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Abstract. Subgroup discovery methods find interesting subsets of ob-
jects of a given class. We propose to extend subgroup discovery by a
second subgroup discovery step to find interesting subgroups of objects
specific for a class in one or more contrast classes. First, a subgroup
discovery method is applied. Then, contrast classes of objects are de-
fined by using set theoretic functions on the discovered subgroups of
objects. Finally, subgroup discovery is performed to find interesting sub-
groups within the two contrast classes, pointing out differences between
the characteristics of the two. This has various application areas, one
being biology, where finding interesting subgroups has been addressed
widely for gene-expression data. There, our method finds enriched gene
sets which are common to samples in a class (e.g., differential expres-
sion in virus infected versus non-infected) and at the same time specific
for one or more class attributes (e.g., time points or genotypes). We re-
port on experimental results on a time-series data set for virus infected
potato plants. The results present a comprehensive overview of potato’s
response to virus infection and reveal new research hypotheses for plant
biologists.

1 Introduction

Subgroup discovery is a classical task in data mining for finding interesting
subsets of objects. We extend subgroup discovery by a second subgroup discovery
step to find interesting subgroups of objects of a specific class in one or more
contrast classes. Contrast classes can represent, for example, different time points
or genotypes. Their exact definition depends on the interest of the user. We build
on a generic assumption that objects are grouped into classes and described by
features (e.g., terms). Often several terms can be summarized under a more
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general term. We use hierarchies to incorporate such background knowledge
about terms. We are not concerned whether objects represent individuals, genes,
or something else, and neither what features, classes, and hierarchies represent.
Consider the following examples.

In bioinformatics a common problem is that high-throughput techniques and
simple statistical tests produce rankings of thousands of genes. Life-scientists
have to choose few genes for further (often expensive and time consuming) ex-
periments. Genes can be annotated, for example, by molecular functions or bi-
ological processes, which are organized as hierarchies. A life-scientist might be
interested in studying an organism in virus infected and non-infected condition
(classes) at different time points after infection (contrast classes). In this context,
subgroup discovery is known as gene set enrichment, where genes represent fea-
tures and the aim is to find subgroups of features. In contrast, to fit the retrieval
of gene sets into the general subgroup discovery context, we consider genes as
objects, their ranking values and their annotations as features. See Table [ for
a line-up of the terms used in the two communities.

We report on experimental results on a time-series data set for virus infected
Solanum tuberosum (potato) plants. As S. tuberosum has only sparsely biological
annotations, we use bisociations. Bisociations are concepts that are bridging
two domains which are connected only very sparsely or not at all [I]. In our
experiments we transfer knowledge from the well studied model plant A. thaliana
to S. tuberosum, our plant under investigation.

Table 1. Synonyms from different communities

Subgroup Discovery Bioinformatics

object or instance gene

feature or attribute value, annotation or biological concept,
e.g., a term in a hierarchy e.g., a GO term

class attribute gene expression under a specific

experimental condition such as
a specific time point or genotype
class (or class attribute value), differential/non-differential

e.g., positive/negative gene expression
subgroup of objects gene set
interesting subgroup enriched gene set

In sociology objects are individuals which are described by different features.
For example, bank customers can be described by their occupation, location,
loan and insurance type. An economist then might be interested in comparing
bank customers who are big spender (classes) and those who are not, before
and after the financial crisis (contrast classes). Consider, as a toy example, bank
customers in Table 2 and four background hierarchies in Fig. [l The economist
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might know that before the financial crisis there were more big spenders than
afterwards. Other, perhaps less obvious subgroups, can be more interesting. For
example, the economist might not expect that the subgroup described by the
term Ljubljana is statistically significant for a contrast class “after financial
crisis” in comparison to the contrast class “before the financial crisis”.

While subgroup discovery has been addressed in different applications be-
fore (see Section [ for related work). We propose and formulate the problem
of subgroup discovery from interesting subgroups and describe how well-known
algorithms can be combined to solve the problem (Section B]). In Section H] we
show how these definitions can be applied to find interesting subgroups of genes.
We report on experimental results on a time-series data set for virus infected
potato plants in Section [Bl In Section [6] we conclude with some notes about the
results and future work.

Table 2. Bank customers described by features: occupation (OCC), location (LOC),
loan (LOAN), insurance (INS) (adapted from Kralj Novak et al. [2]). Different classes
are big spender (BSP) as well as before/after financial crisis.

Before financial crisis After financial crisis
ID OCC LOC LOAN INS BSP OCC LOC LOAN INS BSP
1 private Maribor flat yes yes private Maribor flat yes yes
2 private Piran no no yes private Ljubljana no no yes
3 private Ljubljana flat no yes private Ljubljana no no yes
4 public Ljubljana flat yes yes private Ljubljana no no yes
5 public Maribor no yes yes private Maribor no yes yes
6 private Maribor no no yes unemployed Maribor no no no
7 private Ljubljana car no yes unemployed Ljubljana car no no
8 public Maribor no no yes unemployed Maribor no no no
9 unemployed Maribor no no yes unemployed Ljubljana no no no
10 private Ljubljana no yes no  private Ljubljana no yes no
11 private Piran no no no unemployed Piran no no no
12 public Piran car yes no public Piran car yes no
13 unemployed Piran no no no unemployed Piran no no no
14 unemployed Ljubljana flat no no unemployed Ljubljana no no no
15 unemployed Piran car no no unemployed Ljubljana car no no
Loan
Occupation Location
/yes\ no Insurance

Private Public Unemployed Ljubljana  Maribor Piran Car Appartment yes no

Fig. 1. Bank account feature ontologies (adapted from Kralj Novak et al. [2])
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2 Related Work

Discovering patterns in data is a classical problem in data mining and ma-
chine learning [3/4]. To represent patterns in an explanatory form they are de-
scribed by rules (or logical implications) Condition — Subgroup, where the
antecedent Condition is a conjunction of attributes (e.g., terms) and the conse-
quent Subgroup is a set of objects.

Subgroup discovery methods find interesting subgroups of objects of a specific
class compared to a complementary class. A subgroup of objects is interesting,
when the feature values within the subgroup differ statistical significant from
the feature values of the other objects. To analyze the constructed subgroups we
use Fisher’s exact test [5] and a simple test of significance. Alternatively, other
statistical tests, like x2 test can be used.

Various application areas exist: sociology [6/7], marketing [8], vegetation data [9)]
or transcriptomics [I0] amongst others. In sociology objects typically represent
individuals and the aim is to find interesting subgroups of individuals.

In bioinformatics subgroup discovery is known as gene set enrichment. There,
objects represent genes and the aim is to find subgroups of genes. A gene set is
interesting (or enriched) if the differential expression of the genes of that gene
set are statistically significant compared to the rest of the genes. The expression
values of several samples are transformed into one feature value, called differen-
tial expression, and the genes are partitioned into two classes: differentially and
not differentially expressed. Then, subgroup discovery methods find enriched
gene sets. Alternatively, gene set enrichment analysis (GSEA) [11] or parametric
analysis of gene set enrichment (PAGE) [12] can be used to analyze whether a
subgroup is interesting (a gene set is enriched) or not. Both methods use not a
partitioning of the genes into two classes, but a ranking of differential expressions
instead.

Subgroup discovery differs from typical time series analysis where one obser-
vation per time point is given. Recently, different approaches have been described
which split time series into shorter time-windows to be clustered in separated
groups [I3] or to find interesting subgroups [14/15]. However, subgroup discovery
is not restricted to time series. In addition to time points it can also compare
other types of classes, for example, healthy individuals compared to virus in-
fected ones.

Contrast set mining aims to understand the differences between contrasting
groups [16]. Tt is a special case of rule discovery [I7] that can be effectively solved
by subgroup discovery [I8]. It is thus a generalization of subgroup discovery, in
which two contrast classes are defined, in contrast subgroup discovery, where
one class and it’s complement are used.

Association rules describe associations like Y tends to be in the database if
X is in it, where X and Y are item sets (sets of terms) [19]. Ezception rules
are association rules which differ from a highly frequent association rule [20].
Alike in our approach they aim to find unexpected rules. Their approach differs
from the one presented here, as we are not only interested in finding subgroups
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in one specific class, but in set theoretic combinations like intersections or set
differences of subgroups found by a first subgroup discovery instance.

Frequent item set mining aims to find item sets describing a set of transactions
(a subgroup) that are frequent [2I]. Similar to the approach presented here, some
methods intersect transactions to find closed frequent item sets [2212324].

Descriptive induction algorithms aim to discover individual rules defining in-
teresting patterns in the data. This includes association rule learning [19], clausal
discovery [25], contrast set mining [I6] and subgroup discovery [6I7] amongst
others. In contrast, predictive induction aims to construct rules to be used for
classification and/or prediction [4]. We will focus on descriptive induction, even
though our proposed approach could be adapted for predictive induction.

Semantic data mining denotes data mining methods which use background
knowledge to improve pattern discovery and interpretation by using semantic
annotations of objects as features [2]. Michalski [4] describes different types of
background knowledge which can be subsumed under the term ontology. An on-
tology is a representation of a conceptualization and is often represented by a hi-
erarchy, where nodes represent concepts and edges a subsumption relations [26].
Several ontologies can be modeled by a single ontology [27].

In biology commonly used ontologies include Gene Ontology (GO [28] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)E [29].
GoMapMarﬁ is an extension of the MapMan [30] ontology for plants used in our
experiments. These ontologies are hierarchical vocabularies of gene annotations
(semantic descriptors) organized as a directed acyclic graphs. Nodes represent
molecular functions, biological processes or cellular components in GO, molec-
ular pathways in KEGG and plant’s molecular functions or biological processes
in GoMapMan. Edges represent “is a” or “part of” relationships between the
concepts (nodes).

Ontologies are extensively used in gene set enrichment [TIJT2]. Other appli-
cation areas include association rule mining [27I31], where the transactions are
either extended [27] or frequent item sets are generated one level at at a time [31].
Here, we use the subgroup construction method by Trajkovski et al. [32], which
combines terms from the same level as well as from different levels.

3 Contrast Mining from Interesting Subgroups

Given a set of objects described by features and different classes of objects, the
goal is to find interesting subgroups of objects of a specific class in one or more
contrast classes. That is, for example, to find interesting subgroups specific for
big spenders (class) after the financial crisis (contrast class).

Our approach finds such subgroups by dividing the task into three steps:
First, interesting subgroups are found by a subgroup discovery method. Second,
contrast classes on those subgroups are defined by set theoretic functions. Third,

! mttp://www.geneontology.org/
2 http://www.genome . jp/kegg/ko . html
3 http://www.gomapman.org/
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subgroup discovery finds interesting subgroups in the contrast classes. Next, we
will describe each step in detail.

3.1 Subgroup Discovery (Step 1)

To find interesting subgroups, we use search for enriched gene set (SEGS) [32],
a method developed for gene set enrichment analysis, but not restricted to this
application area [2].

First, all subgroups that contain at least a minimal number of objects are con-
structed by a depth-first traversal [32]. Afterwards, the constructed subgroups
are analyzed if they are statistically significant for the class of interest.

Construction of Subgroups. We use hierarchies of terms as background
knowledge to construct subgroups that contain at least a minimal number of
objects. Subgroups are constructed by individual terms and logical conjunctions
of terms.

Subgroup Construction by Individual Terms. Let S be the set of all objects and
T the union of all terms of n background knowledges. Each term ¢ € T' defines a
subgroup S; C S that consists of all objects s where feature value t is true, that
is, are annotated by term ¢:

St = {s | s is annotated by t}. (1)

Subgroup Construction with Logical Conjunctions. Subgroups can be constructed
by intersections, which are described by logical conjunctions of terms. Let S1, . ..,
Sy be k subgroups described by terms ¢1,...,t;. Then, the logical conjunction
of k terms defines the intersection of k£ subgroups:

AT A ... At — S1NSN...NSE . (2)

Ezample 1. In Table 2 before the financial crisis, the conjunction Ljubljana A
—Insurance defines a subgroup of three bank customers {3,7,14}.

A subgroup description can be seen as the condition part of a rule Condi-
tion — Subgroup [33]. If an object is annotated by several terms, it is a member
of several subgroups. A subgroup might be a subset of another subgroup. In
particular, consider the example hierarchies in Figure[ll Then, an object that is
annotated by a term t is also annotated by its ancestors.

To construct all possible subgroups one ontology is used, where the root has
n children, one for each ontology. We start with the root term and recursively
replace each term by each of its children. We are not interested in constructing
all possible subgroups, but only those representing at least a minimal number
of objects. Therefore, we extend a condition only if the subgroup defined by it
contains more than a minimum number of objects. If a condition defines the
same group of objects as a more general condition, the more general condition is
deleted. Furthermore, in each recursion we add another term to the rule to obtain
intersections of two or more subgroups and test if the intersection represents at
least a minimal number of objects.
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Analysis of Constructed Subgroups. Statistical tests can be used to analyze
if the constructed subgroups are interesting, that is, the feature values within
the subgroup differ statistically significant from the feature values of the other
objects with respect to given classes A and B. For each subgroup S; C S the
data is arranged in a table:

A B

S¢ 111 na2
S \ St na1 na2

where n = |S| = n11 + ni2 + na1 + nag, N1y is the number of objects in S that
are annotated by A, n1s is the number of objects in S; that are annotated by B,
ng1 is the number of objects in S\ S; that are annotated by A, and no; is the
number of objects in S\ S; that are annotated by B.

Fisher’s Exact Test. Fisher’s exact test evaluates if the equal proportions and
the observed difference is within what is expected by chance alone or not [5].
The probability of observing each possible table configuration is calculated by
— _ + +
P(X - nll) - (nl}nl;nlz) (nz}nzinzz)/(’nlli’nzl) : (3)
The p-value is then the sum of all probabilities for the observed or more extreme
(that is, X <ni1) observations:

p=> P(X=1i). (4)

Ezample 2. Consider the bank customers in Table 2] the condition Maribor and
the class big spender versus not big spender and a significance level a. There are
five bank customers in Maribor: S; = {1,5,6,8,9}, which are all big spenders.
Hence, the p-value is p ~ 0.043956.

Test of Significance. To address the multiple testing problem, that is, that sub-
groups might have occurred by chance alone, we correct the p-values. Therefore,
we randomly permute the genes and calculate the p-value for each subgroup. We
repeat this first step for 1,000 permutations, create a histogram by the p-values
of each permutation’s best subgroup, and estimate the (corrected) p-value using
the histogram: The corrected p-value is the reciprocal of the permutations in
which the p-value obtained by Fisher’s exact test is smaller than all p-values ob-
tained from the permutations. For example, if the p-value obtained by Fisher’s
exact test is in all permutations smaller, then the corrected p-value is p = 0.001.
If the corrected p-value is smaller than the given significance level « then the
feature values within the subgroup differ statistical significantly from the fea-
ture values from the other objects and we call the subgroup interesting and the
subgroup is called interesting.
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3.2 Construction of Contrast Classes (Step 2)

Let Sq,...,S, denote the interesting subgroups found for n classes. Then, two
contrast classes Sy and S, are defined by two set theoretic functions f and g:
f(Sh...,Sn):SfQUSi. (5)
K]

and ¢(S1,...,S5,) is defined as the complement. If g(-) is defined as something
else than the complement, the next step is contrast set mining rather than sub-
group discovery (see [33] for a line-up of both approaches).

Which set theoretic functions should be used depends on the objective. For
example, if we aim to find interesting subgroups which are common to all classes,
then f(-) is defined as the set of objects occurring in at least one interesting
subgroup of each class:

fS1,.8) = N S (©)

i€{1,.mn}

Hence, every object of Sy occurred in each class in at least one interesting sub-
group.

Alternatively, if the aim is to find interesting subgroups which are specific for
class k, then f(-) is defined as the set of objects only occurring in interesting
subgroups found for k" class:

f(S1,...,8) = Sk \ igu,u.,n}, Si . (7)

Hence, every object in Sy occurred in one or more interesting subgroups of class
Sk, but not in a single one of the other classes.

Ezample 3. Consider again the bank customers in Table 2] subgroups with at
least four bank customers and o = 0.3 (for sake of simplicity we consider a rela-
tively high significance level in this toy example). For the “before financial crisis”
class we obtain four subgroups: Maribor, Maribor A —Loan, Piran, and Unem-
ployed. The set of bank customers described by at least one of them is S; =
{1,5,6,8,11,...,15}. For the “after financial crisis” class we obtain two sub-
groups: Private and Unemployed and the set Sy = {1,2,3,6,...,11,13,14,15}.
Then the sets Sy = 52\ S1 = {2,3,7,10} and S, = 51 specify contrast classes.

3.3 Subgroup Discovery (Step 3)

We find interesting subgroups in contrasting classes by a second subgroup dis-
covery instance, where the two classes are now the sets Sy and S,. The p-values
are calculated by @) and (@), followed by a test of significance.

Ezample 4. Given the contrast classes (sets) of bank customers Sy = {2, 3,7,10}
and S, = {1,5,6,8,9,11,...,15} we analyze the statistical significance of sub-
groups with respect to these contrast classes. The condition Ljubljana has after
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the financial crisis eight bank customers {2,3,4,7,9,10, 14,15}, from which four
are in Sy and three in S,. Hence, we obtain a p-value of p = 0.0699301. Next,
we test the p-value for significance to assure we did not obtain the subgroup by
chance alone. In the first subgroup discovery instance, we did not not obtain
Ljubljana as logical condition. When compared to the contrast class “before fi-
nancial crisis”, and assuming it passed the significance test, Ljubljana is found
to be statistically significant for the contrast class “after financial crisis”.

4 An Instance of Our Method: Gene Set Enrichment
from Enriched Gene Sets

Next, we will discuss how our proposed method can be applied in the area of gene
set enrichment. In gene-expression experiments objects are genes and features
are their annotations by, for example, GO and KEGG terms. Here, our aim is
to find enriched gene sets of a specific class (e.g., virus infected plants) in one
or more other classes (e.g., different time points). Next, we describe measures
used for transforming the expression values of several samples (e.g., different
individuals). into a feature value, called differential expression, and how the
constructed gene sets are analyzed for statistical significance.

Measures for Differential Expression. After preprocessing the data (in-
cluding microarray image analysis and normalization) the genes can be ranked
according to their gene expression.

Fold change (FC) is a metric for comparing the expression level of a gene g
between two distinct experimental conditions (classes) A and B [10]. It is the log
ratio of the average gene-expression levels with respect to two conditions [34].
However, FC values do not indicate the level of confidence in the designation of
genes as differently expressed or not.

The t-test statistic is a statistical test to determine the statistically significant
difference of gene g between two classes A and B [10]. Though, the probabil-
ity that a real effect can be identified by the t-test is low if the sample size is
small [34]. A Bayesian t-test is advantageous if few (that is, two or three) repli-
cates are used only, but no advantage is gained if more replicated are used [35].
In our experiments we used four replicates and therefore will use the simple
t-test.

Analysis of Gene Set’s Enrichment. For the enrichment analysis of gene
sets statistical tests like Fisher’s exact test [5] can be used. Alternatively, GSEA
and PAGE can be used. We next describe each of them.

Fisher’s Exact Test. In the gene set enrichment setting S; is the gene set analyzed
and S\ S; is the gene set consisting of all other genes. The two classes are
differential expression and non-differential expression. To divide the genes into
two classes a cut off is set in the gene ranking: genes in the upper part are
defined as differentially expressed and the genes in the lower part are defined as
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not differentially expressed genes. Then the p-values are calculated and tested
for significance.

Gene Set Enrichment Analysis (GSEA) [11)]. Given a list L = {g1,...,gn} of n
ranked genes, their expression levels ey, ..., e,, and a gene set S; , GSEA eval-
uates whether S}’s objects are randomly distributed throughout L or primarily
found at the top or bottom [36]. An enrichment score (ES) is calculated, which is
the maximum deviation from zero of the fraction of genes in the set S; weighted
by their correlation and the fraction of genes not in the set:

.| P
ES(S;) = max les” _ L
( t) ie{l,...,n} ngG:St, T QJ;St T (8)
j<i i<i
where n,, = Y |e;[P. If the enrichment score is small, then S; is randomly
g; €St

distributed across L. If it is high, then the genes of S; are concentrated in the
beginning or end of the list L. The exponent p controls the weight of each step.
ES(S;) reduces to the standard Kolmogorov-Smirnov statistic if p = 0:

_ 1
BS(S) = max | 2 s J; EEEAE 9)
i<i i<i
The significance of ES(S;) is then estimated by permutating the sample la-
bels, reordering the genes, and re-computing ES(S;). From 1,000 permutations
a histogram is created and the nominal p-value for S; is estimated by using the
positive (or the negative) portion if ES(S;) > 0 (or ES(S:) < 0, respectively).

Parametric Analysis of Gene Set Enrichment (PAGE). PAGE is a gene set
enrichment analysis method based on a parametric statistical analysis model [12].
For each gene set S; a Z-score is calculated, which is the fraction of mean
deviation to the standard deviation of the ranking score values:

Z(St) = (ps, — /‘);\/|St| (10)

where o is the standard deviation and p and pg, are the means of the score
values for all genes and for the genes in set S, respectively. The Z-score is high
if the deviation of the score values is small or if the means largely differ between
the gene set and all genes. As gene sets may vary in size, the fraction is scaled
by the square root of the set size. However, because of this scaling the Z-score is
also high if S; is very large. Assuming a normal distribution, a p-value for each
gene set is calculated. Finally, the p-values are corrected by a test of significance.

Using normal distributions for statistical inference makes PAGE computation-
ally lighter than GSEA which requires permutations. On the other hand, GSEA
makes no assumptions about the variability and can be used if the distribution
is not normal or unknown. Kim and Volsky [12] studied different data sets for
which PAGE generally detected a larger number of significant gene sets than
GSEA. Trajkovski et al. [32] used the sum of GSEA’s and PAGE’s p-values,
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weighted by percentages (e.g., one third of GSEA’s and two third of PAGE’s
or half of both). Hence, gene sets with small p-values for GSEA and PAGE are
output as enriched gene sets.

In the second gene set enrichment analysis instance, we want to analyze sub-
groups with respect to the constructed contrast classes, and not with respect to
to the differential expression. Now, we have two classes, but not a ranking and
thus GSEA and PAGE cannot be used for analyzing the constructed gene sets.
Statistical test for categorical analysis can still be used. We use Fisher’s exact
test to compare the two classes Sy and S, against each other.

5 Experiments

For our experiments we use a Solanum tuberosum (potato) time course gene-
expression data set for virus infected and non-infected plants. The data set
consists of three time points: one, three and six days after virus infection when
the viral infected leaves as well as leaves from non-infected plants were collected.
The aim is to find enriched gene sets which are common to virus infected samples
compared to non-infected samples (classes in subgroup discovery of Step 1), and
at the same time specific for one or all time points (classes in subgroup discovery
of Step 3).

Test Setting. Recently, S. tuberosum’s genome has been completely
sequenced [37], but only few GO or KEGG annotations of S. tuberosum genes
exist. However, plenty GO and KEGG annotations exist for the well studied
model plant Arabidopsis thaliana. We use homologs between S. tuberosum and
A. thaliana to make gene set enrichment analysis for S. tuberosum possible. There
are more than 26.000 homologs provided by the POCI consortium [38] for more
than 42.000 S. tuberosum genes. We consider only the best (with respect to the
e-value) in case there are several homologs. Gene set enrichment analysis is per-
formed based on expression values in the dataset, the gene IDs of the A. thaliana
homologs, and GO and KEGG annotations for A. thaliana.

In parallel, we built potato ontologies independently using Blast2GOH to ob-
tain homologue sequences in NCBI (BLASTX with high scoring segment pair
(HSP) length 33 and e-value le — 15) and their GO annotations (GO weight 5,
cutoff 55 and e-value 1le — 15). In this case, enrichment analysis is performed us-
ing the gene IDs and expression values of S. tuberosum, and the GO and KEGG
annotations obtained with Blast2GO.

For both approaches we carried out gene set enrichment experiments in an
OrangedWd workflow [39]. We restricted gene sets to contain at minimum ten
genes, the gene set description to contain at maximum four terms, and the p-
value to be 0.05 or smaller. For analyzing the constructed gene sets in Step 1
we used Fisher’s exact test, GSEA, PAGE and the combined GSEA and PAGE
(equal percentages).

4http://www.blast2go.org/
® http://orangedws.ijs.si/
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We consider two types of contrast classes for gene set enrichment (Step 2):
genes that are common to all classes compared to the genes occurring in some
gene sets, but not in all (obtained by (@) and genes that are specific for one class
compared to the genes of the gene sets of the other classes (obtained by ().
Fisher’s exact test is used to analyze gene set enrichment in Step 3 for both
approaches.

Results. Several subgroup descriptions that are known to relate to potato’s
response to virus infection were found. That is, our method reveals molecular
functions, biological processes and pathways that have a central role in it. We
are interested in assisting the biologist in generating new research hypotheses.
Therefore, we evaluate our results by counting the number of gene set descrip-
tions which were unexpected to a plant biologist to relate to potato’s response
to virus infection. In this context, “unexpected” means that the knowledge was
contained in GO, KEGG or GoMapMan, but it was not shown previously to
be related to experimental conditions studied (here, related to the response of
potato to viral infection).

The amount of enriched gene sets found for the A. thaliana homologs approach
are shown in Table Bl and for the GO ontologies for potato genes approach in
Table @l For both approaches, both subgroup discoveries (Step 1 and 3) found
few rules if any at all for the first and third day, whereas for the sixth day several
rules are found. This matches well with the biological knowledge about potato’s
respond on virus infection: In the first days the potato activates the defense
response, but the full effect can be witnessed only on day six.

The quantities of unexpected enriched gene sets found for the A. thaliana
homologs approach are shown in Table Bl and for the GO ontologies for potato
genes approach in Table [fl Few enriched gene sets are found in the first stage
when using GSEA or the combination of GSEA and PAGE for analyzing the
gene sets of the first stage. Hence, few enriched gene sets (if any at all) are found
in Step 3. When using either Fisher’s exact test or PAGE instead, more en-
riched gene sets are found, from which several are of interest to a plant biologist,
suggesting one of these methods should be preferred.

The subgroups discovered in Step 3 revealed some enriched gene sets for the
intersection, but none of them was more specific in comparison to the enriched
gene sets found in Step 1 or even unexpected for the biologist. This is most
likely due to the characteristic of a defense response: The gene expression of the
first days (when activating the defense response) differs from the gene expression
on day six (when the defense response is active) and therefore the intersection
reveals only few enriched gene sets that are active at all time points.

For the set differences we obtain new and more specific gene sets. Some of them
we did not find in the first stage, some other are more specific than in Step 1, both
of interest for biologists. Hence, this shows that our proposed method reveals
new enriched gene sets if the set theoretic functions are selected appropriately
for the experiment and user’s objective.
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Table 3. Quantities of enriched gene sets found for the A. thaliana homologs approach
for Fisher (F), GSEA (G), PAGE (P), and the combined approach of GSEA and PAGE
with equal percentages (G+P)

G P G+P

— first day 6 4 5 1
& third day 7T 4 16 5
9 gixth day 14 5 12 5
o, first day set difference 9 0 7 1
e third day set difference 7 0 7 6
& sixth day set difference 21 5 16 6

intersection 4 4 16 4

Table 4. Quantities of enriched gene sets found for the GO ontologies for potato genes
approach for Fisher (F), GSEA (G), PAGE (P), and the combined approach of GSEA
and PAGE with equal percentages (G+P)

F G P G+P

— first day 1 0 4 0
& third day 1 1 5 0
9 gixth day 25 21 33 16
- first day set difference 15 0 7 0
e third day set difference 5 1 10 0
& sixth day set difference 42 2 34 3

intersection 0 0 1 0

Table 5. Quantities of unexpected enriched gene sets found for the A. thaliana ho-
mologs approach for Fisher (F), GSEA (G), PAGE (P), and the combined approach of
GSEA and PAGE with equal percentages (G+P). In Step 3 only unexpected enriched
gene sets are counted which were new or more specific in comparison to Step 1.

P G+P
— first day 2 0
& third day 4
9 gixth day 14

- first day set difference 1
o, third day set difference 1
sixth day set difference 11
intersection 0

Ste

O, OO U N D
—

O = GO

O OO Ul
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Table 6. Quantities of unexpected enriched gene sets found for the GO ontologies
approach for Fisher (F), GSEA (G), PAGE (P), and the combined approach of GSEA
and PAGE with equal percentages (G+P). In Step 3 only unexpected enriched gene
sets are counted which were new or more specific in comparison to Step 1.

G P G+P

— first day 0 0 1 0
& third day 11 2 0
9 gixth day 24 21 28 16
- first day set difference 4 0 0 0
A, third day set difference 0 0 2 0
% sixth day set difference 15 0 13 0

intersection 0 0 0 0

6 Conclusion

We addressed the problem of subgroup discovery from interesting subgroups.
After reviewing subgroup discovery we introduced the construction of contrast
classes on the discovered subgroups. Subgroup discovery then finds interesting
subgroups in those contrast classes. Thereby, we allow the user to specify contrast
classes she is interested in, for example, she can choose to contrast several time
points.

We showed how our approach works on an example of bank customers and
applied it to a gene set enrichment application, a time-series data set for virus
infected potato plants. The results indicate that our proposed approach reveals
new research hypotheses for biologists.

Further experimental evaluation is planned, including experiments on other
data sets and with more complex set theoretic functions. A careful interpretation
of our results is needed as the subgroup discovery of the first step reduced the
number of genes (objects) and hence Fisher was applied (in the third step) on a
relatively small number of genes. Furthermore, gene set descriptions were often
biologically redundant which we will address in future, for example, by clustering
or filtering the obtained gene sets.

We will carry out a more extensive evaluation by analyzing the quality of
gene sets descriptions which are unknown to relate to potato’s virus response
and visualize the gene sets and their relations with the enrichment map tool.
We will evaluate quantity and quality of the genes of the unknown gene sets
with Biomine, a search engine for visualization and discovery of non-trivial con-
nections between biological entities, such as genes. Finally, some genes will be
selected for wet-lab experiments, which may further the understanding of the
biological mechanisms of virus response, particularly that of potatoes.
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