


Lecture Notes in Computer Science 7168
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



H. Jaap van den Herik Aske Plaat (Eds.)

Advances in
Computer Games

13th International Conference, ACG 2011
Tilburg, The Netherlands, November 20-22, 2011
Revised Selected Papers

13



Volume Editors

H. Jaap van den Herik
Aske Plaat
Tilburg University
Tilburg Institute of Cognition and Communication
Warandelaan 2, 5037 AB Tilburg, The Netherlands
E-mail: {jaapvandenherik,aske.plaat}@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31865-8 e-ISBN 978-3-642-31866-5
DOI 10.1007/978-3-642-31866-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012941836

CR Subject Classification (1998): F.2, F.1, I.2, G.2, I.4, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This book contains the papers of the 13th Advances in Computer Games Confer-
ence (ACG 2011) held in Tilburg, The Netherlands. The conference took place
during November 20–22, 2011, in conjunction with the 16th Computer Olympiad
and the 19th World Computer-Chess Championship.

The Advances in Computer Games conference series is a major interna-
tional forum for researchers and developers interested in all aspects of artificial
intelligence and computer game playing. The Tilburg conference was definitively
characterized by the progress of Monte Carlo Tree Search (MCTS) and the
development of new games. Earlier conferences took place in London (1975),
Edinburgh (1978), London (1981, 1984), Noordwijkerhout (1987), London (1990),
Maastricht (1993, 1996), Paderborn (1999), Graz (2003), Taipei (2005), and
Pamplona (2009).

The Program Committee (PC) was pleased to see that so much progress
was made in MCTS and that on top of that new games and new techniques
were added to the recorded achievements. Each paper was sent to at least three
referees. If conflicting views on a paper were reported, the referees themselves
arrived at an appropriate decision. With the help of many referees (see after
the preface), the PC accepted 29 papers for presentation at the conference and
publication in these proceedings. As usual we informed the authors that they
submitted their contribution to a post-conference editing process. The two-step
process is meant (1) to give authors the opportunity to include the results of
the fruitful discussion after the lecture into their paper, and (2) to maintain the
high-quality threshold of the ACG series. The authors enjoyed this procedure.

The above-mentioned set of 29 papers covers a wide range of computer games
and many different research topics. We mention the topics in the order of pub-
lication: Monte Carlo Tree Search and its enhancements (10 papers), temporal
difference learning (2 papers), optimization (4 papers), solving and searching (2
papers), analysis of a game characteristic (3 papers), new approaches (5 papers),
and serious games (3 papers).

We hope that the readers will enjoy the research efforts made by the au-
thors. Below we reproduce brief characterizations of the 29 contributions taken
from the text as submitted by the authors. The authors of the first publication
“Accelerated UCT and Its Application to Two-Player Games” received the Best
Paper Award of ACG 2011.

“Accelerated UCT and Its Application to Two-Player Games” by Junichi
Hashimoto, Akihiro Kishimoto, Kazuki Yoshizoe, and Kokolo Ikeda describes
Monte-Carlo Tree Search (MCTS) as a successful approach for improving the
performance of game-playing programs. A well-known weakness of MCTS is
caused by the deceptive structures which often appear in game tree search.
To overcome the weakness the authors present the Accelerated UCT algorithm
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(Upper Confidence Bounds applied to Trees). Their finding consists in using a
new back-up operator that assigns higher weights to recently visited actions, and
lower weights to actions that have not been visited for a long time. Results in
Othello, Havannah, and Go show that Accelerated UCT is not only more effec-
tive than previous approaches but also improves the strength of fuego, which
is one of the best computer Go programs.

“Revisiting Move Groups in Monte Carlo Tree Search” is authored by Gabriel
Van Eyck and Martin Müller. These authors also remark that the UCT (Upper
Confidence Bounds applied to Trees) algorithm has been a stimulus for signifi-
cant improvements in a number of games, most notably the game of Go. They
investigate the use of move groups. Move groups is a modification that greatly
reduces the branching factor at the cost of an increased search depth and as
such it may be used to enhance the performance of UCT. From the results of
the experiments, the authors arrive at a general structure of good move groups
in which they determine which parameters to use for enhancing the playing
strength.

In “Pachi: State-of-the-Art Open Source Go Program”, Petr Baudǐs and
Jean-loup Gailly start describing a state-of-the-art implementation of the Monte
Carlo Tree Search algorithm for the game of Go. Their Pachi software is cur-
rently one of the strongest open source Go programs, competing at the top level
with other programs and playing evenly against advanced human players. The
paper describes their framework (implementation and chosen algorithms) to-
gether with three notable original improvements: (1) an adaptive time control
algorithm, (2) dynamic komi, and (3) usage of the criticality statistic. Moreover,
new methods to achieve efficient scaling both in terms of multiple threads and
multiple machines in a cluster are presented.

“Time Management for Monte Carlo Tree Search in Go” is written by
Hendrik Baier and Mark H.M. Winands. So far, little has been published on
time management for MCTS programs under tournament conditions. The au-
thors investigate the effects that various time-management strategies have on
the playing strength in Go. They consider strategies taken from the literature
as well as newly proposed and improved ones. Moreover, they investigate both
semi-dynamic strategies that decide about time allocation for each search before
it is started, and dynamic strategies that influence the duration of each move
search while it is already running. In their experiments, two domain-independent
enhanced strategies, EARLY-C and CLOSE-N, are tested; each of them provides
a significant improvement over the state of the art.

“An MCTS Program to Play EinStein Würfelt Nicht!” by Richard Lorentz
describes a game that has elements of strategy, tactics, and chance. The au-
thor remarks that reasonable evaluation functions for this game can be found.
Nevertheless, he constructed an MCTS program to play this game. The paper
describes the basic structure and its strengths and weaknesses. Then the MCTS
program is successfully compared with existing mini–max-based programs and
to a pure MC version.
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“Monte Carlo Tree Search Enhancements for Havannah” is authored by Jan
A. Stankiewicz, Mark H.M. Winands, and Jos W.H.M. Uiterwijk. The article
shows how the performance of a Monte Carlo Tree Search (MCTS) player for
Havannah can be improved by guiding the search in the playout and selection
steps of MCTS. To enhance the playout step of the MCTS algorithm, the authors
used two techniques to direct the simulations, Last-Good-Reply (LGR) and N-
grams. Experiments reveal that LGR gives a significant improvement, although it
depends on which LGR variant is used. Using N-grams to guide the playouts also
achieves a significant increase in the winning percentage. Combining N-grams
with LGR leads to a small additional improvement. To enhance the selection step
of the MCTS algorithm, the authors initialize the visit and win counts of the
new nodes based on pattern knowledge. Experiments show that the best overall
performance is obtained when combining the visit-and-win-count initialization
with LGR and N-grams. In the best case, a winning percentage of 77.5% can be
achieved against the default MCTS program.

“Playout Search for Monte-Carlo Tree Search in Multi-Player Games” by
J. (Pim) A.M. Nijssen and Mark H.M. Winands proposes a technique called
Playout Search. This enhancement allows the use of small searches in the play-
out phase of MCTS in order to improve the reliability of the playouts. The
authors investigate maxn, Paranoid, and BRS for Playout Search and analyze
their performance in two deterministic perfect-information multi-player games:
Focus and Chinese Checkers. The experimental results show that Playout Search
significantly increases the quality of the playouts in both games.

“Towards a Solution of 7x7 Go with Meta-MCTS” by Cheng-Wei Chou,
Ping-Chiang Chou, Hassen Doghmen, Chang-Shing Lee, Tsan-Cheng Su, Fabien
Teytaud, Olivier Teytaud, Hui-Ming Wang, Mei-Hui Wang, Li-Wen Wu, and Shi-
Jim Yen is a challenging topic. So far, Go is not solved (in any sense of solving,
even the weakest) beyond 6x6. The authors investigate the use of Meta-Monte-
Carlo Tree Search, for building a huge 7x7 opening book. In particular, they
report the 20 wins (out of 20 games) that were obtained recently in 7x7 Go
against pros; they also show that in one of the games, with no human error, the
pro might have won.

“MCTS Experiments on the Voronoi Game” written by Bruno Bouzy, Marc
Métivier, and Damien Pellier discusses Monte Carlo Tree Search (MCTS) as a
powerful tool in games with a finite branching factor. The use of MCTS on a
discretization of the Voronoi game is described together with the effects of en-
hancements such as RAVE and Gaussian processes (GP). A set of experimental
results shows that MCTS with UCB+RAVE or with UCB+GP are good first
solutions for playing the Voronoi game without domain-dependent knowledge.
Then the authors show how to improve the playing level by using geometrical
knowledge about Voronoi diagrams, the balance of diagrams being the key con-
cept. A new set of experimental results shows that a player using MCTS and
geometrical knowledge outperforms the player without knowledge.

“4*4-Pattern and Bayesian Learning in Monte-Carlo Go” is a contribution
by Jiao Wang, Shiyuan Li, Jitong Chen, Xin Wei, Huizhan Lv, and Xinhe Xu.
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The authors propose a new model of pattern, namely, 4*4-Pattern, to improve
MCTS in computer Go. A 4*4-Pattern provides a larger coverage and more es-
sential information than the original 3*3-Patterns, which are currently widely
used. Due to the lack of a central symmetry, it takes greater challenges to ap-
ply a 4*4-Pattern compared to a 3*3-Pattern. Many details of a 4*4-Pattern
implementation are presented, including classification, multiple matching, cod-
ing sequences, and fast lookup. Additionally, Bayesian 4*4-Pattern learning is
introduced, and 4*4-Pattern libraries are automatically generated from a vast
amount of professional game records according to the method. The results of the
experiments show that the use of 4*4-Patterns can improve MCTS in 19*19 Go
to some extent, in particular when supported by 4*4-Pattern libraries generated
by Bayesian learning.

“Temporal Difference Learning for Connect6” is written by I-Chen Wu, Hsin-
Ti Tsai, Hung-Hsuan Lin, Yi-Shan Lin, Chieh-Min Chang, and Ping-Hung Lin.
In the paper, the authors apply temporal difference (TD) learning to Connect6,
and successfully use TD(0) to improve the strength of their Connect6 program,
NCTU6. That program won several computer Connect6 tournaments from 2006
to 2011. The best improved version of TD learning achieves about a 58% win rate
against the original NCTU6 program. The paper discusses several implementa-
tion issues that improve the program. The program has a convincing performance
removing winning/losing moves via threat-space search in TD learning.

“Improving Temporal Difference Learning Performance in Backgammon Vari-
ants” by Nikolaos Papahristou and Ioannis Refanidis describes the project. Pala-
medes which is an ongoing project for building expert playing bots that can play
backgammon variants. The paper improves upon the training method used in
their previous approach for the two backgammon variants popular in Greece and
neighboring countries, Plakoto and Fevga. The authors show that the proposed
methods result both in faster learning as well as better performance. They also
present insights into the selection of the features.

“CLOP: Confident Local Optimization for Noisy Black-Box Parameter
Tuning” is a contribution by Rémi Coulom. Artificial intelligence in games often
leads to the problem of parameter tuning. Some heuristics may have coefficients,
and they should be tuned to maximize the win rate of the program. A possi-
ble approach is to build local quadratic models of the win rate as a function
of the program parameters. Many local regression algorithms have already been
proposed for this task, but they are usually not sufficiently robust to deal au-
tomatically and efficiently with very noisy outputs and non-negative Hessians.
The CLOP principle is a new approach to local regression that overcomes all
these problems in a straightforward and efficient way. CLOP discards samples
of which the estimated value is confidently inferior to the mean of all samples.
Experiments demonstrate that, when the function to be optimized is smooth,
this method outperforms all other tested algorithms.

“Analysis of Evaluation-Function Learning by Comparison of Sibling Nodes”
written by Tomoyuki Kaneko and Kunihito Hoki, discusses gradients of search
values with a parameter vector θ in an evaluation function. Recent learning
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methods for evaluation functions in computer shogi are based on minimization
of an objective function with search results. The gradients of the evaluation
function at the leaf position of a principal variation (PV) are used to make an
easy substitution of the gradients of the search result. By analyzing the variations
of the min-max value, the authors show (1) when the min-max value is partially
differentiable and (2) how the substitution may introduce errors. Experiments
on a shogi program with about 1 million parameters show how frequently such
errors occur, as well as how effective the substitutions for parameter tuning are
in practice.

“Approximating Optimal Dudo Play with Fixed-Strategy Iteration Counter-
factual Regret Minimization” is a contribution by Todd W. Neller and Steven
Hnath. Using the bluffing dice game Dudo as a challenge domain, the authors ab-
stract information sets by an imperfect recall of actions. Even with such abstrac-
tion, the standard Counterfactual Regret Minimization (CFR) algorithm proves
impractical for Dudo, since the number of recursive visits to the same abstracted
information sets increases exponentially with the depth of the game graph. By
holding strategies fixed across each training iteration, the authors show how
CFR training iterations may be transformed from an exponential-time recur-
sive algorithm into a polynomial-time dynamic-programming algorithm, making
computation of an approximate Nash equilibrium for the full two-player game
of Dudo possible for the first time.

“The Global Landscape of Objective Functions for the Optimization of Shogi
Piece Values with a Game-Tree Search” is written by Kunihito Hoki and To-
moyuki Kaneko. The landscape of an objective function for supervised learning
of evaluation functions is numerically investigated for a limited number of fea-
ture variables. Despite the importance of such learning methods, the properties
of the objective function are still not well known because of its complicated de-
pendence on millions of tree-search values. The paper shows that the objective
function has multiple local minima and the global minimum point indicates rea-
sonable feature values. It is shown that an existing iterative method is able to
minimize the functions from random initial values with great stability, but it
has the possibility to end up with a non-reasonable local minimum point if the
initial random values are far from the desired values.

“Solving Breakthrough with Race Patterns and Job-Level Proof Num-
ber Search” is a contribution by Abdallah Saffidine, Nicolas Jouandeau, and
Tristan Cazenave. Breakthrough is a recent race-based board game usually
played on an 8 × 8 board. The authors describe a method to solve 6 × 5 boards
based on race patterns and an extension of the Job-Level Proof Number Search
JLPNS. Using race patterns is a new domain-specific technique that allows early
endgame detection. The patterns they use enable them to prune positions safely
and statically as far as seven moves from the end. The authors also present an
extension of the parallel algorithm (JLPNS), viz., when a PN search is used as
the underlying job.
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“Infinite Connect-Four Is Solved: Draw” by Yoshiaki Yamaguchi, Kazunori
Yamaguchi, Tetsuro Tanaka, and Tomoyuki Kaneko, describes the newly ob-
tained solution for variants of Connect-Four played on an infinite board. The
authors proved their result by introducing never-losing strategies for both play-
ers. The strategies consist of a combination of paving patterns, which are follow-
up, follow-in-CUP, and a few others. By employing the strategies, both players
can block their opponents to achieve the winning condition. This means that
optimal play by both players leads to a draw in these games.

“Blunder Cost in Go and Hex” is a contribution by Henry Brausen, Ryan B.
Hayward, Martin Müller, Abdul Qadir, and David Spies. In Go and Hex, they
examine the effect of a blunder — here, a random move — at various stages of a
game. For each fixed move number, they run a self-play tournament to determine
the expected blunder cost at that point.

“Understanding Distributions of Chess Performances” by Kenneth W. Regan,
Bartlomiej Macieja, and Guy McC. Haworth studies the population of chess
players and the distribution of their performances measured by Elo ratings and
by computer analysis of moves. Evidence that ratings have remained stable since
the inception of the Elo system in the 1970s is given in three forms: (1) by
showing that the population of strong players fits a straightforward logistic-curve
model without inflation, (2) by plotting players’ average error against the FIDE
category of tournaments over time, and (3) by skill parameters from a model
that employs computer analysis keeping a nearly constant relation to Elo rating
across that time. The distribution of the model’s intrinsic performance ratings
can therefore be used to compare populations that have limited interaction, such
as between players in a national chess federation and FIDE, and to ascertain
relative drift in their respective rating systems.

“Position Criticality in Chess Endgames” is a contribution by Guy McC.
Haworth and Á. Rusz. In some 50,000 Win Studies in Chess, White is chal-
lenged to find an effectively unique route to a win. Judging the impact of less
than absolute uniqueness requires both technical analysis and artistic judgment.
Here, for the first time, an algorithm is defined to help analyze uniqueness in
endgame positions objectively. The key idea is to examine how critical certain
positions are to White in achieving the win. The algorithm uses sub-n-man
endgame tables (EGTs) for both Chess and relevant, adjacent variants of Chess.
It challenges authors of EGT generators to generalize them to create EGTs for
these chess variants. The algorithm has already proved to be efficient and effec-
tive in an implementation for Starchess, itself a variant of chess. The approach
also addresses a number of similar questions arising in endgame theory, games,
and compositions.

“On Board-Filling Games with Random-Turn Order and Monte Carlo Per-
fectness” is a contribution by Ingo Althöfer. In a game, pure Monte Carlo search
with parameter T means that for each feasible move T random games are gen-
erated. The move with the best average score is played. The author calls a game
“Monte Carlo perfect” when this straightforward procedure converges to perfect
play for each position, when T goes to infinity. Many popular games like Go, Hex,
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and Amazons are NOT Monte Carlo perfect. In the paper, two-player zero-sum
games are investigated where the turn-order is random: always a fair coin flip
decides which player acts on the next move. A whole class of such random-turn
games is proven to be Monte Carlo perfect. The result and generalizations are
discussed, with example games ranging from very abstract to very concrete.

“Modeling Games with the Help of Quantified Integer Linear Programs” is
written by Thorsten Ederer, Ulf Lorenz, Thomas Opfer, and Jan Wolf. Quanti-
fied linear programs (QLPs) are linear programs with mathematical variables be-
ing either existentially or universally quantified. The integer variant (Quantified
linear integer program, QIP) is PSPACE-complete, and can be interpreted as a
two-person zero-sum game. Additionally, it demonstrates a remarkable flexibility
in polynomial reduction, such that many interesting practical problems can be
elegantly modeled as QIPs. Indeed, the PSPACE-completeness guarantees that
all PSPACE-complete problems, for example, games like Othello, Go-Moku, and
Amazons, can be described with the help of QIPs, with only moderate overhead.
The authors present the dynamic graph reliability (DGR) optimization problem
and the game Go-Moku as examples.

“Computing Strong Game-Theoretic Strategies in Jotto” by Sam Ganzfried
describes a new approach that computes approximate equilibrium strategies in
Jotto. Jotto is quite a large two-player game of imperfect information; its game
tree has many orders of magnitude more states than games previously studied,
including no-limit Texas Hold’em. To address the fact that the game tree is
so large, the authors propose a novel strategy representation called oracular
form, in which they do not explicitly represent a strategy, but rather appeal to
an oracle that quickly outputs a sample move from the strategy’s distribution.
Their overall approach is based on an extension of the fictitious play algorithm to
this oracular setting. The authors demonstrate the superiority of their computed
strategies over the strategies computed by a benchmark algorithm, both in terms
of head-to-head and worst-case performance.

“Online Sparse Bandit for Card Games” is written by David L. St-Pierre,
Quentin Louveaux, and Olivier Teytaud. Finding an approximation of a Nash
equilibrium in matrix games is an important topic. A bandit algorithm commonly
used to approximate a Nash equilibrium is EXP3. Although the solution to
many problems is often sparse, EXP3 inherently fails to exploit this property.
To the authors’ best knowledge, there is only an offline truncation proposed to
handle the sparseness issue. Therefore, the authors propose a variation of EXP3
to exploit the fact that the solution is sparse by dynamically removing arms;
the resulting algorithm empirically performs better than previous versions. The
authors apply the resulting algorithm to an MCTS program for the Urban Rivals
card game.

“Game Tree Search with Adaptive Resolution” is authored by Hung-Jui
Chang, Meng-Tsung Tsai, and Tsan-sheng Hsu. In the paper, the authors use
an adaptive resolution R to enhance the min-max search with the alpha-beta
pruning technique, and show that the value returned by the modified algorithm,
called Negascout-with-resolution, differs from that of the original version by at
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most R. Guidelines are given to explain how the resolution should be chosen
to obtain the best possible outcome. The experimental results demonstrate that
Negascout-with-resolution yields a significant performance improvement over the
original algorithm on the domains of random trees and real game trees in Chinese
chess.

“Designing Casanova: A Language for Games” is written by G. Maggiore,
A. Spanó, R. Orsini, G. Costantini, M. Bugliesi, and M. Abbadi. The authors
present the Casanova language, which allows the building of games with three im-
portant advantages when compared to traditional approaches: simplicity, safety,
and performance. They show how to rewrite an official sample of the XNA frame-
work, resulting in a smaller source and a higher performance.

“Affective Game Dialogues” by Michael Lankes and Thomas Mirlacher inves-
tigates natural game input devices, such as Microsoft’s Kinect or Sony’s Playsta-
tion Move. They have become increasingly popular and allow a direct mapping
of player performance in regard to actions in the game world. Games have been
developed that enable players to interact with their avatars and other game ob-
jects via gestures and/or voice input. However, current technologies and systems
do not tap into the full potential of affective approaches. Affect in games can be
harnessed as a supportive and easy to use input method. The paper proposes a
design approach that utilizes facial expressions as an explicit input method in
game dialogues. This concept allows players to interact with non-player charac-
ters (NPC) by portraying specific basic emotions.

“Generating Believable Virtual Characters Using Behavior Capture and Hid-
den Markov Models” by Richard Zhao and Duane Szafron proposes a method of
generating natural-looking behaviors for virtual characters using a data-driven
method called behavior capture. The authors describe the techniques (1) for
capturing trainer-generated traces, (2) for generalizing these traces, and (3) for
using the traces to generate behaviors during game-play. Hidden Markov models
(HMMs) are used as one of the generalization techniques for behavior genera-
tion. The authors compared the proposed method with other existing methods
by creating a scene with a set of six variations in a computer game, each us-
ing a different method for behavior generation, including their proposed method.
They conducted a study in which participants watched the variations and ranked
them according to a set of criteria for evaluating behaviors. The study showed
that behavior capture is a viable alternative to existing manual scripting meth-
ods and that HMMs produced the most highly ranked variation with respect to
overall believability.

This book would not have been produced without the help of many persons.
In particular, we would like to mention the authors and the referees for their
help. Moreover, the organizers of the three events in Tilburg (see the beginning
of this preface) have contributed substantially by bringing the researchers to-
gether. Without much emphasis, we recognize the work by the committees of
the ACG 2011 as essential for this publication. One exception is made for Joke
Hellemons, who is gratefully thanked for all services to our games community.
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Finally, the editors happily recognize the generous sponsors Tilburg Univer-
sity, Tilburg Center for Cognition and Communication, LIS, ICGA, Netherlands
eScience Center, NWO NCF, SURFnet, CICK, The Red Brick, NBrIX, and
Digital Games Technology.

April 2012 Jaap van den Herik
Aske Plaat
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Abstract. Monte-Carlo Tree Search (MCTS) is a successful approach
for improving the performance of game-playing programs. This paper
presents the Accelerated UCT algorithm, which overcomes a weakness
of MCTS caused by deceptive structures which often appear in game tree
search. It consists in using a new backup operator that assigns higher
weights to recently visited actions, and lower weights to actions that
have not been visited for a long time. Results in Othello, Havannah, and
Go show that Accelerated UCT is not only more effective than previous
approaches but also improves the strength of Fuego, which is one of the
best computer Go programs.

1 Introduction

MCTS has achieved the most remarkable success in developing strong computer
Go programs [6,7,10], since traditional minimax-based algorithms do not work
well due to a difficulty in accurately evaluating positions. The Upper Confidence
bound applied to Trees (UCT) algorithm [13] is a well-known representative of
MCTS. It is applied to Go and many other games such as Amazons [12,15] and
Havannah [19].

MCTS consists of two procedures, the Monte-Carlo simulation called playout,
and the tree search. In a playout at position P , each player keeps playing a
randomly selected move until reaching a terminal position. The outcome of the
playout at P is defined as o. The outcome o (e.g., win, loss, or draw) of a terminal
position is defined by the rule of the game. In the tree-search procedure, each
move contains a value indicating the importance of selecting that move. For
example, UCT uses the Upper Confidence Bound (UCB) value [1] (explained
later) as such a criterion.

MCTS repeats the following steps until it is time to play a move. First, starting
at the root node, MCTS traverses the current tree in a best-first manner by
selecting the most promising move until reaching a leaf node. Then, if the number
of visits reaches a pre-determined threshold, the leaf is expanded to build a larger
tree. Next, MCTS performs a playout at the leaf to calculate its outcome. Finally,

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. Hashimoto et al.

MCTS traces back along the path from the leaf to the root and update the values
of all the affected moves based on the playout result at the leaf.

At each internal node n, UCT selects move j with the largest UCB value
defined as:

ucbj := rj + C

√
log s

nj
, (1)

where rj is the winning ratio of move j, s is the number of visits to n, nj is the
number of visits to j, and C is a constant value that is empirically determined.

The inaccuracy of the winning ratio is measured by the second term, the
bias term, which decreases as the number of playouts increases. Given an infi-
nite number of playouts, selecting the move with the highest winning ratio is
proved to be optimal. However, the transitory period in which UCT chooses the
suboptimal move(s) can last for a very long time [4] due to the over-optimistic
behavior of UCT.

One way to overcome the above situation is to discount wins and losses for
the playouts performed previously. Because the current playout is performed at
a more valuable leaf than previously preformed ones, the current playout result
is considered to be more reliable. Thus, MCTS can search a more important part
of the search tree by forgetting the side effects of previous playouts. Although
Kocsis and Szepesvári’s Discounted UCB algorithm [14] is an example of such
an approach, results for adapting it to tree search have not been reported yet
except for an unsuccessful report in the Computer Go Mailing List [8].

This paper introduces a different way of focusing on more recent winning
ratios than Discounted UCB. Its contributions are threefold.

1. Development of the Accelerated UCT algorithm that maintains the reliability
of past winning ratios and focuses on exploring the subtrees where playout
results are recently backed up.

2. Experimental results showing the potential of Accelerated UCT over plain
UCT and Discounted UCT, which is an application of Discounted UCB to
tree search, in Othello, Havannah, and Go.

3. Experimental results clearly showing that Accelerated UCT with Rapid Ac-
tion Value Estimate [9,20] further improves the strength of Fuego [7], a
strong computer Go program that is freely available.

The structure of the paper is as follows: Section 2 explains a drawback of UCT.
Section 3 reviews the literature. Section 4 describes Accelerated UCT, followed
by experimental results in Section 5. Section 6 discusses conclusions and future
work.

2 Drawback of UCT

Kocsis and Szepesvári proved that the UCB value converges to the optimal
value [13]. This indicates that UCT can eventually select a move identical to
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Fig. 1. An example of a deceptive structure which leads UCT to select a losing move
even if playout results are accurate. The winning ratio of the first player is shown.

the one selected by the minimax (i.e., optimal) strategy. However, while this
theoretical property assumes a condition in which unlimited time is given to
UCT, UCT must determine the next move to play in limited time, that is, the
number of playouts UCT can perform in practice is usually not sufficiently large
to converge to the optimal value. As discussed in details below, UCT therefore
suffers from a deceptive structure in its partially built tree, which may be a cause
of selecting a wrong move that may lead to losing a game.

Because UCT’s playouts often mistakenly evaluate winning positions as losses
or vice versa, one example of deceptive structures is caused by an inaccurate
winning ratio computed by such faulty playout results. Playout policies could
be modified to decrease the frequency of encountering the deceptive structures
with knowledge-based patterns (e.g., [5,10]).

However, even if playout results are accurate, UCT may still suffer from de-
ceptive structures in the currently built tree. This drawback of UCT is explained
with the help of Fig. 1. Assume that D, E, and H are winning positions and
F and I are losing positions for the first player. Then, A → B and A → C
are losing and winning moves with the optimal strategy, respectively, because
A → B → F is a loss and A → C → G → H is a win. Also assume that UCT
has currently performed only one playout at each leaf in the tree built as in this
figure1. If the playout results at D, E, and H are wins and the playout results
at F and I are losses, the winning ratio of A→ B is larger than that of A→ C
(2/3 versus 1/2), resulting in UCT choosing a losing move. UCT can obviously
calculate the more accurate winning ratio by visiting B more frequently. How-
ever, UCT remains to be deceived to select A → B as a more promising move
than A→ C until A→ B turns out to be valueless.

In general, deceptive structures tends to appear when MCTS must select the
best move at a node with only a few promising children (e.g., ladders in Go).

1 For simplicity, we also assume that C in equation 1 is very small (close to 0), although
the drawback of UCT occurs even with large C.
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3 Related Work

A number of approaches have been presented to correct the deceived behavior of
MCTS in the literature, including modified playout policies (e.g., [5,10,11,17]).
Although modifying playout policies is presumed to decrease deceptive struc-
tures in the search tree, these techniques are mostly based on domain-dependent
knowledge. Additionally, this approach cannot completely remove the deceptive
structures as shown in Fig. 1. In contrast, we aim at avoiding the deceptive
structures in a domain-independent way.

The rest of this section deals with related work based on different formulas
than UCB to bypass such deceptions. The approaches are orthogonal to modi-
fying playout policies and can be usually combined with these policies.

Coquelin and Munos showed an example in which UCT works poorly due to
its over-optimistic behavior if it performs only a small number of playouts [4].
They presented the Bandit Algorithm for Smooth Trees (BAST) to overcome this
issue by modifying the bias term of the UCB formula. A theoretical property was
proved about the regret bound and the playout sizes performed on suboptimal
branches, when their smoothness assumption is satisfied in the tree. Since they
did not show empirical results in games, it is still an open question whether
BAST is effective for two player games or not.

Discounted UCB [14] gradually forgets past playout results to value more
recent playout results. It introduces the notion of decay, which was traditionally
presented in temporal difference learning [18]. The original UCB value is modified
to the Discounted UCB value as explained below.

In the multi-armed bandit problem, let rDt,j and nD
t,j be the discounted winning

ratio of branch j and the discounted visits to j, respectively, after the t-th playout
is performed. The Discounted UCB value ducbt,j is defined as2:

ducbt,j := rDt,j + C

√
log sDt
nD
t,j

, (2)

where sDt :=
∑
i

nD
t,i and C is a constant. Discounted UCB incrementally updates

rDt,j and nD
t,j in the following way:

nD
t+1,j ← λ · nD

t,j + I(t+ 1, j), (3)

rDt+1,j ←
(
λ · nD

t,j · rt,j + R(t+ 1, j)
)
/
(
λ · nD

t,j + I(t+ 1, j)
)
, (4)

where λ is a constant value of decay ranging (0, 1], I(t, j) is set to 1 if j is
selected at the t-th playout or 0 otherwise. R(t, j) is defined as the result of the
t-th playout (0 or 1 in this paper for the sake of simplicity) at j if j is selected,

2 Precisely, Kocsis and Szepesvári used the UCB1-Tuned formula [10] to define the
Discounted UCB algorithm. However, we use the standard UCB1 formula here, since
we believe that this difference does not affect the properties of Discounted UCB.



Accelerated UCT and Its Application to Two-Player Games 5

or 0 if j is not selected. We assume rD0,j = nD
0,j = 0 for any j but ducb0,j has a

very large value so that j can be selected at least once. Note that Discounted
UCB is identical to UCB if λ = 1.0. Additionally, selecting the right λ plays an
important role in Discounted UCB’s performance.

Discounted UCB selects branch j with the largest discounted UCB value and
performs a playout at j, and then updates the discounted UCB values of all the
branches. In other words, while Discounted UCB updates ducbt,j for selected
branch j, the Discounted UCB values for the other unselected branches are also
discounted. Discounted UCB repeats these steps until it performs sufficiently
many playouts to select the best branch.

While Discounted UCB could be applied to tree search in a similar manner to
UCT, one issue must be addressed (see Subsection 5.1 for details) and no success
in combining Discounted UCB with tree search has been reported yet.

Ramanujan and Selman’s UCTMAXH combines UCT and minimax tree search
[16]. It simply replaces performing a playout with calling an evaluation function
at each leaf and backs up its minimax value instead of the mean value. Although
they showed that UCTMAXH outperforms UCT and minimax search in the
game of Mancala, their approach is currently limited to domains where both
minimax search and UCT perform well.

Other related work includes approaches using other algorithms as baselines
rather than UCT and their applicability to UCT remains an open question. For
example, instead of computing the winning ratio, Coulom introduced the “Mix”
operator that is a linear combination of robust max and mean [6].

4 Accelerated UCT

Our Accelerated UCT algorithm aims at accelerating to search in a direction for
avoiding deceptive structures in the partially built tree. Similarly to Discounted
UCB, Accelerated UCT considers recent playouts to be more valuable. However,
unlike the decay of Discounted UCB, Accelerated UCT non-uniformly decreases
the reliability of subtrees that contain the past playout results.

As in UCT, Accelerated UCT keeps selecting the move with the largest Ac-
celerated UCB value from the root until reaching a leaf. The Accelerated UCB
value aucbj for move j is defined as:

aucbj := rAj + C

√
log s

nj
, (5)

where the bias term is identical to UCB and rAj is the accelerated winning ratio
(explained later) defined by the notion of velocity. If Accelerated UCT is cur-
rently at position P for the t-th time, the velocity vt,j of each of the legal moves
j at P is updated in the following way:

vt+1,j ← vt,j · λ+ I(t+ 1, j), (6)
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where I(t + 1, j) is 1 if move j is selected at P and is 0 otherwise, and λ is a
decay ranging (0, 1], which has a similar effect to the decay of Discounted UCB
and is empirically preset. For any move j, v0,j is set to 0.

Let rAi be the accelerated winning ratio of move i that creates position P
and rAj be the accelerated winning ratio of move j at P . When Accelerated

UCT backs up a playout result, it updates rAi with the following velocity-based
weighted sum of rAj :

rAi :=
∑

j∈LM(P )

wj · rAj , (7)

where LM(P ) is all the legal moves at P and wj := vt,j/(
∑

k∈LM(P )

vt,k).

If move j is selected, vt,j and wj are increased, resulting in giving rAj a heavier
weight. Additionally, Accelerated UCT is identical to UCT if λ = 1.

When a leaf is expanded after performing several playouts, Accelerated UCT
must consider a way of reusing these playout results. We prepare an additional
child called virtual child for this purpose.

Fig. 2 illustrates the virtual child of node a, represented as a′. Nodes a, b and
c are leaves in the left figure. Assume that three playouts are performed at a and
the winning ratio of move r → a is 2/3. Then, if a is expanded, Accelerated UCT
generates two real children (i.e., d and e) and one virtual child a′ as shown in the
right figure. Additionally, assume that one playout per real child is performed
(the playout results are a win at d and a loss at e).

In case of plain UCT, the winning ratio of r → a can be easily calculated
as 3/5 in this situation, because the playout results previously performed at a
(i.e.,the winning ratio of 2/3) are accumulated at r → a. However, Accelerated
UCB updates the accelerated winning ratio rAr→a of r → a based on the winning
ratios of a→ d and a→ e in the original definition. These moves do not include

Fig. 2. An example illustrating the necessity of virtual child in Accelerated UCT
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the value of 2/3. We therefore add one virtual child a′ and (virtual) move a→ a′

to set the winning ratio of a → a′ to 2/3. That is, as if there were three moves
(a→ a′, a→ d and a→ e) at a, Accelerated UCT updates rAr→a.

Note that the velocity of a′ is also considered but is always decayed because
a′ is never selected.

5 Experiments

Below we describe our experiments by providing implementation details (in 5.1),
outlining the setup (in 5.2), and giving two performance comparisons (in 5.3
and 5.4).

5.1 Implementation Details

We implemented the plain UCT, Discounted UCT (Discounted UCB plus tree
search), and Accelerated UCT algorithms to evaluate the performance of these
algorithms in the games of Othello, Havannah, and Go. All the algorithms were
implemented on top of Fuego 0.4.13 in Go. In contrast, we implemented them
from scratch in Othello and Havannah.

Since Discounted UCB updates all the branches of the root in the multi-armed
bandit problem, one possible Discounted UCT implementation is to update all
the Discounted UCB values in the currently built tree. However, because this
approach obviously incurs non-negligible overhead, our implementation updates
the Discount UCB values in the same way as Accelerated UCT updates velocities.
In this way, our Discounted UCT implementation can recompute the Discounted
UCB values of “important” moves with a small overhead.

5.2 Setup

Experiments were performed on a dual hexa-core Xeon X5680 machine with 24
GB memory. While this machine has 12 cores in total, we used a single core to
run each algorithm with sufficient memory.

We set the limit of the playout size to 50,000 when each algorithm determined
the move to play. Although Discounted/Accelerated UCT requires an extra over-
head to compute Discounted/Accelerated UCB values compared to plain UCT,
we observed that this overhead was negligible.

We held a 1000-game match to compute the winning percentage for each
algorithm in each domain. A draw was considered to be a half win when the
winning percentage was calculated. The ratio of draws to the total number of
games ranged 0.9–2.2% in Havannah, while this number was at most 7.8% in
Othello. The games results were always either wins or losses in 9 × 9 Go with

3 The source code is available at http://fuego.sourceforge.net/. The latest imple-
mentation is version 1.1. However, version 0.4.1 was the latest one when we started
implementing the aforementioned algorithms.

http://fuego.sourceforge.net/
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7.5 komi. Because MCTS has randomness for playout results, we disabled the
opening book for the experiments and thus obtained a variety of games per
match.

5.3 Performance Comparison of the Plain, Discounted, and
Accelerated UCT Algorithms

Table 1 shows the winning percentages of Accelerated/Discounted UCT with
various decays against plain UCT in Othello, Havannah, and 9× 9 Go with 95%
confidence intervals, calculated by 2

√
p(100− p)/1000, where p is the winning

percentage. The best results are marked by bold text. We varied decay λ =
1 − 0.1k (1 ≤ k ≤ 7) for both Discounted and Accelerated UCT. For example,
λ = 0.9999999 with k = 7 and λ = 0.9 with k = 1. This implies that λ becomes
close to 1 more extremely with larger k, resulting in Discounted/Accelerated
UCT behaving more similarly to plain UCT.

Fuego’s default policy that performs a smarter playout based on game-
dependent knowledge was used in the experiments in Go. Additionally other
important enhancements except Rapid Action Value Estimate (RAVE)4 [9] were
turned on there. In contrast, in Havannah and Othello, when a playout was per-
formed, one of the legal moves was selected with uniform randomness without
incorporating any domain-specific knowledge. Additionally, no techniques en-
hancing the performance of UCT variants were incorporated there. C was set to
1.0 in all the domains.

The winning percentages in the table indicate that Accelerated UCT was
consistently better than Discounted UCT. There is at least one case of k where
Accelerated UCT was statistically superior to plain UCT in each domain, al-
though the best k depends on the domain. In contrast, even with the best k,
Discounted UCT was at most as strong as plain UCT, implying the importance
of introducing a new way of decaying the winning ratio which is different from
the Discounted UCB value.

Table 1. Performance comparison

(a) Accelerated vs plain UCT (b) Discounted vs plain UCT

Winning percentage (%)

k Othello Havannah Go

1 39.2± 3.1 24.2± 2.7 0.8± 0.6

2 52.5± 3.2 25.1± 2.7 41.3 ± 3.1

3 56.3± 3.2 47.8± 3.2 54.5 ± 3.1

4 52.7± 3.1 58.2± 3.1 56.0± 3.1

5 51.3± 3.2 50.6± 3.2 53.0 ± 3.2

6 47.4± 3.2 48.0± 3.2 51.0 ± 3.2

7 48.2± 3.2 50.2± 3.2 50.1 ± 3.2

Winning percentage (%)

k Othello Havannah Go

1 0.0± 0.0 0.0 ± 0.0 0.0± 0.0

2 1.3± 0.7 0.0 ± 0.0 0.0± 0.0

3 28.0 ± 2.8 8.0 ± 1.7 0.0± 0.0

4 47.5 ± 3.2 31.3 ± 2.9 18.6± 2.5

5 49.0 ± 3.2 48.5 ± 3.2 45.8± 3.2

6 49.2± 3.2 52.0± 3.2 46.6± 3.2

7 48.2 ± 3.2 50.0 ± 3.2 48.7± 3.2

4 We intend to show the potential of the Accelerated and Discounted UCT algorithms
against UCT in this subsection. See the performance comparison with turning on
RAVE in the next subsection.



Accelerated UCT and Its Application to Two-Player Games 9

The constant value of C may impact the performance of Discounted UCT
since the best C might be different from plain and Accelerated UCT due to the
different formula of the biased term in Discounted UCT. However, we did not
exploit the best C for plain and Accelerated UCT either. Moreover, we verified
that the values of the biased terms of Discounted and Accelerated UCT with the
best λ were quite similar when we ran these algorithms with many positions.

Despite inclusions of Fuego’s essential enhancements to improve its playing
strength except RAVE, Accelerated UCT still achieved non-negligible improve-
ment. Additionally, even if no enhancements were incorporated in Othello and
Havannah, Accelerated UCT was better than plain UCT. These results indicate
that Accelerated UCT was able to remedy the deceived behavior of UCT which
could not be corrected completely by the enhancements presented in the previous
literature (e.g., modifications to playout policies).

If the winning ratio was over-discounted (i.e., in case of small k), both Dis-
counted and Accelerated UCT performed poorly. However, Accelerated UCT was
still more robust than Discounted UCT to the change of λ (see Table 1 again).
In the extreme case of k = 1 where λ = 0.9, we observed that Discounted UCT
won no games against plain UCT. This result indicates that Discounted UCT
suffers from undesirable side effects if it eventually forgets all the past play-
out results that often contain useful information. In contrast, Accelerated UCT
often bypasses this drawback of Discounted UCT, because the backup rule of
Accelerated UCT still takes into account the past valuable playout results.

5.4 Performance Comparison with RAVE in Go

The RAVE enhancement [9] plays a crucial role in drastically improving the
strength of many computer Go programs including Fuego. One question is how
to combine Discounted or Accelerated UCT with RAVE. This subsection answers
the question and shows experimental results when RAVE is turned on in Fuego,
that is, we used the best configuration of Fuego as a baseline.

RAVE assumes that there is a strong correlation between the result of a
playout and the moves that appear during performing that playout as in [2,3].
RAVE then sets the playout result as the value of these moves (we call this
value the RAVE playout value) so that the UCB values of the moves (called the
RAVE values precisely) can be updated with their RAVE playout values even
at different positions. While the original RAVE formula appears in [9], Fuego
uses a slightly different formula in [20]. The RAVE value of move j (ravej) is
defined as5:

ravej :=
nj

nj +Wj
rj +

Wj

nj +Wj
rRAVE
j (8)

5 The RAVE value could have a bias term as in the UCB value. However, it is omitted
in many computer Go programs in practice because the second term of ravej often
has a similar effect to the bias term. The bias term was not therefore included in
the experiments here since Fuego also performs best with no bias term.
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where rj is the winning ratio of j, nj is the number of visits to j, rRAVE
j is

the RAVE playout value of j, and Wj is the unnormalized weight of the RAVE
estimator (see [20] for details). Instead of using the UCB value, Fuego keeps
selecting move j with the highest ravej from the root until reaching a leaf to
perform a playout.

RAVE tries to converge empirically to the game value more quickly than UCT,
which is successful in current Go programs. As a result, this property might have
a complementary effect on avoiding deceptive structures in the tree.

In our Discounted UCT implementation, rj and nj in ravej are replaced by
rDt,j and nD

t,j in Equations 3 and 4, respectively6. In contrast, in our Accelerated

UCT implementation, only rj is replaced by rAj in Equation 7.

Table 2. Performance comparison with Fuego with switching on RAVE and all im-
portant enhancements in Go

(a) Accelerated vs Fuego (b) Discounted vs Fuego

k Winning percentage (%)

1 51.2 ± 3.2

2 51.9 ± 3.3

3 54.5 ± 3.4

4 55.9± 3.5

5 53.8 ± 3.4

6 54.6 ± 3.4

k Winning percentage (%)

1 0.0± 0.0

2 0.0± 0.0

3 4.4± 0.3

4 41.6± 2.6

5 47.9± 3.0

6 49.8± 3.1

Table 2 shows the winning percentages of Discounted and Accelerated UCT
with RAVE against Fuego with the best configuration which also includes
RAVE. Accelerated UCT statistically performs better than Fuego, which im-
plies that RAVE does not always fix the problem of deceptions in MCTS and
Accelerated UCT may correct some of the deceived behaviors of MCTS. In the
best case, the winning percentage of Accelerated UCT against Fuego was 55.9
% if λ is set to 0.9999. In contrast, Discounted UCT was again at most as strong
as Fuego, as we saw similar tendencies in the previous subsection. Discounted
UCT lost all the games if the winning ratio is over-discounted with small k (i.e.,
k ≤ 2), while Accelerated UCT was very robust to the change of k. Again, this
indicates that Discounted UCT inherently has a side-effect of forgetting past
valuable playout results.

6 Concluding Remarks

We have developed the Accelerated UCT algorithm that avoids some of the
deceptions that appear in the search tree of MCTS. Our experimental results
have shown that Accelerated UCT not only outperformed plain and Discounted

6 Unlike in the definition of Discounted UCB, t and j indicate the situation after the
tth update for move j is performed.
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UCT in a variety of games but also contributed to improving the playing strength
of Fuego, which is one of the best computer Go programs.

Although Accelerated UCT is shown to be promising, the most important
future work is to develop a technique that automatically finds a reasonable value
of decay λ. At present, we must try to find a good value of λ empirically by hand.
In our experiments, the best λ depends on the target domain. Additionally, since
we believe that the best λ also depends on the time limit, it would be necessary
for Accelerated UCT to change automatically the value of λ, based on a few
factors such as the shape of the current search tree.
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gram. We thank Tomoyuki Kaneko and Martin Müller for their valuable com-
ments on the paper.
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Abstract. The UCT (Upper Confidence Bounds applied to Trees) al-
gorithm has allowed for significant improvements in a number of games,
most notably the game of Go. Move groups is a modification that greatly
reduces the branching factor at the cost of increased search depth and
as such may be used to enhance the performance of UCT. From the re-
sults of the experiments, we arrive at the general structure of good move
groups and the parameters to use for enhancing the playing strength.

1 Introduction

Using Monte-Carlo search as a basis, the UCT algorithm has greatly improved
the computer programs for many games, including all state of the art Go pro-
grams, such as Fuego [8], and some Amazons programs, such as Invader [7].
The UCT algorithm provides a method of selecting the next node to simulate in
tree searches and has proven to be an effective way of guiding the large number
of simulations that Monte-Carlo search uses.

However, in several games, the complexity resulting from the high branching
factor makes it difficult to find the few good moves among thousands. Notably,
Amazons on a tournament-sized board initially has a branching factor of 2176
and an average branching factor of approximately 500 [7]. Enhancements imple-
mented to handle this problem tend to be game specific in nature. One potential
refinement is the UCT algorithm’s default policy for first-play urgency (FPU).
First-play urgency is a value representing how soon to simulate a node for the
first time. In basic UCT, the value is infinity; all nodes are simulated once be-
fore any further simulations [6]. In the game of Go, this value has been adjusted,
based on the playing performance to achieve a greater playing strength by, Wang
and Gelly [10].

Rapid Action Value Estimation (RAVE) is a second refinement of UCT. RAVE
has been used in many Go programs [5], including Fuego, MoGo, and Erica,
to great successes. Using RAVE modifies the original UCT algorithm to include
an additional term that is based on statistics gathered for playing a stone at any
point in the game, rather than just considering the next move.

When looking for enhancements that are not game-specific, an example is
iterative widening. With iterative widening, the goal is to begin searching in a
subset of possible moves, then gradually widening the search window if time al-
lows. This has been used to improve Monte-Carlo tree search by Chaslot et al. [3].

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 13–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The enhanced algorithm won significantly more often with iterative widening, or
Progressive Unpruning as they called it, turned on. Against GnuGo, they won
58% of games with iterative widening and another strategy turned on and only
25% with both turned off. Prior knowledge in the form of a pattern database
was used in this case, but there is potential for less game-specific methods of
selecting the move subset, such as using a RAVE value.

A third general strategy would be incorporating move groups into the game
tree. A move group is a selection of available moves to introduce another layer in
the tree. A player’s turn is split into phases: first, select a move group, and then,
select a move within that group. This method has been used in Amazons and Go.
In Amazons, the largest gain is in move generation savings, as shown by Richard
Lorentz [7]. In his program Invader, a turn consists of selecting an amazon,
selecting a move for that amazon, then selecting a destination for its arrow.
He notes that this saves time on the move generation itself by a factor of 10
simply because it does not have to generate all possible moves. For Go, Childs
et al. [4] were able to increase the playing strength of their modified libEGO
program by grouping moves according to their Manhattan distance from both
of the previous moves. In this case the groups were not disjoint, unlike in the
Amazons example. An earlier Go article by Saito et al. used disjoint groups
composed first of moves within two points of the last move, then moves on the
border of the game board, and lastly a group with all other moves [9]. Besides
finding an increase in playing performance, they note that their player seems to
shift focus better and play non-local moves when appropriate.

Given the need for a general enhancement when working with UCT, this
paper explores move groups in detail. After analyzing the results from several
experiments, an overall structure of move groups that perform well is found.
This structure is then used to describe several potential applications that would
effectively use this structure.

In this paper, first a quick overview of the UCB algorithm is presented in
Section 2. Then, the research questions to be answered are presented in Sec-
tion 3. Next, the experimental framework is described in Section 4. Section 5
contains the experiments and their results. Lastly, Section 6 describes potential
applications for move groups.

2 The Upper Confidence Bounds Algorithm

The Upper Confidence Bounds (UCB) algorithm is the basis of the UCT al-
gorithm. UCB was designed for a finite-time policy for the multi-armed bandit
problem [2]. At each time step, select the machine j that maximizes the following
formula:

valuej =

{
x̄j + C

√
ln(n)
nj

if nj > 0

FPU if nj = 0

Here, x̄j is the average reward from machine j, nj is the number of times j has
been played, and n is the total number of plays. C is the bias constant which
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is
√
2 by default. The FPU value is determined by the first-play urgency policy

and is ∞ by default.
This algorithm has been proven to achieve logarithmic regret with any number

of playouts. This was then extended to work with trees in the paper that describes
the UCT algorithm [6]. Manipulating the bias term affects exploration; a higher
constant means more exploration. When first encountering unexplored nodes,
the default policy is to explore all children once; alternatively, a customized
variation of first-play urgency is implemented. After the search is terminated,
the machine or move with the most simulations is selected.

In this paper, UCB parameterized with C, the bias constant, and FPU , the
first-play urgency, is the competitor. However, since the addition of move groups
creates another level, UCB is used at both levels, which is essentially UCT with
a fixed tree.

3 Research Questions

Previous efforts exploring the efficacy of move groups [4] [9] have tried a small
subset of possible move groups. This paper examines the research question (RQ)
of the perfect move group. RQ1: How do we arrive at the perfect move group
that performs better than all other possible move groups? In order to do this,
all possible move groups need to be tested and compared to one another. Of
course, the perfect move group will be defined by the underlying payoffs of the
children. Therefore, RQ2 is to find whether there is a common structure among
good move groups so that this might be applied to other problems. The third
question (RQ3) is regarding the efficacy of completely random move groups.
RQ3: If we know absolutely nothing about the underlying nodes, will a random
move grouping perform better than none at all?

4 Experimental Framework

Given the questions to be answered, an artificial game called the ‘Multi-armed
Bandit Game with Move Groups’ was created.

1. The entire game tree is the root node with N children.
2. Each child has a fixed probability of paying off.
3. Using UCB on this tree competes with other trees where move groups have

been introduced; an extra level is added into the tree where first a move group
is selected by UCB, then a child is selected UCB. No child is duplicated.

Simplicity was required here due to the nature of the questions. Given that
structure and behavior of the move groups needed to be investigated, the sim-
plicity allowed for larger experiments to be run to gather information in detail.
Especially when N is small, many different move groups can be analyzed.

The policy for selecting the next node to simulate was the modified UCB
mentioned before. The bias constant was varied during the experiments with
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the following values used for C: 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 100.0.
The policy for first-play urgency used was to have a set value for unexplored
nodes. In the default case, FPU was set to 0.5; some of the experiments tested
the effects of modifying this value.

5 Experiments and Results

Two quality criteria were used: (1) probability that the best node was selected
after a set number of simulations and (2) total regret over time. All experiments
were run 5000 times with average results shown.

5.1 Baseline Group Performance

The first experiment exhaustively tried every possible grouping of nine nodes
into three groups of three, 280 combinations in total. This allowed for detailed
comparison of groups with different payoffs, and values of C and FPU . Each
grouping along with standard UCB was run for 8192 simulations. At various
intervals, the node that would have been selected was tracked. Performance was
measured by the percentage of time that the best node was selected. In practice,
knowing the exact value or ranking of nodes is unrealistic, but this experiment
provides a baseline to study the potential of groups.

For the first study, the payoff probabilities of the nine nodes were 0.1, 0.2, ...,
0.9. For comparison, results of UCB without move groups are given in Table 1.
A 95% confidence interval for the previous selection rates is ±0.71% for 50% and
±1.22% for 75%. The best performing values of C for basic UCB were 0.5 and
1.0 with 0.5 performing slightly better than 1.0 at lower simulation counts and
slightly worse at higher simulation counts. To look at the effect of introducing
move groups without changing any parameters, the performance of basic UCB
was compared to all move groups with the same parameters. The results are
shown in Table 2. When the bias term was near its optimal value for basic UCB,
introducing move groups almost always decreased the performance. So, in order
to find out how to use move groups to increase performance, comparisons must
be made with varying C.

Comparing all group and C value pairs gives a good insight into the po-
tential of move groups. When looking at the 32 simulations mark, there are
181 group/C value pairs of a total 2520 (280 groups, 9 values for C) that per-
formed better than the best basic UCB. The most common value for C was 0.5
with a few 1.0 values being present as well. When looking at the 512 simula-
tions mark, there are 224 group/C value pairs that performed better than the
best basic UCB. Counting only the number of unique groups, there were 136.
For values of C, 1.0, 2.0, 5.0, and 10.0 were all present, with 5.0 performing the
best. The two most common structures of groups that performed better than
basic UCB at both simulation marks were those that had the best child in a
group with the 2nd or 3rd best child or the three best children split among the
three groups. The best performing groups had the second structure more often
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Table 1. Basic UCB performance based on percentage of the trials when the best arm
was selected at various simulation counts with children payoffs ranging from 0.1 to 0.9.

Bias Term 16 32 64 128 256 512 1024 2048 4096 8192

0.0 0.327 0.372 0.396 0.407 0.412 0.414 0.414 0.416 0.416 0.416

0.1 0.354 0.441 0.507 0.550 0.576 0.597 0.613 0.616 0.617 0.621

0.2 0.371 0.497 0.633 0.760 0.817 0.844 0.863 0.871 0.873 0.875

0.5 0.413 0.542 0.733 0.880 0.950 0.982 0.996 0.998 0.998 0.999

1.0 0.214 0.379 0.630 0.832 0.957 0.996 1.000 1.000 1.000 1.000

2.0 0.098 0.333 0.546 0.759 0.914 0.986 0.999 1.000 1.000 1.000

5.0 0.000 0.003 0.387 0.628 0.856 0.956 0.997 1.000 1.000 1.000

10.0 0.000 0.000 0.076 0.395 0.767 0.925 0.993 0.999 1.000 1.000

100.0 0.000 0.000 0.000 0.000 0.000 0.040 0.676 0.991 1.000 1.000

Table 2. Percentage of all groups that performed equally or better than basic UCB
with the same parameters. An asterisk marks where basic UCB was selecting the best
node 100% of the time.

Bias Term 16 32 64 128 256 512 1024 2048 4096 8192

0.0 12.15 1.43 0.00 0.00 0.36 0.72 1.08 1.08 1.79 1.79

0.1 6.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 11.08 1.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 50.36 45.36 8.22 2.51 3.58 2.86 2.86 2.51 2.51 3.58

1.0 100.00 98.58 86.08 69.29 51.79 25.72 25.72* 50.72* 73.93* 90.36*

2.0 100.00 87.86 68.58 63.22 61.79 67.15 73.22 99.65* 100.00* 100.00*

5.0 100.00 100.00 70.72 61.08 55.36 56.08 57.51 65.36* 98.58* 100.00*

10.0 100.00 100.00 96.08 71.79 56.08 53.22 51.79 56.08 65.01* 81.79*

100.0 100.00 100.00 44.29 100.00 100.00 85.01 64.29 33.93 52.51* 57.15*

than the first. For example, the grouping {{0.1, 0.2, 0.8} {0.3, 0.4, 0.7} {0.5,
0.6, 0.9}} selected the best node 62.24% of the time at 32 simulations compared
to 54.22% for basic UCB and 100% of the time at 512 simulations compared to
99.66% for basic UCB.

5.2 Groups Study in Difficult Move Selection

The second iteration of this experiment was run with the exact same parameters
except the best child had a payoff probability of 0.81 rather than 0.9. This was
to make the problem harder and decrease the occurrence of 100% success rates
seen previously. Basic UCB’s performance is shown in Table 3. Again, the best
observed bias term for basic UCB was around 0.5 and 1.0. When comparing
move groups to basic UCB without changing parameters, the results are quite
similar to those found for the previous experiment shown in Table 2.

This time, when comparing all group and C value pairs together, the results
are more in favor of the groups. Using 32 simulations as the comparison point,
248 pairs and 162 unique groups performed better than the best basic UCB.
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The best performing C value of those groups was 0.5, with 0.1, 0.2, and 1.0
present as well. In this case, the top groups have a very obvious structure in
common: the best three children are split among the three groups. Using 512
simulations as the next comparison point, 435 pairs and 174 unique groups per-
formed better than the best basic UCB. Interestingly, the same groups as with
32 simulations are present at the top, but with different bias terms. This time,
5.0 and 10.0 are the most common C values and perform the best. At 8192 sim-
ulations, the same groups are still present at the top, with a majority having
bias terms of 10.0. The group described in the last section is again among the
top performers.

Table 3. Basic UCB performance based on percentage of the trials when the best arm
was selected at various simulation counts with children payoffs ranging from 0.1 to
0.81.

Bias Term 16 32 64 128 256 512 1024 2048 4096 8192

0.0 0.273 0.306 0.320 0.329 0.333 0.335 0.336 0.336 0.338 0.338

0.1 0.274 0.332 0.374 0.400 0.424 0.444 0.456 0.460 0.461 0.466

0.2 0.286 0.358 0.419 0.455 0.478 0.498 0.515 0.532 0.551 0.570

0.5 0.278 0.335 0.436 0.501 0.551 0.593 0.645 0.690 0.754 0.842

1.0 0.165 0.248 0.360 0.463 0.545 0.595 0.642 0.707 0.779 0.864

2.0 0.079 0.216 0.316 0.411 0.484 0.542 0.611 0.667 0.749 0.842

5.0 0.000 0.002 0.200 0.332 0.432 0.515 0.555 0.617 0.696 0.801

10.0 0.000 0.000 0.067 0.202 0.375 0.478 0.550 0.607 0.675 0.757

100.0 0.000 0.000 0.000 0.000 0.000 0.002 0.268 0.415 0.551 0.667

From these two experiments, we start to see a pattern emerge. In both experi-
ments, groups that did better than basic UCB were those that had the best three
children split among the groups. Then, for low simulation counts, a C value of
0.5, near-optimal for basic UCB, performed best. For higher simulation counts,
increasing the value by a few orders of magnitude had the best results. This is
to counter for the increased selectivity that results from grouping.

Running the same experiment but with payoff probabilities of 0.3, 0.35, ..., 0.7
had an overall performance between the other two experiments and therefore
similar conclusions apply. Changing FPU to 0.3 from 0.5 decreased the perfor-
mance of all groups and basic UCB. Changing it again to 0.7 from 0.5 had little
effect with the largest deviation being 3%.

5.3 Grouping in Games with Large Branching Factor

In order to check whether the best performing groups would have a similar
structure with a larger number of children, the experiment was slightly modified
for 60 nodes and 10 move groups of 6 nodes each. Values for the nodes were
randomly generated and ranged from 0.7% to 92.2%. The second best node had
a value of 88.4%. The number of simulations was scaled up to 65536. Since there
would be too many groups to test them exhaustively, 20 random groups as well
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as two pre-defined groups were generated. The first pre-defined group contained
the nodes “in order,” that is, the best 6 children in one group, the next best
6 children in another group, and so on. The second pre-defined group was the
“distributed” group where the best 10 nodes were split among the groups.

Results of the most experiments were similar to the 9-node experiments. A
change from the previous results was the set of C values that performed the best.
For basic UCB, 0.2 performed best at simulations counts less than 1024, and 0.5
performed best at higher simulations counts. The best-performing C values for
groups also decreased; 0.2 and 0.5 were most common at low simulation counts,
and 1.0 and 2.0 were most common at high simulation counts.

The move group structure of the best groups clearly differed from what was
expected. Two of the best-performing groups had the best child grouped with the
4th best child. This suggests that the move groups work best when distinguishing
between a few good arms rather than many. The fact that the distributed group
performed worse than the basic UCB in all but a few cases reinforces this. These
scaling results require further study.

5.4 Measuring Group Performance with Regret

Since the UCB algorithm was designed to minimize regret, it was important to
look at how the regret of different move groups performs in comparison. Regret
for one simulation was calculated by taking the difference of the best node and
the chosen node’s payoff probabilities. This amount was tracked at every time
step and totalled. The values shown are the average total regret over the 5000
trials.

When the payoff probabilities were 0.1, 0.2, ..., 0.9 as in the first experiment,
the range of total regret at simulation counts 512 and 8192 for all groups and
basic UCB is shown in Figure 1 and 2, respectively. It is interesting to note
that the relative shape between the bias terms remains the same no matter
the simulation count. A bias term of 0.5 has the least regret throughout the
simulations. However, this does not correspond to selecting the best node more
often. For example, once the simulation count reaches 1024, some groups select
the best node 100% of the time, but only if their bias term is 5.0 or 10.0. This is
despite the fact that the regret of those bias terms is very high relative to that
of 0.5. Higher bias implies that more time is spent simulating lower value nodes
and therefore accumulates more regret. However, this allows the algorithm to
distinguish the best node in a better way.

Changing the largest payoff probability to 0.81 yields similar results. The
range of total regret at a simulation count of 512 for all groups and basic UCB
is shown in Figure 3. Similar results were also found for the 60 node experiment
with slightly lower C values having better regret.

From these results, cumulative regret is not the ideal metric for measuring
performance of move groups. Even while relative total regret remained the same
between simulation counts, a group’s preference of C value changed. Since total
regret considers all simulations performed rather than the end result, it is biased
towards configurations that find good moves quickly and do not deviate. In game
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Fig. 1. Total regret of groups, range denoted by bars, and basic UCB, denoted by
an x, after 512 simulations with payoff probabilities ranging from 10 to 90%. Data is
separated according to the C value.

tree searches, we are more concerned with simple regret: finding the best move
regardless of where simulation time was spent. This is similar to work done by
Audibert et al. where they endeavor to develop an algorithm that can deal with a
situation where the end result is all that matters while still keeping exponentially
decreasing regret [1].

5.5 Introducing Move Groups and Using Prior Knowledge

The previous experiments used predetermined groups in order to determine the
group structures that performed well given the relative values of the nodes.
One possible way to use these structures without knowing the exact value of the
underlying nodes is to introduce move groups after a number of simulations. The
values used for the nine nodes again was 10-81%. Basic UCB with a bias term
of 0.5 was the competitor. Groups were created with various conditions: create
groups once after 64, 128, or 512 simulations, create and recreate groups every
50, 100, or 200 simulations, create and recreate groups after each performance
measurement. It is interesting to note that the run times of all grouping methods
after 8192 simulations were approximately 25% faster than basic UCB due to
the fact that fewer nodes are evaluated with groups.

First, creating the best group/bias pair was tried where the top three arms
were split among groups and the bias term scaled to higher values with more
simulations. Overall, the results were poor with all methods performing 7-12%
worse than basic UCB at 8192 simulations which selected the best node 86.5%
of the time. Next, the grouping where the best three nodes are grouped together
with a bias term of 0.5 was tested. In this case, the performance of creating
groups once after 512 simulations was within error bounds of basic UCB. Other
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Fig. 2. Total regret of groups, range denoted by bars, and basic UCB, denoted by an
x, after 8192 simulations with payoff probabilities ranging from 10 to 90%. Data is
separated according to the C value.

0

20

40

60

80

100

120

140

160

0.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 100.0

Bias term

×
× × ×

×

×

×
×

×

Fig. 3. Total regret of groups, range denoted by bars, and basic UCB, denoted by
an x, after 512 simulations with payoff probabilities ranging from 10 to 81%. Data is
separated according to the C value.

methods did not perform as well with performance hits of 6-10% compared to
basic UCB at 8192 simulations.

To test the effect of prior knowledge, groups were created initially given that
the best three nodes are known. The bias term was varied from 0.1 to 10.0. Two
grouping methods were tested – separating the best three nodes and grouping
them together.

When separating the best nodes, the best performing bias terms were 2.0, 5.0,
and 10.0. Initially, they performed worse than basic UCB. After 64 simulations,
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they started performing significantly better. However, 2.0 and 5.0 often switched
to selecting the second best node rather than the best node at higher simulations.
The group using a bias term of 10.0 performed significantly better than basic
UCB after 64 simulations and reached 99.8% at 2048 simulations. Putting the
best nodes in the same group had more consistent performance, but never better
than basic UCB. Bias terms of 0.5, 1.0, and 2.0 all performed within the error
bounds of basic UCB.

6 Conclusions and Potential Applications

There are several observations that can be seen in the experimental results. The
first is that only introducing arbitrary or random move groups into the search
speeds up the search and does not increase the simulation efficiency. This is
compounded when there are additional savings in move generation as shown by
Lorentz’s Amazons program [7]. Second, with very high bias terms, groups on
average performed better than basic UCB in the experiments as seen in Table 2.

Third, since random move groups cannot always be used, we need some way
to differentiate between the nodes so that they can be grouped properly. The
experiments showed that splitting up the best nodes into a few groups had
good results regardless of their underlying payoff. Fourth, this was tested using
simulation values and prior knowledge. Without prior knowledge, the best results
were when the top three nodes were grouped together after a large number
of simulations. They performed as well as basic UCB in terms of number of
simulations with a 25% increase in speed. Given that only nine nodes is a tough
case and the branching factor would typically be decreased much more, this
speed increase is expected to persist even with higher node counts. Fifth, with
prior knowledge, grouping the best nodes together at the start performed as
well as basic UCB and had the speed increase. Sixth, splitting up the best nodes
performed better with more simulations and higher bias terms.

From the six observations we may draw two conclusions. First, our research
showed that it is possible to define a general structure of good move groups. Sec-
ond, experiments make it possible to identify the major values of the parameters
for enhancing the playing strength.

To exploit the framework in other games, the introduction of move groups
during simulations could be used in general. That may prove to be challenging
to implement due to the fact that the tree is changed during simulations. If
prior knowledge is available, such as using a pattern database to rank moves,
then groups could be created based on that ranking during node expansion.

The results described in this paper allow for several interesting avenues of
future research, such as introducing move groups during simulations for any
game, using pattern databases in Go to rank moves and create groups, and
using a heuristic function in chess to rank moves and create groups. Applying
approaches to such games remains a topic for future work.
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Abstract. We present a state of the art implementation of the Monte
Carlo Tree Search algorithm for the game of Go. Our Pachi software is
currently one of the strongest open source Go programs, competing at
the top level with other programs and playing evenly against advanced
human players. We describe our implementation and choice of published
algorithms as well as three notable original improvements: (1) an adap-
tive time control algorithm, (2) dynamic komi, and (3) the usage of the
criticality statistic. We also present new methods to achieve efficient scal-
ing both in terms of multiple threads and multiple machines in a cluster.

1 Introduction

The board game of Go has proven to be an exciting challenge in the field of
Artificial Intelligence. Programs based on the Monte Carlo Tree Search (MCTS)
algorithm and the RAVE variant in particular have enjoyed great success in
the recent years. In this paper, we present our Computer Go framework Pachi

with the focus on its RAVE engine that comes with a particular mix of popular
heuristics and several original improvements.

In section 2, we briefly describe the Pachi software. In section 3, we detail the
MCTS algorithm and the implementation and heuristics used in Pachi. Section
4 contains a summary of our original extensions to the MCTS algorithm — an
adaptive time control algorithm (Sec. 4.1), the dynamic komi method (Sec. 4.2)
and our usage of the criticality statistic (Sec. 4.3). In section 5, we detail our
scaling improvements, especially the strategy behind our distributed game tree
search. Then section 6 summarizes Pachi’s performance in the context of the
whole Computer Go field.

1.1 Experimental Setup

We use several test scenarios for the presented results with varying number of
simulations per move. Often, results are measured only with much faster time
settings than that used in real games — by showing different relative contribu-
tions of various heuristics, we demonstrate that the aspect of total time available
may matter significantly for parameter tuning.
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In our “low-end” time settings, we play games against GNU Go level 10 [4]
with single threaded Pachi, 500 seconds per game, i.e., about 5,000 playouts
per move. In the “mid-end” time settings, we play games against Fuego 1.1 [9]
with four Pachi threads, fixed 20,000 playouts per move. In the “high-end” time
settings, we play against Fuego 1.1 as well but using 16 threads, fixed 250,000
playouts per move.

The number of playouts (250,000 for Pachi and 550,000 for Fuego1 in “high-
end”) was selected so that both use approximately the same time, about 4 sec-
onds/move on average. We use the 19 × 19 board size unless noted otherwise.
In the “high-end” configuration Pachi is 3 stones stronger than Fuego so we
had to impose a large negative komi −50.5 with Pachi always taking white.
However, while Pachi scales much better than Fuego, in the “mid-end” con-
figuration Fuego and Pachi are about even.2 The “low-end” Pachi is stronger
than GNU Go, therefore Pachi takes white and games are played with no komi.
Each test was measured using 5000 games, except for the “low-end” comparisons;
we used a different platform and had to take smaller samples.

2 The Pachi Framework

The design goals of Pachi have been (1) simplicity, (2) minimum necessary
level of abstraction, (3) modularity and clarity of programming interfaces, and
(4) focus on maximum playing strength.

Fig. 1. Block schema of the Pachi architecture. When multiple options of the same
class are available, the default module used is highlighted.

1 The interpretation of max games changed in Fuego 1.0 such that it includes the
count of simulations from reused trees. Pachi does not include them.

2 When we tried to match Fuego against the “low-end” Pachi, Fuego was 110 Elo
stronger.
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Pachi is free software licenced under the GNU General Public Licence [11].
The code of Pachi is about 17000 lines of pure C, most of the code is richly
commented and follows a clean coding style. Pachi features a modular architec-
ture (see Fig. 1): the move selection policy,3 simulation policy, and other parts
reside in pluggable modules and share libraries providing common facilities and
Go tools. Further technical details on Pachi may be found in [2].

3 Monte Carlo Tree Search

To evaluate moves,Pachi uses a variant of the Monte Carlo Tree Search (MCTS)
— an algorithm based on an incrementally built probabilistic minimax tree. We
repeatedly descend the game tree, run a Monte Carlo simulation when reaching
the leaf, propagate the result (as a boolean value)4 back to the root and expand
the tree leaf when it has been reached n = 8 times.

Algorithm 1. NodeValue

Require: sims, simsAMAF are numbers of simulations pertaining the node.
Require: wins,winsAMAF are numbers of won simulations.

NormalTerm ← wins
sims

RAVETerm ← winsRAVE
simsRAVE

= winsAMAF
simsAMAF

β ← simsRAVE
simsRAVE+sims+simsRAVE·sims/3000

NodeValue ← (1− β) ·NormalTerm + β ·RAVETerm

The MCTS variants differ in the choice of the next node during the descent.
Pachi uses the RAVE algorithm [5] that takes into account not only per-child
winrate statistics for the move being played next during the descent, but also
(as a separate value) anytime later5 during the simulation (the so-called AMAF
statistics). Therefore, we choose the node with the highest value given by Algo-
rithm 1 above, a simplified version of the RAVE formula [5] (see also Sec. 4.2).

3.1 Prior Values

When a node is expanded, child nodes for all the possible followup moves are
created and pre-initialized in order to kick-start exploration within the node.
The value (expectation) for each new node is seeded as 0.5 with the weight of
several virtual simulations, we have observed this to be important for RAVE
stability. The value is further adjusted by various heuristics, each contributing
ε fixed-result virtual simulations (“equivalent experience” ε = 20 on 19 × 19,
ε = 14 on 9× 9). (This is similar to the progressive bias [7], but not equivalent.)

3 The default policy is called “UCT”, but this is only a traditional name; the UCT
exploration term is not used by default anymore.

4 In the past, we have been incorporating the final score in the propagated value,
however this has been superseded by the Linear Adaptive Komi (Sec. 4.2).

5 Simulated moves played closer to the node are given higher weight as in Fuego [9].
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Table 1. Elo performance of various prior value heuristics on 19 × 19

Heuristic Low-end Mid-end High-end

w/o eye malus −31± 32 −3± 16 +1± 16

w/o ko prior −15± 32 −3± 16 +10± 16

w/o 19× 19 lines −15± 33 −4± 16 −6± 16

w/o CFG distance −66± 32 −66± 16 −121± 16

w/o playout policy −234± 42 −196± 16 −228± 16

Most heuristics we use and the mechanism of equivalent experience are similar
to the original paper on Mogo [5]. Relative performance of the heuristics is
shown in Table 1. The Elo difference denotes the change of the program strength
when the heuristic is disabled. It is apparent that the number of simulations
performed is important for evaluating heuristics. The following six heuristics are
applied.

– The “eye” heuristic adds virtual lost simulations to all moves that fill single-
point true eyes of our own groups. Such moves are generally useless and not
worth considering at all; the only exception we are aware of is the completion
of the “bulky five” shape by filling a corner eye, this situation is rare but
possible, thus we only discourage the move using prior values instead of
pruning it completely.

– We encourage the evaluation of ko fights by adding virtual wins to a move
that re-takes a ko no more than 10 moves old.

– We encourage sane 19×19 play in the opening by giving a malus to first-line
moves and bonus to third-line moves if no stones are in the vicinity.

Table 2. The ε values for the CFG heuristic

δ = 1 δ = 2 δ = 3

19× 19 55 50 15

9× 9 45 40 15

– We encourage the exploration of local sequences by giving bonus to moves
that are close to the last move based on δ, the length of the shortest path in
the Common Fate Graph [13], with variable ε set as shown in Fig. 2. This has
two motivations — first, with multiple interesting sequences available on the
board, we want to ensure the tree does not swap between situations randomly
but instead reads each sequence properly. Second, this is well rooted in the
traditional Go strategy where a large portion of moves is indeed “sente”,
requiring a local reply.

– We give joseki moves twice the default ε (using the joseki dictionary de-
scribed below). This currently has no performance impact.
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Table 3. Elo performance of some playout heuristics on 19× 19

Heuristic Low-end Mid-end High-end

w/o Capture −563± 106 −700 −949

w/o 2-lib. −86± 34 — —

w/o 3× 3 pats. −324± 37 −447± 34 −502± 36

w/o self-atari −34± 33 — −31± 16

– We give additional priors according to the suggestions by the playout policy.
The default ε is halved for multi-liberty group attack moves.

3.2 Playouts

In the game simulations (playouts) started at the leaves of the Monte Carlo Tree,
we semi-randomly pick moves until the board is completely filled (up to one-point
eyes). The move selection should be randomized, but heuristics allowing for
realistic resolution of situations in various board partitions are highly beneficial.

We use the Mogo-like rule-based policy [12] that puts emphasis on localized
sequences and matching of 3× 3 “shape” board patterns. Heuristics are tried in
a fixed order and each is applied with certain probability p, by default p = 0.8
for 19×19 and p = 0.9 for 9×9.6 A heuristic returns a set of suggested moves; if
the set is non-empty, a random move from the set is picked and played, if the set
is empty (the common case), the next heuristic is tried. If no heuristic matches,
a uniformly random7 move is chosen.

See Table 3 for relative performance of the heuristics with the largest impact8

(the Elo difference again denotes strength change when the heuristic is disabled).
We apply the following three main rules.

– With p = 0.2, ko is re-captured if the opponent played a ko in the last 4
moves.

– Local checks are performed — heuristics applied in the vicinity of the last
move.

• With p = 0.2, we check if the liberties of the last move group form a
“nakade” shape.9

• If the last move has put its own group in atari, we capture it with p = 0.9.
If it has put a group of ours in atari, we attempt to escape or counter-
capture other neighboring groups.

6 Some of the precise values below are 19 × 19 only, but that is mainly due to a lack
of tuning for 9× 9 on our part.

7 Up to one-point eye filling and the self-atari filter described later.
8 Some of the low-probability heuristics represent only a few Elo of improvement and
could not have been re-measured precisely with the current version.

9 I.e., if we could kill the group by playing in the middle of the group eyespace.
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• If the last move has reduced its own group to just two liberties, we put
it in atari, trying to prefer atari with low probability of escape; if the
opponent has reduced our group to two liberties, we attempt either to
escape or to put some neighboring group in atari, aiming to handle the
most straightforward capturing races.
• With p = 0.2, we attempt to do a simplified version of the above (safely
escaping or reducing liberties of a neighboring group) for groups of three
and four liberties.
• Points neighboring the last two moves are (with p = 1) matched for 3×3
board patterns centered at these points similar to patterns presented in
[12], extended with information on “in atari” status of stones. We have
made a few minor empirical changes to the pattern set.

– We attempt to play a joseki10 followup based on a board quadrant match
in a hash table. The hash table has been built using the “good variations”
branches of the Kogo Joseki Dictionary [17]. This has a non-measurable
effect on the performance against other programs, but makes Pachi’s play
prettier for human opponents in the opening.

The same set of heuristics is also used to assign prior values to new tree nodes
(as described above). Bad self-atari moves are pruned from heuristic choices and
stochastically also from the final random move suggestions: in the latter case, if
the other liberty of a group that is being put in self-atari is safe to play, it is
chosen instead, helping to resolve some tactical situations involving shortage of
liberties and false eyes.

4 MCTS Extensions

Below we discuss three MCTS extensions: Time Control (in 4.1), Dynamic Komi
(in 4.2), and Criticality (in 4.3).

4.1 Time Control

We have developed a flexible time allocation strategy when the total thinking
time is limited, with the goal of the longest search in the most critical parts of
the game — in the middle game and particularly when the best move is unclear.

We assign two time limits (and a fixed delay for network lag and tree man-
agement overhead) for the next move — the desired time td and maximum time
tm. Only td time is initially spent on the search, but this may be extended up to
tm in case the tree results are too unclear (which triggers very often in practice).

Given the main time T and estimated number of remaining moves in the
game11 R, the default allocation is td = T/R and tm = 2 td, recomputed on each
move so that we account for any overspending.

10 Common move sequence, usually played in a corner in the game beginning.
11 We assume that on average, 25% of board points will remain unoccupied in the final

position. We always assume at least 30 more moves will be required.
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Furthermore,we tweak this allocationbasedon themovenumber so that tdpeaks
in themiddle game. Let tM be themaximum time tm at the end of the middle game
(40% of the board has been played). In the beginning, we linearly increase the de-
fault td up to tM until 20% of the board has been played (the beginning of the mid-
dle game) and set td = tM for the whole middle game. After this, or if we are in
byoyomi, the remaining time is spread uniformly as described above.

For overtime (byoyomi), we use our generalized overtime specification: after
the main time elapses, fixed-length overtime To for each next m moves is al-
located, with n overtime periods available. Japanese byoyomi is a specific case
with m = 1 while Canadian byoyomi implies n = 1. If overtime is used, the main
time is still allocated as usual, except that tm = 3 td; furthermore, the lower
time for td of the main time is the td for byoyomi, and the first n− 1 overtime
periods are spent as if they were part of the main time. The time per move in
the last overtime period is allocated as td = To/m and tm = 1.1 td.

The search is terminated early if the expectation of win is very high μ ≥ 0.9 or
the chosen move cannot change12 anymore. In contrast, the tree search continues
even after td time already elapsed if the current state of the tree is unclear, i.e.,
either of the following three conditions triggers.

– The expectations of the best move candidate μa and its best reply μaa are
too different, bestr = |μa − μaa| > 0.02.

– The two best move candidates are equally simulated, i.e., best2 = εa/εb < 2.5
for the playout counts εa, εb of the two best moves.

– The best move (root child chosen based on the most simulations) is not the
move with the highest win expectation.

Figures 2 and 3 show that using such a flexible time strategy results in an increase
of an up to 80 Elo points performance compared to the baseline.13

The recently published time allocation by Erica [14] is similar, but while we
focus on over-spending strategies, Erica focuses more on the middle game time
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12 We choose the most simulated node as the move to play. We terminate search early
if the most simulated node cannot change even if it did not receive any more simu-
lations for the rest of the tm time.

13 We used a very fast “low-end” scenario with 300 seconds per game.
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allocation (adjusting time non-linearly, for a peak, not a plateau). Our middle
game time allocation algorithm is not a source of significant performance benefits
and we expect that our and Erica’s algorithm could be reconciled.

4.2 Dynamic Komi

The MCTS algorithm evaluates the possible moves most accurately when the
winning rate is near 50%. If most simulations are won or lost, the resolution of
the evaluation naturally gets more coarse. Such “extreme situations” are fairly
common in Go — especially in handicap games or in the endgame of uneven
matches. The dynamic komi technique [1] aims to increase MCTS performance
in such situations by shifting the win-loss score threshold (komi) from zero to
a different value; if a player winning 90% of simulations is required to win by a
margin of 10 points instead of just 1 point, we can expect the winning rate to
drop and the game tree will obtain information with a slight bias but also with
a much higher resolution.

In Pachi, we have previously successfully employed mainly the Linearly De-
creasing Handicap Compensation (LDHC) and Value-based Situational Compen-
sation (VSC) [1]. Recently, we have introduced another novel method: the Linear
Adaptive Komi. It uses LDHC up to a fixed number of moves, then increases the
komi againstPachi if it wins with probability above a fixed sure win threshold (we
use 0.85).This retains a good performance of LDHC for handicap games and allows
winning by a large point margin whenPachi has a comfortable lead.Without this,
Pachi is indifferent for the discrepancies between the winning moves, often steer-
ing to a 0.5 point win by playing what humans consider silly moves. At the same
time, this strategy is more straightforward and more robust than VSC.

4.3 Criticality

RAVE improves over the plain MCTS by using approximate information on move
performance gathered from related previous simulations. We can supply further
information using the point criticality — the covariance of owning a point and
winning the game [8,18],

Crit(x) = μwin(x) − (2μb(x)μb − μb(x) − μb + 1)

with μb(x) and μw(x) being the expectations of Black and White owning the
coordinate, and μb and μw the expectations of a player winning the game.

The criticality measure itself has been already proposed in the past. We intro-
duce an effective way to incorporate criticality in the RAVE formula — increasing
the proportion of won RAVE simulations in the nodes of critical moves.

simsRAVE = (1 + c · Crit(x)) · simsAMAF

winsRAVE = (1 + c · Crit(x)) · winsAMAF

We track criticality in each tree node based on the results of simulations com-
ing through the node. We use criticality only when the node has been visited
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at least n = 2000 times. c = 1.1 yields an improvement of approximately 10 Elo
points in the “high-end” scenario, but n = 192 can achieve as much as 69 ± 32
Elo points in the “low-end” scenario. More details on this way of criticality
integration may be found in [2]. A dynamic way of determining n may make the
improvement more pronounced in the future.

5 Parallelization

Pachi supports both shared memory parallelization and cluster parallelization.
It is highly scalable with more time or more threads, and scales relatively well
with more cluster nodes. Fig. 4 shows the general scaling of Pachi. In all the dis-
tributed experiments and most single machine experiments, Fuego and Pachi

both use 16 threads per machine and a fixed number of playouts. The measure-
ments are done on a 19× 19 board.

5.1 Shared Memory Parallelization

Historically, various thread parallelization approaches for MCTS have been ex-
plored [6]. In Pachi, we use the in-tree parallelization, with multiple threads
performing both the tree search and simulations in parallel on a shared tree and
performing lock-free tree updates [9]. To allocate all children of a given node,
Pachi does not use a per-thread memory pool, but instead a pre-allocated global
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node pool and a single atomic increment instruction updating the pointer to the
next free node. The leftmost curve in Fig. 4 shows scaling performance on a
single machine when raising the number of playouts per move from 15,625 to
8,000,000 against a constant opponent (Fuego 1.1 with 550,000 playous per
move). To allow an average time per move of at least 2 seconds, the number of
threads was reduced for Pachi up to 125,000 playouts per move; above this, the
number of threads was kept constant at 16 and so the time per move increased
(up to 2 minutes per move for 8,000,000 playouts).

The results show that Pachi is extremely scalable on a single machine. The
strength improvement is about 100 Elo points per doubling in the middle of the
range where Pachi and Fuego have equal resources (16 threads each and same
time per move). The improvement drops to about 50 Elo points per doubling
at the high end, but shows no sign of a plateau14. Segal [20] reports a similar
scalability curve, but with measurements limited to self-play and 4 hours per
game. To measure the effect of the opponent strength, experiments were per-
formed with both komi −22.5 and −50.5. As seen in Fig. 4, the curves are quite
similar in both cases, only offset by a roughly constant number of Elo points.

To connect the concept of negative komi and handicap stones, we measured
the Elo variation with a variable handicap and komi, as shown in Figs. 5 and
6. Against Fuego, one extra handicap stone is measured to be worth approx-
imately 70 Elo points and 12 points on the board. (The effect of one handicap
stone would be larger in self-play.)

Most experiments were done with a constant number of playouts to improve
the accuracy of the Elo estimates. We also measured the performance with fixed
total time (15 minutes per game plus 3 seconds/move byoyomi) and a variable
number of cores for Pachi.15 The timed experiments in Fig. 7 demonstrate
excellent scalability up to 22 cores16.

Figures 7 and 8 show inflation of self-play experiments compared to games
against a different reference opponent. Scalability results are most often reported
only in self-play. This is in our opinion rather misleading. Self-play scalability
is far easier than scalability against an opponent that uses different algorithms,
for example +380 Elo points instead of +150 Elo points when doubling from
1 to 2 cores. The same effect is also visible in the distributed mode as shown
in Fig. 10, where the 128-machine version is 340 Elo points stronger than the
2-machine version in self-play but only 200 Elo points stronger against Fuego.
Given the availability of at least two strong open-source Go programs (Pachi
and Fuego), we strongly encourage other teams to report scalability results
against other opponents rather than self-play.

14 We could not go beyond 8,000,000 playouts/move because of the resource require-
ments for 5000 games at more than 9 hours per game each.

15 Since Fuego lost on time far too frequently even with byoyomi, only Pachi used
fixed time and Fuego used a constant number of playouts.

16 The timed experiments were run on 24-cores machines, with at least 2 cores reserved
for other processes.
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Fig. 9 shows the strength speedup relative to the number of cores, i.e., the
increase in playing time needed to achieve identical strength play [6,20]. The
tests are done using the “high-end” scenario, but Pachi uses a variable number
of cores. The speedup is perfect (within the error margin) up to 22 cores — for
22 cores the measured speedup is 21.7± 0.5.

5.2 Cluster Parallelization

The MCTS cluster parallelization is still far from being clearly solved. Pachi fea-
tures elaborate support for distributed computations with information exchange
between the nodes, but it still scales much slower when multiplying the number
of nodes rather than processors with a low-latency shared tree. The cluster ver-
sion with 64 nodes is about 3 stones stronger than the single machine version.
Node statistics are sent using TCP/IP from slave machines to one master ma-
chine, merged in the master, and the merged results are sent by the master back
to the slaves. Only updates relative to the previously sent results are exchanged,
to minimize the network traffic. The network is standard 1 Gb/s Ethernet, so
it was critical to optimize it. Statistics are sent only for the first n levels in the
tree. Surprisingly, we found the value n = 1 to be optimal (i.e., only the in-
formation about the immediate move candidates is shared). Understanding this
should be the subject of further study. Mogo [3] goes up to n = 3 but it uses a
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high performance network (such as Myrinet or InfiniBand) whereas Pachi uses
standard Ethernet.

The distributed protocol was designed to be extremely fault tolerant. Nodes
can be shut down arbitrarily. The Pachi processes run at the lowest possible
priority and can be preempted at any time. The master sums the contributions
of all slaves and plays the move most popular among them. In timed games, the
master plays when more than half of the slaves indicate that they are willing
to play now, or when the time runs out. In experiments with fixed number of
playouts, the master plays when half of the slaves have reached their threshold,
or when the total number of playouts from all slaves reaches a global threshold.
These two tests can trigger quite differently in the presence of flaky slaves. We
have used the former method for all the experiments reported here, but the latter
method improves scalability further.

Virtual loss [6] aims to spread parallel tree descents — a virtual lost simulation
is added to each node visited during the descent and removed again in the update
phase. We have found that cluster parallelization is significantly more efficient
if multiple lost simulations are added; we use n = 6. This encourages different
machines to work on different parts of the tree, but increasing exploration by
multiple virtual losses slighly improves the single machine case as well.

To encourage further diversity among machines, we introduced the concept
of virtual win. Each node is given several virtual won simulations in a single
slave (if the node number modulo number of slaves equals the slave number),
therefore different nodes are encouraged to work on different parts of the tree,
this time in a deterministic manner. We use a different number of virtual wins
for children of the root node (n = 30) and for other nodes (n = 5). We also
tried to use losses instead of wins; the results were similar so we kept using wins
to avoid confusion with the quite different concept of virtual loss. Virtual losses
encourage diversity between threads on a single machine; virtual wins encourage
diversity between machines.
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Fig. 4 shows that virtual wins measurably the improved scalability in a dis-
tributed mode. Going from 2 to 64 machines improved the strength by 160 Elo
points without virtual win and by 200 Elo points with virtual win (compare the
lines for komi −22.5 and komi −50). Distributed Depth-First UCT [23] probably
performs better but it is significantly more complex to implement, while multiple
virtual loss and virtual win only require a few lines of code.

Fig. 4 also shows that distributed scalability for 9×9 games is harder than for
19 × 19 games, confirming reports by the Mogo team [21]. The average depth
of the principal variation was measured as 28.8 on 9 × 9 with 4 minutes total
time per game, and 14.7 on 19× 19 with 29 minutes total time per game.

6 Overall Performance

Pachi’s primary venue for open games with the members of the public is the
KGS internet Go server [19]. Instances running with 8 threads on Intel i7 920
(hyperthreading enabled) and 6 GiB of RAM can hold a solid 1-dan rank; a clus-
ter of 64 machines with 22 threads each is ranked as 3-dan. (The top program on
KGS Zen has the rank of 5-dan.) Distributed Pachi regularly participates in the
monthly KGS tournaments [22], usually finishing on the second or third place,
but also winning occasionally, e.g., in the August 2011 KGS Bot Tournament.

The cluster Pachi participated in the Human vs. Computer Go Competition
at SSCI 2011, winning a 7-handicap 19× 19 match against Zhou Junxun 9-dan
professional [16]. Zhou Junxun commented that Pachi played on a professional
level when killing an invading white group (the bulk of the game). In the Euro-
pean Go Congress 2011 Computer Go tournament [10], distributed Pachi tied
with Zen for the first place in the 19× 19 section.

In addition to algorithmic improvements, an enormous amount of tuning of
over 80 different parameters also significantly improved Pachi’s strength. How-
ever, at most one out of ten experiments results in a positive gain. Moreover,
improvements become harder as the program gets stronger. For example, multi-
ple virtual loss and virtual win initially provided a significant performance boost
(30 Elo points each), but after other unrelated algorithmic improvements, their
combined effect is now under 10 Elo points per doubling.

For this reason, we have also omitted full graphs of performance based on
the values of various constants but describe just the optimal values. While we
have originally explored the space of each parameter, resource limitations do not
allow us to re-measure the effect of most parameters after each improvement.
We can only make sure that we remain in the local optimum in all dimensions.

7 Conclusion

We have described a modern open source17 Computer Go program Pachi. It fea-
tures a modular architecture, a small and lean codebase, and a top-performing

17 The program source can be downloaded at http://pachi.or.cz/.

http://pachi.or.cz/
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implementation of the Monte Carlo Tree Search with RAVE and many domain-
specific heuristics. The program continues to demonstrate its strength by regu-
larly playing on the internet, with both other programs and people.

We have also introduced various extensions of the previously published meth-
ods. Our adaptive time control scheme allows Pachi to spend most time on the
most crucial moves. Dynamic komi allows the program to cope efficiently with
handicap games. A new way to apply the criticality statistic enhances the tree
search performance. Pachi scales well thanks to multiple-simulation virtual loss
and to our distributed computation algorithm including virtual win.

Acknowledgments. We have borrowed useful implementation tricks and in-
teresting ideas from other open source programs Fuego, GNU Go and Libego

[15]. Jan Hric offered useful comments on early versions of the paper. We would
also like to thank the anonymous referees for their helpful suggestions.
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Hérault, T., Rimmel, A., Teytaud, F., Teytaud, O., Vayssière, P., Yu, Z.: Scalability
and Parallelization of Monte-Carlo Tree Search. In: van den Herik, H.J., Iida, H.,
Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 48–58. Springer, Heidelberg (2011)

4. Bump, D., Farneback, G., Bayer, A., et al.: GNU Go,
http://www.gnu.org/software/gnugo/gnugo.html

5. Chaslot, G., Fiter, C., Hoock, J.-B., Rimmel, A., Teytaud, O.: Adding Expert
Knowledge and Exploration in Monte-Carlo Tree Search. In: van den Herik, H.J.,
Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 1–13. Springer, Heidelberg
(2010)

6. Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J.: Parallel Monte-Carlo
Tree Search. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG
2008. LNCS, vol. 5131, pp. 60–71. Springer, Heidelberg (2008)

7. Chaslot, G., Winands, M., van den Herik, H.J., Uiterwijk, J., Bouzy, B.: Pro-
gressive strategies for Monte-Carlo Tree Search. In: Joint Conference on Informa-
tion Sciences, Salt Lake City 2007, Heuristic Search and Computer Game Playing
Session (2007), http://www.math-info.univ-paris5.fr/~bouzy/publications/

CWHUB-pMCTS-2007.pdf

8. Coulom, R.: Criticality: a Monte-Carlo heuristic for Go programs. University of
Electro-Communications, Tokyo, Japan (2009), Invited talk,
http://remi.coulom.free.fr/Criticality/

9. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego — an open-source
framework for board games and Go engine based on Monte-Carlo Tree Search.
IEEE Transactions on Computational Intelligence and AI in Games 2(4), 259–270
(2010)

10. European Go Federation: European Go Congress 2011 in Bordeaux, Computer Go
(2011), http://egc2011.eu/index.php/en/computer-go

http://www.gnu.org/software/gnugo/gnugo.html
http://www.math-info.univ-paris5.fr/~bouzy/publications/CWHUB-pMCTS-2007.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/CWHUB-pMCTS-2007.pdf
http://remi.coulom.free.fr/Criticality/
http://egc2011.eu/index.php/en/computer-go
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Abstract. The dominant approach for programs playing the game of
Go is nowadays Monte-Carlo Tree Search (MCTS). While MCTS allows
for fine-grained time control, little has been published on time man-
agement for MCTS programs under tournament conditions. This paper
investigates the effects that various time-management strategies have on
the playing strength in Go. We consider strategies taken from the litera-
ture as well as newly proposed and improved ones. We investigate both
semi-dynamic strategies that decide about time allocation for each search
before it is started, and dynamic strategies that influence the duration
of each move search while it is already running. In our experiments, two
domain-independent enhanced strategies, EARLY-C and CLOSE-N, are
tested; each of them provides a significant improvement over the state of
the art.

1 Introduction

In tournament gameplay, time is a limited resource. Sudden death, the simplest
form of time control, allocates to each player a fixed time budget for the whole
game. If a player exceeds this time budget, he1 loses the game immediately.
Inasmuch as longer thinking times result in stronger moves, the player’s task
is to distribute his time budget wisely among all moves in the game. This is
a challenging task both for human and computer players. Previous research on
this topic [1,7,14,19,21] has mainly focused on the framework of αβ search with
iterative deepening. In a number of game domains however, this algorithm is
more and more losing its appeal.

After its introduction in 2006, Monte-Carlo Tree Search (MCTS) [5,15] has
quickly become the dominant paradigm in computer Go [17] and many other
games [18]. Unlike for αβ search, relatively little has been published on time
management for MCTS [3,13]. MCTS however allows for much more fine-grained
time-management strategies due to its anytime property. It can be stopped after
every playout and return a move choice that makes use of the complete search
time so far, while αβ searchers can only make use of completely explored root
moves of a deepening iteration.

1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 39–51, 2012.
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In this paper, we systematically test and compare a variety of time-manage-
ment strategies for MCTS in computer Go. We include newly proposed strategies
as well as strategies described in [3] and [13], partly in enhanced form. Experi-
ments in 13×13 and 19×19 Go are described, and a significant improvement of
the state of the art is demonstrated.

This paper is organized as follows. Section 2 gives an overview of related work
on time management for game-playing programs in general and Go programs
in particular. Section 3 outlines the approaches to time management studied in
this paper, while Section 4 presents experimental results in Go. Conclusions and
future research follow in Section 5.

2 Time Management

The first publication to address the topic of time management in computer games
was by Hyatt [14]. He observed that human chess grandmasters do not use an
equal amount of time per move, but play standard openings quickly, think longest
directly after coming out of the opening, and then play increasingly fast towards
the end of the game. He also suggested a technique that lets αβ search explore
a position longer to find a better move if the best move of the last deepening
iteration turns out to lose material.

Donninger [7] gave four “golden rules” for the use of time during a chess
game, both for human and computer players: “a) Do not waste time in easy
positions with only one obvious move. b) Use the opponent’s thinking time
effectively. c) Spend considerable time before playing a crucial move. d) Try to
upset the opponent’s timing.” He considered rule c) to be the most important
one by far, but also the hardest. In this paper, we try to approach rules a)
and c) simultaneously by attempting to estimate the difficulty of a position and
adjusting search time accordingly.

Althöfer et al. [1] published the first systematic evaluation of time-manage-
ment algorithms for chess. Amongst others, strategies were proposed to identify
trivial moves that can be made quickly, as well as troublesome positions that
require more thinking. The time controls considered, typical for chess, specify a
given amount of time for a given number of moves. They are insofar different
from sudden death as used in this paper as it here does not refer to the number
of moves by the player, but only to the total amount of time per game.

Markovitch and Sella [19] used the domain of checkers to acquire automatically
a simple time-allocation strategy, distributing a fixed number of deep searches
among the moves of a game. The authors divided time-management strategies
into three categories. (1) Static strategies decide about time allocation to all
future moves before the start of the game. (2) Semi-dynamic strategies determine
the computation time for each move before the start of the respective move
search. (3) Dynamic strategies make “live” timing decisions while the search
process is running. This categorization is used in the remainder of this paper.

Šolak and Vučković [21] devised and tested a number of time-management
models for modern chess engines. Their model M2a involved the idea of estimat-
ing the remaining number of moves, given the number of moves already played,
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from a database of master games. We use a similar approach as the basis for our
strategies. In more sophisticated models, Šolak and Vučković developed defini-
tions for the complexity of a position—based on the number of legal moves—and
allocated time accordingly. Since the number of legal moves is not a suitable mea-
sure in the game of Go, we use the concept of criticality [6] instead to identify
important positions.

Kocsis et al. [16] compared temporal difference learning and genetic algorithms
for training a neural network to make semi-dynamic timing decisions in the game
Lines of Action. The network could set the underlying αβ program to one of three
predefined search depths.

For the framework of MCTS, only two publications exist so far. Huang et al.
[13] evaluated a number of time-management heuristics for 19×19 Go, assuming
sudden-death time controls. As described in Subsection 4.1, we implemented
and optimized their heuristics as a baseline for our approaches. The ideas of the
“unstable evaluation” heuristic (UNST) and the “think longer when behind”
heuristic (BEHIND) were first described and tested in [13].

During the preparation of this paper, Baudǐs [3] published remarks on time
management for the state-of-the-art Go program Pachi in his Master’s the-
sis. Ideas similar to our “close second” (CLOSE) and “early exit” heuristics
(EARLY) were here formulated independently.

3 Time-Management Strategies

In this section, we describe first the semi-dynamic (3.1), and then investigate
the dynamic time-management strategies (3.2).

3.1 Semi-dynamic Strategies

The following five strategies determine the search time for each move directly
before the search for this move is started.

EXP. The straightforward EXP strategy for time allocation, used as the basis
of all further enhancements in this paper, divides the remaining thinking
time for the entire game (tremaining) by the expected number of remaining
moves for the player (mexpected) and uses the result as the search time for
the next move (tnextmove). The formula is as follows:

tnextmove =
tremaining

mexpected
(1)

mexpected can be estimated in various ways. Three heuristics are investigated
in this paper, two of them are game-independent and one is game-specific.
The first game-independent heuristic (EXP-MOVES) estimates the number
of remaining moves given the number of moves already played. The second
game-independent heuristic (EXP-SIM) estimates the number of remaining
moves given the length of simulated games in the preceding move search.
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The third heuristic (EXP-STONES) is specific to the game of Go and uses
the number of stones on the board as an estimator of remaining game length.
Other games may or may not provide other indicators. The parameters for all
three heuristics, e.g., the precise mapping from played moves to remaining
moves for EXP-MOVES, are set to their average values in a large set of
games played in self-play.

OPEN. The OPEN strategy puts emphasis on the opening phase of the game.
Formula 2 modifies the search time for every move in the game by multiplying
it with a constant “opening factor” fopening > 1.

tnextmove = fopening · tremaining

mexpected
(2)

This results in more time per move being used in the beginning of the game
than at the end. As opposed to the implicit assumption of Formula 1 that
equal time resources should be allocated to every expected move, here it is
assumed that the first moves of a game have greater influence on the final
outcome than the last moves and thus deserve longer search times.

MID. Instead of moves in the opening phase, the MID strategy increases search
times for moves in the middle game, which can be argued to have the highest
decision complexity of all game phases [13]. For this purpose, the time as
given by Formula 1 is increased by a percentage determined by a Gaussian
function over the set of move numbers, using three parameters a, b, and c
for height, position, and width of the “bell curve”.

fGaussian(x) = ae−
(x−b)2

2c2 (3)

tnextmove = (1 + fGaussian(current move number)) · tremaining

mexpected
(4)

KAPPA-EXP. In [6], the concept of criticality was suggested for Go—as some
intersections on the board are more important for winning the game than
others, these should be recognized as “critical” or “hot”, and receive special
attention or search effort. To identify critical points, statistics are collected
during playouts on which player owns which intersections at the end of each
simulation, and on how strongly this ownership is correlated with winning
the simulated game. Different formulas have since been suggested to compute
the strength of this relationship [6,20]. In the KAPPA-EXP strategy, we
use a related concept for identifying not only “hot” intersections from the
set of all intersections of a board, but also “hot” boards from the set of all
positions in a game. The KAPPA-EXP strategy distributes time proportional
to the expected maximum point criticality given the current move number,
as estimated from a database of games played by the program itself. The idea
is that the maximum point criticality, taken over the set of all intersections
I on the board, indicates how crucial the current move choice is. We chose
Formula 5 to represent the criticality of an intersection i in move m—the
kappa statistic, a chance-corrected measure of agreement typically used to
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quantify inter-rater reliability [4]. Here, it is employed to quantify agreement
between the variables “intersection i is owned by the player at the end of a
playout during m’s move search” and “the player wins a playout during m’s
move search”.

κm(i) =
agreementmobserved − agreementmexpected

1− agreementmexpected

=

omwinner(i)
n − (omwhite(i)o

m
black(i) + wm

whitew
m
black)

1− (omwhite(i)o
m
black(i) + wm

whitew
m
black)

(5)

where n is the total number of playouts, omwinner(i) is the number of playouts
in which point i ends up being owned by the playout winner, omwhite(i) and
omblack(i) are the numbers of playouts in which point i ends up being owned
by White and Black, respectively, and wm

white and wm
black are the numbers

of playouts won by White and Black, respectively. All numbers refer to the
search for move m.

For application at move number m during a game, the average maxi-
mum point criticality κavg = 1

g

∑g
j=1 maxi∈I κ

m
game j(i) is precomputed from

a database of g games, linearly transformed using parameters for slope and
intercept sκavg and iκavg , and finally multiplied by the search time resulting
in Formula 6.

tnextmove = (κavg · sκavg + iκavg) ·
tremaining

mexpected
(6)

KAPPA-LM. Instead of using the expected criticality for the current move
number as defined above, the KAPPA-LM strategy uses the observed criti-
cality as computed during the search for the player’s previous move in the
game. This value κlastmove = maxi∈I κ

m−2
current game(i) is again linearly trans-

formed using parameters sκlastmove
and iκlastmove

, and multiplied with the base
search time. The formula is as follows:

tnextmove = (κlastmove · sκlastmove
+ iκlastmove

) · tremaining

mexpected
(7)

For both KAPPA-EXP and KAPPA-LM, lower and upper bounds for the κ
factor ensure reasonable time allocations even in extreme positions.

3.2 Dynamic Strategies

The following five strategies make time-allocation decisions for a move search
while the respective search process is being carried out.

BEHIND. As suggested by [13] as the “think longer when behind” heuristic,
the BEHIND strategy prolongs the search by a factor fbehind if the player
is falling behind. It triggers if after the regular search time—as computed
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by the semi-dynamic strategies described above—the win rate of the best
move at the root is lower than a threshold vbehind. The rationale is that
by using more time resources, the player could still find a way to turn the
game around, while saving time for later moves is less important in a losing
position.

UNST. The UNSTABLE strategy, called “unstable evaluation” heuristic in
[13], prolongs the search by a factor funstable if after the regular search
time the most-visited move at the root is not the highest-valued move as
well. This indicates that by searching longer, a new move could become
the most-visited and thus change the final move choice. We have modified
this heuristic to check its condition for search continuation repeatedly in a
loop. The maximum number of loops until the search is terminated is bound
by a parameter lunstable. The single-check heuristic is called UNST-1, the
multiple-check heuristic UNST-N in the following.

CLOSE. Similar to a strategy developed independently in [3], the CLOSE strat-
egy prolongs the search by a factor fclosesecond if after the regular search time
the most-visited move and the second-most-visited move at the root are “too
close”, defined by having a relative visit difference lower than a threshold
dclosesecond. Like the UNST strategy, CLOSE aims to identify difficult deci-
sions that can make efficient use of an increase in search time. In our im-
plementation, this strategy can either be triggered only once (CLOSE-1) or
repeatedly (CLOSE-N) after the regular search time is over. For CLOSE-N,
a parameter lclosesecond defines the maximum number of loops.

KAPPA-CM. Unlike the three dynamic strategies described above, the
KAPPA-CM strategy does not wait for the regular search time to end. In-
stead, it uses the first, e.g., 100 milliseconds of the search process to collect
playout data and then uses the maximum point criticality of the current
move κcurrentmove = maxi∈I κ

m
current game(i) to modify the remaining search

time. The formula is as follows:

tcurrentmove = (κcurrentmove · sκcurrentmove + iκcurrentmove) ·
tremaining

mexpected
(8)

The remaining search time can be either reduced or increased by this strat-
egy. Upper and lower limits to the total search time apply.

EARLY. The “early exit” (EARLY-A) strategy, mentioned independently—
but not evaluated—in [3], is based on the idea of terminating the search
process as early as possible in case the best move cannot change anymore.
Therefore, the search speed in playouts per second is measured, and in reg-
ular intervals (e.g., 50 playouts) it is checked how many playouts are still
expected in the remainder of the total planned search time as determined by
the various strategies described above. If the number of playouts needed for
the second-most-visited move at the root to catch up to the most-visited one
exceeds this expected number of remaining playouts, the search can safely
be terminated without changing the final outcome.
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If the expected time savings by this strategy are not taken into account
when computing planned search times, savings will accumulate throughout
the game and early moves cannot benefit from them. In order to achieve a
more equal distribution of the resulting time savings among all searches in
the game, planned search times can be multiplied with a factor fearlyexit that
is based on average time savings (EARLY-B strategy).

Because in general, not all of the remaining playouts in a search will start
with the second-most-visited move, we implemented a parameter pearlyexit
representing an estimate of the proportion of remaining playouts that actu-
ally sample the second-most-visited move (EARLY-C strategy). When using
this parameter, the search is terminated if the number of playouts needed for
the second-most-visited move at the root to catch up to the most-visited one
exceeds the expected number of remaining playouts multiplied by pearlyexit.
In this case, an unchanged final outcome is no longer guaranteed.

4 Experimental Results

All time-management strategies were implemented in Orego [8] version 7.08.
Orego is a Go program using a number of MCTS enhancements like a trans-
position table [12], RAVE [10], a simulation policy similar to that proposed in
[11], and LGRF-2 [2]. The program ran on a CentOS Linux server consisting of
four AMD Twelve-Core OpteronT 6174 processors (2.2 GHz). Unless specified
otherwise, each experimental run involved 5000 games (2500 as Black and 2500
as White) of Orego against the classic (non-MCTS-based) program GNU Go

3.8 [9], played on the 13×13 board, using Chinese rules (area scoring), posi-
tional superko, and 7.5 komi. GNU Go ran at its default level of 10, with the
capture-all-dead option turned on. Orego used a single thread and no ponder-
ing. Orego used a time limit of 30 seconds per game unless specified otherwise,
while Gnu Go had no time limit.

The remainder of this section is structured as follows. In 4.1, the strategies
in [13] are tested as a baseline. Next, 4.2 presents results of experiments with
semi-dynamic strategies. Dynamic strategies are tested in 4.3. Finally, in 4.4 the
best-performing strategy is compared to the baseline in self-play, as well as to
Orego with fixed time per move.

4.1 ERICA-BASELINE

In order to compare our results to a state-of-the-art baseline, the strategies
described in [13] were implemented and evaluated. The thinking time per move
was computed according to the “basic formula”

tnextmove =
tremaining

C
(9)

as well as the “enhanced formula”

tnextmove =
tremaining

C +max(MaxPly−MoveNumber, 0)
(10)
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Table 1. Performance of Erica’s time management according to [13]

Player Win rate against GNU Go 95% conf. int.

Basic formula 28.6% 27.3%–29.9%

Enhanced formula 31.4% 30.1%–32.7%

ERICA-BASELINE 34.3% 33.0%–35.7%

where C = 30 and MaxPly = 40 were found to be optimal values forOrego. The
“unstable evaluation” heuristic, using a single loop as proposed in [13], worked
best with funstable = 1. The “think longer when behind” heuristic, however, did
not produce significant improvements for any of the tested settings for vbehind
and fbehind. This seems to be due to differences between Orego and the Erica
program used in [13]. Preliminary tests showed that positive effects for this
heuristic could not be achieved on any board size.

Erica’s time management strategies were tested against GNU Go using the
basic formula, using the enhanced formula, and using the enhanced formula plus
“unstable evaluation” heuristic (called ERICA-BASELINE from now on). Table
1 presents the results—the enhanced formula is significantly stronger than the
basic formula (p<0.01), and ERICA-BASELINE is significantly stronger than
the enhanced formula (p<0.01).

4.2 Semi-dynamic Strategies

EXP-MOVES, EXP-SIM and EXP-STONES. As our basic time-manage-
ment approach, EXP-MOVES, EXP-SIM, and EXP-STONES were tested.
The first three rows of Table 2 show the results. As EXP-STONES performed
best, it was used as the basis for all further experiments.

OPEN. According to preliminary experiments with OPEN, the “opening fac-
tor” fopening = 2.5 seemed most promising. It was subsequently tested
against GNU Go. Table 2 shows the result: EXP-STONES with OPEN
is significantly stronger than plain EXP-STONES (p<0.001).

MID. Initial experiments with MID showed Formula 3 to perform best with
a = 2, b = 40, and c = 20. It was then tested against GNU Go. As Table 2
reveals, EXP-STONES with MID is significantly stronger than plain EXP-
STONES (p<0.001).

KAPPA-EXP. The best parameter setting for KAPPA-EXP found in prelim-
inary experiments was sκavg = 8.33 and iκavg = −0.67. Lower and upper
bounds for the kappa factor were set to 0.5 and 10, respectively. Table 2
presents the result of testing this setting. EXP-STONES with KAPPA-EXP
is significantly stronger than plain EXP-STONES (p<0.001).

KAPPA-LM. Here, sκlastmove
= 8.33 and iκlastmove

= −0.67 were chosen for
further testing against GNU Go as well. Lower and upper bounds for the
kappa factor were set to 0.25 and 10. The test result is shown in Table 2.
EXP-STONES with KAPPA-LM is significantly stronger than plain EXP-
STONES (p<0.001).
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Table 2. Performance of the semi-dynamic strategies investigated

Player Win rate against GNU Go 95% conf. int.

EXP-MOVES 24.0% 22.9%–25.2%

EXP-SIM 13.0% 12.0%–13.9%

EXP-STONES 25.5% 24.3%–26.7%

EXP-STONES with OPEN 32.0% 30.8%–33.4%

EXP-STONES with MID 30.6% 29.3%–31.9%

EXP-STONES with KAPPA-EXP 31.7% 30.5%–33.0%

EXP-STONES with KAPPA-LM 31.1% 29.9%–32.4%

ERICA-BASELINE 34.3% 33.0%–35.7%

4.3 Dynamic Strategies

BEHIND. We tested all possible combinations of fbehind = {0.25, 0.5, 0.75, 1.0,
1.5, 2.0} and vbehind = {0.35, 0.4, 0.45}. However, just like the “enhanced
formula” of [13], EXP-STONES was not found to be significantly improved
by BEHIND in Orego. The best parameter settings in preliminary experi-
ments were fbehind = 0.75 and vbehind = 0.45. Detailed results are given in
Table 3.

UNST. The best results in initial experiments with UNST-1 were achieved by
funstable = 1.5. For UNST-N, funstable = 0.75 and lunstable = 2 turned out to
be promising values. These settings were tested against Gnu Go; Table 3
shows the results. EXP-STONES with UNST-1 is significantly stronger than
plain EXP-STONES (p<0.001). EXP-STONES with UNST-N, in turn, is
significantly stronger than EXP-STONES with UNST-1 (p<0.05).

CLOSE. The best-performing parameter settings in initial experiments with
CLOSE-1 were fclosesecond = 1.5 and dclosesecond = 0.4. When we introduced
CLOSE-N, fclosesecond = 0.5, dclosesecond = 0.5 and lclosesecond = 4 appeared
to be most successful. Table 3 presents the results of testing both variants
against Gnu Go. EXP-STONES with CLOSE-1 is significantly stronger
than plain EXP-STONES (p<0.001). EXP-STONES with CLOSE-N, in
turn, is significantly stronger than EXP-STONES with CLOSE-1 (p<0.001).
EXP-STONES with CLOSE-N is also significantly stronger than ERICA-
BASELINE (p<0.05).

KAPPA-CM. The best parameter setting for KAPPA-CM found in prelimi-
nary experiments was sκcurrentmove = 8.33 and iκcurrentmove = −1.33. Lower and
upper bounds for the kappa factor were set to 0.6 and 10. Table 3 reveals the
result of testing this setting againstGNU Go. EXP-STONES with KAPPA-
CM is significantly stronger than plain EXP-STONES (p<0.05). However,
it is surprisingly weaker than both EXP-STONES using KAPPA-EXP and
EXP-STONES with KAPPA-LM (p<0.001). The time of 100 msec used to
collect current criticality information might be too short, such that noise is
too high.

EARLY. First, the EARLY-A strategy was tested. Table 3 presents the result—
the improvement to plain EXP-STONES was not significant. Then, we
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Table 3. Performance of the dynamic strategies investigated.

Player Win rate against GNU Go 95% conf. int.

EXP-STONES with BEHIND 25.6% 24.4%–26.9%

EXP-STONES with UNST-1 33.6% 32.3%–34.9%

EXP-STONES with UNST-N 35.8% 34.4%–37.1%

EXP-STONES with CLOSE-1 32.6% 31.3%–33.9%

EXP-STONES with CLOSE-N 36.5% 35.2%–37.9%

EXP-STONES with KAPPA-CM 27.3% 26.1%–28.6%

EXP-STONES with EARLY-A 25.3% 24.1%–26.5%

EXP-STONES with EARLY-B 36.7% 35.4%–38.0%

EXP-STONES with EARLY-C 39.1% 38.0%–40.8%

EXP-STONES 25.5% 24.3%–26.7%

ERICA-BASELINE 34.3% 33.0%–35.7%

introduced fearlyexit in EARLY-B and found a value of fearlyexit = 2 to be
promising in initial testing. This setting was used againstGnu Go in another
5000 games. Finally, pearlyexit was introduced in EARLY-C, which resulted in
a change in the best settings found: fearlyexit = 2.5 and pearlyexit = 0.4 were
tested. EXP-STONES with EARLY-B is significantly stronger than plain
EXP-STONES (p<0.001). EXP-STONES with EARLY-C in turn is signif-
icantly stronger than EXP-STONES with EARLY-B (p<0.01). This best-
performing version is also significantly stronger than ERICA-BASELINE
(p<0.001).

4.4 Strength Comparisons

Comparison with ERICA-BASELINE on 13×13. Our strongest time-
management strategy on the 13×13 board, EXP-STONES with EARLY-
C, was tested in self-play against Orego with ERICA-BASELINE. Time
settings of 30, 60 and 120 seconds per game were used with 2000 games per
data point. Table 4 presents the results: For all time settings, EXP-STONES
with EARLY-C was significantly stronger (p<0.001).

Comparison with ERICA-BASELINE on 19×19. In this experiment, we
pitted EXP-STONES with EARLY-C against ERICA-BASELINE on the
19×19 board. The best parameter settings found were C = 80, MaxPly =
110 and funstable = 1 for ERICA-BASELINE, and fearlyexit = 2.2 and

Table 4. Performance of EXP-STONES with EARLY-C vs. ERICA-BASELINE,
13×13 board

Time setting Win rate against ERICA-BASELINE 95% conf. int.

30 sec sudden death 61.4% 59.2%–63.5%

60 sec sudden death 59.9% 57.7%–62.0%

120 sec sudden death 62.5% 60.4%–64.6%
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Table 5. Performance of EXP-STONES with EARLY-C vs. ERICA-BASELINE,
19×19 board

Time setting Win rate against ERICA-BASELINE 95% conf. int.

300 sec sudden death 62.1% 60.0%–64.2%

900 sec sudden death 59.5% 57.4%–61.7%

pearlyexit = 0.45 for EARLY-C. Time settings of 300 and 900 seconds per
game were used with 2000 games per data point. The results are shown in
Table 5—for both time settings, EXP-STONES with EARLY-C was signifi-
cantly stronger (p<0.001).

Comparison with fixed time per move. To illustrate the effect of success-
ful time management, two additional experiments were conducted withOre-

go using fixed time per move in 13×13 Go. In the first experiment, the time
per move (650 msec) was set so that approximately the same win rate against
GNU Go was achieved as with EXP-STONES and EARLY-C at 30 seconds
per game. The result of 2500 games demonstrated that the average time
needed per game was 49.0 seconds—63% more than needed by our time-
management strategy. In the second experiment, the time per move (425
msec) was set so that the average time per game was approximately equal to
30 seconds. In 2500 games under these conditions,Orego could only achieve
a 27.6% win rate, 11.5% less than with EXP-STONES and EARLY-C.

5 Conclusion and Future Research

In this paper, we investigated a variety of time-management strategies for Monte-
Carlo Tree Search, using the game of Go as a testbed. Empirical results show that
of our proposed strategies, EXP-STONES with EARLY-C and EXP-STONES
with CLOSE-N each provide a significant improvement over the state of the art as
represented by ERICA-BASELINE in 13×13 Go. For sudden-death time controls
of 30 seconds per game, EXP-STONES with EARLY-C increases Orego’s win
rate against GNU Go from 34.3% to 39.1%. In self-play, this strategy wins
approximately 60% of games against ERICA-BASELINE, both in 13×13 and
19×19 Go under various time controls.

Several promising directions remain for future research. We mention three of
them. First, a natural direction is the combined testing and optimization of all
above strategies—in order to determine to which degree their positive effects
on playing strength can complement each other, or to which degree they could
be redundant or possibly interfere. First naive attempts at combining strategies
have not showed significant improvements. To account for possible interactions,
a non-linear classifier like a neural network could be trained to decide about con-
tinuing or aborting the search in short intervals, using all relevant information
used by above strategies as input. The second direction is to develop enhanced
strategies to measure the complexity and importance of a position and thus
to use effectively time where it is most needed. Counting the number of inde-
pendent fights on the board could be one possible approach. Third, the most
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successful time-management strategies should be tested in other games or se-
quential decision problems with time limits in general. CLOSE-N, UNST-N as
well as EARLY-C, for example, are domain-independent MCTS enhancements.
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Abstract. EinStein Würfelt Nicht! is a game that has elements of strategy, 
tactics, and chance. Reasonable evaluation functions can be found for this game 
and, indeed, there are some strong mini-max based programs for EinStein 
Würfelt Nicht! We have constructed an MCTS program to play this game. We 
describe its basic structure and its strengths and weaknesses with the idea of 
comparing it to existing mini-max based programs and comparing the MCTS 
version to a pure MC version. 

1 Introduction 

EinStein Würfelt Nicht! (EWN) is a fairly new game, invented in 2004 by Ingo 
Althöfer [1]. It is played on a 5 × 5 board where each player (called Blue and Red) 
starts with six pieces, numbered 1 through 6, placed in a triangular pattern as shown 

in Figure 1.1 The initial numbering of the 
pieces is done randomly. 

Blue moves (tiles are indicated by +) first 
and the game is won by the first player to 
place one of his2 pieces in the opponent’s 
corner square, referred to as the goal. Pieces 
move one square at a time, always towards 
the goal, either horizontally, vertically, or 
diagonally. For example, this means that if a 
piece is not on one of the edges adjacent to 
his goal, it will have three legal moves. If a 
piece moves on top of an existing piece (his 
own or the opponent’s) that piece is 
captured. The piece to move is decided by 
the roll of a die. In the case of Figure 1 we 
see that the die roll is 4 and so Blue can 

move his piece numbered 4 either to the south, east, or diagonally southeast. If instead 
a 2 had been rolled then Blue’s legal moves would be either to capture his own 4 or 6 
                                                           
1 All EWN figures are taken from the Little Golem web site [10]. 
2 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant. 

Fig. 1. A typical EWN starting position 
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stone or move diagonally southeast. If the die rolled corresponds to a stone that has 
been captured then we find the lowest numbered stone greater than the die value and 
the highest numbered stone less than the die value and we may move either of these 
stones. An alternate way to win the game is to capture all of the opponent’s pieces. 

Consider the position shown in Figure 2. 
If it is Blue’s turn to move, since his 3 piece 
is not on the board he may move either piece 
2 or piece 6. There are three legal moves for 
piece 6, including the capture of Red’s piece 
4, but more interesting there is only one legal 
move for Blue’s piece 2 and that move lands 
in the goal so Blue can win the game. If it is 
Red’s turn to play he is only allowed to move 
piece 4, but among his three legal moves one 
of them is to capture Blue’s 6 on the goal 
square, winning for Red. 

EWN has both tactical and strategic 
elements. Near the end of the game a player 
must carefully calculate which pieces are 
likely to reach the goal square while being 

careful to not allow all of his pieces to become captured. But these tactical decisions 
require probabilistic calculations because the die determines which pieces move. 
Throughout the game there are a number of competing strategic ideas. Clearly having 
a piece near the goal increases the chances of reaching the goal. However, if the 
pieces numerically adjacent to the piece near the goal are still on the board then there 
is only a one in six chance that piece will be able to move so it is desirable to have 
some of your own stones captured (either by your opponent or by yourself) to 
increase the chance of being able to move pieces that are near the goal. This needs to 
be balanced with the need to prevent all of ones pieces from being captured. 

This mix of strategy, tactics, and randomness, combined with the fact that games 
are not too long makes EWN a fun and interesting game to play. 

2 ONESTONE, an EWN Playing Program Test Bed 

We have written an MCTS-based program, named ONESTONE, to play EWN. It was 
created as an experiment to see how well the MCTS paradigm works with a simple 
game with random elements. Intuitively, this should be an ideal setting since Monte-
Carlo simulations should be an effective way to deal with the randomness in the 
game. In fact, one of the questions we hoped to answer was whether an MCTS 
version will outperform a basic Monte-Carlo player. It turns out that it does, but not 
by very much. We were also interested in seeing how an MCTS program could 
compete against existing mini-max based programs. It appears to play on a par with 
such programs. 

Fig. 2. Late in an EWN game 
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There are a number of existing EWN playing programs that we are aware of. Some 
are inactive now and most have and/or do play via the Little Golem website (LG) [8]. 
Fig. 3 shows a summary of these programs. 

Testing ONESTONE was done via self-tests and LG. EWN has a lively presence on 
LG with its many human players and five other programs that play fairly regularly. 
However, this is a “turn based” game-playing site which means that players have 
considerable time to make their moves, usually 24 hours or more. This is not a 
particularly expeditious vehicle for testing a developing program. So, we decided to 
develop first a very basic version and then use that version as the basis for self-testing 
future versions. Finally, we took our most sophisticated version of ONESTONE and let 
it play on LG to see how it faired against the other programs and human players. 

2.1 The Road to UCT 

As we said above, we constructed the program incrementally. First we built a basic 
Monte-Carlo program that would play the game and then made a straightforward play 
UCB type enhancement [2] so that the more promising moves would be simulated 
more often. This version became our standard from which we tested all future 
versions. We found that even with this straightforward UCB construction ONESTONE 
played a reasonably strong game.  

 
Program name Author Status Program type 
FRAGGLE [9] Ingo Schwab inactive mini-max with endgame 

tablebases 
GAMBLER Richard Pijl active on LG mini-max, in development 
HANFRIED Stefan Schwarz and 

Jörg Sameith 
active on LG mini-max 

MEINSTEIN Theo van der Storm inactive3 mini-max 
NAÏVE CHILD Mark Pawlenka active on LG pure MC (no MCTS tree) 
RORORO THE BOT Phil Carmody active on LG mini-max, emphasis on speed 
SYBIL Wesley Turner active on LG mini-max with endgame 

tablebases 

Fig. 3. EWN playing programs 

The next step was to add the tree structure for MCTS. We did this using the basic 
UCT algorithm [3,5,7]. But we needed to add additional structure to deal with the die 
throws. A typical node in a normal UCT tree will have elements corresponding to the 
visit counts, the win counts, and a pointer to the children. A node in the UCT tree for 
ONESTONE still contains a single visit count and a single win count, but also contains 
six separate child pointers. Conceptually, from any node we are creating six different 
UCT subtrees, one for each possible die throw. Since each child has an equal chance 
of being the selected move, during UCT expansion we make sure the children are 

                                                           
3 MEINSTEIN competed in this year’s Computer Olympiad in memory of the late program’s 

author. It was operated by Jan Krabbenbos, 
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visited uniformly and then collect the visits and wins for all six children of a node into 
a single value. 

There is a temptation to emphasize die throws corresponding to subtrees that are 
less well understood, e.g., that have wins/visit ratios near 50%.  Similarly, as pieces 
start leaving the board multiple die throws will correspond to the same choice of 
moves and it is tempting to try to collect these into a single search. In both cases, 
however, there is no easy way to accomplish this while retaining the proper wins/visit 
ratio for the subtree’s parent.  

There are two natural ways to visit the children uniformly. Any time we visit a 
node in the tree we can randomly choose the child. In some ways this seems very 
much in the spirit of Monte-Carlo simulation and random die throwing. Nevertheless, 
we elected to do it more methodically, by keeping track in every node the last child 
visited and then visiting the next child when that node is visited again. 

2.2 MCTS Improvements 

There are a number of techniques used for improving MCTS performance, many of 
which were developed for and have been extremely successful with Go-playing 
programs. We implemented two of the most common ones in ONESTONE. 

The first is to improve the quality of the random playouts, a suggestion that was 
originally articulated in [6]. The point of a random playout is to give some measure of 
the strength of a position, or more precisely the likelihood the player will actually win 
from that position. This means that the closer the playout looks like a real game, the 
more information it should be providing. But it is well known that improving the 
playouts must be done with great care. In fact, somewhat counter intuitively, 
reasonable looking playout “improvements” can actually make the program play 
worse. This is because the improved moves can introduce subtle bias that, for 
example, might encourage certain move sequences that are not always favorable. 

We made two major modifications to our playouts. The first modification is to look 
for an immediately winning move (a “mate-in-one”) and playing it if it is available. It 
does not make much sense to continue a random playout if a player is sitting on a 
winning move but is not playing that move. The second modification to the playouts 
encouraged moves that either get closer to the goal or that capture a piece. For 
example, in the position in Figure 2 if a 5 is the die value, it seems unlikely that 
moving piece 5 west is the best move. Moving north or northwest is much more likely 
to be the best move. For this reason, during a random playout we make it twice as 
likely that either of the two suggested moves is made over the move to the west. 
Similarly, captures, whether of an enemy piece or your own, are often interesting. 
Like moves towards the goal, captures are also given double the chance of being 
made during a random playout. 

The second MCTS improvement that we made is to give “prior” initial values to 
new MCTS tree nodes. When creating new nodes for the MCTS tree the win counts 
and the total playout counts are usually initialized to zero. However, if there is prior 
knowledge of the quality of the move represented by a node relative to its siblings, 
then it sometimes makes sense to initialize these values to something other than zero 
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that reflects the perceived relative value of that position [4]. In ONESTONE we used 
the same ideas here that we used for the random playouts. New MCTS tree nodes are 
initialized to have visit counts of 100. The win counts of moves that move towards the 
goal are scaled. A move that places a piece one square away from the goal is given an 
initial win count of 90. If two away from the goal, 75. Three away, 60. Four away 
gets the default value of all moves, 40, and 5 away from the goal gets a value of 20. 
We also continue to assume a capture is interesting, so a capture is given an initial 
value of 65. If a move is both a capture and a move towards the goal the initial win 
count is set to the maximum of the two plus 5. 

3 EWN Variants 

There are a number of variants to EWN, two of which are also played on LG. One is 
referred to as “Black Hole”. In this variant the square in the middle of the board is 
designated as the black hole in that any piece that moves to that square is immediately 
removed from the board. Since it is often strategically sound to capture one’s own 
pieces to increase the strength of the remaining pieces, this provides another means to 
reduce the number of one’s own pieces on the board. 

The other variant is called “Backwards Capture” and it has the property that when 
capturing one may capture any piece adjacent to one’s own, orthogonally or 
diagonally, that is, in any of eight possible different directions. As will be discussed in 
a bit more detail below, the black hole variant appears not to change the complexity 
of the game very much, while backwards capture seems to make the game quite a bit 
different. For these experiments, our implementations for the two variants are 
essentially equivalent to the EWN implementation. That is, that random playout 
biases and the prior value settings are set the same in the variants as they are in the 
normal EWN game. Certainly this is not optimal for the two variants but it does give 
us a good feel for how the variants differ in this early stage of program development. 

4 Results  

We compared the MCTS version of the program against the basic MC version of all 
three variants. Each variant played 500 games as Blue, that is, moving first, and 500 
games playing Red. Each player is given 30 seconds per move. The results are 
summarized in Table 4 where the MCTS results are shown in bold. 

In our experiments we found that when playing one version against itself the blue 
player had a slight edge. This effect can be seen in the table where we notice that 
 

 MCTS playing Blue MCTS playing Red 
Normal EWN         291 – 209 230 – 268 
Black Hole         288 – 212 238 – 262 
Backwards capture         416 – 84 101 – 399 

Fig. 4. Results of MCTS vs. plain MC for all three variants 
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though the MCTS version always outperforms the MC version, when playing Blue the 
improvement is even greater. But the critical observation is that the MCTS versions 
always do outperform the basic MC version, though maybe not to the levels we had 
hoped. 

The third line of the table we find to be quite remarkable. From the fact that the 
MCTS version is so much stronger than the basic MC version we may conclude that 
the backwards capture variant is, in some sense, a more complicated game than the 
other two variants and thus the MC approach is insufficient to deal with the subtleties 
of this variant. Here is an example of a fairly simple game where MCTS is shown to 
be substantially superior to Monte-Carlo. 

We let our best versions of ONESTONE play on LG. On LG most of the contests are 
multiple game matches where the first to win 3 (or 5 or 7) games wins the match. 
This, in some sense, removes the first move advantage because the winner of any 
game in a match will move second in the next game. Since games progress so slowly 
on LG the data is still a bit thin, but the Tables 5 and 6 summarize the current 
situation. With LG games we allow ONESTONE a maximum of 5 minutes per move 
but in practice most moves are completed in under a minute. This will be discussed in 
Section 5. The opponents, of course, have more than 24 hours to make their moves 
but I suspect most spend about the same amount of time on their moves as ONESTONE 
does. 

 
EWN variant wins losses 
Normal 346 120 
Black Hole 54 16 
Backwards Capture 65 25 

Fig. 5. OneStone results on Little Golem 

Program wins losses 
GAMBLER 14 14 
HANFRIED 0 0 
NAÏVE CHILD 14 4 
RORORO THE BOT 5 2 
SYBIL 1 0 

Fig. 6. OneStone versus other programs 

Fig. 5 shows that ONESTONE is playing a respectable game against the mostly human 
opponents. It has played a few games against other computer programs as shown in 
Fig. 6. Though there is still not a large amount of data, it appears to be playing at least 
even with the mini-max based programs and, not surprisingly, is doing better against 
the pure MC program NAÏVE CHILD. 

LG provides ratings for players of its various games. Currently ONESTONE is rated 
1777, placing it 15th among the approximately 400 players. Though its rating seems to 
average around this general value, it is interesting to note that it shows a huge degree 
of variation. In the past month its rating has been as low as 1625 placing it in position 
100 on the overall list and it has been as high as 1880 where it was rated 3rd on the 
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list. Such huge swings are not uncommon with EWN ratings indicating that the 
random element of the game is not insignificant. 

5 Remarks 

We have demonstrated that the MCTS approach to programming EWN is reasonable. 
Its relative success on LG shows that it is playing a quite good game. Also, the 
improvements provided by adding a UCT tree show that MCTS provides benefits 
over pure MC. 

The obvious next step would be to tune the biases in the random playouts and the 
initial prior values in the MCTS tree. Though we do not doubt that there will be some 
gain in such an endeavor, early experiments seem to indicate that the improvement is 
likely to be minor. We find ourselves searching for other techniques. Perhaps our 
notion of “good moves” needs to be refined. Local properties of the piece being 
moved may need to be taken into account, similar to the way patterns are used in 
many MCTS Go-playing programs.  

A second issue that needs attention is relating the wins/visits ratio with the 
expected win value of a node. In normal MCTS we know that the wins/visits ratio 
does not correlate very well with the likelihood of actually winning the game. This is 
not an issue with normal MCTS programs since, whatever the wins/visits ratio means, 
that is the value we must use when traversing the UCT tree and deciding which 
children to visit. In the case of EWN, things are not so clear. Certainly the best move 
to make corresponds to the node with the highest expected value. But will this always 
coincide with the node with the highest wins/visits ratio? For example, if some 
children of a node are reporting wins/visits ratios of 90% the reality is that those 
moves are almost surely wins. By “almost surely” we mean with much greater 
probability than 90%. More than likely, the expected value of such a node is actually 
greater than what is reported by the wins/visits ratio. We would like to understand this 
better and, ideally, adjust our move selection process accordingly. 

The third issue is somewhat related to the comment above. Our experience shows 
that at the root of the MCTS tree if one node is visited sufficiently more often than are 
its siblings, there is very little chance another node will catch up any time soon. As a 
result we find that if we set a cut-off value for this difference and stop the search if 
this cut-off is reached, the search can be terminated early with no ill effects. Since 
ONESTONE is playing against humans on LG (and certainly can be made to play locally, 
too), early termination provides the benefit that moves can often be made quickly, a 
feature quite desirable to most humans when playing. Tests show that this does no 
harm to the playing strength of the program, yet with the proper cut-off value we now 
have ONESTONE making most of its moves in under 30 seconds, about 90% in under 1 
minute, and a very few, fewer than 1%, requiring the full 5 minutes allotted. This is a 
useful practical feature. 

The fourth issue is a sequel on the third issue. Because of the discovery mentioned 
in the previous paragraph we thought it might be beneficial to extend this technique to 
all nodes in the tree. The idea being that if the visits value of one child of a node is 
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sufficiently ahead of its siblings we discontinue any searches of the children. Of 
course, this is an unsafe operation, but it may have value in practice. We 
experimented with various approaches, such as uniformly using the same cut-off 
throughout, graduating the cutoff according to the node’s depth in the tree, etc. Most 
approaches did neither harm, nor did they seem to benefit the program. 
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Abstract. This article shows how the performance of a Monte-Carlo
Tree Search (MCTS) player for Havannah can be improved by guiding
the search in the playout and selection steps of MCTS. To improve the
playout step of the MCTS algorithm, we used two techniques to direct the
simulations, Last-Good-Reply (LGR) and N-grams. Experiments reveal
that LGR gives a significant improvement, although it depends on which
LGR variant is used. Using N-grams to guide the playouts also achieves a
significant increase in the winning percentage. Combining N-grams with
LGR leads to a small additional improvement. To enhance the selection
step of the MCTS algorithm, we initialize the visit and win counts of the
new nodes based on pattern knowledge. By biasing the selection towards
joint/neighbor moves, local connections, and edge/corner connections,
a significant improvement in the performance is obtained. Experiments
show that the best overall performance is obtained when combining the
visit-and-win-count initialization with LGR and N-grams. In the best
case, a winning percentage of 77.5% can be achieved against the default
MCTS program.

1 Introduction

Recently a new paradigm for game-tree search has emerged, the so-called Monte-
Carlo Tree Search (MCTS) [6,13]. It is a best-first search algorithm that is guided
by Monte-Carlo simulations. In the past few years MCTS has substantially ad-
vanced the state-of-the-art in several deterministic game domains where αβ-
based search [12] has had difficulties, in particular computer Go [15], but other
domains include General Game Playing [3], LOA [25] and Hex [1]. These are all
examples of game domains where either a large branching factor or a complex
static evaluation function do restrain αβ search in one way or another.

A game that has recently caught the attention of AI researchers is Havannah,
regarded as one of the hardest connection games for computers [24]. Designing
an effective evaluation function is quite hard and the branching factor is rather
large, making MCTS the algorithm of choice. A substantial amount of research
has been performed for applying MCTS in Havannah [16,19,23,24], but humans
are still superior. In this article1 we therefore investigate how the performance
1 This article is based on the research performed by the first author for his M.Sc.

thesis [21].

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 60–71, 2012.
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of our MCTS-based Havannah program [8,11,21] can be improved by enhancing
the playout and selection steps. For the playout step we propose to apply the
Last-Good-Reply policy [2,7] and N-grams [14,20]. For the selection step, we bias
the moves by using prior knowledge [10] based on patterns.

The article is organized as follows. In Section 2 we explain the rules of Ha-
vannah. Next, Section 3 discusses the application of MCTS to Havannah and
describes our enhancements for the playout and selection steps. Subsequently,
the enhancements are empirically evaluated in Section 4. Finally, in Section 5
we conclude and give an outlook on future research.

2 The Rules of Havannah

Havannah is a turn-based two-player deterministic perfect-information connec-
tion game invented by Christian Freeling in 1976 [9]. It is played on a hexagonal
board, often with a base of 10, meaning that each side has a length of 10 cells.
One player uses white stones; the other player uses black stones. The player who
plays with white stones starts the game. Each turn, a player places one stone of
his color on an empty cell. The goal is to form one of the following three possible
winning connections (also shown in Fig. 1).

– Bridge: A connection that connects any two corner cells of the board.
– Fork: A connection that connects three sides. Corner cells do not count as

side cells.
– Ring: A connection that surrounds at least one cell. The cell(s) surrounded

by a ring may be empty or occupied by white or black stones.

A
B

C
D

EF
GH

I
J
K
L
M
N
O
P
Q
R
S

10
11
12
13
14
15
16
17
18
19

1
2 3

4 5
6 7

8
9

Fig. 1. The three possible connections to win the game. From left to right: a bridge, a
ring and a fork.

Because White has an advantage being the starting player, the game is often
started using the swap rule. One of the players places a white stone on the board
after which the other player may decide whether he2 will play as White or Black.
It is possible for the game to end in a draw, although this is quite unlikely.

2 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.
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3 Havannah and Monte-Carlo Tree Search

MCTS is a best-first search algorithm that combines Monte-Carlo evaluation
(MCE) with tree search [6,13]. We assume the MCTS algorithm to be known
by the readers. For more details we refer to the literature, notably the Ph.D.
thesis by Chaslot [4]. In this section we first describe previous MCTS research
related to Havannah (3.1), then give our MCTS enhancements for the play-out
(3.2) and selection (3.3) steps.

3.1 MCTS Refinements for Havannah

Teytaud and Teytaud [24] introduced MCTS based on UCT in Havannah. Their
experiments showed that the number of play-outs per move has a significant
impact on the performance. Additions such as Progressive Widening [5] and
Rapid Action Value Estimates (RAVE) [10] were used as well. The former gave
a small improvement in the winning rate, while RAVE significantly increased
the percentage of games won. An enhancement of RAVE (called PoolRave) ap-
plied to Havannah gave a further small increase in the winning rate [19]. The
idea of adding automatically generated knowledge in the play-out step to guide
simulations was first explored by Rimmel and Teytaud [18]. This was dubbed
contextual Monte-Carlo (CMC) simulation and was based on a reward function
learned on a tiling of the simulation space. Experiments for Havannah showed a
winning rate of 57% against a program without CMC.

More important was the application of decisive moves during the selection and
play-out step: whenever there is a winning move, that move is played regardless
of the other possible moves. Experiments showed winning percentages in the
range of 80% to almost 100% [23]. Fossel [8] used Progressive History [17] and
proposed Extended RAVE to improve the selection strategies, giving a winning
percentage of approximately 60%.

Several more enhancements for an MCTS player in Havannah were discussed
by Lorentz [16]. One is to try to find moves near stones already on the board,
thus avoiding playing in empty areas. Another is to recognize forced wins and
losses, called Havannah-Mate, which can save time during the search process. A
third enhancement is the use of the Killer RAVE heuristic, where only the most
important moves are used for computing RAVE values. Each of these enhance-
ments caused a significant increase in the winning percentage.

3.2 Enhancing the Play-out Step in MCTS

This subsection discusses the Last-Good-Reply policy and N-grams which may
improve the play-out step of MCTS in Havannah.

Last-Good-Reply. The Last-Good-Reply (LGR) policy [2,7] is an enhance-
ment used during the play-out step of the MCTS algorithm. Rather than apply-
ing the default simulation strategy, moves are chosen according to the last good
replies to previous moves, based on the results from previous play-outs.
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It is often the case in Havannah that certain situations are played out locally.
This means that if a certain move is a good reply to another move on some
board configuration, it will likely be a good reply to that move on different
board configurations as well, because it is only the local situation that matters.
However, MCTS itself does not ‘see’ such similar local situations. The goal of
LGR is to improve the way in which MCTS handles such local moves and replies.

There are several variants of LGR [2]. The first one is LGR-1, where each of
the winner’s moves made during the play-out step is stored as the last good reply
to the previous move. During the play-out step of future iterations of the MCTS
algorithm, the last good reply to the previous move is always played instead
of a (quasi-)random move, whenever possible. Otherwise, the default simulation
strategy is used. As an example, consider Fig. 2, where a sequence of moves
made during a play-out is shown.

A B C D E F Black Wins

Fig. 2. A simulation in MCTS

Because Black is the winner, the LGR-1 table for Black is updated by storing
every move by Black as the last good reply to the previous one. For instance,
move B is stored as the last good reply to move A. If White will play move A in
future play-outs, Black will always reply by playing B if possible.

The second variant of LGR is LGR-2. As the name suggests, LGR-2
stores the last good reply to the previous two moves. The advantage of LGR-2
is that the last good replies are based on more relevant samples [2]. During the
play-out, the last good reply to the previous two moves is always played when-
ever possible. If there is no last good reply known for the previous two moves,
LGR-1 is tried instead. Therefore, LGR-2 also stores tables for LGR-1 replies.

A third variant is LGR-1 with forgetting, or simply LGRF-1. This works
exactly the same as LGR-1, but now the loser’s last good replies are deleted if
they were played during the play-out. Consider Fig. 2 again, where White lost
the game. For instance, if move C was stored as the last good reply to B for
White, it is deleted. Thus, the next time Black plays B, White will chose a move
according to the default simulation strategy.

The fourth and last variant is LGRF-2, which is LGR-2 with forgetting. Thus,
the last good reply to the previous two moves is stored and after each play-out,
the last good replies of the losing player are deleted if they have been played.

N-grams. The concept of N-grams was originally developed by Shannon [20],
where he discussed how one can predict the next word, given the previous N − 1
words. Typical applications of N-grams are, e.g., speech recognition and spelling
checkers, where the previous words spoken or written down can help to determine
what the next word should be. However, N-grams are also applicable in the
context of games, as shown by Laramée [14]. They can be used as an enhancement
to the play-out step of the MCTS algorithm. The idea is somewhat similar to
LGR. Again, moves are chosen according to their predecessor, but instead of
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choosing the last successful reply, the move with the highest winning percentage
so far among all legal moves is chosen. Thus, for each legal move i, the ratio
wi,j/pi,j is calculated, where wi,j is the number of times playing move i in reply
to move j led to a win and pi,j is the number of times move i was played in
reply to move j. In order not to make the search too deterministic, the moves
are chosen in an ε-greedy manner [22]. With a probability of 1 − ε an N-gram
move is chosen, while in all other cases, a move is chosen based on the default
simulation strategy. Furthermore, the values wi,j and pi,j in the N-gram tables
are multiplied by a decay factor γ after every move played in the game, where
0 ≤ γ ≤ 1. This ensures that, as the game progresses, new moves will be tried
as well, instead of only playing the same N-gram moves over and over again.

It is also possible to combine N-grams with a certain threshold T . The reason
to apply thresholding, is to try to improve the reliability of N-grams. The more
often a certain N-gram has been played, the more reliable it is. If the N-gram
of a proposed move has been played fewer than T times before, the move is not
taken into consideration. If all of the available moves have been played fewer
than T times, the default simulation strategy is applied.

Like with LGR, N-grams can be extended to take into account the previous
two moves, instead of only the previous move. To distinguish between the two,
‘N-gram1’ refers to N-grams based on only the previous move, while ‘N-gram2’
refers to N-grams based on the previous two moves.

Because N-gram1 and N-gram2 are based on different contexts, combining the
two may give a better performance than using N-gram1 or N-gram2 separately.
N-gram1 and N-gram2 can be combined using averaging. Rather than choosing
moves based purely on N-gram2, the moves are chosen based on the average of
the ratios wi,j/pi,j of N-gram1 and N-gram2.

3.3 Enhancing the Selection Step in MCTS

Gelly and Silver [10] proposed the use of prior knowledge for the selection step of the
MCTS algorithm, where the visit and win counts of the new nodes are initialized to
certain values, based on the properties of the move to which the node corresponds.
It is basically an adaptation of the UCT formula, as shown in Equation 1.

k ∈ argmaxi∈I

(
vini + αi

ni + βi
+ C ·

√
ln np

ni + βi

)
(1)

The additional parameters αi and βi are the win count bias and visit count bias,
respectively, which are based on the properties of the move corresponding to
node i. By adding such biases to the win and visit counts of MCTS nodes, the
selection can be biased towards certain moves.

This subsection discusses three heuristics how the values of αi and βi can be
chosen. First, we describe how the selection can be biased towards joint moves
and neighbor moves. Then we discuss how local connections can be used to guide
the selection. Finally, we describe how the selection can be biased towards edge
and corner connections. See Fig. 3 for an overview.
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Fig. 3. Biasing the selection towards certain types of moves: joint and neighbor moves
(a), local connections (b), and edge and corner connections (c)

Joint and Neighbor Moves. Lorentz [16] proposed to initialize the visit and
win counts of new nodes in such a way that the selection is biased towards ‘joint
moves’ and ‘neighbor moves’. Joint moves are moves that are located two cells
from a stone of the current player and where the two cells between are empty.
An example is shown in Fig. 3a, where the joint move is marked by ‘J’, viewed
from White’s perspective. Neighbor moves are simply moves adjacent to a cell
of the same color, marked by ‘N’ in Fig. 3a.

Local Connections. A second idea to initialize visit and win counts of new
nodes is to take into account the number of connections with existing groups.
After all, Havannah is a game in which connections play an important role. As
an example, consider Fig. 3b. Assuming that White considers playing at cell
‘×’, there are two local groups of white surrounding stones. They are indicated
by the number of the group to which the stone belongs. The stones marked by
‘1’ belong to the same group, as they are connected with each other. The stone
marked by ‘2’ is a separate group. If one would play move ‘×’, it would thus form
a connection between two local groups. Of course, it could be the case that the
two groups are actually connected outside this local area, in which case playing
move ‘×’ would simply complete a ring.

Edge and Corner Connections. A third option is to count the number of
edges and corners a proposed move would be connected to. The idea is to try
to direct the search towards the formation of forks and bridges. For example,
see Fig. 3c. Move ‘A’ on cell E3 connects to one corner and two edges, whereas
move ‘B’ on cell D6 only connects to one corner. Move ‘A’ is therefore likely to
be better than move ‘B’. Our MCTS engine already keeps track to which chain
each stone belongs [11]. It means that the only additional calculations are (1) to
determine which chains the proposed move is connected to and (2) to check for
edge and corner cells whether they belong to one of those chains as well.
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4 Experiments

This section presents the experiments to assess the enhancements described in
the previous section. After describing the experimental setup (4.1), we report the
results of experiments with Last-Good-Reply (4.2) and N-grams (4.3). Finally,
experiments with several visit-and-win-count initializations (4.4) are discussed.

4.1 Experimental Setup

The experiments discussed in this section were performed on a 2.4 GHz AMD
Opteron CPU with 8 GB RAM. Both players use UCT/RAVE with UCT con-
stant C (see Equation (1)) set to 0.4 and RAVE constant R (see [23]) set to 50,
plus Havannah-Mate. The default simulation strategy is a uniform random play-
out. Every experiment was done in a self-play setup. Unless stated otherwise,
each experiment consists of 1,000 games on a base-5 board, with a thinking time
of 1 second. Because White has a starting advantage, each experiment is split
into two parts. During the first 500 games, the enhancements investigated are
applied to White and during the second 500 games, they are applied to Black.
Throughout the experiments confidence intervals of 95% are used.

4.2 Last-Good-Reply

The performance of Last-Good-Reply was tested with the default setup described
in Subsection 4.1. For this first set of experiments, the contents of the LGR tables
of the previous turn were used as the initial LGR tables for the current move.
The results for all four LGR variants are shown in Table 1.

Table 1. Performance of the four LGR variants

White Black Average
LGR-1 65.8% 49.4% 57.6% (±3.1)
LGR-2 62.4% 47.8% 55.1% (±3.1)
LGRF-1 65.8% 58.0% 61.9% (±3.0)
LGRF-2 59.0% 49.6% 54.3% (±3.1)

As the table shows, LGR generally improves the performance of the MCTS
engine. LGR-1 and LGR-2 seem to perform equally well given the confidence
intervals, with winning percentages of 57.6% and 55.1%, respectively. Forgetting
poor replies seems to give a slight improvement when added to LGR-1, but
when added to LGR-2, the performance appears to be the same. LGRF-1 gives
a winning percentage of 61.9% while LGRF-2 only wins 54.3% of the games.

Quite remarkably, LGR-2 and LGRF-2 do not perform better than LGR-1
and LGRF-1. In particular, the difference between the performance of LGRF-2
and LGRF-1 is quite significant. It appears that taking a larger context into
account when using last good replies, does not lead to a better performance
of the MCTS engine. As an additional experiment we tested whether emptying
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the LGR table after every move would influence the performance. It turned out,
however, that resetting the tables does not have any influence on the performance
of the MCTS player. Each of the results lies within the confidence interval of its
no-reset equivalent.

4.3 N-grams

N-grams were tested with the default setup described in Subsection 4.1. We first
summarize three experiments for configuring the N-grams. For detailed results,
see [21]. Next, we investigate the combination of N-grams with LGR policies.

N-gram Configuration Experiments. The first experiment was to determine
the best value of the decay factor γ. The N-grams were chosen using ε-greedy
selection, with ε = 0.1. As it turned out, the best value for γ appears to be 0,
which means that the N-gram tables are completely reset for each turn. The
resulting winning percentages for N-gram1 and N-gram2 are 60.2 ± 3.0% and
61.3 ± 3.0%, respectively.

In the second set of experiments with N-grams the influence of thresholding
was evaluated. Thus, a move was only considered if its N-gram had been played
more than T times before. In the case of N-gram2, if the N-gram was played
fewer than T times, the N-gram1 of the move was considered. A decay factor
γ = 0 was used. It turned out that thresholding has no positive influence on the
performance. In fact, the higher the threshold, the lower the performance seems
to get for each of the N-gram variants.

The third set of experiments was performed to determine the influence of
averaging N-gram1 and N-gram2, rather than using only N-gram2. Again, the
experiment was run with γ = 0 for different threshold values. The result was that
using the average of both N-grams instead of only N-gram2 generally does not
give a significant improvement. Again, applying a threshold only decreases the
performance. When no threshold is applied, the result is within the confidence
interval of the 61.3% result (i.e., the first experiment).

N-grams Combined With LGR. The fourth set of experiments evaluated
the performance when N-grams are combined with Last-Good-Reply. The moves
in the play-out are chosen as follows. First, the last good reply is tried. If none
exists or if it is illegal, the move is chosen using N-grams with a probability of
0.9, thus ε = 0.1. Otherwise, the default simulation strategy is applied. Again,
the decay factor was set to γ = 0. No thresholding or averaging was applied to
the N-grams. The results are shown in Table 2.

As the table shows, combining LGR with N-grams gives overall a better re-
sult. Given the confidence intervals, there seems to be little difference between
the performances of the different combinations of LGR and N-grams. For the
remainder of the experiments we choose the combination LGRF-2 with N-gram1.
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Table 2. The winning percentages of N-grams with and without LGR variants

N-gram1 N-gram2
no LGR 60.2% (±3.0) 61.3% (±3.0)
LGR-1 62.0% (±3.0) 65.0% (±3.0)
LGR-2 61.0% (±3.0) 60.2% (±3.0)
LGRF-1 62.9% (±3.0) 65.6% (±2.9)
LGRF-2 65.9% (±2.9) 62.2% (±3.0)

4.4 Initializing Visit and Win Count

To test the performance when visit-and-win-count initialization is used in the
selection step of MCTS, four sets of experiments were constructed. All results
are summarized in Table 3 at the end of this subsection.

Joint and Neighbor Moves. The influence of biasing the selection towards
joint and neighbor moves was tested using the default setup, with the required
parameters set as follows. All new nodes were initialized with a visit count of
40. Joint moves were given a win count of 30, neighbor moves a win count of 40,
and all other moves a win count of 5.

Biasing the selection towards joint and neighbor moves improves the perfor-
mance considerably, with a winning percentage of 69.2%, which is close to the
67.5% that Lorentz [16] achieved. The experiment was repeated with the addi-
tion of LGRF-2 and N-gram1 to the play-out step, increasing the performance
significantly to 77.5%. The idea of biasing towards joint moves and neighbor
moves was also extended to the play-out step. However, it turned out that this
decreases the performance. The reason for this decrease in performance is most
likely the computational cost of determining whether a cell corresponds to a
joint or neighbor move.

Local Connections. The experiments with biasing the selection towards local
connections, were run using the default setup, with the parameter values set as
follows. All nodes were initialized with a visit count of 30. Nodes of which the
corresponding move was connected to 0, 1, 2, or 3 surrounding groups were given
initial win counts of 0, 10, 20, and 30, respectively.

For this initialization scheme, a winning percentage of 61.3% is achieved.
This performance is somewhat less than when biasing towards joint and neigh-
bor moves. Again, the experiments were repeated with the addition of LGRF-2
and N-gram1, increasing the winning percentage to 70.0%. However, biasing the
selection towards joint and neighbor moves still performs significantly better.

Edge and Corner Connections. A third set of experiments was performed
with biasing the selection towards edge and corner connections. For these exper-
iments, the initial visit and win counts were set as follows. If a proposed move
would be connected to more than 1 corner or more than 2 edges, the initial visit
and win counts were set to 1 and 1000, respectively. In all other cases, the initial



Monte-Carlo Tree Search Enhancements for Havannah 69

visit count was set to 30, while the initial win count was set to 10 times the
number of edges or corners to which the proposed move would be connected.

For this scheme, a winning percentage of 58.7% is achieved, slightly smaller
than biasing towards joint and neighbor moves or local connections. When
LGRF-2 and N-gram1 is added, the performance increased significantly to 68.3%.

Combination. The fourth set of experiments with visit-and-win-count initial-
ization was based on a combination of the three heuristics described above. This
was done in a cumulative way. The initial visit count for each node was set to
100, which is the combined initial visit count of the three heuristics. The initial
win count was determined by combining the relevant initial visit counts of the
three heuristics. Nodes of which the move would be connected to more than 1
corner or 2 edges, were again given an initial visit count of 1 and a win count
of 1000. Combining the three heuristics gives good results (73.4% winning per-
centage). The combination works better than any of the three heuristics on their
own. Adding LGRF-2 and N-gram1 again increases the performance, although
the increase is not as large as with the three heuristics individually. In fact, the
addition of LGRF-2 and N-gram1 performs just as well as the first heuristic,
where the selection is biased towards joint and neighbor moves (77.5%).

Table 3. Biasing the selection towards certain types of moves, without and with the
addition of LGRF-2 and N-gram1

without LGRF-2 + N-gram1 with LGRF-2 + N-gram1
joint and neighbour moves 69.2% (±2.9) 77.5% (±2.6)
local connections 61.3% (±3.0) 70.0% (±2.8)
edge and corner connections 58.7% (±3.1) 68.3% (±2.9)
combination 73.4% (±2.7) 77.5% (±2.6)

5 Conclusions and Future Research

In this article we investigated for the game of Havannah several enhancements in
the play-out and selection step of MCTS. Based on the experimental results we
offer three conclusions. The first conclusion we may draw is that by adding LGR
and N-grams to the play-out step of MCTS a large performance gain is achieved,
both when these two enhancements are used separately or in combination with
each other. Especially, LGRF-2 and N-gram1 seem to be a strong combination.

The second conclusion we may give is that by using pattern knowledge to
initialize the visit and win counts of the new nodes, the selection step is consid-
erably enhanced. By biasing the selection towards joint/neighbor moves, local
connections and edge/corner connections, a significant improvement in the play-
ing strength of the MCTS program is observed.

For the third conclusion we may state that the best overall performance is
achieved when visit-and-win-count initialization is combined with LGRF-2 and
N-gram1. Experiments reveal a winning percentage of 77.5%.
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There are several directions for future research. The first potential improve-
ment is tweaking the parameter values for visit-and-win-count initialization. Fur-
thermore, the combination of the three visit-and-win-count initialization heuris-
tics may be improved. One may consider altering the importance of each of the
three heuristics within the combination. A second idea is to let the importance
of each of the three heuristics be dynamic with respect to the current stage of
the game. For example, during the first stages of the game, one could bias the
selection only towards joint and neighbor moves, because there are almost no
chains yet on the board. As the game progresses and chains are formed, the
importance of local and edge/corner connections may be increased while that of
joint and neighbor moves is decreased.

Acknowledgments. We gratefully acknowledge earlier work on our Havannah-
playing agent by Bart Joosten and Joscha-David Fossel as reported in their B.Sc.
theses [11,8].
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Abstract. Over the past few years, Monte-Carlo Tree Search (MCTS)
has become a popular search technique for playing multi-player games. In
this paper we propose a technique called Playout Search. This enhance-
ment allows the use of small searches in the playout phase of MCTS in
order to improve the reliability of the playouts. We investigate maxn,
Paranoid, and BRS for Playout Search and analyze their performance
in two deterministic perfect-information multi-player games: Focus and
Chinese Checkers. The experimental results show that Playout Search
significantly increases the quality of the playouts in both games. How-
ever, it slows down the speed of the playouts, which outweighs the benefit
of better playouts if the thinking time for the players is small. When the
players are given a sufficient amount of thinking time, Playout Search
employing Paranoid search is a significant improvement in the 4-player
variant of Focus and the 3-player variant of Chinese Checkers.

1 Introduction

Deterministic perfect-information multi-player games pose an interesting chal-
lenge for computers. In the past the standard techniques to play these games
were maxn [13] and Paranoid [20]. Similar to, for instance, Best Reply Search
(BRS) [18] and Coalition-Mixer [12], these search techniques use an evaluation
function to determine the values of the leaf nodes in the tree. Applying search is
generally more difficult in multi-player games than in 2-player games. Pruning in
the game tree of a multi-player game is much harder [19]. With αβ pruning, the

size of a tree in a 2-player game can be reduced from O(bd) to O(b
d
2 ) in the best

case. In Paranoid, the size of the game tree can only be reduced to O(b
n−1
n d) in

the best case and in BRS, the size can be reduced to O
(
(b(n− 1))� 2d

n 	/2
)
. When

using maxn, safe pruning is hardly possible. Also, opponent’s moves are less pre-
dictable. Contrary to 2-player games, where two players always play against
each other, in multi-player games (temporary) coalitions might occur. This can
change the behavior of the opponents.

Over the past years, Monte-Carlo Tree Search (MCTS) [7,10] has become a
popular technique for playing multi-player games. MCTS is a best-first search
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technique that instead of an evaluation function uses simulations to guide the
search. Next, MCTS is able to compute mixed equilibria in multi-player games
[19], contrary to maxn, Paranoid and BRS. MCTS is used in a variety of multi-
player games, such as Focus [15], Chinese Checkers [15,19], Hearts [19], Spades
[19], and multi-player Go [5].

For MCTS, a tradeoff between search and knowledge has to be made. The
more knowledge is added, the slower each playout gets. The trend seems to fa-
vor fast simulations with computationally light knowledge, although recently,
adding more heuristic knowledge at the cost of slowing down the playouts has
proven beneficial in some games [21]. Game-independent enhancements in the
playout phase of MCTS such as Gibbs sampling [2] and RAVE [16] have proven
to increase the playing strength of MCTS programs significantly. With ε-greedy
playouts [19], some game-specific knowledge can be incorporated. Lorentz [11]
improved the playing strength of the MCTS-based Havannah program Wan-

derer by checking whether the opponent has a ‘mate-in-one’ when selecting a
move in the beginning of the playout. Winands and Björnsson [21] proposed αβ-
based playouts for the 2-player game Lines of Action. Although computationally
intensive, it significantly improved the playing strength of the MCTS program.

In this paper we propose Playout Search for MCTS in multi-player games.
Instead of using computationally light knowledge in the playout phase, small
two-ply searches are used to determine the moves to play. We test three different
search techniques that may be used for Playout Search. These search techniques
are maxn, Paranoid, and BRS. Playout Search is tested in two disparate multi-
player games: Focus and Chinese Checkers.

The remainder of the paper is structured as follows. First, Section 2 gives a
brief overview of the application of MCTS in multi-player games. Next, Playout
Search is introduced in Section 3. An overview of the rules and domain knowledge
for Focus and Chinese Checkers is given in Section 4. Subsequently, Section 5
describes the experiments and the results. Finally, the conclusions and an outlook
on future research are given in Section 6.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [7,10] is a search technique that gradually
builds up a search tree, guided by Monte-Carlo simulations. In contrast to classic
search techniques such as αβ-search [9], it does not require a heuristic evaluation
function. The MCTS algorithm consists of four phases [6]: selection, expansion,
playout, and backpropagation (see Fig. 1). By repeating these four phases itera-
tively, the search tree is constructed gradually. Below we explain the application
to multi-player games for our MCTS program [15].

In the selection phase the search tree is traversed from the root node until a
node is found that contains children that have not been added to the tree yet.
The tree is traversed using the Upper Confidence bounds applied to Trees (UCT)
[10] selection strategy. In our program, we have enhanced UCT with Progressive
History [15]. The child i with the highest score vi in Formula 1 is selected.
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Fig. 1. Monte-Carlo Tree Search scheme (Slightly adapted from [6])

vi =
si
ni

+ C ×
√

ln(np)

ni
+

sa
na
× W

ni − si + 1
(1)

In this formula, si denotes the total score of child i, where a win is being rewarded
1 point and a loss 0 points. The variables ni and np denote the total number of
times that child i and parent p have been visited, respectively. C is a constant,
which determines the exploration factor of UCT. In the Progressive History
part, sa represents the score of move a, where each playout in which a was
played resulted in a win adds 1 point and a loss 0 points. na is the number of
times move a has been played in any previous playout. W is a constant that
determines the influence of Progressive History.

In the expansion phase one node is added to the tree. Whenever a node is
found which has children that have not been added to the tree yet, then one of
these children is chosen and added to the tree [7].

During the playout phase, moves are played in self-play until the game is
finished. Usually, the playouts are being generated using random move selec-
tion. However, progression has been identified as an important success factor for
MCTS [8,22]. Ideally, each move should bring the game closer towards its conclu-
sion. Otherwise, there is a risk of the simulations leading mostly to futile results.
In slow-progressing games, such as Chinese Checkers and Focus (see Section 4),
knowledge should be added to the playouts [3] to ensure a quick resolution of
the game. Often, simple evaluations are used to select the moves to play. In
our MCTS program, the following two strategies have been incorporated. (1)
When using a move evaluator, a heuristic is used to assign a value to all valid
moves of the current player. The move with the highest evaluation score is cho-
sen. The move evaluator is fast, but it only considers a local area of the board.
(2) With one-ply search, all valid moves of the current player are performed
and the resulting board positions are evaluated. The move which gives the best
board position, i.e., the highest evaluation score for the current player, is chosen.
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The board evaluator is slower than the move evaluator, but it gives a more global
evaluation. Knowledge can also be incorporated by employing 2-ply searches to
determine the move to play. In Section 3 we explain which search techniques are
used.

Finally, in the backpropagation phase, the result is propagated back along the
previously traversed path up to the root node. In the multi-player variant of
MCTS, the result is a tuple of size N, where N is the number of players. The
value corresponding to the winning player is 1, the value corresponding to the
other players is 0. The game-theoretic values of terminal nodes are stored and, if
possible, backpropagated in such a way that MCTS is able to prove a (sub)tree
[15,22].

This four-phase process is repeated either a fixed number of times, or until
the time is up. When the process is finished, the child of the root node with the
highest win rate is returned.

3 Playout Search

In this section we propose Playout Search for MCTS in multi-player games.
In Subsection 3.1 we explain which search techniques are used in the playout
phase. In Subsection 3.2 we describe which enhancements are used to speed up
the search.

3.1 Search Techniques

Instead of playing random moves biased by computationally light knowledge in
the playout phase, domain knowledge can be incorporated by performing small
searches. This reduces the number of playouts per second significantly, but it
improves the reliability of the playouts. When selecting a move in the playout
phase, one of the following three search techniques is used to choose a move.

1) Two-ply maxn [13]. A two-ply maxn search tree is built where the current
player is the root player and the first opponent plays at the second ply. Both the
root player and the first opponent try to maximize their own score. αβ-pruning
in a two-ply maxn search tree is not possible.

2) Two-ply Paranoid [20]. Similar to maxn, a two-ply search tree is built where
the current player is the root player and the first opponent plays at the second
ply. The root player tries to maximize its own score, while the first opponent
tries to minimize the root player’s score. In a two-ply Paranoid search tree,
αβ-pruning is possible.

3) Two-ply Best Reply Search (BRS) [18]. BRS is similar to Paranoid search. The
difference is that at the second ply, not only the moves of the first opponent are
considered, but the moves of all opponents are investigated. Similar to Paranoid
search, αβ-pruning is possible.
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3.2 Search Enhancements

The major disadvantage of incorporating search in the playout phase of MCTS is
the reduction of the number of playouts per second [21]. In order to prevent this
reduction from outweighing the benefit of the quality of the playouts, enhance-
ments should be implemented to speed up the search and keep the reduction
of the number of playouts to a minimum. In our MCTS program, the following
enhancements to speed up the playout search are used.

The number of searches can be reduced by using ε-greedy playouts [19]. With
a probability of ε, a move is chosen uniform randomly. Otherwise, the selected
search technique is used to select the best move. An additional advantage of
ε-greedy playouts is that the presence of this random factor gives more varied
playouts and prevents the playouts from being stuck in ‘local optima’, where
all players keep moving back and forth. ε-greedy playouts are used with all
aforementioned playout strategies.

The amount of αβ-pruning in a tree can be increased by using move ordering.
When using move ordering, a player’s moves are sorted using a static move
evaluator. In the best case, the number of evaluated board positions in a two-
ply search is reduced from b2 to 2b − 1 [9]. The size of the tree can be further
reduced by using k-best pruning. Only the k best moves are investigated. This
reduces the branching factor of the tree from b to k. The parameter k should
be chosen such that it is significantly smaller than b, while avoiding the best
move being pruned. Move ordering and k-best pruning are used in all techniques
described in Subsection 3.1.

A second move ordering technique is applying killer moves [1]. In each search,
two killer moves are always tried first. These are the two last moves that were
best or caused a cutoff, at the current depth. Moreover, if the search is completed,
the killer moves for that specific level in the playout are stored, such that they
can be used during the next MCTS iterations. Killer moves are only used with
search techniques where αβ-pruning is possible, i.e., Paranoid and BRS search.

Other enhancements were tested, but they did not improve the performance
of the MCTS program. The application of transposition tables [4] was tested,
but the information gain did not compensate for the overhead. Also, aspiration
search [14] did not speed up the search significantly. This can be attributed to
the limited amount of pruning possible in a two-ply search tree.

4 Test Domains

Playout Search is tested in two different games: Focus and Chinese Checkers. In
this section we briefly discuss the rules and the properties of Focus and Chinese
Checkers in Subsection 4.1 and 4.2, respectively. In Subsection 4.3 we explain
the move and board evaluators for Focus and Chinese Checkers.

4.1 Focus

Focus is an abstract multi-player strategy board game, which was invented in
1963 by Sid Sackson [17]. This game has also been released under the name
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(a) 2 players (b) 3 players (c) 4 players

Fig. 2. Set-ups for Focus

Domination. Focus is played on an 8× 8 board where in each corner three fields
are removed. It can be played by 2, 3, or 4 players. Each player starts with a
number of pieces on the board. In Fig. 2, the initial board positions for the 2-,
3-, and 4-player variants are given.

In Focus, pieces can be stacked on top of each other. A stack may contain up
to 5 pieces. Each turn a player may move a stack orthogonally as many fields as
the stack is tall. A player may only move a stack of pieces if a piece of his1 color
is on top of the stack. It is also allowed to split stacks into two smaller stacks.
If a player decides to do so, then he only moves the upper stack as many fields
as the number of pieces that are being moved.

If a stack lands on top of another stack, then the stacks are merged. If the
merged stack has a size of n > 5, then the bottom n − 5 pieces are captured
by the player, such that there are 5 pieces left. If a player captures one of his
own pieces, he may later choose to place one piece back on the board, instead
of moving a stack. This piece may be placed either on an empty field or on top
of an existing stack.

There exist two variations of the game, each with a different winning condi-
tion. In the standard version of the game, a player has won if all other players
cannot make a legal move. However, such games can take a long time to complete.
Therefore, we chose to use the shortened version of the game. In this version,
a player has won if he has either captured a certain number of pieces in total,
or a number of pieces from each player. In the 2-player variant, a player wins if
he has captured at least 6 pieces from the opponent. In the 3-player variant, a
player has won if he has captured at least 3 pieces from both opponents or at
least 10 pieces in total. In the 4-player variant, the goal is to capture at least 2
pieces from each opponent or to capture at least 10 pieces in total.

4.2 Chinese Checkers

Chinese Checkers is a board game that can be played by 2 to 6 players. This
game was invented in 1893 and has since then been released by various publishers

1 For brevity, we use ‘he’and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.
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Fig. 3. A Chinese Checkers board [19]

under different names. Chinese Checkers is played on a star-shaped board. The
most commonly used board contains 121 positions, where each player starts with
10 checkers. We decided to play on a slightly smaller board [19] (see Fig. 3). In
this version, each player plays with 6 checkers. The advantage of a smaller board
is that games take a shorter amount of time to complete, which means that more
Monte-Carlo simulations can be performed and more experiments can be run.
Also, it allows the use of a stronger evaluation function.

The goal of each player is to move all his pieces to his home base at the other
side of the board. Pieces may move to one of the adjacent positions or they
may jump over another piece to an empty position. It is also allowed to make
multiple jumps with one piece in one turn, making it possible to create a setup
that allows pieces to jump over a large distance. The first player who manages
to fill his home base wins the game.

4.3 Domain Knowledge

For Chinese Checkers, the value of a move equals ds−dt, where ds is the distance
of the source location of the piece that is moved to the home base, and dt the
distance of the target location to the home base. For each location on the board,
the distance to each home base is stored in a table. Note that the value of a
move is negative if the piece moves away from the home base. For determining
the board value, a lookup table [19] is used. This table stores, for each possible
configuration of pieces, the minimum number of moves a player should perform
to get all pieces in the home base, assuming that there are no opponents’ pieces
on the board. For any player, the value of a board equals 28−m, where m is the
value stored in the table which corresponds to the configuration of the pieces of
the player. Note that 28 is the highest value stored in the table.

For Focus, the value of a move equals 10(n + t) + s, where n is the number
of pieces moved, t is the number of pieces on the target location, and s is the
number of stacks the player gained. The value of s can be 1, 0, or –1. For any
player, the board value is based on the minimum number of pieces the player
needs to capture to win the game, r, and the number of stacks the player controls,
c. The score is calculated using the formula 600− 100r + c.
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Table 1. 95% confidence intervals of some winning rates for 1500 games

Win percentage Confidence interval

50% ± 2.5%
40% / 60% ± 2.5%
30% / 70% ± 2.3%
20% / 80% ± 2.0%

5 Experiments

In this section, we describe the experiments that were performed to investigate
the strength of Playout Search for MCTS in Focus and Chinese Checkers. In
Subsection 5.1 the experimental setup is given. In Subsection 5.2 we present
the experimental results for the different search techniques of Playout Search in
Focus and Chinese Checkers.

5.1 Experimental Setup

The MCTS engines of Focus and Chinese Checkers are written in Java [15].
For Formula 1, the constant C is set to 0.2 and W is set to 5. All players
use ε-greedy playouts with ε = 0.05. The value of k for k-best pruning is set
to 5. These values were achieved by systematic testing. The experiments were
run on a cluster containing of AMD64 Opteron 2.4 GHz processors. In order
to test the performance of Playout Search, we performed several round-robin
tournaments where each participating player uses a different playout strategy.
These playout strategies include 2-ply maxn (M), 2-ply Paranoid (P), and 2-ply
BRS (B). Additionally, we include players with one-ply (O) and move evaluator
(E) playouts as reference players. The tournaments were run for 3-player and
4-player Chinese Checkers and 3-player and 4-player Focus. In each game, two
different player types participate. If one player wins, a score of 1 is added to
the total score of the corresponding player type. For both games, there may be
an advantage regarding the order of play and the number of different players.
In a 3-player game there are 23 = 8 different player-type assignments. Games
where only one player type is playing are not interesting, leaving 6 ways to assign
player types. For four players, there are 24−2 = 14 assignments. Each assignment
is played multiple times until approximately 1,500 games are played and each
assignment was played equally often. In Table 1, 95% confidence intervals of
some winning rates for 1500 games are given.

5.2 Results

In the first set of experiments, all players were allowed to perform 5000 playouts
per move. The results are given in Table 2. The numbers are the win percentages
of the players denoted on the left against the players denoted at the top.

The results show that for 3-player Chinese Checkers, BRS is the best tech-
nique. It performs slightly better than maxn and Paranoid. BRS wins 53.4% of
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Table 2. Round-robin tournament of the different search techniques in Chinese Check-
ers and Focus with 5000 playouts per move (win%)

E O M P B Avg. E O M P B Avg.
Move eval. - 25.2 20.9 21.2 18.3 21.4 Move eval. - 44.5 38.4 38.5 33.3 38.7
One-ply 74.8 - 44.5 40.5 38.9 49.7 One-ply 55.5 - 44.3 44.1 40.5 46.1
Maxn 79.1 55.5 - 48.1 46.6 57.3 Maxn 61.6 55.7 - 52.0 45.2 53.6
Paranoid 78.8 59.5 51.9 - 49.1 59.8 Paranoid 61.5 55.9 48.0 - 44.5 52.5
BRS 81.7 61.1 53.4 50.9 - 61.8 BRS 66.7 59.5 54.8 55.5 - 59.1

3-player Chinese Checkers 3-player Focus

E O M P B Avg. E O M P B Avg.
Move eval. - 30.3 27.6 26.9 22.9 26.9 Move eval. - 42.0 35.0 35.2 33.4 36.4
One-ply 69.7 - 47.4 45.1 39.7 50.5 One-ply 58.0 - 43.3 42.6 40.1 46.0
Maxn 72.4 52.6 - 49.1 48.1 55.6 Maxn 65.0 56.7 - 50.5 48.5 55.2
Paranoid 73.1 54.9 50.9 - 46.2 56.3 Paranoid 64.8 57.4 49.5 - 48.2 55.0
BRS 77.1 60.3 51.9 53.8 - 60.8 BRS 66.6 59.9 51.5 51.8 - 57.5

4-player Chinese Checkers 4-player Focus

Table 3. Playouts per second for each type of player in each game variant

Game Move eval. One-ply Maxn Paranoid BRS

3-player Focus 7003 6138 2336 3356 1911
4-player Focus 6976 6237 2344 3410 1887
3-player Chinese Checkers 7322 6047 3439 4307 3890
4-player Chinese Checkers 5818 4630 2407 3066 2536

the games against maxn and 50.9% against Paranoid. These three techniques
perform significantly better than one-ply and the move evaluator. The win rates
against one-ply vary from 55.5% to 61.6% and against the move evaluator from
78.8% to 81.7%. In the 4-player variant, maxn, Paranoid and BRS remain the
best techniques, where BRS performs slightly better than the other two. BRS
wins 53.8% of the games against Paranoid and 51.9% against maxn. The win
rates of maxn, Paranoid, and BRS vary from 72.4% to 77.1% against the move
evaluator and from 52.6% to 60.3% against one-ply.

For 3-player Focus, the best technique is BRS, winning 54.8% against maxn

and 55.5% against Paranoid. Maxn and Paranoid are equally strong. The win
rates of maxn, Paranoid, and BRS vary between 61.5% and 66.7% against the
move evaluator and between 55.7% and 59.5% against one-ply. BRS is also the
best technique in 4-player Focus, though it is closely followed by maxn and Para-
noid. BRS wins 51.5% of the games against maxn and 51.8% against Paranoid.

In the second set of experiments, we gave each player 5 seconds per move. For
reference, Table 3 shows the average number of playouts per second for each type
of player in each game variant. Note that at the start of the game, the number
of playouts is smaller. As the game progresses, the playouts become shorter and
the number of playouts per second increases.
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Table 4. Round-robin tournament of the different search techniques in Chinese Check-
ers and Focus for time settings of 5 seconds per move (win%)

E O M P B Avg. E O M P B Avg.
Move eval. - 28.7 42.7 31.5 36.1 34.8 Move eval. - 43.2 54.2 48.1 51.8 49.3
One-ply 71.3 - 62.5 50.8 58.2 60.7 One-ply 56.8 - 58.9 53.9 57.9 56.9
Maxn 57.3 37.5 - 36.1 43.5 43.5 Maxn 45.8 41.1 - 43.5 50.7 45.3
Paranoid 68.5 49.2 63.9 - 55.7 59.3 Paranoid 51.9 46.1 56.5 - 52.7 51.8
BRS 63.9 41.8 56.5 44.3 - 51.6 BRS 48.2 42.1 49.3 47.3 - 46.7

3-player Chinese Checkers 3-player Focus

E O M P B Avg. E O M P B Avg.
Move eval. - 33.7 45.9 35.4 42.9 39.5 Move eval. - 42.3 41.1 40.1 43.9 49.1
One-ply 66.3 - 60.5 53.7 56.2 59.2 One-ply 57.7 - 51.3 48.3 54.5 53.0
Maxn 54.1 39.5 - 40.3 46.6 45.1 Maxn 58.9 48.7 - 47.9 55.9 52.9
Paranoid 64.6 46.3 59.7 - 56.2 56.7 Paranoid 59.9 51.7 52.1 - 54.3 54.5
BRS 57.1 43.8 53.4 43.8 - 49.5 BRS 56.1 45.5 44.1 45.7 - 47.9

4-player Chinese Checkers 4-player Focus

The results of the round-robin tournament are given in Table 4. In 3-player
Chinese Checkers, one-ply and Paranoid are the best techniques. Paranoid wins
49.2% of the games against one-ply and 68.5% against the move evaluator. BRS
ranks third, and the move evaluator and maxn are the weakest techniques. In
4-player Chinese Checkers, one-ply is the best technique, closely followed by
Paranoid. One-ply wins 53.7% of the games against Paranoid. Paranoid is still
stronger than the move evaluator, winning 64.6% of the games. BRS comes in
third place, outperforming maxn and the move evaluator.

One-ply also performs the best in 3-player Focus. Paranoid plays slightly
stronger than the move evaluator, with Paranoid winning 51.9% of the games
against the move evaluator. One-ply wins 56.8% of the games against the move
evaluator and 53.9% against Paranoid. The move evaluator and Paranoid per-
form better than BRS and maxn. In 4-player Focus, Paranoid performs better
than in the 3-player version and outperforms one-ply. Paranoid wins 51.7% of
the games against one-ply and 59.9% against the move evaluator. Maxn also per-
forms significantly better than in the 3-player version. It is as strong as one-ply
and better than the move evaluator, winning 58.9% of the games.

In the final set of experiments, we gave the players 30 seconds per move.
Because these games take quite some time to complete, only the one-ply player
and the Paranoid player were matched against each other. In the previous set
of experiments, these two techniques turned out to be the strongest. The results
are given in Table 5.

Paranoid appears to perform slightly better when the players receive 30 seconds
per move compared to 5 seconds per move. In 3-player Chinese Checkers, Para-
noid wins 53.9% of the games, compared to 49.2%with 5 seconds. In 4-player Chi-
nese Checkers, 48.3% of the games are won by Paranoid, compared to 46.3% with
5 seconds. In 3-player Focus, the win rate of Paranoid increases from 46.1%with 5
seconds to 50.7% with 30 seconds and in 4-player Focus from 51.7% to 54.1%.
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Table 5. Win rates of the Paranoid player against the one-ply player for time settings
of 5 and 30 seconds per move

Game 5 seconds 30 seconds

3-player Chinese Checkers 49.2% 53.9%
4-player Chinese Checkers 46.3% 48.3%
3-player Focus 46.1% 50.7%
4-player Focus 51.7% 54.1%

6 Conclusions and Future Research

In this paper we proposed Playout Search for improving the playout phase
of MCTS in multi-player games. We applied 2-ply maxn, Paranoid, and BRS
searches to select the moves to play in the playout phase. Some enhancements,
such as ε-greedy playouts, move ordering, killer moves, and k-best pruning were
implemented to speed up the search.

The results show that Playout Search significantly improves the quality of
the playouts in MCTS. This benefit is countered by a reduction of the num-
ber of playouts per second. Especially BRS and maxn suffer from this effect.
Based on the experimental results we may conclude that Playout Search for
multi-player games might be beneficial if the players receive sufficient thinking
time and Paranoid search is employed. Under these conditions, Playout Search
outperforms playouts using light heuristic knowledge in the 4-player variant of
Focus and the 3-player variant of Chinese Checkers.

There are two directions for future research. First, it may be interesting to
test Playout Search in other games as well. Second, the two-ply searches may be
further optimized. Though a two-ply search will always be slower than a one-
ply search, the current speed difference could be reduced further. This can be
achieved, for instance, by improved move ordering or lazy evaluation functions.
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Abstract. Solving board games is a hard task, in particular for games
in which classical tools such as alpha-beta and proof-number-search are
somehow weak. In particular, Go is not solved (in any sense of solv-
ing, even the weakest) beyond 6x6. We here investigate the use of
Meta-Monte-Carlo-Tree-Search, for building a huge 7x7 opening book.
In particular, we report the twenty wins (out of twenty games) that were
obtained recently in 7x7 Go against pros; we also show that in one of the
games, with no human error, the pro might have won.

1 Introduction

The main approach for solving board games consists in using alpha-beta with
several improvements such as transposition tables, killer moves, symmetry, and
expert knowledge for ranking moves; proof-number-search[1] is used for prefer-
ring nodes with a small branching factor. Some successes have been obtained in
particular for Ponnuki-Go [16] and there are results for all rectangular boards
until 30 locations[17]. In the case of difficult games, these techniques have been
combined with Monte-Carlo evaluation[13]. The use of Monte-Carlo techniques
is often efficient in difficult board games and in particular for the game of Go[8];
it can be used for exact solving[5]; however, 7x7 remains beyond the capabilities
of the current computers and algorithms.

Meta-MCTS has been proposed [2] (a mixing between nested Monte-Carlo[6]
and Monte-Carlo Tree Search[8]) precisely for cases in which exact solutions are
beyond our capabilities. Some variants have been applied in one-player cases[12].
This paper is devoted to (1) the application of Meta-MCTS for building huge
opening books in 7x7 Go, and (2) to checking Meta-MCTS’ ability to learn on
specific variations. As in [2], we will see that human expertise is necessary for
top-level performance; a main difference with 9x9, however, is that in 7x7 a
reasonable computation time leads to openings outperforming a given finite set
of variations - a difference in the context of this study (compared to previous
works in 9x9) is that we work with an adjusted Komi, i.e., Komi 9.5 for White
and Komi 8.5 for Black, so that the problem is well posed and a solution exists,
at least if we trust the widely believed assumption that “7x7 fair Komi is 9”. In
all, the paper and the experiments are based on MoGoTW 4.86 Soissons.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 84–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Exact Komi in Go. In Go, two players play a game, leading to a partition of
the board into a black area, a white area, and possible a no-man’s land which
does not belong to anyone (so-called Seki). Black has won if its area is bigger than
White’s area (usually modified by a bonus, termed Komi, which is intended to
offset the advantage of Black who plays first). We here recall simple math around
Komi, showing that there exists a Komi such that the game, in case of perfect
play, is a draw.

Consider the 7x7 case. The board has size S = 49. Consider B the Black area
(i.e., the number of black stones plus the number of empty locations surrounded by
black stones, after removal of dead stones), andK the no-man’s land, i.e., the Seki
locations which do not belong to anyone. ThenWhite score isW = S−B−K. The
difference between White and Black territory is (S −B−K)−B = S−K − 2B.
So the optimal strategy for Black consists in maximizing 2B + K. If there is a
number T such that B can ensure 2B+K = T (and no more than this), then the
difference between the territories is, in case of optimal play, S − T ; if the Komi is
S − T (this is an integer), it leads to a draw. The ideal Komi is S − T .

The above just shows that an ideal Komi exists, and that this Komi is an inte-
ger; it does not tell us which Komi is the good one. If there is no Seki at optimal
play, then the Komi is odd in 7x7, because the board size is odd and 2B is cer-
tainly even. It is widely assumed that the ideal Komi is 9 and we will see that our
results confirm this (but do not prove it). Section 2 contains technical points and
Section 3 experimental results. Section 4 describes games against humans, Section
5 points to grid-based learning, and Section 6 gives our conclusion.

2 Technical Points

We present Monte-Carlo Tree Search in Subsection 2.1 and Meta-Monte-Carlo
Tree Search in Subsection 2.2. Subsection 2.3 will present the score functions used
in our Meta-MCTS algorithm, and Subsection 2.4 will discuss existing opening
books for 7x7 Go.

2.1 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search [8,10] is an algorithm for 1-player or 2-player games.
A game is (here) a finite set of nodes, organized as a tree with a root. Each node
n is of one of the following three types:

– max node (nodes in which the max player chooses the next state among
descendants);

– min node (nodes in which the min player chooses the next state among
descendants);

– terminal node; then, the node is equipped with a reward Reward(n) ∈ [0, 1].

In all cases, we note D(n) the set of children of node n. We assume, for the
sake of simplicity, that the root node is a max node. We will consider algorithms
which perform simulations; the first simulation is s1, the second simulation is s2,
etc. Each simulation is a path in the game, from the root to a leaf. Each node n
is equipped with the following four items.
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– Possibly, some side information I(n) (I(n), and also K1(n) or K2(n) below,
are meant as a short notation for the many MCTS improvements in the
literature which are based on expert rules or patterns[8,7,11]).

– A father F (n), which is the father node of n; this is not defined for the root.
– A value V (n); this value is the Bellman value; it is known since [18,3] that

V (n), equal to the expected value of the reward if both players play optimally,
is well defined.

– For each simulation index t ∈ {1, 2, 3, 4, . . .},
• nt(n) ∈ {0, 1, 2, . . .} is the number of simulations with index in
1, 2, . . . , t− 1 including node n, possibly plus some constant K1(n):

nt(n) = #{i < t;n ∈ si}+K1(n). (1)

• wt(n) ∈ R is the sum of the rewards of the simulations with index in
1, 2, . . . , t− 1 including node n, possibly plus some constant K2(n):

wt(n) =
∑

i<t;n∈si

reward(si) +K2(n), (2)

where reward(si) is Reward(l) if l is the last node of simulation si.
• If n is not the root, scoret(n) = score(wt(n), nt(n), nt(F (n)), I(n), t);
we will see which properties we have, depending on the score function.
The score function is usually an estimate of the quality of a node.

We consider algorithms as in Figure 1.
The algorithm relies on a good score formula. We refer to the many papers

about MCTS for the scores classically used in MCTS implementations[8,7,11].
The score used for Meta-MCTS (following the same principles) will be discussed
in Subsection 2.2.

2.2 Meta-MCTS

Meta-MCTS is MCTS in which the random policy is replaced by a MCTS policy.
This makes simulations rather slow; but the tree of preferred moves is of high
quality, and can efficiently be used as an opening book. The reader is referred to
[6] for nested-Monte-Carlo (with good results, including world records, in some
puzzles), and to [2] for nested MCTS, with application to Go. We might define
extensions of Meta-MCTS as follows.

– MCTS is built on top of a default (somehow naive) playout policy.
– Meta-MCTS is built on top of a MCTS policy.
– Meta-Meta-MCTS is built on top of a Meta-MCTS policy.
– . . .

To the best of our knowledge, such nested levels have been successfully used in
Monte-Carlo, but not yet in MCTS; we here only use Meta-MCTS.
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Input: a game.
for t = 1, 2, 3, . . . (until no time left) do

st ← () // empty simulation
s = root(game) // the root of the game is the initial state
while s is not terminal do

st ← st.s // s is added to the simulation
switch s do

case max node
s ← argmaxn∈D(s) score(n)

end
case min node

s ← argminn∈D(s) score(n)
end

end
// the argmin or argmax can be replaced by a ε-greedy rule
// or other stochastic rules

end while
st ← st.s // s is added to the simulation

end for
decision = argmaxn∈D(root) nt(n) // decision rule
Output: a decision, i.e. the node in which to move.

Fig. 1. A framework of Monte-Carlo Tree Search. All usual implementations fall in
this schema depending on the score function. The decision step is sometimes different,
without impact on our results. The score(.) function, when the number of simulations
is 0, defines the default policy (i.e., the policy when no statistics are available); when
the score function does not depend on numbers of wins and on numbers of simulations,
MCTS boils down to the old Monte-Carlo algorithms. We recall that D(n) is the
number of children of node n.

2.3 Scoring Functions Used in Our Meta-MCTS

In our Meta-MCTS, as well as in classical MCTS, we use a different rule for
choosing moves when using our algorithm for really playing a game, than for
choosing moves when using our algorithm for building the tree. The two rules
are as follows:

1. play the move with highest empirical success rate. This rule is used for
playing a real game;

2. play the move with highest empirical success rate, if such a move has success
rate ≥ 10%; otherwise, choose a move by the default policy (in Meta-MCTS,
the default policy is a MCTS). This rule is used in self-play games aimed at
building the tree.

The reason for introducing the second rule is that the seemingly natu-
ral rule 1 is not consistent[4]. During the learning steps (i.e., for building the
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opening book), it can concentrate on one move only, in spite of a success rate
converging to 0, if all other moves have an empirical success rate 0 due to an
unlucky first simulation. The typical example is as follows:

– there are two legal moves, one good (leading to a forced win) and one bad
(leading to a loss);

– the good move has success rate 0, because it has been tested once, and,
unluckily, it was a loss;

– the bad move has been tested N times, with only one win, and has therefore
a success rate 1/N .

The bad move will be tested again and again, because 1/N is always> 0, whereas
the good move is never tested again and keeps a success rate 0. For more details
on this anomaly, and in particular a consistency proof when using rule 2 during
the tree building phase, we refer to [4]; alternate consistent rules consist in using
a regularized score (number of wins plus K divided by number of simulations
plus 2K), or a Upper Confidence Bound-like formula - but using such a formula
implies that all the nodes in the tree will be visited, whereas other rules above
can lead to a smaller visited tree.

2.4 Existing Handcrafted 7x7 Openings

A classical partial solution for 7x7 has been proposed by Davies[9], and developed
by several authors (posts on mailing lists refer to contributions by J. Tromp
[14]). J. Tromp’s homepage contains an interesting analysis [15]. However, the
proposed opening is far from solving all cases.

Our methodology (detailed below) did not find any mistake in these openings.
However, it developed interesting variations that were not, to the best of our
knowledge, in these openings. Such a new variation is shown in Fig. 3 for Black;
this variation was not analyzed after the third move in the existing openings.
Also, many variants in professional games discussed below (Section 4) were not
discussed in the existing openings; in particular, the critical variation D4-D5-E4-
C4 leads to complicated variations and we have seen that even pros can make
mistakes in it.

3 Experimental Results of Meta-MCTS Before
Modifications by Human Expertise

We used Senseis’ work (see homepage) on 7x7 Go in two manners: (1) as a
preliminary opening book, and (2) as a sparring partner. This means that the
Meta-MCTS tree is initialized at Senseis’ solution, and is trained versus this so-
lution. Meta-MCTS is based on a tree equipped with statistics, possibly encoded
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as a set of games; this makes it easy and natural to include Senseis’ work as a
preliminary solution. For the use of Senseis’ solution as a sparring partner, we
proceeded as follows, e.g., for Black (the same, mutatis mutandis, for White):

– Black starts with a subset of the N Senseis variations.
– White is a MCTS algorithm possibly with opening book, and plays either

• no opening at all (pure MCTS algorithm), with probability 1/(N + 1);
• one (randomly and uniformly chosen) variation of Senseis’ opening, each
of them with probability 1/(N + 1).

Experimental results are provided in Fig. 2, Top (learning as Black) and Bottom
(learning as White). The three main conclusions are as follows.

– Meta-MCTS quickly learned against any fixed set of variations: the curve
increases, between each introduction of a new Senseis’ variation. This shows

Fig. 2. These curves are learning curves of Meta-MCTS. Top: learning as Black (Komi
8.5). Bottom: learning as White (Komi 9.5). In both curves, the x-axis is log2(number
of simulated games). Each game is of order 2h; so the total learning time (distributed
on a cluster) is a few years of computation, distributed on Grid5000. The y-axis is the
moving average (window of size 55) of the winning rate. The Komi is 9.5 when the
learner is White and 8.5 when the learner is Black, so that if the right Komi is 9 then
the learner can possibly reach 100%. At the beginning, Meta-MCTS learns against
MoGoTW White with no opening; then variations of Senseis’ SGF file are used as
opening (they are randomly chosen, together with no opening at all); at this point the
success rate starts to decrease, but it quickly increases again close to 100%.
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that programs do not (by far) play perfectly without opening book; learning
the opening book improves the success rate.

– Before the use of Senseis’ openings, we might have believed that the program
was playing almost perfectly as the success rate is close to 100%; however,
the first games against Senseis’ variations were not that good. After some
learning, the program can play correctly against Senseis’ variations and has
developed many new variations.

– We will see below that even at this point, there were some important varia-
tions which were not yet analyzed; this confirms [9]’s claim that 7x7 Go is
hard even at the best human level. More on this in later sections and in the
conclusion.

4 Games against Humans

We tested the generated opening book against humans.
In order to check that the fair Komi is 9, we tested games as follows.

MoGoTW plays as Black, with Komi 8.5; and MoGoTW plays as White, with
Komi 9.5. If MoGoTW was unbeatable in this context, it would imply that the
right Komi (in the sense: the Komi leading to a draw) is 9. We cannot know if
a program is unbeatable just by a finite set of experiments, but we tested many
games against many professional players. MoGoTW won all games; 10 games
as Black against 10 different pros (Fig. 5), and 10 games as White against these
same 10 pro players (Fig. 6). However, importantly, the second game won as
Black by MoGoTW could have been a loss - MoGoTW made a mistake, but
won thanks to a mistake by the human player; the corrected variation V , with
the modification by Shi-Jim Yen and pros, is discussed in Fig. 4.

5 Introduction of Human Expertise in the Grid-Based
Learning

Human experts found that a pro might have won a game: the second game as
Black (see Fig. 4). Therefore, we reran the grid-based experiment (Meta-MCTS)
specifically on this variation V - i.e. now the white opponent of the black Meta-
MCTS is playing variation V . The complete run on the Grid is therefore as
follows.

– First set of experiments: (already discussed in Section 3)
• Meta-MCTS for Black with Komi 8.5; against White openings in Senseis’
solution (introduced during the run, i.e., N is increasing).
• Meta-MCTS for White with Komi 9.5; against Black openings in Senseis’
solution (introduced during the run, i.e., N is increasing).
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Basically, from the curves, Meta-MCTS was able to learn the correct solution
against each Senseis variation, but sometimes it does not analyze a crucial
variation - as the variation V discussed above.

– Second set of experiments: after the 20 games against pros, a variation
V was found by a pro and corrected by Shi-Jim Yen (6D); we reran a Meta-
MCTS for Black with Komi 8.5, against this specific variation. The Meta-
MCTS quickly found good moves (see Fig. 3).

Fig. 3. Left: a bad move by Black (visible in games against variation V discussed in
Section 4): black E3 should be black E5. Middle: the correction, as found by Meta-
MCTS (after a long time) and by human Pro players - in this situation Black has a safe
win. Right: the success rate of Meta-MCTS, when learning specifically on variation V .

All these experiments show that Meta-MCTS quickly adapts to given opponents:
Fig. 2 shows that it could find good strategies against the MCTS algorithm,
and against Senseis’ variations; and Fig. 3 shows that it finds the solution to
a new variation found by human experts. However, Meta-MCTS needs some
external “coach”, i.e., here, first, Senseis’ variations, and, later, the variation V ,
for developing new knowledge in reasonable time.

Fig. 4. Left: here an opening which was not correctly played by MoGoTW as Black;
luckily for the bot, the human made a mistake and lost the game (see Fig. 5, second
game, played by Chun-Yen Lin 2P). Right: the game that the human should have
played in order to win.
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Games played by Cheng-Jui Yu (3P), Chun-Yen Lin
(2P), Hsiang-Chieh Wang (1P), Hsiang-Jen Huang
(5P), Kai-Hsin Chang (4P), Shao-Chieh Ting (2P),
Ting-Yi Lin (1P), Yin-Nan Chou (4P), Yu-Hsiang
Lin (4P), and Yu-Pang Kou (1P) respectively.

Fig. 5. Games played as Black against pros
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Games played by Cheng-Jui Yu (3P), Chun-Yen Lin
(2P), Hsiang-Chieh Wang (1P), Hsiang-Jen Huang
(5P), Kai-Hsin Chang (4P), Shao-Chieh Ting (2P),
Ting-Yi Lin (1P), Yin-Nan Chou (4P), Yu-Hsiang
Lin (4P), and Yu-Pang Kou (1P), respectively.

Fig. 6. Games played as White against pros
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6 Conclusion

We applied directly the methodology from [2] to 7x7 Go. This methodology is
Meta-MCTS (i.e., MCTS with a MCTS as a default policy), with archiving of
statistics as an opening book. This provided a version of MoGoTW specialized
for 7x7 Go, with a big opening book (1̃2,000 games). Many moves in games
against pros were played automatically. Results in self-play were very good; yet,
the games against the pros have shown that there was still a mistake; as the
pro also made a mistake, we might have believed that MoGoTW had played
perfectly - but a careful analysis by human experts has shown that humans had
an opportunity of winning one of the games, and lost only because even pros can
do mistakes in 7x7 Go. Incorporating variation V into the learning procedure
provided good results: Meta-MCTS could find by itself the correction by Meta-
MCTS. Nonetheless, if variation V had not been integrated in the experiments,
Meta-MCTS might have not studied this variation (so, MoGoTW found the
solution by itself, but it did not find the trouble by itself). Our main claims are
summarized below.

– Meta-MCTS builds opening books which make MCTS stronger in 7x7 Go.
– MCTS plus an opening book learned by Meta-MCTS is much stronger than

MCTS; however, there were still variations in Senseis’ SGF file which were
not correctly played by Meta-MCTS.

– MCTS plus Senseis’ variations plus the opening book automatically learned
by Meta-MCTS plus training against Senseis’ variations is much stronger;
however, our games against pros have shown that it was still possible for a
pro to find a mistake in the opening. We have been lucky that the pro did
not play correctly the rest of the game. This confirms that 7x7 can be quite
hard even for the best humans.

Further Works. A possible further work is the exact solving of 7x7 Go. Our
algorithm is not an exact solving algorithm; but it provides rather strong opening
books. Maybe a possible approach is the following:

– make MoGoTW deterministic (just by using a fixed random seed);
– play all possible openings against MoGoTW, collect the leafs of the opening

book;
– solve all these leafs.

A different further work would be the experimentation of Meta-MCTS in real-
time. We all know that MCTS is weak in, e.g., Semeai and in combining several
local fights; maybe Meta-MCTS can be a successful new approach, in the mid-
game and not only in the opening.
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Abstract. Monte-Carlo Tree Search (MCTS) is a powerful tool in games
with a finite branching factor. The paper describes an artificial player
playing the Voronoi game, a game with an infinite branching factor. First,
it shows how to use MCTS on a discretization of the Voronoi game, and
the effects of enhancements such as RAVE and Gaussian processes (GP).
Then a set of experimental results shows that MCTS with UCB+RAVE
or with UCB+GP are good first solutions for playing the Voronoi game
without domain-dependent knowledge. Moreover, the paper shows how
the playing level can be greatly improved by using geometrical knowledge
about Voronoi diagrams. The balance of diagrams is the key concept. A
new set of experimental results shows that a player using MCTS and
geometrical knowledge outperforms a player without knowledge.

1 Introduction

UCT [20], Monte-Carlo Tree Search (MCTS) [12,8] and RAVE [17] are quite pow-
erful tools in computer games for games with a finite branching factor. Voronoi
diagrams are classical tools in image processing [4,25]. They have been used to
define the Voronoi game (VG) [24,14], a game with an infinite branching fac-
tor. The VG is a good test-bed for MCTS and its enhancements. Furthermore,
Gaussian processes (GP) are adapted to find the optimum of a target function
in domains with an infinite set of states or actions [23,6]. Combining MCTS
techniques with GP, and testing the result on the VG is the first goal of this
paper. Our first set of results shows that MCTS with RAVE and GP leads
to an effective solution. In the second stage (section 6), this paper shows that
domain-dependent knowledge concerning Voronoi diagrams cannot be omitted.
The balance of the diagrams is a key concept. The paper shows how to design an
MCTS VG player that focuses on the balance of cells. Knowledge is used a priori
to select a subset of interesting moves used in the tree and in the simulations.
The second set of results shows that the MCTS player using Voronoi knowledge
outperforms MCTS without knowledge.

The outline of the paper is the following. Section 2 defines the Voronoi game.
Section 3 mentions work about MCTS, UCT, UCB, and RAVE. Section 4 ex-
plains how to combine GP and UCB within an MCTS program. Section 5
presents the results obtained by MCTS and GP. Before arriving at a conclu-
sion, section 6 presents the insertion of relevant Voronoi knowledge into the
MCTS algorithm to improve its playing level quite significantly. Section 7 gives
our conclusions.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 96–107, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



MCTS Experiments on the Voronoi Game 97

2 Voronoi Game

The Voronoi game can be played by several players represented with a color [14].
At his1 turn, a player puts a site of his color on a 2D square. Each cell around a
site obtains the color of the site. A colored cell has an area. The area of a player
is the sum of the areas of his cells. The game lasts a fixed number of turns (10
in the current work). At the end, the player who possesses the largest area wins.
In its basic version and in the paper, there are two players, Red and Blue [24],
the square is C = [0, 1]× [0, 1], and Red starts. Figure 1 shows the positions of
a VG of length 10. Since Blue plays after Red, a komi can be introduced such
that Red wins if the area evaluation, Red area minus Blue area, is superior to
the komi, the komi value being negative.

Fig. 1. The positions of the Voronoi game of length 10

Several methods can be used to compute Voronoi diagrams [4,18,16,25,22]. In
order to go forward or backward in a game sequence, the incremental version [4]
is appropriate. The computation of areas was helped by [13].

VG can be played on a circle, a segment, a rectangle, or a n-dimensional space
as well. VG can be played in an N-round version (the players moves alternately
one site per move) or in a one-round version (the players move all their sites
in one move) [10]. Key points are essential to play the VG well [1]. Concerning
the one-round VG played on a square, [15] proves that the second player always
wins. Currently, Jens Anuth’s master thesis is the most advanced and useful
work about VG [2].

3 MCTS, UCT, UCB, and RAVE

MCTS (or UCT) repetitively launches simulations starting from the current
state. It has four steps: the selection step, the expansion step, the simulation
step, and the updating step. In the selection step, MCTS browses a tree from
the root down to a leaf by using the UCB rule. To select the next state, UCT
chooses the child maximizing the sum of two terms, the mean value and a UCB

1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.



98 B. Bouzy, M. Métivier, and D. Pellier

term. If x1, . . . , xk are the k children of the current state, then the next state
xnext is selected as follows:

xnext = argmax
x∈{x1,...,xk}

(μ(x) + ucb(x)) (1)

ucb(xi) =

√
C × log(T )

Ni
(2)

μ(xi) is the mean value of returns observed. T is the total number of simulations
in the current state. Ni is the number of simulations in state xi. C is a constant
value set up with experiments. When MCTS reaches a leaf of the tree, it creates
one node. Then the simulation uses a random-based policy until the end of the
game. At the final state, it receives the return and updates all the mean values
of the states encountered in the tree. The UCB rule above balances between
exploiting (choose the move with a good mean value to refine existing knowledge)
or exploring (choose a move with few trials). The UCB rule works well when the
set of moves is finite and pre-defined.

Furthermore, for the game of Go, the RAVE heuristic gave good results [17].
RAVE computes two mean values: the usual one and the AMAF (All Moves As
First). The AMAF mean value is updated by considering that all moves of the
same color of the first move of the simulation could have been played as the first
move. Therefore, after a simulation, it is possible to update the AMAF mean
value of all these moves with the return. RAVE uses a weighted mean value of
these two mean values. β is the weight driving the balance between the AMAF
mean value and the true mean value. K is a parameter set up experimentally.
When a few simulations are performed, β ≈ 0. When many simulations are
performed, β ≈ 1, the weight is on the usual mean value.

mRAVE = β ×m+ (1− β) ×mAMAF (3)

β =

√
Ni

K +Ni
(4)

4 Light Gaussian Processes

Work concerning bandits on an infinite set of actions is facing the regret of not
playing the best action [19,3]. The issue is how to generate a finite set of moves
that can be provided to UCB to select a move. Gaussian processes (GP) [23,6]
answer the question. At time t, the target function has been observed on points
xi with i = 1, . . . , N . GP aims at finding the next point to try at time t + 1,
either a new point or an observed point. The target function is approximated by
a surrogate function called f . GP use an acquisition function A to choose the
next point at time t+1. The GP selection needs a matrix inversion which costs
a large amount of CPU. Since GP selection is called at each node browsed by
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the tree part of the simulations, it must be fast to execute. Therefore, we defined
a specific algorithm lighter than GP.

The acquisition function A is defined as a sum of two functions f and g:

∀x ∈ C, A(x) = f(x) + g(x) (5)

For observed points, functions f and g are defined as follows:

∀x ∈ {x1, . . . , xN}, f(x) = μ(x) (6a)

g(x) = ucb(x) (6b)

For never observed points, function f is defined as a weighted mean over the
mean values of the observed points:

∀x /∈ {x1, . . . , xN}, f(x) =
∑N

i=1 μ(xi)× exp(−a(x− xi)
2)∑N

i=1 exp(−a(x− xi)2)
(7)

where a is a constant. Function g is defined as follows:

∀x /∈ {x1, . . . , xN}, g(x) = G×
N∏
i=1

(1− exp(−b(x− xi)
2)) (8)

where G and b are constant values.
Finally, the next point to be observed is selected according to the following

rule:

xt+1 = argmax
x∈D

A(x) (9)

where D is a discretization in advance, or finite subset of C sufficiently large
for accuracy, and sufficiently small to evaluate all its elements in practice at
every time step. When browsing the UCT tree from the root node to a leaf
node, the maximization process above is performed in each node. When a leaf
node is expanded at the end of browsing, all the children are created following
the discretization D. When a node is created, it is virtual, or not observed. It
remains virtual until it is tried once, in which case it becomes observed. The size
of D is crucial for the speed of the algorithm. When the process terminates, the
algorithm returns the move that has the most trials.

The acquisition function A is not continuous: for an observed point xi, A(xi)
is superior to A(x) for x in a small neighborhood of xi. This allows two kinds
of exploration. When xt+1 is an observed point, the exploration corresponds to
a better estimation of μ(xt+1), or UCB exploration. Otherwise, the exploration
corresponds to the observation of a new point in D. The competition between the
two explorations avoids to explore new points before having sufficiently precise
estimations of mean values of observed points. The dilemma between the two
explorations is managed by G and C.
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5 MCTS Experiments without Knowledge

In this section, the calibration experiments show the relevance of UCT (in 5.1)
and UCT, RAVE, and GP (in 5.2) to play without domain-dependent knowledge.

5.1 Calibration Experiments

Square C is replaced by a discretization D containing discret× discret points.
discret depends on each player. Its value is tuned thanks to calibration tour-
naments between several instances of the same player with different values of
discret.

Without komi, Blue wins about 85% of the games on average, which hinders
the search of the best players in a given set. For speeding this search, all games
are launched with a komi. The value of the komi depends on the set of players
considered. A satisfying value is determined experimentally to make Red and
Blue win about 50% of games on average. Experimentally, we use a komi ∈
[−0.04,−0.08]. The value is negative reflecting that Blue has the advantage of
playing the actually important last move.

All experiments are launched with an appropriate simulation number Ns.
We used Ns = 4000. With such a value, a player spends between 5 and 10
minutes thinking time, and a game lasts between 10 and 20 minutes (a player uses
between one and two minutes per move, about 80 random games per second).
To compare two players A and B, we launch 50 games with A playing Red and
50 games with A playing Blue. 100 games enables the results to obtain σ = 5%.

The values of Ns and discret interact. For low values of discret, few moves
are considered. Although they can be sampled many times, this results in a
poor level of play. For large values of discret many moves are considered, but
they cannot be sampled sufficiently, resulting in a poor level of play as well. For
intermediate values, the resulting program plays at its optimal level. Ns being
set to 4000, each player has its best value of discret. For UCT, we experimentally
found discret = 20.

Tuning C, the UCT constant, is mandatory to make UCT play well. Our
experiments showed that C = 0.25 is a good value.

5.2 UCT, RAVE, and Light GP Experiments

Table 1 contains the results of an all-against-all tournament between UCT,
RAVE, GP, and RGP using Ns = 4000. RAVE uses discret = 16 and K = 400.
GP uses discret = 26, G = 2, and a = b = 180. RGP uses both enhancements:
RAVE+GP. RGP uses discret = 26, G = 2, and a = b = 180. All these values
were set in advance, by the calibration experiments.

First, RAVE is superior to UCT (60.5% ± 3%) and GP is superior to UCT
(60% ± 3%). Second, RGP is slightly superior to RAVE (56% ± 3%) showing
that GP is a small enhancement when RAVE is on. RGP is neither inferior nor
superior to GP (51%± 3%) showing that RAVE is not an efficient enhancement
when GP is on. Third, GP is superior to RAVE (55%± 3%), which would show
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Table 1. All-against-all results. The cell of row R and column C contains the result of
100 games between R playing Red and C playing Blue: the first number is the number
of wins of Red. T indicates the total number of wins. komi = −0.08. Ns = 4000.

UCT RAV E GP RGP T

UCT 39-61 30-70 43-57 46-54 350

RAV E 51-49 56-44 53-47 51-49 399

GP 63-37 63-37 78-22 75-25 428

RGP 55-45 63-37 77-23 80-20 423

that GP is a better enhancement than RAVE. Fourth, the bad news is that RGP
is slightly superior only to UCT (54.5%± 5%), which shows that enhancements
are significant by themselves but that their sum is not. Fifth, overall, GP is the
best player of our set of experiments regarding the all-against-all tournament to-
tal win number. However, time considerations must be underlined: GP and RGP
spend 13 minutes per game per player, while UCT and RAVE spend 5 minutes
per game per player. GP (even in its light version) have a heavy computational
cost. A fairer assessment between players would give the same thinking time to
all players. This would negate the positive effect of GP.

6 MCTS Experiments with Knowledge

This section shows how to insert Voronoi knowledge into the MCTS framework
above, and underlines the improvement in terms of playing level. Jens Anuth’s
thesis describing smart evaluation functions including Voronoi knowledge [2]
motivated the work presented in this section. The outline below follows the
strategical structure of the game (in 6.1 to 6.7). In 6.8 we consider human players
and other work.

• the last move special case,
• simple attacks on unbalanced cells and the biggest cell attack,
• balance: balanced cells, DB: a defensive balanced player,
• BUCT: a UCT player using balanced VD,
• aBUCT: a BUCT player using simple attacks in the simulations,
• the one-round game and a second-player strategy,
• ABUCT: a BUCT player using sophisticated attacks in the tree.

6.1 The Last Move Special Case

The last move is a special case: since the other player will not play any move after
the last move, a depth-one search is the appropriate tool. The result only depends
on the discretization of the square. The higher the discretization, the better the
optimum. The before-last move is also a special case: if the computing power is
sufficient, performing a depth-two search at the before-last move offers the same
upsides than depth-one search at the last move. In the following subsections,
all the players described are assessed by assuming that the last and before-last
moves are played with depth-one or depth-two minimax strategy, respectively.
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6.2 Simple Attacks on Unbalanced Cells and the Biggest Cell
Attack

A cell has a gravity center. A straight line intersecting the gravity center of a
cell splits this cell into two parts of which the size is the half of the given cell. A
cell of which the site is situated on its gravity center is called a balanced cell, an
unbalanced cell otherwise. Figure 2 shows a game that illustrates balanced and
unbalanced cells. After moves 1 and 2, the two cells are clearly unbalanced. After
move 3, the cells are almost balanced. The most basic attack on an unbalanced
cell consists in occupying its gravity center, and consequently in stealing more
than the half of the cell. Moves 7 and 8 are straightforward attacks succeeding
on clearly unbalanced cells. Computing the gravity center of a cell is fast and
performed simultaneously with the area computation. A straightforward and
fast player can be designed by choosing the biggest cell of the opponent and
playing on its gravity center. We call such a player the biggest-cell-attack player
(BCA). The BCA player is quite effective against any player creating unbalanced
cells without special purpose. Particularly, the BCA player itself produces rather
unbalanced cells. BCA offers to its opponent the same weakness as the weakness
he is exploiting. See moves 5 and 6 of figure 2. Furthermore, the BCA player
remains inefficient against players producing balanced cells. Moves 5 and 6 are
straightforward attacks on two cells almost balanced. It is worth noting that BCA
wins 60% of the games against 400-point-depth-one search. For this reason, in
the following, we added the moves generated by the BCA strategy into the set
of moves used by depth-one search.

6.3 Balance

Since the BCA player is dangerous for unbalanced cells, playing cells as balanced
as possible becomes crucial.

Balanced cells. In the VG played on a circle, Ahn defines the importance of
key points [1]. The location of a key point does not depend on the player. In a

Fig. 2. A Voronoi game with straightforward cell attacks
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2×N round VG, there are N key points that are equally distributed in the circle.
Playing on them is advised by the best strategy [1]. On the square [10,15,2] or
any polygon [2], key points are strategically important too. Determining the N
key points can be performed by the Lloyd algorithm [21]. The Lloyd algorithm is
iterative. It starts with N sites randomly chosen in the square. At each iteration,
it moves every sites to the gravity centers of the cells, and computes the resulting
VD. In our work, the algorithm stops when the biggest distance between a site
and a gravity center reaches a threshold. Since the number of iterations is finite,
the VD output of the Lloyd algorithm is not exactly balanced. Figure 3 shows
three examples of one-color balanced diagrams for the square.

Fig. 3. Three one-color balanced diagrams with 5 sites for ten-site Voronoi Game

DB: A Defensive Balanced Player A staightforward defensive program
can easily be designed: the defensive and balanced player (DB). In advance,
DB computes a balanced one-color VD, and follows it blindly by picking one
site at each turn. DB including the last move special case is quite a good
player. If the balanced diagrams are computed offline, DB plays every move
instantly. The result is impressive: DB vs UCT (ns = 1000): 95% and DB vs
UCT (ns = 4000): 70%.

6.4 BUCT: A UCT Player Following Balanced VD in the
Simulations

Since balance is important, we aim at integrating it into a UCT player that
follows balanced VD in the simulations. Let us call BUCT such a player.

Guessing the Best Balanced One-Color VD Compatible with the Past
Moves. Past moves of the actual game cannot be moved and they have no
reason to give balanced one-color diagrams. Therefore, for each color, BUCT
simulations must follow as almost balanced one-color VD compatible with the
past moves. Here, the Lloyd algorithm must work with some unmovable sites.
This raises two obstacles. First, the output diagram of the Lloyd algorithm is
not necessarily balanced anymore. Second, some random initializations of the
opponent sites lead the Lloyd algorithm to local optima. Therefore, the Lloyd
algorithm must be launched several times to avoid local optima, and, for each
color, the best balanced diagram is kept.

Using the Best Balanced One-Color VD. During the simulations the op-
ponent moves are slight variations around the opponent balanced one-color VD,
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and the friendly moves are slight variations around the friendly balanced one
color VD. BUCT is improved by the last move special case as well. The results
are rather encouraging against UCT: with 1000 simulations BUCT wins 98%
of games, 90% (2000 simulations) and 85% (4000 simulations). However, BUCT
with 1000, 2000 or 4000 simulations only wins 25% against DB. At this point,
the ranking is: UCT  BUCT  DB. UCT has been enhanced into BUCT,
but BUCT remains inferior to DB.

6.5 aBUCT: A BUCT Player Using Simple Attacks in the
Simulations

Since the BCA strategy is efficient and fast to compute, we have added
the BCA strategy in the simulations, which gives a player named aBUCT. In
the simulations, the BCA strategy is drawn with probability A1−L where L is
the number of remaining moves in the simulation. The lower the move number
in the simulation, the lower the probability to play a BCA move. If the BCA
strategy is not drawn then the moves are generated according to the simula-
tion policy of BUCT. aBUCT performs quite well: with 500 simulations only, it
wins 55% of games against DB, and becomes the best player at this point. This
result was obtained with A = 2. Other A values in [1, 4] were tested but gave
worse results. We observe that adding simple attacks in the simulations improve
BUCT from 20% up to 55% against DB, which means BCA is a quite efficient
enhancement. However, we saw that BCA has difficulties against balanced dia-
grams. Therefore more sophisticated attacks should give better results. At this
point we have: UCT  DB ≤ aBUCT .

6.6 The One-Round Game and the Second Player Strategy 1R2P

Since the one-color diagram balance is important, let us consider the one-round
game [10]. The one-round VG differs from the N-round VG in that Red plays all
his sites first (in one round), and Blue plays all his sites second. We are interested
in finding out which second-player strategies defeat arbitrary red VD. Assume a
red diagram is given with N cells. Blue, the second player, has N moves to play in
a row to win the game. This is a planning problem. To solve it, a straightforward
tool consists in playing the BCA strategy N times. This tool works well for any
unbalanced red diagram. Then, a smarter tool is to use the idea of Fekete [15]. It
consists in playing the first move by a depth-one search, and the following moves
by the BCA strategy. It works on the square example and N = 4 in [15]. One
may extend Fekete’s idea by using the one-round second player (1R2P) strategy.

B=0

repeat

play the depth-one strategy B times

play the BCA strategy N-B times

B=B+1

until success or B>N
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The 1R2P strategy iteratively tries combinations of playing depth-one strategies
B times and BCA strategies N −B times. While failures are encountered, 1R2P
tries to solve the problem again by incrementing B. Theoretically, since complex
combinations of blue sites might be necessary to beat complex red balanced
diagrams, the algorithm 1R2P is not proven to be complete. However, in practice,
along all our experiments, 1R2P always returned a successful strategy. With
N = 5, 1R2P never needed B being greater than 2. Let Aggressive(V ) be the
blue diagram obtained by 1R2P in the one-round VG starting with the red
diagram V .

6.7 ABUCT: A BUCT Player Using Sophisticated Attacks in the
Tree

With the possibility to build aggressive diagrams defeating balanced diagrams,
we are now able to set up a new player called Agressive and Balanced UCT
(ABUCT). In advance, ABUCT computes the red and blue balanced diagrams
adequately to the past moves actually played: RedBD and BlueBD. Then,
ABUCT computes Aggressive(RedBD) and Aggressive(BlueBD) with the
1R2P strategy on the one-round game. Then, ABUCT launches the UCT sim-
ulations by moves generated according to the balanced diagrams and to the
agressive diagrams in the tree part of UCT. The results are excellent. With 500
simulations only, ABUCT wins 71% against aBUCT, 93% against UCT (500
simulations as well), and importantly 77% against DB. To sum up, we have:
UCT  DB ≤ aBUCT  ABUCT .

6.8 Against Human Players and against Other Work

As seen above, for adequate play, playing diagrams as balanced as possible is cru-
cial. Human players (H) can be good in roughly seeing the balance of a diagram.
However, they cannot be as precise as the Lloyd algorithm. Furthermore, the pre-
cision of a mouse click on a GUI point is a real burden for human players. This
lack of precision limits the human level below the level of plain artificial players
such as BCA. Despite of this handicap, human players may defeat UCT of section
3. Finally, we would like to remark that other work exists in some applets [24,14]
using simple players such as BCA, and the work by Jens Anuth [2]. Although
Anuth’s program can play on arbitrary polygons, the best player of Anuth’s work
corresponds to DB. We observed that: UCT ≤ H ≤ BCA DB  ABUCT .

7 Conclusion

We have shown a successful adaptation of MCTS in a game with an infinite
branching factor, the Voronoi game. We tested UCT with RAVE and GP. They
gave results strictly better than UCT alone (60% of wins). Adding Voronoi
knowledge is essential to improve the playing level. A straightforward knowledge-
based player such as DB outperforms UCT by 4000 simulations (70%). We have
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shown how to insert fundamental concepts, such as biggest cell attack, balanced
one-color diagram, one-round game heuristic, into UCT, yielding successive ver-
sions of UCT: BUCT, aBUCT, and ABUCT. The latter one is an aggressive and
balanced UCT player using 500 simulations that obtains 93% of wins against
UCT with the same number of simulations. As in Go [5], inserting domain-
dependent knowledge into the simulations improves the playing level. Our study
shows that domain dependent knowledge brings about improvements far better
than the improvements brought about by RAVE or GP. To sum up, we have:
UCT ≤ RAV E ≈ GP  DB ≤ aBUCT  ABUCT .

Future works are numerous. We mention six ideas. First, make the length of
a VG variable; it will bring information about the robustness of our approaches.
Second, let the ABUCT player use several friendly balanced diagrams per color
instead of one, and several aggressive balanced diagrams per color; the options
at some nodes of the tree are then the strategies following these diagrams. Third,
smooth the transition between the strategy used in the middle game (UCT with
knowledge) and the strategy used in the last moves (minmax search). Then an
intermediate strategy keeping the best of both strategies remains to be found.
Fourth, compare other approaches optimizing a function in a continuous space
such as HOO [7], or progressive widening [9,11] with our light GP approach
(section 4). Fifth, define a multi-player VG and test the ability of MCTS on
multi-player games with an infinite branching factor. Finally, popularizing the
VG to give birth to other artificial VG players is an enjoying perspective.

Acknowledgments. This work has been supported by French National Re-
search Agency (ANR) through COSINUS program (project EXPLO-RA number
ANR-08-COSI-004).

References

1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M., van Oostrum, R.: Competitive
facility location: the Voronoi game. Theoretical Computer Science 310(1-3), 457–
467 (2004)

2. Anuth, J.: Strategien fur das Voronoi-spiel. Master’s thesis, FernUniveristät in
Hagen (July 2007)
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In: 18th Symposium on Computational Geometry, pp. 97–101. ACM (2002)
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Abstract. The paper proposes a new model of pattern, namely the 4*4-Pattern, 
to improve MCTS (Monte-Carlo Tree Search) in computer Go. A 4*4-Pattern 
provides a larger coverage space and more essential information than the 
original 3*3-Pattern. Nevertheless the latter is currently widely used. Due to the 
lack of a central symmetry, it takes greater challenges to apply a 4*4-Pattern 
compared to a 3*3-Pattern. Many details of a 4*4-Pattern implementation are 
presented, including classification, multiple matching, coding sequences, and 
fast lookup. Additionally, Bayesian 4*4-Pattern learning is introduced, and 4*4-
Pattern libraries are automatically generated from a vast amount of professional 
game records. The results of our experiments show that the use of 4*4-Patterns 
can improve MCTS in 19*19 Go to some extent, in particular when supported 
by 4*4-Pattern libraries generated by Bayesian learning. 

1 Introduction 

Go is an ancient board game for two players; it originated in China over 2000 years 
ago. The game still enjoys a great popularity all over the world [11]. Go has long been 
considered as the most difficult challenge in the field of Artificial Intelligence and is 
considerably more difficult than Chess [2]. Given the abundance of problems, and the 
diversity of possible solutions, computer Go is an attractive research domain for 
Artificial Intelligence. 

Computer Go began in the 1960s with the prevailing static method preferred during 
the early days. This method chooses a handful of appropriate moves combined them 
with fast localized tactical searches, see, e.g., GNU GO [8]. Recently, some advanced 
theories led to a breakthrough performance in computer Go [6], e.g., by Monte-Carlo 
Tree Search and the Upper Confidence bound for Trees (UCT). At present, the best 
Go programs running on a cluster are ranked as 2 dan-3kyu. 

Currently, the research on enhancements of the MCTS implementation mainly 
focuses on three key areas, i.e., tree search, random simulation games, and machine 
learning [12]. Some heuristic algorithms and pruning algorithms, as well as the 
domain knowledge enhancement methods are described in [4]. The formulation and 
the use of a pattern is a well-known technique in computer Go [14]. An example is the 
program GNU GO with its handcrafted pattern database for move selection. Patterns 
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are also used in MCTS programs to improve the quality of the random simulation 
games [5], e.g., in MOGO and FUEGO. The typical patterns applied in MCTS are 
handcrafted 3*3-Patterns with many limitations. 

A novel 4*4-Pattern model is proposed in this paper. It can be easily implemented 
in random simulation games and generated by Bayesian learning from professional 
game records. Experimental results show that the 4*4-Pattern is much better than 3*3-
Pattern. We consider it an improvement of MCTS. 

The paper is organized as follows. Section 2 analyzes the possibility of 4*4-
Patterns and then introduces its basic idea. Section 3 describes the necessary 
operations of the 4*4-Patterns. Additionally, offline 4*4-Pattern-learning based on the 
Bayesian method is introduced in Section 4. Section 5 shows some experimental 
results of the 4*4-Patterns. Finally, the conclusion is presented in Section 6. 

2 Motivation 

Below we describe the 3*3-Pattern background (2.1) and the possibility of 4*4-
Patterns. 

2.1 The 3*3-Pattern Background 

The 3*3-Pattern is nowadays widely used in the move generator in random games. 
They can improve the quality of random games to some extent so as to enhance the 
overall performance of the UCT search. In their implementation, the 3*3-Pattern in 
MOGO is handcrafted [5], whereas FUEGO adopts some hard-coded disciplines [3]. 
Some examples of 3*3-Patterns are shown below. 

                

Fig. 1. Two examples of a 3*3-Pattern. The left one is the pattern with the move in center of the 
board. In the right one, the move is on the board edge. 

As can be seen in Fig. 1, a 3*3-Pattern is quite straightforward. However, the 
coverage space of a 3*3-Pattern is limited. Thus, the information provided is meager 
when considering the huge board space. For example, some classic situations, such as  
a jump or a diagonal move are inextricable by a 3*3-Pattern due to the space 
limitation. 

2.2 Possibility of 4*4-Patterns 

We discuss two items in particular: (1) memory limitations and (2) multiple matching. 

• Memory Limitations 

The major limitation of a 3*3-Pattern and the central symmetry characteristic would 
suggest expanding the area to a 5*5-Pattern. However, the coverage space of a  
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5*5-Pattern contains in total 24 points except the central point. Each point has three 
possible status, i.e., empty point, black point, and white point, so a 5*5-Pattern 
requires at least 324 bits memory space (approximately 33G byte) to store all the 
information. The amount of memory demand is not affordable for common 
computers, so the external disk memory has to be used comparable to an endgame 
database in Chess [13]. Nevertheless, it is not a preferable way because the high 
frequency reading may immensely reduce the efficiency of random games, which are 
executed thousands of times in UCT search [9]. So, we may conclude that a 5*5-
Pattern is not applicable on personal computers at present. 

Considering the coverage-space defect of a 3*3-Pattern and the memory limitations 
of the 5*5-Pattern, this paper proposes a new 4*4-Pattern model as a compromising 
solution. The storage and operations of a 4*4-Pattern is quite special compared to the 
3*3-Pattern and the 5*5-Pattern. Once these crucial problems are solved, a 4*4-
Pattern can be a desirable improvement in UCT search, which provides a larger area 
than a 3*3-Pattern and costs less memory than a 5*5-Pattern. In implementations, a 
single 4*4-Pattern library takes up approximately 14M byte memory, which is 
acceptable for most common computers. 

• Multiple Matching 

A 4*4-Pattern is not centrally symmetric, thus the traditional mapping method is not 
applicable for a 4*4-Pattern. To overcome this obstacle, a new method named 
multiple matching is proposed using multiple templates. 

*   *   *   * 
*   *   *   * 
*     !     *   * 
*   *   *   * 

Fig. 2. Match template of 4*4-Pattern 

The procedure of multiple matching is explained below. First, traverse all the eight 
points around the last move (the same as in the 3*3-Pattern procedure), and then 
apply several different templates on every point for matching. Here, the point is 
named anchor point, which comes from the Go terminology. There are three 
categories in total, i.e., center pattern, edge pattern, and corner pattern. All of them 
have several corresponding fixed templates. Every template reflects to a specific 
coding order of the 15 stones in the 4*4 area except the anchor point. Third, the coded 
numeric value is used to query the corresponding pattern library. Fig. 2 shows one of 
four templates with a center pattern. The “!” means the anchor point, and “*” is the 
point needed to be coded which may be empty or occupied by a black piece or a white 
piece.  

Compared to a 5*5-Pattern, the coverage space of a single 4*4-Pattern is smaller, 
exactly 9 points less, and thus carries less information. But the multiple matching with 
several templates would compensate it to a large extent. For instance, all the points of 
the 5*5-area around the anchor point are taken into account after four templates have 
matched with a center pattern. Although a 4*4-Pattern cannot fully achieve the effect 
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of a 5*5-Pattern, the achievement is still impressive with much lower cost. From 
another point of view, each pattern is an improvement in the move selection in UCT 
search even if it is not a perfect one. We remark that even a 5*5-Pattern may suffer 
from exceptional peripheral information and lead to a wrong decision. But in most 
cases, the information provided by a pattern is correct and meaningful.  

3 Operations of a 4*4 Pattern 

This section discusses the required operations of a 4*4-Pattern. In 3.1 we introduce 
the three categories of a 4*4-Pattern based on the position of the anchor point. In 3.2 
we briefly describe the compression to be applied. In 3.3 we discuss the storage and 
data structure of a 4*4-Pattern library. Specific coding sequences of templates are 
introduced in 3.4. In 3.5 we provide pseudo codes of crucial operations. 

3.1 Classification of the 4*4 Patterns  

According to different positions of the anchor point, a 4*4-Pattern can be categorized 
into three types, i.e., center-pattern, edge-pattern, and corner-pattern. The corner-
pattern deals with situations where the anchor point is one of the four corner points on 
the board. The situation where the anchor point is on the edge points, but not in the 
corner points, is dealt with by the edge-patterns. The center-pattern deals with all the 
remaining situations, which are the majority in all situations. 
 

*   *   *          *   *   *   *   *       *   *   *   * *   *   *   * 
*   *   *   *   *   *   *   *      *      !                *                            * *   *         !   * 
*   !      *     *   *   *     !      *      *   *   *   * *   *   *   * 
*   *   *   *   *   *   *   *      *   *   *   * *   *   *   * 

Fig. 3. Center-pattern templates 

*   *   *   *              *   *   *   * 
*   *   *   *              *   *   *   * 
*   *   *   *              *   *   *   * 
*   !   *   *              *   *   !   * 

Fig. 4. Edge-pattern templates 

*   *   *   * 
*   *   *   * 
*   *   *   * 
!   *   *   * 

Fig. 5. Corner-pattern template 
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The meaning of the symbols is explained in 2.2. As shown in the Figs 3 to 5, the 
center-pattern has four templates, whereas the edge-pattern has two and the corner-
pattern has only one template.  

3.2 Compression 

For the edge-pattern and the corner-pattern, the templates are the result after 
compression. In fact, each of the templates of the edge-pattern includes four 
situations, i.e., the top edge, the bottom edge, the left-most edge, and the right-most 
edge. So, there are totally eight templates for the edge-pattern, and it is interesting that 
some templates are essentially equivalent given some tricks applied on the coding 
sequence. Fig. 6 shows a compression example of the edge-pattern. 

*   *   *   *             ---------------------- 
*   *   *   *             *   *   !   * 
*      *   *   *             *   *   *   * 
*   !   *   *             *   *   *   * 
----------------------                              *   *   *   * 

 
11  12  13  14           ---------------------- 
7                          8           9  10                2       1             ?     0 
3                          4            5   6                6                5             4          3 
0                          ?              1   2           10           9             8          7 

----------------------                        14  13   12  11 

Fig. 6. Example of edge-pattern compression 

In the figure, “--“ indicates the boundary of the board, and the two templates on the 
top are essentially equivalent if the viewing angle turns 180 degree. This can be 
accomplished by imposing restrictions on the coding sequences. See the following 
two examples. It is possible to  compress all the three 4*4-Pattern types, but in the 
usual implementations, this is not applied in the center-pattern considering the 
peripheral disturbance nearby the boundary. 

A second method of compression is the color-based method. In a 4*4-Pattern 
matching, every piece is either white or black; so, all the patterns have two copies, 
and therefore the current playing side is taken into consideration. The pieces are 
treated as having the same color as the playing side, or just the contrary. So, we do 
not use anymore Black or White. Thus, a saving of a halve is achieved by the 
compression ratio method. 

3.3 4*4-Pattern Library 

As discussed in 3.1, there are four templates in the center-pattern, two in edge-pattern, 
and one in the corner-pattern, totally seven. Every template has the same memory 
occupancy. Three two-dimensional arrays are used for storing the templates, as 
represented below. 
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bool CenterTable[4][14348907]

bool EdgeTable[2][14348907]

bool CornerTable[1][14348907]

 (1) 

In these arrays, the number 14348907 (315) represents the maximum possible coding 
value of 15 points. The first dimension of the array indicates the serial number of the 
templates, and the second dimension is the coding result of 15 points in the 4*4 area 
except for the anchor point. It needs to be mentioned that the CornerTable is a linear 
array in practice, represented as a double-dimension so as to keep the formats in 
accordancy. The type of data stored in these arrays is “bool”, where true or false 
indicates whether the corresponding pattern can be chosen or not. The memory 
occupancy space is nearly 13.7M byte for every pattern library. So, in total 96M byte 
memory is required for all the pattern libraries. It is affordable for most contemporary 
computers. 

3.4 Coding Sequence and Lookup Table 

The query input of a 4*4-Pattern is composed of the piece distribution information of 
the 5*5-area on the board. For the sake of compression and distinction, strict 
regulations are made on the coding sequence of the points. The coding sequence rules 
of all conditions in the three categories are shown in Table 1. 

Table 1. Coding Sequence of 4*4 Pattern 

 
 
For the sake of saving repeated computation time in multiple matching, the coding 

sequences of four templates of the center-pattern are rather special. The code of the 
eight nearest neighbors around the anchor point is calculated only once and the result 

Center- 
Pattern 

Serial 0 1 2 3 

Coding 
Sequence 

8   9 10 11 
5   6   7 12 
3   ?   4 13 
0   1   2 14 

11 10   9   8 
12   5   6   7 
13   3   ?   4 
14   0   1   2 

5   6   7  14 
3   ?   4  13 
0   1   2  12 
8   9  10 11 

14   5   6  7 
13   3   ?  4 
12   0   1  2 
11 10   9  8 

Edge- 
Pattern 

Serial 0 0 0 0 
Coding 

Sequence 
11 12 13 14 
7   8   9 10 
3   4   5   6 
0   ?   1   2 

2   1  ?    0 
6   5  4    3 

10   9  8    7 
14 13 12 11 

0  3   7 11 
?  4   8 12 
1  5   9 13 
2  6 10 14 

14 10  6  2 
13   9  5  1 
12   8  4  ? 
11   7  3  0 

Edge- 
Pattern 

Serial 1 1 1 1 
Coding 

Sequence 
11 12 13 14 
7   8   9 10 
3   4   5   6 
0   1   ?   2 

2   ?  1    0 
6   5  4    3 

10   9  8    7 
14 13 12 11 

0  3   7 11 
1  4   8 12 
?  5   9 13 
2  6 10 14 

14 10  6  2 
13   9  5  ? 
12   8  4  1 
11   7  3  0 

Corner- 
Pattern 

Serial 0 0 0 0 

Coding 
Sequence 

11 12 13 14 
7   8   9 10 
3   4   5  6 
?   0   1  2 

14 10   6   2 
13   9   5   1 
12   8   4   0 
11   7   3   ? 

?   3   7  11 
0   4   8 12 
1   5   9 13 
2   6 10 14 

2   1   0   ? 
6   5   4   3 

10   9   8   7 
14 13 12 11 
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is reused subsequently. The coding sequence may seem a little complex, but it is not 
hard to implement using preset tables.  

3.5 Program Codes for Querying 

Some pseudo codes of the key procedure in querying are based on the lookup tables 
given in this subsection. The input is one coordinate of the eight neighbors around the 
last move of the opponent. The binary output represents whether the point can be 
played or not. 

Some program codes for a 4*4-Pattern querying. 

bool Match44Any(SgPoint p)  
{ 

if (IsCenter(p) > 1) 
    return MatchAny44Center(p); 
else if (IsEdge (p) > 1) 
    return MatchAny44Edge(p); 
else 
    return MatchAny44Corner(p); 
 
return false; 

} 
 
//Multiple matching procedure for center-pattern. 
bool MatchAny44Center(const BOARD& bd, SgPoint p)  
{ 

//Caculate the common code of 8 neighbors. 
int cm = CodeOf8CommonNeighbors(m_bd, p);//common code 
/*Iterate 4 templates, return true if the matched pattern is 
favorable, otherwise false. CodeOfRestNeighbors is to 
caculate the codes of the rest 7 neighbors.*/  
if (lookupCenterTable[0][p][0] != INVALID //Table is avaiable 
&&m_44Centertable[0][CodeOfRestNeighbors(m_bd,p,0)+cm]==true) 
    return true; 
if (lookupCenterTable[1][p][0] != INVALID  
&&m_44Centertable[1][CodeOfRestNeighbors(m_bd,p,1)+cm]==true) 
    return true; 
if (lookupCenterTable[2][p][0] != INVALID  
&&m_44Centertable[2][CodeOfRestNeighbors(m_bd,p,2)+cm]==true) 
    return true; 
if (lookupCenterTable[3][p][0] != INVALID  
&&m_44Centertable[3][CodeOfRestNeighbors(m_bd,p,3)+cm]==true) 
    return true; 
 
return false; 

} 

Not all the pseudo codes are shown, such as the functions for edge-pattern and corner-
pattern. However, they are quite similar to the ones of the center-pattern, and can be 
easily implemented. 
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4 Bayesian Learning of 4*4-Pattern 

This section introduces Bayesian learning on 4*4-Pattern, which is a kind of statistical 
learning. In 4.1 we briefly describe the Bayesian theory and the model designed. In 
4.2 we introduce some improvements on the traditional learning process. Then, in 4.3 
the learning results are analyzed. 

4.1 Bayesian Pattern Learning Model 

Bayesian statistics is a classic theory of statistical learning, in which the post 
probability is calculated from a Bayesian formula combined with the prior probability 
and conditional probability in discrete condition. The post probability is used for 
classification instead of the prior probability, because it has more information to 
reflect the uncertainty of assessing an observation. The Bayesian formula is well 
known [7]. Bayesian learning has already been adapted in computer Go in recent 
years. Bruno Bouzy uses Bayesian learning in K-Nearest-Neighbor patterns [1], while 
David Stern et al. predict the professional moves [10]. An effective offline Bayesian 
learning model on 4*4-Patterns is proposed according to successful research 
achievements, by reading every position in professional game records.  

 
_ / _

posterior
play time match timeP =

 (2) 

In the formula, play_time stands for the times a certain pattern is played, while 
match_time represents that pattern occurrence in time. In a static position, many valid 
patterns probably exist but only one pattern can be executed. So, the match_time of 
all the valid patterns increases by one, and play_time of the played patterns increases 
by one providing that the move matches a specific pattern. For a 4*4-Pattern, every 
point has to count for several templates when traversing all the points on the board. 

4.2 The Improvement of Learning Procedure 

The 4*4-Pattern can be automatically generated according to the work (see 4.1), but 
the learning results are not satisfying. More meaningful improvements should be 
introduced to make the results better. Below we discuss three suggestions: data 
preprocessing, adjusting the learning process, and filtering bad patterns. 

• Data Preprocessing 

The quality of the professional game records is vital for learning. Dirty data may 
originate from the unequal matches, or from a weak game procedure. Some 
restrictions should be imposed to guarantee the data quality. We mention three of 
them. 

(1) Restriction on the players’ level. The level of players can be found by analyzing 
the SGF files; only those game records are acceptable when the grading of the two 
players is beyond 6 Dan. 
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(2) Restriction on the game result gap. The professional game records are accepted 
only if the result of professional games not exceeds 30 moyo. 

(3) Restriction on the winning side. Only the moves of the winning side are input into 
Bayesian learning program. 

By the restrictions above, about 20% of the SGF game records are removed from the 
game records database and even more samples are eliminated from the sample set. At 
least, so, the quality of learning material is guaranteed. 

• Adjust the Learning Process 

For a single professional game record, all the moves are input and then executed in 
proper sequence. Not only should a rule judgment be made to guarantee the 
correctness, but also attention should be given to some special situation that has to be 
coped with. The typical one is the move taking pieces, and this situation should avoid 
pattern learning. Since the pattern is essentially tactical, and not meant for an 
attacking purpose. Threat or attack is already solved before querying the pattern 
library during the move generation in a random simulation. 

• Filter Bad Patterns 

There are still many unreasonable patterns available even after the two procedures 
above. Additional filtering procedures are necessary. Below we mention two of them. 

(1) Eliminate the patterns with low post probability. Using post probability as the 
confidence level is the essence of Bayesian statistics. So, these patterns with low 
post probability are obviously unacceptable. Currently the minimum of post 
probability is 5%. 

(2) Eliminate the patterns with low match_time or play_time. For example, some 
arbitrary moves from inspiration are executed once they appeared, so play_time 
and match_time are all equal to 1 and 100% post probability is obtained. 
Obviously, it is against the original thoughts of Bayesian statistics. Currently, the 
limitations of the total amount for both are not less than 10. 

5 Experiments 

The experiments are composed in two parts, i.e., (1) Bayesian 4*4-Pattern learning 
experiments and (2) the effectiveness experiments presented below. 

5.1 Bayesian 4*4-Pattern Learning Experiments 

Two experiments are designed to analyze the result of the Bayesian 4*4-Pattern 
learning. Over 100,000 professional games are collected for the experiments and the 
setting of the learning restriction was seen in 4.2. In the first experiment, the game 
records are input into the learning program one by one, and the statistics of the 
occupancy rate are kept. For a single pattern library, the occupancy rate is equal to the 
valid patterns number divide 3^15. The experimental results are shown in Fig. 7. 
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Fig. 7. The occupancy rate of each pattern library 

Here CPL-OR means the center-pattern libraries’ occupancy rate, while EPL-OR 
and NPL-OR is the occupancy rate of for edge-pattern libraries and corner-pattern 
library. It is should be noted that the four libraries of the center-patterns, and also the 
two libraries in the edge-patterns, share an almost identical distribution of occupancy 
rate. So, only the typical curves are provided. As can be seen in Figure 7, the 
occupancy rate goes up while the number of input game records increases, and the 
CPL-OR reaches 11.50% when all the game records are learned.  

 
Fig. 8. The distribution of valid patterns according to the value of post probability 

The results of the second experiment are shown in Fig. 8. It shows the relationship 
of post probability and valid patterns. The post probability of the majority of valid 
patterns is under 10%, and decreases while the percentage range of values rises. Only 
a few patterns are considered absolutely good, namely that the post probability is 
100%. Similar to the former experiment, the sub-libraries also shares an almost 
identical distribution in the center-pattern and edge-pattern libraries. 
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5.2 Effectiveness Experiments 

In this section, the effectiveness experiments are designed to prove the enhancement 
of a 4*4-Pattern, and also the correlation with the supporting libraries. The 
experiments are based on FUEGO (Version 1.1.2), one of the strongest Go programs, 
which is open-source under GNU license and equipped with a hard-coded 3*3-Pattern 
in their random simulation. To fit our experiments, the relevant codes of the 3*3-
Patterns are removed and the code supporting the 4*4-Patterns is added in FUEGO, 
together with several sets of all the necessary 4*4-Pattern libraries from the Bayesian 
4*4-Pattern learning. Of course, the amount of professional game records is different. 
To achieve the 4*4-Pattern libraries was easy. They were used in the program by 
reading external files at their initialization. The 4*4-Pattern program played 1000 
games against the original FUEGO, with alternating the playing side. All games used 
Chinese scoring, 7.5 points Komi and 60 seconds for every move, running on the 
servers with 4-core Intel i5 2.8Ghz, 4G memory. 

The experiments were applied on 19*19 Go and 9*9 Go. Although the 4*4-Pattern 
libraries were learned from records of 19*19 Go, they still could be used in 9*9 Go. 
The effectiveness of the experimental results is shown in Fig. 9.  

 
Fig. 9. Effectiveness experiments on 19*19 Go and 9*9 Go with different 4*4-Pattern libraries 

As seen in Fig. 9, the playing strength boosts while the amount of learned records 
increases. However, if the game records for learning are insufficient, the playing 
strength is unsatisfying due to the low quality of the 4*4-Pattern libraries. The win 
rate is stable and exceeds 50% once the amount exceeds 60,000. For 9*9 Go, it is 
amazing that the win rate of the 4*4-Pattern program is always lower than the original 
FUEGO. There may be two possible reasons. First, the pattern libraries are generated 
from offline learning by 19*19 Go due to inadequate professional game records of 
9*9. Many learned patterns may not be significant in 9*9 Go, because the patterns are 
more likely to reach the board border. Second, the 19*19 Go is more tactical than 9*9 
Go, and a pattern move is mostly a tactical move. So, the effectiveness of the  
4*4-Pattern decreases in sharp 9*9 Go games. 

A second impact factor of effectiveness is the time limitation. The effectiveness of 
a 4*4-Pattern is more notable in longer games. The underlying reason is that a  
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;4*4-Pattern slows down the simulation games to some extent and negatively 
influences MCTS, but the 4*4-Pattern provides more significant information in a 
larger coverage space compared to the 3*3-Pattern. Therefore, the contribution of a 
4*4-Pattern plays a bigger role than any negative effect. So, the overall effectiveness 
is positive in the longer games, assuming that the number of simulation games  is 
sufficient. 

6 Conclusion and Future Work 

In this paper we proposed the 4*4-Pattern model. The details of the implementation 
are introduced, including design, classification, multiple matching, and coding 
sequences. In addition, Bayesian learning of 4*4-Patterns and some improvements on 
the basic method are described. The experimental results show that the 4*4-Pattern is 
better than the 3*3-Pattern in improving the MCTS in 19*19 Go to some extent, 
especially in the long games. There are several essential factors for the effectiveness 
of 4*4-Pattern, i.e., board space, the amount of learned records, time limitation, the 
effect on different pattern sizes, and the threshold of learning filtration. Some of them 
are not discussed in this paper, because of the paper length limitation. 

Future work should focus on two issues. First, more effective 4*4-Pattern 
operations require intensive research. In fact, the ideal 4*4-Pattern is not realized 
unless all the points of 5*5-area around the last opponent move are traversed, and this 
inevitably costs more time. So, the fast computation and early refutation algorithm are 
in demand. Second, the learning methods on professional game records should be 
improved. Bayesian learning is fundamental in statistical learning and the 
implementation is too straightforward to obtain a convincing gamma value as 
happened in some top programs. Although the experimental results are satisfying, 
there is much room for improvement if more appropriate models are adopted. 
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Abstract. In this paper, we apply temporal difference (TD) learning to Connect6, 
and successfully use TD(0) to improve the strength of a Connect6 program, 
NCTU6. The program won several computer Connect6 tournaments and also 
many man-machine Connect6 tournaments from 2006 to 2011. From our 
experiments, the best improved version of TD learning achieves about a 58% win 
rate against the original NCTU6 program. This paper discusses three 
implementation issues that improve the program. The program has a convincing 
performance in removing winning/losing moves via threat-space search in TD 
learning.  

1 Introduction 

Temporal difference (TD) learning [13][15], a kind of reinforcement learning, is a 
model-free method for adjusting the state values of the subsequent evaluations. This 
method has been applied to computer games such as Backgammon [18], Checkers [11], 
Chess [3], Shogi [4], Go [13] and Chinese Chess [20]. TD learning has been 
demonstrated to improve world class game-playing programs in the two following 
cases, TD-GAMMON [18] using TD(λ) and CHINOOK [11] using TDLeaf.  

In this paper, we apply TD learning to Connect6, and successfully use TD(0) to 
improve the strength of a Connect6 program, NCTU6. NCTU6 won the gold medal in 
the Connect6 tournaments [7][17][23][25] several times from 2006 to 2011, and 
defeated many top-level human Connect6 players [8][16][29] in man-machine 
Connect6 championships from 2008 to 2011.  

Our experiments showed that the best version of TD learning obtained about a 58% 
win rate against the original NCTU6 program. The results demonstrated that TD(0) 
learning can also be used to improve a high-performance world-class game-playing 
program.  

In this paper, we discuss three implementation issues for TD learning, (a) selecting 
features, (b) removing winning/losing moves (found by threat-space search, which will 
be described in Section 4), and (c) using the moves played by strong human players for 
training. Our experiments demonstrate that the issue (b) is quite significant to improve 
the playing strength of NCTU6.  

This paper is organized as follows. Section 2 reviews the game Connect6 and the 
program NCTU6. Section 3 reviews TD learning including TDLeaf and bootstrapping, 
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and describes our design of TD learning for Connect6. Section 4 discusses all the 
implementation issues of using TD learning, and Section 5 shows the experimental 
results. Section 6 provides concluding remarks.  

2 Connect6 and NCTU6 

Connect6 [22][27] is a kind of six-in-a-row game that was introduced by Wu et al. Two 
players, named Black and White in this paper, alternately place two black and white 
stones respectively on empty intersections of a Go board (a 19×19 board) in each turn. 
Black plays first and places one stone initially. The first player who obtains six 
consecutive stones of his own horizontally, vertically, or diagonally wins. The game has 
been played in one of tournaments held in Computer Olympiads [23][25] (as well as in 
some other tournaments [7][17]) since 2006. 

From [22][27], we know that threats are the key to winning Connect6 (like Go-Moku 
[1][2] and Renju [10]). According to their definitions, a position is t-threat against the 
opponent, if and only if t is the smallest number of stones that the opponent needs to 
place to prevent from losing the game on the next move. A move is called a 1-threat 
(also called single-threat) move if the position after the move is 1-threat, a 2-threat 
(double-threat) move if 2-threat, and a 3-threat (triple-threat) move if 3-threat. In 
Connect6, one player clearly wins by a 3-threat-or-more move. 

In Connect6, many line patterns (abbreviated as patterns in this paper), such as live-l 
and dead-l, can grow into threats. As defined in [22][27], live-l (dead-l) of a player can 
turn into 2-threat (1-threat) if the player places (4 – l) additional stones. For example, 
live-3 (dead-3) can turn into a 2-threat (1-threat) after one additional stone is placed. 

In [22][27], a type of winning strategy, called Victory by Continuous 
Double-Threat-or-more moves (VCDT) is described. The idea is to win by making 
continuously double-threat moves and ending by a triple-threat-or-more move or 
connecting up to six in all variations. It is similar to Victory by Continuous Four (VCF), 
a term used in the Renju community [10]. Similarly, the type of winning strategy with 
additional single-threat moves allowed is called Victory by Continuous 
Single-Threat-or-more moves (VCST). In the communities of Connect6 (Renju also), 
professionals are commonly keen to find these strategies, if there exists any.  

Some of the authors developed a lambda-based [19] threat-space search (TSS) 
technique in [24], named relevance-zone-oriented proof (RZOP) search, to find these 
winning strategies, VCDTs or VCSTs, efficiently and accurately in most of the cases in 
which there exists any. The RZOP search was incorporated into a Connect6 program, 
named NCTU6, which won several computer Connect6 tournaments and man-machine 
Connect6 tournaments [7][8][16][17][23][25][29] from 2006 to 2011. When finding no 
winning strategies, NCTU6 [26] is back to use alpha-beta search to find the best move. 
In the alpha-beta search tree [6], the leaf values are estimated by an evaluation function, 
and the values of the internal nodes are calculated in the mini-max manner.  

In order to make the search more accurate, NCTU6 used the RZOP search [24] to 
find the winning/losing moves in most nodes in the alpha-beta search. The underlying 
principle is to avoid choosing losing moves. For extra RZOP search, the averaged time 
for node evaluation/expansion in alpha-beta search is long. Hence, the number of nodes 
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in alpha-beta search is relatively small, about 50-500 per second in NCTU6, and the 
depth of the tree is small too, only about four in NCTU6. Since the alpha-beta search 
tree is small, a more sophisticated node evaluation/expansion was used to make the 
search more accurate. In this paper, such a search with heavy node computation is said 
to be coarse-grained. In contrast, strong Chinese-Chess programs (similar to Chess 
programs) are fine-grained, normally expanding about a million nodes per second and 
searching deeply.  

  

Fig. 1. An example of evaluating V(s) for Black 

In NCTU6, the evaluation function of positions can be viewed as a function of 
features, such as threats, live-ls and dead-ls. Although the function was actually quite 
complicated, we modified it into a linear combination of features [5] for TD learning. In 
the example in Figure 1, Black has 1 single-threat, 2 live-2s and 7 live-1s, and White has 
1 live-3, 2 dead-2s and 5 live-1s (note that dead-1 is not discussed in this paper for 
clarity). Given feature weights, NCTU6 evaluates the value of the position for Black in 
Figure 1 as 1 2 7 1 2 5  

where  is the weight of feature f, which indicates n-threat by , live-n (dead-n) by 
 ( ), and the opponent’s features by – . Note that for 2-threat we use 1 , 

instead of 2 . Let  denote a vector of feature numbers in a position (or state) 
, and  denote a vector of feature weights. Thus, the value of a position  is  

 ·  (1) 

In the example in Figure 1, 1,2,7,1,2,5 , if the vector of features is 1, 2, 1, 3, 2, 1 .  
In the original NCTU6, the weights  were hand-tuned from some experiences of 

games against the top-level human players. However, as the number of features grew, it 
became hard to produce these weights accurately. The goal of this paper is to use TD 
learning to help adjust these weights automatically.  

3 TD Learning for Connect6 

This section first reviews TD learning and TDLeaf/bootstrapping in Subsections 3.1 
and 3.2 respectively, and then describes our design for TD learning in Subsection 3.3.  
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3.1 TD Learning  

As described in Section 1, TD learning is a kind of reinforcement learning. In TD(0) 
(see [13][15]), the value function  of a state is used to approximate the expected 
return, instead of waiting until the complete return has been observed. The error 
between states  and  is , where  is the reward 
at time 1. In Connect6 as well as some other computer games, the reward, say 1 for 
winning and –1 for losing, is obtained at the end game, and the reward is zero during the 
game playing. For clarity, for the end state (or the end game) , let the value of  
be . Then, the error is simplified as . The value of  in 
TD(0) is expected to be adjusted by the following value difference ∆ ,  

 ∆  (2) 

where  is a step-size parameter to control the learning rate. For general TD( ) (also 
see [13][15]), the value difference is  

 ∆ 1 . (3) 

Note that the TD(1) learning is similar to the learning with Monte-Carlo tree search.  
In order to correct the value  by the difference ∆ , we can adjust the 

feature weights  by a difference ∆  based on . For linear TD(0) learning, 
where  is linear like formula (1), the difference ∆  is  

 ∆ ∆   (4) 

In order to control the learning rate better, the above difference is modified with 
normalization, like the NLMS [14], as follows.  

 ∆ ∆    (5) 

3.2 TDLeaf and Bootstrapping 

The researchers in [3] proposed the so-called TDLeaf to improve the weights of the 
features for their Chess program KNIGHTCAP. The method is to run the normal 
alpha-beta search and choose the leaves of the principal variation (PV) for TD learning, 
instead of the roots. However, as pointed out by [21], the method has the following 
three drawbacks. First, only one update is used for each search and other information is 
wasted. Second, the updates are only based on the positions of best play, which may not 
represent all the moves. Third, the target search is accurate only when both the player 
and opponent are strong.  

In order to solve these problems, the researchers in [21] proposed a new method for 
bootstrapping from the minimax game-tree search. In their method, for all subtrees of 
the search, if their PVs are available, nodes on PVs are used for training. Note that their 
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method can be extended to alpha-beta search. Thus, they update many nodes with PVs 
in the search tree, rather than a single node, and the outcome of a deep search is used for 
training, instead of the outcome of a subsequent search.  

3.3 Our TD Learning  

Although the bootstrapping method seems promising, our design of TD learning for 
NCTU6 brings us back to the original TD(0) learning as explained below (see the last 
paragraph). Now, we want to describe the necessity of using a two-ply update, ∆ , instead of a one-ply update as in formula (2). In a 
one-ply update, updating the nodes between both players may cause overweighting the 
updates, since the player to move has always one move less (less advantage) than  
the other. Thus, the phenomenon of overweighting may cause a large fluctuation of the 
evaluated values. This problem is even more serious for Connect6 (recall two stones 
per move). Our algorithm for TD(0) is designed based on Silver’s (cf. Algorithm 3 in 
[13]) as follows.  

 

Algorithm TD(0) Learning Applied to NCTU6 
Procedure TD_Learning(n) Procedure Greedy(board, ε)

1: 
2: 
3: 
4: 
5: 
6: 

i = 0 
while i < n do 

board.Initialize() 
SelfPlay(board) 
i++ 

end while 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11:
12:
13: 
14: 

if Bernoulli(ε) = 1 then return Random(board) 
if board.BlackToPlay() then 
  a* = Pass; V* = 0 
  for all a ∈ board.Legal() do 
    board.Play(a) 
    V = Eval(board) 
    if V  V* then 
      V* = V; a* = a 
    end if 
    board.Undo() 
  end for 
else // omitted for White to play 
end if 
return a* 

end procedure 

Procedure SelfPlay(board) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

t = 0 
V0,φ0 = Eval(board) 
while not board.Terminal() do 
  at = Greedy(board,ε) 
  board.Play(at) 
  t++ 
  Vt, φt = Eval(board) 
  if t  2 then 
    δ= Vt - Vt-2 
    Norm = ||φt-2[i]||2 
    for all i ∈φt-2 do 
      θ[i] += αδφt-2[i] / Norm  
    end for 
  end if 
end while

end procedure 

Procedure Eval(board)
1: 
2: 
3: 
4: 
5: 
6: 
7: 

φ = board.GetFeatures() 
v = 0 
for all i ∈φ do 

v += φ[i]θ[i] 
end for 
V = 1/(1+e-v) 
return V, φ 

end procedure end procedure
 

Our TD learning performs n training games by calling TD_Learning(n). In each 
training game, we initialize the state (or board) by board.Initialize(), which selects 
initial boards from our database, mainly selected from Little Golem [9]. Then, we call 
the procedure SelfPlay(board), to make the subsequent moves of a game.  

This procedure SelfPlay(board) plays on its own by repeatedly calling 
Greedy(board,ε) to make moves. The procedure Greedy(board,ε) selects a move 
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according to the so-called ε-Greedy policy [13][15]. The ε-Greedy policy is to play at 
random with probability ε, as in Line 1 of this procedure, and to play the best move with 
probability (1-ε), as in Lines 2 to 14 (the case of White to play is omitted). The best 
move (or action) is chosen among all moves of which the values are determined by the 
evaluation procedure Eval.  

The procedure Eval returns the state value and the vector of feature numbers of the 
board. As formula (1), the value function ·  is evaluated in Lines 1 to 5 
and adjusted into the range [0,1] by a function 1/ 1  in Line 6. In case that 
Black (White) wins, the procedure Eval returns the state value one (zero).  

Now, let us compare TD(0) with the bootstrapping method [21]. As described in 
Section 2, the search tree in NCTU6 is coarse-grained and shallow (the averaged depth 
of the tree is only about four). Consider the PV in a tree search, { , , , , }, 
where  is the root and  is a leaf. Due to two-ply updates, we can only update both 
from  to  and from  to  in the bootstrapping method. For many of other 
subtrees, if their PVs are available, say { , , , }, we can only update from  to 

. According to our analysis on NCTU6, only about 400 updates can be used for 
training in an alpha-beta search tree with 10,000 nodes expanded. In contrast, 10,000 
updates can be used for training in TD(0), when 10,000 nodes expanded. Thus, TD(0) 
apparently has more updates than bootstrapping.  

4 Implementation Issues  

This section discusses three issues when implementing the linear TD(0) learning for 
Connect6. These issues include (a) selecting features, (b) removing winning/losing 
moves found by threat-space search, and (c) using moves played by strong human 
players. These issues are discussed in the following three subsections respectively.  

4.1 Feature Selection 

As described above, this paper modifies the evaluation function into a linear 
combination of features, including the types of patterns, the distance of the patterns 
from the board center (or border), the direction of the pattern, and the game stages.  

As described in Section 2, the types of patterns mainly include 1-threat, 2-threat, 
live-3 to live-1, dead-3 to dead-1, etc. In fact, there are more complex patterns, such as 
the pattern with live-1 and dead-2 at the same time. For example, the diagonal line 
containing two white stones in Figure 1 includes both dead-2 and live-1 at the same 
time. This pattern is actually stronger than dead-2 and live-1. However, for clarity of 
discussion, such patterns are disregarded in this paper.  

Some other important features related to patterns are discussed as follows. The 
patterns on the border of the board tend to threaten the opponent less. The diagonal line 
patterns tend to be stronger, since diagonal line patterns normally cover a larger 
territory for attacking.  

Next, we want to investigate features in different stages. Like some other games, 
such as Chinese Chess, the playing strategies in the three stages, opening, middle-game 
and end-game, are somewhat different. So, in our TD learning, the moves and features 
are also treated differently in the three stages. For instance, according to top-level 
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human players, live-2 in the opening is more important than in the end-game, since 
threats are not many in the opening.  

4.2 Threat Space Search  

It is a really important issue to remove winning/losing moves found by threat-space 
search (TSS). The key reason is that these losing moves are removed and not evaluated 
in alpha-beta search (like what NCTU6 does). Training these moves becomes noise in 
learning. In Connect6, it is a well-known strategy for players not to abuse playing 
2-threats or 1-threats, if no winning strategies are found yet. Just like Go, beginners are 
taught not to abuse playing atari. Although the authors of NCTU6 [26] knew the idea 
upon designing, it was hard to tune the weights by hand. This is also one of the 
motivations of this paper.  

 

Fig. 2. Avoiding winning/losing paths 

 

If we do not remove these moves, the TD learning tends to make the weights of 
1-threats or 2-threats excessively high. In the case that one player wins by a VCDT in 
the TD learning, the player plays many 2-threat moves in the last moves of the training 
games as shown in Figure 2. Consequently, 2-threat is wrongly regarded as a rather 
important feature and therefore adjusted to be overweighed.  

In order to solve this problem, we propose to use TSS, the RZOP search [24] also 
used in NCTU6, to remove those winning/losing moves near the end as above. More 
specifically, TSS is performed to check winning of the position before running Greedy 
in Line 4 of SelfPlay, and once a winning move is found, SelfPlay terminates the game 
and restarts another training game. One minor drawback of this approach is the higher 
computation time for training, since the times spent on TSS are longer than node 
evaluation/expansion.  

4.3 Learning from the Games Played by Strong Human Players 

In Subsection 3.3, our TD learning program uses the procedure Greedy to make a move 
by the ε-Greedy policy. It is also an interesting issue to use the games played by strong 
human players, instead of using Greedy, as in [12]. Namely, in Line 4 of SelfPlay, 
Greedy is replaced by a routine which retrieves moves from the game record. This 
paper collected the games, about 30,197 games, where at least one of the players was 
ranked with points higher than 1800 from Little Golem [9]. The collection of records of 
these games is called the expert collection in this paper.  
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One advantage of using these games for learning is to spend less time on making a 
move. In order to remove winning/losing moves by TSS, we used a preprocessor to run 
TSS backwards from the leaf. Normally, TSS runs faster on winning/losing positions 
than the positions without winning/losing. Since running TSS backwards is performed 
on at most one position without winning/losing, the computation time is lower than that 
for running TSS forwards as in the algorithm in Subsection 3.3. A second advantage is 
to let the program learn to play like these players, if possible. For example, these 
players usually do not abuse playing 1-threats or 2-threats.  

5 Experiments 

In this section, we first describe our experimental environment in Subsection 5.1. Then, 
we analyze our experiments in different aspects, including stages, threat-space search, 
and training games, which are discussed in Subsections 5.2 to 5.4, respectively. Finally, 
we summarize and discuss the experimental results in Subsection 5.5.  

5.1 Experimental Environment 

In our experiments, we used TD(0) learning as shown in the algorithm in Subsection 
3.3. We set 0.1 and 0.1. The number of features in total was about 500.  

In our experiments, we measured the strength of the program learned from TD 
learning like [11] as follows. After finishing TD learning, we replaced the original 
feature weights of NCTU6 by the trained feature weights. Let NCTU6-TD denote the 
NCTU6 with the newly trained feature weights. In order to compare the strength of 
NCTU6-TD with that of the original NCTU6, we selected 176 popular openings from 
the expert collection. Namely, the openings that were played in at least 30 games in the 
collection. For each selected opening, let NCTU6-TD play twice against NCTU6, one 
for Black and the other for White, respectively. Thus, NCTU6-TD played 352 games 
against NCTU6 in total. NCTU6-TD obtained 2 points for a win, 1 for a draw, and 
nothing for a loss. The win rate was the total obtained points divided by 704, after 
finishing all the 352 games.  

For each experiment of TD learning, all feature weights were initialized to 0 (zero 
knowledge), and the numbers of training games we ran were 0, 100, 300, 1000, 3000, 
10000 and 30000. Since it took long times to do the experiments, we used the volunteer 
computing system in a job-level manner as described in [28].  

5.2 Stages  

As mentioned in Subsection 4.1, the playing strategies in the three stages, opening, 
middle-game, and end-game, are somewhat different. In our experiments, the first 10 
moves in a game were considered to be played in the opening, the next 20 moves were 
in the middle-game, and the rest were in the end-game.  

In this subsection, we tried four versions of stages for comparisons. The first 
version, called 1-stage, was to have one stage only. The second version, called 3-stage, 
was to have three stages as above. Thus, each feature had the different weights in 
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different stages in 3-stage, but the same in 1-stage. The third version, called 
hybrid-3-stage, was to use the feature weights of the original NCTU6 in opening, but 
use the feature weights trained by the second version in both middle-game and 
end-game. The fourth version, called hybrid-2-stage, was the same as hybrid-3-stage 
except that middle-game and end-game are combined into one stage.  

 

 

Fig. 3. The win rates for TD learning with different versions of stages 

Figure 3 demonstrates the experimental results for the four different versions. In all 
of these experiments, we removed moves via TSS (namely the RZOP search) as 
described in Subsection 4.2. The results showed that both hybrid-2-stage and 
hybrid-3-stage were consistently better than 1-stage and 3-stage. The best was the one 
after 3000 training games in hybrid-3-stage. In our analysis, we observed two reasons 
for the phenomenon (of being the best) as follows. First, in opening, the features for 
those threats or patterns far away from the center were rarely used and therefore trained 
only few times. Thus, it became hard to learn these feature weights well in the first two 
versions. Second, for TD(0) learning, it was slow to learn the feature weights in 
opening since the learning propagation from end-game to opening was slow. Thus, the 
features in opening were relatively hard to learn.  

For both hybrid-2-stage and hybrid-3-stage, hybrid-3-stage performed better for 
3000 training games or more, but worse for less than 3000, for the following reason. 
Since hybrid-3-stage had more features, the learning rate was much slower. However, 
hybrid-3-stage performed better if there were sufficient training games.  

5.3 Threat Space Search 

As explained in Subsection 4.2, threat-space search (TSS) is a quite important issue. 
Figure 4 shows the results for TD learning with and without removing winning/losing 
moves found by TSS (namely the RZOP search [24]). In all of these experiments, we 
used hybrid-3-stage as above. 

The results demonstrated significant and consistent improvements in all cases. The 
win rates with TSS (used to remove winning/losing moves) were about at least 7.1% 
higher than those without TSS. From the results, we may conclude that TSS plays a 
quite significant role in the TD learning.  
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Fig. 4. The win rates for TD learning with and without using TSS 

Table 1. The weights of features learned from TD learning with/without TSS 

Feature Weights With TSS 
Without 
TSS 

 0.52982 1.73220 

 0.51070 0.83796 

 0.49358 0.73046 

 0.27506 0.25531 

 0.20028 0.07715 
 

Table 1 shows the weights of the features, 2-threats, 1-threat, live-3, dead-3, and 
live-2, learned from the TD learning with and without using TSS. The result clearly 
shows that the weight of 2-threat was high relatively to others (  is nearly double of 

) in TD learning without TSS.  

5.4 Training Games 

As described in Subsection 4.3, selecting training games is a delicate issue for TD 
learning. The experiments in this subsection were done to investigate this issue by 
considering TD learning that (1) used the game records in the expert collection and that 
(2) used -Greedy to generate moves. In addition, for each case, we also considered TD 
learning with and without TSS (removing winning/losing moves).  

Figure 5 showed the results for four kinds of TD learning. In all of these experiments 
we also used hybrid-3-stage as above. Still, it also showed that the TD learning with 
TSS was consistently and clearly better than the learning without TSS.  

Below we consider using TSS. The results showed that the TD learning with 
-Greedy was slightly better than that with the expert collection for 1000 to 10,000 

training games. In the case of using 30,000 training games, the TD learning with the 
expert collection was slightly better. Since the collection included about 30,000 games 
only, it was unsure about whether the win rate would be higher for more games.  
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Fig. 5. The win rates for TD learning using ε-Greedy and the expert collection 

5.5 Discussion 

From Subsections 5.2 to 5.4, we may conclude that TD learning with TSS (used to 
remove winning/losing moves) is the most important factor to improve the strength. 
The win rates with TSS were at least 7.1% higher than those without it. Using the 
version of hybrid-3-stage also helps improve TD learning. The merit of using the expert 
collection is unclear yet.  

 

 

Fig. 6. The win rates for TD learning with more different training games 

In the rest of this subsection, we discuss the convergence and computation times for 
training. In order to see whether TD learning in our experiments converges, we also ran 
6000, 15000, 20000 and 25000 training games for the experiment with 
hybrid-3-stage,ε-Greedy, and TSS. Figure 6 shows that these values converged around 
53-58% after running more than 3000 training games. 

As for the training times, Table 2 showed the total times spent on training 10,000 
games by using TSS or not, and by using the expert collection or not. Apparently, the 
versions with TSS ran much more slowly than the ones without TSS, due to the extra 
TSS overhead. Here, we consider the two versions with TSS. The one with the expert 
collection ran much faster than that with -Greedy, since we removed winning/losing 
moves backwards from the leaves in the former, as explained in Subsection 4.2.  
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Table 2. The comparison of the time spent with/without TSS 

TD Learning  Times for 10,000 training games ε-Greedy with TSS 677 min. (or 11 hr. 17 min.) ε-Greedy without TSS 31 min.
Expert collection with TSS 32 min.
Expert collection without TSS 2 min.

 

6 Conclusion 

In this paper, we demonstrate a solid application of TD(0) learning for Connect6. We 
successfully use TD(0) learning to improve the strength of NCTU6, a Connect6 
program. Our experiments showed that the best version, improved via our TD learning 
method, obtained about a 58% win rate against the original NCTU6 program.  

This paper also discusses several issues of implementing TD learning. From them 
we may conclude that TD learning plays a quite important role to remove 
winning/losing moves found by TSS (namely the RZOP search used in NCTU6). Our 
experiments demonstrated significant and consistent improvements in all cases. Using 
the version of hybrid-3-stage also helps improve TD learning. The merit of using the 
professional collection is unclear. 

Although the bootstrapping method was not tried, this paper demonstrated that 
TD(0) learning worked sufficiently well for NCTU6. From this paper, it is conjectured 
that TD(0) should also work for other programs with coarse-grained and shallow search 
trees, though the comparison between TD(0) and bootstrapping is still to be performed 
in the future.  
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Abstract. Palamedes is an ongoing project for building expert playing bots that 
can play backgammon variants. As in all successful modern backgammon 
programs, it is based on neural networks trained using temporal difference 
learning. This paper improves upon the training method that we used in our 
previous approach for the two backgammon variants popular in Greece and 
neighboring countries, Plakoto and Fevga. We show that the proposed methods 
result both in faster learning as well as better performance. We also present 
insights into the selection of the features in our experiments that can be useful 
to temporal difference learning in other games as well.  

1 Introduction 

Backgammon is an ancient board game of luck and skill that is quite popular 
throughout the world with numerous tournaments and many popular variants. 
Variants of any game usually are not as interesting as the standard version, but often 
offer a break in the monotony of playing the same game over and over again. 
Backgammon variants come in different flavors: some change the standard 
backgammon rules only slightly (Portes), while others have different rules for moving 
the checkers (Fevga, Plakoto), alternate starting positions (Nackgammon), have a 
different checker direction (Fevga) or assign a special value to certain dice rolls 
(Acey-Deucey, Gul-bara). Palamedes [6] (Fig. 1) is an ongoing project dedicated to 
offer expert-level playing programs for backgammon variants.  

The objective for each player of virtually all variants is to move all his1 checkers to 
the last quadrant (called the home board), so he can start removing them; a process 
called bearing off. The player that removes all his checkers first is the winner of the 
game. Players may also win a double game (2 points) when no checker of the 
opponent has been beared-off. A triple win and the doubling cube are normally used 
only in standard backgammon.  

In previous work [7], following the successful example of TD-Gammon 
[14,15,16] and other top-playing backgammon programs, we trained neural networks 
(NN) using temporal difference learning for playing Plakoto and Fevga, two variants 

                                                           
1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant. 
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very popular in Greece and the neighboring countries. The contribution of this paper 
is (1) the improvement of our training methods and (2) the presentation of new results 
for these games. More specifically, we improved the performance of the training 
method by making the target of the updates to be the inverted value of the next 
player’s position; we also improved a little the learning speed by updating the 
positions starting from the end and recalculating the target value. Furthermore, we 
identified problems with the generalization of the neural network at certain positions 
of the Plakoto variant. We present our solution based on adjusting the input features 
along with an analysis of the cause of the problem and its implications to learning 
from manually added features in general.  

The remaining of the section describes the main rules of the Plakoto and Fevga 
variants and compares the complexity of the games with standard backgammon. The 
complete set of rules for standard backgammon, Plakoto, Fevga, and other variants 
can be found in [1]. 

1.1 Plakoto 

The key feature of game Plakoto is the ability to pin hostile checkers, so as to prevent 
their movement. The general rules of the game are the same as the regular 
backgammon apart from the procedure of hitting. Players start the game with fifteen 
checkers placed in opposing corners and move around the board in opposite directions 
till they reach their home boards which are located opposite of the starting area. 

When a checker of a player is alone in a point, the opponent can move a checker 
of his own in this point thus pinning (or trapping) the opponent’s checker. This point 
counts then as a made point as in regular backgammon, which means that the pinning 
 

 

Fig. 1. Palamedes: A program for playing backgammon and variants 
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player can move checkers in this point while the pinned player cannot. The pinned 
checker is allowed to move normally only when all opponent pinning checkers have 
left the point (unpinning). Pinning the starting point of the opponent results 
immediately in a double win. 

1.2 Fevga 

The main difference of Fevga is that there is no pinning or hitting. If the player has 
even a single checker in one point, this point counts as a made point, effectively 
preventing the movement of the opponent’s checkers in this point. Each player starts 
with fifteen checkers on the rightmost point of the far side of the board, at diagonally 
opposite corners from each other, whereas the two players move in the same 
direction. A crucial characteristic of this variant is that a prime formation (six 
consecutive made points) can be more easily achieved than in backgammon. 
Consequently, human experts usually plan their strategies always having in mind  (1) 
to create some kind of prime in order to block the opponent as soon as possible in his 
development, while at the same time (2) preventing the opponent from blocking them. 

1.3 Complexity Compared to Standard Backgammon 

Table 1 summarizes the differences in complexity of backgammon, Plakoto, and 
Fevga. The standard backgammon state space has been estimated as exceeding 1020 

states [16]. The Fevga variant without having a bar position (a position where the 
hitted checkers are placed in standard backgammon) inevitably has somewhat fewer 
states, whereas the possibility of pinning gives Plakoto a higher number of total states. 
The numbers shown for the average branching factor and the average game length in 
table 1 were computed by taking the best agent at our disposal for each game and 
making it play 50,000 games against itself. We used Plakoto-3 for Plakoto, Fevga-5 
for Fevga and a NN trained with expert features for backgammon. This backgammon 
NN has a performance of 0.608 against the pubeval [8] benchmark program. 

Table 1. State space size and game tree complexity 

Game State Space Size 
Branching Factor 

(avg) 
Game Length 

(avg) 

Backgammon (BG) > 1020 16 55 

Plakoto > BG 23 92 

Fevga < BG 25 91 

 
One common difference of both games compared to standard backgammon is that 

they last longer: whereas a standard backgammon game lasts on average 55 plies, a 
game of Fevga and Plakoto lasts on average around 92 plies. The game of Fevga is 
the most straightforward of the three. Players run their checkers to their home board 
resulting in game sequences with more or less the same total ply count. In standard 
backgammon the possibility of hitting sometimes results in long sequences. In 
Plakoto the possibility of pinning the opponent’s starting point can result in shorter 
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than usual total plies in a game. However, when both players have pinned opponent 
checkers in their home board, the game lasts longer than usual (up to 150 plies) 
because of a large number of no-move plies. 

Apart from longer sequences, Plakoto and Fevga variants have larger average 
branching factors. According to our experiments, the branching factor (in non-chance 
layers) of standard backgammon is 162, while for Fevga it is 25 and for Plakoto 23. 
This is mainly due to the fact that standard backgammon has fewer middle game 
positions where the number of available moves is at its peak. 

2 Updating the Temporal Difference in Games 

The theoretical background of reinforcement learning [11,12] and the TD(λ) [10] 
temporal difference learning algorithm that we used is described in [7]. This section 
explores alternatives for selecting the target of the TD updates and for the creation 
and updating of a self-play game sequence. 

2.1 Determining the Target of the Update 

In order to find the best move in a given situation, backgammon programs usually 
score each possible afterstate (that is the states resulting after the player has played a 
move) and select the move that produces the afterstate with the biggest score.  

 

Fig. 2. Alternate updating methods of the temporal difference in two player zero-sum games. 
Method a: Update the values without flipping the board. Requires input(s) to designate which 
player is on the move. Method b: Updates are split into two. Method c: Updates are done on the 
inverted value of the next player. Circles indicate a position after a player (A or B) has made a 
move (afterstate). 

An important implementation detail for a TD+NN learning system is the selection 
of input-target pairings for the TD update. In previous work we split up each training 
game into two training sequences, one for the afterstates of the first player and 

                                                           
2 Several sources (e.g., [15]) claim a branching factor of 20 for standard backgammon. This 

number may have been calculated in conjunction with resignations and doubling cube drops.  
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another for the afterstates of the second player, and we updated these sequences 
separately (Fig. 2b). In this work we made one straightforward, yet effective 
improvement: instead of splitting up each training game into two, we keep one 
training sequence and we update each player's afterstate using as target the inverted 
value of the other's player afterstate on the next move (Fig. 2c). Both methods flip the 
board so as both players' afterstates are given to the neural network as if it is the first 
player to move. This is different from the approach used originally by TD-Gammon 
(Fig. 2a), where there was no flipping of the board and the neural network learned to 
play the game for both sides, identifying the side to move by two binary inputs. We 
believe the board-flipping approach has the potential of getting an improved 
performance as the expressiveness of the neural network is increased.  

2.2 Sequence Creation and How to Update 

Contrary to standard backgammon, when we started making programs for the variants 
Plakoto and Fevga, there was no other program close to expert play, nor were  
databases of games available. Therefore,  self-play was for us the only option for 
creating a game sequence. We examined the following options for creating and 
updating a self-play game. 

(1) Learning online (each update is done immediately after a move is played). 
(2) Learning offline (updates are done incrementally after the game ends) 

(a) Forward offline: Updates are done starting from the first position of the 
game and ending at the terminal position. 

(b) Reverse offline: Updates are done starting from the terminal position of 
the game and ending at the first. 

(c) Reverse offline recalc: As previous, but recalculate target value after each 
update. 

The intuition of updating backwards an offline game is that updates of non-terminal 
states will be more informed as the reward of the outcome of the game is received on 
the first update of the game. This is enhanced with the addition of the recalculation of 
the target value. Online updates have the benefit of learning while the game is in 
progress; however there is a chance that at the start of a training, where moves are 
more or less random, the agent will get stuck or progress slowly. 

Preliminary experiments with all of the above methods showed that the slowest 
method was forward offline, particularly in the Fevga variant, with the others resulting 
in roughly the same performance (Fig. 3). The reverse offline method with recalculation 
of the target value learns faster than all others at the start of the training and continues to 
have a good performance afterwards. The downside is that more computation is needed 
in order to recalculate the target value at every step. However, this was not felt in our 
case since the creation of a game sequence is much more time consuming than the time 
to make the updates. Even with slower learning progress, all methods were found to 
reach the same level. So, whatever the final performance gains described later in the 
paper, they were only due to changing the updating method from (b) to (c) (2.1).  

In our previous experiments, we used the forward offline method. Following the 
experiments mentioned in this section, all experiments in this paper were conducted 
using reverse offline with target recalculation. 
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Fig. 3. Training progress of methods for sequence creation and update in Backgammon (left), 
Fevga (middle) and Plakoto (right). Every line is the average of 10 different training runs 
starting from the same random weights. For speed reasons, NNs in all games have 10 hidden 
units and no expert features. Benchmark opponents are pubeval for backgammon, Fevga-1 for 
Fevga, and Plakoto-1 for Plakoto. 

3 Experimental Results 

We compared the proposed training method to the previous one [7] by training again 
the NNs with the added expert features. For Plakoto, the new agent was named 
Plakoto3 and has exactly the same inputs as Plakoto2. For Fevga, we trained two new 
NNs: Fevga-4 has the same procedure as Fevga-2, whereas Fevga-5 has the same 
intermediate reward as Fevga-3. Table 2 shows all the techniques used by the various 
versions examined in this paper. 

3.1 Results in the Plakoto and Fevga Variants 

Earlier results [7] showed that Fevga-2’s strategy was much different from the one 
considered by the human experts, even with features that recognized the presence of 
primes (six consecutive made points) in a position. To clarify the importance of 
primes more precisely, a new NN was trained (Fevga-3) where the agent learned with 
the same input units as Fevga-2, but with one important difference: when reaching a 
position with a prime formation, the target of the TD update was made a constant 
value instead of the next position value. This had as a result that the learned strategy 
was based on the creation of primes, which is roughly equivalent to what is perceived 
by experts as the best strategy. Results showed that the riskier strategy of Fevga-2 
scores more points against the benchmark program Tavli3D [13] than Fevga-3, but 
when getting them to play against each other Fevga-2 was a little bit inferior. To 
preserve continuity with our previous work, we continued to benchmark our training 
progress with the open source program Tavli3D, which at the time of writing was the 
only open source program that can play these variants. 
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Fig. 4. Training progress of all trained NNs against the Tavli3D benchmark program in the 
Plakoto variant (Left) and the Fevga variant (Right) 

All networks had 100 hidden neurons and were trained to 1.5 million games. For 
simplicity, we fixed the value of λ to zero for the experiments conducted in this paper. 
For λ>0 and reverse updates, care must be taken when taking future time steps into 
consideration: since every time step is viewed as the first player, any value taken by 
future time steps that is not a move by the player making the current update must be 
inverted. As the initial training of Fevga-2 and Fevga-3 were only 700,000 games, we 
extended their training (with the same initial λ=0.7) to match the new ones. During 
the training, we periodically saved the weights of each NN and we tested the networks 
against Tavli3D for 10,000 test games each, half as the first player and half as the 
second player (Fig.4). The result of the tested games sum up to the form of estimated 
points per game (ppg) and is calculated as the mean of the points won and lost.  

We also tested the best set of weights of each NN by playing tournaments against 
each other at (1-ply) as well as by implementing a straightforward look-ahead 
procedure using the expectimax algorithm [5] at 2-ply depth (Table 3). In order to 
speed up the testing time, this expansion of depth-2 was performed only for the best 
15 candidate moves (forward pruning). For the same reason, the total amount of 
testing games using 2-ply was reduced to 1,000 per test.   

Table 2. Summary of techniques used by the various agents 

Plakoto 
Agent 

Updating 
method 
(Fig. 2) 

Sequence 
creation and 

update direction
 Fevga 

agent 

Updating 
method 
(Fig. 2) 

Sequence 
creation and 

update direction

Intermediate 
reward 

Plakoto-1 b Forward offline  Fevga-2 b Forward offline No 

  Plakoto-2 b Forward offline  Fevga-3 b Forward offline Yes 

Plakoto-3  c Reverse offline 
recalc 

 Fevga-4 c Reverse offline 
recalc

No 

    Fevga-5 c Reverse offline 
recalc

Yes 
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Table 3. Comparison of various agents at 1-ply and 2-ply for Plakoto (Left) and Fevga (Right). 
All results are in points per game (ppg) with respect to the player on the row. Players on 
columns always use 1-ply. 

 Tavli3D Plakoto1  Plakoto2   Tavli3D Fevga-2 Fevga-3 Fevga-4 

Plakoto-1 1-ply: +1.15  
2-ply: +1.36 * *  Fevga-2 1-ply: +1.60 

2-ply: +1.61 * * * 

  Plakoto-2 1-ply: +1.46 
2-ply: +1.60 

1-ply: +0.98 
2-ply: +1.35 * Fevga-3 1-ply: +1.52 

2-ply: +1.53
1-ply: +0.03 
2-ply: +0.49 * * 

Plakoto-3  1-ply: +1.60 
2-ply: +1.68 

1-ply: +1.10 
2-ply: +1.24 

1-ply: +0.35 
2-ply: +0.62

 Fevga-4 1-ply: +1.63 
2-ply: +1.64

1-ply: +0.35 
2-ply: +0.53

1-ply: +0.26  
2-ply: +0.48 * 

     Fevga-5 1-ply: +1.58 
2-ply: +1.59

1-ply: +0.42 
2-ply: +0.60

1-ply: +0.32  
2-ply: +0.45 

1-ply: +0.02  
2-ply: +0.14 

Table 4. Analysis of some of the matches of Fevga-4 and Fevga-5 

Match: Fevga-5 vs Fevga-4 Fevga-4 vs Tavli3D Fevga-5 vs Tavli3D 

 Fevga-5 Fevga-4 Fevga-4 Tavli3D Fevga-5 Tavli3D 
Single Wins 47.54% 39.52% 28.93% 2.74% 32.84% 2.86% 

Double Wins 4.9% 8.04% 68.32% 0.01% 64.26% 0.04% 

Total Wins 52.44% 47.56% 97.25% 2.75% 97% 3% 

Final Score +0.02ppg -0.02ppg +1.63ppg -1.63ppg +1.54ppg -1.54ppg 

The results in Plakoto show a significant increase in final performance. The 
performance of Plakoto-3 at 1-ply is equivalent to the performance of Plakoto-2 at 2-
ply against Tavli3D. Additionally, Plakoto-3 learns faster than the other two agents. 

In Fevga, Fevga-4 outperforms both Fevga-2 and Fevga-3 agents, while Fevga-5 
outperforms all others except in the Tavli3D benchmark where it is inferior from 
Fevga-4, and Fevga-2 (Table 4). The explanation of this phenomenon is shown at 
Table 4. Against an inferior opponent Fevga-4 achieves more points because it wins 
more doubles due to its riskier strategy, while Fevga-5’s safer strategy of building 
primes wins the same amount of games overall but fewer doubles. These new results 
show that the strategy learned by Fevga-4 and Fevga-5 is not different from the one 
learned from their previous counterparts (Fevga-2, and Fevga-3); obviously, the 
proposed training method learns the strategies better. 

3.2 Feature Selection  

An interesting observation was made while testing the strategies that were learned in 
the Plakoto variant. The resulting strategy was very conservative with regard to its 
starting point (also called the “mother” point). The agent correctly identified that it 
must not expose the last checker of its starting point, as it would potentially be open 
to a pinning attack that would automatically lose the maximum amount of points 
(double game). However, it could not discriminate the positions that such an attack 
could not be carried out by the opponent, and protected its first point even after we 
added the expert feature of pinning probability in Plakoto2 and Plakoto3 (Fig. 5). This 
resulted in obvious errors in a small number of positions. For example, the amount of 
equity lost for selecting the wrong move in Fig. 5 was calculated to 0.276ppg by 
making a 100,000 games rollout on each of the moves in question (Table 5).  
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Fig. 5. Example of a position where agents Plakoto1-3 fail to produce the best move. The green 
player is to play roll 42. The best move here is 24/18 since the 24-point cannot be pinned by 
any dice roll. However, Plakoto1-3 agents prefer the clearly inferior move 24/20, 24/22 which 
give the opponent a pinning opportunity to get back into the game. 

We suspected that the agent learned the harmful concept of leaving the first point 
open by the four raw features instead of the added expert feature "pinning probability 
at point 1". In order to confirm this we trained another agent (Plakoto-4) without the 
first of the four features for point 1, leaving only three features, one if 2 or more 
checkers are present, another if 3 or more checkers are present and a last one if 4 or 
more checkers are present. The resulting agent confirmed our suspicions, as it 
managed to learn the concept of "leaving the first point unprotected is bad" in a 
correct way, without committing the same mistakes of its predecessors. Evaluating 
Plakoto-4 final performance of 1.5 million trained games against Plakoto-3 in a 
10,000 tournament resulted in equal performance. This may mean either (a) positions 
of this kind do not appear frequently and when they appear they did not seem to have 
a significant impact to the result, or (b) Plakoto-4 simply needs more training for the 
difference to tell. 

Why was this concept not learned correctly by the other agents, especially when 
the other points where learned correctly? The concept of protecting the 1st point is 
one of the first things the agents learn, because it is the closest to the terminal 
position, the only position that receives reward, and because the random character of 
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the first self-play training games result in many "mother doubles". When confronted 
with two features to learn the concept, one being a binary input, and one a float input 
between 0 and 1, the neural network chooses the first one because it is the easier and 
the faster to learn. It would appear that the agent would have a chance to “unlearn” 
this later as learning progresses when the estimates of the NN are closer to the 
optimal. However, this is never done as these kind of positions appear rarely, because 
the agent has learned how (wrongly) to defend against.  

Table 5. Evaluation and rollout analysis of the two best moves of the position in Fig.5. The 
first four columns show the evaluation of the Plakoto-3 and Plakoto-4 NNs after 1-ply and 2-
ply look-ahead. The fifth and sixth column show the equity of the position by making a rollout 
analysis using Plakoto-3 and Plakoto-4. The last column shows the equity that was lost by 
selecting the inferior move. The equity loss was calculated on the average of the two rollouts. 

Move 
Plakoto-3  

(1-ply) eval 
Plakoto-3 

(2-ply) eval 
Plakoto-4  

(1-ply) eval 
Plakoto-4  

(2-ply) eval 
Rollout 

Plakoto-3 
Rollout 

Plakoto-4 
equity 

loss 
24/22 24/20 1.020 1.048 0.942 1.046 0.983 0.968 0.276 

24/18 0.692 1.082 1.140 1.248 1.259 1.243 - 

4 Related Work 

Temporal difference learning has been used for learning an evaluation function in 
most modern games. The KNIGHTCAP program [2] learned an evaluation function for 
chess using TD-Leaf, an extension to TD(λ) where updates are made not on the 
resulting positions of a training game, but on the leaf nodes of the principal variations 
resulting from alpha-beta searches from the previous and next positions. However, 
their approach only worked with initialization of the weights to a good starting point 
and could not learn from self-play. The rootstrap and treestrap algorithms introduced 
in [17] improved this approach by updating all interior nodes from the search tree 
towards the root node. Their program MEEP managed to achieve a rating of 2,338 Elo 
on Internet Chess Club for blitz games.  

TD-Leaf was also tried in backgammon [3], but the authors could not improve the 
performance compared to an already trained NN with TD(λ). Following these results, 
we did not perform any experiments with TD-Leaf since the training time will have 
increased significantly. 

In checkers [9], TD-Leaf was able to tune the weights of the best program of all 
time CHINOOK, to the same level of a set of weights previously manually tuned for a 
period of 5 years.  In their approach, two separate set weights were trained, one for 
White and one for Black. The authors noted a similar performance for the two sets of 
weights, which indicates that a single set for both sides, as it was done with our 
approach, could be used.  

In [18], a similar TD update like our proposed method was utilized for constructing 
a large architecture of several neural networks and for examining training using self-
play and using an expert in the game of backgammon.  In this work the update is 
called “minimax” update and the learning was conducted using the side of the first 
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player only. Results show that learning when playing against an expert is faster at first 
but ultimately reaches the same performance as self-play. This is explained by the 
analysis in section 2.2. Starting with expert training and continuing with self-play is 
usually a good hybrid approach.  

5 Conclusion and Future Work 

We have managed to increase the performance of our temporal difference learning 
architecture in the backgammon variants Plakoto and Fevga by making the target of 
the update the inverted value of the opponent's next state and by updating the game 
sequence starting from the terminal and working to the starting position. The 
problems found by learning overlapping features indicate that one must choose the 
features to be trained very carefully, or else risking suboptimal performance. An 
automatic process of selecting, comparing, and training the available features could be 
used in order to detect the beneficial from the problematic ones. This process, 
however, can be rather time consuming, especially when many games must be played 
for good learning (as is in backgammon) or the number of features is large (as is in 
chess, for example).  These enhancements can be used in other games as well as in 
conjunction with other TD learning algorithms. As all our experiments were done 
with λ=0, an obvious continuation of this research is to determine if different values 
λ>0 can lead to improved performance.  

We also plan to increase the number of backgammon variants that can be handled 
by Palamedes. Interesting candidates towards this direction are the acey-deucey, gioul 
and gul-bara variants. Our look-ahead procedure can be improved by searching in 
greater depths and by utilizing cutoff algorithms as in [4]. We are also planning to test 
Palamedes by participating in computer and human competitions.  
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CLOP: Confident Local Optimization

for Noisy Black-Box Parameter Tuning
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Université de Lille, INRIA, CNRS, France

Abstract. Artificial intelligence in games often leads to the problem
of parameter tuning. Some heuristics may have coefficients, and they
should be tuned to maximize the win rate of the program. A possible ap-
proach is to build local quadratic models of the win rate as a function of
program parameters. Many local regression algorithms have already been
proposed for this task, but they are usually not sufficiently robust to deal
automatically and efficiently with very noisy outputs and non-negative
Hessians. The CLOP principle, which stands for Confident Local OPti-
mization, is a new approach to local regression that overcomes all these
problems in a straightforward and efficient way. CLOP discards samples
of which the estimated value is confidently inferior to the mean of all sam-
ples. Experiments demonstrate that, when the function to be optimized
is smooth, this method outperforms all other tested algorithms.

1 Introduction

Authors of programs that play games, such as chess or Go, are faced with the prob-
lemof optimizing parameters.A game-playingprogramrelies on heuristics for posi-
tion evaluation, search-tree pruning, or timemanagement.Most of these heuristics
have parameters, and tuning them may improve the program’s strength.

When optimizing parameters, a major difficulty is measuring the strength.
The most usual approach is quite costly: it is based on the win rate against a
reference opponent. In order to obtain an accurate measurement, it is necessary
to play many games, which takes a large amount of computation time.

Since it is so costly, authors of game-playing programs sometimes try to avoid
measuring win rates. Playing games may be replaced by testing over a database
of one-move problems. It may also be replaced by machine-learning algorithms,
such as temporal-difference methods [27,30].

Tuning parameters without measuring win rates may sometimes work, but it
is dangerous; particularly, in the sense that it does not guarantee an optimal
probability of winning. So far, it has not been proved that optimizing a criterion
such as temporal difference also maximizes the strength.

Besides having no guarantee in terms of strength optimization, many learning
algorithms also have a limited scope. For instance, temporal-difference methods
can tune an evaluation function, but not selectivity or time management.

For a reliable and generic parameter-optimization method, it is necessary to
measure the strength by the outcome of games played. The challenge is to come
as close as possible to the optimal win rate with as few games as possible.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 146–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1.1 Problem Definition

More formally, the problem addressed in this paper is the estimation of an op-
timal value x∗ of a vector of n continuous bounded parameters x ∈ [−1, 1]n.
Performance of a vector of parameters x is measured by its probability of suc-
cess f(x) ∈ [0, 1]. The value of f(x) is not known, but can be estimated by
observing the outcome of independent Bernoulli trials that succeed with proba-
bility f(x). These trials are observed in sequence. For each trial, parameters can
be chosen in the [−1, 1]n domain. After each trial, the optimization algorithm
recommends a vector of parameters x̃. The performance of the algorithm is mea-
sured by the simple regret f(x∗) − f(x̃). The objective is to find an algorithm
that will make the simple regret go to zero as fast as possible.

The notion of “simple regret” is named in opposition to the more usual “online
regret” of continuum-armed bandits algorithms [1,10]. When tuning a game-
playing program, losing games does not matter. The objective is to optimize the
final strength of the program, regardless of losses suffered while training.

The function f to be optimized will be assumed to have no local optima. The
main difficulty that CLOP addresses is not getting out of tricky local optima,
but dealing with noise.

1.2 Noisy Optimization

Because it has so many important applications in engineering, the problem of
optimizing continuous parameters from noisy observations has been well studied.
Many algorithms have been already proposed, even for the special case of binary
response.

One of the oldest methods for optimization is stochastic gradient ascent. The
principle of this approach is based on collecting samples of the function around
the current parameters. These samples are used to estimate the gradient of the
function. Parameters are then modified with a small step in the direction of
the noisy gradient estimate. The most primitive form of this idea is the Kiefer-
Wolfowitz algorithm [20]. The idea of Kiefer and Wolfowitz was improved in the
multivariate case with the SPSA algorithm [28]. Several second-order refinements
of SPSA were proposed [23,29].

A second kind of approach is population-based algorithms, such as evolution
strategies or genetic algorithms [8,16,15]. These methods operate over a set of
points in a parameter space, called the population. They iterate the following
process: first, evaluate all elements of the population; then, discard those that
perform badly; then, generate new elements similar to those that perform well.

Yet, a third approach is simulated annealing [21]. Simulated annealing is often
used for combinatorial optimization with noiseless performance measurements.
But it was generalized to the optimization of noisy functions [5], and to the
optimization of continuous parameters [24].
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1.3 Using Response-Surface Models

The algorithms presented so far often have to make a trade-off between fast
inaccurate evaluation of many different parameter values, and slow accurate
evaluation of few different parameter values. This trade-off is usually tuned by
a meta-parameter that indicates the number of samples that are collected for
each parameter value. In order to reduce noise, it may be necessary to replicate
many independent measurements at the same point.

Many of these algorithms are also incremental, and discard old data. This
may lead to a non-optimal use of all available information.

An approach that does not forget data and requires no trade-off between fast
and accurate evaluation is the response-surface methodology [4]. The response-
surface methodology fits a model to data, and performs optimization on the
model. With response-surface models, it is not necessary to run more than one
trial for each parameter value, which allows a dense coverage of the parameter
space.

An important question when optimizing with response-surface models is the
choice of a model. A first approach is to choose non-parametric models that are
sufficiently general to fit any function [26,19,2,17,31,12,18]. A second approach is
to use simpler models (linear or quadratic), over a shrinking domain [13,25,11,7].
The first approach is able to find the global optimum of a function with many
local optima, whereas the second approach only performs local optimization.

Existing algorithms based on local regression all have some major limitations.
The traditional response-surface methodology is not completely automated, and
requires human judgment. Q2 [25] is rather similar to CLOP, except for its
criterion for shrinking the region of interest (ROI): a sample is discarded only
if there is a good confidence that the maximum of the quadratic regression lies
within the ROI. This does not work if the Hessian is not definite negative, which
happens frequently in practice (for instance, if one parameter turns out to have
no influence on the strength). Noisy UOBYQA [11] uses a similar criterion, and
it has the same defect. In addition, noisy UOBYQA takes the next sample at the
estimated location of the optimum, which was found to be a rather inefficient
sampling policy [25]. The trust-region method Elster and Neumaier [13] does not
work in the very noisy case because it estimates the best parameters as those
that obtained the best result so far. STRONG [7] has a proof of convergence, but
(1) experiments show poor empirical performance compared to a straightforward
stochastic gradient, and (2) the algorithm is extremely complicated.

The algorithm presented in this paper can deal in a simple, automatic and
robust way with very noisy observations and a non-negative Hessian. The main
difference with previous algorithms is in its criterion for deciding when to stop
shrinking the regression area: the worst sample is discarded if its estimated value
according to the regression is inferior with some level of confidence to the mean
of all the remaining samples. Section 2 gives a detailed description of the algo-
rithm and an intuitive analysis of its asymptotic rate of convergence. Section 3
presents empirical data that demonstrate its good performance compared to
many alternative algorithms.
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2 Algorithm

The general idea of the optimization algorithm is to perform regression over all
the data, and then removing the worst samples (according to the regression) as
long as sufficient samples are left. Samples are not removed one by one, because
it would be too inefficient when the number of samples is high. Instead, a weight
function, w, is computed with a formula that gives a weight close to zero to
samples of which the estimated strength is confidently inferior to the average
strength of samples. This process is iterated until convergence. Convergence is
guaranteed by not allowing a weight to increase.

2.1 Detailed Algorithm Description

The details of the optimization algorithm for quadratic regression are given in
Algorithm 1. The first parameter of the function is a positive number H that
indicates how local the regression will be. (xi, yi) are pairs of past inputs and
their outputs. yi may be either 0 (loss) or 1 (win). QuadraticLogisticRegres-

sion is a function that performs weighted quadratic logistic regression, that is
to say f(x) is approximated at iteration k by 1/

(
1 + e−qk(x)

)
, where qk is a

quadratic function. LogisticMean is logistic regression by a constant. Both
QuadraticLogisticRegression and LogisticMean compute the maximum
a posteriori with a Gaussian prior of variance 100. ConfidenceDeviation is
the standard deviation of the posterior of LogisticMean.

The next sample is chosen at random (using Gibbs sampling) by using w as a
probability density. The theory of optimal design offers many alternatives [6,14],
but sampling according to w outperformed them in experiments. A problem with

Algorithm 1. Quadratic CLOP

procedure QuadraticCLOP(H,x1, y1, . . . ,xN , yN )
w0 ← λx.1 � a function of x that returns 1
W0 ← N
k ← 0

repeat
w ← λx.mink

i=0 wi(x) � weight function
k ← k + 1
qk ← QuadraticLogisticRegression(w,x1, y1, . . . ,xN , yN)
μk ← LogisticMean(w,x1, y1, . . . ,xN , yN )
σk ← ConfidenceDeviation(w,x1, y1, . . . ,xN , yN )
wk ← λx.e(qk(x)−μk)/(Hσk)

Wk ← ΣN
i=1 min

(
w(xi), wk(xi)

)

until Wk > 0.99×Wk−1

xN+1 ← Random(w) � next sample, distributed like w
x̃ ← ΣN+1

i=1 w(xi)xi/Σ
N+1
i=1 w(xi) � estimated optimal

end procedure
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optimal design is that it assumes that the model perfectly fits the data, which
is almost always wrong in practice. Even when lack of fit is taken into consider-
ation [32], these algorithms take samples near the edge of the sampling domain.
Samples near the edge are rapidly discarded when the domain is shrinking. It
might be possible to do better, but sampling according to w is straightforward
and works well.

For quadratic regression, the maximum is estimated by the weighted average of
samples. A different possibility would be tomaximize the quadratic regression, but
the estimation of the weighted average turned out to be more robust and perform
better. In particular, it works even if the regression is not definite negative.

2.2 Choice of H and Asymptotic Rate of Convergence

The most important meta-parameter of this algorithm is H . Besides H , other
parameters are the priors of regressions, and the 0.99 constant that decides the
end of the loop. But they have actually little influence on the performance. H
tunes the bias-variance trade-off by making regression more or less local, and
should be chosen carefully.

Figure 1 shows an analysis of the asymptotic bias-variance trade-off. In Algo-
rithm 1, the “height” of the local regression is Hσk. It should be proportional
to the square of the “width” δ. If we assume that σk = O

(
N−1/2

)
, this means

that the optimal asymptotic rate of convergence is obtained with H = O(N1/6).
An attempt at finding a more precise optimal value for H [3] shows that it

depends on the magnitude of the cubic term: if the function to be optimized is
perfectly quadratic, then H = ∞ is optimal. Otherwise, H should be smaller.
Also, in the small-sample case, terms of degree four or more might not be negli-
gible. So, it is difficult to find the optimal value of H . But, as will be shown in
Section 3.1, choosing a constant value of H = 3 works quite well in practice, in
a really wide range of situations.

δ δ

(a) Bias only: noiseless observa-
tions, f is cubic. Regret: O

(
δ4
)
.

δ δ

O
(
N−1/2

)

(b) Variance only: noisy observations, f is
quadratic. Expected regret: O

(
N−1δ−2

)
.

Fig. 1. The figures (a) and (b) illustrate an intuitive derivation of the optimal asymp-
totic bias-variance trade-off for local quadratic regression in dimension one [3]. Assum-
ing N observations are made at x∗, x∗−δ, and x∗+δ, it is possible to calculate expected
simple regret in both situations. The optimal trade-off is when they are the same, which
gives δ = O

(
N−1/6

)
, and a simple regret of O

(
N−2/3

)
. It was proved that O

(
N−2/3

)

is optimal when optimizing functions with bounded third-order derivatives [9], that is
to say no algorithm can do better.
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It is worth noting that the principle of CLOP is universal, and can be applied
to any kind of regression, not only quadratic. So it is possible to use cubic re-
gression or any other arbitrary polynomial regression instead. Such an approach
may reach the optimal bound by Chen [9], that is to say O

(
N−s/(s+1)

)
simple

regret for polynomial regression of degree s, provided f is sufficiently smooth.
Figure 5 shows an experiment where cubic regression does outperform the best
possible quadratic regression.

3 Experiments

The performance of CLOP was measured by artificial problems. Table 1, Fig. 2,
and Fig. 3 show the artificial functions that were optimized. When an exponent
is added to a problem name, it means that the dimension is multiplied by this
exponent, and r(x) is the average of r(x) for each dimension (see Fig. 3 for the
example of Log2). The source code of the program that produced these results
is available at http://remi.coulom.free.fr/CLOP/.

Table 1. Problem definitions. f(x) = 1/
(
1 + e−r(x)

)
. x ∈ [−1, 1]n.

Log n = 1 r(x) = 2 log(4x+ 4.1) − 4x− 3

Flat n = 1 r(x) = 0.2/
(
1 + 6(x+ 0.6)2 + (x+ 0.6)3

)

Power n = 1 r(x) = 0.05(x + 1)2 − ((x+ 1)/2)20

Angle n = 1 r(x) = 1 +

{√
2− 2

√
0.3− x if x < −0.2,√

2−√
x+ 2.2 otherwise.

Step n = 1 r(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2 if x < −0.8,

−2 + 6(x+ 0.8) if − 0.8 < x < −0.3,

−(x+ 0.3)/1.1 if − 0.3 < x < 0.8,

−2 otherwise.

Rosenbrock n = 2 r(x) = 1.0− 0.1
(
(1− a)2 + (b− a2)2

)
, a = 4x1, b = 10x2 + 4

Correlated n = 2
r(x) = 0.2(g(10(x1 + x2 + 0.1)) + g(x1 − x2 + 0.9)) + 0.2,
with g(x) = −x4 + x3 − x2

3.1 Effect of Meta-parameter H

Figure 4 shows the effect of H when optimizing three different functions. As pre-
dicted in section 2.2, the optimal value of H depends on the quadraticity of the
function to be optimized. For a moderately non-quadratic function such as Log,
higher values of H perform better than for a strongly non-quadratic function
such as Power. Results confirm the O

(
N−2/3

)
asymptotic simple regret with

H = O
(
N1/6

)
. Although it is not clear how to find the optimal value of H in

practice, using a constant value of H = 3 seems to perform well in all cases.

3.2 Comparison with Other Algorithms

Figures 5 and 6 compares CLOP to many algorithms. CLOP is best for smooth
functions, works similarly for Angle, and does not work well for Step.

http://remi.coulom.free.fr/CLOP/


152 R. Coulom

(a) Log (b) Flat (c) Power (d) Angle (e) Step

Fig. 2. Plots of one-dimensional problems. x∗ is indicated by a vertical line.

(a) Rosenbrock (b) Correlated (c) Log
2

Fig. 3. Plots of two-dimensional problems. Lines of constant probability are plotted
every 0.1. x∗ is indicated by a cross.

The population-based algorithms that were tested are variations of the
Cross-Entropy method (CEM), using an independent Gaussian distribution. The
basic version [8] was tested, as well as a version improved by dynamic param-
eter smoothing [16]. Initial population distribution was uniform random over
[−1, 1]n. Meta-parameters of the algorithms were: population = 100, elite = 10,
initial batch size = 10, batch-size growth rate = 1.15, smoothing = 0.9, dynamic
smoothing (improved version only) = 0.1. UH-CMA-ES [15] was tested too, but
it was clearly not designed for that kind of problem, and it does not work well.
Results were not plotted, because it sometimes fails to remain within the [−1, 1]
interval, even when started at x = 0 with a small variance.

A second algorithm that was tested is UCT [22], applied to a recursive binary
partitioning of the parameter space. x̃ is determined by choosing the child with
the highest win rate.

Finally, the SPSA algorithm [28] was tested. SPSA∗ is plain SPSA, with man-
ually optimized meta-parameters (a = 3, A = 0, α = 1, c = 0.1, γ = 1/6)
starting at θ0 = 0. It performed quite well for Log, reaching the O

(
N−2/3

)
optimal asymptotic rate of convergence. But the performance of SPSA is rather
sensitive to a good choice of meta-parameters, and these values do not work in
practice for other problems. Many adaptive forms of SPSA have been proposed
to automatically tune meta-parameters. RSPSA [23] is one such algorithm. Its
meta-parameters were manually chosen to minimize simple regret at 105 samples
(batch size = 1000, η+ = 1, η− = 0.9, δ0 = 0.019, δ− = 0, δ+ = 0.02, ρ = 25).
These meta-parameters clearly overfit the problem, but they still do not out-
perform CLOP. Enhanced Adaptive SPSA (E2SPSA [29]) is another form of
SPSA with better convergence guarantees. E2SPSA was not tested, but it can
be expected that it would be at least twice slower than SPSA∗, because half



CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning 153

H = 12
H = 10
H = 8
H = 6
H = 4
H = 3
H = 2
H = 1

H = 0.8N1/6

101 102 103 104 105 106 107
10−5

10−4

10−3

10−2

10−1

(a) Log
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(b) Log
5
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(c) Power

Fig. 4. Effect of meta-parameter H . Simple regret (averaged over 1,000 replications)
is plotted as a function of the number of samples.



154 R. Coulom

Quadratic CLOP, H = 3

Quadratic CLOP, H = 0.8N1/6

Cubic CLOP, H = 0.8N1/4

RSPSA
SPSA∗

CEM (Chaslot et al.)
CEM (Hu & Hu)
UCT
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Fig. 5. Comparison of many algorithms applied to the Log problem
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2 (c) Log
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(e) Rosenbrock (f) Rosenbrock
2 (g) Rosenbrock

5 (h) Power

(i) Correlated (j) Correlated
2 (k) Angle (l) Step

Fig. 6. Many problems. Scale: regret from 10−5 to 1, samples from 10 to 107. Legend:
Quadratic CLOP (H = 3), UCT, CEM (Hu & Hu).
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of the samples it collects are not used for gradient estimation. Also, E2SPSA
only adapts a, but not c. So, it probably could not work well in problems such as
Correlated. Still, the good performance of SPSA∗ is a clear sign that adaptive
forms of SPSA could approach the performance of CLOP.

An aspect worth mentioning is the computational cost of these algorithms. Be-
cause logistic regression is a costly operation, CLOP tends to be slower. However,
it can be made fast with a few tricks. First, w does not have to be re-computed at
every sample: when the regression has been computed by N samples, 1 +N/10
samples are collected without updating the regression. Second, an additional
speed-up can be obtained by taking more than one sample at the same location.
Experiments were run by averaging 1,000 runs of 107 samples, on a 24-core PC.
For the Log problem, CEM takes 1’20”, CLOP 9’57”, and UCT 21’19”. UCT is
slow because it was not particularly optimized, but it could certainly be sped-up
considerably by using replications, too. Anyway, the cost of these algorithms is
negligible compared to the cost of playing even super-fast games.

4 Conclusion

In summary, CLOP is a new approach to black-box optimization with local
response-surface models. CLOP is completely automated, robust to very noisy
outputs, and to non-negative Hessians. The algorithm is straightforward, and
has only one meta parameter, H , that does not have a critical influence on
performance. In practice, using a constant value of H = 3 works quite well in a
wide range of function shapes and experiment sizes. Experiments demonstrate
the excellent performance of CLOP for optimizing smooth functions.

In the future, CLOP could be applied to less noisy problems. It might even be
possible to make it work efficiently for completely noiseless black-box optimiza-
tion. This would probably require low-discrepancy algorithms (like in Q2 [25]),
rather than random sampling. A second interesting question is the application
of CLOP to other forms of regression. Quadratic regression is the most obvi-
ous and popular approach for local optimization, but, as was demonstrated in
experiments, using more complex forms of regression, such as cubic regression,
might produce better results. Finally, although the CLOP algorithm turned out
to be extremely reliable in experiments, it would be good to have a mathematical
proof of its convergence.
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Abstract. This paper discusses gradients of search values with a pa-
rameter vector θ in an evaluation function. Recent learning methods
for evaluation functions in computer shogi are based on minimization
of an objective function with search results. The gradients of the eval-
uation function at the leaf position of a principal variation (PV) are
used to make an easy substitution of the gradients of the search result.
By analyzing the variations of the min-max value, we show (1) when
the min-max value is partially differentiable and (2) how the substitu-
tion may introduce errors. Experiments on a shogi program with about
a million parameters show how frequently such errors occur, as well as
how effective the substitutions for parameter tuning are in practice.

1 Introduction

An evaluation function is a function that estimates how preferable a position is
for a max player and is an essential part of a heuristic search in a two-player per-
fect information game. Machine learning of evaluation functions is an important
topic in artificial intelligence research [7]. For many years, the best shogi playing
programs [11] used hand-tuned evaluation functions; however, as of 2010, almost
all of the strongest programs have incorporated machine learning techniques for
tuning the parameters in their evaluation functions. The main idea behind their
learning methods and other methods [13,6,1,14,16] is to make the search results
with their evaluation function agree with training data consisting of grandmas-
ters’ moves. In other words, the goal of adjusting the parameters is to make the
min-max value for the grandmasters’ move higher than that for any other legal
move of each position in the training data. A min-max value is the result of
min-max search defined in Section 3.

To update the parameters in an evaluation function efficiently, one needs
to know how a min-max value will change with the parameters. However, a
min-max value is not always partially differentiable with respect to one of these
parameters. Accordingly, the gradients at the leaf position in a principal variation
(PV) have been used as a substitute for the gradients of the min-max value. This
has been done in studies related to ours [14,16,9] and in TDLeaf [2]. Although the
substitution is intuitive, we show that the partial derivative of the leaf position
in a PV does not always equal the partial derivative of the min-max value even

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 158–169, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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if the min-max value is partially differentiable. More precisely, the variation of
a min-max value is, in general, determined by the gradients of the two special
leaves depending on the search tree. Experiments on a shogi program with about
a million parameters evaluated the accuracy of the gradient approximation using
the leaf positions. We also discuss their effectiveness for controlling the search
results when the parameters are stored in integral type.

2 Related Work

Backgammon [17] and Othello [4] are well-known successes regarding learning
of evaluation functions in game programming. In contrast, it is interesting that
chess programs with evaluation functions tuned by machine learning have not
outperformed programs with hand-tuned evaluation functions [2,18]. For in-
stance, it has been reported that the large majority of the features and weights
in the Deep Blue evaluation function were created/tuned by hand [5].

Bonanza is the first shogi program that won the CSA championship with
evaluation functions fully tuned by machine learning in 2006 [9]. Before this
pioneering work, shogi programs yielded by learning remained very weak despite
the efforts by the shogi programmers and researchers (e.g., [3]). Machine learning
of evaluation functions quickly became popular afterwards, to the point that,
today, almost all strong programs use a similar learning method.1 The idea of
comparing a grandmaster’s move with other legal moves [9] has already been
exploited in computer chess and other games [13,6,1,14,16]. It is beyond the
scope of this paper to discuss why the recent method [9] outperformed hand-
tuned evaluation functions while other existing methods did not. One possibility,
though, is that the method [9] has a high scalability. It is capable of dealing with
millions of parameters and is a well-modeled optimization problem with a clear
loss function and careful constraint terms.

3 Learning by Comparison of Moves

3.1 Objective Function to Be Minimized

Let us begin with a straightforward but intuitive goal that is to make the result
of a one-ply search agree with the move selection of a grandmaster. In a one-ply
search, the move with the highest evaluation value is selected. Thus, in order to
meet our goal, a parameter vector in an evaluation function should be modified
so that the grandmaster’s move has the highest value among all the legal moves.

Let eval(p, θ) be an evaluation value on a position p yielded by an evaluation
function with a parameter vector θ. Part of our goal is represented by a constraint
eval(p.m, θ)− eval(p.gp, θ) < 0, where gp is a grandmaster’smove in position p and
m is another legal move in p. Here, p.m denotes the position yielded by a movem
played in position p. Also, without loss of generality, we can safely assume that a

1 Private communication with the authors of Gekisashi, YSS, and Shueso.
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root position p is a position where the maximizing-player is to move. There exist
many studies in the 1990s based on this idea of comparison [6].

To measure the total fitness over a set of training positions P , we introduce
the number of violations in all constraints:

Jstep(P , θ) =
∑
p∈P

∑
m∈M(p)

Tstep (eval(p.m, θ)− eval(p.gp, θ)) , (1)

whereM(p) is a set of legal moves in a position p and Tstep(x) is a step function
of which the value is 1 in x > 0; and 0, otherwise. The minimum value of Jstep is
0, when all constraints are satisfied. The maximum value of Jstep is the number
of constraints,

∑
p∈P(|M(p)| − 1). Here, |A| denotes the cardinality of A.

To utilize the gradient for minimization, we slightly modify the objective
function:

Joneply(P , θ) =
∑
p∈P

∑
m∈M(p)

T (eval(p.m, θ)− eval(p.gp, θ)) , (2)

where T (x) is a sigmoid function, 1/(1 + e−αx). The slope of T is controlled by
a constant α > 0, and by increasing α, T becomes similar to Tstep. The func-
tion T is differentiable w.r.t. x, while Tstep is not. Thus, the function Joneply
is differentiable w.r.t. θ, provided the evaluation function eval(p, θ) is. A sig-
moid function is confirmed to work well for training strong shogi programs [9].
Although previous studies did not discuss whether T should be a smooth ap-
proximation of the step function, there are other functions used instead of T .
The function (1/(1+ eR(x))− 1)2 with a heuristic rescaling function R was used
in small chess experiments, as an error function for back propagation in neural
networks [16]. A squared error loss function was used in preliminary experiments
in Deep Thought, to fit search values to heuristic oracle values [14].

In practice, a one-ply search is not sufficiently powerful to be used for analyz-
ing training positions. Thus, to learn accurate evaluation functions, a min-max
search with a depth of more than 1 has been used in many of the previous studies
on learning evaluation functions [14,2,16,9]. A new objective function incorpo-
rates a function s(p, θ), which is the min-max value identified by the min-max
search for a position p, instead of eval(p, θ) in Joneply:

J(P , θ) =
∑
p∈P

∑
m∈M(p)

T (s(p.m, θ)− s(p.gp, θ)) . (3)

The differentiability of J now depends on the differentiability of s, as discussed in
the next subsection. In our previous work, we made Eq. (3) our basic objective
function and confirmed that it worked well in shogi [9]. In practice, it is also
important to incorporate terms for constraints [9] in the objective function in
order to avoid over-fitting or divergence. However, we will omit any discussion of
these terms for simplicity, because they are independent of our purpose in this
paper.
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3.2 Partial Gradient of the Objective Function

To discuss the differentiability of s(p, θ), which is the min-max value of a position
p identified by a min-max search, we shall analyze the min-max tree visited in
the search. The root node of the min-max tree is p, and each node has a min-max
value v(n, θ) defined as:

v(n, θ) =

⎧⎨
⎩

eval(n, θ) if n is a leaf,
maxc∈C(n) v(c, θ) if n is a max-node
minc∈C(n) v(c, θ) if n is a min-node.

(4)

Here, C(n) is a set of direct successors of node n. By definition, s(p, θ) = v(p, θ).
Let L(p) be a set of leaf nodes in the min-max tree of which the root is p. We

focus on a subset of L(p), which plays an important role in computing s(p, θ):

L′(p, θ) = {l ∈ L(p) | (eval(l, θ)=s(p, θ)) ∧ (∀n ∈ A(l), v(n, θ)=s(p, θ))} , (5)

where A(l) is the set of ancestor nodes of l in the tree. In other words, the path
from l ∈ L′(p, θ) to the root p is a principal variation (PV). This is because a child
is considered to be the best choice in its parent node if themin-maxvalue of the child
is the same as that of the parent node. Note that L′ contains at least one leaf node.
We assume that the tree expanded by the search does not depend on θ. Thus, our
discussion here is valid for variants of min-max searches with static termination
conditions and pruning techniques based on depth, width, and/or a move itself.
However, it is not valid for other techniques such as futility pruning. αβ pruning
is also turned off in order to find multiple PVs. A min-max tree may be a direct
acyclic graph (DAG) with transpositions but it cannot be a cyclic graph.

Maximum Change in v(n, θ) w.r.t. θ: Assume that θ is slightly modified
from θ0 into θ1, where the change is only in the i-th element s.t. θ1(i)−θ0(i) = δ
and θ1(j)− θ0(j) = 0 for j �= i. We first show that this change in θ cannot make
a large change in the min-max value of each node if the change δ is sufficiently
small.

Let N ′(p, θ) be the set of nodes that are on the path from the root p to each
leaf on PV, l ∈ L′(p, θ). From the definition of the min-max values in Eq. (4)
and that of L′ in Eq. (5), we have

∀n ∈ N ′(p, θ0), v(n, θ0) = s(p, θ0), (6)

∀n ∈ N ′(p, θ0), ∃c ∈ C(n), c ∈ N ′(p, θ0). (7)

Then, there exists a constant a > 0 such that{
v(n, θ0) = s(p, θ0) > a+maxc∈(C(n)\N ′(p,θ0)) v(c, θ0) (n:max-node)
v(n, θ0) = s(p, θ0) < −a+minc∈(C(n)\N ′(p,θ0)) v(c, θ0) (n:min-node)

(8)

for all internal nodes n ∈ N ′(p, θ0) in the search tree. Here, A \ B denotes the
set difference that is {e|e ∈ A∧ e /∈ B}. The constant a represents the stableness
of PV. In contrast, the maximum change in the min-max value of a node n is
bound by the maximum change Dn in the leaves that are the descendants of n:
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Fig. 1. Left: example of a min-max tree (graph) with a transposition at n5, Center:
v(n, θ1) at a max-node n ∈ N ′(p, θ0) depends only on the children c ∈ N ′(p, θ0), Right:
the partial derivative of s(p, θ) exists, but the value is not equal to that of a PV leaf

∂
∂θ(i)

eval(a, θ).

|v(n, θ1)− v(n, θ0)| ≤ max
l∈L(n)

| eval(l, θ1)− eval(l, θ0)| = Dn. (9)

A formal proof of this bound by mathematical induction on a min-max tree,
as well as a proof of the continuity of v(n, θ), will be published later [10]. For
example, a small min-max tree in the left figure of Fig. 1 has two paths of
principal variation; n0n1n5, and n0n2n5. In the figure, a max-node and min-
node are denoted by a box and circle, respectively. Therefore, L′(n0) = {n5}
and N ′ = {n0, n1, n2, n5}.

Assume that each leaf value changes by at most 0.1. Note that such a δ
always exists as our evaluation function is continuous. Then, it will be proven
that |v(n, θ1) − v(n, θ0)| ≤ 0.1 for each internal node n of height 1, 2, 3, .. in
order: It is obvious for n4, n5, and n6, then it can be proven for n1, n2 and
n3, and finally for n0. Also, as is explained in the next paragraph, because
a = 2.9 < min(|7 − 2|, |2 + 1|) satisfies Eq. (8) and 0.1 < a

2 , neither n4 nor n6

can become a new PV as a result of this change.

Partial Subgradient of v(n, θ): The new min-max value v(n, θ1) on each node
is identified as follows. Let the change δ be sufficiently small s.t.Dp < a/2. Under
this condition, the new set of principal variations cannot be far different from the
old set, and actually is a subset of the old set. Each internal node n ∈ N ′(p, θ0)
including the root p has the set of best children (C(n)∩N ′(p, θ0)) �= ∅, from Eq.
(7), and the new min-max value of each of such children is still better than that
of any other children in the new tree with θ1, from Eq. (8) and (9):⎧⎨

⎩
min

c∈(C(n)∩N ′(p,θ0))
v(c, θ1) > max

c∈(C(n)\N ′(p,θ0))
v(c, θ1) (n:max-node)

max
c∈(C(n)∩N ′(p,θ0))

v(c, θ1) < min
c∈(C(n)\N ′(p,θ0))

v(c, θ1) (n:min-node)
(10)

for each internal node n ∈ N ′(p, θ0). Thus, for n ∈ N ′(p, θ0):

v(n, θ1) =

⎧⎨
⎩

eval(n, θ1) (n:leaf)
maxc∈(C(n)∩N ′(p,θ0)) v(c, θ1) (n:max-node)
minc∈(C(n)∩N ′(p,θ0)) v(c, θ1) (n:min-node)

(11)
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The center figure of Fig. 1 sketches an example of v(n, θ1) changing with δ,
where n is a max-node. There are the three best children with the value v(n, θ0)
when δ = 0. Each value continuously (not always linearly) changes according to
δ. While the best child changes depending on the sign of δ, it is always one of
c ∈ N ′ when δ is sufficiently small. This is because the min-max values of other
children c /∈ N ′ are sufficiently less (by at least a) than v(n, θ0) at δ = 0.

Now, let us discuss the partial derivative of v(n, θ) where n ∈ N ′(p, θ0), as a
result of introducing two limits g+i (n, θ) and g−i (n, θ):

g+i (n, θ0) = lim
δ→+0

v(n, θ1)− v(n, θ0)

θ1(i)− θ0(i)
, g−i (n, θ0) = lim

δ→−0

v(n, θ1)− v(n, θ0)

θ1(i)− θ0(i)
.

(12)
It is obvious that g+i (n, θ) = g−i (n, θ) = ∂

∂θ(i) eval(n, θ) for each leaf n. For an

internal node n, by using Eq. (6) and Eq. (11), we obtain:

g+i (n, θ) =

{
maxc∈(C(n)∩N ′(p,θ0)) g+i (c, θ) (n:max-node)
minc∈(C(n)∩N ′(p,θ0)) g+i (c, θ) (n:min-node)

g−i (n, θ) =
{
minc∈(C(n)∩N ′(p,θ0)) g−i (c, θ) (n:max-node)
maxc∈(C(n)∩N ′(p,θ0)) g−i (c, θ) (n:min-node).

(13)

For the root p, there always exist a leaf la and lb ∈ L′(p) such that

g+i (p, θ) =
∂

∂θ(i) eval(la, θ), g−i (p, θ) =
∂

∂θ(i) eval(lb, θ). (14)

Thus, the partial derivative of s(p, θ) exists if g+i (p, θ) = g−i (p, θ):

∂

∂θ(i)
s(p, θ) =

∂

∂θ(i)
eval(la, θ). (15)

It is obvious that the partial derivative, Eq. (15), exists if |L′(p)| = 1 or if all
the partial derivatives of the leaves in L′ are identical. Also, even if the leaves
have different partial derivatives, the partial derivative of s may still exist, as
sketched in the right figure of Fig. 1, where the partial derivative is 1 for a and
0 for b and c.

Finally, the partial derivative of the objective function J is defined if all the
positions are partially differentiable:

∂J(P , θ)
∂θ(i)

=
∑
p∈P

∑
m∈M(p)

dT (x)

dx

∣∣∣∣
x=s(p.m,θ)−s(p.gp,θ)

∂ (s(p.m, θ)− s(p.gp, θ))

∂θ(i)
.

(16)
A previous study implicitly assumes |L′| = 1 [16] or uses this partial derivative
as an approximation for general cases without further analysis [9].

Practical Issues: Practical game-tree search methods are optimized to find
one of the principal variations and are not suitable for finding all the leaves of
PVs. So, our interest is on the magnitude of errors accumulated when we stick to
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using the leaf of the PV found by the search, and interpreting it as la in Eq. (15).
The errors will be negligible when |L′(p, θ)| = 1 for most positions p. However,
as shown in the experiments in the next section, |L′(p, θ)| is often more than
1 especially at the beginning of learning. A different optimistic scenario is that
for most positions p and dimension i, ∂

∂θ(i) eval(l, θ) is equal or similar for each

l ∈ L′(p, θ). Also, the partial derivative of ∂
∂θ(i) (s(p.m, θ)− s(p.gp, θ)) may exist

even if the partial derivative of s(p.gp, θ) does not. However, such cases are rare
in practice.

A second important issue is the smallness of δ. We have so far assumed that
the parameter vector θ consists of real numbers. However, the parameters in
a practical evaluation function are of the integral type so that the game-tree
search will be efficient. Obviously, the smallest δ is 1 in integral type. Eq. (10)
can no longer be safely assumed when 1 is relatively larger than a. In such cases,
a new search value with θ1 cannot be produced by any of the previous PVs with
θ0, i.e., ∀l ∈ L′(p, θ0), s(p, θ1) �= eval(l, θ1). Consequently, even when we have
a precise gradient, the objective function J may become worse after updating
with integer parameters.

4 Experimental Results

This section shows experimental results on the accuracies of the approximation
of the gradients using the leaf position. It also discusses their effectiveness at
controlling the search results when the parameters are represented by integer.

4.1 Game of Shogi and Shogi Programs

The experiments were conducted on a computer program for playing shogi, a
Japanese variant of chess [11]. The rules of shogi are similar to those of chess
in that the αβ search guided by a heuristic evaluation function works well. A
unique regulation in shogi is the “dropping” rule whereby captured pieces can be
placed again on almost any empty square on the board by the capturing player.
Practical endgame databases are thus unavailable in shogi, and the branching
factor and the average move numbers for a game are greater than those of chess.
We chose to experiment with GPSShogi [12], which is the winner of the CSA
Championship in 2009. CSA Championship is the most authoritative tournament
in computer shogi. The source codes are publicly available on the Web [15].
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Four different evaluation functions were used: (a) Learnt is the main evalu-
ation function in GPSShogi revision 2590. It has about 8 million parameters,
and the number of non-zero values after learning is about 1.4 million. The values
should be near optimal since they were adjusted by minimizing Eq. (3) with a
difference in T (x); the hinge loss was used instead of the sigmoid loss. (b) Hand-
tuned is an old evaluation function that had been used until 2008. The features
were different from those of Learnt , and the parameters were hand-tuned, except
for a few opening features. The parameters are considered to be reasonable but
far from the optimal because the winning ratio in self-play is almost 70% if the
majority of the parameters were adjusted by learning. (c) Piece had the same
features as Learnt but the parameters were set to zero, except for 14 piece values.
This was done to enable analysis of the gradients at the beginning of learning.
(d) Piece128 was similar to Piece but the parameters for all piece values were set
to 128. This was done to enable analysis of an extreme start-point of learning.

The training set consisted of 47,538 scores of professional games. The search in
s(n, θ) was a full width search of depth 1 (that is, a total 2-ply search if counted
from a position in the game records) with a quiescence expansion. While a 1-
to 3-ply search was used in similar experiments in chess [1,14,16], a 1-ply search
was used here and in the training of a strong program [9] due to the large
branching factors of shogi. For efficiency, an αβ window s(gp, θ) ± w was used
in the search for moves other than gp if appropriate. The actual value w was
different for each evaluation function and set to twice the pawn value. Fig. 2
shows how the average number of legal moves increases with the move number,
as well as the average number of moves inside the window. Moves outside the
window were ignored in computing J , as the gradient of T (x) is almost 0 if |x|
is sufficiently large. The constant α in T (x) was set to be 0.0273 · 256/w, where
0.0273 is the learning parameter used in Bonanza[8]. The operating system was
Linux amd64 (Debian Squeeze). Several computers were used but details are not
relevant because the cpu time is not discussed here. It took eight X5570 cores a
few hours to identify all search values needed for J for each parameter set.

4.2 Existence of Partial Derivative

Table 1 shows various estimates of the upper bound of the frequency of positions
where the partial derivative of s(p, θ) does not exist, for each evaluation function.

First, the frequency for which a position has multiple principal variations
was measured for all primary positions, p.gp, in the training data. We did this
because Eq. (16) can be safely used if |L′| = 1 for all positions. The second
column, “PV path”, in Table 1, shows the frequency for which a position has
multiple paths in PV. The third column, |L′|, shows the frequency for which a
position has multiple leaves in PV. Both frequencies are similar but may differ
in the case of a transposition, as sketched in the left tree in Fig. 1. It is natural
that the estimation by |L′| has a lower frequency. Both frequencies are quite low
for Learnt. Thus, we can expect that errors introduced by such positions will be
negligible for this set of features and parameters on the condition that the dis-
tribution of the values of the gradients of eval is similar in all training positions.
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Table 1. Various estimates of the upper bound of the frequency for which the min-max
value is not differentiable

PV path(%) |L′| (%) Pawn (%) (non zero) Plance (%) (non zero)

Learnt 2.72 0.486 0.0414 0.0737 0.0004 0.0102
Hand-tuned 20.1 14.4 4.09 7.15 0.338 8.07

Piece 88.2 87.5 0.149 0.267 0.0285 0.697
Piece128 99.3 99.3 71.3 87.2 7.77 78.4
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Fig. 3. Cumulative frequency of the number of PVs (left: by paths, right: by leaves)

However, these frequencies become non-negligible for Hand-tuned and quite high
for Piece and Piece128 . The cumulative frequencies of |L′| are shown in Fig. 3.
The horizontal axis represents |L′|, and the vertical axis is for the frequency of
positions of which |L′| ≤ x. One can see that the cumulative frequency is still
less than 40% and 20% in Piece and Piece128 , respectively, even for |L′| ≤ 8.

Even when |L′| > 1, the min-max value of p is still partially differentiable
w.r.t. such a θ(i) that the partial gradient of ∂

∂θ(i) eval(n, θ) has the same value

for all n ∈ L′(p, θ). To estimate the frequency of such cases, the partial gradi-
ent of two major features, the pawn value and promoted-lance (plance) value,
were analyzed. The fourth to seventh column in Table 1 show the frequency
for which different partial gradients exist for leaves in L′. The frequencies were
separately measured for all positions and for positions where any leaf in L′ had
non-zero partial gradients. The latter statistics are less dependent than the for-
mer ones are on how frequently the feature occurs in the training positions. The
cumulative values of both measurements are shown in Fig. 4. Again, for all statis-
tics, the frequency of non-differentiable positions is rather low for Learnt. Also,
the frequencies for Hand-tuned and Piece are quite low here. In contrast, the
frequencies are still over 87% and 78% for Piece128 . This indicates that reason-
able piece values, rather than a single value for all pieces, are preferable at the
beginning of learning.

4.3 Effectiveness of Gradient Descent

The next question is whether the objective function J in Eq. (3) will decrease
after an update of θ by an approximation of the gradient of Eq. (16).

First, all derivatives in Eq. (16) for all features in each evaluation function
were computed and stored. Fig. 5 shows the distribution of the absolute values
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of the derivatives. The vertical axis is for the absolute value, and the horizontal
axis is for the cumulative percentage of that value when the absolute values are
in nondecreasing order. For a reasonable comparison of absolute values, deriva-
tives for Hand-tuned were divided by 16 and those of the other three evaluation
functions were divided by 341, so that the pawn value would be scaled to 128
in the four evaluation functions. The left figure is for non-zero derivatives, and
the right one is for derivatives of which the corresponding parameter is not zero.
The results of the latter tests for Learnt directly applied for Piece and Piece128 ,
as they used the same set of features as Learnt . The right figure also shows data
for the evaluation function in Bonanza [8] with the same training data, 256 as
the search window w and 0.0273 as α in T .

The range of the absolute values is about 10−8 to 105. Apparently, the deriva-
tives for the non-zero features in the right figure have a larger variance than
those for all features. This is because features of which the parameter is zero
after learning or hand-tuning tend to have a derivative near zero. Derivatives of
Learnt were significantly smaller than those of Piece or Piece128 . Since these
three evaluation functions have the same feature set, this difference suggests
sufficient learning decreased the absolute values of the derivatives.

An important observation is that the standard update method proportional
to the gradients, such as θt+1 = θt − α∇θt, is not suitable in this situation.
The largest derivative is more than 107 times the smallest derivative even when
the values of both extreme end were omitted. As long as the parameters in
an evaluation function are represented by integers, this means that the largest
parameter will be updated by 107 if one updates the smallest parameter by
1, which is the minimum δ of the integral type. GPSShogi uses hand-crafted
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features based on knowledge of shogi [12]; these features are totally different
from the brute-force combinations of piece-features in Bonanza. Thus, this
phenomenon can be expected to happen with various evaluation functions.

For 1,024 randomly selected features, the changes in the objective function J
were measured for δ = 1, 2, 4, 8. Only Hand-tuned was used in this experiment,
because our computational resources were limited. The horizontal axis of Fig.
6 is for the δ. The vertical axis is for the frequency of which the number of
features decreased J after one update (“one-shot”) or for all updates within δ
(“stable”). This time, J(P , θ1) was computed with θ1 assuming that L′(, θ1) are
the same as L′(, θ0) for all positions. By increasing δ, the frequency of “stable”
decreases while the frequency of “one-shot” increases. This means that the slope
of J around the parameter of Hand-tuned is often non-monotonic.

Finally, we analyzed the change in J with the exact L′(, θ1). 164 stable features
were randomly selected among ones decreased J with any δ = 1, 2, 4, 8 in the
previous experiment. Again, due to limited computational resources, J before
and after the update were measured with an 8,000 record subset of the training
data. The frequency that J decreased was 28.7% and 21.3% for δ with 1 and 8,
respectively. The frequency that J increased was 28.7% and 45.1% for δ with 1
and 8, respectively. Since the derivatives were computed by using the full training
records, it is not surprising that the frequency did not reach 100%. However, the
differences between 28.7% and 21.3% and between 28.7% and 45.1% indicate
that δ = 1 is preferable to δ = 8 for this update.

5 Concluding Remarks

This paper discussed the gradients of the search results as to how the min-max
value changes along with a change in a parameter vector θ in an evaluation
function. By analyzing the variations of min-max values in a search tree, it
was shown that the variation of the min-max value is, in general, determined
by the gradients of the two special leaves as in Eq. (14) depending on a search
tree. Recent supervised and reinforcement learning methods often use the partial
derivative of the leaf node in a PV found by a tree search [14,16,9,2]. However, it
was found that this partial derivative does not always equal the partial derivative
of the min-max value at the root even for positions where the root value is
partially differentiable. Thus, careful utilization of the subgradients analyzed in
this paper may lead to improvements of these methods.
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The experiments on a shogi program with about a million of parameters
showed how often the search value is differentiable as well as the accuracy of
the approximation of the gradients using the leaf position. In most cases, the
gradients of the leaf of PV seemed to be good guides for the subgradients of the
root value. However, large errors occurred when the evaluation function valued
all pieces equally. Moreover, as long as parameters are represented by integers,
1 or a similar small value would be a suitable step-size in the updates of the
parameters [9] rather than more popular steps proportional to their gradients.
Here, we presented two new empirical supports for the effectiveness of small step-
sizes: (1) the wide range of the distribution of the absolute values of derivatives
and (2) the statistics in changes in the objective function after updating.
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Abstract. Using the bluffing dice game Dudo as a challenge domain, we ab-
stract information sets by an imperfect recall of actions. Even with such abstrac-
tion, the standard Counterfactual Regret Minimization (CFR) algorithm proves
impractical for Dudo, since the number of recursive visits to the same abstracted
information sets increase exponentially with the depth of the game graph. By
holding strategies fixed across each training iteration, we show how CFR training
iterations may be transformed from an exponential-time recursive algorithm into
a polynomial-time dynamic-programming algorithm, making computation of an
approximate Nash equilibrium for the full 2-player game of Dudo possible for
the first time.

1 Introduction

In recent years, Counterfactual Regret Minimization (CFR) has proven to be an im-
portant innovation in advancing optimal strategy approximation for large extensive
game-trees of partially-observable stochastic games (POSGs) such as Texas Hold’em
Poker [10,5,7]. Imperfect recall of actions is one of the means of abstracting such large
extensive games. The approximation of optimal play with this abstraction has led to play
performance improvements with the non-abstracted game [9]. In this paper, we demon-
strate how a straightforward modification to CFR, using imperfect recall of actions,
reduces individual training iterations from exponential to polynomial time complexity,
allowing the first computation of an approximately optimal strategy for the full game
of 2-player Dudo. After introducing Dudo, we will (1) review the imperfect recall of
actions and CFR, (2) motivate and introduce Fixed-Strategy Iteration CFR (FSICFR),
and (3) compare the performance of CFR and FSICFR. Finally, we will (4) discuss four
open questions.

1.1 The Game of Dudo

Dudo is a bluffing dice game thought to originate from the Inca Empire circa 15th cen-
tury. Many variations exist in both folk and commercial forms. The rule set we use from
[3] is perhaps the simplest representative form, and is thus most easily accessible to both
players and researchers. Liar’s Dice, Bluff, Call My Bluff, Perudo, Cacho, Cachito are
names of variations1.

1 In some cases, e.g., Liar’s Dice and Cacho, there are different games of the same name.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 170–183, 2012.
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Dudo has been a popular game through the centuries. From the Inca Empire, Dudo
spread to a number of Latin American countries, and is thought to have come to Eu-
rope via Spanish conquistadors [6]. It is said to have been “big in London in the 18th

century” [2]. Richard Borg’s commercial variant, published under the names Call My
Bluff, Bluff, and Liar’s Dice, won the prestigious Spiel des Jahres (German Game of
the Year) in 1993. On BoardGameGeek.com2, the largest website for board game en-
thusiasts, Liar’s Dice is ranked 270/53298 (i.e., top 0.5%)3. Although a single, standard
form of the game has not emerged, there is strong evidence of the persistence of the
core game mechanics of this favorite bluffing dice game since its creation.

Rules: Each player is seated around a table and begins with five standard six-sided dice
and a dice cup. Dice are lost with the play of each round, and the object of the game
is to be the last player remaining with dice. At the beginning of each round, all players
simultaneously roll their dice once, and carefully view their rolled dice while keeping
them concealed from other players. The starting player makes a claim about what the
players have collectively rolled, and all players clockwise and in turn continue by ei-
ther making a stronger claim or challenging the previous claim, by declaring “Dudo”
(Spanish for “I doubt it.”). A challenge ends the round, and then players lift their cups,
and one of the two players involved in the challenge loses dice. Lost dice are placed in
full view of players.

Claims consist of a positive number of dice and a rank of those dice, e.g., two 5’s,
seven 3’s, or two 1’s. In Dudo, the rank of 1 is wild, meaning that dice rolls of rank 1
are counted in totals for other ranks as well. We will denote a claim of n dice of rank r
as n × r. In general, one claim is stronger than another claim if there is an increase in
rank and/or number of dice. That is, a claim of 2× 4 may, for example, be followed by
2×6 (increase in rank) or 4×3 (increase in number). The exception to this general rule
concerns claims of wild rank 1. Since 1’s count for other ranks and other ranks do not
count for 1’s, 1’s as a rank occur with half frequency in counts and are thus considered
doubly strong in claims. So, in the claim ordering, 1× 1, 2× 1, and 3× 1 immediately
precede 2× 2, 4× 2, and 6× 2, respectively.

Mathematically, one may enumerate the claims in order of strength by defining
s(n, r), the strength of claim n× r, as follows:

s(n, r) =

⎧⎨
⎩

5n− �n2 � − r − 7 if r �= 1

11n− 6 if r = 1 and r ≤ �dtotal

2 �
5dtotal + n− 1 if r = 1 and r > �dtotal

2 �
(1)

where dtotal is the total number of dice in play. Thus for 2 players with 1 die each, the
claims would be numbered as follows.

Strength s(n, r) 0 1 2 3 4 5 6 7 8 9 10 11

Claim n× r 1× 2 1× 3 1× 4 1× 5 1× 6 1× 1 2× 2 2× 3 2× 4 2× 5 2× 6 2× 1

Play proceeds clockwise from the round-starting player with claims of strictly increas-
ing strength until one player challenges the previous claimant with “Dudo”. At this

2 http://www.boardgamegeek.com
3 as of August 17th, 2011.
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point, all cups are lifted, dice of the claimed rank (including wilds) are counted and
compared against the claim. For example, assume that Ann, Bob, and Cal are playing
Dudo, and Cal challenges Bob’s claim of 7× 6. There are three possible outcomes.

– The actual rank count exceeds the challenged claim. In this case, the challenger
loses a number of dice equal to the difference between the actual rank count and
the claim count. Example: Counting 6’s and 1’s, the actual count is 10. Thus, as an
incorrect challenger, Cal loses 10− 7 = 3 dice.

– The actual rank count is less than the challenged claim. In this case, the chal-
lenged player loses a number of dice equal to the difference between the claim
count and the actual rank count. Example: Counting 6’s and 1’s, the actual count is
5. Thus, as a correctly challenged claimant, Bob loses 7− 5 = 2 dice.

– The actual rank count is equal to the challenged claim. In this case, every player
except the challenged player loses a single die. Example: Counting 6’s and 1’s, the
actual count is indeed 7 as Bob claimed. In this special case, Ann and Cal lose 1
die each to reward Bob’s exact claim.

In the first round, an arbitrary player makes the first claim. The winner of a challenge
makes the first claim of the subsequent round. When a player loses all remaining dice,
the player loses and exits the game. The last remaining player is the winner. The fol-
lowing table provides a transcript of an example 2-player game with “1:” and “2:”
indicating information relevant to each player.

Round Actions Revealed Rolls Result
1 1:“2×6”, 2:“3×6”, 1:“5×6”, 2:“Dudo” 1:12566 2:23556 1:loses 1 die
2 2:“3×6”, 1:“4×5”, 2:“5×5”, 1:“Dudo” 1:3555 2:23455 1:loses 1 die
3 2:“3×6”, 1:“Dudo” 1:356 2:24466 1:loses 1 die
4 2:“2×2”, 1:“3×2”, 2:“Dudo” 1:12 2:13456 2:loses 1 die
5 1:“2×6”, 2:“3×2”, 2:“Dudo” 1:26 2:1222 1:loses 2 dice

2 Imperfect Recall and Counterfactual Regret Minimization

In this work, we restrict our attention to two-player Dudo, yet even with this simplifi-
cation, we will show that the number of information sets poses difficulties for modern
computing.

Since Dudo is divided into rounds, the play environment is episodic in nature and in-
formation from previous rounds is not relevant for the decision at hand4. An information
set consists of sequences of moves and chance outcomes consistent with a player’s state
of knowledge. Thus, a Dudo information set consists of (1) a history of claims from the
current round, (2) the player’s private roll information, and (3) the number of opponent
dice. Let d1, d2, and dmax denote the number of current player 1 dice, the number of
opponent player 2 dice, and the maximum number of dice per player, respectively. In
general, the number of information sets for d1 and d2 in a two-player game is then the

4 The focus here is on optimal play. When seeking rather to model and exploit a suboptimal
opponent, play information from previous rounds would, of course, be relevant.
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product of the number of possible claim histories 26(d1+d2) (i.e., the size of the power
set of possible claims), and the number of possible rolls

(
d1+5
d1

)
.

However, in Dudo it is impossible to have d1 < d2 = dmax with an even number
of claims. An even number of claims in a claim history implies that the current player
started the current round, and thus either the current round is the first round, or the
current player won the previous round-ending challenge. However, d1 < dmax implies
this is not the first round, and d2 = dmax implies the opponent could not have lost a
previous challenge. Therefore, the current player lost the previous challenge, leading
us to a contradiction. Since exactly half of power sets have an even-numbered size, we
must reduce such information set counts by half. A symmetric argument applies for
d2 < d1 = dmax with an odd number of claims. Our computation counting the number
of power sets then becomes

∑
d1,d2∈[1,5]

{
26(d1+d2)−1

(
d1+5
d1

)
if d1 < d2 = dmax or d2 < d1 = dmax,

26(d1+d2)
(
d1+5
d1

)
otherwise.

= 294, 021, 177, 291, 188, 232, 192.

Thus, a full 2-player, 5-versus-5 dice game of Dudo has over 294 quintillion information
sets.

2.1 Imperfect Recall of Actions

For common modern machines, 2.9 × 1020 information sets is too large to iterate over
for convergence of mixed strategies. As with successful computational approaches to
Texas Hold’em Poker, we abstract information sets in order to reduce the problem size.
We then solve the abstraction and apply the abstracted policy to the original game. For
Dudo, the growth rate of possible claim sequences is most responsible for the overall
growth of the extensive game tree. We also note that the later claims of a round are less
easily supported and thus more often contain reliable information.

Since more recent claims tend to be more important to the decision at hand, our
chosen means of abstraction is to form abstract information sets that recall up to m
previous claims. For example, consider this 5-vs.-5 round claim sequence: 1× 5, 2× 5,
4 × 2, 5 × 4, 3 × 1, 6 × 4, 7 × 2. For a claim memory limit of m = 3, the 5-vs.-5
round information set for each of these decisions would be enumerated according to
the current player dice roll enumeration and the enumeration of the up-to-3 most recent
claims: {}, {1× 5}, {1× 5; 2× 5}, {1× 5; 2× 5; 4× 2}, . . . , {3× 1; 6× 4; 7× 2}.

An imperfect recall of actions allows us to trade off fine distinction of judgment
for computational space and time requirements. Figure 1 shows how the number of
abstract information sets varies according to the memory limit m and the number of
dice for each player. As we will see, we can apply imperfect recall of actions without
significantly impacting play performance.

2.2 Counterfactual Regret Minimization

Counterfactual Regret Minimization (Algorithm 1), while defined for general extensive
game trees, can also be applied to abstracted information sets. We will now summarize
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m Information Sets

1 57626

2 2069336

3 21828536

4 380033636

5 2751474854

all 2.9× 1020

(a) No. of abstracted
info. sets with varying
memory limit m.

Opponent Dice
Dice 1 2 3 4 5

1 1794 5928 13950 27156 43056
2 20748 48825 95046 163947 241962
3 130200 253456 437192 693504 971264
4 570276 983682 1560384 2327598 3132108
5 159012 217224 284508 360864 9084852

(b) Information sets for each round with memory
limit m = 3.

Fig. 1. Number of abstracted information sets varying recall limit and number of dice in round

the Counterfactual Regret Minimization (CFR) algorithm, directing the reader to [10]
and [5] for detailed descriptions and proofs. At each player node recursively visited
in a training iteration, a mixed strategy is computed according to the regret-matching
equation, for which we now provide notation and which we define in a manner similar
to [5].

Let A denote the set of all game actions. Let I denote an information set, and A(I)
denote the set of legal actions for information set I . Let t and T denote time steps.
(Within both algorithms, t is with respect to each information set and is incremented
with each visit to the information set.) A strategy σt

i for player i maps each player
i information set Ii and legal player i action a ∈ A(Ii) to the probability that the
player will choose a in Ii at time t. All player strategies together at time t form a
strategy profile σt. We refer to a strategy profile that excludes player i’s strategy as σ−i.
Let σI→a denote a strategy equivalent to σ, except that action a is always chosen in
information set I .

Let πσ(h) be the reach probability of game history h with strategy profile σ. Further,
let πσ(I) be the reach probability of reaching information set I through all possible
game histories in I , i.e., πσ(I) =

∑
h∈I π

σ(h). The counterfactual reach probability
of information state I , πσ

−i(I), is the probability of reaching I with strategy profile
σ except that, counter to the fact of σ, we treat current player i actions to reach the
state as having probability 1. In all situations we refer to as “counterfactual”, one treats
the computation as if player i’s strategy was modified to have intentionally played to
information set Ii. Put it otherwise, we exclude the probabilities that factually came into
player i’s play from the computation.

Let Z denote the set of all terminal game histories. Then proper prefix h � z for
z ∈ Z is a nonterminal game history. Let ui(z) denote the utility to player i of terminal
history z. Define the counterfactual value at nonterminal history h as:

vi(σ, h) =
∑

z∈Z,h�z

πσ
−i(h)π

σ(h, z)ui(z). (2)

The counterfactual regret of not taking a at history h is defined as:

r(h, a) = vi(σI→a, h)− vi(σ, h). (3)
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The counterfactual regret of not taking action a at information set I is then:

r(I, a) =
∑
h∈I

r(h, a). (4)

The difference between the value of always choosing action a and the average value of
the node strategy is an action’s regret, which is then weighted by the probability that
other player(s) will play to reach the node. This is then averaged over all time steps. If
we define the nonnegative counterfactual regret rT,+

i (I, a) = max(rTi (I, a), 0), then
Hart and Mas-Colell’s regret-matching equation [1] for the strategy at time T + 1 is:

σT+1
i (I, a) =

⎧⎨
⎩

rT,+
i (I,a)∑

a∈A(I) r
T,+
i (I,a)

if
∑

a∈A(I) r
T,+
i (I, a) > 0

1
|A(I)| otherwise.

(5)

For each player node, this equation is used to compute action probabilities in proportion
to the positive average regrets. For each action, CFR then computes associated child
nodes for each player, and computes utilities of such actions through recursive calls
with updated probabilities for reaching such nodes through the current node. Regrets
are computed from the returned values, and the value of playing to the current node is
finally computed and returned.

The CFR algorithm is presented in detail in Algorithm 1. The parameters to CFR
are the history of actions, the learning player, the time step, and the reach probabilities
for players 1 and 2, respectively. Variables beginning with v are for local computation
and are not computed according to the previous equations for counterfactual value. In
lines 13, 15, and 20, P (h) is the active player after history h. In lines 14 and 16, ha
denotes history h with appended action a. In line 22, π−i refers to the counterfactual
reach probability of the node, which in the case of players {1, 2} is the same as reach
probability π3−i. In line 32, ∅ refers to the empty history.

The average strategy profile at information set I , σ̄T , approaches an equilibrium as
T → ∞. The average strategy at information set I , σ̄T (I), is obtained by normalizing
sI over all actions a ∈ A(I). What is most often misunderstood about CFR is that this
average strategy profile, and not the final strategy profile, is what converges to a Nash
equilibrium.

3 Fixed-Strategy Iteration CFR

The technique we introduce in this paper, Fixed-Strategy Iteration Counterfactual Re-
gret Minimization (FSICFR), is a significant structural modification to chance-sampled
CFR yet convergence for both relies on the regret-matching equation (5) which is com-
mon to both algorithms.

Essentially, CFR traverses extensive game subtrees, recursing forward with reach
probabilities that each player will play to each node (i.e., information set) while main-
taining history, and backpropagating values and utilities used to update parent node
action regrets and thus future strategy.

When applying chance-sampled CFR to abstracted Dudo, we observed that the num-
ber of recursive visits to abstracted player nodes grew exponentially with the depth
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Algorithm 1. Counterfactual Regret Minimization
1: Initialize cumulative regret tables: ∀I, rI [a] ← 0.
2: Initialize cumulative strategy tables: ∀I, sI [a] ← 0.
3: Initialize initial profile: σ1(I, a) ← 1/|A(I)|
4:
5: function CFR(h, i, t, π1, π2):
6: if h is terminal then
7: return ui(h)
8: end if
9: Let I be the information set containing h.

10: vσ ← 0
11: vσI→a [a] ← 0 for all a ∈ A(I)
12: for a ∈ A(I) do
13: if P (h) = 1 then
14: vσI→a [a] ← CFR(ha, i, t, σt(I, a) · π1, π2)
15: else if P (h) = 2 then
16: vσI→a [a] ← CFR(ha, i, t, π1, σt(I, a) · π2)
17: end if
18: vσ ← vσ + σt(I, a) · vσI→a [a]
19: end for
20: if P (h) = i then
21: for a ∈ A(I) do
22: rI [a] ← rI [a] + π−i · (vσI→a [a]− vσ)
23: sI [a] ← sI [a] + πi · σt(I, a)
24: end for
25: σt+1(I) ← regret-matching values computed using Equation 5 and regret table rI
26: end if
27: return vσ
28:
29: function Solve():
30: for t = {1, 2, 3, . . . , T} do
31: for i ∈ {1, 2} do
32: CFR(∅, i, t, 1, 1)
33: end for
34: end for

of the tree. Consider Figure 2, a straightforward directed acyclic graph (DAG). With
increasing depth, the number of possible paths to a node grows exponentially. If we
continue the DAG pattern to greater depth, we have a linear growth of nodes and expo-
nential growth of paths.

Similarly, in the game of Dudo with imperfect recall of actions, there are many paths
to an abstracted information set. (For the remainder of the paper, assume that informa-
tion sets are abstracted information sets, and that player nodes represent such abstracted
information sets.) Each added die linearly grows the number of possible claims, which
linearly grows the depth of the game-DAG and exponentially grows the number of paths
to each information set. As will be seen in the experimental results, this exponential
growth makes the application of CFR to the full game of Dudo impractical.
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0 1 2 3Depth: Depth Paths

1 1

2 2

3 4

Fig. 2. Example directed acyclic graph

Fixed-Strategy Iteration CFR (FSICFR) divides the recursive CFRalgorithm into two
iterative passes, one forward and one backward, through a DAG of nodes. On the forward
pass, visit counts and reach probabilities of each player are accumulated, yet all strategies
remain fixed. (By contrast, in CFR, the strategy at a node is updated with each CFR visit.)
After all visits are counted and probabilities are accumulated, a backward pass computes
utilities and updates regrets. FSICFR computational time complexity is proportional to
the number of nodes times the average node outdegree, whereas CFR complexity is pro-
portional to the number of node visits times the average node outdegree. Since the number
of node visits grows exponentially in such abstracted problems, FSICFR has exponential
savings in computational time per training iteration relative to CFR.

We now present the FSICFR algorithm for two-player, zero-sum games in detail as
Algorithm 2. Each player node n consists of a number of fields:

visits - the sum of possible paths to this node during a single training iteration.
pSumi - the sum of the probabilities that player i would play to this node along each

possible path during a single training iteration.
r - a mapping from each possible action to the average counterfactual regret for not

choosing that action.
σ - a node strategy, i.e., a probability distribution function mapping each possible ac-

tion to the probability of choosing that action.
σSum - the sum of the strategies used over each training iteration the node is visited.
player - the player currently taking action.
T - the sum of visits across all training iterations.
v - the expected game value for the current player at that node.

A significant, domain-specific assumption is required for this straightforward, zero-sum
form of FSICFR. There is a one-to-one correspondence between player nodes and ab-
stracted information sets, and our visits to nodes must contain enough state information
(e.g., predetermined public and private information for both players) such that the ap-
propriate successor nodes may be chosen. In the case of Dudo, this means that the
algorithm, having predetermined player rolls, knows which player information sets are
legal successors.

We note that the predetermination of chance node outcomes may present difficulties
for some games or game abstractions where constraints on a chance node are dependent
on the path by which it is reached (e.g., drawing the next card without knowing how
many and thus which cards have been previously drawn). This does not pose a prob-
lem for Dudo or non-draw forms of Poker. Observe that such predetermination should
proceed in topological order, as the predetermination of chance nodes affects the reach-
ability of later chance nodes.
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Also, we note that if, as in the case of Dudo, the number of visits to a node will be
constant across all training iterations, then one can eliminate the n.visits variable and
replace it by the value 1 in equations.

In summary, consider FSICFR as similar to the case where we hold the strategy
before a CFR training iteration fixed and execute an entire iteration of regret updates
without changing the strategy until after the iteration. In such a case, all operations at a
node are the same, and we transform the exponential tree recursion of CFR into a linear
dynamic-programming graph-traversal for FSICFR. As a consequence, the node update
frequency is equalized rather than exponentially proportional to depth.

4 Experimental Results

The performance of FSICFR did exceed that of CFR for small numbers of dice in play.
However, this was also necessary for the approximation of an optimal strategy for the
full 5-versus-5 game of Dudo. A single iteration of standard CFR became prohibitively
expensive for a practical Dudo training even for a small number of dice. In this section,
we will begin with a number of experiments (1) to demonstrate a real-time learning
performance for the small 2-versus-2 game, (2) to compare iteration costs for both al-
gorithms as we scale to more dice, and (3) to see how an imperfect recall of actions
performs when recall is varied5.

4.1 Learning Outperformance

In order to understand the relative real-time strength of FSICFR versus CFR, we sus-
pend the training threads at specific intervals of seconds (1, 2, 4, 8, etc.), exporting the
current strategy and resuming training. CFR defines the strategy for unvisited player
nodes as the default uniform strategy.

With a claim history memory limit of 3, we first sought to compare the performance
for 1-vs.-1 die training, by comparing a learned strategy versus an optimal strategy.
However, within the first second, both algorithms had largely converged, yielding little
contrast. We therefore turned our attention to 2-vs.-2 die training. Such a training relies
upon precomputed results of 1-vs.-2 and 2-vs.-1 dice training, both of which rely upon
1-vs.-1 die training. For a fair comparison, we used the result of 2 million iterations of
FSICFR for these 2- and 3-dice strategies, giving both the same smaller-case training.
For each exported strategy, we played 1 million games divided into two identical sets
of 500K games with the two players trading positions for each set.

The observed win rates with respect to logarithmic seconds are shown in Figure 3.
The contrast in the relative speeds of the two algorithms was so great that CFR training
still had unvisited nodes and made some use of the default random strategy through
128 seconds, whereas FSICFR training had visited all nodes before the first export at
1 second. We can see that FSICFR starts with a significant advantage, peaking at an
86.8% win rate at 4 seconds, after which CFR training gradually decreases that edge.

5 All experiments in this section were performed on Dell Optiplex 990 computers with an Intel
Core i7-2600 (3.4 GHz) and 8GB RAM running Ubuntu 11.04.
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Algorithm 2. FSICFR(L)

Require: A topologically sorted list L of extensive game DAG nodes.
Ensure: The normalized strategy sum n.σSum , i.e. the average strategy for each player node n,

approximates a Nash equilibrium.
1: for each training iteration do
2: Predetermine the chance outcomes at all reachable chance nodes in L.
3: for each node n in order of topologically-sorted, reachable subset L′ ⊂ L do
4: if n is the initial node then
5: n.visits ← n.pSum1 ← n.pSum2 ← 1
6: end if
7: if n is a player node then
8: Compute strategy n.σ according to Equation 5.
9: if n.r has no positive components then

10: Let n.σ be the uniform distribution.
11: end if
12: n.σSum ← n.σSum + (n.σ · n.pSum1 if n.player = 1 else n.σ · n.pSum2)
13: for each action a do
14: Let c be the associated child of taking action a in n with probability n.σ(a).
15: c.visits ← c.visits + n.visits
16: c.pSum1 ← c.pSum1 + (n.σ(a) · n.pSum1 if n.player = 1 else n.pSum1)
17: c.pSum2 ← c.pSum2 + (n.pSum2 if n.player = 1 else n.σ(a) · n.pSum2)
18: end for
19: else if n is a chance node then
20: Let c be the associated child of the predetermined chance outcome for n.
21: c.visits ← c.visits + n.visits
22: c.pSum1 ← c.pSum1 + n.pSum1

23: c.pSum2 ← c.pSum2 + n.pSum2

24: end if
25: end for
26: for each node n in reverse order of topologically-sorted, reachable subset L′ ⊂ L do
27: if n is a player node then
28: n.v ← 0
29: for each action a do
30: Let c be the associated child of taking action a in n with probability n.σ(a).
31: n.v(a) ← (c.v if n.player = c.player else −c.v)
32: n.v ← n.v + n.σ(a) · n.v(a)
33: end for
34: Counterfactual probability cfp ← (n.pSum2 if n.player = 1 else n.pSum1)
35: for each action a do
36: n.r(a) ← 1

n.T+n.visits
(n.T · n.r(a) + n.visits · cfp · (n.v(a)− n.v))

37: end for
38: n.T ← n.T + n.visits
39: else if n is a chance node then
40: Let [n.player , n.v] ← [c.player , c.v], where c is the predetermined child of n.
41: else if n is a terminal node then
42: n.v ← the utility of n for current player n.player .
43: end if
44: n.visits ← n.pSum1 ← n.pSum2 ← 0
45: end for
46: end for
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Fig. 3. FSICFR vs. CFR win rates during 2-vs.-2 dice training

Since both algorithms rely on the same update equations, they eventually converge to
the same game value. However, CFR’s convergence is slow even for 2-vs.-2 dice and,
after 8192 seconds of training, still wins only 44.7% of games against FSICFR6.

4.2 Computational Time Per Training Iteration

The full recursive traversal of CFR causes the relatively slow computation of training
iterations and underperformance against FSICFR. Furthermore, when we increase the
problem size, FSICFR becomes completely necessary. Consider the time cost per train-
ing iteration of FSICFR (Figure 4(a)) and CFR (Figure 4(b)). Entries are omitted in
Figure 4(b) where a single training iteration for a single pair of die rolls takes more
than four days of computation7.

Whereas the time cost per FSICFR iteration roughly doubles with each added die in
play, the standard CFR cost increases by almost two orders of magnitude for each added
die. Thus, for more dice in play, FSICFR not only outperforms CFR, but also converges
for all combinations of player/opponent dice before CFR can complete a single training
iteration for a single simulated pair of dice rolls with 7 or more dice. Computation of
a Dudo full-game strategy is not feasible with the standard CFR. FSICFR makes fea-
sible (1) the Dudo strategy computation, and (2) the strategy computation for similarly
structured games with exponentially growing paths to nodes of greater depth.

6 Wilson score intervals were used to compute 90% confidence intervals, but such intervals are
so small for 1 million games that they are not easily seen in Figure 3.

7 E.g., a single iteration of 2-vs.-5 dice CFR required 389, 244, 980 ms ≈ 4.5 days.
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Opponent Dice
Dice 1 2 3 4 5

1 0.3 1.0 2.1 4.9 9.9
2 0.7 2.0 4.7 9.7 18.7
3 2.1 4.7 9.2 18.6 34.4
4 5.0 9.8 18.7 32.4 55.3
5 10.0 18.9 34.8 56.1 94.5

(a) Time (ms) per FSICFR train-
ing iteration averaged over 1000
training iterations.

Opponent Dice
Dice 1 2 3 4 5

1 13 49 1551 97210 6179541
2 26 1507 99019 6310784 -
3 1509 98483 6211111 - -
4 97611 6265326 - - -
5 6290658 - - - -

(b) Time (ms) per single CFR training iteration.

Fig. 4. Time (ms) per training iteration

4.3 Varying Imperfect Action Recall

Finally, we turn our attention to the real-time training performance of FSICFR when
we vary the imperfect action recall limit. As in earlier experiments, we suspend training
threads and export strategies at intervals. In this experiment, however, we train for the
simplest 1-vs.-1 die round and compare performance against a known optimal 1-vs.-1
die strategy computed by Todd Neller and Megan Knauss in 2007 using the technique
of [4]. The results are shown in Figure 5.

First, we observe that by 512 seconds all training for memories of 2 or more claims
converges within 0.15% of the optimal performance. Only limiting the recall to a single
claim shows a poor, erratic performance. Smaller claim memory limits yield smaller
extensive game trees and converge more quickly with, in general, lesser performance.
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Fig. 5. 1-vs.-1 die FSICFR win rates vs. optimal strategy varying action recall imperfection
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However, the eventual superior gain in performance is not so significant for the larger
claim memory limits. Thus, a claim memory limit of 3 appears to be a reasonable ab-
straction for high-quality Dudo play that approximates optimal strategy.

Finally, we note that neither CFR nor FSICFR are guaranteed to converge to a Nash
equilibrium when applied to imperfect recall abstractions. Such abstraction pathologies
have been studied in [8]. However, experimental evidence (see, e.g., Figure 5) indicates
no such pathological behavior for the application of FSICFR to our imperfect recall
abstraction of Dudo.

5 Conclusion

In this work, we have computed the first approximation of optimal play for the en-
duringly popular 15th-century Inca dice game of Dudo. Abstracting the game through
an imperfect recall of actions, we reduced the number of information sets from over
2.9× 1020 to under 2.2× 107. However, Counterfactual Regret Minimization (CFR), a
powerful recent technique for competitive computer Texas Hold’em Poker, proved im-
practical for any application due to the exponentially growing recursive path traversals,
even in the abstracted game.

Our primary contribution is the observation that, in such games, the exponential re-
cursive traversal of CFR can be restructured as a polynomial dynamic-programming
traversal if we hold the strategies fixed at each node across the entire forward traversal,
and update the regrets and strategies only once per node at the concluding backpropaga-
tion of utilities. Fixed-Strategy Iteration Counterfactual Regret Minimization (FSICFR)
proved not only to be superior in learning rate for a small number of dice in play, but
also necessary for the practical computation of an approximate Nash equilibrium for
the full 2-player game starting with 5-vs.-5 dice.

At the end of this contribution we conclude by four open questions. (1) What is the
true game value for the full game of Dudo?(2) What is the quality of our full-game
approximation? (3) What is the best parallel version of this algorithm? (4) Given an
approximation of optimal policy, what is the best way to compress the policy so as to
minimize the loss of performance? While we have taken significant steps forward, we
fully recognize that many interesting questions may lie ahead.

Acknowledgments. The authors would like to thank Marc Lanctot for his great assis-
tance in presenting the overview of CFR, and Megan Knauss for her contribution to the
first computation of optimal 1-vs.-1 die Dudo strategy.
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Abstract. The landscape of an objective function for supervised learning of 
evaluation functions is numerically investigated for a limited number of feature 
variables. Despite the importance of such learning methods, the properties of 
the objective function are still not well known because of its complicated 
dependence on millions of tree-search values. This paper shows that the 
objective function has multiple local minima and the global minimum point 
indicates reasonable feature values. Moreover, the function is continuous with a 
practically computable numerical accuracy. However, the function has non-
partially differentiable points on the critical boundaries. It is shown that an 
existing iterative method is able to minimize the functions from random initial 
values with great stability, but it has the possibility to end up with a non-
reasonable local minimum point if the initial random values are far from the 
desired values. Furthermore, the obtained minimum points are shown to form a 
funnel structure. 

1 Introduction 

The heuristic evaluation function is one of the essential elements in game-tree search 
techniques, and a well-designed evaluation is required in order to build a high- 
performance tree searcher. A well-known example of designing a heuristic evaluation 
function can be found in computer chess. In [22], the following chess features are 
used to make approximate evaluation functions: (1) material balance, (2) pawn 
formation, (3) board positions of pieces, (4) attacks on a friendly piece to guard, on an 
enemy piece to exchange, on a square adjacent to the king, and to pin a piece, and (5) 
mobility. Although more sophisticated features can be found in open source chess 
programs nowadays [11, 14, 20], these feature selections seem to be an outline for the 
design of an accurate chess evaluation function. In the literature and chess programs, 
feature (1) is typically the dominant feature, and the majority of these evaluation 
functions are hand tuned. It seems that a successful evaluation function in computer 
chess has been designed, and computer players that use a straightforward evaluation 
function that works in favor of search speed on the game trees have outperformed the 
strongest human players [5]. 
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Despite being successful in chess, this course of action has not always yielded 
fruitful results with other chess variants. A good evaluation function has proven to be 
difficult to design for shogi, the Japanese chess variant. Because of the limited 
mobility of shogi pieces, positional considerations are more important than in chess. 
Therefore, a massive increase in the number of features has been required for a 
computer to play a decent game. A technical report [27] describes the evaluation 
function of a commercial shogi program YSS 7.0, one of the strongest shogi programs 
in 1997. In this report, the magnitudes of positional feature weights of each shogi 
piece are comparable to its material value. Because the number of crucial feature 
weights is too large to adjust manually, machine learning of a shogi evaluation 
function seems to be an inevitable way to create a strong artificial player. 

Machine learning of the heuristic evaluation function is a challenging problem, and 
researchers have made substantial efforts in various fields related to games (some of 
them are reviewed in [7]). One of the interesting ideas for learning evaluation 
functions of chess variants is supervised learning to control the heuristic search so that 
the search results agree with the desired moves [1, 8, 10, 12, 16, 19, 24]. Several 
kinds of loss functions that can be formulated as L(sj − sd) have been designed in 
order to guide supervised learning procedures; here, sd is the score for the desired 
move, and sj is the score for another legal move j. Then, the smaller values that these 
loss functions take, the better the search results will agree with the desired moves. 
Because the scores of the moves should be determined by game-tree searches, their 
loss functions are complicated functions of the evaluation feature weights; 
development of such a supervised learning technique is a challenging goal. Similar 
treatments, i.e., machine learning in conjunction with tree-searches, can be found in 
studies on reinforcement learning of evaluation functions [2, 3, 4, 21, 25, 26]. 

Although there has been only limited success in supervised learning of the heuristic 
evaluation function, recent computer shogi tournaments have shown signs of success; 
a fully machine-learned evaluation function performed better than the best human 
effort of handcrafting [10]. The supervised learning in question employed a numerical 
minimization of an objective function including a loss function that can be formulated 
as L(sj − sd). We take the term “objective function” to mean a function to be 
minimized as an optimization problem. The complexity of positional evaluations in 
shogi means that a large-scale feature vector must be optimized. In fact, the reported 
method numerically optimized more than 10 million feature weights to a local 
minimum with reasonable numerical accuracy. 

Despite the above-mentioned success, an efficient and stable optimization 
algorithm ought to be developed to find a better local minimum or to increase the 
feature variables. It is known that the performance of numerical optimizations is 
sensitive to the landscape of the objective function [6, 18, 23]. One example of an 
easy problem is minimization of a convex function; if a local minimum exists, then it 
is a global minimum. Figure 1 shows the properties of particular functions and their 
difficulties regarding numerical minimization. Because various global and local 
convergence algorithms are available, minimization of a smooth function (b) can be 
thought as an easy problem. In contrast, minimization of non-differentiable functions 
are often more difficult than cases (a) or (b), because a quadratic model, such as the 
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Hessian approximation of the conjugated gradient method [18, 23], is not always 
appropriate for these functions. The function (d) is also a difficult target, because an 
important local minimum is hidden inside a deep narrow trough, and it is quite 
difficult to find it by using numerical iteration methods. The last function, the most 
difficult example, is a non-continuous one; even primitive iterative methods such as 
gradient decent are generally not capable of finding its minimum. 

In the case of optimization of the shogi feature weights, the loss function’s 
dependence on millions of search values makes any analysis of its properties difficult. 
So far, only some of the properties of this function have been reported, and these 
assume that the tree search is strictly based on the minimax algorithm [10]: (a) the 
function is continuous with the feature weights, and (b) the function is not always 
partially differentiable with the feature weights if the result of the tree search has two 
or more distinct leaf positions of the principal variations (PVs). 

In this paper, we investigate the properties of the objective function without 
assuming that the game-tree searches are strictly based on the minimax algorithm. In 
reality, strict minimax values are not available for shogi. The practical searchers use 
integer alpha and beta variables for the alpha-beta pruning [13]. In addition, forward 
pruning techniques are required so that supervised learning can be used on current 
computers, because the loss function L(sj − sd) is too complicated for anyone to 
imagine the landscape of the objective function. To address this difficulty, we 
visualize this function in two-dimensional planes of piece values. Moreover, we catch 
a glimpse of the properties of the function with thirteen-dimensional weights; these 
weights are able to represent all shogi piece values. By using these model cases, we 
investigate the continuity and partial differentiability of the loss function, as well as 
the global convergence and locations of local minima found by the optimization 
procedure in computational experiments. 
 

 

Fig. 1. Example illustrating the difficulties facing any minimization procedure 

2 Two-Dimensional Landscape of the Loss Function 

Several loss functions L(sj – sd) have been designed for supervised learning of 
evaluation functions [1,8,10,12,16,19,24]. These functions generally use 
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Here, P is a set of game positions, Mp is the number of legal moves in p, p1 is the 
desired child position of p, ξ(p,v) is the search value of a game tree rooted at p, and v 
is the feature vectors of an evaluation function f(p,v). The set P and the desired child 
positions are often sampled from game scores of human experts. 

The loss function is Tp(x) = T(+x) when the player to move in position p is the 
maximizing player; otherwise, Tp(x) = T(−x). When we set T(x) as the step function, 
the loss function represents the number of legal moves that are evaluated as being 
better than the moves actually played in the scores. In this paper, a sigmoid function 
T(x) = 1 / (1 + e−αx) is employed as an approximation of the step function, as is done 
in [8,10]. α in the sigmoid function was set to 0.0273, so that T(x) varies significantly 
if x changes by a few hundred. 

A few useful properties are shown in [10]. That is, (1) when the search value ξ(p,v) 
is computed based on the minimax algorithm and the evaluation function f(p,v) is 
continuous with respect to v, ξ(p,v) is also continuous [10], (2) the search value is not 
always partially differentiable if two or more distinct leaf positions of PVs exist in the 
tree search rooted at p, and (3) when the search value is partially differentiable, the 
partial derivative of the search value is 

( ) ( ) ii vpfvp ∂∂=∂∂ vv ,, leafξ , (2) 

where pleaf is a unique leaf position. 
The evaluation function for shogi piece values is 
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where i represents each type of shogi piece, vi is the value of the i-th type of piece, 
and ni(p) is the number of i-th pieces owned by Black in position p. Note that Black 
(White) refers to the player who plays the first (second) move. p~  is a complete 

reversal of black and white sides at position p. 
In this section, we investigate the properties of the loss function J(P,v1,v2) of only 

two piece values. This limitation allows us to take a look at the global map of the two-
dimensional landscape created by practical search values. We construct the loss 
function J(P,v) from N = 112,613 positions occurring in the 1,000 game scores from 
games played between human experts. Here, to avoid redundancy in the game scores, 
duplications in the N positions were detected by using a hash key for each position. 
The function values normalized by A = 

∈Pp
(Mp − 1) = 7,960,015 are shown in this 

paper. Note that A represents the maximum value of J(P,v), where the worst condition 
of Tp(x) = 1 is satisfied for all pm and p1 in Eq. (1). 

We used a computer shogi program called BONANZA, which employs a shallow 
search including a quiescence search; the source code is available through the 
Internet [9]. The program uses conventional techniques such as PVS [15, 17], capture 
search at the frontier node as a quiescence search, check and capture extensions, 
transposition tables, static exchange evaluation, killer and history heuristics, null 
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move pruning, futility pruning, and late move reductions. The nominal depth of the 
tree search was set to 1-ply for this experiment. Note that this nominal depth is a 
guiding principle of the search depth; the actual game tree can be deeper along some 
branches and shallower along others than a uniform 1-ply game tree. 

The contour maps of the two-dimensional functions were drawn using sampled 
function values at an interval of 10 for a pair of variables, and reasonable constant 
values were assigned to the other piece values, i.e., 118 (pawn), 273 (lance), 318 
(knight), 477 (silver general), 562 (gold general), 620 (bishop), 734 (rook), 485 
(promoted pawn), 387 (promoted lance), 445 (promoted knight), 343 (promoted 
silver), 781 (promoted bishop), and 957 (promoted rook). Note that a contour line of 
the functions is a curve along which the functions take a constant value. The contour 
lines have certain properties: the gradient of the function is perpendicular to the lines, 
and when two lines are close together, the magnitude of the gradient is large. 

Figure 2 shows an enlarged contour map of J(P,vpawn, vlance). The lines were drawn 
with an interval of 0.01. The map was computed with the ranges of [10, 1000] for a 
pawn and [10, 840] for a lance. The function simply increases and no interesting 
structure is observed outside of the enlarged map. The single minimum ‘x’ is at 
reasonable pawn and lance values. Therefore, machine learning of these two piece 
values can be achieved by minimizing the function value. Although the search value 
ξ(p,v) in Eq. (1) is a complicated function because of the use of practical measures 
such as use of forward pruning and integer variables, this figure shows no sudden 
changes. It means that the function is approximately continuous and amenable to 
piece value optimization. Gradient decent thus seems to be a feasible way to find the 
single minimum ‘x’ of this two-dimensional function. 

 

Fig. 2. (Left panel) Enlarged contour map of J(P,vpawn, vlance). (Right panel) Enlarged contour 
map of J(P,vgold, vbishop). The broken lines indicate critical boundaries at which the two-
dimensional function is not partially differentiable. The minima are indicated by ‘X’. 

However, we also see disadvantageous properties, i.e., clear edges of the contour 
lines. This indicates that the function is not partially differentiable at these points. The 
broken lines in Fig. 2 are critical boundaries at which the profit and loss ratio of 
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material exchanges inverts itself. For example, a knight is more valuable than a pawn, 
but the winning a pawn becomes more profitable than winning a knight when the 
pawn value is greater than 318. This boundary is labeled in Fig. 2 as “pawn × 
knight”. Also, a case where winning a pawn while allowing the promotion of an 
opponent’s pawn is more profitable when the pawn value is greater than 162. This 
boundary is labeled in Fig. 2 as “pawn × pawn promotion”. Note that the boundary 
value of the pawn (162) is computed from 2×(pawn value) = promoted-pawn value – 
pawn value. 

However, the loss function is not partially differentiable at these critical 
boundaries. The reason is that the inversion of profit and loss in the evaluation causes 
a switch of two or more leaf positions of PVs in Eq. (2), so that the partial-differential 
value jumps discontinuously across the boundary to a substantially different value. 
This result indicates that the use of a quadratic model is not appropriate for numerical 
optimization when the initial guess of v is outside of these boundaries. 

These observations tell us that a non-linear evaluation function may create further 
complexity in the loss function. Because the piece-value dependency on the 
evaluation function is linear, the corresponding boundaries shown in Fig. 2 are 
straight lines. If the evaluation function has non-linear dependencies, the two-
dimensional function may have more boundary curves. 

Furthermore, if the occurrences of gain and loss are homogeneous over all 
evaluation features, the loss function may be more complicated than in Fig. 2. For 
instance, there may be more boundaries, e.g., a boundary at which the profit and loss 
ratio of exchanging a pawn with a promoted lance inverts itself, than in Fig. 2. The 
reason why these boundaries do not appear in this figure is that the occurrence of 
these material gains or losses in all PVs of the set P are too rare to see the influence 
on the function J(P,vpawn, vlance). For the same reason, there is no a boundary due to 
exchanges of two or more pieces. 

Figure 2 also shows an enlarged contour map of J(P,vgold, vbishop). The lines are 
drawn at intervals of 0.005. Here, we can see more critical boundaries and the 
landscape is more complicated than in the left panel of Fig. 2. A second notable 
difference is that the function has two local minima on both sides of the “gold × 
bishop” boundary (denoted by ‘x’). The loss function suggests two different pairs of 
gold-general and bishop values. Because a bishop is more valuable than a gold 
general in most cases, the global minimum point is reasonable. In contrast, a gold 
general is more valuable than a bishop in the second lowest minimum point. This 
means (1) that the optimized result depends on the choice of initial values of the 
iterative method such as the gradient decent, and (2) that the optimization procedure 
has some chance of ending up with an unnatural result. 

Figure 3 shows an enlarged contour map of J(P,vpro_lance, vpro_knight). This map has 
six local minima, and the lowest one corresponds to reasonable piece values. The 
lines are drawn at intervals of 0.00002. Because promoted lances and promoted 
knights appear less frequently in game scores and PVs, the interval of the contour-line 
levels is 500 times smaller than in the left panel of Fig. 2. This means that the map of 
a promoted lance and a promoted knight has an almost flat surface when the same 
scaling is used. This property, i.e., the order of function scaling differs from those of 
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other variables, discourages the use of a naïve gradient decent for optimization of all 
thirteen piece values. Because the gradient vectors are nearly orthogonal to these flat 
directions, values of these less frequently appearing pieces do not change sufficiently 
with each gradient-decent step. This scaling problem has to be solved before the shogi 
piece values can be fully optimized. 

 

 

Fig. 3. (Left panel) Enlarged contour map of J(P,vpro_lance, vpro_knight). The broken lines indicate 
critical boundary at which the two-dimensional function is not partially differentiable. The six 
minima are indicated by ‘X’. (Right panel) Enlarged contour map of J1(P,vpro_lance) + 
J2(P,vpro_knight). Here, the two variables are approximately decomposed, and this map looks 
similar to the one in the left panel. 

A second notable property of this two-dimensional function is that the coupling 
between values of a promoted lance and a promoted knight is rather weak. Therefore, 
the two-dimensional function can be approximately decomposed into two one-
dimensional functions, i.e., J(P, vpro_lance, vpro_knight) ≅ J1(P,vpro_lance) + J2(P,vpro_knight). The 
result of this approximation is shown in the right panel of Fig. 3. Here, we can see that 
the main features are reproduced by this decomposition. Because the effective degrees 
of freedom of this function are smaller than the actual ones, this property will be 
advantageous for making a numerical procedure of multi-dimensional optimizations. 
That is, vpro_lance and vpro_knight can be optimized separately as a first approximation. 

3 Full Optimization of Shogi Piece Values 

In the previous section, we observed two properties of the loss function of two 
variables. Here, we shall lift the restriction from two variables to thirteen variables, 
which is sufficiently large to express all piece values in shogi. The aim of this 
experiment is to catch a glimpse of the global landscape map and numerical global 
convergences for the full piece values. For this purpose, a Monte Carlo sampling of 
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the initial guess of the optimization procedures was carried out to enumerate local 
minima, and the obtained minimum points were then analyzed. 

The supervised learning method in [8, 10] employs an objective function including 
the loss function in Eq. (1): 
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The second term consists of a Lagrange multiplier λ and an equality constraint g(v) = 
0. This term stabilizes the optimization procedure by explicitly removing an uncertain 
positive value a of the scaling vv a=~ . The constraint function is set to g(v) 
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iv − 6,500. Here, the magnitude of the constant 6,500 is chosen in accordance 

with the 16-bit integer representation of the evaluation function in [9]. In these 
references, the objective function also has a regularization term to prevent overfitting 
of v. However, we did not include this regularization term in our study because the 
number of feature values was only thirteen. 

When the search value is partially differentiable, the partial derivative can be 
written using Eqs. (2), (3), and (4) as [8, 10] 
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where pleaf is the unique leaf position of a corresponding principal variation (PV) of a 
tree search rooted at p. Starting from an initial guess of v that satisfies the equality 
constraint g(v) = 0, the numerical optimization can be carried out using the following 
updates for all weights [8, 10],  

( )[ ]iii vJhvv ∂′∂−= oldoldnew ,sgn vP . (6) 

Here, the sign function avoids the scaling problem described in Sec. 2, and h is an 
integer step size. In this paper, the smallest integer step h = 1 is used. The value of the 
Lagrange multiplier λ in Eq. (5) is computed every step to keep the equality constraint 
g(v) = 0. Because the bottleneck in computation is the shallow tree searches to obtain 

a set of leaf
mp  in Eq. (5), the set was computed every 32 steps. We counted the 

number of iterations in the leaf set computation. 
The nominal search depth was extended to 2-ply to see whether these optimization 

steps are stable with deeper searches. The initial values of the shogi pieces were 
calculated from pseudo-random numbers. Here, a uniform random integer in the range 
of [0, 32767] was assigned to each piece value, and the feature vector is scaled as 

vv a=~  to satisfy the equality condition of g(v) = 0. 
Figure 4 shows the results of 78 runs of optimizations. Starting from 78 sets of 

random initial piece values, a large number of function values numerically converged 
in 30 iterations. Here, the numerical convergences can be verified by observing the 
slight oscillation of the function values due to the finite step size. 
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Fig. 4. Results of 78 runs of optimizing the values of thirteen pieces. Here, the initial piece 
values were determined from pseudo-random numbers. The inset is an enlargement showing 
the numerical convergences. The ordinate shows the value of the objective function in Eq. (4). 

 

 

Fig. 5. (Left panel) Scatter plot for 78 sets of optimized piece values with initial piece values. 
The number of a set of piece values in shogi is thirteen, so 13×78 points are plotted. (Right 
panel) Scatter plot of the minimum value of the objective function with the cosine similarity 
between the optimized and best piece values. 78 sets are plotted. 
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Table 1. Two sets of piece values with the best and worst minimum values of 78 sets. The gray 
column values are for promoted pieces 

pawn lance knight silver gold bishop rook silver lance knight silver bishop rook
best 105 227 279 444 529 576 700 483 348 535 543 730 1002
worst 206 204 190 470 577 629 760 511 379 152 584 813 1025  

 
In Fig. 4, we see that almost all of the optimization runs end up with different local 

minima. Here, the learned result shows a certain tendency. That is, a lower minimum 
value means a better minimum point. As shown in Table 1, the global minimum point 
with the value 0.1476 (see Fig. 4) gives reasonable piece values. In contrast, the 
highest minimum point with the value 0.1580 gives unreasonable piece values; the 
pawn value is too large, and the promoted-knight value is too small. 

As shown in the left panel of Fig. 5, there is no significant relation between the 
initial random values and the corresponding optimized values; the correlation 
coefficient is 0.15. This result indicates that this optimization method adjusted all of 
the initial piece values by a sufficient amount. Figure 5 also shows a second plot of 
the minimized function values with cosine similarities between the optimized and the 
best piece values. All minimum values lower than 0.148 exist at a location with a 
similarity higher than 0.993. This indicates that the minimum points form a funnel 
structure. That is, the closer the minimum point is to the best piece values, the smaller 
the minimum value is. 

4 Conclusions 

We investigated the properties of the objective function for supervised learning of the 
shogi evaluation function. The landscape of this function is hard to imagine, because 
the function value depends on millions of search values. Furthermore, the search 
values should be computed by a practical tree searcher that employs forward pruning 
techniques and integer alpha and beta values. Therefore, by using a model case where 
the set of feature weights is limited to piece values, the global landscape of this 
function could be revealed in computational experiments. 

The two-dimensional contour maps showed that the global minimum point 
indicates reasonable piece values. The maps also showed continuous but non-partially 
differentiable surfaces. The locations of the non-partially differentiable points were at 
the critical boundaries between profits and losses in piece exchanges. These results 
indicate that use of quadratic models such as the Hessian approximation of the 
conjugated gradient method is not appropriate for the numerical optimization when 
the initial guess of the feature weights is outside of the critical boundaries. From these 
observations, the expected shape of a one-dimensional cross section of the objective 
function to optimize shogi piece values can be qualitatively explained by Fig. 1c. 

It was also shown that a piece that appears less frequently in the game score has 
less influence on the other piece variables. Using this property, the two-dimensional 
function can be decomposed into two one-dimensional functions. This approximation 
was shown for the map of a promoted lance and a promoted knight. It was also shown 
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that inhomogeneous appearance frequencies of pieces in the game scores cause a 
scaling problem. In fact, the contour map of a promoted lance and a promoted knight 
looks almost flat when the scale of the contour levels is set to that of a pawn and a 
lance. This scaling problem discourages the use of naïve gradient decent for 
numerical optimization [18]. 

A property relating to global convergence of the iterative optimization method 
presented in [8, 10] was numerically tested by using 78 randomly prepared sets of 
initial piece values. Here, all thirteen piece values were optimized. Although this 
method has no guarantee of converging to a solution from arbitrary initial values, 
reasonable stable convergences for all 78 sets of random initial values were obtained. 
Furthermore, all of the initial piece values were adjusted by a sufficient amount, and 
the minimum points were sufficiently better than the random piece values. These 
results indicate that the optimization method in [8, 10] is promising for minimizing 
the loss function analyzed in Sec. 2. 

However, almost all of the 78 optimizations ended up with different local minima. 
These minimum points showed a funnel structure. That is, the closer to the best piece 
values a minimum point is, the smaller the minimum value is. These results indicate 
that initial piece values that are at least better than random values are desirable when 
the goal is to learn a reasonable piece value. 

In this paper, we analyzed the properties of the objective function for only piece 
values, and optimized the function. The numerical optimization of full evaluation 
features including positional considerations would be a very interesting goal, and we 
would like to handle it in our future work. 

References 

1. Anantharaman, T.: Evaluation tuning for computer chess: Linear discriminant methods. 
ICCA Journal 20, 224–242 (1997) 

2. Baxter, J., Tridgell, A., Weaver, L.: TDLeaf(λ) Combining temporal difference learning 
with game-tree search. In: Proceedings of the 9th Australian Conference on Neural 
Networks (ACNN 1998), Brisbane, Australia, pp. 168–172 (1999) 

3. Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal-differences. 
Machine Learning 40, 242–263 (2000) 

4. Beal, D.F., Smith, M.C.: Temporal difference learning applied to game playing and the 
results of application to shogi. Theoretical Computer Science 252, 105–119 (2001) 

5. Campbell, M., Joseph Hoane, J.A., Hsu, F.: Deep Blue. Artificial Intelligence 134, 57–83 
(2002) 

6. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. 
MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics 
(SIAM), Philadelphia (2009) 

7. Fürnkranz, J.: Machine Learning in Games: A Survey. In: Fürnkranz, J., Kubat, M. (eds.) 
Machines that Learn to Play Games, pp. 11–59. Nova Science Publishers (2001) 

8. Hoki, K., Kaneko, T.: Large-Scale Optimization of Evaluation Functions with Minimax 
Search (in preparation) 

9. Hoki, K.: Bonanza – The Computer Shogi Program (2011) (in Japanese), 
http://www.geocities.jp/bonanzashogi/ (last access: 2011) 



 The Global Landscape of Objective Functions 195 

10. Hoki, K.: Optimal control of minimax search results to learn positional evaluation. In: 
Proceedings of the 11th Game Programming Workshop (GPW 2006), Hakone, Japan, pp. 
78–83 (2006) (in Japanese) 

11. Hyatt, R.: Crafty 23.4 (2010), ftp://ftp.cis.uab.edu/pub/hyatt 
12. Kaneko, T.: Learning evaluation functions by comparison of sibling nodes. In: Proceedings 

of the 12th Game Programming Workshop (GPW 2007), Hakone, Japan, pp. 9–16 (2007) 
(in Japanese) 

13. Knuth, D.E., Moor, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelligence 13, 
293–326 (1991) 

14. Letouzey, F.: Fruit 2.1 (2005), http://arctrix.com/nas/chess/fruit 
15. Marsland, T., Campbell, M.: Parallel Search of Strongly Ordered Game Trees. ACM 

Computing Survey 14, 533–551 (1982) 
16. Marsland, T.A.: Evaluation-Function Factors. ICCA Journal 8, 47–57 (1985) 
17. Marsland, T.A., Member, S., Popowich, F.: Parallel game-tree search. IEEE Transactions 

on Pattern Analysis and Machine Intelligence 7, 442–452 (1985) 
18. Nocedal, J., Wright, S.: Numerical Optimization. Springer (2006) 
19. Nowatzyk, A.: (2000), http://tim-mann.org/DTevaltune.txt (last access: 

2010) 
20. Romstad, T.: Stockfish 1.9.1 (2010), http://www.stockfishchess.com 
21. Schaeffer, J., Hlynka, M., Jussila, V.: Temporal difference learning applied to a high-

performance game-playing program. In: Proceedings of the 17th International Joint 
Conference on Artificial Intelligence (IJCAI 2001), pp. 529–534. Morgan Kaufmann 
Publishers Inc., San Francisco (2001) 

22. Shannon, C.E.: Programming a Computer for Playing Chess. Philosophical Magazine, Ser. 
7 41(314) (1950) 

23. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods. Nonlinear Programming. 
Springer Science+Business Media, LLC (2006) 

24. Tesauro, G.: Comparison training of chess evaluation functions. In: Furnkranz, J., Kumbat, 
M. (eds.) Machines that Learn to Play Games, pp. 117–130. Nova Science Publishers 
(2001) 

25. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artificial 
Intelligence 134, 181–199 (2002) 

26. Veness, J., Silver, D., Uther, W., Blair, A.: Bootstrapping from game tree search. In: 
Bengio, Y., Schuurmans, D., Laerty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in 
Neural Information Processing Systems 22: 23rd Annual Conference on Neural 
Information Processing Systems, Vancouver, BC, Canada, pp. 1937–1945 (2009) 

27. Yamashita, H.: YSS 7.0 – data structures and algorithms (in Japanese), 
http://www32.ocn.ne.jp/~yss/book.html (last access: 2010) 

 
 



Solving breakthrough with Race Patterns
and Job-Level Proof Number Search

Abdallah Saffidine1, Nicolas Jouandeau2, and Tristan Cazenave1

1 LAMSADE, Université Paris-Dauphine
2 LIASD, Université Paris 8

Abstract. breakthrough is a recent race-based board game usually
played on a 8×8 board. We describe a method to solve 6×5 boards based
on (1) race patterns and (2) an extension of Job-Level Proof Number
Search (JLPNS).

Using race patterns is a new domain-specific technique that allows
early endgame detection. The patterns we use enable us to prune posi-
tions safely and statically as far as 7 moves from the end.

For the purpose of solving Breakthrough we also present an exten-
sion of the parallel algorithm JLPNS, viz. when a PN search is used as
the underlying job. In this extension, partial results are regularly sent
by the clients to the server.

1 Introduction

In this paper, we address the use of parallelization to solve games. We use the
game breakthrough [10] as a testbed for our experiments with parallel solving
algorithms.

breakthrough has already been used as a testbed in other work [20,9]. It
is an interesting game which offers new challenges to the AI community. We
therefore also try to improve on domain-specific techniques. To this effect, we
present the idea of race patterns, a new kind of static patterns that allow to detect
a win several moves before the actual game ends. The use of race patterns has
some links with the use of threats when solving go-moku [1]. However, the
threats used in go-moku by Allis were designed to select a small number of
moves to search, whereas the race patterns are designed to stop the search early.

Research on parallel game-tree search was initially mainly about the paral-
lelization of the Alpha-Beta algorithm. A survey on the parallelization of Alpha-
Beta can be found in Mark Brockington’s PhD thesis [4]. Other sources about
the use of transposition tables in parallel game-tree search and Alpha-Beta are
Feldmann et al.’s paper [8] and Kishimoto and Schaeffer’s paper [12].

More recently, the work on the parallelization of game-tree search algorithms
has addressed the parallelization of Monte-Carlo Tree Search algorithms [5,6,7]

Other related works deal with the parallelization of PDS [14,13] and of Depth
First Proof Number search (DF-PN) [11]. A technique to reduce the memory
usage of DF-PN is the garbage collection of solved trees [15].

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 196–207, 2012.
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Previous attempts at parallelizing the Proof Number Search (PNS) algorithm
used randomization [16] or a specialized algorithm called at the leaves of the
main search tree [21].

Proof-Number search and parallel algorithms were also already successfully
used in solving Checkers [18,19].

In this paper we focus on the parallelization of the PN2 algorithm. The PN2

algorithm has enabled to solve complex games such as fanorona [17]. Our goal
is to solve such games faster with a similar but parallel algorithm.

The second section is about PNS, Job-Level Proof Number Search (JLPNS)
and our algorithm Parallel PN2 (PPN2). The third section deals with race pat-
terns at breakthrough and the fourth section details experimental results.
Finally, section five contains a discussion and a conclusion.

2 Job-Level Proof Number Search

In this section we start presenting PNS (2.1). Then we recall the parallelization
of PNS with Job-Level parallelization (2.2). The third section (2.3) presents our
Parallel PN2 algorithm.

2.1 Proof Number Search

PNS was proposed by Allis et al. [2] The goal of the algorithm is to solve se-
quential perfect information games. Starting from the root position, it develops
a tree in a best first manner. PNS uses the concept of effort numbers to compare
leaves.

Effort numbers are associated to nodes in the search tree and try to quantify
the progress made towards some goal. Specifically in PNS, two effort numbers
are used: (1) the proof number PN of a node n estimates the remaining effort
to prove that n is winning for Max, and (2) the disproof number DN estimates
the remaining effort to prove a win for Min. Originally, the PN (respectively the
DN) of a node n was a lower bound on the number of node expansions needed
below n to prove that n is a Max win (respectively a Max loss). When the PN
reaches 0 (respectively ∞), the DN reaches ∞ (respectively 0), and the node has
been proved to be a Max win (respectively a Max loss).

The PN and DN are recursively defined as shown in Table 1 where Win
(respectively Lose) designate a terminal node corresponding to a position won
by Max (respectively Min), Frontier designate a non-expanded non-terminal leaf
node. Max (respectively Min) designate an expanded internal node with Max
(respectively Min) to play.

To select which node to expand next, Allis et al. defined the set of most proving
nodes [2] and showed that it is possible to select one of them by the following
descent procedure. Iterate until a Frontier node is reached: when at a Max node,
select a child minimizing PN; when at a Min node, select a child minimizing
DN.
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Table 1. Determination of effort numbers for PNS

Node type PN DN

Win 0 ∞
Lose ∞ 0
Frontier 1 1
Max minc∈chil(n) PN(c)

∑
c∈chil(n) DN(c)

Min
∑

c∈chil(n) PN(c) minc∈chil(n) DN(c)

2.2 Job-Level Parallelization

Job-Level Proof Number Search [21] has been used to solve connect6 positions.
The principle is to have a main Proof Number Search tree, but instead of having
plain leaves, a solver is called at each leaf in order to evaluate it.

In order to avoid having several clients trying to prove the same leaf, JLPNS
uses a virtual-loss mechanism.1 When a leaf is sent to a client, it is temporarily
assumed to be proved a loss until the client returns a meaningful result.

A disadvantage of the virtual-loss mechanism is that it is possible for a node
to be considered losing for some time, but then to be updated to a non-solved
state. Stating this otherwise, 0 and ∞ are no longer attractor values for the
proof and disproof numbers.

An advantage of the approach taken by JLPNS is that it allows an easy paral-
lelization over a distributed system with a very small communication overhead.

2.3 Parallel PN2

The principle of the PN2 algorithm [1,3] is to develop another PN search at each
leaf of the main PN search tree in order to have more informed proof and disproof
numbers. For PPN2 search, the PN search tree at the leaves is developed on a
remote client. There are at least three differences between PPN2 and JLPNS.

A first difference is that the PPN2 algorithm that is called at the leaves is
also a Proof Number Search instead of a specialized solver as in JLPNS. As a
result, partial results from the unfinished remote search in one client can be sent
back to the server to update the main PNS tree in order to influence the next
searches of the other clients.

A second difference is that we do not use the virtual loss mechanism to avoid
currently computed leaves but a flag on these leaves. First, in our technique,
a node is never considered to be losing unless it has actually been proved to
be losing, thus 0 and ∞ remain attractors. Then, noting that the set of most-
proving nodes usually contains several nodes, our technique ensures that we will
pick tasks from the set of most-proving nodes of the current tree. Finally, the

1 The authors of JLPNS also tried a virtual-win policy and a greedy mechanism which
are conceptually similar to virtual-loss [21].
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virtual-loss mechanism does not fit well with the partial result update described
in the preceding paragraph.

A third difference is that, our algorithm also has breakthrough-specific
knowledge: it uses the mobility heuristic and race patterns defined in Section 3.3.

Just as in PN2, the size of the remote tree can either be fixed or a function
of the size of the main search tree.

The main algorithm which is run on the server, is described in Algorithm 1.
It consists in receiving results from the clients and updating the tree according
to these results. A result can either be a partial result or a final result. In both
cases, we need to update the proof and disproof numbers of the concerned leaf
with the result. We also update recursively its ancesters. When the result is final,
however, we expand the tree and need to find a new not reserved leaf for the
now idle client. Finding a not reserved leaf is done by a backtracking algorithm
where the choice points are the nodes with several children minimizing the proof
or disproof number.

Algorithm 1. Main algorithm.
while root is not proved do

receive result r from any client c
if r is a partial result then

update the PN and DN with r
else

expand the tree
update the PN and DN with r
if root is proved then

break
end if
find the most proving and not reserved leaf l
reserve leaf l
send the position at l to client c

end if
end while
collect and discard the remaining client messages
send stop to all clients

The remote algorithm which is run on the clients is described in Algorithm 2.
It consists in (1) developing a PNS tree until a given threshold and (2) regularly
sending partial results to the server.

3 breakthrough and Race Patterns

In this section we discuss the rules of breakthrough (3.1), the retrograde
analysis for small boards (3.2), and the race patterns (3.3).

3.1 Rules of breakthrough

breakthrough is race game invented in 2001 by Dan Troyka. The game is
played on a rectangular board of size 8× 8. Each player starts with two rows of
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Algorithm 2. Remote algorithm.
while the stop message is not received do

receive a position, a player and a threshold N from the server
while root is not proved and number of descents is less than N do

if the number of descent is a multiple of a parameter p then
send as partial results to the server the current PN and the DN of the root

end if
expand the tree using Proof Number Search

end while
send the definitive results to the server

end while

pawns situated on opposite borders as shown in Figure 1(a). The pawns progress
in opposite direction and the first player to bring a pawn to the opposite last
row wins the game. A pawn can (1) always move diagonally forward possibly
capturing an opponent pawn and (2) move forward one cell only if the cell is
empty (Figure 1(b)).

(a) Starting position on size 5 × 5. (b) Possible movements.

Fig. 1. Rules for the game breakthrough

breakthrough was originally designed to be played on a 7 × 7 board but
was adapted to participate in the 8× 8 board game-design competition which it
won [10].

3.2 Retrograde Analysis for Small Boards

The state space complexity of breakthrough on a board m × n with m ≥ 2
and n ≥ 4 can be upper bounded by the following formula 22m × 3(n−2)m. This
formula derives from the fact that each cell on the top row can only be empty
or Black, each cell on the bottom row can only be empty or White, and all three
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possibilities are available for cells in the n− 2 central rows. This upper bound is
relatively accurate for boards with a small height, but it includes positions that
cannot be reached from the standard starting position as it does not take into
account the fact that each player has at most 2m pieces. As a result, the upper
bound is rather loose for larger boards.

Jan Haugland used retrograde analysis to solve breakthrough on small
boards.2 The largest sizes solved by his program were 5 × 5 and 3 × 7, both
turned out to be a second-player win.

To reduce the state space complexity and ease the retrograde analysis, Haug-
land avoided to store positions that could be won in one move. That is, positions
with a pawn on the one but last row were not stored. It allows to reduce the
state space complexity to 24m × 3(n−4)m. The reduction factor is r = 3

2

2m which
is r = 58 when m = 5.

3.3 Race Patterns

After a couple of games played, human players start to obtain some feeling for
tactics in breakthrough. It allows the experimented player to spot a win-
ning path sometimes as early as 15 plies before the actual game end. A game
of breakthrough proceeds as follows, in the opening, the players strive to
control the center or to obtain a strong outpost on the opponent’s side without
exchanging many pieces. Then, the players perform waiting moves until one of
them enters a zugzwang position and need to weaken his3 structure. The oppo-
nent will now try to take advantage of the breach, usually the attack involves
sacrificing one or two pawns to force the opponent’s defense to collapse. Thus,
at this point both players could break through if the opponent passed, and the
paths of both are usually disjoint, therefore it is necessary to count the number
of moves needed by both players and the quickest to arrive wins (Figure 3(a) is
an example of such a situation).

As we can see, detecting an early win involves looking separately at the possi-
ble winning paths of both players and deciding which is the shortest. Formalizing
this technique can improve the playing level of an artificial player or the perfor-
mance of a solver.

Defining Race Patterns. We define race patterns that allow to spot such
winning paths. To be able to deal softly with the left and right sides of the
board, we will consider a generalization of breakthrough with walls.4 Walls
are static cells which can neither be traversed nor occupied by any player.

In the following, we assume that we are looking for a winning path for player
White. Formally, a pattern for player White is a two dimensional matrix in which
each element is of one of the following type {occupied, free, passive, crossable,
don’t care}. The representation and the relationship between these types is pre-
sented in Figure 2. A cell of type passive should not contain a black pawn to
2 Available on http://www.neutreeko.net/neutreeko.htm.
3 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.
4 This generalization was used in the 2011 GGP competition.

http://www.neutreeko.net/neutreeko.htm
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Occupied Free

Passive

Crossable

Dont’t care

Fig. 2. Pattern representation. An arrow from a to b indicates that any cell satisfying
a satisfies b.

Table 2. Checking race patterns for White

Occupied Free Passive Crossable Don’t Care

White Pawn � � � � �
Empty cell � � � �
Black Pawn � �
Wall � �

begin with, but it will not be necessary for any white pawn to cross it. On the
other hand it should be allowed to bring a white pawn on a cell of type crossable,
so it cannot be a wall but it could already hold a white or a black pawn.

To verify whether a pattern is matched on a given board, we first extend
the board borders with walls and then check for each possible pattern location
that every cell is compatible as defined by Table 2. For instance, if the attacking
player is White, then a white pawn will match any cell type in the pattern. Stated
otherwise, if the pattern cell corresponding to a black pawn is not Crossable or
Don’t Care, then the pattern does not match.

The order of a race pattern is defined as the maximal number of pass moves
that Black is allowed to do before White wins in the restricted position desig-
nated by the race patterns.

We compute for each player the lowest-order matching race pattern and if
they only intersect on don’t care cells, we know the outcome of the game. For
instance in Figure 3(a), we can see that White has two-move second-player win
pattern (Figure 3(b)) and that Black has a three-move first-player win pattern
(Figure 3(c)). Given that player Black does neither have a one-move nor a two-
move race pattern, we may conclude that the position is a white win. It is thus
possible to statically solve this position four moves before the actual game end.

In general, this technique allows to solve positions 2 × n moves before the
actual game end, only if we have access to every n-move race pattern. However,
a position cannot be solved this way if its solution tree involves a zugzwang.
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(a) Sample game with
Black to play. White player
can force a win.

(b) Two-move second
player win pattern.

(c) Three-move first
player win pattern.

Fig. 3. Early win detection using race patterns. White can match pattern (b) and
Black can match pattern (c)

In our experiments, we used 26 handwritten patterns of order up to 2. The
biggest patterns we used were 4 × 3 such as the one presented in Figure 3(b).
We do not have yet a tool for automatic correctness checking, therefore we had
to limit the number of patterns used to keep confidence in their correctness.

4 Experimental Results

Experiments are done on a network of Linux computers connected with Gigabyte
switches. The network area includes 17 computers with 3.2 GHz Intel i5 quad
core CPU with 4 GB of RAM. The master is run alone on one of these computers.
The maximum number of clients is set to 16 × 4.

In the following experiments, we report the total time needed to solve the
starting position of a breakthrough game of various sizes. We also report the
number of nodes expanded and touched that were needed in Algorithm 1.

A node is expanded when all of its children have been added to the tree. In
our server-side implementation, one node is expanded per iteration. The number
of nodes expanded is proportional to the memory needed to store the PN tree on
the server side. It also corresponds to the total number of tasks that have been
sent to the clients. For a touched node, we only store the proof and disproof
numbers as given by a client search. In contrast, an expanded node also needs to
store a pointer to every child. As a result touched nodes take much less memory
than expanded nodes. We bounded the number of descents in one search in the
clients to 1k or 100k, so memory resources in the clients were never a problem
in these experiments.

4.1 Scalability

Table 3 gives the time needed in seconds, the number of expanded and touched
nodes saved on the server side to solve the 4× 5 game with the PPN2 algorithm
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Table 3. Time needed, number of expanded and touched nodes for the PPN2 with
fixed search size on 4× 5 board with 1k descents at most in the remote search. Partial
results were sent from a client every 100 descents.

Clients Time Speed-up Expanded Touched

1 3397s 107k 915k
4 1559s 2.2 126k 1073k
8 803s 4.2 130k 1106k
16 472s 7.2 152k 1298k
32 305s 11.1 196k 1651k
64 186s 18.3 232k 1930k

with 1k descents in the clients. Solving 4 × 5 with 64 clients with 100k descents
in each remote search takes 577 seconds, while with 10k descents in each remote
search, it takes 216 seconds. Therefore, increasing the number of descents in
the remote search does not necessarily improve the solving time. In contrast,
performing 100 descents in each remote search made it necessary to go over 1m
descents in the main search which is quite memory consuming.

From Table 3 we can see , that the number of expanded nodes on the server
increases as the number of clients rises. Stated otherwise, running many clients in
parallel makes it harder to avoid unnecessary work. This is an expected behavior
in a parallel algorithm. Nevertheless, the time needed to solve the position also
decreases steadily as the number of clients rises. The speedup factor with 8 and
64 clients compared to 1 single client are respectively 4 and 18. So, we may
conclude that although the algorithm is not perfectly parallelizable, the scaling
factor is satisfactory.

4.2 Partial Results Updates

Table 4 gives the time needed in seconds, the number of expanded and touched
nodes saved in memory to solve the 4 × 5 game with the PPN2 algorithm with
partial results. The first column gives the partial results frequency. Each solved
position turned to be a second-player win.

As we can see, sending partial results makes it possible to direct better the
search but also increases the communication overhead. It is therefore needed
to find a balance between spending too much time in communications and not
taking advantage of the information available. In this setting, sending partial
results every 100 descents in the client seems the best compromise. When using
partial informations, the solving time is less dependent to the search size.

4.3 Patterns

Table 5 gives the time in seconds and the number of expanded nodes needed
to solve different games with the PPN2 algorithm with partial results, fixed
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Table 4. Time needed, number of expanded and touched nodes for PPN2 algorithm
with partial results and fixed remote search size of 1k descents on 4×5 board, involving
64 clients.

Partial Time Expanded Touched

None 263s 324k 2645k
500 233s 281k 2336k
250 205s 253k 2105k
100 186s 232k 1930k
50 190s 233k 1944k
25 201s 243k 2023k
12 193s 223k 1855k

search size and some patterns. The patterns we used allowed to solve statically
a position up to 4 moves before the game end, 26 patterns were hand-written for
this purpose. Checking whether a pattern can be matched on a given position is
done in the most naive way and implementing more efficient pattern matching
techniques is left as future work.

Using race patterns, the solving time is divided by 5.96 for the 4 × 5 board
with 1k search, and by 9.85 for the 5×5 board. It takes 927 seconds to solve the
5 × 5 board with 1k search in the clients. Without patterns, 5 × 5 board with
1k search fails with 1 million nodes saved and goes beyond the server allowable
memory with 2 million nodes.

Combining PPN2 and race patterns allows us to solve the 6×5 board in 25,638
seconds (i.e., 7 hours 7 minutes 18 seconds) with 10k search and in 47,134 seconds
(i.e., 13 hours 5 minutes 34 seconds) with 100k search.

As we can see, using race patterns makes it unnecessary to examine many
positions in the main search. Race patterns also allow for a time reduction of
one order of magnitude on boards of small sizes and probably more on larger
boards.

Table 5. Time needed and number of expanded nodes for the PPN2 algorithm with
partial results, fixed remote search size and patterns with 64 clients

Board size Search size Patterns Time Expanded

5 × 4 1k No 2s 4132
5 × 4 1k Yes 1s 72

4 × 5 1k No 161s 241k
4 × 5 1k Yes 27s 4k

5 × 5 1k Yes 927s 78k
5 × 5 100k No 29,170s 208k
5 × 5 100k Yes 2959s 3k

6 × 5 10k Yes 25,638s 14k
6 × 5 100k Yes 47,134s 21k
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5 Discussion and Conclusion

In this paper, we have defined race patterns and used them to ease the solving
of breakthrough positions. Indeed, in our experiments, using race patterns
typically allows to examine about two orders of magnitude fewer positions. We
have also shown how to parallelize successfully the PN2 algorithm. The PPN2

algorithm associated to race patterns has enabled to solve 6×5 breakthrough:
the game is a second-player win. We have found that on the smaller 4× 5 board
the speedup due to parallelization is important until at least 64 clients.

In future work, we will try to solve breakthrough for larger sizes. The race
patterns used in this work had been devised by hand, but it is impractical if
we need many more patterns to solve statically positions earlier. We therefore
need to devise an algorithm to generate the race patterns and check them for
correctness automatically.

Zugzwang positions are still difficult to solve. Indeed, no winning race pattern
will be found in a zugzwang position, so an extension of the concept of race
patterns to be compatible with zugzwang positions or an orthogonal technique
would be desirable.

We will also apply the Parallel PN2 algorithm to other games. Moreover we
will try to enhance the algorithm itself in order to have even greater speedups.
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Abstract. In this paper, we present the newly obtained solution for
variants of Connect-Four played on an infinite board. We proved this re-
sult by introducing never-losing strategies for both players. The strategies
consist of a combination of paving patterns, which are follow-up, follow-
in-CUP, and a few others. By employing the strategies, both players can
block their opponents to achieve the winning condition. This means that
optimal play by both players leads to a draw in these games.

By rearrangement of the same paving patterns, the solution for a
semi-infinite board, where either the height or the width is finite, are
also presented. Moreover, it is confirmed that these results are effective
under various placement restrictions.

1 Introduction

The solution of a game has been one of the main targets of game research [1].
In this paper, we introduce the newly obtained solution for variants of Connect-
Four played on a board infinite in height, width, or both. We prove this result by
introducing never-losing strategies for both players. By employing the strategies,
both players can block the opponents to achieve the winning condition. This
means that optimal play by both players leads to a draw in these games. The
strategies for each variation consist of a combination of common paving patterns.
We also confirm that the result is effective under placement restrictions.

First, we introduce the rule of Infinite Connect-Four (the variant of Connect-
Four played on a board infinite in both height and width).

– Two players, denoted by X (first player, White) which plays first and O
(second player, Black) which plays second, in turn place a disk in a cell on
an infinite board. A cell is specified by row and column numbers. A row
number is a positive integer, and a column number is an integer: positive,
negative or zero.

– Each player places his1 disk denoted by the same symbol of the player: X or
O.

– A disk can be placed at the lowest unoccupied cell for each column.
– By “X moves i” we mean that X places a disk in a column i.
– Initially, X moves 0.

1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 208–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– If a player obtains a group of four connected disks of his symbol either
horizontally, vertically, or diagonally, he wins the game. The arrangement of
disks is called Connect4.

– If either player wins the game, the game is over.
– If neither X nor O achieves Connect4, the game will never end and is drawn.

We call a configuration of disks and turn a position. A disk which is already
placed in a position is denoted in bold roman as X or O and a disk to be placed
in a position is denoted in italic as X or O.

An example position is presented in Fig. 1. We present a position so that a
column number increases from left to right and a row number increases upward
as presented in Fig. 1.

A position can be specified by moves from the empty board to the position.
Because a disk is placed at the row of the lowest number for each column, a
move can be specified only by a column number. Thus we use a sequence of
column numbers preceded by player symbols to specify a position. For example,
we denote a position after X moved 0, O moved −1, X moved −1, O moved 1,
X moved 1, and O moved 2 by X0O-1X-1O1XO2 (Fig. 1).

2 Previous Work

In 1988, it was proved by James Dow Allen [2] that in Connect-Four X wins;
independently and almost simultaneously it was proved, too, by Victor Allis [3].
Both authors applied a different method. The results of the game played on finite
boards of some non-standard heights and widths were reported in [7]. Table 1
shows the result.

Connect(m,n, k, p, q) was proposed in [6]. Connect(m,n, k, p, q) is a game
played by X and O on the m×n board by placing p disks in each turn at a time
with q disks placed initially to make a k-in-a-row. In [5], Connect(∞,∞, k, p, p)
was analyzed and it was presented that Connect(∞,∞, 11, 2, 2) and Connect
(∞,∞, 3p+ 3d(p) + 8, p, p) for p ≥ 3 for a logarithmic function d(p) are drawn
(the game never ends). The method used is to decompose the board into a
combination of sub-boards and use the property that p-in-a-row exists if 3p-
in-a-row is in a sub-board. The case for p = 1 is not handled in the paper.
Apparently, the case was left for future work. Also, Connect(m,n, k, p, q) does
not include Connect-Four and Infinite Connect-Four because Connect-Four and
Infinite Connect-Four have “ground” under the 1st row and “gravity” to attract
disks to lower rows.

3 Solution of Infinite Connect-Four

The result of a two-person zero-sum game of perfect information is called a draw
when both players cannot win for some opponent’s moves from the starting
position.
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X

XX

O O O

-3 -2 -1 0 1 2 3 4

1

2

3

4

5

Fig. 1. An Example Position of Infinite Connect-Four

Table 1. Game-Theoretic Value of Connect-Four on Finite Boards [7]

height

11 =

10 = =

9 = = X

8 = = O X

7 = = X = X

6 = = O X O O

5 = = = = X X X

4 = = O = O O O O

4 5 6 7 8 9 10 11 width

Theorem 1. Infinite Connect-Four is solved: Optimal play by both players leads
to a draw.

We prove Theorem 1 by presenting strategies for both players to play Infinite
Connect-Four without losing a game.

First, we introduce some definitions.

Definition 1. (Initial Cell) We define the initial cell as the cell for X’s first
move. The initial cell is placed in the 1st row and 0th column of a board.

In this paper, we employ strategies such as the paving strategy in the Polyomino
Achievement Game [8].

Definition 2. (Tile) A pair of two cells used to block both cells to be occupied
by the opponent’s disks is called a tile.

A tile can be a pair of horizontally or vertically adjacent cells, but sometimes it
can be a pair of non-adjacent cells. Fig. 2 shows an example of a horizontal tile.
Assume that this tile is included in the never-losing proof for O. In this case, if
X moves 0, O must move 1 immediately to prevent X from occupying the both
cells in the tile.

Definition 3. (Follow-in-tile; Follow-up) Placing one’s disk in a tile after
an opponent placed a disk in the tile is called follow-in-tile. Especially, placing
one’s disk in a vertical tile after an opponent placed a disk in the tile is called
follow-up[3].
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X O

-2 -1 0 1 2 3

Fig. 2. Tile

X

O

-2 -1 0 1 2

Fig. 3. Follow-up in Vertical Tile

C C

U U P P

1 2 3 4

Fig. 4. CUP

When a player plays follow-up in a tile, the vertical order of two disks in the
tile is uniquely determined such that the player’s disk is on the opponent’s disk
because of gravity. Fig. 3 shows the position after O played follow-up in a vertical
tile.

Definition 4. (CUP) A CUP is a CUP-shaped combination of three tiles as
illustrated in Fig. 4. We denote each tile in a CUP by C, U and P. We only
consider CUPs placed on the ground in our proof.

In some figures such as Fig. 4 and some explanations in this paper, we number
the columns relatively with the leftmost column number set to 1 for conciseness.

Lemma 1. For each CUP, if X and O place a disk in turn with X at the first
move, there is a strategy for O to force X to fill at most one of the C, U, and P
cells. Similarly, if X and O place a disk in turn with O at the first move, there
is a strategy for X to force O to fill at most one of the C, U, and P cells.

Proof. We present a strategy for O and show that it satisfies the condition by
case analysis. We can assume that X moves either of U because of the symmetry.
For X1 (Fig. 5), O moves the other U (Fig. 6). Note that the column numbers
in this proof are relative ones. Then, X can move either of P (Fig. 7) or C in the
1st column (Fig. 11). For X1O2X3, O moves the other P (Fig. 8). Then, X may
move either of C (Fig. 9). O moves the other C (Fig. 10). In Fig. 10, O forced
X to fill at most one C, U, and P cells. Similarly, O can force X to fill at most
one C, U, and P cells in the cases for X1O2X1 or X2O1X1 (Fig. 11). Because
O cannot move C in the 4th column, O cannot play follow-in-tile immediately
in these cases. O moves P in the 3rd column (Fig. 12). Because also X cannot
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C C

X U P P

1 2 3 4

Fig. 5. CUP after X1

C C

X O P P

1 2 3 4

Fig. 6. CUP after X1O2

C C

X O X P

1 2 3 4

Fig. 7. CUP after X1O2X3

C C

X O X O

1 2 3 4

Fig. 8. CUP after X1O2X3O4

C X

X O X O

1 2 3 4

Fig. 9. CUP after X1O2X3O4X4

O X

X O X O

1 2 3 4

Fig. 10. CUP after X1O2X3O4X4O1

X C

O X P P

1 2 3 4

Fig. 11. CUP after X2O1X1

X C

O X O P

1 2 3 4

Fig. 12. CUP after X2O1X1O3

move C in the 4th column, X is forced to move the P (Fig. 13) if X tries to move
C in the 4th column next. O moves C in the 4th column (Fig. 14) and even in
this case, O forced X to fill at most one C, U, and P cells. A strategy for X to
force O to fill at most one C, U, and P cells is similar.

Definition 5. (Follow-in -CUP) Follow-in-CUP is a strategy for a player to
prevent the opponent from occupying the both cells in any of C, U or P tile.

Definition 6. (X-Board) X-Board is a strategy for X consisting of the initial
cell, CUPs and vertical tiles as illustrated in Fig. 15.

– The initial cell is at the 1st row and the 0th column, by definition.
– CUPs are placed in the columns 5n+3 . . . 5n+6 (inclusive) and −5n−6 . . .−

5n− 3 (inclusive) for n ∈ N0 (N0 = N ∪ {0}).
– Other cells are filled with vertical tiles.

If O moves in a CUP, X plays follow-in-CUP in the CUP. If O moves in a
vertical tile, X plays follow-up in the tile.

If X moves along the X-Board, the layout of disks is determined uniquely except
that in a tile in CUPs.
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X C

O X O X

1 2 3 4

Fig. 13. CUP after X2O1X1O3X4

X O

O X O X

1 2 3 4

Fig. 14. CUP after X2O1X1O3X4O4
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Fig. 15. X-Board

Lemma 2. If X moves along X-Board, X never loses.

Proof. If X moves along X-Board and Connect4 is made by X or O, then Con-
nect4 of X or O should be in X-Board because no disk is removed or replaced in
the course of a game. In order to present that there is no Connect4 in X-Board,
we analyze the sub-board from the −1st to the 9th columns and from the 1st to
the 7th rows (name it Core77 ) as presented in Fig. 16.

In X-Board, the layout of CUPs and vertical tiles in a sub-board in 5n +
7 . . . 5n+ 11 (inclusive) columns n ∈ N0 (N0 = N ∪ {0}) is identical to that in
the 2nd to the 6th columns. The layout of CUPs and vertical tiles in a sub-board
in −5n− 11 . . .− 5n− 7 (inclusive) columns n ∈ N0 (N0 = N ∪ {0}) is identical

O X O O O X X O O O X

X O X X X O O X X X O

O X O O O X X O O O X

X O X X X O O X X X O

O X O O O X X O O O X

X O X X C O O C X C O

O X O O U U P P O U U

Fig. 16. Core77

O X O O O X X O O O X

X O X X X O O X X X O

O X O O O X X O O O X

X O X X X O O X X X O

O X O O O X X O O O X

X O X X O O O O X O O

O X O O O O O O O O O

Fig. 17. Core77 with all C, U, and P re-
placed with O
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O X O O O X X O O O X

X O X X X O O X X X O

O X O O O X X O O O X

X O X X X O O X X X O

O X O O O X X O O O X

X O X X X O O X X X O

O X O O X X X X O X X

Fig. 18. Core77 with all C, U, and P replaced with X

to that in the −6th to the −2nd columns. Thus, any layout of CUPs and vertical
tiles in a 4× 4 sub-board in X-Board appears in some 4× 4 sub-board in Core77
except vertical (left-right) symmetry. So proving that there is no Connect4 in
Core77 is sufficient for proving there is no Connect4 in X-Board.

From Core77 with all C, U, and P replaced with O (Fig. 17) or X (Fig. 18),
we can readily see that there is no vertical or diagonal Connect4. It is easy to
see that there is no horizontal Connect4 from the 3rd row to the 7th row in
Core77. Because each of C, U, and P in a CUP cannot be occupied by disks of
the same player, there is no Connect4 in the 1st and the 2nd rows of Core77.
This completes the proof that there is no Connect4 in Core77, no Connect4 in
X-Board, X and O cannot make Connect4, and the game is drawn if X moves
along X-Board.

Note that X-Board is not an optimal strategy for X if O does not take an optimal
strategy for O. For example, from the position in Fig 1, X can make Connect4
by X0O2X0O0X-2O-2X1O1X-1O2, but this deviates from X-Board.

Next, we consider a strategy for O. Similarly to X-Board, we define O-Board
as presented in Fig. 19.

Definition 7. (O-Board) We call the following strategy O-Board.

– CUPs are placed in the columns 5n+1 . . . 5n+4 (inclusive) and −5n−4 . . .−
5n− 1 (inclusive) for n ∈ N0 (N0 = N ∪ {0}).

– Other cells are filled with vertical tiles.

If X places a disk in a CUP, O plays follow-in-CUP in the CUP. If X places a
disk in a tile, O plays follow-up in the tile.

If O moves along the O-Board, the layout of disks is determined uniquely except
that in a tile in CUPs.

Lemma 3. If O moves along O-Board, O never loses.

Proof. If O moves along O-Board, disks are placed according to O-Board, and
it can be proved that there is no Connect4 using Core77 with reversed X and O
as before except symmetry.
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Fig. 19. O-Board

X

X

X

X

O

O

O

O

-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

Fig. 20. Result When X Moves along X-Board and O Moves along O-Board

Proof (Proof of Theorem 1). By Lemmas 2 and 3, X and O can achieve at least a
draw against any opponent. Therefore Infinite Connect-Four is solved: Optimal
play by both players leads to a draw.

If X moves along X-Board and O moves along O-Board, they play only follow-up
infinitely after the initial move (Fig. 20).

4 Solution of Variants of Infinite Connect-Four

4.1 Placing Rules

In the previous section, players can place a disk in any column. We call this rule
Free Placement Rule. There are the following local rules in Infinite Connect-Four
forbidding players to place a disk far from the already placed disks [4].

– Next Placement Rule: A player can place a disk in a column i if there is at
least one disk in the columns i − 1 . . . i + 1 (inclusive) or i = 0. As in the
case of Fig. 1, X can place a disk from the −2nd column to the 3rd column.
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– Space Placement Rule: A player can place a disk in a column i if there is at
least one disk in the columns i − 2 . . . i + 2 (inclusive) or i = 0. As in the
case of Fig. 1, X can place a disk from the −3rd column to the 4th column.

– Free Placement Rule: A player can place a disk in any column.

Theorem 2. Infinite Connect-Four under any of the three placement rules is
solved: Optimal play by both players leads to a draw.

Proof. Even if X plays under Next Placement Rule and O plays under Free
Placement Rule, X can move along X-Board and achieve at least a draw against
any opponent. So, X can achieve at least a draw under any placement rule. So
can O.

4.2 Height Limit

In this section, we present the solution for such cases that the height (the number
of rows) is limited while the width (the number of columns) is unlimited. Here
we consider only Free Placement Rule.

Theorem 3. Infinite Connect-Four in any height limited board under Free Place-
ment Rule is solved: Optimal play by both players leads to a draw.

We prove Theorem 3 by presenting strategies for both players to play Infinite
Connect-Four in any height limited board without losing the game.

Height 1. X plays follow-in-tile for horizontal tiles of {n, n+1} for n = {1, 3, 5,
· · ·} and tiles of {n, n − 1} for n = {−1,−3,−5, · · ·} except the initial 0. This
prevents O from making even a three-in-a-row. O plays follow-in-tile for hori-
zontal tiles of {n, n+ 1} for n = {· · · − 4,−2, 0, 2, 4, · · ·}. This prevents X from
making even a three-in-a-row.

Height More than 1. We employ X-Board truncated to the specified height
h. In the truncated X-Board, tiles spanning in the rows h...h + 1 are chopped.
If O places a disk in one of the chopped tiles, X cannot play follow-up. In such
a case, we adjust the truncated X-Board so that X can safely place his disk
without disrupting tiles in the original strategy. To make the insertion harmless
to the already placed disks, X finds the CUP (name it xCUP) just right to the
rightmost disk. We insert four columns just right to xCUP. The first, second, and
fourth of the columns consist of just tiles and the third of the column consists of
a cell on the ground and tiles on it. After the insertion, the columns in Fig. 21
are changed to the ones shown in Fig. 22, and X moves to the third column of
the inserted columns. The layout of CUPs and vertical tiles in these columns are
already included in Core77 except symmetry and the non-existence of Connect4
after the insertion is easily confirmed.

Definition 8. (Height-limited-X-Board) Height-limited-X-Board is a strat-
egy determined by the truncated X-Board and its variants with inserted columns.
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C O O C X C O O C

U U P P O U U P P

Fig. 21. xCUP and the One Next Right

C O O C X X O X X C O O C

U U P P O O X O O U U P P

Fig. 22. Insertion of Four Columns be-
tween Columns in Fig. 21

X O O O X X O O O X X O O

· · · O X X C O O C X C O O C X · · ·
X O O U U P P O U U P P O

· · · 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

Fig. 23. Follow-Up in 1st column Failed by Height Limit

Lemma 4. If X moves along height-limited-X-Board, X never loses.

Proof. Any layout of CUPs and vertical tiles in a 4 × 4 sub-board in height-
limited-X-Board appears in some 4 × 4 sub-board in Core77 except vertical
(left-right) symmetry.

We present an example for height 3. After X moves 0 initially, O moves 1, X
moves 1, and O moves 1, follow-up in the column 1 is impossible in Fig. 23. At
this point, X inserts four columns between the columns 6 and 7 and X moves 9
in the resulting height-limited-X-Board.

Next, we present the strategy to achieve a draw for O. O moves along the
O-Board truncated to the specified height. If O cannot play follow-in-tile due to
height limit, then O finds the CUP (name it oCUP) just right to the rightmost
disk. Then, O inserts the four columns of the Xs insertion with reversed X and
O just right to oCUP and moves to the third column of the inserted columns.
This changes the columns in Fig. 25 to the ones shown in Fig. 26.

Definition 9. (Height-limited-O-Board) Height-limited-O-Board is a strat-
egy determined by the truncated O-Board and its variants with inserted columns.

Lemma 5. If O moves along height-limited-O-Board, O never loses.

Proof. Any layout of CUPs and vertical tiles in a 4 × 4 sub-board in height-
limited-O-Board appears in some 4 × 4 sub-board in Core77 except vertical
(left-right) symmetry.

X O O O O X X O O X O O O

· · · O X X C O O C X X O X X C · · ·
X O O U U P P O O X O O U

· · · 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

Fig. 24. A Height-limited-X-Board
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C X X C O C X X C

U U P P X U U P P

Fig. 25. oCUP and the One Next Right

C X X C O O X O O C X X C

U U P P X X O X X U U P P

Fig. 26. Insertion of Four Columns be-
tween Columns in Fig. 25

Proof (Proof of Theorem 3). By Lemmas 4 and 5, X and O can achieve at least
a draw against any opponent. Therefore Infinite Connect-Four in any height
limited board under any of the three placement rules is solved: Optimal play by
both players leads to a draw.

4.3 Width Limit

In this section, we present the case that the width (the number of columns) is
limited while the height (the number of rows) is unlimited. The leftmost column
is numbered 0 in the following boards. We employ a modified rule that X can
place a disk in any column initially for the game on the board with limited
width.

Theorem 4. Infinite Connect-Four in any width limited board under any of the
three placement rules is solved: Optimal play by both players leads to a draw.

We prove Theorem 4 by discovering strategies for both players to play Infinite
Connect-Four in any width limited board without losing game. This result is
applicable to all three rules: Free Placement Rule, Next Placement Rule, and
Space Placement Rule. We proved this by showing X-Board and O-Board for each
width. However, because of the space limitation, we omit this proof. For the com-
plete proof of this theorem, please refer to the longer version of this paper avail-
able at http://www.graco.c.u-tokyo.ac.jp/~yoshiaki/hako-long.pdf.

5 Conclusion

We proved that the game result of Infinite Connect-Four is drawn (the game
never ends). The paving strategies employed to prove it is so general that with
slight modifications it can be used to prove that the game result of Infinite
Connect-Four on a vertically limited or horizontally limited board is also drawn.
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Abstract. In Go and Hex, we examine the effect of a blunder — here, a
random move — at various stages of a game. For each fixed move number,
we run a self-play tournament to determine the expected blunder cost at
that point.

1 Introduction

To blunder — literally, to stumble blindly [9] — is to move stupidly, with appar-
ent ignorance of one’s situation. In the context of games, a blunder is usually
defined as a serious mistake, for example a losing move when a winning move
is available. But a mindless move need not be catastrophic. In the endgame, a
blunder usually leads to a quick loss, but in opening play, a blunder might not
even be noticed. So, what is the average cost of a blunder — namely, a random
move — at various stages of a game?

Games that are interesting to play are typically hard to solve, so usually this
question can be answered only experimentally rather than exactly. In this paper
we present experimental blunder cost data for the Go player Fuego and the
Hex player MoHex.

For a particular move number, blunder cost is a function of both player
strength (the stronger the player, the higher the cost) and position difficulty
(the greater the number of losing moves, the higher the cost). Thus blunder
analysis, in which a player is compared with a blundering version of itself, can
be useful as a diagnostic tool both for players and for games.

2 A Simple Model of Two-Player No-Draw Games

To explain how blunder analysis can be useful, we first outline a straightforward
model of two-player no-draw games. (For other approaches of modeling more
general games, see for example the work of Haworth and Regan [10,20].)

Our model’s parameters are as follows:

– T : maximum number of moves in a game,
– t: moves made so far, in {0,. . . ,T},
– et: computational ease of solving a state after t moves, from 0 (intractable)

to 1 (trivial),
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– wt: fraction of available moves that are winning, from -1 (all losing) to 1
(all winning), with wt = −x < 0 indicating that all player moves are losing,
and furthermore that after the best move the opponent will have wt+1 close
to x,

– mt: score of move t, from -1 (weakest) to 1 (strongest),
– rt: rank of move t, from 1 (weakest) to kt (strongest), where kt is the

number of available moves,
– sp: strength of player p, from -1 (anti-perfect, always likely to play the

weakest move) to 0 (uniform random) to 1 (perfect, always likely to play the
strongest move).

We assume that games are non-pathological, in the sense defined by Dana Nau
[19], so that the smaller the search space, the greater the tendency to make a
strong move. Thus et, which approximates the size of the search space, increases
smoothly with t.

With these parameters, a game can be modeled as follows:

– for each move number t, compute mt by sampling from a distribution with
mean sp × et,

– then compute rt from mt,
– then make the move with rank rt,
– then compute wt+1 from wt and rt, say by sampling from a distribution,

with the sampling formula ensuring that the strongest move from a winning
position always leaves the opponent with no winning moves.

So, in this model, what is the expected cost of a blunder? The probability of
making a winning move depends on wt, the fraction of winning moves available,
and sp, the player’s strength. We assume that both players try to win and can
perform some useful computation, and so sp > 0 for both players. A blunder
is a uniform random move: in our model, this corresponds to a move of which
the strength is uniformly sampled from the interval [-1, 1]. Since non-blunder
moves are sampled from a distribution D with expected value sp× et, a blunder
is similar to (and, if D is uniform, identical to) a move made by a player whose
strength temporarily drops to 0. Thus the expected cost of a blunder is the drop
in win rate caused by this temporary strength loss. So, this form of blunder
analysis gives an indirect measurement of sp×et, namely playing strength times
ease of solving the game at move t.

In this paper, we consider what happens when the “blunder player” makes
exactly one blunder per game. We also considered experiments where the blunder
player makes two consecutive blunders, but this resulted in the blunder player’s
win rate being extremely low and difficult to measure, and so we do not include
any of this data.

3 Blunder Analysis of Fuego

Fuego is the open source Monte Carlo tree search Go program originally de-
veloped by the University of Alberta Computer Go group, led by Martin Müller
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and including Markus Enzenberger, Broderick Arneson [17,8,16]. In 2009 Fuego
became the first computer Go program to win a 9×9 game without handicap
against a top professional player, 9-dan Chou Chun-Hsun. Fuego has won a
number of computer Go tournaments, including the 2010 UEC Cup [15,7].

In our experiments, the default player never deliberately blunders. Baseline
data, which shows the respective black (first player) and white (second player) win
rates, is generated from a tournament between two default players. Each move-k
win rate is an average of win rates from a trial between a blunder-player, who
blunders only at that move, and a default player. The blunder-player data values
are drawn as two curves, one for each possible blunder-player color. A third curve
shows the fraction of games still active, namely unfinished, at that point. Each
data value and each baseline value is computed from a 500 game trial.

Error bars show a binomial proportion confidence interval of 2
√
(p(1− p)/n),

where p is the proportion and n is the number of trials, yielding a confidence
of slightly more than 95%. Each move-k datum is computed only on games still
active at move k, so error bars enlarge as the number of active games decreases.

In these Go experiments, White receives a komi of 7.5 points. Unless otherwise
noted, Fuego runs 10000 MCTS simulations per move, and the resign threshold
is 0.05.

3.1 9×9 Go

Figure 1 shows the effect of Fuego blunders on the 9×9 board. The baselines
show black/white win rates of about 47%/53%, suggesting that on the 9×9
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board the komi of 7.5 is in White’s favor in games between programs. The move
1 (black) blunder-player has a 33% win rate, so the blunder cost of this move is
47− 33 = 14%. This win rate indicates that, for roughly 1/3 of the 49 possible
9×9 opening moves, Fuego wins in self-play from that opening. At move 56
the active game rate is below 0.5, so for this move more than half of the 500
trial games finished before the blunder-player had a chance to make its move-56
blunder; as mentioned earlier, each data value is computed only on the games
still active at that the time of the scheduled blunder, so the error bar here is
larger than at moves made when all 500 trial games were active.

In the early game, the 9×9 blunder-player win rate is relatively high, sug-
gesting that Fuego’s play here is relatively weak and/or that the number of
available winning moves is relatively high. By move 11 the blunder cost is about
47− 18 = 29%, about double the move-1 blunder cost.

3.2 Go on Other Board Sizes

Compare the 9×9 data with the 7×7 data in Figure 2 and the 13×13 data in
Figure 3. For the 7×7 data, the number of simulations per move is the same but
the number of available moves per position is smaller (than for 9×9). Thus we
expect Fuego to be stronger here, and this seems to be the case, as blunder
costs are higher than for 9×9 Go. Fuego may play 7×7 Go close to perfectly, in
which case the move-k blunder-player win rate is close to the move-k available-
winning-move rate.

By contrast, for the 13×13 data, with a larger number of moves per position,
we expect Fuego to be weaker. Again, this appears to be the case, as blunder
costs are lower. The move-1 blunder cost is under 4%, and it is only by about
move 50 that blunder cost is about 25%. For some reason, even though black
and white baseline win rates are within 1% of each other, black blunders are
typically more costly than white blunders. This is a topic for further study.

4 Blunder Analysis of MoHex

Hex is the classic connection game created by Piet Hein in 1942 [13] and John
Nash around 1948 [18]. The players alternate turns, trying to connect their two
sides. Figure 4 shows a game won by Black.

Fig. 4. An empty 3×3 Hex board and a game won by Black
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Fig. 5. MoHex-blunder performance, 1000 sim./move, 11×11 board
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Hex is simpler than Go in some aspects: stones never move once played,
checking the winning condition is easy, and the game cannot end in a draw. On
n×n boards the first player has a winning strategy, but no explicit such strategy
is known for any n > 9, and solving arbitrary positions is Pspace-complete. (For
more on Hex, including more on these results, see [6] or [11].) For this reason,
Hex is often used as a test bed for algorithmic development.

MoHex is the open source MCTS Hex program originally developed by the
University of Alberta Computer Hex group, led by Ryan Hayward and including
Broderick Arneson and Philip Henderson [5,3]. MoHex is built on top of the
Fuego Monte Carlo tree search framework. Its main game-specific ingredients
are a virtual connection1 engine and an inferior cell2 engine [3]. MoHex won
the gold medal for (11×11) Hex at the 2009 and 2010 ICGA Computer Games
Olympiads [1,2].

The parameters for Hex experiments were in general the same as for the Go ex-
periments. Unless otherwise noted,MoHex ran 1000MCTS simulations permove.

4.1 11×11 Hex

Figure 5 shows the effect of MoHex blunders on the 11×11 board. The baselines
show first player (black) and second player (white) win rates of 62.8% and 37.2%
respectively.3 For some reason the white move-k + 1 blunder cost is for small k
slightly more than the black move-k blunder cost, but becomes less as k increases.
This is a topic for further study.

4.2 7×7 Hex and Available-Winning-Move Rate

Although n×n Hex is a first player win, the baseline black win rate here is
only 79%, rather than the 100% achievable by a perfect player. So, with 1000
simulations per move, MoHex is far from perfect, even on this small board.

Fig. 7. A 7×7 Hex position with all winning black moves

1 A virtual connection is a point-to-point 2nd-player connection strategy, i.e., the
player can force the connection even if the opponent moves first.

2 An inferior cell is one that can be pruned in the search for a winning move.
3 This is perhaps partly due to MoHex arbitrarily assigning so-called dead cells (cells
which are not in a minimal winning path-completion for either player) always to the
black player in the inferior cell engine.
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However, the move-1 blunder win rate is about 57±4%. This is within error of
what is expected from a perfect player, since exactly 27/49�0.55 of the possible
7×7 opening moves are winning [12], so any errors MoHex is making in these
games are not having much effect.

State-of-the-art Hex solvers can easily solve arbitrary 7×7 positions [14,4].
So, in our 7×7 Hex experiment, for each position where the blunder player was
about to move, we ran an exact solver to find the number of available winning
moves at that point. For example, Figure 7 shows an 8-stone 7×7 position and all
21 winning moves. If Black blunders in this position, Black has a 21/41 chance
of selecting a winning move.

In addition to the usual blunder data, Figure 6 shows the available-winning-
move rates as two curves, one for each color. These curves are difficult to see,
as from move 12 they coincide almost exactly with the respective blunder rates,
suggesting that MoHex is playing most of these positions perfectly.

4.3 9×9 Hex and Playing Strength

Figures 8 and 9 show data on the same board size with two players of slightly
different strength. We expect that in general the stronger player will have higher
blunder cost, but in fact the opposite seems to occur here. This is a topic for
further study.
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5 Conclusions

We have shown that blunder analysis can offer insight into player performance
and game difficulty. Our results with Fuego and MoHex suggest that when
the players are strong and the board size is relatively small, the blunder rate
corresponds closely with the fraction of available winning moves. We conjecture
that this holds for other games and players. We propose blunder analysis as a
reasonable measure of perfect play in general.

One possible use of blunder analysis is as a tool for aiding in game time
management, i.e., deciding how much processing time to spend on move selection
at various points in a game. We leave this as a topic for further study.
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Abstract. This paper studies the population of chess players and the distribution
of their performances measured by Elo ratings and by computer analysis of moves.
Evidence that ratings have remained stable since the inception of the Elo system
in the 1970’s is given in three forms: (1) by showing that the population of strong
players fits a straightforward logistic-curve model without inflation, (2) by plotting
players’ average error against the FIDE category of tournaments over time, and (3)
by skill parameters from a model that employs computer analysis keeping a nearly
constant relation to Elo rating across that time. The distribution of the model’s
Intrinsic Performance Ratings can therefore be used to compare populations that
have limited interaction, such as between players in a national chess federation and
FIDE, and ascertain relative drift in their respective rating systems.

1 Introduction

Chess players form a dynamic population of varying skills, fortunes, and aging ten-
dencies, and participate in zero-sum contests. A numerical rating system based only on
the outcomes of the contests determines everyone’s place in the pecking order. There
is much vested interest in the accuracy and stability of the system, with significance
extending to other games besides chess and potentially wider areas. Several fundamen-
tal questions about the system lack easy answers: How accurate are the ratings? How
can we judge this? Have ratings inflated over time? How can different national rating
systems be compared with the FIDE system? How much variation in performance is
intrinsic to a given skill level?

This paper seeks statistical evidence beyond previous direct attempts to measure
the system’s features. We examine player-rating distributions across time since the
inception of the Elo rating system by the World Chess Federation (FIDE) in 1971. We
continue work by Haworth, DiFatta, and Regan [1,2,3,4] on measuring performance ‘in-
trinsically’ by the quality of moves chosen rather than the results of games. The models
in this work have adjustable parameters that correspond to skill levels calibrated to the
Elo scale. We have also measured aggregate error rates judged by computer analysis of
entire tournaments, and plotted them against the Elo rating category of the tournament.
Major findings of this paper extend the basic result of [4] that ratings have remained
stable since the 1970’s, contrary to the popular wisdom of extensive rating inflation.
Section 5 extends that work to the Elo scale, while the other sections present indepen-
dent supporting material. Related previous work [5,6,7] is discussed below.
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2 Ratings and Distributions

The Elo rating system, which originated for chess but is now used by many other games
and sports, provides rules for updating ratings based on performance in games against
other Elo-rated players, and for bringing new (initially ‘unrated’) players into the sys-
tem. In chess, they have a numerical scale where 2800 is achieved by a handful of top
players today, 2700 is needed for most highest-level tournament invitations, 2600 is a
‘strong’ grandmaster (GM), while 2500 is typical of most GM’s, 2400 of International
Masters, 2300 of FIDE Masters, and 2200 of masters in national federations. We em-
phasize that the ratings serve two primary purposes:

1. to indicate a position in the world ranking, and
2. to indicate a level of skill.

These two purposes lead to different interpretations of what it means for “inflation” to
occur. According to view 1, 2700 historically meant what the neighborhood of 2800
means now: being among the very best, a true world championship challenger. As late
as 1981, Anatoly Karpov topped the ratings at 2695, so no one had 2700, while today
there are forty-five players 2700 and higher, some of whom have never been invited to
an elite event. Under this view, inflation has occurred ipso-facto.

While view 2 is fundamental and has always had adherents, for a long time it had
no reliable benchmarks. The rating system itself does not supply an intrinsic meaning
for the numbers and does not care about their value: arbitrarily add 1000 to every figure
in 1971 and subsequent initialization of new players, and relative order today would
be identical. However, recent work [4] provides a benchmark to calibrate the Elo scale
to games analyzed in the years 2006–2009, and finds that ratings fifteen and thirty
years earlier largely correspond to the same benchmark positions. In particular, today’s
echelon of over forty 2700+ players all give the same or better statistics in this paper
than Anatoli Karpov and Viktor Korchnoi in their prime. We consider that two further
objections to view 2 might take the following forms.

(a) If Karpov and Korchnoi had access to today’s computerized databases and more
extensive opening publications, they would have played (say) 50 to 100 points
higher—as Kasparov did as the 1980’s progressed.

(b) Karpov and Korchnoi were supreme strategists whose strategic insight and depth
of play does not show up in ply-limited computer analysis.

We answer (a) by saying we are concerned only with the quality of moves made on the
board, irrespective of whether and how they are prepared. Regarding also (b) we find
that today’s elite make fewer clear mistakes than their forebears. This factor impacts
skill apart from strategic depth. The model from [4] used in this paper finds a natural
weighting for the relative importance of avoiding mistakes.

Our position in subscribing to view 2 is summed up as today’s players deserve their
ratings. The numerical rating should have a fixed meaning apart from giving a player’s
rank in the world pecking order. In subsequent sections we present the following ev-
idence that there has been no inflation, and that the models used for our conclusions
produce reasonable distributions of chess performances.
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– The proportion of Master-level ratings accords exactly with what is predicted from
the growth in population alone, without adjusting for inflation.

– A version, called AE for “average error,” of the “average difference” (AD) statis-
tic used by Guid and Bratko [5] (see also [6,7]) to compare world championship
matches. An important scaling discovery leads to Scaled Average Error (SAE).
Our work shows that tournaments of a given category have seen a fairly constant
(S)AE over time.

– “Intrinsic Ratings” as judged from computer analysis have likewise remained rela-
tively constant as a function of Elo rating over time—for this we refine the method
by Regan and Haworth [4].

– Intrinsic Ratings for the world’s top players have increased steadily since the mid-
1800s, mirroring the way records have improved in many other sports and human
endeavors.

– Intrinsic Performance Ratings (IPR’s) for players in events fall into similar distribu-
tions as assumed for Tournament Performance Ratings (TPR’s) in the rating model,
with somewhat higher variance. They can also judge inflation or deflation between
two rating systems, such as those between FIDE and a national federation much of
whose population has little experience in FIDE-rated events.

The last item bolsters the Regan-Haworth model [4] as a reliable indicator of perfor-
mance, and therefore enhances the significance of the third and fourth items.

The persistence of rating controversies after many years of the standard analysis of
rating curves and populations calls to mind the proverbial elephant that six blind men
are trying to picture. Our non-standard analyses may take the hind legs, but since they
all agree, we feelm we understand the elephant. Besides providing new insight into
distributional analysis of chess performances, the general nature of our tools allows
application in other games and fields besides chess.

3 Population Statistics

Highlighted by the seminal work of de Solla Price on the metrics of science [8], re-
searchers have gained an understanding of the growth of human expertise in various
subjects. In an environment with no limits on resources for growth, de Solla Price
showed that the rate of growth is proportional to the population,

dN

dt
∼ aN, (1)

which yields an exponential growth curve. For example, this holds for a population
of academic scientists, each expected to graduate some number a > 1 of students as
new academic scientists. However, this growth cannot last forever, as it would lead
to a day when the projected number of scientists would be greater than the total world
population. Indeed, Goodstein [9] showed that the growth of PhD’s in physics produced
each year in the United States stopped being exponential around 1970, and now remains
at a constant level of about 1000.

The theory of the growth of a population under limiting factors has been successful
in other subjects, especially in biology. Since the work by Verhulst [10] it has been
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widely verified that in an environment with limited resources the growth of animals
(for instance tigers on an island) can be well described by a logistic function

N(t) =
Nmax

(1 + a(exp)−bt)
arising from

dN

dt
∼ aN − bN2, (2)

where bN2 represents a part responsible for a decrease of a growth due to an overpop-
ulation, which is quadratic insofar as every animal interacts, for instance fights for re-
sources, with every other animal. We demonstrate that this classic model also describes
the growth of the total number of chess players in time with a high degree of fit.

We use a minimum rating of 2203—which FIDE for the first three Elo decades
rounded up to 2205—because the rating floor and the start rating of new players have
been significantly reduced from 2200 which was used for many years.

Fig. 1. Growth of number of players rated at least 2203 since 1971

Figure 1 shows the number of 2203+ rated players, and a curve obtained for some
particular values of a, b, and Nmax. Since there are many data points and only three pa-
rameters, the fit is striking. This implies that the growth of the number of chess players
can be explained without a need to postulate inflation.

4 Average Error and Results by Tournament Categories

The first author has run automated analysis of almost every major event in chess history,
using the program RYBKA 3 [11] to fixed reported depth 13 ply1 in Single-PV mode.

1 That RYBKA versions often report the depth as -2 or -1 in UCI feedback has fueled speculation
that the true depth here is 16, while the first author finds it on a par in playing strength with
some other prominent programs fixed to depths in the 17–20 range.
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This mode is similar to how Guid and Bratko [5] operated the program CRAFTY to
depth (only) 12, and how others have run other programs since. Game turns 1–8, turns
where RYBKA reported a more than 3.00 advantage already at the previous move, and
turns involved in repetitions are weeded out.

The analysis computations have included all round-robin events of Category 11 or
higher, using all events given categories in the ChessBase Big 2010 database plus The
Week In Chess supplements through TWIC 893 12/19/11. The categories are the aver-
age rating of players in the event taken in blocks of 25 points; for instance, category 11
means the average rating is between 2500 and 2525, while category 15 means 2600–
2625.

For every move that is not equivalent to RYBKA’s top move, the “error” is taken as
the value of the present position minus the value after the move played. The errors over
a game or player-performance or an entire tournament are summed and divided by the
number of moves (those not weeded out) to make the “Average Error” (AE) statistic.
Besides including moves 9–12 and using Rybka depth 13 with a [−3.00,+3.00] eval-
uation range rather than CRAFTY depth 12 with a [−2.00,+2.00] range, our statistic
differs from [5] in not attempting to judge the “complexity” of a position, and in several
incidental ways.

For large numbers of games, AD or AE seems to give a reasonable measure of play-
ing quality, beyond relative ranking as shown in [6]. When aggregated for all tourna-
ments in a span of years, the figures were in fact used to make scale corrections for
the in-depth mode presented in the next section. When AE is plotted against the turn
number, sharply greater error for turns approaching the standard Move 40 time con-
trol is evident; then comes a sharp drop back to previous levels after Move 41. When
AE is plotted against the advantage or disadvantage for the player to move, in intervals
of 0.10 or 0.05 pawns, a scaling pattern emerges. The AE for advantage 0.51–0.60 is
almost double that for near-equality 0.01–0.10, while for -0.51 to -0.60 it is regularly
more than double.

It would seem strange to conclude that strong masters play only half as well when
ahead or behind by half a Pawn as even. Rather this seems to be evidence that human
players perceive differences in value in proportion to the overall advantage for one side.
This yields a log-log kind of scaling, with an additive constant that tests place close to 1,
so we used 1. This is reflected in the definition of the scaled difference δi in Equation 3
below, since 1/(1 + |z|) in the body of a definite integral produces ln(1 + |z|). This
produces Scaled Average Error (SAE).

Figure 2 shows AE (called R3 for “raw” and the 3.00 evaluation cutoff) and SAE
(SC3), while Figure 3 shows how both figures increase markedly toward the standard
Move 40 time control and then level off. For these plots the tournaments were divided
into historical “eras” E5 for 1970–1984, E6 for 1985–1999, E7 for 2000–2009, and
E8 for 2010–. The tournaments totaled 57,610 games, from which 3,607,107 moves
were analyzed (not counting moves 1–8 of each game which were skipped) and over
3.3 million retained within the cutoff. Category 10 and lower tournaments that were
also analyzed bring the numbers over 60,000 games and 4.0 million moves with over
3.7 million retained. Almost all work was done on two quad-core Windows PC’s with
analysis scripted via the Arena GUI v1.99 and v2.01.
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Fig. 2. Plot of raw AE vs. advantage for player to move, and flattening to SAE

Fig. 3. Plot of AE and SAE by turn number

Figures 4 and 5 below graph SAE for all tournaments by year as a four-year moving
average, the latter covering moves 17–32 only. The five lines represent categories 11–
12 (FIDE Elo 2500–2549 average rating), 13–14 (2550–2599), 15–16 (2600–2649),
17–18 (2650–2699), and 19–20 (2700–2749). There were several category 21 events in
1996–2001, none in 2002–2006, and several 21 and 22 events since 2007; the overall
averages of the two groups are plotted as X for 2001 and 2011. The lowest category has
the highest SAE and therefore appears at the top.
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Fig. 4. SAE by tournament category, 4-yr. moving avg., 1971–2011

Fig. 5. SAE by category for moves 17–32 only, 4-yr. moving avg., 1971–2011

Despite yearly variations the graphs allow drawing two clear conclusions: (1) the
categories do correspond to different levels of SAE, and (2) the lines by-and-large do
not slope up to the right as would indicate inflation. Indeed, the downslope of SAE
for categories above 2650 suggests some deflation since 1990. Since the SAE statistic
depends on how tactically challenging a game is, and thus does not indicate skill by
itself, we need a more intensive mode of analysis in order to judge skill directly.
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5 Intrinsic Ratings over Time

Haworth [1,2] and with DiFatta and Regan [3,12,4] developed models of fallible de-
cision agents that can be trained on players’ games and calibrated to a wide range of
skill levels. Their main difference from [5,6,7] is the use of Multi-PV analysis to obtain
authoritative values for all reasonable options, not just the top move(s) and the move
played. Thus each move is evaluated in the full context of available options. The paper
[6] gives evidence that for relative rankings of players, good results can be obtained
even with relatively low search depths, and this is confirmed by [7]. However, we ar-
gue that for an intrinsic standard of quality by which to judge possible rating drift, one
needs greater depth, the full move context, and a variety of scientific approaches. The
papers [3,12] apply Bayesian analysis to characterize the performance of human players
using a spectrum of reference fallible agents. The work reported in [4] and this paper
uses a method patterned on multinomial Bernoulli trials, and obtains a corresponding
spectrum.

The scaling of AE was found important for quality of fit, and henceforth AE means
SAE. It is important to note that SAE from the last section does not directly carry
over to intrinsic ratings in this section, because here we employ the full move analysis
of Multi-PV data. They may be expected to correspond in large samples such as all
tournaments in a range of years for a given category, but here we are considering smaller
samples from a single event or a single player in a single event, and at this stage we
are studying those with more intensive data. What we do instead is use statistical fits
of parameters called s, c to generate projections AEe for every position, and use the
aggregate projected AEe on a reference suite of positions as our “standard candle” to
index to the Elo scale.

We also generate projected standard deviations, and hence projected confidence in-
tervals, for AEe (and also the first-move match statistic MMe) as shown below. This
in turn yields projected confidence intervals for the intrinsic ratings. Preliminary testing
with randomly-generated subsets of the training data suggest that the actual deviations
in real-world data are bounded by a factor of 1.15 for the MM statistic and 1.4 for AE,
and these are signified by a subscripted a for ‘actual’ in tables below. The projections
represent the ideal case of zero modeling error, so we regard the difference shown by
the tests as empirical indication of the present level of modeling error.

Models of this kind function in one direction by taking in game analyses and using
statistical fitting to generate values of the skill parameters to indicate the intrinsic level
of the games. They function in the other direction by taking pre-set values of the skill
parameters and generating a probability distribution of next moves by an agent of that
skill profile. The defining equation of the particular model used in [4], relating the
probability pi of the i-th alternative move to p0 for the best move and its difference in
value, is

log(1/pi)

log(1/p0)
= e−(

δ
s )

c

, where δi =

∫ v0

vi

1

1 + |z|dz. (3)

Here when the value v0 of the best move and vi of the i-th move have the same sign,
the integral giving the scaled difference simplifies to | log(1 + v0)− log(1 + vi)|. Note
that this employs the empirically-determined scaling law from the last section.
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The skill parameters are called s for “sensitivity” and c for “consistency” because
s when small can enlarge small differences in value, while c when large sharply cuts
down the probability of poor moves. The equation solved directly for pi becomes

pi = pα0 where α = e−(
δ
s )

c

. (4)

The constraint
∑

i pi = 1 thus determines all values. By fitting these derived probabili-
ties to actual frequencies of move choice in training data, we can find values of s and c
corresponding to the training set.

Each Elo century mark 2700, 2600, 2500, . . . is represented by the training set com-
prising all available games under standard time controls in round-robin or small-Swiss
(such as no more than 54 players for 9 rounds) in which both players were rated within
10 points of the mark, in the three different time periods 2006–2009, 1991–1994, and
1976–1979. In [4], it was observed that the computed values of c stayed within a rel-
atively narrow range, and gave a good linear fit to Elo rating by themselves. Thus it
was reasonable to impose that fit and then do a single-parameter regression on s. The
“central s, c artery” created this way thus gives a clear linear relation to Elo rating.

Here we take a more direct route by computing from any (s, c) a single value that
corresponds to an Elo rating. The value is the expected error per move on the union of
the training sets. We denote it by AEe, and note that it, the expected number MMe of
matches to the computer’s first-listed move, and projected standard deviations for these
two quantities, are given by these formulas:

MMe =
∑T

t=1 p0.t, σMMe =
√∑T

t=1 p0,t(1− p0,t)

AEe = 1
T

∑T
t=1

∑
i≥1 pi,tδi,t, σAEe =

√
1
T

∑T
t=1

∑
i≥1 pi,t(1− pi,t)δi,t.

(5)

The first table gives the values of AEe that were obtained by first fitting the training data
for 2006–09, to obtain s, c, then computing the expectation for the union of the training
sets. It was found that a smaller set R of moves comprising the games of the 2005 and
2007 world championship tournaments and the 2006 world championship match gave
identical results to the fourth decimal place, so R was used as the fixed reference set.

Table 1. Correspondence between Elo rating from 2006–2009 and projected Average Error

Elo 2700 2600 2500 2400 2300 2200
AEe .0572 .0624 .0689 .0749 .0843 .0883

A straightforward linear fit then yields the rule to produce the Elo rating for any
(s, c), which we call an “Intrinsic Performance Rating” (IPR) when the (s, c) are ob-
tained by analyzing the games of a particular event and player(s).

IPR = 3571− 15413 ·AEe. (6)

This expresses, incidentally, that at least from the vantage of the RYBKA 3 run to re-
ported depth 13, perfect play has a rating under 3600. This is reasonable when one
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considers that if a 2800 player such as Vladimir Kramnik is able to draw one game in
fifty, the opponent can never have a higher rating than that.

Using equation (6), we reprise the main table from [4], this time with the correspond-
ing Elo ratings from the above formulas. The left-hand side gives the original fits, while
the right-hand side corresponds to the “central artery” discussed above. The middle
of the table is our first instance of the following procedure for estimating confidence
intervals for the IRP derived from any test set.

1. Do a regression on the test set T to fit sT , cT .
2. Use sT , cT to project AEe on the reference set R (not on T ), and derive IPRT via

equation (6).
3. Use sT , cT on the test set T only to project σT = σAEe .
4. Output [IPRT − 2σT , IPRT + 2σT ] as the proposed “95%” confidence interval.

As noted toward the start of this section, early testing suggests replacing σT by σa =
1.4σT to get an “actual” 95% confidence interval given the model as it stands. Hence,
we show both ranges.

In this case, the test sets T are the training sets themselves for the Elo century points
in three different four-year intervals. These give the results in Table 2.

Table 2. Elo correspondence in three four-year intervals

2006–2009
Elo s c IPR 2σe range 2σa range #moves cfit sfit IPRfit

2700 .078 .502 2690 2648–2731 2632–2748 7,032 .513 .080 2698
2600 .092 .523 2611 2570–2652 2553–2668 7,807 .506 .089 2589
2500 .092 .491 2510 2480–2541 2468–2553 16,773 .499 .093 2528
2400 .098 .483 2422 2393–2452 2381–2464 20,277 .492 .100 2435
2300 .108 .475 2293 2257–2328 2243–2342 17,632 .485 .111 2304
2200 .123 .490 2213 2170–2257 2153–2274 11,386 .478 .120 2192
2100 .134 .486 2099 2048–2150 2028–2170 9,728 .471 .130 2072
2000 .139 .454 1909 1853–1966 1830–1989 9,471 464 .143 1922
1900 .159 .474 1834 1790–1878 1769–1893 16,195 .457 .153 1802
1800 .146 .442 1785 1741–1830 1723–1848 15,930 .450 .149 1801
1700 .153 .439 1707 1642–1772 1616–1798 8,429 .443 .155 1712
1600 .165 .431 1561 1496–1625 1470–1651 9,050 .436 .168 1565

1991–1994
2700 .079 .487 2630 2576–2683 2555–2704 4,954 .513 .084 2659
2600 .092 .533 2639 2608–2670 2596–2682 13,425 .506 .087 2609
2500 .098 .500 2482 2453–2512 2441–2524 18,124 .499 .092 2537
2400 .101 .484 2396 2365–2426 2353–2438 19,968 .492 .103 2406
2300 .116 .480 2237 2204–2270 2191–2284 20,717 .485 .117 2248
2200 .122 .477 2169 2136–2202 2123–2215 21,637 .478 .122 2173

1976–1979
2600 .094 .543 2647 2615–2678 2602–2691 11,457 .506 .087 2609
2500 .094 .512 2559 2524–2594 2509–2609 11,220 .499 .091 2547
2400 .099 .479 2397 2363–2431 2350–2444 16,635 .492 .103 2406
2300 .121 .502 2277 2240–2313 2226–2328 15,284 .485 .116 2257
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Table 3. Intrinsic Ratings of Category 21 and higher standard tournaments

Event cat: Elo IPR 2σe range 2σa range IPR-Elo #moves
Las Palmas 1996 21: 2756 2697 2612–2781 2579–2815 -59 1,760
Linares 1998 21: 2752 2715 2651–2780 2625–2805 -37 2,717
Linares 2000 21: 2751 2728 2645–2810 2612–2843 -23 1,636
Dortmund 2001 21: 2755 2752 2760–2834 2637–2866 -3 1,593
Mexico 2007 21: 2751 2708 2647–2769 2623–2793 -43 3,213
Morelia-Linares 2008 21: 2755 2855 2808–2903 2789–2922 +100 3,453
Nanjing 2008 21: 2751 2766 2691–2842 2660–2873 +15 1,936
Bilbao GSF 2008 21: 2768 2801 2731–2872 2702–2900 +33 2,013
Linares 2009 21: 2755 2750 2696–2803 2675–2825 -5 3,830
Sofia M-Tel 2009 21: 2754 2711 2626–2795 2592–2829 -51 1,937
Nanjing 2009 21: 2763 2715 2644–2785 2616–2814 -48 2,192
Moscow Tal Mem. 2009 21: 2763 2731 2663–2800 2635–2827 -32 2,706
Linares 2010 21: 2757 2681 2607–2756 2577–2786 -76 2,135
Nanjing 2010 21: 2766 2748 2674–2821 2645–2850 -18 1,988
Shanghai 2010 21: 2759 2829 2727–2931 2686–2972 +70 920
Bilbao 2010 22: 2789 2904 2822–2987 2788–3020 +115 1,060
Moscow Tal Mem. 2010 21: 2757 2690 2629–2750 2604–2775 -67 3,493
Bazna 2011 21: 2757 2750 2675–2825 2645–2855 -7 1,885
Sao Paulo/Bilbao 2011 22: 2780 2626 2539–2713 2504–2748 -154 1,998
Moscow Tal Mem. 2011 22: 2776 2807 2755–2860 2734–2881 +31 3,401
Averages 21: 2761 2748 -13 2,293
Weighted by moves 21: 2760 2745 -15.6
Aggregate run, all moves 21: 2760 2744 2729–2760 2722–2766 -16 45,870

Table 4. Some other events, for comparison to Table 3

Event cat: Elo IPR 2σe range 2σa range IPR-Elo #moves
Montreal 1979 15: 2622 2588 2534–2642 2513–2663 -34 4,732
Linares 1993 18: 2676 2522 2469–2574 2449–2595 -154 6,129
Linares 1994 18: 2685 2517 2461–2574 2438–2596 -168 5,536
Dortmund 1995 17: 2657 2680 2615–2744 2589–2770 +23 2,459
Dortmund 1996 18: 2676 2593 2518–2667 2489–2697 -83 2,796
Dortmund 1997 18: 2699 2639 2569–2709 2541–2737 -60 2,583
Dortmund 1998 18: 2699 2655 2579–2732 2548–2762 -44 2,284
Dortmund 1999 19: 2705 2749 2655–2844 2617–2882 +44 1,364
Sarajevo 1999 19: 2703 2664 2592–2737 2563–2766 +19 2,755
San Luis 2005 20: 2738 2657 2597–2716 2574–2740 -81 3,694
Corus 2006 19: 2715 2736 2693–2779 2676–2797 +21 5,800
Sofia M-Tel 2006 20: 2744 2744 2678–2810 2651–2836 0 2,197
Corus 2007 19: 2717 2763 2716–2811 2697–2829 +46 5,095
Sofia M-Tel 2007 19: 2725 2576 2482–2670 2445–2708 -149 2,184
Sofia M-Tel 2008 20: 2737 2690 2605–2775 2571–2809 -47 1,869
London Classic 2010 20: 2725 2668 2594–2742 2565–2771 -57 2,312
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The entries vary around the Elo century marks, as is to be expected from a linear
fit. Some points in the 1600–2100 range are anomalous, and this may owe to various
factors pertaining to the quality of the games. Only the Elo 2200 through 2700 data for
2006–2009 were used in the linear fit for the ratings. Of course, there is error from the
regression, but we do not know whether it adds to or mitigates the estimates σAEe of
placement of the linear regression points. For uniformity with later performance testing,
we show only the latter error here. Despite these elements of uncertainty, the table still

Table 5. Comparison of FIDE and CFC ratings, TPR’s, and IPR’s for 2011 Canadian Open

Name Can R FIDE R TPR IPR IPR-TPR 2σe range 2σa range #moves
Arencibia 2537 2476 2745 2723 -22 2491–2956 2398–3049 273
Benjamin 2641 2553 2688 2412 -276 2196–2629 2110–2715 373
Bluvshtein 2634 2611 2622 2533 -89 2323–2744 2239–2828 316
Bojkov 2544 2544 2595 2154 -441 1765–2543 1610–2698 219
Calugar 2437 2247 2144 2301 +157 2091–2512 2007–2596 327
Cheng 2500 2385 2661 2728 +67 2502–2954 2411–3044 297
Cummings 2459 2350 2473 2833 +360 2683–2983 2623–3043 322
Fedorowicz 2508 2454 2422 2390 -32 2088–2692 1967–2813 199
Gerzhoy 2647 2483 2622 2963 +341 2802–3124 2738–3189 211
Golod 2576 2582 2582 2638 +56 2376–2899 2272–3003 218
Hebert 2486 2414 2519 2789 +270 2598–2979 2522–3055 285
Krnan 2470 2390 2651 2694 +43 2488–2900 2405–2982 266
Krush 2578 2487 2539 2497 -42 2217–2717 2189–2805 316
Meszaros 2409 2418 2278 2413 +133 2219–2607 2141–2684 337
Mikhalevski 2664 2569 2519 2616 +96 2412–2820 2330–2902 248
Milicevic 2400 2288 2352 2113 -240 1799–2426 1674–2552 214
Mulyar 2422 2410 2412 2636 +224 2483–2788 2422–2849 378
Noritsyn 2597 2425 2563 2394 -171 2166–2621 2075–2713 286
Pechenkin 2408 2297 2309 2648 +339 2439–2857 2355–2940 311
Perelshteyn 2532 2534 2650 2629 -21 2425–2833 2343–2915 258
Perez Rod’z 2467 2467 2676 2627 -49 2321–2933 2198–3056 195
Plotkin 2411 2243 2260 2715 +455 2570–2861 2512–2919 330
Regan 2422 2409 2268 2525 +257 2323–2728 2242–2809 356
Rozentalis 2614 2571 2666 2721 +55 2528–2913 2452–2990 291
Sambuev 2739 2528 2571 2677 +106 2499–2855 2428–2926 400
Samsonkin 2532 2378 2707 2535 -172 2267–2802 2159–2910 233
Sapozhnikov 2424 2295 2480 2404 -76 2203–2605 2122–2685 341
Shabalov 2618 2577 2549 2639 +90 2417–2861 2328–2590 262
Thavandiran 2447 2320 2607 2622 +15 2360–2884 2255–2989 254
Yoos 2439 2373 2289 1939 -350 1607–2271 1474–2404 268
Zenyuk 2429 2222 2342 2790 +448 2606–2975 2532–3049 229
Averages 2516 2429 2508 2558 +50
Std. Dev. 92 157 218

Whole event: 149 Restricted to FIDE-rated players: 115
Average 2144 2142 2117 2203 2211 2139
Std. Dev. 258 261 379 345 229 220
Wtd. avgs. IPR CanR FIDE R
By games 2156 2154 2134 2219 2221 2147
By moves 2173 2172 2161 2242 2236 2161



242 K.W. Regan, B. Macieja, and G.McC. Haworth

supports a conclusion of no overall inflation. Because the fit was done with data from
2006–2009 only, inflation would show up as, for instance, 2600- and 2500-rated players
from earlier years having higher IPR’s than players with those ratings today.

Further support for our positions comes from IPR’s of entire tournaments. Table 3
shows all twenty Category 21 or higher round-robin tournaments ever played under
standard time controls, while Table 4 shows some others for comparison.

The IPR’s are on-balance below the tournament average ratings, but the latter’s ag-
gregate is just within the narrower confidence interval of the aggregate IPR. The re-
gressions are not linear, so the parity of the aggregate run with the weighted average is
notable. The comparison events are selective but still show no inflationary trend.

6 Distributions of Performances

Our final experiment analyzed all 624 available games from 647 played at the 2011
Canadian Open, including all by players with FIDE ratings 2400 and above, which
form an unbiased sample. Table 5 shows the IPR’s and compares them to Chess Feder-
ation of Canada ratings before and after the event, FIDE ratings before, and the tourna-
ment performance ratings (TPR’s) based on the CFC ratings. The final two columns are
the confidence intervals for the IPR alone. The final rows summarize the sample, the
whole event (152 players minus 3 early withdrawals leaving 149), and the whole event
weighted by number of games played and number of analyzed moves. The bottom-right
restricts to the 115 players who had FIDE ratings before the event. From the results we
may conclude the following.

1. The IPR’s have similar overall average to the Canadian ratings, especially under
weighting by games or moves.

2. FIDE ratings of Canadian players are deflated relative to apparent skill. This is
commonly believed to be due to a lack of playing opportunities in FIDE-rated events.

3. The IPR’s have higher deviations from their own mean than the TPR’s.
4. The IPR’s have large deviation, and yet several TPR’s fall outside even the 2.8-

sigma range. This may constrain the usefulness of the IPR as an estimator of the TPR.

7 Conclusions

We have shown multiple, separate, and novel pieces of evidence that the Elo system
employed by FIDE has remained stable in relation to intrinsic skill level. We have
shown that the population of master-level players closely fits a model that has an im-
portant scientific pedigree, under conditions of no inflation. We have shown that ratings
as reflected in tournament categories have no overall inflationary trend relative to two
measures of skill, the simple AE statistic on a large scale embracing (nearly) all tourna-
ments with at least 2500 average rating since 1971, and the more-intensive IPR statistic
for some tournaments. We have also furthered the correspondence between Elo cen-
tury marks and our model’s fitted skill parameters shown in [4]. The IPR statistic is the
weightiest evidence, but it is important that the other factors give it independent support.
Given this stability in the FIDE system, we can promote the use of our tools in adjusting
members of national federations with their own rating pools to the international scale.
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We anticipate further development of the methods in this paper. It is possible that
some rating systems being tested as alternatives to Elo in the recent Kaggle competitions
sponsored by Sonas [13,14] may yield better correspondences to our models.
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Abstract. Some 50,000 Win Studies in Chess challenge White to find an effec-
tively unique route to a win. Judging the impact of less than absolute unique-
ness requires both technical analysis and artistic judgment. Here, for the first 
time, an algorithm is defined to help analyse uniqueness in endgame positions 
objectively. The key idea is to examine how critical certain positions are to 
White in achieving the win. The algorithm uses sub-n-man endgame tables 
(EGTs) for both Chess and relevant, adjacent variants of Chess. It challenges 
authors of EGT generators to generalise them to create EGTs for these chess va-
riants. It has already proved efficient and effective in an implementation for 
Starchess, itself a variant of chess. The approach also addresses a number of 
similar questions arising in endgame theory, games, and compositions.  

1 Introduction 

A Win Study in Chess is a composition in which White is challenged to win against 
Black’s best defence. White’s choice of move at each stage should be effectively 
unique even if not absolutely unique as in Sudoku or a crossword. Where there is 
more than one goal-compatible move, questions arise about the technical integrity and 
artistic quality of the study. The incidence of sub-7-man (s7m) mainline DTM-equi-
optimal and DTM-sub-optimal moves in the HHDBIV corpus of over 76,000 studies 
[13] has been profiled [10] using Nalimov EGTs [3,18]. The comments of leading 
solvers, editors, and judges of studies make it clear that the effective uniqueness ques-
tion is arguably the Grand Challenge for the study community. Beasley: “the detec-
tion of blind alleys in general is notoriously difficult.” Roycroft: “When the depth 
difference is greater than two or three, one tends to shrug and move on to something 
else.” Nunn: “detecting cycling moves can be easy in the case of a simple repetition 
or can be essentially impossible to do by hand in very complex cases.”  

Chess is a second-generation variant of a germinal board game and has inspired its 
own large family of variants [21,22]. However, it is still necessary to note that the 
Nalimov EGTs are in fact made for a variant of chess without castling.1 The primary 
goal of chess variants is to provide an entertaining new challenge but the less radical 
variants also inform about chess itself. The creation of EGTs with restrictions on un-
derpromotions [4,14,15,16] has, when compared with the standard EGTs, revealed 

                                                           
1 Creating supplementary EGTs for positions with castling rights is in fact a small task. 
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spectacular and essential underpromotions: see the positions UPi in Table 1, Figure 1, 
and the Appendix. The impact of the 50-move draw-claim rule has been noted [5] 
after computing EGTs for the chess variant Chess50 in which phases with more than 
50 winner’s moves were deemed drawn.2 Looking at the effect of giving the defender 
the null move has been proposed [9] and similarly, one might consider the effect of 
removing the ability either to capture or to mate in the current phase of play.3 

The proposal here is to address the study community’s effective uniqueness ques-
tion algorithmically using EGTs. This is to be done by defining appropriate chess 
variants Chess(SP): SP is a set of positions, each won for White in Chess but defined 
to be a draw in Chess(SP). The impact of these changes on the values of positions in 
another set TP of White wins is a measure of the criticality or importance of the posi-
tions in SP to those in TP. It may be determined from the difference, Δ(EGT, EGTSP), 
between Chess’ EGT and Chess(SP)’s EGT.  

Section 2 defines a set of scenarios where the questions about position criticality 
may be addressed using the Chess(SP) approach: Section 3 defines the response to 
each scenario. Section 4 details the algorithm, considers available efficiencies, and 
estimates the workload in the context of Chess’ Win Studies [13]. Section 5 reviews 
the first implementation and production use of the approach by the second author in 
the game of Starchess. 

Table 1. The cited exemplar positions 

 

 

Fig. 1. Wins UP1-3 requiring underpromotions, found using Chess variant EGTs 

                                                           
2 50.15% of wtm and 70.98% of btm wins in KBBKNN are ’50-move draws’ [11]. 
3 i.e., before the next Pawn-push, capture and/or mate, when the move-count is zeroed. 

Id Date HHdbIV Force Position move Val. DTM Notes
UP1 2000 --- KQQKQP wKg4,Qg8,h8/bKf1,Qb4,Pd2 w 1-0 60 Karrer: DTM=20 if d1=N is not possible
UP2 2009 75917 KQPKQ wKc8,Qf4,Pg7/bKh5,Qh1 w 1-0 13 Konoval and Bourzutschky: P=R and =N
UP3 2010 --- KRRPKQ wKc2,Rb5,d5,Pg5/bKh5,Qf8 w 1-0 36 Konoval and Bourzutschky: P=R, =B and =N
S1 1895 3477 KPKR wKb6,Pc6/bKa1,Rd5 w 1 1-0 26 Saavedra and Barbier: most documented study
S2 2009 75649 KPPPKPPP wKf1,Pa4,d5,g5/bKh8,Pa5,d6,g7 w 1 1-0 83 Hornecker study
S2' 2009 75649 KQPKQP wKc6,Qf1,Pd5/bKg5,Qd4,Pd6 w 17 1-0 64 Hornecker study: sideline after 16. Qf1+
S3 1924 9797 KRNKNN wKc6,Ne5,Rg5/bKd8,Nf8,h6 w 1 1-0 26 Rinck study: 7 winning moves at pos. 1w
S4 1924 9686 KNPKPP wKf1,Ne2,Pg2/bKe3,Pf4,g3 w 1-0 36 Reti and Mandler study; p3w is a B1-M zug
PH 1777 956 KQKR wKc6,Qa5/bKb8,Rb7 w 1-0 10 Philidor: B1 zug
KH 1851 1822 KBBKN wKd5,Ba4,f8/bKb6,Nb7 w 1-0 57 Pseudo-fortress long thought to be drawn
B1Z 2011 --- KPPKPP wKg5,Pe6,f7/bKg7,Pe7,g6 w 1-0 18 Elkies: a vital B1 zug needing B1Z/btm to win
B1Z' 2011 --- KPPKP wKg5,Pe6,f7/bKg7,Pe7 w 1-0 13 Elkies: not a vital B1 zug
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2 Scenarios and Questions to Be Considered 

The scenarios are constrained to that part of Chess for which the perfect information 
of EGTs is available. As is the convention in Chess Win Studies, White has a win 
throughout the line {P1, … , Pn} and plays move mc:Pc→Pc+1 from the ‘current’ posi-
tion. However, there may be alternative value-preserving moves mc,j:Pc→Pc,j. The 
moves which are suboptimal in any available metric4 are mc,1 to mc,j1 while those op-
timal in some available metric are mc,j1+1 to mc,j2. SP and TP are two sets of positions 
theoretically won for White. Chess(SP) is a variant of chess only in that the positions 
in SP are deemed to be drawn, perhaps creating further draws in Chess(SP).5 The 
question is ‘What are TP’s positions’ values in Chess(SP)?’ This notation is used: 

   Si ≡ a reference to Table 1, ! ≡ a move which seems clearly the best,  
   → ≡ a move, pn(w/b) ≡ (wtm/btm) as at position n, tw ≡ time-wasting move,  
   ' and " ≡ DTx-optimal, DTx being DTM here, 
   (') ≡ all DTx-suboptimal moves are time-wasting moves, 
   "' ≡ the unique value-preserving move, ° ≡ the only move available, 
   (v)z ≡ (vital) zugzwang, (±n) ≡ a concession of n moves in DTx terms,  
    ≡ White to move (wtm) position,  ≡ Black to move (btm) position. 

2.1 The Main Scenario: The Win Study 

In the main scenario, a Win Study challenges White to win. At position Pc, White 
plays move mc but the dual winning moves mc,j:Pc→Pc,j are also available. The study 
community’s Grand Challenge question then, as discussed, is ‘to what extent is move 
mc unique: how significant are the dual moves?’ Metric suboptimal moves mc,j, j=1,j1 
which allow Black to force White’s win either to return to one of P1-Pc or to arrive at 
Pc+1 more slowly are time wasters and clearly inferior to a move from Pc which ac-
tually makes progress. The technical challenge addressed here is to discover which 
moves can be classified as time wasters, as a prelude to re-evaluating the essential 
uniqueness of the move mc. HHDBIV has some 70,000 such s7m scenarios. 

In many cases, White can switchback, retracting and repeating its last move, there-
by wasting four plies. Move mc,j may simply be to some previous mainline position Pi, 
i < c, or to a position one Black move off the played line. However, mc,j can be the 
start of a large tree of alternative lines leaving the reader asking whether all options 
have been considered, given that neither side has to play metric-optimally. Larger 
move trees are less comprehensible, less easily verified, and may even fall short of a 
complete proof that a move is merely wasting time. 

Some examples show that a generally-applicable method is required to address all 
situations and, regardless of their complexity, to produce uniformly and easily com-
prehensible, verifiable proofs about time-wasting moves. Studies S1-S4, see Figures 
2-5, will suffice to indicate the main issues and open-ended range of complexity. 

                                                           
4 e.g., DTC ≡ Depth to Conversion (of force), DTZ ≡ Depth to (move-count) Zeroing move. 
5 As is easily proved, existing draws or Black wins in Chess remain so in Chess(SP). 
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Fig. 2. Studies with ignorable time-wasting moves: S1 (Saavedra and Barbier), S2 (Hornecker) 
and S3 (Rinck) 

The 1895 study S1 by Saavedra and Barbier is justly famous for its underpromo-
tion and colorful history [8]: its economy and brevity are also laudable. The solution 
is 1. c7"' p1b Rd6+' 2. Kb5"' Rd5+" p3w 3. Kb4"(') Rd4+ 4. Kb3' p4b Rd3+" 5. 
Kc2"' Rd4! inviting the instinctive 6. c8=Q which only draws after 6. ... Rc4+"' 7. 
Qxc4"' stalemate. 6. c8=R" ignores White’s seductive Queen by the board. After 6. 
… Ra4', 7. Kb3"' wins by threatening both Rook and King. 

However, White has alternative wins, see Figure 3, at moves 3, 4, and 6 which po-
tentially undermine the uniqueness of the solution. 3. Kb6 and 6. Kb3 regress imme-
diately to respectively p1b and p4b. 4. Kb5 allows 4. ... Rd5+" p3w. The increased 
depth of win shows that two moves have been wasted in each case. The time-wasting 
is easy to see as the cycle is completed with at most one line and one sideline move: 
the solution [13] does not even acknowledge these moves. If clearly inferior moves 
invalidated studies on technicalities, much would be lost and the delights of such as 
the study by Saavedra and Barbier would be denied to a potential audience.  

White also has the dual 4. Kc3' Rd1" 5.Kc2"' Rd4 p6w so it is clear that Black can 
force White back to the mainline downstream. A further question then about dual 
moves is whether they allow Black to force White’s win back to the mainline and how 
quickly this can be done. 

 

Fig. 3. A graph of the Saavedra study 

Rusz [25] recently described his more challenging demonstration of a time-wasting 
move which rescued Hornecker’s 2009 study S2. The solution is 1. g6! Kg8° 2. Ke2! 
Kf8! 3. Kd3! Ke7! 4. Kc4! Kf6! 5. Kb5! Kxg6! 6. Kxa5! {KPPKPP, DTM = -77} 
Kf5" 7. Kb5"' g5" 8. a5"' g4" 9. a6"' g3" 10. a7"' g2" 11. a8=Q"' g1=Q" 12. 
Qa3"' Ke4" 13. Kc6"' Qd4" p14w 14. Qa5"' Kf5" p15w 15. Qb5"(') (15. Qa3 tw 
Ke4" 16. Qa5 "' p14b) 15. ... Kf6 p16w 16. Qb6"(') p16b Qxb6+ 17. Kxb6"' Kf5' 
18.Kc7"' Ke5' 19. Kc6"', a type A3 Trébuchet zugzwang or zug lost for Black. 

1w 1b 2 3 4 5 76

3.Kb6

6.Kb3

4...Rd1" 5.Kc2"'

5...Rd44.Kc3'

4.Kb5
4...Rd5+"

Kb3"'Kb5"' Kb4“(‘) Kc2"'c7"'
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Fig. 4. A graph of the Hornecker study from position p14w 

Position p16w is the focus: here, 20 sideline moves are required to show that 
White’s moves 16. Qa5 and 16.Qf1+ are no more than time-wasters. 16. Qf1+ is ulti-
mately shown to progress no further than the mainline move 16.Qb6"(').  

16. Qa5 another example of a switchback, move-reversing move 16...Kf5" p15w. 
16. Qf1+ Kg5 q.v. S2' 17. Qc1+  
(17.Qb5" reversing move 16w 17...Kf6 p16w; 17.Qg2+ Kf6" 18.Qf1+"' Kg5 S2') 
 17...Kf5 18. Qb1+"  
(18.Qf1+ Kg5 S2'; 18.Qa3 Ke4" p14w) 18...Kf6 19.Qb6" p16b (19.Qf1+ Kg5 S2'). 

Although White has had no more than three winning options at any time, it is becom-
ing clear that chess annotation and graphs reflect rather than reduce the complexity of 
proofs that moves are mere time-wasters. They redundantly detail White’s unavailing 
attempts to make alternative progress rather than just stating that this is impossible. 
Further, manual proofs may not be complete and correct. 

 

Fig. 5. S4 (Reti and Mandler), PH (Philidor) and KH (Kling & Horwitz) 

The Rinck KRNKNN study S3 of 1924 presents an even greater challenge which is 
not accepted here. Rinck’s solution is 1. Rh5" Ng8" 2. Rh8" Ne7+" 3. Kb5" Ke8" 
4. Kc5" Nf5"/Nc8 5. Ng6" Kf7!" 6. Nxf8"' Kg7 7. Rh5/Rh1'. However 1. Rg7, 
Kd5, Rg1, Rg2, Nc4, and Rg3 also win.6 It is clear that these moves are not what 
Rinck had in mind but unclear which of them if any allow Black to force a return to 
the initial position. White has alternatives for all moves except the key 6. Nxf8"'.  
                                                           
6  Conceding 30, 39, 88, 101, 132 and 170 moves in DTM terms, and 32, 41, 90, 103, 133 and 

170 moves in DTC/DTZ terms. 

14w 14b 15 16 17 18 19

16.Qa5
16...Kf5"

S2' 18 19

17...Kf6

16.Qf1+

17.Qg2

18.Qf1+

18...Kg5

19...Kg5

19.Qf1+

18.Qa3 Kxb6"' Kc7"' Kc6"'

Qf1+"'

Qb1+"

Qb6"

Qb6"

Qc1+

18
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It is equally impractical to show via explored lines that the alternative moves in the 
1924 study S4 by Reti and Mandler [1] are time-wasters. The solution begins 1. 
Ng1"' Kd2" 2. Nf3+" Kd3", a type B1-M zug [2,9], that is, a won position that 
would be won more quickly in DTM terms if White could pass. White aims to return 
to this physical position but with Black to move. The solution continues 3. Ke1" 
Ke3" 4. Ne5" Ke4" 5. Nc4" Kd3" 6. Nd2" Ke3" 7. Nf3" Kd3" 8. Kf1". At posi-
tion p2w, 2. Ne2 is an obvious time-waster (2. … Ke3" p1w) but 2. Nh3 is less easily 
discounted. The initial depth-concession is again only two moves but the Knight may 
explore the board further; similar opportunities are on offer down the main line. The 
analysis of these explorations in the study solution would scarcely be enlightening 
and the proof of time-wasting has to be in higher-order chessic terms. It would be 
better to use mathematical rather than chessic logic to show that 2. Nh3 is merely a 
time-wasting move. White wins after 8. … Ke3" 9. Ne1" Kd2" 10. Nc2" Kd1 11. 
Nb4" Kd2" 12. Nd5". 

2.2 Supplementary Scenarios 

In scenario 2, White is to move from a type B1-x zug. Three examples are positions 
B1Z, B1Z', and the Reti-Mandler study’s p3w as noted above. This suggests this ques-
tion ‘Is the B1-x zug a vital B1 (VB1) zug, that is one from which White’s win can be 
forced to include the btm side of the zug?’ There are many more B1-M zugs in chess 
than value-critical zugs, and over 6,000 B1-M zugs in HHDBIV [9]. 

Scenario 3 sees White, a computer program, winning a game but seeking to avoid a 
50-move draw-claim [7, Article 9.3] from a fallible opponent as DTR > 50 [12].7 
White’s strategy is to avoid repetition8 [7, Article 5.2d] by considering past positions 
to be ‘drawn’, temporize and hope the opponent reduces DTR.  

Scenario 4 focuses on positions highlighted as significant in endgame theory. Ex-
amples, see Figure 5, include Philidor’s KQKR position PH [20, Ch.3] and the Kling 
and Horwitz pseudo-fortress position KH [19, Ch.5]. The question here is ‘What re-
lated positions are not wins if these positions are not wins for White?’ 

 

Fig. 6. Sets IP1 and IP2 show the impact of set SP, particularly on TP’s positions 
                                                           
7 DTR ≡ Depth by the (draw-claim) rule: DTR ≡ smallest k giving a win under a k-move-rule. 
8 Historic Dominguez-Perez/Polgar (World Cup, 2011): the unnoticed p95b=p105b=p107b! 

Rusz asks if J. Polgar can win without revisiting p105b after regressing with 105…Bf5. 

SP

IP1

IP2
positions with changed 

values or depths

positions with 
changed values

depth = d plies

TP

?
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3 The Algorithm: A Generic Response to the Scenarios  

The thematic question of the scenarios is ‘Given that the set SP of white wins are 
defined to be draws, which of the White wins in set TP become draws?’ Figure 6 
shows the set SP, TP and the ‘upstream’ sets IP1 and IP2 of positions of which the 
theoretical values or DTx depths are different in Chess(SP). The generic algorithmic 
response then is to: 

• define the set SP of White-win positions, and thus the variant game Chess(SP),  
• define the set TP of White-win positions whose Chess(SP) values are sought,  
• compute the relevant EGTSP Chess(SP) EGT until set TP is accounted for, 

  Chess(SP) like Chess has a lattice of endgame phases; 
  therefore, its EGTs are computable as are those of Chess, 

• examine, for positions in set TP, the EGT-difference Δ(EGT, EGTSP)  
  the differences are caused only by SP’s positions being draws not wins, 
  P ∈ TP ∩ IP1 ⇔ P ∈ TP is a win in Chess but a draw in Chess(SP). 
  In more efficient codes, this may be seen during the computation. 
  This allows the computation to be aborted without generating EGTSP fully. 

In scenario 1 at position Pc, SP is a combination of {P1, …, Pc-1}, {Pc} and {Pc+1}; TP 
≡{Pc,j}, the set of Pc’s successor positions, other than Pc+1, won for White. If and only 
if Pc,j is in set IP1, i.e., a Chess(SP) draw, the win in Chess from Pi,j can be forced to 
pass through a position in SP. This means move mc,j is a time-waster, the precise rea-
son being determined by the Chess(SP) drawing line(s) from Pc,j. 

In scenario 2, Pw is a wtm type B1-x zug and Pb is its btm equivalent; SP ≡ {Pb} 
and TP ≡ {Pw}. Pb is essential to White’s win from Pw in Chess if and only if Pw is a 
draw in Chess(SP). 

In scenario 3, White has a win, may play suboptimally with regard to all metrics, 
but does not wish to repeat position. SP ≡ {P1, … ,Pc}. Time-wasting moves to posi-
tions in IP1 are avoided as are overlong phase continuations. 

In scenario 4, SP ≡ {significant position}, e.g., position PH or KH, is considered a 
near-refuge for Black. By making it an actual drawing sanctuary in Chess(SP), it is 
possible to assess its importance to White’s winning chances in Chess. 

Other scenarios involve deep wins or downstream-convergence in Win Studies, 
Draw Studies and value-critical zugzwangs. For clarity, these are not included in this 
first exposition of the Chess(SP) approach. 

Table 2. HHdbIV Endgame study s7m mainline positions to be evaluated9 

 
                                                           
9  Chess men are pieces or Pawns: the pawns need not be moved in creating the EGTSP. 

n #pos, n  men #pos., n pieces DTC/M EGTs DTZ EGTs
2 0 5,057 0.00E+00 3.22E-03
3 299 9,911 1.22E-02 4.03E-01
4 5,868 28,890 1.53E+01 7.52E+01
5 34,401 21,864 5.73E+03 3.64E+03
6 30,231 5,077 3.22E+05 5.42E+04

Totals 70,799 70,799 3.28E+05 5.79E+04

EGT creation at 'Konoval tempo' (hrs)wtm positions with alternative moves
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4 Generating Chess(SP) EGTs: Examples and Efficiencies 

Figure 3 and a ‘manual’ implementation of the Chess(SP) algorithm for the study S1, 
position 3w, indicate the rapidity of the ‘Chess(SP) test’. The question is whether 
move 3. Kb6 is a time-waster or not. SP ≡ {pos. 3w} and TP ≡ {pos. 1b}. Mainline 
positions 2b, 2w and 1b immediately revert to draw: Black takes any drawing option 
and White is denied its only winning move. However, position 1b was in the mainline 
of the study anyway so the generation of EGTSP was unnecessary. Showing that 4. 
Kb5 is a time-waster requires the creation of the full EGTSP if SP ≡ {pos. 4w}. How-
ever, this is rapidly obvious if SP ≡ {positions 1w-3b} when ‘3b draw’ implies the 
position after 4. Kb5 is a draw. The reader may care to show by similar means that 6. 
Kb3 is a time-waster and that the line starting 4. Kc3 can be forced to position 6w.  

If thousands of EGTSP designer-EGTs are to be created, it is appropriate to consider 
the work involved and how it might be reduced. This will depend on which EGT-
generator is evolved to create EGTs for Chess(SP). For example, Nalimov’s code [18] 
is slower than Konoval’s single-threading code which computed the KQBNKQB 
EGT in 3.5 weeks [27] and can compute the KQPKQ EGT in 10 minutes. 

There are efficiencies which apply to creating any EGT and efficiencies which are 
specific to generating EGTs for Chess(SP). Konoval has used PENTIUM Assembler in 
the inner loops of his program and a relatively simple position-indexing scheme 
which facilitates the fully retrograde production of EGTs.10  

EGT generation may be speeded up considerably if a trusted EGT for the same 
endgame is already available, especially if this is a WDL EGT.11 It is unnecessary to 
evaluate a position expensively as a potential loss if it is already known to be a draw 
or a win. This economy is in principle available when creating EGTSP. 

When generating EGTSP, it is worth noting that: 

• Chess draws and Black wins are unaffected by deeming SP’s positions drawn, 
• ‘downstream’ Q ∉ SP with DTx(Q) ≤ minDTx(P ∈ SP) are also unaffected, 
• the EGTSP need only be for positions with Pawns in relevant positions, 
• a WDL EGTSP is sufficient to determine set IP1, 
• the creation of EGTSP may be halted when set IP1 has clearly been identified 

or the Chess(SP) values of the positions in set TP are known, 
• iterative steps in creating EGTSP can identify draws as well as wins, 
• a larger SP does not slow the evaluation of TP’s positions in Chess(SP), 
• if SP2 ⊃ SP1, e.g. {P1 … Pc} and {Pc}, EGTSP2 may be derived from EGTSP1. 

Based on ‘Konoval performance’, Table 2 estimates the computer time needed to 
identify systematically all time-wasting moves from the s7m mainline positions in 
HHDBIV’s studies. The estimates do not include any Chess(SP)-specific efficiencies 
even though 50-fold efficiencies have been seen in Rusz’ production work below. 
Given a suitable infrastructure to manage thousands of independent tasks, the elapsed 
time may be greatly reduced by the use of multi-core computers, networks of comput-
ers and crowd-sourcing. Parallelism is also possible within the set-manipulating EGT-
generation algorithm for the largest EGTs for Chess(SP). 
                                                           
10  i.e., unmoving from positions of depth d plies to discover positions of depth d+1 plies. 
11  WDL EGTs merely hold 2-bit information about wins, draws and losses but not about depths.  
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5 The First Implementation of the Algorithm: Starchess 

As this proposal, to generate EGTs for the chess variant Chess(SP), has not been 
widely promulgated, no existing generator of Chess EGTs has yet been generalized to 
do so. However, the second author, a leading authority and world champion in the 
game Starchess [26], has generalized his EGT generator. Starchess was invented by 
László Polgár in 2002 and it is only necessary here to mention the star-shaped board 
of just 37 hexagons12, the Knight’s move, e.g., 19-2/3/9/16, and the humbled Rook 
which can only move vertically. There are many short, combative Starchess games: 
openings tend to be more tactical than in Chess but endgames are of similar length. 

After generating the sub-6-man (s6m) Starchess EGTs, Rusz identified 9,967,573 
type B1-M zugs. As in Chess itself, B1-M zugs with zug depth13 zd < 3 predominate: 
9,852,307 have zd =1 and many merely call for a waiting move; 78,001 have zd =2.14 
As in scenario 2, the question then arises as to which are vital type B1 zugs. A moti-
vation is that if White can be forced to visit the btm side of the B1 zug in tl (transit  
 

 

 

 

Fig. 7. Sub-6-man Starchess positions SC1-9 on the Vital B1 zug theme 

                                                           
12  The hexagons are numbered in columns, left to right, and bottom to top: ‘37’ is on the right. 
13  The zug-depth zd of a B1-M zug is the difference between the wtm and btm DTM depths. 
14  Of 1,626,168,997 s6m positions, 0.61% are B1-M zugs: 0.0023% also have zd > 2.  
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length) moves, it is likely that a study-like scenario will be found. The technique, as 
in Section 3, is to see if, with the btm side of the B1 zug drawn, the B1 zug itself be-
comes a draw. If and only if it does, Black can force White’s win to visit the btm 
position. The forced transits, wtm to btm position, may have different lengths. 

Two observations speeded the identification of the vital s6m B1-M zugs, the first 
by Rusz and Starchess-specific. Vital B1 zugs in pawnful positions must have zd >2: 
both sides must play at least two moves in going from the wtm to the btm position as 
there are no moves which preserve symmetry across the single vertical axis of sym-
metry. This meant that 7,168,489 B1-M zugs could be ignored, a splendid economy. 
Secondly, as in any game, if the B1-M zug in set TP is seen to be a win despite the 
btm position being defined as drawn, the generation of the Starchess(SP) EGT may be 
discontinued. Thus, over 50 B1-M zugs were examined in the time taken to generate 
an EGT. Fourteen of the 910 VB1 zugs found (30 4-man, 128 5-man pawnless) and 
one instructive non-VB1 zug, SC5, feature in Figures 7-8 and here.  

KPPKP VB1 zug SC1 is analogous to Lasker’s chess study15 HHDBIV#14482 [1, 
23-25]. The max_tl line 1. K31"' (1. K20? K32"' 2. K21' K25"' 3. K16' K20' 4. K9' K14"' 
z =) 1. … K27' 2. K24"(') K34" 3. K19"(') K33" 4. K25"' z p1 K34" 5. K20"(') K27" 6. 
P33+"(') K33' 7. K21"' K32' 8. K16"' K26" 9. K9"' K21" 10. K10° K20' 11. K16"(') 1-0. A 
marginally quicker force with min_tl=3 is 2. … K33 3. K25"(') z p1. 

KQKB VB1 zug SC2 illustrates an important Q-triangulation. 1. Q20+"' K3" 2. 
Q21+"(') K7° 3. Q15"(') z p1 1-0. 

KBKPP VB1 zug SC3, max_tl=6: 1. B17''(') K3' 2. B37''(') K2'' 3. B26''(') K7'' 4. 
B33'' K8'' 5. B27+''(') K7 (-4) 6. B1''(') z p1. Black may also play the min_tl=4 line 2. 
... K8 (-3) 3. B21+''(') K7 (-3) 4. B1''(') illustrating the ‘B-diamond’ manoeuvre.  

KNKRP VB1 zug SC4, tl=3, three VB1 zugs: vz1 1. K9"(') K33' 2. K16"(') K27' 3. 
K15"(') z p1 K33' 4. K21"(') K34° vz2, 9/4, zd=tl=5 5. K20"(') K33" vz3, 8/5, zd=tl=3 6. 
N15+"(') K27" 7. N2"(') K33" 8. N18"(') z p6 N-triangle K34" 9. K21"(') z p5 K33° 10. 
N15+"(') K34° 11. K26"(') P18° 12. N33"' P17=(Q/R/B/N)° 13. N16#"' 1-0. 

KQKR position SC5 just fails to be a Vital B1 zug. The wK triangulates from/to 
the zug: 1. K33" K24" 2. K27" K31' 3. K26" z p1. However, setting p3b to draw neat-
ly reveals the dual win from p1w (annotation in Chess(SP) terms): 1. K21"(') R28" 2. 
K15"(') distant wK/bR opposition! 2. … R29" 3. K20' R30" 4. K14"(') R28" 5. K19"(') 
R30" 6. K13"(') R28" 7. K12"(') R30" 8. K18"(') R29" 9. K17"(') R30" 10. K22"(').  

KBPKN VB1 zug SC6, tl=3: vz1 1. B34''' K16'' vz2, 15/12, zd=3 2. B8''(') K9'' 
3.B1''(') z p1 (3.P3? K16''' z) 3. ... K16'' 4. B34''(') K9' 5. P3''(') z K16'' 6. B8''' z K9'' 7. 
K25''(') z K16'' 8. K26''(') z K9'' 9. K21''(') 1-0. 

KNPKN VB1 zug SC7, tl=3: one of three positions with a record zd=25. 1. K19''' 
N3'' 2. K14''(') N10 (-22) 3. K13''(') z p1. If 2. … K18'' then 3. N20''' N19'' 4. P10N''' 
reaches an interesting KNNKN endgame, a general win. 

KQRKB VB1 zug SC8, max_tl=12, the second-longest known transit: 1. Q26+"(') 
K31° 2. R21"(') B24" 3. Q20+"(') K36" 4. Q25"(') B31" 5. Q23"(') B35" 6. Q26+"(') 
K31° 7. Q32+"(') K24° 8. Q19+"(') K23" 9. Q17+"' K24" 10. Q18+"(') K25 (-6) 11. 
Q36"(') B30" 12. R20"(') z p1 1-0. A min_tl=7 line diverges 2. … B35 (-4) 3.Q32+''(') 
K24° 4.Q19+''(') K31 (-1) 5.Q18+''(') K25 (-6) 6.Q36''(') B30'' 7.R20''(') z p1. 

                                                           
15 wKc5,Pa5,c6/bKc7,Pa6: 1. Kd5''' Kc8'' 2. Kd4' Kd8' 3. Kc4''(') Kc7 (-1) 4. Kc5''(') z p1. 
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KQPKQ VB1 zug SC9, max_tl=17: 1. Q15''(') K33'' 2. Q14+''(') K34'' 3. K8''(') 
K27'' 4. Q19''(') K26'' 5. K3''(') K27'' 6. Q20''(') Q29'' 7. Q17''(') K26'' vz2 54/50, zd=4, 
tl=4 8. K2''(') Q34'' 9. Q19''' Q28+'' 10. K3''' Q29'' 11. Q17''(') z p8 K27'' 12. K8''(') 
Q31'' 13. K14''(') Q24+'' 14. K15''' Q25+' 15. Q20''(') Q13+ (-1) the only suboptimal 
move in the line (instead of 15. ... Q24'') 16. K8''(') Q23'' 17. K9''(') z p1 1-0. There is 
a min_tl=3 line diverging 2. … K27 (-15) 3.Q20''(') z p1 1-0: max_tl – min_tl = 14. 

 

 

 

 

Fig. 8. The six s6m reflected VB1 zugs and three studies featuring VB1 zugs 

The VB1 zugs of Figure 8 are the six s6m reflected ones: SC10-13 are reflected in 
the horizontal axis and SC14-15 in the vertical axis. SC10-11 have zd=1 and SC12 
uniquely has zd=2. From SC13, Black has the choice to reflect the vital zug or not. 
SC14 is the only reflected VB1 zug featuring a Limping Pawn, a pawn which appears 
to be able to move two squares but in fact cannot as it has already captured a man. 
The opening position and the dance of the Knights makes SC15 visually remarkable.  

KRNKN VB1 zug SC10, tl=1: 1. R34''' z p1-reflected (denoted p1-r) 1-0. 
KRBKN VB1 zug SC11, tl=1: 1. R26''' z p1-r 1-0. 
KQNKQ VB1 zug SC12, tl=2: 1. Q21+"(') K35" 2. K3"(') z p1-r 1-0. 
KNNKN VB1 zug SC13, max_tl=5: 1. N31''(') N35 (-1) 2. N26-13''(') N19'' 3. 

N14''('). Now Black has 3…K36' 4. N26''(') K37'' 5. N17''(') z p1 or 3…K35' 4. N23''(') 
K37'' 5. N21''(') z p1-r. min_tl=3: 1. … K36 (-3) 2.N14''(') K37'' 3.N17''(') z p1 1-0. 
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KPLK VB1 SC14, tl=3: 1. K19''' K27'' 2. K24'(') K21'' 3. K25''' z p1-r 1-0. White 
has the option, with the same tempo, not to reflect this VB1 zug. If the Limping Pawn 
were not limping, the position would be a non-vital type B1 zug (DTM 14/13): 1. 
K19'' K16' 2. P21=Q' K21 z 3. K14' K26 z 4. K15''(') K25 5. P20''(') 1-0. 

KNPKN VB1 SC15, tl=5: 1. N9''' N17'' 2. K19''' N31'' 3. N26''(') N27' 4. K25''' 
N31'' 5. N35''(') z p1-r 1-0.  

The identification of the 910 s6m Vital B1 zugs has revealed about 250 study sce-
narios and many positions of pedagogic value. Here are three of them.  

SC16, with a positional draw in line A and Knight sacrifices in both lines: 1. P20'''  
a) 1…K30 2. N25'''! (2. K26? K23''' 3. N25 N24''' 4. K27 K22''' 5. N37 N7''' 6. K26 

K23''' 7. N25 N24''' positional draw) 2. …N24 3. N16'' K23'' 4. N19'' K18 5. N11''!, or 
b) 1…K32'' vz zd=tl=9 2. N29'' N24'' 3. N19''(') K25'' 4. N36''(') N7'' 5. N34''' K32'' 

6. N16'''! N24'' 7. N3''(') K25' 8. N12''' K32'' 9. N29''(') N7'' 10. N37''(')! p2 K31'' 11. 
K26''(') K30'' 12. N33''(') K23'' 13. N19''(') K17'' Black defends against the N11! sacri-
fice 14. N29''' N24 15. N37''! N7 16. N25'' 1-0. 

SC17: 1. N18'''! (1.N19?) 1…P19' 2. K23''' K16' 3. K30''' R20' 4. K31''' K21 5. K25'''  
a) 5…K27' 6. K20''' K33'' vz zd=tl=3 7. N15''(') K27'' 8. N2''(')! K33'' 9. N18''(') p7w 

K34'' 10. K21''(') K33° 11. N15''(') K34° 12. K26''(') P18° 13. N33''' P17=Q' 14. N16'''#. 
b) 5…K16' 6. K20''(') K9'' vz-r zd=tl=3 7. N26+''(') K16'' 8. N35''(')! K9'' 9. N18''(') 

p7w K10'' 10. K21''(') K9° 11. N26''(') K10° 12. K15''(') P18° 13. N9''' P=17Q' 14. 
N27'''#. Two echo variations with N-triangulation. 

SC18: 1. N7+''' (1. K20? P15'''=) 1…K15'' vz zd=tl=3 2. N24''' K8'' 3. N11''(')! K15'' 
4. N7''(') p2 K8'' 5. N24''(') K3° 6. N11''(')! an interesting, original N-manoeuvre K8' 7. 
K20''(') K3° 8. K14''(') K1' 9. N19''(') P8+'' 10. K15'' P7° 11. K8'' P6° 12. N9''#. 

6 Summary 

There is a clear need to identify all s7m time-wasting moves in the mainlines of stu-
dies in HHDBIV. This is a precursor to refining the study community’s artistic judg-
ment of that corpus [23] and would add considerable value to both. Proof statements 
should be derived by algorithm, reliable, economical, irredundant, comprehensible, 
and verifiable: this is not the case at present. The approach using Chess(SP) EGTs in 
principle yields proofs of moves’ time-wasting status meeting the requirements stated. 
Further, it provides a tool to identify time-wasting moves in the future. This paper 
implicitly challenges the authors of EGT generator software to generalize that soft-
ware to include variant games where some of White’s won positions are deemed to be 
draws. 

Similar questions of interest to endgame theoreticians, including those concerning 
lines from the deepest positions, zugzwang effects, ‘downstream convergence’ and 
Draw Studies, may be addressed using the same Chess(SP) approach. Other sources 
of endgame play, e.g., [19] [20], and studies’ sidelines are worth inspection. 

The authors particularly thank CESC [11], Rafael Andrist, John Beasley, Ian 
Bland, Eiko Bleicher, Marc Bourzutschky, Noam Elkies, Harold van der Heijden, 
Harm Műller, John Nunn, John Roycroft, John Tamplin, and the three anonymous 
referees for their interest in and contributions to this paper. 
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Appendix: Further Details of Some Positions in Table 1 

UP1, Karrer [7]. wKg4,Qg8,h8/bKf1,Qb4,Pd2 wtm:  
This position is DTM=60 but a mate in 20 if Pawn-promotion is to Queen only. 

 1. Kf5"' Qc5+" 2. Ke4"' Qe7+" 3. Kf4" Qb4+' [Qc7+, Qd6+]  
 4. Ke3" Qc5+' [Qb6+, Qe7+] as d1=N is not available 5. Kxd2" {DTM=15} 

With the P=N option, a DTM-minimaxing line starts:  

 1. Kf5"' Qc5+" 2. Ke4"' Qe7+" 3. Kf4" Qb4+' 4. Ke3" d1=N+" {KQQKQN}  
 5. Kf3"' Qa3+" 6. Kf4"' Qe3+" 7. Kf5"' Qd3+' 8. Ke5" Qc3+" 9. Kd5" Qa5+" 
 10. Ke6' Qb6+" 11. Ke5' Qc7+" 12. Ke4" Qc2+". 

UP2, Konoval and Bourzutschky [8-9], wKc8,Qf4,Pg7/bKh5,Qh1 wtm, requiring 
Pawn-conversion in different lines to respectively Queen, Rook and Knight: 

 1. Kc7"' Qh3'  
   (1. ... Qg1 2. Qf7+"' Kh6' 3. g8=N+"' Kg5" 4. Qg7+" Kf4' 5. Qxg1"') 
   (1. … (Qa8/Qd5)" 2. Qh2+"' Kg6 3. Qg2+"' Qxg2" 4. g8=Q+"') 
 2. Qe5"' Kh6 3. g8=R"'. 

UP3, Konoval and Bourzutschky [8], [10]. wKc2,Rb5,d5,Pg5/bKh5,Qf8 wtm, the first 
s7m study synthesising all three Rook, Bishop and Knight underpromotions: 

 1. g6"' Kh6" 2. g7"' Qf2+" 3. Rd2"' (DTM = 34) and now  
 3. ... Qf3 4. g8=R"' Qc6+" 5. Kd1"' Qh1" 6. Ke2" (6. Kc2 Qc6" 7. Kd1"' Qh1"), 
 3. ... Qf4" 4. g8=B"', or  
 3. ... Qf1 4. g8=N"' Kh7' 5. Rb7+"' Kh8" 6. Ne7"'. 

PH, the Philidor position (1777). wKc6,Qa5/bKb8,Rb7 wtm/btm, a B1 zug: 

 btm: 1. … Rb1" 2. Qd8+' Ka7° 3. Qd4+" (Ka8/b8)" 4. Qh8+" Ka7" 5. Qh7+". 
 wtm: 1. Qe5+' Ka8' 2. Qa1+' Kb8" 3. Qa5" arriving at the btm line above. 

KH, the Kling and Horwitz position (1851). wKd5,Ba4,f8/bKb6,Nb7 wtm. 
This position was long thought to be drawn: in fact, DTC = 45m and DTM = 57m. 
White has to force Black from the pseudo-fortress [28] and prevent a similar pseu-

do-fortress being set up. This DTC-minimaxing line shows the difficulty involved. 

 1. Bb4" Kc7' 2. Bd2' Kb6" 3. Be3+' Kc7" 4. Bf2' Nd8' 5. Kc4' Nb7"  
 6. Bg3+' Kb6" 7. Kb4" Nd8" 8. Bf2+" Kc7" 9. Kb5" Ne6" 10. Bg3+' Kd7" 
 11. Bd1" Nd4+" 12. Kc5" Nf5" 13. Be5' Kd6" 14. Bc3" Ne3" 15. Bf3" Kf5" 
 16. Bc6" Nf1' 17. Kd5" Ng3" 18. Bd7+' Kf4" 19. Bd2+' Kf3° 20. Bh6' Nf1' 
 21. Kd4" Ng3' 22. Bc6+' Kg4" 23. Ke5" Ne2' 24. Be3' Ng3' 25. Bc5' Nh5' 
 26. Bb6' Ng3" 27. Ba4" Nf1' 28. Bd1+" Kg3" 29. Kd4' Kf2' 30. Kd3+" Kg3' 
 31. Ke2" Nh2" 32. Bc7+" Kh3" 33. Ba4' Ng4" 34. Bc6" Kh4" 35. Kf3" Kh5" 
 36. Kf4" Nf6" 37. Kf5" Ng8" 38. Bf3+" Kh6" 39. Bd6" Kg7" 40. Kg5" Kf7" 
 41. Bd5+" Kg7" 42. Bc4' Kh7 43. Bf8" Kh8" 44. Bd3" Ne7' 45. Bxe7" 

B1Z, Elkies’ pedagogic example (2011). wKg5,Pe6,f7/bKg7,Pe7,g6 wtm. 
The wK cannot capture bPe7 first: with the bK on f8, the g-Pawn just advances. 
Therefore the triangulation is necessary and the win must visit B1Z with btm. 

 1. Kf4' Kf8" 2. Kg4" Kg7" 3. Kg5"(') B1Z-btm Kf8" 4. Kh6"(') g5° 5. Kxg5" 
 Kg7° the type B1 zug B1Z': the win need not visit B1Z' with btm. 6. Kf5" Kf8". 
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Abstract. In a game, pure Monte Carlo search with parameter T means
that for each feasible move T random games are generated. The move
with the best average score is played. We call a game “Monte Carlo
perfect” when this straightforward procedure converges to perfect play
for each position, when T goes to infinity. Many popular games like Go,
Hex, and Amazons are NOT Monte Carlo perfect.

In this paper, two-player zero-sum games are investigated where the
turn-order is random: always a fair coin flip decides which player acts in
the next move. A whole class of such random-turn games is proven to be
Monte Carlo perfect. The result and generalisations are discussed, with
example games ranging from very abstract to very concrete.

1 Introduction

When speaking about Monte Carlo search in game trees, two different procedures
have to be distinguished:

1. pure Monte Carlo and
2. tree search, based on Monte Carlo evaluations.

Pure Monte Carlo [7] with simulation parameter T means that for the current
position all feasible moves are generated. For each such move, T random games
are played to the end, and the average score over the T games is determined.
The move with the best average score is played. Often this procedure leads to a
reasonable move; but the move selected is not always an optimal one.

Figure 1 shows a typical game tree of depth 2 where pure Monte Carlo at the
root almost surely leads to a wrong decision when the number of simulations
is large. We call a game “Monte Carlo perfect” (“MC-perfect” for short) when
pure Monte Carlo converges to perfect play for each position, when T goes to
infinity.

Many popular games like Go, Hex, and Amazons are known to be NOT Monte
Carlo perfect. See also the GoMoku example in the short note [6]. The wrong
decisions of pure Monte Carlo can be avoided when Monte Carlo evaluation of
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Fig. 1. A minimax tree of depth 2. Numbers in fat are the leaf values and true backed-
up min values. Small numbers in grey are the Monte Carlo rates for the two nodes
directly below the root. The stars mark where a perfect agent (fat star) and a pure
Monte Carlo agent with large T (small grey star) would go, respectively.

positions is mixed with a step-by-step generation of the game tree (and mini-
maxing in some way or another). Seminal papers on such approaches are [8] and
[11]. Only recently, a large class of games has been shown to be Monte Carlo
perfect [12]: “selection games” with random turn-order where the player to move
can fill any free cell with a piece of his own color and where the outcome depends
only on the final full board. At the first glance this result looks much too general
to be true, but it is. Its proof is beautifully simple and goes to the heart of the
matter. Having proved, we can sit back and enjoy all its consequences, including
the design of phantastic and unbelievably strange new games.

In this paper we generalize selection games in the following way. Our games are
“board filling games” for two players A and B with zero-sum payoff. The board
consists of n cells. In eachmove one free cell is filled either by “0” or “1”. The game
endswhen all cells are filled. The payoffdepends only on the final position, indepen-
dently of the order in which the cells were occupied. The turn order is random: in
each round a fair coin flip decides which playermakes the nextmove. In contrast to
the selection games from [12], players are not restricted to the placement of pieces
of the own color. Each player is allowed to play either “0” or “1”.

We prove that for each real-valued payoff function such a board filling game
with random-turn order is MC-perfect. An interesting corollary is that for each
position the best moves for players A and B are coupled: When an optimal move
for A is to place a “0” in cell i, then it is an optimal move for B to place a “1”
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in the very same cell i. And, vice versa, when an optimal move for A is to place
a “1” in some cell j, then it is an optimal move for B to place a “0” in just this
cell j.

The paper is organized as follows. In Section 2 the basic theorem and its
proof are given. Section 3 contains example games and generalisations of the
basic result (like veto moves and history-dependence). Readers who are mainly
interested in applications and not so much in abstract theory, may jump directly
to the concrete parts of Section 3, namely to the descriptions of the games OdOku
(in Subsection 3.1) and TOP FOUR (in 3.2). Section 4 concludes and gives four
open problems.

2 The Basic Result for Board-Filling Games

Two players A and B play a zero-sum game with finitely many moves. The board
is given by n cells. At the end of the game all cells are filled by values from {0, 1},
and the payoff is given by a real-valued function f : {0, 1}n → IR.

f(X) is what B has to pay to A when the game ends in full board position
X . So, A wants to maximize f(X) in the end, or the expected value of it for
partially filled board positions X . Analogously, B wants to minimize f(X) or
the expected value of it for partially filled positions.

In the beginning all n cells x(1), ..., x(n) are empty. The game consists of n
moves. Each move has the following structure with two parts. First, a fair coin
is flipped. The outcome decides which player is to act in the second part of this
move. Second, the winner of the coin flip fills either a “0” or a “1” into an empty
cell. It is his choice, which cell and which value.

It turns out that optimal play is coupled to the outcome of randomly filling
the cells. To prepare for this result, we define

Ef [X ] = expected f -value for position X , when the remaining free cells in
X are filled up randomly and independently of each other with 0
and 1 (probability 1

2 for each value at each cell).

Observe that the real-valued function Ef [X ] is well-defined not only for full-
board positions X but for all X in the set {−, 0, 1}n of intermediate game posi-
tions, where “−” stands for an empty cell in the board. The expected f -values
exist as n is finite and f is defined on the whole set {0, 1}n of potential final
positions. Analogously, Ef [X0(i)] and Ef [X1(i)] are the conditional expecta-
tions for the positions X0(i) and X1(i), where cell i has obtained value 0 and 1,
respectively. When we randomly fill up the whole board, we can start with any
free cell i, thus arriving at

Ef [X ] = 0.5 · Ef [X0(i)] + 0.5 · Ef [X1(i)]. (1)

This is equivalent to

0.5 · Ef [X0(i)] = Ef [X ]− 0.5 · Ef [X1(i)] (2)
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and

0.5 · Ef [X1(i)] = Ef [X ]− 0.5 · Ef [X0(i)]. (3)

Assuming the game described above and optimal play by A andB in all positions,
we define another function of expected f -values, namely

EOptf [X ] = expected f -payoff to A, when the game starts in position X , and
A and B act optimally in all possible positions.

With a similar argument as for Ef [X ] one sees that EOptf [X ] is well-defined
on the set {−, 0, 1}n of intermediate game positions, taking in account addition-
ally the minimax property of 2-player zero-sum games. Observe that EOptf [X ]
is the expected payoff BEFORE the coin flip decides which player moves in X .
Analogously, EOptf [X0(i)] and EOptf [X1(i)] are defined for all cells i that are
still empty in position X .

Theorem 1

EOptf [X ] = Ef [X ] (4)

for all intermediate game positions X in {−, 0, 1}n.
Proof. The proof works by induction in the number k of free cells. For k = 0,
nothing has to be shown as X is a final position and thus Ef [X ] = f(X), and
EOptf [X ] = f(X).

Now assume k > 0, and the statement of the theorem has been proved for all
positions with at most k− 1 free cells. When there are k free cells left (call them
cell 1 to cell k, without loss of generality), the player winning the coin flip has
2 · k choices for his move: putting 0 to cell 1, putting 1 to cell 1, putting 0 to cell
2, ..., putting 1 to cell k. As each of the players has probability 1

2 to execute the
next move in position X , we obtain

EOptf [X ] = 0.5 ·max
{
EOptf [X0(i)], EOptf [X1(i)]; i = 1, 2, ...k

}
+ 0.5 ·min

{
EOptf [X0(i)], EOptf [X1(i)]; i = 1, 2, ...k

}
.

The max-expression in the upper line comes from the case where player A
is to move. The min-expression in the lower line comes from the options for
player B. By induction hypothesis we have EOptf [X0(i)] = Ef [X0(i)] and
EOptf [X1(i)] = Ef [X1(i)] for i = 1, ...k. Hence

EOptf [X ] = max {0.5 ·Ef [X0(i)], 0.5 · Ef [X1(i)]; i = 1, 2, ...k}
+min {0.5 · Ef [X0(i)], 0.5 ·Ef [X1(i)]; i = 1, 2, ...k} . (5)

Substituting according to (2) and (3) in the min-part of this expression, we have

min{...} = min {Ef [X ]− 0.5 ·Ef [X1(i)], Ef [X ]− 0.5 · Ef [X0(i)]; i = 1, 2, ...k}
= Ef [X ] + min {−0.5 · Ef [X1(i)],−0.5 ·Ef [X0(i)]; i = 1, 2, ...k}
= Ef [X ]−max {0.5 ·Ef [X1(i)], 0.5 ·Ef [X0(i)]; i = 1, 2, ...k} .
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The crucial point here is that always min{−a,−b, ...} = −max{a, b, ...}.
Resubstituting into (5) gives

EOptf [X ] = 0.5 ·max {Ef [X0(i)], Ef [X1(i)]; i = 1, 2, ...k}+ Ef [X ]

− 0.5 ·max {Ef [X0(i)], Ef [X1(i)]; i = 1, 2, ...k}
=Ef [X ].

This completes the proof of Theorem 1.

Corollary 2. Let be given any intermediate position X in {−, 0, 1}n. When it
is optimal for player A to fill cell i, then it is also optimal for player B to fill
cell i, but with the complementary value.

Proof. In Equation (5), let be max{...} = 0.5 · Ef [X0(j)] for some j. Then
min{...} = 0.5 · Ef [X1(j)] for the same j. And, vice versa, if max{...} =
0.5 · Ef [X1(j)] for some j, then min{...} = 0.5 · Ef [X0(j)] for the same j.
Or somewhat more elaborate in words: When some position X is given and fill-
ing cell i with “0” increases the expected payoff for player A by margin ε(i),
then filling cell i with “1” decreases the expected payoff for player A by the very
same margin ε(i). The best move for A is to fill some cell with maximum positive
change in the expected payoff - hence the best move for B is to fill the very same
cell with the complementary value. This completes the proof of Corollary 2.

Exactly this argument can also be used to generalize Theorem 1. It is not a
necessary condition that all free cells are allowed to be filled in the next move.
Only a symmetry between the options of the players has to be guaranteed: When
player A is allowed to fill some cell i with “1” then player B must be allowed
to fill this cell with “0”, and vice versa. Of course, in each non-final situation
during the game there has to be at least one admissible cell to fill. In Subsection
3.6 some possible directions of generalisation are listed.

Corollary 3 (MC perfectness). Every board filling game with random turn
order is MC-perfect.

Proof. Given any intermediate position X , the expected outcomes Ef [X0(i)]
and Ef [X1(i)] for random fillings are well defined, as each full board has a finite
f -value by definition of f . Hence, traditional Monte Carlo sampling (see for
instance [9] or [10]) for each such position converges to the expected value. So,
for simulation parameter T going to infinity, only cells with optimal expected
value will be proposed by pure Monte Carlo. (Observe that the cell with optimal
value need not be unique.) This completes the proof of Corollary 3.

3 Examples and Generalisations

Below we provide four examples (3.1 to 3.4) and give two generalisations (3.5
and 3.6).
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3.1 The Random-Turn Game OdOku

OdOku is a new MC-perfect game for two players [3].
Rules: Players A and B move in random order. The second part of its name

(“dOku”) indicates that OdOku is related to Sudoku. The board is quadratic
with 5×5 cells. As seen in the left part of Figure 2, it is divided into five groups,
one central cross, and four outer groups. There are five plus five more groups:
one for each row, and one for each column. So, altogether 15 groups.

In each turn the player to move puts a 0 or a 1 in any free cell. When all cells
of the board are filled, for each group its balance or unbalance is determined.
A group is balanced when it contains two or three “1” (and three or two “0”,
respectively), and unbalanced otherwise. Player B (“B” like in balanced) wants
to maximize the number of balanced groups. Player A (“A” like anti-balanced)
wants to minimize the number of balanced groups. The right part of Figure 2
shows the end position of an OdOku match. The score is 8. Random OdOku
games result in an average score of 9.375 balanced groups.

Fig. 2. The diagram on the left side shows an empty OdOku board. The diagram on
the right shows the final position of an OdOku game. For each of the 15 groups “*” or
“-” sign indicate if this group is balanced or not. Eight of the 15 groups are balanced.

Like all games with random turn order, OdOku can suffer from match in-
stances, where the coin severely favors one of the players. One possible counter
measure is to play OdOku simultaneously on two boards I and II. The first
player has role A on board I, and role B on board II. The other player com-
plements this by being B on board I and A on board II. When the coin shows
“head”, each player makes a move on the board where he is A. At “tail”, the
players move on the other board in their roles as B. At the end the scores of the
two boards are compared to find the overall winner. Synchronous execution of
the moves guarantees that a player cannot use a mirror strategy.
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Fig. 3. A final position of a TOP FOUR game. The number in each cell indicates in
which move this cell was filled. Player X wins, because his highest quad consists of
(X− 35, X− 31, X − 15, X − 19), with height 5. Opponent O has three equally highest
quads, namely (O − 33, O − 12, O − 25, O − 32), (O − 41, O − 26, O − 11, O − 17), and
(O − 41, O − 40, O − 38, O − 32), with height 4.5.

3.2 The Game TOP FOUR

TOP FOUR was proposed by this author in July 2011. It is a random-turn
variant of the popular game “Connect Four” [13]. Given the standard vertical
grid of size 7×6, the two players drop pieces in the grid (like in Connect4), until
the grid is completely filled (unlike in Connect4). The object of the game is to
obtain four pieces of the own color connected: either vertically, or horizontally,
or diagonally. Such a connected group is called “good quad” or “quad” for short.
When all 42 positions are occupied, the outcome is determined: If there is no
quad at all, the game is a draw. Otherwise the side with the “highest” quad is
declared winner. The height of a quad is the height of its center of gravity. Figure
3 shows a final position of a game between players O and X . If the highest quads
of both players have the same height, a tiebreak rule is used: A quad with center
of gravity more to the left of the grid is better. When there is still a tie, then
the quad for which the highest cell is more to the left, makes the winner.

Games with random turn order carry the risk that the game is decided early,
because one side had more opportunities to move than the opponent. In TOP
FOUR this danger is not so expressed because an early quad typically has a deep
center of gravity, giving room for “high” conters. L. Bremer made a complete
Branch-and-Bound analysis to determine the probability that a random filling
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of the grid does not result in any quad. This probability for a draw is very small,
namely slightly less than 0.072 percent.

TOP FOUR does not fulfill all the conditions of Section 2: in each column
of the board only the lowest free cell may be played. However, Theorem 1 and
its proof together with the remark between Corollary 2 and Corollary 3 can be
applied, as in each position both players have the same set of cells for playing.
So, TOP FOUR is MC-perfect.

3.3 SAT Games with Random Turn Order

A satisfiability game (called “SAT game” for short) with random turn order is
defined as follows. Given is a Boolean formula over n variables with (several)
disjunctive clauses. The players assign truth values to the variables. Player A
wants to maximize the number of clauses that are true in the end. Player B
wants to minimize this number. A move consists in fixing a “free” variable to
one of its possible values “true” or “false”. The turn order is random, so in each
step the player to move wants to maximize or minimize the expected number
of true clauses, respectively. The game has n moves, one for each free variable.
In a weighted version, for each clause j a specific weight w(j) from the real
numbers is given. The players want to maximize and minimize, respectively, the
sum of the weights of those clauses that are true. Several normal board filling
games can be formulated as SAT games. Allowing not only disjunctive clauses
but Boolean formulae in general, any deterministic game with outcomes in {0, 1}
can be encoded by an appropriate Boolean formula. Our Theorem 1 states that
SAT games with random turn order are MC-perfect.

3.4 Strange Games Related to Mathematical Problems

Each cell of the game board may stand for a coefficient of a mathematical prob-
lem.

– As an example with a one-dimensional set of variables, assume a polynomial
of degree n with leading coefficient 1: P (x) = xn + a(n−1) · x(n−1) + ... +
a1 · x+ a0. The players fix the ai, for instance to values in {+1,−1}. At the
end a certain property of the polynomial P (x) decides, who is winner. This
might be, for instance, the question if P () has at least k zeros on the real
axis or not.

– As an example with a two-dimensional array think of an m×m matrix M ,
so there are n = m2 cells. Player A wants to maximize the absolute size of
the third-largest eigen-value of M , whereas player B wants to keep it small.

Pure Monte Carlo with a large simulation parameter T will play such games
almost perfectly. However, theoretical insights from mathematics can give perfect
play with only a finite (and often small) amount of computations. An example is
OdOku from Subsection 3.1 above. Having in mind the additivity of expectations
and the fact that in OdOku the payoff function f is the sum of 15 elementary
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functions (one for each group), one can locally, for each free cell, determine the
expected contribution of this cell to the final score. A cell that is locally best is
also globally best and should be played.

3.5 (p,q,r,s)-Generalisation

Most of the results on selection games in [12] do not only hold for random turn
orders with FAIR coin flips, but also for any parameter p, 0 < p < 1, such that
player A obtains the right to move with probability p, and opponent B the right
with 1 − p. However, our result for board filling games does not hold in such
generality. The best we were able to achieve is the following setting which looks
somewhat technical: It relies on two distinguishable fair or non-fair coins for the
determination of the next player and his options.

1. Throwing “00” means: A has to place a 1 somewhere.
2. Throwing “01” means: A has to place a 0 somewhere.
3. Throwing “10” means: B has to place a 1 somewhere.
4. Throwing “11” means: B has to place a 0 somewhere.

Let the probabilities for the cases 00, 01, 10, 11 be given by probabilities p · r,
q · s; q · r, p · s, respectively. Here p, q, r, s, are real numbers between 0 and 1,
such that p+ q = 1 and r+ s = 1. The analogues of the theoretical results from
Section 2 hold. The idea of the proof is to group the moves in two classes: (“A
filling 0” relates to “B filling 1”) and (“A filling 1” relates to “B filling 0”). In
each class the max/min arguments from Section 2 can be applied.

We give two examples for possible choices of the parameters. The first one is
rather artificial and has p = 2/5, q = 3/5; r = 1/3, s = 2/3. This leads to move
probabilities

– 2/15 for A to place a 1.
– 6/15 for A to place a 0.
– 3/15 for B to place a 1.
– 4/15 for B to place a 0.

The second example is an important special case: q = 0, thus p = 1; and r =
s = 0.5. This means that A gets the right to move with 0.5, and has to place
a 1. Analogously, B also gets the right to move with 0.5, and has to place a 0.
These games are just the “selection games” of [12].

3.6 Generalisations of the Game Class

Partially Ordered Cells. More general than in TOP FOUR, the set of cells
can be partially ordered in arbitrary ways. The meaning is that a cell can be
filled only when all cells below it are filled already.



On Board-Filling Games with Random-Turn Order 267

Arbitrary Dependance on Game History. It may depend on the history of a
game so far which cells are allowed to be filled. So, not only the current position
on the board, but also the order in which and how the cells were filled may
determine which cells are allowed in the next move. Examples are condensation
games (the players build crystals, starting from some original seed cells), games
with gravity (like Connect 4), games with spread conditions (the next move has
to be “far” away from the most recent moves). Observe the different roles of
history for feasibility and evaluation: the feasibility of a cell in a certain position
may depend arbitrarily on the history of the game, but the evaluation at the
end of the game does not.

Veto Cells, Marked by the Opponent. In this class, a move consists of four
parts.

1. By some procedure (maybe involving actions of the two players, chance, in-
fluence of referees or spectators) the current veto parameter k is determined.
k has to be an integer strictly smaller than the number of free cells on the
board.

2. A fair coin flip decides for the next move which player makes the vetoes and
which player (the other one) has to fill a cell.

3. The veto player forbids k of the free cells.
4. The other player occupies one of the non-forbidden free cells.

In analogy to Theorem 1 the theoretical result is: The games are MC-perfect;
optimal veto cells and optimal fills are in symmetry again.

Detailed proofs for these generalisations as well as example games will be
presented in a forthcoming paper.

4 Conclusions and Open Questions

Board filling games with random turn order are Monte Carlo perfect. In each
position, the optimal moves for the two players are directly related: When the
optimal choice for player A is to fill a “1” into cell i, then the optimal move for
player B is to fill a “0” into cell i, and vice versa.

We are interested in three open questions, concerning algorithmic aspects of
Monte Carlo perfect games.

1. Do there exist games with random turn order where UCT [11] or some other
refined MCTS algorithm [8] does not perform as well as pure Monte Carlo,
when given the same FINITE amount of computing time?

2. The AMAF heuristic (AMAF standing for “All Moves As First”) is used in
many MCTS algorithms. How much does AMAF improve the performance
of pure Monte Carlo when used for MC-perfect board filling games?

3. Does pure Monte-Carlo in random-turn games also exhibit the phenomena of
laziness (playing ”less concentrated” when clearly ahead or clearly behind)
and self-play basins (performance difference between MC(T ) and MC(2 ·



268 I. Althöfer

T ) being largest for some intermediate parameter T )? So far, experimental
evidence has been collected only for games with alternating turns, see [1]
and [2].

Moreover, an open philosophical question may arise. From the viewpoint of game
design it reads as follows. Is a board filling game with random turn order inter-
esting for humans, when human players “typically” have difficulties to find best
cells in “typical” positions? Independently of the answer we make a call for cre-
ativity: Find interesting board filling games with random turn order! In our eyes,
OdOku and TOPFOUR are not bad, but there is still room for improvement.
The applet “Hexamania” from D. Wilson’s site [14] allows to get an impression
how almost-perfect matches in random-turn Hex and random-turn Tripod look
like. In the human scene for playing board games, games with random turn order
so far live only in a very small niche. The pirate game “Blackbeard” [4] may be
the most prominent example - with rather mixed evaluations by the users on
BoardGameGeek.
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Modeling Games with the Help
of Quantified Integer Linear Programs�
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Abstract. Quantified linear programs (QLPs) are linear programs with mathe-
matical variables being either existentially or universally quantified. The integer
variant (Quantified linear integer program, QIP) is PSPACE-complete, and can
be interpreted as a two-person zero-sum game. Additionally, it demonstrates re-
markable flexibility in polynomial reduction, such that many interesting practical
problems can be elegantly modeled as QIPs. Indeed, the PSPACE-completeness
guarantees that all PSPACE-complete problems such as games like Othello, Go-
Moku, and Amazons, can be described with the help of QIPs, with only moderate
overhead. In this paper, we present the Dynamic Graph Reliability (DGR) opti-
mization problem and the game Go-Moku as examples.

1 Introduction

Game playing with a computer fascinates people all over the world since the beginnings
of the Personal Computer, the computer for everyone. Thousands of boys and girls loved
to play Atari’s Pong or Namco’s Pacman and many other games. The Artificial Intel-
ligence community has picked up the scientific aspects of game playing and provided
remarkable research results, especially in the area of game tree search. One example
of a successful research story is coupled to the game of chess [24,3,14,13,12,5]. Algo-
rithmic achievements like the introduction of the Alphabeta algorithm or the MTD(f) 1

algorithm [20] play a keyrole for the success. Currently, we observe a similar evolution
in Computer Go [23]. Here, the UCT-algorithm 2 dominates the search algorithm. In-
terestingly, it arose from a fruitful interplay of Theory and Practice [16,4]. In Go, the
machines increase their playing strength year by year. Some other interesting games
have been completely solved [11], in others the machines dominate the human players
[10].

Independently, in the 1940s, linear programming arose as a mathematical planning
model and rapidly found its daily use in many industries. However, integer program-
ming, which was introduced in 1951, became dominant far later at the beginning of the
1990s.

For traditional deterministic optimization one assumes data for a given problem to be
fixed and exactly known when the decisions have to be taken. Nowadays, it is possible
to solve very large mixed integer programs of practical size, but companies observe

� Research partially supported by German Research Foundation (DFG) funded SFB 805.
1 MTD(f) or MTD(f,n): Memory-enhanced Test Driver with node n and value f.
2 UCT: Upper Confidence bounds applied to Trees.

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 270–281, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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an increasing danger of disruptions, i.e., events occur which prevent companies from
acting as planned. Data are often afflicted with some kinds of uncertainties, and only
estimations, maybe in form of probability distributions, are known. Examples are flight
or travel times. Throughput-time, arrival times of externally produced goods, and scrap
rate are subject to variations in production planning processes.

Therefore, there is a need for planning and deciding under uncertainty which, how-
ever, often pushes the complexity of traditional optimization problems, that are in P
or NP, to PSPACE. These new problems contain the spirit of games more than the
spirit of classic optimization. An interesting result from Complexity Theory is that all
NP-complete problems can be converted into each other with only moderate overhead.
Analogously, all PSPACE-complete problems can be converted into each other with
little effort, and the quantified versions of integer linear programs [25] cover the com-
plexity class PSPACE. As a consequence, we can model every other problem which
is PSPACE-complete or easier, with moderate (i.e., polynomial) overhead, and thus, a
PSPACE complete game such as Othello, Go-Moku, and Amazons3 is modeled via the
game’s rules which are encoded. It is not necessary to encode the game tree of such
a game. Chess, Checkers, and Go do not necessarily belong to this group of games.
Their inspected extensions are even EXPTIME-hard. For the interested reader, we refer
to [7,22]. If we restrict the maximum number of allowed moves in these games by a
polynomial in the input size, they are in PSPACE, and at least checkers is then PSPACE
complete [8].

Suitable candidate algorithms for solving QIPs are the typical algorithms from AI
such as Alphabeta, UCT, Proof Number Search (PNS) [26] or MTD(f). Because of the
transformation overhead from the original problem description to a QIP, there is a cer-
tain loss in solution performance. We believe that this overhead might be accepable,
because solving QLPs allows the fast generation of bounds to the original QIP. We are
optimistic that these QLP bounds can considerably speed up the search process for the
QIP, similarly as the solutions of LP-relaxations speed up the branch and bound algo-
rithm in the context of conventional linear integer programming. However, to answer
this question is a matter of ongoing research. In summery, three subtasks must be solved
in order to generate huge impact on both, Game Playing and Mathematical Optimiza-
tion under Uncertainty.

– Applicability must be shown. This means we have to convince that relevant prob-
lems can elegantly be modeled with the help of QIPs.

– Fast algorithms for QLPs, the relaxed versions of QIPs, must be found.
– It has to be shown that the QLP solutions can be used in order to speed up the

search processes of QIPs by a huge margin. Note that this last step took about 20
years for conventional Mathematical Programming.

Thus, the idea of our research is to explore the abilities of linear programming when
applied to PSPACE-complete problems, similar as it was applied to NP-complete prob-
lems in the 1990s. We could already show that QLPs have remarkable polyhedral prop-
erties [18]. Moreover, we are able to solve comparably large QLPs in reasonable time

3 For an overview, cf. http://en.wikipedia.org/wiki/Game complexity [21,9,15].
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[6]. Recent research has shown that our QLP algorithm can be improved further by
adopting some techniques known from the gaming community. For example, we could
derive cutting planes with an interesting similarity to alpha-beta pruning, which reduce
the search time by half.

2 The Problem Statement: Quantified Linear Programs

2.1 Problem Statement

In the following, the definition of a Quantified Linear Program is stated. Let Q describe
the set of rational numbers and Z the set of integer numbers.

Given: A vector of variables x = (x1, ..., xn) ∈ Qn, upper and lower bounds u ∈ Zn

and l ∈ Zn with li ≤ xi ≤ ui , a matrix A ∈ Qm×n, a vector b ∈ Qm and a quantifier
string Q = (q1, ..., qn) ∈ {∀, ∃}n, where the quantifier qi belongs to the variable xi,
for all 1 ≤ i ≤ n.

We denote a QIP/QLP as [Q(x) : Ax ≤ b]. A maximal subset of Q(x), which con-
tains a consecutive sequence of quantifiers of the same type, is called a (variable) block.
A full assignment of numbers to the variables is interpreted as a game between an exis-
tential player (fixing the existentially quantified variables) and a universal player (fixing
the universally quantified variables). The variables are set in consecutive order, as de-
termined by the quantifier string. Consequently, we say that a player makes the move
xk = z, if he4 fixes the variable xk to the value z. At each such move, the corresponding
player knows the settings of x1, ..., xi−1 before setting xi. If, at the end, all constraints
of Ax ≤ b hold, the existential player wins the game. Otherwise the universal player
wins.

Problem Statement: Is there an assignment for variable xi with the knowledge, how
x1, ..., xi−1 have been set before, such that the existential player wins the game, no
matter, how the universal player acts when he has to move?

The problem occurs in two variants: (a) all variables are discrete (QIP) and (b) all
variables are rational (QLP).

2.2 Solutions of QIPs and QLPs: Strategies and Policies

Definition 1. (Strategy) A strategy for the existential playerS is a tuple (Vx∪̇Vy, E, L),
that is, a labeled tree of depth n with vertices V and edges E (|V | and |E| being their
respective sizes), where Vx andVy are two disjoint sets of nodes, andL ∈ Q|E| is a set of
edge labels. Nodes from Vx are called existential nodes, nodes from Vy are called univer-
sal nodes. Each tree level i consists either of only existential nodes or of only universal
nodes, depending on the quantifier qi of the variable xi. Each edge of the set E, leaving
a tree-node of level i, represents an assignment for the variable xi. li ∈ L describes the
value of variable xi on edge ei ∈ E. Existential nodes have exactly one successor, uni-
versal nodes have as many successors as the universal player has choices at that node.

4 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.
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In case of QLPs, it suffices to deal with two successors, induced by the upper and the
lower integer bounds of a universal variable, below each universal node [18]. A strategy
is called a winning strategy, if all paths from the root to a leaf represent a vector x such
that Ax ≤ b.

Definition 2. (Policy) A policy is an algorithm that fixes a variable xi, being the ith

component of the vector x, with the knowledge, how x1, ..., xi−1 have been set before.

A three-dimensional example of a QIP/QLP is given below:

∀x1 ∈ [−1, 0] ∀x2 ∈ [0, 1] ∃x3 ∈ [−2, 2] :

⎛
⎜⎜⎝

10 −4 2
10 4 −2
−10 4 1
−10 −4 −1

⎞
⎟⎟⎠ ·

⎛
⎝x1

x2

x3

⎞
⎠ ≤

⎛
⎜⎜⎝

0
4
12
8

⎞
⎟⎟⎠

If we restrict the variables in the example to the integer bounds of their domains, we
observe a winning strategy for the existential player as shown in Figure 1. In this exam-
ple, a + in a tree leaf means that the existential player wins when this leaf is reached. A
- marks a win for the universal player. Numbers at the edges mark the choices for vari-
ables. If the universal player moves to −1 and 0 (i.e., he sets x1 = −1 and x2 = 0) the
existential player has to move to 2. If the universal player moves to −1 and 1, the exis-

Fig. 1. The winning strategy (solid) for the integer QLP example above

tential player must set the variable x3 = −2 etc. We see that the existential player has to
react carefully to former moves of the universal player. If we now relax the variables, al-
lowing non-integral values for the corresponding domains, the resulting solution space
of the corresponding QLP becomes polyhedral. Moreover, the solution of the resulting
problem when x1 = −1 is a line segment: B (cf. Fig. 2). On the left side of Figure 2,
we can still see the corresponding partial strategy of the integer example in Figure 1.
The strategy consists of the two end-points of B. On the right side of Figure 2, the same
convex hull of the solution space is shown from another perspective. We observe that
the existential player has more freedom in the choice of x3, when the universal player
sets x1 = 0. If x1 = 0, the solution space of the rest problem will just be the facet C.
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Fig. 2. A visualization of the 3-d solution space of the example above

Remark: If the integrality constraints of a QIP are relaxed, this will result in a QLP.
One may distinguish between QLPs where only the variables of the existential player
are relaxed, and QLPs where all variables are relaxed. However, these two variants are
equivalent to each other, as in [18] it was shown that the following holds.

– Let y1, .., ym be the universal variables of a given QLP. Let l1, ..., lm be lower
bound restrictions to the y-variables and let u1, ..., um be the corresponding upper
bounds. The existential player has a winning strategy against the universal player
who takes his choices yi ∈ {li, ui}, i ∈ 1...m if and only if the existential player
has a winning policy against the universal player who takes his choices from the
corresponding rational intervals, i.e., yi ∈ [li, ui], i ∈ 1...m.

– Whether or not there is a winning strategy for the existential player, it can be deter-
mined with polynomially many bits, as long as the number of quantifier changes is
constant, independently of the number of variables.

3 Modeling with QIPs

In this section two different games are modeled with the help of QIPs. The first one
is a straightforward graph game, where a person has to travel on a graph from a given
source node to a desired target node. While he is traveling, an (evil) opponent erases
some edges and thus destroys the graph. However, also the opponent must follow cer-
tain rules. The second game, which is inspected, is the well known Five in a Row game.
Both are PSPACE-complete, and can therefore not be modeled on small space by propo-
sitional logic or by mixed integer linear programming (except PSPACE=NP).

3.1 A Two-Person Zero-Sum Graph Game

In order to demonstrate the modeling power of QIPs, we first present an example for
the so called worst-case Dynamic Graph Reliability problem. It is closely related to the
QSAT-problem and to the Dynamic Graph Reliability problem (DGR) [19]. A variant
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of this game was re-invented by van Benthem [2] and analyzed by Löding and Rhode
[17].

A worst-case DGR (wcDGR) is defined as follows.

Given: A directed acyclic graph G = (V,E) with two special nodes s and t. More-
over, we have defined a mapping f : (V × E) → {0, 1} with f(v, e) = 1 if and only
if an opponent is allowed to erase edge e when we arrive at node v. Moreover, the op-
ponent has to follow some rules as well. For some edges, the opponent is not allowed
to erase more than one of two specific edges. In other words, there is another mapping
g : E × E → {0, 1} with g(e1, e2) = 1 if and only if it is allowed to erase both e1
and e2.

Question: Is there a strategy, which allows the existential player to reach the target
node t from start node s, no matter, how the opponent acts?

The starting point of the wcDGR is a directed acyclic graph (DAG). An example is
shown on the left side of Figure 3. There, we assume that an opponent may erase at
most one of the edges e4 and e5. He can make them fail when we arrive at node v2 or
at node v3. Anyway, never both edges are allowed to fail, and no other edges can fail.
The optimization problem is firstly to make a choice whether to travel via edge e1 or e2.
Then, the opponent erases none or one of the edges e4 and e5. Thereafter, we choose
a remaining path to target t, if one exists. If we move from node v2 to node v3, our
opponent is again allowed to make one of the two edges e4 or e5 fail.

Let us introduce variables x1, ..., x5 for edge-choices. xi = 1 means ei is chosen
for traveling. The first block of constraints encodes the flow constraints of the classic
shortest-path problem on graphs. The constraints are applied to the x-variables (Fig. 3,

∃x1, x2∀y2,4, y2,5∃x3∀y3,4, y3,5∃x4, x5, xΔ (all binary) :

x1 = x4 + x3

x2 + x3 = x5

x1 + x2 = 1
x4 + x5 = 1

⎫⎪⎪⎬
⎪⎪⎭flow constraints (1)

x4 ≤ (1− y2,4) + (1 − x1) + xΔ

x4 ≤ (1− y3,4) + (1 − x2 − x3) + xΔ

x5 ≤ (1− y2,5) + (1 − x1) + xΔ

x5 ≤ (1− y3,5) + (1 − x2 − x3) + xΔ

⎫⎪⎪⎬
⎪⎪⎭

failure constraints
for the existential
player (2)

2xΔ ≤ y3,4 + y3,5 + y2,4 + y2,5
} (3) critical failure

constraint for the
universal player.

Fig. 3. Graph of wcDGR example and QIP description
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right, (1)). y2,4, y3,4, y2,5, y3,5 determine whether the opponent makes the edges e4 or e5
fail when we reach the nodes v2 or v3, i.e., yi,j = 1 means that there is a failure on edge
ej . The second block (2) couples the decision variables xi to the yj,k-variables of the
opponent. For instance, x4 ≤ (1−y2,4)+(1−x1)+xΔ means that the existential player
will have to set x4 to zero and will not be allowed to use edge e4 if the existential player
first moves via edge e1 and then the universal player sets y2,4 = 1. Strictly seen, we
have to test whether the existential player has moved via node v2. However, a directed
graph can always be pre-manipulated such that all nodes of the original graph can be
entered via one specific incoming edge. Of course, for this purpose, additional nodes
and edges must be added, in general. The variable xΔ is used to ensure that also the
universal player follows his rules. The last constraint (3) 2xΔ ≤ y3,4+y3,5+y2,4+y2,5
expresses that the universal player is constrained by y3,4 + y3,5 + y2,4 + y2,5 ≤ 1. If he
breaks this rule, the existential player can set xΔ = 1 and the constraints of the second
block are trivialized. The existential player can then trivially win the game. Last but not
least, we can express the problem as shown on the right side of Fig. 3, with the given
quantifier-prefix, because the graph of a wcDGR is a DAG and therefore a partial order
(in time) of the nodes can be computed.

3.2 Gomoku

Five in a Row or Gomoku is a two-person strategy
game played with Go pieces on a Go board. Both play-
ers (Black and White, Black begins) alternately place
stones. The first player who obtains a row of five hor-
izontally, vertically, or diagonally connected stones is
the winner. A once placed stone cannot be moved or
removed from the board. With this standard set of
rules, it is known that Black always wins on some
board sizes (e.g., 15× 15 [1]), but the problem is open
for arbitrary n× n boards.

Parameters
As we showed in the preceeding paragraph, we can model that also the universal player
has to follow some rules with auxiliary existential variables. We simplify the description
of Gomoku by not considering this detail. Instead, we only present the rules for the
universal player. Let T denote the set of all moves (there are up to n2 moves until the
board is full) and N2 the set of all board coordinates. Let H2 be the set of coordinates
of a reduced board (used to detect connected rows of five stones) and C a counting set.
The decision parameters δt specify, which player places a stone in move t.

T := {1, . . . , n2}, N := {1, . . . , n},

H := {1, . . . , n− 4}, C := {0, . . . , 4},

δbt := t mod 2, δwt := 1− (t mod 2)
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Variables
Let B = {0, 1} denote the binary set. For each move t ∈ T and each field with co-
ordinates (i, j) ∈ N2, let there be two binary variables xb

t,i,j indicating a black stone
and xw

t,i,j indicating a white stone. Using the set {b, w} as upper index implies that a
statement is equally valid for both black and white stones.

For each move t ∈ T and coordinate (k, l) ∈ N ×H , let h{b,w}
t,k,l be an indicator vari-

able denoting the existence of a horizontally connected black or respectively white row
of five stones beginning on this coordinate. The range of column indices is slightly
smaller than N , because each such connected row cannot start near the right board
edge. Analogously, let there be vertical indicator variables v{b,w}

t,k,l for each move t ∈ T

and coordinate (k, l) ∈ H ×N and diagonal indicator variables d{b,w}
t,k,l for each move

t ∈ T and coordinate (k, l) ∈ H2.

Using the connected row indicators, winning criteria can be expressed. Let s{b,w}
t

be a monotonously increasing indicator function (step function), which raises the first
time a player has any connected row of five. Further, let p{b,w}

t be an indicator function
with norm one (peak function), which peaks the first time a player has any connected
row of five and is false otherwise. The event of winning the game can be expressed by
indicator variables e{b,w}

t , which is true if and only if a player achieves any connected
row of five for the first time and his opponent did not achieve any connected row of five
before. The retaliation indicator r{b,w} indicates, if a player does not win at all.

x
{b,w}
t,i,j ∈ B|T×N2|

h
{b,w}
t,k,l ∈ B|T×N×H|, v{b,w}

t,k,l ∈ B|T×H×N |, d{b,w}
t,k,l , u

{b,w}
t,k,l ∈ B|T×H2|

s
{b,w}
t ∈ B|T |, p{b,w}

t ∈ B|T |, e{b,w}
t ∈ B|T |, r{b,w} ∈ B

To express the quantifier string in a compact form, we denote the following abbrevia-
tions:

A0 :=
{∀ (i, j) ∈ N2 : x

{b,w}
0,i,j , s

{b,w}
0

}
∀t ∈ T : At :=

{∀ (i, j) ∈ N2 : x
{b,w}
t,i,j , ∀ (k, l) ∈ N ×H : h

{b,w}
t,k,l ,

∀ (k, l) ∈ H ×N : v
{b,w}
t,k,l , ∀ (k, l) ∈ H2 : d

{b,w}
t,k,l ,

s
{b,w}
t , p

{b,w}
t , e

{b,w}
t

}
Optimization Model
The solution of a quantified optimization model is the information, if the player (in
this case Black) can win against his opponent. If he can win, the first move leading to
the victory is provided. (If one wishes to play a full Go-Moku game using a quantified
model, one therefore has to solve the model after each move of the opponent.)

We choose to extend the basic model with an objective function to rate Black’s strat-
egy. If Black can win at all, the optimal objective value is the first possible move in
which Black can win. If Black cannot win, but he can force a draw, the optimal ob-
jective value is (n2 + 1). If Black definitely loses, the optimal objective value minus
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(n2 + 1) depicts the longest possible delay Black can achieve until he is beaten. To
extract the basic information if Black can win, the objective value can be compared to
the remis value (n2 + 1).

minimize ∑
t∈T

t · ebt + (2n2 + 1) · rb −
∑
t∈T

t · ewt − n2 · rw

such that

∃A0 ∃A1 ∀A2 ∃A3 ∀A4 . . . ∃ ∀ ∃ ∀ . . . An2 ∃ r{b,w}

∀ (i, j) ∈ N2 : x
{b,w}
0,i,j = 0, s

{b,w}
0 = 0 (1)

(initial state: All intersections are free, both players have not won yet.)

∀ t ∈ T , ∀ (i, j) ∈ N2 : xb
t,i,j + xw

t,i,j ≤ 1 (2)

(occupation: On every intersection no more than one stone can be placed.)

∀ t ∈ T , ∀ (i, j) ∈ N2 : x
{b,w}
t,i,j ≥ x

{b,w}
t−1,i,j (3)

(causality: Every once placed stone remains placed.)

∀ t ∈ T :
∑

(i,j)∈N2

x
{b,w}
t,i,j =

∑
(i,j)∈N2

x
{b,w}
t−1,i,j + δ

{b,w}
t (4)

(alternation: In every odd move Black places exactly one stone. In every even move
White places exactly one stone. In both cases the opposite player remains idle.)

∀ t ∈ T , ∀ (k, l) ∈ N ×H, ∀ c ∈ C : h
{b,w}
t,k,l ≤ x

{b,w}
t,k,l+c (5a)

∀ t ∈ T , ∀ (k, l) ∈ N ×H : h
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k,l+c − 4 (5b)

(horizontal rows: a player achieved a horizontal row beginning on coordinate (k, l), if
and only if the specified and the next four intersections to the right contain stones of the
same color.)

∀ t ∈ T , ∀ (k, l) ∈ H ×N, ∀ c ∈ C : v
{b,w}
t,k,l ≤ x

{b,w}
t,k+c,l (6a)

∀ t ∈ T , ∀ (k, l) ∈ H ×N : v
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k+c,l − 4 (6b)

(vertical rows: a player achieved a vertical row beginning on coordinate (k, l), if and
only if the specified and the next four intersections to the bottom contain stones of the
same color.)

∀ t ∈ T , ∀ (k, l) ∈ H2, ∀ c ∈ C : d
{b,w}
t,k,l ≤ x

{b,w}
t,k+c,l+c (7a)

∀ t ∈ T , ∀ (k, l) ∈ H2 : d
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k+c,l+c − 4 (7b)
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(downward diagonal rows: a player achieved a downward diagonal row beginning on
coordinate (k, l), if and only if the specified and the next four intersections to the
bottom-right contain stones of the same color.)

∀ t ∈ T , ∀ (k, l) ∈ H2, ∀ c ∈ C : u
{b,w}
t,k,l ≤ x

{b,w}
t,k+c,l+4−c (8a)

∀ t ∈ T , ∀ (k, l) ∈ H2 : u
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k+c,l+4−c − 4 (8b)

(upward diagonal rows: a player achieved an upward diagonal row beginning on coordi-
nate (k, l+ 4), if and only if this and the next four intersections to the top-right contain
stones of the same color. Heed that the upward diagonal row with index (k, l) does not
contain a stone on intersection (k, l).)

∀ t ∈ T : s
{b,w}
t ≥ s

{b,w}
t−1 (9a)

∀ t ∈ T , ∀ (k, l) ∈ N ×H : s
{b,w}
t ≥ h

{b,w}
t,k,l (9b)

∀ t ∈ T , ∀ (k, l) ∈ H ×N : s
{b,w}
t ≥ v

{b,w}
t,k,l (9c)

∀ t ∈ T , ∀ (k, l) ∈ H2 : s
{b,w}
t ≥ d

{b,w}
t,k,l (9d)

∀ t ∈ T , ∀ (k, l) ∈ H2 : s
{b,w}
t ≥ u

{b,w}
t,k,l (9e)

∀ t ∈ T : s
{b,w}
t ≤ s

{b,w}
t−1 +

∑
(k,l)∈N×H

h
{b,w}
t,k,l +

∑
(k,l)∈H×N

v
{b,w}
t,k,l

+
∑

(k,l)∈H2

d
{b,w}
t,k,l +

∑
(k,l)∈H2

u
{b,w}
t,k,l (9f)

(row history: The monotonously increasing indicator function s raises in the unique
move t, when the player achieves a row for the first time.)

∀ t ∈ T : p
{b,w}
t = s

{b,w}
t − s

{b,w}
t−1 (10)

(critical move: The indicator function p with norm one peaks in the unique move t,
when the player achieves a row for the first time.)

∀ t ∈ T : ebt ≤ pbt (11a)

∀ t ∈ T : ebt ≤ (1 − swt ) (11b)

∀ t ∈ T : ebt ≥ pbt + (1− swt )− 1 (11c)

∀ t ∈ T : ewt ≤ pwt (11d)

∀ t ∈ T : ewt ≤ (1− sbt) (11e)

∀ t ∈ T : ewt ≥ pwt + (1− sbt)− 1 (11f)

(victory: A player wins in the unique move t, if and only if he achieves his first row in
move t and his opponent has not done so before move t. Heed the switched b/w indices.)

r{b,w} +
∑
t∈T

e
{b,w}
t = 1 (12)
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(retaliation: If a player does not win at all, his retaliation indicator is activated. This
information is used to weight ties and defeats in the objective function.)

After all, we see that Gomoku could elegantly be described with the help of a QIP. An
obvious drawback is that the number of constraints has grown by a factor of n2. How-
ever, it is neither the case that a short description necessarily leads to faster solutions,
nor do we claim that our description is the shortest possible one.

4 Conclusion

Quantified Linear Integer Programs form quite a powerful and elegant modeling tool.
They have structural properties of Linear Programs on the one hand, but on the other
hand, they describe the complexity class PSPACE and therefore are natural candidates
for the modeling of games such as graph games, Go-Moku, Sokoban, and many more.
We guess that this modeling technique has the potential to bridge the gap between Math-
ematical Optimization and Game Playing in the Artificial Intelligence. In this paper, we
were able to show how to model some games with the help of QIPs. Moreover, we re-
ported about progress solving QLPs. Future work will show whether QLPs can be used
to speed up search times for QIPs in a similar way as MIPs are speeded up with the help
of LP-relaxation. If QLPs are able to play a similar role for QIPs as LPs play for IPs,
we can hope for a performance jump, at least for exact solving of PSPACE-complete
games.
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17. Löding, C., Rohde, P.: Solving the Sabotage Game Is PSPACE-Hard. In: Rovan, B., Vojtáš,
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Abstract. We develop a new approach that computes approximate
equilibrium strategies in Jotto, a popular word game. Jotto is an ex-
tremely large two-player game of imperfect information; its game tree has
many orders of magnitude more states than games previously studied,
including no-limit Texas Hold’em. To address the fact that the game is
so large, we propose a novel strategy representation called oracular form,
in which we do not explicitly represent a strategy, but rather appeal to
an oracle that quickly outputs a sample move from the strategy’s distri-
bution. Our overall approach is based on an extension of the fictitious
play algorithm to this oracular setting. We demonstrate the superiority
of our computed strategies over the strategies computed by a benchmark
algorithm, both in terms of head-to-head and worst-case performance.

1 Introduction

Developing strong strategies for agents in large games is an important problem
in artificial intelligence. In particular, much work has been devoted in recent
years to developing algorithms for computing game-theoretic solution concepts,
specifically the Nash equilibrium. In two-player zero-sum games, Nash equilib-
rium strategies have a strong theoretical justification as they also correspond to
minimax strategies; by following an equilibrium strategy, a player can guarantee
at least the value of the game in expectation, regardless of the strategy followed
by his1 opponent. Currently, the best algorithms for computing a Nash equilib-
rium in two-player zero-sum extensive-form games (with perfect recall) are able
to solve games with 1012 states in their game tree [7].

However, many interesting games actually have significantly more than 1012

states. Texas Hold’em poker is a prime example of such a game that has received
significant attention in the AI literature in recent years; the game tree of two-
player limit Texas Hold’em has about 1018 states, while that of two-player no-
limit Texas Hold’em has about 1071 states. The standard approach is to apply
an abstraction algorithm, which constructs a smaller game that is similar to the
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original game; then the smaller game is solved, and its solution is mapped to a
strategy profile in the original game [1]. Many abstraction algorithms work by
coarsening the moves of chance, collapsing several information sets of the original
game into single information sets of the abstracted game (called buckets).

In this paper we study a game with many orders of magnitude more states
than even two-player no-limit Texas Hold’em. Jotto, a popular word game, con-
tains approximately 10853 states in its game tree. However, Jotto does not seem
particularly amenable to abstraction in the same way that poker is; we discuss
reasons for this in Section 2. Furthermore, even if we could apply an abstrac-
tion algorithm to Jotto, we would need to group 10841 game states into a single
bucket on average, which would almost certainly lose a significant amount of in-
formation from the original game. Thus, the abstraction paradigm that has been
successful on poker does not seem promising to games like Jotto; an entirely new
approach is needed.

We provide such an approach. To deal with the fact that we cannot even
represent a strategy for one of the players, we provide a novel strategy repre-
sentation which we call oracular form. Rather than viewing a strategy as an
explicit object that must be represented and stored, we instead represent it im-
plicitly through an oracle; we can think of the oracle as an efficient algorithm.
Each time we want to make a play from the strategy, we query the oracle, which
quickly outputs a sample play from the strategy’s distribution. Thus, instead of
representing the entire strategy in advance, we obtain it on an as-needed basis
via real-time computation.

Our main algorithm for computing an approximate equilibrium in Jotto is an
extension of the fictitious play algorithm [3] to our oracular setting. The algo-
rithm outputs a full strategy for one player, and for the other player outputs
data such that if another algorithm is run on it, a sample of the strategy’s play is
obtained. Thus, we can play this strategy, even though it is never explicitly rep-
resented. We use our algorithm to compute approximate equilibrium strategies
on 2, 3, 4, and 5-letter variants of Jotto. We demonstrate the superiority of our
computed strategies over the strategies computed by a benchmark algorithm,
both in terms of head-to-head and worst-case performance.

2 Jotto

Jotto is a popular two-player word game. While there are many different varia-
tions of the game, we will describe the rules of one common variant. Each player
picks a secret five-letter word, and the object of the game is to guess correctly
the other player’s word first. Players take turns guessing the other player’s se-
cret word and replying with the number of common letters between the guessed
word and the secret word (the positions do not matter). For example, if the secret
word is GIANT and a player guesses PECAN, the other player will give a reply
of 2 (for the A and the N, even though they are in the wrong positions). Players
often cross out letters that are eliminated and record other logical deductions
on a sheet of paper. An official Jotto sheet is shown in Figure 1.
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Fig. 1. Official Jotto sheet. Players record guesses and answers, cross off alphabet
letters as they become inconsistent, and record other notes and deductions.

Instead of having both players simultaneously guessing the other player’s
word, we could instead just have one player pick a secret word while the other
player guesses it. Let us refer to these players as the hider and the guesser re-
spectively. If the guesser correctly guesses the word on his k’th try, then the
hider gets payoff k while the guesser gets payoff −k. This is the variation that
we consider in the remainder of the paper.

There are a few limits on the words that the players can select. All words must
be chosen from a pre-arranged dictionary. No proper nouns are allowed, and the
words must consist of all different letters (some variations do not impose this
restriction). Furthermore, we do not allow players to select a word of which other
permutations (aka anagrams) are also valid words (e.g., STARE and RATES)2.

The official dictionary we will be using has 2833 valid 5-letter words. A näıve
attempt at determining the size of the game tree is the following. First the hider
selects his word, putting the game into one of 2833 states. At each state, the
guesser must choose one of 2833 words; the hider gives him an answer from 0-5,
and the guesser must now choose one of 2832 words, and so on. The total number
of game states will be approximately 2833 · 2833!.

It turns out that we can represent the game much more concisely if we take
advantage of the fact that many paths of play lead to the guesser knowing the
exact same information. For example, if the player guesses GIANT and gets
reply of 2 followed by guessing PECAN with a reply of 3, he knows the exact
same information as if he had guessed PECAN with a reply of 3 followed by
GIANT with a reply of 2; both sequences should lead to the same game state.
More generally, two sequences of guesses and answers lead to identical knowledge
bases if and only if the set of words consistent with both sequences is identical.
Thus, there is a one-to-one correspondence between a knowledge base of the
guesser and a subset of the set of words in the dictionary corresponding to the
set of words that are consistent with the guesses so far. Since there are 22833

2 If this restriction were not imposed, then players might need to guess all possible
permutations of a word even once all the letters are known.
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total subsets of words in the dictionary, the total number of game states where
the guesser would need to make a decision is 22833 ≈ 10853. Since the best
equilibrium-finding algorithms can only solve games with up to 1012 nodes, we
have no hope of solving Jotto by simply applying an existing algorithm.

Furthermore, Jotto does not seem amenable to the same abstraction para-
digm that has been successful on poker. In poker, abstraction works by grouping
several states into the same bucket and forcing all states in the same bucket
to follow the same strategy. In our compact representation of Jotto, the states
correspond to subsets of the dictionary; abstraction would mean that several
subsets are grouped together into single buckets. However, the action taken at
each bucket will be a single word (i.e., the next guess). If many subsets are
grouped together into the same bucket, then there will clearly be some words
that have already been guessed in some states in the bucket, while not in other
states. It will lead to certain actions being ill-defined, as well as possible infinite
loops in the structure of the abstracted game tree. It will be exacerbated by the
fact that many states will need to be grouped into the same bucket; on average,
each bucket will contain 10841 game states.

In short, there are significant challenges that must be overcome to apply any
sort of abstraction to Jotto; this may not even be feasible to do at all. Instead,
we propose an entirely new approach.

3 A Natural Approach

A natural strategy for the hider would be to select each word uniformly at
random, and one for the guesser would be to guess always the word that will
eliminate the most words that are still consistent with the guesses and answers so
far (in expectation against the uniform hider strategy). We refer to this strategy
for the hider as HiderUniform, and to the strategy for the guesser as GuesserG-
BRUniform (for “Greedy Best Response”). GuesserGBRUniform is essentially
1-ply minimax search; further details and pseudocode are given in Section 7.1.
We suspect that current Jotto programs follow algorithms similar to HiderUni-
form and GuesserGBRUniform, though we are not aware of any publicly available
descriptions of existing algorithms. We will use these algorithms as a benchmark
to measure the performance of our new approach.

While HiderUniform seems like a pretty strong (i.e., low-exploitability) strategy
for the hider, it turns out that GuesserGBRUniform is actually highly exploitable.
For example, in the five-letter variant using our rules and dictionary, GuesserG-
BRUniform will always select ‘doyen’ as its first guess. Clearly no intelligent hider
would select doyen as his secret word against such an opponent. Furthermore, the
hider can always guarantee that GuesserGBRUniform will require 9 guesses by
selecting a word such as ‘amped’ (note that 9 is the maximal number of guesses
that GuesserGBRUniform will take to guess any word in the 5-letter variant).

Searching additional levels down the tree will probably not help much with
the worst-case exploitability of the guesser’s strategy. The main problem is that
GuesserGBRUniform plays a deterministic strategy, and a worst-case opponent
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could exploit it by always selecting the word that requires the most guesses.
We would like to compute a less exploitable strategy for the guesser, which will
involve some amount of randomization. Our overall goal is to compute strategies
for both players with worst-case exploitabilities as low as possible (i.e., we would
like to compute an approximate Nash equilibrium, viewing Jotto as a game of
imperfect information).

4 Game Theory Background

In this section, we review relevant definitions and prior results from game theory
and game solving.

4.1 Strategic-Form Games

The most basic game representation, and the standard representation for simul-
taneous-move games, is the strategic form. A strategic-form game (aka matrix
game) consists of a finite set of players N, a space of pure strategies Si for each
player, and a utility function ui : ×iSi → R for each player. Here ×iSi denotes
the space of strategy profiles — vectors of pure strategies, one for each player.

The set of mixed strategies of player i is the space of probability distributions
over his pure strategy space Si. We will denote this space by Σi. If the sum of
the payoffs of all players equals zero at every strategy profile, then the game is
called zero sum. In this paper, we will be primarily concerned with two-player
zero-sum games. If the players are following strategy profile σ, we let σ−i denote
the strategy taken by the opponent.

4.2 Extensive-Form Games

An extensive-form game is a general model of multiagent decision-making with
potentially sequential and simultaneous actions and imperfect information. As
with perfect-information games, extensive-form games consist primarily of a
game tree; each non-terminal node has an associated player (possibly chance)
that makes the decision at that node, and each terminal node has associated util-
ities for the players. Additionally, game states are partitioned into information
sets, where the player whose turn it is to move cannot distinguish among the
states in the same information set. Therefore, in any given information set, the
player whose turn it is to move must choose actions with the same distribution
at each state contained in the information set. If no player forgets information
that he previously knew, we say that the game has perfect recall.

4.3 Mixed vs. Behavioral Strategies

There are multiple ways of representing strategies in extensive-form games. De-
fine a pure strategy to be a vector that specifies one action at each information
set. Clearly there will be an exponentially number of pure strategies in the size
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of the game tree; if the tree has Ii information sets for player i and Ai possible
actions at each information set, then player i has AIi

i possible pure strategies.
Define a mixed strategy to be a probability distribution over the space of pure
strategies. We can represent a mixed strategy as a vector with AIi

i components.
Alternatively, we could play a strategy that randomizes independently at each

information set; we refer to such a strategy as a behavioral strategy. Since a
behavioral strategy must specify a probability for playing each of Ai actions at
each information set, we can represent it as a vector with only Ai ·Ii components.
Thus, behavioral strategies can be represented exponentially more compactly
than mixed strategies.

Providentially, it turns out that this gain in representation size does not come
at the loss of expressiveness; any mixed strategy can also be represented as an
equivalent behavioral strategy (and vice versa). Thus, current computational
approaches to extensive-form games operate on behavioral strategies and avoid
the unnecessary exponential blowup associated with using mixed strategies.

4.4 Nash Equilibria

Player i’s best response to σ−i is any strategy in argmaxσ′
i∈Σi

ui(σ
′
i, σ−i). A

Nash equilibrium is a strategy profile σ such that σi is a best response to σ−i

for all i. An ε-equilibrium is a strategy profile in which each player achieves a
payoff of within ε of his best response.

In two player zero-sum games, we have the following result which is known as
the minimax theorem:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

We refer to v∗ as the value of the game to player 1. Any equilibrium strategy
for a player guarantees an expected payoff of at least the value of the game to
that player.

All finite games have at least one Nash equilibrium. Currently, the best algo-
rithms for computing a Nash equilibrium in two-player zero-sum extensive-form
games with perfect recall are able to solve games with 1012 states in their game
tree [7].

5 Smoothed Fictitious Play

In this section we will review the fictitious play (FP) algorithm [3]. Despite its
conceptual simplicity, FP has recently been used to compute equilibria in many
classes of games in the artificial intelligence literature (e.g., [4,5]). The basic FP
algorithm works as follows. At each iteration, each player plays a best response
to the average strategy of his opponent so far (we assume the game has two
players). Formally, in smoothed fictitious play each player i applies the following
update rule at each time step t:

si,t =

(
1− 1

t+ 1

)
si,t−1 +

1

t+ 1
sBR
i,t ,
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where sBR
i,t is a best response of player i to the strategy s−i,t−1 of his opponent

at time t− 1. We allow strategies to be initialized arbitrarily at t = 0.
FP is guaranteed to converge to a Nash equilibrium in two-player zero-sum

games; however, very little is known about how many iterations are needed to
obtain convergence. Recent work shows that FP may require exponentially many
iterations in the worst case [2]; however, it may perform far better in practice
on specific games. In addition, the performance of FP is not monotonic; for
example, it is possible that the strategy profile after 200 iterations is actually
significantly closer to equilibrium than the profile after 300 iterations. So simply
running FP for some number of iterations and using the final strategy profile is
not necessarily the best approach.

We instead use the following improved algorithm. For each iteration we com-
pute the amount each player could gain by deviating to a best response; denote it
by εi,t. Let εt = maxi εi,t, and let εt∗ = min0≤t≤T εt. After running FP for T iter-
ations, rather than output si,T , we will instead output si,t∗ — the ε-equilibrium
for smallest ε out of all all the iterations of FP so far.

6 Oracular Strategies

Consider the following scenario. Assume one is playing an extensive-form game
G with 2100 information sets and two actions per information set, and that he
wishes to play an extremely simple strategy: always choose the first action at
each information set (assume actions are labeled as Action 1 and Action 2). To
represent this pure strategy, technically we must list out a vector of size 2100

(with each entry being a 1 for this particular strategy). In contrast, it is trivial
to write an algorithm that takes as input the index of an information set and
outputs the action taken by this strategy (i.e., output 1 on all inputs). Even
though there are a large number of information sets, we only require 100 bits to
represent the index of each one; thus, it is possible to play this simple strategy
without ever explicitly representing it.

More generally, let Oi be an efficient deterministic algorithm that takes as
input the index of an information set I and outputs an action from AI , the set
of actions available at I. We refer to Oi as a pure oracular strategy for player i.
It is easy to see that every pure oracular strategy is strategically equivalent to
a pure strategy si of the game; at information set I, si straightforwardly plays
whatever action Oi outputs on input I.

We define oracular versions of randomized strategies analogously to the
extensive-form case. Let {Oi} be a collection of pure oracular strategies; then
any probability distribution over elements of {Oi} is a mixed oracular strategy.
If we let Oi be a randomized algorithm that outputs a probability distribution
over actions at each information set, then call Oi a behavioral oracular strategy.
As was the case with pure strategies, each oracular strategy corresponds to a
single extensive-form strategy of the same type.

In the next two sections, we will see how the oracular strategy representation
can be useful in practice when computing approximate equilibrium strategies in
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Jotto. In particular, a strategy for the guesser is so large that we cannot represent
it explicitly; however, we can encode it concisely as an oracular strategy which
we efficiently query repeatedly throughout the algorithm.

7 Computing Best Responses in Jotto

In order to apply smoothed fictitious play to Jotto, we must figure out how to
compute a best response for each player. This is challenging for several reasons.
First, the guesser’s strategy space is so large that we cannot compute a full best
response; we must settle for computing an approximate best response, which we
call the guesser’s greedy best response. In addition, we represent the guesser’s
strategy in oracular form; so the hider cannot operate on it explicitly, and can
only query it at certain game states. It turns out that we can actually compute
an exact best response for the hider despite this limitation.

7.1 Computing the Guesser’s Greedy Best Response

Assume we are given a strategy for the hider, and wish to compute a counter-
strategy for the guesser. Let h denote the strategy of the hider, where hi denotes
the probability that the hider chooses wi — the i’th word in the dictionary. Let
D denote the number of words in the dictionary, and let S be a bit-vector of
size D, where Si = 1 means that wi is still consistent with the guesses so far. So
S encodes the current knowledge base of the guesser and represents the state of
the game.

A reasonable heuristic to use for the guesser would be the following. For
each word wi in the dictionary, compute the number of words that we will
eliminate in expectation (over h) if we guess wi. Then guess the word that
expects to eliminate the most words. We refer to this algorithm as GuesserGBR
(for “Greedy Best Response”); pseudocode is given in Algorithm 1.

GuesserGBR relies on a number of subroutines. ExpNumElims, given in Al-
gorithm 2, gives the expected number of words eliminated if wi is guessed. An-
swerProbs, given in Algorithm 4, gives a vector of the expected probability of
receiving each answer from the hider when w is guessed. NumElims, given in Al-
gorithm 3, gives the number of words that can be eliminated when wi is guessed
and an answer of j is given. Finally, NumCommLetts, given in Algorithm 5,
gives the number of common letters between two words. In the pseudocode, L
denotes the number of letters allowed per word. For efficiency, we precompute
a table of size D2 storing all the numbers of common letters between pairs of
words. The overall running time of GuesserGBR is O(D2L).

It is worth noting that the greedy best response is not an actual best response;
it is akin to searching one level down the game tree and then using the eval-
uation function “expected number of words eliminated” to determine the next
move. This is essentially 1-ply minimax search. While we would like to compute
an exact best response by searching the entire game tree, this is not feasible since
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Algorithm 1. GuesserGBR(h, S)

for i = 1 to D do
ni ← ExpNumElims(wi, h, S)

end for
return wi with maximal value of ni

Algorithm 2. ExpNumElims(wi, h, S)

A ← AnswerProbs(wi, h, S)
n ← 0
for j = 1 to L do

n ← n + Aj · NumElims(wi, S, j)
end for
return n

Algorithm 3. NumElims(wi, S, j)
counter ← 0
for k = 1 to D do

if Sk = 1 and
NumCommLetts(wi, wk) �= j then

counter ← counter + 1
end if

end for
return counter

Algorithm 4. AnswerProbs(w, h, S)

for i = 1 to L do
Ai ← 0

end for
for i = 1 to D do

if Si = 1 then
k ← NumCommLetts(w,wi)
Ak ← Ak + hi

end if
end for
Normalize A so its elements sum to 1.
return A

Algorithm 5. NumCommLetts(wi, wj)
counter ← 0
for m = 1 to L do

c1 ← mth character of wi

for n = 1 to L do
c2 ← nth character of wj

if c1 = c2 then
counter ← counter + 1

end if
end for

end for
return counter

the tree has 10853 nodes. As with computer chess programs, we will need to
settle for searching down the tree as far as we can, then applying a reasonable
evaluation function.

7.2 Computing the Hider’s Best Response

In order to compute the hider’s best response (in the context of fictitious play),
we will find it useful to introduce two data structures. Let IterNumGuesses (ING)
and AvgNumGuesses (ANG) be two arrays of sizeD. The i’th component of ING
will denote the number of guesses needed for the guesser’s greedy best response
to guess wi at the current iteration of the algorithm. The i’th component of
ANG will be the average over all iterations (of fictitious play) of the number of
guesses needed for the guesser’s greedy best response to guess wi. We update
ANG by applying

ANG[i] =

(
1− 1

t+ 1

)
ANG[i] +

1

t+ 1
ING[i].

We update ING at each time step by applying

ING = CompNumGuesses(sh,t),

where sh,t is the hider’s strategy at iteration t of fictitious play, and pseudocode
for CompNumGuesses is given below in Algorithm 6. CompNumGuesses com-
putes the number of guesses needed for the guesser’s greedy best response to
sh,t to guess correctly each word. It accomplishes this by repeatedly querying
GuesserGBR at various game states. The subroutine UpdateState updates the
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Algorithm 6. CompNumGuesses(sh)

for i = 1 to D do
S ← vector of size D of all ones.
numguesses ← 0
while TRUE do

numguesses ← numguesses + 1
nextguess ← GuesserGBR(sh, S)
answer ←
NumCommLetts(wi, nextguess)
if answer = L then

BREAK
end if
S ←
UpdateState(S, nextguess, answer)

end while
xi ← numguesses

end for
return x

Algorithm 7.
UpdateState(S, nextguess, answer)

for i = 1 to D do
if Si = 1 and NumCommLetts(nextguess,
wi) �= answer then

Si ← 0
end if

end for
return S

Algorithm 8. HiderBR(ANG)

x∗ ← maxi ANG[i].
T∗ ← {i : ANG[i] = x∗}
for i = 1 to D do

if ANG[i] = x∗ then
yi = 1

|T∗|
else

yi = 0
end if

end for
return y

game state in light of the answer received from GuesserGBR. It is in this way
that the hider’s best response algorithm selectively queries the guesser’s strategy,
which is represented implicitly in oracular form.

Finally, once ING and ANG have been updated as described above, we are
ready to compute the full best response for the hider. Pseudocode for the algo-
rithm HiderBR is given below in Algorithm 8. HiderBR takes ANG as input,
and determines which word(s) required the most guesses on average. If there is a
unique word requiring the maximal number of guesses, then that word is selected
with probability 1. If there are multiple words requiring the maximal number
of guesses, then these are each selected with equal probability. Note that select-
ing any distribution over these words would constitute a best response; we just
choose one such distribution. The asymptotic running time of CompNumGuesses
is O(D4L), while that of HiderBR is O(D).

Note that, unlike GuesserGBR of Section 7.1 which is an approximate best
response using 1-ply minimax search, HiderBR is a full best response. We are
able to compute a full best response for the hider because his strategy space
is much smaller than that of the guesser; the hider has only D possible pure
strategies — 2833 in the case of 5-letter Jotto.

7.3 Parallelizing the Best Response Calculation

The hider’s best response calculation can be sped up drastically by parallelizing
over several cores. In particular, we parallelize the CompNumGuesses subroutine
as follows. For the first processor, we iterate over i = 1 to

⌊
D
P

⌋
, where P is the

number of processors, and so on for the other processors. Thus we can perform
P independent computations in parallel. The overall running time of the new

algorithm is O
(

D4L
P

)
.
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8 Computing an Approximate Equilibrium in Jotto

We would like to apply smoothed fictitious play to Jotto, using HiderBR for the
hider’s best response and GuesserGBR for the guesser’s best response; however,
this is tricky for several reasons. We mention three of them. First, it is not clear
how to compute the epsilons and determine the quality of our strategies. Second,
it will be difficult to run the algorithm without explicitly represent the guesser’s
strategy. Third, we cannot output it at the end of the algorithm.

It turns out that using the data structures developed in Section 7.2, we can
actually compute the epsilons quite easily. This is accomplished using the pro-
cedures given in Algorithms 9–12.

We are now ready to present our full algorithm for computing an approximate
equilibrium in Jotto; pseudocode is given in Algorithm 13. Note that we initialize
the hider’s strategy to choose each word uniformly at random. In terms of the
guesser’s strategy, it turns out that all the information needed to obtain it is
already encoded in the hider’s strategy and that we do not actually need to
represent it in the course of the algorithm.

To obtain the guesser’s final strategy, note that the strategies of the hider are
output to a file at each iteration. It turns out that we can use this file to generate
efficiently samples from the guesser’s strategy, even though we never explicitly
output this strategy. We present pseudocode in Algorithm 14 for generating a
sample of the guesser’s strategy at state S from the file output in Algorithm 13.
This algorithm works by randomly selecting an integer t from 1 to t∗, then
playing the guesser’s greedy best response to sh,t — the hider’s strategy at
iteration t. We can view this algorithm as representing the guesser’s strategy as
a mixed oracular strategy; in particular, it is the uniform distribution over his
greedy best responses in the first t∗ iterations of Algorithm 13. This is noteworthy
since it is a rare case of the mixed strategy representation having a computational
advantage over the behavioral strategy representation.

9 Results

We ran our algorithm SolveJotto on four different Jotto instances, allowing
words to be 2, 3, 4, or 5 letters long. To speed up the computation, we used
the parallel version of the bottleneck subroutine CompNumGuesses (described
in Section 7.3) with 16 processors. As our dictionary, we use the Official Tour-
nament and Club Word List [6], the official word list for tournament Scrabble in
several countries. As discussed in Section 2, we omit words with duplicate letters
and words for which there exists an anagram that is also a word. The dictionary
sizes are given in Table 1. We note that our algorithms extend naturally to any
number of words and dictionary sizes (and to other variants of Jotto as well).

One metric for evaluating our algorithm is to play the strategies it computes
against a benchmark algorithm. The benchmark algorithm we chose selects his
word uniformly at random as the hider, and plays the greedy best response to
the uniform strategy as the guesser. This is the same strategy that we use to
initialize our algorithm.
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Algorithm 9. HiderBRPayoff(ANG)
maxnumguesses ← 0
for i = 1 to D do

if ANG[i] > maxnumguesses then
maxnumguesses ← ANG[i]

end if
end for
return maxnumguesses

Algorithm 10.
HiderActualPayoff(ANG, sh)

result ← 0
for i = 1 to D do

result ← result + ANG[i] · sh[i]
end for
return result

Algorithm 11.
GuesserBRPayoff(ING, sh)

result ← 0
for i = 1 to D do

result ← result + ING[i] · sh[i]
end for
return -1 · result

Algorithm 12.
GuesserActualPayoff(ANG, sh)

return -1 · HiderActualPayoff(ANG, sh)

Algorithm 13. SolveJotto(T )

sh,0 ← ( 1
D , . . . , 1

D )
Output sh,0 to StrategyFile
ING ← ComputeNumGuesses(sh,0)
ANG ← ING
Compute ε’s per Algorithms 9-12, t∗ ← 0
for t = 1 to T do

sBR
h,t ← HiderBR(ANG)

sh,t ←
(
1 − 1

t+1

)
sh,t−1 + 1

t+1 s
BR
h,t

Output sh,t to StrategyFile
ING ← ComputeNumGuesses(sh,t)

ANG ←
(
1 − 1

t+1

)
ANG + 1

t+1 ING

Compute ε’s per Algorithms 9-12
if ε < ε∗ then

ε∗ ← ε, t∗ ← t
end if

end for
return (sh,t∗ , t

∗, StrategyFile)

Algorithm 14. ObtainGuesserStrat-
egy(StrategyFile, t∗, S)

i ← randint(1, t∗)
sh ← strategy vector on i’th line of Strategy-
File
return GuesserGBR(sh , S)

For each number of letters, we computed the payoff of our algorithm Solve-

Jotto against the benchmark (recall that the payoff to the hider is the expected
number of guesses needed for the guesser to guess correctly the hider’s word).
The overall payoff is the average of the hider and guesser payoff.

Several observations from Table 1 are noteworthy. First, our algorithm beats
the benchmark for all dictionary sizes. In the two-letter game, our expected
payoff against the benchmark is 0.517; our strategy requires over a full guess less
than the benchmark in expectation. Our profit against the benchmark decreases
as more letters are used.

In addition to head-to-head performance against the benchmark, we also com-
pared the algorithms in terms of worst-case performance. Recall that ε denotes
the maximum payoff improvement one player could gain by deviating to a best re-
sponse (full best response for the hider and greedy best response for the guesser).
Note that in all cases, our ε is significantly lower than that of the benchmark.
For example, in the two-letter game the benchmark obtains an ε of 5.373, while
our algorithm obtains one of 0.038.

Interestingly, we also observe that the self-play payoff of our algorithm, which
is an estimate of the value of the game, does not increase monotonically with
the number of letters. That is, increasing the number of letters in the game does
not necessarily make it more difficult for the guesser to guess the hider’s word.
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Table 1. Summary of our experimental results

Number of letters 2 3 4 5

Dictionary size 51 421 1373 2833

Our hider payoff vs. benchmark 7.652 7.912 7.507 7.221

Our guesser payoff vs. benchmark -6.619 -7.635 -7.415 -7.216

Our overall payoff vs. benchmark 0.517 0.139 0.046 0.003

Benchmark self-play hider payoff 6.627 7.601 7.365 7.079

Our algorithm self-play hider payoff 7.438 7.658 7.390 7.162

Benchmark epsilon 5.373 3.399 1.635 1.921

Our final epsilon 0.038 0.334 0.336 0.335

Number of iterations 22212 10694 3568 3906

Avg time per iteration (minutes) 3.635 × 10−4 0.028 1.160 12.576

10 Conclusion

We presented a new approach for computing approximate-equilibrium strate-
gies in Jotto. Our algorithm produces strategies that significantly outperform a
benchmark algorithm with respect to both head-to-head performance and worst-
case exploitability. The algorithm extends fictitious play to a novel strategy
representation called oracular form. We expect our algorithm and the oracular
form representation to apply naturally to many other interesting games as well;
in particular, games where the strategy space is very large for one player, but
relatively small for the other player.
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Abstract. Finding an approximation of a Nash equilibrium in matrix
games is an important topic that reaches beyond the strict application to
matrix games. A bandit algorithm commonly used to approximate a Nash
equilibrium is EXP3 [3]. However, the solution to many problems is often
sparse, yet EXP3 inherently fails to exploit this property. To the best
knowledge of the authors, there exist only an offline truncation proposed
by [9] to handle such issue. In this paper, we propose a variation of EXP3
to exploit the fact that a solution is sparse by dynamically removing
arms; the resulting algorithm empirically performs better than previous
versions. We apply the resulting algorithm to an MCTS program for the
Urban Rivals card game.

1 Introduction

Bandits algorithms [1,3,5,6] are tools for handling the dilemma of exploration vs
exploitation. In particular, they are useful for finding Nash equilibria of matrix
games [5,1]. Finding Nash equilibria of matrix games is an important topic;
beyond its strict application, which models many financial applications, matrix
games are a component of many games, even those represented by a set of
rules. It has been shown in [9] how matrix games can be used inside a Monte-
Carlo Tree Search implementation, for extending Monte-Carlo Tree Search to
games with simultaneous actions, and [4] has extended this to games with partial
information.

It is possible to use Linear Programming (LP) to compute an exact Nash
Equilibrium (NE) of a zero-sum matrix game; however, it is not possible to ap-
ply LP for solving huge matrix games as players commonly encounter. Indeed,
in many cases of interest (e.g., when used inside a Monte-Carlo Tree Search
implementation), we want to minimize the number of accesses to the matrix,
because the cost of solving the game lies more in the computation of the num-
bers in the matrix than in the solving itself. We want algorithms which find an
approximate solution without reading the entire matrix. As [5] shows, one can
find an ε-approximate Nash equilibrium of a zero-sum K ×K matrix game by
accessing only O(K log(K)/ε2) elements of the matrix, i.e., by far less than the
K ×K elements of the matrix. As shown in [1], EXP3 and INF, an EXP3-like
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variant to address the adversarial multiarmed bandit problem, have the same
property; moreover, they can be applied in a more general setting, namely, when
each element of the matrix is only known up to a finite number of measurements,
the average of which converges to the real value. As a consequence, bandit tools
are now known as a standard solution for approximate solving of matrix games.

However, a crucial element in games has not been used in these works: the
fact that, typically, the solutions found in games are sparse. In other words, a
game can contain a large number of choices, yet only a very few among them
are interesting.

This paper focuses on problems where the computation via LP of a NE is
too intensive and therefore needs to be approximated. Furthermore, we seek an
algorithm that does not require visiting each element of a potentially very large
matrix. Based on this premise, to the best of our knowledge, the only paper in
which sparsity in Nash equilibria was used for accelerating bandits is [9], with the
offline algorithm discussed in section 2.3; we here investigate improved versions,
working online. Section 2 presents the framework of sparse bandits and related
algorithms. Section 3 presents experimental results on artificial and real world
datasets.

2 Algorithms for Sparse Bandits

Sparse bandits are bandit problems in which the optimal solution is sparse;
in the case of bandits for approximating Nash equilibria, this means that the
Nash equilibria use only a small number of components, i.e., if x∗, y∗ is a Nash
equilibrium and the matrix has size K × K, then {i;x∗

i > 0} and {i; y∗i > 0}
both have cardinal << K.

We present below the framework of Nash equilibria in matrix games (section
2.1). We then present our version of the EXP3 algorithm (section 2.2), and
thereafter our modified versions for sparse problems (section 2.3).

2.1 Matrix Games and Nash Equilibria

Consider a matrix M of size K × K with values in [0, 1] (we choose a square
matrix for short notations, but the extension is straightforward). Player 1 chooses
an action i ∈ [[1,K]] and player 2 chooses an action j ∈ [[1,K]]; both actions are
chosen simultaneously. Then, player 1 gets reward Mi,j and player 2 gets reward
1 −Mi,j ; the game therefore sums to 1. We consider games summing to 1 for
commodity of notations in EXP3, but 0-sum games are obviously equivalent. A
Nash equilibrium of the game is a pair (x∗, y∗) (both in [0, 1]K and summing to
1) such that if i is distributed according to the distribution x∗ (i.e., i = k with
probability x∗

k) and if j is distributed according to the distribution y∗ (i.e., j = k
with probability y∗k) then neither player can expect a better average reward by
unilaterally changing its strategy.
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2.2 EXP3 Algorithm

We use a version of EXP3[3] inspired by [1]. EXP3 is an algorithm for bandits
problems; here, we use two EXP3 bandits simultaneously: one for the row player
and one for the column player. This is a tool for adversarial bandits, including
matrix games.

Our version of EXP3 is explained in Alg. 1. Alg. 1 would be run for each
player independently.

Algorithm 1. EXP3 algorithm for iteration t with K arms.

Initialise ∀i, p(i) = 1
K
, n(i) = 0, S(i) = 0; t = 0

while t < T do
Arm i is chosen with probability p(i)
n(i) ← n(i)+1
Receive reward r
t ← t+1
Si modified by the update formula Si ← Si + r/p(i) (and Sj for j 	= i is not
modified).
∀i, p(i) = 1/(K

√
t) + (1− 1/

√
t)× exp(Si/

√
t)/

∑
j exp(Sj/

√
t)

end while
return n

The ratio between the number of times an arm was pulled and the total
number of iterations converges to the Nash equilibrium as explained in [2].

2.3 Sparse EXP3 Bandits

In the subsections below, we introduce a truncated EXP3 (A) and introduce our
online pruning versions (B)

A: Truncated EXP3. [9] proposed to modify the EXP3 algorithm to exploit
in a better way the sparsity in the solution, as explained in Alg. 2. The first step
is to run the EXP3 algorithm, providing an approximation (x, y) of the Nash
equilibrium and the second step executes a truncation following Alg. 2. This
truncation uses the property that, over time, the probability to pull an arm that
is not part of the optimal solution will tend toward 0. Therefore, as they are
likely to be outside the optimal solution, it artificially truncates the arms which
have a low probability to be pulled, based upon a threshold c.

The constant c is chosen as maxi(Txi)
α/T for some α ∈]0, 1[ (and d accord-

ingly), as in [9], and T is the number of iterations of the EXP3 algorithm. α = 0.8
is proposed in [9].

B: onEXP3. The question investigated in this paper is whether it is possible to
truncate dynamically some arms to improve performance. In its current form, the
online EXP3 algorithm that we propose assumes the total number of iterations
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Algorithm 2. TEXP3, the truncation after EXP3.

Let x and y be the approximate Nash equilibria as proposed by EXP3 for the row
and column players respectively.
Truncate as follows:

x′
i = xi if xi > c, x′

i = 0 otherwise;

y′
i = yi if yi > d, y′

i = 0 otherwise.

Renormalize: x′′ = x′/
∑

i x
′
i; y

′′ = y′/
∑

i y
′
i.

Output x′′, y′′.

T is known. This assumption is relatively common in games as it can be viewed
as an upper bound on the time allowed to take a decision.

Basically, onEXP3 extends TEXP3 by gradually increasing a threshold ct.
The first version of onEXP3 is solely based on the number of iterations t to
determine ct. With the knowledge of T , it is easy to extrapolate a fixed cT and
let ct tend toward cT .

It is important to bear in mind that it is the ratio between the number of
times a specific arm xi is pulled over the total number of iterations T that
converges toward a Nash equilibrium, not the probability p(i) given in EXP3.
Therefore, the decision on whether to prune is based upon the number of times
the arm was pulled. The main pitfall of using this method is to remove an arm
that was not explored sufficiently. To prevent this situation, a lower threshold
was included. Any arm pulled less than this threshold cannot be removed. In
the current version, we used xi > � t

K 	.
The point is to remove every arm that, based on the current information, will

not fulfill the final condition xi > cT (and yj > dT ). We used xi < (b1 × T δ ×(
t
T

)β
) where t is the current number of iterations, T is the maximum number

of iterations, b1 and β ∈ R and δ ∈] − 1, 0[ (typically δ = α − 1 and β = 3). In
the worst case scenario, i.e., if every arm were pruned, we turn back to normal
EXP3. To sum up, Algorithm 3 presents the modified EXP3 (for one player; the
same algorithm is applied for the other player).

onEXP3v2. Algorithm 3 is built upon the assumption that the matrices are
square. For rectangular matrices, let us assume for simplicity that k1 > k2 (k1
number of rows, k2 number of columns). In onEXP3v2, we assume that the cut
depends not on the number of iterations, but rather on the number of arms.
Therefore, the number of arms must be included in the dynamic truncation
condition. We chose to use maxi(xi)

α as the truncating factor.

Thus, xi < (b1 × T δ × ( t
T

)β
) becomes xi < (b2 ×maxi(xi)

α × ( t
T

)β
) where

b2 ∈ R. To mitigate the relative difference in terms of the number of times an arm
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Algorithm 3. onEXP3, an online EXP3 algorithm with a cut solely based on
T .

Initialise ∀i, p(i) = 1
K
, n(i) = 0, S(i) = 0; t = 0

while t < T do
Arm i is chosen with probability p(i)
n(i) ← n(i)+1
t ← t+1
Receive reward r
Si modified by the update formula Si ← Si + r/p(i)
∀i, p(i) = 1/(K

√
t) + (1− 1/

√
t)× exp(Si/

√
t)/

∑
j exp(Sj/

√
t)

if xi > 
 t
K
� and xi < (b1 × T δ × (

t
T

)β
) then

Remove arm i
end if
if every arm has been pruned then

Use plain EXP3
end if
Renormalize: p = p/

∑
i p(i)

end while
Execute the truncation TEXP3 as presented in 2.3
return n

was pulled between the two players, a factor k1

k2
is added in front of the segment

� t
K 	. To sum up, Algorithm 4 presents the modified online EXP3 (onEXP3v2).

3 Computational Results

This section presents the computational results. Section 3.1 shows the results on
randomly generated deterministic matrix games. Section 3.2 presents a version
on non-square matrix games. Section 3.3 describes the results on Urban Rival,
a simultaneous stochastic rectangular matrix game.

To generate a matrix that gives a sparse Nash equilibrium, we create a method
that takes the number of arms k and a sparsity parameter γ. Then, a square
submatrix of size k′ is filled with {0, 1} uniformly distributed with equal proba-
bilities, where k′ = k(1 − γ) represents a small number that depends on γ. The
k − k′ rows are filled with 0 with a probability of 1 − γ and 1 with a probabil-
ity of γ (and the opposite for the columns). To ensure that the algorithms do
not exploit a form of smoothness in the solution, we shuffle the rows and the
columns. This protocol is trivially extendable to rectangular matrices.

Table 1 and Table 2 show the results of games in different settings. The
column ‘vs’ displays the opponents. The column ‘γ’ gives information on the
relative sparsity of the solution the higher the number, the sparser the solution
is. Empirical experiments showed that at 0.8 one can expect 0.3k arms in the
solution, at 0.9 around 0.1k arms and at 0.99 approximately 0.05k arms. The
columns starting with ‘ T

k1×k2 ’ followed by a number state the relative number
of iterations executed to reach these results, given in percentage.
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Algorithm 4. onEXP3v2, an online EXP3 algorithm with a cut based on k.

Initialise ∀i, p(i) = 1
K
, n(i) = 0, S(i) = 0; t = 0

while t <T do
Arm i is chosen with probability p(i)
n(i) ← n(i)+1
t ← t+1
Receive reward r
Si modified by the update formula Si ← Si + r/p(i)

if xi >
k1
k2

× 
 t
K
� and xi < (b2 ×maxi(xi)

α × (
t
T

)β
) then

remove arm i
end if
∀i not discarded, p(i) = 1/(K

√
t) + (1− 1/

√
t)× exp(Si/

√
t)/

∑
j exp(Sj/

√
t)

Renormalize: p = p/
∑

i p(i)
end while
Execute the truncation TEXP3 as presented in 2.3
return n

The score is equal to the mean of its performance when it plays as the row
player combined with when it plays as the column player. This measure is more
reliable than the distance to the optimal solution because a near-optimal solu-
tion can be weak in general against other suboptimal players. Thus, when an
algorithm is playing against the optimal solution it can never reach more than
0.5. Also, the Nash equilibrium is not always possible to compute in games,
therefore a strong performance against other algorithms is at least as important
as performing well against the best solution. In our case, we look for an algo-
rithm that performs well against both Nash Equilibria and suboptimal players.
Every score is given in percentage.

3.1 Generated Squared Matrix Games

Every experiment was conducted over 100 randomly generated matrices. The
seed for the random selection was fixed to reduce variance (noise) in the out-
comes.

In Table 1, onEXP3 clearly outperforms TEXP3 when T
k1×k2 is between 5%

and 50% of the number of elements in the matrix when playing with 200 arms
on each side. When the matrices have a size of 100 arms, results are still strong.
A caveat, at 50 arms and a very low number of iterations, the performance is
lower in only one setting 49% (at 0.05) in which onEXP3 is weaker than TEXP3.
When the number of iterations increases (0.1, 0.25, 0.5), the score (53%, 52%,
54%) is well over 50%. This suggests a better performance from onEXP3 for
greater numbers of arms. As for the sparsity (represented by γ), even though it
makes the scores change from 51%, 53%, 62%, 56% at 0.8 to 57%, 53%, 56%,
53% at 0.99, it does not change the general domination of onEXP3 over TEXP3
for these settings. The general decrease in the score between 0.25 and 0.5 can
be explained by the fact that TEXP3 makes better decisions as the amount of
available information increases.
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Table 1. Performance of onEXP3. β = 3 in all experiments.

vs γ k1 × k2
T

k1×k2 = 5% T
k1×k2 = 10% T

k1×k2 = 25% T
k1×k2 = 50%

onEXP3 vs TEXP3 0.9 200 × 200 54 ± 1.14 58 ± 1.03 57 ± 0.91 56 ± 2.42
onEXP3 vs TEXP3 0.9 100 × 100 54 ± 1.13 53 ± 0.91 54 ± 0.90 58 ± 2.37
onEXP3 vs TEXP3 0.8 100 × 100 51 ± 0.55 53 ± 1.01 62 ± 1.21 56 ± 2.24
onEXP3 vs TEXP3 0.99 100 × 100 57 ± 1.70 53 ± 0.82 56 ± 1.87 53 ± 1.99
onEXP3 vs TEXP3 0.9 50 × 50 49 ± 0.12 53 ± 1.02 52 ± 0.77 54 ± 1.99

onEXP3 vs EXP3 0.9 200 × 200 78 ± 1.08 80 ± 0.17 80 ± 0.34 80 ± 0.32
onEXP3 vs EXP3 0.9 100 × 100 76 ± 1.21 80 ± 0.22 79 ± 0.27 78 ± 0.39
onEXP3 vs EXP3 0.8 100 × 100 67 ± 0.87 68 ± 0.40 68 ± 0.30 69 ± 0.46
onEXP3 vs EXP3 0.99 100 × 100 88 ± 1.35 92 ± 0.09 90 ± 0.28 88 ± 0.37
onEXP3 vs EXP3 0.9 50 × 50 75 ± 1.16 80 ± 0.28 78 ± 0.50 78 ± 0.42

onEXP3 vs NE 0.9 200 × 200 29 ± 0.54 30 ± 0.53 37 ± 0.81 43 ± 0.65
onEXP3 vs NE 0.9 100 × 100 19 ± 0.66 31 ± 0.64 35 ± 0.60 40 ± 0.75
onEXP3 vs NE 0.8 100 × 100 28 ± 0.33 37 ± 0.38 38 ± 0.45 42 ± 0.55
onEXP3 vs NE 0.99 100 × 100 22 ± 1.67 38 ± 0.92 40 ± 0.96 42 ± 0.90
onEXP3 vs NE 0.9 50 × 50 18 ± 0.65 20 ± 0.79 33 ± 0.70 38 ± 0.82

TEXP3 vs NE 0.9 200 × 200 15 ± 0.19 17 ± 0.33 25 ± 0.91 38 ± 0.94
TEXP3 vs NE 0.9 100 × 100 17 ± 0.37 19 ± 0.47 28 ± 0.93 35 ± 0.95
TEXP3 vs NE 0.8 100 × 100 27 ± 0.20 28 ± 0.22 32 ± 0.57 38 ± 0.68
TEXP3 vs NE 0.99 100 × 100 19 ± 1.56 28 ± 1.61 38 ± 0.94 40 ± 0.98
TEXP3 vs NE 0.9 50 × 50 19 ± 0.65 19 ± 0.58 28 ± 0.99 35 ± 0.92

—

When onEXP3 plays against EXP3, the results are clear: onEXP3 performs
much better. Obviously, since it is the purpose of the algorithm it is not surpris-
ing. The variation in the size of the matrices changes the relative score, yet it
does not change the outcome: onEXP3 is stronger. The variation in the sparsity
yields the same conclusion. The score is consistent with the previous finding.

onEXP3 vs NE and TEXP3 vs NE give an insight into their relative perfor-
mance against the best possible player. Aside from the lowest arms setting (50
arms), onEXP3 is always higher than TEXP3, sometimes the difference being
as much as 14% (31%-17% at 200 arms). From the result, we may infer that
onEXP3 tends faster toward a good solution. However, because it prunes dy-
namically, it has no guarantee of convergence (albeit converges with most of
our randomly generated matrices). It performs consistently better than TEXP3
against the Nash equilibrium.

Therefore, within the setting presented in Table 1, it appears that onEXP3 is
better than TEXP3 against both an optimal player and a suboptimal one.

Overall, the more information each algorithm receives, the better it plays;
From T

k1×k2 equal to 0.05 up to 0.5, each algorithm improved its play against

the Nash equilibrium. It seems that at T
k1×k2 = 5, onEXP3 does not have suf-

ficient information to truncate thus explaining the relatively lower performance
(still significantly better) against TEXP3 when compared to results with higher
number of iterations. The best performances are with a higher number of arms
which only means the tuning is more efficient for this size of matrices.

Let us look at the trends of performance between the size of the matrices. In
the setting 50× 50 the results, while not as strong as in 100× 100, still show a
better performance by onEXP3. When the matrices are 200 × 200, results are
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Table 2. Performance of onEXP3v2 . β = 3 in all experiments.

vs γ k1 × k2
T

k1×k2 = 5% T
k1×k2 = 10% T

k1×k2 = 25% T
k1×k2 = 50%

onEXP3v2 vs TEXP3 0.9 400 × 40 52 ± 0.49 53 ± 0.37 55 ± 0.35 56 ± 0.33
onEXP3v2 vs TEXP3 0.9 200 × 20 51 ± 0.53 52 ± 0.51 52 ± 0.31 55 ± 0.29
onEXP3v2 vs TEXP3 0.9 100 × 10 52 ± 0.53 51 ± 0.54 54 ± 0.54 54 ± 0.39
onEXP3v2 vs TEXP3 0.8 200 × 20 51 ± 0.53 52 ± 0.54 55 ± 0.43 55 ± 0.34
onEXP3v2 vs TEXP3 0.99 200 × 20 51 ± 0.58 54 ± 0.63 52 ± 0.27 54 ± 0.29
onEXP3v2 vs TEXP3 0.9 200 × 50 52 ± 0.54 53 ± 0.37 54 ± 0.32 54 ± 0.25

onEXP3v2 vs EXP3 0.9 400 × 40 83 ± 0.28 84 ± 0.15 84 ± 0.14 83 ± 0.14
onEXP3v2 vs EXP3 0.9 200 × 20 67 ± 0.62 78 ± 0.42 84 ± 0.17 84 ± 0.16
onEXP3v2 vs EXP3 0.9 100 × 10 58 ± 0.62 62 ± 0.61 78 ± 0.50 83 ± 0.28
onEXP3v2 vs EXP3 0.8 200 × 20 61 ± 0.47 69 ± 0.40 74 ± 0.24 74 ± 0.20
onEXP3v2 vs EXP3 0.99 200 × 20 67 ± 0.83 87 ± 0.72 94 ± 0.23 93 ± 0.13
onEXP3v2 vs EXP3 0.9 200 × 50 79 ± 0.46 82 ± 0.23 82 ± 0.41 81 ± 0.13

onEXP3v2 vs NE 0.9 400 × 40 37 ± 0.39 39 ± 0.33 41 ± 0.27 42 ± 0.22
onEXP3v2 vs NE 0.9 200 × 20 26 ± 0.61 37 ± 0.42 43 ± 0.24 44 ± 0.19
onEXP3v2 vs NE 0.9 100 × 10 17 ± 0.69 22 ± 0.69 39 ± 0.58 45 ± 0.33
onEXP3v2 vs NE 0.8 200 × 20 31 ± 0.46 37 ± 0.42 42 ± 0.29 44 ± 0.23
onEXP3v2 vs NE 0.99 200 × 20 20 ± 0.86 41 ± 0.73 48 ± 0.23 48 ± 0.15
onEXP3v2 vs NE 0.9 200 × 50 33 ± 0.58 36 ± 0.48 37 ± 0.31 40 ± 0.31

TEXP3 vs NE 0.9 400 × 40 35 ± 0.37 38 ± 0.28 39 ± 0.24 41 ± 0.18
TEXP3 vs NE 0.9 200 × 20 25 ± 0.59 35 ± 0.45 42 ± 0.23 43 ± 0.17
TEXP3 vs NE 0.9 100 × 10 14 ± 0.66 20 ± 0.65 34 ± 0.57 42 ± 0.36
TEXP3 vs NE 0.8 200 × 20 30 ± 0.43 36 ± 0.40 40 ± 0.27 43 ± 0.20
TEXP3 vs NE 0.99 200 × 20 20 ± 0.79 37 ± 0.73 48 ± 0.19 48 ± 0.17
TEXP3 vs NE 0.9 200 × 50 33 ± 0.58 35 ± 0.23 37 ± 0.40 39 ± 0.29

—

impressive achieving a 92± 0.09% with few iterations ( T
k1×k2 = 10), suggesting

that larger matrices yield a better performance.
When comparing onEXP3 and TEXP3 against the Nash equilibrium over a γ

of 0.9 and 0.8, both improve their respective performance as sparsity gets lower.
It is not really surprising considering that the real difficulty is to prune arms
that are not promising. There is an observable peak in terms of performance
of onEXP3 against TEXP3 in a high sparsity setting (0.99). onEXP3 truncates
within the EXP3 iteration allowing to focus more rapidly on the few good arms
thus explaining this peak.

3.2 Generated General Matrix Games

Each experiment was conducted over 500 randomly generated matrices. The seed
for the random selection was fixed to reduce variance (noise) in the outcomes.

Table 2 presents the results achieved by the algorithms in a rectangular matrix
setting. onEXP3v2 outperforms TEXP3 when T

k1×k2 is between 0.05 and 0.5
percent of the number of elements in the matrix when playing with 400×40 arms.
When the matrices have a size of 200× 20 arms, the results are still strong. At
100×10 arms the score is well over 50%. This suggests a better performance from
onEXP3v2 when the number of arms augments. The sparsity has an impact on
the score, yet does not change the general domination of onEXP3v2 over TEXP3
for these settings.
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When onEXP3v2 is playing against EXP3, the results are clear: onEXP3v2
performs much better, with results similar to Table 1. Obviously, since the pur-
pose of the algorithm is to lean faster towards a better solution, it is not sur-
prising. The variation in the size of the matrices changes the relative score, yet
it does not change the outcome: onEXP3v2 is stronger. The variation in the
sparsity yields the same conclusion: the score is consistent with the previous
finding.

The difference between the performance of onEXP3v2 and TEXP3 against
the best possible player, while not as strong as in Table 1, still gives the edge
to onEXP3v2. Again, it seems that larger matrices yield a better performance.
onEXP3v2 statistically beats TEXP3 with a 95% confidence interval in most
cases. Also, there was no setting in which the mean was under 50%. When
onEXP3v2 plays against EXP3, the domination is statistically observable at
an interval of 3 times the standard deviation, even managing a peak at 94 ±
0.23%. At a lower sparsity (e.g., 0.8), onEXP3v2 does not perform as well as its
predecessor onEXP3. Nevertheless, it still manages good performance overall,
but the sparsity does not impact as much as in Table 1.

It seems the narrow side of the matrix limits the effectiveness of the sparsity
pruning. A less extreme rectangular matrix, such as 200× 50, demonstrates this
conclusion by having values higher than 200 × 20 and lower than 200 × 200. A
very interesting result is the impact of the amount of information on the score.
The score does not change as drastically as it did in Table 1.

3.3 Application to UrbanRivals

For the sake of comparison, we applied onExp3v2 to the same card game as [9],
namely Urban Rivals, thanks to the code kindly provided by the authors. We im-
plemented onExp3 and made it play against the version of TEXP3 used in [9].

Urban Rivals (UR) is a widely played internet card game, with partial infor-
mation. As pointed out in [9], UR can be consistently solved by a Monte-Carlo
Tree Search algorithm (MCTS) thanks to the fact that the hidden information
is frequently revealed: a sequence of time steps without revealed information are
integrated into one single matrix game, so that the game is rephrased as a tree of
matrix games with finite horizon. EXP3 is used in each node (therefore EXP3 is
used for solving many matrix games), each reading of a coefficient in the payoff
matrix at depth d of the tree being a simulated game (by MCTS itself) with
depth d− 1. As a consequence, reading coefficients in the payoff matrices at the
root is quite expensive, and we have to solve the game approximately. We refer to
[9] for more details on the solving of partial information game with periodically
revealed information by MCTS with EXP3 bandit.

The overall algorithm is a Monte-Carlo Tree Search, with EXP3 bandits in
nodes; the sparse bandit is applied at the root node of the algorithm. We com-
pared results for a similar number of iterations and obtained success rates as
presented in Table 3.
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The main difficulty the algorithm faces in this application is the evaluation of
the reward. When EXP3 is used in an MCTS settings, results are stochastic (in
the sense that playing a same i and j for the row and column player respectively
does not always lead to the same result). onExp3v2 relies on the assumption that
the reward is fixed to execute a more aggressive pruning, which is not the case
in this application. Yet with little tuning, onEXP3v2 significantly outperforms
TEXP3 when the number of simulations reaches 1600 and 3200.

The drop in the score when the simulations reach 6400 and 12800 is consistent
with the findings in Table 1 and Table 2. There is sufficient information gathered
during the iteration phase to prune adequatly offline. As such, these values are
in fact showing that onEXP3v2 remains as good as TEXP3 when the number
of iterations is high.

Table 3. Results of onExp3 for UrbanRivals (against the version of TEXP3 developed
by the authors of [9]). The improvement is moderate but significant; we point out that
the game is intrinsically noisy, so that 55% is already a significant improvement as only
the average of many games makes sense for evaluating the level of a player.

# simulations per move score ±σ

100 0.519 ± 0.014
200 0.509 ± 0.014
400 0.502 ± 0.014
800 0.494 ± 0.015
1600 0.558 ± 0.014
3200 0.549 ± 0.014
6400 0.494 ± 0.015
12800 0.504 ± 0.015

4 Conclusion

EXP3 and related algorithms are great tools for computing approximate Nash
equilibria. However, they do not benefit from sparsity. There already exists ver-
sions of EXP3 for sparse cases, but these versions only benefit from an offline
sparsity; EXP3 is run, and, thereafter, some arms are pruned. This paper pro-
poses online pruning algorithms (onEXP3 and onEXP3v2 for square and rectan-
gular matrices respectively), dynamically removing arms, with a variable benefit
(from minor to huge depending on the framework), and in all cases a significantly
non-negative result.

The benefit on the real-world game Urban Rivals is moderate but significant.
Our online sparsity algorithm scales well as it becomes more and more efficient
as the game becomes bigger.

The main further works are as follows. First, whereas TEXP3 (from [9]) makes
no sense in internal nodes of a MCTS tree, our modified (online) version makes
sense for all nodes - therefore, we might extend our application to Urban Rivals
by applying online sparsity to all nodes, and not only at the root. This is a
straightforward modification which might lead to big improvements.
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The second further work is a formal analysis of onEXP3. Even TEXP3 only
has a small theoretical analysis; the algorithms are so stable and so scalable that
we believe a mathematical analysis is possible.

The third further work is to compare a framework based on the combination
of MCTS with onEXP3 to other similar opponents such as MCCFR [7] and
MCRNR [8].
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Abstract. In this paper, we use an adaptive resolution R to enhance
the min-max search with alpha-beta pruning technique, and show that
the value returned by the modified algorithm, called Negascout-with-
resolution, differs from that of the original version by at most R. Guide-
lines are given to explain how the resolution should be chosen to obtain
the best possible outcome. Our experimental results demonstrate that
Negascout-with-resolution yields a significant performance improvement
over the original algorithm on the domains of random trees and real game
trees in Chinese chess.

1 Introduction

In a 2-player perfect information game, the standard search technique is min-max
search with alpha-beta pruning [10]. Several algorithms and heuristics based on
the alpha-beta search algorithm have been proposed to improve the technique.
Existing methods can be divided into four categories: (1) methods that adjust
the size of the search interval so that good variants can be found in a tighter
search interval, e.g., the NegaScout [14], Aspiration search [9], Probcut [8], Fu-
tility Pruning [7] and MTD(f) algorithms [12,13]; (2) methods that focus on
finding a better move order by using techniques like the knowledge heuristic,
refutation table, killer heuristic [2] or history heuristic [15]; (3) methods that try
to increase the depth of the search by forward pruning, e.g., by using a trans-
position table [3], null move pruning [1], Multicut [4] or late move reduction [5];
and (4) methods that change the search depth dynamically based on the cur-
rent game boards, e.g., quiescent search [6] and Rankcut [11]. Among the above
approaches, finding a good move order, using a finely-tuned search interval, and
aggressive forward pruning are the most widely used techniques.

A finely-tuned search interval enhances the performance of alpha-beta prun-
ing by increasing the chances of performing a beta cut; thus, it provides an
alternative play that may be as good as the original move. For example, in
the Aspiration search technique with iterative deepening, the returned result of
depth i can be used to estimate the expected result of depth i+1. If the returned
value of depth i is si, the returned value of depth i+1 is estimated to be in the
search interval [si−w, si+w], where w/2 is the estimated window size. Instead of
using (−∞,∞) as in the alpha-beta search, Aspiration search uses [si−w, si+w]
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as the search interval; hence, there are three cases. In the first case, if the re-
turned value of depth i+1, namely, si+1, is in the interval [si −w, si +w], then
the search behavior is similar to that of the original alpha-beta search method.
In the second case, the alpha-beta search may fail because the value is too low,
i.e., si+1 is less than si −w, so the algorithm must re-search the game tree with
the search interval (−∞, si − w]. In the third case, the alpha-beta search may
fail because the value is too high, i.e., si+1 is greater than si + w. Hence, the
algorithm does not need to re-search the game tree because the current returned
value is good enough, i.e., greater than si + w. Moreover, the algorithm uses
iterative deepening, so it can arrive at the exact value in the next search depth,
i.e., depth i+2. The third case shows that, in certain positions, instead of finding
the best move, we only need to find a move that is close to the best move.

In a 2-player game, the score of each move is determined by an evaluation
function. Usually, the function is designed to consider several features in a game
of chess, e.g., the material value of each piece, the mobility of each piece, and
the king’s safety [16]. In most cases, each feature has a distinct assigned weight
and the evaluation function calculates the score by accumulating the product of
each feature’s value and the corresponding weight. However, when the scores of
two moves only differ slightly, the move with the higher score does not need to
have a higher score than the other move for every feature. Because the selection
of each feature’s weights is intuitive, scientific comparison of two scores when
their difference is less 1% is not very meaningful. For example, on two different
boards, if the mobility scores of a Rook are 10 and 8 respectively, and those of
a Knight are 9 and 11 respectively, it is hard to decide whether the board with
mobility of the Rook = 10 and the Knight = 9 is worse than the board with the
mobility of the Rook = 8 and the Knight = 11. We also find that when we have
a strong advantage and the score of a definite-win position is about 2000, there
is little difference between playing a move with a returned score = 1000 and
playing a move with a returned score = 1200. These observations suggest that
searching for the theoretical best value may not be cost-effective if our objective
is to win the game, rather than win it by the fastest possible means.

In this paper, we modify the alpha-beta pruning algorithm to (1) increase
the chances of pruning more branches; and (2) address the problem of giving
too much weight to the slight difference between moves caused by the design of
the evaluation functions. We make a decision about each move with a resolution
factor R, which depends on the current search score. Specifically, when the reso-
lution value is equal to R, the original score s is treated as �s/R�. For example,
in the original alpha-beta pruning algorithm, if the beta value is 70 and the value
of one of the child nodes is 65, the child node would not be pruned because its
value is smaller than the value of beta. However, if we set the resolution at 16,
the value of the child node (�65/16� = 4) would be equal to the value of beta
(�70/16� = 4), so the node would be pruned. By using a larger R, more branches
can be pruned, but there is a greater risk of pruning the wrong branches. If R
is equal to 1, the algorithm is equivalent to the original alpha-beta search. We
carefully decide R dynamically to find a balance between speed and accuracy.
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Some techniques also adjust the search parameter according to the current
search state. For example, Probcut [8] assumes that a node’s score can be es-
timated based on that of its predecessor. It then uses the estimated bound to
increase the chances of making a cut. Meanwhile, Futility Pruning [7] uses the
evaluation function’s features to estimate whether a node has a chance of achiev-
ing a higher score than the current score. Although these techniques make a cut
in a similar way to our approach, the motivation is different. They focus on esti-
mating the range of the returned scores. By contrast, instead of estimating the
scores, our method treats all the scores in one resolution equally.

The remainder of this paper is organized as follows. In Section 2, we define the
notations used throughout the paper and present the algorithm; in Section 3, we
demonstrate the correctness of the algorithm and analyze the error bound. We
discuss the experimental environment, settings and results in Section 4. Then
summarize our conclusions in Section 5.

2 Notations and Algorithm

Hereafter, we use R ≥ 1 to represent the value of a resolution. Any real number
s under a resolution R is treated as sR = �s/R�; and M(R, V ) is the maximum
function of an ordered set V under the resolution R. Function M compares every
element in V with (1) the input order under resolution R, i.e., M(R, V ) = vk,
where vk has the largest value of vRk = �vk/R�; and (2) the smallest index number
k among all the elements that have the largest value vRk under resolution R.

Consider a game tree T (V,E) comprised of a node set V and an edge set E,
and let B(u) be the children of a node u. In the original Negamax algorithm,
the value of each node u is derived by

F (u) =

{
E(u) a if u is a leaf node of T ,
−maxv∈B(u) F (v) a otherwise,

(1)

where E(u) is the designed evaluation function. However, we modify Equation 1
by using the concept of resolution as follows:

FR(u) =

{
E(u) a if u is a leaf node of T ,
−maxRv∈B(u) F

R(v) a otherwise,
(2)

where maxRv∈B(u) F
R(v) is the maximum value of FR(v) returned by the max-

imum function M , i.e., maxRv∈B(u) F
R(v) = M(R, V ) with V = {FR(v) | v ∈

B(u)}.
By applying Equation 2, we derive the Negascout-with-resolution procedure

(Algorithm 1). The resolution scheme is used in Line 8 (value comparison) and
Line 15 (beta cut). In Line 8, the value comparison step uses the scheme to
compare the returned value in the previous line with the temporary maximum
value. Then, in Line 15, the beta cut step uses the scheme to compare the current
selected value with the beta value.
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Algorithm 1. Negascout-with-resolution(position p, value alpha, value
beta, integer depth, integer R)

Input: position p, value alpha, value beta, integer depth, integer R
Output: value m

1 if depth = 0 then
2 return E(p)
3 end
4 m:= −∞;
5 n:= beta;
6 foreach pi ∈ B(p) do
7 t:= -Negascout-with-resolution(pi,-n,-max{alpha,m}, depth− 1, R);
8 if �t/R� > �m/R� then /* apply the resolution scheme to

a compare the values. a */
9 if n = beta then

10 m := t;
11 else
12 m := -Negascout-with-resolution(pi,−beta,-t, depth− 1, R);
13 end

14 end
15 if �m/R� ≥ �beta/R� then /* apply the resolution scheme when

a deciding a possible beta cut. a */
16 return m;
17 end
18 n := max{alpha,m}+ 1;

19 end
20 return m;

Note that the resolution used in the beta cut step and the value comparison
step can be set at different values. In Negascout-with-resolution, if we set both
resolutions as 1, the algorithm behaves in the same way as the original Negascout
algorithm. We claim that if we set both resolutions to be the same as R and
Negascout-with-resolution returns a value v, then the optimal value is located
in the interval [R�v/R�, R�v/R�+R], i.e., the difference between the best value
and the returned value v is at most R. We prove this claim in the next section.

3 Theoretical Analysis

In this section, we demonstrate that the difference between the values returned
by the Negascout and Negascout-with-resolution algorithms is not more than the
given resolution R. First, we prove a lemma that shows the difference between
M(R, V ) and M(1, V ) is not more than R. Next, we prove that, for two ordered
sets V and V ∗, if the difference between each pair of elements with the same
index number is not more than R, then the difference between M(R, V ) and
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M(R, V ∗) will not more than R. Finally, we prove that, for a given game tree, the
difference between the values returned by the original Negascout and Negascout-
with-resolution is not more than the given resolution R.

First, we prove that, for a fixed R and ordered set V , M(1, V ) and M(R, V )
belong to the same interval [R�M(R, V )/R�, R�M(R, V )/R�+R].

Lemma 1. For any real value R ≥ 1 and V = {v1, v2, . . . , vn | vi ∈ R},
R�M(R, V )/R� ≤M(R, V ) < R�M(R, V )/R�+R.

Proof. Since �M(R, V )/R� ≤ M(R, V )/R < �M(R, V )/R� + 1 holds for all
R ≥ 1, multiplying both sides by R, we have R�M(R, V )/R� ≤ M(R, V ) <
R�M(R, V )/R�+R. ��
Lemma 2. For any real value R ≥ 1 and V = {v1, v2, . . . , vn | vi ∈ R},
R�M(R, V )/R� ≤M(1, V ) < R�M(R, V )/R�+R.

Proof. Since M(1, V ) = maxvi∈V vi is the maximum value of V , M(1, V ) ≥
M(R, V ). For a fixed R, we consider the following two cases.

Case 1: ifM(1, V ) = M(R, V ), thenR�M(R, V )/R� ≤M(1, V ) = M(R, V ) <
R�M(R, V )/R�+R by Lemma 1.

Case 2: if M(1, V ) > M(R, V ), we assume that vi = M(1, V ) and vj =
M(R, V ). Then, �M(1, V )/R� = �vi/R� ≤ �vj/R� = �M(R, V )/R� according
to the definition of M(R, v). Since M(1, V ) > M(R, V ) and �M(1, V )/R� ≤
�M(R, V )/R�, we have �M(1, V )/R� = �M(R, V )/R�, i.e., M(1, V )/R <
�M(1, V )/R� + 1 = �M(R, V )/R� + 1. Multiplying both sides of the previ-
ous equation by R and applying the assumption that M(1, V ) > M(R, V ) and
Lemma 1, we have R�M(R, V )/R� ≤ M(R, V ) < M(1, V ) < R�M(R, V )/R�+
R.

The above cases demonstrate that Lemma 2 holds. ��
Next, using Lemma 1 and Lemma 2, we show that the difference between
M(R, V ) and M(1, V ) is not more than R.

Lemma 3. For any real value R ≥ 1 and V = {v1, v2, . . . , vn | vi ∈ R},
R�M(R, V )/R� ≤ M(R, V ),M(1, V ) < R�M(R, V )/R� + R, i.e., |M(R, V ) −
M(1, V )| < R.

Proof. By Lemma 1 we have

R�M(R, V )/R� ≤M(R, V ) < R�M(R, V )/R�+R. (3)

By Lemma 2 we have

R�M(R, V )/R� ≤M(1, V ) < R�M(R, V )/R�+R. (4)

By subtracting Equation 4 from Equation 3 we have

−R < M(R, V )−M(1, V ) < R, (5)

i.e., |M(R, V )−M(1, V )| < R. ��
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Now we can show that, for two input ordered sets V and V ∗, if the values of
each pair of elements in the same index of the two ordered sets, e.g., vi and v∗i ,
are in an interval of length R, then the difference between the values returned
by M(R, V ) and M(R, V ∗) is not more than R.

Lemma 4. For any real value R ≥ 1 and ordered sets V = {v1, v2, . . . , vn | vi ∈
R} and V ∗ = {v∗1 , v∗2 , . . . , v∗n | �vi/R� ≤ v∗i /R < �vi/R�+ 1}, �M(R, V )/R� ≤
M(R, V ∗)/R < �M(R, V )/R�+ 1, i.e., |M(R, V )−M(R, V ∗)| < R.

Proof. Assume that vi = M(R, V ) and v∗j = M(R, V ∗). If vi and v∗j have
the same index number, i.e., v∗j = v∗i , then, by the definition of vi and v∗J ,
we have �M(R, V )/R� = �vi/R� ≤ v∗i /R = M(R, V ∗)/R < �vi/R� + 1 =
�M(R, V )/R�+ 1.

If vi and v∗j have different index numbers, we consider two cases; vi > v∗j and
vi ≤ v∗j . In case 1, by the definition of vi and v∗j , �M(R, V )/R�+1 = �vi/R�+1 >
vi/R > v∗j /R = M(R, V ∗)/R ≥ v∗i /R ≥ �v∗i /R� = �vi/R� = �M(R, V )/R�.
Similarly, in the second case, we have �M(R, V )/R�+1 = �vj/R�+1 > v∗j /R =
M(R, V ∗)/R ≥ vi/R > �vi/R� = �M(R, V )/R�.

Then, based on the above discussion and Lemma 1, �M(R, V )/R� ≤M(R, V ∗)
/R < �M(R, V )/R�+ 1 if V ∗ = {v∗1 , v∗2 , . . . , v∗n | �vi/R� ≤ v∗i /R < �vi/R�+ 1}.
Hence, we have |M(R, V )−M(R, V ∗)| < R. ��
Finally, we prove that the difference between the values returned by the original
Negascout and Negascout-with-resolution algorithms is not more than R, where
R is the given resolution.

Theorem 1. For a given game tree with root pr, the difference between the
value returned by Negascout, F (pr), and the value returned by Negascout-with-
resolution, FR(pr), is not more than the given resolution R, i.e., �F (pr)/R� ≤
F (pr)/R, FR(pr)/R < �F (pr)/R�+ 1 and |F (pr)− FR(pr)| < R.

Proof. We prove the theorem by induction.
First, we assume that the height of the game tree T is 1. Let pr be the

root of T . The returned values FR(pr) and F (pr) are equal to M(R, V ) and
M(1, V ) respectively, where V is the set of scores of each leaf, i.e., vi is the
corresponding value of leaf node li ∈ B(pr). According to Lemma 3, we have
�F (pr/R� ≤ F (pr), F

R(pr) < �F (pr)�+ 1, i.e., |FR(pr)− F (pr)| < R.
We assume that the statement also holds when the height of the game tree

is h. Next, we consider a game tree T with a height of h+ 1 rooted at node pr.
According to the induction hypothesis, for each node pi ∈ B(pr), the score of pi,
FR(pi), differs from F (pi) by at most R. For the ordered set V = {F (pi) | pi ∈
B(pr)}, we have a corresponding ordered set V ∗ = {FR(pi) | pi ∈ B(pr)} such
that, for every v∗i ∈ V ∗, �vi/R� ≤ v∗i /R < �vi/R� + 1. According to Lemma 3
and Lemma 4, we have

�M(R, V )/R� ≤M(1, V )/R < �M(R, V )/R�+ 1 (6)

and
�M(R, V )/R� ≤M(R, V ∗)/R < �M(R, V )/R�+ 1. (7)
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Hence, |F (pr)− F ∗(pr)| = |M(1, V )−M(R, V ∗)| < R for a game tree of height
h+ 1.

By induction, the theorem holds for a game tree of any height.

4 Experiments

In this section we consider the experimental environment, settings, and results.
We also present an analysis of the results.

4.1 Experiments

We conducted experiments to evaluate the performance of the proposed search
algorithm with and without resolution on random trees and real game trees.
First, we compared the performance of different algorithms on a random tree
with the leaf nodes sampled from a discrete uniform distribution. Then, we
compared the performance of our algorithm with and without resolution in the
Chinese chess program Contemplation with a good evaluation function [17].
Note that Contemplation uses a transposition table. The value stored in the
table is its original value, not the one after applying the resolution scheme. The
experiments were run on a server with an Intel Xeon X5680 3.33GHz CPU and
48 GB memory.

4.2 Experimental Settings for Random Trees

For each resolution value, we run the experiment 100 times on random trees to
compute the performance of three algorithms: Negamax search with alpha-beta
pruning, Negascout search, and Negascout-with-resolution. To compare the per-
formances, we calculate the number of nodes visited by each algorithm. Using the
Negamax algorithm as the baseline, we compute the number of nodes visited by
Negascout and Negascout-with-resolution under different resolution levels. After
running the experiment 100 times for each setting, we measure the performance
by calculating the average number of nodes visited by each algorithm. In this
experiment, the height of the input tree is 6; the number of branch factors is 20;
and the value of each leaf node is sampled from a discrete uniform distribution
between 0 and 1, 000, 000.

4.3 Experimental Results and Analysis of Random Trees

The results of the experiment on the random trees are listed in Table 1. Col-
umn 1 shows the value of the resolution and column 2 indicates the number of
nodes visited by the alpha-beta pruning algorithm. Columns 3 to 5 and columns
6 to 8 list the results of NegaScout and NegaScout-with-resolution respectively.
Columns 3 and 6 show the number of nodes visited by the respective algorithm;
columns 4 and 7 show the corresponding ratios of nodes visited by the alpha-beta
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Table 1. Experiment results on random trees; for each resolution value, we compare
the number of nodes visited by NegaScout and NegaScout-with-resolution with the
number visited by the Alpha-beta pruning algorithm

R Alpha-beta NegaScout NegaScout-with-resolution
Nodes Nodes Ratio σ Nodes Ratio σ

1 4281558 3873730 0.8980 0.1293 3873730 0.8980 0.1293
5 4321389 3883435 0.8929 0.1191 3880661 0.8921 0.1201
10 4320529 3884022 0.8933 0.1206 3872623 0.8906 0.1216
50 4336530 3969945 0.9089 0.1266 3924251 0.8991 0.1222

100 4374453 3966224 0.8996 0.1115 3878339 0.8802 0.1133
500 4390513 4003538 0.9025 0.1262 3585845 0.8111 0.1151
1000 4344442 3907857 0.8959 0.1188 3305248 0.7617 0.0928
5000 4319328 3775147 0.8672 0.1153 1772155 0.4152 0.0821

10000 4258585 3863249 0.8988 0.1136 1200303 0.2832 0.0727
50000 4335672 3940573 0.9050 0.1170 640258 0.1511 0.0287
100000 4296391 3937171 0.9080 0.1233 613013 0.1462 0.0275

pruning algorithm; and columns 5 and 8 show the respective standard deviations.
In each setting, we search the whole tree to find the best possible branch.

The results show that when the value of the resolution is not more than
100, the performance of Negascout-with-resolution is almost the same as that
of the original Negascout search, i.e., 90% and 88% respectively. However, when
the value is over 500, the improvement is significant. Negascout-with-resolution
requires 10% less time than the original Negascout algorithm when the resolu-
tion value is 500 and the absolute error divided by the range of the leaf nodes’
values is only 0.0005. If we increase the resolution value to 5000, Negascout-with-
resolution requires approximately 50% less time and the absolute error divided
by the range of the leaf nodes’ values is only 0.005.

As the leaf nodes’ values are uniformly distributed between 0 and 1,000,000,
increasing the resolution value also increases the chances of pruning branches,
i.e., the resolution value is positively related to the number of pruning nodes. In
this case, the range of the leaf nodes’ values is large enough, so we can derive
a good approximation within a constant error and save more than 50% of the
time on the random trees.

4.4 Experimental Setting for Real Game Trees

To evaluate the performance of the resolution value on the real game trees, we
begin by comparing the performance of the Aspiration search algorithm and
the Aspiration search algorithm with resolution on a set of 84 benchmarks used
by Contemplation. For both algorithms, null move pruning and the history
heuristic are used in the program. Once again, we evaluate the performance by
comparing the number of nodes visited by the two algorithms. Next, we use a
self-play test in which 100 games are played against the original program without
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resolution using the time limit of a Computer Olympics game, i.e., a maximum
of 30 minutes for each player.

The value of the resolution in Contemplation changes dynamically accord-
ing to the current search result. We use the following procedure to determine
the value of the resolution. First, we consider the current depth. If it is less
than 6, we set the value of the resolution at 1, and the corresponding level is
the default level −1. However, if the current depth is greater than 6, we use the
returned score of the previous depth, S, to determine the value of the resolution.
The range of the returned value is divided into several levels; for example, if we
divide the scores every 64 points, then 0 to 63 will be the first level, 64 to 127
will be the second level, and so on. There are two exceptions where we decrease
or increase a level’s value: (1) the difference between the returned values of the
previous two searches is small enough, e.g., less than 20, so we increase the level
of the resolution; and (2) the difference between the returned values of the pre-
vious two depths is higher than a threshold, e.g., half the length of one level, so
we decrease the level because the current state is unstable and the search must
be performed carefully. We assign a unique resolution to each score level. For
example, if we divide the score every 64 points, we set the resolution of level L
as R = 2L, where L = �|previous score|/64�.

When we use Algorithm1 in Contemplation, the resolutions of beta cut in
Line 15 and value comparison in Line 8 are set separately, i.e., there are two
resolution values. Although we assign a constant error bound in the algorithm
with resolution, we focus on the relation between the search depth and the
resolution. In general, for a parent node of which the children are leaves, the
resolution should be small. The score of each move is propagated from the leaf
node to the root node, and the error is propagated in the same direction; that
is, the values of the resolutions used for the child nodes affects the precision
of the returned value of the parent node. Hence, as the value of the resolution
used in the predecessor of a leaf node increases, the precision of the search result
decreases. This means that if we want to control the error, the resolution should
be small for the nodes close to the leaves.

Although we know the value of the resolution should be set according to the
tree depth, we cannot determine an exact search depth for iterative deepening
based on the search because it is time dependent. Since the search depth cannot
be determined, we extend the idea of “nodes have a smaller resolution when they
are near a leaf node“ as follows. Nodes in the game tree can be separated into
odd and even layers, which are moves considered by the game players, i.e., the
red side and black side. If a move belongs to the red side, to find the precise
score, the predecessor of the leaf node, i.e., the black side, should use the exact
resolution, i.e., R = 1. In contrast, as the black side has the precise search
results, we can assume that it does not use the resolution for all of its layers,
i.e., one side searches the game tree with the resolution, but the other side does
not. During an iterative deepening search, we increase the depth by two levels
each time. In the algorithm, we only use the resolution when the current state is
our turn, and we assume that the opposite side always searches for the precise
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value without resolution. In some of the experimental settings, we assess the
algorithm’s performance by using the resolution in even layers only or in both
layers, i.e., for one player’s turns or for both players’ turns. The objective is to
determine whether the resolution should be used in even layers only or in both
layers.

Use the Resolution Scheme Only in Beta Cut
First, we test cases where the resolution scheme is used only in beta cut. The
parameter settings are listed in Table 2. Each setting is shown in two rows, which
represent the value of the resolution used for the beta cut and value comparison
respectively. Columns 1, 2, and 3 show the parameter settings, the resolution
used, and the range of the score level respectively. The following nine columns
show the value of the resolution in each level. Level −1 is used as the initial value
and level 7+ contains all the levels above 7. The last column shows whether the
resolution value is used in even layers only or in both layers.

Table 2. Testing different resolution for beta-cut while do not use the resolution scheme
in doing value-comparison

Setting Type Level -1 0 1 2 3 4 5 6 7+ odd-even
I-1 Beta-cut 100 2 2 2 2 2 2 2 2 2 even

Value-comparison 100 1 1 1 1 1 1 1 1 1 even
I-2 Beta-cut 100 1 2 2 2 3 3 3 3 4 even

Value-comparison 100 1 1 1 1 1 1 1 1 1 even
I-3 Beta-cut 100 1 1 1 2 2 5 5 10 20 even

Value-comparison 100 1 1 1 1 1 1 1 1 1 even
I-4 Beta-cut 100 1 1 2 4 5 10 20 20 25 even

Value-comparison 100 1 1 1 1 1 1 1 1 1 even

The experimental results of Group I are listed in the Table 3. Column 1
shows the parameter settings used by the program with resolution. For each
benchmark and parameter setting, to obtain the ratio of nodes visited, we divide
the number of nodes visited by the algorithm with resolution by the number of
nodes visited by the original algorithm. Columns 2 to 4 show the number of
benchmarks of which the ratios are greater than 1, less than 1, and equal to
1, respectively. Columns 5 and 6 show the ratios and the standard deviations,
respectively. Columns 7 to 9 show the game results of the modified program
with resolution against the original program, i.e., the number of games that
the modified program wins, loses or draws, respectively. Column 10 shows the
number of points each program accumulates; each win, loses or draw is worth
2 points, zero, and 1 point, respectively. Columns 11 and 12 show the winning
rates and the corresponding standard deviations. For the benchmarks, the mean
ratio of parameter settings in Group I is about 1.0. For parameter settings I-3,
the mean ratio is less than 1. With regard to the self-play test, parameter setting
I-4 yields the best result with 32 wins, 19 losses, and 49 draws.
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Table 3. The experimental results of benchmark testing and self-play testing on a
Chinese chess program under parameter settings Group I

Benchmark testing Self-play testing
Setting Less More Equal Nodes σ Win Lose Draw Points Rate σ
I-1 38 24 22 1.0091 0.3420 27 25 48 102 0.510 0.2704
I-2 12 5 67 1.0034 0.0292 23 29 48 94 0.470 0.2871
I-3 24 12 48 0.9898 0.0967 26 24 50 102 0.510 0.2460
I-4 33 28 23 1.0488 0.4552 32 19 49 113 0.565 0.2208

For the parameter settings in Group I, the results show that when the resolu-
tion is only used for beta cut, the value of the resolution increases as the player’s
lead in the game increases. The parameter setting with a larger resolution value
for the higher score level achieves a better performance. In this case, setting I-4
yields the best performance among the first four parameter settings.

Use Same Resolution in Both Places
Next, we compare the performance where both beta cut and value comparison
use the same resolution. The parameter settings are listed in Table 4 and the
format is similar with Table 2.

Table 4. Using the resolution scheme on beta-cut and value-comparison

Setting Type Level -1 0 1 2 3 4 5 6 7+ odd-even
II-1 Beta-cut 100 2 2 2 2 2 2 2 2 2 even

Value-comparison 100 2 2 2 2 2 2 2 2 2 even
II-2 Beta-cut 100 1 2 2 2 3 3 3 3 4 even

Value-comparison 100 1 2 2 2 3 3 3 3 4 even
II-3 Beta-cut 100 1 1 1 2 2 5 5 10 20 even

Value-comparison 100 1 1 1 2 2 5 5 10 20 even
II-4 Beta-cut 100 1 1 2 4 5 10 20 20 25 even

Value-comparison 100 1 1 2 4 5 10 20 20 25 even

The experimental results of Group II are listed in the Table 5 and the format is
similar with Table 3. For the benchmarks, the mean ratio of parameter settings
in Group II are slightly greater than 1.0 and parameter settings II-1 has the
smallest mean ratio 1.0088. With regard to the self-play test, parameter setting
II-1 yields the best result with 33 wins, 26 losses, and 41 draws.

For parameter settings in Group II, both beta cut and value comparison
use the same resolution value. In this case, the result is the opposite of that
under the first four parameter settings. Since the resolution is also used for
value comparison, if the value of the resolution is very large, a larger number of
moves would be treated as equivalent. Therefore, if the move order is poor, the



Game Tree Search with Adaptive Resolution 317

Table 5. The experimental results of benchmark testing and self-play testing on a
Chinese chess program under parameter settings Group II

Benchmark testing Self-play testing
Setting Less More Equal Nodes σ Win Lose Draw Points Rate σ
II-1 11 16 57 1.0088 0.0573 33 26 41 107 0.535 0.3315
II-2 23 27 34 1.0091 0.1658 21 26 53 95 0.475 0.2233
II-3 34 39 11 1.1194 0.5923 15 24 61 91 0.455 0.0548
II-4 38 36 10 1.2067 0.9273 22 30 48 92 0.460 0.2902

algorithm will not perform well. Hence, the best result is achieved under param-
eter setting II-1, which sets all the resolutions at 2.

Use Different Resolutions
Finally, we use different resolutions for beta cut and value comparison, and
determine whether all possible combinations of the resolutions should be used in
even layers only or in both layers. The parameter settings are listed in Table 6
and the format is similar with Table 2.

Table 6. Using different resolutions for beta-cut and value-comparison

Setting Type Level -1 0 1 2 3 4 5 6 7+ odd-even
III-1 Beta-cut 64 1 1 1 2 4 8 16 32 32 even

Value-comparison 64 1 1 1 2 4 8 16 32 32 even
III-2 Beta-cut 64 1 1 1 2 2 4 4 8 16 even

Value-comparison 64 2 2 2 2 2 2 2 2 2 even
III-3 Beta-cut 64 1 1 1 2 4 8 16 32 32 both

Value-comparison 64 2 2 2 2 2 2 2 2 2 even
III-4 Beta-cut 64 1 1 1 2 4 8 16 32 32 both

Value-comparison 64 2 2 2 2 2 2 2 2 2 both

The experimental results of Group III are listed in the Table 7 and the format
is similar with Table 3. For the benchmarks, the standard deviation of parameter
settings in Group III are around 0.4 and both the mean ratios of parameter set-
tings III-3 and III-4 are less than 1. With regard to the self-play test, parameter
setting III-4 yields the best result with 30 wins, 18 losses, and 52 draws.

Combining the results of Group I and Group II, we observe that, when the
score is high, the resolution used for value comparison should be small, and the
resolution used for beta cut should be large. Parameter settings in Group III
use different values for the resolutions, and we try to determine whether the
resolution value should be used in the even layers only, or in all the layers.
The results of parameter setting III-4 show that our observation is correct. The
resolution used for value comparison should be small, and the resolution used
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Table 7. The experimental results of benchmark testing and self-play testing on a
Chinese chess program under parameter settings Group III

Benchmark testing Self-play testing
Setting Less More Equal Nodes σ Win Lose Draw Points Rate σ
III-1 31 46 7 1.2193 0.6562 13 33 54 80 0.400 0.2303
III-2 35 44 5 1.0805 0.5823 21 33 46 88 0.440 0.3161
III-3 45 25 14 0.9109 0.2194 27 27 46 100 0.500 0.2973
III-4 51 30 3 0.9498 0.4590 30 18 52 112 0.560 0.1781

for beta cut should be large when the player has a strong advantage. The results
of parameter settings III-3 and III-4 also confirm that, for identical settings, the
same resolution should be used in all layers.

5 Conclusions

In this paper, we use an adaptive resolution technique to enhance min-max
search with alpha-beta pruning. The modified algorithm, which has a constant
error bound R on the returned value. We also observe from the experiments
that the modified algorithm can find moves that are as good as the ones found
by the original algorithm faster. Hence, we conjecture that the modified algo-
rithm is robust without caring too much about small difference between scores
of similar, but different boards. Because the resolution is chosen dynamically,
the modified algorithm improves the performance and finds good moves quickly.
Moreover, the experimental results show that this enhancement yields a signifi-
cant improvement in the performance on both random trees and real game trees.
The performance on random trees increases by 50% with an error bound, where
the absolute error divided by the range of the leaf nodes’ values is about 0.5%.
The experimental results for real game trees show that the resolution of value
comparison should be small and that of beta cut should be large when the score
is high. Moreover, the resolution technique for beta cut and value comparison
should be applied to all layers. Under the best setting, the win rate is 62.5%
among all the non-drawn games using self-play.
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Abstract. Games are complex pieces of software which give life to ani-
mated virtual worlds. Game developers carefully search the difficult bal-
ance between quality and efficiency in their games.

In this paper we present the Casanova language. This language allows
the building of games with three important advantages when compared
to traditional approaches: simplicity, safety, and performance. We will
show how to rewrite an official sample of the XNA framework, resulting
in a smaller source and a higher performance.

1 Introduction

Computer games promise to be the next frontier in entertainment, with game
sales being comparable to movie and music sales in 2010 [5]. The unprecedented
market prospects and potential for computer-game diffusion among end-users
have created substantial interest in research on principled design techniques and
on cost-effective development technologies for game architectures. Our present
endeavor makes a step along these directions.

Making games is a complex business. Games are large pieces of software with
many heterogeneous requirements, the two crucial being high quality and high
performance [2]. High-quality in games is comprised by two main factors: visual
quality and simulation quality. Visual quality in games has made huge leaps
forward, and many researchers continuously push the boundaries of real-time
rendering towards photorealism. In contrast, simulation quality is often lacking
in modern games; game entities often react to the player with little intelligence,
input controllers are used in straightforward ways and the logic of game levels
is more often than not completely linear. Building a high-quality simulation is
rather complex in terms of development effort and also results in computationally
expensive code. To make matters worse, gameplay and many other aspects of
the game are modified (and often even rebuilt from scratch) many times during
the course of the development. For this reason game architectures require a large
amount of flexibility.

To manage the complexity, game developers use a variety of strategies. They
have used object-oriented architectures, component-based systems, and reactive
programming, with some degree of success for this purpose [6,7,4].
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In this paper we present the Casanova language, a language for making games,
as a solution to the obstacles mentioned above. Casanova offers a mixed declar-
ative/procedural style of programming which has been designed in order to fa-
cilitate game development. The basic idea of the language is to require from the
developer only and exclusively those aspects of the game code which are specific
to the game being developed. The language aims for simplicity and expressive
power, and thanks to automated optimizations it is capable of generating code
that is much faster than hand-written code and at no effort for the developer.
The language offers primitives to cover the development of the game logic, and
incorporates the typical processing of a game engine. Also, the language is built
around a theoretical model of games with a “well-formedness” definition, in order
to ensure that game code is always a good model of the simulated virtual world.

In the remainder of the paper we show the Casanova language in action. We
begin with a description of the current state of game engines and game program-
ming in Section 2. In Section 3 we define our model of games. We describe the
Casanova language in Section 4. We show an example of Casanova in action,
and also how we have rewritten the game logic of an official XNA sample from
Microsoft [18] in Casanova with far less code and higher runtime performance
in Section 5. In Section 6 we discuss our results and some future work.

2 Background

In this section we discuss five current approaches to game development. The two
most common game engine architectures found in today’s commercial games are
(1) object-oriented hierarchies and (2) component-based systems. In a traditional
object-oriented game engine the hierarchy represents the various game objects,
all derived from the general Entity class. Each entity is responsible for updating
itself at each tick of the game engine [1]. A component-based system defines
each game entity as a composition of components that provide reusable, specific
functionality such as animation, movement, and reaction to physics. Component-
based systems are being widely adopted, and they are described in [6].

These two, approaches are rather traditional and suffer from a noticeable
shortcoming: they focus exclusively on representing single entities and their up-
date operations in a dynamic, even composable way. By doing so, they lose the
focus on the fact that most entities in a game need to interact with one an-
other (collision detection, AI, etc.). Usually much of a game complexity comes
from defining (and optimizing) these interactions. Moreover, all games feature
behaviors that take longer than a single tick; these behaviors are hard to express
inside the various entities, which often end up storing explicit program counters
to resume the current behavior at each tick.

There are two more approaches that have emerged in the last few years as
possible alternatives to object-orientation and component-based systems. They
are (3) (functional) reactive programming and (4) SQL-style declarative pro-
gramming.
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Functional reactive programming (FRP, see [4]) is often studied in the con-
text of functional languages. FRP programming is a data-flow approach where
value modification is automatically propagated along a dependency graph that
represents the computation. FRP offers a solution to the problem of representing
long-running behaviors, even though it does not address the problem of many
entities that interact with each other.

SQL-queries for games have been used with a certain success in the SGL
language (see [15]). This approach uses a lightweight, statically compiled query
engine for defining a game. This query engine is aggressively optimized, in order
to make it to express efficient aggregations and cartesian products, two very
common operators in games. In contrast, SGL suffers when it comes to repre-
senting long-running behaviors, since it focuses exclusively on defining the tick
function.

With these two issues in mind we have designed Casanova. Casanova is the
fifth approach of this section. It seamlessly supports the integration of the inter-
actions between entities and long-running behaviors.

3 A Model for Games

We define a game as a triplet of (1) a game state, (2) an update function, and
(3) a series of asynchronous behaviors. In this model we purposefully ignore the
drawing function, since it is not part of the current design of Casanova.
type Game ’s =

{ State : ’s; Update : ’s -> DeltaTime -> (); Behavior : ’s -> () }

The game state is a set of (homogeneous) collections of entities; each entity is
a collection of attributes, which can either be (i) primitive values, (ii) collections
of attributes or (iii) references to other entities.

The update function modifies the attributes of the entire state according to a
fixed scheme which does not vary with time; we call this fixed scheme the rules
of the game; rules can be physics, timers, scores, etc. Each attribute of each
entity is associated to exactly one rule. The update function is quick and must
terminate after a brief computation, since it is invoked in a rather tight loop
that should perform 60 iterations per second.

The behavior function is a sequential process which performs a series of oper-
ations on the attributes of the game entities. It is a long-running, asynchronous
process with its own local state, it runs in parallel with the main loop and it can
access the current clock time at any step to perform actions which are synchro-
nized with real time. The processing over the game state takes more than one
tick; behaviors are used, for example, for implementing AIs.

A game engine is thus a certain way of processing a game (see the box below).
let run_game (game:Game ’s) =

let rec run_rules (t:Time) =
let t’ = get_time ()
game.Update game.State (t’-t)
run_rules t’

parallel (run_rules (get_time ()), game.Behavior (game.State))
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We define four properties of a correct and well-behaving game: (i) each entity
is updated exactly once per tick, (ii) the entity update is order-independent,
(iii) the tick always terminates, and (iv) the game runs at an interactive frame
rate.

Casanova guarantees only the first three requirements. The fourth requirement
cannot be guaranteed, since it heavily depends on factors, such as the size of
the virtual world and the computational resources of the machine used to run
the game; nevertheless, by automating certain optimizations Casanova makes it
easier to achieve the fourth requirement. Below we discuss the architecture of a
Casanova game.

Architecture of a Casanova Game

Fig. 1. Game architecture with Casanova

Behaviors are used to make it eas-
ier to handle complex input and to
build articulated level logics or cus-
tomized AI algorithms into the game.
While Casanova does not (yet) inte-
grate any deduction engine or proper
AI system, it makes integrating such
a system with the game loop and the
game state much simpler.

Rules are used to build all the reg-
ular logic that the game continuously
repeats. An example is the fact that
when projectiles collide with an as-
teroid then the asteroid is damaged
or other logical relationships between
entities occur. Rules are the main workhorse of a game, and Casanova ensures
that all the queries that make up the various rules maintain the integrity of the
state and are automatically optimized to yield a faster runtime.

The Casanova compiler will export the game state as a series of type defini-
tions and classes that can be accessed directly (that is without any overhead)
from a C# or C++ rendering library; in this way it takes little effort to integrate
the existing rendering code and engines with the help of Casanova.

4 The Casanova Language

In this section we present the Casanova language; for a more detailed treatment,
we refer to [11]. Casanova is inspired to the ML family of languages. We first
discuss the design goals (4.1), then provide a brief introduction (4.2), followed
by a description of syntax, semantics, and types (4.3). In 4.4 an introductory
example is given. Optimization is described in 4.5 and a full example is given
in 4.6.
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4.1 Design Goals

We have designed the Casanova language with multiple goals in mind. First
of all, Casanova games must be easy and intuitive to describe. For this reason
we have used a mix of declarative and procedural programming. For expressing
rules, declarative programming is cristal clear, allows the developer to focus
on what he wants to achieve rather than how, and there is a wealth of powerful
optimization techniques for declarative operations on sequences of values coming
from the field of databases [8]. The declarative portions of a game are all executed
in parallel, and can take advantage of multi-core CPUs.

Procedural programming, in particular coroutines [9], are used to describe
computations that take place during many ticks of the game engine. Imperative
coroutines are used to express the behaviors of a game. These behaviors are exe-
cuted sequentially and with no optimizations, since they can access any portion
of the state both for reading and writing, and they may perform any kind of
operation.

4.2 A Brief Introduction to Casanova

Casanova is a programming language designed around a set of core princi-
ples aimed at aiding game development. Here we describe the language “at a
glance”, by listing its features designed to simplify repetitive, complex or error
prone game coding activities: (i) Casanova integrates the game loop and time
as first-class constructs. The game loop and time management are almost al-
ways an important part of game development libraries, for example see [17]; (ii)
it performs a series of optimizations that are usually found hand-coded in vir-
tually all game engines [2], such as logical optimization of queries on lists and
spatial partitioning/use of indices to speed up quadratic queries, such as colli-
sion detection (for example: colliders(self) = [other | other <- Others,
collides(self,other)]; (iii) it guarantees that updates to the game state dur-
ing one tick are consistent, that is, the state is never partially updated thanks to
a (high-performance) transactional system; (iv) it offers a scripting system that
integrates seamlessly with the update loop.

We have designed Casanova with the aim of adding more features such as: (i)
automated generation of all the rendering code; (ii) automated generation of all
the networking code; (iii) automated generation of all or parts of an AI system.

Of course, the language can also serve as a general purpose language. Any
application that requires performing computations and visualization on a com-
plex set of data which evolves over time according to a set of fixed rules might
benefit from using Casanova. In the future, we may investigate other possible
uses of the language in this direction. As a final remark, it must be noted that
Casanova sometimes constrains the developer; for example, at most one rule may
be associated with any given field of the game state and rules are always applied
at every tick of the simulation. Since developers may find this set of restrictions
too tight we have included a scripting system which can also act as a “wild-
card” in this regard, that is scripts have essentially no limitations in expressivity
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(scripts are a general purpose programming language with coroutines) and for
this reason they can be used to express anything that the rule system cannot,
albeit renouncing various useful features such as automated optimization.

4.3 Syntax, Semantics, and Types

The details of the Casanova language syntax, semantics, and type system are
defined in [11]. In this subsection we give a general overview of the most salient
aspects of the language.

A Casanova program is divided into three parts: (i) the state definition, (ii)
the initial state, and (iii) the main behavior.

The state definition contains the type definitions of the game state and game
entities, together with the rules to which the various fields are subjected. Rules
may be nested, i.e., a field may contain a rule of type Rule T, where T contains
a value of type Rule V. This is quite common, and we will seen an instance of
this in the example in subsection 4.4.

Entities and the state may be defined in terms of the usual type constructors
found in a functional language: records, tuples, and discriminated unions. Also,
we can define values of type: table (for sequences), variable (for mutable cells),
rule (for updateable fields), and reference (for read-only pointers).

The initial state defines the starting value of the various game entities. The
main behavior is an imperative process which runs for the entire duration of
the game. A behavior may spawn (run) other behaviors, suspend itself for one
or more ticks (yield or wait) or wait for another behavior to complete before
resuming its execution (do! or let!). In addition, behaviors may access the state
without any limitation; a behavior can read or write any portion of the state:
:= is the assignment operator and ! is the lookup operator.

Behaviors can be combined with a small set of operators that define a straight-
forward concurrent calculus: parallel x y, which runs two behaviors in parallel
and returns the pair with their results; concurrent x y, which runs two behav-
iors in parallel and returns the result of the first to terminate; x => y, which
runs behavior y v only when x terminates with result Some v; and repeat x,
which continuously runs a behavior.

The tick function of the game is built automatically by the Casanova compiler,
and it executes all running behaviors until they yield; then it executes all rules
(in parallel and without modifying the current game state to avoid interferences);
finally it creates the new state from the result of the rules.

Rules do not interfere with each other, since they may not execute imperative
code. If rules immediately modified the current state, then their correctness
would depend on a specific order of execution. Specifying said order would place
an additional burden on the programmer’s shoulders.

The tick function for rules presents a problem which is partly addressed with
references: portions of the state must not be duplicated, for correctness rea-
sons. This means that each entity in Casanova may be subjected to some rules
but only once; if an entity is referenced more than once then it may be subjected
to more (and possibly even contradictory) rules. For this reason we make any
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value of type Rule (or which contains a field of type Rule) linear [13]. This means
that a value of type Rule T may be used at most once, and after it is read or
used it goes out of scope.

We use the type constructor Ref T to denote a reference to a value of
type T. A reference is a shallow copy to an entity which primary value is stored
elsewhere. This allows for the explicit sharing of portions of the game state with-
out duplication of rules, since rules are not applied to references. This also allows
for safe cyclical references, such as given below.

type Asteroid = { ... Colliders : Rule(Table(Ref Projectile)) }
type Projectile = { ... Colliders : Rule(Table(Ref Asteroid )) }

This restriction is enforced statically during type checking, and it ensures that
all rules are executed exactly once for each entity. The type checker enforces
another property: a behavior gives a compile-time error unless it is statically
known that all code paths yield. This is achieved by requiring that repeat and
=> are never invoked on a behavior which does not yield in all its paths. An
example is the behavior below.

repeat { if !x > 0 then yield else y := 10 }

which will generate a compile-time error.
This ensures that the tick function will always terminate, because rules are

non-recursive functions and behaviors are required never to run without yielding
indefinitely.

Of course, it is possible to lift this restriction, since it may give some false
negatives; for this reason, the actual Casanova compiler will be configurable to
give just a warning instead of an error when it appears that a script does not
yield correctly, to leave more freedom to those developers who need it.

So far the Casanova language enforces the following four properties.

– developers do not have to write the boilerplate code of traversing the state
and updating its portions; this happens thanks to the fact that Casanova
automatically builds the game loop

– all entities of the state are updated exactly once (even though they may be
shared freely across the state as Refs); this happens thanks to the linearity
of the Rule data type and the automatic execution of all rules by the game
loop

– rules do not interfere and are processed simultaneously; this happens thanks
to the linearity of the Rule data type and thanks to the fact that the state
is created anew at each tick

– the tick function always terminates; this happens because the state is not
recursive (again, thanks to the linearity of Rule) and because our coroutines
are statically required always to invoke yield

These properties alone are the correctness properties and ensure that the game
will behave correctly. We will now see an example Casanova game. We will also
see the set of optimizations implemented by the Casanova compiler. They make
sure that a game runs fast with no effort on the part of the developer.
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4.4 Introductory Example

A Casanova program starts with the definition of the game state, the various
entities and their rules. A field of an entity may have type Rule T for some type T.
This means that such a field will contain a value of type T, and will be associated
with a function of type: Ref(GameState)× Ref(Entity)× T× ΔTime → T

This function is the rule function, and its parameters are (they can be omitted
by writing an underscore _ in their position): (i) the current state of the game;
(ii) the current value of the entity we are processing; (iii) the current value of
the field we are processing; (iv) the number of seconds since the last tick.

When a field does not have an explicit rule function, then the identity rule
is assumed. A rule function returns the new value of a field, and cannot write
any portion of the state. Indeed, the current value of the state and the current
entity are read-only inside the body of a rule function to avoid read-write depen-
dencies between rules. Updating the state means that all its rule functions are
executed, and their results stored in separate locations. When all rule functions
are executed, then the new state is assembled from their results.

In the remainder of the paper we will omit some type annotations; this is
possible because we assume the presence of type inference. In a field declaration,
the : operator means “has type”, while the :: operator specifies the rule function
associated with a rule. The ! operator is the dereferencing operator for rules,
and it has type Rule T -> T.

Below we show how we would build a staightforward game where asteroids
fall down from the screen and are removed when they reach the bottom of the
screen.

type Asteroid = {
Y : Rule float :: fun (_,self ,y,dt) -> y + dt * self.VelY
VelY : float
X : float }

type GameState = {
Asteroids

: Rule(Table Asteroid )
:: fun (_,_,asteroids ,_) -> [a | a <- asteroids && a.Y > 0]

DestroyedAsteroids
: Rule int
:: fun (_,self ,destroyed_asteroids,_) -> destroyed_asteroids +

count([a | a <- !self.Asteroids && a.Y <= 0]) }

In the state definition above we can see that the state is comprised by a set
of asteroids which are removed when they reach the bottom. Removing these
asteroids increments a counter, which is essentially the “score” of our pseudo-
game. Each asteroid moves according to its velocity.

The initial state is then provided as follows.

let state0 = { Asteroids = []; DestroyedAsteroids = 0 }

Behaviors in Casanova are based on coroutines, that is they are imperative
procedures which may invoke the yield operator. Yielding inside a behavior
suspends it until the next tick of the game. Behaviors may freely access the
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state for writing, that is behaviors are less constrained than rules but for this
reason they also support less optimizations. The only requirement that Casanova
enforces in behaviors is that they must never iterate indefinitely without yielding,
and this requirement is verified with a dataflow analysis.

When the main behavior of a game terminates, the game quits. The main
behavior of our game spawns asteroids every 1-3 seconds until the number of
destroyed asteroids reaches 100. The main behavior of our game is defined as
follows.

let main state =
let rec behavior () = {

do! wait (random.Next(1,3))
state.Asteroids.Add { X = random (-1,+1); Y = 1; VelY = random

(-0.1,-0.2) }
if !state.DestroyedAsteroids < 100 then do! behavior () else return ()

}
in behavior ()

The imperative syntax loosely follows the monadic [12,14] syntax of the F#
language, where a monadic block is declared within {} parentheses, and com-
bining behaviors is done with either do! or let! and returning a result is done
with the return statement. This allows us to mark clearly the points where
a behavior waits for another behavior to complete before taking its result and
proceeding.

4.5 Optimization

Casanova is designed to facilitate the automatic execution of three main opti-
mizations: memory recycling, rule parallelization, and query optimization.

Memory recycling is a straightforward yet effective optimization for all those
platforms (such as the Xbox 360) with a slow garbage collector [16]. Memory
recycling means that Rule T fields allocate a double buffer for storing both the
current and the next value for rules, instead of regenerating a new state at each
tick. Rule parallelization is made possible by the static constraint that rules are
linear: this means that no rules write the same memory location. We also know
that rules may not freely write any references. These two facts guarantee thread
safety, i.e., we may run all rules in parallel. The final optimization is query
optimization. Nested list comprehensions (also known as “joins” in the field of
databases [8]) can have high computational costs, such as O(n2), for example
when finding all the projectiles that collide with asteroids. Such a complexity is
unacceptable when we start having a large number of asteroids and projectiles,
because it may severely limit the maximum number of entities supported by
the game. We use the same physical optimization techniques used in modern
databases: we build a spatial partitioning index (such as a quad-, oc-, R-tree)
to speed up our collision detection. The resulting complexity of the same query
with a spatial partitioning index is O(n log n), which executes much faster and
allows us to support larger numbers of entities.



Designing Casanova: A Language for Games 329

4.6 A Full Example

Below we show a full example of a game where a series of balls are thrown from
one side of the screen and bounce towards the other side; the balls are removed
when they reach the other side of the screen.

We start by defining the state (a collection of balls) and its rules (gravity,
motion, and removal of those balls that reach one side of the screen).
let g = Vector2 (-9.81,0.0)

type BallsState = {
Balls : Rule(Table Ball))

:: fun (_,_,balls ,_) -> [b | b <- balls && b.X <= 50.0 ] }
type Ball = {

Position : Rule Vector2
:: fun (_,ball ,p,dt) ->

if p.Y < 0.0 then Vector2 (p.X, 0.0)
else p + !ball.Velocity * dt

Velocity : Rule Vector2
:: fun (_,ball ,v,dt) ->

if p.Y < 0.0 then Vector2 (v.X, -v.Y) * 0.6
else v + g * dt }

Then we define the initial state, which does not contain any balls.
let state0 = { Balls = [] }

Finally we define the main behavior which launches the balls, one every sec-
ond.
let rec main state = {

do! wait 1.0
state.Balls.Add { Position = Vector2 (0.0, 0.0); Velocity = Vector2 (5.0,

10.0) }
do! main state }

5 Case Study

In this section we will describe (1) how we have rewritten the XNA Spacewar [18]
sample in Casanova, (2) the resulting reduction in code, and (3) the increases in
performance obtained. We have chosen Spacewar because it is small enough to
be didactically useful while being built as a starter kit, that is a starting point
to be edited and extended into a different game and not just as a sample or
tutorial; from this point of view, Spacewar should be considered as a small, yet
complete and well-built, game.

The Casanova compiler is still in its early stages, and as such it is not yet
ready for the task. The definition of the compiler can be followed by hand, and
since the first Casanova compiler will generate F# code, we have written such
code by hand as the compiler would have output it.

5.1 Rewriting the Game

The original sample features two ships that shoot each other while dodging
asteroids that float around the gaming area. A star in the center of the playing
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field pulls the players with its gravity. The first player to destroy the other (by
hitting him or by making him crash on another celestial body) wins the stage.

The game state is defined as the two players, their ships, the table of asteroids
and projectiles, and the sun. Also, the state contains the current gameplay status,
which can either be Playing or GameOver w where w is the winner.

The source code of the original sample plus our implementation can be found
in [3]; the current implementation of the Casanova compiler is incomplete, and
at the time of writing the type checker and the F# code generator are both
producing their first correct outputs but are not yet integrated together. The
details of the porting are discussed in detail in [11], and we omit them here for
reasons of space.

We have slightly modified the original sample so that testing could be au-
tomated. For this reason we have removed the 30 seconds time limit of each
level, we have removed the victory and ending conditions, we have automated
ships movement and shooting and we have increased the maximum number of
asteroids and projectiles to 12 and 200 respectively. This way we have obtained
an automated stress test.

We have also removed all rendering features, to avoid benchmarking rendering
algorithms: Casanova does not generate rendering code, so such a comparison
would have been meaningless; also, Casanova can be integrated with the very
same C# rendering code of the original Spacewar. We compare the resulting
frame rates to see how many simulation steps per second the original game logic
is capable of performing versus the number of steps per second of the Casanova
game logic; the higher this number, the more efficient the game logic and the
more time remains for each frame to perform complex rendering.

As a final remark, it is worth noticing that while the original sample includes
more than one thousand lines of code the length of the corresponding Casanova
program is 348 lines long. The Casanova source easily fits a few pages, while
navigating the original source may prove a bit complex because of its sheer size.

5.2 Resulting Benchmarks

We have benchmarked the modified sample on both the Xbox 360 and a 1.86
Ghz Intel Core 2 Duo with an nVidia GeForce 320M GPU and 4GB of RAM. In
the table below we can see the frame rates of the various tests.

Table 1. Framerate of the original Spacewar vs the Casanova implementation

C# XBox C# PC Casanova XBox Casanova PC
8 9 22 577

As we can see, full Casanova optimization always beats the original source
by at least a factor of 2. The Xbox implementation suffers from the genera-
tion of garbage, which is a known problem of the XNA implementation on the
console [16]; indeed, profiling the garbage collector shows that large amounts of
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temporary memory are being generated by the program. It is noticeable that
on the PC, thanks to the full optimizations done by Casanova, performance
increased by almost two orders of magnitude: such an impressive increase was
quite unexpected even by us, it is the more so when keeping in mind that those
optimizations will be automated by the compiler.

6 Conclusions

In this paper we have presented the design of the Casanova language, a hybrid
declarative/procedural language for making games. The language has a triple
focus on (1) simplicity, (2) correctness (to increase developer productivity, given
the complexity of game development), and (3) performance (to ensure high fram-
erates).

We have defined a model that generalizes an abstract game, and we have
introduced four important properties that describe a good game. We have shown
how the Casanova language respects these properties, that is:

– rules are applied exactly once for each entity,
– rules are order-independent,
– ticks always terminate,
– automated optimizations ensure fast execution.

Our first goal is to implement a fully working prototype of the Casanova compiler
that outputs F# code. The compiler is still in its early stages, and much work
is still needed to achieve this goal.

Further (and less obvious) improvements may be adding support for rendering,
networking, and (fully or partially) automated AI. A second venue that we are
investigating is the support for reusable libraries of ready-made components,
possibly with some form of statically resolved polymorphism (maybe similar to
Haskell type classes) for performance reasons. Integration with an existing IDE
(such as MonoDevelop or Visual Studio) is an important addition to a modern
language. Finally, addressing the problem of generating less garbage (especially
for the XBox 360 and for other platforms such as Windows Phone 7 and iOS
through Mono) is another of our objectives.

As a final remark, some aspects of Casanova (namely scripting) already have
been fully implemented, as described in [10].
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Abstract. Natural game input devices, such as Microsoft’s Kinect or
Sony’s Playstation Move, have become increasingly popular and allow a
direct mapping of player performance in regard to actions in the game
world. Games have been developed that enable players to interact with
their avatars and other game objects via gestures and/or voice input.
However, current technologies and systems do not tap in the full potential
of affective approaches. Affect in games can be harnessed as a supportive
and easy to use input method.

This paper proposes a design approach that utilizes facial expressions
as an explicit input method in game dialogues. Our concept allows play-
ers to interact with Non Player Characters (NPCs) by portraying specific
basic emotions. Similar to adventure games, the player may choose be-
tween different dialogue options, which are displayed in textual form.
The possible answers are coded in a way so that they can be selected by
distinct facial expressions. The player may, for example, choose to act ag-
gressively towards an NPC by expressing anger. In contrast to traditional
techniques, in game dialogue systems, where players solely make their de-
cisions by selecting text information, the proposed approach includes an
affective component to reduce misunderstanding of the provided infor-
mation.

A comparative study was conducted that included our interaction de-
sign as well as a traditional approach (selection of options via mouse) in
order to identify possible differences and benefits in regard to the User
Experience (UX). Results indicate that the use of explicit facial expres-
sions in the context of game dialogue appears to be quite promising.

1 Introduction

According to Nacke[10], new gaming consoles and especially their novel inter-
action approaches require new methodologies for investigating the interaction
process in video games. Although computer game technologies (input devices,
game engines, asset creation tools, etc.) took a huge leap forward regarding inter-
activity, usability, mobility, and performance of systems, considerations dealing
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with affective and/or social aspects played and still play only a minor role in the
game design and production process [7].

The incorporation of affective and/or social aspects would offer some benefits:
users are able to utilize familiar communication mechanisms when interacting
with computational systems (e.g., games). Hence, the human-machine interac-
tion process should be designed to resemble human interpersonal interaction in
order to rely on skills obtained from human-human communication. Systems be-
come easier to use if the interaction between human and machine is similar to
human-to-human interaction [2]. The increase of complexity concerning games
on various levels (art, design, technology, but also from a narrative point of view)
requires novel forms of interaction. Elaborated game characters that should rep-
resent believable personalities and convincingly portray emotions are aimed to
be part of the game world. According to Hudlicka[7], the way to achieve a rich
gaming experience while interacting with game characters is to focus on affective
aspects ranging from recognition, expression to the effects of emotion.

2 Affect in Game Dialogue Systems

Using facial expressions in games as an input method enables several design
opportunities. Lankes et al.[9] make use of explicit facial expression in a game
setting. They propose a game design approach that utilizes facial expressions as
an input method under different emotional feedback configurations. A study was
conducted to assess the game “EmoFlowers”, focusing on User Experience (UX)
and user effectiveness. The game “EmoFlowers” features facial expressions as an
input method to influence the growth of a virtual flower. By displaying specific
emotions, a player can alter the current weather conditions in the game. The goal
of the game consists of achieving the appropriate weather condition to provide
an optimal growth environment for the flower within a predefined time frame (3
minutes). The study revealed that 92,4% of the participants reported to have
exprienced a positive UX while playing. 63,8% of players described that the game
had an impact on their emotional disposition. The overall design of the interface
was also perceived positively by 92,4% of the participants.

The integration of explicit emotional input offers also research possibilities in
the field of dialog systems within games. Dialogues can be defined as a mean for
participants to exchange information, achieve mutual understanding, and set up
social relationships [1]. Brusk and Bjork [3] differentiate between several dialogue
types in games. They distinguish between game (G), player (P), player character
(PC) and non-player character (NPC): P-G (game may be controlled via ges-
tures or voice), P-PC (players control their avatars with dialogue), NPC-NPC
(comments on game status), and P-NPC (social interaction between actors).
Our contribution addresses dialogues between players and NPCs (P-NPC) as
it represents a typical scenario where facial expressions are performed. Facial
movements and expressions appear in various forms during conversations [11].
They may emerge as punctuators (grouping sequences of words into discrete
phrases), manipulators (biological needs of the face) or as regulators (control
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the flow of speech). Our work focuses on the role of facial expressions in regard
to conversational signals, which clarify and support what is being said.

Several attempts have been made to enhance dialogue systems in regard to the
presentation and type of interaction. A majority of these approaches in games
utilizes a limited number of textual answers displayed when interacting with
Non Player Characters (NPCs). Current interface designs range from top down
lists to more recent design such as ring interfaces. Since an adequate font size
for readability is required and the screen real-estate is limited, games like Mass
Effect (see Figure 1), display shorter textual answers in comparison to the actual
spoken verbal information. The recently released LA Noire, a game that explicitly
incorporates the interpretation of NPCs facial expressions as a core mechanic, is
made up of simplified answer possibilities. The used dialogue system consists of
three categories (truth, doubt, lie) that do not reflect the actual dialogue that
is spoken by the player character. A second example is the Nintendo DS game
Golden Sun: Dark Dawn that offers players to interact solely with NPCs via
four emoticons. The problem that occurs in this dialogue system is that players
do not know to which aspect an emoticon is referring to. The lack of detail,
especially the absence of emotional aspects, can lead to misunderstandings, or
in the worst case, to no understanding at all.

Fig. 1. Examples of interfaces in the context of game dialogue - left: Mass Effect, right:
Golden Sun: Dark Dawn

In contrast, researchers such as Zhan et al.[12] propagate complex systems
that incorporate a real-time system for recognizing player’s facial expressions.
These systems can be used to control avatars’ emotional states by directly con-
trolling the animation engine instead of issuing text commands. Cavazza et al.[4]
propose an approach to user interaction with virtual characters entirely based
on emotional speech. The authors claim that affective interaction allows uncon-
strained linguistic expression, as part of a dialogue with the feature character
of the interactive narrative. However, the researchers remark that the dialogue
is limited to pairs of utterances, without any extended dialogue phenomena.
Limitations of this approach arise from the fact that their impact depends on
genre considerations. These approaches appear to be fairly complex (both for
developers and users).
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We propose a solution that incorporates a straightforward way of interaction,
while, at the same time, it offers the complexity and potential of affective solu-
tions. Our approach is based on a single initiative, turn-taking system [3]. Turn
taking systems form basic dialogue control elements that address how people
define their actions in a conversation. The term single-initiative dialogues means
that a dialogue can only be started and/or moderated by one participant. Our
concept introduces a design that utilizes facial expressions as an explicit input
method (see Figure 2). These concept allows a player to interact with NPCs
by using specific basic emotions (joy and anger). These emotions expressed via
facial expressions serve as an selection tool to choose amongst several available
answers. Similar to the previously described concepts, the player may choose
between different dialogue options, which are displayed as color-coded texts.
Answers with a friendly attitude towards the NPC are displayed with a yellow
color and a smiley emoticon in the center of a ring interface. If the player opts to
use a more aggressive strategy, then a red text and the emoticon with the anger
expression are chosen. Players have to press and hold the capture button (space
key) to activate the detection of the facial expression. This was done in order to
avoid unwanted facial expression input. To confirm a facial expression, a player
needs to perform the expression for 2 seconds. The process is supported by the
interface via a circle in the center of the ring interface. When the capture mode
is off the emoticon has 50% transparency and grey color and does not depict any

Fig. 2. Affective approach: by pressing and holding the SPACE key and by performing
a facial expression (joy or anger) the player chooses a dialogue option
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expression. When either joy or anger is detected, the emoticon changes its type
(joy or anger) and is set to 100% opacity. Furthermore, the circle in the center is
filled with either red or yellow color. If the circle is completely filled, an auditive
cue is played and the next dialogue step will be presented.

The technical setup incorporates all components into a MacBook Pro: the
EmoTracker and the Graphical User Interface (GUI) module. The input part of
the EmoTracker module captures raw images from a built-in webcam and sends
these images to the Facedetector [5]. This Facedetector in turn finds faces in
the input image, and evaluates basic emotions (joy, anger) within each detected
facial expression [8]. After detecting faces and facial expressions, the first face
found along with the detected properties (emotions) is passed on as XML data
transmitted via a loopback Transmission Control Protocol (TCP) stream to the
GUI module. The GUI module is an adobe flash application, which handles the
display of the user interface as well as the selection within the dialog system.

3 Evaluation

Our design goal was to create a system that features an easy to learn way of
interaction as well as the integration of affective input. We aimed for a positive
UX, especially we wanted to address hedonic aspects, as task related (pragmatic)
aspects are not the only important component when playing games. To perform
an evaluation of our concept accordingly (and to provide a comparison) we set
up a second system that resembles a traditional approach (see Figure 3). In this
approach players interact with NPCs via mouse input. Analogous to the affective
approach, answers are color coded (red: anger, joy: yellow), but, in contrast to
our design, they are selected with mouse clicks. This type of interaction can be
also seen in games such as Mass Effect or Dragon Age: Origins.

3.1 Measurement Tool

As we wanted to have a straightforward and flexible tool to evaluate the im-
pact of our concepts, we decided to measure the UX with the AttrakDiff ques-
tionnaire [6]. It has been effectively used in various studies to investigate the
perceived pragmatic and hedonic quality of interactive systems. The AttrakDiff
questionnaire was developed to measure implications of attractiveness of a prod-
uct. Users indicate their impression of a given product by bipolar terms, cate-
gorized into four dimensions. The first dimension, the Pragmatic Quality (PQ),
describes traditional usability aspects, while the dimension Hedonic Quality-
Stimulation (HQ-S) refers to the need of people for further development concern-
ing themselves. By supporting this aspect, products can offer new insights and
interesting experiences. Hedonic Quality-Identification (HQ-I) allows to mea-
sure the amount of identification a user has toward a product. Pragmatic and
hedonic dimensions are independent from each other, but nevertheless share a
balanced impact on the overall judgment. The two aspects contribute equally to
the overall judgment of the situation/ product and are referred to as Hedonic
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Fig. 3. Traditional approach: by pointing and clicking on the text the player chooses
one out of two options

Quality (HQ). Attractiveness (ATT) resembles an overall judgment based on the
perceived aesthetic quality.

3.2 Procedure

The study was conducted at the games lab (glab) of the FH Hagenberg with 14
participants, 8 male and 6 female. The age of participants ranged from 22 to 30
(mean=24,54). The procedure took between 15 to 20 minutes per participant.
The experimental setting was made up of a MacBook Pro (with a built-in web-
cam). As a first step, the experimenter welcomed the participant and provided a
short introduction text that gave an overview on the procedure and purpose of
the study. The evaluation was divided into two major parts: the evaluation of the
affective approach and the traditional approach. The order in which participants
were confronted with the prototypes was randomized.

Each evaluation part started with a short tutorial showing the basic means
of interaction. Afterwards subjects had the possibility to try out the presented
approach by themselves. Participants were informed that they had as much
time as they desired to interact with the interface prototypes. Hereinafter they
were given a short description of the premise that had led to current dialogue
situation (one out of two descriptions). When subjects confirmed that every
aspect was clear to them the evaluation of the approach began. To avoid material
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artifacts, the gender of NPCs in both approaches was also randomized. When
the interaction was completed, the experimenter instructed the participants to
fill out the online AttrakDiff questionnaire that also contained questions about
age, gender, etc. After participants completed the first task, the second approach
was presented and evaluated.

4 Results

From a general perspective the results indicate that the use of explicit facial
expressions in the context of game dialogue appears to be quite promising but
leave room for improvement (see Figure 4). The results were gathered by calcu-
lating and summarizing the mean values of the bipolar items (which refer to the
different factors like HQ-S or ATT). For a description of the various factors and
dimensions see Subsection 3.1 or refer to Hassenzahl et al. [6] to obtain more
detailed information. Afterwards paired t-tests were carried out to investigate
differences between the traditional and the affective approach.

When looking at HQ values, the affective approach was perceived more pos-
itively: the affective approach (HQ: mean=1.23 σ=0.33) , the traditional ap-
proach (HQ: mean=-0.67 σ=0.42). Both HQ-I (mean=0.89 σ=0.45) and HQ-S
(mean=1.57 σ=0.30) were rated higher in the affective approach than in the tra-
ditional concept (HQ-I: mean=-0.18 σ=0.44, HQ-S: mean=-1.15 σ=0.51). Paired
t-tests were carried out which showed a significant difference between the HQ-I
(t = 5.79, p <.05) and HQ-S (t = 13.27, p <.05) of the two different approaches.
In general, participants perceived the affective input method as more human
oriented than machine oriented. Some subjects reported that they were more
concerned about the feelings of the NPC when facial expressions were used as
input. This effect can also be seen in the right illustration of Figure 4, which
indicates that the affective approach is self oriented.

However, some problems occurred on the PQ level. The affective concept
was rated lower (PQ mean=0.35 σ=0.55) than the traditional approach (PQ
mean=1.74 σ=0.22). Paired t-tests revealed a significant difference between the
affective and the traditional approach (PQ: t = -5.64, p <.05).

Although the emotion joy was captured without any problem, issues arose
when using the anger expression. In some cases it took subjects several min-
utes to perform a facial expression that was recognized as anger. A second fac-
tor that had an impact on the PQ values can be noticed by the observation
that most subjects had (a considerable amount of) experience with Role-Playing
Games (RPGs) and were familiar with the traditional method. Furthermore, one
of the subjects noted that the interaction method might be more applicable for
certain game situations (critical situations), since the interaction via a mouse
is more effective. This issue, however, can be solved by increasing the facial
recognition and reducing the capture time. Material effects (male and female)
were avoided since ATT ratings show similar values (affective ATT: mean=0.73
σ=0.55, traditional ATT: mean=0.49 σ=0.41). Paired t-tests showed no signifi-
cant differences (PQ: t = 1.26, p = .21).
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Fig. 4. Resulting diagrams from the evaluation via the AttrakDiff measurement tool -
Left figure: summary of the mean values of the individual factors; the affective approach
has higher HQ-I and HQ-S values, but lower PQ values in comparison to the traditional
concept. ATT values show only minor differences. Right figure: summary of the HQ and
PQdimensions - the traditional addresses usability related aspects, but lacks hedonic fea-
tures; the affective approach is strongly self-orientated but requires tool related features.

5 Discussion and Outlook

This work introduced a design approach that utilizes facial expressions as an
explicit input method for game dialogue systems. In contrast to traditional ap-
proaches in game dialogue systems, the proposed approach includes an affective
component to reduce misunderstanding of the provided information. With this
concept players are encouraged to utilize an additional communication channel.
A study was carried out that revealed that the proposed design fosters hedonic
aspects in regard to the UX. Subjects gave the affective approach higher HQ-S
and HQ-I ratings than the traditional concept. When observing the pragmatic
qualities of the system, improvements have to be made. Two areas of improve-
ment are facial expression recognition and capture time. Overall, the affective
approach offers new directions in research. A next step in our research will be to
add other basic emotions and more available options to interact with an NPC.
Furthermore, we are planning to combine traditional and affective methods in
order to employ explicit affective input in specific game situations.
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Abstract. We propose a method of generating natural-looking behaviors for 
virtual characters using a data-driven method called behavior capture. We 
describe the techniques for capturing trainer-generated traces, for generalizing 
these traces, and for using the traces to generate behaviors during game-play. 
Hidden Markov Models (HMMs) are used as one of the generalization 
techniques for behavior generation. We compared our proposed method to other 
existing methods by creating a scene with a set of six variations in a computer 
game, each using a different method for behavior generation, including our 
proposed method. We conducted a study in which participants watched the 
variations and ranked them according to a set of criteria for evaluating 
behaviors. The study showed that behavior capture is a viable alternative to 
existing manual scripting methods and that HMMs produced the most highly 
ranked variation with respect to overall believability. 

1 Introduction 

A story-based computer game contains virtual characters. Most of them are AI-
controlled non-player characters (NPCs), who interact with the player character (PC), 
other NPCs, and the environment. Although games display increasingly realistic 
graphics and physics, NPC behaviors have improved slowly. Players are demanding 
more realistic behaviors for the NPCs. Rather than standing or wandering aimlessly, 
NPCs should converse with other NPCs and interact with game objects in realistic 
ways. They should also react to events such as explosions or unusual events. Creating 
natural-looking behaviors for NPCs is not inexpensive. In a typical commercial story-
based game, there are hundreds or sometimes over a thousand NPCs. Since manually 
scripting each NPC individually requires extensive resources, most NPCs in most 
commercial games have staightforward and repetitive behaviors. 

We propose a new method of creating NPC behaviors called behavior capture, 
based on the concept of motion capture. With motion capture [6], sensors are attached 
to the bodies of actors, and as the actors move their bodies, the spatial locations of 
their body parts are recorded. The data is used to animate virtual characters to move 
in the same way. Our system of behavior capture is based on a similar idea of using 
captured traces to guide NPC behaviors, but behavior capture is not a generalization 
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of motion capture. Our behavior traces represent high-level intentions as opposed to 
motion trajectories in space. For example, the NPC may use an entirely different path 
to approach another NPC during game-play, since the relative positions of the two 
NPCs may differ from their relative positions during training. 

Behavior capture enables a game designer to take control of a particular NPC 
during training and perform exemplar behaviors. It captures traces of the exemplar 
behaviors and generalizes them. Generalization is necessary to generate natural 
behaviors with short training times. First, interactions should be generalized. If a 
particular NPC should talk to a particular set of NPCs (such as rich NPCs only) in a 
tavern, then the trainer should be able to train this NPC by talking to only one rich 
NPC. If another NPC should have the same behavior, the trainer should not have to 
train the second NPC separately. Second, during game play, the NPC should not 
repeatedly follow the exact training trace. We present several trace generalization 
mechanisms, including a technique that learns a Hidden-Markov Model (HMM). Our 
generalization and learning do not require scripting.  

The term behavior capture has been used in commercial software to describe the 
LiveAI technique introduced by AiLive [1], and by TruSoft [13]. However, there  
are no publications describing what technique is used to generalize behaviors after 
training and there is no indication of the level of behaviors that can be learned, 
although there is a video that highlights some behavior in a showcase combat  
scenario [2]. 

To verify the utility of behavior capture, we created a tavern scene in a commercial 
video game. We generated a set of scene variants, using a collection of behavior 
generation techniques, including manual scripting and several forms of behavior 
capture. We conducted a study in which participants played each scene variant and 
ranked them by: (1) most active characters, (2) most unpredictable characters, (3) 
most plausible action sequences, (4) most diverse character actions. Participants also 
ranked overall believability and rated overall believability of each variant. 

2 Related Work 

There are many methods of creating behaviors for virtual characters. Traditionally, 
programmers had to script individual behaviors for each character. Orkin and Roy 
devised a data-driven approach to generating behaviors, using unsupervised learning 
of behavior and dialogue in a game that simulates a restaurant [10]. They take 
advantage of the massive online-gaming community and use it to collect data as 
training examples. A character in the game has a set of goals and corresponding 
priorities, used to guide interactions. After goal selection, the character retrieves 
candidate plans and sends them to the critics system, which uses criteria to reject 
plans. Experiments compare the ability of the plan network and humans to 
differentiate between typical and atypical restaurant behavior. Thurau et al. [12] 
describes methods of inferring goals from replays of human games for a virtual 
character in a First-Person Shooter game. Ontanon et al. [9] proposes a planning 
system for a Real-Time Strategy game that can be learned from human demonstration. 
These two approaches assume there are specific goals (such as killing an enemy) for 
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the virtual characters to achieve, and different methods are used to find ways to 
satisfy such goals. Our research targets day-to-day behaviors of virtual characters in a 
non-combat virtual environment, where NPCs often behave without clear-cut goals. 

MacNamee [7] proposed a technique called role-passing, which allows an NPC to 
exhibit behavior variations by assuming roles in particular situations. Such NPCs can 
be implemented using level-of-detail, which means that their behaviors can be 
modeled abstractly when the player is not looking, and in more detail when the player 
is focused on them. These proactive persistent agents provide a realistic experience. 
Individual behaviors are driven by an artificial neural network, which is trained using 
about 300 hand-crafted examples by the author. While these examples contained a set 
of interesting behaviors, their flexibility to adapt to other situations has not been 
demonstrated. It is not clear how a game designer can add additional behaviors not 
included in the pre-designed training examples. Research has been done in the past to 
analyze player statistics extracted from in-game traces or character attributes [8] [11]. 
We want to provide a better gaming experience for players, specifically by enabling 
game designers to create more interesting NPC behaviors. 

3 Capturing Behaviors 

Behavior capture is a data-driven approach to generating virtual character behaviors. 
Instead of a programmer specifying how each character should move, speak, and 
interact with the environment, a game designer takes control of the character and 
performs the actions that the designer would like to see this character perform. This is 
done in a game session called training mode. In training mode, the designer-
controlled character actions are recorded with a behavior capture system. The system 
remembers what each character did and uses this data to generate new behaviors 
during game play. There is no need to write programming scripts.  

3.1 Training in Neverwinter Nights 

We constructed a prototype of our behavior capture system in BioWare Corp.’s 
Neverwinter Nights (NWN). NWN includes a simple-to-use Toolset that allows 
designers to create new stories using a C-like scripting language. Since NWN is a 
medieval fantasy game, tavern scenes are common. A tavern typically has patrons, a 
bartender, and sometimes entertaining bards. We created a tavern scene and used it as 
a test-bed for our behavior capture system (Figure 1). 

In training mode, the characters start with no behaviors. A game designer takes 
control of a trainee character. Figure 2 shows a trainee in the center of the screen. At 
the bottom of the screen, there are buttons representing the actions a trainee can 
perform (pressing modifier keys display other sets of actions). If the designer clicks 
on the Face button and then clicks on another character, the trainee will turn and face 
the clicked character, and the Face action will be recorded as an action in a sequence 
of actions the trainee should perform. The game designer can switch trainees at any 
time, by clicking on the Become button and clicking on another character. If a trainer 
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Fig. 1. The tavern scene in Neverwinter Nights 

 

Fig. 2. Training a character. The action bar is enlarged in the figure for clarity. 

makes an error, the offending trace can be deleted from the training record. To avoid 
pressure on the designer during training, designer pauses are ignored in training mode 
and if the trainer wants the trainee to pause, an explicit wait action is selected. 

3.2 Behavior Types 

Cutumisu [4] introduced the behavior ontology shown in Figure 3. Behaviors are 
categorized as independent or collaborative. Independent behaviors are performed by 
one NPC, while collaborative behaviors are performed with a partner. An NPC may 
have an independent behavior to sit on a chair and a collaborative behavior to talk to 
another NPC. Behaviors can also be classified as proactive, reactive (reacting to a 
partner’s initiative), or latent.  
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A new proactive behavior is initiated when no other behavior is active. A latent 
behavior is triggered by a specific event and has a higher priority than any proactive 
behavior so it can interrupt. For example, an NPC may perform a proactive behavior 
to sit on a chair. When the NPC is done, a new proactive behavior is selected. The 
NPC may wait or talk to another NPC. However, if an explosion occurs, a latent 
behavior to flee from the explosion can be triggered and the flee behavior will 
interrupt the current proactive behavior.  

Our behavior capture system supports this behavior ontology during training mode. 
For example, to train a collaborative behavior, a designer clicks on the Collaborate 
button and clicks on another character so the system recognizes the collaboration 
partner. The designer trains one character first, and then switches to the other 
character and trains a corresponding reactive behavior, clicking the Collaborate 
button again to end the collaborative behavior trace. 

 

Fig. 3. Behavior architecture, adapted from Cutumisu [4] 

A latent behavior is based on a game event. To train a latent behavior, the trainer 
first clicks on the Start Latent button. The designer next triggers the appropriate 
event. In our tavern scene, the designer may want some tavern patrons to cheer when 
the bard finishes performing and exits the stage. Since exits a trigger (an area on the 
ground) is an event in the game, performing this action in Latent mode enables the 
behavior capture system to record this event. The trainer clicks on the bard and then 
moves the bard out of the trigger area. Once the event is recorded, the designer trains 
an NPC to react to this event by clicking on the appropriate NPC and selecting 
behaviors, such as face the bard behavior and a cheer animation behavior. 

4 Generating Behaviors 

After data is gathered using the training mode, the behavior capture system produces 
the NPC behaviors. Currently, the behavior capture system supports three types of 
generalizations. First, there can be hundreds of NPCs, and the designer may want the 
training of one NPC to apply to multiple NPCs – character generalization. Second, 
the designer may want a trained NPC interaction with a specific object to generalize 
to an interaction with any one of a group of objects – object generalization. Third, the 
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designer may not want the NPC to perform the training actions strictly in the training 
sequence order during game play and then repeat them in the same order once the 
sequence is complete, so we perform sequence generalization. 

4.1 Character and Object Generalization 

To support character and object generalization, the behavior capture system uses 
categories of objects and characters. For example, if a designer trains a character to 
sit on a chair, the action is not to sit on that specific chair, but to sit on any chair in a 
category. During game play, the character would sit on one of many chairs. To force a 
character to sit on a specific chair, the designer places this chair in its own category. 
Object categorization mechanisms are game-specific. For example, in NWN, the 
designer can use two different categorization mechanisms – tags and blueprints. The 
designer assigns a tag to each game object. The same tag can be assigned to different 
kinds of objects. During training, any interaction with an object can be generalized to 
an interaction with a random object with the same tag. For example, the trainer can 
train an NPC to converse with any tavern patron whose tag is conversable by 
conversing with any one of them. Alternatively, in NWN, the trainer can choose to 
generalize by blueprint – the template used to create an object. In this case, sitting on 
a chair would train an NPC to sit on any object created using the chair blueprint, 
regardless of tags. In our NWN trainer, the designer can toggle between using tags or 
blueprints to categorize objects. To support character generalization, when a designer 
trains an NPC for one blueprint, all NPCs with the same blueprint receive this 
training. It is easy to make custom blueprints from existing blueprints so creating 
categories that correspond to groups with common behaviors is straightforward. 

4.2 Sequence Generalization 

A behavior capture system needs an algorithm to order behaviors based on the 
training traces. A straightforward approach, no sequence generalization, generates a 
sequence of actions that exactly matches the recorded sequence and then repeats this 
sequence. However, a player may regard this repetition as unnatural. Alternative 
approaches could select actions from the set of training actions in a non-deterministic 
manner. For example, the system could sample uniformly from the set of all trained 
actions using random action sequence generalization. However, in many situations 
the order is important. To provide some designer control over the non-determinism, 
we divide the training actions for a single NPC into a set of traces of actions. A 
designer starts a trace, performs a sequence of actions and ends the trace. The 
designer usually performs many traces, each of which contains a short sequence of 
actions that form a cohesive sequence. For example, one trace may consist of three 
actions: (1) wait a few seconds, (2) say “I’m thirsty” and (3) walk to the bar. Another 
trace may consist of three actions: (1) wait a few seconds, (2) say “I’m tired”, and (3) 
walk to a chair. The random action technique could result in unrealistic action 
sequences, such as (1) say “I’m tired”, (2) walk to the bar or (1) say “I’m thirsty”, 
(2) walk to a chair or even (1) wait a few seconds, (2) wait a few seconds, (3) wait a 
few seconds, etc. 
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The random trace sequence generalization technique uniformly select traces 
instead of actions. It tries to maintain the plausibility of action sequences created by 
the designer. However, over longer periods of time (many traces), this technique can 
produce behaviors that players view as repetitious. Therefore, we created a third 
sequence generalization that maintains traces to some extent, while producing 
emergent sequences that may reduce repeatability. We introduce HMM sequence 
generalization that uses a Hidden Markov Model (HMM) to select actions that have a 
bias towards selecting actions in the order specified by the designer. 

A Markov Model is a statistical model with states, transitions, and outputs. One 
state is a special state called the start state. Each state is connected to a set of other 
states by probabilistic transitions. In addition, each state has an output probability of 
outputting a set of outputs. An HMM is a Markov Model of which the states are 
unobserved (hidden). In our application, the output is one of the behavior actions that 
the designer used in a trace. Hidden states are hidden to a game designer. The number 
of hidden states is a parameter of the HMM sequence generalization technique. 

One HMM generates the proactive behaviors for each character. The Baum–Welch 
Algorithm [3], a generalized expectation-maximization algorithm, uses the training 
traces to teach the HMM. The HMM adjusts its transition and output probabilities to 
fit the trace sequences. If the trainer follows the say “I’m thirsty” action with the walk 
to the bar action, the HMM will favor this action order. If the trainer trains the NPC 
to converse three times as often as ordering a drink, the HMM will generate a similar 
3 to 1 ratio. The behaviors generated by the HMM are stochastic, but are somewhat 
consistent with the training traces. The number of hidden states parameters controls 
the consistency; a higher consistency is achieved by more hidden states. 

5 User-Study and Evaluation 

5.1 User-Study 

We conducted a user study to evaluate the utility of behavior capture. Participants 
were enrolled in a first-year university psychology class. They did not necessarily 
have video game experience. Our goal was to show that behavior capture is a viable 
alternative to typical commercial game NPC behaviors created by manual scripting. 
We created six variants of a tavern scene in NWN, which are identical in all aspects 
except in the way that the NPC behaviors were generated. The six scene variations 
were constructed using the techniques listed in Table 1. The mapping between Scene 
Variation number and technique was generated randomly to avoid any bias. 

Study participants were asked to watch the six variations, and to rank them 
according to the criteria listed as the first column of Table 2. We also asked the 
participants to rate the overall believability of each variation on a scale of 1-4. 

Technique T1 is a baseline, with all characters exhibiting only stock idling 
animations provided by the NWN game engine, such as stretching their arms. 
Technique T2 is hand-scripted – characters behave according to a representative 
commercial role-playing game, Dragon Age: Origins. The variation was scripted to 
combine the behaviors in two taverns, Lothering (bards entertaining) and Redcliffe (a 
server who walks around). If we only used one of the taverns the behaviors would 
have been quite straightforward and we believe the evaluations of this variation would 
have resulted in a worse ranking. The other four techniques used behavior capture. 
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Table 1. Behavior generation techniques. Scene Variation numbers (shown to participants 
instead of technique numbers) were randomly assigned to techniques to avoid bias 

Technique Scene Variation 
Number 

Behavior Generation 

T1 4 
No behaviors added (idle)

 

T2 6 Behaviors hand-scripted by a programmer 
 

T3 5 
Behavior capture with no sequence 

generalization 

T4 1 Behavior capture with random action 
sequence generalization 

T5 3 
Behavior capture with random trace 

sequence generalization 

T6 2 Behavior capture with HMM sequence 
generalization (using 8 hidden states) 

For behavior capture, fourteen different proactive actions (behaviors) were used: 

 a1) Wait 5 seconds 
  a2) Collaborate with another patron by conversing 
  a3) Wave at another patron 
  a4) Face another patron 
  a5) Walk to a chair 
  a6) Walk to the bar 
  a7) Speak "I'm thirsty" 
  a8) Speak "I'm tired" 
  a9) Speak "I'm lonely" 
  a10) Speak "See you later" 
  a11) Speak "I'm bored" 
  a12) Speak "The inn-keeper is busy" 
  a13) Speak "I see a friend" 
  a14) Speak "What was that noise?" 

The collaborative converse behavior included 4 tasks: face the collaborator, walk to 
the collaborator, speak and then listen. The training set contained 10 traces of three 
actions each: [a5, a7, a6], [a1, a4, a3], [a6, a8, a5], [a9, a2, a10], [a4, a1, a4], [a5, a11, 
a6], [a6, a12, a5], [a13, a2, a10], [a14, a4, a4], [a4, a3, a1]. 

Technique T3 is behavior capture with no sequence generalization. The next action 
is picked directly from the trainer's traces, combining traces into a single long trace to 
eliminate randomness in picking actions. The list of actions in order was [a5, a7, a6, 
a1, a4, a3, a6, a8, a5, …, a4, a3, a1] and this list was repeated forever. 

Technique T4 is behavior capture with random action sequence generalization. An 
action is selected randomly, ignoring training traces. The next action to perform is: 
random{a1, a2, … , a14}. 

Technique T5 is behavior capture with random trace sequence generalization. It 
picks a random trace from available training traces, and performs the actions in the 
chosen trace order. Therefore the next three actions in order are: random{[a5, 
a7,a6],[a1,a4,a3],[a6,a8,a5],…,[a4,a3,a1]}. Technique T5 is just 
one of the parameterized HMM generalizations. Since an HMM remembers its 
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previous state information through the transitional probabilities between pairs of 
hidden states, with enough hidden states, the HMM can remember the exact order of 
the training traces and reproduce actions in the same order as the training traces. 
Technique T6 is behavior capture with HMM sequence generalization and it uses an 
HMM with eight hidden states. 

In addition to the proactive behaviors, each patron was trained to perform one 
reactive behavior: face the collaborator, walk to the collaborator, listen and then 
speak. This behavior is used to respond to the proactive collaborative converse 
behavior. Patron training also included one latent behavior: when the bard exits the 
stage, face the bard and cheer. A multi-queue behavior architecture was used so that 
the latent behavior would interrupt any proactive behavior and the interrupted 
behavior would be resumed after the latent behavior was completed [5]. The bard was 
trained with two proactive behaviors. The first was: sing, wait, and leave the stage. 
The second was: return to the stage. 

We had two main hypotheses. First, that behavior capture would rank higher than 
the no behavior and manually scripted behavior techniques. Second, that sequence 
generalization would be a factor in the perception of believable characters. 
Specifically, the order of behavior capture rankings would be: HMM, random traces, 
random actions, and no sequence generalization.  

5.2 Preliminary User-Study 

We conducted a preliminary user study to evaluate the effects of the number of 
training traces. We wanted to determine how the number of traces would influence 
user perceptions. The goal was to determine if users could distinguish between quite a 
small number of training traces (4) and a larger number (9). The user study was 
constructed similarly to the main user study that is described in the previous section, 
except that scene variations with 4 training traces were compared to scene variations 
with 9 training traces. The results show that with 95% confidence the variations with 
higher numbers of traces produced more believable scenes. This is an expected trade-
off between quality and workload. Based on this result, we set the number of training 
traces in our main user-study closer to the higher number (we selected 10 traces). 

5.3 Results 

In the main user study, there were 27 participants. However, a few participants did not 
answer carefully enough for their responses to be considered valid, with some 
participants not answering some questions and some participants providing what 
seemed to be random answers (e.g., ranking 1,2,3,4,5,6 for all criteria). Therefore, the 
results of each questionnaire were validated for self-consistency. One question asked 
the respondent to rank the six variations according to overall believability, while 
another question asked the respondent to rate the six variations individually on a scale 
of 1 to 4 according to overall believability. To ensure that the participants answered 
the questions carefully, we removed a questionnaire if the rankings and ratings 
contained more than one inconsistency between the rating and ranking questions. 
After this consistency check, a total of 21 valid questionnaires remained. 

Table 2 shows the average technique rankings for the 6 techniques. Each number 
represents the average ranking for the particular technique for the particular criteria 
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over the 21 responses. For example, technique T6 is ranked 4.29 on average (where 6 
is the highest ranking) among the 6 techniques, according to the criteria active 
characters. The results show that in general, technique T6 is ranked highly for all the 
criteria except unpredictable characters. Note that high rankings are better than low 
ones for all criteria except unpredictable characters and that the overall believability 
is not an average of the other criteria. It was a separate question on the survey. 

Table 2. Average Technique Ranking (6 is Highest, 1 is Lowest) and Average Overall Rating 
(out of 4). Higher numbers are better in all criteria except unpredictable characters. Standard 
deviations are shown in parentheses. 

Criteria T1 T2 T3 T4 T5 T6 

active characters 
(ranking) 

1.19 
(0.60) 

3.38 
(1.72) 

3.90 
(1.67) 

4.29 
(1.23) 

3.95 
(1.53) 

4.29 
(1.06) 

unpredictable 
characters (ranking) 

3.00 
(2.24) 

3.29 
(1.65) 

4.48 
(1.60) 

3.52 
(1.50) 

3.62 
(1.60) 

3.10 
(1.34) 

plausible sequences 
(ranking) 

2.00 
(1.45) 

2.38 
(1.63) 

3.57 
(1.57) 

4.38 
(1.40) 

4.29 
(1.35) 

4.38 
(1.20) 

diverse actions 
(ranking) 

1.24 
(0.54) 

3.29 
(1.68) 

4.10 
(1.67) 

3.86 
(0.96) 

3.81 
(1.66) 

4.71 
(1.10) 

overall believability 
(ranking) 

1.33 
(0.80) 

3.05 
(1.69) 

3.67 
(1.28) 

4.00 
(1.26) 

4.10 
(1.61) 

4.86 
(1.15) 

overall believability 
(rating) 

1.20 
(0.41) 

2.05 
(1.16) 

2.19 
(0.87) 

2.71 
(0.90) 

2.57 
(0.87) 

2.85 
(0.59) 

 
We used a Friedman statistical test, and compared each row of Table 2 to avoid the 

alpha-inflation effect. It indicated that there are significant differences in the average 
rankings of the six techniques for each criterion at the 95% confidence level. We used 
a Friedman test instead of ANOVA because of the ranked data. Based on the positive 
result of the Friedman test, T-tests were used to compare pairs of rankings. 

Table 3 shows the p-values of subsequent T-tests between the average rankings of 
technique T6 versus each of the other techniques. The most obvious result is that T6 
was ranked significantly higher than T1 and T2 in all aspects except unpredictability. 
This study indicates that hand-scripted characters are perceived as less diverse, less 
plausible and have less active characters than character behaviors generated using 
behavior capture with HMM sequence generalization. The study also shows that T6 
ranked significantly higher than all other tested techniques for overall believability. 

It is perhaps surprising that T6 was perceived as significantly better for overall 
believability compared to T3, T4, and T5, even though T6 was not perceived as 
significantly better on some of the four component criteria. This indicates that either 
there is a missing criterion that is necessary for overall believability or that 
believability cannot straightforwardly be decomposed into parts based on criteria. 
This is a crucial question in trying to measure believability, as pointed out by 
MacNamee [7], who endorsed the evaluation of aspects of believability rather than 
overall believability to reduce subjectivity. To evaluate the importance of our criteria, 
we asked participants to rate the importance of each of the four criteria. Table 4 
shows the average importance computed from the responses of the study participants. 
As expected, unpredictability is the least important in the eyes of the participants. 



352 R. Zhao and D. Szafron 

Table 3. p-values (to two decimals) from T-tests on Technique T6 versus each other technique 
for each criterion. Entries with a dark background are significant at the 95% confidence level 

Criteria T1 vs. T6 T2 vs. T6 T3 vs. T6 T4 vs. T6 T5 vs. T6 

Active 0.00 0.05 0.22 0.50 0.20 

Unpredictable 0.44 0.37 0.01 0.09 0.14 

Plausible 0.00 0.00 0.04 0.50 0.40 

Diverse 0.00 0.00 0.13 0.00 0.02 

Overall 0.00 0.00 0.00 0.03 0.03 

Table 4. The average importance of the four criteria. Participants rated each criteria on a scale 
of -3 to 3. A positive number means important in contributing positively to overall 
believability. A negative number means important in contributing negatively. The larger the 
absolute value the more important it is. 

Criteria Average Importance 

active 1.76 

unpredictable 0.71 

plausible 2.19 

diverse 1.52 

 
We will conduct studies on different variations and a larger participant pool to 

increase confidence that behavior capture generates significantly better behaviors. 

6 Conclusion 

The video game industry continues to grow and game designers are becoming more 
specialized in their own areas. In addition, recent story-based video games have 
started providing tools so that non-professionals can design their own stories. 
However, in order to use these tools successfully, a designer needs to know 
programming, since characters in game are controlled by programmed scripts. 

In this paper we propose a new tool for game designers that allow them to create 
behaviors for virtual characters, without having to learn complicated programming. 
Using an analogy to motion capture, we propose a data-driven method of creating 
behaviors for NPCs by behavior capture. Game designers take control of a particular 
NPC and perform the desired behaviors for this NPC. Using category-based 
generalization for characters and objects, and Hidden-Markov Models for sequence 
generalization, our behavior capture technique produces a variety of behaviors learned 
from the training traces. We performed a user study to confirm that behavior capture 
produces behaviors that are perceived as significantly superior with regards to 
character activity level, unpredictability and behavior diversity compared to the 
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scripted behaviors seen in a typical commercial story-based game. This study also 
showed that using HMMs for sequence generalization, instead of raw behavior traces 
contributes significantly to perceived overall believability. For future work, larger 
user studies with more participants and different scenes should be conducted to 
provide move evidence of the utility of behavior capture and more insight into the 
best technique for sequence generalization. 
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