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Abstract. The integration of heterogeneous data from various domains
without the need for prefiltering prepares the ground for bisociative
knowledge discoveries where attempts are made to find unexpected rela-
tions across seemingly unrelated domains. Information networks, due to
their flexible data structure, lend themselves perfectly to the integration
of these heterogeneous data sources. This chapter provides an overview
of different types of information networks and categorizes them by iden-
tifying several key properties of information units and relations which
reflect the expressiveness and thus ability of an information network to
model heterogeneous data from diverse domains. The chapter progresses
by describing a new type of information network known as bisociative
information networks. This kind of network combines the key properties
of existing networks in order to provide the foundation for bisociative
knowledge discoveries. Finally based on this data structure three differ-
ent patterns are described that fulfill the requirements of a bisociation
by connecting concepts from seemingly unrelated domains.

1 Introduction

Applications of bisociative creative information exploration derive their potential
to produce creative discoveries, insight and solutions from exploring bisociations
across large volumes of information originating from two or more domain the-
ories. To facilitate such applications it is necessary to integrate these domain
theories (or associated knowledge bases) in such a way that the integrated pool
can be processed coherently. Integration of such data is a considerable chal-
lenge not only because of the data volumes, but also because of the semantic
(ontologies of different domains) and syntactic (data and knowledge formats)
heterogeneity involved.

An obvious approach to integrate these large volumes of information from var-
ious domains with varying quality is a flexible representation in terms of an infor-
mation network. A number of different types of information networks have been
proposed in the last few years [38] particularly in the area of biomedical domains.
This area of research is known for its diverse information sources that need to be
considered, for example, in the drug discovery process [12]. The integrated sources
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range from experimental data, such as gene expression results, through to highly
curated ontologies, such as the ontology of Medical Subject Heading%

Information networks are commonly composed of information units represent-
ing physical objects as well as immaterial objects such as ideas or events and
relations representing semantic or solely correlational connections between infor-
mation units. They are almost always based on a graph structure with vertices
and edges, where vertices represent units of information, e.g. genes, proteins or
diseases, and the relations between these units of information are usually rep-
resented by edges. In some information networks relations are represented by
vertices as well, and therefore apply a bi-partite graph representation. This type
of representation has the added advantage that relations between more than two
information units can be easily supported. Furthermore an edge can be directed
or undirected depending on the relationship it represents. Most networks also
allow additional attributes or properties to be attached to vertices and edges,
such as a vertex type, e.g. gene or protein, describing the nature of the informa-
tion unit. Such information networks that connect multi-typed vertices are also
known as heterogeneous information networks [28].

In order to integrate not only structured and well annotated repositories but
also other types of information such as experimental data or results from text
mining, some information networks support weighted edges. Therefore interac-
tions in biological systems, which can be noisy and erroneous, are often modeled
by Bayesian networks [22l243T]. In these approaches the edge weight represents
the probability of the existence of the connection. However, the edge weight of
networks used by information retrieval techniques, such as knowledge or Hopfield
networks [I4], represents the relatedness of terms. Usually the weights in these ap-
proaches are computed only once. In contrast to these approaches, Belew enables
each user of an adaptive information retrieval (AIR) model [6] to adapt the weights
according to their relevance feedback. The disadvantage of this approach is that
over time the network will be strongly biased by the opinions of the majority of
the users. Another weighted-graph method constructs a weighted graph based on
information extracted from available databases [49]. In doing so the edge weight
represents the quality of the relation and is based on three factors: edge reliabil-
ity, relevance and rarity. They assume that each edge type has a natural inverse,
such as “coded by” and “is referred by”. Similarly, there is one inverse edge for each
edge, leading to an undirected graph with directed edge labels.

Once the data is represented in an information network this well-defined struc-
ture can be used to discover patterns of interest, extract network summarizations
or abstractions and develop tools for the visual exploration of the underlying
relations. A general analysis of the structure of complex networks stemming
from real-world applications has been conducted by Albert and Barabasi [2].
They have discovered that these networks often share a number of common
properties such as the small-world property, clustering coefficient or degree dis-
tribution. A survey on link mining has been conducted by Getoor and Diehl [27].
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They classified the link mining task into three categories: object-related tasks,
link-related tasks and graph-related tasks.

Network summarizations representing different levels of detail can be visu-
alized to gain insight into the structure of the integrated data. A general in-
troduction to network analysis can be found in [IT]. An overview of existing
graph clustering methods can be found in [48] and a review of graph visualiza-
tion tools for biological networks can be found in [45]. The paper compares the
functionality, limitation and specific strength of these tools.

Approaches from the semantic Web community include formalization of gen-
eral semantic networks where the most popular variants have resulted in the
RDF standard [40] and for formalism of topic maps [23]. Both techniques imply
the construction of various formalizations in the form of different graph con-
structs. A highly complex example is the formalization of topic maps via shifted
hypergraphs [3]. In this approach a hypergraph model for topic maps is defined
in which the standard hypergraph is extended to a multi-level hypergraph via a
shift function. RDF models were proposed in the form of different graph struc-
tures: graph [29], bipartite graph [30] and hypergraph [42]. Standard graphs al-
low the modeling of relations between two nodes, whereas bipartite graphs and
hypergraphs permit the integration of relations among any number of members.

In order to visually analyze large networks with several million vertices and
many more edges, visualization has to focus on a sub-graph or at least summa-
rize the network to match the user’s interest or provide some kind of overview
of existing concepts. Various visualization and graph summarization techniques
have been developed to address this problem. Examples can be seen in the gen-
eralized fisheye views [25], the interactive navigation through different levels of
abstraction [I], the extraction of sub-graphs that contain most of the relevant
information by querying [21] or by spreading-activation [I8]. Other approaches
summarize the graph by clustering or pruning it based on the topology [67] or
additional information such as a given ontology [50].

The next section describes different types of information networks and char-
acterizes them based on the features they support, which are relevant to the
integration of heterogeneous data types. We subsequently introduce bisociative
information networks, which have been tailored to support the integration of
heterogeneous data sources. Before we move on to the conclusion, we discuss
patterns of bisociation in this type of network that support creative thinking by
connecting seemingly unrelated domains.

2 Different Categories of Information Network

In order to differentiate among information networks, distinctions can be made
between different properties of information units and relations. These properties
are, of course, not exclusive. The properties of an information network define
its expressiveness and thus its ability to model data of a diverse nature, e.g.
ontologies or experimental data.
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2.1 Properties of Information Units

The basic information unit does not posses any additional semantical informa-
tion. However, they will at least include a label attached to them in order to
identify the object or concept they represent. Additional properties are the fol-
lowing;:

Attributed. units of information can have additional attributes attached to
them. An attribute might be a link to the original data it stems from, or
a translation of a user-readable label. These attributes might be considered
while reasoning or analyzing the network but do not carry general semantic
information, such as the following properties.

Typed. information units carry an additional label that is used to distinguish
between different semantics of information units, e.g. gene or protein. These
types can additionally be organized in a hierarchy or an ontology.

Hierarchical. information units represent a sub-graph composed of any number
of information units and relations that can be used to condense parts of the
network or to represent more complex concepts such as cellular processes.

2.2 Properties of Relations

The basic connection between information units represents a relationship be-
tween the corresponding members. They are not required to carry a label.

Attributed. relations have attributes attached to them and also fall into this
category. Similar to attributed information units, they can be considered
during the reasoning process, but do not carry a general semantic informa-
tion.

Typed. relations are similar to typed information units and can carry a label
identifying their type. This attribute is used to distinguish between different
semantics of relations such as activates or encodes. These types, as well as
typed information units, can be organized in a hierarchy or an ontology.

Weighted. relations carry a special type of label - the weight - which repre-
sents the strength of a relation, e.g. a number reflecting the probability or
strength of a correlation or some other measure of reliability that allows the
integration of facts and pieces of evidence.

Directed. relations can be used to explicitly model relationships that are only
valid in one direction, such as parent child dependency in a hierarchy.

Multi-relation. relations are generally represented as edges supporting only
two members. Topic maps (see Section[33]) in contrast represent relations as
multi edges supporting any number of members. This allows a more flexible
modeling of relationships with any number of members, e.g. co-expressed
genes of an experiment or co-authors of a paper. Furthermore connections
among relations themselves can be represented. Note that it is complicated
to combine this property with the directed property mentioned above. Addi-
tional information would need to be provided, such as an embedding graph
to identify sources and targets in a relation with more than two members.
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3 Prominent Types of Information Networks

This section describes prominent types of information networks and characterizes
them based on the previously discussed properties (see section 2)) they support.

3.1 Ontologies

Ontologies are based on typed and directed relations using a controlled vocabu-
lary for information units and relations dedicated to a certain domain. The cre-
ation of the curated vocabulary leads in general to a manual or semi-automatic
creation of an ontology, requiring a comprehensive knowledge of the area to be
described.

Figure [T depicts a simple ontology where information units are represented as
nodes and relations are represented as labeled arrows.

CBird >

is,a isa

Fig. 1. Example of an ontology

In the area of life sciences particularly, many ontologies have been developed
to share data from diverse research areas such as chemistry, biology or pharma-
cokinetics. One of the probably best known and most integrated ontologies in
the biological field is the Gene Ontology (GO) [I7]. The GO consists of three
main ontologies describing the molecular function, biological process and cellular
component of genes.

An attempt to integrate diverse ontologies has been made by the Open
Biomedical Ontologies (OBO) consortium [52]. They have created a file exchange
format and over 60 ontologies for different domains defining a general vocabulary
that can be used by other systems.

A classification of biomedical ontologies has been completed by Bodenrei-
der [I0]. He classified these ontologies into three major categories: knowledge
management; data integration, exchange and semantic interoperability; decision
support and reasoning.

An ontology-based data integration platform is described in [33]. The authors
describe a system that extends the existing text-mining framework ONDEX.
ONDEX uses a core set of ontologies, which are aligned by several automated
methods to integrate biological databases. The existing system is extended to
support not only the alignment and integration of texts but heterogeneous data
sources. The data is represented as a graph with attributed edges.

Tzitzikas et al. [56] describe a system that is based on the hierarchical inte-
gration of ontologies from different data sources. The system uses a mediator
ontology, which bridges the heterogeneity of the different data source ontologies.
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3.2 Semantic Networks

Semantic networks use typed relations to model the semantic of the integrated
information units and their relations. Information units in semantic networks, in
contrast to ontologies, are not represented by a curated vocabulary but rather
described by attaching any number of attributes to them whose semantic is
defined by the type of the relation.

Most of the semantic networks rely on Semantic Web [8] technologies such as
the Resource Description Framework (RDF) [40], RDF Vocabulary Description
Language (RDF Schema) and the Web Ontology Language (OWL) defined by the
W3C consortiunfd. RDF is a knowledge representation and storage framework
that uses triples. A triple consists of a subject, predicate and object. The subject
and object are information units that are connected by a directed relation defined
by the predicate.

In Figure[2lsubjects and objects that are uniquely identifiable are depicted in
ellipses, whereas objects containing values are depicted in boxes. Predicates are
shown as arrows pointing from the object to the subject with the type of the
relation as an annotation.

Animal

rdfs:label

rdfs:subClassOf

rdfs:label

http://.../bird.htm

rdfs:subClassOf

http://.../ostrich.htm

rdfs:label

Ostrich

rdfs:subClassOf

http://.../eagle.htm

rdfs:label

Fig. 2. Graph representation of a Semantic Web

The RDF Schema defines a core vocabulary that can be used to describe prop-
erties and classes. These properties and classes can be used to describe the mem-
bers of a triple. OWL extends the RDF Schema by providing a set of additional
standard terms to describe properties and classes in more detail such as relations
between classes. It also defines the behavior of properties, e.g. symmetry or tran-
sitivity. OWL as well as the RDF Schema extend RDF by providing the means to
model the semantics of the integrated data therefore enabling machines to make
sense of the data. They are both described using the RDF.

2 http: //www.w3.org/2001/sw/
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Bales and Johnson [5] analyzed large semantic networks created from 1998-
2005 that involve both a graph theoretic perspective and semantic information.
The results indicate that networks derived from natural language share common
topological properties, such as scale-free and small-world characteristics.

Chen et al. [I3] provide an introduction to semantic networks and seman-
tic graph mining. In four case studies, they demonstrate the usage of semantic
web technologies to analyze disease-causal genes, GO category cross-talks, drug
efficacy and herb-drug interactions.

Belleau et al.[7] propose the Bio2RDF project to integrate data from different
biological sources. Bio2RDF is used to integrate data from more than twenty
different public bioinformatic sources by converting them into the RDF format.

YeastHub [I5] another RDF-based data integration approach likewise inte-
grates the data from heterogeneous sources into a RDF-based data warehouse.
In addition they propose a standard RDF format for tabular data integration.
The format can be used to convert any data table into a standardized RDF
format.

A loosely coupled integration of semantic networks is proposed by Smith et
al. [51] in the form of the LinkHub system. The system consists of smaller net-
works that can be connected by sharing a common hub. Thus independently
maintained networks can be connected to the whole system by connecting them
to one of the already integrated sub networks.

Biozon [9] combines the flexible graph structure with an ontology for vertex
and edge types similar to the semantic web approach. This combined approach
allows a more detailed description of a biological entity by either imposing more
constraints on its nature in the hierarchy or on the structure of its relations
to other entities in the graph. All vertices within Biozon are direct analogs to
physical entities and sets of entities. Proteins, for example, are identified by their
sequence of amino acids. In contrast to pure semantic networks Biozon allows any
number of attributes to be attached to information units as well as to relations.

3.3 Topic Maps

Topic maps [23l47] use typed information units and relations. Furthermore topic
maps support the modeling of multi relations with any number of members. The
semantic of a topic is described by attaching any number of attributes to it.

Figure [ depicts the three major elements of a topic map: topics (ellipses),
associations (solid lines) and occurrences (boxes). Association and occurrence
types are connected by the dashed lines whereas occurrences are connected by
the dotted line.

A topic can generally be anything, for example a person, a concept or an idea.
Topics can be assigned zero or more topic types, which are, in turn, defined as
topics describing the semantics of the topic such as gene or protein.

Relations between any number of topics are represented by so-called associ-
ations. Associations are assigned a type that describes the association in more
detail. Members of associations play a certain role defined by the association
role. As with topic and occurrence types, association types and association roles
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[http://...fostrich.htm] [http://.../eagle.htm]

Fig. 3. Example of a topic map

are defined as topics themselves. In order to attach attributes to an association
it needs to be converted into a topic by the act of reification.

Information resources that represent a topic or describe it in more detail are
linked to topics by so-called occurrences. Occurrences are not generally stored
in the topic map itself but are referenced using mechanisms supported by the
system, e.g. Uniform Resource Identifiers (URI). Occurrences can have any num-
ber of different types, so-called occurrence types, that describe their semantics.
These types are also defined as topics. Topic maps are self-documenting due
to the fact that virtually everything in topic maps is a topic in the map itself,
forming the ontology of the used topics and relation types.

An example of a topic-map-like data integration approach is PathSys [4]. In
PathSys a relation is also represented as a vertex. This approach models re-
lationships between relations themselves. To distinguish between information
units and relations they introduce vertex types. Besides primary vertices repre-
senting information units and connector vertices representing relationships, they
also introduce graph vertices. By introducing graph vertices, PathSys combines
the multi relation property of topic maps with the hierarchical information unit
property allowing the sub-graph representation to describe more complex objects
such as protein complexes or cellular processes.

3.4 Weighted Networks

In most weighted networks the edge weight represents the strength of a relation
such as reliability or probability. Weighted networks often exhibit additional
properties such as types in order to be more expressive by modeling the semantic
of the integrated data sources. They generally only support relationships with
two members represented by the edges of the graph.

Figure Ml depicts a weighted network modeling the probability of a bird to be
either a bird of prey or a flightless bird.

Probabilistic Weights. Probabilistic networks model the probability of the ex-
istence of a relationship. They are mostly used in the biological field to model in-
teraction networks, e.g. gene-gene or protein-protein interaction networks.
In order to model the probability of the relations the networks often depend
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Bird
0,5 0,5
Flightless bird Bird of prey
1 11
Ostrich Eagle

Fig. 4. Example of a weighted network

on a specific network structure or weight distribution. Bayesian networks, for
example, depend on a directed acyclic graph, whose vertices model the random
variables an its relations indicate their conditional dependencies [46].

Franke et al. [24] use three steps to fuse the information from the GO with
microarray co-expression results and protein-protein interaction data using naive
Bayesian networks. The resulting network called Genenetwork can be used to
detect genes that are related to a disease based on genetic mutation.

Li et al. [41] use a two-layered approach to integrate gene relations from
heterogeneous data sources. The first layer creates a fully connected Bayesian
network for each integrated source, which represents the gene functional rela-
tions. The second layer combines these relations from the different data sources
into one integrated network using a naive Bayesian method.

Jansen et al. [31] likewise propose a combination of naive Bayesian networks
and fully connected Bayesian networks to create a protein-protein interaction
network. They use the fully connected Bayesian networks to integrate experi-
mental interaction data and naive Bayesian networks to incorporate other ge-
nomic features such as the biological process from the GO. To combine all results
they use a naive Bayesian network as well.

In [55], Troyanskaya et al. introduce MAGIC (Multisource Association of
Genes by Integration of Clusters). For each integrated data source, MAGIC
creates a gene-gene relationship matrix to predict the functional relationship
of two given genes. The matrices are generated from diverse high-throughput
techniques such as gene expression microarrays. These gene-gene relationship
matrices are weighted by the confidence in the integrated source and combined
into a single matrix. This approach allows genes to be members of more than
one group, which subsequently allows fuzzy clustering.

Heuristic Weights. Heuristic weights are mostly used to model the reliability
or relevance of a given relation, thus allowing the integration of well-curated
sources such as ontologies and pieces of evidence such as noisy experimental
data in a single network.

In order to integrate data from diverse biological sources for protein function
prediction, Chua et al. [16] propose Integrated Weighted Averaging (IWA). This
combines local prediction methods with a global weighting strategy. Each data
source is transformed into an undirected graph with proteins as vertices and rela-
tionships between proteins as edges. Each source graph has a score reflecting its
reliability. Finally, all source graphs are combined in a single graph using IWA.

Kiemer et al. [32] use a weighted network to integrate yeast protein informa-
tion from different data sources forming a protein-protein interaction network
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called WI-PHI. The network consists of 50,000 interactions from all data sources.
The edge weight of the WI-PHI network is computed using the socio-affinity in-
dex [26], quantifying the propensity of proteins to form partnerships, multiplied
by a weight constant per integrated data source defining its accuracy.

In Biomine [49] the edge weight is a combination of three different weights:
reliability, relevance and rarity. Reliability reflects the reliability of the source
the edge stems from. By changing the relevance of different node or edge types,
e.g. proteins, genes, a user can focus on the types he or she is most interested in.
Finally rarity is computed using the degree of the incident vertices. Edges that
connect vertices with a low degree have a higher rarity score than edges that
connect vertices with a high degree. Vertices and edges have a type assigned
describing their nature. Each edge has its inverse edge with a natural inverse
type such as “coded by” and “is referred by”. Thus forming a weighted undirected
graph with directed edge types.

In the next section we describe bisociative information networks that combine
the properties of the existing network types in order to support the integration
of heterogeneous data sources.

4 BisoNets: Bisociative Information Networks

Bisociative information networks (BisoNets) provide the flexibility to integrate
relations from semantically meaningful information as well as loosely coupled
information fragments with any number of members by adopting a weighted
k-partite graph structure (see Figure ().

Experiment Gene Term Document Disease
Fig. 5. Example of a 5-partite BisoNet

Vertices in BisoNets represent arbitrary units of information, e.g., a gene,
protein, specific molecule, index term, or document, or abstract concepts such as
ideas, acts or events. Vertices of the same type are grouped into vertex partitions
such as documents, authors, genes or experiments. Since a vertex can play diverse
roles it can be assigned to several partitions.

Depending on a certain view, the vertices of a partition can act as relations or
information units. Let us consider a document author network to illustrate this
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concept. In one view the documents can describe the relationship between co-
authors. Whereas in another view the authors describe the relationship between
documents that have been written by the same authors. Thus the role of a vertex
partition depends on the current view on the data.

Connections between vertices are represented by edges. An edge can only exist
between vertices of diverse partitions; this leads to the k-partite graph structure.
Hence a relation between two information units (e.g., authors) is described by
a third information unit (e.g., document). A BisoNet therefore consists of at
least two partitions, the first partition representing the information units and
the second partition describing the relations between the information units.

The certainty of a connection is represented by the weight of the edge. A
stronger weight represents a higher certainty in the existence of the connection.
Thus, a connection derived from a reliable data source (e.g., a manually cu-
rated ontology) is assigned a stronger weight than a connection derived from an
automated method (e.g., text mining method).

BisoNets model the main characteristics of the integrated information repos-
itories without storing all the detailed data from which these characteristics are
derived. By focusing on the concepts and their relations alone, BisoNets therefore
allow very large amounts of data to be integrated.

Definition 1 (BisoNet). A BisoNet B = (V1,..., Vi, E, \,w) is an attributed
graph, where V. =, .. Vi represents the union of all vertex partitions and k > 2
denotes the number of existing partitions. Every vertex v € V represents a unit
of information and can be a member of multiple partitions.

The set of edges E = {{u,v} : u € Vi;v € V;;j # i} connects vertices
from two different vertex partitions, whereas an edge e = {u,v} € E represents
a connection between the two vertices w € V; and v € V; where i # j and
2<i,j<k.

The function X : V — X* assigns each vertex v € V' an unique label from X*.
This allows for the identification of a vertex by its unique label.

The certainty of a relation is represented by the weight of an edge e € E, which
is assigned by the function w : E — [0, 1] and where a weight of 1 represents the
highest certainty.

4.1 Summary

Table [Il compares the prominent types of information networks from section [3]
with BisoNets based on the properties they support. The table shows that most
of the networks support typed relations whereas topic maps and BisoNets also
support typed information units. The types enable us to distinguish between
different types of information units and relations, leading to to a better under-
standing of the integrated data. In addition the type information allows seman-
tical information to be processed by a computer system. But the usage of type
information requires detailed knowledge about the information that should be in-
tegrated into the network. The creation of a suitable type collection that allows
the integration of data from diverse sources is thus an elaborated task which
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Table 1. Properties matrix of prominent types of information network in conjunction
with BisoNets (A=Attributed, T=Typed, H=Hierarchical, W=Weighted, D=Directed
and M=Multi relation)

Information Units Relations
A T H A T W D M
Ontologies X X
Semantic Networks X X X
Topic Maps X X X X X
Weighted Networks X
BisoNets X X X X X X X X

often has to be done manually. Moreover, not all data sources do possess the
required semantical information to assign the right type and therefore manual
annotations of the integrated information units and relations might be required.
If information units and relation types are abandoned, the integration of data
from heterogeneous sources is much easier but it might make the comprehension
of the integrated data more difficult. As a result, BisoNets support typed infor-
mation units and relations and allow their usage if the integrated data sources
provide this information, however they are not mandatory. In contrast to topic
maps, BisoNets also support weighted relations, thus allowing not only the inte-
gration of facts but also pieces of evidence. BisoNets combine the properties of
the existing network types in order to provide a well-defined and powerful data
structure that provides the flexibility to integrate relations from heterogeneous
data sources.

5 Patterns of Bisociation in BisoNets

Once the information has been integrated into a BisoNet, it can be analyzed in
order to find interesting patterns in the integrated data. One class of pattern is
bisociation. So far, we have identified three different kinds of bisociations [37],
which are described in more detail below.

5.1 Bridging Concept

Bridging concepts connect dense sub-graphs from different domains (see Fig-
ure [6)). Bridging concepts employ ambiguous concepts or metaphors and are
often used in humor [34] and riddles [I9]. While ambiguity is useful for mak-
ing jokes or telling stories, it is less popular in serious scientific or engineering
applications. For example, the concept of a “jaguar” is ambiguous since it may
refer to either an animal or a car. Metaphors, on the other hand, describe a
form of understanding or reasoning in which a concept or idea in one domain is
understood or viewed in terms of concepts or ideas from another domain. The
statement “You are wasting my time”, for instance, can be seen as a metaphor
that connects the time with the financial domain. Metaphors play a major role in
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our everyday life as they afford a degree of flexibility that facilitates discoveries
by connecting seemingly unrelated subjects [39].

A first approach to detect bridging concepts is the discovery of concept graphs
[35136] in the integrated data. Concept graphs can be used to identify existing
and missing concepts in a network by searching for densely connected quasi
bi-partite sub-graphs. Once a concept graph has been detected the domains, its
aspect and member vertices stem from, can be analyzed in order to find concepts
graphs, e.g. concepts that connect information units from different domains.

Fig. 6. Bridging concept

5.2 Bridging Graphs

Bridging graphs are sub-graphs that connect concepts from different domains
(see Figure [). They may lead to surprising information arising from different
domains since they are able to link seemingly unrelated domains (see Figure [7al).
An example of where bridging graph could be used to realize bisociation is the
Eureka act of the Archimedes example [20]. A bridging graph may also lead to
the linking of two disconnected concepts from the same domain via a connection
through and unrelated domain (see Figure [7h]).

A first step in the direction of the discovery of bridging graphs is the formaliza-
tion and detection of such domain-crossing sub-graphs [43l44]. The discovered
sub-graphs can be further ranked according to their potential interestingness.
Therefore the interestingness is measured by a so called b-score that takes into
account the size of the connected domains, the sparsity of the connections be-
tween the different domains and the distribution of the neighbors of the bridging
vertices.

Fig. 7. Bridging graphs
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5.3 Bridging by Graph Similarity

Bisociations based on graph similarity are represented by sub-graphs of two dif-
ferent domains that are structurally similar (see Figure ). This is the most
abstract pattern of bisociation that has the potential to lead to new discover-
ies by linking domains that do not have any connection except for the similar
interaction of the bridging concepts and their neighbors.

These structurally similar but disconnected regions in a BisoNet can be dis-
covered by means of a vertex similarity based on the structural properties of
vertices. In [63l54] a spatial similarity (activation similarity) and a structural
similarity (signature similarity) based on spreading activation are introduced,
which can be used in combination in order to identify bisociations based on
structurally similar but disconnected sub-graphs.

Fig. 8. Bridging by graph similarity

6 Conclusion

In this chapter we identified several key properties of information units and rela-
tions used in information networks. We provided an overview of different types
of information networks and categorized them based on the identified properties.
These properties reflect the expressiveness and thus the ability of an information
network to model data of a diverse nature.

We further describe BisoNets as a new type of information network that is
tailored to the integration of heterogeneous data sources from diverse domains.
They possess the main properties required to integrate large amounts of data
from a variety of information sources. By supporting weighted edges BisoNets
support the integration not only of facts such as hand curated ontologies but
also of pieces of evidence such as results from biological experiments.

Finally we described three patterns of bisociations in BisoNets. Bridging con-
cepts refer to a single vertex that is connected to vertices from different domains.
These vertices, which belong to multiple domains, might be an indication of am-
biguity or metaphor - metaphors often being used in humor and riddles. Bridging
graphs on the other hand are sub-graphs consisting of multiple vertices and edges
that connect concepts from different domains. These sub-graphs might lead to
new insights by connecting seemingly unrelated domains. Last but not least, do-
main bridging by structural similarity is the most abstract pattern of bisociation
with the potential to lead to truly new discoveries by linking domains that are
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otherwise unconnected, except for the similar structure of their corresponding
sub-graphs.
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