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Abstract. To enhance the generalization of neural network model, we proposed 
a novel neural network, Minimum Risk Neural Networks (MRNN), whose 
principle is the combination of minimizing the sum of squares of error and 
maximizing the classification margin, based on the principle of structural risk 
minimization. Therefore, the objective function of MRNN is the combination of 
the sum of squared error and the sum of squares of the slopes of the 
classification function. Besides, we derived a more sophisticated formula 
similar to the traditional weight decay technique from the MRNN, establishing 
a more rigorous theoretical basis for the technique. This study employed several 
real application examples to test the MRNN. The results led to the following 
conclusions. (1) As long as the penalty coefficient was in the appropriate range, 
MRNN performed better than pure MLP. (2) MRNN may perform better in 
difficult classification problems than MLP using weight decay technique. 
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1 Introduction 

This study attempts to enhance the generalization of neural network model. Its basic 
principle is the combination of minimizing the sum of squares of errors and maximizing 
the classification margin based on principle of structural risk minimization. In this 
paper, the Minimum Risk Neural Networks (MRNN) is proposed. The objective 
function of MRNN is the combination of the sum of squares of errors and the sum of 
squares of the slopes (differential) of the classification function. This paper will prove 
that a more sophisticated formula similar to the traditional weight decay technique can 
be derived from the objective function of MRNN, resulting in a more rigorous 
theoretical basis for the technique. In Section 2, we will introduce the theoretical 
background of MRNN. Then we will derive the learning rules of MRNN in Section 3. 
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We will demonstrate the performance of MRNN with several real application examples 
in the UCI databases in Section 4. Finally, in Section 5 we will make a summary of the 
testing results in the entire study. 

2 Theoretical Background 

2.1  Multi-layer Perceptrons with Weight Decay (MLPWD) 

Although minimizing error function enables the neural network to build precise non-
linear model fitting to the training examples, that is, the model possesses repetition. 
However, this model may not have the capacity to predict the testing samples, that is, 
the model may not possess generalization. This phenomenon is called over-learning. 
In order to overcome the phenomenon, some researchers have suggested weight decay 
technique, that is, the sum of squares of weights is added to the error function [1-5], 
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where Wk = the k-th weight in network; Nw = number of weights in network;λ= 
penalty coefficient of the sum of squares of weights, controlling the degree of weight 
decay, and its value is greater than or equal to 0. 

2.2 Support Vector Machine (SVM) and Structural Risk Minimization 

Support Vector Machine (SVM) is a new learning method proposed by Vapnik based 
on the statistical theory of Vapnik Chervonenks Dimension and Structural Risk 
Minimization Inductive Principle, and can better solve the practical problems like 
small amount of samples, high dimension, non-linear and local optimums. It has 
become one of the hottest topics in the study of machine learning, and is successfully 
used in classification, function approximation and time series prediction, etc. [6-10]. 
In SVM, the following objective function is used [6,7],  
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where C = penalty coefficient，and C≥ 0. The greater C is, the greater the penalty of 
the classification error. ξi= the slack variable, and ξi≥ 0, on behalf of the degree of the 
classification error of i-th sample. p(w,b) = margin of classification. 

In the objective function of Eq. (2), the first item is to minimize the classification 
error to enable the model with the repetition; the second item is to maximize the 
classification margin of the hyper-plane to improve the generalization of the model. 
Compared with Eq. (1), the first item is equivalent to the sum of squares of errors and 
the second item is equivalent to the sum of squares of weights.  
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2.3 Minimum Risk Neural Network (MRNN) 

Inspired by multi-layer perceptrons with weight decay (MLPWD) and SVM, in this 
paper, we proposed the Minimum Risk Neural Networks (MRNN). The objective 
function of MRNN is the combination of the sum of squares of errors and the sum of 
squares of the slopes (differential) of the classification function. 
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where Tj is the target value of the j-th output variable of the training examples; Yj is 
the inference value of the j-th output unit in the output layers for the training 
examples; γ is the penalty coefficient controlling the proportion of the sum of square 
of the slopes in the objective function, and its value is greater than or equal to 0. 

Comparisons of the objective functions of Multi-layer perceptrons with weight 
decay technique (MLPWD), support vector machine (SVM), and the minimum risk 
neural network (MRNN) are shown in Table 1. 

Table 1. Comparisons of three kinds of objective function 
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3 Theoretical Derivation 

3.1 Minimum Risk Neural Network (MRNN) 

The output of the hidden unit in MLP is as follows 

))(exp(1

1

)exp(1

1
)(

 −−+
=

−+
==

i
kiikk

kk XWnet
netfH

θ
         

(4) 

where Hk is the output of the k-th unit in the hidden layer; Xi is the i-th input variable;
 

Wik is the connection weight between the i-th unit in the input layer and the k-th unit 
in the hidden layer; θk is the threshold of the k-th unit in the hidden layer. 
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The output of the output unit in MLP is as follows 
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where Wkj is the connection weight between the k-th unit in the hidden layer and the j-
th unit in the output layer; θj is the threshold of the j-th unit in the output layer. 

In order to achieve the minimum of the objective function of MRNN in Eq. (3), we 
can use the steepest descent method to adjust the network parameters. The learning 
rules are derived in two steps as following. 

(1) Connection weights between the hidden layer and the output layer 
According to the chain rule in the partial differential, and let 
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(2) Connection weights between the input layer and the hidden layer 
According to the chain rule in the partial differential, and let 
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3.2 The Relation between MRNN and Weight Decay Technique 

In this section, we will simplify the above formula to derive formulas of weight decay 
technique. In Eq. (7), the first order partial derivatives of the transfer functions must 
be positive. Hence, they can be omitted so as to simplify the formula. Therefore,  
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Similarly, Eq. (9) can be simplified as 
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Comparing Eq. (10) and (11) with Eq. (1) of weigh decay technique, we can find that both 
of them imply the rule that “the modification of weigh is in reverse proportion to weight”. 
Hence, conventional weight decay technique can be considered as the simplified version 
of MRNN. These formulas establish reasonable theoretical foundation for weight decay 
technique. 

4 Application Examples 

In this section, we tested three real data sets in the UCI Machine Learning Repository 
[11] compare the performance of MRNN, MLPDW and MLP, including (1) detection 
of spam mail (2) recognition of remote sensing image of Landsat satellite (3) 
classification of forest cover type. To evaluate the effectiveness of learning, we used 
the 10-fold cross-validation. We tried γ= 0.0001, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, 5, 
and 10 for MRNN, and λ=10-7~10-1 for MLPWD. The results are shown in Figure 1. 
It can be found that as long as the parameter γ or λ is in the appropriate range, both of 
them perform better than pure MLP. We also experimented on other 12 practical data 
sets in UCI databases [11] listed in Table 2 to compare the performances of MRNN, 
MLPWD, and SVM. To evaluate the effectiveness of learning, we used the 10-fold 
cross-validation. In addition, to avoid the influence of the initial connection weights, 
the error rates are the average of the results of 30 sets of various initial connection 
weights. To evaluate whether the performance differences between the three kinds of 
 
 

Table 2. Testing results of error rate of the 15 UCI data sets 

 
 

UCI data sets 

Benchmark 
MRNN 

MRNN vs. Benchmark 
t-test 

(Significance=5%) 
MLPWD 

SVM
Avg. Std. Avg. Std. MLPWD SVM 

SPAMBASE 0.0642 0.0027 0.0653 0.0631 0.0018 0.037 * <0.001 * 

Landsat 0.0981 0.0016 0.098 0.0974 0.0013 0.036 * 0.008 * 

Forest cover 0.232 0.002 0.215 0.208 0.003 <0.001 * <0.001 * 

Iris 0.0270 0 0.027 0.0270 0 >0.5 >0.5  

Insurance 0.3366 0.0131 0.3365 0.3363 0.0160 0.468 0.473  

Glass 0.2675 0.0036 0.2665 0.2667 0.0047 0.248 >0.5  

Shuttle 0.0049 0.0001 0.004 0.0040 0.0001 <0.001 * >0.5  

Vowel 0.4123 0.0091 0.4052 0.3983 0.0096 <0.001 * <0.001 * 

Wine 0.0116 0.0002 0.0115 0.0113 0.0002 <0.001 * <0.001 * 

Letter 0.3474 0.0071 0.3418 0.3315 0.0073 <0.001 * <0.001 * 

Image 0.0422 0.0008 0.0422 0.0421 0.0009 0.330 0.281  

Vehicle 0.1240 0.0020 0.1232 0.1230 0.0015 0.025 * 0.294  

German 0.2393 0.0071 0.2365 0.2362 0.0052 0.034 * 0.397  

Heart 0.1430 0.0019 0.143 0.1430 0.0019 >0.5 >0.5  

Thyroid 0.0241 0.0002 0.0231 0.0198 0.0002 <0.001 * <0.001 * 
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Fig. 1. The error rate of MRNN and MLPWD 

neural networks are significant or not, the t-test was employed. From the experimental 
results listed in Table 2, we can see that there are 10 out of fifteen data sets whose 
error of MRNN is significantly smaller than that of MLPWD; however, there are only 
seven out of fifteen data sets whose error of MRNN is significantly smaller than that 
of SVM. 

5 Conclusions 

The generalization capability of a multilayer perceptron can be adjusted by adding a 
penalty (weight decay) term to the cost function used in the training process. To 
enhance the generalization of neural network model, inspired by SVM, we proposed 
the Minimum Risk Neural Networks, whose objective function is the combination of 
the sum of squares of errors and the sum of squares of the slopes of the classification 
function. Besides, this paper proved that a more sophisticated formula similar to the 
traditional weight decay technique can be derived from the MRNN, establishing a 
more rigorous theoretical foundation for the technique. This study employed fifteen 
real examples to test the MRNN. The results led to the following conclusions. (1) As 
long as the penalty coefficient was in the appropriate range, MRNN performed better 
than pure MLP. (2) MRNN may perform better in difficult classification problems 
than the MLP using weight decay technique. 
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