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Abstract. The paper proposes a new model of pattern, namely the 4*4-Pattern, 
to improve MCTS (Monte-Carlo Tree Search) in computer Go. A 4*4-Pattern 
provides a larger coverage space and more essential information than the 
original 3*3-Pattern. Nevertheless the latter is currently widely used. Due to the 
lack of a central symmetry, it takes greater challenges to apply a 4*4-Pattern 
compared to a 3*3-Pattern. Many details of a 4*4-Pattern implementation are 
presented, including classification, multiple matching, coding sequences, and 
fast lookup. Additionally, Bayesian 4*4-Pattern learning is introduced, and 4*4-
Pattern libraries are automatically generated from a vast amount of professional 
game records. The results of our experiments show that the use of 4*4-Patterns 
can improve MCTS in 19*19 Go to some extent, in particular when supported 
by 4*4-Pattern libraries generated by Bayesian learning. 

1 Introduction 

Go is an ancient board game for two players; it originated in China over 2000 years 
ago. The game still enjoys a great popularity all over the world [11]. Go has long been 
considered as the most difficult challenge in the field of Artificial Intelligence and is 
considerably more difficult than Chess [2]. Given the abundance of problems, and the 
diversity of possible solutions, computer Go is an attractive research domain for 
Artificial Intelligence. 

Computer Go began in the 1960s with the prevailing static method preferred during 
the early days. This method chooses a handful of appropriate moves combined them 
with fast localized tactical searches, see, e.g., GNU GO [8]. Recently, some advanced 
theories led to a breakthrough performance in computer Go [6], e.g., by Monte-Carlo 
Tree Search and the Upper Confidence bound for Trees (UCT). At present, the best 
Go programs running on a cluster are ranked as 2 dan-3kyu. 

Currently, the research on enhancements of the MCTS implementation mainly 
focuses on three key areas, i.e., tree search, random simulation games, and machine 
learning [12]. Some heuristic algorithms and pruning algorithms, as well as the 
domain knowledge enhancement methods are described in [4]. The formulation and 
the use of a pattern is a well-known technique in computer Go [14]. An example is the 
program GNU GO with its handcrafted pattern database for move selection. Patterns 
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are also used in MCTS programs to improve the quality of the random simulation 
games [5], e.g., in MOGO and FUEGO. The typical patterns applied in MCTS are 
handcrafted 3*3-Patterns with many limitations. 

A novel 4*4-Pattern model is proposed in this paper. It can be easily implemented 
in random simulation games and generated by Bayesian learning from professional 
game records. Experimental results show that the 4*4-Pattern is much better than 3*3-
Pattern. We consider it an improvement of MCTS. 

The paper is organized as follows. Section 2 analyzes the possibility of 4*4-
Patterns and then introduces its basic idea. Section 3 describes the necessary 
operations of the 4*4-Patterns. Additionally, offline 4*4-Pattern-learning based on the 
Bayesian method is introduced in Section 4. Section 5 shows some experimental 
results of the 4*4-Patterns. Finally, the conclusion is presented in Section 6. 

2 Motivation 

Below we describe the 3*3-Pattern background (2.1) and the possibility of 4*4-
Patterns. 

2.1 The 3*3-Pattern Background 

The 3*3-Pattern is nowadays widely used in the move generator in random games. 
They can improve the quality of random games to some extent so as to enhance the 
overall performance of the UCT search. In their implementation, the 3*3-Pattern in 
MOGO is handcrafted [5], whereas FUEGO adopts some hard-coded disciplines [3]. 
Some examples of 3*3-Patterns are shown below. 

                

Fig. 1. Two examples of a 3*3-Pattern. The left one is the pattern with the move in center of the 
board. In the right one, the move is on the board edge. 

As can be seen in Fig. 1, a 3*3-Pattern is quite straightforward. However, the 
coverage space of a 3*3-Pattern is limited. Thus, the information provided is meager 
when considering the huge board space. For example, some classic situations, such as  
a jump or a diagonal move are inextricable by a 3*3-Pattern due to the space 
limitation. 

2.2 Possibility of 4*4-Patterns 

We discuss two items in particular: (1) memory limitations and (2) multiple matching. 

• Memory Limitations 

The major limitation of a 3*3-Pattern and the central symmetry characteristic would 
suggest expanding the area to a 5*5-Pattern. However, the coverage space of a  
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5*5-Pattern contains in total 24 points except the central point. Each point has three 
possible status, i.e., empty point, black point, and white point, so a 5*5-Pattern 
requires at least 324 bits memory space (approximately 33G byte) to store all the 
information. The amount of memory demand is not affordable for common 
computers, so the external disk memory has to be used comparable to an endgame 
database in Chess [13]. Nevertheless, it is not a preferable way because the high 
frequency reading may immensely reduce the efficiency of random games, which are 
executed thousands of times in UCT search [9]. So, we may conclude that a 5*5-
Pattern is not applicable on personal computers at present. 

Considering the coverage-space defect of a 3*3-Pattern and the memory limitations 
of the 5*5-Pattern, this paper proposes a new 4*4-Pattern model as a compromising 
solution. The storage and operations of a 4*4-Pattern is quite special compared to the 
3*3-Pattern and the 5*5-Pattern. Once these crucial problems are solved, a 4*4-
Pattern can be a desirable improvement in UCT search, which provides a larger area 
than a 3*3-Pattern and costs less memory than a 5*5-Pattern. In implementations, a 
single 4*4-Pattern library takes up approximately 14M byte memory, which is 
acceptable for most common computers. 

• Multiple Matching 

A 4*4-Pattern is not centrally symmetric, thus the traditional mapping method is not 
applicable for a 4*4-Pattern. To overcome this obstacle, a new method named 
multiple matching is proposed using multiple templates. 

*   *   *   * 
*   *   *   * 
*     !     *   * 
*   *   *   * 

Fig. 2. Match template of 4*4-Pattern 

The procedure of multiple matching is explained below. First, traverse all the eight 
points around the last move (the same as in the 3*3-Pattern procedure), and then 
apply several different templates on every point for matching. Here, the point is 
named anchor point, which comes from the Go terminology. There are three 
categories in total, i.e., center pattern, edge pattern, and corner pattern. All of them 
have several corresponding fixed templates. Every template reflects to a specific 
coding order of the 15 stones in the 4*4 area except the anchor point. Third, the coded 
numeric value is used to query the corresponding pattern library. Fig. 2 shows one of 
four templates with a center pattern. The “!” means the anchor point, and “*” is the 
point needed to be coded which may be empty or occupied by a black piece or a white 
piece.  

Compared to a 5*5-Pattern, the coverage space of a single 4*4-Pattern is smaller, 
exactly 9 points less, and thus carries less information. But the multiple matching with 
several templates would compensate it to a large extent. For instance, all the points of 
the 5*5-area around the anchor point are taken into account after four templates have 
matched with a center pattern. Although a 4*4-Pattern cannot fully achieve the effect 
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of a 5*5-Pattern, the achievement is still impressive with much lower cost. From 
another point of view, each pattern is an improvement in the move selection in UCT 
search even if it is not a perfect one. We remark that even a 5*5-Pattern may suffer 
from exceptional peripheral information and lead to a wrong decision. But in most 
cases, the information provided by a pattern is correct and meaningful.  

3 Operations of a 4*4 Pattern 

This section discusses the required operations of a 4*4-Pattern. In 3.1 we introduce 
the three categories of a 4*4-Pattern based on the position of the anchor point. In 3.2 
we briefly describe the compression to be applied. In 3.3 we discuss the storage and 
data structure of a 4*4-Pattern library. Specific coding sequences of templates are 
introduced in 3.4. In 3.5 we provide pseudo codes of crucial operations. 

3.1 Classification of the 4*4 Patterns  

According to different positions of the anchor point, a 4*4-Pattern can be categorized 
into three types, i.e., center-pattern, edge-pattern, and corner-pattern. The corner-
pattern deals with situations where the anchor point is one of the four corner points on 
the board. The situation where the anchor point is on the edge points, but not in the 
corner points, is dealt with by the edge-patterns. The center-pattern deals with all the 
remaining situations, which are the majority in all situations. 
 

*   *   *          *   *   *   *   *       *   *   *   * *   *   *   * 
*   *   *   *   *   *   *   *      *      !                *                            * *   *         !   * 
*   !      *     *   *   *     !      *      *   *   *   * *   *   *   * 
*   *   *   *   *   *   *   *      *   *   *   * *   *   *   * 

Fig. 3. Center-pattern templates 

*   *   *   *              *   *   *   * 
*   *   *   *              *   *   *   * 
*   *   *   *              *   *   *   * 
*   !   *   *              *   *   !   * 

Fig. 4. Edge-pattern templates 

*   *   *   * 
*   *   *   * 
*   *   *   * 
!   *   *   * 

Fig. 5. Corner-pattern template 
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The meaning of the symbols is explained in 2.2. As shown in the Figs 3 to 5, the 
center-pattern has four templates, whereas the edge-pattern has two and the corner-
pattern has only one template.  

3.2 Compression 

For the edge-pattern and the corner-pattern, the templates are the result after 
compression. In fact, each of the templates of the edge-pattern includes four 
situations, i.e., the top edge, the bottom edge, the left-most edge, and the right-most 
edge. So, there are totally eight templates for the edge-pattern, and it is interesting that 
some templates are essentially equivalent given some tricks applied on the coding 
sequence. Fig. 6 shows a compression example of the edge-pattern. 

*   *   *   *             ---------------------- 
*   *   *   *             *   *   !   * 
*      *   *   *             *   *   *   * 
*   !   *   *             *   *   *   * 
----------------------                              *   *   *   * 

 
11  12  13  14           ---------------------- 
7                          8           9  10                2       1             ?     0 
3                          4            5   6                6                5             4          3 
0                          ?              1   2           10           9             8          7 

----------------------                        14  13   12  11 

Fig. 6. Example of edge-pattern compression 

In the figure, “--“ indicates the boundary of the board, and the two templates on the 
top are essentially equivalent if the viewing angle turns 180 degree. This can be 
accomplished by imposing restrictions on the coding sequences. See the following 
two examples. It is possible to  compress all the three 4*4-Pattern types, but in the 
usual implementations, this is not applied in the center-pattern considering the 
peripheral disturbance nearby the boundary. 

A second method of compression is the color-based method. In a 4*4-Pattern 
matching, every piece is either white or black; so, all the patterns have two copies, 
and therefore the current playing side is taken into consideration. The pieces are 
treated as having the same color as the playing side, or just the contrary. So, we do 
not use anymore Black or White. Thus, a saving of a halve is achieved by the 
compression ratio method. 

3.3 4*4-Pattern Library 

As discussed in 3.1, there are four templates in the center-pattern, two in edge-pattern, 
and one in the corner-pattern, totally seven. Every template has the same memory 
occupancy. Three two-dimensional arrays are used for storing the templates, as 
represented below. 
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bool CenterTable[4][14348907]

bool EdgeTable[2][14348907]

bool CornerTable[1][14348907]

 (1) 

In these arrays, the number 14348907 (315) represents the maximum possible coding 
value of 15 points. The first dimension of the array indicates the serial number of the 
templates, and the second dimension is the coding result of 15 points in the 4*4 area 
except for the anchor point. It needs to be mentioned that the CornerTable is a linear 
array in practice, represented as a double-dimension so as to keep the formats in 
accordancy. The type of data stored in these arrays is “bool”, where true or false 
indicates whether the corresponding pattern can be chosen or not. The memory 
occupancy space is nearly 13.7M byte for every pattern library. So, in total 96M byte 
memory is required for all the pattern libraries. It is affordable for most contemporary 
computers. 

3.4 Coding Sequence and Lookup Table 

The query input of a 4*4-Pattern is composed of the piece distribution information of 
the 5*5-area on the board. For the sake of compression and distinction, strict 
regulations are made on the coding sequence of the points. The coding sequence rules 
of all conditions in the three categories are shown in Table 1. 

Table 1. Coding Sequence of 4*4 Pattern 

 
 
For the sake of saving repeated computation time in multiple matching, the coding 

sequences of four templates of the center-pattern are rather special. The code of the 
eight nearest neighbors around the anchor point is calculated only once and the result 

Center- 
Pattern 

Serial 0 1 2 3 

Coding 
Sequence 

8   9 10 11 
5   6   7 12 
3   ?   4 13 
0   1   2 14 

11 10   9   8 
12   5   6   7 
13   3   ?   4 
14   0   1   2 

5   6   7  14 
3   ?   4  13 
0   1   2  12 
8   9  10 11 

14   5   6  7 
13   3   ?  4 
12   0   1  2 
11 10   9  8 

Edge- 
Pattern 

Serial 0 0 0 0 
Coding 

Sequence 
11 12 13 14 
7   8   9 10 
3   4   5   6 
0   ?   1   2 

2   1  ?    0 
6   5  4    3 

10   9  8    7 
14 13 12 11 

0  3   7 11 
?  4   8 12 
1  5   9 13 
2  6 10 14 

14 10  6  2 
13   9  5  1 
12   8  4  ? 
11   7  3  0 

Edge- 
Pattern 

Serial 1 1 1 1 
Coding 

Sequence 
11 12 13 14 
7   8   9 10 
3   4   5   6 
0   1   ?   2 

2   ?  1    0 
6   5  4    3 

10   9  8    7 
14 13 12 11 

0  3   7 11 
1  4   8 12 
?  5   9 13 
2  6 10 14 

14 10  6  2 
13   9  5  ? 
12   8  4  1 
11   7  3  0 

Corner- 
Pattern 

Serial 0 0 0 0 

Coding 
Sequence 

11 12 13 14 
7   8   9 10 
3   4   5  6 
?   0   1  2 

14 10   6   2 
13   9   5   1 
12   8   4   0 
11   7   3   ? 

?   3   7  11 
0   4   8 12 
1   5   9 13 
2   6 10 14 

2   1   0   ? 
6   5   4   3 

10   9   8   7 
14 13 12 11 
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is reused subsequently. The coding sequence may seem a little complex, but it is not 
hard to implement using preset tables.  

3.5 Program Codes for Querying 

Some pseudo codes of the key procedure in querying are based on the lookup tables 
given in this subsection. The input is one coordinate of the eight neighbors around the 
last move of the opponent. The binary output represents whether the point can be 
played or not. 

Some program codes for a 4*4-Pattern querying. 

bool Match44Any(SgPoint p)  
{ 

if (IsCenter(p) > 1) 
    return MatchAny44Center(p); 
else if (IsEdge (p) > 1) 
    return MatchAny44Edge(p); 
else 
    return MatchAny44Corner(p); 
 
return false; 

} 
 
//Multiple matching procedure for center-pattern. 
bool MatchAny44Center(const BOARD& bd, SgPoint p)  
{ 

//Caculate the common code of 8 neighbors. 
int cm = CodeOf8CommonNeighbors(m_bd, p);//common code 
/*Iterate 4 templates, return true if the matched pattern is 
favorable, otherwise false. CodeOfRestNeighbors is to 
caculate the codes of the rest 7 neighbors.*/  
if (lookupCenterTable[0][p][0] != INVALID //Table is avaiable 
&&m_44Centertable[0][CodeOfRestNeighbors(m_bd,p,0)+cm]==true) 
    return true; 
if (lookupCenterTable[1][p][0] != INVALID  
&&m_44Centertable[1][CodeOfRestNeighbors(m_bd,p,1)+cm]==true) 
    return true; 
if (lookupCenterTable[2][p][0] != INVALID  
&&m_44Centertable[2][CodeOfRestNeighbors(m_bd,p,2)+cm]==true) 
    return true; 
if (lookupCenterTable[3][p][0] != INVALID  
&&m_44Centertable[3][CodeOfRestNeighbors(m_bd,p,3)+cm]==true) 
    return true; 
 
return false; 

} 

Not all the pseudo codes are shown, such as the functions for edge-pattern and corner-
pattern. However, they are quite similar to the ones of the center-pattern, and can be 
easily implemented. 
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4 Bayesian Learning of 4*4-Pattern 

This section introduces Bayesian learning on 4*4-Pattern, which is a kind of statistical 
learning. In 4.1 we briefly describe the Bayesian theory and the model designed. In 
4.2 we introduce some improvements on the traditional learning process. Then, in 4.3 
the learning results are analyzed. 

4.1 Bayesian Pattern Learning Model 

Bayesian statistics is a classic theory of statistical learning, in which the post 
probability is calculated from a Bayesian formula combined with the prior probability 
and conditional probability in discrete condition. The post probability is used for 
classification instead of the prior probability, because it has more information to 
reflect the uncertainty of assessing an observation. The Bayesian formula is well 
known [7]. Bayesian learning has already been adapted in computer Go in recent 
years. Bruno Bouzy uses Bayesian learning in K-Nearest-Neighbor patterns [1], while 
David Stern et al. predict the professional moves [10]. An effective offline Bayesian 
learning model on 4*4-Patterns is proposed according to successful research 
achievements, by reading every position in professional game records.  

 
_ / _

posterior
play time match timeP =

 (2) 

In the formula, play_time stands for the times a certain pattern is played, while 
match_time represents that pattern occurrence in time. In a static position, many valid 
patterns probably exist but only one pattern can be executed. So, the match_time of 
all the valid patterns increases by one, and play_time of the played patterns increases 
by one providing that the move matches a specific pattern. For a 4*4-Pattern, every 
point has to count for several templates when traversing all the points on the board. 

4.2 The Improvement of Learning Procedure 

The 4*4-Pattern can be automatically generated according to the work (see 4.1), but 
the learning results are not satisfying. More meaningful improvements should be 
introduced to make the results better. Below we discuss three suggestions: data 
preprocessing, adjusting the learning process, and filtering bad patterns. 

• Data Preprocessing 

The quality of the professional game records is vital for learning. Dirty data may 
originate from the unequal matches, or from a weak game procedure. Some 
restrictions should be imposed to guarantee the data quality. We mention three of 
them. 

(1) Restriction on the players’ level. The level of players can be found by analyzing 
the SGF files; only those game records are acceptable when the grading of the two 
players is beyond 6 Dan. 
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(2) Restriction on the game result gap. The professional game records are accepted 
only if the result of professional games not exceeds 30 moyo. 

(3) Restriction on the winning side. Only the moves of the winning side are input into 
Bayesian learning program. 

By the restrictions above, about 20% of the SGF game records are removed from the 
game records database and even more samples are eliminated from the sample set. At 
least, so, the quality of learning material is guaranteed. 

• Adjust the Learning Process 

For a single professional game record, all the moves are input and then executed in 
proper sequence. Not only should a rule judgment be made to guarantee the 
correctness, but also attention should be given to some special situation that has to be 
coped with. The typical one is the move taking pieces, and this situation should avoid 
pattern learning. Since the pattern is essentially tactical, and not meant for an 
attacking purpose. Threat or attack is already solved before querying the pattern 
library during the move generation in a random simulation. 

• Filter Bad Patterns 

There are still many unreasonable patterns available even after the two procedures 
above. Additional filtering procedures are necessary. Below we mention two of them. 

(1) Eliminate the patterns with low post probability. Using post probability as the 
confidence level is the essence of Bayesian statistics. So, these patterns with low 
post probability are obviously unacceptable. Currently the minimum of post 
probability is 5%. 

(2) Eliminate the patterns with low match_time or play_time. For example, some 
arbitrary moves from inspiration are executed once they appeared, so play_time 
and match_time are all equal to 1 and 100% post probability is obtained. 
Obviously, it is against the original thoughts of Bayesian statistics. Currently, the 
limitations of the total amount for both are not less than 10. 

5 Experiments 

The experiments are composed in two parts, i.e., (1) Bayesian 4*4-Pattern learning 
experiments and (2) the effectiveness experiments presented below. 

5.1 Bayesian 4*4-Pattern Learning Experiments 

Two experiments are designed to analyze the result of the Bayesian 4*4-Pattern 
learning. Over 100,000 professional games are collected for the experiments and the 
setting of the learning restriction was seen in 4.2. In the first experiment, the game 
records are input into the learning program one by one, and the statistics of the 
occupancy rate are kept. For a single pattern library, the occupancy rate is equal to the 
valid patterns number divide 3^15. The experimental results are shown in Fig. 7. 
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Fig. 7. The occupancy rate of each pattern library 

Here CPL-OR means the center-pattern libraries’ occupancy rate, while EPL-OR 
and NPL-OR is the occupancy rate of for edge-pattern libraries and corner-pattern 
library. It is should be noted that the four libraries of the center-patterns, and also the 
two libraries in the edge-patterns, share an almost identical distribution of occupancy 
rate. So, only the typical curves are provided. As can be seen in Figure 7, the 
occupancy rate goes up while the number of input game records increases, and the 
CPL-OR reaches 11.50% when all the game records are learned.  

 
Fig. 8. The distribution of valid patterns according to the value of post probability 

The results of the second experiment are shown in Fig. 8. It shows the relationship 
of post probability and valid patterns. The post probability of the majority of valid 
patterns is under 10%, and decreases while the percentage range of values rises. Only 
a few patterns are considered absolutely good, namely that the post probability is 
100%. Similar to the former experiment, the sub-libraries also shares an almost 
identical distribution in the center-pattern and edge-pattern libraries. 

3.50%
6.00%

8.00%
9.80%

11.50%

0.60% 1.00% 1.40% 1.70% 1.90%

0.00% 0.00% 0.00% 0.00% 0.00%0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%

O
cc

up
an

cy
  r

at
e

The amount of learned records

CPL-OR

EPL-OR

NPL-OR

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

D
is

tr
ib

ut
io

n 
of

 V
al

id
 P

at
te

rn
s

Post Probablity

CPL-OR

EPL-OR

NPL-OR



118 J. Wang et al. 

5.2 Effectiveness Experiments 

In this section, the effectiveness experiments are designed to prove the enhancement 
of a 4*4-Pattern, and also the correlation with the supporting libraries. The 
experiments are based on FUEGO (Version 1.1.2), one of the strongest Go programs, 
which is open-source under GNU license and equipped with a hard-coded 3*3-Pattern 
in their random simulation. To fit our experiments, the relevant codes of the 3*3-
Patterns are removed and the code supporting the 4*4-Patterns is added in FUEGO, 
together with several sets of all the necessary 4*4-Pattern libraries from the Bayesian 
4*4-Pattern learning. Of course, the amount of professional game records is different. 
To achieve the 4*4-Pattern libraries was easy. They were used in the program by 
reading external files at their initialization. The 4*4-Pattern program played 1000 
games against the original FUEGO, with alternating the playing side. All games used 
Chinese scoring, 7.5 points Komi and 60 seconds for every move, running on the 
servers with 4-core Intel i5 2.8Ghz, 4G memory. 

The experiments were applied on 19*19 Go and 9*9 Go. Although the 4*4-Pattern 
libraries were learned from records of 19*19 Go, they still could be used in 9*9 Go. 
The effectiveness of the experimental results is shown in Fig. 9.  

 
Fig. 9. Effectiveness experiments on 19*19 Go and 9*9 Go with different 4*4-Pattern libraries 

As seen in Fig. 9, the playing strength boosts while the amount of learned records 
increases. However, if the game records for learning are insufficient, the playing 
strength is unsatisfying due to the low quality of the 4*4-Pattern libraries. The win 
rate is stable and exceeds 50% once the amount exceeds 60,000. For 9*9 Go, it is 
amazing that the win rate of the 4*4-Pattern program is always lower than the original 
FUEGO. There may be two possible reasons. First, the pattern libraries are generated 
from offline learning by 19*19 Go due to inadequate professional game records of 
9*9. Many learned patterns may not be significant in 9*9 Go, because the patterns are 
more likely to reach the board border. Second, the 19*19 Go is more tactical than 9*9 
Go, and a pattern move is mostly a tactical move. So, the effectiveness of the  
4*4-Pattern decreases in sharp 9*9 Go games. 

A second impact factor of effectiveness is the time limitation. The effectiveness of 
a 4*4-Pattern is more notable in longer games. The underlying reason is that a  
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;4*4-Pattern slows down the simulation games to some extent and negatively 
influences MCTS, but the 4*4-Pattern provides more significant information in a 
larger coverage space compared to the 3*3-Pattern. Therefore, the contribution of a 
4*4-Pattern plays a bigger role than any negative effect. So, the overall effectiveness 
is positive in the longer games, assuming that the number of simulation games  is 
sufficient. 

6 Conclusion and Future Work 

In this paper we proposed the 4*4-Pattern model. The details of the implementation 
are introduced, including design, classification, multiple matching, and coding 
sequences. In addition, Bayesian learning of 4*4-Patterns and some improvements on 
the basic method are described. The experimental results show that the 4*4-Pattern is 
better than the 3*3-Pattern in improving the MCTS in 19*19 Go to some extent, 
especially in the long games. There are several essential factors for the effectiveness 
of 4*4-Pattern, i.e., board space, the amount of learned records, time limitation, the 
effect on different pattern sizes, and the threshold of learning filtration. Some of them 
are not discussed in this paper, because of the paper length limitation. 

Future work should focus on two issues. First, more effective 4*4-Pattern 
operations require intensive research. In fact, the ideal 4*4-Pattern is not realized 
unless all the points of 5*5-area around the last opponent move are traversed, and this 
inevitably costs more time. So, the fast computation and early refutation algorithm are 
in demand. Second, the learning methods on professional game records should be 
improved. Bayesian learning is fundamental in statistical learning and the 
implementation is too straightforward to obtain a convincing gamma value as 
happened in some top programs. Although the experimental results are satisfying, 
there is much room for improvement if more appropriate models are adopted. 
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