pattern, this paper proposes a new 4*4-Pattern model as a compromising
solution. The storage and operations of a 4*4-Pattern is quite special compared to the
3*3-Pattern and the 5*5-Pattern. Once these crucial problems are solved, a 4*4-
Pattern can be a desirable improvement in UCT search, which provides a larger area
than a 3*3-Pattern and costs less memory than a 5*5-Pattern. In implementations, a
single 4*4-Pattern library takes up approximately 14M byte memory, which is
acceptable for most common computers.

• Multiple Matching

A 4*4-Pattern is not centrally symmetric, thus the traditional mapping method is not
applicable for a 4*4-Pattern. To overcome this obstacle, a new method named
multiple matching is proposed using multiple templates.

* * * *
* * * *
* ! * *
* * * *

Fig. 2. Match template of 4*4-Pattern

The procedure of multiple matching is explained below. First, traverse all the eight
points around the last move (the same as in the 3*3-Pattern procedure), and then
apply several different templates on every point for matching. Here, the point is
named anchor point, which comes from the Go terminology. There are three
categories in total, i.e., center pattern, edge pattern, and corner pattern. All of them
have several corresponding fixed templates. Every template reflects to a specific
coding order of the 15 stones in the 4*4 area except the anchor point. Third, the coded
numeric value is used to query the corresponding pattern library. Fig. 2 shows one of
four templates with a center pattern. The “!” means the anchor point, and “*” is the
point needed to be coded which may be empty or occupied by a black piece or a white
piece.

Compared to a 5*5-Pattern, the coverage space of a single 4*4-Pattern is smaller,
exactly 9 points less, and thus carries less information. But the multiple matching with
several templates would compensate it to a large extent. For instance, all the points of
the 5*5-area around the anchor point are taken into account after four templates have
matched with a center pattern. Although a 4*4-Pattern cannot fully achieve the effect

 4*4-Pattern and Bayesian Learning in Monte-Carlo Go 111

of a 5*5-Pattern, the achievement is still impressive with much lower cost. From
another point of view, each pattern is an improvement in the move selection in UCT
search even if it is not a perfect one. We remark that even a 5*5-Pattern may suffer
from exceptional peripheral information and lead to a wrong decision. But in most
cases, the information provided by a pattern is correct and meaningful.

3 Operations of a 4*4 Pattern

This section discusses the required operations of a 4*4-Pattern. In 3.1 we introduce
the three categories of a 4*4-Pattern based on the position of the anchor point. In 3.2
we briefly describe the compression to be applied. In 3.3 we discuss the storage and
data structure of a 4*4-Pattern library. Specific coding sequences of templates are
introduced in 3.4. In 3.5 we provide pseudo codes of crucial operations.

3.1 Classification of the 4*4 Patterns

According to different positions of the anchor point, a 4*4-Pattern can be categorized
into three types, i.e., center-pattern, edge-pattern, and corner-pattern. The corner-
pattern deals with situations where the anchor point is one of the four corner points on
the board. The situation where the anchor point is on the edge points, but not in the
corner points, is dealt with by the edge-patterns. The center-pattern deals with all the
remaining situations, which are the majority in all situations.

* * * * * * * * * * * * * * * *
* * * * * * * * * ! * * * * ! *
* ! * * * * ! * * * * * * * * *
* * * * * * * * * * * * * * * *

Fig. 3. Center-pattern templates

* * * * * * * *
* * * * * * * *
* * * * * * * *
* ! * * * * ! *

Fig. 4. Edge-pattern templates

* * * *
* * * *
* * * *
! * * *

Fig. 5. Corner-pattern template

112 J. Wang et al.

The meaning of the symbols is explained in 2.2. As shown in the Figs 3 to 5, the
center-pattern has four templates, whereas the edge-pattern has two and the corner-
pattern has only one template.

3.2 Compression

For the edge-pattern and the corner-pattern, the templates are the result after
compression. In fact, each of the templates of the edge-pattern includes four
situations, i.e., the top edge, the bottom edge, the left-most edge, and the right-most
edge. So, there are totally eight templates for the edge-pattern, and it is interesting that
some templates are essentially equivalent given some tricks applied on the coding
sequence. Fig. 6 shows a compression example of the edge-pattern.

* * * * ----------------------
* * * * * * ! *
* * * * * * * *
* ! * * * * * *
---------------------- * * * *

11 12 13 14 ----------------------
7 8 9 10 2 1 ? 0
3 4 5 6 6 5 4 3
0 ? 1 2 10 9 8 7

---------------------- 14 13 12 11

Fig. 6. Example of edge-pattern compression

In the figure, “--“ indicates the boundary of the board, and the two templates on the
top are essentially equivalent if the viewing angle turns 180 degree. This can be
accomplished by imposing restrictions on the coding sequences. See the following
two examples. It is possible to compress all the three 4*4-Pattern types, but in the
usual implementations, this is not applied in the center-pattern considering the
peripheral disturbance nearby the boundary.

A second method of compression is the color-based method. In a 4*4-Pattern
matching, every piece is either white or black; so, all the patterns have two copies,
and therefore the current playing side is taken into consideration. The pieces are
treated as having the same color as the playing side, or just the contrary. So, we do
not use anymore Black or White. Thus, a saving of a halve is achieved by the
compression ratio method.

3.3 4*4-Pattern Library

As discussed in 3.1, there are four templates in the center-pattern, two in edge-pattern,
and one in the corner-pattern, totally seven. Every template has the same memory
occupancy. Three two-dimensional arrays are used for storing the templates, as
represented below.

 4*4-Pattern and Bayesian Learning in Monte-Carlo Go 113

bool CenterTable[4][14348907]

bool EdgeTable[2][14348907]

bool CornerTable[1][14348907]

 (1)

In these arrays, the number 14348907 (315) represents the maximum possible coding
value of 15 points. The first dimension of the array indicates the serial number of the
templates, and the second dimension is the coding result of 15 points in the 4*4 area
except for the anchor point. It needs to be mentioned that the CornerTable is a linear
array in practice, represented as a double-dimension so as to keep the formats in
accordancy. The type of data stored in these arrays is “bool”, where true or false
indicates whether the corresponding pattern can be chosen or not. The memory
occupancy space is nearly 13.7M byte for every pattern library. So, in total 96M byte
memory is required for all the pattern libraries. It is affordable for most contemporary
computers.

3.4 Coding Sequence and Lookup Table

The query input of a 4*4-Pattern is composed of the piece distribution information of
the 5*5-area on the board. For the sake of compression and distinction, strict
regulations are made on the coding sequence of the points. The coding sequence rules
of all conditions in the three categories are shown in Table 1.

Table 1. Coding Sequence of 4*4 Pattern

For the sake of saving repeated computation time in multiple matching, the coding

sequences of four templates of the center-pattern are rather special. The code of the
eight nearest neighbors around the anchor point is calculated only once and the result

Center-
Pattern

Serial 0 1 2 3

Coding
Sequence

8 9 10 11
5 6 7 12
3 ? 4 13
0 1 2 14

11 10 9 8
12 5 6 7
13 3 ? 4
14 0 1 2

5 6 7 14
3 ? 4 13
0 1 2 12
8 9 10 11

14 5 6 7
13 3 ? 4
12 0 1 2
11 10 9 8

Edge-
Pattern

Serial 0 0 0 0
Coding

Sequence
11 12 13 14
7 8 9 10
3 4 5 6
0 ? 1 2

2 1 ? 0
6 5 4 3

10 9 8 7
14 13 12 11

0 3 7 11
? 4 8 12
1 5 9 13
2 6 10 14

14 10 6 2
13 9 5 1
12 8 4 ?
11 7 3 0

Edge-
Pattern

Serial 1 1 1 1
Coding

Sequence
11 12 13 14
7 8 9 10
3 4 5 6
0 1 ? 2

2 ? 1 0
6 5 4 3

10 9 8 7
14 13 12 11

0 3 7 11
1 4 8 12
? 5 9 13
2 6 10 14

14 10 6 2
13 9 5 ?
12 8 4 1
11 7 3 0

Corner-
Pattern

Serial 0 0 0 0

Coding
Sequence

11 12 13 14
7 8 9 10
3 4 5 6
? 0 1 2

14 10 6 2
13 9 5 1
12 8 4 0
11 7 3 ?

? 3 7 11
0 4 8 12
1 5 9 13
2 6 10 14

2 1 0 ?
6 5 4 3

10 9 8 7
14 13 12 11

114 J. Wang et al.

is reused subsequently. The coding sequence may seem a little complex, but it is not
hard to implement using preset tables.

3.5 Program Codes for Querying

Some pseudo codes of the key procedure in querying are based on the lookup tables
given in this subsection. The input is one coordinate of the eight neighbors around the
last move of the opponent. The binary output represents whether the point can be
played or not.

Some program codes for a 4*4-Pattern querying.

bool Match44Any(SgPoint p)
{

if (IsCenter(p) > 1)
 return MatchAny44Center(p);
else if (IsEdge (p) > 1)
 return MatchAny44Edge(p);
else
 return MatchAny44Corner(p);

return false;

}

//Multiple matching procedure for center-pattern.
bool MatchAny44Center(const BOARD& bd, SgPoint p)
{

//Caculate the common code of 8 neighbors.
int cm = CodeOf8CommonNeighbors(m_bd, p);//common code
/*Iterate 4 templates, return true if the matched pattern is
favorable, otherwise false. CodeOfRestNeighbors is to
caculate the codes of the rest 7 neighbors.*/
if (lookupCenterTable[0][p][0] != INVALID //Table is avaiable
&&m_44Centertable[0][CodeOfRestNeighbors(m_bd,p,0)+cm]==true)
 return true;
if (lookupCenterTable[1][p][0] != INVALID
&&m_44Centertable[1][CodeOfRestNeighbors(m_bd,p,1)+cm]==true)
 return true;
if (lookupCenterTable[2][p][0] != INVALID
&&m_44Centertable[2][CodeOfRestNeighbors(m_bd,p,2)+cm]==true)
 return true;
if (lookupCenterTable[3][p][0] != INVALID
&&m_44Centertable[3][CodeOfRestNeighbors(m_bd,p,3)+cm]==true)
 return true;

return false;

}

Not all the pseudo codes are shown, such as the functions for edge-pattern and corner-
pattern. However, they are quite similar to the ones of the center-pattern, and can be
easily implemented.

 4*4-Pattern and Bayesian Learning in Monte-Carlo Go 115

4 Bayesian Learning of 4*4-Pattern

This section introduces Bayesian learning on 4*4-Pattern, which is a kind of statistical
learning. In 4.1 we briefly describe the Bayesian theory and the model designed. In
4.2 we introduce some improvements on the traditional learning process. Then, in 4.3
the learning results are analyzed.

4.1 Bayesian Pattern Learning Model

Bayesian statistics is a classic theory of statistical learning, in which the post
probability is calculated from a Bayesian formula combined with the prior probability
and conditional probability in discrete condition. The post probability is used for
classification instead of the prior probability, because it has more information to
reflect the uncertainty of assessing an observation. The Bayesian formula is well
known [7]. Bayesian learning has already been adapted in computer Go in recent
years. Bruno Bouzy uses Bayesian learning in K-Nearest-Neighbor patterns [1], while
David Stern et al. predict the professional moves [10]. An effective offline Bayesian
learning model on 4*4-Patterns is proposed according to successful research
achievements, by reading every position in professional game records.

_ / _

posterior
play time match timeP =

 (2)

In the formula, play_time stands for the times a certain pattern is played, while
match_time represents that pattern occurrence in time. In a static position, many valid
patterns probably exist but only one pattern can be executed. So, the match_time of
all the valid patterns increases by one, and play_time of the played patterns increases
by one providing that the move matches a specific pattern. For a 4*4-Pattern, every
point has to count for several templates when traversing all the points on the board.

4.2 The Improvement of Learning Procedure

The 4*4-Pattern can be automatically generated according to the work (see 4.1), but
the learning results are not satisfying. More meaningful improvements should be
introduced to make the results better. Below we discuss three suggestions: data
preprocessing, adjusting the learning process, and filtering bad patterns.

• Data Preprocessing

The quality of the professional game records is vital for learning. Dirty data may
originate from the unequal matches, or from a weak game procedure. Some
restrictions should be imposed to guarantee the data quality. We mention three of
them.

(1) Restriction on the players’ level. The level of players can be found by analyzing
the SGF files; only those game records are acceptable when the grading of the two
players is beyond 6 Dan.

116 J. Wang et al.

(2) Restriction on the game result gap. The professional game records are accepted
only if the result of professional games not exceeds 30 moyo.

(3) Restriction on the winning side. Only the moves of the winning side are input into
Bayesian learning program.

By the restrictions above, about 20% of the SGF game records are removed from the
game records database and even more samples are eliminated from the sample set. At
least, so, the quality of learning material is guaranteed.

• Adjust the Learning Process

For a single professional game record, all the moves are input and then executed in
proper sequence. Not only should a rule judgment be made to guarantee the
correctness, but also attention should be given to some special situation that has to be
coped with. The typical one is the move taking pieces, and this situation should avoid
pattern learning. Since the pattern is essentially tactical, and not meant for an
attacking purpose. Threat or attack is already solved before querying the pattern
library during the move generation in a random simulation.

• Filter Bad Patterns

There are still many unreasonable patterns available even after the two procedures
above. Additional filtering procedures are necessary. Below we mention two of them.

(1) Eliminate the patterns with low post probability. Using post probability as the
confidence level is the essence of Bayesian statistics. So, these patterns with low
post probability are obviously unacceptable. Currently the minimum of post
probability is 5%.

(2) Eliminate the patterns with low match_time or play_time. For example, some
arbitrary moves from inspiration are executed once they appeared, so play_time
and match_time are all equal to 1 and 100% post probability is obtained.
Obviously, it is against the original thoughts of Bayesian statistics. Currently, the
limitations of the total amount for both are not less than 10.

5 Experiments

The experiments are composed in two parts, i.e., (1) Bayesian 4*4-Pattern learning
experiments and (2) the effectiveness experiments presented below.

5.1 Bayesian 4*4-Pattern Learning Experiments

Two experiments are designed to analyze the result of the Bayesian 4*4-Pattern
learning. Over 100,000 professional games are collected for the experiments and the
setting of the learning restriction was seen in 4.2. In the first experiment, the game
records are input into the learning program one by one, and the statistics of the
occupancy rate are kept. For a single pattern library, the occupancy rate is equal to the
valid patterns number divide 3^15. The experimental results are shown in Fig. 7.

 4*4-Pattern and Bayesian Learning in Monte-Carlo Go 117

Fig. 7. The occupancy rate of each pattern library

Here CPL-OR means the center-pattern libraries’ occupancy rate, while EPL-OR
and NPL-OR is the occupancy rate of for edge-pattern libraries and corner-pattern
library. It is should be noted that the four libraries of the center-patterns, and also the
two libraries in the edge-patterns, share an almost identical distribution of occupancy
rate. So, only the typical curves are provided. As can be seen in Figure 7, the
occupancy rate goes up while the number of input game records increases, and the
CPL-OR reaches 11.50% when all the game records are learned.

Fig. 8. The distribution of valid patterns according to the value of post probability

The results of the second experiment are shown in Fig. 8. It shows the relationship
of post probability and valid patterns. The post probability of the majority of valid
patterns is under 10%, and decreases while the percentage range of values rises. Only
a few patterns are considered absolutely good, namely that the post probability is
100%. Similar to the former experiment, the sub-libraries also shares an almost
identical distribution in the center-pattern and edge-pattern libraries.

3.50%
6.00%

8.00%
9.80%

11.50%

0.60% 1.00% 1.40% 1.70% 1.90%

0.00% 0.00% 0.00% 0.00% 0.00%0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%

O
cc

up
an

cy
 r

at
e

The amount of learned records

CPL-OR

EPL-OR

NPL-OR

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

D
is

tr
ib

ut
io

n
of

 V
al

id
 P

at
te

rn
s

Post Probablity

CPL-OR

EPL-OR

NPL-OR

118 J. Wang et al.

5.2 Effectiveness Experiments

In this section, the effectiveness experiments are designed to prove the enhancement
of a 4*4-Pattern, and also the correlation with the supporting libraries. The
experiments are based on FUEGO (Version 1.1.2), one of the strongest Go programs,
which is open-source under GNU license and equipped with a hard-coded 3*3-Pattern
in their random simulation. To fit our experiments, the relevant codes of the 3*3-
Patterns are removed and the code supporting the 4*4-Patterns is added in FUEGO,
together with several sets of all the necessary 4*4-Pattern libraries from the Bayesian
4*4-Pattern learning. Of course, the amount of professional game records is different.
To achieve the 4*4-Pattern libraries was easy. They were used in the program by
reading external files at their initialization. The 4*4-Pattern program played 1000
games against the original FUEGO, with alternating the playing side. All games used
Chinese scoring, 7.5 points Komi and 60 seconds for every move, running on the
servers with 4-core Intel i5 2.8Ghz, 4G memory.

The experiments were applied on 19*19 Go and 9*9 Go. Although the 4*4-Pattern
libraries were learned from records of 19*19 Go, they still could be used in 9*9 Go.
The effectiveness of the experimental results is shown in Fig. 9.

Fig. 9. Effectiveness experiments on 19*19 Go and 9*9 Go with different 4*4-Pattern libraries

As seen in Fig. 9, the playing strength boosts while the amount of learned records
increases. However, if the game records for learning are insufficient, the playing
strength is unsatisfying due to the low quality of the 4*4-Pattern libraries. The win
rate is stable and exceeds 50% once the amount exceeds 60,000. For 9*9 Go, it is
amazing that the win rate of the 4*4-Pattern program is always lower than the original
FUEGO. There may be two possible reasons. First, the pattern libraries are generated
from offline learning by 19*19 Go due to inadequate professional game records of
9*9. Many learned patterns may not be significant in 9*9 Go, because the patterns are
more likely to reach the board border. Second, the 19*19 Go is more tactical than 9*9
Go, and a pattern move is mostly a tactical move. So, the effectiveness of the
4*4-Pattern decreases in sharp 9*9 Go games.

A second impact factor of effectiveness is the time limitation. The effectiveness of
a 4*4-Pattern is more notable in longer games. The underlying reason is that a

36.10%

47.30%
53.70% 55.60% 56.20%

31.40% 34.10%
41.20% 42.60% 42.40%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

20,000 40,000 60,000 80,000 100,000

W
in

 r
at

e
V

S
O

ri
gi

m
al

 F
ue

G
o

The number of testing games

19*19GO

9*9GO

 4*4-Pattern and Bayesian Learning in Monte-Carlo Go 119

;4*4-Pattern slows down the simulation games to some extent and negatively
influences MCTS, but the 4*4-Pattern provides more significant information in a
larger coverage space compared to the 3*3-Pattern. Therefore, the contribution of a
4*4-Pattern plays a bigger role than any negative effect. So, the overall effectiveness
is positive in the longer games, assuming that the number of simulation games is
sufficient.

6 Conclusion and Future Work

In this paper we proposed the 4*4-Pattern model. The details of the implementation
are introduced, including design, classification, multiple matching, and coding
sequences. In addition, Bayesian learning of 4*4-Patterns and some improvements on
the basic method are described. The experimental results show that the 4*4-Pattern is
better than the 3*3-Pattern in improving the MCTS in 19*19 Go to some extent,
especially in the long games. There are several essential factors for the effectiveness
of 4*4-Pattern, i.e., board space, the amount of learned records, time limitation, the
effect on different pattern sizes, and the threshold of learning filtration. Some of them
are not discussed in this paper, because of the paper length limitation.

Future work should focus on two issues. First, more effective 4*4-Pattern
operations require intensive research. In fact, the ideal 4*4-Pattern is not realized
unless all the points of 5*5-area around the last opponent move are traversed, and this
inevitably costs more time. So, the fast computation and early refutation algorithm are
in demand. Second, the learning methods on professional game records should be
improved. Bayesian learning is fundamental in statistical learning and the
implementation is too straightforward to obtain a convincing gamma value as
happened in some top programs. Although the experimental results are satisfying,
there is much room for improvement if more appropriate models are adopted.

References

1. Bouzy, B., Chaslot, G.: Bayesian generation and integration of k-nearest-neighbor patterns
for 19×19 Go. Computational Intelligence in Games, 176–181 (2005)

2. Bouzy, B., Cazenave, T.: Computer go: An AI oriented survey. Artificial
Intelligence 132(1), 39–103 (2001)

3. Fuego Developer’s Documentation,
http://www.cs.ualberta.ca/~games/go/fuego/fuegodoc/

4. Gelly, S., Silver, D.: Combining Offline and Online Knowledge in UCT. In: ICML 2007:
Proceedings of the 24th International Conference on Machine Learning, pp. 273–280.
Association for Computing Machinery (2007)

5. Gelly, S., et al.: Modification of UCT with Patterns in Monte-Carlo Go. Technical Report
6062. INRIA,France (2006)

6. Gelly, S., Wang, Y.: Exploration exploitation in go: UCT for Monte-Carlo go. In: On-line
trading of Exploration and Exploitation Workshop (2006)

7. Minka, T.P.: A family of algorithms for approximate Bayesian inference. Massachusetts
Institute of Technology (2001)

8. Müller, M.: Position Evaluation in Computer Go. ICGA Journal, pp. 219-228 (2002)

120 J. Wang et al.

9. Silver, D., Tesauro, G.: Monte-Carlo Simulation Balancing. In: Proceedings of the 26th
Annual International Conference on Machine Learning, Montreal, Quebec, Canada, pp.
954–852 (2009)

10. Stern, D., Herbrich, R., Graepel, T.: Bayesian Pattern Ranking for Move Prediction in the
Game of Go. In: The 23rd International Conference on Machine Learning, pp.873–880
(2006)

11. Stern, D., Graepel, T., MacKay, D.: Modelling Uncertainty in The Game of Go. In:
Advances in Neural Information Processing Systems, pp.33–40 (2004)

12. Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte-Carlo
Go. In: IEEE Symposium on Computational Intelligence and Games, pp. 175–182 (2007)

13. Wu, R., Beal, D.F.: A Memory Efficient Retrograde Algorithm and Its Application To
Chess Endgames. In: More Games of No Chance, vol. 42. MSRI Publication (2002)

14. Zobrist: Feature. Extraction and Representation for Pattern Recognition and the Game of
Go. PhD thesis, University of Wisconsin (1970)

	4*4-Pattern and Bayesian Learning in Monte-Carlo Go
	Introduction
	Motivation
	The 3*3-Pattern Background
	Possibility of 4*4-Patterns

	Operations of a 4*4 Pattern
	Classification of the 4*4 Patterns
	Compression
	4*4-Pattern Library
	Coding Sequence and Lookup Table
	Program Codes for Querying

	Bayesian Learning of 4*4-Pattern
	Bayesian Pattern Learning Model
	The Improvement of Learning Procedure

	Experiments
	Bayesian 4*4-Pattern Learning Experiments
	Effectiveness Experiments

	Conclusion and Future Work
	References

