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Computational Modeling as a Methodology
for Studying Human Language Learning

Thierry Poibeau, Aline Villavicencio, Anna Korhonen, and Afra Alishahi �

1 Overview

The nature and amount of information needed for learning a natural language,
and the underlying mechanisms involved in this process, are the subject of much
debate: how is the knowledge of language represented in the human brain? Is
it possible to learn a language from usage data only, or is some sort of innate
knowledge and/or bias needed to boost the process? Are different aspects of lan-
guage learned in order? These are topics of interest to (psycho)linguists who study
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human language acquisition, as well as to computational linguists who develop the
knowledge sources necessary for large-scale natural language processing systems.
Children are the ultimate subjects of any study of language learnability. They learn
language with ease, in a short period of time and their acquired knowledge of
language is flexible and robust.

Human language acquisition has been studied for centuries, but using computa-
tional modeling for such studies is a relatively recent trend. However, computational
approaches to language learning have become increasingly popular, mainly due to
advances in developing machine learning techniques, and the availability of large
collections of experimental data on child language learning and child-adult inter-
action. Many of the existing computational models attempt to study the complex
task of learning a language under cognitively plausible criteria (such as memory
and processing limitations that humans face), and to explain the developmental
stages observed in children. By simulating the process of child language learning,
computational models can show us which linguistic representations are learnable
from the input that children have access to in a reasonable amount of time, and
which mechanisms yield the same patterns of behaviour that children exhibit during
this process. In doing so, computational modeling provides insight into the plausible
mechanisms involved in human language acquisition, and inspires the development
of better language models and techniques.

The aim of this volume is to present a cross-section of recent research on the
topic that draws on the relevance of computational techniques for understanding
human language learning. These studies are inherently multidisciplinary, influenced
by knowledge from fields such as Linguistics, Psycholinguistics and Biology, and
the overview chapter starts with a discussion of some of the challenges faced, such
as learnability constraints, data availability and cognitive plausibility. The strategies
that have been adopted to deal with these problems build on recent advances in areas
such as Natural Language Processing, Machine Learning, Artificial Intelligence and
Complex Networks, as will be discussed in details in the chapters that compose this
collection. Given the complex facets of language that need to be acquired, these
investigations differ in terms of the particular language learning task that they target,
and the overview chapter finishes with a contextualization of these contributions.

1.1 Theoretical Accounts of Language Modularity
and Learnability

The study of human language acquisition pursues two important goals: first, to
identify the processes and mechanisms involved in learning a language; and second,
to detect common behavioural patterns in children during the course of language
learning.

Languages are complex systems and learning one consists of many different
aspects. Infants learn how to segment the speech signal that they receive as
input, and they recognize the boundaries that distinguish each word in a sentence.
They learn the phonology of their language, or the auditory building blocks which



Computational Modeling as a Methodology for Studying Human Language Learning 3

form an utterance and the allowable combinations which form individual words.
They assign a meaning to each word form by detecting the referent object or concept
that the word refers to. They learn the regulations that govern form, such as how to
change the singular form of a noun into a plural form, or the present tense of a verb
into the past tense. They learn how to put words together to construct a well-formed
utterance for expressing their intention. They learn how to interpret the relational
meaning that each sentence represents and how to link different sentences together.
On top of all these, they learn how to bring their knowledge of concept relations,
context, social conventions and visual clues into this interpretation process.

A central question in the study of language is how different aspects of linguistic
knowledge are acquired, organized and processed by the speakers of a language.
The useful boundaries that break the language faculty into separate “modules” such
as word segmentation, phonology, morphology, syntax, semantics and pragmatics,
have been historically imposed to facilitate the study of each of these aspects
in isolation. However, later psycholinguistic studies on language acquisition and
processing suggest that the information relevant to these modules is not acquired in
a temporally linear order, and that there is close interaction between these modules
during both the acquisition and processing of language. In addition, many of the
formalisms and processing techniques that have been proposed to handle a specific
aspect may not be suitable for another.

The language modularity argument is part of a larger debate on the architecture
of the brain, or the “modularity of mind.” Proposals advocating a highly modular
view rely extensively on the studies of Specific Language Impairments (SLI) which
imply the isolation of language from other cognitive processes (e.g., [36]), whereas
a highly interactive views refer to more recent studies on the interaction of language
and other modalities such as vision or gesture at the process level (see Visual World
Paradigm, [61]).

The modularity debate has been highly interleaved with the issue of nativism or
language innateness. On the topic of language, the main point of interest has been
whether humans are equipped with a highly sophisticated module for learning and
using natural languages, consisting of task-specific procedures and representations,
the “language faculty” [9, 11]. As complicated as it seems to master a language,
children all around the world do it seemingly effortlessly and in a short period of
time. They start uttering their first words around age 1. By the time they are 3–4-
years old, they can use many words in various constructions, and can communicate
fluently with other speakers of their native language. The efficiency with which
children acquire language has raised speculations about whether they are born with
some sort of innate knowledge which assists them in this process.

Human beings have an unparalleled skill for learning and using structurally
complex languages for communication, and the learnability of natural languages
has been one of the most controversial and widely discussed topics in the study
of languages. The possibility of a genetic component that accounts for this unique
ability of humans has been raised, but the extent and exact manifestation of this
component is not clear. For instance, it has been argued that general learning and
problem solving mechanisms are not enough to explain humans highly complex
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communication skills, and some innate knowledge is also needed to account for
their exceptional linguistic skills [13,53]. This hypothesis, known as the Innateness
Hypothesis, states that human beings have an innate predisposition for learning
languages, a task or domain specific knowledge, defined by their genetic code, and
without having access to such innately specified linguistic knowledge a child cannot
learn a language. Indeed, a nativist view of language learning states that natural
languages are not learnable from the linguistic data that is typically available to
children (Primary Linguistic Data, or PLD). The main argument in support of this
view is the Argument from the Poverty of the Stimulus (APS; [9]), according to
which PLD is both quantitatively and qualitatively too impoverished to allow for the
acquisition of a natural language in its full structural complexity in a short period
of time.

Of particular relevance to this discussion is the mathematical work of [28],
who proved that a language learner cannot converge on the correct grammar from
an infinitely large corpus without having access to substantial negative evidence.
However, direct negative evidence (or corrective feedback from adult speakers of
language) has been shown not to be a reliable source of information in child-
directed data [44,45].1 These findings have been viewed as compatible with nativist
proposals for language acquisition such as that of a Universal Grammar (UG)
[12], proposing that each infant is born with a innately specified representation of
a grammar which determines the universal structure of a natural language. This
universal grammar would be augmented by a set of parameters, which have to be
adjusted over time to account for the particular language a child is exposed to.

In response to the nativist view of language learning, alternative representations
of linguistic knowledge have been proposed, and various statistical mechanisms
have been developed for learning these representations from usage data. A more
empiricist view of language learning argues that a child does not have any
innate prior knowledge about languages, and that languages can be learned using
only general cognitive abilities which also underly other tasks (e.g. imitation,
categorization and generalization [63, 64]) when these are applied to the sensory
input to which a child is exposed. In an extreme version of empiricism, a child is
like a tabula rasa, or a blank slate, when born, and all its language capabilities are
learned from scratch from the environment [54].

Analyses of large collections of data on child-parent interactions have raised
questions about the inadequacy of PLD [35, 54], arguing that child-directed data
provides rich statistical cues about the abstract structures and regularities of
language. In addition, recent psycholinguistic findings which hint at a ‘bottom-up’
process of child language acquisition have also questioned the top-down, parameter-
setting approach advocated by the nativists. Advocates of this alternative view of
language learning, also referred to as the usage-based, claim that children do not

1On the other hand, it has been suggested that the language learner can estimate the “typical” rate
of generalization for each syntactic form, whose distribution serves as “indirect” negative evidence
[15, 42].
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possess highly detailed linguistic knowledge at birth; instead they learn a language
from the usage data they receive during the course of learning. Usage-based
theories of language acquisition are motivated by experimental studies on language
comprehension and generation in young children that suggest that children build
their linguistic knowledge around individual items [1,3,38,39,63]. This view asserts
that young children initially learn verbs and their arguments as lexical constructions
and on an item-by-item basis, and only later begin to generalize the patterns they
have learned from one verb to another. However, the details of the acquisition of
these constructions and the constraints that govern their use are not clearly specified.
Explicit models must be explored, both of the underlying mechanisms of learning
these regularities, and of the use of the acquired knowledge.

In sum while nativism emphasises the role of nature as providing the required
equipment, empiricism emphasises the role of nurture assuming that the environ-
ment is rich enough to provide a child with all the necessary evidence for language
acquisition. Different proposals vary in terms of the extent in which they rely on
language specific mechanisms and on general-purpose skills.

1.2 Investigations of Linguistic Hypotheses

One fundamental difficulty in research on language acquisition is that due to its
characteristics it has to rely on indirect observation about the target processes.
Apart from ethical considerations, the lack of non-invasive technology that is able
to capture acquisition in action over time means that researchers can only assess
different hypotheses indirectly, e.g. through diaries of child language, corpora of
child-directed speech, or psycholinguistic data. As an strategy for probing human
behaviour when learning and processing language, psycholinguistics provides a
variety of experimental methodologies for studying specific behavioural patterns in
controlled settings. Evidence concerning what humans (and children in particular)
know about language and how they use it can be obtained using a variety
of experimental techniques. Behavioural methods of studying language can be
divided into two main groups: offline techniques, which aim at evaluating subjects’
interpretation of a written or uttered sentence after the sentence is processed; and
online techniques, which monitor the process of analyzing linguistic input while
receiving the stimuli.

In offline studies, child language processing is examined in an experimental
set-up using interactive methods in the form of act-out scenarios (when the
experimenter describes an event and asks the child to act it out using a set of toys
and objects), or elicitation tasks (when the child is persuaded to describe an event or
action in the form of a natural language sentence). Preferential looking studies are
another experimental approach conducted mostly on young children, where their
preferences for certain objects or scene depictions is monitored while presenting
them with linguistic stimuli.
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In online methodologies, a variety of techniques are used (mostly on adult
subjects) for identifying processing difficulties. A common technique in this cat-
egory is measuring reading times. Many factors can affect reading times, therefore
psycholinguistic studies use stimuli which are different in one aspect and similar
in the others, and measure the reading time of each group of stimuli. Another
technique that can be used on children as well as adult subjects is eye-tracking,
where eye movements and fixations are spatially and temporally recorded while
the subjects read a sentence on the screen. Using this technique, several reading
time measures can be computed to evaluate processing difficulties at different
points in the sentence. Also, anticipatory eye-movements can be analyzed to infer
interpretations. Eye-tracking techniques have been employed in the Visual World
Paradigm [61], where subjects’ eye movements to visual stimuli are monitored as
they listen to an unfolding utterance. Using this paradigm, the construction of online
interpretation of a sentence and its mapping to the objects in the visual environment
in real time can be studied.

More recently, neuroscientific methods have also been used for studying the
processing of language in the brain. The most common approach is to measure
event-related potentials (ERP) via electroencephalography (EEG): a stimulus is
presented to the subject, while ERPs are measured through electrodes positioned
on the scalp. Robust patterns have been observed in the change of ERPs as a
response to linguistic stimuli. For example, when presented with a sentence with a
semantic anomaly (e.g., I like my coffee with cream and dog), a negative deflection is
usually observed 400 ms after the presentation of the stimuli. However, it is difficult
to isolate the brain response to a particular stimulus, and it has been a challenge
to derive a detailed account of language processing from such data. Functional
Magnetic Resonance Imaging (fMRI) is another technique for measuring neural
activity in the brain as a response to stimuli. Unlike EEG, fMRI cannot be used as
an online measure, but it has higher spatial resolution and provides more accurate
and reliable results.

In the majority of experimental studies of language, one aspect or property of
the task or stimuli is selected and manipulated while other factors are held constant,
and the effect of the manipulated condition is investigated among a large group
of subjects. This approach allows researchers to isolate different language-related
factors, and examine the significance of the impact that each factor might have
on processing linguistic data. In such set-ups, it is only possible to manipulate the
properties of the input data and the task in hand, and the learning or processing
mechanisms that the subjects use for performing the task remain out of reach.
Moreover, each subject has a history of learning and processing language which
cannot be controlled or changed by the experimenter: all there is to control is a
time-limited experimental session. Artificial languages are used to overcome any
interference that the subjects’ previous language-related experience might have on
the outcome of the experiment. But the amount of the artificial input data that each
subject can receive and process in these settings is very limited. These shortcomings
call for an alternative approach for investigating the hypotheses regarding the
acquisition and processing of natural languages.
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2 Computational Models of Language Learning

Over the past decades, computational modeling has been used extensively as a
powerful tool for in-depth investigation of existing theories of language acquisition
and processing, and for proposing plausible learning mechanisms that can explain
various observed patterns in child experimental data. The use of computational tools
for studying language dates back to the onset of Artificial Intelligence. Early models
mostly used logic rules for defining natural language grammars, and inference
engines for learning those rules from input data. Over the last 20 years a rapid
progress in the development of statistical machine learning techniques has resulted
in the emergence of a wider range of computational models that are much more
powerful and robust than their predecessors. As a result, computational modeling is
now one of the main methodologies in the study of human cognitive processes, and
in particular language.

Using computational tools for studying language requires a detailed specification
of the properties of the input data that the language learner receives, and the
mechanisms that are used for processing the data. This transparency offers many
methodological advantages, such as:

• Explicit definition of assumptions: when implementing a computational model,
every assumption, bias or constraint about the characteristics of the input data
and the learning mechanism has to be specified. This property distinguishes a
computational model from a linguistic theory, which normally deals with higher-
level routines and does not delve into details, a fact that makes such theories hard
to evaluate.

• Control over input data: unlike an experimental study on a human subject, the
researcher has full control over all the input data that the model receives in its
life time. This property allows for a precise analysis of the impact of the input on
the behaviour of the model.

• Control over experimental variables: when running simulations of a model, the
impact of every factor in the input or the learning process can be directly studied
in the output (i.e., the behaviour) of the model. Therefore, various aspects of
the learning mechanism can be modified and the behavioural patterns that these
changes yield can be studied.

• Choice of learning mechanisms: the performance of two different mechanisms
on the same data set can be compared against each other, something that is almost
impossible to achieve in an experimental study on children.

• Access to predictions of the model: because of the convenience and the
flexibility that computational modeling offers, novel situations or combinations
of data can be simulated and their effect on the model can be investigated. This
approach can lead to novel predictions about learning conditions which have not
been previously studied.

Despite these advantages, computational modeling should not be viewed as
a substitute but rather as a complement for theoretical or empirical studies of
language. One should be cautious when interpreting the outcome of a computational
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model: if carefully designed and evaluated, computational models can show what
type of linguistic knowledge is learnable from what input data. Also, they can
demonstrate that certain learning mechanisms result in behavioural patterns that
are more in line with those of children. In other words, computational modeling can
give us insight into which representations and processes are more plausible in light
of the experimental findings on child language acquisition. They can be viewed
as the testing grounds for different theories and can provide information about
the conditions under which these would succeed in a given task. However, even
the most successful computational models can hardly prove that humans exploit a
certain strategy or technique when learning a language. Cognitive scientists can use
the outcome of computational modeling as evidence on what is possible and what
is plausible, and verify the suggestions and predictions made by models through
further experimental and neurological studies.

2.1 What to Expect from a Model

Traditionally, linguistic studies of language have been focused on representational
frameworks which can precisely and parsimoniously formalize a natural language
according to how adult speakers of that language use it. In this approach, the focus
is on the end product of the acquisition process, and not on the process itself. On
the other hand, psycholinguistic studies mainly emphasize the process of learning
and using a language rather than the language itself [14]. This dual approach is
also reflected in the modeling of language acquisition. One modeling strategy is to
demonstrate the feasibility of extracting an optimal structure from a given linguistic
input (e.g., a grammar from a text corpus, or a phonetic or lexical segmentation from
a large stream of speech signals), aiming at compatibility of the results with a target.
An alternative strategy is to focus on developmental compatibility and replicate the
stages that children go through while learning a specific aspect of language, such
as vocabulary growth in word learning or the U-shaped generalization curve in the
acquisition of verb argument structure. Therefore, given the priorities of each of
these strategies it is important to evaluate a model in the context that it is developed
in, and with respect to the goals that it is aiming at.

Another critical point when assessing a model is to identify the fundamental
assumptions that the model is based on. When developing a model for computational
simulation of a process, all the details of the process must be implemented, and
no trivial aspect of the representational framework or the procedure can be left
unspecified. However, many of these details are of secondary importance to the
process that the model aims to study. It is of utter importance for the developers
of a computational model to clearly specify which theoretical assumptions about
the implemented model or the characteristics of the input data are fundamental,
and which implementation decisions are arbitrary. Moreover, they must show
that the overall performance of the model does not crucially depend on these
trivial decisions.



Computational Modeling as a Methodology for Studying Human Language Learning 9

Finally, the level of processing targeted by a model must also be taken into
account. One of the first (and most influential) categorizations of cognitive models
was proposed by Marr [47], who identifies three levels of describing a cognitive
process. First is the Computational level, which identifies what knowledge is
computed during the process. This is the highest level a model can aim for: the
focus is on what is needed or produced during the cognitive process under study,
abstracting from any learning or processing algorithm that is used for computing
or applying this knowledge. Next comes the Algorithmic level, which specifies how
computation takes place. At this level, the focus is on the mechanisms involved
in the computational process. Finally there is the Implementation level, which
simulates how the algorithms are actually realized in brain. At this level, every
implementational detail is a vital component of the model. It is important on the
modelers’ side to specify, and on the evaluators’ side to take into account, the
intended level of the model to be assessed. If the simulation of a model aimed at
a computational level of describing a process results in a behavioural pattern that
is inconsistent with that of children, it might be due to an inappropriate choice of
algorithm or other implementational details, and not because the specification of the
proposed computation itself is flawed.

One important constraint when developing a cognitive model is cognitive plausi-
bility. In the field of natural language processing, many automatic techniques have
been developed over the years for extracting various types of linguistic knowledge
from large collections of text and speech, and for applying such knowledge to
different tasks. In this line of research, the main goal is to perform the task
at hand as efficiently and accurately as possible. Therefore, any implementation
decision that results in better performance is desired. For instance, to induce wide
coverage grammars from corpora, supervised learning methods based on annotated
data such as the Penn Treebank have been usually employed, with grammars
that tend to be less than or equal to context free grammars in expressive power
and which may not be linguistically adequate to capture human grammar [60].
However, cognitive models of language learning and processing are not motivated
by improving performance on a certain task. Instead, they are aiming at simulating
and explaining how humans perform that task. Such models have to conform to the
limitations that humans are subject to.

A model which attempts to simulate a cognitive process has to make realistic
assumptions about the properties of the input data that are available to children
during that process. For example, a model of syntax acquisition cannot assume
that children are being corrected when producing an ungrammatical sentence,
since various analyses of child-directed data have shown that such information is
not consistently provided to them [44]. Also, when modeling any aspect of child
language acquisition, it cannot be assumed that children receive clean input data,
since the data almost always contain a high level of noise and ambiguity. Sometimes
it is inevitable to make simplifying assumptions about the structure of data in order
to keep calculations feasible or to focus on one specific aspect of learning. However,
if a model makes obviously false assumptions about the input, any finding by such
a model might not be generalizable to realistic situations.
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Also, a cognitive model must draw on language-independent strategies. Children
around the world learn a variety of languages with drastically different character-
istics, such as their sound system or structure. It is highly implausible to assume
that children use different learning mechanisms for learning different languages.
Thus a model of language learning must avoid any language-specific assumptions
or learning strategies. For example, a model of learning syntax which assumes a
rigid word order cannot be extended to families of languages with a more relaxed
word order.

Finally, cognitive models must conform to the memory and processing limita-
tions of humans. The architecture of the human brain and its processing capacities
and memory resources are very different from those of the existing computational
systems. Thus many of the machine learning techniques that are developed for
applying on large-scale data sets are not suitable for modeling human language
processing. For example, it is unlikely that children can remember every instance
of usage of a particular word or every sentence that they have heard during their
lifetime in order to learn something about the properties of language. This limits the
scope of the techniques and algorithms that can be used in cognitive modeling. One
of the by-products of human memory and processing limitations is that language
must be learned in an incremental fashion. Every piece of input data is processed
when received, and the knowledge of language is built and updated gradually.
This is in contrast with many machine learning techniques which process large
bodies of input at once (usually through iterative processing of data) and induce an
optimum solution (e.g., a grammar) which formalizes the whole data set precisely
and parsimoniously.

Although a cognitive model of language is often expected to provide a cogni-
tively plausible explanation for a process, it is the intended description level of
the model which determines the importance of various plausibility criteria. For
example for a model at the computational level, making realistic assumptions about
the characteristics of the input data is crucial. However, conforming to processing
limitations (such as incrementality) in the implementation of the model is of
secondary importance, since the model is not making any claims about the actual
algorithm used for the proposed computation.

2.2 Modeling Frameworks

The first generation of models of language were influenced by early artificial
intelligence techniques, including the logic-based inference techniques which were
widespread in 1960s. Symbolic modeling often refers to an explicit formalization of
the representation and processing of language through a symbol processing system.
In this approach, linguistic knowledge is represented as a set of symbols and their
propositional relations. Processing and updating this knowledge takes place through
general rules or schemas, restricted by a set of constraints. Each rule might be
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augmented by a list of exceptions, i.e., tokens or instances for which the rule is
not applicable. The syntactic structure of a language is typically modeled as a rule-
based grammar, whereas the knowledge of semantics is modeled through schemas
and scripts for representing simple facts and processes. These representations are
often augmented by a set of logical rules for combining them and constructing larger
units which represent more complex events and scenarios.

Following the Chomskian linguistics tradition, symbolic models of language
assume that a language is represented as an abstract rule-based grammar which
specifies all (and only) valid sentences, based on judgements of linguistic accept-
ability [12]. In this view, language processing is governed by internally specified
principles and rules, and ambiguities are resolved using structural features of parse
trees (e.g., the principle of minimal attachment; [24]). The influence of lexical
information on parsing and disambiguation is often overlooked by these theories.
Language acquisition, on the other hand, has been mainly modeled through trigger-
based models, where the parameters associated with a pre-specified grammar are
set to account for the linguistic input data (e.g., [26]).

Symbolic models of language are often transparent with respect to their linguistic
basis, and are computationally well-understood. However, typical symbolic models
do not account for the role of experience (or the statistical properties of the input
data) on behaviour and are not robust against noise and ambiguity.

Connectionist models of cognitive processes [48] emerged during 1980s as
an alternative to symbolic models. The architectural similarities between the
connectionist models and the human brain on a superficial level, and their capacity
for distributional representation and parallel processing of knowledge made them an
appealing choice for modeling human language acquisition and processing. The idea
of connectionist models is based on simple neural processing in brain. Each connec-
tionist model (or artificial neural network) consists of many simple processing units
(or neurons), usually organized in layers, which are heavily interconnected through
weighted links. Each neuron can receive many input signals, process them and pass
the resulting information to other neurons. Linguistic knowledge is represented as
distributed activation patterns over many neurons and the strength of the connections
between them. Learning takes place when connection weights between neurons
change over time to improve the performance of the model in a certain task, and
to reduce the overall error rate. A cognitive process is modeled by a large number
of neurons performing these basic computations in parallel.

Various versions of artificial neural networks have been proposed which vary
in the neuron activation function, the architecture of the network, and the training
regime. For modeling language learning, multi-layered, feed-forward networks have
been most commonly used. These networks consist of several neurons, arranged in
layers. The input and output of the cognitive process under study are represented
as numerical vectors, whose dimensions correspond to input units. Such models
are normally trained in a supervised fashion: the model produces an output for a
given input pattern, and the connection weights are adjusted based on the difference
between the produced and the expected output.



12 T. Poibeau et al.

Connectionist models have received enormous attention from the cognitive
science community due to the learning flexibility they offer compared to symbolic
models (e.g., [20,40]), and because they suggest that general knowledge of language
can be learned from instances of usage. However, these models often cannot
easily scale up to naturalistic data. Moreover, the knowledge they acquire is not
transparent, and is therefore hard to interpret and evaluate.

The relatively recent development of machine learning techniques for processing
language motivated many researchers to use these methods as an alternative
modeling paradigm. Probabilistic modeling allows for combining the descriptive
power and transparency of symbolic models with the flexibility and experience-
based properties of the connectionist models. Probabilities are an essential tool
for reasoning under uncertainty. In the context of studying language acquisition,
probabilistic modeling has been widely used as an appropriate framework for
developing experience-based models which draw on previous exposure to language,
and at the same time provide a transparent and easy to interpret linguistic basis.
Probabilistic modeling views human language processing as a rational process,
where various pieces of evidence are weighted and combined through a principled
algorithm to form hypotheses that explain data in an optimal way. This view
assumes that a natural language can be represented as a probabilistic model
which underlies sentence production and comprehension. Language acquisition thus
involves constructing this probabilistic model from input data.

Many probabilistic models of language are essentially an augmented version of
their symbolic counterparts, where each rule or schema is associated with a weight
(or probability). For example, Probabilistic Context Free Grammars (PCFG) use a
symbolic representation of the syntactic knowledge (CFG), but they also calculate
a probability for each grammar rule depending on the number of times that rule has
appeared in the input [32]. However, an alternative (and more radical) probabilistic
view proposes language represented as a bottom-up, graded mapping between the
surface form and the underlying structure, which is gradually learned from exposure
to input data (e.g., [16, 64]).

The acquisition of linguistic knowledge can be formulated as an induction
process, where the most likely underlying structures are selected based on the
observed linguistic evidence. The basic idea behind this process is to break down
complex probabilities into those that are easier to compute, often using Bayes’ rule.
A family of probabilistic models, generally referred to as Bayesian models, have
gained popularity over the past decade. In the context of grammar learning, Bayesian
methods specify a framework for integrating the prior information about the gram-
matical structures and the likelihood of the observed word strings associated with
each structure, to infer the most probable grammatical structure from a sentence.
The prior probabilities are often used for embedding underlying assumptions about
the hypothesis space and for seemlessly integrating biases and constraints into the
system. It has been argued that prior information (specifically the prior structure
over Bayesian networks) is crucial to support learning [62]. The positioning of these
models in relation to nativism due to the nature of the prior information adopted
remains to be determined. As [51] discuss, there seems to be an agreement along the
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empiricist-nativist continuum that there must be some innate constraints. Different
proposals vary as to which constraints are adopted and how strong and domain-
specific they are, given the empiricist ideal of a bottom-up, data-driven learning.

In addition to the probabilistic frameworks that are specifically developed
for representing and processing linguistic knowledge, many recent computational
models heavily rely on general-purpose statistical machine learning tools and
techniques. A variety of such methods have been successfully exploited in more
practical natural language processing applications. The efficiency of these methods
has motivated their use in modeling human language acquisition and processing,
in particular for the purpose of extracting abstract and high-level knowledge from
large collections of data. In this context, one approach from Information Theory
that has been adopted in various computational language acquisition tasks is the
Minimum Description Length (MDL) Principle. MDL is an algorithmic paradigm
for evaluating the hypothesis space, based on Occam’s Razor, in which the best
hypothesis for a given set of data is the one that leads to the best compression
of the data [55]. The idea is that MDL can be used to order the hypothesis space
according to how compact the hypotheses are and how well they generate the data
[37]. MDL has proved to be a powerful tool in many language related tasks, such
as word segmentation (e.g., [4, 17]), grammar learning (e.g., [19, 30, 33, 66]) and
learnability assessment (e.g., [31]).

Probabilistic models in general are robust against noise, and are a powerful
tool for handling ambiguities. A range of statistical and probabilistic techniques
have been efficiently employed over the last couple of decades to modeling various
aspects of language acquisition and use, some examples of which can be seen in the
papers in this collection. However, some suggest that probabilistic methods must be
viewed as a framework for building and evaluating theories of language acquisition,
rather than as embodying any particular theoretical viewpoint [8].

2.3 Research Methods

As a response to the nativist claims that some aspects of language (mainly syntax)
are not learnable solely from input data, a group of computational models have
been proposed to challenge this view and investigate to what extent extracting a
grammatical representation of language from a large corpus is in fact possible. These
models are not considered as typical cognitive models, since most of them are not
concerned with how humans learn language. Instead, their goal is to show that the
Primary Linguistic Data is rich enough for an (often statistical) machine learning
technique to extract a grammar from it with high precision and without embedding
any innate knowledge of grammar into the system. On the other hand, a typical
cognitive model cannot be solely evaluated based on its accuracy in performing
a task. The behaviour of the model must be compared against observed human
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behaviour, the errors made by humans must be replicated and explained, and the
result must be linguistically and psychologically motivated. Therefore, evaluation
of cognitive models depends highly on the experimental studies of language.

We need to compare the knowledge of a cognitive model to that of humans in
a particular domain. But there is no direct way to figure out what humans know
about language. Instead, their knowledge of language can only be estimated or
evaluated through how they use it in language processing and understanding, as well
as in language production. Analysis of child production data provides valuable cues
about the trajectory of their learning the language. Many developmental patterns are
revealed through studying the complexity of the utterances that children produce,
the errors that they make and the timeline of their recovery from these errors. On
the other hand, comprehension experiments reveal information about knowledge
sources that children exploit, their biases towards linguistic and non-linguistic cues,
and their awareness of the association between certain utterances and events.

Earlier studies of child language acquisition were based on sporadic records
of interaction with children, or isolated utterances produced by children which
researchers individually recorded. But recent decades have seen a significant growth
in the variety and quantity of resources for studying language, and a collective
attempt from the computational linguistics and cognitive science communities to
use standard formats for the expansion of these resources.

The most well-known and widely used database of transcriptions of dialogues
between children and their caregivers is CHILDES [20], a collection of corpora
containing recorded interactions of adults with children of different age and lan-
guage groups and from different social classes. Transcriptions are morphologically
annotated and mostly follow a (semi-)standard format, and occasionally, some
semantic information about the concurrent events is added to the conversation (e.g.,
what objects are in the scene or what the mother points to). The English portion
of CHILDES has been annotated with dependency-based syntactic relations [59].
Many of the databases in CHILDES also contain audio or video recordings of the
interaction sessions, but these recordings are mostly unannotated.

Some of the audio and video recordings in CHILDES have been annotated by
individual research groups for specific purposes. For example, [68] and [23] use
video clips of mother-infant interactions from CHILDES, and manually label the
visible objects when each utterance is uttered, as well as the objects of joint attention
in each scene. Other social cues such as gaze and gesture are also marked. A more
systematic approach is taken by the TalkBank project, which is accumulating the
speech corpus of children with multimodal annotation [43]. Other researchers have
collected smaller collections of annotated videos from children. One such example
is the recording of adults reading story books to 18 month old infants, annotated
to identify the physical objects and the spoken words in each frame in the video
[69]. Another example is a set of videos of a human operator enacting visual scenes
with toy blocks, while verbally describing them [18]. These resources are sparse,
and the annotation scheme or the focus of annotation is rather arbitrarily chosen
by the researchers who developed them. Another massive collection of data has
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been recently gathered by Roy [56]. Roy has recorded his son’s development at
home by gathering approximately 10 h of high fidelity audio and video on a daily
basis from birth to age 3. However, the resulting corpus is not structured. These
collections are hard to use without some sort of preprocessing or manual annotation.
Nevertheless, they are complementary to the textual data from corpora which lack
any semantic information.

Ever since the availability of resources like CHILDES [20], both child-directed
(utterances by parents and other adults aimed at children) and child-produced data
have been extensively examined. Analyses of child-directed data in particular have
mainly focused on the grammaticality of the data, its statistical properties (e.g.,
[31]), and the availability of various cues and constructions (e.g., [29]). Such
analyses have provided valuable information about what children have access to.
For example, child-directed data has been shown to be highly grammatical (e.g.,
[5]), and sufficiently rich with statistical information necessary for various tasks
(e.g., the induction of lexical categories [49]).

Utterances produced by children, on the other hand, have been analyzed with a
different goal in mind: to identify the developmental stages that children go through
in the course of learning a language, and to detect common behavioural patterns
among children from different backgrounds. The parameters usually examined in
child-produced data are: (a) the size of the vocabulary that they use; (b) the length
of the sentences that they produce; (c) the complexity of these sentences (which
syntactic constructions they use); (d) the wide-spread errors that they make and
the type of these errors; and (e) how each of these factors changes as the child
ages. Also, differences between each of these factors have been studied in children
of different genders, nationalities and social classes. Such studies have yielded
substantial evidence about children’s learning curves in different tasks (e.g., word
learning or argument structure acquisition).

Besides the more direct use of adult-child interaction data, properties of the
data are also used in evaluating computational models of language. Statistical
properties of child-directed data (average sentence length, distributional properties
of words, etc.) are normally used as standard when selecting or artificially creating
input for many computational models (e.g., [7, 31, 51, 66]). Additionally, several
models have attempted to simulate or explain the patterns observed in child-
produced data.

In addition to these child-focused collections, there are several large corpora of
adult-generated text and speech. These corpora, such as the Brown corpus [22], the
Switchboard corpus [27], and the British National Corpus (BNC; [6, 34]) contain
large amounts of data, and are representative of language used by a large number
of speakers of a language (mostly English) in different domains and some of
these corpora are entirely or partially annotated with part of speech tags or parsed
(e.g., [46]). Although these corpora are normally used as input data for models of
grammar induction, they have also been used as basis for comparative and even
complementary analyses to those reported using child-related data (e.g., [31]).



16 T. Poibeau et al.

3 Impact of Computational Modeling on the Study
of Language

Advances in machine learning and knowledge representation techniques have led
to the development of powerful computational systems for the acquisition and pro-
cessing of language. Concurrently, various experimental methodologies have been
used to examine children’s knowledge of different aspects of language. Empirical
studies of child language have revealed important cues about what children know
about language, and how they use this knowledge for understanding and generating
natural language sentences. In addition, large collections of child-directed and child-
produced data have been gathered by researchers. These findings and resources have
facilitated the development of computational models of language. Less frequently,
experiments have been designed to assess the predictions of some computational
models on a particular learning process. Computational cognitive modeling is a
new and rapidly developing field. During its short life span, it has been extensively
beneficial to cognitive science in general, and the study of natural language
acquisition and use in particular.

One of the main impacts of computational models of language acquisition has
been to emphasize the importance of probabilistic knowledge and information the-
oretic methods in learning and processing language. The role of statistical methods
in language acquisition for long in the sidelines has been gaining prominence in
recent years [2]. The undeniable success of statistical techniques in processing
linguistic data for more applied NLP tasks has provided strong evidence for their
impact in human language acquisition [8]. On the other hand, shallow probabilistic
techniques which are not linguistically motivated can only go so far. For example,
pure distributional models have been generally unsuccessful in accounting for
learning a natural language in realistic scenarios. Fifty years after the development
of the first computational models of language, hybrid modeling approaches that
integrate deep structures with probabilistic inference seem to be the most promising
direction for future research.

Developing computational algorithms that capture the complex structure of
natural languages in a linguistically and psychologically motivated way is still an
open problem. Computational studies of language combine research in linguistics,
psychology and computer science. Because it is a young field of a highly interdis-
ciplinary nature, the research methods employed by scholars are inevitably varied
and non-standard. This is an unfortunate situation: it is often difficult to compare
different models and analyze and compare their findings due to incompatible
resources and evaluation techniques they employ. It is vital for the community to
share resources and data collections, to develop unified schemes for annotation
and information exchange, and to converge on standards for model comparison and
evaluation.

When it comes to comparing and evaluating computational models, there is even
less agreement among researchers in this field. The majority of algorithms used
for simulating language acquisition are unsupervised, mainly because it is highly



Computational Modeling as a Methodology for Studying Human Language Learning 17

unrealistic to assume that children receive input data which is marked with the
kind of linguistic knowledge they are supposed to learn. As a consequence, there is
no gold standard for evaluating the outcome of these unsupervised models and the
success of their results and contributions may be difficult to assess. Furthermore, the
underlying representation of the linguistic knowledge in human brain is unknown;
therefore, the knowledge of language that a model acquires cannot be evaluated
on its own. Many models apply their acquired knowledge on different tasks, but
such tasks are often chosen arbitrarily. With computational modeling becoming
more widespread, it is extremely important for the community to converge on
standard evaluation tasks and techniques in each domain that can be used for
rigorous evaluation of the methodology and replicability of the results, as in the
more traditional disciplines that influence the field.

4 This Collection

4.1 Methods and Tools for Investigating Phonetics
and Phonology

Child language corpora are essential for research on language acquisition, yet pro-
hibitively expensive to build. The study of child language acquisition has made great
progress in recent years thanks to the availability of shared corpora and tools among
researchers. The CHILDES database includes a large number of corpora for growing
number of languages like Danish, Portuguese, German, Russian and Cantonese
among others. Moreover, the tools associated with CHILDES (e.g. CLAN) enable
easy access to the information provided in corpora allowing complex searches
that combine different levels of information. However, the majority of the tools
associated with CHILDES focus on morphology, syntax and semantics [50,58], with
a lack of tools for phonetics and phonology. With the development of Phon this is
no longer the case. The chapter Phon 1.4: A Computational Basis for Phonological
Database Elaboration and Model Testing of this collection by Yvan Rose, Gregory
J. Hedlund, Rod Byrne, Todd Wareham, and Brian MacWhinney introduces version
1.4 of Phon – an open-source software program designed for the transcription,
coding, and analysis of phonological corpora. Phon 1.4. is a versatile program
capable of supporting multimedia data linkage, utterance segmentation, multiple-
blind transcription, transcription validation, syllabification, and the alignment of
target and actual forms. The system is available with a graphical interface and is
used by PhonBank, a database project that seeks to broaden the scope of CHILDES
into phonological development and disorders.

A framework for phonetic investigations is also the topic of the chapter Self-
Organization of the Consonant Inventories in the Framework of Complex Networks,
by Animesh Mukherjee, Monojit Choudhury, Niloy Ganguly and Anupam Basu. It
introduces a computational framework for representing, analysing and synthesising
consonant inventories of the world’s languages. The framework is capable of
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integrating the full variety in consonants as well as languages. It is essentially
a complex network with two sets (or partitions) of nodes: one for consonants
and the other one for languages. The primary objective is to provide the means
to systematically analyse and synthesise the structure of the Phoneme-Language
Network (PlaNet) and thereby, explain the distribution with which consonants occur
across languages.

4.2 Classifying Words and Mapping Them to Meanings

The task for learning the meanings of words can be viewed as children learning the
association between a word form and a concept after hearing repeated instances of
the word form used in reference to the concept. Despite its misleading apparent
simplicity, there are many challenges to this task. First, few words are used in
isolation. Children usually hear words in a sentential context. Secondly, a sentence
can potentially refer to many different aspects of a scene, as a typical learning
situation usually involves a large number of objects. For a learner who does not
know the meanings of words yet, it can be a real challenge to figure out the
exact aspect (or the relational meaning) that the sentence conveys. Thirdly, child-
directed speech has been shown to contain a substantial level of noise and ambiguity.
Therefore learning the correct mapping between each word and its meaning is a
complex process that needs to be accounted for by a detailed model.

In addition to the acquisition of word meanings, psycholinguistic studies suggest
that early on children acquire robust knowledge of some of the abstract lexical
categories such as nouns and determiners. For example, [25] show that 2-year-olds
treat novel words which do not follow a determiner (e.g., Look! This is Zag!) as a
proper name which refers to an individual. In contrast, they tend to interpret novel
words which do follow a determiner (e.g., Look! This is a zag!) as a mass noun.
However, learning lexical categories takes place gradually, and not all categories
are learned at the same time. For example, [65] show that 2-year-olds are more
productive with nouns than with verbs, in that they use novel nouns more frequently
and in more diverse contexts. How children gain knowledge of syntactic categories
is an open question. Children’s grouping of words into categories might be based on
various cues, including the phonological and morphological properties of a word,
distributional information about its surrounding context, and its semantic features.

The chapter of Fatemeh Torabi Asr, Afsaneh Fazly, and Zohreh Azimifar’s From
cues to categories: A computational study of children’s early word categorization
focuses on the acquisition of word categories. The authors investigate the types
of information children require in order to learn these categories. The paper
proposes a computational model which is capable of acquiring categories from
distributional, morphological, phonological, and semantic properties of words. The
results show that syntax plays an important role in learning word meaning (and
vice versa). Additionally, the proposed model can predict the semantic class of a
word (e.g., action or object) by drawing on the learned knowledge of the word’s
syntactic category.
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In the chapter In learning nouns and adjectives remembering matters: a cortical
model, Alessio Plebe, Vivian De la Cruz and Marco Mazzone investigate different
artificial models which can be used to mimic the acquisition of mapping of words
to meanings. The authors use a hierarchy of artificial cortical maps to develop
models of artificial learners that are subsequently trained to recognize objects, their
referents, and the adjectives pertaining to their color. In doing so, they address
several fundamental issues such as noun acquisition as well as adjective acquisition
(which is known to be a much more difficult task). The relation between nouns
and adjectives also plays a role in their meaning, so the model accounts for an
embryonic syntax. Results reported in the chapter explain various developmental
patterns followed by children in acquiring nouns and adjectives, by perceptually
driven associational learning processes at the synaptic level.

4.3 Learning Morphology and Syntax

Learning the categories or meanings of words is not enough for successful com-
munication: a language learner has to also master the regularities that govern word
forms, and the acceptable combinations of words into sentences. Natural languages
are highly regular in their morphological and syntactic structure. Regularities in
syntax, such as the position of the subject and object in relation to the verb, can
provide important information for the learner about the structure of the language
(e.g. the SVO order in English, and SOV in Japanese). Nevertheless, in each
language there are words which do not conform to such general patterns, and one
well known case is that of exceptions to the English past tense verb formation
[45, 57, 67] with ed suffix (e.g. receive/received vs. ring/rang/*ringed). The
challenge in learning morphology and syntax is how to grasp the abstract regularities
that govern form, as well as the idiosyncratic properties of individual words and
constructions based on potentially poor stimulus and/or no consistent negative
evidence.

One well known example in the discussion on the poverty of the stimulus centers
around the knowledge of structure dependency in question inversion [10], and
whether the relevant data provides sufficient information to guarantee successful
acquisition. For instance, for native speakers in general the following two sentences
are closely related:

1. The company has bought his shares.
2. Has the company bought his shares?

but for learners they provide a though challenge, as a learner has to identify the rela-
tion between the declarative sentence and the corresponding derived interrogative
form without overgenerating to possible but ungrammatical, unattested or unnatural
forms (e.g. *Bought the company has his shares? and ?Has bought the company
his shares?).
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Related to this discussion is the chapter by Sandiway Fong, Igor Malioutov,
Beracah Yankama, and Robert C. Berwick in the chapter Treebank Parsing and
Knowledge of Language who examine some complex linguistic constructions with
non-local dependencies that are also challenging for computational models, such
as tense marking, wh-questions and passives in English, assessing gaps in the
knowledge of language acquired from large corpora. They investigate if grammars
acquired by statistical parsers can successfully account for a full knowledge of
language, verifying in which cases poor performance may be due to data sparsity,
and in which it might arise from the underlying grammatical frameworks. They
propose a general approach which incorporates linguistic knowledge by means
of regularizations that canonicalize predicate-argument structure, which results in
statistically significant improvements in parser performance. The results obtained
indicate the contributions of distributional and linguistic properties of data needed
for a successful account of language, and where insights from language acquisition
can positively inform statistical parsing development.

In other cases, the data may provide enough information for a learning mecha-
nism to obtain results compatible with syntactic evolution in language acquisition.
Christophe Parisses’s chapter, Rethinking the syntactic burst in young children,
focuses on the speed and correctness of child language acquisition at the point of
“syntactic burst” which usually occurs around age 2–3. The author shows that recent
theories based on general cognitive capabilities such as perception, memory or
analogy processing do not sufficiently explain the syntactic burst. He then proposes
a testing procedure to demonstrate that the acquisition of usage-based and fixed-
form patterns can account for the syntactic evolution in language acquisition. The
patterns are applied to the Manchester corpus taken from the CHILDES database.
The author shows that simple mechanisms explain language development until age 3
and that complex linguistic mastery does not need to be available early in the course
of language development.

4.4 Linking Syntax to Semantics

Experimental child studies have shown that children are sensitive to associations
between syntactic forms and semantic interpretations from an early age, and that
they use these associations to produce novel utterances [3, 41, 52]. Children’s
learning of form-meaning associations is not well understood. Specifically, it is not
clear how children learn the item-specific and general associations between meaning
and syntactic constructions.

One aspect of language that provides a rich testbed for studying form-meaning
associations is the argument structure of verbs. The argument structure of a verb
determines the semantic relation a verb has with its arguments and how the
arguments are mapped onto valid syntactic expressions. This complex structure
exhibits both general patterns across semantically similar verbs, as well as more
idiosyncratic mappings of verbal arguments to syntactic forms. This is particularly
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acute in the case of multiword expressions, which vary along a continuum from
literal to more idiomatic cases, like the phrasal verbs carry up and come up (with
an idea) (as propose an idea), respectively, and from more to less productive
expressions (e.g. carry up/down vs. come up/?down).

In addition to regularities at the level of argument structure, research on child
language has revealed strong associations between general semantic roles such as
Agent and Destination and syntactic positions such as Subject and Prepositional
Object (e.g., [21], and related work). Despite the extensive use of semantic roles
in various linguistic theories, there is little consensus on the nature of these roles.
Moreover, researchers do not agree on how children learn general roles and their
association with grammatical functions.

The first chapter on this topic, Learning to interpret novel noun-noun com-
pounds: Evidence from category learning experiments by Barry J. Devereux and
Fintan J. Costello, focuses on the analysis of one type of multiword expressions:
nominal compounds. The interpretation of noun-noun compounds is known to be
challenging and difficult to predict since these constructions are highly ambiguous.
Two approaches have been proposed for the interpretation of noun-noun com-
pounds: one which assumes that people make use of distributional information
about the linguistic behaviour of words and how they tend to combine as noun-
noun phrases; another which assumes that people activate and integrate information
about the two constituent concepts’ features to produce interpretations. Devereux
and Costello propose a model that combines these two approaches. They present
an exemplar-based model of the semantics of relations which captures these
aspects of relation meaning, and show how it can predict experimental participants’
interpretations of novel noun-noun compounds.

Aida Nematzadeh, Afsaneh Fazly, and Suzanne Stevenson, in the chapter
Child Acquisition of Multiword Verbs: A Computational Investigation, address the
question of the acquisition of multiword expression by children. They show that
multiword expressions have received far less attention than simple words in child
language studies. However, in natural language processing, there is a long research
tradition on models for the recognition and analysis of idiosyncratic expressions.
The authors explore whether this computational work on multiword lexemes could
be extended in a natural way to the domain of child language acquisition where an
informative cognitive model must take into account two issues: what kind of data the
child is exposed to, and what kind of processing of that data is cognitively plausible
for a child. They also present a word learning model that uses this information to
learn associations between meanings and sequences of words.

In Starting from Scratch in Semantic Role Labeling: Early Indirect Supervision
Michael Connor, Cynthia Fisher and Dan Roth investigate the problem of assigning
semantic roles to sentence constituents, where a learner needs to parse a sentence,
find possible arguments for predicates, and assign them adequate semantic roles.
They look at possible starting points for a learner using a computational model,
Latent BabySRL, which learns semantic role classification from child-directed
speech. They found that even before acquiring any specific verb knowledge this
model is able to begin comprehending simple semantics in a plausible setup when
initialized with a small amount of knowledge about nouns and some biases.
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In Gradual Acquisition of Verb Selectional Preferences in a Bayesian Model,
Afra Alishahi and Suzanne Stevenson present a cognitive model for inducing verb
selectional preferences from individual verb usages. The selectional preferences
for each verbal argument are represented as a probability distribution over the set
of semantic properties that the argument can possess, i.e. a semantic profile. The
semantic profiles yield verb-specific conceptualizations of the arguments associated
with a syntactic position. The proposed model can learn appropriate verb profiles
from a small noisy training data, and can use them to simulate human plausibility
judgments and to analyse implicit object alternation.

5 Concluding Remarks

These chapters present a cross-section of the research on computational language
acquisition, and investigate linguistic and distributional characteristics of the learn-
ing environment for different linguistic aspects, adopting a variety of learning
frameworks. Computational investigations like these can contribute to research on
human language acquisition, challenging the extent to which innate assumptions
need to be specified in these models, and how successful they are in each of the
specific tasks, providing valuable insights into learnability aspects of the data, the
learning environment and the specific frameworks adopted. This is a new and fast
growing multidisciplinary field that has yet much to achieve, evolving along with its
foundational areas.
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Phon: A Computational Basis for Phonological
Database Building and Model Testing

Yvan Rose, Gregory J. Hedlund, Rod Byrne, Todd Wareham, and Brian
MacWhinney

Abstract This paper describes Phon, an open-source software program for the
transcription, coding, and analysis of phonetically-transcribed speech corpora. Phon
provides support for multimedia data linkage, utterance segmentation, multiple-
blind transcription, transcription validation, syllabification, and alignment of target
and actual forms. All functions are available through a user-friendly graphical
interface. This program provides the basis for the building of PhonBank, a database
project that seeks to broaden the scope of CHILDES into phonological development
and disorders.

1 Introduction

The topic of this chapter may appear as a slight oddity in the context of the current
publication. While most of the contributions to this volume focus on computational
methods applied to language learning problems, our paper centers on a recently-
introduced tool for the building of phonetically-transcribed speech corpora. This is
relevant in a number of respects. Empirical studies of natural language and language
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acquisition will always be required in most types of linguistic research, as these
studies provide the basis for describing languages and linguistic patterns. In addition
to providing us with baseline data, corpora also allow us to test models of various
kinds, be they theoretical, neurological, psychological or computational. However,
the building of natural language corpora is an extremely tedious and resource-
consuming process, despite tremendous advances in data recording, storage, and
coding methods in recent decades.

Thanks to corpora and tools such as those developed in the context of the
CHILDES project (http://childes.psy.cmu.edu/), computational scientists interested
in morphology and syntax have enjoyed convenient and powerful methods for
analysing the morphosyntactic properties of natural languages and their acquisition
by first and second language learners. In the area of phonetics, the Praat system
(http://www.fon.hum.uva.nl/praat/) has expanded our abilities to test optimality-
theoretic as well as neural network-based learning models, in addition to providing
a breadth of support in the areas of speech analysis and synthesis.

In this rapidly-expanding software universe, phonologists interested in the organ-
isation of sound systems (e.g. phones, syllables, stress and intonational patterns) and
their acquisition had not enjoyed the same level of computational support prior to
the inception of the PhonBank project within CHILDES. There was no developed
platform for phonological analysis and no system for data sharing. This situation
negatively affected the study of natural language phonology and phonological
development. It also undermined potential studies pertaining to interfaces between
various components of the grammar or the elaboration of computational models of
language and language development.

It is widely accepted that a spoken utterance consists of more or less one
sentence. Utterances can contain one or more phonological phrases, which can
serve as reference domains for intonational purposes or relate to independent
aspects of syntactic constituency. Phonological phrases are typically made of series
of one or more prosodic words and associated morphemes, with each of these
meaningful units consisting of syllables which can themselves be broken down
into individual phones. This general grammatical organisation allows us to make
reference to factors that link the smallest phonological units to morphological
and/or syntactic levels of grammatical patterning. For example, in English, the
phonological phrase, a domain that constrains phonological phenomena such as
intonation, must typically be described using syntactic criteria; in a similar way,
the analysis of stress patterns in this language requires references to large-domain
morphological boundaries (e.g. [22]). Studying the acquisition of these grammatical
structures, and of their phonological components, can help us understand how
linguistic knowledge emerges in the grammar of a language learner.

In this paper we discuss Phon, an innovative open-source software program
that offers significant methodological advances in research in phonology and
phonological development. On the one hand, Phon provides a powerful and flexible
solution for phonological corpus building and analysis. On the other hand, its

http://childes.psy.cmu.edu/
http://www.fon.hum.uva.nl/praat/
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Fig. 1 General organisation
of a spoken utterance

ability to integrate with other open-source software facilitates the construction
of complete analyses across all levels of grammatical organisation represented in
Fig. 1. Although the primary target group for this tool was originally L1 researchers,
the core functions of Phon are equally valuable to other speech researchers who are
interested in analysing language variation of any type (e.g. cross-dialectal variation,
L2 speech, speech pathologies, evolution of consonant inventories; on this last
application, see Mukherjee et al. in this volume).

The paper is organised as follows. In Sect. 2, we discuss the general motivation
behind the Phon project. In Sect. 3, we describe the functionality supported in Phon.
In Sect. 4, we focus on the query and reporting systems that are built into the
application. We then summarize in Sect. 5 currently planned extensions to Phon,
including both the integration of acoustic data analyses and a greatly expanded
database query functionality that will ultimately assist in both language acquisition
model testing and derivation. Concluding remarks are offered in Sect. 6.

2 The PhonBank Project

PhonBank, one of the latest initiatives within the CHILDES project, focuses on
the construction of corpora suitable for phonological and phonetic analysis. In this
section we first describe the goals of PhonBank. We then describe Phon, the software
program designed to facilitate this endeavor.

2.1 PhonBank

The PhonBank project seeks to broaden the scope of the current CHILDES
system to include the analysis of phonological development in first and subsequent
languages for learners with and without language disorders. To achieve this goal,
we have created a new phonological database called PhonBank and a program called
Phon to facilitate the analysis of PhonBank data. Using these tools, researchers are in
a position to conduct a series of developmental, crosslinguistic, and methodological
analyses based on large-scale corpora.
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2.2 Phon

Phon consists of inter-connected modules that offer functionality to assist the
researcher in important tasks related to corpus transcription, coding and analysis.
(The main functions supported are discussed in the next section.)

The application is developed in Java and is packaged to run on Mac OS X and
Windows platforms that support Java 1.6.1 Phon is Unicode-compliant, a required
feature for the sharing of data transcribed with phonetic symbols across computer
platforms. Phon can share data with programs which utilize the TalkBank XML
schema for their documents such as those provided by the TalkBank and CHILDES
projects.

Phon was introduced approximately 5 years ago (see [19]). Since then, we have
thoroughly revised significant portions of the code to refine the functionality, ensure
further compatibility with other TalkBank-compliant applications, and streamline
the interface for better user experience and improved support for the general
workflow involved in phonological corpus building. We also added novel and
innovative functionality for corpus query and reporting. An advanced beta version
of this application is publicly available online as a free download directly from the
CHILDES website (http://childes.psy.cmu.edu/).

3 Phon

The general interface of Phon is exemplified in Fig. 2. It consists of a series of
view panels, each of which supports particular aspects of corpus manipulation
(e.g. session-level information, orthographically or phonetically transcribed data,
other data annotations). In Fig. 2, three view panels are displayed (Record Data,
Syllabification and Alignment, and the Waveform of the speech segment transcribed
in this record). Additional view panels can be docked horizontally or vertically,
or superposed as tabbed interfaces within single docks. This user-configurable
interface is one of the key improvements brought to the current version. Using
this interface, the user can perform a series of tasks related to the building of
phonological corpora:

• Media linkage and segmentation.
• Data transcription and validation (including support for multiple-blind transcrip-

tions).
• Segmentation of transcribed utterances (into e.g. phrases, words).
• Labeling of transcribed forms for syllabification.

1Support for the Unix/Linux platform is currently compromised, primarily because of licensing
issues related to the multimedia functions of the application.

http://childes.psy.cmu.edu/
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Fig. 2 Phon general interface

• Phone and syllable alignment between target (expected) and actual (produced)
forms.

In the next subsections, we describe the main functions supported by the application.

3.1 Project Management

The building of a corpus of transcribed phonological data often requires the
combination of a number of data transcripts, be they from a single learner over a
period of time or from multiple learners. Phon offers functions to create and manage
sets of data transcripts, following a general corpus structure whereby a project
contains one or many corpora, each of which contains a set of data transcripts.
Session transcripts can be copied or moved across corpora or project files through
the Project Manager interface.



34 Y. Rose et al.

3.2 Media Linkage and Segmentation

Linkage of multimedia data and subsequent identification of the portions of the
recorded media that are relevant for analysis are now available directly from the
application’s main interface. These tasks follow the same logic as similar systems
in programs like CLAN (http://childes.psy.cmu.edu/clan/). A transcript in Phon
generally corresponds to a data recording session. The created media segments can
be played back directly from the graphical user interface (GUI). Whenever needed,
the user can also fine-tune the segments start and/or end time values, a task made
much easier with the incorporation of waveform visualisation.

3.3 Data Transcription

As we saw in Fig. 2, the Session Editor incorporates in a single interface access
to data transcription and annotation, transcription segmentation, syllabification and
alignment. Phon also provides support for an unlimited number of user-defined
fields that can be used for various kinds of textual annotations that may be relevant
to the coding of a particular dataset. All data tiers can be ordered to accommodate
specific data visualisation needs. Support for tier-specific fonts is also provided, a
feature particularly useful for work based on non-Roman data transcripts. Phonetic
transcriptions are based on the phonetic symbols and conventions of the Interna-
tional Phonetic Association (IPA). A useful IPA character chart is easily accessible
from within the application, in the shape of a floating window within which IPA
symbols and diacritics are organised into intuitive categories. This chart facilitates
access to the IPA symbols for which there is no keyboard equivalent.

Target and actual IPA transcriptions are stored internally as strings of phonetic
symbols. Each symbol is automatically associated with a set of descriptive features
generally accepted in the fields of phonetics and phonology (e.g. bilabial, alveolar,
voiced, voiceless, aspirated) [13]. These features are extremely useful in the sense
that they provide series of descriptive labels to each transcribed symbol. The
availability of these labels is essential for research involving the grouping of various
sounds into natural classes (e.g. voiced consonants; non-high front vowels). The
built-in set of features can also be reconfigured to fit particular research needs
through the query system (see Sect. 4.5 for further discussion).

Phon is also equipped with functionality to automatically insert IPA Target
transcriptions based on the orthographic transcriptions. Citation form IPA tran-
scriptions of these words are currently available for Catalan, German, English,
French, Icelandic, Italian, Dutch and Spanish. IPA dictionary files from these
various languages were generously provided by independent open-source projects
and subsequently formatted for use into Phon.

In cases when more two or more pronunciations are available from the built-
in dictionaries for a given written form (e.g. the present and past tense versions

http://childes.psy.cmu.edu/clan/
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of the English word ‘read’), the application provides a quick way to select the
required form. Of course, idealized citation forms do not provide accurate fine-
grained characterisations of variations in the target language (e.g. dialect-specific
pronunciation variants; phonetic details such as degree of aspiration in obstruent
stops). They, however, typically provide a useful general baseline against which
patterns can be identified.

3.4 Multiple-Blind Transcription and Transcript Validation

Phon offers a fully-integrated system for multiple-blind, consensus-based IPA
transcriptions. Multiple-blind transcription is in essence identical to the double-
blind protocol: it consists of the IPA transcription of recorded utterances by two
or more (hence, multiple) transcribers. Within Phon, the IPA transcribers are
effectively ‘blinded’ from each other’s transcriptions in that they must perform
their IPA transcriptions without being able to visualise the transcriptions of other
transcribers. Each IPA transcriber logs into the blind transcription interface using
a specific username. Upon login, a transcriber can visualise the regular corpus
data records, including orthographic transcriptions and other annotations, with
the crucial exception that the visible IPA transcription tiers are unique to each
transcriber.

After the blind transcriptions are performed, they are then ready for the next
step in the workflow, which consists of consensus-based transcript validation. This
step is necessary as, under the blind transcription protocol, none of the user-specific
transcriptions can immediately be considered valid for research. We developed an
interface within Phon which facilitates record-by-record comparisons of the blind
transcriptions. Using this interface, a team of two (or more) transcript validators can
listen to the record’s speech segment, and then visualise in parallel all corresponding
transcriptions produced by the blind transcribers. The transcription deemed the most
accurate by consensus between the transcript validators is then selected with a
simple mouse click. Whenever necessary, the selected transcription can be further
adjusted according to the details noticed by the transcript validators during the
comparison process. While this method is relatively onerous both in time and human
resources, its combined steps (blind transcription followed by consensus validation)
help to maximise transcription reliability for research purposes.

Employing blind transcription and its associated validation systems is optional. If
the user decides not to perform blind transcriptions, the phonetic transcriptions are
entered directly into the transcript and, as such, do not require subsequent validation.
Similarly, the decision to protect each set of blind transcriptions with a password,
which may be overkill in many situations, is left to the user. Note as well that only
data which have been validated or directly entered into the transcript can be further
annotated or compiled. Non-validated blind transcriptions are saved as part of the
project file but cannot be used for research. Whichever the mode of entry into the
session editor (multi-blind or direct), the interface for data entry remains identical.
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Of course, as with anything related to phonetic transcription, whichever method
selected by the user is no panacea. Regardless of the amount of care put into it,
and in spite of its crucial role in creating readable transcripts of spoken forms, the
symbolic representation of speech sounds remains a methodological compromise.
Nonetheless, at all steps involving the transcription of spoken utterances into
IPA notation and/or the validation of phonetic transcripts, the user (transcriber or
validator) can always export the relevant speech samples as individual sound clips
for visualisation in speech analysis software programs for further assessment of
the properties of the speech signal. This functionality further contributes to the
attainment of the most representative data transcripts possible.

3.5 Transcribed Utterance Segmentation

Researchers often wish to divide transcribed utterances into specific domains such
as the phrase or the word. Phon provides basic functionality to address this need by
incorporating a text segmentation module that enables the identification of strings of
symbols corresponding to such morphosyntactic and phonological domains, which
we loosely call ‘word groups’. An important feature of word grouping is that, if
used, it strictly enforces a logical organisation between Orthography, IPA Target and
IPA Actual tiers, the latter two being treated as daughter nodes directly related to
their corresponding parent bracketed form in the Orthography tier. Word groups are
also supported in user-defined tiers. This system of tier dependency offers several
analytical advantages, for example for the identification of patterns that can relate
to a particular grammatical category or position within the utterance.

3.6 Syllabification Algorithm

Once IPA transcriptions are entered into the transcript, Phon performs syllable-level
annotation automatically: segments are assigned descriptive syllable labels (visually
represented with colors) such as ‘onset’ or ‘coda’ for consonants and ‘nucleus’ for
vowels, as can be seen in Fig. 3.

Our general approach to syllable-level annotations is based on models of syllable
representation developed within generative phonology, which provide a particularly
useful framework for its focus on structural description (e.g. [10, 21]; see [5]
and [6] for applications to child phonology). However, because some degree of
controversy exists in both phonetic and phonological theory regarding the very
notion of syllabification and the types of syllable constituents allowed across formal
models, the algorithm can be easily parameterized to suit various models. As can
be seen in Fig. 3, descriptive models supported by Phon can be highly articulated,
with positions such as initial (left) and final (right) appendices, or less refined, for
example with all pre-vocalic consonants as onsets and post-vocalic ones as codas.
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Fig. 3 Syllable-level annotations

Note as well that the use of syllable-level annotation can be used in a number of
ways. On the one hand, the availability of different parameter settings makes it
possible to test various hypotheses for any given dataset, for example, about formal
distinctions concerning the status of on-glides in English (e.g. [3]). On the other
hand, labels can be used in a strictly descriptive fashion, to ease tasks such as precise
data compilation, but yet have no formal implications for the researcher’s theoretical
approach (and related analysis).

Syllabification algorithms are provided for several languages, with multiple
algorithms readily available for English, French and Dutch. Additional algorithms
(for other languages or based on different assumptions about syllabification) can
easily be added to the program, upon request. These algorithms use a scheme based
on a composition-cascade of seven deterministic FSTs (Finite State Transducers).
This cascade takes as input a sequence of phones and produces a sequence of
phones and associated syllable-constituent symbols, which is subsequently parsed to
create the full multi-level prosodic annotation. The initial FST in the cascade places
syllable nuclei. Subsequent FSTs establish and adjust the boundaries of associated
syllable onset and offset domains. Changes in the definition of syllable nuclei in the
initial FST and/or the ordering and makeup of the subsequent FSTs give language-
specific syllabification algorithms. To ease the development of this cascade, initial
FST prototypes were written and tested using the Xerox Finite-State Tool (xFST)
[1]. However, following the requirements of easy algorithm execution within and
integration into Phon, these FSTs were subsequently coded in Java. To date, the
implemented algorithm has been tested on corpora from English and French, and
has obtained extremely high accuracy rates.
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Occasionally, the algorithm may produce spurious results or flag symbols as
unsyllabified. This is particularly true in the case of IPA Actual forms produced
by young language learners, which sometimes contain strings of sounds that are
not attested in natural languages. Since syllabification annotations are generated
on the fly upon transcription entry within the IPA Target or IPA Actual tiers, the
researcher can quickly verify all results and modify them through a contextual menu
(represented in Fig. 3) whenever needed. Segments that are left unsyllabified are
available for all queries on segmental features and strings of segments, but are not
available for queries referring to aspects of syllabification.

The syllabification labels can then be used in database query (for example, to
access specific information about syllable onsets or codas). In addition, because
the algorithm is sensitive to main and secondary stress marks and domain edges
(i.e. first and final syllables), each syllable identified is given a prosodic status
and position index. Using the search functions, the researcher can thus use search
criteria as precisely defined as, for example, complex onsets realised in word-
medial, secondary-stressed syllables. This level of functionality is central to the
study of several phenomena in phonological acquisition that are determined by the
status of the syllable as stressed or unstressed, or by the position of the syllable
within the word (e.g. [9]).

3.7 Alignment Algorithm

After syllabification, a second algorithm performs automatic, segment-by-segment
and syllable-by-syllable alignment of IPA-transcribed target and actual forms.
Building on featural similarities and differences between the segments in each
syllable and on syllable properties such as stress, this algorithm automatically
aligns corresponding segments and syllables in target and actual forms. It provides
alignments for both corresponding sounds and syllables. For example, in the target-
actual word pair ‘apricot’ > ‘apico’, the algorithm aligns the phones contained in
each corresponding syllable, as illustrated in Fig. 4.

In this alignment algorithm, forms are viewed as sequences of phones and
syllable-boundary markers. Alignment is performed on the phones in a way that
preserves the integrity of syllable-level annotations. This algorithm is a variant of the
standard dynamic programming algorithm for pairwise global sequence alignment
(see [20] and references therein); as such, it is similar to but extends the phone-
alignment algorithm described in [12].

At the core of the Phon alignment algorithm is a function sim.x; y/ that assesses
the degree of similarity of a symbol x from the first given sequence and a symbol
y from the second given sequence. In our sim./ function, the similarity value of
phones x and y is a function of a basic score (which is the number of phonetic
features shared by x and y) and the associated values of various applicable reward
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Fig. 4 Phone alignment

and penalty conditions, each of which encodes a linguistically-motivated constraint
on the form of the alignment. There are nine such reward and penalty conditions,
and the interaction of these rewards and penalties on phone matchings effectively
simulates syllable integrity and matching constraints. Subsequent to this phone
alignment, a series of rules is invoked to reintroduce the actual and target form
syllable boundaries.

A full description of the alignment algorithm is given in [8, 14]. As it is the case
with all of the other algorithms for automatic annotation included in the program,
the user is able to perform manual adjustments of the computer-generated syllable
alignments whenever necessary. This process was made as easy as possible: it
consists of clicking on the segment that needs to be realigned and moving it leftward
or rightward using keyboard arrows.

The alignment algorithm, as well as the data processing steps that precede
it (especially, syllabification), are essential to any acquisition study that requires
pair-wise comparisons between target and actual forms, from both segmental and
syllabic perspectives. Implicit to the description of the implementation of the
syllabification and alignment functions is a careful approach whereby specialized
algorithms are implemented in ways that facilitate data annotation; because every
result generated by the algorithms can be modified by the user, no ensuing
compilation of these data directly depends upon them. The user thus has complete
control on the processing of the data being readied for analysis. After extensive
testing on additional types of data sets, we will be able to optimize their degree of
reliability and then determine how they can be used in truly automated analyses.

Once the data are processed through the modules described in the preceding
subsections, they are ready to be used for research. We describe in the next section
the search and reporting functions supported by Phon.
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4 Database Query

The newly-introduced query system can be loosely described as a plug-in system
based on JavaScript. Built-in query scripts are provided for general data query
purposes. Using these scripts, the researcher can identify records that contain:

• Phones and phone sequences (defined with IPA symbols or descriptive feature
sets).

• Syllable types (e.g. CV, CVC, CGV, etc. where C D consonant, V D vowel, and
G D glide).

• Word types (e.g. number of syllables; stress patterns).
• IPA Target-Actual phone and syllable-level comparisons, obtained through phone

and syllable alignment (e.g. phone substitutions; complex onsets reduction;
syllable epenthesis).

Beyond these built-in search functions, the user can create search scripts without
any need to reprogram the application. In this section, we discuss the processes of
executing a query using this system, reviewing the results, and creating a report of
(or an export based on) those results. This discussion also briefly covers how queries
are specified using JavaScript and how to find more information about this system.

4.1 Terminology

Several terms used in the following sub-sections must first be defined

• Query: The set of criteria (or pattern) used to match results. Each query executed
in Phon is given a unique ID.

• Search: The execution of a query on a particular session. Each search is also
given a unique ID.

• Search Metadata: A set of key/value pairs which contains data particular to the
search being performed.

• Result: A result is a single instance of the given patten found in a session.
• Result Metadata: A set of key/value pairs which contains data related to a result.
• Query History: A history of all queries performed for the current project.

Queries can be ‘starred’ for later reference and be re-opened at later dates. The
Query History window can be accessed via the Project >> Query History menu
option in the Project Manager window.

• Script Editor: Phon provides a basic script editor for creating custom queries.
The Script Editor can be accessed via the Project >> Script Editor menu option
in the Project Manager window.
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4.2 Executing a Query

Phon’s search and report functions are separated into three phases:

1. Specifying Query: Query parameters are entered and the search is executed on
one or more selected sessions.

2. Review Intermediate Results: All results are stored in a relational database.
Result sets can be opened in Phon and modified using the Session Editor.

3. Generate Report: Results can be exported as reports into a variety of formats for
use in other applications and further analysis.

Phase 1: Specifying Query Phon provides several stock searches with the installer.
Each of these searches has a form which can be invoked by using the Project >>

Search menu (for project-level searching) and View >> Search menu (within the
Session Editor). The stock searches included with Phon are:

• Aligned Groups: A search for tiers which are organised into phonetic groups.
This is useful for performing searches where special coding is used inside user-
defined tiers which is associated with data in the Orthography or IPA tiers.

• Aligned Phones: This search is provided for searching patterns in the alignment
data of records. Patterns are specified using Phon’s phonex language for matching
phone sequences.

• CV Sequence: Used for searching CV(G) patterns in IPA data.
• Data Tiers: This search is provides for generic searching of any tier.
• Harmony: A special function search for locating instances of harmony (conso-

nant and/or vowel) in aligned IPA forms.
• Metathesis: A special function search for locating instance of metathesis in

aligned IPA forms.
• Word Shapes: Used for searching stress patterns in words.

Each search form includes options for selecting group, word, and syllable position;
syllable stress; and participant name and age, where applicable. Once the options
in the form have been specified, the query can be executed on one or more sessions
in the currently open project (or on the current session if initiated from the Session
Editor.)

Phase 2: Review Intermediate Results Once all searches have been completed
result sets can be reviewed using the Session Editor. Results are displayed in a table
with corresponding metadata. Results can be removed from the result set; however
such removals cannot be undone. This process is especially useful for queries which
can potentially return false-positives, such as the Harmony and Metathesis queries.

Phase 3: Generate Report Query reports can come in two formats: a flat-export
Comma-Separated Values (CSV) file; and a printable format which can be exported
into a variety of formats. The user can choose to create a query report once
project-level searches have been completed. Access to the reporting function is also
available in the search list of the Query History window.
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CSV reports can organise all results in either a single file or a set of files (each
of which corresponds to an individual session). The user also has the option of
selecting the columns they want included in the report. Columns for session data,
speaker information, tier data and result data are available. This report type is most
useful for inputting data into other applications (such as SPSS) for analysis.

For more detailed reporting Phon provides a configurable report template which
can generate printable reports in PDF, Microsoft Word/Excel, OpenOffice, and
formatted CSV. When creating these reports a default option is provided for the
user. This default option can be changed by adding/removing report sections in the
provided interface. Currently there are sections for printing parameters used for a
query, search summary, comments, inventories, and result listings. Each section has
configuration options allowing further customization of the report.

4.3 Creating a Query

Phon queries are written in a language called JavaScript. Advanced users can take
advantage of having a full programming language for creating customized queries.
Essentially any query can be defined using this system but there are restrictions as
to what can constitute a result. The application programming interface (API) for
queries can be found by using the help button in the Script Editor.

A minimal script for a Phon query implements the function
query record(record). This method is executed once for each record in a
session. The provided variable ‘record’ is a reference to the current record. A global
variable ‘results’ is also provided for adding results to the current search’s result set.
Optionally, the user can implement the functions begin search(session)
and end search(session) which are executed at the beginning and end of
a search, respectively. These methods are useful for initializing and reporting any
custom global variables.

4.4 An Illustrative Example

In this section we present a concrete illustration of data representation and query-
ing within Phon. This illustration draws on the Goad-Rose corpus of Quebec
French development available through PhonBank, aspects of which are analysed in
Rose [18]. First, we illustrate in Fig. 5 an early production of the name “Gaspard”.

As we can see in this illustration, Phon enables the identification of segmental
discrepancies between the target (model) pronunciation and its actual production
by the French learner through an alignment of all IPA Target phones with their IPA
Actual counterparts, thereby setting the stage for investigations of the segmental and



Phon: Phonological Database and Model Testing 43

Fig. 5 Pronunciation of French name “Gaspard”

Fig. 6 Aligned Phones query: realisation of target codas

Fig. 7 Search results visualised in the transcript editor

syllabic properties of the child production (e.g. target [g] produced as [p]; deletion of
both syllable-final consonants). For example, focusing on patterns of coda (syllable-
final) consonant deletion, one can use the Aligned Phones search system to identify
all of the relevant cases in the database, as shown in Fig 6.

In this example, the user invokes the phonex language to search for target
consonants in syllable codas and associated productions (or deletions) in the child’s
forms. As we can see in Fig. 7, the application identifies matching patterns, each of
which can be visualised from the application’s GUI.

As mentioned in Phase 3 of Sect. 4.2 above, such results can be compiled for
entire recording sessions or corpora (collections of recording sessions) in the form
of reports generated in various formats. Portions of Phon-generated reports are
illustrated in the next two figures from a report generated in the Excel format. All
such reports are also divided into specific sections. For example, as illustrated in
Fig. 8, sections reporting general inventories of results are useful to observe general
trends in the data. In this particular case, we can see that all continuant consonants
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Fig. 8 Phon-generated data
report: inventory of results

Fig. 9 Phon-generated data
report: record-by-record
result listing

in coda undergo deletion (e.g. all ten instances of target rhotics in coda), while coda
[m], a stop consonant, is realised in a target-like fashion.

In order to fully appreciate the extent of such patterns, the user can also study
each instance of a given pattern through individual result listings such as the
one illustrated in Fig. 9. While this example only contains data from three tiers
(Orthography, IPA Target and IPA Actual), all tiers contained in data records can
be listed in the reports.

While the above examples provide a simple illustration of the query and reporting
system implemented in Phon, many more types of query and data reports can
be specified by the user. Through combinations of quantitative information (as
in Fig. 8) and associated qualitative characterizations (as in Fig. 9), the user can
achieve the desired level of observational detail to address various types of research
hypotheses.

4.5 Additional Information

More information on searching in Phon can be found in the application manual
available via the Help menu. A support forum is also available, which can be
accessed at http://phon.ling.mun.ca/phontrac/discussion/3. For additional query
scripts visit http://phon.ling.mun.ca/phontrac/wiki/search/scriptlibrary. Finally, as
mentioned in Sect. 3, support is also provided for data compilations based on
particular feature sets for transcribed phones. Information on this topic can be found
at http://phon.ling.mun.ca/phontrac/wiki/search/customfeatures.

http://phon.ling.mun.ca/phontrac/discussion/3
http://phon.ling.mun.ca/phontrac/wiki/search/scriptlibrary
http://phon.ling.mun.ca/phontrac/wiki/search/customfeatures
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5 Future Projects

As described above, Phon provides all the functionality required for corpus building
as well as a versatile system for data extraction. In future versions, we plan to
incorporate an interface for the management of acoustic data and fuller support for
data querying and searching; the latter can, among other things, be used to create
systems for testing and deriving language acquisition models. We will discuss all of
these plans in the following subsections.

5.1 Interface for Acoustic Data

In order to facilitate research that requires acoustic measurements, Phon will
interface fully with Praat [2], a software program designed for acoustic analysis of
speech sounds. Using conduits between Praat and Phon, researchers that use these
programs will be able to take advantage of some of Phon’s unique functions and,
similarly, researchers using Phon will be able to integrate acoustic measurements
for both corpus preparation and data analysis.

We will first develop an interface within Phon for the alignment of phonetic
transcriptions with their corresponding waveforms and spectrograms. This process
will be semi-automated using the CSLU Toolkit (http://cslu.cse.ogi.edu/toolkit),
which provides a method for aligning phonetic transcriptions with their correspond-
ing spectrographic representations. Researchers will also be able to use similar
Praat-compatible plug-ins such as EasyAlign, which can be accessed through
http://latlcui.unige.ch/phonetique/. The transcription-spectrogram alignment will
provide the start and end points of data measurements for each sound or sound
sequence targeted by the researcher. The researcher can then activate a command
to send the relevant portion of the recorded media for analysis in Praat, which can
compute a wide variety of acoustic analyses, such as F0 and formant tracking and
spectral analysis through FFT or LPC. After acoustic analysis, Phon will import the
results into an interface that will accommodate acoustic measurement data.

The system described above will offer unprecedented support for investigations
requiring the combination of refined phonological classifications and detailed
acoustic characterizations of developmental data. Among other advantages, this
system will offer a means to systematically verify phonetic transcriptions of
recorded speech, through mapping impressionistic transcriptions with their acoustic
correlates. It will also enable systematic extractions and compilations of acoustic
measurements of speech sounds relative to their positions within the spoken
utterance. For example, the researcher will be able to study the development of
vocalic systems by simultaneously compiling longitudinal acoustic data relative
to prosodic positions such as stressed versus unstressed syllables. As a result,
researchers that utilize Praat will be able to take advantage of some of Phon’s unique
functions and, similarly, researchers using Phon will be able to take advantage of the
functionality of both Praat and Phon.

http://cslu.cse.ogi.edu/toolkit
http://latlcui.unige.ch/phonetique/
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5.2 Extensions of Database Query Functionality

The search and report functions described in Sect. 4.2 provide simple and flexible
tools to generate general assessments of the corpus or detect and extract particular
phonological patterns occurring in specified data tiers in individual sessions.
However, to take full advantage of all of the research potential that Phon offers,
a more powerful query system is required. The first steps towards such a system
will involve modifying the existing query language to include (1) standard statistical
functions and (2) methods for specifying queries that incorporate the acoustic data
described in the previous subsection. This will enable precise initial assessments
of developmental data within and across corpora of language learners or learning
situations.

More comprehensive assessments are possible if the query mechanism is further
modified to allow the specification and matching of richer types of patterns. One
such type of particular interest is a pattern that describes a (possibly summarized)
portion of the time-series of sessions comprising the longitudinal data for a
particular language learner. Each such pattern is effectively a hypothesis about
the nature and course of language acquisition. The hypotheses associated with
these patterns treat linguistic phenomena of variable extent, from local features
of language acquisition that occur in a particular time-interval, e.g., the so-called
‘vocabulary spurt’, to global characterizations of the whole acquisition process, e.g.,
the acquisition order of the target phone inventory.

Given such a pattern and a learner time-series, the degree to which the pattern
matches the time-series corresponds to the degree with which the hypothesis
encoded by that pattern is consistent with and hence supported by that time-series.
Alternatively, two learner time-series could be matched against each other to assess
their similarity and hence the degree to which those learners are following the same
developmental path. Such matches can be done with variants of the target-actual
form alignment function described in Sect. 3.7. Many types of time-series pattern
matching have been defined and implemented within computational molecular
biology (see [7, 20] and references) and temporal data mining (see [11, 15, 17] and
references); it seems likely that some of these can be either used directly or modified
for the purposes of language acquisition research.2

2 Previous experience in computational molecular biology and data mining suggests that, given the
large amounts of data involved, various specialized algorithmic techniques will probably have to
be invoked to allow time-series pattern matching to run in practical amounts of time and computer
memory. The typical approach described in [11] is to simplify the given data, derive approximate
analysis-results relative to this simplified data, and (hopefully with minimal effort) reconstruct
exact analysis-results relative to the original data. However, there may be other options, such as
using so-called fixed-parameter tractable algorithms [4,16] whose running times are impractical in
general but efficient under the restrictions present in learner time-series datasets.
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While useful in itself, such a time-series pattern matching capability is the
building block of even more exotic analyses, e.g.,

• Language Acquisition Model Testing: Given appropriate formalizations of
language acquisition models as algorithms that produce ‘actual’ output analogous
to that produced by learners, such models can be automatically evaluated against
learner time-series stored in Phon (in a manner analogous to the ’Learn’ function
in Praat) using functions such as:

– Run an arbitrary language learning algorithm.
– Compare the results of the grammar produced by such a language learning

algorithm against actual language data.
– In the event that the learning algorithm provides a sequence of grammars

corresponding to the stages of human language learning, compare the results
of this sequence of grammars against actual longitudinal language data.

By virtue of its software architecture, form-comparison routines, and stored
data, Phon provides an excellent platform for implementing such an application.
Running arbitrary language learning algorithms can be facilitated using a Java
API/interface-class combination specifying subroutines provided by Phon, and
the outputs of a given model could be compared against target productions stored
in Phon using either the alignment algorithm described in Sect. 3.7 or the more
general time-series pattern matching algorithms described above.

• Language Acquisition Model Derivation: Consider applying time-series pat-
tern matching as described above in reverse – namely, given a set of two or
more learner time-series, find those patterns that are best supported by and
hence characteristic of the those time-series. Such patterns may be used as
developmental benchmarks for deriving language acquisition models or (in the
case of very rich types of time-series patterns) function as models themselves.

Analyses such as those sketched above would be much more comprehensive than
what has been the norm thus far in the field, especially given past problems encoun-
tered in verifying let alone deriving trustworthy models of language acquisition
relative to small (and possibly wildly unrepresentative) sets of learners. However,
given the diversity of analysis techniques available within computational molecular
biology and data mining in general, providing a platform like Phon for implementing
such analyses may have the (perhaps ultimately more important) long-term effect
of introducing previously unimagined analytical possibilities and related research
opportunities.

6 Discussion

Phon offers a sound computational foundation for the management of corpus-based
research on phonology and phonological development, media linkage and seg-
mentation into transcript-annotated time intervals, multiple-blind IPA transcription,
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IPA transcription validation, target (adult) IPA form insertion, automatic phone
alignment between target (model) and actual (produced) forms, automatic
syllabification, utterance segmentation into smaller units, database query, data
import, and data export. Finally, it provides a strong computational foundation for
the implementation of additional functions.

Beyond acoustic data analysis capabilities, the order in which new functionalities
will be implemented in future versions of Phon is still unclear. For example, the
model-testing tool sketched in Sect. 5.2 is ambitious and perhaps premature in some
respects, e.g., should we expect the current (or even next) generation of language
learning algorithms to mimic the longitudinal behavior of actual language learners?
Such issues are especially relevant, given that some language behaviors observed
in learners can be driven by articulatory or perceptual factors, the consideration of
which implies relatively more complex models. That being said, the above suggests
how Phon, by virtue of its longitudinal data, output-form comparison routines, and
software architecture, may provide an excellent platform for implementing the next
generation of computational language analysis tools.
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Language Dynamics in the Framework
of Complex Networks: A Case Study
on Self-Organization of the Consonant
Inventories

Animesh Mukherjee, Monojit Choudhury, Niloy Ganguly, and Anupam Basu

Abstract In this chapter, we present a statistical mechanical model of language
acquisition and change at a mesoscopic level, and validate our model for the sound
systems of the languages across the world. We show that the emergence of the
linguistic diversity that exists across the consonant inventories of some of the major
language families of the world can be explained through a complex network based
growth model, which has only a single tunable parameter that is meant to introduce a
small amount of randomness in the otherwise preferential attachment based growth
process. The experiments with this model parameter indicates that the choice of
consonants among the languages within a family are far more preferential than it
is across the families. Furthermore, our observations indicate that this parameter
might bear a correlation with the period of existence of the language families under
investigation. These findings lead us to argue that preferential attachment seems to
be an appropriate high level abstraction for language acquisition and change.

1 Introduction

Language is a complex physical system. Therefore, like any other complex system
its structure and dynamics can be studied at three levels: microscopic, mesoscopic
and macroscopic. At a microscopic level language can be viewed as a system emerg-
ing from the interactions of socially embedded agents. These agents communicate
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through utterances, the collection of which comprise a language at any given time.
On the other extreme, at a macroscopic level, a language as a whole can be viewed
as a dynamical system defined by its gross properties (e.g., syllable structures
and word ordering constraints). Between these two extremes, one can also view
a language as a complex system emerging from the interactions between abstract
linguistic entities, such as phonemes, morphemes and lexemes. This third view is
often referred to as the mesoscopic view of a linguistic system. An alternative way
to look at this threeway division could be as follows. At the microscopic level, the
speakers of a language are the actors. At the macroscopic level, the language as a
whole is the actor, while at the mesoscopic level, the linguistic entities are the actors.
Note that these three views are not contradictory; rather they describe the properties
of the system at different levels.

Any linguistic phenomenon can likewise be studied at all these three levels. In the
context of language acquisition these three levels could be defined in the following
manner. At the microscopic level, we study the process by which human beings
(i.e., the speakers) acquire language in a given environment. This, in fact, is the
most common interpretation of the term, and, consequently, the most well-studied
aspect of language acquisition. Nevertheless, one can also view language acquisition
from a macroscopic perspective where the language itself changes over time under
certain circumstantial pressures. This phenomenon, which is caused, among many
other things, by the language acquisition process at microscopic level, is commonly
referred to as language change. Although the connection between language change
and language acquisition is almost unanimously acknowledged, the nature of this
connection is not yet fully understood. This gap can possibly be bridged by studying
language acquisition at the mesoscopic level, where the linguistic entities directly
interact with each other to give rise to languages. On one hand, the dynamics of their
interaction defines the dynamics of language change, and on the other hand, these
interactions themselves are the result of underlying language acquisition processes
at a microscopic level.

In this chapter, we shall describe some models of language acquisition from
a mesoscopic perspective. In particular, we will discuss a series of studies on
structure and dynamics of consonant inventories, and how language acquisition
could possibly be the underlying force governing this dynamics. Inspired by recent
advances in physics of mesoscopy, we employ complex network as a tool to study
consonant inventories at a mesoscopic level. While our discussions here will mainly
take evidence from the particular case of consonant inventories, our objective here
is to show that network based models of linguistic phenomena can aptly model the
dynamics of learning at mesoscopy and therefore, provides a promising approach to
understand the connections between language acquisition and language change.

In recent times, complex network has been popularly used to model physical,
social, biological and cognitive systems (see [35] for a dated but accessible review).
A network is a collection of nodes representing the entities present in the system
and edges running between the nodes that represent the interaction patterns between
entities. The physical significance of the nodes and the edges depends on the system
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being modeled. However, once the network is constructed from real world data,
its topological properties provide insights into not only the current organization
of the underlying system, but also its evolution, i.e., how this organization might
have emerged through simple interactions between the entities over time. This latter
part is typically studied through simulations and mathematical analyses of network
growth or synthesis models which are stochastic processes capable of explaining the
complex structural properties of the network.

There has been some studies on modeling language as a network of linguistic
entities (see [13] for a review). In most of these studies, nodes typically represent
words, and edges represent various types of word-word interaction (e.g., co-
occurrence, or phonological, orthographic, semantic or distributional similarities).
Although models of word networks synthesis provide useful insights into cognitive
processes beneath the linguistic phenomena, most of these studies do not explicitly
relate the network growth model to language acquisition. In this chapter, we shall
see that one of the fundamental models of network growth – preferential attachment
can in fact, be interpreted as a mesoscopic view of language acquisition. Several
other learning principles can also be appropriately modeled and studied within the
framework of network synthesis.

The rest of the chapter is organized as follows. Section 2 introduces the problem,
structure and evolution of phonological inventories, which is used here as the
running example to illustrate the new computational framework. In Sect. 3, we
present the formal definition of a network-based model of phonological inventories
and outline its construction procedure. We analyze some interesting topological
properties of this network in the following section. In Sect. 5, we present a synthesis
model that can, quite accurately, reproduce the structure of PlaNet. The next section
presents an mathematical analysis of the proposed synthesis model and discusses
its connection to language acquisition. Section 7 reports further experiments where
we analyze the networks constructed for specific language families and discover an
interesting connection between the age of a language family and a parameter of our
model. This helps us understand the relation between the phenomena of language
acquisition and change, and emergence of linguistic diversity and markedness
hierarchy. In Sect. 8, we summarize some of the important contributions of this
article and outline the scope of future research.

2 Phonological Inventories: A Primer

The most basic units of human languages are the speech sounds. The repertoire of
sounds that make up the sound inventory of a language are not chosen arbitrarily,
even though the speakers are capable of perceiving and producing a plethora of
them. In contrast, the inventories show exceptionally regular patterns across the
languages of the world, which is arguably an outcome of the self-organization
that goes on in shaping their structure [37]. Earlier researchers have proposed
various functional principles such as maximal perceptual contrast [29], ease of
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articulation [15, 29] and ease of learnability [15] to explain this self-organizing
behavior of the sound inventories. These principles are applied to language as a
whole, thereby, viewing it from the macroscopic level. In fact, the organization
of the vowel inventories across languages has been quite satisfactorily explained
in terms of the single principle of maximal perceptual contrast through linguistic
arguments [50], numerical simulations [27,28,43] as well as genetic algorithms [24].
With the advent of highly powerful computers, it has also been possible to
model the micro-level dynamics involving a group of (robotic) speakers and their
interactions and this in turn has proved to be highly successful in explaining how
the vowel inventories originated and self-organized themselves over the linguistic
generations [15].

Right from the beginning of the twentieth century, there have been a large number
of linguistically motivated attempts [9,14,48,49] in order to explain the emergence
of the regularities that are observed across the consonant inventories. However,
unlike the case of vowel inventories, the majority of these efforts are limited to
the investigation of certain specific properties primarily because of the inherent
complexity of the problem. The complexity arises from the fact that (a) consonant
inventories are usually much larger in size and are characterized by much more
articulatory/acoustic features than the vowel inventories, and (b) no single force is
sufficient to explain the organization of these inventories; rather a complex interplay
of forces collectively shape their structure. Thus, a versatile modeling methodology,
which is hitherto absent in the literature, is required so that the problem can be
viewed and solved from an alternative perspective.

Most of the studies on phonological inventories [15,22,25,29] including the ones
described here have been conducted on the UCLA Phonological Segment Inventory
Database (UPSID) [31]. We have selected UPSID mainly due to two reasons – (a) it
is one of the largest database of this type that is currently available and, (b) it has
been constructed by selecting languages from moderately distant language families,
which ensures a considerable degree of genetic balance.

The languages that are included in UPSID have been chosen in a way to
approximate a properly constructed quota rule based on the genetic groupings of
the world’s extant languages. The quota rule is that only one language may be
included from each small language family (e.g., one from the West Germanic and
one from the North Germanic) but that each such family should be represented.
Eleven major genetic groupings of languages along with several smaller groups
have been considered while constructing the database. All these together add up
to make a total of 317 languages in UPSID. Note that the availability as well as the
quality of the phonological descriptions have been the key factors in determining
the language(s) to be included from within a group; however, neither the number of
speakers nor the phonological peculiarity of a language has been considered.

Each consonant in UPSID is characterized by a set of articulatory features (i.e.,
place of articulation, manner of articulation and phonation) that distinguishes it
from the other consonants. Certain languages in UPSID also consist of consonants
that make use of secondary articulatory features apart from the basic ones. There
are around 52 features listed in UPSID; the important ones are noted in Table 1.
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Table 1 Some of the
important features listed in
UPSID

Manner of articulation Place of articulation Phonation

tap velar voiced
flap uvular voiceless
trill dental
click palatal
nasal glottal
plosive bilabial
r-sound alveolar
fricative retroflex
affricate pharyngeal
implosive labial-velar
approximant labio-dental
ejective stop labial-palatal
affricated click dental-palatal
ejective affricate dental-alveolar
ejective fricative palato-alveolar
lateral approximant

Note that in UPSID the features are assumed to be binary-valued (1 meaning the
feature is present and 0 meaning it is absent) and therefore, each consonant can be
represented by a binary vector.

Over 99 % of the UPSID languages have bilabial (e.g., /p/), dental-alveolar (e.g.,
/t/) and velar (e.g., /k/) plosives. Furthermore, voiceless plosives outnumber the
voiced ones (92 % vs. 67 %). According to [30], languages are most likely to have
8–10 plosives; nevertheless, the scatter is quite wide and only around 29 % of the
languages fall within the mentioned limits. Ninety-three percent of the languages
have at least one fricative (e.g., /f/). However, as [30] points out, the most likely
number of fricatives is between 2 to 4 (around 48 % of the languages fall within
this range). Ninety-seven percent of the languages have at least one nasal (e.g., /m/);
the most likely range reported in [30] is 2–4 and around 48 % of the languages in
UPSID are in this range. In 96 % of the languages there is at least one liquid (e.g.,
/l/) but, languages most likely have two liquids (around 41 %) [30]. Approximants
(e.g., /j/) occur in fewer than 95 % of the languages; however, languages are most
likely to have two approximants (around 69 %) [30]. About 61 % of the languages
in UPSID have the consonant /h/, which is not included in any of the categories
already mentioned above. Some of the most frequent consonants in UPSID are, /p/,
/b/, /t/, /d/, /tS/, /k/, /g/, /P/, /f/, /s/, /S/, /m/, /n/, /ñ/, /N/, /w/, /l/, /r/, /j/, /h/, and together
they are often termed as the ‘modal’ inventory [30].

This extremely skewed distribution of consonants across world’s languages led
many linguists to ask whether there is an inherent bias towards inclusion of certain
consonants, such as /m/, in a language. This bias is expressed in phonological
theory through a Markedness hierarchy, where it is assumed that there is a universal
hierarchy of speech sounds (see [4,41] for general discussions on markedness theory
and [21] for an introduction to phonological markedness). The sounds lowest in
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the markedness hierarchy are preferred by all languages, whereas languages tend
to avoid highly marked sounds. While this observation is uninamously accepted
based on statistical evidence, there is no single theory for explaining markedness.
Some of the popular theories invoke ease of articulation, perception or learning
that makes certain sounds more prevelant than others. In other words, markedness
hierarchy of the speech sounds have often been explained in terms of phonetic
properties of the sounds that make some of these sounds inherently easier to
generate, recognize or learn by the human language faculty. Such theories, however,
have been criticised based on empirical evidence, which neither supports absolute
universality of the phonological markedness hierarchy across languages, nor can it
strongly establish the inherent ease of using certain sounds over others. Furthermore,
these theories have also attracted philosophical criticisms due to their strong
assumptions of inherent biases which may not be necessary at all for explaining
skewed distributions.

3 Network Model of Consonant Inventories

A set of consonant inventories can be modeled as a bipartite network,1 where
one of the partitions consist of language nodes and the other partition consists of
the consonant nodes. Presence of a consonant in a the inventory of a language is
represented by an edge connecting the consonant and the language nodes. We shall
refer to this network as the Phoneme-Language Network or PlaNet. In this section
we will formally define PlaNet and describe its construction.

3.1 Definition of PlaNet

PlaNet is a bipartite graph G = h VL, VC , Epl i consisting of two sets of nodes
namely, VL (labeled by the languages) and VC (labeled by the consonants); Epl is
the set of edges running between VL and VC . There is an edge e 2 Epl from a
node vl 2 VL to a node vc 2 VC iff the consonant c is present in the inventory
of language l . Figure 1 presents a hypothetical example illustrating the nodes and
edges of PlaNet.

The representation of the inventories as a bipartite network is motivated by
similar modeling of various complex phenomena observed in society as well

1A bipartite network is a special kind of network which can be partitioned into two distinct and
mutually exclusive sets of nodes such that edges run only between nodes from two different
partitions. There are no edges connecting two nodes in the same partition.
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Fig. 1 A hypothetical
example illustrating the nodes
and edges of PlaNet

as nature, such as (a) the movie-actor network [2, 3, 38, 42, 51] where movies
and actors constitute the two respective partitions and an edge between them
signifies that a particular actor acted in a particular movie, (b) the article-author
network [7, 26, 34] where the two partitions respectively correspond to articles and
authors and edges denote which person has authored which articles and (c) the
board-director network [12, 47] where the two partitions correspond to the boards
and the directors respectively and a director is linked by an edge with a society
if he/she sits on its board. In fact, the concept of bipartite networks has also been
extended to model such diverse phenomena as the city-people network [17] where
an edge between a person and a city indicates that he/she has visited that city,
the word-sentence network [19, 20], the bank-company network [46] or the donor-
acceptor network [45].

3.2 Construction Methodology

We have used UPSID in order to construct PlaNet. Consequently, the total number
of language nodes in PlaNet (i.e., j VL j) is 317. The total number of distinct
consonants found across the 317 languages of UPSID, after appropriately filtering
the anomalous and the ambiguous ones [31], is 541. In UPSID, a phoneme has
been classified as anomalous if its existence is doubtful and ambiguous if there
is insufficient information about the phoneme. For example, the presence of both
the palatalized dental plosive and the palatalized alveolar plosive are represented in
UPSID as palatalized dental-alveolar plosive (an ambiguous phoneme). According
to popular techniques [39], we have completely ignored the anomalous phonemes
from the data set, and included all the ambiguous forms of a phoneme as separate
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phonemes because, there are no descriptive sources explaining how such ambigu-
ities might be resolved. Therefore, the total number of consonant nodes in PlaNet
(i.e., j VC j) is 541.

The number of edges in PlaNet (i.e., j Epl j) is 7,022. Thus, the connection

density of PlaNet is jEpl j
jVLjjVC j =

7;022
317�541

= 0.06, which can also be thought of as the
probability that a randomly chosen consonant occurs in a particular language.
However, as we shall see below, the occurrence of the consonants does not depend
upon a single probability value; rather, it is governed by a well-behaved probability
distribution.

4 Topological Properties of PlaNet

In this section, we shall study the topological properties of PlaNet mainly in terms
of the degree distributions of its two sets of nodes.

4.1 Degree Distribution of PlaNet

The degree of a node v, denoted by kv, is the number of edges incident on v.
Therefore, the degree of a language node vl in PlaNet refers to the size of the
consonant inventory of the language l . Similarly, the degree of a consonant node
vc in PlaNet refers to the frequency of occurrence of the consonant c across the
languages of UPSID.

The degree distribution is the fraction of nodes, denoted by pk , that have a degree
equal to k [35]. In other words, it is the probability that a node chosen uniformly at
random from the network (with N nodes) has a degree equal to k. The cumulative
degree distribution Pk is the fraction of nodes having degree greater than or equal
to k. Therefore,

Pk D
1X

k0Dk

pk0 (1)

Note that the cumulative distribution is more robust to noise present in the observed
data points, but at the same time it contains all the information encoded by pk [35].

4.1.1 Degree Distribution of the Language Nodes

Figure 2 shows the degree distribution of the nodes in VL where the x-axis denotes
the degree of each language node expressed as a fraction of the maximum degree
and the y-axis denotes the fraction of nodes having a given degree.
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Fig. 2 Degree distribution of the language nodes in PlaNet. The figure in the inset is a magnified
version of a portion of the original figure

Figure 2 indicates that the number of consonants appearing in different languages
follow a ˇ-distribution2 (see [10] for reference) which is right skewed with the
values of ˛ and ˇ equal to 7.06 and 47.64 (obtained using maximum likelihood
estimation method) respectively. This asymmetry in the distribution points to the
fact that languages usually tend to have smaller consonant inventory size, the best
value being somewhere between 10 and 30. The distribution peaks roughly at 21
(which is its mode) while the mean of the distribution is also approximately 21
indicating that on an average the languages in UPSID have a consonant inventory of
size 21 (approx.) [32].

4.1.2 Degree Distribution of the Consonant Nodes

Figure 3 illustrates the cumulative degree distribution plot for the consonant nodes
in VC in doubly-logarithmic scale. In this figure the x-axis represents the degree k

and the y-axis represents the distribution Pk .

2A random variable is said to have a ˇ-distribution with parameters ˛ > 0 and ˇ > 0 if and only
if its probability mass function is given by, f (x)D � .˛Cˇ/

� .˛/� .ˇ/
x˛�1.1 � x/ˇ�1 for 0 < x < 1 and

f (x)D 0 otherwise. � (�) is the Euler’s gamma function.
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Fig. 3 Degree distribution of the consonant nodes in PlaNet in doubly-logarithmic scale. The
letter x denotes the cut-off point

As can be seen from Fig. 3, Pk follows a power-law with an exponential cut-off.
Sometimes such distributions have also been referred to as two-regime power-law.
The cut-off point is shown by the letter x in the figure. We find that there are 22
consonant nodes which have their degree above the cut-off range (i.e., these are the
extremely frequent consonants). It is worth mentioning that power-law distribution
of word frequencies in text corpora is a very well studied phenomenon and is
commonly referred to as Zipf’s law. Power-law distributions are very skewed; in the
specific context of PLaNet, we can interpret it as a hierarchical arrangement of the
consonants where a few consonants that are at the top of these hierarchy are present
in almost all the languages of the world; whereas, a large number of consonants are
at the lower ends of these hierarchy and are present only in a handful of world’s
languages.

Recall that the skewed disrtibution of consonants over languages is a well-known
fact, which linguists refer to as the markedness hierarchy. However, a network based
representation immediately allows us to seek for an evolutionary model that can
explain the network topology and therefore, the degree distribution. Earlier studies
have shown that in most of the networked systems like the society, the Internet
and the World Wide Web, preferential attachment (i.e., when “the rich gets richer”)
[6, 44] is known to play a crucial role in generating power-law degree distributions.
Therefore, in the following section, we will explore a preferential attachment based
synthesis model to explain the evolution of PLaNet.
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5 The Synthesis Model

Let us assume that the distribution of the consonant inventory size, i.e., the degrees
of the language nodes is known a priori. Let the degree of a language node Li 2 VL

be denoted by di . The consonant nodes in VC are assumed to be unlabeled, i.e., they
are not marked by the distinctive features that characterize them. We first sort the
nodes L1 through L317 in the ascending order of their degrees. At each time step a
node Lj , chosen in order, preferentially attaches itself with dj distinct nodes (call
each such node Ci ) of the set VC . The probability Pr.Ci / with which the node Lj

attaches itself to the node Ci is given by,

Pr.Ci/ D �ki C 1P
i
02V

0

C
.�ki

0 C 1/
(2)

where, ki is the current degree of the node Ci , V
0

C is the set of nodes in VC that
are not already connected to Lj and � is a positive tunable parameter that controls
the amount of randomness in the system. The lower the value of � the higher is
the randomness. For instance, at � D 0, the attachment probability Pr.Ci/ is equal
to 1=N (N being the total number of consonants in the system), regardless of the
degree of the node. Thus, instead of a degree based preferential attachment, at � D 0

the model boils down to a random attachment model, which is known to generate
multinomial degree distributions. On the other hand, if � is very large, the probaility
of attachment becomes purely preferntial. Note that the positive constant 1=� is
usually referred to as the initial attractiveness [16], because higher the value of this
parameter, higher is the probability that a node with 0 degree (no incoming edges)
will get a new connection.

Algorithm 1 summarizes the mechanism to generate the synthesized version of
PlaNet (henceforth PlaNetsyn) and Fig. 4 illustrates a partial step of the synthesis
process. In the figure, when language l4 has to connect itself with one of the nodes
in the set VC it does so with the one having the highest degree (D3) rather than with
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Fig. 4 A partial step of the synthesis process

others in order to achieve preferential attachment which is the working principle of
ouralgorithm.

We simulate the above model to obtain PlaNetsyn for 100 different runs and
average the results over all of them. We find that the degree distributions that emerge
fit the empirical data well for � 2 [12.5,16.7], the best being at � D 14 (shown in
Fig. 5). In fact, the mean error3 between the real and the synthesized distributions
for � D 14 is as small as 0.03. In contrast, if there is no preferential attachment and
all the connections to the consonant nodes are equiprobable (see Fig. 5), then this
error rises to 0.35.

Apart from the ascending order, we have also simulated the model with
descending and random order of the inventory size. The degree distribution obtained
by considering the ascending order of the inventory size matches much more
accurately than in the other two scenarios. One possible reason for this might be
as follows. Each consonant is associated with two different frequencies: (a) the
frequency of occurrence of a consonant over languages or the type frequency,
and (b) the frequency of usage of the consonant in a particular language or the
token frequency. Researchers have shown in the past that these two frequencies are
positively correlated [11]. Nevertheless, our synthesis model based on preferential
attachment takes into account only the type frequency of a consonant and not its
token frequency. If language is considered to be an evolving system then both of

3Mean error is defined as the average difference between the ordinate pairs (say y and y
0

) where
the abscissas are equal. In other words, if there are Y such ordinate pairs then the mean error can

be expressed as
P

jy�y
0

j

Y
.
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Fig. 5 Comparison of the degree distribution (in doubly-logarithmic scale) of the consonant
nodes in PlaNet with that of (a) PlaNetsyn obtained from the simulation of the model (� D 14)
and (b) PlaNettheo obtained from the analytical solution of the model (� D 14). The results are
also compared with the case where there is no preferential attachment and all the connections are
equiprobable

these frequencies, in one generation, should play an important role in shaping the
inventory structure of the next generation.

In the later stages of our synthesis process when the attachments are strongly
preferential, the type frequencies span over a large range and automatically compen-
sate for the absence of the token frequencies (since they are positively correlated).
However, in the initial stages of this process the attachments that take place are
random in nature and therefore, the type frequencies of all the nodes are roughly
equal. At this point it is the token frequency (absent in our model) that should
discriminate between the nodes. This error due to the loss of information of the
token frequency in the initial steps of the synthesis process can be minimized by
allowing only a small number of attachments (so that there is less spreading of the
error). This is perhaps the reason why sorting the language nodes in the ascending
order of their degree helps in obtaining better results.

Note that even though we make a strong assumption that the degrees of the
language nodes are known a priori, it is neither necessary nor a strong limitation
of our experiments and their conclusion. Alternative models where the degree of
all the language nodes is same and equal to the mean of the distribution, or are
sampled from the degree distribution of language nodes (Fig. 2) also lead to very
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similar network topologies. In other words, regardless of the degrees of the language
nodes the proposed synthesis model is able to explain the two-regime power-law
distribution of the consonant degrees.4 However, for understandable reasons, the
degree distribution of the synthesized networks are quantitatively closest to that of
real PlaNet when this assumption is made.

6 Interpretation of the Synthesis Model

In this section we ask two important questions about the proposed synthesis model.
First, what is the mathematical interpretation of the model? In other words, we
would like to analyze the model and theoretically predict the nature of emergent
degree distribution under various parameter settings. Second, what is the physical
interpretation of the model? Stated differently, why or how this model is able to
explain the distribution of the consonants over languages? How is it, if at all, related
to language acquisition and change.

6.1 Mathematical Analysis of the Model

Several models have been proposed in literature to synthesize the structure of
these bipartite networks, i.e., when both the partitions grow unboundedly with time
[2,20,38,42,51]. The results of such growth models indicate that when an incoming
movie node (in case of movie-actor networks) preferentially attaches itself to an
actor node, the emergent degree distribution of the actor nodes follows a power-
law (see [42] for details). This result is reminiscent of unipartite networks where
preferential attachment leads to the emergence of power-law degree distributions
(see [6] for details).

In most of these networks, however, both the partitions grow with time unlike
PlaNet where the partition corresponding to the consonants remains relatively fixed
over time while the partition corresponding to the languages grows with time.
Although there have been some studies on non-growing bipartite networks [18,36],
those like PlaNet where one of the partitions remain fixed over time (i.e., the
partition of consonants) while the other grows (i.e., the partition of languages)
have received much less attention. It is difficult to solve this model because, unlike
the popular preferential attachment based synthesis models for unipartite [6] and
bipartite [42] networks, in this case, one cannot make the stationary state assumption
pk;tC1 D pk;t in the limit t ! 1 (here, pk;t denote the probability that a randomly

4As one can see in Fig. 5, the analytical solution arrived at by assuming that all language nodes
have the same degree � is qualitatively similar to the degree distribution of real PlaNet, though a
poorer match to it when we comapre the simulation with exact degrees of the language nodes.
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chosen node from the partition VC has degree k after t time steps). This is due to the
fact that the average degree of the nodes in VC diverges with time and consequently,
the system does not have a stationary state.

Nevertheless, for certain simplifications of the model we can derive an approx-
imate closed form expression for the degree distribution of the VC partition after
a given time step t . More specifically, we assume that the degree of the nodes in
the VL partition is equivalent to their average degree and is therefore, a constant
(�). In other words, � represents the average size of a consonant inventory or the
average number of consonants present in human languages. We further assume that
in a time step a language node can attach itself to a consonant node more than once.
Although by definition, a consonant can occur in the inventory of a language only
once, as we shall see, the result derived with the above assumption matches fairly
well with the empirical data.

Under the assumptions mentioned above the denominator of the Eq. 2 can
be re-written as

PN
iD1.�ki C 1/ where N Dj VC j. Further, since the sum of the

degrees in the VL partition after t steps (D �t) should be equivalent to that in the
VC partition therefore we have

NX

iD1

ki D �t (3)

Notice that the average degree of the nodes in VC after t steps is �t=N which, as
we have pointed out earlier, diverges with t because, N is fixed over time.

At time t D 0, all the nodes in VC have a degree zero and therefore our initial
condition is pk;tD0 D ık;0, where ık;0 is the Kronecker delta function [23]. After
time t , the degree distribution of the consonant nodes is given by the following
equation:

pk;t �D bA.t; �; �/.k=t/��1�1.1 � k=t/����1�1 (4)

where � D N=�� , and

eA.t; �; �/ D t tC0:5��C0:5���1�0:5ep
2�.t C �/tC�C0:5.� � ��1/����1C0:5

(5)

Refer to the Appendix for a detailed derivation of the above formulae. A concise
version of this solution has been presented in [40]. We shall refer to this analytically
derived solution of PlaNet as PlaNettheo.

Recall that in Sect. 5 we have found through simulations that the best fit for the
degree distribution emerges at � D 14. Replacing � by 21, t by 317, N by 541 and
� by 14 we obtain the degree distribution for the consonant nodes Pk;t of PlaNettheo.
The bold line in Fig. 5 illustrates the plot for this distribution in doubly-logarithmic
scale. The figure indicates that the theoretical curve (i.e., the degree distribution of
PlaNettheo) matches quite well with the empirical data (i.e., the degree distribution
of PlaNet). In fact, the mean error between the two curves in this case is as small
as 0.03. It is worthwhile to mention here that since the degree distribution obtained
from the simulation as well as the theoretical analysis of the model matches the
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real data for a very high value of � there is a considerable amount of preferential
attachment that goes on in shaping the emergent structure of PlaNet.

There are two important observations that one can make from the analysis and the
results. First, unlike the case of bipartite networks where both the partitions grow,
in our model of PLaNet we observe a Beta distribution rather than a power-law. By
controlling the parameter � , one can change the skewness of the distribution and
make it look more like a power-law on one extreme and a normal-like distribution
on another extreme. See [40] for a detailed description of the qualitatively different
distributions that can emerge in this model. Second, it turns out that for consonant
inventories the value of � is fairly high that gives rise to a very skewed distribution,
but not high enough to result in a “winner takes all” situation.5

6.2 Linguistic Interpretation of the Model

There are several ways in which one can interpret preferential attachment and the
role of � in the context of evolution of consonant inventories. Arrival of a new
language in the system can be interpreted as a new language being created through
the process of language change. This could be either due to contact between two or
more languages, or due to some kind of drift from an existing mother language. In
either case, the predecessor(s) of the new language already exist(s) in the system.
Therefore, it’s consonants are also present in the system with non-zero degree.
There is a very high chance that the new language will inherit the consonants of
its predecessor(s) with some minor variations, if any. Therefore, the chances of the
new language node connecting to those consonants which are already connected to
other nodes in the system is higher than its probability to connect to a consonant
node with degree 0. Under the assumption that to start with there were very few
mother languages in the system, one can show that consonants that were more
present in those mother languages will eventually become very widespread across
all the languages, while those which were not present initially will have very low
probability of incoming edges in the future. In other words, consonants that are
more prevalent now in the system will eventually become even more prevelant in
the future. This, precisely, is the crux of the preferential attachment model.

According to this interpretation 1=� reflects the probability that during the
process of language change a language acquires new consonants distinct from those
present in its predecessor(s). In reality and also in our model this probability is
greater than 0, though quite small. One interesting prediction borne out of this inter-
pretation is as follows. Since PLaNet has been constructed from the phonological
inventories of diverse language families and since we do not specifically seed the

5As explained in [40], when � � .N=�/� 1 all the almost all the language nodes connect to the
same set � consonant nodes making other consonants virtually inexistant. For such a situation to
arise for PLaNet, � had to be greater than or equal to 25.
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model with the set of mother languages of all the families, the value of � estimated
from PLaNet will be lower (i.e., it will reflect a higher probability of choosing a new
consonant during the process of language change) than its real counterpart. One way
to test this hypothesis is to construct PLaNets with languages from a single family
and estimate the value of � for them. Our interpretation suggests that the value
of � ’s for family-specific PLaNets will be higher than 14. Furthermore, greater
contact with languages from other families should ideally lead to more diversity
in the inventories of a language family leading to a lower value of � . In the next
section, we will describe some experiments that empirically justify these intuitions.

Yet another interpretation of the proposed model could be based on language
acquisition. Consonants belonging to languages that are more prevalent among the
speakers in one generation have higher chances of being transmitted to the speakers
of languages of the subsequent generations than other consonants (see [8] for similar
observations). Recall that there is a very high correlation between type and token
frequencies of consonants. Therefore, consonants which are more prevelant across
language at a given time are also usually more commonly used in the languages
which have these consonants. Imagine a new speaker, i.e., a child entering the
system. The probability of the child acquiring a consonant is directly proportionate
to the amount of its exposure received by the child. This exposure, in turn, is
proportionate to the current usage of the consonant in the linguistic community the
child resides in. Thus, higher the usage of a consonant at a particular point of time,
higher is the probability that learners will acquire and use this consonant. In other
words, more prevalent a consonant is in the environment today, the more prevalent
it will be in the future. This line of argument again explains the manifestation of
preferential attachment in linguistic system. In this learning based interpretation of
our model, � represents fidelity of language acquisition. A higher value of � would
mean that a child acquires the language of his/her parents and the environment
without any distortion, whereas lower values of � would indicate that language
acquisition is a noisy process and children can learn languages very different from
what they have ever been exposed to. An extreme case is when � D 0, where
the child acquires a random language irrespective of the stimulus present in the
environment.

The two interpretations of the model described above are at two different levels.
While the language change based interpretation connects the mesoscopic evolution-
ary dynamics of the network to macroscopic processes, language acquisition based
interpretation links it to the microscopic dynamics of language acquisition. Note
that our interpretations are not specific to phonological systems. In fact, they can be
applied to any system which evolves through ontogenic transmission of knowledge.
Since several, if not all, aspects of a linguistic system are transmitted through
language acquisition, we believe that preferential attachment based models at a
mesoscopic level will be able to explain distributional patterns of linguistic entities.
Indeed, several other linguistic units such as words, syllables, syntactic structures
and lexemes are also known to follow Zipfian or very skewed distributions![52].
Recall that linguists often invoke theory of markedness to explain such universally
prevalent skewed distributions of linguistic units. However, our experiments and
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analysis show that it is not necessary to invoke an extraneous principle to explain
such distributions. Any initial heterogenity in the distribution will always eventually
get magnified by several folds due to the nature of the processes involved in
language acquisition and change. The initial skew in the distribution can, in fact,
be negligibly small and just an effect of random perturbations rather than some
inherent biases of the language faculty.

Nevertheless, one should keep in mind that our analysis does not provide
any evidence against the theory of markedness. It just says that for explaining
skewed statistical distributions of linguistic entities it is not necessary to assume
a markedness hierarchy. Apart from explaining skewed distributions, theory of
markedness has other roles in linguistic analyses and there are independent ways
of verifying those theories.

7 Dynamics of the Language Families

In this section, we investigate the dynamics within and across the consonant
inventories of some of the major language families of the world. More specifically,
for our investigation, we choose five different families namely the Indo-European,
the Afro-Asiatic, the Niger-Congo, the Austronesian and the Sino-Tibetan. We
manually sort the languages of these five groups from the data available in UPSID.
Note that we have included a language in any group if and only if we could find a
direct evidence of its presence in the corresponding family. We next present a brief
description of each of these groups6 and list the languages from UPSID that are
found within them.

Indo-European: This family includes most of the major languages of Europe and
south, central and south-west Asia. Currently, it has around three billion native
speakers, which is largest among all the recognized families of languages in the
world. The total number of languages appearing in this family is 449. The earliest
evidences of the Indo-European languages have been found to date 4,000 years back.

Languages: Albanian, Bengali, Breton, Bulgarian, Farsi, French, German, Greek,
Hindi/Urdu, Irish, Kashmiri, Kurdish, Lithuanian, Norwegian, Pashto, Romanian,
Russian, Sinhalese, Spanish.7

Afro-Asiatic: Afro-Asiatic languages have about 200 million native speakers
spread over north, east, west, central and south-west Africa. This family is divided
into five subgroups with a total of 375 languages. The proto-language of this family
began to diverge into separate branches approximately 6,000 years ago.

6Most of the information has been collected from the Ethnologue: http://www.ethnologue.com/
and the World Atlas of Language Structures: http://wals.info/
7Interestingly, while preparing this set of Indo-European languages from UPSID, we did not find
English.

http://www.ethnologue.com/
http://wals.info/
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Table 2 Number of nodes
and edges in the four bipartite
networks corresponding to
the four language families

Networks jVLj jVC j jEpl j � Age (in years)

IE-PlaNet 19 148 534 18.0 4,000 (or 8,000)
AA-PlaNet 17 123 453 26.0 6,000
ST-PlaNet 9 71 201 28.6 6,000
NC-PlaNet 30 135 692 28.6 5,000
AN-PlaNet 12 82 221 33.3 4,000

Languages: Amharic, Angas, Arabic, Awiya, Dera, Dizi, Hamer, Hausa, Iraqw,
Kanakuru, Kefa, Kullo, Margi, Ngizim, Shilha, Socotri, Somali.

Niger-Congo: The majority of the languages that belong to this family are found
in the sub-Saharan parts of Africa. The number of native speakers is around
300 million and the total number of languages is 1,514. This family descends from
a proto-language, which dates back 5,000 years.

Languages: Akan, Amo, Bambara, Bariba, Beembe, Birom, Bisa, Cham, Dagbani,
Dan, Diola, Doayo, Efik, Ga, Gbeya, Igbo, Ik, Kadugli, Koma, Kpelle, Lelemi,
Moro, Senadi, Tampulma, Tarok, Teke, Temne, Wolof, Zande, Zulu.

Austronesian: The languages of the Austronesian family are widely dispersed
throughout the islands of south-east Asia and the Pacific. There are 1,268 languages
in this family, which are spoken by a population of six million native speakers.
Around 4,000 years back it separated out from its ancestral branch.

Languages: Adzera, Batak, Chamorro, Hawaiian, Iai, Javanese, Kaliai, Malagasy,
Roro, Rukai, Tsou, Tagalog.

Sino-Tibetan: Most of the languages in this family are distributed over the entire
east Asia. With a population of around two billion native speakers it ranks second
after Indo-European. The total number of languages in this family is 403. Some of
the first evidences of this family can be traced 6,000 years back.

Languages: Ao, Burmese, Dafla, Hakka, Jingpho, Karen, Lahu, Mandarin, Taishan.
We use the consonant inventories of the language families listed above to con-

struct five bipartite networks – IE-PlaNet (for Indo-European family), AA-PlaNet
(for Afro-Asiatic family), NC-PlaNet (for Niger-Congo family), AN-PlaNet (for
Austronesian family) and ST-PlaNet (for Sino-Tibetan family). The number of
nodes and edges in each of these networks are noted in Table 2.

We attempt to fit the degree distribution of the five empirical networks with the
analytical expression derived for Pk;t in the previous section. For all the experi-
ments, we set N D 541, t D number of languages in the family under investigation
and � D average degree of the language nodes in the PlaNet representing the
family under investigation. Therefore, given the value of k we can compute pk;t and
consequently, Pk;t , if � is known. We vary the value of � such that the mean error
between the degree distribution of the real network and the equation is minimum.
The best fits obtained for each of the five networks are shown in Fig. 6. The values
of � corresponding to these fits are noted in Table 2.
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Fig. 6 The degree distribution of the different real networks (black dots) along with the best
fits obtained from the analytical expression for Pk;t (grey lines). For all the plots the y-axis is in
log-scale

The results indicate that the value of � for PlaNet is lower than that of all the
individual networks corresponding to the language families. Therefore, it may be
argued that the preferential component within a language family is stronger than
across families. Note that this is true only for real linguistic families and not for any
arbitrary group of languages. In fact, if one randomly selects a set of inventories
to represent a family then for a large number of such sets the average value of �

is 14.7 which is close to that of PlaNet. These observations neatly concur with our
predictions discussed in the last section.

We further observe a very interesting positive correlation between the approx-
imate age of the language family and the values of � obtained in each case (see
Table 2). The only anomaly is the Indo-European branch, which possibly indicates
that this might be much older than it is believed to be. In fact, a recent study [5] has
argued that the age of this family dates back to 8,000 years. If this last argument is
assumed to be true then the values of � have a one-to-one correspondence with the
approximate period of existence of the language families. As a matter of fact, this
correlation can be intuitively justified – higher is the period of existence of a family
higher are the chances of its diversification into smaller subgroups and contact with
languages from other families, which in turn increases the randomness of the system
and therefore, the values of � are found to be less for the older families.
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8 Conclusion

In this chapter, we have described a complex network based framework to study
the dynamics of linguistic systems and associated phenomena. Unlike the popular
studies of language dynamics, which either takes a microscopic view of language
acquisition by an individual or a macroscopic perspective on how language as a
whole changes over time, here we discuss a mesoscopic framework, where

• Languages and/or linguistic units are modeled as an interacting set of entities
represented through nodes and edges of a complex network.

• The topological properties of the network constructed from empirical data are
studied in order to understand the principles governing the linguistic phenomena
being studied.

• A network synthesis model is then invented, which can potentially replicate all
the topological characteristics of the real linguistic network(s). The synthesis
model is usually validated through simulation experiments, and if possible also
through analytical reasoning.

• Finally, through mathematical analysis and linguistic arguments the general
properties and expressiveness of the synthesis model and its parameters are is
interpreted in the context of language dynamics. This might also lead to new
linguistic predictions that can be verified against real data, whenever available.

Usually, a mesoscopic model so defined in terms of a complex network and
a stochastic synthesis process provides useful insights about the link between
language acquisition and language change. Furthermore, it is also capable of
quantifying the rate of these processes and their affect on a linguistic system (e.g.,
� in our case study). Thus, this line of research seems to hold a lot of promise in
furthering our understanding of language dynamics.

The current case study on self-organization of phonological inventories spells
out only the few initial steps of research in this direction. In fact, the studies
described in this chapter could have been carried out even without conceptualizing
the underlying network model, though it goes without saying that the network
model provides us with a strong visualization of the system and the processes.
Nevertheless, topological characteristics of a network extend much beyond degree
distribution. While the synthesis model described here is capable of explaining
the degree distribution of the network, it cannot explain several other topological
characteristics such as the structure of one-mode projection of the network or
clustering coefficient. Through a series of systematic experiments, we have shown
[33] that a synthesis model based on a linear combination of preferential attachment
and economy of distinctive features can explain most of the topological properties
of PLaNet. Our work shows that while preferntial attachment seems to be a strong
driving force at a global scale, at the level of an individual (or a single language)
acquisition of a new consonant is much easier when all of its distinctive features are
already known to the individual (or language). Thus, feature economy can sometime
make acquisition of rare consonants easier than that of a frequent consonant using a
set of features alien to the learner (or language).
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Although research in linguistic network has gained much popularity in the recent
times, it is still confined within few research communities. Mesoscopic models of
language dynamics, and more specifically language acquisition, are rare. On the
other hand, there are tremendous research opportunities in this area. For instance,
we do not know how words are acquired in the context of other words; how the
network of words in the mind changes and evolves over time; how, if at all, language
universals are borne out of language dynamics.

Appendix: Derivation of the Analytical Solution

We shall solve the model for � D 1 and then generalize for the case � > 1. Please
refer to Sects. 5 and 6 for explanation of the model and the notations used.

Solution for � D 1

Since � D 1, at each time step a node in the VL partition essentially brings a single
incoming edge as it enters the system. The evolution of pk;t can be expressed as

pk;tC1 D .1 � eP .k; t//pk;t C eP .k � 1; t/pk�1;t (6)

where eP .k; t/ refers to the probability that the incoming edge lands on a consonant
node of degree k at time t . eP .k; t/ can be easily derived for � D 1 using together
the Eqs. 2 and 3 and takes the form

eP .k; t/ D
(

�kC1

�tCN
for 0 � k � t

0 otherwise
(7)

for t > 0 while for t D 0, eP .k; t/ D 1
N

ık;0.
Equation 6 can be explained as follows. The probability of finding a consonant

node with degree k at time t C 1 decreases due to those nodes, which have a degree
k at time t and receive an edge at time t C 1 therefore acquiring degree k C 1,
i.e., eP .k; t/pk;t . Similarly, this probability increases due to those nodes that at time
t have degree k � 1 and receive an edge at time t C 1 to have a degree k, i.e.,
eP .k � 1; t/pk�1;t . Hence, the net increase in the value of pk;tC1 can be expressed
by the Eq. 6.

In order to have an exact analytical solution of the Eq. 6 we express it as a product
of matrices

ptC1 D Mt pt D � tY

�D0

M�

�
p0 (8)
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where pt denotes the degree distribution at time t and is defined as pt D
Œp0;t p1;t p2;t : : :�T (T stands for the standard transpose notation for a matrix),
p0 is the initial condition expressed as p0 D Œ1 0 0 : : :�T and M� is the evolution
matrix at time � which is defined as

Mø D

0

BBB@

1 � eP .0; �/ 0 0 0 : : :
eP .0; �/ 1 � eP .1; �/ 0 0 : : :

0 eP .1; �/ 1 � eP .2; �/ 0 : : :
:::

:::
:::

:::
: : :

1

CCCA (9)

Let us further define a matrix Ht as follows.

H0 D M0 (10)

Ht D Mt Ht�1 D � tY

�D0

M�

�
(11)

Thus we have,
ptC1 D Ht p0 (12)

Since our initial condition (i.e., p0) is a matrix of zeros at all positions except the
first row therefore, all the relevant information about the degree distribution of the
consonant nodes is encoded by the first column of the matrix Ht . The .k C 1/th
element of this column essentially corresponds to pk;t . Let the entry corresponding
to the i th row and the j th column of Ht and Mt be denoted by ht

i;j and mt
i;j

respectively. On successive expansion of Ht using the recursive definition provided
in Eq. 11, we get (see Fig. 7 for an example)

ht
i;j D mt

i;i�1h
t�1
i�1;j C mt

i;ih
t�1
i;j (13)

or,

ht
i;j D.mt

i;i�1mt�1
i�1;i�2/ht�2

i�2;j C .mt
i;i�1mt�1

i�1;i�1 C mt
i;i m

t�1
i;i�1/ht�2

i�1;j C mt
i;im

t�1
i;i ht�2

i;j

(14)

Since the first column of the matrix Ht encodes the degree distribution, it suffices to
calculate the values of ht

i;1 in order to estimate pk;t . In fact, pk;t (i.e., the .k C 1/th

entry of Ht ) is equal to ht
kC1;1. In the following, we shall attempt to expand certain

values of ht
kC1;1 in order to detect the presence of a pattern (if any) in these values.

In particular, let us investigate two cases of h1
2;1 and h2

2;1 from Fig. 7. We have

h1
2;1 D m1

2;1h0
1;1 C m1

2;2h
0
2;1 D

�
1 � 1

N

� �
1

� C N

�
C

�
N � 1

� C N

� �
1

N

�
(15)
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Fig. 7 A few steps showing the calculations of Eqs. 13 and 14

or,

h1
2;1 D 2

.N � 1/

.� C N /N
(16)

Similarly,
h1

2;1 D m2
2;1m

1
1;1h

0
1;1 C m2

2;2m
1
2;1h0

1;1 C m2
2;2m

1
2;2h

0
2;1 (17)

or,

h1
2;1 D 3

.� C N � 1/.N � 1/

.2� C N /.� C N /N
(18)

A closer inspection of Eqs. 16 and 18 reveals that the pattern of evolution of this
row, in general, can be expressed as

pk;t D
�

t

k

� Qk�1
xD0 .�x C 1/

Qt�1�k
yD0 .N � 1 C �y/

Qt�1
wD0 .�w C N /

(19)

for 0 � k � t and pk;t D 0 otherwise. Further, we define the special caseQ�1
zD0.: : : / D 1. Note that if we now put t D 2, k D 1 and t D 3, k D 1 in (19) we

recover Eqs. 16 and 18 respectively.
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Equation 19 is the exact solution of the Eq. 6 for the initial condition pk;tD0 D
ık;0. Therefore, this is the analytical expression for the degree distribution of the
consonant nodes in PlaNettheo for � D 1.

In the limit � ! 0 (i.e. when the attachments are completely random) Eq. 19
takes the form

pk;t D
�

t

k

� �
1

N

�k �
1 � 1

N

�t�k

(20)

for 0 � k � t and pk;t D 0 otherwise.
On the other hand, when � ! 1 (i.e., when the attachments are completely

preferential) the degree distribution of the consonant nodes reduces to

pk;t D
�

1 � 1

N

�
ık;0 C 1

N
ık;t (21)

Solution for � > 1

In the previous section, we have derived an analytical solution for the degree
distribution of the consonant nodes in PlaNettheo specifically for � D 1. However,
note that the value of � is greater than 1 (approximately 21) for the real network
(i.e., PlaNet). Therefore, one needs to analytically solve for the degree distribution
for values of � greater than 1 in order to match the results with the empirical data.
Here we attempt to generalize the derivations of the earlier section for � > 1.

We assume that � � N (which is true for PlaNet) and expect Eq. 6 to be a
good approximation for the case of � > 1 after replacing eP .k; t/ by bP .k; t/ where
bP .k; t/ is defined as

bP .k; t/ D
(

.�kC1/�

��tCN
for 0 � k � �t

0 otherwise
(22)

The term � appears in the denominator of the Eq. 22 for 0 � k � �t because, in
this case the total degree of the consonant nodes in PlaNettheo at any point in time
is �t rather than t as in Eq. 7. The numerator contains a � since at each time step
there are � edges that are being incorporated into the network rather than a single
edge.

The solution of Eq. 6 with the attachment kernel defined in Eq. 22 can be
expressed as

pk;t D
�

t

k

� Qk�1
xD0 .�x C 1/

Qt�1�k
yD0 . N

�
� 1 C �y/

Qt�1
wD0 .�w C N

�
/

(23)

for 0 � k � �t and pk;t D 0 otherwise.
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Given that � � N we can neglect the term containing �=N in the Eq. 23 and
express the rest using factorials as

pk;t D t Š�Š.t � k C � � ��1/Š.k � 1 C ��1/Š��1

.t � k/ŠkŠ.t C �/Š.� � ��1/Š.��1/Š
(24)

where � D N=�� . Approximating the factorials using Stirling’s formula (see [1]
for a reference), we get

pk;t D eA.t; �; �/
.k � 1 C ��1/k�1C��1C0:5.t � k C � � ��1/t�kC����1C0:5

kkC0:5.t � k/t�kC0:5
(25)

where

eA.t; �; �/ D t tC0:5��C0:5���1�0:5ep
2�.t C �/tC�C0:5.� � ��1/����1C0:5

(26)

is a term independent of k.
Since we are interested in the asymptotic behavior of the network such that t is

very large, we may assume that t � k � � > ��1. Under this assumption, we can
re-write the Eq. 25 in terms of the fraction k=t and this immediately reveals that the
expression is approximately a ˇ-distribution in k=t . More specifically, we have

pk;t � bA.t; �; �/B.k=t I ��1; � � ��1/ D bA.t; �; �/.k=t/��1�1.1 � k=t/����1�1

(27)
where B.zI ˛; ˇ/ refers to a ˇ-distribution over variable z. We can generate different
distributions by varying the value of � in Eq. 27. We can further compute Pk;t (i.e.
the cumulative degree distribution) using Eqs. 1 and 27 together.
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7. Barabási., A. L., Jeong, H., Ravasz, R., Néda, Z., Vicsek, T., & Schubert, A. (2002). On the
topology of the scientific collaboration networks. Physica A, 311, 590–614.

8. Blevins, J. (2004). Evolutionary phonology: the emergence of sound patterns. Cambridge/
New York: Cambridge University Press.



Language Dynamics in the Framework of Complex Networks 77

9. Boersma, P. (1998). Functional phonology. The Hague: Holland Academic Graphics.
10. Bulmer, M. G. (1979). Principles of statistics. New York: Dover Publications.
11. Bybee, J. L. (1995). Diachronic and typological properties of morphology and their implica-

tions for representation. In L. B. Feldman (Ed.), Morphological aspects of language processing
(pp. 225–246). Hillsdale: Lawrence Erlbaum Associates.

12. Caldarelli, G., & Catanzaro, M. (2004). The corporate boards networks. Physica A, 338,
98–106.

13. Choudhury, M., and Mukherjee, A. (2009). The Structure and Dynamics of Linguistic
Networks. In Dynamics on and of Complex Networks: Applications to Biology, Computer
Science, Economics, and the Social Sciences, Ganguly, N., Deutsch, A., and Mukherjee, A.,
(eds.), Birkhauser, Springer, Boston, 145–166, ISBN: 978-0-8176-4750-6.

14. Clements, G. N. (2008). The role of features in speech sound inventories. In E. Raimy &
C. Cairns (Eds.), Contemporary views on architecture and representations in phonological
theory. Cambridge, MA: MIT Press.

15. de Boer, B. (1999). Self-organisation in vowel systems. Ph.D. thesis, AI Lab, Vrije Universiteit
Brussel.

16. Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks: From biological nets to
the internet and WWW. Oxford: Oxford University Press.

17. Eubank, S., Guclu, H., Kumar, V. S. A., Marate, M. V., Srinivasan, A., Toroczkai, Z., &
Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429,
180–184.

18. Evans, T. S., & Plato, A. D. K. (2007). Exact solution for the time evolution of network rewiring
models. Physical Review E, 75, 056101.
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From Cues to Categories: A Computational
Study of Children’s Early Word Categorization

Fatemeh Torabi Asr, Afsaneh Fazly, and Zohreh Azimifar

Abstract Young children exhibit knowledge of abstract syntactic categories of
words, such as noun and verb. A key research question is concerned with the type of
information that children might use to form such categories. We use a computational
model to provide insights into the (differential and cooperative) role of various infor-
mation sources (namely, distributional, morphological, phonological, and semantic
properties of words) in children’s early word categorization. Specifically, we use an
unsupervised incremental clustering algorithm to learn categories of words using
different combinations of these information sources, and determine the role of each
type of cue by evaluating the quality of the resulting categories. We conduct two
types of experiments: First, we compare the categories learned by our model to a
set of gold-standard part of speech (PoS) tags, such as verb and noun. Second, we
perform an experiment which simulates a particular language task similar to what
performed by children, as reported in a psycholinguistic study by Brown (J Abnor
Soc Psychol 55(1):1–5, 1957). Our results suggest that different categories of words
may be recognized by relying on different types of cues. The results also indicate the
importance of knowledge of word meanings for their syntactic categorization, and
vice versa: Addition of semantic information leads to the construction of categories
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with a better match to the gold-standard parts of speech. On the other hand, our
model (like children) can predict the semantic class of a word (e.g., action or object)
by drawing on its learned knowledge of the word’s syntactic category.

1 Introduction

Language acquisition is perhaps one of the most difficult tasks that children face
early in their development. Children must process the auditory input in order
to identify sentence and word boundaries, they need to map words onto their
meanings, and must discover the syntactic constraints for combining individual
words into meaningful phrases and sentences. There is abundant evidence that these
processes of speech segmentation, word–meaning mapping, and syntax acquisition
are intertwined. In particular, children are known to use their knowledge of the
syntactic structure of utterances to help them identify words in speech (e.g., [13]),
and also to narrow down possible meanings of words (e.g., [21]). In this study,
we focus on the acquisition of syntactic categories (e.g., noun and verb) in young
children, which have been argued to be a necessary first step for learning the
structure of language. In fact, there is evidence that children have a good knowledge
of many such abstract categories by 6 years of age (e.g., [16]).

Computational modeling has recently been accepted as a new paradigm for
the study of various aspects of human language acquisition and processing. In
particular, many computational models have been proposed to answer several
important questions regarding the development of syntactic categories in young
language learners: E.g., what is the nature of the learned categories; whether such
categories are learnable from usage data; and what sort of cues in the input facilitate
their acquisition. Many of these models, however, make assumptions about the
underlying learning mechanisms or about what a learner can extract from the input,
which are arguably beyond the abilities of young children. Other more recently-
developed and cognitively-plausible models focus mainly on one particular type
of cue for the acquisition of syntactic categories, overlooking other important
sources of information. What is lacking is a comprehensive investigation of the
interplay of the various types of cues on early syntactic category learning. The
study reported here is a first attempt at addressing this gap using a computational
modeling approach.

This article is an updated and extended version of our previous work (reported in
[2]). The article is organized as follows: We introduce the existing psycholinguistic
and computational studies focusing on syntactic category learning in Sect. 2, and
then provide an overview of our proposed study in Sect. 3. Section 4 presents the
components of the model, and Sect. 5 describes the experimental setup. Results
are reported in two separate Sects. 6 and 7, the former including evaluations of
the learned categories through comparison with parts of speech (PoS), and the
latter examining the usefulness of the learned categories in a language task. Our
discussions and analyses of the results are presented in the final concluding section.
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2 Related Work

Psycholinguistic studies on early language acquisition have shown that children
can recognize shared syntactic and/or semantic properties among words, and that
they use this knowledge (through categorization and generalization) to learn new
words [3, 4, 11, 16, 26]. Brown (1957) [4] and Berko [3] investigate how children’s
knowledge of syntax and semantics interact. In Brown’s experiment, children are
asked to predict the meaning of a novel (often made-up) word appearing in a familiar
syntactic and/or morphological context. For example, children should predict what
dax means in This is a dax or in He is daxing. Whereas Brown focuses on semantic
predictions using syntax, Berko investigates how children make syntactic decisions
on the basis of semantic information. For example, children are shown a picture of a
cartoon animal while they hear This is a wug. When presented with a similar picture
of two such cartoons, children are expected to fill in the empty spot in an utterance
such as There are two � � � with a (morphologically) appropriate word such as wugs.

Results of the above seminal studies suggest that young children (3–7 years
old) categorize words in the course of their language development, and that they
derive general rules about entities within a category. Since then, many researchers
have tried to better understand the acquisition of word categories in young children.
Gelman and Taylor [11] investigate how 2-year-old children interpret novel nouns
as proper or as common category names, depending on the syntactic context in
which the noun is first introduced (e.g., This is a Zav or This is Zav), as well as
on the type of the novel referent (e.g., animal-like or block-like toy). The results of
this study show that these young children use both types of knowledge (linguistic
context and real-world knowledge) to interpret new words. Samuelson and Smith
[26] find that properties of objects, such as their shape or texture, affect children’s
assumptions about the syntactic categories of the names used to refer to the objects.
For example, they find that children tend to use count nouns to refer to solid
objects. Kemp et al. [16] study the developmental patterns of the determiner and
adjective categories in 2–6-year-old children. Results of their experiments suggest
that children’s understanding of determiners and adjectives are built gradually over
several years, possibly starting with constructions learned for individual lexical
items.

An important question regarding children’s early word categories is what cues
facilitate their acquisition. To answer this question, two streams of research have
emerged. One group of studies perform experiments on children or use large corpora
of child-directed speech (CDS) to shed light on various aspects of category learning,
and in particular on what types of cues are available in the learning environment
of young children [12, 19, 20, 22]. We provide more details about these studies in
Sect. 2.1. Another group of researchers have developed computational models to
examine whether these cues are actually useful in learning syntactic categories, and
whether categories built by a model resemble those learned by children [1, 5, 7, 8,
22, 23, 25, 27]. Section 2.2 explains these studies in more detail.
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2.1 Experimental and Corpus-Based Studies

Several studies have looked into the availability and relevance of distributional word
co-occurrence cues on the acquisition of early word categories. Gerken et al. [12]
perform experiments on very young American (English-speaking) children who
have had limited exposure to Russian. Children in this study show acceptable
competence for distinguishing linguistic gender categories based on distributional
information available in the (Russian) training data provided to them. These
results suggest that, from relatively early in language development, distributional
information is used by learners as a strong cue to word categories. Mintz [19]
investigates the usefulness of frequent frames—co-occurrence patterns of words
in sentences—in syntactic categorization: Words that appear in the same frequent
frame are categorized together. Mintz’s analysis of CDS data shows that even very
simple three-word frames yield reasonably accurate adult-like syntactic categories.

Others have examined the type of phonological and morphological information
found in CDS that are likely to be relevant to syntactic categories. Monaghan
et al. [20] present a comprehensive investigation of phonological cues that mark
syntactic categories in a number of languages. They show that simple phonological
cues are available to young children (in CDS); and that they are particularly helpful
for the identification of the syntactic category of low-frequency words. Through an
extensive analysis of CDS in several languages (namely, English, Dutch, French,
and Japanese), [22] show that simple approximations about the morphological
structure of a word—i.e., the first and last phonemes of the word—significantly
correlate with its syntactic category.

2.2 Related Computational Models

Computational modeling is considered as a powerful tool for the study of language
acquisition, and hence many computational models have been proposed to study the
learnability of syntactic categories from a usage-based point of view [15, 24].
Several existing computational models cluster words into syntactically (and
semantically) similar categories, by drawing on distributional cues (i.e., word
co-occurrence statistics) extracted from usages of words in context [8, 25, 27].
The results of these studies suggest that abstract word categories are learnable, and
that distributional cues are a useful source of information for this purpose. The
connectionist model of Onnis and Christiansen [22] can infer the lexical category of
a novel word by drawing only on simple phonological/morphological information.
The proposed model is not fully unsupervised, as it needs to be trained with an initial
small sample of words labeled for lexical category. Nonetheless, the results of this
study suggest that simple learning mechanisms combined with simple phonetic
information (that are easily available to children) are useful in the acquisition of
syntactic categories.
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A few models have been proposed that are meant to be cognitively more
plausible—that is, they are fully unsupervised, they process data incrementally,
they categorize individual occurrences/usages of a word (as opposed to word
types as in the models above), and they do not need to specify the number of
categories beforehand. The incremental model of Cartwright and Brent [5] builds
categories by finding common usage patterns across sentence-length templates.
The proposed algorithm is very effective for discovering categories in artificial
languages. However, the model uses the full sentence as a contextual unit, and
hence is not sufficiently flexible to handle noise (which is prevalent in naturalistic
child-directed data).

Several probabilistic models have been put forward to provide the flexibility
needed for handling noise. Parisien et al. [23] propose a Bayesian clustering
model which can handle ambiguity, and exhibits some of the developmental
trends observed in children (e.g. the order of acquisition of different parts of
speech). In order to overcome sensitivity to variability in context, they introduce
a “bootstrapping” component—where the model uses its own learned knowledge of
categories in future categorizations—as well as a periodical cluster reorganization
component. These mechanisms improve the overall performance of the model, but
also make it more complex. Alishahi and Chrupała [1] and Chrupała and Alishahi
[7] propose incremental models of lexical category learning that can efficiently
process naturalistic utterances, and that can over time build robust categories from
little usage data.

3 Overview of This Study

The existing computational studies (presented in the previous section) demonstrate
that syntactic categories can be learned from naturalistic word usages, by drawing
on the kinds of information that children are known to be sensitive to. Nonetheless,
these studies have shortcomings that need to be addressed. Some of the proposed
models incorporate batch learning mechanisms, such as hierarchical clustering,
which are not intended to be cognitively plausible (e.g., [8, 25, 27]). In addition,
these models partition the vocabulary (word types) into a set of non-overlapping
clusters, and hence do not account for words that belong to more than one category.
Moreover, most existing studies have focused on the usefulness of one type of cue,
mainly distributional (as in [1, 5, 7, 8, 23, 25, 27]), and rarely on another type of cue
(e.g., phonological, as in [22]).

We present a computational study that investigates the role of different types
of language-internal (namely, distributional, morphological, phonological) and
language-external (i.e., semantic) cues in the acquisition of syntactic categories.
Specifically, we apply a simple incremental clustering algorithm (a slightly modified
version of the model proposed by Alishahi and Chrupała [1]) on naturally-occurring
English child-directed utterances to study the effect of each of the above-mentioned
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cue types on category learning. We choose the above-mentioned categorization
algorithm because it incrementally categorizes word usages; and moreover, the
model relies on simple similarities among word properties, and can easily incor-
porate any types of cues to build the categories. Our goal is to provide a detailed
analysis of the interplay of multiple cue types in the acquisition of early syntactic
categories. We thus compare categories provided by different combinations of
cue types. In addition, we examine whether there are any meaningful correlations
between each cue type and the acquisition of each syntactic category.

To evaluate the learned categories, we perform two types of analyses: First, we
compare the categories induced by our model to a small set of gold-standard PoS
tags (e.g., noun and verb). This is not an ideal but a common evaluation of the
similarity between the knowledge acquired by a computational model and the formal
word categories in adult grammar. Second, we present a set of semantic prediction
experiments where we examine the usefulness of the categories for predicting the
meanings of novel words. In one such experiment, we also compare the behaviour
of our model to that of children as reported in the psycholinguistics literature.
Results of our experiments reveal the effect of different cues in recognizing words
from different syntactic categories: Morphological and phonological properties of
words, as well as their semantic properties, help increase the overall categorization
performance of the model when used in combination with contextual (word
co-occurrence) features. (We thus take our baseline performance to be the model’s
performance when only co-occurrence features are used.) Our results also show that
morphological and phonological features help identify verbs, whereas nouns are
better categorized when these features are ignored. Our results also reveal interesting
syntax–semantics interactions in the learned categories: word meanings prove to be
useful for syntactic category learning; and, moreover, the syntactic context (as well
as the morpho-/phonological properties) of a novel word are shown to be helpful for
predicting its semantics.

Best performance of the model in recognizing syntactic categories is obtained
when semantic features are taken into account that in turn shows a strong syntactic–
semantic coherence of the constructed categories. Another evidence for this claim
is the result obtained in our semantic prediction task. Although the model in this
experiment is trained solely on syntactic features, its performance in predicting
semantically similar clusters for new words is much above the chance level.
Furthermore, in the simulation of Brown’s experiment, the model’s behavior has
a good match with that of children in distinguishing objects from actions (when
only limited syntactic information is provided to them).

To summarize, we study the effect of several different types of (language-
internal and language-external) cues on early word categorization. To do so, we
use an existing incremental similarity-based clustering algorithm that can easily
incorporate different combinations of cues to form categories of words. We incor-
porate only very simple cues that are known to be both available in the input that
children receive, and accessible by very young children (i.e., easy to extract from
their learning environment). Following previous studies, we evaluate the resulting



From Cues to Categories: Study of Children’s Early Word Categorization 87

clusters in each experimental condition by comparing them to a set of gold-standard
part of speech tags. In addition, we also simulate several language tasks for which
young children need to use their knowledge of categories.

4 Components of the Categorization Model

We first present the categorization algorithm of Alishahi and Chrupała [1] that we
slightly modify to fit our purpose (Sect. 4.1); and then explain how we extract the
different types of cues from naturally-occurring child-directed utterances to be used
for learning word categories (Sect. 4.2).

4.1 Categorization Algorithm

The unsupervised clustering algorithm proposed by Alishahi and Chrupała [1]
works based on contextual similarities among words.The algorithm is incremental in
the sense that it processes words one by one, discarding each word after clustering.
For each newly-observed frame (a target head-word along with its left and right
neighboring words), if the similarity to all of the already-shaped clusters is less
than a predefined threshold, a new cluster is formed. Otherwise, the target word is
assigned to the most similar cluster.

We choose this algorithm for our study since it is unsupervised, incremental,
flexible, and simple. We modify the algorithm in two ways: (1) the original
algorithm of Alishahi and Chrupała [1] includes a phase in which clusters are
merged if they are sufficiently similar. To keep the algorithm simple, we remove
this step and adjust the final number of clusters by the help of a similarity threshold;
(2) our frames are composed of different types of features; we thus need to modify
the calculation of the similarity score in order to accommodate for more than one
set of features. We calculate the similarity between a frame f (consisting of a variety
of features) and a cluster C (a group of frames) as:

Sim.f; C / D
X

i2F
!i 	 Simi .f; C / (1)

in which F is the set of all features considered as part of our frames, Simi .f; C /

shows the similarity of frame f to cluster C with respect to the i th feature, and the
weight !i determines the relative contribution of the i th feature in calculating the
overall similarity between a frame and a cluster. Weights for all features need to sum
to 1, i.e.,

P
i !i D 1. Details of the modified algorithm are given in Algorithm 1.
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Algorithm 1 Incremental word clustering
1: initialize set of clusters K D ;
2: for every frame f do
3: CM D argmaxC 2KSim.f; C /

4: if Sim.f; CM / � 	 then
5: Add frame f to cluster CM

6: else
7: Construct a new cluster for frame f
8: end if
9: end for

(This algorithm is a modification of the one proposed by Alishahi and Chrupała [1]).

4.2 Cues Used in Categorization

As previously mentioned, children are known to group words into categories by
drawing on a number of different types of cues. In this study, we include four
different sources of information:

Distributional information about word co-occurrences: This kind of informa-
tion has been reported to be reliable and very important in syntactic categorization
[1, 8, 19, 23, 25, 27]. Some of these studies report that words closer to a word are
more informative about its category. Therefore, we take one word from each side
of a target head-word as its co-occurrence features. For example, considering the
following sentences hints the model to group cat and table together since they share
similar co-occurrence features:

There is a cat in the basket
We need a table in our kitchen
The cat is in the house
The table is in good condition

In our framework, each co-occurring word is considered as an independent
feature when determining similarity between a word (frame) and a cluster (as
done in many previous studies, and in contrast to representations such as “frequent
frames” of Mintz [19]). For example, even if the two tokens cat and table did not
share the preposition in, they should still be considered as somewhat similar because
of the preceding determiner a that they have in common.

Phonological information: Words belonging to the same syntactic category tend
to have common phonological properties. For example, by analyzing the child-
directed utterances, Monaghan et al. [20] show that verbs and nouns differ with
respect to several phonological features, including the number of syllables. The
study done by Monaghan et al. [20] focuses on the relevance of syntactic categories
and a large number of word-level, syllable-level, and phoneme-level phonological
properties. Here, we only focus on two of the simplest word-level phonological
properties that are assumed to be readily accessible by young children, namely the



From Cues to Categories: Study of Children’s Early Word Categorization 89

length of a word in terms of the numbers of syllables and phonemes (number of
letters are taken to approximate the number of phonemes in a word).

Morphological information: It has been shown that English affixes, such as -
ing in verbs, can provide strong clues to the identification of syntactic categories,
and that such information is abundant in child-directed speech [22]. Nonetheless,
it is not clear whether one can assume that children have access to such accurate
morphological knowledge about words and categories prior to syntactic category
learning. Inspired by the work of Onnis and Christiansen [22], we use the last
phoneme (ending) of the words as an approximation to the morphological affixes.1

Semantic properties: In addition to the previously mentioned information that
are directly available in the utterances, children might use some notion of word
meanings when finding similarities among words. We use a set of semantic features
previously used by Fazly et al. [9] in a computational model of word learning. More
details about this resource are provided in Sect. 5.2.
In our experiments, we use different combinations of the above-mentioned features
(cues). Head word, co-occurrence properties, morphology and phonology are
considered as language-internal features, whereas semantic features are taken as
language-external properties of the words. Further details about the extraction of
these features is presented in the following section (Sect. 5.2).

5 Experimental Setup

We first provide information on the corpus we use in our experiments (Sect. 5.1),
and then explain how we extract our features from the utterances (Sect. 5.2). Finally
we present some details about setting the parameter values in the model (Sect. 5.3).

5.1 Corpus

We use as our input corpus naturally-occurring utterances similar to what children
receive. Specifically, our input data (both for training and test) is obtained from
the Manchester corpus [28], one of the English subsets in the CHILDES database
[18]. This corpus contains conversations between parents/caregivers and 12 British
children between the ages of 1;8 (years;months) and 3;0.2 For training, we randomly

1In earlier experiments, we also included the first phoneme (beginning) of a word—a feature also
considered by Onnis and Christiansen [22]. In our initial evaluations, we found that the inclusion
of this feature did not affect the performance, and hence excluded it from further consideration.
2Authors are grateful to Christopher Parisien for providing them with a preprocessed version of
this corpus.



90 F.T. Asr et al.

Fig. 1 Sample frame extracted for head word ball from the utterance “There is a ball in the basket”

choose a number of child-directed utterances from the conversations of all 12
children such that the chronological order of the utterances is maintained and the
utterances contain only words selected from a limited vocabulary of 500 word
types. When selecting this vocabulary, we ensure that their distribution in the corpus
matches the Zipfian distribution, so that our results are not biased towards words
from certain frequency ranges. We extract 50,000 frames—each containing a target
word to be categorized as well as some features—from these filtered utterances,
and use them as our training set. We limit the size of the vocabulary because some
feature values must be determined manually. Moreover, in one experimental task,
we need access to natural novel words not previously seen in the training corpus,
instead of artificially made-up words used in many psychological experiments. As
our test data, we thus select 2,000 frames such that the target words to be categorized
are novel for the model (i.e., not in the vocabulary of 500 words).

5.2 Feature Extraction

From each utterance (in either the training or test data), we extract a number of
frames to be clustered. As previously explained, each frame contains a head word
(the target word to be categorized), plus other features including: two co-occurrence
(Cooc), two phonological (Phon), one morphological (Morph), and a set of semantic
(Sem) features. A sample frame is shown in Fig. 1. The head word and the Cooc
features can be directly extracted from the utterance. If any of the Cooc features is
missing (i.e., when the target word is the first or the last word of the utterance), that
feature value is set to “Null”.3

For Phon and Morph features a phonemic representation of words as well as other
phonological features are required. We extract two of these features (the ending
phoneme, and the number of syllables) from the MRC Psycholinguistic Database, a
publicly available resource built for the purpose of studies on child language [29].4

If a word is not found in MRC, we set the values of the above features manually.

3The “Null” value is treated as a missing value for a feature.
4http://www.psych.rl.ac.uk/

http://www.psych.rl.ac.uk/
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For the third feature, namely the number of phonemes in a word, the number of
letters is considered as an approximation.

Semantic features are extracted from the lexicon prepared by Fazly et al. [9].
In order to extract the right semantic features of a word usage, we first look at
its PoS tag in the selected utterance and then look for the corresponding entry in
the lexicon to retrieve its semantic feature set. Fazly et al. [9] have prepared their
semantic lexicon using three different resources: For nouns and verbs, they take
all the hypernyms for the first sense of the word in WordNet [10], where each
hypernym is a set of synonym words (synset) tagged with their sense number. The
first word in the synset of each hypernym is taken as a semantic feature for the target
word. Fazly et al. augment the semantic features of verbs with extra properties taken
from VerbNet [17]. For adjectives and closed-class words, the authors use semantic
features provided by Harm [14].(See Fig. 1 for a sample set of semantic features
associated with the word ball.)

5.3 Model Parameters

The model we use contains two sets of parameters: the weights !i in (1) used
to determine the relative contribution of features in measuring similarities, and a
similarity threshold 	 used to decide whether to create a new cluster for a given
frame. We set the weights !i uniformly, assigning equal weights to all features.
Clearly the value of 	 affects the population of generated clusters: a low value
increases the likelihood of grouping more words, hence decreasing the total number
of clusters. We assign different values to this parameter in various experimental
conditions (i.e., different combinations of features), such that we maintain the total
number of clusters generated in each condition within a desired range.

We take into account two different ways of measuring Simi .f; C / in (1) depend-
ing on feature i . For categorical features (Head, Cooc, Morph and Sem) we use the
cosine similarity of the feature vectors, which is widely used in similar clustering
algorithms. A vector representing a categorical feature such as Head is of the size of
word types in the corpus. For a sample frame f the vector includes 0 in all elements
except where the value of Head in that frame is presented. For our numerical feature
(Phon) we use the Euclidean distance.

6 Discovering Syntactic Categories

This section explains the first set of our experiments which analyze the role of
different language-internal and language-external cues in syntactic categorization.
First, a detailed description of our evaluation strategy is given. Then, we present
a discussion of the performance of our model in acquiring categories similar to
gold-standard parts of speech when different combinations of the cues/features
are used.
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6.1 Evaluation Strategy

To examine the contribution of each cue type in syntactic categorization, we evaluate
the quality of the clusters built by using different combinations of features in a novel
word categorization task. Specifically, we train our model (on the training corpus) in
five different conditions, i.e., using one of the following feature combinations: Cooc,
Cooc C Morph, Cooc C Phon, Cooc C Sem, and finally Cooc C Morph C Phon C
Sem (Note that the Head feature is always part of the frame to be categorized; we
omit it from the title of the conditions for the ease of exposition only). We then
determine the effect of each feature set by examining the performance of the model
to infer the category of a number of novel (previously unseen) test words.

After the training phase, each learned cluster is labeled with a part of speech tag
as follows. Words in the Manchester corpus are tagged with a fine-grained set of
parts of speech. We convert these to a coarser grained version (also used by Parisien
et al. [23]), including 11 tags, namely, Noun, Verb, Adjective, Adverb, Determiner,
Negation, Infinitive, Auxiliary, Conjunction, Preposition, and Others. (Note that the
resulting categories do not necessarily need to match the conventional adult-like
categories put forth by linguists. Nonetheless, as a first-line evaluation, we compare
the categories learned by our model to this gold-standard set of parts of speech.)
Each cluster label is therefore assigned based on the majority label among all its
members. For example, a cluster containing 30 nouns, 90 verbs, and 20 adjectives
is labeled as a Verb cluster.

During the test phase the model does not create new clusters, but assigns each
novel test word to one of the clusters (the one that is most similar to it) formed in
the training phase. The test word is then assigned the same part-of-speech label as
the selected cluster, and this label is compared with the ‘true’ syntactic category
of the word that is the gold-standard tag associated with it in the corpus. We report
accuracy measured as the proportion of test words assigned to their correct category.
We also look into the accuracy for different groups of words, such as verbs and
nouns, as well as open-class (content) and closed-class (function) words.

Accuracy corresponds to token-based precision on test data, a widely used
measure for evaluating clustering performance along with recall. Precision is a
good indicator of the homogeneity of the items within a cluster. We do not report
recall values which are not informative in our experiments since the number of
target labels (11 PoS tags) is very small in comparison to the number of resulting
clusters. In fact, precision values show the significant differences in the performance
of the model over different experiments while recall values are very small for all
experiments due to the large number of clusters in general.

6.2 Novel Word Categorization

This section presents our evaluation of the trained model in predicting the syntactic
category of the 2,000 novel test words, using different combinations of features.
Since distributional information has been reported to play a key role in determining
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Fig. 2 %Accuracy of novel word categorization over five different combinations of features;
Accuracy is reported separately for open-class and closed-class words

syntactic categories, the condition in which we use only Cooc features is considered
as our baseline. We thus investigate the effect of the other features in cooperation
with (or in comparison to) the Cooc features.

Note that the Head feature is not very useful for prediction (since test words
are not seen during the training), and hence the model has to utilize other sources
of information to determine the category of a word. Recall that we examine the
performance of our model in category prediction using five different combinations
of features. For each combination of features, Fig. 2 depicts the performance of the
model on all test words, as well as separately for open-class and closed-class words.

Comparing the accuracy of the categorization model across different conditions
is fair and meaningful only if the number of clusters is relatively close in all
conditions. Generally speaking, allowing a large number of clusters makes the
categorization more conservative (i.e., forming too many small clusters each con-
taining one or a few word types that are very similar). Hence, in the training phase
we assign different values to the similarity threshold 	 to obtain approximately
identical number of final clusters for each of the above-mentioned five conditions,
e.g., between 250–300 clusters. This approach allows us to focus on the effect
of different features involved in categorization while other factors are maintained
constant across the experiments.5

Comparing the overall accuracies of the first four conditions suggests that
employing phonological features improves the prediction of a novel word category
while the morphological feature is not effective. In addition, Sem features are

5We have performed similar experiments with different ranges of cluster numbers, and found that
the general patterns in results are similar. In Appendix A, we report the result of experiments in
which we set the number of clusters within the range 346–500 (<500). In general we prefer fewer
clusters (fewer than our vocabulary size) to allow for generalization. We expect the generalization
ability of the model with 247–288 (<300) clusters to be reasonably good since more than 55 % of
these clusters contain three or more word types in all conditions.
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observed to have the most helpful contribution to the overall prediction accuracy.
(We should note that our selection of semantic features is one among a variety of
possible choices. Therefore, their effect in the categorization should be analyzed
in a more conservative manner than for better defined features, i.e., language-
internal properties). Best performance of the model is acquired by considering
co-occurrence and semantic features, even better than the condition in which all
features are used. This in turn shows that using a combination of several acceptable
features do not necessarily result in a better accuracy than when applying them indi-
vidually. Indeed, these results suggest that children may not always use all the cues
in combination, but rather use each type of cue to identify words from a particular
category. We provide further details on this prediction in the rest of the section.

The accuracy of category prediction for different classes of words are shown
to be affected in different ways. The accuracy for closed-class words is very low,
because such words neither share distinguishable word-internal (Phon and Morph)
features nor are easily classified based on co-occurrence information. The latter is
caused by the large-size vocabulary of open-class words appearing as neighbors of
closed-class words. A well-known category of closed-class words are determiners
whose frequency is very high in naturally occurring utterances while they have
a rather small vocabulary size (e.g., a, an, the). Since nouns form a very diverse
group and often appear to the right of determiners, they are too sparse to help group
determiners into a category. On the other hand, determiners are good indicators
of nouns and hence, as a co-occurrence feature they direct the model to choose the
right category for a novel noun. Therefore, in general, closed-class words function as
good co-occurrence features for open-class words while the reverse is not the case.

In order to better understand the performance of different cue types, the
categorization accuracy for verbs, nouns, adjectives and determiners are separately
reported in Fig. 3. In a quick look, we find the latter two categories more difficult for
the model to learn. The lower accuracy of detecting novel determiners and adjectives
in comparison to nouns and verbs suggests that the model can hardly employ its
acquired knowledge to detect new instances of these categories. This, in fact, has
been reported in psycholinguistic investigations of language acquisition. Children
are known to acquire nouns and verbs easier and faster than other categories [16].
Above, we explained why determiners (as a typical example of closed-class words)
are hard to be categorized by our model, but why are adjectives hard to learn
as a group? Despite having distinctive word-internal features (e.g., ending -y as
a morphological cue) the low frequency of adjectives in CDS might provide an
explanation.6 In addition, adjectives seem to share some distributional features with
nouns (e.g., like nouns, adjectives may also be preceded by certain determiners).7

Interestingly, using Cooc features alone results in a better detection of novel
nouns, whereas for verbs other types of information (i.e., Morph and Phon) are

6In both the training and test data less than 6 % of the vocabulary are adjectives.
7Note that although the results show that by using semantic features the prediction accuracies
for adjectives and determiners are substantially improved, this effect is due to the nature of the
semantic features for these words (taken from Harm [14]) and should be interpreted with caution.
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Fig. 3 %Accuracy of novel word categorization over five different combinations of features;
Accuracy reported separately for four parts of speech

more helpful. Hence, even among open-class words, discovering different categories
seem to rely on different types of information. This finding is also supported by the
observation that, typically, context words such as determiners mark the appearance
of nouns; and in contrast, verbs particularly share morphological and phonological
properties (many verb forms end in -ed or -ing).8

In all of the experiments semantic features seem to play an effective role.
These results direct our attention to the hypothesis that children use language-
external information about words to induce lexical categories. In the following
section we design experiments to further investigate the effect of syntax on semantic
prediction—that is, to see how our model might use its learned (syntactic) categories
to predict the meaning of a novel word.

7 Word Categorization and Semantic Prediction

One important task for examining the effectiveness of a word categorization model
is that of semantic prediction—that is, predicting the semantics of a novel word
appearing in a familiar syntactic context. Semantic prediction has been used both
to test the ability of young children to form word categories [9], and to evaluate
computational categorization models [7]. Our second set of experiments is thus
designed to show how the categories learned by our model can help predict the
semantics of a novel word. We first describe the results of an experiment in which
we use the categories learned by using a combination of features to predict the
semantics of the 2,000 novel words in our test data (Sect. 7.1). We then present a
simulation of the Brown’s [4] experiment (Sect. 7.2).

8Results of the novel word categorization experiment are included in the Appendix with more
details.
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7.1 Semantic Feature Prediction

We use the model trained on 50,000 input frames (using different combinations
of features, as explained in Sect. 6) to predict the meaning of our 2,000 novel
test words. For this experiment as well as the simulation of Brown’s experiment
(the following section), we build a semantic profile for each cluster formed during
training. Specifically, at the end of the training phase each cluster will have a vector
of semantic features which is an average over the semantic vectors of all members
assigned to it. In the test phase of this experiment, we first assign each novel test
frame to the most similar cluster—henceforth referred to as the chosen cluster—
by comparing all the non-semantic features also used during training (i.e., a subset
of Cooc, Morph, and Phon). We then measure the semantic fit between the target
frame and the chosen cluster using two different measures: (1) the Mean Reciprocal
Rank (MRR), which is a measure widely used to evaluate an information retrieval
system; and (2) a novel measure we introduce, called Average Semantic Recall
(ASR). We will now explain each of these measures in more detail. To measure
semantic fit using either MRR or ASR, we rank all the learned clusters according
to their semantic similarity to the target frame. Both MRR and ASR examine the
rank of the chosen cluster in this ranked list, and assign a score to it that reflects
how high in this list is the chosen cluster. MRR and ASR assign their highest score
to a situation in which the semantically most similar cluster to the target frame
(top cluster in the ranked list) is the chosen cluster (i.e., the syntactically and/or
phonologically and/or morphologically most similar cluster).

Formally, MRR is calculated as follows:

MRR D 1

n

nX

iD1

1

ri

(2)

where n is the number of test words (here, 2,000), and ri is the rank of the chosen
cluster for the i th test word. Note that MRR does not take the total number of
clusters in the ranked list into account, and hence may not be easily comparable
across different experimental conditions in which the number of clusters varies.
We propose a novel measure, which we call Average Semantic Recall (ASR), in
order to alleviate this problem. MRR is designed for information retrieval, where
the assumption is that users mostly notice the items at the very top of a ranked list.
Hence the value of MRR decreases exponentially as the chosen cluster moves down
the ranked list (due to averaging over the inverse ranks). In contrast, ASR averages
over the actual ranks, and so its value decreases in a linear fashion, as in:

ASR D 1 �
Pn

iD1.ri � 1/

n.k � 1/
(3)

where k is the total number of clusters learned by the model. MRR and ASR values
range between 0 and 1, with 1 reflecting a really strong interaction between the
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Table 1 Performance of the categorization model in predicting
semantic features of 2,000 novel test frames; For the ease of
exposition, we present multiples of ASR and MRR by 100

ASR � 100 MRR� 100

Cooc 87 14
CoocCMorph 82 11
CoocC Phon 88 14
CoocCMorphC Phon 81 11

syntax and semantics of the learned clusters (at least for the ones to which a test
frame is assigned). Table 1 gives the MRR and ASR values in different conditions
(in each the model is trained using a different combination of features).
As noted before, a similar experiment has been performed by Chrupała and
Alishahi [7] but considering co-occurrence features only. Our results here confirm
their findings: that syntactic context of a word (reflected in the Cooc features)
closely interacts with the word’s meaning. Our results, however, do not show
any interactions between the morphological/phonological properties of words and
their semantic features, independently of the syntactic context. Future research will
need to investigate this, e.g., by considering richer morphological and phonological
features.

7.2 Simulation of the Brown Experiment

In his seminal work, Brown [4] investigated children’s ability to predict the meaning
of a novel word by drawing on its syntactic context. The experiment is designed to
examine how children distinguish three classes of words—namely, words referring
to Actions, Objects or Substances—based on the syntactic structure of the sentences
the words appear in. An examiner shows a picture to a child and utters a sentence to
describe the picture. The picture displays an activity such as pouring a confetti-like
material in a container. In other words, this picture depicts three major elements:
an action (e.g., pouring), an object (e.g., a container), and a substance (e.g., the
confetti). The sentence uttered by the examiner is designed to intentionally include
one novel (unfamiliar) word in co-occurrence with several familiar words. In our
example the examiner might say “You can see some sib in the photo”, where sib is
an unfamiliar word for the child. The child is then asked to choose “some sib” among
three other pictures, each containing only one of the three elements previously
displayed within the first picture. If the child selects the right picture (here, the
one showing a substance similar to the confetti presented in the first picture) it is
counted as a correct answer.

Based on the observations from this experiment, Brown [4] concludes that
children tend to predict semantic properties of the novel words by taking advantage
of syntax. In other words, frames such as “some x” work as a cue for the child to
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Table 2 Performance of the
categorization model in
assigning different types of
frames to three semantic
categories

Object Substance Action

Countable nouns 45 4 1
Uncountable nouns 41 7 2
Verbs 0 0 50

spell the category of the word x; therefore, semantic properties of x (e.g., relating to
a substance) can be predicted by using its recognized category. In order to adapt the
study performed by Brown [4] into our framework we first train the categorization
model with 50,000 input frames based on Head, Cooc and Sem features (see Sect. 5
for details). In the test phase a number of frames including novel words as their
Head features are presented to the model. Each of these test frames are selected
from child-directed utterances such that its Head is a verb, a countable or an un-
countable noun. We then build a semantic profile for each test frame, as a weighted
average of the semantic profiles of the learned clusters, as in:

Sem.f/ D
X

Ci2C lusters

Sim.f; Ci / 	 Sem.Ci/ (4)

where Sem.C / indicates the semantic profile of cluster C , weighted by Sim.f; C /

which is calculated as in Eq. (1) on Page 87. (To measure Sim.f; C / we use only
the Cooc features since they proved to be the most effective in our previous
experiments.) Calculating the semantic profile of a novel word (frame) is thus
affected by the relative similarity of the frame to the learned clusters: The more
similar a cluster is to the frame, the more important role it plays in determining the
semantics of the frame.

This semantic prediction is intended to simulate a child’s (informed) guess about
the semantics of a novel word in the experiment of Brown. As we stated, the child
in the Brown’s experiment is then exposed to three pictures each presenting only
one element of the first picture. Analogously, in our model, after performing the
above calculations, the obtained semantic profile is compared to three prototypical
semantic profiles, representing the three semantic classes of Action, Object, and
Substance. The prototypical semantic profiles are built by averaging over the
semantic profiles of a sample set of 30 verbs (for Action), countable nouns (for
Object), and uncountable nouns (for Substance). We select as our sample words only
those that do not appear in our training or test data. The most similar prototypical
semantic profile is taken as the model’s prediction of the semantic class of a novel
word. We then label a semantic prediction by the model as correct if it predicts
the class Action for a frame with a verb as its Head, the class Substance for a
frame with a noun as its Head whose left Cooc feature is some, or class Object
for a frame with a noun as its Head whose left Cooc feature is a/an. We perform
semantic prediction for 150 test frames containing novel words, 50 frames from
each category of verbs, countable nouns, and uncountable nouns. Table 2 reports
the number of correct answers by our model for each group of test words separately.
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Each row of Table 2 shows the number of frames of a specific syntactic type
assigned by our model to different semantic categories. According to Brown’s
experiment children easily distinguish verbs from nouns. Similarly in our model,
we observe that all verbs are correctly recognized, i.e., in the last row of the
table all verbs are shown to be from the semantic class Action. Prediction for
countable nouns stands in the second position of accuracy; with only few numbers
misclassified as either Substance or Action. The worst result is observed for
Uncountable nouns that were mostly assigned to the Object semantic category.
This might be the result of either the appearance of some before both countable
and uncountable nouns in our training data, or a weakness in the semantic features
representing mass entities. We have investigated the utterances in the corpus and
found many cases in which the caregiver or mother spoke ungrammatically, e.g.,
using the determiner a before an uncountable noun or using some to introduce a
countable noun, which both might be partially responsible for the misclassifications.
Nonetheless, this result resembles that found by Samuelson and Smith [26]: the
authors in this study examine a corpus of CDS and also perform a test on children to
study the relation between the syntactic categories and the ontology of words. They
also find that predictions from semantic features of entities (such as solidity or shape
of objects) to syntax are stronger overall than are predictions from syntax to such
semantic features. Moreover, they suggest that children may know that solid objects
are named by properties such as shape but not know anything systematic about how
categories of non-solid entities are organized.

8 Conclusions and Future Directions

We have used a modified version of an existing categorization algorithm (that
of Alishahi and Chrupała [1]) to study the acquisition of syntactic categories in
children, and to examine the effect of different types of cues on this process.
We have introduced a novel word categorization task, which is an appropriate
framework to evaluate the usefulness of language-internal (e.g., co-occurrence) as
well as language-external features (e.g., semantic properties), independently from
the identity of the word being categorized (i.e., the head word). For example, our
results indicate that the categorization of closed-class words (such as determiners)
strongly relies on the head word, whereas open-class words (e.g., verbs and nouns)
can be successfully categorized based on a combination of syntactic and morpho-
/phonological properties, even without taking into account the word itself. In a
more detailed investigation of the different cues, we observe that verbs are better
recognized when we use phonological or morphological properties in combination
with the context (co-occurring words). For nouns, however, using the context alone
results in a more precise categorization.
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Previous work has shown that, in general, the head word is very effective in
categorizing words (see, e.g., Chang et al. [6]). Evaluating the effect of different
cues in word categorization models thus needs much care. Studies such as those of
Parisien et al. [23] and Alishahi and Chrupała [1] have reported the capability of
co-occurrence information in categorizing words. They include, however, the head
word itself as part of their features used for categorization. These studies evaluated
the performance of their models on various tasks, such as noun/verb disambiguation,
and semantic feature prediction. But they did not provide a comparison between
their models and a categorization model that only uses the head word. Experiments
such as our novel word categorization, or a comparison with a baseline model that
only uses head words, are necessary to understand the real effect of different cues
in categorization (as also noted by Chrupała and Alishahi [7]). Otherwise, the word
identity might obscure the effect of other word properties (see Asr et al. [2] for
related experiments).

We have investigated the interaction between semantic properties and the other
(morpho-/phonological and syntactic) properties in the formation and use of the
word categories. This is done through two semantic prediction experiments, in
which the model predicts the semantics of a novel word by drawing on syntactic
and morpho-/phonological information about the word. The semantic prediction
experiments are meant to investigate how knowledge of morphology/phonology
and/or syntax can help the model perform semantic inference. In one experiment,
instead of examining whether the assigned category matches the part of speech
(PoS) of a novel word, we measure the extent to which the assigned category
matches the word based on semantic similarities. A similar experiment has been
performed by Chrupała and Alishahi [7], but only considering co-occurrence
properties. Results indicate a clear correlation between syntactic (co-occurring
words) and semantic properties, but no significant effect when we combine syntactic
properties with morphological and/or phonological information. Nonetheless, we
should note that some of these findings might be due to the specific semantic features
that we have used in our study. Future work will need to further investigate such
issues.

In a second experiment, we simulate the experiment of Brown [4], in which
young children are asked to predict the semantic class of a novel word, based on
its syntactic context—e.g., to predict whether dax in “Here is a dax” or “Here is
daxing” refers to an Action or an Object. Results of our simulations indicate that the
model—after being trained using syntactic and semantic features of words—can
easily recognize a novel verb following the infinitive to as referring to an Action.
Analogously, a word following the determiner a/an is recognized as an Object.
These results match those reported by Brown. However, our model does not show
similar performance to children when it comes to the recognition of Substances—
that is, our model often misclassifies a novel word following some as an Object.
This might be due to the appearance of both determiners a/an and some preceding
both countable and uncountable nouns in our training data, or due to some weakness
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in the semantic features representing mass entities. Nonetheless, these findings are
in line with those observed by Samuelson and Smith [26], who find that predictions
from semantic features of entities (such as solidity or shape of objects) to syntax
are stronger overall than are predictions from syntax to such semantic features.
Specifically, Samuelson and Smith suggest that children may know that solid objects
are named by properties such as shape but not know anything systematic about how
categories of non-solid entities are organized. Future work will need to further look
into this issue.

It should be mentioned here that a computational model might exhibit outputs
very different from our expectations prior to implementation. For example, our
observations indicate that considering the last phoneme of words is not effective for
categorization, and this finding is in contrast to that of Onnis and Christiansen [22].
Although ending phonemes are expected to be good approximations of inflectional
word suffixes (notably for verbs and adjectives as verified in our experiments),
we argue that two issues in our modeling framework possibly inhibit their helpful
role: incrementality of the categorization algorithm, and the simultaneous use of
several types of cues. During training, a new word such as string might be clustered
either in a category of nouns based on co-occurrence features (e.g., a preceding
determiner a), or in a category of verbs based on its ending phoneme (-ing). If this
word token is mistakenly assigned to a category with some other verbs, this category
might in future attract other nouns because of their distributional or semantic
similarity to this noisy cluster; hence, the homogeneity of the categories may be
threatened. Future research will need to look into better mechanisms for handling
noise by an incremental categorization algorithm.

The computational setup presented in this paper can be extended in a number of
ways, such as including other types of information that are known to play a role
in word categorization by children. The morpho-/phonological set of features that
we used here includes the boundary phonemes as well as the word length (number
of syllables and letters). Monaghan et al. [20] presented analyses of several other
phonological features available in child-directed speech (CDS) that can be taken
into account. On the other hand, selection of semantic information still remains
controversial and needs much more investigations. We made use of a pre-processed
lexicon by Fazly et al. [9] to attribute words with semantic features. However, a more
accurate modeling of category learning would extract semantic information from the
target CDS corpus (information in the natural learning environment of children).
We can also extend our evaluation, e.g., by providing simulations of other relevant
psyholinguistic experiments on children (e.g., those of Berko [3] and Samuelson
and Smith [26]). An alternate evaluation method has been proposed by Chang et al.
[6], which makes use of child utterances in a corpus. Their suggested method is
to compare what a computational model has learned to what children learn. This
evaluation strategy is particularly applicable in comparative studies on individuals,
and can be incorporated into studies such as the one presented here (Tables 3 and 4).
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Appendix

Table 3 %Accuracy of novel word categorization in five conditions, similarity threshold set for
<300 clusters)

#of Clusters Overall Open-class Closed-class Noun Verb Adj Det

Cooc 288 67 70 9 80 66 10 4
CoocCMorph 258 64 66 10 71 71 19 9
CoocC Phon 264 73 75 12 73 81 8 18
CoocC Sem 247 88 90 43 96 93 57 77
CoocCMorphC
PhonC Sem

254 75 77 38 86 79 30 70

Table 4 %Accuracy of novel word categorization in five conditions, similarity threshold set for
<500 clusters)

#of Clusters Overall Open-class Closed-class Noun Verb Adj Det

Cooc 500 71 73 18 87 73 10 9
CoocCMorph 497 76 70 8 77 73 22 9
CoocC Phon 483 74 77 16 84 82 10 13
CoocC Sem 346 83 85 49 98 82 61 79
CoocCMorphC
PhonC Sem

457 78 80 37 91 80 42 65
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In Learning Nouns and Adjectives
Remembering Matters: A Cortical Model

Alessio Plebe, Vivian M. De la Cruz, and Marco Mazzone

Abstract The approach used and discussed here is one that simulates early lexical
acquisition from a neural point of view. We use a hierarchy of artificial cortical maps
that builds and develops models of artificial learners that are subsequently trained
to recognize objects, their names, and then the adjectives pertaining to their color.
Results of the model can explain what has emerged in a series of developmental
research studies in early language acquisition, and can account for the different
developmental patterns followed by children in acquiring nouns and adjectives, by
perceptually driven associational learning processes at the synaptic level.

1 Introduction

The endeavor of mapping words to meaning is one of the many fundamental
linguistic tasks infants are confronted with on their way to becoming full-fledged
members of their linguistic community. The challenges learning new words present
to the growing child are in no way trivial and neither are those it poses to researchers
who are interested in understanding how it happens. Infants, like the linguist in the
hypothetical land of the “gavagai” [64], have to figure out how the sounds they hear
are related not only to one another, but to the living things, objects and actions in
the world around them.
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In the understanding of this issue, simulation by way of artificial neural networks
may prove very useful. We have already introduced in [62] a model based on a
hierarchy of maps simulating cortical processes of self-organization, in order to
analyze the emergence of object names by visual and acoustic perceptions only.
This model has proven apt in accounting for characteristics observed in child
development, such as the phenomenon which has been referred to in the literature as
“fast mapping”, without any need for specialized word-learning mechanisms. In the
present work, we extend our model by also introducing color names in combination
with the previously used object names. This makes it possible for us to address
two related issues. First, learning adjectives has proven to be a more difficult task
than learning nouns. Second, syntactic features seem to play a role in learning color
terms and other adjectives. We aim to show that both these aspects can be accounted
for within our model. The model initially learns object labels (nouns) with accuracy
but not words related to a property of the object (such as color adjectives). Then, the
model demonstrates improved accuracy in learning words pertaining to properties of
objects (adjectives of color) once working memory is potentiated – something that
really happens in child and language development as the brain matures. However,
this improved accuracy appears to be sensitive to word order, thus showing the
emergence of an embryonic syntax. In practice, we will proceed in the following
way. In Sects. 1.1 and 1.2, we will survey the literature on learning nouns and
adjectives respectively, while in Sect. 1.3 we will consider the other computational
models attempting to simulate the first emergence of language. Section 2 will be
devoted to the description of our model. In Sect. 3 we will focus on how our model
may account for nouns and adjectives acquisition.

1.1 On Learning First Words

How do children go about learning their first words? There is much theoretical
debate and contradictory empirical results. Different explanations have been
proposed to explain the processes behind the learning of first words with some
researchers suggesting that it should be considered more a process than an
event [75]. In fact, the way infants learn to recognize objects and the words
associated to them undergo radical change across development, with initial stages
utilizing mechanisms that differ from those used in later stages of the word learning
process [34, 57].

Pinpointing, what all the precise mechanisms involved are, however, continues to
be a subject of intense debate and explanations cover a wide spectrum (see [12,32],
for overviews). An in depth review of the competing theories is beyond the scope of
this work, but in an attempt to provide a glimpse of the compelling issues involved
in the study of language acquisition, which inevitably serve as the context in which
our model is placed, we will briefly cover some of the more pertinent ones.
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In addition to the researchers, mentioned above, there are those that see early
language and conceptual development as being constrained by a series of innate
representational biases that assist infants in understanding what to focus on first in
their interactions with the objects in the world and the labels that adult speakers use
to refer to them. The whole object bias [35,48] and the shape bias [45] are examples
of these. Researchers have also proposed that there are innate interpretational
constraints that come into play such as mutual exclusivity or an expectation that
every object has only one label that will apply to it [49] and the principle of
contrast [19], which states that any difference in the form of a word of a language
marks a difference in meaning.

There are others that claim that infants initiate the process of language learning
equipped with general but powerful expectations of finding commonalities (e.g.
category based, property based, or action based) in the things they see, hear or
experience, that help them link, linguistic, perceptual and conceptual units [13].
Others yet, have proposed theories in which a child is seen as bringing to the
language learning process a whole series of conceptual and cognitive capacities that
include different types of core knowledge about animate and inanimate objects and
the principles that govern them [14, 18] and as using joint attention mechanisms
[77] as well as pragmatic and social cues such as eye gaze and intentionality [30].
Researchers, however, have demonstrated that while 10-month-old infants are
sensitive to social cues, they cannot recruit them for word learning and therefore,
suggest that at this age infants presumably have to learn words on a simple
associative basis [63]. It is not by chance, it seems, that early vocabulary is made up
of the objects infants most frequently see [28].

Those with a strictly associative approach see the learning of first words as
not being different to other types of learning and as being strongly influenced by
learning from perceptual and sensory experience [65, 74]. Early word-learning,
according to a number of these researchers can be explained, at least at a certain
point in development, by associational learning strategies alone [73]. The processes
invoked are not language specific but of a domain-general nature and emerge as
a result of development. Others yet, focus on the statistical and computational
resources infants might be bringing to the process of word learning [23, 69].
Recent proposals, such as the one found in the current volume [4], simulate with
a computational model, behavioral study results that suggest that young children
show an early sensitivity to the syntactic and morpho/phonological properties of
words and make use of the combination of cues found in their language environment
to build their syntactic knowledge of linguistic categories.

The process of learning labels of objects and adjectives referring to their
properties (and in particular, color) that we explore in our model, is consistent with
an associative approach, but one that explores associative learning at the neural level,
something that we will describe in more detail below. Before that, however, we will
briefly describe several interesting characteristics of noun and adjective learning that
have emerged from behavioral studies with children.
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1.2 On Learning Nouns

Word learning in children starts off slow but quickly takes off. Fast-mapping has
been claimed to be one of the processes behind the way very young children are
able to quickly learn words on the basis of very few exposures. On the average,
children start producing their first words by the age of 10–14 months. Shortly after,
by the age of two, they are producing approximately 300. At the age of six, their
receptive vocabularies can contain over 14,000 words [17].

Cross-linguistic studies have shown that the vocabularies of very young children
from a variety of linguistic backgrounds are made up to a large extent by count nouns
[7]. Interesting results have emerged from a more recent cross-linguistic study [15]
that investigated both the composition of the vocabularies of 20 month-olds, as well
as how word classes in their vocabularies co-vary. The children that participated in
the study came from seven different contrasting lingustic communities (Argentina,
Belgium, France, Israel, Italy, the Republic of Korea, and the United States). This
study found that across these languages, children with vocabularies of 51–100 and
101–200 words had more nouns in their productive vocabulary than any other word
class (i.e. verbs, adjectives, and closed-class words). Furthermore, those that had
101–200 word vocabularies, said more verbs than adjectives or closed-class words,
and more adjectives than close-classed words. In larger vocabularies, (201–500
words), the same pattern was found, with nouns being by far the most spoken words,
but with all the other word classes being positively correlated. Said differently,
the pattern found in children with large vocabularies was that nouns, verbs and
adjectives develop in tandem, and not in competition with one another. Children
with very small-vocabularies (0–50 words), that had just begun word-learning, on
the other hand, said more nouns than adjectives or closed-class words, but no
differences emerged between nouns and verbs. This pattern of co-variation does
not seem to be specific to culture in these languages, in that it continued to emerge
under different conditions. In sum, the major findings that emerged from this study
is that there is a bias for nouns in the early vocablularies of children learning the
languages investigated, and that except for the case of very small vocabularies, the
differentiation among the classes of words increases with vocabulary size.

A variety of explanations have been proposed to explain what seems to be a
universal noun advantage and the apparent gap between the learning of nouns
as opposed to other gramatical forms such as adjectives. Some of these accounts
have postulated highly specific innate mechanisms or constraints such as the ones
discussed in the previous section.

The cross-linguistic study described above [15] for example, interprets the noun
bias that emerged in the languages they investigated as being indicative of the
important role constraints play in child lexical development. These constraints
however, would necessarily have to be flexible enough to be modifiable by the
morphology, saliency, frequency and pragmatics of words in different languages,
something they see as being in line with the emergentist coalition model of the
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origns of word learning [36], that views word learning as an emergent product of
multiple factors that would include cognitive constraints, social-pragmatic factors
and global attential mechanisms.

Others have claimed a purely logical explanation to the noun advantage over
other grammatical classes. Gentner [27] for example, proposed that nouns are
easily learned because they refer to entities, and not relations between entities, like
adjectives and verbs. Yet another account, focuses on the fact that nouns are more
readily learned because other grammatical classes such as verbs and adjectives are
predicates and depend on nouns for their meaning. Their learning is necessarily
grounded on the acquisition of nouns first [54].

1.3 On Learning Adjectives

Children’s acquisition of adjectives on the other hand, is slow and their use is prone
to errors. The learning of color terms seem to be particularly challenging early on in
development, with very young children seeming to be almost incapable of learning
them. Charles Darwin, himself, noting the lack of color terms used by his own child,
mistakingly speculated that children are initially born color blind [21].

Some literature on this phenomenon has been reviewed by Gasser and Smith
[26], which points to three kinds of evidence. First, nouns dominate early productive
vocabularies of children, while adjectives are rare or nonexistent: for instance, in
Nelson’s study of 18 children learning English, fewer than 7 % of the first 50
words were adjectives. Second, experimental studies of word learning show that the
application of a novel adjective appears more slowly and more variably determined
than the application of names for things. Third, there is some evidence that children
are more prone to errors with adjectival than with nominal meanings.

As has already been mentioned in the above section on noun learning, another
reason why adjectives (and verbs) may also be harder to learn may be due to purely
logical reasons, such as the fact that they refer to entities and not to the relations that
exist between them. We believe that there is no reason to invoke special mechanisms
in explaining the temporal gap between adjective and noun learning and that they
can be explained, at least in an initial early phase, by way of the associations
between visual and acoustic stimuli experienced by young children. Our model
supports this thesis. We think that in the process of acquiring adjectives two factors
are initially involved.

The first is the poor covariation of features. The unidimensional properties
referred to by adjectives do not covary systematically with other features.
Psychologists have observed that young children have difficulty attending
selectively to individual dimensions. This problem does not affect noun learning,
since common nouns label objects that are similar across many inter-related and
correlated properties. This fact has a clear neuro-computational grounding: artificial
and natural neural networks are based on the simple detection of co-occurrences,
and therefore, the advantage of nouns over adjectives admits a straightforward
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associative explanation. The consideration of covariation not only may explain
the difficulty in learning adjectives; it also suggests that giving a name to
unidimensional visual properties may enhance the ability to selectively attend
to them, thanks to the covariation between acoustic and visual properties.

This leads us to the second factor: adjectives are normally heard by children
together with other linguistic items and are one of the first syntactic challenges
novice language learners face. Utterances with the sequence [Adj Noun] are
what we like to refer to as, “embryonic syntax”, and it departs from the single sound
pattern to reference scheme initially experienced by infants. The explanation based
on these two points, fits well with developmental evidence [70] that the learning of
adjectives, while difficult at first, then gets easier, once children have acquired more
knowledge about their language.

The ability to acquire adjectives very likely also depends on the maturation of
brain circuits, especially in the prefrontal cortex, a sustained representational device
[1, 25]. In fact, language development crucially depends on the development of an
expanding working memory capacity, the kind of short-term memory theorized by
Baddeley [6], which would pave the way to the processing of complex sequences
of sounds in that it consents the retention of the meanings of sounds as they are
encountered. The emergence of syntactic processes, such as being sensitive to the
order in which words appear, would also depend on these potentiated memory
circuits found in the temporoparietal and prefrontal areas, known to develop slowly
in ontogeny. This would account for why more complex grammatical forms are
acquired later in development: they depend on an expanded memory capacity that is
just not available in early infancy. The work done with our model has reflected this.
Less memory is necessary for learning nouns initially, but adjective learning is made
possible and subsequently easier, only once memory circuits have been potentiated.

1.4 Modeling Noun and Adjective Acquisition

Several attempts have been made in modeling computationally different aspects of
children’s language learning. Models consent, the zeroing in on particular aspects
of processes that are difficult to separate in experiments with real children, but
their limits have been related to the biological plausability of the mathematical
approaches, and or the realism of the stimuli.

Only one model [67] seems to be able to deal with real stimuli, in learning words
of visual objects. The system used recordings of utterances of caregivers as they
spontaneously interacted with their infants while playing with objects, and real
images of these objects. The model was able to segment words from utterances
and to associate the proper word with the object seen with impressive accuracy,
demonstrating that early word learning can be based on co-occurrence patterns
within the visual context. The computations implemented in this model, however,
are careful combinations of standard image processing and signal processing
algorithms, without any relationship to biological brain computations.
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Inside the classical PDP framework [68], an abstract neural model [66] explored
the emergence of simple conceptual systems in infancy. Their model learned
categories of birds, fish, flowers and trees, by associating a predefined set of visual
features, like “red” or “branches”, with a fixed set of attributes, such as “can walk”,
“is living” and so on. This model is interesting in that it demonstrates that semantic
categories of objects and attributes can emerge without appealing to cognitive
constraints, as an effect of mere statistical regularities. However, the unrealistic
modeling of both stimuli and cognitive architecture limits its explanatory value.

Recently, similar approaches have explored specific aspects, such as fast-
mapping [51]. This model is based on standard self-organizing maps [43], and
reproduces interesting aspects of language learning, like slips of the tongue
and mispronunciation effects, but lacks correspondence between its mathematics
and how brain computation is structured.

Our adjective and noun learning model is an attempt to build a system that
adheres in varying degrees to the reality of the corresponding computations taking
place in the brain, dealing with realistic inputs. As far as we know, this is the first
model combining visual and auditory paths by simulated cortical maps. It is based
on an architecture developed by the authors, that began with object recognition [61],
progressed in combining the visual and auditory pathways [62], and here, is further
extended to reproduce the emergence of embryonic syntax.

Apart from the details of the way we structure the visual and auditory pathways
(see Sect. 2), a general feature which makes our model biologically realistic to a
significant degree is its hierarchical organization of cortical maps. This hierarchical
architecture is of the sort recommended by Mayor and Plunkett [51] as a potential
solution to difficulties encountered within their model, in particular the “inability to
learn new words after the visual and auditory maps have stabilized” [51, p. 20]. In
their opinion, this could be overcome by employing “hierarchies (or heterarchies) of
maps in both the visual and auditory pathways of the model, (so as to mimic) aspects
of the organization of visual and auditory cortex”. This is precisely one virtue
of our model.

2 Description of the Model

This section will describe the model in detail and the rationale behind the choices
of its design. One of the major decisions in designing neural models is the trade-off
between the biological details taken into account in the simulation, and the com-
plexity of the overall system. Our goals concern the simulation of language, which
is a top level cognitive function, involving most of the brain. More specifically, we
are interested in the early development of word recognition based on perceptually
salient objects or properties, a phenomenon strongly related to synaptic changes at
the cortical level.
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2.1 Basic Units of the Model

According to the design principle stated above, one basic structure of the model
is a sheet of artificial neurons, that correspond to the neurophysiological concept
of “cortical maps”, originally used by Mountcastle [55], and widely used in vision
science as a well grounded way of partitioning the cortex [82, 83]. The extent to
which the correspondence between modules in our model and cortical maps is
faithful, is a matter of degree. There is a large gap in knowledge between what
is known about the visual system, and what is instead known of the auditory stream.
The boundaries where the two systems meet are even more obscure.

Inside each cortical sheet unit, the most basic unit is the artificial neuron, that
behaves according to the LISSOM scheme (Laterally Interconnected Synergetically
Self-Organizing Map) [72]. This artificial neuron is not the equivalent of a single
cell, and details of the electrical activity of the neuron in real time are not simulated.
It is instead the equivalent of a vertical columnar assembly of cells, whose firing
rate is assumed by an average activation level. The simple fact that one LISSOM
neuron could therefore represent thousands of biological neurons, is a clear sign that
models are still far from being a precise reproduction of real brain computations,
our understanding of which is still limited, especially for higher cognition. Though
not being strictly equivalent to a single neural cell, the LISSOM neuron possesses
two important aspects of cortical circuits: the modifiable lateral connections of
excitatory and inhibitory types, and Hebbian-based plasticity.

The basic equation of the LISSOM describes the activation level xi of a neuron
i at a certain time step k:

x
.k/
i D f

�
�A

1 C �NI � vrA;i

arA;i � vrA;i C �EerE;i � x .k�1/
rE;i � �HhrH;i � x .k�1/

rH;i

�
; (1)

where the vectors x .k�1/
rE;i and x .k�1/

rH;i are the activations of all neurons in the map,
where a lateral connection exists with neuron i of an excitatory or inhibitory type,
respectively. Their fields are circular areas of radius, respectively, rE, rH. Vectors
ei and hi are composed by all connection strengths of the excitatory or inhibitory
neurons projecting to i . The vectors v and xi , as before, are the input and the
neural code. The scalars �X, �E, and �H, are constants modulating the contribution
of afferents.

The scalar �N controls the setting of a push-pull effect in the afferent weights,
allowing inhibitory effects without negative weight values. Mathematically, it
represents dividing the response from the excitatory weights by the response from a
uniform disc of inhibitory weights over the receptive field of neuron i . Vector I
is just a vector of 1’s of the same dimension of xi . The function f can be
any monotonic non-linear function limited between 0 and 1. For computational
economy, it has been implemented as a piecewise linear approximation of the
sigmoid function.
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The final activation value of the neurons is assessed after a certain settling
time K , typically about ten time steps. All connection strengths adapt according
to the general Hebbian principle, and include a normalization mechanism that
counterbalances the overall increase of connections of the pure Hebbian rule. The
equations are the following:


arA;i D arA;i C �Axi vrA;i

karA;i C �Axi vrA;i k � arA;i ; (2)


erE;i D erE;i C �Exi xrE;i

karE;i C �Exi xrE;i k � erE;i ; (3)


hrH;i D hrH;i C �Axi xrH;i

khrH;i C �Axi xrH;i k � hrH;i ; (4)

where �fA;E;Hg are the learning rates for the afferent, excitatory, and
inhibitory weights.

The overall model is a combination of artificial cortical sheets that reproduce
essentially the part of the brain involved in learning nouns and adjectives of
perceptual salience: the visual and the auditory pathways. Each of the two
processing streams is fed by realistic stimuli, and therefore also comprises, in
an approximate simulation, the components that transduce the external signals, and
the subcortical components.

2.2 The Visual Pathway

An outline of the modules that make up the visual pathway is shown in Fig. 1a,
it is built upon and extends a previous model of visual object recognition [61].
The visual system encompasses the ventral stream only, the “what” stream in the
classical dichotomy established by Ungerleider and Mishkin [78], specialized for
object recognition [59]. The governing equations in this section of the model are the
following:

x.ˇ/ D f
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�
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� lrAg .�W/

rA

�
(9)

x.GCR�}/ D f
�
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�
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Fig. 1 Scheme of the visual pathway (a) and the auditory pathway (b) in the model. The visual
pathway is composed by LGN (Lateral Geniculated Nucleus), V1 (Primary Visual Cortex), V2
(Secondary Visual Cortex), VO (Ventral Occipital Cortex), LOC (Lateral Occipital Complex).
The auditory pathway is composed by MGN (Medial Geniculated Nucleus), A1-LPC (Auditory
Primary Cortex – Low-Probability Connections), A1-HPC (Auditory Primary Cortex – High-
Probability Connections), STS (Superior Temporal Sulcus).
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There are two distinct pathways, one achromatic, processed by Eqs. (5), (6), and
another sensitive to colors, limited here to medium and long wavelengths. The
equations are: (7)–(10). The symbol ˇ refers to on-center type receptive fields, and
symbol } to off-center receptive fields. The profile of all visual receptive fields is
given by differences of two Gaussian g .�N/ and g .�W/, with �N < �W. This is an
approximation of the combined contribution of gangliar cells and LGN [22].

In all equations the activation x has to be taken as the activation of a generic i -th
neuron of that level, and all receptive fields have to be intended as referring to that
neuron, the index i , and the indication of the radius r of the circular receptive field,
has been omitted for clarity. In exploiting the modularity of the model, enacted by
the correspondence with cortical maps, a simplification has been introduced by way
of the separation of the processing of shape and color. Shape is elaborated through
V1 and V2, by Eqs. (11) and (12), and the processing of color is entrusted to VO,
with Eq. (13).

There is evidence, in fact, that suggests that in the visual system no segregation
of functions such as shape or color processing takes place, and that almost all visual
cortical maps cooperate in analyzing form, color, motion and stereo information
[71, 79]. On the other hand, it is clear that visual areas are not equally involved
in all aspects of object recognition. It is possible to identify specialization in one
main function in certain maps. This is the case in what has been called the color
center area by Zeki [87, 88], who named it “V4”, we are using the more general
name of VO (Ventral Occipital), given by Wandell et al. [83]. V1 is the well-known
primary visual cortex, the most studied part of the brain [37, 38]. One of its main
functions is the organization of the map into domains of orientation tuned neurons
[11, 80], which are fundamental for early shape analysis, our model discards the
contributions of V1 to all other processes. The main projection from V1 is to its
immediately anterior area, V2, whose functions are less understood than V1. It is
probably responsible for shape analysis at a level of complexity and scale larger
than that of V1 [2, 40, 42]. Equation (14) describes the convergence of shape and
color processing paths into the LOC model map, corresponding to the area in the
human cortex thought to be crucial for the task of recognition in vision, located
anterior to Brodmann’s area 19, near the lateral occipital sulcus, extending into
the posterior and mid fusiform gyrus and occipital-temporal sulcus, with an overall
surface size similar to V1. Perhaps the most important idea, one that has obtained a
certain amount of consensus, is that this area is involved in visual behavior in which
recognition is the main task [31, 44, 84].

2.3 Auditory Pathway

The auditory path includes the medial geniculate nucleus, the auditory primary
cortex, and the superior temporal sulcus. An outline of the modules that make up
this pathway is shown in Fig. 1b. The equations are the following:
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In (15) the symbol � refers to the spectrotemporal representation of the auditory
signal, the horizontal dimension � is time, and the vertical dimension ! is frequency.
Function w.�/ in (15) is a short term temporal window, that performs a spectrogram-
like response, similar to that given by the combination of cochlear and MGN
processes [16].

Very little is known about the computational organization of the auditory primary
cortex, compared to the early visual maps [47]. Our model discards binaural
interaction, and preserves the main connectivity from single cochlear signals in the
Medial Geniculate nucleus to A1. A large body of evidence points to an organization
of A1 with a fundamental dependency on sound frequencies along one cortical
dimension, and a distribution of neural responses to temporal properties [53, 85].
The auditory primary cortex is simulated by a double sheet of neurons, to take into
account a double population of cells found in this area [5], where the so-called LPC
(Low-Probability Connections) is sensitive to the stationary component of the sound
signal and the HPC (High-Probability Connections) population responds to transient
inputs mainly. Equation (18) states the projection from the primary auditory cortex
to STS. This is the model’s correlate of a region in the cortical ventral auditory
stream, on which there is accumulating evidence and a convergence of opinion on
its role in representing and processing phonological information [8, 9, 33, 46].

2.4 The Higher Cortical Map

The model map where the ventral visual path and the auditory path meet is PFC.
There are actually several areas where visual and auditory signals converge, and
more than one area activated in categorization and syntactic tasks. One reason for
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Fig. 2 Scheme of the complete model, in two versions. The one on the left has only simple afferent
connections to PFC (PreFrontal Cortex). The version on the right has additional connections, that
enable working memory for syntactic processing

calling the model map PFC, is due to the well established role of the biological
lateral prefrontal cortex in object categorization [3, 24, 39, 52, 86]. The main
difference with respect to the representation of objects in inferotemporal areas is
that lateral PFC could form a more abstract kind of categorization, which is proper
to lexical categories.

The model’s PFC, in this role of abstract representation of visual and linguistic
information, is governed by the following equation:
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The overall scheme of the model, in the case of PFC working as from Eq. (19), is
shown in the left of Fig. 2.

There is an additional important function of the prefrontal cortex, that justifies the
name given to this model map, and that is essential in the scope of this experiment.
Recursive connections between temperoparietal and prefrontal areas are supposed
to support the kind of short-term memory theorized by Baddeley [6]. Large cortico-
cortical networks are essential in most aspects of language understanding, as in the
well-known phonological rehearsal loop. This is of course, only a small part of
the role working memory plays. Cortical loops involving the prefrontal cortex [29]
allow the ability to keep the semantic meanings of sounds under attention as they
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Table 1 Parameters for all neural layers of the model

layer size rA rE rH �X �E �H �N

LGN 112 2.6 – – – – – –
MGN 32 – – – – – – –
V1 96 8.5 1.5 7.0 1.5 1.0 1.0 0
A1 24 3.5 2.5 5.5 5.0 5.0 6.7 0.8
V2 30 7.5 8.5 3.5 50.0 3.2 2.5 0.7
VO 30 24.5 4.0 8.0 1.8 1.0 1.0 0
LOC 16 6.5 1.5 3.5 1.8 1.0 1.5 0
STS 16 3.5 2.5 2.5 2.0 1.6 2.0 0
PFC 24 6.5 4.5 6.5 1.5 3.5 4.1 0

are being formulated and the posing of constraints for the emergence of syntactic
processes. In the second version of the model, corresponding to the scheme on the
right in Fig. 2, the equation of PFC is the following:
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(20)

where � are discrete temporal delays, corresponding to the presentation of spec-
trograms of progressive words in the sequence of the utterance. In this experiment
N� D 2, since the sentence is the sequence [Adj Noun].

We used the simplest model as corresponding to early stages in development, at
the onset of language acquisition, around 9–12 months of age, and the model with
additional connections providing working memory abilities, at a more mature stage
of development, corresponding to about 14–20 months of age.

The Table 1 summarizes the values of the main parameters in the equations here
described, for all the maps in the model.

3 Nouns and Adjectives Acquisition

In this section we will describe how the two models have been trained in this
experiment, and report on the functions developed in the cortical maps of the
models. For lack of space a short account will be given of the functions of the lower
cortical maps, referring to other works for further details. We will focus, instead, on
the linguistic abilities that emerged in the PFC maps.
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Fig. 3 Example of stimuli to the model. From the left, elongated blobs input to V1, hue circular
blobs for VO, wave trains for A1, couple of blobs for V2, real images for the visual path, and word
waves for the auditory path

3.1 Simulation of Intrinsic and Extrinsic Experience

The model has been exposed to a variety of stimuli, in different stages of its
development, that to various extents parallel periods of human development from
the pre-natal stage to that of early language acquisition. Initially only V1, VO and
A1-LPC, A1-HPC maps are allowed to modify their synaptic weights, by Eqs. (2)–
(4). The stimuli presented to V1 and VO are synthetic random blobs that mimic
waves of spontaneous retinal activity, that are known to play a fundamental role in
the ontogenesis of the visual system [41,50,76]. Blobs presented to V1 are elongated
along random directions, to stimulate orientation selectivity. Blobs to VO are
circular, with constant hues, and random size, position, and intensity. The A1 maps
are exposed to short trains of waves sweeping linearly around a central frequency.
Time durations, central frequencies and sweeping intervals are changed randomly.
The next period of development involves the V2 and STS maps. The visual stimuli
comprises pairs of elongated blobs with a coinciding end point, to enhance the
experience of patterns that are slightly more complex than lines, such as corners.
The auditory stimuli are synthesized waves of the 7,200 most common English
words (from http://www.bckelk.uklinux.net/menu.html), with length of three to ten
characters. All words are converted from text to waves using Festival software [10],
with cepstral order 64 and a unified time window of 2.3 s. In the development
stage that corresponds to that just after eye opening, natural images are used. In
order to include the primary and most realistic difficulty in recognition, which is
the identification of an object under different views, the COIL-100 collection has
been used [56], where for each of the 100 objects, 72 different views are available.
In most experiments, unless otherwise stated, only eight views per object have
been used during the learning phase of the model, and all 72 views are used in
the testing phases.

The last stage of the experiment simulates events in which an object is viewed
and a word corresponding to its basic category is heard contemporaneously. The
100 objects have been grouped manually into 38 categories. We deliberately used
some categories that do not have strictly perceptual traits, such as medicine, that
make the task of gathering exemplars in the same category particularly difficult, due
to the lack of cues regarding the purpose of medicine, in order to simulate the
challenges infants are faced with when trying to map new words to meanings.

Examples of the stimuli used can be seen in Fig. 3.

http://www.bckelk.uklinux.net/menu.html
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3.2 Emergence of Organization in the Lower Maps

At the end of development, different types of organization are found in the lower
maps that enable the performance of processes that are essential to recognition,
and that are similar to those found in corresponding brain areas. The model’s V1
map organized orientation selectivity, with responsiveness of neurons to oriented
segments arranged over repeated patterns of gradually changing orientations, broken
by few discontinuities, resembling one known to be found in biological primary
cortex [11, 80]. In the VO map of the model, most neurons respond to specific
hues, regardless of intensity. This is one of the basic features of color processing.
Color constancy is crucial in object recognition and is known to develop somewhere
between 2 and 4 months of age [20]. The kind of mapping found in A1 is typically
tonotopic, and it encodes the dimensions of frequency and time sequences in a sound
pattern. This is known to be the main ordering of neurons in biological A1 [81]. The
main organization found in the V2 map is responsiveness to angles, especially in
the 60ı and 150ı range. This kind of selectivity is one of the major phenomena
recently discovered in biological V2 [2,40]. In the model’s LOC map most neurons
exhibit invariant responses to objects. Invariance, the ability to recognize known
objects despite large changes in their appearance on the sensory surface, is one of
the most important properties to have in an object-recognition cortical area. It has
been identified in human LOC by several studies [31, 44, 84].

We refer to other published works for details on the functions that emerged in
V1, VO [61] V2 [58], LOC [60] and STS [62].

3.3 Representation of Nouns and Adjectives in Model PFC

It is in the upper PFC map where we expect categorization to take place that
concerns both visual and word forms. We have a PFC map in the immature model
ruled by Eq. (19), and the starred PFC map in the mature, working memory equipped
model, ruled by Eq. (20). For both, a common method of analysis has been carried
out, for analyzing the distributions of neural activation as population coding of
categories. Let us introduce the following function:

xi .s/ W S 2 S ! RI s 2 S 2 S; (21)

that gives the activation x of a generic neuron i in the PFC or PFC� maps, in
response to the presentation of the stimulus s to the system. This stimulus is an
instance of a class S , belonging to the set of all classes of stimuli S available in the
experiment. For a class S 2 S we can define the two sets:

XS;i D ˚
xi .sj / W sj 2 S


 I XS;i D ˚
xi .sj / W sj 2 S 0 2 .S=S/



: (22)
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Therefore the set XS;i includes values of neuron i in responses to all possible stimuli
not belonging to S . We can then associate to the class S a set of neurons in the map,
by ranking it with the following function:

r.S; i/ D �XS;i � �XS;ir
�XS;i

jXS;i j C �XS;i

jXS;i j
; (23)

where � is the average and � the standard deviation of the values in the two sets,
and j � j is the cardinality of a set. Now the following relation can be established as
the population code of a class S :

p.S/ W S ! fi1; i2; � � � ; iM W r.S; i1/ > r.S; i2/ > � � � > r.S; iM / > Lrg ; (24)

where M , the maximum number of coding neurons, is a given constant, typically
one order of magnitude smaller than the number of neurons in the map, and Lr is a
threshold for the lowest acceptable ranking for a neuron to be taken as coding for S .
The classes of stimuli that can be used in the two models are slightly different.

s
.PFC/
N D ho; ni 2 N D

[

O2ON

O 
 UN (25)

s
.PFC/
A D ho; ai 2 A D

[

O2OA

O 
 UA (26)

s
.PFC�/
N D ho; a; ni 2 N D ˚h!; ˛; �i W ! 2 ON ^ ˛ 2 UA.!/ ^ � 2 UN



(27)

s
.PFC�/
A D ho; a; ni 2 A D ˚h!; ˛; �i W ! 2 OA ^ ˛ 2 U˛ ^ � 2 UN.!/



(28)

where ON is the set of all images of objects that correspond to the lexical category
under the noun N , OA is the set of objects with the property consistent with
adjective A, UN is the set of all utterances of noun N , and UN.�/ is the set of all
utterances of the noun referring to object �, similarly for adjective utterances. In
testing the immature model by Eqs. (25) and (26), the model is presented with either
a simultaneous visual appearance of an object and the utterance of its name, or the
simultaneous visual appearance of the object and the utterance of its adjective. Tests
of the mature model by Eqs. (27) and (28) require the simultaneous presentation of
a visual object and its noun utterance, followed by the delayed adjective utterance.
In the first case the class collects all objects and possible adjectives pertaining to
a single noun, while in the second case the class collects all objects and names
pertaining to a single adjective. As an alternative to Eq. (28), stimuli of the form
ho; n; ai will be used to test ungrammatical sentences [Noun Adj]�.

Figure 4 show several cases of population coding for both nouns and adjectives,
in the PFC and in the PFC� maps of the two models. In the case of nouns the spread
and the amount of coding neurons is similar for the two models. The situation is
different in the case of adjectives, the weakness of the coding in PFC compared to
PFC� can be appreciated visually. For example in yellow and blue the amount
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Fig. 4 Examples of population coding of objects and adjectives in the upper map of the models:
PCF in the top rows, PFC� in the bottom rows

of coding neurons is tiny, and is very small also for white. In the PFC�, on
the contrary, the amount and the distribution of the coding neuron is even for
all adjectives.

3.3.1 Comparison of the Immature Model and the Model
with Working Memory

In comparing the two versions of the model we introduce a metric for evaluating
how accurate the knowledge acquired about noun and adjective lexical concepts is.
The population code p.S/ computed with (24) can be used to classify a stimulus s

in an expected category:

c.s/ D arg max
S2S

8
<

:

MX

jD1

˛j xp.S/j .s/

9
=

; ; (29)

where p.S/j denotes the j -th element in the ordered set p.S/ and ˛ is a constant
that is close, but smaller, than one. It is possible to evaluate how the population code
in PFC and PFC� map is effective in discriminating a category S by measuring the
fraction of hits in classifying stimuli belonging to that category:

a.S/ D jfs W s 2 S ^ c.s/ D Sgj
jS j : (30)
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Table 2 Model accuracy in discriminating adjectives

PFC�

Color PFC [Adj Noun] [Noun Adj]�

Yellow 0:269 0:845 0:241

Red 0:518 0:789 0:743

Green 0:297 0:988 0:671

White 0:184 0:922 0:893

Brown 0:378 0:997 0:678

Pink 0:528 0:789 0:853

Blue 0:246 1:000 0:863

Mean 0:368˙ 0:19 0:903˙ 0:081 0:715˙ 0:226

The immature PFC achieved an accuracy on object nouns of 0:79 ˙ 0:25, the
PFC� map of 0:52 ˙ 0:36, good levels, compared to the discrimination by chance
of 0.026.

Table 2 displays the accuracy achieved at the end of development, comparing
PFC, the upper map in the immature model, and PFC�, same map with working
memory loop. In this case, adjectives are presented in both grammatical and
ungrammatical sentences. Both versions of the model show the ability to achieve
a good degree of recognition of color adjectives, largely above the chance threshold
of 0:11. However, there is a significant improvement when working memory is in
place, in all adjectives. In the less developed or immature model, accuracy is greater
for nouns than for adjectives, which is rather contradictory, since there are 38 nouns
as opposed to 9 adjectives, and noun categories easily cross boundaries of perceptual
traits, confirming that it is the stage of the model that hampers adjective learning
with respect to nouns.

It is interesting to note that when the sequence in the sentence is ungrammatical,
the advantage in the comprehension of adjectives is reduced by half.

Therefore, the model in the PFC� version shows a syntact selectivity, in respond-
ing better to sentences where words respect their roles, however, this behavior is not
in the form of a fixed rule, in that the violation of the syntax makes the adjective
more difficult, but not impossible, to recognize.

3.4 Patterns of Connectivity of Nouns and Adjectives

All functions in the model arise spontaneously as a result of neural learning mecha-
nisms, induced by exposure to stimuli. However, as long as cortical maps proceed in
an anterior direction, the connectivity to sensorial input is more indirect and vague.
An interesting investigation would be that of seeing whether representations in the
higher model map of the two linguistic classes of color adjectives and object nouns
differ in their patterns of connectivity to the lower map, which in the brain are more
posterior and more directly related with stimuli.
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Fig. 5 The top two schemes are a comparison example of connectivity patterns for a noun (left)
and an adjective (right). The bottom plots are the distribution of 
 connectivity parameter for all
nouns (left) and all adjectives (right)

In particular, we analyzed differences in connectivity with respect to two visual
processes: shape and color, which are segregated in the model in maps V2 and VO.
For this purpose we define a parameter 
C , that measures the different amount of
connections from the shape processing stream with respect to the color stream, for
the population of neurons that code the category C . It is based on a preliminary
parameter �C defined as:

�C D
X

i2X .LOC /
C

�	

�
a.LOC V 2/

rAa;i

	
� �	

�
a.LOC VO/

rAa;i

	

�	

�
a.LOC V 2/

rAa;i

	
C �	

�
a.LOC VO/

rAa;i

	 (31)

where receptive fields a are those of Eq. (14), the function �	 .�/ returns the number
of connections in the receptive field � whose synaptic strength is larger than 	 ,
and X .LOC /

C is the set of neurons in LOC area projecting maximally into the
population of neurons in PFC coding for category C . Now the parameter 
 is just
the normalization of � with respect to all the set of categories (both adjectives and
nouns), to take into account a natural discrepancy in projections from V2 and VO
due to the differences in size and architecture of the two maps:


C D �C � �

�
(32)
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Therefore positive values of 
 indicate a pattern of connectivity stronger towards
shape processing areas, while negative towards color processing ones. Figure 5,
in the bottom, shows the distribution of 
 traced back from the PFC population
of neurons coding for all nouns, compared with the same distribution for all
color adjectives. There is a significant difference in the distributions, in that color
adjectives seem to recruit more from afferents coming from the color processing
pathway than those coming from the shape processing pathway, compared to
nouns. This can be interpreted as evidence of a physical grounding of the different
meanings of the two linguistic classes, in the neural circuitry.

4 Conclusions

The model here described attempts to simulate lexical acquisition from auditory
and visual stimuli from a brain processes point of view. The results of the modeling
work show that cortical-like neural maps are able to detect and store coincidental
associations in the stimuli, and build lexical categories: associations between words
and visual concepts. Labels for objects, or nouns, are learned by a developmentally
less mature version of the model very well, but adjectives, on the other hand, are not.
In the more developmentally mature model, when working memory loops become
available, adjectives become easier to learn. Furthermore, the more developed
model, when presented with [Noun Adj]� sentences shows a decreased ability
to recognize adjectives again, which we interpret as the model demonstrating an
early sensitivity to a very basic form of syntax. Eventually, the backwards analysis
of connections from the pre-frontal model map reveals an explanation of why some
neurons form populations coding for nouns, and others for color adjectives. This
explanation is to be found in the different recruiting of afferences from shape visual
processing areas, or color processing areas.
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Part III
Learning Morphology and Syntax



Treebank Parsing and Knowledge of Language

Sandiway Fong, Igor Malioutov, Beracah Yankama, and Robert C. Berwick

Abstract Over the past 15 years, there has great success in using linguistically
annotated sentence collections, such as the Penn Treebank (PTB), to construct
statistically based parsers. This success leads naturally to the question of the
extent to which such systems acquire full “knowledge of language” in a con-
ventional linguistic sense. This chapter addresses this question. It assesses the
knowledge attained by several current statistically-trained parsers in the area of
tense marking, questions, English passives, and the acquisition of “unnatural”
language constructions, extending previous results that boosting training data via
targeted examples can, in certain cases, improve performance, but also indicating
that such systems may be too powerful, in the sense that they can learn “unnatural”
language patterns. Going beyond this, this chapter advances a general approach
to incorporate linguistic knowledge by means of “linguistic regularization” to
canonicalize predicate-argument structure, and so improve statistical training and
parser performance.

1 Introduction: Treebank Parsing and Knowledge
of Language

Parsers statistically trained on corpora like the Wall Street Journal/Penn Tree
Bank have steadily improved their performance. However, despite these gains,
it is well-known that such systems often perform poorly on novel sentences
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outside their training datasets, due to the sparsity effects that reflect the “long-tail”
Zipf-distributional rarity of linguistic constructions and head-dependency relations
(see Collins [15], among many others). Klein and Manning [27] summarize the
situation in this way:

As a speech person would say, one million words of training data just isn’t enough. Even for
topics central to the treebank’s WSJ text, such as stocks, many very plausible dependencies
occur only once, for example, stocks stabilized, while many others occur not at all, for
example, stocks skyrocketed.

Our experiments below suggest that sufficiently complex linguistic constructions
exhibiting non-local dependencies may often pose problems for a parsing model that
takes a static view of syntactic structure – a model unable to systematically relate
the passive form of a sentence to its active counterpart, or a declarative sentence
to a corresponding derived interrogative. While often effective, simply adding more
data should not be invariably seen as a substitute for incorporating explicit linguistic
constraints into parsing models. Indeed, the successful use of an alternative model
of syntactic structure, Combinatory Categorial Grammar (CCG), as implemented in
several recent systems such as the C&C parser [11] and by Hockenmaier [22, 23]
may be seen as a concrete demonstration that sometimes the representation of
syntactic knowledge, rather than data sparsity, plays a more important role in parser
performance.

Moreover, as evidenced by the Penn Treebank, more challenging linguistic
mechanisms may have the least amount of data available for learning. The problem
is only exacerbated if we examine resource-impoverished languages. Language
acquisition is a classic instance of a scenario where adding more data is not one of
the available options for resolving the data sparsity problem. A viable computational
treatment requires model-level changes to address this issue.1

In fact, our experiments below indicate that statistical parsing stands to benefit
from a much more restrictive learning regime that inherits insights from language
acquisition. On this view, parsing models should be judged based on their ability
to recover and discriminate between different types of syntactic mechanisms rather
than on incremental improvements from adding training data to alleviate the data
sparsity problem. Similarly, the ability of a model to learn an unnatural syntactic
mechanism detracts from its ability to discriminate between syntactic constraints
observable in human language. Conversely, insights from our experiments can be

1We note that there have been recent proposals that suggest that “linguistic mastery does not need
to be available early in the course of language development” and that “the acquisition of usage-
based and fixed-form patterns can account for : : : [the] syntactic burst [occuring around age two
to three]” [39]. It is uncontroversial that some fixed form patterns are memorized by children, and
equally that complete linguistic mastery of syntax is delayed until the age of eight or later, as first
established by the work of Carol Chomsky [10]. However, while it “need not” be “available early”,
in point of fact, empirically, it has long been established that ’telegraphic speech’ is not indicative
of the full scope of syntactic comprehension at the ages of 2–3; rather, many aspects of syntax are
acquired by this age, but telegraphic speech does not reveal these abilities and reveals processing
difficulties such as memory limitations [20, 47].
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brought to bear on approaches to language acquisition. Syntactic mechanisms might
be more effectively acquired and discriminated if they are characterized in terms of
canonical argument analysis.

More generally, in this chapter we will focus on an assessment of gaps in the
“knowledge of language” acquired by statistically-trained parsers, attempting to sort
out which of these might arise from limited training data and lead to parameter
estimation problems with associated parsing models, and which might arise from
underlying grammatical frameworks and benefit from the insights of linguistic
theory.

We note that often the two sources of error are not complementary. Adding more
data relevant to a particular syntactic construction may resolve parsing mistakes, but
at the same time it may be symptomatic of a systematic problem with the model.
When asked to chose between two solutions, their relative ability to scale up and
generalize to new instances is the critical consideration. For example, a model that
needs a passive form for each active counterpart observed in the data to be able to
parse the passive variant should be less preferred to a model that explicitly models
the passive and is able to analyze and generate such a form automatically. This is
the basic conclusion we draw from our analysis of passive sentences, and it is not
simply a question about data sparsity.

We should emphasize at the outset that we have probed questions like these by
constructing entirely new experiments, not simply covering familiar ground about
the ever-present issue of data sparsity in statistical parsing. To the best of our knowl-
edge, all our experiments and their results are new. The analysis of passive errors and
the method we apply to canonicalize argument structure to improve passive parsing
performance is also novel, as far as we have been able to determine. Similarly,
our analysis of wh-questions does not simply rehash the approach of Rimmell
et al. [44]. Finally, our application of an “unnatural” language learning litmus tests,
while drawn from the psycholinguistic literature as in [36], has not been extended
to current statistical parsers. In all of these situations, our ultimate goal is to seek
ways of improving parsers by determining whether such systems have typical failure
modes that can be discovered, as well as whether these failures need to be remedied.

To begin, such an assessment of “knowledge of language” poses a real challenge.
Parsers are typically designed from the start to solve a very particular engineering
task that is quite different from the way that a linguist might assess knowledge of
language. Roughly speaking, statistically-based parsers learn how to select a “most
likely” analysis with respect to all the parses they have been trained on and all the
parses they can generate. They only choose among possible parses, standardly using
either generative or discriminative estimation methods. In this sense, they do not
directly adjudicate among “grammatical” and “ungrammatical” sentences.2 Such a

2As noted in [41] and [48], despite the fact that statistically-based parsers have used both sorts
of estimation methods, the underlying statistical models for both generative approaches as well
as discriminative approaches using what are called “latent variables” – probabilistic and weighted
context-free grammars, respectively – turn out to be equivalent in their expressive power.
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probabilistic “remembrance of parses past” is not the same as the replicability of
linguistic knowledge conventionally probed by grammaticality judgements.

Indeed, it is not immediately obvious how to align grammaticality judgements
with probabilities. There is no agreed-upon unification. While some authors, e.g.,
Abney [1] maintain that the grammaticality-probability distinction should be kept
firmly apart, still others argue differently, e.g., [29], p. 33:

The parser that an ML [machine learning] system produces can be engineered as a classifier
to distinguish grammatical and ungrammatical strings.

While a more detailed consideration of this point lies beyond the scope of this
chapter, it suffices to observe that, as noted in [12], one cannot simply provide a
probability threshold, �, such that for all probability values greater than �, a parse
is grammatical, otherwise ungrammatical. In this case there could be at most 1=�

grammatical sentences, and the corresponding language would be finite. Observe
that the standard assumption for probabilistic context-free grammars assumes an
exponential distribution of probability mass with respect to generated sentence
length, so that sentences longer than a certain length have vanishingly small
probability mass. Such a language is effectively finite. If anything, to the extent
that such parsers are intended to model an actual corpus, they presumably reflect
actual language use, (in the case of the PTB, newspaper writing), and so a complex
mix of syntactic, lexical-semantic, world/encyclopedic knowledge, processing load,
and other similar factors. This is not coextensive with the conventionally abstract,
linguistic notion of linguistic competence, that deliberately idealizes away from this
mix, though there are familiar points of contact.

Consequently, in this chapter we will typically base our assessments simply on
what parsing systems can and cannot do well. To consider an introductory example
of the assessment methods we will use, even in simple cases many corpus-trained
parsing systems cannot recover correct verb argument structure. Consider a passive
construction such as that in Ex. 1 below:

(1) Mary was kissed by the guy with a telescope on the lips.

Many (perhaps most) parsers trained on the PTB will tend to attach the Prepositional
Phrase (PP) on the lips incorrectly to the PP a telescope because most of their
training data follow such a form. In contrast, the corresponding active form, Ex. 2
below, is easily parsed correctly by such systems, because the Subject NP-PP
combination is no longer located near the ambiguous PP attachment point:

(2) The guy with a telescope kissed Mary on the lips.

Such examples are not just hypothetical. For instance, Fig. 1 shows that sentence
#404 of section 23 of the PTB, Measuring cups may soon be replaced by
tablespoons in the laundry room, is parsed incorrectly exactly in this way by
two state-of-the-art parsers, the Stanford unlexicalized context-free parser [27] and
Bikel’s re-implementation of the Collins parser [4]. In all these cases, the PP in the
laundry room is incorrectly attached as a modifier of the object NP tablespoons.
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Fig. 1 The Bikel/Collins and Stanford unlexicalized parsers both mis-analyze sentence number
404 in section 23 of the PTB. The top half of the figure shows the result of parsing using either
Bikel’s reimplementation of the Collins parser or the Stanford unlexicalized parser. The bottom
half of the figure shows the corresponding “gold standard” PTB structure

In the remainder of this chapter, with some exceptions we will typically test
examples on a range of probabilistic parsers in an attempt to avoid the idiosyncrasies
of any particular implementation and achieve some measure of robustness in our
test results. In this case, in addition to the two parsers illustrated in the main text,
the Berkeley parser [40] and the C&C combinatory categorial grammar parser [18]
both output the same, incorrect attachment. The Malt dependency parser version
1.4.1 [37] also outputs an incorrect dependency between in and tablespoons. In
contrast, both the “factored” Stanford lexicalized-dependency parser [28] and the
Charniak-Johnson parser [6] do output the correct attachment.

Examples such as these suggest that verb argument structure might be more
easily recoverable when sentence structure is represented in some canonical format
that more transparently encodes grammatical relations such as Subject and Object.
In other words, if the arguments of predicates are in a fixed syntactic position
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in training examples, then we might expect that this regularity would be simpler
for a statistically-based system to detect and acquire. More generally, it has often
been observed that what makes natural languages difficult to acquire or parse is
that phrases are displaced from their canonical positions, not only in passives, but
in topicalization, wh-movement, and many similar constructions. Each of these
constructions breaks the transparent link between predicates and arguments. In
Sect. 5 below, we shall see that one can remedy at least some of these difficulties
by adopting a representation that is arguably closer to the one that certain linguistic
theories assume, where the argument of the main verb has been ‘replaced’ in its
canonical Object position, as in Ex. 1. There are other representations one might
adopt to handle this particular problem, for example, a combinatorial categorial
grammar (CCG) that explicitly relates displaced phrases to their “gaps.” As we noted
earlier, this does not necessarily ensure success.

Following the lead of this illustrative example, in the remainder of this chapter
we will focus on the following selection of challenging areas for parsers trained on
corpuses like the PTB:

1. Wh-questions. As has often been noted, the PTB corpus contains a very small
number of questions – unsurprisingly, since it consists of Wall Street Journal
newspaper articles [34]. Out of the 39,822 sentences in the standard training
sections 02–21, there are only 128 “root” level questions, such as training data
sentence #85, What’s next? and four other similar questions. More than 70 %
of these are Subject wh-questions There are 61 additional wh-questions that
appear in embedded quotational contexts, e.g., “What’s he doing ” , hissed my
companion, and 96 root level auxiliary inverted questions, e.g., Was this why
some of the audience departed before or during the second half . In short, by all
measures, the training data for wh-constructions and questions is exceptionally
sparse. Moreover, the statistically-trained parsers we examine in this chapter do
not receive data in the form of “more ill-formed” examples that differ, say, by
just a single word in a different order, such as, Who asked who bought what vs.
Who asked what who bought. These systems must therefore learn such nuances
from just one or two positive examples.

2. Tense marking. Tense is a good example of a linguistic phenomenon that, like
displacement in wh-questions, may be “spread out” over several, not necessarily
adjacent words. For example, in an English yes-no question, tense must be
realized overtly at the front, while the corresponding main verb need not have an
overt morphological indicator of tense: thus we have the PTB example, Do you
think the British know something we don’t , where do carries tense and think does
not. We will investigate whether statistically-trained systems can “capture” part
of the English tense system by examining examples of verbs that are ambiguously
marked for tense, such as read or cost.

3. Passives. As noted in our introductory example, the placement of a verb’s
argument in Subject position, along with the possibility of an Agentive “by”
phrase can lead to parsing difficulties.
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4. “Unnatural” language constructions. Finally, while the previous topics all
examine a particular parsing task – essentially, structural language patterns –
that one would like a trained parser to detect easily, there are also non-
attested language patterns that trained parsers should be able to detect only
with great difficulty. A cognitive-faithful parser should have the same problems
acquiring “unnatural” language patterns as people do. But what do mean by
unnatural? By this we do not mean patterns that are challenging for people
due to processing constraints, e.g., the classic examples of center-embedded or
garden path constructions. Rather, what we will mean by “unnatural” language
constructions are examples of the sort studied in some detail by Musso et al. [36]
via artificial grammar learning and fMRI experiments. They covered two sorts of
unnatural rules: (1) “counting” rules, that is, linguistic rules that, say, could form
the negation of a declarative sentence by inserting a special word at a particular
point in a sentence, say, always immediately after the third word; (2) “mirror
image” rules, that is, linguistic rules that, say, could form the interrogative of
a declarative sentence by inverting the word order of the declarative sentence,
saying it in reverse. In their study, [36] constructed a set of unnatural rules,
unattested in any natural language. Here is their description of the second
“unnatural” rule, which is the one in Sect. 6 that we will attempt to reproduce as
closely as possible in our experiments with statistical parsers, from [36], p. 775:

The second rule required that the interrogative construction be built by inverting the
linear sequence of words of a sentence. For example, “I [1] bambini [2] amano [3] il
[4] gelato [5] or “The children love ice-cream” becomes Gelato [5] il [4] amano [3]
bambini [2] il [1].

Musso et al. found that people had great difficulty mastering artificial rule
systems of this sort. If they were learned at all, they were learned, as if they
were non-linguistic ‘puzzles,’ activating very different brain regions than those
lit up during normal language rule processing. Smith et al. [49] reported a similar
finding, again using an artificial grammar learning paradigm. Here it was discov-
ered that an autistic linguistic “savant” could not learn “unnatural” grammatical
rules. In contrast, while adults could learn these rules, but again, only with
great difficulty. In a related area, others (e.g., [33]) have noted that the same
issue arises with respect to artificial neural network learning in the paradigm
case of English past tense over-regularization. Neural network systems that are
constructed to report the probability of the next word or form in a sequence are
apparently “unnatural” to the extent that they can learn sentence reversals just
as easily as normally ordered word sequences. Note that this is a case where the
neural network simulations do equate “grammaticality” with “likelihood.” What
all these results come to is the same: we do not want a “natural” learning system
to be too flexible, having capacities beyond those found in people.3

3See, e.g., [9] and [2] for additional discussion of the lack of non-counting and palindromic rules
in natural language, including syntax and phonology. It is known in certain sociological settings
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2 Experimental Methods

We carried out our experiments on as broad a range of publicly available
statistically-trained parsers as possible, subject to the broad constraint they all could
be trained on the same, standard subsections of the Wall Street Journal version of
the Penn Tree Bank III. In this we strove to follow the same procedure and roughly
the same coverage as in the comparative study carried out in [13], p. 51:

Constituent parsers and dependency parsers all have the appropriate level of sophistication,
but a wide variety of different grammars and conceptual frameworks that makes comparing
them difficult. However, there is one class of parsers that is both numerous and up-to-date,
and covers a variety of different algorithms which all use the same output format (bar a
few small details). These are sometimes referred to as treebank parsers as they are usually
trained and optimized on the PTB and produce output conformant with its standards.

2.1 Parsing Systems Used

The systems that were used for the experiments are given in Table 1. Not all of these
systems could be used for all experiments, due to certain resource requirements.
Such details will be noted in what follows. Among the publicly available systems,
we selected the most extensively cited and most widely used parsers. We cannot
hope to exhaust the full range of parsers now publicly available, particularly
dependency parsers. For example, we could not include the Melamed/Turian
discriminative parser [52]. We leave such extensions for future research. Additional
details about the grammatical models and the training/testing procedures used will
be covered as they arise.

2.2 Training Data, Testing, and Evaluation

In order to ensure that results would be as comparable as possible, we retrained most
of the parsers on sections 02–21 of the PTB III, even when they came with “pre-
built” estimated models on this training data (as with the C-J, Berkeley, and Stanford
parsers).4 Due to limited access to the original materials and other computational
constraints, we were not able retrain the CJ-R parser. As a result, in what follows we

that palindromic forms are used, e.g., the Australian butchers’ market language. But all indications
here are that this such behavior remains “puzzle based.”
4We attempted to use training settings that matched those for the parsers’ “pre-built” models as
far possible. For example, we used the settings provided in the Stanford parser directory under
makeSerialized.csh for the so-called wsjPCFG model. In the case of the BC-M2 parser,
we used the settings given by collins.properties since we wanted to ensure replicability
with standard results.



Treebank Parsing and Knowledge of Language 141

Table 1 The treebank parsers chosen for this investigation

Parser Abbreviation Release used Citation

Bikel-Collins Model 2 BC-M2 1.2 Oct 08a [4]
Berkeley “coarse to fine” Berkeley 1.1, Sept 09b [40]
Stanford unlexicalized Stanford-unlex 1.6.3c [27]
Stanford factored dependency Stanford-fact 1.6.3c [28]
Charniak “coarse-to-fine” CJ-I Nov 09d [5]
Charniak-Johnson reranking CJ-R Nov 09d [6]
ahttp://www.cis.upenn.edu/�dbikel/download/dbparser/1.2/install.sh
bhttp://code.google.com/p/berkeleyparser/downloads/detail?name=berkeleyParser.jar
chttp://nlp.stanford.edu/software/stanford-parser-2010-07-09.tgz
dhttp://web.science.mq.edu.au/�mjohnson/code/reranking-parser-Nov2009.tgz

used only the CJ-R pre-built model. In addition to using this standard training data,
we carried out various experimental manipulations followed by data augmentation
and retraining that will be described in later sections. For evaluation we used the
standardly available evalb package [46].

3 Case Study: Parsing Wh-Questions and QuestionBank

We first return to the area of wh-questions outlined briefly in Sect. 1. For the
purposes of this chapter, we will put to one side the question of how to link
wh-words and phrase such as what or which problem to their ‘gaps’, for example, the
link between what and the object position after buy in a sentence such as What did
John buy. While this is an important topic, full analysis of this problem is beyond the
scope of the current chapter; see [44] and [18] for combinatory categorial grammar
approaches that address this issue. Instead we will focus solely on the question of
how well correct parses are recovered.

Why would parsing problems arise even if we put this issue aside? The reason
is that in the standard training sections of the PTB, wh-phrases are most often
used as relative clauses, not as questions (in a ratio of approximately 10,000:1).
It would not be surprising, then, if a true wh-question was parsed as if it were a
relative clause. Using standard PTB notation, we would then expect wh-questions
parsed incorrectly as an S embedded within an SBAR, rather than, correctly, as an
SQ (a sentential question) embedded within an SBARQ. (See Fig. 2 below for a
representative example of this distinction.)

To be concrete, a conventional linguistic assessment about knowledge regarding
wh-questions often begins with a “graded” list of examples such as those in
Ex. 3 below, where the first sentence is an “echo question.” This is followed by a
semantically similar wh-interrogative sentence. The next three examples are then
listed in roughly an order of descending acceptability to native English speakers
(hence the asterisks placed before them).

http://www.cis.upenn.edu/~dbikel/download/dbparser/1.2/install.sh
http://code.google.com/p/berkeleyparser/downloads/detail?name=berkeleyParser.jar
http://nlp.stanford.edu/software/stanford-parser-2010-07-09.tgz
http://web.science.mq.edu.au/~mjohnson/code/reranking-parser-Nov2009.tgz
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Fig. 2 An example of a wh-question parsing error for the sentence, Which radio stations air the
Jim Bohannon Radio Talk Show? This is the output from the BC-M2 parser

(3) a. Bill will solve which problem?
b. Which problem will Bill solve?
c. Which problem Bill will solve?
d. Bill solve which will problem?
e. Which problem Bill solve will?

How might we use such examples to test the linguistic knowledge acquired by
a statistically-trained parser? Note that even if a sentence is “ill-formed” like the
last three above, then a probabilistic parser will still try to do the best it can, and
return the most likely analysis, even a partial or incorrect one, with respect to
the parsed examples it has already been trained on. That is in some respects an
appropriate response to what such systems have been designed to do, one means to
add robustness. As we described in the introduction, this might be a perfectly valid
way to proceed from an engineering standpoint; factoring in gradience judgements
of this sort remains an area to explore that lies beyond the scope of the present
chapter. Further, while we might expect that the probability scores returned by
the parser for the last three sentences could be worse than those for the first two,
likelihood scores would probably vary anyway given slightly different local contexts
and the successive history of various local rule choices set against what has been
seen in the training corpus. In addition, if a parser is “lexicalized” then the actual
word information (e.g., whether the verb is solve or try) is typically propagated to
the head of a phrase (in this case, the Verb Phrase (VP)), and in this way specific
lexical items may play a role in influencing what analysis path is taken.

Putting this question of assessing grammaticality to one side, we therefore
focus instead only on the problem of producing the correct parse, rather than any
likelihood score that denotes relative acceptability or grammaticality. That this is
a real problem may be seen in Fig. 2 below, which displays an incorrect parse of a
wh-question sentence produced by the BC-M2 parser, on an example sentence taken
from an actual corpus of wh-questions, QuestionBank, that we describe immediately
below.
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Fig. 3 Parse structure assigned to the “Who does Shakespeare: : :” sentence by the downloaded
QuestionBank used in the current analysis

3.1 Augmenting the Training Data

There have been several approaches to remedying this problem by adding additional
wh-question training sentences. In particular, Judge et al. [26], Rimmell et al. [44],
and Nivre et al. [38] have built systematic “unbounded dependency” question
treebanks.

We did not have access to these last resources, so we drew instead on a recently-
built publicly accessible 4,000 sentence database, QuestionBank, constructed by
Judge et al. [26]. This is a curated database of 2,000 questions drawn from the
TREC question-answering (QA) domain and 2,000 questions from the Cognitive
Computation Group at UUIC.5 A representative example from this version of the
QuestionBank is, Who does Shakespeare’s Antonio borrow 3,0 ducats from?, as
displayed in Fig. 3. Note that unlike the PTB II/III, this downloaded version did
not contain information about the location of the underlying argument positions
of displaced phrases, e.g., that Who serves as the object argument from) in the
preceding example. From our perspective this was satisfactory because, unlike the
research reported on in [26,44], or [38], we were interested solely in the question of
whether statistical parsers could learn correct structural analyses.

Note that while QuestionBank represents approximately a 10 % addition to
the number of sentences to the baseline training set, most of these wh-question
sentences are typically far shorter than those in the PTB II, with a median sentence
length of ten words – unsurprising since these are questions culled from a question-
answering domain as opposed to the written Wall Street Journal newspaper article
domain.

5The full database was obtained by download from http://www.computing.dcu.ie/�jjudge/
qtreebank/. A handful of errors in corpus annotation were corrected in this downloaded dataset.

http://www.computing.dcu.ie/~jjudge/qtreebank/
http://www.computing.dcu.ie/~jjudge/qtreebank/
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Table 2 Labeled precision, labeled recall, and F-Scores for baseline and wh-trained parsers, using
question training/test data from QuestionBank (QB). The last column displays F-scores for these
parsers’ performance on only the standard baseline section 23 of the WSJ

Parser type Labeled Labeled F-score, %
precision, % recall, % F-score, % WSJ Sect. 23

BC-M2 baseline 80.87 71.25 75.76 85.63
BC-M2+QB 91.08 81.70 86.18 85.79
% improvement 12.63 14.67 13.75
Stanford-unlex baseline 66.26 69.32 67.57 85.54
Stanford-unlex+QB 81.72 80.92 81.32 85.55
% improvement 22.33 22.01 20.03
Stanford-fact baseline 62.50 65.57 64.00 88.71
Stanford-fact baseline + QB 88.71 87.41 88.06 88.59
% improvement 20.53 15.60 17.99
CJ-I baseline 84.65 71.81 77.70 86.55
CJ-I+ QB 90.31 80.65 85.21 88.13
% improvement 6.69 12.31 9.67
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Fig. 4 Labeled precision, labeled recall, and F-scores for the parsers trained and tested on the
QuestionBank corpus, both before and after training on QuestionBank

We divided the 4,000 QuestionBank sentences into an 80 % training portion and
a 20 % testing portion. We tested four parsers: BC-M2; Stanford-lex; Stanford-fact;
and CJ-I. We tested each of these four parsers on two training-test sets: (1) the
baseline conventional PTB training set; (2) the 80 % Question Bank sample, eight
experiments in all.

Table 2 gives the complete numerical results of these eight runs, while Fig. 4
displays the results visually, as histograms of the precision, recall, and F-score
before/after performance. Both reveal a substantial improvement across all parsers.
For example, Stanford-unlex parser had labeled precision/labeled recall scores of
66:26 %=69:32% before training, and 81:72 %=80:92% after training, a consider-
able gain of 15 and 10 % points, respectively (a 20.53 % and 15.60 % increase).
The CJ-I parser’s scores were boosted from 84:65 %=71:81 % to 90:31 %=80:65%
This was the smallest percentage improvement, due probably to the fact that even
before wh-training the CJ-I parser already performed quite well. Still, increases with
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Fig. 5 An example of wh-parsing improvement after wh-training for the test sentence Which radio
stations air the Jim Bohannon Radio Talk Show? The topmost portion (i) shows the BC-M2 parse
before training, with an erroneous S node at the top, and the WHNP and NP as distinct trees.
Similarly, the Stanford-unlex parse incorrectly separates the WHNP and the NP, while getting the
SQ node correct, middle display (ii). The bottom portion (iii) exhibits the correct parse output
by both the BC-M2 parser and the Stanford-unlex and Stanford-fact parsers after wh-training on
QuestionBank
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wh-training were quite substantial at 6.69 % and 12.31 %, with an overall F-score
increase of 9.67 %. Importantly, as the last three columns of the table show, this
improvement did not come at any apparent cost in precision/recall for the standard
WSJ section 23. For example, the Stanford-unlex parser after additional wh-training
got an F-score 85.55 %, on WSJ section 23, as compared to a baseline F-score of
85.54 %. In most cases, the additional wh-examples improve performance.

A representative example of a parse that is greatly improved by wh-training
is depicted in Fig. 5, for the test data sentence, Which radio stations air the Jim
Bohannon Radio Talk Show? Before wh-training, none of the parsers could correctly
analyze this sentence. For instance, as expected, the Bikel-Collins parser mis-
analyzes the words which radio stations as an S dominated by an SBAR, and also
mis-parses which radio stations as distinct WHNP and NP phrases (part (i) of the
figure). The Stanford-unlex parser does better, without any wh-training; it parses the
sentence correctly as an SBAR dominating an SQ. However, it also fails to combine
which radio station into a single wh-phrase (see (ii) in the figure). After training,
both parsers produce 100 % gold-standard parses, shown at the bottom of Fig. 5,
panel (iii).

We conclude that the 3,200 questions in QuestionBank, provide a substantial
performance boost to wh-question parsing, enough to overcome any deficiencies
in the original PTB. However, we note that this puts to one side the question
of linking wh-elements with their “underlying” argument structure, as noted by
Rimmell et al. [44], among others. In this sense, the fundamental representational
question is still not addressed.

4 Parsing and Tense: The Case of Read

In a Linguistic Society of America pamphlet, Ray Jackendoff [24] considered a
“text reading” puzzle as an example of what is impossible for a computer to
accomplish without knowledge of language: in particular, the task of determining
the pronunciation of the orthographic form read, which can be pronounced as red or
reed depending on context. The sentences considered by Jackendoff are reproduced
in Ex. 4; we will consider additional examples as well. In these examples, [24]
introduced will as a deliberate complication since it can be either a Noun or Modal
verb. Apparently, this was to illustrate that simply looking at adjacent words, without
any sophistication, would be problematic. In any case, if this issue arises at all, we
dealt with it by substituting should or stock for will, as appropriate. The results
remained the same, so for our purposes this additional complication was ignored in
what follows.

(4) a. The girls will read the paper. (reed)
b. The girls have read the paper. (red)
c. Will the girls read the paper? (reed)
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Table 3 The Penn Treebank verbform tagset

Tag Description Example

VB Verb, base form write
VBD Verb, past form wrote
VBG Verb, gerund or present participle writing
VBN Verb, past participle written
VBP Verb, non-3rd person singular present write
VBZ Verb, 3rd person singular present writes

d. Have any men of good will read the paper? (red)
e. Have the executors of the will read the paper? (red)
f. Have the girls who will be on vacation next week read the paper yet? (red)
g. Please have the girls read the paper. (reed)
h. Have the girls read the paper? (red)

It should be clear from the examples in (4) that a computer program needs to
possess knowledge of the English auxiliary/main verb system along with basic
properties of sentence phrase structure in order to correctly carry out this task.
The PTB assumes a part of speech tagset that identifies and distinguishes among
different forms of a verb, as shown in Table 3. This information ought to suffice,
since these values are enough to fix a deterministic decision procedure to pronounce
read correctly. Note that such a parsing system must be able to associate, e.g., the
tense marking on a word like will with the correct tense of the verb read that appears
later in the sentence. General agreement phenomena such as this have been a staple
of linguistic analysis for more than 60 years [8]. A related issue appears with other
verb forms such as cut or cost, that are ambiguous with respect to their tense
information in the third person (e.g., they cut/they have cut). In this case, though
their pronunciation is also identical, there is still a problem in picking the right
tense label for the verb, as we shall see.

One might reasonably expect a parser trained on nearly 40,000 sentences to
have acquired basic English sentence structure and properties of the auxiliary
and verbal system, and thus be able to decode the examples correctly identi-
fying the appropriate tag for read in each case, thus solving the “text reading
machine problem” posed by Jackendoff. This is the question we shall examine
here.

For example, the structure recovered by the Berkeley parser in the case of 4(b),
correctly identifying read as VBN, is given in Fig. 6 on the left. (In the case of read,
only the VBD and VBN forms should be pronounced as red.)

However, the Berkeley parser is not always correct. The bottom part of Fig. 6
illustrates the corresponding Berkeley parse for 4(h). Here the sentence has been
properly identified as an interrogative (category label SQ) but the parser nonetheless
has fails to assign the correct VBN tag to read. (The assigned tag VB will result in a
pronunciation of reed.)
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Fig. 6 Berkeley (top) and BC-M2 (bottom) parses for sentence Examples 4(b,h)

Continuing with this experiment, we examined in some detail how the Jackendoff
read sentences are analyzed by our suite of statistically-based parsers, all trained on
the same sections of the PTB. The results are summarized in Table 4. There are
striking differences in performance. Even some of the output parse structures are
different. (See Fig. 7 below for a display of a parsing difference with the imperative
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Table 4 Parsing results for the read pronunciation task. All parsers trained on identical data.
Incorrect outputs are flagged with an asterisk*

Example (4a) (4b) (4c) (4d) (4e) (4f) (4g) (4h)

Correct form VB VBN VB VBN VBN VBN VB VBN Correct

Berkeley VB VBN VB *VB *VB *VB VB *VB 4/8
BC-M2 VB VBN VB *VB *VB VBN *VBN * VB 4/8
CJ-I VB VBN VB *VB *VB VBN *VBN *VB 4/8
CJ-R VB VBN VB *VB *VB VBN *VBN *VB 4/8
Stanford-unlex VB VBN VB VBN VBN *VB VBP VBN 7/8
Stanford-fact VB VBN VB VBNa VBN VBN VBP *VB 7/8
aThis assumes that the parser has not misinterpreted will as a modal verb. The same holds for the
next example

sentence Ex. 4(g).) Overall, the Berkeley parser gets 4/8 of the test sentences correct,
missing 4(d–f,h).6

The BC-M2 parser does not have perfect performance either, with 4/8 correct,
though it fails on a slightly different set of examples; it misses 4(d,e,g,h). For
comparison, note that an assignment based purely on tag frequency would yield
a crude baseline of 3 out of 8 correct on this task, as VB and VBN occur 45 % and
19 % of the time in the training set for read. It is important to observe that unlike
the other parsers tested here, the BC-M2 parser ignores final sentence punctuation,
so it literally cannot distinguish Have the : : :? from Have the : : :.

The other two lexicalized parsers, both the ‘first-stage’ n-best parser using
Charniak’s “coarse to fine” method and the CJ re-ranking parser, perform exactly
the same as BC-M2, getting 4/8 sentences right, and missing the same sentences as
BC-M2, on sentences 4(d,e,g,h).7

Finally, turning to the two Stanford parsers, we see greatly improved perfor-
mance. If we count VBP as OK for the imperative read sentence, then the (simpler)

6As noted in Sect. 2 we tested both the Berkeley’s parser’s pre-built eng sm5 grammar, as well as
our own retrained version that carried out six split-merge iterations. The results did not change. The
results also remained the same when we used Berkeley parser’s -accurate switch. In general,
results did not change for any of the parsers when we substituted stock or should for will. Note that
here the Berkeley parser is using its own part of speech tagger. If we force it to use “gold standard”
part of speech tags, then it could not possibly fail in the manner we have described. However, we
wanted to examine the parser’s own performance, not some exogenous part of speech tagger.
7For CJ-I we selected the “best” (highest likelihood parse score) from the output of the CJ-I parser.
In fact, in several cases, the 2nd best parse tree turned out to be the correct one; this was true, for
instance, for sentence 4(h). On the other hand, just as often the best parse was correct and the 2nd
best parse was incorrect, as in example 4(a). Note that the CJ-I parser serves as input to the CJ-
R re-ranking parser, taking, e.g., the top-50 most likely parses and then sorting them according
to a discriminative weighted feature-based scheme using features such as the degree of right-
branching, or conjunct parallelism. Since the top 50 parses usually included the correct answer, the
re-ranking parser at least had a chance of possibly selecting the correct answer in each case. Even
so, re-ranking was ineffective, and did not change the outcome for any of the sentence examples
here. See [6] for details about this re-ranking parser.
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Fig. 7 Some parsers output distinct structures for the imperative read sentence. The left-hand
side displays (identical) the parse output by the Berkeley, and BC-M2 parsers. (The CJ-I and CJ-R
parses are also identical to this one, aside from the minor difference of labeling have as an AUX.)
The right-hand side displays the output from the Stanford parsers for this same sentence

Stanford unlexicalized, probabilistic context-free parser is nearly perfect, with 7/8
sentences correct. The more sophisticated dependency-factored Stanford parser also
gets 7/8 correct, (Both of these parsers also output different, arguably incorrect
parses for Please have the girls read the paper, displaying the imperative form as
shown on the right-hand side in Fig. 7.)

What accounts for the difference in the results? All of the parsers use extremely
sophisticated statistical estimates, with many programming details, so it is very
challenging to determine what accounts for their varying performance on particular
sentences. As Bikel observes, [4], p. 188:

With so many parameters, a lexicalized statistical parsing model seems like an intractable
behemoth. However, as statisticians have long known, an excellent angle of attack for a
mass of unruly data is exploratory data analysis.

We shall pursue such an exploratory path here. Let us consider first the essentially
identical performance of the BC-2, CJ-I, and CJ-R parsers. As noted in [5], all these
parsers are strongly “lexicalized,” in the sense that they use literal word information
about the heads of phrases in the linguistic sense (smoothing this if necessary
by various methods). That is, instead of a rule expanding a Verb Phrase (VP) as
VP ! VNP , these parsers modify the context-free rule to incorporate actual
information about the lexical head word, e.g., the particular verb read. The by-now
familiar advantage here is to possibly capture any special properties that distinguish
read, from, say, buy – perhaps that buy is more frequently followed by an object
Noun Phrase. Such systems thus serve as a point of contrast with the remaining
parsers tested, which do not in general expand context-free rules with augmented
head information. We put to one side for now the method that the factored Stanford
parser uses, which is in effect to parse with both an ordinary PCFG and a lexicalized
dependency model, and then combine the results by means of a joint inference
model.
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More specifically, we may be able to pinpoint the difficulty with the lexicalized
parsers by drawing on an observation made by Charniak [5]. Charniak notes that
the BC-M2 parser and the CJ-I and CJ-R parsers all make use of actual lexical
information, to first “guess” whether a pre-terminal label should be, e.g., VB or
VBN, p. 137:

: : : the current parser first guesses the head’s pre-terminal, then the head, and then the
expansion. It turns out that usefulness of this process had already been discovered by
Collins [14]: : : However, Collins : : : does not stress the decision to guess the head’s pre-
terminal first, and it might be lost on the casual reader. Indeed, it was lost on the present
author until he went back after the fact and found it there.

While [5] notes that this method accounts for a nearly 2 % performance gain
overall, there is some evidence that it also leads to precisely the observed problem
with read, essentially one of “over-lexicalization.” In particular, as explained in [3],
the BC-M2 parser “guesses” the part of speech of a pre-terminal associated with
read via a top-down generative approach, sometimes modifying the pre-terminal
part of speech information. We can see the effect of this in the case of read. In the
example Have the executors of the will read the paper, read is initially assigned the
(correct) part of speech tag VBN by a pre-processor tagging step. But this is changed
by the probability model’s guess of the incorrect tag VB. Indeed, the same holds for
the other mistakes BC-M2 makes: initially correct tags are changed to their incorrect
counterparts by the parser.

Our hypothesis, then, is that the local “guessing” carried out by the generative
probability model in these cases may be biased by local frequency effects in such
a way as to sometimes alter the tag in the wrong direction. For example, read
appears in the PTB training data 29 times as a VP dominating a VB (usually with an
intervening to), and 10 as a VBP, so in 39 contexts is pronounced reed. On the other
head, read appears 24 times dominated by VBD or VBN, pronounced red. It is this
bias that appears to be altering the results. In contrast, consider the tense-ambiguous
verb hit, which appears 88 times as VBD/VBN and only 23 times as a VB/VBP. This
distribution is the converse of read. Running the same sentences as in 4 through the
parsers with hit, instead of read, e.g., Have the girls who will be on vacation next
week hit the paper, we find that the number of mistakes is reduced, with the correct
tag VBN replacing the incorrect VB tag in three cases. Similarly, cost, which has the
same rough local frequency distribution as read, with 65 VB/VBP and 22 VBD/VBN

counts, behaves as expected like read; so does cut. If this view is on the right track,
then it is these local frequencies, which are sensitive to the small sampling effects
of the PTB, that are at play here. Further, this same issue seems to infect the other
two “lexicalized” parsers, though not to precisely the same extent: when we replace
read with hit, then the CJ-I and CJ-R parsers now get sentences 4(d,e) correct (as
does BC-M2), but these two parsers still fail on the last two sentences. Some kind of
lexicalization effect is operating, but it is not exactly the same as that with BC-M2,
perhaps because the CJ parsers augment the standard PTB part of speech categories
with the addition of AUX for have.
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Additional confirmation of the effect of lexicalization comes from examining
the behavior of the unlexicalized parser, Stanford-unlex. It does not make any
assumptions about lexical heads, and so we would not expect it to be subject to
the variation we see with the lexicalized parsers. In fact, as shown in Table 4, it is
much more successful, making only one mistake, labeling read as a VB in Have the
girls who will be on vacation next week read the paper yet. Note that the addition
of a lexicalized component that is grounded on dependencies, the factored Stanford
model that uses both word dependencies and the Stanford unlexicalized parser to
jointly infer structure, also makes a single error, but it is not the same one. Instead,
it makes an error on the last read sentence, taking it as a VB rather than a past-tense
VBD. While the reasons for these singleton errors remain obscure, it is clear that this
approach works better than straight lexicalization.

It remains to account for the behavior of the Berkeley parser. While it is not
lexicalized, it works by refining categories and rules by successive state-splitting. It
may be that its “window size” for learning context is too narrow. The trainer uses
a context window based on horizontal (h) and vertical (v) “markovization,” that is,
how many past horizontal ancestors are remembered, and how many vertical (parent,
grandparent) ancestors are remembered, as a context for future parsing decisions.
By default, these values are set to 0 and 1, respectively – that is, a context that
remembers only the immediate parent node above a current position. Note that in an
imperative form like 4(g), the “distance” between the verb have and read lies outside
this window. In [27], larger values for h and v are systematically explored, with some
evidence provided that h and v values larger than 0 or 1 may be needed for generally
effective performance. It remains to explicitly test this hypothesis precisely within
the context of the read example.

How can we improve the performance of the parsers on the read examples? If
the effect is due to sparsity and lexicalization, then as with the wh-question case,
more data might prove helpful. Here the models distributed with the Stanford parser
themselves indicate that additional data of the right kind indeed can be a benefit.
Along with models trained solely on the PTB, Stanford-unlex and Stanford-fact
come with models trained on a selection of biological abstracts from the GENIA cor-
pus [51], plus 96 “additional” hand-built parse trees; these are called englishPCFG

and englishFactored. Importantly, the 96 “additional” hand-labeled examples
include examples that are directly comparable with the read examples, including
11 relatively short subject questions, SQs typically with subject-auxiliary verb
inversion, such as Is what she said untrue; and 25 wh-questions, or SBARQs, such
as Where was the fox.8

Probing a bit further, if we run the read examples using the Stanford models
based on this augmented corpus then they do perfectly, so it would seem worthwhile

8The remaining examples are some simple S’s and a few newswire stories. The authors would like
to thank C. Manning for generously sharing these additional examples with us.
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Table 5 Parsing results for the read pronunciation task when rerun on non-Stanford models re-
trained on the augmented PTB + Stanford “additional examples.” Errors are marked with asterisks,
as before

Example (4a) (4b) (4c) (4d) (4e) (4f) (4g) (4h) Correct

Berkeley VB VBN VB *VB VBN VB VB *VB 6/8
BC-M2 VB VBN VB *VB VBN VB VB *VB 6/8
CJ-I VB VBN VB *VB *VB VBN VB *VB 5/8
Stanford-unlex VB VBN VB VBN VBN VBN VBP VBN 8/8
Stanford-lex VB VBN VB VBN VBN VBN VBP VBN 8/8

to examine what is causing the improvement, as was true in the wh-question case
study. To examine this, we tested whether the 96 extra examples alone would
suffice to correct some or most of the read errors. We therefore retrained all the
parsing models, aside from CJ-R, using just the PTB training data plus the 96
“additional” examples, omitting the GENIA examples. We then re-ran the read
example sentences, with the results shown in Table 5. There is an improvement
in every case. Both Stanford parsers still have perfect scores, suggesting that
the entire improvement is due to the 96 extra examples, rather than further
additions from GENIA. Further, both the Berkeley, BC-M2. and CJ-I parsers
improve, and now get 6/8 correct (they all fail on the third and the last read
examples). We conclude that the judicious addition of even a few critical examples
can greatly improve parsing performance, just as in the case of QuestionBank,
again pointing to the sparsity of the original PTB training dataset as well as the
ease with which some its failings may be remedied, at least in this particular
situation.

However, it is still true that none of the systems explored here explicitly records
the linguistic fact that the auxiliary at the front of the sentence is tied to the main
verb. They do so only indirectly. Even in English, the properties of tense are “spread
out” over the entire Auxiliary system. In an example such as The stock could have
been being sold, it is the sequence of auxiliary verbs that together carry the tense
information. It is only a morphological accident of English that these elements must
generally be string-adjacent. Whenever two are separated by an intervening phrase,
as in the read examples, the agreement between them still holds. It remains to be
seen how to properly represent such facts in the statistically-grounded systems we
have explored here.

Here we note that parameter estimation issues are a symptom rather than the
underlying cause of the deficiencies of the parsing model. Such a model is unable to
capture the interaction between wh-movement and the auxiliary/main verb system,
or posit a connection from the declarative form of the sentence to its interrogative
form without actually having observed the handpicked examples that closely match
the test data.
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5 Case Study: Parsing Passives by Linguistic Regularization

We noted in Sect. 1 that statistically-trained parsers make attachment errors in
passive sentences, in part because attachment decisions are difficult without suf-
ficient data. We also pointed out that in certain cases, this could be repaired by
reconstructing a sentence’s underlying “logical form” (a form of “D-Structure” in
the classical sense), thereby rendering arguments in canonical positions. In general,
we will call these kinds of reconstructions into a canonical predicate-argument form
linguistic regularizations.

We note that several researchers have previously attempted to improve statistical
parsing performance via representational changes to the grammar, in the form
of either tree-level transformations, or by incorporating other latent information
present in the Penn Treebank [7, 19, 25, 32]. Most of these approaches follow the
paradigm proposed in [25], whereby the parser is retrained on a transformed version
of the training set and then after evaluation the resulting parses are de-transformed
and evaluated against the known gold standard annotations.

The approach we will take here differs from this past research in at least two
critical respects. First, previous work such as that in [30] has focused on using
additional features in the PTB as a means to improve parsing accuracy, while
still others, as in [15] Chap. 7, model wh-displacements by means of feature
passing. Few approaches have explicitly modeled a separate level of underlying
predicate-argument structure. Second, more specifically, the level of syntactic
complexity involved in these transformations has been rather limited, and none of
the researchers up to the present point have attempted to reassemble the underlying
representation of passive constructions.

Following the methodology of [25], we propose to exploit the additional informa-
tion provided by linguistic regularizations in the following way. First, as suggested
above, we can use the annotated PTB training trees to “invert” various displacement
operations, returning arguments to their canonical “underlying” positions. In the
case of our example sentence, we would derive something like, Tablespoons may
soon replace measuring cups in the laundry room. We then use the transformed
sentences as revised training data for a statistical parser. If the regularization idea is
sound, then we would expect improved performance.

5.1 Passive Transformations: A Pilot Study

We will now show that employing “logical form” structural cues for linguistic
regularization can improve parsing performance within the existing Penn Treebank
formalism. We selected the passive because it has not, to our knowledge, been
tackled in previous work. The experimental setup is as follows. As mentioned, we
approach the problem within the framework proposed by Johnson [25]. We identify
a set of transformations we would like to model in the corpus, transform the input
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Table 6 Parsing results for models trained on the original (BASE) and transformed (TRANS)
Penn Treebank (PTB) data. untrans corresponds to the untransformed or original corpus, while
trans to the transformed version. full is the entire corpus; psv, the subset of passive sentences;
yactive, the subset of active sentences. SBASE and STRANS experiments are oracle experiments –
where the test set (“special”) sentences are selectively transformed or kept intact to maximize the
evalb recall. The POS column corresponds to the part of speech tagging accuracy. The size column
identifies the number of sentences in the test corpus

Experiment id Training set Test set Recall Precision POS Size

BASE-1 wsj-02-21 untrans wsj-23-full-untrans 88.17 88.36 96.87 2,416
BASE-2 wsj-02-21 untrans wsj-23-full-trans 87.89 88.08 96.73 2,416
BASE-3 wsj-02-21 untrans wsj-23-psv-untrans 87.75 87.96 97.40 364
BASE-4 wsj-02-21 untrans wsj-23-psv-trans 86.28 86.43 96.65 364
BASE-5 wsj-02-21 untrans wsj-23-active 88.27 88.45 96.75 2,052
TRANS-1 wsj-02-21 trans wsj-23-full-untrans 88.26 88.48 96.86 2,416
TRANS-2 wsj-02-21 trans wsj-23-full-trans 88.29 88.47 96.82 2,416
TRANS-3 wsj-02-21 trans wsj-23-psv-untrans 87.39 87.65 97.27 364
TRANS-4 wsj-02-21 trans wsj-23-psv-trans 87.51 87.62 97.02 364
TRANS-5 wsj-02-21 trans wsj-23-active 88.46 88.66 96.77 2,052
SBASE wsj-02-21 untrans wsj-23-psv-special 88.12 88.22 97.02 364
STRANS wsj-02-21 trans wsj-23-psv-special 89.30 89.38 97.25 364

data by performing a set of deterministic ‘tree’ surgeries on the input parse trees,
and then, after re-training, evaluate the resulting parser on a transformed test set.

The first step in this process is to perform tree regular expression (tregex)
queries on the corpus to identify the passive constructions in the training data
sections of the PTB. Second, we must map passive syntactic structures back into
their active form counterparts. This mapping is achieved through a sequence of
tree-transforms, applied recursively in a bottom-up, right to left fashion using the
Tregex and Tsurgeon toolkit [31]. Note that in some cases, there will be no
“by” phrase, that is, no explicit semantic Subject. In these cases, we insert a dummy
subject with the part of speech label TT, corresponding roughly to it.

In all, there are 6,015 passive sentences in the training corpus out of a total of
39,832 sentences, or 15 % of the training data. In the test set, section 23 of the
PTB corpus, 364 out of 2,416 sentences or 15.1 % of the test data can be identified
as passives, comparable to the figures observed in the training set. The passive
construction would therefore seem to provide a good test-bed for a pilot analysis. A
ten percent sample of the identified training set items and all of the test set items
were manually checked by a human expert who validated them as true passive
constructions.

The third step of the procedure is to re-train and test a statistical parser
on the transformed test and training data. We conducted our experiments using
BC-M2 [3], following standard procedures. Additionally, we conducted our experi-
ments on different combinations of transformed and untransformed training and test
data, as well as allowing for configurations whereby the test corpora were evaluated
on the active and the passive subsets separately. The pilot test results are displayed
in Table 6.
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Fig. 8 The Bikel/Collins parser correctly analyzes the “tablespoon” sentence after regularization

First, we note that the baseline parser (BASE-*) performed markedly better on
the active sentence set than on the passive construction subset of the WSJ corpus
section 23 (88.27 % vs. 87.75 % recall). This lower score is to be expected, since the
passive construction exhibits longer-range movement and constitutes only 15 % of
the training data.

On the full test set (2,416 trees), the retrained model (TRANS-2) beat the baseline
(BASE-1) by 0.12 % absolute recall (88.29 % vs. 88.17 %) and 0.11 % absolute
precision. On the active sentence subset that constitutes about 85 % of the test
corpus, the model outperforms the baseline by 0.19 percent in recall – a statistically
significant difference at the 0.05 level (p-value = 0.029) as computed by a stratified
shuffling test with 10,000 iterations. While this may seem like a small performance
gain, in the context of a trained parsing system that is known to be operating at close
to a theoretical ceiling, this is in fact a real performance increase.

More concretely, to give an idea of an error that is corrected by regularization,
in Fig. 8 we display the parser’s output of the transformed example sentence,
Tablespoons may soon replace: : : The parser outputs a tree that is 100 % correct.

To give a broader picture of where the performance improvement comes from, as
another example, Fig. 9 displays an example from section 23 of the PTB, sentence
#722, According to analysts , profits were also helped by successful cost-cutting
measures at Newsweek ., that is parsed incorrectly in its unregularized form, with a
misplaced PP high attachment for at Newsweek. This yields a labeled precision score
of 91.67 % and a labeled recall score of 84.6 %. As the bottom half of Fig. 9 shows,
after regularization this sentence is now parsed with perfect recall and precision,
with a correct PP attachment under the NP.

Many other mis-parsed passives from the test dataset are parsed correctly
after regularization. In all, out of 364 test sentence passives, 74 improved after
regularization. Many of these improvements appear to be due to correction of mis-
analyzed PP attachments, as anticipated.

However, the simple regularization carried out in the pilot study can sometimes
also lead to worse performance: 95 out of 364 test sentence passives were
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Fig. 9 The BC-M2 parser mis-analyzes of sentence #722 in section 23 of the PTB. The top third of
the figure shows the gold standard parse. The middle third of the figure displays the corresponding
(incorrect) BC-M2 parse. The bottom third shows the result of parsing the same sentence correctly
after the regularization procedure described in the main text

parsed worse than before. It is these cases that reduce the performance gain of
regularization in our pilot study. Figures 10 and 11 illustrate one example of this
effect. Sentence #2,274 in test section 23, the passive sentence, Tandem ’s new
high-end computer is called Cyclone, is parsed with perfect precision and recall
before regularization, though with an arguably incorrect gold-standard bracketing:
both an empty Subject NP followed by a predicate NP Cyclone are dominated by
an S. As Fig. 11 shows, after regularization, the re-trained parser mis-analyzes this
structure with both the restored Subject NP Tandem ’s and the predicate NP Cyclone
combined as a single NP (precision = 71.43 %, recall = 83.33 %). It seems likely that
examples such as these might be successfully analyzed if the gold-standard was
assigned a linguistically more accurate “small clause” type structure.
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Fig. 10 The Bikel/Collins parser analysis of sentence #2,274 of section 23 of the PTB. The gold
standard annotation is at the top, the parser output on the bottom

Other regularization failures occur where there is no following PP phrase in the
original sentence to be mis-parsed, and where the regularization leads to a complex
structure with the potential for misanalysis. For instance, the section 23 passive
sentence #269, The land to be purchased by the joint venture has n’t yet received
zoning and other approvals required for development , and part of Kaufman &
Broad ’s job will be to obtain such approvals . requires the NP the joint venture
to be restored as the Subject of receive. However, the re-trained parser incorrectly
analyzes the regularized sentence. In part this may be the result of not completely
reconstructing the underlying form; in this instance, where there is a relative clause
the land purchased by the joint venture, the object of receive, the land, is not
explicitly restored to its underlying position after the verb. Such complexity has
tendency to lead to mis-analysis, and a more complete reconstruction of such
relative clauses might repair such instances.

Note that even though on the passive subset (364 trees) the baseline outperforms
the transformed model by 0.24 % recall, the result is not statistically significant
(p-value = 0.295). Taken together, the results indicate that retraining significantly
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Fig. 11 The parse of regularized sentence #2,274 mis-analyzes the NP – NP structure under a
single NP, precision = 71.43 %, recall = 83.33 %

improves the performance of the parser on active sentence constructions, while not
incurring a statistically significant loss on passives. In fact, the retrained model
is much more robust with respect to untransformed passives, only exhibiting a
0.12 % loss in precision, whereas the baseline suffers almost a 1.5 % degradation
(TRANS-3 vs. TRANS-4).

We tested further potential for improvement by selectively unwinding certain
passives into their underlying logical form, while leaving others in their original
surface form. This is an oracle experiment, whereby we evaluate the parser only
on the surface forms that achieve better performance under the retrained parsing
model. That is, we assume the presence of an “ominiscient” selection procedure
that allows us to decide whether the instance to be parsed for testing first needs
to be transformed or whether it is more desirable to leave it in its original form.
In carrying out the experiment we evaluated both forms for each test sentence and
picked the one that achieved maximum evalb recall. Note that in practice, we would
not have access to such a procedure. However, it is instructive to carry out this
experiment, as it allows us to gauge the best possible (upper bound) performance for
using an “unwound” logical form. This result indicates that we can obtain an upper
bound of 89.30 % recall, as much as a full percentage point improvement over the
baseline by applying the transformations on a selective basis. Further analysis of the
results shows that this effect is achieved due to cases where displaced modifiers in
the passive construction impact negatively on the parser’s attachment decisions.

Based on the evidence from the oracle experiment, we hypothesize that a simple
binary classifier that could choose the training model from the features of the input
test sentence should be able to recover much of the hypothetical gain due to the
oracle.
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Although seemingly small, the improvements obtained in the regularization
experiments are statistically significant, and with more engineering effort in model-
ing nested passives and long-distance displacements we expect a greater gain.

We note that the important takeaway message from this pilot experiment is not
that this is exclusively a parameter estimation problem. On the contrary, we point
to the impracticality of adding a passive or active instance for every surface form
observed in the training corpus without the extra linguistic knowledge explicitly
encoded through structural transformations that map passive forms to their active
counterparts. By incorporating linguistic knowledge we were able to improve a
broken model indirectly by alleviating the parameter estimation problem.

By no means should this fix be viewed as a permanent solution. Our ability to
make an impact suggests that the underlying representation is deficient and that
much more radical changes need to be made to the model. One approach, by no
means the only one, is by explicitly representing movement as a primitive operation.
Alternatively, one could adopt a scheme like that of Combinatorial Categorial
Grammar.

6 Parsing “Unnatural” Languages?

We turn in our final section to the Musso et al. experiment [36], in an attempt to
probe to what extent statistically-based parsers can acquire “unnatural” language
constructions. Recall from Sect. 1 that the second experiment in [36] was designed
to see whether normal adults could easily learn a “mirror reversed” question
formation rule, as well as whether this learning (as tested by subsequent parsing
probes) activated the same brain regions, as visualized by fMRI. A typical example
of such an natural/mirror-reversed pair, as cited earlier, is this: il bambini amano
il gelato/gelato il amano bambini il. Their basic finding was that normal adults
had extreme difficulty with such examples, solving them, if at all, as if they were
non-linguistic puzzles, and drawing on different brain regions than those usually
seen associated with language (specifically, outside Broca’s area). Similar poor
learning of “unnatural” language patterns has also been found in autistic language
savants [49].

Our last experimental manipulation investigated whether we could replicate the
second study described in [36] within the context of statistically-trained parsing.
That is, we modified the PTB training data so that all question forms would
be presented in their reverse or “mirror image” order, rather than in normal
English word order. The parsers would then be trained on this manipulated data,
and subsequently tested whether they had acquired the “mirror reverse question”
construction by assessing them on a similarly question-reversed PTB section 23
data set.9 In our emulation experiment, in addition to the standard PTB training

9We put to one side the question of carrying out fMRI experiments on computers.
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Fig. 12 Conventional and mirror-image treebank questions from the PTB, for training sen-
tence#76, Was this why some of the audience departed before or during the second half?

sections, we also carried out a supplementary training/test regime again using the
QuestionBank constructed by Judge et al. [26]. We did this because there are only
24 questions total in the entire standard test section 23 of the PTB, so that mirror-
reverse questions are not properly exercised by the normal test dataset.

A typical example of such a “mirror image” training tree drawn from Question-
Bank is displayed in Fig. 12 below, the mirror image corresponding to the question,
Was this why some of the audience departed before or during the second half? Note
that the input words are in reverse order (and the parse tree is the mirror reflection
of the given parse tree in the treebank).

We should emphasize that there is a considerable challenge in carrying out
this exercise properly in order to reflect (as it were) adult linguistic behavior
and inference. It is, in general, not possible to exactly replicate the experimental
conditions in [36]. The key problem is that we cannot be certain as to the internal
system by which people processed the reversed sentences in [36]. As a first
approximation, however, it may be fair to say that they could bring to bear the usual
cognitive apparatus of “chunking” words into phrases (though the exact manner
and details as to how much structural information is readily available remains a
matter of some controversy; see [45], among much other recent work on this topic).
However, it is reasonable to surmise that they did not have access to pre-formed
parse structures, as is the case with the artificially constructed corpuses and the
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statistically-trained systems. In particular, in our emulation we gave the parsers
the mirror-images of question sentences (including those embedded in quotational
contexts), and one might reasonably object that this is far more information than
that provided to the human subjects. This is a fair point. However, here we shall
simply observe that [36] deliberately used Japanese (and German) native speakers
for their experiments, just for this reason, since these languages are head-final,
with left-branching structure similar to that displayed on the bottom half of Fig. 12,
though of course not so uniformly reversed and not reversed solely with respect
to questions. This was intended to compensate for any basic unfamiliarity with
branching structures of the kind displayed in the figure, the implication being
that these speakers would have had experience grouping lexical items in such a
fashion. Further, this is evidence that intonational breaks to highlight structure and
related cues are essential in some way for language inference in any case; see
[35]. However, there is no denying that the exact experimental condition we used,
providing both the reversed string and its corresponding mirror-image parse tree,
has, to the best of our knowledge, never been replicated in any human subject
experiment. This is true of many important questions regarding human language
acquisition. For example, until it was first probed in [17], whether or not children
actually formed Subject-Auxiliary verb questions using structural rules had not been
experimentally addressed. Similarly, the question posed here is an empirical one that
can only be resolved by future research.

6.1 The Experimental Emulation

To emulate the experiment in [36], we prepared two sets of training and test data, all
with reversed questions, via manipulation of the PTB, along with the additional
QuestionBank corpus. To start then, we had two training and two test datasets:
(1) the standard training sections 02–21 of the PTB; (2) test section 23 of the PTB;
(3) the normal training sections of the PTB concatenated with an 80 % sample of
QuestionBank, 3,200 questions; (4) a held-out 20 % test sample of QuestionBank,
800 questions. (See Sect. 4 for a detailed description of QuestionBank.)

To obtain the appropriate mirror-image “reversed” question datasets we replaced
all questions (both root level questions and questions in sentence contexts, usually
quotational) in the original corpuses with their mirror-image counterparts. Figure 12
displays an example of a PTB training sentence #76 in its normal and mirror-
reversed formats. The original sentence is, Was this why some of the audience
departed before or during the second half?, while the reversed structure corresponds
to, Half second the during or before departed audience the of some why this was? An
example of a wh-question in a quotational context is sentence #610 of the training
set, “So what if you miss 50 tanks somewhere?” asks Rep. Norman Dicks, D., Wash.,
a member of the House group that visited the tanks in Vienna. We carefully analyzed
the original data to ensure that these were properly reversed. In this case, only the
material within double quotes would be reversed.
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For convenience, we will refer to all these training and test data sets along with
their mirror-image question reversed counterparts as follows. There are four training
sets in all, the two non-question reversed training sets and the two question reversed
training sets. Similarly, there are four corresponding test sets. So altogether there
are a total of 16 possible training-test dataset combinations. We will denote each
of these training/test combinations with a unique label consisting of the training
dataset name, a slash, and then the test dataset name. For example, WSJ/WSJT
denotes the conventional WSJ training/WSJ section 23 test combination, while
WSJR-QBR/QBRT denotes the WSJ training section with mirror-image questions
augmented by the mirror-image questions as the training set, and the held-out
mirror-image QuestionBank sentences as the test set. Note that the QuestionBank
and the WSJ corpora are disjoint. The four training and four test sets are as
follows.

1. WSJ: The conventional training sections 02–21 of the PTB;
2. WSJR: The question mirror-reversed training sections 02–21 of the PTB
3. WSJ-QB: The question-augmented corpus, sections 02–21 + the 80 % sample

from QuestionBank;
4. WSJR-QBR: The question-reversed WSJ training section + mirror-reversed

QuestionBank 80 % sample;
5. WSJT: The conventional test section 23 of the PTB;
6. WSJT-R: The question-reversed conventional test section 23 of the PTB;
7. QBT: The 20 % held-out test sample from QuestionBank;
8. QBRT: The question-reversed sentence test sample of QuestionBank.

6.2 Training, Testing and Results

We selected the BC-M2 and Stanford-unlex parsers as representative “lexicalized”
and “unlexicalized” parsers for the experiment. Along with 16 training-test combi-
nations, this yields 32 possible experimental runs. Note that four of these runs, the
WSJ/QBT and WSJ-QB/QBT analyses for each parser, have already been carried
out as part of the wh-QuestionBank testing in Sect. 3, but we include them below
for completeness.

The results are summarized as F-scores in Tables 7 and 8. (We have split
the results across two tables in order to highlight the most important contrasts in the
first table.) The first table’s results are also displayed in a more readable form as the
histogram in Fig. 13, which presents F-scores on the Y-axis, and the most important
training-testing contrasts on the X-axis; the BC-M2 results are in dark grey, and
Stanford-unlex in light gray. Note that because there are so few questions in test
section 23 of the PTB, just 20 out of 2,416 sentences, excluding a few non-question
fragments that are marked as questions, that performance on the WSJ-T corpus does
not serve as a reliable indicator of whether question sentences have been learned
or not, though it may be of some value to see whether learning mirror-questions
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Table 7 F-score results for the first eight training/testing results for
the “mirror reversed” experimental manipulation. Lines (4)–(7) show
that both lexicalized and unlexicalized parsers learn “mirror reversed”
questions quite well

Train-test combination
BC-M2 Stanford-unlex

(1) WSJ/WSJT 85.63 85.54
(2) WSJ/WSJT-R 85.78 85.71
(3) WSJ/QBT 75.76 67.75
(4) WSJ/QBRT 13.15 19.12
(5) WSJR/QBRT 58.04 61.20
(6) WSJR-QBR/QBRT 65.94 71.47
(7) WSJR-QBR/QBT 55.67 60.58
(8) WSJ-QB/QBT 86.18 81.32

Table 8 The remaining 16 results for the WSJ “unnatural” learning
experiments. Note that training by reversing just the questions in the
WSJ, using WSJR, also boosts reversed-question parsing performance,
but not as much as using the full training QBR training set. In general,
testing on WSJR does not indicate any great difference, because there
are so few questions in WSJT to test

Train-test combination
BC-M2 Stanford-unlex

(1) WSJ-QB/WSJT 85.79 81.32
(2) WSJ-QB/WSJT-R 88.01 85.46a

(3) WSJ-QB/QBRT 18.2 20.88
(4) WSJR/WSJT 85.63 85.54
(5) WSJR/WSJT-R 85.87 83.75
(6) WSJR/QBT 44.65 48.75
(7) WSJR-QBR/WSJT 85.59 85.19
(8) WSJR-QBR/WSJT-R 86.45 84.45
aWe note that here both parsers do somewhat better on the mirror-
image WSJT data than on the standard WSJT data when trained on
QB, where one might expect the opposite result, but this difference
may due to the sparse nature of the standard test section

interferes in some way with the parsing of normal based sentences. Therefore, we
will in general put to one side comparisons based on just this test data set, e.g.,
contrasts like WSJ/WSJT vs. WSJ-QB/WSJT. We also leave for future research the
measurement of statistical significance of the scores by means such as stratified
shuffling, as in [3], or the assessment of oracle-type scores.

The key finding to take away from these results is that there is strong evidence
that both parsers were able to learn the mirror-reversal question constructions quite
well, though the lexicalized BC-M2 parser was less successful. To see this result
most clearly one need only focus on the histogram bar marked with an arrow
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Fig. 13 F-score comparisons for BC-M2 and Stanford-unlex parsers show that the parsers do
not perform well on mirror-image questions (the fourth, middle histogram pair from the left), but
performance increased dramatically given QB mirror image question training, by 50 % points or
more, as shown by the next two histogram pairs to the right. The right-most histogram repeats
the finding from Sect. 3 showing that normal question parsing is also improved by the addition of
normal QuestionBank training data

in Fig. 12, and note its performance gain compared to the preceding two bars,
which summarize the before/after training effect. For example, when trained on
only normal data, the Stanford unlexicalized parser scored only 19.12 % on the
QuestionBank mirror-reversed test set, combination WSJ/QBRT, line 5 in Table 7
and the fourth histogram from the left in the figure. This number, then, may be
taken as the “baseline” for a parser that has not learned anything about mirror-image
questions. We may contrast this performance with training on just the WSJ reversed
questions (which constitute only a small fraction, just few hundred examples out of
nearly 40,000 sentences), line WSJR/QBR in the table. The initial 19.12 % figure
goes up 50 % points, to 61.20 %, and additional QB mirror training examples boost
this even further, another 10 % points, to 71.47 %, line 7, WSJR-QBR/QBR. Note
that this is even better than the parser’s performance on wh-questions after training
on ordinary wh-questions. These are huge differences.

The performance gains for BC-M2 are nearly as good, though the actual numbers
are less because the built-in English head-finding rules, which bias the formation of
right-branching structures, cut against the grain of the mirror-reversed questions.
Nevertheless, BC-M2 still performs remarkably well, as attested by examples like
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Fig. 14 BC-M2 correct parse of a “mirror” sentence from QuestionBank

the one shown in Fig. 14, the reversal of the QuestionBank sentence What Herman
Hesse book gave its name to a rock group. Errors arise because the head rules
attempt to locate heads at the left edge of phrases, except in Noun Phrases, but
this of course is exactly opposite to what is required for mirror-reversed questions.
A more careful experiment would re-do the BC-M2 head rules to locate heads at
the right periphery, but one could then argue that we are in some sense aiding
the parser in its discovery of the proper form for mirror-reversed questions. In a
sense, it is startling that the BC-M2 parser works so well in spite of this handicap.
Without any exposure to mirror-reversed questions, BC-M2 starts from a baseline
of 13.15 %. This score rises to 58.04 %, line 6 in Table 7, a jump comparable to
that of Stanford-unlex of more that 50 % in performance, after training on WSJ-
TR examples. As with Stanford-unlex, training on reversed QuestionBank increases
performance even further, to 65.94 % (line 7 in the table).

Row (7) and the next-to-last histogram bars in Fig. 13 the also indicate that the
system has learned that questions are mirror-reversed: parsing performance drops by
over 10 % when the systems are trained on WSJR-QBR, and then tested on normal
questions, QBT. In short, there is every indication that mirror-image questions are
learned with some facility.

It seems apparent that the BC-M2 parser could be further improved if
the English-biased head-finding rules were re-written (though at the cost of
“building-in” this linguistic knowledge). Figure 15 displays an example of a
reversed sentence from QuestionBank, What melts in your mouth not in your hands,
where the reversal, Hands your in not mouth your in melts what is given a (slightly)
incorrect parse where a PP is mis-labeled as an NP. We will leave this more detailed
analysis for future work.
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Fig. 15 BC-M2 parse of a “mirror” reversed question from QuestionBank with an erroneous
labeling of a PP as an NP

7 Discussion and Conclusions

Let us now revisit the basic question outlined earlier and take stock of the results:
Have state-of-the-art statistical parsers attained “knowledge of language”?

Current state-of-the-art systems, such as the several parser reviewed in this paper,
score close to the 90 %-level (on withheld PTB data) when evaluated on phrase
structure bracketing fidelity [16]. Of course, bracketing is not the only possible
evaluation metric, as is now widely understood. In many cases, dependency relations
may be of more importance; see [13] among many others for a discussion of this
matter.

To the extent that such bracketing reflects linguistic knowledge, then such parsers
do, of course successfully acquire that knowledge. Moreover, as noted by Petrov
et al. [42] among others, modern statistical parsers can acquire tacit information
about the details of verb subcategories, along with derivational structure. However,
merely being able to bracket sentences “accurately” evidently does not constitute
full “knowledge of language.” Rather, knowledge of language is multi-dimensional
and cannot be conveniently summarized in terms of a single number, an F-measure.
Similarly, grammaticality cannot be described in terms of a simple probability score.
We could not predict the outcome of the read experiment in advance simply by
looking at aggregate F-measures, nor any other proposed measures we are aware
of. Such conclusions may seem obvious from the outset, but the goal in applying
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the kinds of stress tests described in this chapter is to discover exactly where these
systems fail.

The read sentences are also good exemplars of such a diagnostic aid. In this
case, they point to a general issue with “long distance” agreement in tense (and
other features) that is not to the best of our knowledge explicitly encoded in any
of the statistical models, but only indirectly, perhaps through the use of extended
horizontal and vertical domains of Markovization (as in the Stanford parsers), or
through the use of latent variables. Even so, as we saw in the examples of the
Berkeley and CJ systems with read, the use of tacit, indirectly formed categories
may not precisely capture the right information. Rather, the results here suggest
that it may be useful to explicitly import such machinery, as is done, for example,
in the statistically-grounded versions of Lexical-Functional Grammar (see, for
example, [43]; unfortunately, this system is not public and was not available to us
for testing).

A second unsurprising result is that many of the limitations of current systems
are due to the obvious sparsity of the PTB corpus. This effect is quite clearly
displayed in the relatively poor performance on wh-questions, as well as how much
that performance may be boosted by simply adding new wh-questions, sometimes
only a handful, as the Stanford parser example illustrates.

In this chapter we have been able to select only one or two examples out of a long
list of grammatical generalizations that linguists have accumulated over the past
60 years. It remains to analyze the remainder. The challenge for future research is
whether these or similar diagnostics can be exploited to advance the state-of-the-art
in statistical parsing. Given such a list, and given current statistical parsing methods
based on discriminative methods, it may even be possible to construct a list of both
positive and negative exemplars, as with minimally different wh-question examples,
and then apply the method of “contrastive estimation” developed by Smith and
Eisner [50] which compares positive training examples against negative examples in
the local neighborhood of the training data. Some means of “discouraging” the leap
to implausible or impossible word order patterns could be a welcome side-effect
of this minimal use of negative examples, eliminating the ability to infer unnatural
mirror-image structure.

The pilot experiment in Sect. 5.1 demonstrates that statistically significant
improvements in parsing can be achieved by regularizing passive argument struc-
ture. However, in some cases passive regularization also led to worse performance.
A more careful, case-by-case analysis of these examples would seem warranted. It
appears from a superficial examination of the examples where parsing performance
degrades that in each instance the regularization method has partly failed, sometimes
introducing additional complex structure. If so, then further improvement may be
possible if one can more accurately reconstruct the underlying form, either for small
clauses or for relative clauses.

It seems clear that one could apply the notion of regularization more broadly to
other types of displacements, such as topicalization and dislocation structures. We
predict that these will provide additional parsing improvements, possibly approach-
ing the levels achievable only through parse re-ranking. More generally, we note
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that the use of paired surface and underlying structures may provide great power not
only in improving parsing, but also for providing a means to learn new rules to span
the space of grammatical forms that have never been seen in training data, a major
roadblock in state-of-the-art statistical systems. This is because our regularization
approach bears important parallels to one of the few complete, mathematically
established learnability results for a complete grammatical theory, that by Wexler
and Culicover [53]. The Wexler and Culicover approach is based on a similar
idea: the learner is assumed to be able to reconstruct the underlying “D-structure”
corresponding to surface sentences, and from this pairing, hypothesize a possible
mapping between the two. It remains for future research to determine whether this
can be done for other displaced phrases in the PTB more generally.

Finally, we also note that in more recent grammatical theories, argument structure
is regularized to an even greater degree by means of a VP-vP “shell structure”
of branching nodes, that place Subject and then the Direct Object and Indirect
Object NPs in specific, fixed positions with respect to the verb, perhaps in all
languages [21]. If this is true, we could readily expand our regularization approach
to this notion, which might provide a statistically-based, machine learning system
with additional standardized patterns that are more easily learnable from training
data alone. A full-blown incorporation of this kind of grammatical structure again
remains for future work, but gives some hint at the untapped power of linguistic
theory ready to be applied to treebank parsing.
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Rethinking the Syntactic Burst
in Young Children

Christophe Parisse

Abstract Recent proposals about children’s first language acquisition have stressed
usage-based acquisition and suggest that children have no language specific innate
knowledge but instead use general cognitive abilities, such as perception, memory,
and analogical processing, to acquire their mother tongue. These proposals do
not, however, account for one argument raised by proponents of innate grammar
approaches, which is the speed and correctness of children’s language acquisition,
which could be described as a syntactic burst usually occurring around age two to
three. In this chapter, a testing procedure is proposed to demonstrate that the acqui-
sition of usage-based and fixed-form patterns can account for this syntactic burst.
The analysis is conducted with the large Manchester corpus from the CHILDES
database. It is demonstrated that fixed-form patterns extracted from child input
and used in their raw and unprocessed form can, if combined freely, account for
the children’s subsequent language production. Results show that young children’s
grammatical abilities (before age three) could result from simple mechanisms and
that complex linguistic mastery does not need to be available early in the course of
language development.

1 Introduction

Young children acquire their mother tongue very easily and without apparent effort
[19]. Between age two and three, most children go through what could be called a
syntactic burst. In other words, they progress from uttering one word at a time to
constructing utterances with a mean length of more than three words, with frequent
longer utterances, and they do this without any negative evidence and with limited
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input data [20]. For about 40 years, ever since Chomsky’s proposals [3] concerning
language acquisition and the nature of human linguistic knowledge, leading theories
(generative grammar) about language acquisition postulated the existence of innate
constraints on the grammar of human languages and the human mind [18,26]. In the
last 10 years, a different approach to language acquisition has been advocated, which
postulates completely different theoretical principles and a different interpretation
of developmental language data. This approach, which can be called ‘usage-based
language acquisition’, is rooted in ‘cognitive grammar theory’, and especially
construction grammar theory [6]. Construction grammar postulates that linguistic
knowledge is based on constructions, form-function pairings, which may be highly
idiosyncratic and correspond to words or multi-word fixed-forms, or may be general
and correspond to what is referred to as rules in generative grammar. Cognitive
grammar has a different stance from generative grammar towards the nature of
linguistic knowledge, in that item specific knowledge is considered as the most
frequent situation and generalized or semi-generalized patterns as the less frequent
situation (cf. discussion in [6], Chap. 3). Recent work on language acquisition
[23, 24] showed that children did not in fact demonstrate early knowledge of
general categories such as noun or verb, but that on the contrary grammatical
knowledge is built up in a piecemeal fashion. Children first learn to generalize
fixed constructions around specific items. More general knowledge is developed
only slowly and, for example, general knowledge of the verb category appears only
around age four [23], whereas knowledge of the noun category appears at about
age two.

2 Assumptions About Children’s Behavior

The goal of the current paper is to demonstrate that it is possible to account for the
syntactic burst on the basis of the sole use of fixed-form patterns extracted from
input by children. The demonstration is based on two assumptions about young
children’s perceptive and mnemonic capacities: anything they have once produced,
they can produce again; and, when their language exactly reproduces an adult’s, this
can be explained as a simple copy of their input. Nothing is assumed about the length
of the elements copied by the children (see [15]). These elements can correspond
to one or more adult target words, or even to word parts. For example, one element
could be ‘juice’ or ‘of juice’, another could be ‘drink’ or the more complex ‘little
drink’. These two assumptions do not imply the existence of specific grammatical
knowledge but rather of general cognitive abilities (especially auditory pattern
extraction and long term memory [4, 7, 8]). A third assumption is that children
can produce and combine these fixed-forms at will using simple concatenation
(i.e. the production of several patterns in succession in a single prosodic phrase—
see Konopczynski [10]). For example, one combination could be ‘drink juice’ and
another ‘drink of juice’. This allows children to produce new, longer or more
complex utterances than what they hear from their input. The concatenation of
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patterns by young children in a single prosodic forms is attested [7, 10], but it is
yet unknown when and how this concatenation is organized. It could be random,
organized by non grammatical principles, or organized by grammatical princi-
ples (see Analysis 3 below). We therefore make no assumptions concerning this
process.

3 A Testing Procedure in Three Steps

The hypotheses presented above were tested using a corpus of adult and child
spontaneous language interaction. The testing procedure was divided into three
steps. The goal of the first two steps was to identify the fixed-forms that children use
and to check whether these patterns could indeed be extracted from the children’s
input. These two successive steps create, in an iterative process, a list of fixed-
forms that were used for the final step of the testing algorithm. The goal of this
final step was to check whether utterances produced by the children which were
not made of a single fixed-form could indeed be produced by the concatenation of
several fixed-forms identified in the first two steps. Identifying the fixed-forms used
by the children presents a technical challenge: when an utterance produced by a
child contains more than one adult target word, how is it possible to know whether
this pattern is extracted as a fixed-form from the input or whether this pattern is
constructed by the child? To solve this issue, we chose to start with patterns that
could not be constructed by the child, but only copied from the input, and we built
our analysis on the basis of these patterns. These patterns, that were considered as
always extracted from the input and not further processed by the children, were the
children’s utterances that corresponded to a single adult word. The identification of
these utterances was the goal of the first step of the testing procedure. For example, if
the child says ‘jump’, this word is added to the child’s basic patterns. If ‘jumps’ also
occurs, this word is also added to the basic patterns, as we make no assumption about
the child’s ability to decompose words into morphemes (to add an ‘s’ to ‘jump’).
All these isolated words were entered in the ‘list of fixed-forms’. The goal of the
second step was to analyze children’s productions containing more than one adult
target word. When this was the case, the utterance was analyzed to check whether
it contained one or more of the previous fixed-forms. If it contained only one or no
previous fixed-form, then this utterance was added to the fixed-forms. For example,
‘a jump’ is added because ‘a’ was not a previous fixed-form and ‘jump’ was. This
means that the list of fixed-forms can include elements made of more than one word,
but these elements are considered as ‘one fixed-form’, they are never decomposed.
If the child’s production contained two or more fixed-forms, they were considered as
made of more than one piece, and were used for testing the children’s productivity.
For example, ‘I jump a kangaroo’ contains ‘jump’ and ‘kangaroo’ that are produced
as fixed-forms by the child, so it is an utterance that is not considered known as
a fixed-form but constructed out of previous material. This procedure is iterative.
For each utterance under scrutiny, if it is a single word then step 1 applies, and if it
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contains one or zero fixed-forms, then step 2 applies. This continuously increments
the list of fixed-forms. If it contains more than one fixed-form, the testing list is
incremented. For the next utterance, the new version of the list of fixed-forms is
used, which simulates the growing knowledge of the children. The goal of the final
and third step of the testing procedure is to measure whether the utterances produced
by the children and that are not fixed-forms can be recomposed using only fixed-
forms.

• Step 1: All single-word utterances produced by children are meaningful to them;
they are directly derived from adults’ output. They are the basic elements that
children use to build language.

• Step 2: Children’s multi-word utterances containing only one word already
produced in isolation (words produced in step 1), along with other words never
produced in isolation (never produced at step 1), are also basic elements that
children use to speak. They are also directly derived from children’s input; this
is facilitated by the children’s knowledge of isolated words. These multi-word
utterances are manipulated and understood by children as single blocks, just as
isolated words are. They may also be called frozen forms.

• Step 3: Children link utterances produced at steps 1 and 2 to produce multi-
word utterances with more than one word already produced in isolation (words
produced in step 1). They do this using a simple concatenation mechanism and
the fact that the utterances they create have a pertinent meaning prevents them
from producing aberrant utterances. The goal of the third step is to check whether
the basic elements identified in step 1 and 2 are sufficient to account for the
children’s multiword utterances.

Since the productions of children and their adult partners are easy to record, it
is possible to test whether the testing procedure has sufficient generative power
to account for all children’s productions. However, such a demonstration may be
more difficult than it appears, for several reasons. First of all, the assumption made
in step 1 is not always true, as it is quite possible for a child to reproduce any
sequence of sounds while playing with language. This uncertainty about step 1 is
only important in conjunction with step 2, as isolated words are the key used to
parse the elements of step 2. To decide that a word has meaning in isolation for a
child, it has been assumed that it must first have meaning in isolation for an adult.
Words in the categories of determiner and auxiliary produced in isolation have been
considered as not having meaning in isolation and have therefore been removed
from the elements collected in step 1. Analysis of language data demonstrated that
this assumption is quite reasonable, as the use of these words in isolation is often the
result of unfinished utterances, with incomplete prosody. Measuring the generative
power of the testing procedure implies evaluating the accuracy of the assumptions
made in steps 1, 2 and 3. It is easy to imagine that these assumptions hold for the
first multiword utterances of young children, before age two. The question is: to
what extent is this true and until what age? Four analyses have been carried out in
order to answer this question.
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4 Analysis 1

The first analysis uses the testing procedure exactly as it is described in its principle
above. The analysis is based on the Manchester corpus [22] from the CHILDES
database [13]. The corpus contains recordings of 12 children from the age of 1;10–
2;9. The mean length of utterance in words varies from 1.5 to 2.9. Each child was
seen 34 times and each recording lasted 1 h. This results in a total production of
537,811 words in token and 7,840 in type. For each child, the average is 44,817
words in token (SD D 9.653) and 1,913 in type (SD D 372). The testing procedure
was run iteratively in three steps. Each step from the procedure corresponds to one
of the parts described above.

• Step 1: For each transcript, the child’s single-word utterances are extracted and
added to a cumulative list of words uttered in isolation, referred to as L1. It is
possible to measure at this point whether the words on L1 can be derived from the
adult’s output. In order to do this, a cumulative list, L-adult, of all adult utterances
is also maintained.

• Step 2: For each multi-word utterance in the transcript, the number of words
previously uttered in isolation is computed using list L1. Multi-word utterances
with only one word uttered in isolation are added to a list called L2. It is possible
to measure at this point whether the utterances on L2 can be derived from the
adult’s output (list L-adult above).

• Step 3: the remaining utterances (list L3), which contain more than one word
previously uttered in isolation, are used to test the final step of the algorithm.
The test consists in trying to reconstruct these utterances using a catenation of
the utterances from lists L1 and L2 only. Two measurements can be obtained:
the percentage of utterances on list L3 that can be fully reconstructed (referred
to below as the ‘percentage of exact reconstruction’) and the percentage of
words in the utterances on list L3 that contribute to a reconstruction (referred
to below as the ‘percentage of reconstruction coverage). For example, for the
utterance ‘The boy has gone to school’, if L1 and L2 contain ‘the boy’ and ‘has
gone’ but not ‘to school’, only ‘the boy has gone’ can be reconstructed, thus
leading to a percentage of reconstruction coverage of 66 %. The percentage of
exact reconstruction is the percentage of utterances with a 100 % reconstruction
coverage. The percentages of list L3 that are reconstructed or recovered do not
include utterances from L1 and L2 lists.

The testing procedure is iterative because it is performed in turn for each of the
transcripts of the corpus. Lists L1, L2 and L-adult are cumulative, which means that
the lists obtained with transcript 1 are used as a starting point for the analysis of
transcript 2, and so on. This presupposes that children can reuse data they heard
only once a long time after they heard it. In Step 1 the percentage of words in
L1 present in adult speech has a mean value of 91 % (SD D 0.03). In Step 2, the
percentage of elements of L2 present in adult speech has a mean value of 67 %
(SD D 0.05). These two results are stable across ages—even though lists L1, L2 and
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Fig. 1 Percentage of utterances exactly reconstructed

L-adult grow continuously. After two transcripts, for all 12 children, lists L1 C L2
represent 11,979 words in token and L-adult contains 82,255 words in token. After
17 transcripts, these totals are 89,479 and 688,802, respectively. After 34 transcripts,
they total 167,149 and 1,370,565. The ratio comparing the size of L1 C L2 and
L-adult does not evolve much, varying between 6 and 8.

The results for Step 3 are presented in Figs. 1 and 2. Each point in the series
corresponds to the nth iteration performed with the nth transcript. The mean value is
the mean of the percentage for all children considered as individuals (reconstruction
between a child’s corpus and his/her parents’ corpus only). The algorithm was
also applied to all corpora: for each time point in the series of recordings, the 12
files corresponding to 12 children were combined into a single file used to run
the nth iteration of the algorithm. Percentages for all corpora are shown with a
bold line in Figs. 1 and 2. The percentages are clearly higher for the aggregated
corpora. The percentage of words in L1 present in adult speech goes from 91 %
up to 97 % (SD D 0.01). For L2, the percentage goes from 67 % up to 80 %
(SD D 0.07). The percentage of exact reconstruction goes from 62 % (SD D 10 %)
up to 84 % (SD D 3 %) and the percentage of reconstruction coverage goes from
87 % (SD D 3 %) up to 95 % (SD D 1 %). The number of unknown utterances (list
L3) increases more than the number of known utterances (lists L1 and L2). After
two transcripts, there are half as many elements in list L3 as in L1 C L2. But
after 17 transcripts, L3 is 42 % larger than L1 C L2, and after 34 transcripts, it
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Fig. 2 Percentage of reconstruction coverage in all utterances

is 127 % larger. As children grow older, there is a decrease in the scores for exact
reconstruction and reconstruction coverage. This decrease is greater in individuals
than for the children as a group, which suggests a size effect.

5 Analysis 2

The goal of the second analysis is to compare the results of the first analysis
with a baseline and to test whether knowledge of general syntactic categories
such as noun and verb would help the children. The baseline corresponds to
the case when children are just reproducing what they heard verbatim, without
combining elements. This means that any utterance produced by a child is stored
in the child’s memory (even if it is made of more than one element produced in
isolation) and reused when necessary. The elements used in this analysis include
lists L1, L2 and L3 from analysis 1. The current analysis uses the same corpus
as the first one. The results for Step 1 and Step 2 do not change because these
steps did not involve combination of stored information. The results for Step 3
are presented in Fig. 3 (for exact reconstruction) and Fig. 4 (for reconstruction
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Fig. 3 Percentage of utterances exactly reconstructed, depending on the degree of knowledge of
noun and verb categories

coverage). The results correspond to the ‘no combination’ lines in the figures. There
was a clear improvement between the baseline and the previous results (see ‘no
category’ in Figs. 3 and 4). The percentage of exact reconstruction went from 34.0 %
(SD D 4.9 %) to 84.5 % (SD D 2.5 %) and the percentage of reconstruction coverage
went from 67.8 % (SD D 2.8 %) to 95.6 % (SD D 0.8 %).

As the results of the first analysis do not reach 100 %, it is important to find
out what type of information could increase the quality of the results. One way is
to increase the size of the corpus. This was done in the first analysis by applying
the testing procedure on all 12 corpora considered as a single whole. This provided
a substantial improvement but did not reach 100 %. Another improvement could
be obtained if we consider that children can take advantage of the knowledge of
major syntactic categories such as noun and verb. In many classical approaches
of language acquisition, knowledge of word categories is considered as occurring
very early during language development (see [18, 19]). If children have knowledge
of the syntactic categories Noun and Verb, they would be able to generalize the
syntactic knowledge they have already acquired. The conditions of Step 2 and
Step 3 would be more easily fulfilled if the children had a certain amount of
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Fig. 4 Percentage of reconstruction coverage in all utterances, depending on the degree of
knowledge of noun and verb categories

syntactic class knowledge. As described by Maratsos and Chalkley [14], it is
possible for children to learn syntactic classes from the contexts in which words
occur. However, knowledge of part of speech is unlikely in very young children on
the basis of syntactic distribution. Semantic knowledge can also help to construct
syntactic knowledge [1] for classes such as common nouns, proper nouns and
verbs, and perhaps also adjectives and adverbs. To simulate the fact that children
could construct the classes of common nouns, proper nouns and lexical verbs,
every occurrence of common or proper nouns in the Manchester corpus should
be substituted by the symbol ‘noun’ and every occurrence of non-auxiliary verbs
by the symbol ‘verb’. This is easy to implement because the Manchester corpus is
fully tagged for part of speech, as described in the MOR section of the CHILDES
manual [13]. The result is that list L1 now includes all nouns, all verbs plus all words
occurring in isolation, as in the first analysis. In list L2, in utterances that include
a word from the categories Noun or Verb, this word is substituted by the symbol
‘noun’ or ‘verb’. These utterances now form rule-like productive patterns known
as formulaic frames [16] or slot-and-frame structures [11]—for example, ‘my C
NOUN’. Another interpretation of this analysis is to consider the extension of all
patterns containing a noun or a verb as a means to extend the training corpus. It
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is equivalent to considering that children heard the formulaic frames for all nouns
and verbs that occur in their input. Such a corpus would then correspond to a larger
corpus, but with variety occurring only on nouns and verbs, not on the grammatical
frames (no new frames are created with this analysis). When we reproduce the
first analysis under these conditions, the new results obtained at Step 2 and Step
3 should be better, in that they should correspond more closely to the adult input,
and remain constant over age. The results for Step 1 and Step 2 are indeed better
than before. The percentage of utterances on L2 present in adult speech has a mean
value of 91 % (SD D 0.02). The results for Step 3 are presented in Fig. 3 (for exact
reconstruction) and Fig. 4 (for reconstruction coverage). In each of these figures,
three results are presented for the whole Manchester corpus: one assuming no
category knowledge, one corresponding to the previous results (analysis 1), and one
assuming knowledge of the three categories proper noun, common noun and verb.
The percentages of reconstruction become markedly higher, as any combination
that contains some of the three categories proper noun, common noun and verb
is known for all occurrences of the word from these categories. The mean for
exact reconstruction with ‘no category’ knowledge is 84.5 % (SD D 2.5) and 95.6 %
(SD D 0.8) for reconstruction coverage. These values increase to 89.6 % (SD D 2.2)
and 97.1 % (SD D 0.5) for ‘noun and verb’ knowledge.

6 Analysis 3

The results obtained in the first two analyses show that the postulated mechanisms,
while they do not include any innate specific linguistic mechanism, can generate the
type of output produced by young children. Of course this does not demonstrate
that the children did indeed use such a strategy. One way to address this issue
would be to find out whether some characteristics of the children’s actual production
match those of the output of the procedure tested above. This issue is addressed
below in two different ways. The first way is to look at the forms that children
produced and that do not correspond to adult input. These forms (usually called
‘errors’ as they do not correspond to ‘normal’ adult grammar) may have specific
features that are very valuable for understanding children’s language development.
For example, the production of ‘goed’ instead of ‘went’ shows that children are able
to add a suffix (‘ed’) on verbal forms in certain cases. This shows the existence of
the children’s ability to generate past tense forms. The goal of the current analysis
is to check children’s errors against the usual adult norm and to find out whether
these errors could come from the use of the concatenation of fixed-forms described
in this paper. The second way is to find out whether children order the fixed-forms
that they produce or not. If they do not, this would match the idea proposed and
tested above that children have no model of fixed-form order at their early stage of
language development. If they do, this would suggest that children may follow the
concatenation procedure but that knowledge about fixed-form order is available to
the children. More specifically, the following issues are addressed below: (1) The
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characteristics of children’s errors should be compatible with the properties of the
testing procedure. (2) When children make word order errors, these should entail
inversions of words uttered alone or blocks of words grouped around a word uttered
in isolation, but not inversions of words that are never uttered in isolation. As
children get older, they gradually learn to copy the adult word order, so that word
order errors should occur less often than with young children.

6.1 Results and Discussion: Question 1

Given that errors with respect to the adult norm for oral English language are
indicated in the Manchester corpus, it is possible to make a typology of and the
errors to see if they match the properties of the testing procedure. Two formats for
error descriptions exist. If some morphosyntactic or grammatical element is clearly
missing, the format uses the ‘0’ notation. This means that the missing element is
transcribed, but with a 0 sign before it. For example: *CHI: what 0is [*] this. *CHI:
Warren-0’s [*] hair. In all other cases, the error is only signaled by a ‘[*]’ sign. For
example: *CHI: me [*] play. *CHI: foot-s [*]. There are 12,216 child errors tagged
as such in the Manchester corpus. Of these, 9,063 correspond to missing elements.
There are 35 different types (see Appendix, Table 2 ) of missing elements in the
corpus, out of a total of 9,253 tokens—there may be more than one missing element
per utterance. Examples of the ten most common types of error are, in order of
frequency: *CHI: baby 0is [*] stuck *CHI: I 0am [*] write-ing *CHI: they 0have
[*] gone *CHI: all 0are [*] eat-ing table *CHI: it 0has [*] gone *CHI: Daddy-0’s [*]
thumb *CHI: Andy want-0es [*] it *CHI: there two penguin-0s [*] *CHI: what-’is
he do-0ing [*] *CHI: I bang-0ed [*] it The examples of each type of error have been
randomly chosen from the recordings of the youngest children. In these examples,
all the words produced are also used by the children in isolation or as a group in
a single utterance. In particular, this is the case for ‘I bang’, ‘what-’is’, and ‘he
do’. The only exception is the ‘I’ in the second utterance ‘I writing’; all the other
utterances could have been produced by the testing procedure. ‘I’, however, is not
found in isolation. As the problem raised by ‘I’ is also raised by ‘a’ in the utterances
where there is no obvious grammatical element missing, we will first discuss this
specific point. The 3,153 errors that do not correspond to missing grammatical
elements are more diverse than the errors involving missing elements. One common
type is the use of determiner ‘a’ with a plural noun or other inappropriate word,
for example, ‘a car-s’, ‘a flower-s’, ‘a apple’, ‘a people’, ‘a same’. There are 121
such errors. The problem raised by ‘I’ and ‘a’ may correspond to two different
interpretations. The first is that it is by no means certain that ‘I’ and ‘a’ are never
used in isolation. In fact, they are, as ‘I’ and ‘a’ may happen to be the last element
of an incomplete sentence. This occurred 65 times for ‘I’ (46 times in isolation) and
227 times for ‘a’ (29 times in isolation). It may be that what is considered to be an
incomplete sentence by an adult is not so from the child’s point of view. If this is the
case, then the testing procedure could produce utterances such as‘ I writing’ and ‘a
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pants’. The second possibility is to interpret this phenomenon as the emergence of
mechanisms other than the testing procedure. ‘I C x’ and ‘a C x’ are clearly very
productive patterns in young children’s language. There are 1,316 utterances of the
type ‘I C x’ (with 216 different values for x) and 2,030 occurrences of the type ‘a C
x’ (with 552 different values for x). This represents 7.4 % of all two-word utterances.
These two patterns could be the first slot-and-frame structures used by children
[11,17]. The testing procedure is obviously not the only mechanism used to produce
language, and this may be an example of another mechanism gradually coming into
play. Another type of error unaccounted for by the testing procedure is the overgen-
eralization of morpholexical constructions. A common example (166 occurrences)
is an incorrect use of the plural marker s, for example ‘milk-s’, ‘foot-s’, ‘smoke-s’.
This may be explained by the same slot-and-frame mechanism as above. Most other
errors are perfectly accounted for by the testing procedure. One of the most common
ones is the use of words such as ‘me’ or ‘my’ as obligatory subject pronouns or exis-
tence verbs, for example, ‘me play’, ‘me sit down’, ‘me egg’, ‘me tea’, ‘my make a
tower’, ‘my do that’. This occurs 615 times for me and 210 times for ‘my’. This is
perfectly accounted for by the testing procedure, as ‘me’ and ‘my’ are both produced
in isolation by the children. Other examples of words commonly used to build utter-
ances in a similar fashion are ‘no’ (167 occurrences) and ‘mine’ (47 occurrences) in
constructions such as ‘no fit‘, ‘no away’, ‘mine doggie’, ‘mine water’. For the pur-
pose of this article, it is unnecessary to go through all possible types of errors. After
deducting all the errors already accounted for, there are still 429 different words pre-
ceding the errors (as marked in the Manchester corpus) and 393 different words fol-
lowing them. It is interesting to note that many errors look as if they result from the
concatenation of two elements. For example, ‘mine [*] cover’, ‘do it [*] the animal’,
‘draw another one [*] fish’, or ‘I want [*] need my sock-s on’. It is possible to check
automatically whether this is true or merely an impression. If these errors come from
the simple concatenation of two strings of words, then the pair of words located
around the error (in the examples above, this corresponds to the pairs ‘one fish and
want need’) may be a creation of the child’s, and thus less likely to be found in adult
utterances. The other pairs of words (in the two examples above, this means the pairs
‘draw another’, ‘another one’, ‘I want’, ‘need my’, ‘my sock-s’ and ‘sock-s on’),
because they belong to strings of words extracted from children’s input, would be
more liable to be found in adults’ utterances. All these pairs have been extracted;
1,384 different pairs located around the errors were found and 3,584 pairs located
elsewhere. Of the pairs located around the errors, 674 are found in adult utterances
(49 %); of those located elsewhere, 2,475 are found in adult utterances (69 %). This
result confirms the plausibility of children’s following the testing procedure.

6.2 Results and Discussion: Question 2

There are three different types of word inversions. The first is the inversion that
occurs between isolated words or words grouped around a word used in isolation
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Table 1 Percentages of inversions involving pairs of words

All inversions Morpholexical inversions Group inversions

For the corpus as a whole
any pairs 8.35 3.68 7.76
Pairs occurring twice 23.60 5.91 22.72
Transcript by transcript
any pairs 1.75 (1.43) 0.52 (1.34) 1.59 (2.03)
Pairs occurring twice 10.78 (10.87) 2.05 (5.58) 12.54 (17.19)
Note: Standard deviations are given in parentheses

(lists L1 and L2 discussed above). For example, ‘baby stuck’ vs. ‘stuck baby’, where
both words belong to list L1, or ‘that one there’ vs. ‘there that one’, where ‘that
one’ belongs to list L2 and ‘there’ to list L1. The second is the inversion that occurs
within words grouped around a word used in isolation (within one element of the
list L2 above). For example, ‘is it a baby’ vs. ‘it is a baby’, where both groups
belong to list L2. The third type occurs anywhere and between any type of words, for
example ‘baby a’. The words involved in this type of inversion do not belong to lists
L1 or L2. There are two different ways of computing the proportion of inversions,
depending on the number chosen as a reference. The first possible reference number
is the number of possible word inversions. The second is the number of possible
word inversions, but taking into account only the pairs of words that appear at least
twice, in whatever order. The percentages of inversion can also be computed in two
different ways: either for the corpus as a whole or transcript by transcript. The first
option is probably felt to be more ‘fair’, because there is no reason why an inversion
should occur during one particular recording and not during others. But the second
option is the only way to show that the same child is using the same words in a
variable order, within a period short enough to judge that the variability is warranted
by the child’s grammatical knowledge. All the values are computed in types.

The results are presented in Table 1. The results per transcript, for pairs of words
that appear at least twice and sorted by age are presented in Fig. 5. The percentage
of inversion is much larger for the corpus considered as a whole than for single
transcripts, which is not surprising as there are many more circumstances where
semantics may lead to word reversal in a large than in a small transcript. Also, pairs
in any order are more frequent when one considers frequent pairs of words only.
When percentages are computed transcript by transcript, it becomes possible to test
the significance of the difference between the types of inversions. A t-test computed
across children in the frequent pairs case shows that the difference between type 1
and type 2 is highly significant, t(11) D 5.67, p < 0.00001, as is the difference
between type 2 and type 3, t(11) D 9.40, p < 0.000001. The difference between
type 1 and type 3 is not significant, t(11) D 1.55, p D 0.07. Results computed
across age give exactly the same pattern of results, as do statistics computed using
percentages for all pairs of words. In this case, percentages are lower, but the relative
ordering of results is the same. Examples of variable order between groups of words
are presented in the appendix, Table 3 for the youngest children. There are two main
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Fig. 5 Percentages of inversions for pairs found at least twice in the corpus, computed per
transcript and per child

categories of variable orders. The transcript ‘Warren 01A’ gives a perfect representa-
tion of these two categories. The first type is ‘Controller gone’ vs. ‘gone Controller’.
Here is a pure inversion of two apparently equivalent elements. The second type is
‘there brick there’ which is a variable order in itself. In this case, it would seem that
the two elements produced, ‘there’ and ‘brick’, have no order and that the child
repeats them to emphasize what she wants to say. Inversions within a group of
words from list L2 are very unusual, and only two cases seem to occur. The first
is the very common pattern of pronoun and auxiliary inversion in questions (‘I can’
vs. ‘can I’, ‘they are’ vs. ‘are they’). The second includes repetitions (‘got a got a
rabbit’, ‘in a in a minute’) and coding or segmentation errors. It thus appears that
inversions between a function word and a content word are impossible other than
in questions. On average, the percentage of variable word order occurrences within
a transcript is not very high. If the order of content word constructions were really
free, the percentage of constructions in any order should have reached the 100 %
level. However, for the pairs that appear twice, there is a non-negligible percentage
of words that appear in two different orders, so it is difficult to decide whether word
order is chosen on a morphological basis—which would imply a strict respect of
word order—or on a semantic one—which would allow more laxity in word order.
In any case, it is true that word order is a strong syntactic feature of the English
language and that it has to appear at some point during the development of syntactic
structures. The most important result here is that inversions are much more frequent
between words grouped around a content word than between a functional word—
that is a word that never appears in isolation—and a content word. This shows that
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(1) it is when semantics has the highest content that the word order is the most free;
(2) word order is only meaningful—at first—in the case of words which tend to
occur together and are very frequent in the children’s input (frozen forms). It is very
difficult to discover a word order rule applying to two content words (such as nouns
and verbs), unless either the category of these words is known or the words are very
frequent. If young children follow word order more in morphological situations—
the repetitive ones—than in semantic situations—which are less repetitive—this
could just mean that they have not yet learned the syntactic categories and are still
learning language on an example-driven basis. As for the changes in the proportion
of the various word orders through time, it does not seem that our hypothesis is
confirmed. As can be seen in Fig. 5, the number of variable word order elements
is stable with age and only a slow decrease in variability is apparent. This would
mean that word order inversions are not a developmental feature, but an intrinsic
pattern of the English language, and that young children are as sensitive to word
order as older children are. It could also mean that the basic characteristic of the
testing procedure, that children have no model of word order—with the exception
of the morphosyntactic derivation of words—holds true until at least age three.

7 Analysis 4

One limitation of analyses 1 and 2 is that nothing indicates how long the three-
step mechanisms may remain efficient and appropriate. We have suggested that
these mechanisms remain operational at an older age, because the use of fixed-
forms and constructions is thought to be found even in adults (see [6]). This can be
checked using other material from the CHILDES database with recordings spanning
a longer period. The corpus chosen for this test is Brown’s [2] Sarah corpus, which
ranges from age 2;3 to age 5;1. The mean length of utterance in words varies
from 1.47 to 4.85. This results in a total production of 99,918 words in token and
3,990 in type. In Step 1, the percentage of words on L1 present in adult speech
has a mean value of 90 % (SD D 6.5). In Step 2, the percentage of elements of L2
present in adult speech has a mean value of 45 % (SD D 13.1). These two results
are stable across ages. With the assumption of knowledge of the Noun and Verb
categories, results for Steps 1 and 2 are, respectively, 83 % (SD D 13.8) and 55 %
(SD D 16.6). The results for Step 3 are presented in Fig. 6 (for exact reconstruction)
and Fig. 7 (for reconstruction coverage). In each of these figures, three results are
presented: one assuming no category knowledge, one assuming knowledge of the
three categories Proper Noun, Common Noun and Verb, and one baseline assuming
no combination. The mean for exact reconstruction with ‘no category’ knowledge
is 54.3 % (SD D 13.6) and 85.8 % (SD D 4.2) for reconstruction coverage. These
values increase to 68.3 % (SD D 11.0) and 90.7 % (SD D 3.2) for ‘Noun and Verb’
knowledge. With no combination, the values decrease to 16.9 % (SD D 7.4) and
51.2 % (SD D 6.9). The average percentages of reconstruction are lower for the
Sarah corpus than for the Manchester corpus. Comparing Figs. 3 and 6 and Figs. 4
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Fig. 6 Percentage of utterances in the Sarah corpus exactly reconstructed, depending on the degree
of knowledge of vocabulary and syntactic categories

and 7, one can see that there is a drop in the reconstruction performances in the third
year. The percentages for Sarah in her second year were as high as those for the
Manchester corpus children. Part of this drop in performance may be attributed to
the smaller corpus. Indeed, comparing Figs. 1 and 3 and Figs. 2 and 4, it appears that
the drop in performance that became visible when single child corpora were used
was not in evidence when all the corpora were amalgamated into one big corpus.
It is also possible that the drop in performance found in the Sarah corpus reflects a
progressive decrease in the systematic use of a simple concatenation procedure by
the child. Also, the drop is marked between age 2 and age 3, but stops after about
age 3;6. This could mean that, as proposed by Goldberg [6], older children as well
as adults use a lot of fixed-forms.

8 Discussion

A procedure was tested on the basis that children are able to extract words or
word patterns that they consider as frozen forms and that they combine using
concatenation only. Such a procedure allows the children to produce language
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Fig. 7 Percentage of reconstruction coverage in all utterances in the Sarah corpus, depending on
the degree of knowledge of vocabulary and syntactic categories

which is mostly grammatical and to generate language without having syntactic
knowledge. For example, the procedure can produce the utterance ‘this one here’
where ‘this one’ and ‘here’ are frozen forms but ‘one this’ is not. So this means
that whereas the production of ‘here this one’ is possible, the production of ‘one
this here’ and ‘here one this’ is not. The procedure was tested on the Manchester
corpus [22] and Brown corpus [2] from the CHILDES database [13]. The testing
procedure did not achieve 100 % reconstruction in the test conditions described
above, where the database consisted only of 34 one-hour recordings for each of the
12 children in the corpus. This corresponds globally to a pseudo-corpus of 408 h,
which amounts to 8–10 weeks of speech. With a larger corpus, the results would
probably be better, as indicated by the increase in the results when considering the
corpus of a single child in comparison with the 12 times larger corpus composed by
grouping all the children’s data in a single corpus (see Figs. 1 and 2). In addition,
there are bound to be words that children utter for the first time in multi-word
utterances even though they could have been produced in single-word utterances.
The percentage of reconstruction, however, was still quite high, as was the case
for results obtained using a similar methodology with Hungarian children [12].
The results were clearly better than the simple reproduction of previous children’s
utterances without allowing for any creative combination, as results go for example
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from 68 to 95 % of utterance coverage for the largest corpus tested above (see
analysis 2). The improvement in the results was tested in two ways: by enlarging
the corpus and by generating new forms around noun and verb categories. Enlarging
the corpus provided the best improvement. Enlarging the size of the corpus by a
factor of 12 raised the utterance coverage from 87 to 95 % (see analysis 1), but
only to 93 % when the noun and verb categories were taken into account. Another
important consequence of enlarging the corpus was a much better correspondence
between the lexical and syntactic material used by children and their input. Nearly
all lexical forms were attested in adult speech (97 %) and a very large part of the
syntactic material (80 %) was present and available to be considered as frozen forms.
Tomasello [25] emphasizes the importance of having a large and dense corpus to
achieve efficient corpus based analyses. For example, adding all previous recordings
did not improve the percentages of reconstruction above a certain limit. This could
mean that there is a limit to the size of what it is necessary and useful to memorize.
It is unclear how far it is possible to go just by increasing the size of the corpus,
even using a more varied corpus, but it is unlikely to cover all of children’s syntax.
Children are capable of producing some type of generalization, and the older they
are, the more likely they are to do so. However, the amount of generalization that
young children have to use is probably quite low. The linguistic principles proposed
here cannot account for all of children’s linguistic knowledge. They would produce
many aberrant utterances if they were not regulated by other mechanisms. The first
of these regulatory mechanisms is semantics, as children produce language that, for
them, makes sense. They articulate thoughts with two or three elements that comple-
ment each other logically and thus create utterances interpretable by adults. Strange
utterances may be produced on occasion but none will sound alien. Secondly, even
though children sometimes join words or groups of words randomly when very
young, they soon start to follow a systematic order probably copied from adults’
utterances [21]. To do this, they merely have to concentrate on the words or groups
of words that they already master, having previously uttered them as single words.
Indeed, form-function mapping is easier with single-word utterances than with
multi-word utterances and this helps to manipulate single-word forms consciously.
Thus, single-word utterances are better candidates than most to become the first
elements in a combinatorial system and to undergo representational redescription
[9]. Their semantic values allow one to perform semantic combinations. By the age
of two, associations of words or frozen forms may be sufficient to allow children to
produce and control language. The fact that children can learn to produce complex
speech patterns quickly without complex grammatical knowledge casts a whole
new light on the problem of the acquisition of syntax. The testing procedure relies
heavily on semantics because it is assumed that what children understand, they will
remember and manipulate. This is perfectly in keeping with recent proposals such as
constructivist proposals by Tomasello [24] and Goldberg [6]. More importantly, the
possibility of language production by young children without syntactic knowledge
changes the fundamental issue of language acquisition. One classical view is that
a ‘bootstrapping’ system is necessary: children need to have some core knowledge
of syntax before they can learn the syntax of their mother tongue. Here, there is
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no such need as children are able to produce language before actually learning
the syntactic regularities and characteristics of the language they hear and use.
Another important principle introduced by the construction grammar approach is
that adults use a lot of frozen forms and fixed constructions. This means that the
mechanism proposed here could remain active with adults, but would become mixed
with more complex and sophisticated knowledge as people acquired their mother
tongue. It has often been said that children already master syntax by the age of three,
which is quite remarkable considering the complexity of what they are acquiring.
This report suggests that some simple generative mechanisms can explain the
explosive acquisition and apparent mastery of language observed in young children.
It demonstrates once again that, as already shown for other linguistic developmental
features [5], an apparently complex output may be the product of a simple system.
The need for large-scale corpora to better tackle the problem of language acquisition
with improved tools is also highlighted here.
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Appendix

Table 2 List of missing
grammatical elements in the
Manchester corpus

3,543 0is Verb to be, contractions included

1,384 0am
1,351 0have
784 0are
643 0has
491 0’s Possessive
437 0es Verb third person singular
160 0s Plural
121 0ing
112 0ed
47 0do
42 0does
33 0was
21 0had
13 0to
12 0what
10 0did
8 0were
6 0it
6 0a
5 0where
4 0of
3 0the
2 0put
2 0on
2 0in
2 0for
2 0would
1 0will
1 0us
1 0know
1 0get
1 0as
1 0and
1 0I
9,253 Total
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Table 3 Examples of words used in any order within the same recording (children’s age ranging
from 1;10 to 2;2)

Anne 01B baby stuck John 03B do sock-s
Anne 01B stuck baby John 03B want sock-s do

John 01A bang bang snail Liz 03A that mine that
John 01A snail bang bang bang
John 01B go swim-ing Anne 04A fit there down here
John 01B swim-ing go Anne 04A no that fit down there

Warren 01A Controller gone Aran 04A pipe got burst
Warren 01A gone Controller Aran 04A pipe got wet
Warren 01A there brick there Aran 04A look got pipe burst

Aran 04A a man there
Aran 02A Daddy truck Aran 04A there a man
Aran 02A truck Daddy Aran 04A me sit there
Aran 02B toy oh toy there Aran 04A sit there me

Aran 04A and me sit there
Carl 02A birdie there no Aran 04A it put sand
Carl 02A no there sheep Aran 04A put it that

Dominic 02b gone train Carl 04B car fish
Dominic 02b train gone Carl 04B fish car

Carl 04B it dog it eat
Joel 02A no Mummy
Joel 02A no Mummy no Warren 04A that one there

Warren 04A there that one
John 02B this it
John 02B do it this dolly Aran 05A like that

Aran 05A that like that
Ruth 02B baba in there Aran 05A that one
Ruth 02B in there baba Aran 05A Daddy get another one that door

Aran 05A get get Daddy
Warren 02A there red there
Warren 02B broken it Carl 05A Percy no
Warren 02B it broken Carl 05A no Percy
Warren 02B Warren broken it Carl 05A six seven six

Carl 03A elephant on Thomas Nic 05A Mummy no
Carl 03A there cow on elephant Nic 05A no Mummy
Carl 03A elephant on train
Carl 03A hat on man Ruth 05A baba eye
Carl 03A man on horse Ruth 05A eye baba
Carl 03A man on train Ruth 05B baba on there
Carl 03A man on a pink one Ruth 05B on there baba
Carl 03A man on a train Ruth 05B Mama baba on there
Carl 03A man in there man
Carl 03B ooh whee Warren 05A Mummy look
Carl 03B whee ooh Warren 05A look Mummy

Warren 05A a sleep Mummy
Warren 05A Mummy sleep Mummy
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Learning to Interpret Novel Noun-Noun
Compounds: Evidence from Category Learning
Experiments
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Abstract The ability to correctly learn to interpret and produce novel noun-noun
compounds such as wind farm or carbon tax is an important part of the acquisition
of language in various domains of discourse. One approach to the interpretation of
noun-noun compounds assumes that people make use of distributional information
about the linguistic behaviour of words and how they tend to combine in noun-noun
phrases; another assumes that people activate and integrate information about the
two constituent concepts’ features to produce interpretations. We present a series
of experiments that examine how people acquire both the distributional information
and conceptual information that is relevant to compound interpretation. We propose
that the relations used to link the two words in noun-noun compounds have rich
semantic structure, which includes information about what features of concepts
are necessary and/or characteristic for particular relations, as well as distributional
information about the frequency with which relations co-occur with different
concepts. We present an exemplar-based model of the semantics of relations which
captures both of these aspects of relation meaning, and show how it can predict
experimental participants’ interpretations of novel noun-noun compounds.
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1 Introduction

People frequently encounter noun-noun compounds such as MEMORY STICK and
AUCTION POLITICS in everyday discourse. Compounds are particularly interesting
from a language-acquisition perspective: children as young as two can comprehend
and produce noun-noun compounds [1], and these compounds play an important
role in adult acquisition of the new language and terminology associated with partic-
ular domains of discourse. Indeed, most new terms entering the English language are
combinations of existing words [2]; consider FLASH MOB, DESIGNER BABY, SPEED

DATING and CARBON FOOTPRINT. Noun-noun compounds are also interesting
from a computational perspective, in that they pose a significant challenge for
current computational accounts of language understanding. This challenge arises
from the fact that the semantics of noun-noun compounds are extremely diverse,
with compounds utilizing many different linking relations between their constituent
words [3–5]. Despite this diversity, people typically interpret even completely novel
compounds extremely quickly.

One approach that has been taken in both cognitive psychology and computa-
tional linguistics can be termed the relation-based approach (e.g. [6, 7]). In this
approach, the interpretation of a compound is represented as the instantiation of a
relational link between the modifier and head noun of the compound. Such relations
are usually represented as a taxonomy; for example the meaning of STUDENT LOAN

might be specified with a POSSESSOR relation [7] or MILK COW might be specified
by a MAKES relation [6]. However, researchers are not close to any agreement on a
taxonomy of relation categories classifying noun-noun compounds; indeed a wide
range of typologies have been proposed (e.g. [4, 7]).

In these relation-based approaches, extrinsic linguistic information about the
concept terms, such as distributional information about how often different relations
are associated with a concept word, is taken to be the influential factor influenc-
ing the interpretation process, and there is often little focus on how the meaning
of the relation interacts with the intrinsic properties of the constituent concepts (on
the distinction between intrinsic and extrinsic features, see [8, 9]). For example,
the CARIN model [6] utilizes the fact that the modifier MOUNTAIN is frequently
associated with the LOCATED relation (in compounds such as MOUNTAIN CABIN or
MOUNTAIN GOAT); the model does not utilize the fact that the concept MOUNTAIN

has intrinsic properties such as is large and is a geological feature: features which
may in general precipitate the use of a LOCATION relation.

An approach that is more typical of psychological theories of compound compre-
hension can be termed the concept-based approach [10,11]. For these accounts, the
focus is on the intrinsic properties of the constituent concepts, and the interpretation
of a compound is usually modelled as a modification of the head noun concept. So,
for example, the compound ZEBRA FISH may involve a modification of the FISH

concept, by asserting a feature of the ZEBRA concept (e.g. has stripes) for it; in this
way, a ZEBRA FISH can be understood as a fish with stripes. Concept-based theories
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do not typically use distributional information about how various relations are likely
to be used with concepts.

Thus, the information assumed relevant to compound interpretation is quite
different in relation-based and concept-based theories. However, neither approach
typically deals with the issue of how people acquire the information that allows them
to interpret compounds. In the case of the relation-based approaches, for example,
how do people acquire the knowledge that the modifier MOUNTAIN tends to be
used frequently with the LOCATED relation, and that this information is important
in comprehending compounds with that modifier? In the case of concept-based
approaches, how do people acquire the knowledge that particular features of ZEBRA

are likely to influence the interpretation of ZEBRA FISH?
We present experiments which examine how both distributional information

about relations and intrinsic information about concept features influence compound
interpretation. We also address the question of how such information is acquired: our
experiments used laboratory-generated concepts that participants learn during the
experiments. As well as learning novel concepts, participants also learn how these
concepts tend to combine with other concepts via relational links. Using laboratory-
controlled concepts allows us to control and manipulate various factors that might
be expected to influence compound comprehension; for example, concepts can be
designed to vary in their degree of similarity to one another, to be associated with
potential relations with a certain degree of frequency, or to have a feature which is
associated with a particular relation. It would be extremely difficult to control for
such factors, or investigate the acquisition process, using natural, real world con-
cepts. Using laboratory-generated categories also eliminates confounding factors
such as lemma and compound frequency which have often proved contentious in
studies of natural language compounds [12, 13].

2 An Exemplar-Based Account of Compound Interpretation

As mentioned above, one characteristic of the relation-based approach is the view
that the interpretation of compounds can be represented using a taxonomy of relation
types. Models typically assume that the semantics of the relations used in compound
interpretation can be adequately represented using a set of relation labels (e.g.
located, for) for which no internal semantic structure is posited (other than their
association with the modifier term, e.g. [6]). In this chapter we take a different view,
and propose that relations are at least as complex as the concepts which they link in
terms of the representational demands that they put on semantic memory. Consistent
with much of the work on the representation and meaning of concepts (e.g. [14–18]),
we will assume that relations vary in terms of their semantic richness, their internal
complexity, and in their similarity to each other. Our key claim therefore is that
the relations used in compounds are complex representations and that a successful
model of compound interpretation must account for how the appropriate relation
representation becomes activated during the interpretation process.
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The exemplar theory ([19–22]) of categorization is one model that assumes a rich
representational framework for conceptual knowledge: each concept is represented
as a set of individual memory traces (exemplars) which in turn are represented as
attributes on a fixed set of dimensions. In our model, we assume that relations can
be represented using an exemplar approach in the same way concepts are in the
exemplar theory. Our framework for representing relations is therefore not based
on a taxonomy of relation labels but instead uses representations as rich as those
typically proposed for conceptual knowledge.

Our key theoretical claim is that the interpretation of a compound consists
of activating exemplars of the two constituent concepts in the compound, which
in turn activates the relational exemplars with which they are associated. Just as
each exemplar in a conceptual category consists of a list of attributes, for us each
exemplar in a relational category shall consist of the attributes of the two exemplars
of the conceptual categories for which the relation is instantiated. Each relation
exemplar is a memory trace unique to the situation in which it is instantiated. For
example, if A and B are two conceptual categories consisting of the set of exemplars
fa1, a2, a3, a4, a5, a6g and fb1, b2, b3, b4, b5g respectively, then a relation R that can
be used to link the concepts A and B can be represented as the set of instances
for which that relation holds (e.g. f.a1; b1/; .a2; b2/; .a3; b3/; .a4; b5/; .a5; b5/g).
Important aspects of the relation semantics are captured by the features of the
concept exemplar pairs for which the relation holds. To take a real-world example, if
an is standing upright on relation occurs between a KETTLE exemplar and a SHELF

exemplar, a particular aspect of the semantics of this relation is captured by the fact
that a feature of one exemplar (i.e. the flat base of the kettle) is in physical contact
with a feature of the second exemplar (i.e. the flat horizontal surface of the shelf).

In this exemplar-based approach, we can compute the appropriateness of the
relation R for two arbitrary conceptual exemplars x and y by computing the mem-
bership of .x; y/ in category R, using a standard exemplar modelling framework
implementing the exemplar theory of category learning. If more than one relation
is defined, we can compute membership in each of the relations and thus make
predictions about how likely each relation is for the pair of items.

3 Overview of Experiments

Assuming a rich framework for representing the meaning of relations and their
associations with the features of concepts allows us to investigate important issues
in compound interpretation that have not typically been investigated in the literature.
In the first two experiments, we investigate the notion that the presence of certain
semantic features in the representation of a constituent concept can be necessary
for the instantiation of a particular relational link. For example, the compound
CUPBOARD FRUIT can be understood as the fruit located in the cupboard by
instantiating an H is located inside M type of relation between the modifier (M)
and head (H) of the phrase, but such an instantiation requires that certain features
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must be present; in particular, the modifier concept must be a kind of container. A
during relation cannot be instantiated for CUPBOARD FRUIT because the property
required to facilitate that relation (namely, the property of being a period of time)
is not present in the modifier. Thus, the instantiation of some relational links
between concepts is impossible if certain necessary properties (which we refer to
as facilitating features) are absent from either the modifier concept or the head-
noun concept. Facilitating features are part of the intensional representation for the
relation and are independent of the relation’s extensional representation (i.e. the
distribution of head and modifier terms for instances of the relational link) which
is of primary importance in relation-based approaches such as the CARIN model.
Facilitating features represent hard constraints on relation selection.

The notion of facilitating features in Experiments 1 and 2 has much in common
with the componential view of verb meaning that has be proposed in the psycholin-
guistic literature, where a verb like GIVE is represented in terms of components such
as cause, do, change, possession which hold between an object, a giving agent and
a receiving agent [23]. A prerequisite (i.e. facilitating feature) for GIVE is that the
agent must possess the object to be given [23]. Furthermore, facilitating features are
similar to semantic selectional restrictions on verb subcategorization frames, which
impose constraints on what kinds of objects can populate given argument slots for
particular verbs (e.g. for the verb EAT, the object in the direct object slot must be
edible). As such, facilitating features in compound interpretation can be seen as
falling into a more general framework implicating semantic restrictions in relational
processing in language.

Related ideas have also been considered in the domain of problem-solving.
For example, in the radiation problem [24], destructive force is identified as a
functionally relevant attribute of the rays which can attack the tumor, which must
also be true in the analogous scenario if the correct analogical mapping is to be
found [25]. Functionally relevant attributes correspond to the facilitating features in
the constituent concepts of noun-noun compounds, as in both domains the features
are necessary for the selection of the appropriate relation. Experiments 1 and 2 test
the idea that relations often require the presence of facilitating features, and that
which relation is used to interpret a compound is influenced by the presence or
absence of facilitating features in the constituent concepts.

Functionally relevant attributes may or may not be salient for a concept [25].
In the same way, we can differentiate between facilitating and salient features. We
use diagnosticity as an operational measure of feature saliency; the diagnosticity of
a feature for a category is a measure of how useful that feature is for identifying
members of the category; a feature is highly diagnostic of a category if it occurs
in many instances of that category and in few instances of other categories [26].
Facilitating features are always at least somewhat diagnostic of their associated
relation, because they necessarily occur in every instance of that relation. However,
facilitating features can also be relatively undiagnostic of a particular relation if they
also occur in many instances of other relations. Unlike facilitation, diagnosticity
represents a soft constraint on what relations are possible given the features of the
constituent concepts, representing as it does the statistical dependencies between
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relations and features. Though diagnosticity and facilitation tend to overlap, we
manipulate them independently in our experiments.

The theory outlined in Sect. 2 proposes that the interpretation of novel com-
pounds is derived from activation of the relational exemplars that are associated
with the exemplars of the two constituent concepts in the compound. This proposal
was described in nonlinguistic terms: interpretation is based on conceptual and
relational semantic knowledge associated with the two constituent concepts. In
particular, we did not propose a role for syntax (i.e. the order of the two words
in the compound) in determining which relation exemplars become activated. For
example, our account predicts that the same relation is instantiated for the novel
compounds FRUIT CONTAINER and CONTAINER FRUIT – in both cases the link
between the concept CONTAINER and the concept FRUIT is that the fruit is in the
container – although the head of the two phrases differ (i.e. a fruit container is a type
of container and container fruit is a type of fruit).1 Other theories (e.g. the CARIN
theory) propose that the modifier concept plays a crucial role in determining how
relations are selected during the interpretation process. Experiments 2 and 3 aim
to investigate the role of syntax on the selection of relations for compounds by
manipulating the order in which the two terms in the compound appear. Although
our theory and models do not predict differences due to word order, such differences
would indicate that participants are applying syntactic processing to the compound
stimuli and are not combining the learned category names in non-linguistic ways.

For each of our experiments, we present an exemplar-based model of the relation
selection process. To foreshadow our results, our models give a good fit to data on
how compounds featuring novel concepts that are learned during the experiment are
interpreted by participants.

4 Experiment 1

Experiment 1 aims to test the hypothesis that relations are meaningfully represented
by an exemplar category structure. This is a separate issue to the one of how
an exemplar representation of relations might account for noun-noun compound
comprehension, and Experiment 1 does not examine compound interpretation
directly. Experiment 1 focuses on whether people can learn different relations
through experience of the relations linking pairs of items, and if so can they use
their learning to make judgements about which relations are plausible or likely to
hold between other pairs of items. In the experiment, artificial laboratory-generated
relation categories are constructed and experimental participants must learn how

1There are exceptions where the type of relation differs depending on word order; these tend to
be lexicalized compounds, or compounds containing a polysemous word where the sense in the
modifier position can differ from the sense in the head position (e.g. GUITAR SOLO and SOLO

GUITAR).
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to distinguish between them. Our experiment therefore has much in common with
experiments presented in the category learning and classification literature (e.g.
[19, 22]; see [27] for an overview): a preliminary training phase where participants
are exposed to exemplars of different categories is followed by a transfer phase
where participants judge the category membership of new items.

The categories are four different relations that can hold between pairs of objects
and each of the training items consist of two objects linked by one of these
relations. When learning about the relation categories, information that participants
are required to attend to includes information about the facilitating features of
relations (some features are facilitating for one of the four relations; some are
not prerequisites for any relation). The experiment thus addresses the question
of whether people are sensitive to the differences between facilitating and non-
facilitating features.

Features also vary in whether they are diagnostic for a given relation. The
diagnosticity, D, of a feature f for a category C can be defined as:

DC .f / D jEC \ Ef j
jEC [ Ef j (1)

where Ef denotes the set of exemplars that have feature f and EC denotes
the set of exemplars that belong to category C [11]. A feature has maximal
diagnosticity for a relation if that feature is present in every instance depicting that
relation and not present in every instance that does not depict that relation, and
diagnostic features are very characteristic of their associated relation. Facilitating
features necessarily have some degree of diagnosticity for their corresponding
relations because they must appear in every instance of that relation (they may also
appear in some instances of other relations). Non-facilitating features can be either
diagnostic or non-diagnostic for relations. We would expect participants to attend
to these diagnostic features when learning the training items and make use of them
when selecting relations for the new transfer items, consistent with findings in the
categorization literature [28–30].

To summarize, the aim of the experiment is to assess whether people can learn
relations from a set of training items, how they would use their learning to rate new
items, and whether they are especially influenced by features that are facilitating for
relations – would participants employ different strategies with respect to facilitating
and non-facilitating features?

4.1 Method

4.1.1 Participants

Sixteen postgraduate students or recent college graduates volunteered to take part in
the experiment. All were native speakers of English.
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Fig. 1 Two examples of stimuli used in the training phase of Experiment 1

4.1.2 Materials

The training items consisted of 18 visual stimuli depicting an imaginary beetle
eating an imaginary plant, with each stimulus presented on an A5-sized card (Fig. 1;
similar depictions have been used in other category learning studies [31, 32]). The
beetles varied on three feature dimensions: colour of shell, pattern on shell, and
facial expression. The plants varied on four feature dimensions: colour of leaves,
shape of leaves, droop of branch, and whether there were buds or thorns on the
trunk. There were four possible ways in which a beetle could eat a plant: the beetle
could land on a leaf of a plant and eat the leaf, the beetle could eat from the top of
the trunk of the plant, the beetle could eat from the trunk of the plant if there were
buds rather than thorns on the trunk, or the beetle could stand on the ground and eat
the leaf of a plant that had drooping branches. These four different types of eating
behavior were the concrete manifestation of the four relation categories used in the
experiment. Underneath each training picture was a sentence describing the eating
behavior talking place.

The 18 training items had the abstract category structure shown in Table 1. The
four relations are partitioned into two types: Relations 1 and 2 are what we term
independent relations: they are possible regardless of what features are present in
either the plant or the beetle. Relations 3 and 4 are dependent relations: whether
these relations are possible is contingent on the presence of certain plant features.
The concrete relation “the beetle stands on the ground and eats the leaf” is only
possible if the branches of the plant are drooping, while the concrete relation “the
beetle eats from the trunk of the plant” is only possible if there are buds rather than
thorns on the trunk of the plant.

There are seven feature dimensions; B1, B2 and B3 denote the three abstract
beetle dimensions (corresponding to the concrete features of colour, pattern and
facial expression). Pf1 and Pf2 denote the two facilitating plant dimensions: they
correspond to the features that are required for one of the relations to be possible,
namely drooping of branches and buds or thorns on the trunk. Pf1 is the facilitating
dimension of Relation 3: this relation is only possible if there is a 2 on Pf1. Pf2 is
the facilitating dimension of Relation 4: this relation is only possible if there is a
2 on Pf2. P1 and P2 denote the two abstract plant dimensions that do not facilitate
dimensions (corresponding to the concrete features of leaf colour and leaf shape).
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Table 1 The abstract relational category structures used in the training phase

Beetle features Plant features

Item Relation B1 B2 B3 Pf1 Pf2 P1 P2

1 Relation 1 1 1 1 1 2 1 1
2 Relation 1 4 1 1 1 1 1 1
3 Relation 1 2 2 2 1 2 4 1
4 Relation 1 3 4 2 2 1 1 4
5 Relation 1 3 3 3 1 1 1 1

6 Relation 2 1 1 2 1 2 3 2
7 Relation 2 2 2 2 1 1 3 2
8 Relation 2 2 3 4 1 1 1 1
9 Relation 2 3 4 3 2 2 2 3

10 Relation 3 1 4 1 2 1 4 2
11 Relation 3 1 1 4 2 1 2 2
12 Relation 3 2 2 2 2 2 2 3
13 Relation 3 3 2 4 2 1 2 3
14 Relation 3 2 2 3 2 1 3 2

15 Relation 4 1 3 1 2 2 4 3
16 Relation 4 2 3 3 1 2 2 2
17 Relation 4 3 2 3 1 2 3 3
18 Relation 4 3 3 3 1 2 3 3

Dimensions P1 and P2 are important for identifying items that belong to the
Relation 1 category as for each of these dimensions a 1 occurs four out of five times
within the category but only one out of 13 times outside the category; i.e. a 1 on
P1 and a 1 on P2 are diagnostic features for Relation 1. There is no such diagnostic
feature for Relation 2; the best example of a diagnostic feature for this relation is
a 3 on P1, which occurs only two out of four times within the category and three
out of 14 times outside the category. A 2 on Pf1 is already important for identifying
items that belong to the Relation 3 category as it is that relation’s facilitating feature.
However Pf1 is of added importance because a 2 on Pf1 is also a very diagnostic
feature for the relation, occurring five out of five times within that category and only
three out of 13 times outside it. In contrast, a 2 on Pf2, the facilitating feature for
Relation 4, is not as diagnostic for that relation, occurring four out of four times
within the category but five out of 14 times outside it. A 3 on B2, a 3 on B3, and
a 3 on P1 are each moderately diagnostic features for Relation 4. A 2 on P1 is also
moderately diagnostic for Relation 3.

The actual mappings of the abstract beetle and plant features to the concrete
beetle and plant features was varied across participants. For half of the participants
Relation 3 was mapped to the concrete relation “the beetle stands on the ground
and eats the leaf” while Relation 4 was mapped to “the beetle eats from the trunk
of the plant”; for the other half of participants these assignments were reversed.
For the participants that saw Relation 3 as the beetle eating from the ground and
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Table 2 The abstract features to concrete features mappings for the 16 experimental participants
in Experiment 1

Relations 3 and 4 Relations 1 and 2 Plant features Subj.

Relation 3 is beetle
stands on the ground
and eats the leaf ;
Relation 4 is beetle
eats from the trunk of
the plant.

Pf1 is droop/no-droop of
branches; Pf2 is
buds/thorns on trunk

Relation 1 is beetle eats
from leaf ; Relation 2
is beetle eats from
oval mound at top of
trunk

P1 is leaf shape; P2 is leaf
colour

1
2

P1 is leaf colour; P2 is leaf
shape

3
4

Relation 1 is beetle eats
from oval mound at
top of trunk; Relation
2 is beetle eats from
leaf

P1 is leaf shape; P2 is leaf
colour

5
6

P1 is leaf colour; P2 is leaf
shape

7
8

Relation 4 is beetle
stands on the ground
and eats the leaf ;
Relation 3 is beetle
eats from the trunk of
the plant.

Pf2 is droop/no-droop of
branches; Pf1 is
buds/thorns on trunk

Relation 1 is beetle eats
from leaf ; Relation 2
is beetle eats from
oval mound at top of
trunk

P1 is leaf shape; P2 is leaf
colour

9
10

P1 is leaf colour; P2 is leaf
shape

11
12

Relation 1 is beetle eats
from oval mound at
top of trunk; Relation
2 is beetle eats from
leaf

P1 is leaf shape; P2 is leaf
colour

13
14

P1 is leaf colour; P2 is leaf
shape

15
16

Relation 4 as the beetle eating from the trunk, the facilitating plant dimensions Pf1
and Pf2 were mapped to the concrete features of drooping/non-drooping branches
and buds/thorns on trunk respectively, while the other group of participants saw
Pf1 mapped to buds/thorns on trunk and Pf2 mapped to drooping/non-drooping
branches respectively; this was necessary to ensure that the dependent relations were
associated with the correct facilitating features. Within each of these two groups,
the assignments of the abstract dimensions P1 and P2 to the concrete dimensions
of leaf color and shape were also counterbalanced, and the mappings of the abstract
values to the concrete values on both of these dimensions were randomized for every
participant. Half of the participants saw Relation 1 mapped to the concrete relation
“the beetle lands on a leaf and eats the leaf” and Relation 2 mapped to the concrete
relation “the beetle eats the oval mound at the top of the trunk” and the other half of
the participants saw the opposite mapping. For the beetle features, mappings were
generated for each participant by randomly assigning the three abstract dimensions
to the three concrete dimensions and then randomly assigning the four possible
abstract values within each dimension to each of the four concrete values for that
dimension. Table 2 summarizes these mappings for the 16 participants.

The materials for the transfer phase consisted of more pictures depicting beetles
and plants; however in these pictures the beetles and plants were shown separately,
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Fig. 2 Two examples of stimuli used in the transfer phase of Experiment 1

without eating relations taking place (Fig. 2). Underneath each picture was the
question “How likely are the different types of eating behavior?” followed by four
relation description sentences, each of which was accompanied by a seven-point
scale. The order of the scales on the pages was counterbalanced across participants.

There were two stages in the transfer phase of the experiment. In the first stage
participants were tested with nine of the 18 training items (two items from each of
the four relational categories, with the ninth item selected from Relation 1; the items
were 1, 4, 5, 7, 9, 12, 13, 15 and 18 in Table 1). These training items reoccurred in the
transfer phase of the experiment in order to have an effective method of measuring
how accurately participants learned the training items.

Twenty new transfer items were also constructed (Table 3). These items were
designed to test what effect the presence or absence of the facilitating features for
the Relation 3 and 4 (i.e. values on Pf1 and Pf2) would have on people’s relation
selections. The items also varied in how easy it would be to select a relation; the
selection of a relation should be relatively easy for an item if it is very similar
to a training item for that relation (i.e. differing from a training item on only
one dimension) and if it is very prototypical of that relation (ignoring values on
dimensions Pf1 and Pf2). Half of the 20 transfer items are of this form (items 1,
2, 3, 4, 9, 10, 13, 14, 17 and 18). The other ten transfer items were constructed
so that the selection of a relation should be difficult, in the sense that they were
dissimilar to the training items (the average number of common features with the
most similar training item was 4.0) and tended to manifest conflicting evidence
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Table 3 The 20 new exemplar items used in the transfer phase of Experiment 1

Beetle features Plant features

Item B1 B2 B3 Pf1 Pf2 P1 P2

1 3 1 1 1 1 1 1
2 2 4 2 1 1 3 2
3 3 2 4 1 1 2 3
4 3 3 3 1 1 3 3
5 1 4 4 1 1 4 4
6 4 3 2 1 1 2 4
7 1 2 4 1 1 3 3
8 2 4 2 1 1 1 4

9 1 2 4 2 1 2 2
10 4 1 1 2 1 1 1
11 1 4 4 2 1 4 4
12 3 1 1 2 1 4 4

13 2 3 3 1 2 3 3
14 2 1 2 1 2 3 2
15 1 4 4 1 2 4 4
16 3 3 3 1 2 2 2

17 2 2 4 2 2 2 3
18 3 3 3 2 2 3 3
19 1 4 4 2 2 4 4
20 3 3 3 2 2 4 4

for two different relation categories (for example, in item 16, there is conflicting
evidence for Relations 3 and 4), or exhibit little or no evidence for any relational
category. The ways in which the 20 new transfer items differed from each other
with respect to these factors is summarized by Table 4.

4.1.3 Procedure

As described above, the experimental procedure consisted of three sections: a
training phase where participants studied the training items, a test phase where they
had to select relations for some of the beetle-plant pairs seen in training, and a
transfer phase where they rated new items. In the training stage, participants were
instructed to pretend to be biologists interested in learning about imaginary plants
and beetles and in particular the kinds of eating behaviour that existed between
different plants and beetles. Participants were given the 18 training items in a
random order at a large desk area, and were given 12–15 min to study the items.
After the training phase, the training items were removed and participants were
given the nine test items. Participants were told to indicate the likelihood of the
various ways of eating for each beetle-plant pair, using the four scales provided.
After participants had rated these items the 20 transfer items were presented. In
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Table 4 Summary of the construction of the 20 transfer items for Experiment 1

Pf1 Pf2 Classification ease Item

Pf1 is not
facilitating

Pf2 is not
facilitating

Easy to classify (similar to a training item,
prototypical of a relation)

1

2

3

4

Difficult to classify (dissimilar, little evidence
for any relation or conflicting evidence for
two or more relations)

5

6

7

8

Pf1 is
facilitating

Pf2 is not
facilitating

Easy to classify (similar to a training item,
prototypical of a relation)

9

10

Difficult to classify (dissimilar, little evidence
for any relation or conflicting evidence for
two or more relations)

11

12

Pf1 is not
facilitating

Pf2 is
facilitating

Easy to classify (similar to a training item,
prototypical of a relation)

13

14

Difficult to classify (dissimilar, little evidence
for any relation or conflicting evidence for
two or more relations)

15

16

Pf1 is
facilitating

Pf2 is
facilitating

Easy to classify (similar to a training item,
prototypical of a relation)

17

18

Difficult to classify (dissimilar, little evidence
for any relation or conflicting evidence for
two or more relations)

19

20

both the test and transfer stages, the order in which the items were presented was
randomized for each participant, and participants were allowed rate the items at their
own pace.

4.2 Results

4.2.1 Performance on the Nine Test Items

For the nine test items there was a “correct” answer; that is, the relation they
had appeared with in the training stage. Analysis of these nine test items allows
us to quantify how well participants learned the training items. The responses for
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each relation and each experimental item were classified as either positive (>0) or
non-positive (�0), depending on how the participant responded on each scale. On
average, participants gave a positive rating to the correct relation for 70.8 % of the
test items (recall). The proportion of positive responses that were to correct relations
was 37.9 % (precision). For the incorrect relations, only 38.7 % of the responses
were positive. These results indicate that participants learned to distinguish between
the categories in the training phase.

4.2.2 Sensitivity to Facilitating Features

In total, participants responded to 29 items; of these, 16 were items for which
the facilitating feature for Relation 3 was absent and 16 were items for which
the facilitating feature for Relation 4 was absent. For the 16 items for which the
facilitating feature for Relation 3 was absent, each participant made a response for
Relation 3. For each participant, the proportion of these responses that were non-
positive was the statistic of interest. A one-tailed binomial test was calculated for
each participant. The test was significant for 14 participants; in other words, 14 of
the 16 participants were significantly more likely to produce a non-positive rather
than a positive response to Relation 3 when the facilitating feature for Relation 3 was
absent. (Indeed, 11 participants never produced a positive response). For Relation 4,
11 of the 16 participants were significantly more likely to produce a non-positive
rather than a positive response. This is strong evidence that participants do not
consider the dependent relations to be possible for items in which the facilitating
feature is absent.

A similar analysis was performed looking at the items where the facilitating
feature was present. Of the 29 items, 13 were items for which the facilitating feature
for Relation 3 was present and 13 were items for which the facilitating feature for
Relation 4 was present. For Relation 3, 9 of the 16 participants were significantly
more likely to produce a positive rather than a non-positive response. For Relation
4, 7 of the 16 participants were significantly more likely to produce a positive rather
than a non-positive response. Therefore, many participants often rate a relation as
having low likelihood for a given item, even when that relation’s facilitating feature
is present in the item. This makes sense: the presence of a facilitating feature does
not entail that the relation must be selected for the item, only that it is a possibility,
and participants may notice greater evidence for a different relation.

The responses for Relations 3 and 4 for items with facilitating features present
and facilitating features absent were also analysed by means of a 2 
 2 ANOVA.
In the by-subject analysis, Relation (3 or 4) and facilitation (present or absent)
were within-subject factors. In the by-item analysis, Relation (3 or 4) was a within-
item factor and facilitation (present or absent) was a between-item factor. There
was a main effect of facilitation (Fs.1; 15/ D62:58, MSE D 2:11, p < 0:001;
Fi .1; 28/ D 127:07, MSE D 1:17, p < 0:001) indicating that participants were very
attentive to the facilitating nature of the relevant feature. There was no main effect
of Relation (Fs , Fi < 1) or interaction between facilitation and response relation.
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Overall, the results indicate that the participants were extremely sensitive to the
effects of the facilitating properties.

4.2.3 Sensitivity to Diagnostic Features

Using Eq. 1, we calculated the average diagnosticity of the features of each of the 29
test items for each of the four relational categories and compared this to the observed
data. For two relations, the average diagnosticity for items had a high correlation
with the observed membership ratings for the items (for Relation 1, r D 0:83,
p < 0:01; for Relation 4, r D 0:81, p < 0:01). For the other two relations, the
correlation was less strong though still significant (for Relation 2, r D 0:66, p <

0:01; for Relation 3, r D 0:70, p < 0:01). These results indicate that participants
were sensitive to the diagnosticity of features as well as whether or not they were
facilitatory when making their category judgments.

4.2.4 Modelling Relation Selection

Our account of the process by which noun-noun compounds are interpreted
(Sect. 2) posits the activation of a relational link between the two concepts, which
proceeds from the retrieval of the relational exemplars that tend to co-occur with
the exemplars of the two constituent concepts in the compound. These retrieved
relational exemplars form the basis for interpretation. This account predicts that
participants will base their judgments for novel exemplar pairs on how similar
exemplars were classified in the training phase of the experiment. This is consistent
with how classification is assumed to proceed in exemplar models of categorization
such as the Generalized Context Model (GCM) [20, 21]. Our proposal here is that
finding a plausible relation for a pair of items can be modelled as an exemplar
categorization process.

We modelled the data using the GCM.2 This model computes the probability of
item i belonging in category C as a choice function of exemplar similarity:

P.i; C / D

X

j2C

sim.i; j /

X

j2U

sim.i; j /
(2)

2Other exemplar modelling frameworks, such as the Diagnostic Evidence Model [28] and TiMBL
[33] could also have be investigated. However, comparing different modelling frameworks on this
task lies beyond the scope of this chapter.
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where U denotes the set of all exemplars and sim.i; j / is the measure of similarity
between exemplars i and j . Similarity between exemplars is in turn defined as
negative-exponential transformation of distance [34]:

sim.i; j / D e�c�dist.i;j / (3)

where c is a free parameter specifying how quickly similarity between exemplars
diminishes as a function of distance. The distance between two exemplars is usually
measured by a metric such as the L2 (Euclidean) norm or the L1 norm [21, 35,
36]; however such metrics assume dimensions ranging over real-valued intervals
for which a modulus is defined. Since the values of our dimensions (e.g. different
leaf shapes) are not interval-valued we define distance as

dist.i; j / D
X

d2D

wd mdij (4)

where D is the set of seven dimensions and mdij is a discrimination function,
evaluating to 0 if exemplars i and j have the same value on dimension d and
1 otherwise. The wd are a set of attentional weights satisfying the constraints
0 � wd � 1 and

P
wd D 1. dist.i; j / defines a metric (a Hamming distance

with weights on the string positions) and is a generalization of the L1 metric on
binary-valued dimensions, often used in the classification literature (e.g. [27]).

The data collected in Experiment 1 correspond to individual subjects’ belief in
the likelihood of each relation for each item (i.e. a Bayesian measure). However,
the GCM models frequency probability, i.e. the probability that a participant will
select a particular relation as being correct for a given item. To create a probabilistic
measure from our data which can be modelled with the GCM, we assumed that when
a participant rates a particular relation as being more likely than the others, this is the
relation that the participant would select in a forced choice paradigm.3 The GCM
utilises seven free parameters (the scaling parameter c and the seven dimensional
weights with six degrees of freedom); the parameter values that maximised the
correlation, across all items and relations, to the empirical data were estimated using
a brute-force search over the parameter space. The GCM provides a reasonable fit to
the data (for Relation 1, r D 0:89, p < 0:01; for Relation 2, r D 0:69, p < 0:01;
for Relation 3, r D 0:90, p < 0:01; for Relation 4, r D 0:94, p < 0:01).

However, in this form, the GCM does not distinguish between facilitating and
non-facilitating features. Our results show that participants use their knowledge
of the world when deciding whether or not the facilitating properties prohibit a
particular relation. We model this by assuming that when participants dismiss a
particular relation because of the absence of a facilitating feature, they make an
a priori judgment that is independent of any later exemplar-driven process and

3If a participant rates two or more relations with the same maximal likelihood, we assume the
participant would select at random between them. Whether or not the data are actually transformed
in this way makes only small differences to the fit of the model reported subsequently.
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therefore ignore those training items they remember which depicted a relation that
is impossible for the transfer item at hand. We modified the GCM to account for
the effect of the facilitating relations so that membership of an item in a relational
category is not computed from the complete set of learned exemplars, but rather
from the subset of the learned exemplars that do not belong to relational categories
that are impossible for the current item. The choice function then becomes

P.i; C / D

X

j2C\Ai

sim.i; j /

X

j2U\Ai

sim.i; j /
(5)

where Ai denotes the set of exemplars in memory which do not belong to relations
incompatible with the facilitating properties of item i . In this form, the GCM gives
items zero probability for membership in relational categories that are impossible
because of the absence of facilitating properties. This model does indeed give a
closer fit to the data (for Relation 1, r D 0:90, p < 0:01; for Relation 2, r D
0:89, p < 0:01; for Relation 3, r D 0:92, p < 0:01; for Relation 4, r D 0:94,
p < 0:01).

4.3 Discussion

Experiment 1 showed that people can learn which relations hold between concepts
from sets of examples of those relations and pay attention to both facilitating
features and the diagnosticity of features for relations when judging relation
likelihood for new examples. That an exemplar model of classification accurately
models how people rate the likelihood of relations holding between pairs of objects
is evidence in support of the hypothesis that relations can be modelled as exemplars,
much in the same way conceptual categories can be. Such findings are consistent
with our claim that the selection of a relation for two constituents can be seen as
a kind of exemplar categorization task, with decisions about category membership
computed from the access of relevant memory traces in memory.

These findings have implications for theories on the role of relational links in
conceptual combination, such as the CARIN model [6]. Since the thematic relations
used in the CARIN model have no internal structure there is no way in which
facilitating or diagnostic features could be part of the representation of relations
in that model (for example, the H made of M relation in the CARIN model has
no way of requiring that a concept taking part in it is type of substance). Concept
modification approaches do typically allow for internal conceptual structure to
influence relation selection [10,11]. However, the exemplar-based model of relation
selection described here provides an alternative to the slot-based representation of
relations typically assumed in concept modification models, showing that relations
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can instead be represented as sets of paired-item exemplars. This exemplar-based
model has the advantage of giving a simple account of how people learn which
properties are associated with each relation.

However, compound comprehension was not addressed directly in this exper-
iment: participants made judgments of relation likelihood for pairs of exemplars
rather for noun-noun compound phrases. Participants learned relational categories
only, and did not learn conceptual categories that could be used as the words in
the compounds (i.e. they rated relations for exemplar pairs ei and ej rather than
for noun-noun compounds of the form “A B”, where A and B are the names of
concepts). In Experiments 2 and 3, we aim to extend the methodology of Experiment
1 to noun-noun compound interpretation. The goal of these experiments is to reveal
more both about how relations are learned and used and about how exemplar-level
and conceptual-level information interact during conceptual combination.

5 Experiment 2

In Experiment 2 participants learn different conceptual categories (i.e. different
types of beetles and plants) as well as different relational categories. In the transfer
phase, participants are presented with a pair of beetle and plant category labels
(in the form of a noun-noun compound) and are required to make judgments
about which of the different relations are likely or appropriate for that compound.
Experiment 1 showed that participants can learn about the relations between beetle
and plant items and use that information to make judgments about the likelihood
of relations for new items; Experiment 2 examines whether that learning can be
generalised to a noun-noun comprehension task.

For real-world concepts and relations, features vary in their diagnosticity for
both relations and the concepts that they link. The feature has three wheels, for
example, is diagnostic of TRICYCLE but is not diagnostic of any particular relation:
it is difficult to imagine a relational link between two concepts that is dependent
on one of the concepts having three wheels specifically (i.e. if the property has
three wheels is untrue then the relation is impossible). Conversely, the feature has
a horizontal flat surface raised off the ground is not particularly diagnostic of any
concept, though it is diagnostic of the stands upright on relation, as the feature is
in fact a facilitating feature for that relation. We wished to capture similar qualities
in the design of the abstract category structure used in Experiment 2. Sometimes
a beetle feature is highly diagnostic of a beetle category and less diagnostic of
a relation category; sometimes a beetle feature is highly diagnostic of a relation
category and less diagnostic of a beetle category.

The design incorporates a single facilitating feature/facilitated relation pair;
beetles could eat from the trunk of a plant only if the trunk was free of thorns.
The two plant categories are designed to be identical in terms of how difficult they
are to learn and how frequently they occur with the various relations but differ
in terms of how often a feature that is facilitating for a particular relation occurs
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amongst their exemplars. That is, the facilitating feature occurred more often in
one plant category than in the other; the feature varied in its diagnosticity for the
plant categories. Of interest in this manipulation was whether the facilitated relation
would be selected more often for the plant category that it was diagnostic of. As the
frequency with which the relation appears with the two plant categories is the same,
any such effect would suggest that the properties of the concept influence relation
selection. Such a demonstration would be important as it would have implications
for previous theories (for example the CARIN model has no mechanism by which
the diagnosticity of features can influence selection; the frequency of association
between relation and concept alone is what is important).

As well as manipulating the diagnosticity of the faciliting feature for plant
categories as described above, we also investigated whether diagnostic evidence
for conceptual categories would influence interpretation. For example, a particular
feature of the beetle concepts was perfectly diagnostic of a relation, whereas a
feature of the plant concept was a facilitating feature for that relation. Of interest
was whether the beetle or the plant would be more influential in people’s selections
of relations for beetle-plant compounds.

Half of the participants saw beetle names as the modifier and half of the
participants saw plant names as the modifier. The experiment was therefore designed
to investigate the interaction between beetle (i.e. beetle feature diagnosticity) and
plant (i.e. plant feature diagnosticity and feature facilitation) influence as well as
effects of syntax (i.e. whether the beetle or plant is the head or the modifier).

5.1 Method

5.1.1 Participants

Eighteen students of University College Dublin took part in the experiment.

5.1.2 Materials

Training items resembled those of Experiment 1; each depicted a beetle and plant
with one of three possible kinds of eating behaviour holding between them, namely
“beetle eats from the top of the plant”, “beetle eats from the leaf of the plant” and
“beetle eats from the trunk of the plant”. The “beetle eats from the trunk of the
plant” relation required the facilitating property of exposed trunk (i.e. no thorns
on the trunk) to be present in the plant. There were also four beetle categories
(named BEKEPS, CALARS, DUSUMS and GAMAYS) and two plant categories (named
SEEBS and TAUDS) that participants were also required to learn during training. In
a first transfer phase, materials were eight noun-noun compounds of these category
labels (e.g. SEEB GAMAY; all eight possible pairs of beetle and plant labels were
used). This was followed by another transfer phase like the transfer phase used in
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Table 5 The 16 items used in the training phase of Experiment 2

Categories Beetle features Plant features

Item Rel Bcat Pcat B1 B2 B3 P1 P2 P3

1 1 1 1 3 1 1 1 1 3
2 1 1 1 1 1 1 1 2 1
3 1 1 1 1 1 1 2 1 3
4 3 1 1 1 1 3 1 3 3

5 1 2 1 4 2 1 1 1 2
6 1 2 1 2 2 1 3 3 3
7 1 2 1 2 2 1 1 3 2
8 3 2 1 2 2 3 1 2 3

9 2 3 2 3 2 2 2 1 1
10 2 3 2 3 3 2 2 2 1
11 2 3 2 3 3 2 1 2 2
12 3 3 2 3 3 3 2 3 3

13 2 4 2 4 1 2 2 2 2
14 2 4 2 4 4 2 2 3 1
15 2 4 2 4 4 2 3 2 2
16 3 4 2 4 4 3 2 2 3

Experiment 1: participants were presented with beetle and plant exemplars without
any eating behaviour taking place and rated the likelihood of the three relations for
the pair. The purpose of this stage was to test how well participants had learned the
training items and also to investigate how people responded to the facilitated relation
when the facilitating feature was present or absent. There were 32 items presented
in this stage in total: the 16 items presented during training plus 16 filler items.

Table 5 gives the abstract category structure of the training items. For each
participant, the three abstract beetle dimensions (B1, B2 and B3) were randomly
mapped to the concrete physical dimensions of shell colour, shell pattern and facial
expression and the two non-facilitating plant dimensions (P1 and P2) were randomly
mapped to the concrete physical dimensions of leaf shape and leaf colour. The two
independent relations (Relations 1 and 2) were randomly mapped to the concrete
relations “beetle eats from the top of the plant” and “beetle eats from the leaf of the
plant”. The sole abstract facilitating feature (a 3 on P3) and its associated relation
(Relation 3) were mapped to “no thorns on trunk” and “beetle eats from the trunk
of the plant” respectively. The remaining two possible values on dimension P3 were
randomly mapped to two different configurations of thorns on the trunk, which were
intended to indicate that eating from the trunk was impossible. The mapping of the
four beetle names and the two plant names to the abstract beetle and plant categories
was also randomized across participants.

The two plant categories have identical diagnosticity profiles (i.e. the diagnositc-
ity of features on P1, P2 and P3 are the same for the three plant categories) and so
are by definition equally easy to learn. The four beetle categories also have identical
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diagnosticity profiles. The facilitating feature for Relation 3 (a 3 on dimension P3)
occurs seven times in total: four of those are with the four occurrences of Relation 3.
A 3 on dimension P3 occurs five times in total for Plant 1 but only two times in total
for Plant 2. A question of interest is whether Relation 3 would be preferred for
Plant 1 or for Plant 2 (that relation occurs equally often in both plant categories). If
Relation 3 is selected equally strongly for both Plant 1 and Plant 2, then this suggests
that it is the frequency with which the plant category is associated with the relation
that influences the relation selection; however, if Relation 3 is selected more often
for Plant 1 than for Plant 2, then this will be evidence that the intrinsic features of
the Plant categories are influencing the selected relation.

Features on dimensions B1 and B2 are designed to have high diagnosticity for
the four beetle categories. The beetle categories are therefore relatively easy to learn.
Dimension B3 is perfectly diagnostic for the relations, making the relations easy to
learn also.

5.1.3 Procedure

The training phase consisted of three sub-stages, in which participants learned to
distinguish between the plant, beetle and relation categories. During each training
sub-phase, the 16 training items were presented to participants sequentially on a
web-page in a random order. Underneath each item, participants were presented
with a questions of the form “What kind of plant is seen in this picture?”, “What
type of beetle is seen in this picture?” and “How does this hBeetlei eat this hPlanti?”
in the plant learning, beetle learning, and relation learning training sub-stages,
respectively. Underneath the question was a series of buttons on which participants
could select what they believed to be the correct category. After participants had
made their selection, they were given feedback about whether or not their guess
on that trial had been correct. Each of the three sub-stages was repeated until
participants had correctly classified 75 % or more of the 16 items. Training was
followed by the compound transfer phase and then the exemplar transfer phase, in
which participants rated the compounds and exemplar items on the scales provided,
as in Experiment 1.

5.2 Results

5.2.1 Performance During Training

All but one of the participants successfully completed the training phase. For the
remaining 17 participants, successful learning took on average 2.06 iterations of
the 16 items for the two plant categories, 4.06 iterations of the items for the four
beetle categories, and 3.59 iterations of the items for the three relation categories.
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Thus, participants learned to distinguish between the various categories quite
quickly, consistent with the fact that the categories were designed to be easy to
learn.

5.2.2 Performance During the Compound Transfer Stage

In the compound transfer stage, category order was a between-subject factor: half
of the participants saw compounds of the form “hBeetlei hPlanti” and half saw
compounds of the form “hPlanti hBeetlei”. Of key interest was whether the training
on exemplar items would transfer to relation likelihood ratings for the noun-noun
compounds consisting of the learned beetle and plant categories. Previous findings
have suggested an asymmetry between the role of the modifier and the head noun in
conceptual combination [6] and so we were also interested in whether responses
would be affected by the order in which the constituent category names were
presented. For example, perhaps it is the concept in the modifier position that is
most influential in determining the likelihood of different relations for a compound.
Alternatively, perhaps it is the concept in the head position that is most influential.

The four beetle categories used in the experiment can be grouped into two pairs
corresponding to how the three relations were associated with the categories during
training: Beetle 1 and Beetle 2 were both associated equally strongly with Relation 1
(75 % of the exemplars of these categories were presented with Relation 1) while
Beetle 3 and Beetle 4 were both associated equally strongly with Relation 2 (75 % of
the exemplars of these categories were presented with Relation 2). In our analysis of
the data we were interested in whether the beetle category name used in a compound
would influence participants’ relation selection. Therefore, in our ANOVA, “beetle
category name predicts Relation 1” and “beetle category name predicts Relation 2”
were the two levels of a “beetle name influence” factor. The actual beetle category
name in the compound was also a (four level) factor in the ANOVA, nested under
the beetle name influence factor. The category ordering used in the compounds
(i.e. “hBeetlei hPlanti” or “hPlanti hBeetlei”) was a 2-level (between-subject) factor.
Response relation (i.e. which of the four relations a rating was for) was also included
as a within-subject factor. What is of interest is how participants’ ratings of relation
likelihood vary depending on the beetle name used in the compounds, the plant
name used in the compounds, and the ordering of the beetle and plant names in the
compounds: in other words, we are interested in the interaction effects between the
response relation factor and the other factors of the ANOVA.

The interaction between the “beetle name influence” factor and response relation
was significant (F.2; 30/ D 8:14, p < 0:01); whether the beetle name present in
the compound tended to predict Relation 1 or Relation 2 influenced participants’
relation selections. However, there was no effect of the beetle category nested
within the “beetle name influence” factor. In other words, whether participants saw
Beetle 1 or Beetle 2 (associated with Relation 1), or Beetle 3 or Beetle 4 (associated
with Relation 2) did not effect their ratings of relation likelihood. The interaction
between plant category and response relation was also significant (F.2; 30/ D4:22,
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p D 0:02); the plant category in the compound tended to influence participants’
relation selections. The results for the beetle and plant interactions therefore show
that participants’ learning of the training exemplar items did indeed transfer to their
relational responses for the noun-noun compounds.

The interaction between category ordering, beetle name influence and response
relation was not significant (F.2; 30/ < 1); there is no evidence that the influence
of beetle category on participants’ relation selections differed depending on whether
the beetle concept was in the head or modifier position. However, the interaction
between category ordering, plant category and response relation was significant
(F.2; 30/ D 4:54, p D 0:02); the influence of the plant category name on relation
selection differed depending on whether the plant category name was the modifier
word or the head word.

To further investigate the response relation’s significant interaction with the
beetle influence, plant category name, and category ordering factors, the rating
data for each of the three relations were analysed separately. For the data for
Relation 1, there was a significant main effect of beetle influence (F.1; 15/ D
11:78, p < 0:01); as expected, participants rated Relation 1 more highly when
the beetle category was Beetle 1 or Beetle 2 than when the beetle category was
Beetle 3 or Beetle 4. There was also a significant main effect of plant category
name (F.1; 15/ D 4:84, p D 0:04); Relation 1 was rated more highly for Plant 1
compounds than for Plant 2 compounds. However, the plant category name and
category ordering interaction was not significant (F.1; 15/ D 2:50, p D 0:14).

For the Relation 2 ratings, there was a significant main effect of beetle influence
(F.1; 15/ D 8:22, p D 0:01), with Relation 2 rated more highly when the beetle
category was 3 or 4 than when the beetle category was 1 or 2. The plant category
factor was marginally significant (F.1; 15/ D 3:86, p D 0:07). The plant category
and category ordering interaction was significant (F.1; 15/ D 7:31, p D 0:02);
participants rated Relation 2 higher for Plant 2 than Plant 1 when plant name was in
the modifier position but not when plant name was in the head noun position.

For the Relation 3 ratings, there were no significant effects. In particular, there
was no main effect of plant category (F.1; 15/ < 1); ratings for Relation 3 were
not affected by the plant category in the compound. This was a comparison of
interest in the design of the experiment, as the facilitating feature of Relation 3
occurred more often in Plant 1 exemplars than in Plant 2 exemplars. However,
this manipulation appeared to have no affect on participants’ ratings of relation
likelihood for the compounds. As we hypothesized above, one possible reason for
this is that a facilitating feature being true for a concept is a necessary but not
sufficient condition for the selection of the corresponding dependent relation, and
therefore the dependent relation need not be selected even when the facilitating
feature is present.

Conducting separate analyses of variance for the different levels of a factor for
which there is a significant interaction as we have done above can be a useful way
of investigating the nature of that interaction; however, it does not truly explore
the interaction effect, as different levels of the two factors are not considered
simultaneously [37, 38]. Since we are interested in whether the relations consistent
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with training are in general rated more highly than the alternative relations not
consistent with training, an analysis examining more than one level of both factors
simultaneously is desirable. For example, we are interested in whether or not the
ratings for Relation 1 for Plant 1 and Relation 2 for Plant 2 (i.e. the two relations
consistent with those two plant categories during training) are significantly higher
than the ratings for Relation 2 for Plant 1 and Relation 1 for Plant 2 (i.e. the two
relations that are not consistent with those two plant categories during training).
Such an effect involves both levels of both factors.

We therefore conducted a planned contrast for each of the interactions that
proved significant in the original repeated measures ANOVA. Each contrast com-
pared the mean of participants’ ratings for the relations which were consistent
with training against those ratings that were not consistent with training. Each
participants’ response in each condition of each interaction was averaged. Each
contrast was evaluated as a paired t-test, with the consistent-with-training and not-
consistent-with-training samples matched by participant. First of all the beetle name
influence 
 response relation interaction was investigated. The mean ratings of
Relation 1 for the “beetle predicts Relation 1” condition and of Relation 2 for
the “beetle predicts Relation 2” condition (M D 2:46) were significantly higher
than the mean ratings of Relation 2 for the “beetle predicts Relation 1” condition
and the ratings of Relation 1 for the “beetle predicts Relation 2” (M D 1:35;
t.33/ D 4:55, p < 0:001); participants clearly learned to identify the relations
associated with the beetle categories during the training phase of the experiment and
transferred that learning to the compound interpretation task. For the plant category
name 
 response relation interaction, the mean ratings of Relation 1 for Plant 2
and Relation 2 for Plant 1 (M D 2:20) were significantly higher than the mean
ratings of Relation 2 for Plant 1 and Relation 1 for Plant 2 (M D 1:60; t.33/ D 2:53,
p D 0:02). Again, participants clearly learned to identify the relations associated
with the plant categories during the training phase of the experiment, and transferred
that learning to compound interpretation.

To investigate the category ordering 
 plant category name 
 response relation
interaction, the above planned contrast for plant categories was repeated with the
participants in the “plant name is modifier” and the “plant name is head noun”
conditions considered separately. For participants that saw the plant in the modifier
position, the mean ratings of Relation 1 for Plant 2 and Relation 2 for Plant 1
(M D 2:56) were significantly higher than the mean ratings of Relation 2 for Plant
1 and Relation 1 for Plant 2 (M D 1:27; t.15/ D 3:35, p < 0:01). Therefore, it
seems that participants used the plant category name to guide their ratings of relation
likelihood when the plant category name was in the modifier position. However, for
participants that saw the plant as the head noun, there was no difference in the mean
ratings of Relation 1 for Plant 2 and Relation 2 for Plant 1 (M D 1:88) and mean
ratings of Relation 2 for Plant 1 and Relation 1 for Plant 2 (M D 1:90; t.17/ D 0:07,
p D 0:95). Clearly, participants used the plant category name to guide their ratings
of relation likelihood only when the plant category name was in the modifier
position. This is consistent with the fact that it is more usual in natural language
to name animate entities by what they eat than to name inanimate entities by what
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they are eaten by (e.g. consider “fruit fly” and “apple maggot”) and suggests that
participants parsed the two word “hPlanti hBeetlei” phrases like natural language
compounds.

In summary, the results of the noun-noun compound stage of the experiment
show that participants’ learning of the relations and their associations with beetle
and plant categories during training transferred to a task involving noun-noun
compound interpretation. This is important as it demonstrates how the interpretation
of compounds can be derived from information about how concept exemplars tend
to co-occur together.

5.2.3 Ratings of Exemplar Transfer Items

The second transfer stage required participants to rate relation likelihood for 32
beetle-plant exemplar items (16 test beetle-plant pairs previously seen in training
and 16 randomly generated fillers). For the 16 test items, the relation suggested by
the beetle category and the relation suggested by the plant category were always
the same (for example Beetle 1 and Beetle 2 exemplars always occurred with
Plant 1 exemplars, and the relation associated with these categories is Relation 1;
see Table 5). The data show that participants successfully learned the relations
associated with these 16 items during training: for every one of the 16 items, the
highest rated relation was the relation that existed between that pair in training.
In particular, the response for the correct relation (M D 2:94, SD D 1:31) for
items was higher than the average response for the other two relations (M D 1:14,
SD D 0:88; collapsing across items, t.16/ D 55:90, p < 0:001, collapsing across
subjects, t.15/ D 120:17, p < 0:001).

5.3 Modelling Relation Selection in Compound Interpretation

Our hypothesis about how people decide on likely relations for a compound is that
the two lexemes in the compound activate stored memory traces (i.e. exemplars)
of the concepts denoted by those lexemes. Exemplars differ in how typical they
are for particular conceptual categories and we would expect the likelihood of an
exemplar’s activation to be proportional to its typicality for the categories named
in the compound. As concept instances usually do not happen in isolation but
rather in the context of other concepts, this naturally results in extensional relational
information about activated exemplars also becoming activated. This activated
relational information is then available to form a basis for determining the likely
relation for the compound. A strength of this hypothesis is that it incorporates both
intensional information about concepts’ features (in the form of concept typicality)
and also extrinsic, distributional information about how concepts tend to combine
(in the form of relational information associated with activated exemplars). In this
section, we present a model instantiating this hybrid approach.
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In the context of our experiment, the extensional, relational information about
beetle and plant exemplars participants held in memory is revealed in how they
rated relational likelihood during the exemplar transfer stage of the experiment. For
each of the 16 exemplars, we therefore assume that the average ratings for each of
the relations describes our participants’ knowledge about how exemplars combine
with other exemplars. The triad of average ratings for each of the three relations can
then be regarded as a vector in a 3-dimensional relation space. We can calculate the
relation vector rB;P for the novel compounds “B P ” or “P B” as

rB;P D

X

e2U

.typ.eb; B/ C typ.ep; P //˛ � re

X

e2U

.typ.eb; B/ C typ.ep; P //˛
(6)

where e denotes one of the 16 beetle-plant exemplar items rated in the exemplar
transfer stage, typ.eb; B/ denotes the typicality of the beetle exemplar present in
item e in beetle category B and typ.ep; P / denotes the typicality of the plant
exemplar present in item e in plant category P . U is the set of 16 beetle-plant
exemplar pairs and ˛ is a magnification parameter to be estimated empirically which
describes the relative importance of exemplar typicality. This model is a specific
implementation of a broader, exemplar-based model of conceptual combination that
we have proposed elsewhere and have successfully used to model relation selection
for natural language compounds [3, 39, 40].

In this model, we require a measure of how typical of a conceptual category
particular exemplars are.We use the probability scores produced by the GCM as
a means for computing concept typicality (although other methods for measuring
typicality could have been used). In computing the GCM typicality ratings, we set
c, the GCM magnification parameter, to 1. The attentional weights for the three plant
dimensions and the three beetle dimensions were not treated as free parameters but
were estimated using an information-theoretic method [40]. Therefore, we utilize
only one free parameter, ˛, in fitting our model to the compound rating data.

We compared the relation vector outputted by the model for the eight possible
compounds to the relation vectors derived from participants’ ratings in the com-
pound transfer phase of the experiment. Across all eight compounds and three
relations, the agreement between the model and the data was high (r D 0:85,
p < 0:001 with optimal ˛ D 12). Looking at the three relations separately revealed
high correlations for Relation 1 (r D 0:95, p < 0:001) and Relation 2 (r D 0:85,
p < 0:001); however, the correlation for Relation 3 was not significant (p D 0:27).
The model does not match the data for Relation 3 because participants’ responses for
Relation 3 across the eight items are essentially the same (with some small random
variability), consistent with the fact that the four beetle categories and two plant
categories occur equally often with that relation. Similarly, the model gives values
for Relation 3 which are almost identical across the eight items.
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The evaluation of the model above uses relation vectors which are based on the
actual association of relations with exemplars that participants learned, as described
by participants’ responses to the three relations for the 16 items presented during the
exemplar transfer stage. We also evaluated the model using the association between
the exemplar and the relation that was specified in the abstract category structure.4

In this version of the model, the relation exemplars associated with conceptual
exemplars are not based on data obtained from participants in the exemplar transfer
stage. However, there was still high agreement between the model’s predications
and the data (r D 0:77, p < 0:001, with ˛ D 11).

The modelling results are important as they demonstrate that a model which is
based solely on information about exemplars, and about the relational links between
those exemplars and other exemplars they co-occurred with, can explain how people
determine the correct or most likely relations for noun-noun compounds.

6 Experiment 3

Experiment 2 established that participants can use information about learned
exemplars to determine the correct interpretations of compounds. In Experiment 3,
we aim to investigate three issues that may be important in determining the
most appropriate interpretation for a compound. Firstly, the experiment aims to
investigate the influence of properties of concepts not captured purely by the abstract
category structure or by the frequency with which the concepts appear with different
relations. For example, if the two concepts referenced in a compound are identical
with respect to the complexity of their representation, how well they are associated
with various alternative relations (and so on), but are of differing levels of animacy,
we might expect the relation associated with the more animate concept to be selected
by participants more often than a different relation associated equally strongly with
the less animate concept. In the experiment, all three relations again involve a beetle
eating a plant. Since in each case the beetle is the agent of the scenario, it is possible
that the semantics of the beetle concepts might be more relevant to relation selection
than the semantics of the plant concepts.

Secondly, the experiment again manipulates the ordering of the two nouns within
the compound: given two categories named A and B , our experiment investigates
whether the compound “A B” is interpreted in the same way as the compound “B

A”. Furthermore, of interest was whether the location of the more animate concept
in the compound would have an effect on interpretation. For example, since the
combined concept is an instance of the head concept, we might hypothesize that
compounds for which the head concept is more animate than the modifier concept
may be easier to interpret correctly.

4For example, the relation vector for exemplars occurring with Relation 1 (i.e. the beetle and plant
exemplars in items 1, 2, 3, 5, 6 and 7) would be Œ1; 0; 0�.
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Table 6 The abstract category structure of Experiment 3

Learn Trans. Nr Rel Bcat Pcat B1 B2 B3 P1 P2 P3

l 1 1 1 3 4 1 1 3 2 3
l 2 1 1 3 4 4 1 2 3 3
l t 3 1 1 3 1 1 1 3 3 2
l t 4 1 1 3 4 1 2 3 3 3

l t 5 2 2 2 2 2 2 2 2 3
l 6 2 2 2 2 2 1 2 3 2
l 7 2 2 2 2 3 2 2 2 1
l t 8 2 2 2 2 2 3 2 2 2

l t 9 3 3 1 3 3 3 4 1 2
l t 10 3 3 1 3 3 2 1 1 1
l 11 3 3 1 2 3 3 4 4 1
l 12 3 3 1 3 2 3 4 1 1

l t 13 1 4 4 1 1 4 4 4 4
l t 14 2 4 4 4 1 4 4 1 4
l t 15 3 4 4 4 4 4 1 1 4

t 16 – 1 1 4 1 1 4 1 1
t 17 – 3 3 3 3 3 3 3 3
t 18 – 2 4 2 2 2 4 1 4
t 19 – 4 2 4 1 4 2 2 2

Finally, were interested in the effect of concept similarity: would compounds
consisting of similar constituent categories tend to be interpreted in similar ways.
In our previous work on the influence of conceptual similarity on the interpretation
process [3] we utilised the IIC metric [41], which uses WordNet as a measure of the
similarity between various concepts. However, with laboratory-generated categories
we can precisely define and control the similarity between the concepts in terms
exemplar distance.

6.1 Method

6.1.1 Participants

The participants were 42 university students.

6.1.2 Materials

Table 6 presents the abstract category structure for Experiment 3. There are 19 items
in total; the first and second columns in the table indicate if the item was one of the
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15 items used in the learning phase of the experiment (l) or as one of the 13 items
used in the transfer stage of the experiment (t). There were four beetle categories
(Bcat), four plant categories (Pcat) and three relation categories (defined by features
instantiated on dimensions (B1, B2, B3, P1, P2 and P3). Unlike Experiment 2, the
beetle and plant categories had identical structure (for example, the four exemplars
of Pcat1 have the same structure as the four exemplars of Bcat1).

Beetles and plants were associated with particular relations; Bcat1, Bcat2 and
Bcat3 were associated with Relations 1, 2 and 3, respectively, whereas Pcat1,
Pcat2 and Pcat3 were associated with Relations 3, 2 and 1, respectively. Bcat4 and
Pcat4 were not associated with any relations; the three exemplar instances of these
categories in the learning phase appeared once with each of the three relations. The
features of beetles and plants were sometimes diagnostic of a concept category (e.g.
a feature associated with Bcat1 is a 1 on dimension B3: 3 of the 4 Bcat1 training
exemplars have a 1 on dimension B3 while only one of the remaining 11 training
exemplars do). Also, the intrinsic features of beetles and plants are sometimes
diagnostic of a relation category (values on dimensions B1, P1, B2 and P2 are quite
diagnostic of relations).

By holding beetle and plant category structure identical, it was hoped that aspects
of conceptual combination that were independent of the feature and relational
distributional structure learned for the constituent concepts could be investigated.
So, for example, for the compound “Bcat1 Pcat1”, there is equal evidence for
Relation 1 (given by the beetle category) and Relation 3 (given by the plant
category). We were interested in whether Relation 1 would be rated equally likely
as Relation 2. If not, we were interested in whether this inequality was due to the
ordering of the items (for example, the relation associated with the modifier concept
might be preferred) or the saliency of the constituent concepts (for example, the
relation associated with the beetle category might be preferred).

The beetle and plant categories were also designed to differ in terms of their
similarity. For example, categories Bcat1 and Bcat4 are more similar to each other
than Bcat3 and Bcat4 are: the features for Bcat1 and Bcat4 overlap to a greater
extent than the features for Bcat3 and Bcat4 do. The aim of varying categories
with respect to their similarity was to investigate whether similar categories would
yield similar patterns of relation likelihood ratings. In particular, Bcat4 (and
Pcat4) occurs equally often with the three relations; therefore if category similarity
has no effect we would expect people to select each of the relations equally
often for this category. However, if similarity influences participants’ relation
selection, then we would expect that Relation 1 would be selected more often than
Relations 2 or 3.

As in Experiment 2, the abstract category structure was randomly mapped to
concrete features in a way that was unique for each participant. The three concrete
beetle features, three concrete plant features, and three concrete relations were the
same as in Experiment 2.
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6.1.3 Procedure

The training phase, compound transfer stage and exemplar transfer stage procedures
were identical to Experiment 2. The compound transfer stage followed the exemplar
transfer stage. In the exemplar transfer stage, participants were presented with 13
beetle-plant items, some of which had appeared in training and some of which were
new items (Table 6). The materials used in the compound transfer stage were the 16
possible noun-noun compounds consisting of beetle and plant names.

6.2 Results

6.2.1 Performance During Training

Two of the participants failed to complete the training phase. For the remaining 40
participants, successful learning took on average 5.8 iterations of the training items
for the plant categories, 3.9 iterations for the beetle categories, and 2.1 iterations for
the relation categories. The participants therefore learned to distinguish between the
categories quite quickly, consistent with the fact that the categories were designed
to be easy to learn.

6.2.2 Performance During the Exemplar Transfer Stage

Participants’ mean ratings of relation likelihood for the nine previously seen
exemplar items are presented in Fig. 3 (items 3–15). For each of these items
there was a correct relation, namely the one that the item was associated with
during training. The difference between the mean response for the correct relation
(M D 2:76) and the mean response for the two incorrect relations (M D 1:42) was
significant (ts.39/ D 7:50, p < 0:01; ti .8/ D 4:07, p < 0:01), indicating that
participants learned which relations tended to co-occur with the items in the training
phase.

Participants’ mean ratings of relation likelihood for the four exemplar items not
previously seen in training are also presented in Fig. 3 (items 16–19). Each of these
four items consisted of a prototypical example of each of the four beetle categories
and each of the four plant categories (with each beetle and plant category appearing
once; see Table 6). For these four items the relation consistent with the beetle
exemplar was always different to the relation suggested by the plant exemplar. For
each trial, one relation is consistent with the beetle exemplar (rb), one is consistent
with the plant exemplar (rp) and one is neutral (rn). One-way repeated measures
ANOVAs with response type (rb, rp or rn) as a fixed factor revealed a significant
effect of response type (Fs.2; 39/ D 19:10, p < 0:01; Fi .2; 3/ D 24:14; p < 0:01).
Pairwise differences between the three response types were investigated using
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Fig. 3 Participants’ mean responses for the exemplar transfer items

planned comparisons. The difference between participants’ mean response for
the relation associated with the beetle exemplar, rb (M D 2:68), and their mean
response for the neutral relation, rn (M D 1:44) was significant (ts.39/ D 5:63, p <

0:001; ti .3/ D 5:34, p D 0:01). These results suggest that participants were strongly
influenced by the beetle exemplar when making their category judgments. However,
the difference between participants’ mean response for the relation associated with
the plant exemplar, rp (M D 1:62), and their mean response for the neutral relation
was not significant (ts.39/ D 1:11, p D 0:27; ti .3/ D 0:97, p D 0:40). These results
suggest that participants were not influenced by the plant exemplar when judging
relation likelihood. Since the beetle and plant categories have identical abstract
structure, these results suggest that other factors (such as the animacy of a concept
or the role it plays in the relation) are important to interpretation.

To investigate possible effects of category similarity, the data from all 13
items were analysed with a repeated measures ANOVA with beetle category and
response relation as within-subject factors and subject as a random factor. There
was a significant effect of the category that the beetle exemplar belonged to
on participants’ responses for the three relations (the interaction between beetle
category and response relation was significant; F.6; 39/ D26:83, p < 0:01).
Planned pairwise comparisons (paired t-tests) were conducted to investigate how
ratings for the correct relation (i.e. the relation consistent with training) differed for
the ratings for the other two relations. For Bcat1, Bcat2 and Bcat3, the ratings for
the relation consistent with learning was higher than the two alternative relations
(p < 0:01 in all cases). However, for the Bcat4 items, there was no evidence that
participants we more likely to rate Relation 1 (M D 2:09) higher than either Relation
2 (M D 1:97; t.39/ D 0:54, p D 0:59) or Relation 3 (M D 1:91; t.39/ D 0:69, p >

0:50). Though the difference is in the direction predicted by Bcat4’s similarity to
Bcat1, there is no evidence that participants made use of Bcat4’s similarity to Bcat1
when rating relation likelihood for Bcat4.
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In summary, the results suggest that participants were capable of learning the
training items, and participants appeared to be influenced by the beetle exemplar
but not the plant exemplar.

6.2.3 Performance on the Noun-Noun Compound Transfer Stage

In the noun-noun compound transfer stage, participants rated relation likelihood for
each of the 16 compounds that could be formed from combinations of the beetle
and plant category names. Half of the participants saw the compounds with beetle
in the modifier position and plant in the head position whilst the other half saw the
reverse. Again, we were interested in whether or not the training on exemplar items
would transfer to the compounds and whether or not participants’ responses would
be affected by the order of the category labels in the compound.

A 4
4
3
2 repeated measures ANOVA with beetle category, plant category and
response relation as within subject factors and category label ordering as a between
subject factor was used to analyze the data. The interaction between beetle category
and response relation was significant (F.6; 38/ D59:79, p < 0:001); the beetle
category present in the compound influenced relation selections. The interaction
between plant category and response relation was weaker, but still significant
(F.6; 38/ D5:35, p < 0:01).Training on exemplar items therefore transferred to
the noun-noun compounds. However, there were no other significant interactions
found. In particular, the interaction between category ordering, beetle category
and response relation was not significant (F.6; 38/ D1:82, p D 0:09); there is no
evidence that the influence of beetle category on relation selections when the beetle
was in the modifier position differed from the influence of beetle category on
relation selections when the beetle was in the head-noun position. Similarly, the
interaction between category ordering, plant category and response relation was not
significant (F.6; 38/ < 1); the influence of the plant category on relation selection
did not differ depending on the location of the plant category in the compound.

Planned pairwise comparisons (paired t-tests) were used to investigate the
significant interactions further: for Bcat1, Bcat2 and Bcat3, the ratings for the
relation consistent with learning was significantly higher than the two alternative
relations (p < 0:001 in all cases). However, for Bcat4, there were no significant
differences between the ratings for the three relations (p > 0:31 for each of the three
comparisons). For the plants, however, the only significant differences were between
the response for Relation 1 and Relation 2 for Pcat2 (t.39/ D 2:12, p D 0:04) and
between Relation 2 and Relation 3 for Pcat2 (t.39/ D 3:08, p D 0:004), although
the differences for Pcat1 and Pcat3 are also in the expected direction.

In summary, the results of the noun-noun compound stage of the experiment
show that participants’ learning of the relations and their associations with beetle
and plant categories during training transferred to a task involving noun-noun
compound interpretation. This is important as it demonstrates how the interpretation
of compounds can be derived from information about how concept exemplars tend
to co-occur together.
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6.3 Modelling Relation Selection

People’s judgment of relation likelihood in the compound rating stage of Experi-
ment 3 was modelled in the same manner as for Experiment 2. Again, we evaluate
the model in two ways; the first method uses the data from the nine previously
seen items in the exemplar rating stage of the experiment as the representation
of people’s knowledge about the concept instances and how those instances tend
to co-occur with other concept instances, while in the second method we use the
actual category structure people were exposed to as the representation of exemplar
knowledge. The agreement between the model and the data was high across the three
relations (r D 0:87, p < 0:001, with optimal ˛ D 5). Looking at the three relations
separately revealed a high correlation for Relations 1 (r D 0:84, p < 0:001), 2
(r D 0:90, p < 0:001) and 3 (r D 0:88, p < 0:001). In the version of the model
using the actual association between the exemplar and the relation that was specified
in the abstract category structure there is still a high degree of agreement between
the model’s predications and the data (r D 0:80, p < 0:001, with ˛ D 3). Again,
the success of the model demonstrates quite convincingly that a model which is
based solely on information about exemplars can explain how people determine the
correct or most likely relations for noun-noun compounds.

7 Conclusions

The empirical findings we have described in this chapter have several important
implications. Firstly, the findings have implications for relation-based theories. In
particular, the finding that only beetle exemplars tended to influence relation selec-
tion in Experiment 3 (Fig. 3) suggests that factors other than relation frequency are
relevant to the interpretation process (since the beetle and plants in our experiment
were identical in their degree of association with relations). Complex interactions
between concepts and relations (e.g. agency in the EATS(AGENT,OBJECT) relation)
is information that is not possible to capture using a taxonomic approach to relation
meaning.

Secondly, the fact that participants could learn to identify the relations between
exemplars and also transfer that knowledge to a task involving compounds has
implications for concept-based theories of compound comprehension. No concept-
based theory of conceptual combination has ever adopted an exemplar approach
to concept meaning; models based on concept-focused theories tend to represent
concepts as frames or lists of predicates. Our approach suggests an exemplar
representation is a viable alternative. Also, distributional knowledge about relations
forms a natural component of an exemplar representation of concepts, as different
concept instances will occur with instances of other concepts with varying degrees
of frequency. Given the success of our model, assuming an exemplar representation
of concept semantics would seen to offer a natural way of incorporating both
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information about concept features and information about relation distribution into
a single theory.

Our exemplar-based approach to representing the relations used in conceptual
combination is also consistent with recent evidence suggesting that relations are
independent semantic representations that become active during the interpretation
process. For example, the semantic relations use in compound interpretation can
be primed, indicating that relations are semantic structures that exist independently
of the representations of the constituent concepts [42, 43]. These findings suggests
that relations are themselves complex semantic representations, like the concepts
that they link. By modelling both concepts and relations using exemplar-based
category structures, our approach provides a framework for modelling the semantic
complexity of relations, and provides an account for how intrinsic information
(i.e. feature diagnosticity and facilitating features) and extensional, distributional
information (i.e. the co-occurrence of concepts with relations) about relations
influence which relation is selected for a compound during the interpretation
process.
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language acquisition, have focused either on aspects of word learning, or grammar
learning. Work on intermediate linguistic constructions (the area between words
and combinatory grammar rules) has been very limited. Although recent usage-
based theories of language learning emphasize the role of multiword constructions,
much remains to be explored concerning the precise computational mechanisms that
underlie how children learn to identify and interpret different types of multiword
lexemes. The goal of the current study is to bring in ideas from computational
linguistics on the topic of identifying multiword lexemes, and to explore whether
these ideas can be extended in a natural way to the domain of child language
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1 Introduction

Traditional theories of grammar distinguish between lexical knowledge (the indi-
vidual words that a speaker knows) and grammatical knowledge (the rules for
combining words into meaningful utterances). However, there is a rich range of
linguistic phenomena in the less explored area between words and combinatory
rules/constraints. For example, a multiword lexeme such as take the train has
an idiosyncratic semantics (“use a train as mode of transport”) that suggests its
treatment as a lexical unit, since the meaning cannot be compositionally derived in
a general manner.1 But take the train also behaves as a syntactic phrase, undergoing
various alternative means of expression (e.g., took a train, take the fast train, take
trains all over Europe). Much research on language has thus focused on a range of
multiword lexemes such as idioms, light verb constructions, noun compounds, and
collocations (e.g., [15, 20, 22, 46, 48, 55, 76]). Psycholinguists have also shown the
importance of co-occurrence and contingent frequency effects between words, and
between words and syntactic patterns in the learning and processing of language
(e.g., [5, 57, 70, 72]).

In theories of language acquisition in particular, especially usage-based accounts
of language learning (which eschew complex innate linguistic knowledge), the
role of multiword constructions has been emphasized (e.g., [40, 41, 74]). However,
computational modelling of language acquisition has continued to focus on various
aspects of word learning (e.g., [33, 37, 49, 65, 77]), or grammar learning (e.g.,
[17,69]). Work on intermediate constructions has mostly been limited to identifying
general properties of verb argument usages (e.g., [3,4,13,18,23,61,63]), rather than
on multiword lexemes. Recent work by Borensztajn et al. [9] uses a probabilistic
model (in the DOP framework) to show that a grammar learner can progress from
highly lexicalized to multiword tree fragments, on the basis of statistical patterns in
the kind of input children receive. Bannard and Matthews [7] further give evidence
from human subjects that children are sensitive to the frequencies of multiword
sequences. These studies provide evidence that children recognize and produce
certain (e.g., high-frequency) multiword sequences in their input, but do not address
what sort of cues (other than, e.g., frequency) a child might use to identify, and treat
differentially, the various distinguished types of multiword lexemes suggested by
linguistic analyses.

Thus in the study of child language acquisition, much remains to be explored
concerning the precise computational mechanisms that underlie how children learn
to identify different types of multiword lexemes—that is, how they recognize that an
idiosyncratic semantics is associated with a sequence of words (rather than single
words plus combinatory rules), and how the idiosyncratic meaning relates to the
surface (lexical and syntactic) form of a particular combination. In contrast, there

1A compositional approach to take the train would depend on knowledge of a very specialized
meaning of take restricted to occur with a narrow range of objects, which is essentially an
alternative lexicalization of the necessary knowledge. See Fazly et al. [31] for a computational
approach to the restricted productivity of such expressions.



Child Acquisition of Multiword Verbs: A Computational Investigation 237

has been significant work in computational linguistics on this very topic, with the
development of statistical measures, both for identifying multiword lexemes in a
corpus, and for determining the syntactic and semantic behaviour of the particular
type of multiword lexeme in question (e.g., [8,19,21,25,28,30,43,50,53,67,71,75]).
The goal of our research here is to explore whether this computational work on
multiword lexemes can be extended in a natural way to the domain of child language
acquisition, where an informative cognitive model must take into account the two
issues of what kind of data the child is exposed to, and what kinds of processing of
that data is cognitively plausible for a child.

In pursuing these questions, we focus in particular on the acquisition of mul-
tiword verbs, such as take the train and give a kiss. These constructions are a rich
and productive source of predication which children must master in most languages,
doing so at very young ages [41]. For example, consider the following conversation
from the CHILDES database ([11], sarah130a.cha):

*MOT: you’re not gonna take any toys down to the beach today you know.
*CHI: why?

. . .
*MOT: we have to take the train.

Here, the mother uses the verb take first in its core literal meaning (in take any toys),
and then within a multiword lexeme in which take has a non-literal meaning and
combines with the particular argument to express the use of a mode of transportation
(in take the train). The child’s further responses within this conversation give no
indication that she is puzzled by these very different usages of take. Yet they do
pose a very significant puzzle for researchers: It has been noted that children learn
highly frequent verbs (such as take) first (e.g., [41]), and yet it is precisely these
verbs that are also the most polysemous, showing a wide range of metaphorical
sense extensions in multiword lexemes, which children recognize and deal with
effectively [16, 44, 73].

Research over the last few years has shown that the distinctions among literal
and non-literal verb–argument combinations (such as take the toys versus take the
train or take a nap) are in principle learnable based on statistics over usages of such
expressions (e.g., [30, 75]). However, such work depends on very large amounts of
data (from corpora on the order of 100 M words) and on sophisticated statistical
and grammatical calculations over such data. The goal here is to determine what
is learnable through the means available to a child—that is, on the basis of data in
child-directed speech and using simpler, cognitively plausible calculations.

We begin by summarizing the motivation and approach to deriving simple
statistics based on the linguistic properties of the multiword lexemes under study
(first presented in [32]). We then present new experiments that show that such
statistics can be informative in identifying such multiword lexemes in child-directed
speech. Then we turn to a novel approach for incorporating these statistical measures
into an existing model of word learning, to show further that such statistics can
be used within a natural process of word learning to associate a single meaning
with a sequence of words. In this way, we take a first step toward computational
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modelling of acquisition of the kinds of multiword verbs that children must master
early in language learning, shedding light on the mechanisms that could underlie a
usage-based model of this process.

2 Multiword Lexemes with Basic Verbs

The highly frequent and highly polysemous verbs referred to above include what are
called “basic” verbs—those that express physical actions or states central to human
experience, such as give, get, take, put, see, and stand, among others. These verbs
undergo metaphorical sense extensions of their core physical meanings that enable
them to combine with various arguments to form multiword lexemes [15,58,59,62].
We focus here on expressions in which a basic verb is combined with a noun in
its direct object position to form either a literal combination (as in take the toys)
or a multiword lexeme (such as take the train, take a nap). We refer to all such
expressions (both literal and non-literal) as verb–noun combinations or verb–noun
pairs, with the understanding that the verb is a basic verb.

Verb–noun combinations that form multiword lexemes are very frequent in many
languages (e.g., [1, 20, 45, 46, 51, 54]). Such expressions show a range of semantic
idiosyncrasy, where the semantics of the multiword lexeme is more or less related
to the semantics of the verb and the noun separately [38, 66]. Thus, verb–noun
combinations can be viewed as lying on a continuum (without completely clear
boundaries) from entirely literal and compositional, to highly idiomatic. However,
for convenience we can think of classes of constructions on this continuum, each
identified by a particular way in which the verb and the noun component contribute
to the meaning of the construction. Following [30], we consider four possible
classes; these are listed below with an example from the child-directed speech used
in our experiments along with some information about the semantic contribution of
the components of expressions in that class:

1. Literal combination or LIT

• Give (me) the lion

– Give: physical transfer of possession
– Lion: a physical entity

2. Abstract combination or ABS

• Give (her) time

– Give: abstract transfer or allocation
– Time: an abstract meaning

3. Light verb construction or LVC

• Give (the doll) a bath

– Give: convey/conduct an action
– Bath: a predicative meaning
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4. Idiomatic combination or IDM

• Give (me) the slip

– Give, slip: no/highly abstract contribution

These classes are important in the context of child language acquisition because
there is a clear connection between the linguistic properties of each class and the
meaning of the expressions in the class. Such a relation can enable language learners
to generalize their item-specific knowledge, for example by making predictions
about the meanings of new expressions based on their likely class. For example,
when a child hears a new expression such as give a shout, if she recognizes that
this is likely an LVC, then she can infer that it roughly means the same thing as the
noun—i.e., shout—which contributes the predicative meaning, and also infer any
other properties holding of LVCs more generally.2

The four classes of expressions above have differing linguistic behaviours that
can be cues to the underlying distinctions among the classes [30]. Specifically,
expressions from each class exhibit particular lexical and syntactic behaviour that
closely relate to the semantic properties of the class. We next elaborate on these
properties and behaviours, and describe how they can form the basis for statistical
measures for distinguishing the classes.

3 Linguistic Properties and the Usage-Based Measures

It has been shown that children are sensitive to the frequency of occurrence of
multiword sequences (e.g., [7]). However, simple co-occurrence frequency of a verb
and a noun (or measures of association between the two) do not suffice for accurate
identification of multiword verb–noun lexemes [29]. We thus further hypothesize
that children are also sensitive to the syntactic and semantic properties of each class
of verb–noun combination. As a first step to examining this hypothesis, we need to
verify whether information about such properties is available in the input children
receive, and whether the available information is useful for determining the semantic
class of a given combination. We note that there is some overlap in the properties
exhibited by the various non-literal classes. We thus further simplify our task here
by aiming to distinguish the non-literal expressions (those from ABS, LVC, IDM)
from literal ones (LIT). There is only one instance of an IDM in our data, hence in
our presentation of the measures here, we discuss the properties with respect to the
ABSCLVC classes.

As noted earlier, computational linguistic studies have developed sophisticated
statistical measures based on such properties, which have achieved success in
identifying non-literal combinations when evaluated on large amounts of text corpus

2For example, adult competence with the language includes the knowledge that this refers to a
single occurrence of a bounded ‘shouting’ action [12, 76].
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data (e.g., [28, 30]). Given the hypothesized importance of simplicity in language
learning (c.f. [60]), our goal here is to use simpler measures (tapping into similar
properties) that are more cognitively plausible, and that are robust when used with
smaller amounts of child-directed speech (CDS). We note that some of the measures
explained in this section are taken and adapted for this purpose from Fazly [29]. The
resulting measures fit into three groups based on the linguistic properties of the verb
and the noun in a verb–noun combination: the degree of association of the verb and
noun, the semantic properties of the noun, and the degree of syntactic fixedness of
the expression.

3.1 Association of a Verb–Noun Pair

In a literal verb–noun combination, where the verb contributes its core physical
semantics, a wide variety of nouns can occur as the noun component (e.g.,
one can give an apple, a book, a car, a dog, etc.). In contrast, in a non-
literal combination, the verb has an abstract and/or metaphorical meaning and
hence can combine with a set of nouns that is semantically, and somewhat
idiosyncratically, restricted (e.g., give a groan/cry/yell, but not give a gripe, [31]).
Moreover, the latter group of nouns often contribute a specific abstract meaning
to the combinations they appear in, and hence may not occur as the direct
object of other verbs as frequently as do concrete nouns. As a result, we expect
the verb and the noun component in non-literal expressions to co-occur more
often compared to the components of literal combinations [14, 27]. Below we
explain two different measures capturing the marked frequency of a verb-noun
pair.

Frequency. The simplest way to measure the association of a verb and a noun is
by the frequency of co-occurrence of the verb–noun pair hv; ni, as in:

Cooc.v; n/ � freq.v; n; gr D dobj/ (1)

where gr D dobj indicates that the noun is the direct object of the verb. We assume
that children are able to keep track of simple counts of such verb–noun pairs.

Conditional Probability. Although non-literal expressions are expected to co-
occur more often compared to literal expressions, the co-occurrence of some literal
expressions is also significant (e.g., take the toy in child-directed speech). However,
the noun in a non-literal expression generally does not occur with as diverse a set
of verbs as a noun in a literal expression. For example, apple can be used in many
literal expressions with different verbs: give the apple, take the apple, eat the apple,
and wash the apple, whereas decision only occurs in one non-literal verb–noun
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combination: make a decision.3 In other words, while the verb in a LIT expression
is typically thought of as selecting for a noun in direct object position, in a non-
literal expression the noun can be viewed as selecting for a verb (e.g., [24, 43]). We
measure this property by computing the conditional probability of a verb–noun pair
given the noun (CProb).

CProb.v; n/ � P.vjn; gr D dobj/

D freq.v; n; gr D dobj/P
v0 freq.v0; n; gr D dobj/

(2)

This measure is still a very simple one for children, since it is composed of two
frequency counts, although we should note that it does assume that children are able
to keep track of the count of a noun as the direct object of any verb.4

3.2 Semantic Properties of the Noun

There is evidence that children are sensitive to the semantic differences between
the nouns in a literal versus non-literal verb–noun combination [64]. For example,
whereas the noun in a non-literal verb–noun combination is often non-referential,
abstract, and/or predicative (as in take time and give a hug), the noun in a literal
combination tends to be referential and concrete (as in take the toys and give
a banana). Earlier work has used WordNet [35] to estimate non-referentiality
and predicativeness by looking at the noun’s position in the taxonomy, and its
morphological relation to a verb [30]. However, WordNet’s conceptual and lexical
organization most likely does not reflect that of a child. Next, we explain two
measures that instead aim to capture these properties with simple statistics over
the surface behaviour of the noun.

Non-referentiality. Non-referential nouns (such as those in non-literal expres-
sions) tend to appear in particular syntactic forms [42]—typically preceded by an
indefinite determiner (such as a/an) or no determiner [34, 76]. Moreover, it has
been shown that children indeed associate certain semantic properties with surface
syntactic forms [10]. Here we assume that a noun is recognized as non-referential
to the extent that it occurs in this preferred pattern of determiner use, i.e.:

3The choice of verb can vary among dialects of the language; for example, British speakers
typically say take a decision instead of make a decision and have a nap instead of take a nap.
4Although it remains to be tested whether children actually do this, a construction grammar
approach to language acquisition, as in Goldberg [41], supports this type of calculation, since
the learner would keep track of which nouns can occur in which constructions.
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NRef.n/ � P.ptnref j n/ D freq.n; ptnref /

freq.n/
(3)

where ptnref = hdet:a/an/ NULL ni, freq.n; ptnref / is the frequency of occurrence of
n in pattern ptnref , and the denominator estimates the frequency of n in any pattern.
Note that we look at all occurrences of a noun irrespective of its grammatical relation
to a verb; this is thus a simple relative frequency for a child to determine: of the
instances she sees of this noun, what proportion are in this particular pattern.

Predicativeness. In a non-literal verb–noun combination, such as make a deci-
sion, the predicative meaning is contributed mainly by the noun component, i.e.,
decision. Moreover, in such expressions the noun is often morphologically related
to a verb (e.g., decision as the nominalized form of decide). To capture this property,
previous work has looked at whether the noun has a morphologically-related verb
form [30]. We cannot assume that full knowledge of morphology is in place before a
child starts learning about non-literal expressions. But it has been shown that young
children can accurately predict whether a word is used as a verb or a noun in a given
context [10]. We thus measure predicativeness of the noun n in a verb–noun pair as
the relative frequency of the form n (e.g., push in give a push) being used as a verb
(as in, e.g., push the door).

Pred.n/ �
freq.nV /

freq.nV / C freq.nN /
(4)

where freq.nV / is the frequency of the form n appearing as a verb, and freq.nN / is
the frequency of the form n appearing as a noun.

3.3 Degree of Syntactic Fixedness

Young children show evidence of learning associations between a complex syntactic
form and a specific semantic interpretation (e.g., [36, 70]). It is thus reasonable to
assume that children can use the information about the surface syntactic behaviour
of a verb–noun combination to identify its semantic class. Here we devise statistical
measures that aim at capturing the differing syntactic behaviour of non-literal and
literal combinations.

Non-literal expressions are known to have a fixed syntactic structure and not
occur in a variety of forms [20,26]. More specifically, ABSCLVC expressions, while
allowing some variation, are relatively restricted compared to LIT expressions. For
example, an LVC such as give a shout allows limited noun and determiner variation;
e.g., give some shouts and give the shout are not as acceptable as give a shout. This
is also true for ABS expressions. For example, take a time and take times are not
recognized as acceptable variations of take time. In contrast, literal expressions are
generally much more syntactically flexible, e.g., take an apple, take the apple, and
take three apples are all acceptable.



Child Acquisition of Multiword Verbs: A Computational Investigation 243

Although there is some variation, most LVC and ABS expressions appear in the
form ptfixed D hv det: a=an=NULL ni. (Note that the noun is in the same pattern as
for NRef above; the difference is that here the focus is on the degree to which
the particular verb–noun combination leads to the use of that pattern for the
noun.) Measures of this type of syntactic fixedness have required keeping track of
probability distributions over a wide range of items and patterns [6, 30]. Here, we
estimate the degree of syntactic fixedness of a target verb–noun combination with a
much simpler measure—the relative frequency of the pair in the preferred pattern:

Fixed.v; n/ � P.ptfixedj v; n; gr D dobj/

D freq.v; n; gr D dobj; ptfixed/

freq.v; n; gr D dobj/
(5)

Children appear to store specific information about the frequency of occurrence of
multiword sequences in general (e.g., [7]), and about verb–argument structures in
particular (e.g., [41, 74]). We thus expect the above calculations to be plausible for
children.

We have described five simple statistical measures that may be plausible for chil-
dren to keep track of. In the remainder of the paper, we first present experiments that
evaluate how well the measures can identify non-literal verb–noun combinations in
child-directed speech, and then describe extensions to a word learning model that
enable it to learn the meaning of such expressions by incorporating these statistical
measures.

4 Evaluating the Statistical Measures

In this section, we present two types of experiments to determine the potential of our
statistical measures to identify non-literal verb–noun combinations in child-directed
speech. Each of our measures assigns a numerical score to the expressions that
reflects one of the linguistic properties that may be useful to a child in determining
which are literal and which are non-literal. To evaluate their effectiveness, we first
(in Sect. 4.2) apply a hierarchical agglomerative clustering algorithm that uses the
scores to separate all the experimental expressions into two clusters, and then see
how closely those clusters correspond to the actual labels on the expressions as LIT,
or as ABSCLVC. Since we assume that, in any learning situation, a combination
of the cues might be at work, we use all five measures as input to the clustering
algorithm.

The clustering results thus show the effectiveness of the measures working
together to separate non-literal from literal combinations. We further analyze (in
Sect. 4.3) each individual measure in its ability to separate literal and non-literal
expressions, in order to better understand how relevant each measure is to the
identification of multiword lexemes. We begin by presenting the details of the
experimental data and evaluation methods.
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4.1 Experimental Setup

Corpus. To gather input for our experiments, we use the American English
section of the CHILDES database [52], removing 16 corpora that either lack child-
directed speech (CDS) or belong to a special group with a particular language use
(e.g., socio-economically distinguished). All the data are automatically parsed with
the parser of Sagae et al. [68]. Because we are interested in what is learnable from
input a child is exposed to, the statistics for all experiments are extracted from
CDS. The size of the CDS portion of the corpus is about 600; 000 utterances, which
contain nearly 3:2 million words (including punctuation).

Experimental expressions. In this work we focus on two basic verbs, take
and give, because they are highly polysemous and frequently used in verb–noun
combinations [15]. We extract verb–noun combinations that contain these verbs
from the CDS portion of the data. The final expression list that is used in the
experiments includes those verb–noun pairs with a frequency of at least 5. In
some experiments, we further restrict the data to higher-frequency verb–noun
combinations, i.e., those occurring at least 10 times. Dealing with low-frequency
items is important in modeling child language acquisition, and here we vary the
relatively low cutoff to see if it helps to have more items. The final list of expression
types was annotated by a native English speaker with four classes: LIT, ABS, LVC,
and IDM. Note that we consider expression types, not tokens. Thus, if a verb–noun
combination had usages that fall into more than one class, the annotator chose the
class that seemed to reflect the predominant usage.5 Invalid expressions (due to
parsing errors) and the single instance of an IDM were removed from the expression
list. Table 1 presents the number of expressions in each class, as well as the total
number of non-literal expressions (ABSCLVC).

Evaluation. To evaluate the clustering experiments, we assign to each resulting
cluster a label (either LIT or ABSCLVC), which is the label of the majority of items
in the cluster, and calculate accuracy (Acc) and completeness (Comp) as measures
of the goodness of the cluster. Accuracy gives the proportion of expressions in a
cluster that have the same label as the cluster; completeness gives the proportion
of all expressions with the same label as the cluster that are actually placed in that
cluster. (Note that Acc is similar to precision, and Comp to recall.)

Recall that our measures are designed such that each is expected to be higher
for the non-literal expressions than for the literal ones. In evaluating the measures
individually, we can thus use each measure to rank the expressions and see whether
ABSCLVC expressions are generally ranked higher than LIT ones. We do this for

5For example, the verb–noun pair give-hand may occur as an ABS usage (give me a hand cleaning
up) or as a LIT usage (give me Mr. PotatoHead’s hand or give me your pretty hands). In most cases
of such potential ambiguity, the annotator had a clear intuition of which would be the predominant
usage, since the alternative would be odd to find in CDS. In some cases, such as give-hand, the
actual corpus usages were examined to determine the most frequent class.
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Table 1 A detailed breakdown of the experimental expressions

Vb Total LIT ABS LVC ABSCLVC

198 expressions with freq � 5

take 108 77 18 13 31 (29 %)
give 90 73 7 10 17 (19 %)
take and give 198 150 25 23 48 (24 %)
98 expressions with freq � 10

take 57 38 8 11 19 (33 %)
give 41 30 4 7 11 (27 %)
take and give 98 68 12 18 30 (31 %)

take and give expressions separately, and for all expressions together. We use a
standard evaluation metric, namely average precision (AvgPrec), which reflects the
goodness of a measure in placing expressions from the target classes (ABS and LVC)
before those from the other class (LIT), and is calculated as the average of precision
scores at different thresholds.

We also compare the performance of each measure against a baseline which
reflects how hard the task is. We randomly assign a value between 0 and 1 to each
expression in a set, generating a random ranked list. We repeat this process 1; 000

times and report the average of the AvgPrec values for each of these random lists
as our baseline. We also calculate the relative error rate reduction (ERR) of each
measure over the random baseline. To calculate ERR for a measure, we divide the
difference between the error rates of the measure and the baseline by that of the
baseline.

4.2 Measures in Combination: Clustering

Results of the clustering experiments are shown in Table 2. We can see that Acc for
non-literal expressions is high only for the higher-frequency expressions (compare
C2 in each panel of the table). We also see that literal expressions are better separated
than non-literal ones since their Comp score is much higher (compare C1 and C2 for
each panel of the table). Looking closely at the number of expressions of different
labels (LIT, LVC, and ABS) in each cluster, it is clear that ABS expressions are more
mixed with LIT expressions compared to LVC ones. Consequently, the measures are
better in separating LVC from LIT than ABS from LIT.

We performed two-way clustering on the assumption that a two-way distinction
would be easier for the measures than a three-way distinction. However, the poor
performance on ABS expressions may be due to a weakness of the measures, or
may be due to a need for three clusters to capture the pattern in the data. We thus
also performed a three-way clustering to examine the goodness of measures in
dividing expressions into ABS, LVC, and LIT classes (see Table 3). According to
the results, ABS expressions do not form a separate cluster, and are again mixed in
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Table 2 Two-way clustering results. Ci represents Cluster i ; Label
is the majority class in the cluster; Acc and Comp are explained in
the text

LVC ABS LIT Label Acc (%) Comp (%)

On 198 expressions with freq � 5

C1 1 13 122 LIT 90 81

C2 22 12 28 ABSCLVC 55 71

On 98 expressions with freq � 10

C1 1 9 65 LIT 87 96

C2 17 3 3 ABSCLVC 87 67

Table 3 Three-way clustering results. Ci represents Cluster i ;
Label is the majority class in the cluster; Acc and Comp are
explained in the text

LVC ABS LIT Label Acc (%) Comp (%)

On 198 expressions with freq � 5

C1 3 7 27 LIT 73 18

C2 1 13 122 LIT 90 81

C3 19 5 1 LVC 76 83

with the LIT and LVC clusters. Future work will need to verify whether this is due
to an inconsistent annotation of the ABS expressions, or because our measures do
not adequately capture properties of this class. Interestingly, however, a three-way
clustering results in forming a more coherent LVC class: compare Acc and Comp for
C3 in Table 3 with those for C2 in the top panel of Table 2.

4.3 Performance of the Individual Measures

We test the performance of each measure, for take and give expressions separately,
and for all the expressions with take and give. The results in Table 4 show that all
measures perform better than the baseline (at separating non-literal expressions from
literal ones), with CProb, Pred, and Fixed having the best performance. These results
suggest that simple statistical measures that draw on specific linguistic properties of
non-literal verb–noun combinations—measures which are plausible for children to
keep track of—can indeed be effective in recognizing non-literal expressions.

We also observe that, in general, our measures perform better on the expressions
composed with take than the expressions with give. A possible explanation is that
the give expressions are more complicated, because give more often occurs in a
double object construction (in comparison to take). It remains to be tested whether
children also show more difficulty in learning give expressions.

Looking at performance on higher-frequency expressions, we see that all mea-
sures show an improvement. However, note that only for two of the measures
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Table 4 Performance (AvgPrec) of the individual measures. The
numbers in parentheses show the ERR of the measures for take and
give expressions combined

Measure take give take and give

On 198 expressions with freq � 5

Baseline 0:28 0:19 0:24

Cooc 0:53 0:38 0:51 .0:35/

CProb 0:65 0:47 0:56 .0:42/

NRef 0:49 0:33 0:40 .0:21/

Pred 0:59 0:54 0:59 .0:46/

Fixed 0:66 0:44 0:56 .0:40/

On 98 expressions with freq � 10

Baseline 0:33 0:27 0:31

Cooc 0:57 0:41 0:54 .0:34/

CProb 0:71 0:57 0:64 .0:48/

NRef 0:62 0:49 0:55 .0:35/

Pred 0:68 0:59 0:67 .0:52/

Fixed 0:84 0:56 0:71 .0:58/

(NRef and Fixed) the gain in performance is substantially more than the increase in
the baseline performance. These two measures summarize the syntactic behaviour
of a word or a combination by examining all their usages. For higher-frequency
expressions (with more usages), it is possible that the evidence available for these
measures is more reliable, resulting in better performance.

5 Embedding the Measures into a Word Learning Model

The results presented so far suggest that simple statistics over the usages of a
verb–noun combination (and its components) have the potential to provide useful
cues for a child to identify non-literal expressions. We need to explore further
how children learning the vocabulary of their native language might use such
statistical cues to recognize that certain combinations of words in their input actually
form multiword lexemes. We investigate this issue by incorporating (some of) the
statistical measures into the operations of an existing computational model of early
word learning in children, namely, that of [33].

We first give a brief overview of the original word learning model in Sect. 5.1
(we refer the interested reader to [33] for a full explanation of this model). When
processing a multiword lexeme, such as take a nap, the original model finds
a meaning for each individual word (take, a, nap) just as it does for a literal
combination of words, such as take any toys. There is no mechanism for the model
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to associate a single meaning with the sequence of words take a nap.6 We thus add
a preprocessing step, described in Sect. 5.2, in which the model draws on statistics
collected thus far to decide whether a given sequence of words in the input utterance
should be considered as a multiword lexeme. Section 5.3 presents an evaluation of
the new model with respect to the acquisition of multiword lexemes of the form
verb–noun.

5.1 The Original Word Learning Model

We use the model of Fazly et al. [33], which is a probabilistic incremental model
of cross-situational word learning in children. The input to the model is a list of
pairs of an utterance (what the child hears, represented as a set of words) and a
scene (what the child perceives or conceptualizes, represented as a set of meaning
symbols), as in:7

Utterance: Joe is happily eating an apple
Scene: JOE, IS, HAPPILY, EAT, A, APPLE

The model incrementally learns a meaning for each word in the input as a
probability distribution over all meaning symbols, P.mjw/, referred to as the
meaning probability of the word, as in:

Prior to receiving any usages of a given word, the model assumes that all symbols
have equal probability as its meaning. The model then updates the meanings of
words by processing each utterance–scene pair in two steps.

As the first step in processing an input utterance–scene pair, the model, like
children, must determine which meaning symbol in the scene is associated with

6The original model of Fazly et al. treats utterances as unordered bags of words, ignoring syntactic
information. Syntax is arguably a valuable source of knowledge in word learning in children (e.g.,
[39,56]). In a preliminary study, Alishahi and Fazly [2] also show that the word learning model can
potentially benefit from knowledge of syntactic categories. Such information might be necessary
for the acquisition of multiword lexemes, and should be further investigated in the future.
7Following Fazly et al. [33] we assume that words such as a and is also have corresponding
meaning symbols in the scene. Such words are often considered by linguists to mainly have a
grammatical function. However, it is reasonable to assume that language learners perceive some
aspects of their meaning (e.g., definite/indefinite for a determiner such as a, and state/action for the
verb be) from the scene.
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each word in the utterance. (Note that the input does not indicate which meaning
goes with which word.) This process is called the alignment of words and meaning
symbols. Alignment is probabilistic, so that each word is aligned more or less
strongly with each meaning, according to the model’s partially-learned knowledge
of meaning probabilities as calculated thus far. Specifically, the probability of
aligning a meaning symbol and a word in the current input is proportional to
the current meaning probability of that meaning symbol for the word, and is
disproportional to the meaning probabilities of the meaning symbol and the other
words in the utterance. That is, a word w and meaning m are strongly aligned if
P.mjw/ is relatively high and P.mjw0/ is relatively low for other words w0 in the
utterance.

As the second step, the meaning probabilities of the words in the current
utterance are updated according to the accumulated (probabilistic) evidence from
prior co-occurrences of words and meaning symbols (reflected in the alignment
probabilities). This evidence is collected by maintaining a running total of the
alignment probabilities over all input pairs encountered so far, yielding an accumu-
lated frequency of co-occurrence of a word–meaning pair, weighted by the strength
of alignment between the two each time they are observed together. Meaning
probabilities for current words are then re-calculated from these incrementally-
accumulated alignment probabilities.

5.2 Learning the Verb–Noun Multiword Lexemes

The approach described above learns a separate meaning probability distribution
for each word. To enable the model to learn a meaning distribution for a verb–noun
combination such as give a kiss, the model must be able to identify the expression as
a single unit of meaning. To achieve this, we add an input pre-processing step to the
original model and slightly modify the way alignment probabilities are calculated.

We assume that upon receiving an utterance–scene pair containing any verb–
noun combination (literal or non-literal), a learner (here the model) simultane-
ously considers two possible interpretations: That the verb–noun combination is a
multiword lexeme, or that the combination is literal. That is, when the original model
receives an input such as:

U W give me a kiss
S W GIVE, ME, A, KISS

our modified model will also consider the alternative interpretation in which the
verb and noun form a single unit of meaning:

U0 W give-kiss me a
S0 W ME, A, GIVE-KISS

This alternative interpretation is created by merging the verb and the noun into a
single word (give-kiss), and by creating a new meaning symbol for the associated
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event (GIVE-KISS). We assume that the learner has a certain confidence in either
of these interpretations given what has been learned about words and meanings
in the input thus far. Specifically, the learner calculates a probability probmwl.v; n/

which reflects its confidence that the verb–noun combination in the utterance is
a non-literal multiword lexeme, as in (U0–S0) above. This probability combines
the two statistical measures, namely CProb and Pred, which were the best in
separating literal and non-literal expressions in our earlier experiments.8 More
formally, probmwl.v; n/ is computed as in:

probmwl.v; n/ D ˛ 	 CProb.v; n/ C .1 � ˛/ 	 Pred.n/

where ˛ is set to 0:5, weighting the evidence from the two statistical measures
equally. Thus, the interpretation that a verb–noun combination is a multiword
lexeme, as in (U0–S0) above, is assigned a confidence score equal to probmwl.v; n/,
and the other interpretation, as in (U–S) above, is given the confidence score of
1 � probmwl.v; n/.

Whenever there is a verb–noun pair in an utterance, we calculate separate
alignment probabilities over two possible utterance–scene pairs corresponding to
the two interpretations. The two sets of alignment probabilities are then combined,
using probmwl.v; n/ as a weight, to get a single alignment probability for each word
and meaning symbol in the input pair:

align.wjm/ D probmwl.v; n/ 	 align1.wjm/

C.1 � probmwl.v; n// 	 align2.wjm/

Note that for a w–m pair that occurs only in one interpretation (e.g., give-kiss–
GIVE-KISS), its alignment would be zero in the other interpretation. This means
that the learner aligns each word and meaning symbol to the extent that it is
confident that the corresponding interpretation is accurate. The modified alignment
probabilities are then used to calculate the meaning probabilities as in the original
model.

5.3 Experiments on the Modified Word Learner

We expect the modified word learning model to learn a single meaning for non-
literal verb–noun pairs but not for literal ones. That is, we expect a meaning
probability such as P.GIVE-KISSjgive-kiss/ to be high, since give-kiss is a multiword
lexeme that expresses a kissing event. By contrast, P.GIVE-PRESENTjgive-present/

8We did not incorporate the Fixed measure into this probability, because this measure needs to
consider the usage pattern across several occurrences, and many of the experimental items in this
corpus have frequency of only 1 or 2.
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Table 5 The number and percentage of
verb–noun combinations in each class that
are learned correctly: i.e., as literal for the
LIT class, and as non-literal for the ABS and
LVC classes

Class Size Learned correctly
Number Percentage (%)

LIT 115 105 91

ABS 24 8 33

LVC 32 24 75

should be low, since give a present is literal with individual associations of give to
GIVE and present to PRESENT.

We use the same data as in Fazly et al. [33]: 180; 499 utterance–scene pairs,
where the utterances are taken from the Manchester corpus in the CHILDES
database [52], and the scene representations are automatically constructed using an
input-generation lexicon containing a symbol as the meaning of each word. Because
the Manchester corpus is British English and some American English verb–noun
multiword lexemes with take occur with other basic verbs in British English, we
only consider the verb–noun combinations with give in the current experiments.
Since children can learn meanings of very low frequency words, we do not apply a
frequency cut-off, but rather consider all verb–noun combinations with give in the
corpus. The number of LIT, ABS, and LVC expressions used in our experiments is
shown in Table 5.

In Fazly et al. [33], a word–meaning pair is considered learned if the probability
of the correct meaning given the word is above 0:7. This is a somewhat arbitrary
cut-off, but to be consistent we use the same threshold. We say that a verb–noun
combination with verb and noun is “learned as a multiword lexeme” if the probabil-
ity P.VERB-NOUNjverb-noun/ is above this threshold—that is, the combination of
the verb and noun words are associated with a single (correct) meaning. We say that
a verb–noun combination is “learned correctly” if the combination is non-literal and
is learned as a multiword lexeme, or the combination is literal and is not learned as
a multiword lexeme. To evaluate the model’s ability in learning multiword lexemes,
we look at the proportion of expressions from each class that are learned correctly;
see Table 5.

The results in Table 5 show that the model performs very well on the LVC and
LIT expressions (75 % and 91 %, respectively), but only a small proportion (33 %)
of the ABS expressions are learned correctly. A closer look at the results shows
that many of the non-literal expressions with a low frequency of 1 are not learned
correctly. This includes 46 % of LVC expressions with frequency 1, and 85 % of ABS

expressions with frequency 1. This finding is in line with what has been observed
in children: that children are faster at producing more familiar (frequent) multiword
sequences [7]. It remains to be tested whether children also are unable to learn some
of these MWEs (as MWEs) from a single exposure.
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6 Conclusions

Our results confirm that simple statistical measures that draw on linguistic properties
of non-literal expressions are useful in identifying them. The best measure for give
and take expressions is Pred, i.e., the normalized frequency of the usages of the
noun as a verb. The success of this measure indicates that the predicativeness of the
noun is a salient property of non-literal verb–noun combinations. The goodness of
CProb in identifying non-literal expressions suggests that the verb–noun pair in such
expressions is more entrenched compared to literal ones and exhibits collocational
behaviour. However, collocational behaviour alone is not a very good indicator of
non-literal expressions; the CProb measure consistently outperforms Cooc (which
only quantifies the entrenchment of the verb–noun pair). The key difference between
these two measures is that in CProb, we also measure the degree that the noun selects
for the appropriate verb. The Fixed measure which looks at a specific syntactic
pattern for non-literal expressions performs as well as CProb for all expressions,
but is the best measure for expressions having frequency of at least ten, for which
there is sufficient evidence of typical syntactic usage.

Our measures are generally better for higher-frequency expressions. However,
two of the best measures (Pred and CProb) perform well on both expressions with
frequency of at least 5 and higher-frequency expressions, suggesting that children
might be able to learn verb–noun combinations even with very little input. Our
results also show that the performance of our measures is better for take expressions
compared to give. The Fixed measure especially performs well on take, but less well
on give, suggesting that the more complex syntactic constructions that give appears
in (e.g., the double object construction) may cause children difficulty.

We also integrate our measures into a word learning model, and show that the new
model can successfully learn the meaning of many LVC expressions. Future work
will need to further investigate why it is harder for the model to learn the meaning
of ABS expressions. In the experiments presented in this article, we have focused
on a small number of verb–noun combinations (namely, 117) formed around one
particular verb (i.e., give). To better understand the generalizability of our findings,
future research will need to extend these experiments to other verbs (e.g., take) and
to other types of multiword lexemes (e.g., noun compounds).

Another limitation of the model is that it learns word meanings by mapping
each word to a distinct ‘concept’ (e.g., give-kiss must be mapped to GIVE-KISS).
In the future, we need to use a richer semantic representation where each concept
is comprised of finer-grained semantic primitives. The use of such a representation
would enable the model to determine semantic similarities among words (e.g., the
similarity between the meaning of the expression give-kiss and that of the verb kiss),
which would further allow it to make generalizations across different types of lexical
items.
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Starting from Scratch in Semantic Role
Labeling: Early Indirect Supervision

Michael Connor, Cynthia Fisher, and Dan Roth

Abstract A fundamental step in sentence comprehension involves assigning
semantic roles to sentence constituents. To accomplish this, the listener must parse
the sentence, find constituents that are candidate arguments, and assign semantic
roles to those constituents. Where do children learning their first languages begin
in solving this problem? To experiment with different representations that children
may use to begin understanding language, we have built a computational model for
this early point in language acquisition. This system, Latent BabySRL, learns from
transcriptions of natural child-directed speech and makes use of psycholinguistically
plausible background knowledge and realistically noisy semantic feedback to
improve both an intermediate syntactic representation and its final semantic role
classification. Using this system we show that it is possible for a simple learner in a
plausible (noisy) setup to begin comprehending the meanings of simple sentences,
when initialized with a small amount of concrete noun knowledge and some simple
syntax-semantics mapping biases, before acquiring any specific verb knowledge.

1 Introduction

When learning their first language, children must cope with enormous ambiguity
in both the meaning and structure of input sentences. Ultimately, children must
select candidate meanings by observing the world and align them with the sentence
presented in the input. They must do so without already knowing which parts of the
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sentence refer to which parts of their conceptual representations of world events.
Even worse, the child must also identify the ways in which structural aspects of
sentences, which are not clearly displayed in the surface form of the utterance,
convey aspects of the relational meanings of those sentences. For example, phrase
order or case marking identify the roles that particular constituents play in the
sentence’s meaning, thus conveying who does what to whom. Despite both of
these sources of ambiguity, semantic and syntactic, children do learn to interpret
sentences, and do so without detailed feedback about whether their interpretations,
or their hypothesized syntactic structures, were correct. When faced with an
ambiguous world, and with word-strings rather than sentence structures, how can
learners begin to identify and interpret the syntactic structures of sentences?

The ambiguity of word-strings as evidence for syntax is a nearly universally
recognized problem for language acquisition. But the ambiguity of scenes as
evidence for sentence meaning is sometimes overlooked. To illustrate, take the
sentence “The girl tickled the boy,” accompanied by a scene in which a boy and
girl play together, and at some point the girl does tickle the boy. Any scene offers
up a host of candidate interpretations, both related and unrelated to the target event
described by the sentence. These might include the boy and girl playing, the boy
squirming and giggling, the girl giggling, background facts about the boy or girl
that might be of interest (e.g., “You know that girl from preschool.”), and so forth.
Among the available construals might be some that are very difficult to tease apart
based on even an extended sequence of suitable scenes. For example, scenes of
‘giving’ nearly always also involve ‘getting’, scenes of ‘chasing’ involve ‘fleeing,’
and scenes of ‘putting’ an object in a location also imply that the object ‘goes’ into
that location. The basic predicate-argument semantics of a sentence are not simple
descriptions of scenes, but rather express the speaker’s selected perspective on that
scene (e.g., [19]). It is up to the speaker to direct the attention of the child listener to
the correct interpretation, through various means such as looking, gestures [66] and
the sentence itself.

In this chapter we develop a computational language learner that must cope
with this ambiguity of both scene and sentence in learning to classify abstract
semantic roles for verbal predicate arguments. This computational learner, our
‘Latent BabySRL’, learns from child directed speech transcripts and ambiguous
semantic feedback, treating an intermediate syntactic representation as a latent
structure that must be learned along with the semantic predictions. This system
allows us to test various plausible sources of knowledge and representation for
the child learner, showing that simple structural cues regarding the identification
of nouns are necessary for disambiguating noisy semantics.

1.1 Addressing the Ambiguity of Sentences and Scenes:
Semantic and Syntactic Bootstrapping

A vivid illustration of the ambiguity of scenes comes from ‘human simulation’
experiments devised by Gleitman and colleagues to investigate word learning based
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on observations of accompanying scenes [40, 80]. In these experiments, adult
observers watched video-clips of mothers interacting with toddlers. In each video-
clip, the mother had uttered a common noun or verb; the soundtracks of the videos
were removed and participants heard only a ‘beep’ at the point in each video when
the target word had been spoken. The observer’s task was to guess what word the
mother had said. Observers saw a series of such clips for each target word; thus
they had opportunities for cross-situational observation. Participants were much
more accurate in guessing the target nouns than the verbs. Performance with verbs
improved considerably, however, when participants also received information about
the sentence structures in which the verbs occurred. These results suggest that scene
observations are systematically less informative for learning verbs than for learning
nouns. The referents of many concrete nouns can be identified via scene observation
alone, but verb referents are typically more abstract (i.e. less ‘imageable’) [40], and
therefore naturally harder to observe in scenes. Efficient verb learning depends on
support from sentence-structure cues.

On the other hand, despite the ambiguity of scenes, it is clear that a substantial
part of the evidence required to learn a language must come from observing
events. Only by observing words used in appropriate referential contexts (e.g.,
‘feed’ when feeding is relevant, ‘cookie’ when cookies are relevant) could children
attach appropriate semantic content to those words. For this reason, theories of
language acquisition routinely assume that learning to use words and syntax in
sentence interpretation is a partly supervised task, where the supervision comes
from observation of world events: For each input sentence, learners use their existing
knowledge of words and sentence structure to generate a possible meaning; the fit
of this meaning with the referential context provides feedback for improving the
child’s lexical and grammatical knowledge. We would argue, however, that most
theories or models of language acquisition finesse the true ambiguity of observation
of world events, by assuming that the child has access to the correct interpretation
of input sentences some substantial proportion of the time – often enough to support
robust acquisition (e.g.,[14, 70, 83]).

The semantic bootstrapping theory is a special case of such accounts [70, 71].
The semantic bootstrapping theory focuses on the ambiguity of word-strings as
evidence for syntactic structure, and proposes that learners are equipped with innate
links between semantic and syntactic categories and structures; these links allow
them to use semantic evidence to identify words and structures that are of particular
syntactic types in their native language. To take a simple example, children might
infer that words referring to entities in the world are nouns, or that a phrase referring
to an agent of action in the main event described by an input sentence is the
grammatical subject. On this account, access to word and sentence meaning (derived
from scene observations) plays a privileged role in identifying syntactic structure,
with the aid of innate links between syntax and semantics. To return to our ‘tickle’
example, the child would use previously acquired knowledge of the content words
in this sentence (‘girl’, ‘boy’, and ‘tickle’) to choose the relevant construal of the
scene. Via semantic bootstrapping, the child would then infer that the noun-phrase
naming the agent of tickling should be the grammatical subject of the sentence.
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The sentence “The girl tickled the boy” would then yield a data point that the child
could begin to use to determine where to find the grammatical subject in English
sentences.

The syntactic bootstrapping theory [54,65], in contrast, focuses on the ambiguity
of scenes, particularly with regard to learning the abstract relational meanings of
verbs and of sentence-structural devices such as word order or case marking [40].
Syntactic bootstrapping proposes that children use partial knowledge of sentence
structure to select likely meanings of input sentences; by doing so they gain
access to syntactic support for verb learning. Like semantic bootstrapping, syntactic
bootstrapping requires that the learner have access to links between syntax and
semantics; for syntactic bootstrapping to play a role in the initial creation of a
lexicon and grammar, some of these links must be innate. The nature of these links is
typically assumed to follow from the fundamental nature of the relational meanings
of verbs [34, 40, 54, 65]: Verbs are argument-taking predicates, and the number of
semantic arguments required to play out the meaning of each verb is systematically
related to the phrasal structure of sentences containing that verb (e.g., [55, 71]).
In our ‘tickle’ example, the presence of two noun-phrase arguments in the target
sentence “The girl tickled the boy” is clearly no accident, but reflects the underlying
predicate-argument structure of the verb.

1.2 How Could Syntactic Bootstrapping Begin?

But given the dual problem we started with, the rampant ambiguity of both word-
strings and scenes, how could any aspects of sentence structure begin to guide
sentence interpretation without considerable prior learning about the syntax and
morphology of the native language? The ‘structure-mapping’ account of the origins
of syntactic bootstrapping [35] proposes one way in which sentence structures might
first guide sentence interpretation, even before children learn much about the syntax
of the native language.

First, the structure-mapping account proposes that children are predisposed to
align each noun in a sentence with a core semantic argument of a predicate. Given
this bias, the number of nouns in the sentence becomes intrinsically meaningful
to toddlers. In our ‘tickle’ illustration, simply identifying the target sentence as
containing two nouns should prompt children to select an interpretation with two
core participant roles. This simple constraint allows a skeletal representation of
sentence structure, grounded in the learning of some nouns, to guide sentence
interpretation essentially from the start – and to do so without requiring prior
knowledge of verb meanings. This simple inference would yield a probabilistic
distinction between transitive and intransitive sentences, increasing the probability
that children interpret an input sentence as its speaker intended, despite the
ambiguity of scenes. In turn, this increased accuracy in sentence interpretation puts
the child in a better position to obtain useful information from the observed scene
about other aspects of the meaning of the sentence. Such experiences provide useful
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information about ‘tickle,’ and about the interpretation of English sentences more
generally.

Second, the structure-mapping account, like any form of syntactic bootstrapping,
assumes that children represent their experience with language in usefully abstract
terms. These abstract representations both give children access to the proposed
innate bias to align nouns with participant-roles [88], and permit rapid generaliza-
tion of language-specific learning to new sentences and new verbs [38, 70]. As a
result, each advance in learning the syntactic choices of the native language offers
new constraints on verb and sentence interpretation. The structure-mapping account
proposes that even skeletal representations of sentence structure grounded in a set
of nouns provide a preliminary format for further learning about the syntax of the
native language (see also [4]). To illustrate, experiences like the one sketched in our
‘tickle’ example, given abstract representations of both (partial) sentence structure
and semantic roles, could provide the learner with evidence that the first of two noun
arguments is an agent of action, and the second is a patient or recipient of action.

This process exemplifies the kind of iterative, opportunistic learning from partial
knowledge that inspired the term ‘bootstrapping’. It naturally incorporates aspects of
both semantic and syntactic bootstrapping [40]: Children are assumed to identify the
referents of some concrete nouns via a word-to-world mapping unaided by syntactic
bootstrapping. As a result, early vocabularies tend to be dominated by nouns [37].
Children then assume, by virtue of the referential meanings of these nouns, that
the nouns are candidate arguments of verbs. This is a simple form of semantic
bootstrapping, requiring the use of built-in assumptions about syntax-semantics
links to identify the grammatical function of known words – nouns in particular [70].
In this way, an initial noun vocabulary grounds a preliminary estimate of the syntax
of the sentence, which in turn permits further word and syntax learning, via syntactic
bootstrapping.

In this chapter we use a Semantic Role Labeling (SRL) task [12] based on
child-directed speech (CDS) to model these initial steps in syntactic bootstrapping.
Computational models of semantic role labeling face a learning problem similar to
the one children face in early sentence comprehension: The system learns to identify,
for each verb in a sentence, all constituents that fill a semantic role, and to determine
their roles, such as agent, patient or goal. Our ‘BabySRL’ system [21–23] learns
to predict the semantic roles of verbs’ arguments in input sentences by directly
implementing the assumptions of the ‘structure-mapping’ account. That is, the
model (1) assumes that each noun is a candidate argument of a verb and (2) models
the semantic prediction task with abstract role labels and abstract (though partial)
sentence-representations grounded in a set of nouns. Our goals in implementing
these assumptions in a computational model of semantic role labeling were to
test the main claims of our account by explicitly modeling learning based on the
proposed skeletal description of sentence structure, given natural corpora of child-
directed speech. We equipped the model with an unlearned bias to map each noun
onto an abstract semantic role, and asked whether partial representations grounded
in a set of nouns are useful as a starting point in learning to interpret sentences. We
used English word-order as a first case study: Can the BabySRL learn useful facts
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about English sentence-interpretation, such as that the first of two nouns tends to be
an agent? Crucially, in the present modeling experiments we asked whether learning
that begins with the proposed representational assumptions can be used to improve
the skeletal sentence representations with which the learner began.

In carrying out the simulations described here, our main preoccupation has been
to find ways for our model to reflect both the ambiguity of scene-derived feedback
about the meaning of input sentences and the ambiguity of word-strings as evidence
for syntactic structure. Like the major theoretical accounts of language acquisition
briefly discussed above, computational language-learning systems (including both
those in the Natural Language Processing (NLP) tradition and more explicitly
psycholinguistically-inspired models) often rely on implausibly veridical feedback
to learn, both in divining syntactic structure from a sentence and in fitting a meaning
to it. For example, the state-of-the-art SRL system which we used as a baseline
for designing our BabySRL [72], like other similar systems, models semantic-role
labeling in a pipeline model, involving first training a syntactic parser, then training a
classifier that learns to identify constituents that are candidate arguments based both
on the output of the preceding syntactic parser and on direct feedback regarding the
identity of syntactic arguments and predicates. Features derived from the output of
this closely supervised syntactic predicate-argument classifier then serve as input to
a separate semantic-role classifier that learns to assign semantic roles to arguments
relative to each predicate, given feedback about the accuracy of the role assignments.
At each level in this traditional pipeline architecture, the structure that is learned is
not tailored for the final semantic task of predicting semantic roles, and the learning
depends on the provision of detailed feedback about both syntax and semantics.
In essence, whereas children learn through applying partial knowledge at multiple
levels of the complex learning and inference problem, successful computational
learners typically require incorporating detailed feedback at every step. Therefore
our first steps in developing the BabySRL have been to simplify the representations
and the feedback available at each step, constrained by what we argue is available
to children at early points in language learning (see below).

In the present work we built a computational system that treats a simple form
of syntax as a hidden structure that must be learned jointly with semantic role
classification. Both types of learning are based on the representational assump-
tions of the structure-mapping account, and on the provision of high-level, but
varyingly ambiguous, semantic feedback. To better match the learning and memory
capabilities of a child learner, we implemented our learning in an online, sentence-
by-sentence fashion.

With this system we aim to show that:

• Nouns are relatively easy to identify in the input, using distributional clustering
and minimal supervision.

• Once some nouns are identified as such, those nouns can be used to identify verbs
based on the verbs’ argument-taking behavior.

• The identification of nouns and verbs yields a simple linear sentence structure
that allows semantic-role predictions.
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• The skeletal sentence structure created via minimally supervised noun
identification provides constraints on possible sentence structures, permitting the
Latent BabySRL to begin learning from highly ambiguous semantic-role
feedback.

2 BabySRL and Related Computational Models

In our previous computational experiments with the BabySRL, we showed that it
is possible to learn to assign abstract semantic roles based on shallow sentence
representations that depend only on knowing the number and order of nouns; the
position of the verb, once identified, added further information [21]. Table 1 gives
an example of the representations and feedback that were originally used to drive
learning in the BabySRL. In our first simulations [21], full (gold standard) semantic-
role feedback was provided along with a shallow syntactic input representation
in which nouns and verbs were accurately identified. This skeletal representation
sufficed to train a simple semantic role classifer, given samples of child-directed
speech. For example, the BabySRL succeeded in interpreting transitive sentences
with untrained (invented) verbs, assigning an agent’s role to the first noun and a
patient’s role to the second noun in test sentences such as “Adam krads Mommy”.
These first simulations showed that representations of sentence structure as simple
as ‘the first of two nouns’ are useful as a starting point for sentence understanding,
amid the variability of natural corpora of child-directed speech.

However, the representations shown in Table 1 do not do justice to the two
sources of ambiguity that face the human learner, as discussed above. The original
BabySRL modeled a learner that already (somehow) knew which words were
nouns and in some versions which were verbs, and also could routinely glean the
true interpretation of input sentences from assumed observation of world events.
These are the kinds of input representations that make syntactic and semantic
bootstrapping unnecessary (in the model), and that we have argued are not available
to the novice learner. Therefore in subsequent work, we began to weaken these
assumptions, reducing the amount of previous knowledge assumed by the input
representations and by the semantic-role feedback provided to the BabySRL. These
next steps showed that the proposed simple structural representations were robust
to drastic reductions in the integrity of the semantic-role feedback (when gold-
standard semantic role feedback was replaced with a simple animacy heuristic for
identifying likely agents and non-agents; [22]) or of the system for argument and
predicate identification (when gold standard part-of-speech tagging was replaced
with a minimimally-supervised distributional clustering procedure; [23]). In this
chapter we develop a system that learns the same semantic role labeling task when
given input representations and feedback that in our view more closely approximate
the real state of the human learner: semantic feedback that is dramatically more
ambiguous, coupled with the need to infer a hidden syntactic structure for sentences
presented as word-sequences, based on the combination of bottom-up distributional
learning with indirect and ambiguous semantic feedback.
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Table 1 Example input and feedback representation for the original BabySRL
system. For each training sentence (a), gold standard semantic feedback (b)
provided true abstract role labels for each argument, and gold standard part-
of-speech tagging provided true identification of the nouns and verbs in the
sentence (c). Each noun was treated as an argument by the semantic-role classifier;
in the input to this classifier, nouns were represented (features (d)) by the target
argument and predicate themselves, and features indicating the position of each
noun in a linear sequence of nouns (NPatttern or NPat, e.g., 1st of 2 nouns, 2nd of
2 nouns) and its position relative to the verb (VPosition or VPos). Section 4.1.1
will further describe these features

(a) Sentence The girl tickled the boy
A0 A1
N V N

(b) Semantic feedback
(c) Syntactic structure

(d) Feature girl argument:girl boy argument:boy
representation predicate:tickled predicate:tickled

NPat: 1st of 2 Ns NPat: 2nd of 2 Ns
VPos:before verb VPos: after verb

Much previous computational work has grappled with core questions about the
earliest steps of language acquisition, and about links between verb syntax and
meaning. Here we briefly review some major themes in these literatures, focusing
on the range of assumptions made by various classes of models. In particular, we
specify what problems of language learning each class of models attempts to solve,
and what input and feedback assumptions they rely on to do so. As we shall see, the
field has largely kept separate the learning of syntactic categories and structures on
the one hand, and the learning of syntax-semantics links on the other. Few models
attempt to combine the solutions to both of these problems, and we would argue
that none simultaneously reflect the two central ambiguity problems (of sentence
and scene input) that face the learner.

First, a large and varied class of computational models explores the use of
distributional learning in a constrained architecture to permit the unsupervised iden-
tification of syntactic categories or structures. For example, clustering words based
on similar distributional contexts (e.g., preceding and/or following words) results in
word-classes that strongly resemble syntactic categories (e.g., [11, 30, 48, 62, 63]).
In these systems, the text itself is typically the only input to the learner, but the
nature of the classes also depends on the model’s assumptions about how much
context is available, and how (and how many) clusters are formed. Several influential
recent models have extended such distributional analysis techniques to discover the
constituent structure of sentences, and hierarchical dependencies between words
or constituents (e.g. [7, 53, 81, 85]). These models again are unsupervised in the
sense that they receive only word-sequences (or word-class sequences) as input,
with no direct feedback about the accuracy of the structures they infer. They are also
constrained by various assumptions about the nature of the structures to be uncov-
ered (e.g., binary hierarchical structures), and by pressures toward generalization
(e.g., minimum description length assumptions). The constraints imposed constitute
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the model’s fragment of Universal Grammar. These models inherit a long-standing
focus on the importance of distributional analysis in linguistics [45,86]; jointly, such
models demonstrate that appropriately constrained distributional analysis yields
powerful cues to grammatical categories and structures. However, these models
create unlabeled categories and structures, yielding no clear way to link their outputs
into a grammar, or a system for interpreting or producing sentences. For the most
part, distributional learning models have not been linked with models of sentence
processing (though we will discuss one exception to this rule below). This is one of
the goals of the current work, to link bottom-up distributional learning with a system
for semantic-role labeling.

Second, a distinct class of models tackles the learning of relationships between
syntax and semantics. A prominent recent approach is to use hierarchical Bayesian
models to learn flexible, multi-level links between syntax and semantics, including
syntactic-semantic classes of verbs and abstract verb constructions (e.g., [68, 69]),
the abstract semantic roles that are linked with particular argument positions within
verb frames or constructions [1], and verbs’ selection restrictions [2]. These models
address fascinating questions about the nature and representation of links between
form and meaning. However, they do not attempt to address the ambiguity of either
the sentence or scene input for the novice learner. Models in this class typically
begin with input sentences that are already specified in both syntactic and semantic
terms.

For example, Table 2 presents an input representation for the sentence “Sarah ate
lunch” as presented to the models of [1, 2]. The syntactic part of this representation
includes the identity of the verb, and the identity, number, and order of the verb’s
arguments. The semantic part is constructed based on hand-annotated verb usages
and semantic properties extracted from the WordNet hierarchy [61]. The semantic
representations provide both lexical-semantic features of the arguments and verb
(e.g., that ‘Sarah’ is female) and features representing the role each argument plays
in the event denoted by the verb (e.g., Sarah’s role is volitional); the role features are
derived from theoretical descriptions of the semantic primitives underlying abstract
thematic roles (e.g., [28]). Thus, like the original BabySRL described above, models
in this class represent a learner that has already acquired the grammatical categories
and meanings of the words in the sentence, and can identify the relational meaning
of the sentence. In essence, these models assume that identifying basic aspects of
the syntactic structure of the sentence, and identifying the sentence’s meaning,
are separate problems that can be addressed as precursors to discovering links
between syntax and semantics. The key argument of both the syntactic and semantic
bootstrapping theories is that this is not true; on the contrary, links between syntax
and semantics play a crucial role in allowing the learner to identify the syntax of the
sentence, its meaning, or both [54, 70].

An influential model by Chang and colleagues is an exception to the rule
that distributional-learning models are kept separate from higher-level language
processing tasks. Chang et al. [14] implemented a model that learns to link syntax
and semantics without predefined syntactic representations. Chang et al. modeled
learning in a system that yokes a syntactic sequencing system consisting of a simple
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Table 2 Example input sentence and extracted verb frame from [1]. The model learns to identify
the subset of lexical and role features that are characteristic of each argument position within
similar verb usages, thus learning abstractions such as ‘agent’ and ‘patient’. The model assumes
knowledge of the meanings of individual verbs and their arguments (using the WordNet hierarchy
and hand-constructed event-role representations), and also syntactic knowledge of the identity of
the verb and arguments, and the number and order of arguments in the sentence

(a) Sentence Sarah ate lunch
arg1 verb arg2(b) Syntactic pattern

(c) Semantic properties verb: fact, consumeg
eat

arg1
lexical: fwoman, adult female, female, person . . . g
role: fvolitional, affecting, animate . . . g

arg2
lexical: fmeal, repast, nourishment . . . g
role: fnon-independently exist, affected . . . g

recurrent network (SRN), to a distinct message system that represents the meaning
of each input sentence. The message system represents each sentence’s meaning via
lexical-semantic representations that specify what particular actions and entities are
involved in the meaning, bound to abstract event-role slots (action, agent, theme,
goal . . . ) that specify how many and what argument-roles are involved. In a typical
training trial, the model is presented with a fixed message for the sentence, and a
sequence of words conveying that message. The model tries to predict each next
word in the sentence from the previous words, based on prior learning in the SRN
and knowledge of the message. A key feature of this model is that the hidden
units of the SRN are linked by learnable weights to the abstract event-role slots
of the message system, but not to the lexical-semantic part of the message. This
“Dual-Path” architecture keeps lexical-semantic information out of the syntactic
sequencing system, thus ensuring that the model formulates abstract rather than
word-specific syntactic representations in its hidden units. This system is unique
in that it models online sentence processing, making predictions that change word
by word as the sentence unfolds; thus, unlike the other models discussed in this
section (including the BabySRL), it can be used to investigate how syntactic learning
depends on the order in which information becomes available in sentences. The
current effort shares with the dual-path model the linking of distributional learning
into a system that learns to link syntax and semantics. However, the dual-path
model creates syntactic representations by assuming the child already has accurate
semantic representations of the input sentences. This model therefore resembles
semantic bootstrapping in its reliance on meaning to drive syntax learning in a
constrained architecture. We sought to create a model in which the problems of
sentence and scene ambiguity could be solved jointly, allowing very partial syntactic
constraints to help select a meaning from an ambiguous scene.
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In jointly addressing these two types of ambiguity, our work could be viewed as
analogous to a recent model of the task of word segmentation, which logically pre-
cedes the sentence-interpretation task we examine here. Johnson et al. [49] present
a computational model that jointly learns word segmentation along with word-
referent mappings; they demonstrate synergistic benefits from learning to solve
these problems jointly. Here we try to apply a similar insight at a different
level of analysis, to learn about the structure of the sentence (identifying argu-
ments and predicates) along with a semantic analysis of the sentence (identifying
semantic roles). These high-level processing steps of course also depend on word-
segmentation success; although we do not yet incorporate this step, it could be
argued that additional benefits could be achieved by learning jointly across all
levels of language processing, from word segmentation through sentence-structure
identification to semantic interpretation.

In learning semantic role labeling, it is well known that the parsing step which
gives structure to the sentence is pivotal to final role labeling performance [39, 72].
Given the dependence of semantic role labeling on parsing accuracy, there is
considerable interest in trying to learn syntax and semantics jointly, with two recent
CoNLL shared tasks devoted to this problem [44,82]. In both cases, the best systems
learned syntax and semantics separately, then applied them together, so at this level
of language learning the promise of joint synergies has yet to be realized.

3 Model of Language Acquisition

As noted earlier, Semantic Role Labeling is an NLP task involving identifying
and classifying the verbal predicate-argument structures in a sentence, assigning
semantic roles to arguments of verbs. Combined with the development of robust
syntactic parsers, this level of semantic analysis should aid other tasks requiring
intelligent handling of natural language sentences, including information extraction
and language understanding. A large literature exploring the SRL task began to
emerge with the development of the PropBank semantic annotated corpora [52, 67]
and the introduction of the CoNLL (Annual Conference on Computational Natural
Language Learning) shared task SRL competitions [12, 13]. For a good review of
the SRL task along with a summary of the state of the art, see [59].

To illustrate, (1) is a sentence from PropBank:

(1) Mr. Monsky sees much bigger changes ahead.

The SRL task is to identify the arguments of the verb “sees” and classify their
roles in this structure, producing the labeling in (2). In example (2), square brackets
mark the identified arguments; A0 (sometimes written as Arg-0) represents the
agent, in this case the seer, A1 (also Arg-1) represents the patient, or that which is
seen, and AM-LOC is an adjunct that specifies the location of the thing being seen.

(2) ŒA0 Mr. Monsky� sees ŒA1 much bigger changes� ŒAM �LOC ahead� .
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PropBank defines two types of argument roles: core roles A0 through A5, and
adjunct-like roles such as the AM-LOC above.1 The core roles in the PropBank cod-
ing scheme represent a strong assumption about the nature of semantic roles [67];
this assumption is also a key assumption of the structure-mapping account. That
is, the core role labels (especially A0 and A1) are assumed to be abstract semantic
roles that are shared across verbs, although the precise event-dependent meanings
of the roles depends on the verb. For example, the argument of each verb whose role
is closest to a prototypical agent [28] is marked as A0; this would include the seer
for ‘see’, the giver for ‘give’, and so forth. The argument whose role is closest to a
prototypical patient is designated A1; this includes the thing seen for ‘see’, the thing
given for ‘give’, and so forth. These role assignments are given for each verb sense
in the frame files of PropBank. Each frame file has a different frame set for each
sense of a verb that specifies and defines both the possible roles and the allowable
syntactic frames for this verb sense. The across-verb similarity of roles sharing the
same role-label is less obvious for the higher-numbered roles. For example, A2 is a
source for ‘accept’, and an instrument for ‘kick’.

3.1 CHILDES Training Data

One goal of the BabySRL project was to assess the usefulness of a proposed set
of initial syntactic representations given natural corpora of child directed speech.
Therefore we used as input samples of parental speech to three children (Adam, Eve,
and Sarah; [10]), available via CHILDES [56]. The semantic-role-annotated corpus
used in this project consists of parental utterances from sections Adam 01–23 (child
age 2;3–3;2), Eve 01–20 (1;6–2;3), and Sarah 01–90 (2;3–4;1). All verb-containing
utterances without symbols indicating disfluencies were automatically parsed
with the Charniak parser [16] and annotated using an existing SRL system [72];
errors were then hand-corrected. The final annotated sample contains 15,148
sentences, 16,730 propositions, with 32,205 arguments: 3,951 propositions and
8,107 arguments in the Adam corpus, 4,209 propositions and 8,499 arguments in
Eve, and 8,570 propositions and 15,599 arguments in Sarah.

3.1.1 Preprocessing and Annotation

During preprocessing of the CDS transcripts, only utterances from the Mother and
Father were used. Other adults were typically present, including the researchers who
collected the data, but we focused on parental speech because we considered it most

1In our corpus the full set of role labels is: A0, A1, A2, A3, A4, AM-ADV, AM-CAU, AM-DIR,
AM-DIS, AM-EXT, AM-LOC, AM-MNR, AM-MOD, AM-NEG, AM-PNC, AM-PRD, AM-PRP,
AM-RCL, AM-TMP.
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likely to be typical CDS. Because our goal was to create a corpus for studying input
for language learning, we made no attempt to annotate the children’s speech.

In the process of annotation, as noted above we removed all parental utterances
that contained symbols indicating unintelligible speech, or that did not contain a
verb. In addition, after pilot annotation of utterances to one child (Eve), additional
guidelines were set, especially in regard to what constituted a main or auxiliary
verb. In particular, we decided not to annotate the verb ‘to be’ even when it was
the main verb in the sentence. As a result of these decisions, although there were
45,166 parental utterances in the sections annotated, only 15,148 were parsed and
annotated, fewer than 34 % of all utterances. This may seem like a surprisingly
small proportion of the input to the children, but many of the ignored utterances
were single-word exclamations (“Yes”, “What?”, “Alright,” etc.), or were phrasal
fragments that did not contain a main verb (“No graham crackers today.” “Macaroni
for supper?”). Such fragments are common in casual speech, and particularly so in
speech to children. For example, in another corpus of child-directed English, only
52 % of the utterances were full clauses (the rest were phrasal fragments or single-
word exclamations), and a substantial proportion of the full clauses had ‘to be’ as
their main verb, as in “Who’s so tall?” [33].

Annotators were instructed to follow the PropBank guidelines [67] in their
semantic annotations, basing decisions on PropBank’s previously-identified verb
frames. If no frame existed for a specific verb (such as “tickle”, found in CDS but
not in the newswire text on which PropBank was developed), or a frame had to be
modified to accommodate uses specific to casual speech, then the annotators were
free to make a new decision and note this addition.2

In the main experiments reported in this chapter we used samples of parental
speech to one child (Adam; [10]) as training and test data, sections 01–20 (child
age 2;3–3;1) for training, and sections 21–23 for test. To simplify evaluation, we
restricted training and testing to the subset of sentences with a single predicate (over
85 % of the annotated sentences). Additionally, in argument identification we focus
on noun arguments, as will be described below. This omits some arguments that
are not nouns (e.g., ‘blue’ in “Paint it blue.”), and some semantic roles that are not
typically carried by nouns. The final annotated sample contained 2,882 sentences,
with 4,778 noun arguments.

3.2 Learning Model

The original architecture for our BabySRL was based on the standard pipeline
architecture of a full SRL system [72], illustrated in the top row of Fig. 1. The stages

2Corpus, decision files and additional annotation information available at http.://cogcomp.cs.
illinois.edu/�connor2/babySRL/

http.://cogcomp.cs.illinois.edu/~connor2/babySRL/
http.://cogcomp.cs.illinois.edu/~connor2/babySRL/
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Fig. 1 Comparison of basic architecture of traditional pipeline approach for semantic role
labeling versus latent BabySRL approach introduced here

are: (1) Parsing of the sentence, (2) Identifying potential arguments and predicates
based on the parse, (3) Classifying role-labels for each potential argument, trained
using role-labeled text. Each stage depended on the accuracy of the previous stages:
argument identification depends on a correct parse, role labeling depends on correct
arguments.

The key intuition of the Latent BabySRL described here is that we can use the
task of semantic role labeling to generate and improve the intermediate syntactic
representations that support this labeling. An SRL classifier determines the roles
of arguments relative to a predicate in the sentence. The identity of arguments and
predicates, of course, is not apparent in the surface form of the sentence. Therefore
we suppose that this identification is part of a hidden structure for the sentence.
The validity of this hidden structure determines the success of the semantic role
labeling. As one of our assumptions about the starting-point of multi-word sentence
comprehension, the semantic-role classifier assumes that nouns fill argument slots
relative to verbs. Therefore the hidden structure that our system attempts to identify
is a simple syntactic structure defined by identifying the nouns and verbs in the
sentence, along with their linear order.

As shown in the bottom half of Fig. 1, the Latent BabySRL architecture roughly
follows the standard pipeline, except that instead of a previously-trained syntactic
parser and supervised argument identifier, we rely on an unsupervised clustering
of words provided by a Hidden Markov Model (HMM), and a latent argument and
predicate identifier that learns in response to feedback from the role classifier. In
this system, decisions in the syntactic and semantic layers are linked together, and
both are driven by semantic feedback from the world, given appropriate bottom-up
information. The latent predicate and argument classifier learns what assists it in
predicting semantic roles.

A similar HMM and the experiments in the next section were first presented
in [23], and a preliminary version of the Latent BabySRL architecture first appeared
in [24].
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3.2.1 Unsupervised Part of Speech Clustering

As a first step in learning we used an unsupervised Hidden Markov Model (HMM)
tagger to provide a context-sensitive clustering of words. We fed the learner
large amounts of unlabeled text and allowed it to learn a structure over these
data to ground future processing. This stage represents the assumption that the
child is naturally exposed to large amounts of language, and will begin to gather
distributional statistics over the input, independent of understanding the meaning of
any words or sentences. Because we used transcribed speech, this step assumes that
the learner can already correctly segment speech into words. The broader sample
of text used to support this initial unsupervised HMM clustering came from child
directed speech available in the CHILDES repository.3 We again used only parents’
sentences, and we removed sentences with fewer than three words or containing
markers of disfluency. In the end we used 320,000 sentences from this set, including
over two million word tokens and 17,000 unique words. Note that this larger HMM
training set included the semantically tagged training data, treated for this purpose
as unlabeled text.

The goal of this clustering was to provide a representation that allowed the
learner to generalize over word forms. We chose an HMM because an HMM models
the input word sequences as resulting from a partially predictable sequence of
hidden states. As noted in Sect. 2, distributional statistics over word-strings yield
considerable information about grammatical category membership; the HMM states
therefore yield a useful unsupervised POS clustering of the input words, based on
sequential distributional information, but without names for states. An HMM trained
with expectation maximization (EM) is analogous to a simple process of predicting
the next word in a stream and correcting connections accordingly for each sentence.
We will refer to this HMM system as the HMM ‘parser’, even though of course
parsing involves much more than part-of-speech clustering, largely because in the
current version of the Latent BabySRL, the HMM-based clustering fills (part of) the
role of the parser in the traditional SRL pipeline shown in Fig. 1.

An HMM can also easily incorporate additional knowledge during parameter
estimation. The first (and simplest) HMM-based ‘parser’ we used was an HMM
trained using EM with 80 hidden states. The number of hidden states was made
relatively large to increase the likelihood of clusters corresponding to a single part of
speech, while preserving some degree of generalization. Other researchers [47] have
also found 80 states to be an effective point for creating a representation that is useful
for further classification tasks, trading off complexity of training with specificity.

Johnson [48] observed that EM tends to create word clusters of uniform size,
which does not reflect the way words cluster into parts of speech in natural
languages. The addition of priors biasing the system toward a skewed allocation of
words to classes can help. The second parser we used was an 80-state HMM trained

3We used parts of the Bloom [5,6], Brent [8], Brown [10], Clark [18], Cornell, MacWhinney [56],
Post [26] and Providence [27] collections.
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with Variational Bayes EM (VB) incorporating Dirichlet priors [3].4 These priors
assume one simple kind of innate knowledge on the learner’s part, representing the
expectation that the language will have a skewed distribution of word classes, with
a relatively small number of large classes, and a larger number of small classes.

In the third and fourth parsers we experimented with enriching the HMM with
other psycholinguistically plausible knowledge. Words of different grammatical
categories differ in their phonological as well as in their distributional properties
(e.g., [51, 64, 77]); thus combining phonological and distributional information
improves the clustering of words into grammatical categories. The phonological
difference between content and function words is particularly striking [77]. Even
newborns can categorically distinguish content versus function words, based on the
phonological difference between the two classes [78], and toddlers can use both
phonology and frequency to identify novel words as likely content versus function
words [46]. Human learners may treat content and function words as distinct classes
from the start.

To implement this division into function and content words,5 we started with a list
of function word POS tags6 and then found words that appeared predominantly with
these POS tags, using tagged WSJ data [57]. We allocated a fixed number of states
for these function words, and left the rest of the states for the content words. This
amounts to initializing the emission matrix for the HMM with a block structure;
words from one class cannot be emitted by states allocated to other classes. In
previous work [23] we selected the exact allocation of states through tuning the
heuristic system for argument and predicate identification examined in that work on
a held-out set of CDS, settling on 5 states for punctuation, 30 states for function
words, and 45 content word states. A similar block structure has been used before
in speech recognition work [73], and this tactic requires far fewer resources than the
full tagging dictionary that is often used to intelligently initialize an unsupervised
POS classifier (e.g. [9, 74, 84]).

Because the function versus content word preclustering preceded HMM param-
eter estimation, it can be combined with either EM or VB learning. Although the
initial preclustering independently forces sparsity on the emission matrix and allows
more uniform sized clusters within each subset of HMM states, Dirichlet priors
may still help, if word clusters within the function or content word subsets vary in
size and frequency. Thus the third parser was an 80-state HMM trained with EM
estimation, with 30 states pre-allocated to function words; the fourth parser was the
same except that it was trained with VB EM.

4We tuned the priors using the same set of 8 value pairs suggested by Gao and Johnson [36],
using a held out set of POS-tagged CDS to evaluate final performance. Our final values are an
emission prior of 0.1 and a transitions prior of 0.0001; as a Dirichlet prior approaches 0 the
resulting multinomial becomes peakier with most of the probability mass concentrated in a few
points.
5We also include a small third class for punctuation, which is discarded.
6TO,IN,EX,POS,WDT,PDT,WRB,MD,CC,DT,RP,UH.
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Fig. 2 Unsupervised Part of Speech results, matching states to gold-standard POS labels. All
systems use 80 states, and are evaluated on a POS-labeled subset of CDS text, which comprises
a subset of the HMM training data. Many-to-1 matching accuracy greedily matches states to their
most frequent part of speech (Fig. 2a, higher is better). Variation of Information (Fig. 2b) is an
information-theoretic measure summing mutual information between tags and states, proposed by
Meilă [60], and first used for unsupervised part of speech in [41]. Smaller numbers are better,
indicating less information lost in moving from the HMM states to the gold POS tags. Note that
incorporating function word preclustering allowed both EM and VB algorithms to achieve the same
performance with an order of magnitude fewer sentences. (a) Many to 1 accuracy. (b) Variation of
information (Figure reproduced from [23])

3.2.2 HMM Evaluation

In previous work [23] we evaluated versions of these parsers (the first stage of
our SRL system) on unsupervised POS clustering accuracy. Figure 2 shows the
performance of the four parsers described above, using both many-to-one accuracy
and variation of information to measure the match between fine-grained POS and the
unsupervised parsers’ decisions while varying the amount of text they were trained
on. Each point on the graph represents the average result over ten training runs of
the HMM with different samples of the unlabeled CDS.7

Many-to-one accuracy is an evaluation metric that permits multiple HMM states
to map onto each POS tag: accuracy is measured by greedily mapping each state
to the POS tag it most frequently occurs within the test data; all other occurrences
of that state are then considered incorrect. EM can yield a better many-to-one score
than VB-trained HMM [48], and our work showed the same result: across variations

7Note that the data shown in Fig. 2 reflect HMM initialization and training that differed slightly
from that described in Sect. 3.2.1 and used in the experiments reported here: In that previous work,
the set of function words differed slightly (e.g., in the current version we added ‘not’ to the function
word set, and removed ‘like’ and ‘have’), fewer states were allocated to punctuation (3 rather
than 5), and the HMM was trained on a smaller sample of unlabeled text (up to 160,000 sentences
rather than 320,000). The revised HMM parser used in the present experiments produced very
similar results.
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in amount of training data, EM yielded higher accuracy by this metric than VB,
although these distinctions diminished as the amount of training data increased.

Variation of information is a metric of the distance between two clustering
solutions (true POS labels and HMM states), which measures the loss and gain
of information when moving from one clustering to the other. It is defined as
VI.C1; C2/ D H.C1jC2/ C H.C2jC1/ D H.C1/ C H.C2/ � 2 	 I.C1; C2/, where
H.C / is the entropy of the clustering assignment C and I.C1; C2/ is the mutual
information between the clustering C1 and C2. VI is a valid metric, and thus if two
clusterings are identical, their VI will be 0.

These data show that the HMM yielded robust POS clustering, and that the
four versions differed from each other in interesting ways. In particular, the
content vs. function-word split improved POS clustering performance. Measured
both by many-to-1 accuracy and VI , adding the function word split improved
performance, for both EM and VB training. Thus a preclustering of content and
function words, which we have argued is plausible for learners based on the well-
established phonological differences between these classes, improves the automatic
identification of POS clusters from text. In future sections we use the VB+Funct
HMM, the best-performing system in this evaluation, as the first step in the Latent
BabySRL. The HMM states both yield additional representational features that
permit generalization across words, and give us a means of incorporating some
minimally-supervised syntactic constraints on sentence interpretation.

4 Latent Training

Once a potential predicate and arguments have been identified (via latent training
as described in this section), a role classifier must assign a semantic role to each
argument relative to the predicate. The role classifier can only rely on features
that can be computed with information available from previous stages of input
processing, and from prior learning. The latent argument and predicate identifier is
trained to best support accurate role classification. We trained this model in an online
fashion in which we present each sentence along with some semantic constraints as
feedback; both the semantic-role and the latent argument and predicate classifier
then update themselves accordingly. In this section we will describe how the model
is trained and what representations are used.

We can phrase our problem of Semantic Role Labeling as learning a structured
prediction task, which depends on some latent structure (argument and predicate
identification). As input we have the sequence of words and HMM states for a given
sentence, and the output is a role-labeled predicate-argument structure. The goal
in our structured prediction task is to learn a linear function fw W X ! Y that
maps from the input space X (sentences) to output space Y (role labeled argument
structure):

fw.x/ D arg max
y2Y

max
h2H

w � ˚.x; h; y/ (1)
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Here H is a space of hidden latent structures that describes some connection
between X and Y (identification of arguments and predicate), ˚ is a feature
encoding for the complete role labeled X; H; Y example structure, w is the learned
weight vector that scores structures based on their feature encoding, and both
w; ˚ 2 R

n.
Conventionally the weight vector w would be learned from a set of labeled

training examples .xi ; yi / 2 X 
 Y , attempting to maximize the difference between
the score for true structures yi and all other structures for every training example.
As we argued in the introduction to this chapter, it is implausible for the learner to
receive veridical sentence meanings for each sentence (the set of role labels linked
with arguments) as feedback for learning. The referential contexts that accompany
speech are assumed to be ambiguous; this is the problem that syntactic bootstrapping
sets out to solve. Therefore, instead of assuming that the learner is provided with
a single true interpretation, we rephrase the learning problem such that for each
sentence the learner is provided with a set of possible interpretations Yi � Y along
with constraints on possible hidden structures Hi � H . In the next section we will
describe specific implementations of this feedback scheme. However, in this section,
for clarity in describing our algorithm and feature-sets, we use as an example the
simplest case, in which only the true interpretation is provided.

Because of the max over H in the definition of fw, the general optimization
problem for finding the best w (in terms of minimizing a loss, or maximizing the
margin between the true structure and all others given a training set of fxi ; yi gM

iD1

labeled examples) is non-convex. Previously this has been solved using some variant
of latent structure optimization [15, 87]. Here we used an online approach and a
modification of Collin’s Structured Perceptron [20] with margin [50]. This basic,
purely latent algorithm (Algorithm 2) uses an approximation employed in [17, 31]
where for each example the best h� is found (according to the current model and
true output structure) and then the classifier is updated using that fixed structure. In
this algorithm C is a fixed margin (set at 1.0) that must seperate the true structure
from the next highest prediction for the algorithm to not modify the weight vector
(1Œy ¤ y�i � is an indicator function that is 1 for all y that are not the true structure).
The constant ˛w represents the learning rate.

The intuition behind Algorithm 2 is that for every sentence the learner knows
the true meaning, or set of meanings that contain the true meaning (Yi ), so it
is able to find the arrangement of arguments and predicate (hidden structure h�)
that best supports that meaning according to what it has already learned (current
weight vector wt ). Once we identify the latent arguments and predicate, we use this
identification to update the weight vector so the true role prediction y�i will be more
likely in the future (line 5 and 6, structured perceptron update).

As stated in Algorithm 2, h�, the best set of arguments and predicates, is found
and then forgotten for each input sentence x. If we are interested in h beyond
its application to learning the weights w to predict semantic roles y, such as for
generalizing to better find the arguments and predicate in related sentences x, then
we need a method for storing this information and passing it on to new examples.
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Algorithm 2 Purely latent structure perceptron
1: Initialize w0; t D 0

2: repeat
3: for all Sentences .xi ; Yi / do
4: .h�

i ; y�

i / arg maxh2Hi ;y2Yi
wt � ˚w.xi ; h; y/

5: y0 arg maxy wt �˚w.xi ; h�

i ; y/C C � 1Œy ¤ y�

i �

6: wtC1  wt C ˛w.˚w.xi ; h�

i ; y�

i /� ˚w.xi ; h�

i ; y0//

7: t  t C 1

8: end for
9: until Convergence

Algorithm 3 Online latent classifier training
1: Initialize w0; u0; t D 0

2: repeat
3: for all Sentences .xi ; Yi / do
4: .h�

i ; y�

i / arg maxh2Hi ;y2Yi
wt � ˚w.xi ; h; y/C ut � ˚u.xi ; h/

fUpdate u to predict h�g
5: h0 arg maxh ut � ˚u.xi ; h/C C � 1Œh ¤ h�

i �

6: utC1  ut C ˛u.˚u.xi ; h�

i /�˚u.xi ; h0//

fUpdate w based on h� to predict y�g
7: y0 arg maxy wt �˚w.xi ; h�

i ; y/C C � 1Œy ¤ y�

i �

8: wtC1  wt C ˛w.˚w.xi ; h�

i ; y�

i /� ˚w.xi ; h�

i ; y0//

9: t  t C 1

10: end for
11: until Convergence

To solve this problem, we trained a latent predicate and argument classifier along
with the role classifier, such that during the latent prediction for each sentence we
find the structure that maximizes the score of both role classification and structure
prediction. This algorithm is summarized in Algorithm 3. The end result is two
classifiers, fu to predict hidden structure and fw to use the hidden structure, that
have been trained to work together to minimize semantic-role classification training
error.

The intuition behind Algorithm 3 is that for each sentence the learner finds
the best joint meaning and structure based on the current classifiers and semantic
constraints (line 4), then seperately updates the latent structure fu and output
structure fw classifiers given this selection. In the case where we have perfect high
level semantic feedback Yi D yi , the role classifier will search for the argument
structure that is most useful in predicting the correct labels. More generally, partial
feedback, which constrains the set of possible interpretations but does not indicate
the one true meaning, may be provided and used for both labeling Yi and hidden
structure Hi .

This learning model allows us to experiment with the trade-offs among different
possible sources of information for language acquisition. Given perfect or highly
informative semantic feedback, our constrained learner can fairly directly infer the
true argument(s) for each sentence, and use this as feedback to train the latent
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argument and predicate identification (what we might term semantic bootstrapping).
On the other hand, if the semantic role feedback is loosened considerably so as
not to provide information about the true number or identity of arguments in
the sentence, the system cannot learn in the same way. In this case, however,
the system may still learn if further constraints on the hidden syntactic structure
are provided through another route, via a straight-forward implementation of the
structure-mapping mechanism for early syntactic bootstrapping.

4.1 Argument, Predicate and Role Classification

For the latent structure training method to work, and for the hidden structure clas-
sifier to learn, the semantic role classifier and feature set (fw and ˚w respectively)
must make use of the hidden structure information h. In our case, the role classifier
makes use of (and thus modifies during training) the hidden argument and predicate
identification in two ways. The first of these is quite direct: semantic role predictions
are made relative to specific arguments and predicates. Semantic-role feedback
therefore provides information about the identity of the nouns in the sentence. The
second way in which the role classifier makes use of the hidden argument and
predicate structure is less direct: The representations used by the SRL classifier
determine which aspects of the predictions of the argument and predicate latent
classifier are particularly useful in semantic role labeling, and therefore change via
the learning permitted by indirect semantic-role feedback.

In the simplest case we use the full set of correct role labels as feedback. We
implement this by providing correct labels for each word in the input sentence
that was selected by the latent classifier as an argument and is the head noun of
an argument-phrase. Thus the optimal prediction by the argument classifier will
come to include at least those words. The predicate classifier will therefore learn to
identify predicates so as to maximize the accuracy of SRL predictions given these
arguments. This represents the case of semantically-driven learning where veridical
semantic feedback provides enough information to drive learning of both semantics
and syntax. With more ambiguous semantic feedback, the hidden argument and
predicate prediction is not directed by straightforward matching of a full set of
noun arguments identified via semantic feedback. Nonetheless, the system is still
driven to select a hidden structure that best allows the role classifier to predict with
what little semantic constraint is provided. Without further constraints on the hidden
structure itself, there may not be enough information to drive hidden structure
learning.

In turn, the hidden structure prediction of arguments and predicate depends on
the words and HMM states below it, both in terms of features for prediction and
constraints on possible structures. The hidden argument and predicate structure we
are interested in labels each word in the sentence as either an argument (noun), a
predicate (verb), or neither. We used the function/content word state split in the
HMM to limit prediction of arguments and predicates to only those words identified
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as content words. In generating the range of possible hidden structures over content
words, the latent structure classifier considers only those with exactly one predicate
and one to four arguments.

As an example take the sentence “She likes yellow flowers.” There are four
content words; with the constraint that exactly one is a predicate and at least one
is an argument, there are 28 possible predicate/argument structures, including the
correct assignment where ‘She’ and ‘flowers’ are arguments of the predicate ‘likes.’
The full semantic feedback would indicate that ‘She’ is an agent and ‘flowers’ is a
patient, so the latent score the SRL classifier predicts (line 4 in Algorithm 3) will be
the sum of the score of assigning agent to ‘She’ and patient to ‘flowers’, assuming
both those words are selected as arguments in h. If a word does not have a semantic
role (such as non-argument-nouns ‘likes’ or ‘yellow’ here) then its predictions do
not contribute to the score. Through this mechanism the full semantic feedback
strongly constrains the latent argument structure to select the true argument nouns.
Table 3 shows the two possible interpretations for “She likes yellow flowers.” given
full semantic feedback that identifies the roles of the correct arguments. Decisions
regarding ‘likes’ and ‘yellow’ must then depend on the representation used by both
the latent-structure predicate identifier and semantic-role classifier.

4.1.1 Features

For the semantic-role classifier we started with the same base BabySRL features
developed in [21], simple structures that can be derived from a linear sequence of
candidate nouns and verb. These features include ‘noun pattern’ features indicating
the position of each proposed noun in the ordered set of nouns identified in the
sentence (e.g., first of three, second of two, etc; NPat in Table 3), and ‘verb position’
features indicating the position of each proposed noun relative to the proposed verb
(before or after; VPos in Table 3). In the above example, given the correct argument
assignment, these features would specify that ‘She’ is the first of two nouns and
‘flowers’ is the second of two. No matter whether ‘likes’ or ‘yellow’ is selected
as a predicate, ‘She’ is before the verb and ‘flowers’ is after it. In addition, we
used a more complicated feature set that includes NPat and VPos features along
with commonly-used features such as the words surrounding each proposed noun
argument, and conjunctions of NPat and VPos features with the identified predicate
(e.g., the proposed predicate is ‘likes’ and the target noun is before the verb);
such features should make the role classifier more dependent on correct predicate
identification.

For the argument and predicate structure classifiers the representation ˚u.x; h/

only depends on words and the other arguments and predicates in the proposed
structure. Each word is represented by its word form, the most likely HMM state
given the entire sentence, and the word before and after. We also specified additional
features specific to argument or predicate classification: the argument classifier uses
noun pattern (NPat in Table 3), and the predicate representation uses the conjunction
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Table 3 Example Sentence, showing (a) the full (gold standard) semantic feedback that provides
true roles for each argument, but no indication of the predicate, as well as (b) two possible hidden
structures given this level of feedback. The next rows show (c) the feature representations for
individual words. The Semantic Feature set shows the feature representation of each argument as
used in SRL classification; the Structure Feature set shows the feature representation of the first
argument and the predicate in two of the 28 possible hidden structures. See text Sect. 4.1.1 for
further description of the features

(a) Sentence She likes yellow flowers
A0 A1full feedback

(b) Possible interpretation 1 Possible interpretation 2

Sentence she likes yellow flowers
N V N

Sentence she likes yellow flowers
N V Nargument struct. argument struct.

(c) Feature representation Feature representation
Semantic feat. she argument:she Semantic feat. she argument:she
˚w.x; h; y/ predicate:likes ˚w.x; h; y/ predicate:yellow

NPat: 1 of 2 NPat: 1 of 2
VPos:Before Verb VPos:Before Verb
wC1:likes wC1:likes

flowers argument:flowers flowers argument:flowers
predicate:likes predicate:yellow
NPat: 2 of 2 NPat: 2 of 2
VPos: After Verb VPos: After Verb
w�1:yellow w�1:yellow
wC1:. wC1:.

Structure feat. sheDN word:she Structure feat. sheDN word:she
˚u.x; h/ hmm:35 ˚u.x; h/ hmm:35

verb:likes verb:yellow
wC1:likes wC1:likes
hmmC1:42 hmmC1:42
NPat: 1 of 2 NPat: 1 of 2

likesDV verb:likes yellowDV verb:yellow
hmm:42 hmm:57
w�1:she w�1:likes
hmm�1:35 hmm�1:42
wC1:yellow wC1:flowers
hmmC1:57 hmmC1:37
v:likes&2 args v:flowers&2 args
suffixes: s,es,kes suffixes: w,ow,low

of the verb and number of arguments (e.g., ‘v:likes & 2args’ in Table 3), as well as
all suffixes of length up to three as a simple verb ending feature.8

8This roughly represents phonological/distribution information that might be useful for clustering
verbs together (e.g., [64]), but that is not exploited by our HMM because the HMM takes
transcribed words as input.
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It should be noted that both the purely latent (Algorithm 2) and latent classifier
we have been discussing (Algorithm 3) require finding the max over hidden
structures and labelings according to some set of constraints. As implemented with
the sentences found in our child directed speech sample, it is possible to search over
all possible argument and predicate structures. In our set of training sentences there
were at most nine content words in any one sentence, which requires searching over
1,458 structures of exactly one predicate and at most four arguments. On average
there were only 3.5 content words a sentence. Once we move to more complicated
language an alternative approximate search strategy will need to be employed.

5 Experimental Evaluation

To evaluate the Latent BabySRL, we examined both how well the final role clas-
sifier performed, and how accurately the latent predicate and argument classifiers
identified the correct structures when trained with only indirect semantic feedback.
Because in our training sentences there was only one true predicate per sentence,
we report the predicate accuracy as the percentage of sentences with the correct
predicate identified. For the identification of noun arguments, because there were
multiple possible predictions per sentence, we report F1: the harmonic mean of
precision and recall in identifying true arguments. Likewise, in evaluating semantic-
role classification, because there were many possible role labels and arguments to
be labeled, we report the overall semantic role F1 over all arguments and label
predictions.9

Our first experiment tested online latent training with full semantic feedback. To
provide an upper bound comparison we trained with perfect argument knowledge,
so in this case both classifiers were fully and separately supervised (Gold Arguments
in Table 4). This upper bound reflects the levels of argument-identification and
SRL performance that are possible given our simple feature set and child-directed
sentence corpus. As a lower bound comparison for predicate-argument classification
we also include the expected result of selecting a random predicate/argument
structure for each sentence (Random Arguments in Table 4).

Table 4 shows the performance of the two algorithms from Sect. 4 compared
to the just-mentioned upper and lower bounds. All classifiers used the full feature
sets from Sect. 4.1. Recall that the purely latent method (Algorithm 2) did not use
an intermediate latent structure classifier, so it selected arguments and predicates
only to maximize the role classifier prediction for the current sentence. In contrast,
incorporating a latent classifier into the training (Algorithm 3) yielded a large boost
in both argument and predicate identification performance and final role perfor-
mance. Thus, given full semantic feedback, the argument and predicate classifier

9Because we focus on noun arguments, we miss those predicate arguments that do not include any
nouns; the maximum SRL role F1 with only noun arguments correct is 0.8255.
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Table 4 Results on held-out test set of SRL with arguments/predicate as latent structure, provided
with full semantic feedback. With gold arguments, both the structure classifier and the role
classifier are trained with full knowledge of the correct arguments for each sentence. Purely Latent
does not use the latent argument and predicate classifier; it selects a structure for each sentence
that maximizes role classification of true labels during training (Algorithm 2). Latent classifier
training trains an argument/predicate identifier using the structure that the role classifier considers
most likely to give the correct labeling (where we know correct labels for each noun argument),
Algorithm 3

Training Predicate % Argument F1 Role F1

Gold arguments 0.9740 0.9238 0.6920
Purely latent 0.5844 0.6992 0.5588
Latent classifier 0.9263 0.8619 0.6623
Random arguments 0.3126 0.4580 –

effectively generalized the training signal provided by the latent semantic feedback
to achieve nearly the performance of being trained on the true arguments explicitly
(Gold Arguments). Of special note is the predicate identification performance; while
full semantic feedback implicitly indicates true arguments, it says nothing about the
true predicates. The predicate classifier was able to extract this information solely
based on identifying latent structures that helped the role classifier make the correct
role predictions.

As mentioned in Sect. 4.1, our algorithm depends on two kinds of representa-
tions: those that feed semantic role classification, and those that feed the hidden
argument and predicate classifier. To investigate the interaction between the two
classifiers’ (hidden structure and SRL) representation choices, we tested the latent
classifier with the full argument and predicate feature sets when the role classifier
incorporated four different feature sets of increasing complexity: only the words
identified as candidate nouns and verb (Words in Table 5), words plus noun pattern
features (CNPat), the previous plus verb position features (CVPos), and a full
model containing all these features as well as surrounding words and predicate
conjunctions. With the addition to the SRL classifier of features that depend on
more accurate latent structure identification, we should see improvements in both
final role accuracy and argument and predicate identification. This experiment again
used full role feedback.

Table 5 shows increasing performance with the increasing feature complexity
of the semantic role classifier. Most notable is the large difference in predicate
identification performance between those feature sets that heavily depend on
accurate predicate information (CVPos and the full feature set in Table 5) and
those that only use the word form of the identified predicate as a feature. In
contrast, argument identification performance varied much less across feature sets
in this experiment, because full semantic feedback always implicitly drives accurate
argument identification. The increase in role classification performance across
feature sets can be attributed both to a useful increase in representations used for
SRL classification, and to the increased argument and predicate structure accuracy
during both SRL training and testing. The relatively high level of SRL performance
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Table 5 With full role feedback and latent classifier training, the role classifier features interact
with the latent predicate-argument structure classifier. Better role classification through improved
feature representation feeds back to allow for improved argument and predicate identification. The
last two feature sets make strong use of the identity of the predicate, which encourages the predicate
classifier to accurately identify the predicate. Each result represents the average over ten runs with
random training order; numbers in parenthesis are standard deviations

Role features Predicate % Argument F1 Role F1

Words 0.64 (0.02) 0.81 (0.00) 0.63 (0.01)
CNPat 0.73 (0.05) 0.81 (0.00) 0.62 (0.01)
CVPos 0.93 (0.04) 0.83 (0.03) 0.65 (0.01)
CSurrounding words and

predicate conjunctions
0.93 (0.03) 0.86 (0.04) 0.66 (0.01)

given the lexical features alone in Table 5 reflects the repetitive character of the
corpus from which our training and test sentences were drawn: Given full semantic
feedback, considerable success in role assignment can be achieved based on the
argument-role biases of the target nouns (e.g., ‘she’, ‘flowers’) and the familiar verbs
in our corpus of child-directed speech.

The results in this section show that the latent argument and predicate classifier,
equipped with simple representations of the proposed sentence structure, can recruit
indirect semantic-role feedback to learn to improve its representation of sentence
structure, at least when given fully accurate semantic-role feedback. This result
makes sense: the identity and position of the verb are useful in identifying the
semantic roles of the verb’s arguments; therefore the latent predicate-argument
classifier could use the indirect semantic feedback to determine which word in the
sentence was the verb. The full semantic-role feedback provided true information
about the number and identity of arguments in each sentence; in the next section
we take the crucial next step, reducing the integrity of the semantic role feedback to
better reflect real-world ambiguity.

5.1 Ambiguous Semantic Feedback

The full semantic feedback used in the previous experiments, while less infor-
mative than absolute gold knowledge of true arguments and predicates, is still
an unreasonable amount of feedback to grant a child first trying to understand
sentences. The semantic feedback in our model represents the child’s inference of
sentence meaning from observation of the referential context. Because an ordinary
scene makes available a number of possible objects, relations and semantic roles
that might be mentioned, the child must learn to interpret sentences without prior
knowledge of the true argument labels for the sentence or of how many arguments
are present.

We implement this level of feedback by modifying the constraining sets Hi and
Yi used in line 4 of Algorithm 3. By loosening these sets we still provide feedback to
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restrict the search space (thus modeling language learning as a partially supervised
task, informed by inferences about meaning from scene observation), but not a
veridical role-labeling for each sentence.

We tested two levels of reduced role feedback. The first, which we call Set of
Labels, provides as feedback the true role labels that are present in the sentence,
but does not indicate which words correspond to each role. In this case Yi is just
the set of all labelings that use exactly the true labels present, and Hi is constrained
to be only those syntactic predicate-argument structures with the correct number
of arguments. This feedback scheme represents a setting where the child knows
the semantic relation involved, but either does not know the nouns in the sentence,
or alternatively does not know whether the speaker meant ‘chase’ or ‘flee’ (and
therefore cannot fix role order). To illustrate, given the sentence “Sarah chased Bill”,
Set of Labels feedback would indicate only that the sentence’s meaning contains an
agent and a patient, but not which word in the sentence plays which role.

Even this Set of Labels feedback scheme specifies the number of true arguments
in the sentence. We can go a step further, supplying for each sentence a superset
of the true labels from which the learner must select a labeling. In the Superset
feedback case, Yi includes the true labels, plus random additional labels such that
for every sentence there are four labels to choose from, no matter the number
of true arguments. Given Superset feedback, the learner is no longer constrained
by the true number of arguments provided via semantic feedback, so must search
over all argument structures and role labelings that come from some subset of the
feedback set Yi . This represents a setting in which the learner must select a possible
interpretation of the sentence from a superset of possible meanings provided by the
world around them. In the “Sarah chased Bill” example, the feedback would be a set
of possible labels including the true agent and patient roles, but also two other roles
such as recipient or location, and thus no scene-derived indication of how many of
these roles are part of the sentence’s meaning. This may seem an extreme reduction
of the validity of semantic-role feedback. However, consider the following example:
a careful analysis of video transcripts of parents talking to toddlers found that the
parents were about equally likely to use intransitive motion verbs (e.g., ‘go in’) as
transitive ones (e.g., ‘put in’) when describing events in which an agent acted on
an object [75]. Evidently the presence of an agent in an event does not demand
that a speaker choose a verb that encodes the agent’s role. Similarly, in our earlier
‘yellow flower’ example, under many circumstances the speaker presumably could
have said ‘yellow flowers are nice’ rather than ‘she likes yellow flowers.’ These
considerations, and the ‘human simulation’ experiments described in Sect. 1.1 [40],
all suggest that the number and identity of arguments in the speaker’s intended
meaning is not readily inferrable from world events without some guidance from
the sentence.

As seen in Table 6, Set and Superset feedback seriously degrade performance
compared to full role feedback. With superset feedback the learner cannot get a
good foothold to begin correctly identifying structure and interpreting sentences,
so its argument and predicate identification accuracy is little better than random.
This suggests that information about the number and identity of arguments might
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Table 6 Results when the amount of semantic feedback is decreased. Each value represents
the mean over 20 training runs with shuffled sentence order; the numbers in parenthesis are the
standard deviations. Full label feedback provides true role feedback for each noun. Set of Labels
feedback provides an unordered set of true labels as feedback, so the learner must pick a structure
and label assignment from this set. Superset goes one step further and provides a superset of labels
that includes the true labels, so the learner does not know how many or which roles are mentioned
in the sentence. With these ambiguous feedback schemes the classifiers are barely able to begin
interpreting correctly, and with superset feedback the argument and predicate accuracy is only
slightly better than random

Feedback Pred % Arg F1 A0 A1 Role F1

Full labels 0.94 (0.02) 0.89 (0.02) 0.85 (0.02) 0.75 (0.02) 0.64 (0.02)
Set of labels 0.40 (0.23) 0.62 (0.14) 0.47 (0.28) 0.38 (0.17) 0.34 (0.14)
Superset 0.35 (0.20) 0.57 (0.11) 0.46 (0.27) 0.33 (0.13) 0.29 (0.11)
Random 0.31 0.46

be a necessary constraint in learning to understand sentences. In principle this
information could be derived either from observation of scenes (assuming the child
has access to some non-linguistic source of evidence about whether the speaker
meant ‘chase’ or ‘flee’, ‘put in’ or ‘go in’) or from observation of sentences; the
latter source of information is the essence of syntactic bootstrapping, as we discuss
next.

6 Recovering Argument Knowledge

Considerable psycholinguistic evidence, reviewed briefly in Sect. 1.1, suggests that
children learn some nouns before they start to interpret multi-word sentences, and
thus some noun knowledge is available to scaffold the beginnings of sentence
interpretation (e.g., [40]). This is syntactic bootstrapping, using structural features
of the sentence to guide interpretation under ambiguity. If we can combine this extra
source of knowledge with the Superset feedback described above, then perhaps the
result will be enough information for the system to learn to identify nouns and verbs
in sentences, and to classify the roles those nouns play.

Taking inspiration from the ‘structure-mapping’ account of syntactic bootstrap-
ping, we model this starting point by attempting to identify nouns in each input
sentence in a bottom-up, minimally-supervised manner. Once we know the number
and identity of nouns in the sentence, this additional constraint on the hidden
structure may allow the learner to overcome the semantic ambiguity introduced by
Superset feedback. In the next section we will describe how we identify potential
arguments using the distributional clustering provided by the HMM and a small
seed set of concrete nouns. A similar form of this bottom-up argument-identification
procedure was described in [23].

The bottom-up, minimally-supervised argument identifier we describe here
addresses two problems facing the human learner. The first involves clustering
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words by part-of-speech. As described in Sect. 3.2.1, we use a fairly standard Hidden
Markov Model (HMM), supplemented by an a priori split between content and
function words, to generate clusters of words that occur in similar distributional
contexts. The second problem is more contentious: Having identified clusters of
distributionally-similar words, how do children figure out what role these clusters
of words play in a sentence interpretation system? Some clusters contain nouns,
which are candidate arguments; others contain verbs, which take arguments. How is
the child to know which are which?

The latent training procedure described in this chapter, when given full semantic
feedback, accomplishes argument and predicate identification roughly by semantic
bootstrapping: To return to our ‘She likes yellow flowers’ example, if the learner
knows based on semantic feedback that ‘she’ is an agent, then the latent classifier
learns to treat ‘she’ as a noun argument; the provision of abstract HMM-based
features and noun-pattern features to the argument identification classifier permits
it to generalize this learning to other words in similar sentence positions. But this
use of semantic-role feedback to identify nouns as such seems counter-intuitive. In
this section we spell out a simpler way to use a small step of semantic bootstrapping
to automatically label some of the distributionally-derived clusters produced by the
HMM tagger as nouns, thereby improving argument-identification from the bottom
up, without requiring accurate semantic-role feedback.

6.1 Bottom-Up Argument Identification

The unsupervised HMM parser provides a state label for each word in each
sentence; the goal of the argument identification stage is to use these states to
label words as potential arguments, predicates or neither. As described in Sect. 1.1,
the structure-mapping account of early syntactic bootstrapping holds that sentence
comprehension is grounded in the learning of an initial set of nouns. Children
are assumed to identify the referents of some concrete nouns via cross-situational
learning [40, 79]. Children then assume, given the referential meanings of these
nouns, that they are candidate arguments. Again, this involves a small step of
semantic bootstrapping, using the referential semantics of already-learned words
to identify them as nouns. We used a small set of known nouns to transform
unlabeled word clusters into candidate arguments for the SRL: HMM states that
occur frequently with known names for animate or inanimate objects are assumed
to be argument states.

Given text parsed by the HMM parser and a seed list of known nouns, the
argument identifier proceeds as illustrated in Algorithm 4. Algorithm 4 identifies
noun states simply by counting the number of times each state is seen with a known
noun (f reqN .s/ in Algorithm 4) in some HMM tagged text (Adam training data).
Any state that appears at least four times with words from the seed noun list is
identified as a noun state. Whenever these states are encountered in the future,
the word associated with them, even if unknown, will be interpreted as a potential
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Algorithm 4 Argument state identification
1: INPUT: Parsed Text T = list of (word, state) pairs
2: Set of concrete nouns N

3: OUTPUT: Set of argument states A

4: A ¿
fCount Appearance of each state with a known noung

5: f reqN .s/ jf.w; s/ 2 T jw 2 N gj
6: for all Content States s do
7: if f reqN .s/ � 4 then
8: Add s to A

9: end if
10: end for
11: return A

argument. This use of a seed list with distributional clustering is similar to Prototype
Driven Learning [43], except in the present case we provide information on only one
class. A similar approach was proposed by Mintz [62], using semantic knowledge of
a small set of seed nouns to tag pre-existing distributionally-based clusters as noun
clusters.

Because we train our HMM with a preclustering of states into function and
content words, we use this information in the minimally supervised argument
identification. Only content word states are considered to be potential argument
states, thus eliminating any extraneous function words from consideration. This
of course improves identification performance, because it only eliminates potential
errors.

To generate a plausible ‘seed’ set of concrete nouns, we used lexical development
norms [25], selecting all words for things or people that were commonly produced
by 20-month-olds (over 50 % reported), and that appeared at least five times in our
training data. Because this is a list of words that children produce, it represents a
lower bound on the set of words that children at this age should comprehend. This
yielded 71 words, including words for common animals (‘pig’, ‘kitty’, ‘puppy’),
objects (‘truck’, ‘banana’, ‘telephone’), people (‘mommy’, ‘daddy’), and some
pronouns (‘me’ and ‘mine’). To this set we added the pronouns ‘you’ and ‘I’, as
well as given names ‘adam’, ‘eve’ and ‘sarah’. The inclusion of pronouns in our
list of known nouns represents the assumption that toddlers have already identified
pronouns as referential terms. Even 19-month-olds assign appropriately different
interpretations to novel verbs presented in simple transitive versus intransitive sen-
tences with pronoun arguments (“He’s kradding him!” vs. “He’s kradding!”; [88]).

The resulting set of 76 seed nouns represents a high-precision set of argument
nouns: They are not highly frequent in the data (except for the pronouns), but they
nearly always appear as nouns and as arguments in the data (over 99 % of the
occurrences of words in this list in our training data are nouns or pronouns, over
97 % are part of arguments). Given this high precision, we set a very permissive
condition that identifies argument states as those HMM states that appear four
or more times with known seed nouns. In our experiments we set the threshold
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Fig. 3 Effect of number of concrete nouns for seeding argument identification. To generate these
results, one HMM trained with VBCFunct was selected out of ten models with different random
initializations (the best in terms of lowest perplexity on large corpus of untagged training data).
Adam training data was then tagged with states from this HMM; for each lexical development
seed set size, 100 runs with random selection of seed nouns were averaged together to produce the
data shown here. Argument identification accuracy is computed for the Adam data set using true
argument boundaries from hand labeled data. With 76 seed nouns, the argument identifier achieves
nearly 0.80 F1

of known nouns appearing with an HMM state to four through tuning argument
identification on a held-out set of argument-identified sentences.

6.1.1 Argument Identification Evaluation

Figure 3 shows the argument identification accuracy of the minimally supervised
argument identification system, with increasing numbers of seed nouns sampled
from the set of 76. First, using the HMM model with the function-content-word
split and VB training, we generated 10 models over the large untagged HMM
training corpus with different random initializations, and selected the one with the
lowest perplexity (highest log likelihood) for use in the argument identification
experiments. We then tagged the Adam SRL training data with states from this
selected HMM, using the state for each word that had highest marginal probability
given the rest of the sentence (using forward-backward algorithm). In this figure,
for each set size of seed nouns, we report the mean over 100 runs of the argument
identification with a random selection of seed nouns in each run.

We evaluated this performance compared to hand labeled data with true argument
and predicate boundaries. We present the primary argument (A0–4) identification
accuracy using the F1 measure, with precision calculated as the proportion of
identified arguments that appear as part of a true argument, and recall as the
proportion of true arguments that cover some state identified as an argument. This
is a rather lenient measure of accuracy since we are comparing identified individual
words to full phrase boundaries.
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Table 7 Results when the amount of semantic feedback is decreased, but bottom-up syntactic
information is used to help constrain the possible hidden structures and recover from ambiguous
semantic feedback. The top three rows of data are reproduced from Table 6. We introduce extra
information by constraining the possible argument structures for each training example using
syntactic knowledge, either bottom-up from an HMM-based minimally supervised argument
identifier, or via knowledge of true arguments. Once extra information about argument identity
is introduced, whether true arguments or the HMM-identified arguments, the learner is able to
make use of the Superset feedback, and begin to identify the agent and patient roles (A0 and A1),
and the predicate

Feedback Pred % Arg F1 A0 A1 Role F1

Full labels 0.94(0.02) 0.89(0.02) 0.85(0.02) 0.75(0.02) 0.64(0.02)
Set of labels 0.40(0.23) 0.62(0.14) 0.47(0.28) 0.38(0.17) 0.34(0.14)
Superset 0.35(0.20) 0.57(0.11) 0.46(0.27) 0.33(0.13) 0.29(0.11)
Superset C HMM args 0.87(0.10) 0.88(0.01) 0.68(0.25) 0.54(0.16) 0.48(0.15)
Superset C true args 0.86(0.09) 0.92(0.01) 0.69(0.21) 0.61(0.13) 0.52(0.13)
Superset C true args & Pred 0.97(0.00) 0.93(0.00) 0.68(0.19) 0.61(0.12) 0.52(0.11)
Random 0.31 0.46

As Fig. 3 shows, this minimally-supervised argument identification system can
successfully identify arguments starting with a handful of concrete nouns. Even
with just 10 nouns, argument identification is almost 0.6 F1; with 76 nouns (still
a modest number relative to toddlers’ estimated comprehension vocabularies),
argument identification improves to nearly 0.8 F1. Even so, we have not yet tapped
the full information available in the finer grained HMM clusters. Looking at the
upper bound, which is computed as the optimal selection of HMM states given
knowledge of true argument boundaries, there is still some room for improvement.

6.2 Integrating into Online Latent Classifier

Next, we use this bottom-up argument identification system to constrain the
argument search in our latent classifier training. During training, we restrict the
set of possible argument structures (Hi in Algorithm 3) such that only those
structures that agree with the HMM argument identification are considered, and
the best labeling from the Superset of labels is selected for this structure. If we
use the arguments identified via HMM argument identification to essentially fix the
argument structure during training, the problem remaining for the learner is to select
the predicate from among the non-argument content words in the sentence, while
also identifying the labeling that is most consistent with the identified arguments
and expectations from previous training.

Table 7 shows that once we add the HMM bottom-up argument identification to
the Superset feedback scheme, the argument and predicate performance increases
greatly (due to accuracy of the HMM argument identification). Note in Table 7 that
bottom-up HMM argument identification is strong (0.88 F1 compared to 0.93 when



Starting From Scratch in Semantic Role Labeling 289

trained with true arguments), and that this effective argument-identification in turn
permits strong performance on verb identification. Thus our procedure for tagging
some HMM classes as argument (noun) classes based on a seed set of concrete
nouns, combined with ambiguous Superset semantic feedback that does not indicate
the number or identity of semantic arguments, yields enough information to begin
learning to identify predicates (verbs) in input sentences.

Next, looking at the final role classification performance of the SupersetC
argument constraint training schemes in Table 7, we see that Role F1 increases over
both straight Superset and unordered Set of Labels feedback schemes. This increase
is most dramatic for the more common A0 and A1 roles.

This represents one possible implementation of the structure-mapping procedure
for early syntactic bootstrapping. If we assume the learner can learn some nouns
with no guidance from syntactic knowledge (represented by our seed nouns), that
noun knowledge can be combined with distributional learning (represented by
our HMM parser) to tag some word-classes as noun classes. Representing each
sentence as containing some number of these nouns (HMM argument identification)
then permits the Latent BabySRL to begin learning to assign semantic roles to
those nouns in sentences given highly ambiguous feedback, and also to use that
ambiguous semantic feedback, combined with the constraints provided by the set
of identified nouns in the sentence, to improve the latent syntactic representation,
beginning to identify verbs in sentences.

This latent training method with ambiguous feedback works because it is seeking
consistency in the features of the structures it sees. At the start of training, or when
encountering a novel sentence with features not seen before, the latent inference will
essentially choose a structure and labeling at random (since all structures will have
the same score of 0, and ties are broken randomly). From this random labeling the
classifier will increase connection strengths between lexical and structural features
in the input sentence, and the (at first randomly) selected semantic role labels.
Assuming that some number of random or quasi-random predictions are initially
made, the learner can only improve if some feature weights increase above the
others and begin to dominate predictions, both in the latent structure classifier and
in the linked SRL classifier. This dominance can emerge only if there are structural
features of sentences that frequently co-occur with frequent semantic roles.

Thus, the assignment of A0 and A1 roles can be learned by this latent SRL
learner despite superset feedback, both because of the frequency of these two
roles in the training data and their consistent co-occurrence with simple sentence-
structure features that make use of the bottom-up information provided by the HMM
argument identification. If “She likes yellow flowers.” is encountered early during
latent training, the feedback may be the superset fA0, A1, A4, AM-LOCg, where the
true labels A0 and A1 are present along with two other random labels. With accurate
identification of ‘she’ and ‘flowers’ as arguments via the HMM bottom-up argument
identification system, the learner will choose among only those role labelings that
use two of the four roles. Given a large number of different sentences such as “She
kicks the ball” (true labels are A0, A1), “She writes in her book” (A0, A2), and “She
sleeps” (A0), the most consistent labeling amongst the true and random labelings
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provided by Superset feedback will be that both ‘she’ and the first of two nouns
are more likely to be labeled as A0. This consistent labeling is then propogated
through the learner’s weights, and used for future predictions and learning. Thus,
even superset feedback can be informative given bottom-up information about the
nouns in the sentence, because frequent nouns and argument patterns (e.g., first
of two nouns) consistently co-occur with frequent roles (e.g., A0). Without the
identified arguments, the chance of randomly assigning the correct arguments and
roles decreases dramatically; as a result, the likelihood of encountering the correct
interpretation often enough for it to dominate disappears.

7 Conclusion

We began with two problems for accounts of language acquisition: The sequences
of words that make up the input sentences constitute highly ambiguous evidence
for syntactic structure, and the situations in the world that accompany the input
sentences constitute highly ambiguous evidence for sentence meaning. These two
problems have led to ‘bootstrapping’ approaches to language acquisition, in which
some set of built-in representational or architectural constraints on the language-
learning system permit the learner to infer one type of structure from knowledge of
another. Via semantic bootstrapping [70, 71], the learner uses independent knowl-
edge of word and sentence meaning to identify the covert syntactic structures of
sentences. Via syntactic bootstrapping [35, 40, 54, 65], the learner uses independent
partial knowledge of syntactic structures to determine sentence meaning. These
views are sometimes described as competing accounts, but in fact they share many
assumptions, crucially including the assumption that the learner begins with some
constraints on the possible links between syntax and semantics. In the present work
we tried to incorporate key intuitions of both semantic and syntactic bootstrapping
accounts to jointly address the two ambiguity problems with which we began.

To do so, we created a system within which we could manipulate the provision
of partially-reliable syntactic and semantic information sources during language
acquisition. We trained a semantic role classifier jointly with a simplified latent
syntactic structure classifier, with learning based on (varyingly ambiguous) semantic
feedback and simple linguistic constraints. This Latent BabySRL, sketched in Fig. 1,
began by using an HMM to cluster unlabeled word-forms by part of speech. This
clustering was based on distributional information recoverable from input word
sequences, and was constrained by an initial division into content and function
words, and by prior biases regarding the sparsity of word classes. This step
represents the assumption that infant learners, even before they understand the
meanings of words or sentences, gather statistics about how words are distributed in
the linguistic input (e.g., [42,58,76]), and discriminate content from function words
based on their distinct phonological properties [77, 78]. It is well established in
previous work that considerable information about grammatical category similarity
can be obtained by the kind of sequential distributional analysis that an HMM
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undertakes. We assume that other learning architectures that are sensitive to the
sequential statistics of the input would produce similar results; this would include
a simple recurrent network that learns a category structure in its hidden units to
predict the next word in input sentences (e.g., [14, 29]).

With this previous distributional learning in hand, the Latent BabySRL attempted
to jointly learn a latent structure for identifying arguments (nouns) and a predicate
(verb) in input sentences, and to predict the roles of the identified arguments relative
to the identified predicate. The only information sources for this joint learning
task were the semantic-role feedback (ranging from full ‘gold standard’ feedback
to highly ambiguous superset feedback) provided to the semantic-role classifier,
the representational constraints on the two classifiers (their feature sets), and the
way in which the predictions of the latent structure classifier were used to generate
input features for the semantic role classifier. These constraints represent simple
but substantive constraints on the links between syntax and semantics. First, the
semantic role classifier predicts a semantic role for all and only the nouns it
finds in the input sentence. This represents a simple built-in link between syntax
and semantics, and a key assumption of the structure-mapping view: the learner
assumes each noun is an argument of some predicate term. Second, the latent
structure classifier and the semantic-role classifier are equipped with both lexical
features (the words in the sentence) and more abstract structural features that permit
them to generalize beyond particular words. These abstract features include the
predicted HMM clusters of the nouns and verb identified in the sentence, and also
simple sentence-structure relational features that can be derived from the identified
sequence of nouns and verb, features such as “1st of 2 nouns” and “preverbal
noun”. Crucially, the specific content and the connection weights of these simple
abstract structural features are not provided to the model as hand-coded features
of input sentences; such a choice would model a learner that (somehow) begins
with accurate identification of nouns and verbs. Instead, the specific syntactic and
semantic knowledge that develops in the system arises from the kinds of features
the classifiers can represent, and the way in which the model is set up to use
them to identify latent structures and in turn to predict semantic roles. Thus we
model a learner that begins with substantive constraints on links between syntax
and semantics, but without being informed of which words are nouns and which are
verbs.

When trained with very informative semantic-role feedback, the Latent BabySRL
implements a simple form of semantic bootstrapping. The provision of complete
semantic role feedback represents the assumption that the child knows the meaning
of the content words in the sentence, and can generate an interpretation of the
input sentence based on observing the accompanying scene. Given such veridical
semantic feedback, the Latent BabySRL can straightforwardly identify the noun
arguments in the sentence (they are the ones that play semantic roles such as agent
or patient), but can also learn to identify the verb, by learning that the identity and
position of the verb are useful predictor of semantic roles in English sentences (e.g.,
preverbal nouns tend to be agents).
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When trained with highly ambiguous semantic feedback, the Latent BabySRL
still learned to identify arguments and predicates, and to use that inferred syntactic
structure to assign semantic roles, but only if the system was ‘primed’ with
knowledge of a small set of concrete nouns. The superset feedback described in
Sect. 5.1 made possible many interpretations of each input sentence (including the
true one); this feedback scheme provided no information about the number of
arguments in each sentence, or which word in the sentence should be aligned with
each semantic role. We implemented a procedure whereby a set of concrete seed
nouns was used to automatically tag some HMM clusters as noun clusters. This
bottom-up argument identification system then constrained the argument search in
the latent structure classifier training, as described in Sect. 6.2. Representing each
input sentence as containing some number of nouns guided the learner’s assignment
of meaning to input sentences; this in turn permitted the Latent BabySRL to improve
its representation of input sentences (including learning to identify the verb), and
therefore to further improve its semantic-role classification.

This process represents one straightforward implementation of the structure-
mapping account of the origin of syntactic bootstrapping. A skeletal sentence
structure, grounded in a set of concrete nouns, provides a preliminary estimate of the
number and identity of the noun arguments in the sentence, which in turn permits
further semantic and syntactic learning. The Latent BabySRL’s dramatic failure to
learn when provided with superset feedback without this bottom-up information
about the number of noun arguments in the sentence suggests that argument-
number information, which in principle could be derived from lucky observations
of informative scenes (as in the full-feedback version), or from partial knowledge of
syntax grounded in a set of nouns, was crucial to permitting the system to learn.

One might ask which of these two settings of our model is closer to the typical
state of the human learner. Should we assume the semantic bootstrapping setting is
typical – that the child often knows the meanings of the content words in sentences,
and can divine the sentence’s meaning from observation of scenes? Or should we
assume that the syntactic bootstrapping setting is typical, particularly at early points
in acquisition – that the child needs guidance from the sentence itself to determine
the abstract relational meanings of verbs, and of sentences? Some would argue that
even toddlers can often determine the speaker’s intended message in contexts of
face-to-face interaction, reading the speaker’s intention in a shared interactional goal
space (e.g., [71, 83]). Others, including the present authors, would argue that the
abstract relational meanings of verbs and sentences cannot routinely be determined
from event observation without linguistic guidance (e.g., [32, 40, 75]). The present
computational experiments contribute to this conversation by making explicit one
way in which partial representations of the structure of sentences, derived with the
aid of no semantic information beyond the meanings of a few concrete nouns, to
guide early verb learning and sentence interpretation.
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Gradual Acquisition of Verb Selectional
Preferences in a Bayesian Model

Afra Alishahi and Suzanne Stevenson

Abstract We present a cognitive model of inducing verb selectional preferences
from individual verb usages. The selectional preferences for each verb argument
are represented as a probability distribution over the set of semantic properties that
the argument can possess—a semantic profile. The semantic profiles yield verb-
specific conceptualizations of the arguments associated with a syntactic position.
The proposed model can learn appropriate verb profiles from a small set of noisy
training data, and can use them in simulating human plausibility judgments and
analyzing implicit object alternation.

1 Introduction

Many verbs show strong preferences concerning the semantic properties of their
arguments. For example, eating food and drinking water are acceptable, whereas
*eating water and *drinking food are normally not. Learning verb selectional
preferences is an important aspect of human language acquisition, and the acquired
preferences have been shown to guide children’s and adults’ expectations about
missing or upcoming arguments in language learning and comprehension (e.g.,
[13, 24]).

In the earlier theories of semantics, verbs are assumed to impose limitations
or constraints on the applicability of potential arguments filling a particular role
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(e.g., [15, 17]). However, this view has been challenged by an alternative approach
proposed by Resnik [29], in which predicates (particularly verbs) show preferences
towards certain arguments, as opposed to constraining the set of arguments that
they can take. Resnik [29] introduced a statistical approach to automatic induction
of verb selectional preferences from a corpus. In this framework, a semantic class
hierarchy for words is used, together with statistical tools, to induce a verb’s
selectional preferences for a particular argument position in the form of a probability
distribution over all the classes that can occur in that position. Resnik’s model was
proposed as a model of human learning of selectional preferences that made minimal
representational assumptions; it showed how such preferences could be acquired
from usage data and an existing conceptual hierarchy.

The computational study of learning verb selectional preferences is heavily
influenced by the model of Resink [29]. However, his and later computational
models (see Sect. 1.2) have properties that do not match with certain cognitive
plausibility criteria for a child language acquisition model. All of these models
use the training data in “batch mode”, and most of them use information-theoretic
measures that rely on total counts from a corpus. Therefore, it is not clear how the
representation of selectional preferences could be updated incrementally in these
models as the person receives more data. Moreover, the assumption that children
have access to a full hierarchical representation of semantic classes may be too
strict.

In this paper, we propose a cognitive model of the representation and acquisition
of verb selectional preferences which is more plausible in the context of child
language acquisition. We present an incremental Bayesian model for inducing
selectional preferences from usage data. In this model, the selectional preferences
of a verb are represented as a probability distribution over the semantic properties
of an argument, and are evolved over time as the model observes more usages of
each verb. In a series of experiments, we show that our model can form intuitive
selectional preferences for a range of verbs, and make appropriate generalizations
over the observed properties, which can be used in simulating human plausibility
judgments.

1.1 Verb Selectional Preferences

Selectional preferences, or constraints, are viewed as limitations on the applicability
of natural language predicates to arguments. In their semantic theory, Katz and
Fodor [17] characterized selectional constraints as restrictions in terms of the
defining features of the arguments: they outlined a decompositional theory of word
meaning in which lexical entries specified the features applicable to a particular
lexical item. For words that denote predicates, Katz and Fodor proposed that
the arguments in their lexical entries be annotated with restrictions identifying
the necessary and sufficient conditions that a semantically acceptable argument
must meet. Such conditions were represented as Boolean functions of semantic
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features, such as HUMAN or HIGHER ANIMAL for the subject of the verb hit,
and PHYSICAL OBJECT for its object. Jackendoff’s [15] lexical theory, on the
other hand, situates selectional constraints as information appearing in the context
of a rich representation of the predicate’s meaning, such as the annotation LIQUID
appearing as a constraint on one argument of the verb drink. Selectional constraints
were also explicitly integrated into grammar, as in Generative Lexicon Theory
[9, 27]. However, identifying restrictions that are both necessary and sufficient, and
choosing the primitives themselves, is viewed by many to be an insurmountable
problem.

Resnik [28] instead emphasized the view of the restrictions a verb places on
its arguments as selectional preferences, and proposed a new approach to their
representation and learning, which was followed by many in the computational
linguistics community. In this approach, the knowledge of words, or concepts, is
represented as a pre-defined semantic class hierarchy, and statistical tools are used
to learn selectional preferences from examples in a corpus. As opposed to a Boolean
interpretation of selectional constraints, here the selectional preferences are viewed
as probability distributions over various semantic classes. For example, the preferred
objects of eat are represented not as the black-and-white class FOOD but rather as
a gray probability distribution over all nouns or various classes thereof.

Many theories of lexical acquisition make use of selectional constraints [13, 26].
Gleitman and Gillette [13] show that selectional constraints provide adult subjects
with significant constraints on the possible meanings of unknown verbs: the subjects
identified a verb 80 % of the time if they were given the syntactic frame of
the verb together with the nouns that appear as the verb arguments; however,
the syntactic frame alone or the noun arguments alone (without specifying their
position) did not help subjects to identify the verb half the time. This shows that
the semantic properties of the verb arguments (or verb selectional preferences) are
more informative than simply the semantic associations between a verb and a group
of nouns, or the syntactic properties of the verb. Moreover, selectional preferences
play an important role in many aspects of language processing: they influence the
syntactic structure of a sentence, especially in the face of ambiguity; they affect
selecting the likely word in a sequence of speech signals; and they can be drawn
on for the task of word sense disambiguation. An explicit model of the process by
which the acquisition of selectional preferences takes place can shed light on the
plausible representations and their effect on the relevant language tasks.

1.2 Related Computational Models

Two central questions for the automated treatment of selectional preferences are:
what representation to use, and how to induce preferences from available data.
A variety of computational models of verb selectional preferences have been
proposed, which use different statistical models to induce the preferences of each
verb from corpus data. Most of these models, however, use the same representation
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for verb selectional preferences: the preference can be thought of as a mapping, with
respect to an argument position for a verb, of each semantic class to a real number
[19]. The induction of a verb’s preferences is, therefore, modeled as using a set of
training data to estimate that number.

Resnik [28] is the first to model the problem of induction of selectional
preferences using a a pre-existing semantic class hierarchy, WordNet [23]. He
defines the selectional preference strength of a verb for a particular argument as
the divergence between two probability distributions: the prior probabilities of the
classes in that argument position (e.g., direct object), and the posterior probabilities
of the classes in that position given that verb. The selectional association of a verb
with a class is also defined as the contribution of that class to the total selectional
preference strength. For example, eat would be expected to have a reasonably strong
selectional preference strength, with food items having high selectional association
and non-food items a very low selectional association. Resnik estimates the prior
and posterior probabilities based on the frequencies of each verb and its relevant
argument in a corpus.

Following [28, 29], a number of methods were presented that make use of
WordNet and a text corpus, together with a variety of statistical models, to induce
selectional preferences. Li and Abe [18] model selectional preferences of a verb (for
an argument position) as a set of nodes in WordNet with a probability distribution
over them. They use the Minimum Description Length (MDL) principle to find
the best set for each verb and argument based on the usages of that verb in the
training data. Clark and Weir [7] also find an appropriate set of concept nodes to
represent the selectional preferences for a verb, but do so using a �2 test over corpus
frequencies mapped to concepts to determine when to generalize from a node to its
parent. Ciaramita and Johnson [6] use a Bayesian network with the same topology
as WordNet to estimate the probability distribution of the relevant set of nodes in
the hierarchy. Abney and Light [1] use a different representational approach: they
train a separate hidden Markov model for each verb, and the selectional preference
is represented as a probability distribution over words instead of semantic classes.

In contrast to the class-based methods above, Erk [11] proposes a similarity
equation-based model that does not rely on a hierarchical representation of semantic
classes. Instead, her model estimates the selectional preference of an argument
position for a possible head word as a frequency-weighted sum of the similarities
between that word and the observed head words for that argument position in
a corpus. The similarity between the potential head word and each previously-
observed head word is computed based on a corpus-based semantic similarity
metric. Zapirain et al. [32] use a similar approach for automatically generating
selectional preferences from a corpus using a second-order distributional similarity
measure, which they use in semantic role classification. Such similarity-based
models generally outperform the class-based approaches for many tasks, but are
unable to form an abstract representation of selectional preferences.

It is not easy to evaluate the acquired selectional preferences on their own,
since there is no “gold standard” set of examples against which to compare the
outcome of a method [19]. The existing models of verb selectional preference have
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been evaluated through a wide range of computational linguistic tasks, including
word sense disambiguation [1, 6, 22, 30], PP-attachment disambiguation [18]; a
pseudo-disambiguation task of choosing the best verb-argument pair [7], and
semantic role labelling [11]. Resnik [29] also evaluated his method through two
other means that are more interesting from a human language acquisition point of
view: the simulation of verb-argument plausibility judgements elicited from adult
subjects, and an analysis of whether implicit verb arguments—those that are not
syntactically realized—are those that are strongly semantically constrained. We
refer to the simulation of human plausibility judgments in our experimental results.

1.3 Our Approach

In previous work [3], we have proposed a usage-based model of early verb learning
that uses Bayesian clustering and prediction to model language acquisition and
use. Individual verb usages are incrementally grouped to form emergent classes
of linguistic constructions that share syntactic and semantic properties. We have
shown that our Bayesian model can incrementally acquire a general conception of
the semantic roles of predicates based only on exposure to individual verb usages
[4]. The model forms probabilistic associations between the semantic properties
of arguments, their syntactic position, and the semantic primitives of verbs. Our
previous experiments demonstrated that, initially, this probability distribution for an
argument position yields verb-specific conceptualizations of the role associated with
that position. As the model is exposed to more input, the verb-based roles gradually
transform into more abstract representations that reflect the general properties of
arguments across the observed verbs. See also [8] in this volume for an alternative
approach to the acquisition of semantic roles.

In this paper, we present an extended version of our model that, in addition
to learning general semantic roles for constructions, can use its verb-specific
knowledge to predict intuitive selectional preferences for each verb argument
position.1 We propose a novel way of representing the selectional preferences of
a verb as a verb semantic profile, or a probability distribution over the semantic
properties of an argument for each verb. A verb semantic profile is predicted
from both the verb-based and the construction-based knowledge that the model
has learned through clustering, and reflects the properties of the arguments that
are observed for that verb. Our proposed model makes appropriate generalizations
over the observed properties, and captures expectations about previously unseen
arguments.

As in other work on selectional preferences, the semantic representation of
arguments in our model is based on a standard lexical ontology [WordNet; 23].

1This paper is an updated and extended version of preliminary work on this approach presented in
[2].
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Verb Usage: We entered the room.

Extracted Frame
head verb enter
semantic primitives of verb: hregister,record,enter,put down,save,preserve,keep,hold on,

have,have got,hold,be, : : : i
number of arguments: 2
syntactic pattern: arg1 verb arg2
argument 1: we
properties of argument 1: horganism,being,living thing,animate thing,object,physical

object,entity,causal agent, : : : i
argument 2: room
properties of argument 2: harea,structure,construction,object,physical object,entity,

whole,unit,position,spatial relation,: : : i
Fig. 1 An input sentence and its corresponding frame

In contrast to other work, however, each argument contributes to the semantic profile
of the verb through a (potentially large) set of semantic properties instead of its
membership in a class in the hierarchy. It should be emphasized that our model does
not require knowledge of the hierarchical structure of the WordNet concepts. That
is, the model is able to generalize knowledge of semantic classes without requiring
an explicit class structure; all that is required for generalization behaviour is that
some properties are more general (i.e., shared by more words) than others. In other
aspects, the particular semantic properties are not fundamental to the working of
the model, and could in the future be replaced with another resource that is deemed
more appropriate to child language acquisition.

This approach allows us the computational advantage of making use of an avail-
able resource, while avoiding ad hoc cognitive assumptions about the representation
of a conceptual hierarchy. Moreover, due to our novel representation of a semantic
profile, the model can induce and use selectional preferences using a relatively small
set of training data.

2 A Computational Model of Learning Verb
Selectional Preferences

Our model learns the set of argument structure frames for each verb, and their
grouping across verbs into constructions. An argument structure frame is a set
of features of a verb usage that are both syntactic (the number of arguments, the
syntactic pattern of the usage) and semantic (the semantic properties of the verb,
the semantic properties of each argument). The syntactic pattern indicates the word
order of the verb and arguments. Figure 1 shows an example of a verb usage and the
corresponding argument structure frame.

A construction is a grouping of individual frames which probabilistically share
syntactic and semantic features, and form probabilistic associations across verb
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semantic properties, argument semantic properties, and the syntactic pattern. These
groupings typically correspond to general constructions in the language such as
transitive, intransitive, and ditransitive.

For each verb, the model associates an argument position with a semantic profile,
which is a probability distribution over a set of semantic properties. In doing so, the
model uses the knowledge that it has learned for that verb, as well as the grouping
of frames for that verb into constructions.

The model formalization is presented in the following sections. We review
basic properties of the model, i.e. the clustering of argument structure frames
into constructions (Sect. 2.1) and the estimation of the probabilities of semantic
properties (Sect. 2.2) from [3, 4].2 Next we describe the extensions that give the
model its ability to make verb-based predictions: in Sect. 2.3, a novel approach for
estimating a semantic profile for each argument position of a verb is presented, and
in Sect. 2.4 a new criteria for measuring the compatibility between a verb and an
argument is proposed.

2.1 Learning as Bayesian Clustering

Each argument structure frame for an observed verb usage is input to an incremental
Bayesian clustering process. This process groups the new frame together with
an existing group of frames—a construction—that probabilistically has the most
similar semantic and syntactic properties to it. If no construction has sufficiently
high probability for the new frame, then a new construction is created for it. We
use the probabilistic model of [3, 4] for learning constructions, which is itself an
adaptation of a Bayesian model of human categorization proposed by Anderson [5].
It is important to note that the categories (i.e., constructions) are not predefined, but
rather are created according to the patterns of similarity over observed frames.

Grouping a frame F with other frames participating in construction k is
formulated as finding the k with the maximum probability given F :

BestConstruction.F / D argmax
k

P.kjF / (1)

where k ranges over the indices of all constructions, with index 0 representing
creation of a new construction.

Using Bayes rule, and dropping P.F / which is constant for all k:

P.kjF / D P.k/P.F jk/

P.F /
/ P.k/P.F jk/ (2)

2Please refer to [3, 4] for more details about the representation framework and the learning
mechanisms, and more in-depth discussions about the motivation behind each step.
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The prior probability, P.k/, indicates the degree of entrenchment of construction
k, and is given by the relative frequency of its frames over all observed frames.
The posterior probability of a frame F is expressed in terms of the individual
probabilities of its features, which (under an assumption of independence) yields
a simple product of feature probabilities:

P.F jk/ D
Y

i2FrameFeatures

Pi .j jk/ (3)

where j is the value of the i th feature of F , and Pi .j jk/ is the probability of
displaying value j on feature i within construction k (determined by considering
the values of feature i across all frames in k). If no existing construction has a
sufficiently high similarity to the features of the current frame F to be clustered, the
new construction, k D 0, will have the highest probability, and the current frame F

will trigger creation of a new cluster.
Given the focus here on semantic profiles, we next focus on the calculation of the

probabilities of semantic properties.

2.2 Probabilities of Semantic Properties

The probability in Eq. (3) of value j for feature i in construction k is estimated
using a smoothed version of this maximum likelihood formula:

Pi .j jk/ D countki .j /

nk

(4)

where nk is the number of frames participating in construction k, and countki .j / is
the number of those with value j for feature i .

For most features, countki .j / is calculated by simply counting those members
of construction k whose value for feature i exactly matches j . However, recall
that for the semantics of a word, the value of this feature is a (typically, large) set
of properties. Counting only the number of exact matches between sets of such
properties is too strict, since even highly similar words very rarely have the exact
same set of properties. We instead use the following Jaccard similarity score to
measure the overlap between the set of semantic properties, SF

i , of a particular
argument i in the frame F to be clustered, and the set of semantic properties, Sk

i , of
the same argument in a member frame k of a construction:

sem score.SF
i ; Sk

i / D jSF
i \ Sk

i j
jSF

i [ Sk
i j (5)

The conditional probability of a set of semantic properties (Pi .S
F
i jk/) is

calculated as in Eq. (4), but countki .j / is estimated as the normalized sum of
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the sem scores for the new frame F and every member of construction k. The
normalization factor is calculated as the sum of the similarity of every word in our
lexicon to the frames in construction k.

2.3 Predicting Semantic Profiles for Verbs

The formula in Eq. (4), Pi .j jk/, is used to calculate the probability of the semantics
of an argument for a given position across all usages in a construction. This can
be used to provide a general picture of the semantic role for that position across
all verbs in the construction. To see specifically what arguments a particular verb
prefers in that position, we need a different probability formula restricted to that
verb, across all its usages.

We represent the selectional preferences of a verb for an argument position as
a verb semantic profile, which is a probability distribution over all the semantic
properties. To predict the profile of a verb v for an argument position arg, we need
to estimate the probability of each semantic property j separately.

Parg.j jv/ D
X

k

Parg.j; kjv/

/
X

k

P.k; v/Parg.j jk; v/ (6)

Here, j ranges over all the possible semantic properties that an argument can have,
and k ranges over all constructions.

The prior probability of having verb v in construction k, or P.k; v/, is mainly
determined by the frequency with which v participates in k, or f v

k . However, due to
sparse and noisy data, individual verb usages are not entirely reliable. On the other
hand, the items within a well-entrenched construction are more likely to reflect
a reasonably confident usage of the verb. We thus want to include the influence
of the degree of entrenchment of each construction in the prior probability. To
determine the relative entrenchment of a construction k among all the constructions,
we calculate its weight wk by taking its number of frames nk over the total number
of frames:

wk D nkP
k0 nk0

(7)

The prior probability P.k; v/ is then calculated by:

P.k; v/ D wk 
 f v
kP

k0 wk0 
 f v
k0

(8)

The posterior probability Parg.j jk; v/ is calculated analogously to Pi .j jk/ in
Eq. (4), but limiting the count of matching features to those frames in k that
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contain v:

Parg.j jk; v/ D verb countkarg.j; v/

nkv
(9)

where nkv is the number of frames for v participating in construction k, and
verb countkarg.j; v/ is the number of those with semantic property j for argument
arg. We use a smoothed version of the above formula, where the relative frequency
of each property j among all nouns is used as the smoothing factor.

2.4 Verb-Argument Compatibility

To estimate verb argument plausibility, we need a measure of compatibility of a
particular noun n for an argument position arg of some verb v. That is, we need to
estimate how much the semantic properties of n conform to the acquired semantic
profile of v for arg. We formulate the compatibility as the log of the conditional
probability of observing n as an argument arg of v:

compatibility.v; n/ D log.Parg.prop.n/jv// (10)

where prop.n/ is the set of the semantic properties for word n, and Parg.prop.n/jv/

is estimated similarly to Parg.j jv/ in Eq. (6). Since prop.n/ is a set of properties (as
opposed to j in Eq. (6) being a single property), verb countkarg in Eq. (9) should be
modified as:

verb countkarg.prop.n/; v/ D
X

f 2k

sem score.prop.n/; Sf
arg/ (11)

where f is a frame that belongs to construction k, and S
f
arg is the set of the semantic

properties for argument arg of frame f .

3 Experimental Results

In the following sections, we first describe the training data for our model. Although
our model determines selectional preferences for any argument position, we focus
here on evaluation of verb preferences for the direct object position, as is typical
in other computational models of selectional preferences. Next, we provide a
qualitative analysis of our model through examination of the semantic profiles for
a number of verbs, and show how the semantic profiles of verbs evolve over time.
We then evaluate our model through simulating human judgments of verb-argument
plausibility, following [29].
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3.1 The Training Data

In earlier work [3, 4], we used a method to automatically generate training data
with the same distributional properties as the input children receive. However, this
relies on manually-compiled data about verbs and their argument structure frames
from the CHILDES database [20]. To evaluate the new version of our model for the
task of learning selectional preferences, we need a wide selection of verbs and their
arguments that is impractical to compile by hand.

The training data for our experiments here are generated as follows. We use the
Wall Street Journal portion of Penn Treebank [21]. We convert the treebank to a
dependency format using the LTH Constituent-to-Dependency Conversion tool [16],
from which we extract verb usages. For each verb usage in a sentence, we construct
a frame by recording the lemmatized verb form, the number of the arguments for
that verb, and the syntactic pattern of the verb usage (i.e., the position of the verb
and the arguments).

We also record in the frame the semantic properties of the verb and each of the
argument heads (each noun is also lemmatized). The semantic properties of words
are taken from WordNet (version 2.0) as follows. In order to simulate understanding
of the semantics of a word ranging from more specific to more general aspects, we
use properties that reflect the nearer and more distant hypernyms of the word in
WordNet. We extract all the hypernyms (ancestors) for all the senses of the word,
and add all the words in the hypernym synsets to the list of the semantic properties.
Figure 2 shows an example of the hypernyms for dinner, and its resulting set of
semantic properties.3

3.2 Formation of Semantic Profiles for Verbs

We train our model on 30; 000 frames extracted from WSJ (as described in the
previous section). We use Eq. (6) to predict the semantic profile of the direct object
position for a range of verbs. Some of these verbs, such as pay and cause, have
strong selectional preferences, whereas others, such as take and put, can take a wide
range of nouns as direct object (as confirmed by Resnik’s [29] estimated strength
of selectional preference for these verbs). Figure 3 displays the semantic profiles
of three verbs: pay, cause and put. (Due to limited space, we only include the 30
properties that have the highest probability in each profile.)

Because we extract the semantic properties of words from WordNet which has a
hierarchical structure, the properties that come from nodes in the higher levels of the
hierarchy (such as entity and abstraction) appear as the semantic property for a very

3We do not remove alternate spellings of a term in WordNet; this will be seen in the profiles in the
results section.
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Sense 1
dinner

=> meal, repast
=> nutriment, nourishment, nutrition, sustenance,

aliment, alimentation, victuals
=> food, nutrient

=> substance, matter
=> entity

Sense 2
dinner, dinner party

=> party
=> social gathering, social affair

=> gathering, assemblage
=> social group

=> group, grouping

dinner: fmeal, repast, nutriment, nourishment, nutrition, substance, aliment, alimentation,
victuals, food, nutrient, substance, matter, entity, party, social gathering,
social affair, gathering, assemblage, social group, group, groupingg

Fig. 2 Semantic properties for dinner from WordNet

large set of words, whereas the properties that come from the leaves in the hierarchy
are specific to a small set of words. Therefore, the general properties are more likely
to be associated with a higher probability in the semantic profiles for most verbs. In
fact, a closer look at the semantic profiles for less selective verbs such as put reveals
that the top portion of the semantic profile for these verbs consists solely of such
general properties that are shared among many words. However, this is not the case
for the more restrictive verbs. The semantic profiles for pay and cause show that the
specific properties that these verbs demand from their direct object appear amongst
the highest-ranked properties, even though only a small set of words share these
properties (e.g., possession, transferred property, financial loss, cost, . . . for pay,
and human action, change, happening, occurrence, natural event, . . . for cause).

The examination of the semantic profiles for fairly frequent verbs in the training
data shows that our model can use the verb usages to predict an appropriate semantic
profile for each verb. When presented with a novel verb (for which no verb-
based information is available), Eq. (6) predicts a semantic profile which reflects
the relative frequencies of the semantic properties among all words (due to the
smoothing factor added to Eq. (9)), modulated by the prior probability of each
construction. The predicted profile is displayed in Fig. 4. It shows similarities with
the profile for put in Fig. 3, but the general properties in this profile have an even
higher probability. Since the profile for the novel verb is predicted in the absence
of any evidence (i.e., verb usage) in the training data, we later use it as the base for
estimating other verbs’ strength of selectional preference.
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pay
(0.017) abstraction
(0.014) possession
(0.013) entity
(0.012) object
(0.012) physical object
(0.012) destination
(0.011) relation
(0.011) goal
(0.010) transferred property
(0.010) transferred

possession
(0.010) loss
(0.010) financial loss
(0.010) cost
(0.010) outlay
(0.010) outgo
(0.010) expenditure
(0.010) communication
(0.010) social relation
(0.009) measure
(0.008) act
(0.008) cause
(0.008) instrument
(0.007) human action
(0.007) human activity
(0.007) unit
(0.007) being
(0.007) living thing
(0.007) animate thing
(0.007) organism
(0.007) causal agent

:
:
:

cause
(0.013) abstraction
(0.012) entity
(0.012) object
(0.012) physical object
(0.011) state
(0.010) act
(0.010) human action
(0.010) human activity
(0.009) psychological

feature
(0.008) change
(0.008) cognition
(0.008) knowledge
(0.008) noesis
(0.008) attribute
(0.008) instrument
(0.007) event
(0.007) unit
(0.007) whole
(0.007) whole thing
(0.006) artifact
(0.006) artefact
(0.006) activity
(0.006) relation
(0.006) status
(0.005) happening
(0.005) occurrence
(0.005) natural event
(0.005) action
(0.005) condition
(0.005) communication

:
:
:

put
(0.015) entity
(0.015) location
(0.013) object
(0.013) physical object
(0.012) destination
(0.011) unit
(0.010) act
(0.010) human action
(0.010) human activity
(0.010) abstraction
(0.009) cause
(0.008) psychological

feature
(0.008) whole
(0.008) whole thing
(0.008) artifact
(0.008) artefact
(0.008) goal
(0.008) cognition
(0.008) knowledge
(0.008) noesis
(0.008) change
(0.007) grouping
(0.007) group
(0.007) attribute
(0.007) being
(0.007) living thing
(0.007) animate thing
(0.007) organism
(0.007) causal agent
(0.007) causal agency

:
:
:

Fig. 3 Semantic profiles of verbs pay, cause and put for the direct object position

To compare the semantic profiles of two verbs for the same argument position,
we measure the divergence between the two probability distributions represented by
these semantic profiles. We use a standard divergence measure, Relative Entropy (or
KL-divergence), for this purpose:

DKL.P jjQ/ D
X

i

P.i/ log
P.i/

Q.i/
(12)

This measure shows how different the two semantic profiles are, with a value of zero
indicating two identical profiles. The divergence of the highly selective verb pay
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A novel verb
(0.021) entity
(0.017) object
(0.012) physical object
(0.011) abstraction
(0.011) act
(0.011) human action
(0.011) human activity
(0.010) being
(0.010) unit
(0.009) living thing
(0.009) animate thing
(0.009) organism
(0.009) cause
(0.009) causal agent
(0.009) causal agency
(0.009) person
(0.009) individual
(0.009) someone
(0.009) somebody
(0.009) mortal

:
:
:

Fig. 4 Semantic profile of a novel verb for the direct object position

from the base profile of Fig. 4 is estimated as 1:4 
 10�3, whereas the divergence of
the less selective verb put from the base profile is 4:9 
 10�4.

3.3 Evolution of Verb Semantic Profiles

Given enough training data, our model can learn appropriate semantic profiles for
different verbs. However, because the model learns these profiles from instances
of verb usage, we expect each verb profile to go through a gradual generalization
process, where it initially reflects the properties of specific verb arguments, and
becomes more general over time. For example, upon hearing a couple of usages
of a verb such as I watched a film and they watched a movie, a language learner
might assume that the verb watch can only be used in the movie-watching context.
Similarly, hearing he ate an orange and she is eating an apple might mislead the
learner to think that eat can only accept fruits as its direct object. Later and more
varied usages of such verbs leads to the formation of a more general profile for their
arguments.

We tracked this generalization process for the acquired semantic profiles. As an
example, Fig. 5 shows the semantic profile for the direct object position of make
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After 500 items
(0.024) entity
(0.022) object
(0.022) physical object
(0.017) unit
(0.017) whole
(0.016) whole thing
(0.016) artifact
(0.016) artefact
(0.014) instrumentality
(0.014) instrumentation
(0.011) abstraction
(0.010) change
(0.010) act
(0.010) human action
(0.010) human activity
(0.010) device
(0.009) move
(0.008) electrical device
(0.008) flow
(0.008) course

:
:
:

After 5000 items
(0.015) act
(0.015) human action
(0.014) human activity
(0.014) abstraction
(0.014) entity
(0.012) relation
(0.012) communication
(0.012) social relation
(0.011) object
(0.011) physical object
(0.010) event
(0.009) content
(0.009) unit
(0.009) activity
(0.009) substance
(0.008) whole
(0.008) whole thing
(0.008) artifact
(0.008) artefact
(0.008) change

:
:
:

Fig. 5 The evolution of the semantic profile for the direct object of make

after processing 500 and 5,000 input items. It can be seen that the earlier profile
reflects very specific properties (e.g., electrical device, flow). The high probability
associated with such properties is due to an early use of lexical items such as filter
and control as the direct object of make. However, as the model receives more input,
the predicted profile reflects more general properties and is even generalized to non-
literal usages of make (e.g., make appointment and make contribution, reflected by
properties such as human action and communication).

To monitor the evolution of a semantic profile for each verb, we can compare the
semantic profile for an argument position at a given point in learning, and the profile
for that position that the model eventually converges to at the end of each simulation.
We measure the divergence between the two probability distributions represented by
these semantic profiles using the Relative Entropy measure of Eq. (12) (Sect. 3.2).
In order to visualize the strength of the selectional preferences for each verb, at
each point in time we also compare the divergence of its profile with that of a novel
verb (predicted at the same time point). A wide divergence will indicate a stronger
preference imposed by the target verb.

Figure 6 shows the profile divergences for the direct object positions of pay,
cause and put after processing every 100 input items over a total of 5,000 items. The
divergence between the current and end profiles of the same verb is shown by solid
lines, and the divergence between the current profiles of the target and the novel verb
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Fig. 6 Learning curves for
verb semantic profiles. The
x-axis is time (#inputs), and
the y-axis is divergence from
the profile that the model
eventually converges to. Solid
lines show divergence from
the ultimate profile for the
same verb, whereas dashed
lines show divergence from
the profile predicted for a
novel verb

is shown by dashed lines. Figure 6 shows that more restrictive verbs such as pay and
cause strongly diverge from the profile for a novel verb, and this gap becomes wider
as the model processes more input. Since pay is much more frequent in our data set
than cause, its learning curve is smoother and changes more gradually. The profile
predicted for put (which allows for a wide range of direct objects) remains relatively
constant over time, resembling the profile of a novel verb.
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Verb Plausible Implausible
see friend �32.73 method �35.94
read article �24.24 fashion �26.68
find label �24.74 fever �26.52
hear story �25.75 issue �25.76
write letter �24.47 market �25.34
urge daughter �34.36 contrast �36.13
warn driver �45.99 engine �45.20
judge contest �46.48 climate �49.43
teach language �46.44 distance �47.47
show sample �23.93 travel �24.40
expect visit �46.24 mouth �45.34
answer request �34.49 tragedy �36.75
recognise author �37.85 pocket �37.88
repeat comment �47.08 journal �48.32
understand concept �37.78 session �37.63
remember reply �28.79 smoke �28.63

Fig. 7 Compatibility scores for plausible vs. implausible verb-noun pairs. Verbs for which the
model correctly chooses the plausible argument are shown in boldface

3.4 Verb-Argument Plausibility Judgments

Holmes et al. [14] evaluate verb argument plausibility by asking human subjects
to rate sentences like The mechanic warned the driver and The mechanic warned
the engine. Resnik [29] used these data to assess the performance of his model by
comparing its judgments of selectional fit against the plausibility ratings elicited
from human subjects. He showed that his selectional association measure for a verb
and its direct object can be used to select the more plausible verb-noun pair among
the two (e.g., <warn,driver> vs. <warn,engine> in the previous example). That is,
a higher selectional association between the verb and one of the nouns compared to
the other noun indicates that the former is the more plausible pair. Resnik [29] used
the Brown corpus as training data, and showed that his model arrives at the correct
ordering of more and less plausible arguments in 11 of the 16 cases.

We repeated this experiment using the same 16 pairs of verb-noun combinations.
As before, we trained our model on 30; 000 extracted frames from the Wall
Street Journal corpus (out of 142; 000); that is, only one-fifth of the data used
by Resnik. For each pair of <v; n1> and <v; n2>, we calculate the compatibility
measure using Eq. (10); these values are shown in Fig. 7. (Note that because
these are log-probabilities and therefore negative numbers, a lower absolute value
of compatibility.v; n/ shows a better compatibility between the verb v and the
argument n.) For example, <see,friend> has a higher compatibility score (�32.73)
than <see,method> (�35.94). Our model detects 12 plausible pairs out of 16, which
is slightly more accurate than Resnik’s model. However, these results are reached
with a much smaller training corpus.
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4 Discussion and Future Directions

In the context of human language learning, it is important to show that the
selectional preferences of verbs can be acquired gradually and through online
processing of verb usage data. The model presented in this paper for learning and
use of verb selectional preferences shows that a semantic profile, or a probability
distribution over semantic properties, can be learned for argument positions of
individual verbs. Unlike other existing models of selectional preferences, our
model is incremental and does not rely on having access to a full hierarchical
representation of semantic classes prior to the acquisition of verb selectional
preferences. These two properties make our model more cognitively plausible than
other existing models. However, there are several directions for improving the model
and investigating new applications for it in the future. We will review a few of these
directions in the following.

Ambiguity and noise. A central problem for induction of the selectional prefer-
ences is noise in the training data. Noise can be due to errors in frame extraction, or
due to metaphorical usage of verb-noun compounds. Another problem is word sense
ambiguity in the training data which can lead to incorrect generalization, especially
because we merge the hypernyms of multiple senses of a word to construct its set
of semantic properties. (However, McCarthy and Carroll [22] show that integrating
a word sense disambiguation module into a selectional preference induction model
does not significantly improve the performance.) Both these problems are expected
to be improved by increasing the size of training data and using more sophisticated
data processing techniques. Our model shows promise in learning intuitive semantic
profiles for verbs and in simulating human plausibility judgements using a small
input data set, but processing larger sets of input data can improve the performance
of the model. We plan to investigate this in future.

Noun selectional preferences. It has been argued that selectional preferences can
be applied for nouns too, since they “prefer” to select certain predicates over others
[27]. For example, cake prefers to be baked, but not written. We can model this
reverse preference as predicting the semantic primitives of the head word (verb)
based on the properties of the arguments and the syntactic pattern of the usage.
Moreover, the compatibility measure introduced in Eq. (10), Sect. 2.4, can also be
used to compare two pairings of a noun with two different verbs, and to measure
the preference of that noun for each of the verbs (e.g., hbake, cakei vs. hwrite,
cakei). This possibility of extending to other parts of speech is lacking in the existing
models of selectional preferences.

Compound verbs. To our knowledge, computational methods of inducing
selectional preferences have only been applied to simple (i.e. single-word) verbs.
However, compound verbs such as take a walk form a significant proportion of the
lexicon in most languages (see [25] in this volume for a computational study on the
acquisition of compound verbs). An interesting line of research would be to gen-
eralize the current model to learning selectional preferences for compound verbs.
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Moreover, in line with the previous proposal, the generalized model can also be
applied to compound nouns and the induction of their selectional preferences
(similarly, see [10] in this volume for a model of interpreting novel noun-noun
compounds).

Wider range of evaluation tasks. Our main goal in this paper was to show through
qualitative analysis that it is possible to learn intuitive representations of verb
selectional preferences through an incremental process, and to look at the gradual
evolution of these representations over time. However, a natural continuation of this
work would be to use these acquired preferences in various tasks, similar to what
humans do in language learning and processing. The evaluation tasks that have been
widely used in the computational models of selectional preferences are mainly of
an artificial nature, for example the widely used psudo-disambiguation task [12,31].
We plan to identify more natural tasks for which experimental data from human
subjects is available, and compare the performance of our model in these tasks to
that of humans.
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