
Chapter 2
The Purpose of MDS

Abstract The different purposes of MDS are explained: MDS as a psychological
model of similarity judgments; MDS for visualizing proximity data; and MDS for
testing structural hypotheses.

Keywords Latent dimension · Distance axiom · Minkowski distance · Euclidean
distance · City-block distance · Dominance metric · Partition · Facet · Radex ·
Cylindrex

Modern MDS is mainly used for general data analysis, especially for visualizing
data. This was not always so. Historically, MDS served a different purpose: It was a
psychological model of how persons form judgments about the similarity of objects.
In many modern MDS applications, traces of this original model can still be found
(e.g., in the way MDS solutions are interpreted or in the terminology used in MDS),
even if the scaling method is used as a mere statistical tool. In the following, we
begin by discussing a recent application that uses MDS as a visualization tool. Then,
we consider typical examples of the early days of MDS.

2.1 MDS for Visualizing Proximity Data

Over the recent years, MDS has been predominantly used as a tool for analyzing
proximity data of all kinds (e.g., correlations, similarity ratings, co-occurrence data).
Most of all, MDS serves to visualize such data, making them accessible to the eye of
the researcher. Let us consider a typical visualization application of MDS. Figure 2.1
shows a case from industrial psychology. Its 27 points represent 25 items and two
indexes from an employee survey in an international IT company (Liu et al. 2004).
Two examples for the items are: “All in all, I am satisfied with my pay”, and “I like
my work”, both employing a Likert-type response scale ranging from “fully agree”
to “fully disagree.” The two indexes are scale values that summarize the employees’
responses to a number of items that focus on their affective commitment to the
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Fig. 2.1 MDS representation of the intercorrelations of 25 items and 2 indexes of an employee
survey in an international IT company. The grayed area around organizational commitment contains
likely drivers of commitment

company and on their general job satisfaction, respectively. The distance between
two points in Fig. 2.1 represents (quite precisely) the correlation of the respective
variables. As all variables are non-negatively intercorrelated, it is particularly easy
to interpret this MDS configuration: The closer two points, the higher the correlation
of the variables they represent. Hence, one notes, for example, that since “satisfied
with pay” and “satisfied with benefits” are close neighbors in the MDS plane (see
lower left-hand corner of the plot), employees rated these issues similarly: Those
who were satisfied with one job aspect where also satisfied with the other, and vice
versa. In contrast, being satisfied with pay is far from “encouraged to voice new
ideas” (see top of the plot), and, hence, these two items are essentially uncorrelated.

The value of this MDS configuration is based on the notion that a picture is worth
more than a 1,000 words or numbers. Indeed, most researchers and practitioners find
it much easier to study such a plot than studying a 27 × 27 correlation matrix with
its 351 coefficients. It is almost impossible to understand the structure of the data in
such large arrays of numbers, while their graphical display in an MDS plane can be
explored with considerably less effort.

The fact that 351 correlations can be represented by the distances of 27 points that
lie in a merely 2-dimensional space makes clear, moreover, that the data are highly
structured. Random data would require much higher-dimensional spaces. Hence, the
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persons who answered this employee survey must have generated their answers from
a consistent system of attitudes and opinions, and not by generating evasive random
ratings, because such ratings would not be so orderly interlocked.

The ratings also make sense psychologically, because items of similar content are
grouped in close neighborhoods in the MDS space. For example, the various items
related to management (e.g., trust management, trust management board, support
strategy) form such a neighborhood of items that received similar ratings in the
survey.

One also notes that the one point that represents general job satisfaction lies
somewhere in the central region of the point configuration. This central position
reflects the fact that general job satisfaction is positively correlated with each of
the 25 items of this survey. Items located more at the border of the MDS plot are
substantially and positively correlated with the items in their neighborhood, but not
with items opposite of them in the configuration. With them, they are essentially
uncorrelated.

The plot leads to many more insights. One notes, for example, that the employees
tend to be the more satisfied with their job overall the more they like their work and
the more they are satisfied with their opportunities for advancement. Satisfaction
with working conditions, in contrast, is a relatively poor predictor of general job
satisfaction in this company.

Because the company suffered from high turnover of its employees, the variable
‘organizational commitment’ was of particular interest in this survey. Management
wanted to know what could be done to reduce turnover. The MDS configuration can
be explored for answers to this question. One begins by studying the neighborhood
of the point representing ‘organizational commitment’ (see dark cloud around the
commitment point in Fig. 2.1), looking for items that offer themselves for action.
That is, one attempts to find points close to commitment that have low scores and
where actions that would improve these scores appear possible. Expressed in terms
of the MDS configuration, this can be understood as grabbing such a point and
then pulling it upwards so that the whole plane is lifted like a rubber sheet, first
of all in the neighborhood of commitment. Managers understand this notion and, if
guided properly, they are able to identify and discuss likely “drivers” of the variable of
interest efficiently and effectively. In the given configuration, one notes, for example,
that the employees’ commitment is strongly correlated with how they feel about their
opportunities for advancement (42 % are satisfied with them, see Borg 2008, p. 311f.);
with how much they like the work they do (69 % like it); with how satisfied they are
with the company overall (88 % satisfied); and, most of all, with how positive they feel
about “performance pays” (only 36 % positive). Thus, if one interprets this network
of correlations causally, with the variables in the neighborhood of commitment as
potential drivers of commitment, it appears that the employees’ commitment can
be enhanced most by improving the employees’ opinions about the performance-
dependency of their pay and about their advancement opportunities. Improving other
variables such as, for example, the employees’ attitudes towards management, is not
likely to impact organizational commitment that much.
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In this example, MDS serves to visualize the intercorrelations of the items. This
makes it possible for the user to see, explore, and discuss the whole structure of the
data. This can be useful even if the number of items is relatively large, because each
additional item adds just one new point to an MDS plot, while it adds as many new
coefficients to a correlation matrix as there are variables.

2.2 MDS for Uncovering Latent Dimensions of Judgment

One of the most fundamental issues of psychology is how subjective impressions of
similarity come about. Why does Julia look like Mike’s daughter? How come that a
Porsche appears to be more similar to a Ferrari than to a Cadillac? To explain such
judgments or perceptions, distance models offer themselves as natural candidates. In
such models, the various objects are first conceived as points in a psychological space
that is spanned by the subjective attributes of the objects. The distances among the
points then serve to generate overall impressions of greater or smaller similarity. Yet,
the problem with such models is that one hardly ever knows what attributes a person
assigns to the objects under consideration. This is where MDS comes in: With its
help, one attempts to infer these attributes from given global similarity judgments.

Let us consider an example that is typical for early MDS applications. Wish (1971)
wanted to know the attributes that people use when judging the similarity of different
countries. He conducted an experiment where 18 students were asked to rate each pair
of 12 different countries on their overall similarity. For these ratings, an answer scale
from “extremely dissimilar” (coded as ‘1’) to “extremely similar” (coded as ‘9’)
was offered to the respondents. No explanation was given on what was meant by
“similar”: “There were no instructions concerning the characteristics on which these
similarity judgments were to be made; this was information to discover rather than to
impose” (Kruskal and Wish 1978, p. 30). The observed similarity ratings, averaged
over the 18 respondents, is exhibited in Table 2.1.

An MDS analysis of these data with one of the major MDS programs, using
the usual default parameters,1 delivers the solution shown in Fig. 2.2. Older MDS
programs generate only the Cartesian coordinates of the points (as shown in Table
2.2 in columns “Dim. 1” and “Dim. 2”, respectively, together called coordinate
matrix, denoted as X in this book). Modern programs also yield graphical output as
in Fig. 2.2. The plot shows, for example, that the countries Jugoslavia and USSR are
represented by points that are close together. In Table 2.1 we find that the similarity
rating for these two countries is relatively high (=6.67, the largest value). So, this
relation is properly represented in the MDS plane. We note further that the points
representing Brazil and China are far from each other, and that their similarity rating
is small (=2.39). Thus, this relation is also properly represented in the MDS solution.

1 Most early MDS programs were set, by default, to deliver a 2-dimensional solution for data that
were assumed to have an ordinal scale level.
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Table 2.1 Mean similarity ratings for 12 countries (Wish 1971)
Country 1 2 3 4 5 6 7 8 9 10 11

Brazil 1 –
Congo 2 4.83 –
Cuba 3 5.28 4.56 –
Egypt 4 3.44 5.00 5.17 –
France 5 4.72 4.00 4.11 4.78 –
India 6 4.50 4.83 4.00 5.83 3.44 –
Israel 7 3.83 3.33 3.61 4.67 4.00 4.11 –
Japan 8 3.50 3.39 2.94 3.83 4.22 4.50 4.83 –
China 9 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17 –
USSR 10 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72 –
USA 11 5.39 2.39 3.17 3.33 5.94 4.28 5.94 6.06 2.56 5.00 –
Jugoslavia 12 3.17 3.50 5.11 4.28 4.72 4.00 4.44 4.28 5.06 6.67 3.56 –

Checking more of these correspondences suggests that the MDS solution is a proper
representation of the similarity data.

If we want to assume that the similarity ratings were indeed generated by a distance
model, and if we are willing to accept that the given MDS plane exhibits the essential
structure of the similarity data, we can proceed to interpret this psychological map.
That is, we now ask what psychologically meaningful “dimensions” span this space.
Formally, the map is spanned by what the computer program delivers in terms of
“Dimension 1” and “Dimension 2”. These dimensions are the principal axes of
the point configuration. However, one can also rotate these dimensions in any way
one wants (holding the configuration of points fixed), because any other system of
two coordinate axes also spans the plane. Hence, one has to look for a coordinate
system that is most plausible in psychological terms. Wish (1971) suggests that
rotating the coordinate system in Fig. 2.2 by 45◦ leads to dimensions that correspond
most to psychologically meaningful scales. On the diagonal from the North–West
to the South–East corner of Fig. 2.2, countries like Congo, Brazil, and India are on
one end, while countries like Japan, USA, and USSR are on the other end. On the
basis of what he knows about these countries, and assuming that the respondents
use a similar knowledge base, Wish interprets this opposition as “underdeveloped
versus developed”. The second dimension, the North–East to South–West diagonal,
is interpreted as “pro-Western versus pro-Communist”.

These interpretations are meant as hypotheses about the attributes that the respon-
dents (not the researcher!) use when they generate their similarity judgments. That
is, the respondents are assumed to look at each pair of countries, compute their dif-
ferences in terms of Underdeveloped/Developed and Pro-Western/Pro-Communist,
respectively, and then derive an overall distance from these two intra-dimensional
distances. Whether this explanation is indeed valid cannot be checked any further
with the given data. MDS only suggests that this is a model that is compatible with
the observations.
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Fig. 2.2 MDS representation of similarity ratings in Table 2.1

2.3 Distance Formulas as Models of Judgment

The above study on the subjective similarity of countries does not explain in detail
how an overall similarity judgment is generated based on the information in the
psychological space. A natural model that explicates how this can be done is a
distance formula based on the coordinates of the points. We will discuss this in the
context of an example.

Distances (also called metrics) are functions that assign a real value to two argu-
ments of elements from one set. They map all pairs of objects (i, j) of a set of objects
(here often “points”) onto real values. Distance functions—in the following denoted
as di j —have the following properties:

1. dii = d j j = 0 ≤ di j (Distances have nonnegative values; only the self-distance
is equal to zero.)

2. di j = d ji (Symmetry: The distance from i to j is the same as the distance from
j to i .)

3. dik ≤ di j + d jk (Triangle inequality: The distance from i to k via j is at least as
large as the direct “path” from i to k.)

One can check if given values for pairs of objects (such as the data in Table 2.1)
satisfy these properties. If they do, they are distances; if they do not, they are not
distances (even though they may be “approximate” distances).

A set M of objects together with a distance function d is called metric space.
A special case of a metric space is the Euclidean space. Its distance function does not
only satisfy the above distance axioms, but it can also be interpreted as the distance of
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Table 2.2 Coordinates X of points Fig. 2.2; Economic development and number of inhabitants
show further measurements on these countries in 1971

X Economic Number of
Country No. Dim. 1 Dim. 2 development inhabitants (Mio)

Brazil 1 0.08 1.28 3 87
Congo 2 −1.12 0.83 1 17
Cuba 3 −1.01 −0.13 3 8
Egypt 4 −0.56 0.08 3 30
France 5 0.42 0.19 8 51
India 6 −0.27 0.41 3 500
Israel 7 0.95 −0.20 7 3
Japan 8 0.96 −0.46 9 100
China 9 −0.80 −0.99 4 750
USSR 10 0.14 −0.84 7 235
USA 11 1.19 0.27 10 201
Jugoslavia 12 −0.01 −0.83 6 20

the points i and j of a multi-dimensional Cartesian space. That means that Euclidean
distances can be computed from the points’ Cartesian coordinates as

di j (X) =
√

(xi1 − x j1)2 + · · · + (xim − x jm)2, (2.1)

=
(

m∑
a=1

(xia − x ja)2

)1/2

, (2.2)

where X denotes a configuration of n points in m-dimensional space, and xia is the
value (“coordinate”) of point i on the coordinate axis a. This formula can be easily
generalized to a family of distance functions, the Minkowski distances:

di j (X) =
(

m∑
a=1

|xia − x ja |p

)1/p

, p ≥ 1. (2.3)

Setting p = 2, formula 2.3 becomes the Euclidean distance. For p = 1, one gets the
city-block distance. When p → ∞, the formula yields the dominance metric.

As a model for judgments of (dis-)similarity, the city-block distance (p = 1)
seems to be the most plausible “composition rule”, at least in case of “analyzable”
stimuli with “obvious and compelling” dimensions (Torgerson 1958, p. 254). It claims
that a person’s judgment is formed by first assessing the distance of the respective
two objects on each of the m dimensions of the psychological space, and then adding
these intra-dimensional distances to arrive at an overall judgment of dissimilarity.

If one interprets formula (2.3) literally, then it suggests for p = 2 that the person
first squares each intra-dimensional distance, then sums the resulting values, and



14 2 The Purpose of MDS

M MMi

j’

i i

j’’
j

dominance
circle

Euclidean
circle

city-block
circle

Fig. 2.3 Three circles with the same radius in the city-block plane, the Euclidean plane, and the
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finally takes the square root. This appears hardly plausible. However, one can also
interpret the formula somewhat differently. That is, the parameter p of the distance
formula can be seen as a weight function: For values of p > 1, relatively large intra-
dimensional distances have an over-proportional influence on the global judgment,
and when p → ∞, only the largest intra-dimensional distance matters. Indeed, for
p-values as small as 10, the global distance is almost equal to the largest intra-
dimensional distance.2 Thus, one could hypothesize that when it becomes more
difficult to make a judgment (e.g., because of time pressure), persons tend to pay
attention to the largest intra-dimensional distances only, ignoring dimensions where
the objects do not differ much. This corresponds, formally, to choosing a large p
value. In the limit, only the largest intra-dimensional distance matters.

Another line of argumentation is that city-block composition rules make sense
only for analyzable stimuli with their obvious and compelling dimensions (such as
geometric figures like rectangles, for example), whereas for “integral” stimuli (such
as color patches, for example), the Euclidean distance that expresses the length of
the direct path through the psychological space is more adequate (Garner 1974).

Choosing parameters other than p = 2 has surprising consequences, though: It
generates geometries that differ substantially from those we are familiar with. What
we know, and what is called the natural geometry, is Euclidean geometry. It is natural
because distances and structures in Euclidean geometry are as they “should” be. A
circle, for example, is “round”. If p �= 1, circles do not seem to be round. In the
city-block plane (with simple orthogonal coordinate axes3), for example, a circle
looks like a square that sits on one of its corners (see left panel of Fig. 2.3). Yet, this
geometrical figure is indeed a circle, because it is the set of all points that have the
same distance from their midpoint M . The reason for its peculiar-looking shape is
that the distances of any two points in the city-block plane correspond to the length of
a path between these points that can run only in North–South or West–East directions,

2 This is easy to see from an example: If point i has the coordinates (0, 0) and j the coordinates
(3, 2), we get the intra-dimensional distances |0 − 3| = 3 and |0 − 2| = 2, respectively. The overall
distance di j , with p = 1, is thus equal to 2 + 3 = 5.00. For p = 2, the overall distance is 3.61. For
p = 10, it is equal to 3.01.
3 For the consequences of choosing other coordinate systems and for the many peculiar laws of
such “taxicab geometries”, see http://taxicabgeometry.net.

http://taxicabgeometry.net.
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Table 2.3 Dissimilarity ratings for rectangles of Fig. 2.4; ratings are means over 16 subjects and
2 replications
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2 4.33
3 6.12 4.07
4 7.21 5.62 3.24
5 2.38 5.76 7.12 7.57
6 4.52 2.52 5.48 6.86 4.10
7 6.00 4.52 3.38 5.21 6.10 4.31
8 7.76 6.21 4.40 3.12 6.83 5.45 4.00
9 3.36 6.14 7.14 8.10 2.00 4.71 6.52 7.71

10 5.93 4.24 6.07 6.93 5.00 2.81 5.43 5.67 4.38
11 6.71 5.60 4.29 5.90 6.86 4.50 2.64 5.21 6.26 3.60
12 7.88 6.31 5.48 5.00 7.83 5.55 4.43 2.69 7.21 5.83 3.60
13 3.69 6.98 7.98 8.45 2.60 5.95 7.69 7.86 1.60 4.31 6.95 7.43
14 5.86 4.55 6.64 7.17 4.86 2.88 5.40 6.50 4.14 1.19 3.79 5.88 4.17
15 7.36 5.88 4.55 6.79 6.93 4.50 3.50 5.55 5.95 3.95 1.48 4.60 6.07 4.02
16 8.36 7.02 5.86 5.40 7.57 5.86 4.52 3.50 6.86 5.17 3.71 1.62 7.07 5.26 3.45
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but never along diagonals—just like walking from A to B in Manhattan, where the
distance may be “two blocks West and three blocks North”. Hence the name city-
block distance. For points that lie on a line parallel to one of the coordinate axes, all
Minkowski distances are equal (see points M and i in Fig. 2.3); otherwise, they are
not equal. If you walk from M to j (or to j ′ or j ′′, respectively) on a Euclidean path
(“as the crow flies”), the distance is shorter than choosing the city-block path which
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runs around the corner. The shortest path corresponds to the dominance distance:
The largest intra-dimensional difference will get you from M to the other points.
This is important for the MDS user because it shows that rotating the coordinate
axes generally changes all Minkowski distances, except Euclidean distances.

To see how the distance formula can serve as a model of judgment, consider an
experiment by Borg and Leutner (1983). They constructed rectangles on the basis of
the grid design in Fig. 2.4. Each point in this grid defines one rectangle. Rectangle
6, for example, had a width of 4.25 cm and a height of 1.25 cm; rectangle 4 was
3.00 cm wide and 2.75 cm tall. A total of 21 persons rated (twice) the similarity of
each pair of these 16 rectangles (see example in Fig. 2.4, lower panel) on a 10-point
answer scale ranging from “0=equal, identical” to “9=very different”. The means
of these ratings over persons and replications are shown in Table 2.3.

The MDS representation (using city-block distances) of these ratings is the grid
of solid points in Fig. 2.5. From what we discussed above, we know that this config-
uration must not be rotated relative to the given coordinate axes, because rotations
would change its (city-block) distances and, since the MDS representation in Fig. 2.5
is the best-possible data representation, it would deteriorate the correspondence of
MDS distances and data.

If one allows for some re-scaling of the width and height coordinates of the
rectangles, one can fit the design configuration quite well to the MDS configuration
(see grid of dashed lines in Fig. 2.5). The optimal re-scaling makes psychological
sense: It exhibits a logarithmic shrinkage of the grid lines from left to right and from
bottom to top, as expected by psychophysical theory.

The deviations of the re-scaled design configuration and the MDS configura-
tion do not appear to be systematic. Hence, one may conclude that the subjects have
indeed generated their similarity ratings by a composition rule that corresponds to the
city-block distance formula (including a logarithmic re-scaling of intra-dimensional
distances according to the Weber–Fechner law). The MDS solution also shows that
differences in the rectangles’ heights are psychologically more important for simi-
larity judgments than differences in the rectangles’ widths.

2.4 MDS for Testing Structural Hypotheses

A frequent application of MDS is using it to test structural hypotheses. In the follow-
ing, we discuss a typical case from intelligence diagnostics (Guttman and Levy 1991).
Here, persons are asked to solve several test items. The items can be classified on the
basis of their content into different categories of two design factors, called facets in
this context. Some test items require the testee to solve computational problems with
numbers and numerical operations. Other items ask for geometrical solutions where
figures have to be rotated in 3-dimensional space or pictures have to be completed.
Other test items require applying learned rules, while still others have to be solved
by finding such rules. One can always code test items in terms of such facets, but the
facets are truly interesting only if they exert some control over the observations, i.e.
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Table 2.4 Intercorrelations of eight intelligence test items, together with codings on two facets
Format Requirement Item 1 2 3 4 5 6 7 8

N A 1 1.00 0.67 0.40 0.19 0.12 0.25 0.26 0.39
N A 2 0.67 1.00 0.50 0.26 0.20 0.28 0.26 0.38
N I 3 0.40 0.50 1.00 0.52 0.39 0.31 0.18 0.24
G I 4 0.19 0.26 0.52 1.00 0.55 0.49 0.25 0.22
G I 5 0.12 0.20 0.39 0.55 1.00 0.46 0.29 0.14
G A 6 0.25 0.28 0.31 0.49 0.46 1.00 0.42 0.38
G A 7 0.26 0.26 0.18 0.25 0.29 0.42 1.00 0.40
G A 8 0.39 0.38 0.24 0.22 0.14 0.38 0.40 1.00

if the distinctions they make are mirrored somehow in corresponding effects on the
data side. The data in our small example are the intercorrelations of eight intelligence
test items shown in Table 2.4. The items are coded in terms of the facets “Format =
{N(umerical), G(eometrical)}” and “Requirement = {A(pply), I(nfer)}”.

A 2-dimensional MDS representation of the data in Table 2.4 is shown in Fig. 2.6.
We now ask if the facets Format and Requirement surface in some way in this plane.
For the facet Format we find that the plane can indeed be partitioned by a straight
line such that all points labeled as “G” are on one side, and all “N” points on the
other (Fig. 2.7). Similarly, using the codings for the facet Requirement, the plane can
be partitioned into two subregions, an A- and an I-region. For the Requirement facet,
we have drawn the partitioning line in a curved way, anticipating test items of a third
kind on this facet: Guttman and Levy (1991) extent the facet Requirement by adding
the element “Learning”. They also extent the facet Format by adding “Verbal”.

For the intercorrelations of items in this 3 × 3 design, that is, for items coded in
terms of two 3-element facets, MDS leads to structures with a partitioning system as
shown in Fig. 2.8. This pattern, termed radex, is often found for items that combine
a qualitative facet (such as Format) and an ordered facet (such as Requirement).
For the universe of typical intelligence test items, Guttman and Levy (1991) suggest
yet another facet, called Communication. It distinguishes among Oral, Manual, or
Paper-and-Pencil items. If there are test items of all 3 × 3 × 3 types, MDS leads to a
3-dimensional cylindrex structure as shown in Fig. 2.9. Such a cylindrex shows, for
example, that the items of the type Infer have relatively high intercorrelations (given
a certain mode of Communication), irrespective of their Format. It is interesting to
see that Apply is “in between” Infer and Learn. We also note that our small sample
of test items of Table 2.4 fits perfectly into the larger structure of the universe of
intelligence test items.
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2.5 Summary

Originally, MDS was a psychological model for how persons arrive at judgments of
similarity. The model claims that the objects of interest can be understood as points
in a space spanned by the objects’ subjective attributes, and that similarity judgments
are generated by computing the distance of two points from their coordinates, i.e. by
summing the intra-dimensional differences of any two objects over the dimensions of
the space. Different variants of Minkowski distances imply that the intra-dimensional
differences are weighted by their magnitude in the summing process. Today, MDS is
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used primarily for visualizing proximity data so that their structure becomes accessi-
ble to the researcher’s eye for exploration or for testing certain hypotheses. Structural
hypotheses are often based on content-based classifications of the variables of inter-
est in one or more ways. Such classifications should then surface in the MDS space
in corresponding (ordered or unordered) regions. Certain types of regionalities (e.g.,
radexes) are often found in empirical research.
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