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Abstract. A major challenge for next generation data mining systems is crea-
tive knowledge discovery from diverse and distributed data sources. In this task 
an important challenge is information fusion of diverse mainly unstructured re-
presentations into a unique knowledge format. This chapter focuses on merging 
information available in text documents into an information network – a graph 
representation of knowledge. The problem addressed is how to efficiently and 
effectively produce an information network from large text corpora from at 
least two diverse, seemingly unrelated, domains. The goal is to produce a net-
work that has the highest potential for providing yet unexplored cross-domain 
links which could lead to new scientific discoveries. The focus of this work is 
better identification of important domain-bridging concepts that are promoted 
as core nodes around which the rest of the network is formed. The evaluation is 
performed by repeating a discovery made on medical articles in the mi-
graine-magnesium domain. 
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1 Introduction 

Information fusion can be defined as the study of efficient methods for automatically 
or semi-automatically transforming information from different sources and different 
points in time into a representation that provides effective support for human and 
automated decision making [5]. Creative knowledge discovery can only be performed 
on the basis of a sufficiently large and sufficiently diverse underlying corpus of in-
formation. The larger the corpus, the more likely it is to contain interesting, still un-
explored relationships. 

The diversity of data and knowledge sources demands a solution that is able to rep-
resent and process highly heterogeneous information in a uniform way. This means 
that unstructured, semi-structured and highly structured content needs to be inte-
grated. Information fusion approaches are diverse and domain dependent. For in-
stance, there are recent investigations [7, 19] in using information fusion to support 
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scientific decision making within bioinformatics. Smirnov et al. [22] exploit the idea 
of formulating an ontology-based model of the problem to be solved by the user and 
interpreting it as a constraint satisfaction problem taking into account information 
from a dynamic environment. 

In this chapter we explore a graph-theoretic approach [1, 2] which appears to pro-
vide the best framework to accommodate the two dimensions of information source 
complexity – type diversity as well as volume size. Efficient management and proc-
essing of very large graph structures can be realized in distributed computing envi-
ronments, such as grids, peer-to-peer networks or service-oriented architectures on the 
basis of modern database management systems, object-oriented or graph-oriented 
database management systems. The still unresolved challenge of graph-theoretic ap-
proaches is the creation, maintenance and update of the graph elements in the case of 
very large and diverse data and knowledge sources. 

The core notion that guided our research presented in this chapter is based on the 
concept of bisociation, as defined by Koestler [11] and refined in our context by 
Dubitzky et al. [6]. Furthermore, Petrič et al. [15] explore the analogy between 
Koestler’s creativity model and comparable cross-domain knowledge discovery ap-
proaches from the field of literature mining. In the field of biomedical litera-
ture-mining, Swanson [24] designed the ABC model approach, which investigates 
whether agent A is connected with phenomenon C by discovering complementary 
structures via interconnecting phenomena B. The process of discovery when domains 
A and C are known in advance and the goal is to find interconnecting concepts from 
B is called a closed discovery process. On the other hand, if only domain A is known 
then this is an open discovery process since also domain C has to be discovered. 

Our research deals only with the closed discovery setting and is to some extent 
similar to the work of Smalheiser and Swanson [21] where they developed an online 
system ARROWSMITH, which takes as input two sets of titles from disjoint domains 
A and C and lists bridging terms (b-terms) that are common to literature A and C; the 
resulting b-terms are used to generate novel scientific hypotheses. Other related works 
in the domain of biomedical literature mining are work of Weeber et al. [28] where 
authors partly automate Swanson’s discovery and work of Srinivasan et al. [23] where 
they develop an algorithm for bridging term identification with even less expert inte-
raction needed. 

This work extensively uses the concepts of bisociation, bridging concept, b-term 
identification, closed discovery, cross-context and A-C domains presented in the pre-
vious paragraph. Furthermore, we have based the evaluation techniques mostly on the 
results reported by Swanson et al. [26] and Urbančič et al. [27]. 

The chapter is structured as follows. The second section explains the initial prob-
lem we are solving into much more detail, defines the terminology used in this work 
and outlines the structure of the solution proposed in this chapter. The next section is 
more technical and it lays ground for some basic procedures for retrieving and pre-
processing a collection of documents. It also introduces the standard text-mining pro-
cedures and terminology which is essential for understanding the subsequent sections. 
The fourth section presents the core contribution of this work, i.e., bisociative bridg-
ing concept identification techniques which are used to extract key network concepts 
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(nodes). Evaluation of these core ideas on a previously well studied domain is pre-
sented in the following section. The sixth section builds upon the results from concept 
identification part (Sections 4 and 5) and shows how the final information networks 
are constructed. 

2 Problem Description 

This section describes the problem addressed in this work. The initial goal is straight-
forward: to construct an information network from text documents. The input to the 
procedure consists of text documents (e.g., titles and abstract of scientific documents) 
from two disparate domains. The output of the procedure is an information network 
which could, for example, look like the graph shown in Fig. 1. However, the strong 
bias towards bisociations leads us to using advanced bridging term identification 
techniques for detecting important network nodes and relations. The following para-
graphs define in detail the input, the output, open issues and sketch the proposed solu-
tion. 
 

 

Fig. 1. Part of a network created from PubMed articles on migraine and magnesium 

This chapter focuses – similarly as related work from the literature-mining field – 
on text documents as the primary data source. Texts are in general considered to be 
one of the most unstructured data sources available, thus, constructing a meaningful 
graph of data and knowledge (also named an information network) is even more of a 
challenge. 

We are solving the closed discovery problem, which is the topic of research of this 
chapter and one of the basic assumptions of our methodology. The selected source 
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text documents are originating from at least two dissimilar domains (M1 and M2 con-
texts by Koestler’s naming or A and C domains according to Swanson and his follow-
ers). In this chapter, we always describe the methodology using exactly two domains 
even though it could be generalised to three or more domains. 

In this work, the selected knowledge representation formalism is the so-called bi-
sociative information network, called BisoNet. The BisoNet representation, as investi-
gated in the BISON1 project and discussed by Kötter and Berthold [12] is a graph 
representation, consisting of labeled nodes and edges (see Fig. 1). The original idea 
underlying the BISON project was to have a node for every relevant concept of an 
application domain, captured by terms denoting these concepts, that is, by named 
entities. For example, if the application domain is drug discovery, the relevant 
(named) entities are diseases, genes, proteins, hormones, chemical compounds etc. 
The nodes representing these entities are connected if there is evidence that they are 
related in some way. Reasons for connecting two terms/concepts can be linguistic, 
logical, causal, empirical, a conjecture by a human expert, or a co-occurrence ob-
served in documents dealing with considered domains. E.g., an edge between two 
nodes may refer to a document (for example, a research paper) that includes the repre-
sented entities. Unlike semantic nets and ontologies, a BisoNet carries little semantics 
and to a large extend encodes just circumstantial evidence that concepts are somehow 
related through edges with some probability. 

Open issues in BisoNet creation are how to identify entities and relationships in 
data, especially from unstructured data like text documents; i.e., which nodes should 
be created from text documents, what edges should be created, what are the attributes 
with which they are endowed and how should element weights be computed. Among 
a variety of solutions, this chapter presents the one that answers such questions by 
optimizing the main criterion of generated BisoNets: maximizing their bisociation 
potential. Bisociation potential is a feature of a network that informally states the 
probability that the network contains a bisociation. Thus, we want to be able to gener-
ate such BisoNets that contain as many bisociations as possible using the given data 
sources. In other words, maximizing the bisociation potential of the generated Bi-
soNet is our main guidance in developing the methodology for creating BisoNets 
from text documents. 

When creating large BisoNets from texts, we have to address the same two issues 
as in network creation from any other source: define a procedure for identifying key 
nodes, and define a procedure for discovering relations among the nodes. However, in 
practice, a workflow for converting a set of documents into a BisoNet is much more 
complex than just identifying entities and relations. We have to be able to preprocess 
text and filter out noise, to generate a large number of entities, evaluate their bisocia-
tion potential and effectively calculate various distance measures between the entities. 
As these tasks are not just conceptually difficult, but also computationally very inten-
sive, great care is needed when designing and implementing algorithms for BisoNet 
construction. 
  

                                                           
1 Bisociation Networks for Creative Information Discovery: http://www.BisoNet.eu/ 
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Our approach to confront the network construction problem is based on developing 
the following ingredients: 

1. Provide basic procedures for automatic text acquisition from different sources of 
interest on the Web. 

2. Employ the state of the art approaches for text preprocessing to extract as much 
information as available in raw text for the needs of succeeding procedures. 

3. Incorporate as much as possible available background knowledge into the stages of 
text preprocessing and candidate concept detection. 

4. Define a candidate concept detection method. 
5. Develop a method for relevant bisociative concept extraction from identified con-

cept candidates and perform its evaluation. 
6. Select a set of relevant extracted bisociative concepts to form the nodes of a Bi-

soNet. 
7. Construct relations between nodes and set their weights according to the Bisocia-

tion Index measure published and evaluated by Segond and Borgelt [4]. 
 

 

Fig. 2. Conceptual workflow of the proposed solution for BisoNet creation 

Fig. 2 illustrates the steps of the methodology proposed by our work. This chapter 
concentrates mostly on the part of the new methodology for bridging concept evaluation 
(frame in the middle Fig. 2). As this is an important scientific contribution we provide 
an evaluation that justifies the design choices in our methodology conception. An 
evaluation of the final results – BisoNets – is not provided since an experimental evalua-
tion is hard, if not impossible, to construct according to the data we currently possess 
and work on. We argue that by providing evaluation for high-quality bridging concept 
identification and evaluation (done in this work) and using the proven bisociative rela-
tion measure (defined by Segond and Borgelt [4]), the resulting BisoNets are also of 
high quality according to the loos defined measure of bisociation potential. 

3 Document Acquisition and Preprocessing 

This section describes the data preparation part (leftmost frame in Fig. 2) and is writ-
ten from a technical perspective as it sets grounds for the reproducibility of the subse-
quent scientifically more interesting steps. Alongside the reproducibility, it addresses 
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also the introduction of some essential text-mining concepts, which are crucial for 
understanding specific parts of our methodology. A top-level overview of the meth-
odology, discussed along with a description of the actual working system, defines the 
preprocessing steps supporting the main goal addressed by this work – bisociative 
concept detection. 

The system for text processing proposed and implemented in this work, named 
TexAs (Text Assistant), was used to produce the results presented in this chapter. The 
described TexAs implementation is built on top of the LATINO2 library (Link analy-
sis and text mining toolbox). This library contains a majority of elementary text min-
ing procedures, but, as the creation of BisoNet is a very specific task (in the field of 
text mining), a lot of modules had to be implemented from scratch or at least opti-
mized considerably. 

3.1 Document Acquisition 

For the study, we use only one data source, i.e., PubMed3, which was used to retrieve 
the datasets (migraine-magnesium) used in the following sections. However, when 
experimenting with other domains, we identified and partly supported in TexAs the 
following text acquisition scenarios: 

─ Using locally stored files in various application dependent formats – this is the 
traditional setting in data mining; however, it usually requires large amounts of 
partly manual work for transforming the data between different formats. 

─ Acquiring documents using the SOAP web services (e.g. PubMed uses SOAP 
web service interface to access their database). 

─ Selecting documents from the SQL databases – it is a fast and efficient but 
rarely available option. 

─ Crawling the internet gathering documents from web pages (e.g. Wikipedia). 
─ Collecting documents from snippets returned from web search engines. 

3.2 Document Preprocessing 

In addition to explaining various aspects of preprocessing, this section also briefly 
describes basic text mining concepts and terminology, some of which are taken from 
the work of Feldman and Sanger [8]. Preprocessing is an important part of network 
extraction from text documents. Its main task is the transformation of unstructured 
data from text documents into a predefined well-structured data representation. As 
shown below, preprocessing is inevitability very tightly connected to the extraction of 
network entities. In our case, actual bisociative concept candidates are defined already 
when preprocessing is finished. The subsequent processing step ‘only’ ranks the enti-
ties and to remove the majority of lower ranked entities from the set. 

                                                           
2  LATINO library: http://sourceforge.net/projects/latino/ 
3  PubMed: A service of U.S. National Library of Medicine, which comprises more than 20 

million citations for biomedical literature: http://www.ncbi.nlm.nih.gov/pubmed 
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In general, the task of preprocessing consists of the extraction of features from text 
documents. The set of all features selected for a given document collection is called a 
representational model. Each document is represented by a vector of numerical quan-
tities – one for each aligned feature of the selected representational model. Using this 
construction, we get the most standard text mining document representation called 
feature vectors where each numerical component of a vector is related to a feature and 
represents a form of weight related to the importance of the feature in the selected 
document. Usually the majority of weights in a vector are equal to zero showing that 
one of the characteristics of feature vectors is their sparseness – they are often re-
ferred to as sparse vectors. The goal of preprocessing is to extract a feature vector for 
each document from a given document collection. 

Commonly used document features are characters, words, terms and concepts [8]. 
Characters and words carry little semantic information and are therefore not interest-
ing to consider. Terms and concepts on the contrary carry much more semantic in-
formation. Terms are usually considered as single or multiword phrases selected from 
the corpus by means of term-extraction mechanisms (e.g. because of their high fre-
quency) or are present in an external lexicon of a controlled vocabulary. Concepts or 
keywords are features generated for documents employing the categorization or anno-
tation of documents. Common concepts are derived from manually annotating a 
document with some predefined keywords or by inserting a document into some pre-
defined hierarchy. When we refer to document features, we mean the terms and the 
concepts that we were able to extract from the documents. In the rest of this chapter, 
we do not distinguish between terms or concepts. In the case if a document set con-
tains both, we merge them and pretend that we have only one type of document fea-
tures, i.e. terms/concepts. 

A standard collection of preprocessing techniques [8] is listed below, together with 
a set of functionalities implemented in our system TexAs: 

─ Tokenization: continuous character stream must be broken up into meaningful 
sub-tokens, usually words or terms in the case where a controlled vocabulary is 
present. Our system uses a standard Unicode tokenizer: it mainly follows the 
Unicode Standard Annex #29 for Unicode Text Segmentation4. The alternative 
is a more advanced tokenizer, which tokenizes strings according to a predefined 
controlled vocabulary and discards all the other words/terms. 

─ Stopword removal: stopwords are predefined words from a language that usu-
ally carry no relevant information (e.g. articles, prepositions, conjunctions etc.); 
the usual practice is to ignore them when building a feature set. Our implemen-
tation uses a predefined list of stopwords – some common lists that are already 
included in the library are taken from Snowball5. 

─ Stemming or lemmatization: the process that converts each word/token into the 
morphologically neutral form. The following alternatives have been made  

                                                           
4 Unicode Standard Annex #29: 
 http://www.unicode.org/reports/tr29/#Word_Boundaries 
5 Snowball – A small string processing language designed for creating stemming algorithms: 
 http://snowball.tartarus.org 



 Bridging Concept Identification for Constructing Information Networks 73 

available: Snowball stemmers, the Porter stemmer [17], and the one that we pre-
fer, the LemmaGen lemmatization system [10]. 

─ Part-of-speech (POS) tagging: the annotation of words with the appropriate 
POS tags based on the context in which they appear. 

─ Syntactic parsing: performs a full syntactical analysis of sentences according to 
a certain grammar. Usually shallow (not full) parsing is used since it can be effi-
ciently applied to large text corpora. 

─ Entity extraction: methods that identify which terms should be promoted to enti-
ties and which not. Entity extraction by grouping words into terms using n-gram 
extraction mechanisms (an n-gram is a sequence of n items from a given se-
quence) has been implemented in TexAs. 

3.3 Background Knowledge 

Since high-quality features are hard to acquire, all possible methods that could im-
prove this process should be used at this point. The general approach that usually 
helps the most consists in incorporating background knowledge about the documents 
and their domain. The most elegant technique to incorporate background knowledge 
is to use a controlled vocabulary. A controlled vocabulary is a lexicon of all terms that 
are relevant in a given domain. Here we can see a major difference when processing 
general documents as compared to scientific documents. For many scientific domains 
there exists not only a controlled vocabulary, but also a pre-annotation for a lot of 
scientific articles. In this case we can quite easily create feature vectors since we have 
terms as well as concepts already pre-defined. Other interesting approaches to identi-
fying concepts include methods such as KeyGraph [13], which extract terms and con-
cepts with minimal assumptions or background knowledge, even from individual 
documents. Other alternatives are using domain ontologies which could be, for exam-
ple, semi-automatically retrieved by a combination of tools such as OntoGen and 
TermExtractor [9]. 

3.4 Candidate Concept Detection 

The design choice of our approach is that the entities of the BisoNets will be the fea-
tures of documents, i.e., the terms and concepts defined in the previous section. The 
subsequent steps are independent of term and concept detection procedure. 

Entities need to be represented in a way which enables efficient calculation of dif-
ferent distance measures between the entities. We chose a representation in which an 
entity is described by a set (vector) of documents in which it appears. In the same way 
as documents are represented as sparse vectors of features (entities), the entities can 
also be represented as sparse vectors of documents. This is illustrated in Example 1 
where entity ent1 is present in documents doc1, doc3 and doc4 and hence its feature 
vector consists of all these documents (with appropriate weights). By analogy to the 
original vector space – the feature space – the newly created vector space is named a 
document space. 
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Documents Extracted entities
doc1 ent1, ent2, ent3

doc2 ent3, ent4, ent4

doc3 ent1, ent2, ent2, ent5

doc4 ent1, ent1, ent1, ent3, ent4, ent4

Original documents and extracted entities 
 

Feature space ent1 ent2 ent3 ent4 ent5

doc1 wf
1:1 wf

1:2 wf
1:3

doc2 wf
2:3 wf

2:4

doc3 wf
3:1 wf

3:2 wf
3:5

doc4 wf
4:1 wf

4:3 wf
4:4

Sparse matrix of documents: wf
x:y denotes the weight (in the 

feature space) of entity y in the feature vector of document x 
 

Document space doc1 doc2 doc3 doc4

ent1 wd
1:1 wd

1:3 wd
1:4

ent2 wd
2:1 wd

2:3

ent3 wd
3:1 wd

3:2 wd
3:4

ent4 wd
4:2 wd

4:4

ent5 wd
5:3

Sparse matrix of entities: wd
x:y denotes the weight (in the 

document space) of document y in the document vector of entity x 

Example 1: Conversion between the feature and the document space 

Note that if we write document vectors in the form of a matrix, then the conversion 
between the feature space and the document space is performed by simply transposing 
the matrix (see Example 1). The only question that remains open for now is what to 
do with the weights? Is weight wf

x:y identical to weight wd
y:x? This depends on various 

aspects, but mostly on how we define weights of the entities in the first place when 
defining document vectors. 

There are four most common weighting models for assigning weights to features: 

─ Binary: a feature weight is either one, if the corresponding feature is present in 
the document, or zero otherwise. 

─ Term occurrence: a feature weight is equal to the number of occurrences of this 
feature. This weight might be sometimes better than a simple binary since fre-
quently occurring features are likely more relevant as repetitions indicate that 
the text is strongly concerned with them. 

─ Term frequency: a weight is derived from the term occurrence by dividing the 
vector by the sum of all vector’s weights. The reasoning of the quality of such 
weight is similar to term occurrence with the additional normalization that 
equalizes each document importance – regardless of its length. 

─ TF-IDF: Term Frequency-Inverse Document Frequency is the most common 
scheme for weighting features. It is usually defined as: ݓ௫:௬்ிூ஽ி ൌ TermFreq൫݁݊ݐ௫ , ௬൯ܿ݋݀ · logሺܰ ⁄௫ሻݐሺ݁݊ݍ݁ݎܨܿ݋ܦ ሻ, 
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where TermFreq൫݁݊ݐ௫, -௬ (equivalent to term frequency defined in bullet point above), ܰ is the numܿ݋݀ ௫ inside documentݐ݊݁ ௬൯ is the frequency of featureܿ݋݀
ber of all documents and ݍ݁ݎܨܿ݋ܦሺ݁݊ݐ௫ሻ is the number of documents that con-
tain ݁݊ݐ௫. The idea behind the TF-IDF measure is to lower the weight of features 
that appear in many documents as this is usually an indication of them being 
less important (e.g. stopwords). The quality of this approach has also been quan-
titatively proven by numerous usages in solutions to various problems in text-
mining. 

These four methods can be further modified by vector normalization (dividing each 
vector so that the length – usually the Euclidian or Manhattan length – of the vector is 
1). If and when this should be done depends on several factors: one of them is the 
decision which distance measure will be used in the next, the relation construction 
step. If the cosine similarity is used, a pre-normalization of the vectors is irrelevant, as 
this is also done during the distance calculation. Example 2 shows the four measures 
in practice – documents are taken from the first table in Example 1. Weights are cal-
culated for the feature space and are not normalized. 

It is worthwhile to note again the analogy between the feature space and the docu-
ment space. Although we have developed the methodology for entities network ex-
traction, the developed approach can be used also for document network extraction. 
Moreover, both approaches can be used to extract a unified network representation 
where documents and entities are nodes, connected using some special relations. 

 

 ent1 ent2 ent3 ent4 ent5  ent1 ent2 ent3 ent4 ent5 ent1 ent2 ent3 ent4 ent5 
doc1 1 1 1    1 1 1 1/3

1/3
1/3   

doc2  1 1   1 2 1/3
2/3  

doc3 1 1   1  1 2 1 1/4
2/4  1/4 

doc4 1 1 1   3 1 2 3/6
1/6

2/6  
 Binary weight  Term occurrence Term frequency 

 
 ent1 ent2 ent3 ent4 ent5 

doc1 (1/3)·log(4/3) (1/3)·log(4/2) (1/3)·log(4/3)  
doc2  (1/3)·log(4/3) (2/3)·log(4/2)  
doc3 (1/4)·log(4/3) (2/4)·log(4/2) (1/4)·log(4/1) 
doc4 (3/6)·log(4/3)  (1/6)·log(4/3) (2/6)·log(4/2)  

TF-IDF: term frequency – inversed document frequency 

Example 2: Weighting models of features in document vectors (from Example 1) 

3.5 Distance Measures between Vectors 

Although distance calculation addressed in this section is not used in the document 
preprocessing step, it is explained at this point since the content is directly related to 
the Section 3.4, and since the distance measures are extensively used in the two fol-
lowing sections about bridging concept identification as well as network creation. 

The most common measures in vector spaces, which are also implemented in our 
system TexAs, are the following: 
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─ Dot product: DotProd൫ܿ݁ݒ௫ ,  .௬൯ܿ݁ݒ

─ Cosine similarity: CosSim൫ܿ݁ݒ௫ , ௬൯ܿ݁ݒ ൌ D୭୲P୰୭ୢ൫௩௘௖ೣ ,௩௘௖೤൯|௩௘௖ೣ|·ห௩௘௖೤ห . 

is the dot product normalized by the length of the two vectors. In the cases 
where the vectors are already normalized, the cosine similarity is identical to the 
dot product. 

─ Jaccard index: this similarity coefficient measures the similarity between sample 
sets. It is defined as the cardinality of the intersection of the sample sets: JaccInx൫ܿ݁ݒ௫ , ௬൯ܿ݁ݒ ൌ ห௩௘௖ೣ ת ௩௘௖೤หห௩௘௖ೣ ׫ ௩௘௖೤ห ൌ D୭୲P୰୭ୢ൫௩௘௖ೣ ,௩௘௖೤൯|௩௘௖ೣ|ାห௩௘௖೤หିD୭୲P୰୭ୢ൫௩௘௖ೣ ,௩௘௖೤൯, 
where lengths |ܿ݁ݒ௫| and หܿ݁ݒ௬ห are Manhattan lengths of these vectors. 

─ Bisociation index: it is the similarity measure defined for the purpose of bisocia-
tion discovery in the BISON project. It is explained in more detail in [4]. This 
measure cannot be expressed by the dot product. Therefore, the following defi-
nition uses the notation from Example 1: BisInx൫ܿ݁ݒ௫, ௬൯ܿ݁ݒ ൌ ∑ ቆ ඥݓ௫:௜ · ௬:௜ೖݓ · ቀ1 െ  ห୲ୟ୬షభሺ௪ೣ:೔ሻ ି ୲ୟ୬షభሺ௪೤:೔ሻห୲ୟ୬షభሺଵሻ ቁቇெ௜ୀ଴ , 

where M is the number of all the entities. 

In general, the choice of a suitable distance measure should be tightly connected to 
the choice of the weighting model. Some of the combinations are very suitable and 
have understandable interpretations or were experimentally evaluated as useful, while 
others are less appropriate. We list the most commonly used pairs of weighting model 
and distance measure below: 

─ TF-IDF weighting and cosine similarity: this is the standard combination for 
computing the similarity in the feature space. 

─ Binary weighting and dot product distance: if this is used in the document space 
the result is the co-occurrence measure, which counts the number of documents 
where two entities appear together. 

─ Term occurrence weighting and dot product distance: this is another measure of 
co-occurrence of entities in the same documents. Compared to the previous 
measure, this one considers also multiple co-occurrences of two entities inside a 
document and gives them a greater weight in comparison with the case were 
each appears only once inside the same document. 

─ Binary weighting and Jaccard index distance: Jaccard index was primary de-
fined on sets, therefore the most suitable weighting model to use with it is the 
binary weighting model (since every vector then represents a set of features). 

─ Term frequency weighting and the Bisociation Index distance: the Bisociation 
Index was designed with the term frequency weighting in mind, thus it is rea-
sonable to use this combination when determining a weighting model for the Bi-
sociation index. 
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4 Identifying Bridging Concept Candidates for High Quality 
Network Entities Extraction 

This section presents the key part of our methodology for bisociative bridging terms 
identification. We propose a set of heuristics which are promising for b-term discov-
ery. In Section 5 we use them to rank all the terms from a document collection and 
thus obtain some terms which have a higher probability of being b-terms than a ran-
domly selected term. 

4.1 Heuristics Description 

Heuristics are functions that numerically evaluate the term’s quality by assigning a 
bisociation score (tendency that a term is a b-term) to it. For the definition of an ap-
propriate set of heuristics we define a set of special (mainly statistical) properties of 
terms which will separate b-terms from regular terms. Thus, these heuristics can also 
be viewed as advanced term statistics. 

All heuristics operate on the data retrieved from the documents in preprocessing or 
obtained from the background knowledge. Using an ideal heuristic and sorting all the 
terms by the its calculated bisociation scores should result in finding all the b-terms at 
the top of a list. However, sorting by actual heuristic bisociation scores (either ascend-
ing or descending) should still bring much more b-terms than non b-terms to the top 
of the term list. 

Formally, a heuristic is a function with two inputs, i.e., a set of domain labeled 
documents ܦ and a term ݐ appearing in these documents, and one output, i.e., a num-
ber that correlates with the term’s bisociation score. 

In this chapter we use the following notation: to say that the bisociation score ܾ is 
equal to the result of a heuristic named ݄݁ܺݎݑ, we can write it as ܾ ൌ ,ܦሺ ܺݎݑ݄݁  .ሻݐ
However, since the set of input documents is static when dealing with a concrete data-
set, we can – for the sake of simplicity – omit the set of input documents from a heu-
ristic notation and use only ܾ ൌ  ሻ. Whenever we need to explicitly specify theݐሺ ܺݎݑ݄݁
set of documents on which the function works (never needed for a heuristic, but 
sometimes needed for auxiliary functions used in a formula for a heuristic), we write 
it as ݂ܺܿ݊ݑ஽ሺݐሻ. For specifying an auxiliary function’s document set we have two 
options: either we use ܦ௨ that stands for the (union) set of all the documents from all 
the domains, or we use ܦ௡: ݊ א ሼ1. . ܰሽ, which stands for a set of documents from the 
domain ݊. In general the following statement holds: ܦ௨ ൌ ڂ  ௡ே௡ୀଵܦ  where ܰ is the 
number of domains. In the most common scenario, where we have exactly two dis-
tinct domains, we also use the notation ܦ஺ for ܦଵ and ܦ஼ for ܦଶ, since we introduced ܣ 
and ܥ as representatives of the initial and the target domain in the closed discovery 
setting introduced in Section 1. Due to a large number of heuristics and auxiliary 
functions we use a multi word naming scheme for easier distinction; names are 
formed by word concatenation and capitalization of all non-first words (e.g.: freqPro-
dRel and tfidfProduct). 
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It is valuable to note that all the designed heuristics are symmetric in the domains, 
as switching the order of domains (which domain is the initial domain and which is 
the target) should not affect the outcome of a heuristic. By allowing asymmetric heu-
ristics the approach would lose generality and also the possibility to generalize it to 
more than two domains. 

We divided the heuristics into different sets for easier explanation; however, most 
of the described heuristics work fundamentally in a similar way – they all manipulate 
solely the data present in document vectors and derive the terms’ bisociation score. 
The only exceptions to this are the outlier based heuristics which firstly calculate 
outlier documents and only later use the information from the document vectors. 

The heuristics can be logically divided into four sets which are based on: frequen-
cy, tf-idf, similarity, and, outliers. Besides those sets we define also two special heu-
ristics which are used as a baseline for other heuristics. 

4.2 Frequency Based Heuristics 

For easier definition of frequency based heuristics we need two auxiliary 
sub-functions: 

 ܦ in a document set ݐ ሻ: counts the number of occurrences of termݐ஽ሺ݉ݎ݁ܶݐ݊ݑ݋ܿ ─
(called term frequency in tf-idf related contexts), 

 appears in a ݐ ሻ: counts the number of documents in which termݐ஽ሺܿ݋ܦݐ݊ݑ݋ܿ ─
document set ܦ, (called document frequency in tf-idf related contexts). 

We define the following basic heuristics: 
ሻݐሺ݉ݎ݁ܶݍ݁ݎ݂ (1) ൌ  ,ሻ: term frequency across both domainsݐ஽ೠሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺܿ݋ܦݍ݁ݎ݂ (2) ൌ  ,ሻ: document frequency across both domainsݐ஽ೠሺܿ݋ܦݐ݊ݑ݋ܿ 
ሻݐሺ݋݅ݐܴܽݍ݁ݎ݂ (3) ൌ ೎೚ೠ೙೟೅೐ೝ೘ವೠሺ೟ሻ೎೚ೠ೙೟ವ೚೎ವೠሺ೟ሻ : term to document frequency ratio, 
ሻݐሺ݊݅ܯ݋݅ݐܴܽ݊݉݋ܦݍ݁ݎ݂ (4) ൌ ୫୧୬ ൬೎೚ೠ೙೟೅೐ೝ೘ವభሺ೟ሻ೎೚ೠ೙೟೅೐ೝ೘ವమሺ೟ሻ ,೎೚ೠ೙೟೅೐ೝ೘ವమሺ೟ሻ೎೚ೠ೙೟೅೐ೝ೘ವభሺ೟ሻ൰: minimum of term fre-

quencies ratio between both domains, 
ሻݐሺ݀݋ݎܲ݊݉݋ܦݍ݁ݎ݂ (5) ൌ ௖௢௨௡௧்௘௥௠ವభሺ௧ሻ · ௖௢௨௡௧்௘௥௠ವమሺ௧ሻ: product of term frequencies in 

both domains, 
ሻݐሺ݈ܴ݁݀݋ݎܲ݊݉݋ܦݍ݁ݎ݂ (6) ൌ ௖௢௨௡௧்௘௥௠ವభሺ௧ሻ · ௙௖௢௨௡௧்௘௥௠ವమሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : product of term frequen-

cies in both domains relative to the term frequency in all domains. 

4.3 Tf-idf Based Heuristics 

Tf-idf is the standard measure of term’s importance in a document which is used 
heavily in text mining research. In the following heuristic definitions we use the fol-
lowing auxiliary functions: 

݂݀݅ݐ ─ ௗ݂ሺݐሻ stands for tf-idf of a term ݐ in a document ݀, and, 
݂݀݅ݐ ─ ஽݂ሺݐሻ represents tf-idf of a term in the centroid vector of all the documents ݀: ݀ א  The centroid vector is defined as an average of all document vectors .ܦ

and thus presents an average document from the document collection ܦ 
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Heuristics based on tf-idf are listed below: 
ሻݐሺ݉ݑ݂݂ܵ݀݅ݐ (7) ൌ  ∑ ݂݀݅ݐ ௗ݂ሺݐሻௗא஽ೠ : sum of all tf-idf weights of a term across both 

domains – analogy to ݂݉ݎ݁ܶݍ݁ݎሺݐሻ, 
ሻݐሺ݃ݒܣ݂݂݀݅ݐ (8) ൌ  ∑ ௧௙௜ௗ௙೏ሺ௧ሻ೏אವೠ௙௥௘௤_ௗ௢௖ವೠሺ௧ሻ : average tf-idf of a term, 
ሻݐሺ݀݋ݎܲ݊݉݋ܦ݂݂݀݅ݐ (9) ൌ ݂݀݅ݐ  ஽݂భሺݐሻ · ݂݀݅ݐ  ஽݂మሺݐሻ: product of a term’s importance in 

both domains. 
ሻݐሺ݉ݑܵ݊݉݋ܦ݂݂݀݅ݐ (10) ൌ ݂݀݅ݐ  ஽݂భሺݐሻ ൅ ݂݀݅ݐ  ஽݂మሺݐሻ: sum of a term’s importance in 

both domains. 

4.4 Similarity Based Heuristics 

Another approach to construct a relevant heuristic measures is to use the cosine simi-
larity measure. We start by creating a representational model as a document space and 
by converting terms (entities) into document vectors (see section 3.4). Next, we get the 
centroid vectors for both domains in the document space representation. Furthermore, 
we apply tf-idf weighting on top of all the newly constructed vectors and centroids. 
Finally we use the following auxiliary function to construct the heuristics: 

 ݐ ሻ: calculates the cosine similarity of the document vector of termݐ஽ሺݏ݋ܥ݉݅ݏ ─
and the document vector of a centroid of documents ݀ א  .ܦ

Constructed heuristics: 
ሻݐሺ݉ݎ݁ܶ݃ݒܣ݉݅ݏ (11) ൌ  ሻ: similarity to an average term – the distanceݐ஽ೠሺݏ݋ܥ݉݅ݏ 

from the center of the cluster of all terms, 
ሻݐሺ݀݋ݎܲ݊݉݋ܦ݉݅ݏ (12) ൌ · ሻݐ஽భሺݏ݋ܥ݉݅ݏ   ሻ: product of a term’s similarity toݐ஽మሺݏ݋ܥ݉݅ݏ 

the centroids of both domains, 
ሻݐሺ݊݅ܯ݋݅ݐܴܽ݊݉݋ܦ݉݅ݏ (13) ൌ ୫୧୬ ൬ ೞ೔೘಴೚ೞವభሺ೟ሻೞ೔೘಴೚ೞವమሺ೟ሻ  ,ೞ೔೘಴೚ೞವమሺ೟ሻೞ೔೘಴೚ೞವభሺ೟ሻ൰: minimum of a term‘s frequen-

cies ratio between both domains. 

4.5 Outlier Based Heuristics 

Conceptually, an outlier is an unexpected event, entity or – in our case – document. We 
are especially interested in outlier documents since they frequently embody new infor-
mation that is often hard to explain in the context of existing knowledge. Moreover, in 
data mining, an outlier is frequently a primary object of study as it can potentially lead 
to the discovery of new knowledge. These assumptions are well aligned with the bisoci-
ation potential that we are optimizing, thus, we have constructed a couple of heuristics 
that harvest the information possibly residing in outlier documents. 

We concentrate on a specific type of outliers, i.e., domain outliers, which are the 
documents that tend to be more similar to the documents of the opposite domain than 
to those of their own domain. The procedures that we use to detect outlier documents 
build a classification model for each domain and afterwards classify all the documents 
using the trained classifier. The documents that are misclassified are declared as out-
lier documents, since according to the classification model they do not belong to their 
domain of origin. 
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We defined three different outlier sets based on three classification models used. 
These outlier sets are: 

 ,஼ௌ: retrieved by Centroid Similarity (CS) classifierܦ ─
 ,ோி: retrieved by Random Forest (RF) classifierܦ ─
 .ௌ௏ெ: retrieved by Support Vector Machine (SVM) classifierܦ ─

Centroid similarity is a basic classifier model and is also implemented in the TexAs 
system. It classifies each document to the domain whose centroid’s tf-idf vector is the 
most similar to the document’s tf-idf vector. The description of the other two classifica-
tion models is beyond the scope of this chapter, as we used external procedures to re-
trieve these outlier document sets. The detailed description is provided by  
Sluban et al. [20]. 

For each outlier set we defined two heuristics: the first counts the frequency of a 
term in an outlier set and the second computes the relative frequency of a term in an 
outlier set compared to the relative frequency of a term in the whole dataset. The re-
sulting heuristics are listed below: 

ሻݐሺܵܥݍ݁ݎܨݐݑ݋ (14) ൌ  ,ሻ: term frequency in CS outlier setݐ஽಴ೄሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺܨܴݍ݁ݎܨݐݑ݋ (15) ൌ  ,ሻ: term frequency in RF outlier setݐ஽ೃಷሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺܯܸܵݍ݁ݎܨݐݑ݋ (16) ൌ  ,ሻ: term frequency in SVM outlier setݐ஽ೄೇಾሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺ݉ݑܵݍ݁ݎܨݐݑ݋ (17) ൌ ሻݐ஽಴ೄሺ݉ݎ݁ܶݐ݊ݑ݋ܿ  ൅ ܿ݉ݎ݁ܶݐ݊ݑ݋஽ೃಷሺݐሻ ൅ ܿ݉ݎ݁ܶݐ݊ݑ݋஽ೄೇಾሺݐሻ: 

sum of term frequencies in all three outlier sets, 
ሻݐሺܵܥ݈ܴ݁ݍ݁ݎܨݐݑ݋ (18) ൌ  ௖௢௨௡௧்௘௥௠ವ಴ೄሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : relative frequency in CS outlier set, 

ሻݐሺܨܴ݈ܴ݁ݍ݁ݎܨݐݑ݋ (19) ൌ  ௖௢௨௡௧்௘௥௠ವೃಷሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : relative frequency in RF outlier set, 

ሻݐሺܯܸ݈ܴܵ݁ݍ݁ݎܨݐݑ݋ (20) ൌ  ௖௢௨௡௧்௘௥௠ವೄೇಾሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : relative frequency in SVM outlier set, 

ሻݐሺ݉ݑ݈ܴܵ݁ݍ݁ݎܨݐݑ݋ (21) ൌ ௖௢௨௡௧்௘௥௠ವ಴ೄሺ௧ሻା ௖௢௨௡௧்௘௥௠ವೃಷሺ௧ሻା ௖௢௨௡௧்௘௥௠ವೄೇಾሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ  : sum of rel-

ative term frequencies in all three outlier sets. 

4.6 Baseline Heuristics 

We have two other heuristics which are supplementary and serve as a baseline for the 
others. The auxiliary functions used in their calculation are: 

 ሺሻ: returns random number from the interval ሺ0,1ሻ regardless of the݉ݑܰ݀݊ܽݎ ─
term under investigation, 

 .appears in both domains and 0 otherwise ݐ ሻ: 1 if a termݐሺ݄ݐ݋ܤ݊݅ ─

The two baseline heuristics are: 
ሻݐሺ݉݋݀݊ܽݎ (22) ൌ  ,ሺሻ : random baseline heuristic݉ݑܰ݀݊ܽݎ
(23) ܽ ሻݐሺ݊݉݋ܦ݈݈ܣ݊ܫݎܽ݁݌݌ ൌ ሻݐሺ݄ݐ݋ܤ݊݅  ൅ ሺ݉ݑܰ݀݊ܽݎሺሻሻ/2 : it is a better baseline heu-

ristic which can separate two classes of terms – the ones that appear in both do-
mains and the ones that appear only in one. The terms that appear only in one 
domain have a strictly lower heuristic score than those that appear in both. The 
score inside of these two classes is still random. 
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5 Heuristics Evaluation 

This section presents the evaluation of the heuristics defined in the previous section. 
First we describe the evaluation procedure, then the domain on which we evaluate the 
heuristics is presented, and finally the results of the evaluation along with the discus-
sion of the results. 

5.1 Evaluation Procedure 

In the experimental setting used in this chapter we are given the following: a set of 
documents from two domains and a “gold standard” list of b-terms. Consequently, we 
are able to mark the true b-terms and evaluate how well our constructed heuristics are 
able to promote these b-terms compared to the rest of the terms. 

We compare the heuristics using ROC (Receiver Operating Characteristic) curve and 
AUC (Area Under ROC) analysis. Some ideas on using the ROC for our evaluation 
were taken from Foster et al. [18]. ROC curves are constructed in the following way: 

─ Sort all the terms by their descending heuristic score. 
─ Starting from the beginning of the term list, do the following for each term: if a 

term is a b-term, then draw one vertical line segment (up) on the ROC curve, 
else draw one horizontal line segment (right) on the ROC curve. 

─ Sometimes, a heuristic outputs the same score for many terms and therefore we 
cannot sort them uniquely. Among terms with the same bisociation score ܾ, let b௕ be the number of terms that are b-terms and nb௕ the number of non-b-terms. 
We then draw a line from the current point ݌ to the point ݌ ൅ ሺnb௕, b௕ሻ. In this 
way we may produce slanted lines, if such an equal scoring term set contains 
both b-terms and non b-terms. 

Using the stated procedure, we get one ROC curve for each heuristic. The ROC space 
is defined by its two axes. The ROC’s vertical axis scale goes from zero to the num-
ber of b-terms and the horizontal goes from zero to the number of non b-terms. AUC 
is defined as the percentage of the area under curve – the area under the curve is di-
vided by the area of the whole ROC space. If a heuristic is perfect (it detects all the 
b-terms and ranks them at the top of the ordered list), we get a curve that goes first 
just up and then just right with an AUC of 100%. The worst possible heuristic sorts all 
the terms randomly regardless of being a b-term or not and achieves AUC of 50%. 
This random heuristic is represented by the diagonal in the ROC space. 

The fact that some heuristics output the same score for many terms can produce 
different sorted lists and thus different performance estimates for the same heuristic 
on the same dataset. In the case of such equal scoring term sets, the inner sorting is 
random (which indeed produces different performance estimates). However, the 
ROCs that are provided (and constructed by the instructions in the paragraph above) 
correspond to the average ROC over all possible such random inner sortings. Besides 
AUC, we list also the interval of AUC which tells how much each heuristic varies 
among the best and the worst sorting of a possibly existing equal scoring term set. 
Preferable are the heuristics with a smaller interval which implies that they produce 
smaller and fewer equal scoring sets. 
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5.2 Migraine-Magnesium Dataset 

This section describes the dataset used to evaluate the heuristics’ potential of success-
ful b-term identification. The dataset that we used is the well-researched mi-
graine-magnesium domain pair which was introduced by Swanson [24] and later ex-
plored by several authors in several studies [25, 28, 26, 14]. In the literature-based 
discovery process Swanson managed to find more than 60 pairs of articles connecting 
the migraine domain with the magnesium deficiency via 43 b-terms. In our evaluation 
we are trying to rediscover these b-terms stated by Swanson to connect the two do-
mains (see Table 1). 

Table 1. B-terms identified by Swanson et al. in [26] 

1 5 ht 16 convulsive 31 prostaglandin 
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1 
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis 
4 anti aggregation 19 diltiazem 34 reactivity 
5 anti inflammatory 20 epilepsy 35 seizure 
6 anticonvulsant 21 epileptic 36 serotonin 
7 antimigraine 22 epileptiform 37 spasm 
8 arterial spasm 23 hypoxia 38 spread 
9 brain serotonin 24 indomethacin 39 spread depression 

10 calcium antagonist 25 inflammatory 40 stress 
11 calcium blocker 26 nifedipine 41 substance p 
12 calcium channel 27 paroxysmal 42 vasospasm 
13 calcium channel blocker 28 platelet aggregation 43 verapamil 
14 cerebral vasospasm 29 platelet function   
15 convulsion 30 prostacyclin   

 
The dataset contains scientific paper titles which were retrieved by querying the 

PubMed database with the keyword “migraine” for the migraine domain and with the 
keyword “magnesium” for the magnesium domain. Additional condition to the query 
was the publishing date which was limited to before the year 1988, since Swanson’s 
original experiment – which we want to reproduce – also considered only articles 
published before that year. The query resulted in 8,058 titles (2,425 from the migraine 
domain and 5,633 from the magnesium domain) of the average length of 11 words. 
We preprocessed the dataset using the standard procedures described in Section 3.2 
and by additionally specifying terms as n-grams of maximum length 3 (max. three 
words were combined to form a term) with minimum occurrence 2 (each n-gram had 
to appear at least twice to be promoted to a term). Using this preferences we produced 
a dataset containing 13,525 distinct terms or 1,847 distinct terms that appear at least 
once in each domain; both numbers include also all the 43 terms that Swanson 
marked as b-terms. An average document in the dataset consists of 12 terms and 394 
(4,89%) documents contain at least one b-term. 
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5.3 Comparison of the Heuristics 

This section presents the results of the comparison of the heuristics on the magne-
sium-migraine dataset using ROC analysis. The experimental setting was presented in 
detail in the previous sections. Nevertheless, for the purpose of this evaluation, it was 
slightly extended, due to additional knowledge about b-terms in this domain (this may 
be a general observation for any future domain). We realized that all the 43 b-terms 
appear in both domains; therefore, it is more fair for the comparison that the heuristics 
are also aware of this fact. Therefore, we made sure that every heuristic ordered all 
the terms that appear in both datasets (1,847 terms) before all the other terms (11,678 
terms), however, every heuristic used its own score for ordering within these two sets 
of terms. In this way, we incorporated the stated background knowledge about 
b-terms in this domain into all the heuristics. 

Table 2. Comparison of the results of all the defined heuristics ordered by the quality – AUC. 
The first column states the name of the heuristic; the second displays a percentage of the area 
under the ROC curve; and the last is the nterval of AUC. 

 Heuristic AUC Interval  (6) freqDomnProdRel 93,71% 0,40% 
(21) outFreqRelSum 95,33% 0,35%  (13) simDomnRatioMin 93,58% 0,00% 
(19) outFreqRelRF 95,24% 0,55%  (7) tfidfSum 93,58% 0,00% 
(20) outFreqRelSVM 95,06% 1,26%  (9) tfidfDomnProd 93,47% 0,39% 
(18) outFreqRelCS 94,96% 1,30%  (5) freqDomnProd 93,42% 0,44% 
(17) outFreqSum 94,96% 0,70%  (3) freqRatio 93,35% 5,23% 
(8) tfidfAvg 94,87% 0,00%  (23) appearInAllDomn 93,31% 6,69% 

(15) outFreqRF 94,73% 1,53%  (12) simDomnProd 93,27% 0,00% 
(16) outFreqSVM 94,70% 2,06%  (1) freqTerm 93,20% 0,50% 
(14) outFreqCS 94,67% 1,80%  (2) freqDoc 93,19% 0,50% 
(4) freqDomnRatioMin 94,36% 0,62%  (11) simAvgTerm 92,71% 0,00% 

(10) tfidfDomnSum 93,85% 0,35%  (22) random 50,00% 50,00% 
 

 
The first look at numerical result comparison (Table 2) reveals the following: 

─ The overall AUC results of all heuristics, except for the (22)random baseline, are 
relatively good and in the range of from approx. 93% to 95%. 

─ The difference among AUC results is small (only 2.5% between the worst and 
the best performing heuristic). 

─ The improved baseline heuristic (23)appearInAllDomn performs well and is not 
worse than some other heuristics. 

─ Outlier based heuristics seem to perform the best. 
─ Some heuristics, including the best performing ones, have a relatively high AUC 

interval which means that they output the same score for many terms. 

Observing the results in Table 2, followed by the detailed ROC analysis described 
below, we selected the best heuristic that will be used as the heuristic for network 
node weighting, which is the final result of this work. The chosen heuristic is simply 
the first from the list in Table 2 – (21)outFreqRelSum – due to the fact that it has high-
est AUC and especially since it shows a low uncertainty. In other words, it has 
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Fig. 3. ROC curve of the selected heuristic (21)outFreqRelSum along with the baseline heuristic 
(22)random and improved baseline heuristic (23)appearInAllDomn on detecting the 43 b-terms 
among all 13,525 candidate concepts. 

small AUC interval, which means that it better defines the position of b-terms and we 
do not need to rely so much on random sorting of potential equal scoring term sets. 
We also assume it to be less volatile across domains since it actually represents coop-
eration (sum) of three other well performing heuristics: (19)outFreqRelRF, 
(20)outFreqRelSVM, and, (18)outFreqRelCS. 

Detailed ROC curve analysis of the chosen heuristic (see Fig. 3) shows that our 
heuristic is only slightly better than the improved baseline heuristic, which is evident 
also from Table 2. However, when examined carefully we perceive the property of the 
heuristic which is the initial assumption of this research, i.e., extremely steep incline 
at the beginning of the curve which is much steeper than the incline of the baseline 
heuristics. This means that the chosen heuristic is able to detect b-terms at the begin-
ning of the ordered list much faster than the baseline. The steep incline is even more 
evident in Fig. 4. 

Fig. 4 shows the zoom-in perspective on the ROC curves of the selected outlier 
based heuristics – enumerated from (18) to (21) – along with the baselines. The zoom-in 
(applied also in Fig. 5) refers to the axis x since we show only 1,804 terms which is 
the point where all the heuristics (except (22)random) reach the top point (43 found 
b-terms). In Fig. 4 we can see the steep incline property of the (21)outFreqRelSum 
even more clearly. At the position of the first tick on the axis x (by the term 50 in the 
ordered list of terms) the chosen heuristic is able to detect already 5-6 b-terms while 
the baseline heuristic only approximately one. Similarly, we notice at the 200th term 
the baseline heuristics detects 5 b-terms while (21)outFreqRelSum detects already 11. 
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Fig. 4. ROC curves of the best-performing set of heuristic – relative frequency of a term in 
outlier sets – along with both baseline heuristics on detecting the b-terms among only 1,847 
candidate concepts (only the concepts that appear in both domains) 

If we follow the curve further we see a decrease in relative difference; nevertheless, at 
the 1000th term the ratio is still 24:35, even though the performance here is not of such 
importance as the performance at the beginning of the curve. The presented behavior 
at the beginning of the curve is highly appreciated especially from the expert’s point 
of view who needs to go through such an ordered list of terms and detect potential 
b-terms. In such a setting we would really want to present some valuable b-terms at 
the very beginning of the list, even if other b-terms are dispersed evenly across it. 

Even though we chose the heuristic from the outlier set we are still interested how 
the heuristics from the other sets performed. This comparison is presented in Fig. 5 
where we show one (the best performing one) heuristic from each set of heuristics. 
Notice the outlier heuristic (19)outFreqRelRF which undoubtedly wins. It is harder to 
establish an order between the other three heuristics. The undesired property is ex-
posed by (13)simDomnRatioMin where the ROC curve shows performance worse than 
(23)appearInAllDomn at the right side of the curve; however, even this would be toler-
able if there is outperformance at the beginning of the curve. The conclusion for the 
other sets (besides the outlier one) is that even though they are slightly better than the 
baseline heuristic we are not able to infer their significant outperformance over it. 

Overall, the results of the evaluation are beneficial for the insight into heuristic per-
formance on the examined migraine-magnesium dataset. The conclusion is that it is 
extremely hard to promote b-terms in an ordered list of terms by observing only the 
terms’ statistical properties in the documents. However, we managed to construct a 
well performing heuristic which is based on relative frequency of a term in three out-
lier sets of all the documents. The outlier sets of documents are retrieved using 
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Fig. 5. ROC curves of the best-performing heuristics – one from each set (based on: frequency, 
tf-idf, similarity, outliers) along with both baseline heuristics on detecting the b-terms among 
only 1,847 candidate 

three types of classifiers: Centroid Similarity, Random Forest, and, Support Vector 
Machine. The conclusion of our evaluation is well aligned with the results presented 
by Sluban et al. [20] and Petrič et al. [16]. 

The presented chapter motivated our future work in several directions of which we 
will first proceed with the following: 

─ Reevaluate the findings on a new independent test domains. We have already 
done some initial tests on the autism-calcineurin domain pair presented by 
Urbančič et al. [27], which show similar results as the presented evaluation. 

─ Try to do some further research on heuristics based on statistical properties of 
the terms. If no heuristics which outperform (23)appearInAllDomn is found, we 
will consider completely abandoning this type of heuristics. 

─ Add some new, fundamentally different classes of heuristics to rank the terms. 
We have a couple of ideas to try, including using SVM keywords (SVM trained 
to separate between domains) as potential b-terms with high score. 

─ Implement the findings of this research as a web application where the user (a 
domain expert) will be able to perform an experimentation and b-term retrieval 
on his own domains of interest. 

6 Network Creation 

This section briefly presents the ideas behind the creation of a BisoNet – an informa-
tion network of concepts identified and weighted by the presented methodology.  
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The initial plan for BisoNet construction is first to take all the terms/concepts identi-
fied in the preprocessing step, next to weight them using the bisociation score of the 
(21)outFreqRelSum heuristic and finally to add links among concepts according to the 
Bisociation Index measure defined by Segond and Borgelt [4]. 

Table 3. The 40 highest ranked terms using the preferred heuristic (21)outFreqRelSum along 
with the weights (bisociation score) retrieved by the same heuristic. There are 5 gold standard 
b-terms in this list and they are all marked with asterisks. 

1 sturge 3.50 26 cerebral artery 2.50 
2 sturge weber 3.50 27 medication 2.50 
3 weber 3.50  28 animal human 2.50 
4 inflammatory agent 3.00 29 trial treatment 2.50 
5 double blind clinical 3.00  30 brain serotonin * 2.50 
6 migraine therapy magnesium 3.00 31 comparative double blind 2.50 
7 ophthalmologic 3.00  32 comparative double 2.50 
8 clinical aspect therapy 3.00 33 400 2.50 
9 anti inflammatory agent 3.00  34 hyperventilation 2.50 

10 therapy magnesium glutamate 3.00 35 cortical spread 2.50 
11 bruxism 3.00  36 concentration serotonin 2.50 
12 magnesium glutamate 3.00 37 pill 2.50 
13 blind clinical 3.00  38 physiopathological 2.50 
14 aspect therapy 3.00 39 vasospastic 2.50 
15 physiopathology 2.83  40 respiratory arrest 2.50 
16 hypotension 2.66 41 peripheral artery 2.50 
17 treatment spontaneous 2.66  42 spread depression * 2.43 
18 oral glucose tolerance 2.50 43 pharmacotherapy 2.33 
19 cerebral vasospasm * 2.50  44 arterial spasm * 2.33 
20 response serum 2.50 45 acid metabolism 2.33 
21 factor pathogenesis 2.50  46 clinical experimental study 2.33 
22 cortical spread depression * 2.50 47 chorea 2.33 
23 severe pre 2.50  48 lactase 2.33 
24 severe pre eclampsia 2.50 49 arginine 2.33 
25 experimental data 2.50  50 clinical effect 2.33 

 

 
We will explain BisoNet construction by creating an example network from the 

migraine-magnesium domain pair. Table 3 states first 50 terms which are the output 
of the first two steps of the procedure: candidate concept detection and 
(21)outFreqRelSum heuristic scoring. How many terms do we consider for inclusion in 
the final BisoNet depends on the use-case of the created network. In the case when 
the network is an input of the following automatic procedures for bisociation detec-
tion, we want to keep as many nodes as possible, i.e., all candidate concepts nodes 
(13,525 in the migraine-magnesium domain). There may be a need to trim the number 
of nodes down either due to the computational complexity of the subsequent bisocia-
tion discovery procedures or due to the fact that the network is meant to be explored 
by a human. In such a case we have two primary options to consider: the first is to 
remove all the nodes that do not appear in both domains since those are less probable 
to contain interesting bisociations (we are left with 1,847 nodes in the mi-
graine-magnesium domain). The second option is to use the scores of 
(21)outFreqRelSum to cut the nodes under the specified threshold limit. 
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Fig. 6. Part of the network constructed from the migraine-magnesium database using 
(21)outFreqRelSum heuristic for weighting the nodes and Bisociation Index for weighting the
links 

The only step remaining to finalize a BisoNet construction is to calculate the links. 
If we have a reasonably large number of nodes (e.g. 1,000 or more) then it is infeasi-
ble to calculate all the links since there are ሺ݊ · ሺ݊ െ 1ሻሻ/2 of them if ݊ is the number 
of nodes. Therefore, we again use thresholding to cut away lower weighted links. In 
extreme cases where there is a really vast number of nodes (e.g. 100,000 or more) 
there are special approaches needed to calculate all the links – even before threshold-
ing is applied and the nodes are stored. However, these algorithms are beyond the 
scope of this work. 

Fig. 6 shows a section of the final BisoNet constructed by the methodology de-
scribed in this work. A section contains all the highest-ranking nodes retrieved using a 
threshold on the concepts’ (21)outFreqRelSum heuristic score (see Table 3) and the 
two – in this domain – special nodes: migraine and magnesium. The links among 
nodes were calculated as described and were not thresholded. Weights on the links 
and nodes are not shown due to clarity; however, the node weights are stated in Table 
3 while link weights can be inferred from the strength – darkness of the links. 

With the presentation of this example we conclude this chapter. We addressed the 
problem of producing an information network, named BisoNet, from a large text cor-
pus consisting of at least two diverse domains. The goal was to produce a BisoNet 
that has a high potential for providing yet unexplored cross-domain links which could 
lead to new scientific discoveries. We devoted most of this chapter to the 
sub-problem: how to better identify important domain-bridging concepts which be-
come core nodes of the resulting network. We also provided a detailed description of 
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all the preprocessing steps required to reproduce this work. The evaluation of bridging 
concept identification was performed by repeating a discovery made on medical ar-
ticles in the migraine-magnesium domain. Further work is tightly related to the main 
focus of this chapter – heuristics for b-term identification and their evaluation – there-
fore, we stated the ideas for further work at the end of Section 5. 
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