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Abstract. In literature mining, the identification of bridging concepts that link 
two diverse domains has been shown to be a promising approach for finding 
bisociations as distinct, yet unexplored cross-domain connections which could 
lead to new scientific discoveries. This chapter introduces the system CrossBee 
(on-line Cross-Context Bisociation Explorer) which implements a methodology 
that supports the search for hidden links connecting two different domains. The 
methodology is based on an ensemble of specially tailored text mining 
heuristics which assign the candidate bridging concepts a bisociation score. 
Using this score, the user of the system can primarily explore only the most 
promising concepts with high bisociation scores. Besides improved bridging 
concept identification and ranking, CrossBee also provides various content 
presentations which further speed up the process of bisociation hypotheses 
examination. These presentations include side-by-side document inspection, 
emphasizing of interesting text fragments, and uncovering similar documents. 
The methodology is evaluated on two problems: the standard migraine-
magnesium problem well-known in literature mining, and a more recent autism-
calcineurin literature mining problem. 

Keywords: Bisociative Literature Mining, Term Ranking, Ensemble Heuristics, 
Bisociation Score. 

1 Introduction 

One of the prevailing trends in research and development is professional over-
specialization, resulting in islands of deep, but relatively isolated knowledge. On the 
other hand, many complex problems require knowledge from different domains to be 
combined. Due to huge amounts of information available on-line it has become 
difficult to follow even specific literature limited to a single specialization. Searching 
for cross-domain scientific connections is even harder, as also scientific literature all 
too often remains closed and cited only in professional sub-communities. As a 
promising solution to this problem, literature mining offers methods and software 
tools which support the experts in their knowledge discovery process, especially in 
searching for yet unexplored connections between different domains. The notion of 
such connections is closely related to bisociations as defined by Koestler [8] and 
further refined by Dubitzky et al. [3]. 
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A specific type of knowledge discovery problems, addressed in this chapter, is 
closed discovery introduced by Weeber et al., [21] which has been explored 
previously in literature mining. In closed discovery we start with a hypothesis that 
two particular concepts usually investigated in separate literatures are connected. We 
search for supportive evidence for this by investigating available literatures about 
these two concepts. As suggested already by Swanson [16], this can be done by 
identifying interesting bridging terms (b-terms) appearing in both literatures and 
bearing a potential of indirectly connecting the two concepts under investigation. 
Although being time-consuming, searching for terms appearing in both literatures is 
not the main problem. The main issue which also motivated the research presented in 
this chapter is the fact that a list of terms shared by the two literatures can be very 
long. Estimating which of the terms have higher potential for interesting discoveries is 
an interesting research question, important for practical applications. 

Narrowing the list of candidate bridging terms can be done in different ways. For 
example, in the RaJoLink methodology presented by Petrič et al. [11] the list of 
interesting terms is effectively filtered according to MeSH (Medical Subject 
Headings) categories; in the next step the expert checks which of the remaining terms 
seem to be promising. In spite of MeSH filtering, the list of interesting terms can still 
be long and estimating the potential of a particular bridging term candidate to lead to 
useful bisociations is based on the expert’s knowledge and intuition. The expert’s 
involvement assures that the search is guided towards promising bridging concepts 
which are meaningful and interesting for the expert [11]. Therefore, we believe that 
experts’ involvement should remain an important part of the process. However, in 
order to ensure that the expert’s inspection of the list of candidate bridging terms is 
made easier, our main motivation was to automatically estimate the bisociation 
potential of term candidates and rank the terms. 

In the methodology proposed in this work, we estimate the bisociation potential of 
a term by calculating its bisociation score. To this end, different heuristics were 
developed (see [7]), which are summarized in this chapter. As the experiments 
described in this chapter show the choice of the right heuristic for a particular domain 
is far from being trivial. A solution, proposed in this work, is to combine multiple 
heuristics into an ensemble heuristic which is less sensitive to the variability of 
domain characteristics. 

Ensemble learning is a known approach used in machine learning for combining 
predictions of multiple models into one final prediction. It is well known [2] that the 
resulting ensemble model is more accurate than any of the individual models used to 
build it as long as the models are similarly accurate, are better than random, and their 
errors are uncorrelated. There is a wide variety of known and well tested ensemble 
techniques, e.g., Bagging, Boosting, Majority voting, Random forest, Naïve bayes, 
etc. (see [14]). However, these approaches are usually used for the problem of 
classification while the core problem presented in this work is ranking. Nevertheless, 
as information retrieval and especially ranking of web pages by search engines are 
becoming more and more popular also the ensemble ranking is gaining research 
attention, e.g., [4, 6]. 

To evaluate the proposed methodology, implemented in the on-line CrossBee 
(Cross-Context Bisociation Explorer) system, we applied it to two problems. The first 
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one is the well-known migraine-magnesium example [16, 17] which represents a gold 
standard in literature mining and served as a testing dataset also in more recent 
studies [20]. To prevent overfitting the given literature pair and to show the 
performance in a more complex case, we performed the evaluation of the proposed 
methodology in the autism-calcineurin problem introduced in [19, 12, 13]. 

This chapter is structured as follows. In Section 2 the problem of ranking potential 
b-terms according to their bisociation potential is defined in detail. Section 3 
describes the newly introduced ranking methodology and deals with heuristics, the 
main emphasis being on the proposed ensemble heuristic. In Section 4, the proposed 
methodology is evaluated through the migraine-magnesium and autism-calcineurin 
experiments. Section 5 presents a new on-line software tool CrossBee which 
implements the methodology and provides additional functionalities, making expert’s 
knowledge discovery process easier and more efficient. The chapter concludes with a 
discussion and plans for further work. 

2 Problem Description 

The problem addressed in this work is to help the domain expert to effectively find 
bisociations between two domains presented by two sets of text documents. The main 
inputs to this task are two sets of documents – one for each of the examined domains. 
The top-level problem is split, mainly for the reason of evaluation, in two 
subproblems as follows: 

─ Develop a methodology for identifying bisociations which (among various 
patterns of bisociation, identified by Dubitzky et al. in [3]) identifies and ranks 
the key bridging concepts (also named bridging terms or b-terms) that provide 
the expert with clues about the potential bisociations. The evaluation of this 
subproblem is based on defining quality values of different solutions which can 
then be compared to each other. In this way one is able to evaluate the 
improvements made over the previously existing solutions. 

─ Create a system which can support the expert not only by providing results of the 
b-term identification methodology but also by adding multiple layers of 
information to plain data (documents). The added information can be used for 
human exploration and judgment whether the connections suggested by b-terms are 
indeed bisociations. The evaluation of this subproblem is slightly less clear, 
however, by setting an experiment and observing the effectiveness of the expert 
using the system, one can approximately estimate the quality of different solutions. 

3 Methodology for Bridging Concept Identification and 
Ranking 

This section describes the methodology for identifying and ranking of terms 
according to their potential for being b-terms. The basics of our methodology was 
developed with the purpose of using potential bridging concepts in the construction of 
information networks from text documents (see [7] for details), as well as for b-term 
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identification and ranking in our new CrossBee system described in more detail in 
Section 5 below. 

The input to the procedure for b-term identification and ranking consists of two 
sets of documents – one for each domain. Input documents can be either in the 
standard form of running text, e.g., titles and abstracts of scientific documents or in 
the form of partly preprocessed text, e.g., text with already recognized named entities. 
The output of the procedure is a ranked list of all identified interesting terms. The 
output list of terms is ordered according to terms’ bisociation score which is the 
estimate of a potential that the evaluated term is indeed a b-term which can trigger a 
bisociation. Our solution to the presented problem of b-term identification and 
ranking is based on the following three procedural steps: 

1. Preprocess input documents: Employ state of the art approaches for text 
preprocessing to extract the most of useful information present in raw texts. 
Documents are transformed into the bag-of-words [5] feature vector 
representation, where features represent the terms or concepts. The extracted 
concepts are identified as candidate b-terms and ranked in the next step. More 
details on text preprocessing are presented in [7]. 

2. Score candidate b-terms: Take the list of candidate b-terms generated in the 
document preprocessing step and evaluate their b-term potential by calculating 
the bisociation score for each term from the list. This is performed in two steps: 

a. Employ the base heuristics: Based on the feature vector representation and 
some other properties of documents and terms, use specially designed base 
heuristic functions to score the terms. The output of a base heuristic (the 
term’s score) evaluates the term’s potential of being a b-term (see [7] for 
details). 

b. Employ the ensemble heuristic: Scores of base heuristics are integrated into 
one ensemble heuristic score which represents the final output of the 
scoring candidate b-terms step and is used as the estimate of the term’s 
bisociation potential. The exact procedure for calculating the ensemble 
bisociation score is explained in more detail below in this section. 

3. Output the ranked list of b-terms: Order the list of terms according to the 
descending order of the calculated bisociation score and return the ranked list of 
terms with their bisociation scores. This step is elementary and does not need to 
be presented in detail. 

The rest of this section deals with the second step sketched above. 

3.1 Base Heuristics 

We use the term “heuristic” or “heuristic function” to name a function that 
numerically evaluates term’s quality in the view of its bisociation potential. Ranking 
all the terms using the scores calculated by an ideal heuristic should result in finding 
all the b-terms together at the top of such a sorted list. This ideal scenario is generally 
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not realistic; however, ranking by heuristic scores (either ascending or descending) 
should still increase the proportion of b-terms at the top of the term list.1 

In [7] we defined a heuristic as a function with two inputs: (a) a set of documents 
labeled with two domain labels and (b) a term ݐ appearing in these documents; and 
one output, i.e., a score that estimates the term’s bisociation potential. We here list the 
heuristics with short descriptions only, while the detailed heuristics definition along 
with their equations are provided in [7]. 

BoW Heuristics 
The heuristics in the group of BoW (bag-of-words) work in a similar way – they 
manipulate the data present in document vectors to derive the terms’ bisociation 
score. They can be divided into three subgroups: 

Term frequency based 
 ,ሺ࢚ሻ: dataset term frequency࢓࢘ࢋࢀࢗࢋ࢘ࢌ (1)
 ,ሺ࢚ሻ: dataset document frequencyࢉ࢕ࡰࢗࢋ࢘ࢌ (2)
 ,ሺ࢚ሻ: dataset term to document frequency ratio࢕࢏࢚ࢇࡾࢗࢋ࢘ࢌ (3)
 ,ሺ࢚ሻ: minimum of domain term frequencies ratio࢔࢏ࡹ࢕࢏࢚ࢇࡾ࢔࢓࢕ࡰࢗࢋ࢘ࢌ (4)
 ,ሺ࢚ሻ: product of domain term frequenciesࢊ࢕࢘ࡼ࢔࢓࢕ࡰࢗࢋ࢘ࢌ (5)
 ሺ࢚ሻ: product of domain term frequencies relative to a࢒ࢋࡾࢊ࢕࢘ࡼ࢔࢓࢕ࡰࢗࢋ࢘ࢌ (6)

dataset term frequency. 

Tf-idf based 
 ,ሺ࢚ሻ: sum of document tf-idf weights of a term in a dataset࢓࢛ࡿࢌࢊ࢏ࢌ࢚ (7)
 ,ሺ࢚ሻ: average of document tf-idf weight of a term in a datasetࢍ࢜࡭ࢌࢊ࢏ࢌ࢚ (8)
 ,ሺ࢚ሻ: product of domain centroid tf-idf weights of a termࢊ࢕࢘ࡼ࢔࢓࢕ࡰࢌࢊ࢏ࢌ࢚ (9)
(10) ࢚  .ሺ࢚ሻ: sum of domain centroid tf-idf weights of a term࢓࢛ࡿ࢔࢓࢕ࡰࢌࢊ࢏ࢌ

Similarity based 
(11) ࢙  ሺ࢚ሻ: similarity of a term to an average dataset document – the࢓࢘ࢋࢀࢍ࢜࡭࢓࢏

distance of a term to the dataset centroid, 
(12) ࢙  ,ሺ࢚ሻ: product of similarities of a term to domain centroidsࢊ࢕࢘ࡼ࢔࢓࢕ࡰ࢓࢏
(13) ࢙  .ሺ࢚ሻ: min of similarities of a term to domain centroids࢔࢏ࡹ࢕࢏࢚ࢇࡾ࢔࢓࢕ࡰ࢓࢏

Outlier Heuristics 
The outlier heuristics focus on outlier documents since they frequently embody new 
information that is often hard to explain in the context of existing knowledge. We 
concentrate on a specific type of outliers, i.e., domain outliers, which are the 
documents that tend to be more similar to the documents of the opposite domain than 
to those of their own domain. In the definition of outlier heuristics we used three 
outlier sets of documents corresponding to the three different underlying document  
 

                                                           
1  Note that regardless of the choice, all the heuristics give score 0 to all the terms which appear 

only in one of the two domains, as these terms have zero potential for bisociation between the 
two domains. 
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classification algorithms used for outlier detection: Centroid Similarity classifier 
(CS), Random Forest classifier (RF), and Support Vector Machine classifier (SVM). 
Research focused in detecting the outlier documents was performed in [15] and two of 
the sets, namely RF and SVM were provided by that research. The detection of CS 
outlier documents was implemented directly in CrossBee using the principles 
described in [15] but using the Centroid Similarity classifier. The resulting heuristics 
are: 

Based on absolute term frequency in outlier sets 
 ,ሺ࢚ሻ: term frequency in CS outlier setࡿ࡯ࢗࢋ࢘ࡲ࢚࢛࢕ (14)
 ,ሺ࢚ሻ: term frequency in RF outlier setࡲࡾࢗࢋ࢘ࡲ࢚࢛࢕ (15)
 ,ሺ࢚ሻ: term frequency in SVM outlier setࡹࢂࡿࢗࢋ࢘ࡲ࢚࢛࢕ (16)
 .ሺ࢚ሻ: sum of term frequencies in all three outlier sets࢓࢛ࡿࢗࢋ࢘ࡲ࢚࢛࢕ (17)

Based on relative term frequency in outlier sets 
 ,ሺ࢚ሻ: relative frequency in CS outlier setࡿ࡯࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (18)
 ,ሺ࢚ሻ: relative frequency in RF outlier setࡲࡾ࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (19)
 ,ሺ࢚ሻ: relative frequency in SVM outlier setࡹࢂࡿ࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (20)
 .ሺ࢚ሻ: sum of relative term frequencies in all three outlier sets࢓࢛ࡿ࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (21)

Baseline Heuristics 
We defined two heuristics which are supplementary and serve as baselines: 

(22) ࢘  ,(ሺ࢚ሻ: random number in the interval [0,1࢓࢕ࢊ࢔ࢇ
 ሺ࢚ሻ: a better baseline heuristic which separates two classes࢔࢓࢕ࡰ࢒࢒࡭࢔ࡵ࢘ࢇࢋ࢖࢖ࢇ (23)

of terms, the ones that appear in both domains and the ones that appear in one 
domain only. The terms that appear in one domain only have a strictly lower 
heuristic score that those appearing in both. The inner scores of terms inside 
these two classes are still random numbers. 

3.2 Ensemble Heuristic 

An ensemble heuristic is a heuristic which combines results of multiple base 
heuristics into one aggregated result. This work extends the methodology presented in 
our previous work [7] with an ensemble heuristic due to identified problematic aspect 
of using a single heuristic for final ranking. The problem arises from the fact that the 
process of selection of a single heuristic is prone to overfitting the training dataset 
which results in heuristics’ performance instability across other datasets. As long as 
our experiments were performed only on a single dataset, i.e., the migraine-
magnesium dataset, the results of the selected single heuristic, i.e., the 
(21)outFreqRelSum which proved to be the best heuristic on that dataset were stable, 
even if we used various modifications of data preprocessing, removed random 
documents from the set, randomly deleted words from documents or did some other 
data perturbations. 
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One possible approach to designing an ensemble heuristic from a set of base 
heuristics consists of two steps. In the first step the task is to select member heuristics 
for the ensemble heuristic using standard data mining approaches like feature selection. 
In the second step equation discovery is used to obtain an optimal combination of 
member heuristics. The advantage of such approach is that the ensemble creation does 
not require manual intervention. Therefore, we performed several experiments with 
such approach; however, the results were even more overfitted to the training domain 
used in our study. Consequently, we decided to manually – based on experiences and 
experimentation – select appropriate base heuristics and construct an ensemble 
heuristic. As the presentation of numerous experiments which support our design 
decisions is beyond the scope of this chapter, we only describe the final solution, 
presented in the following subsections. 

Ensemble Construction 
The ensemble heuristic results in the ensemble score, constructed from two parts: the 
ensemble voting score and the ensemble position score which are summed together to 
give the final ensemble score. 

─ The ensemble voting score (ݏ௧௩௢௧௘) of a given term ݐ is an integer which denotes 
how many base heuristics voted for the term. Each selected base heuristic ݄௜ gives one vote ሺݏ௧ೕ,௛೔௩௢௧௘ ൌ 1ሻ to each term which is in the first third2 in its ranked 
list of terms and zero votes to all the other terms ሺݏ௧ೕ,௛೔௩௢௧௘ ൌ 0ሻ. Formally, the 

ensemble voting score of a term ݐ௝ that is at position ݌௝ in the ranked list of ݊ terms is computed as a sum of individual heuristics’ voting scores: ݏ௧ೕ௩௢௧௘ ൌ  ෍ ௧ೕ,௛೔௩௢௧௘௞௜ୀଵݏ ൌ ෍ ൜1: ݌௝ ൏ ݊/3,0: ௞௜ୀଵ݁ݏ݅ݓݎ݄݁ݐ݋ . 
Therefore, each term can get a score ݏ௧ೕ௩௢௧௘ א ሼ0, 1, 2, … , ݇ሽ, where ݇ is the number 

of base heuristics used in the ensemble. 
─ The ensemble position score (ݏ௧௣௢௦) is calculated as an average of position scores 

of individual base heuristics. For each heuristic ݄௜, the term’s position score ݏ௧ೕ,௛೔௣௢௦  is calculated as ൫݊ െ ௝൯݌ ݊⁄ , which results in position scores being in the 

interval ሾ0,1ሻ. For an ensemble of ݇ heuristics, the ensemble position score is 
computed as an average of individual heuristics’ position scores: ݏ௧ೕ௣௢௦ ൌ 1݇ ෍ ௧ೕ,௛೔௣௢௦௞௜ୀଵݏ ൌ 1݇ ෍ ሺ݊ െ p௝ሻ݊௞௜ୀଵ . 

─ The final ensemble score is computed as: ݏ௧ ൌ ௧௩௢௧௘ݏ  ൅  .௧௣௢௦ݏ

Using the proposed construction we make sure that the integer part of the ensemble 
score always presents the ensemble vote score, while the ensemble score’s fractional 
part always presents the ensemble position score. An ensemble position score is 

                                                           
2 The voting threshold is one third (1/3) of the terms which appear in both domains (not one 

third of all the terms). It was set empirically based on the evaluation of the ensemble heuristic 
on the migraine-magnesium domain. 
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strictly lower than 1, therefore, a term with a lower ensemble voting score can never 
have a higher final ensemble score than a term with a higher ensemble voting score. 

Note that at the first sight our method of constructing the ensemble score looks 
rather intricate. An obvious way to construct an ensemble score of a term could be 
simply to sum together individual base heuristics scores; however, the calculation of 
the ensemble score by our method is well justified by extensive experimental results 
on the migraine-magnesium dataset. 

The described method for ensemble score calculation is illustrated in Example 1. In 
the upper left table the base heuristics scores are shown for each term. The next table 
presents terms ranked according to the base heuristics scores. From this table, the 
voting and position scores are calculated for every term based on its position, as 
shown in the upper right table. For example, all terms at position 2, i.e., t1, t6, and t6, 
get voting score 1 and position score 4/6. The central table below shows the exact 
equation how these individual base heuristics’ voting and position scores are 
combined for each term. The table at the bottom displays the list of terms ranked by 
the calculated ensemble scores. 

 

 Base 
scores 

  Base
ranking 

Voting
score 

Position 
score 

Term h1 h2 h3  Pos. h1 h2 h3 Pos. ݏ௧ೕ,௛೔௩௢௧௘ ௧ೕ,௛೔௣௢௦ݏ  
t1 0.93 0.46 0.33  1 t6 t4 t3 1 1 (6-1)/6=5/6 
t2 0.26 0.15 0.10  2 t1 t6 t6 2 1 (6-2)/6=4/6 
t3 0.51 0.22 0.79  3 t3 t1 t4 3 0 (6-3)/6=3/6 
t4 0.45 0.84 0.73  4 t4 t3 t1 4 0 (6-4)/6=2/6 
t5 0.41 0.15 0.11  5 t5 t2 t5 5 0 (6-5)/6=1/6 
t6 0.99 0.64 0.74  6 t2 t5 t2 6 0 (6-6)/6=0/6 
Base heuristic scores  Terms ranked by

base heuristics 
Voting and position scores based 

on positions in the ranked lists 

 
   Voting score sum + Pos. score average    = Ensemble score 

௧ೕ,௛భ௩௢௧௘ݏ)  ௧ೕ,௛మ௩௢௧௘ݏ + ௧ೕ,௛య௩௢௧௘ݏ + ) + ( ௧ೕ,௛భ௣௢௦ݏ
௧ೕ,௛మ௣௢௦ݏ+

௧ೕ,௛య௣௢௦ݏ+
)/k = ௧ೕ௩௢௧௘ݏ + ௧ೕ௣௢௦ݏ

= ) = ௧భݏ  ௧ೕݏ 1 + 0 + 0 ) + ( 4/6 + 3/6 + 2/6 )/3 = 1 + 9/18 = ) = ௧మݏ 1.50 0 + 0 + 0 ) + ( 0/6 + 1/6 + 0/6 )/3 = 0 + 1/18 = ) = ௧యݏ 0.06 0 + 0 + 1 ) + ( 3/6 + 2/6 + 5/6 )/3 = 1 +10/18= ) = ௧రݏ 1.56 0 + 1 + 0 ) + ( 2/6 + 5/6 + 3/6 )/3 = 1 +10/18= ) = ௧ఱݏ 1.56 0 + 0 + 0 ) + ( 1/6 + 0/6 + 1/6 )/3 = 0 + 2/18 = ) = ௧లݏ 0.11 1 + 1 + 1 ) + ( 5/6 + 4/6 + 4/6 )/3 = 3 +13/18= 3.72 
Calculation of ensemble heuristic score 

 
t6 (3.72), [t2, t3] (1.56), t1 (1.50), t5 (0.11), t2 (0.06) 

Ranked list of terms produced by the ensemble 

Example 1. Ensemble construction illustrated on a simple example with six terms and three 
heuristics. The last table states the result – the ranked list of terms. 
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Selecting Base Heuristics for the Ensemble 
Another important decision when constructing the ensemble is the selection of base 
heuristics. Table 1 shows the results that influenced our decision which base 
heuristics to select. The measure used for heuristic performance comparison is the 
AUC (area under ROC) presented and discussed already in [7]. Our final set of 
heuristics included in the ensemble is the following: 
 

─ (19)outFreqRelRF ─ (18)outFreqRelCS ─ (10)tfidfDomnSum 
─ (20)outFreqRelSVM ─ (17)outFreqSum ─ (3)freqRatio 

Table 1. Comparison of the results (presented and discussed already in [7]) for the base 
heuristics ordered by the quality – AUC. The first column states the name of the heuristic; the 
second displays the AUC. The heuristics chosen for the ensemble are shown in italics. 

Heuristic AUC  (16)outFreqSVM 94,70% (5)freqDomnProd 93,42%
(21)outFreqRelSum 95,33% (14)outFreqCS 94,67% (3)freqRatio 93,35%
(19)outFreqRelRF 95,24% (4)freqDomnRatioMin 94,36% (23)appearInAllDomn 93,31%
(20)outFreqRelSVM 95,06% (10)tfidfDomnSum 93,85% (12)simDomnProd 93,27%
(18)outFreqRelCS 94,96% (6)freqDomnProdRel 93,71% (1)freqTerm 93,20%
(17)outFreqSum 94,96% (13)simDomnRatioMin 93,58% (2)freqDoc 93,19%
(8)tfidfAvg 94,87% (7)tfidfSum 93,58% (11)simAvgTerm 92,71%

(15)outFreqRF 94,73% (9)tfidfDomnProd 93,47% (22)random 50,00%

 
Our initial idea was to choose one (possibly the best performing) heuristic form 

each set. The rationale behind this idea was to include the top performing heuristics 
that are as independent as possible. In such a way, the combined information provided 
by the constructed ensemble was expected to be higher than the information 
contributed by the individual heuristics. However, certain additional decisions were 
made to maximize ensemble performance on the migraine-magnesium dataset as well 
as due to trying not to overfit this dataset: 

─ The first observation (see Table 1) is that all outlier heuristics based on relative 
term frequency, i.e., (19)outFreqRelRF, (20)outFreqRelSVM, and, 
(18)outFreqRelCS perform very well. Actually the only heuristic that is better is 
the (21)outFreqRelSum which is the combination of all these three. As we want 
to emphasize the power of this best performing set, we include all three 
heuristics into the ensemble instead of only (21)outFreqRelSum. So they get more 
votes and a chance to over-vote some other – not so well performing – 
heuristics. 

─ A representative heuristic of the second outlier heuristic set, based on absolute 
term frequency, is (17)outFreqSum which is not only the best performing of this 
set, but also integrates the votes of other three heuristics from this set and is 
therefore the best candidate. 

─ Representatives of BoW heuristics based on frequency and tf-idf were chosen in 
a way which tries to avoid overfitting the migraine-magnesium dataset. We 
chose (3)freqRatio and (10)tfidfDomnSum with the reasoning that they are not 
among the best performing on the training dataset (but we expect them to 
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perform better on other datasets) and will therefore act as a counterweight to 
prevent overfitting. 

─ We completely discarded all the heuristics of the type similarity, as their 
performance is in the range of the baseline heuristic (23)appearInAllDomn. 

Table 2. B-terms for the autism-calcineurin dataset identified by Petrič et al. [11] 

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia 
3 calmodulin 8 ulcerative colitis 13 bombesin 
4 radiation 9 asbestos   
5 working memory 10 deletion syndrome   

4 Evaluation of the Methodology 

This section presents the evaluation of the presented base and ensemble heuristics. 
The key result of this evaluation is the assessment how well the proposed ensemble 
heuristic performs when ranking the terms from the perspective of the domain expert 
who acts as the end-user of the CrossBee system. From the expert’s point of view, the 
ROC curves and AUC statistics (as used and described in [7]) are not the most crucial 
information about the quality of a single heuristic – even though, in general, a better 
ROC curve reflects a better heuristic. Usually the user is interested in questions like: 
(a) how many b-terms are likely to be found among the first n terms in a ranked list 
(where n is a selected number of terms the expert is willing to inspect, e.g., 5, 20 or 
100), or (b) how much one can trust a heuristic if a new dataset is explored. This 
section provides the evaluation of the heuristics in terms of their performance on a 
training dataset as well as on a new experimental dataset. 

4.1 Experimental Setting 

The experimental setting is related to the one in [7] and [15]. The evaluation was 
performed based on two datasets (or two domain pairs, since each dataset consists of 
two domains), which can be viewed as a training and test dataset. The training dataset is 
the dataset we employed when developing the methodology, i.e., for creating a set of 
base heuristics in [7], as well as for creating the ensemble heuristic presented in this 
work. The results of the evaluation on the training dataset are important, but needs to be 
interpreted carefully due to a danger of overfitting the dataset. The test dataset is used 
for the evaluation of the methodology in a broader (non-dataset biased) scenario. 

As the training data we used the well-researched migraine-magnesium domain pair 
which was introduced by Swanson in [16] and was later explored in [17, 18, 20, 11] 
and others. In the literature-based discovery process Swanson managed to find more 
than 60 pairs of articles connecting the migraine domain with the magnesium 
deficiency via 43 bridging concepts (b-terms). Using the developed methodology we 
tried to rank these 43 b-terms (listed in Table 1 in [7]) as high as possible among other 
terms which are not marked as b-terms. Since Swanson does not state that this is an 
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exclusive list, there may be also other important bridging terms which he did not list. 
Consequently, there are two obvious reasons for our results not showing 43 b-terms as 
the first 43 terms on the ensemble’s ranked list. The first reason is a non-optimal 
ensemble performance and the second reason is that some other terms – not listed by 
Swanson – may be equally important for bridging the two domains. 

For the training dataset we used the autism-calcineurin domain pair which was 
introduced and initially researched by Urbančič et al. [19] and later also in [11, 12]. 
Like Swanson, Petrič et al. [11] also provide b-terms, 13 in total (listed in Table 2), 
whose importance in connecting autism to calcineurin (a protein phosphatase) is 
discussed and confirmed by the domain expert. In the view of searching for b-terms, 
this dataset has a relatively different dimensionality compared to the migraine-
magnesium dataset. On the one hand it has only approximately one fourth of the 
b-terms defined, while on the other hand, it contains more than 40 times as many 
potential b-term candidates. Therefore, the ratio between b-terms and candidate terms 
is substantially lower – approximately by factor 160, i.e., the chance to find a b-term 
among the candidate terms if picking it at random is 160 times lower in the autism-
calcineurin dataset then in the magnesium-migraine dataset. Consequently, finding the 
actual b-terms in the autism-calcineurin dataset is much more difficult compared to 
the migraine-magnesium dataset. 

Both datasets, retrieved from the PubMed database using the keyword query, are 
formed of titles or abstracts of scientific papers returned by the query; however, we used 
an additional filtering condition for selecting the migraine-magnesium dataset. We 
needed to select only the articles published before the year 1988 as this was the year 
when Swanson published his research about this dataset and consequently making an 
explicit connection between the migraine and magnesium domains. 

Table 3 states some properties for comparing the two datasets used in the evaluation. 
One of the major differences between the datasets is the length of an average  
document since only the titles were used in the migraine-magnesium dataset, while the 
full abstracts were used in the autism-calcineurin case – due to matching the properties 
of experiments of original research [16, 19] on these two datasets. Consequently,  
also the number of distinct terms and b-term candidates is much larger in  
 

Table 3. Comparison of statistical properties of the two datasets used in the experiments 

 Migraine-magnesium Autism-calcineurin 
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 Avg. term per doc. 7 173
Distinct terms 13,525 322,252 

b-term candidates 1,847 78,805 
Defined b-terms 43 13 
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the case of the autism-calcineurin dataset. Nevertheless, the preprocessing of both 
datasets was the same with the exception of outlier document identification. For the 
needs of RF and SVM outlier based heuristics we used the outlier documents 
identified by Sluban et al. [15] since we did not implement RF and SVM classifiers 
ourselves. Thus, our outlier heuristics results are completely aligned with the results 
provided in [15] for both datasets; however, Sluban et al. used slightly different 
document preprocessing for each of the two datasets. Table 3 also shows the exact 
number of outliers identified in each dataset. We can inspect higher numbers in the 
migraine-magnesium dataset which points to the problem of harder classification of 
documents in this dataset – this is also partly due to shorter texts. 

4.2 Results in the Migraine-Magnesium Dataset 

Fig. 1 shows the comparison of ranking performance for the ensemble and all the base 
heuristics on the migraine-magnesium dataset. The heuristics are ordered by their 
AUC. Black dots along with percentages show the heuristic’s AUC performance. 
Gray bars around AUC central point shows the interval of a heuristics’ AUC result, 
explained below. 

The property of heuristics having AUC on the interval and not as a fixed value is due 
to the fact that some heuristics do not produce unambiguous ranking of all the terms. 
Several heuristics assign the same score to a set of terms – including both the actual  
 

 

Fig. 1. Graphical representation of the AUC measure for all the individual heuristics and the 
ensemble heuristic on the migraine-magnesium dataset 
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b-terms as well as non b-terms – which results in a fact that unique sorting is not 
possible (i.e., see equal ensemble scores for terms t2 and t3 in Example 1). In such cases, 
the AUC calculation can either maximize the AUC by sorting all the b-terms in front of 
all the other terms inside equal scoring sets or minimize it by putting the b-terms at the 
back. The AUC calculation can also achieve many AUC values in between these two 
extremes by using different (e.g., random) sorts of equal scoring sets. Therefore, an 
interval bar of AUC shows the interval which contains all the possible AUC values and 
a black dot shows the interval’s middle point which represents the average AUC over a 
large number of random sorts of equal scoring sets. 

Fig. 1 shows no surprises among the base heuristics, since the results are equal to 
those presented in our previous work (see [7]), however, when focusing on the 
ensemble heuristic, we notice that it is better in both, higher AUC value and lower AUC 
interval compared to all the other heuristics. We constructed the ensemble using also 
two not so well performing heuristics ((10)tfidfDomnSum and (3)freqRatio) in order to 
avoid overfitting on the training domain. This could have a negative effect to the 
ensemble performance, however, the ensemble performance was not seriously affected 
which signals an evidence on the right decisions when designing the ensemble. 

As stated in the introduction of this section, we are mostly interested in the 
heuristics quality from the end user’s perspective. Such evaluation of heuristics 
quality is shown in Fig. 2, where the length of colored bars tells how many b-terms 
were found among the first 5, 20, 100, 500 and 2000 terms on the ranked list of terms  
 

 

Fig. 2. Comparison of the ensemble and base heuristics capacity to rank the b-terms at the very 
beginning of the terms list for the migraine-magnesium dataset 
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produced by a heuristic. We can see that the ensemble finds one b-term among the 
first 5 terms (the darkest gray bar), one b-term – no additional b-terms – among the 
first 20 terms (no bar), 6 b-terms – 5 additional – among the first 100 terms (lighter 
gray bar), 22 b-terms – 16 additional – among first 500 terms (even lighter gray bar) 
and all the 43 b-terms – 21 additional – among the first 2000 terms (the lightest gray 
bar). Thus, if the expert limits himself to inspect only the first 100 terms, he will find 
6 b-terms in the ensemble list, slightly more than 6 in the (21)outFreqRelSum list, 6 in 
the (19)outFreqRelRF, and so on. Results in Fig. 2 also give us the confirmation that 
the ensemble is among the best performing heuristics also from the user’s perspective. 
Even though a strict comparison depends also on the threshold of how many terms an 
expert is willing to inspect, the ensemble is always among the best. 

4.3 Results in Autism-Calcineurin Dataset 

Fig. 3 shows how our methodology works on a new independent test dataset which 
was not used in the development of our methodology. As discussed, the dimensionality 
of the autism-calcineurin dataset is considerably different and less favorable compared 
to the migraine-magnesium dataset. This is evident also when observing Fig. 3, since 
the performance of individual base heuristics significantly changes. Some of the 
originally best performing heuristics, e.g., based on relative frequency in outlier sets 
are now among the worst and the other types, e.g., tf-idf based that were not 
performing well before, are now among the best. The most important observation is  
 

 

Fig. 3. Graphical representation of the AUC measure for all the individual heuristics and the 
ensemble heuristic on the autism-calcineurin dataset 
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that the ensemble heuristic is still among the best (placed after (3)freqRatio and 
(17)outFreqSum) and preserves a zero AUC interval. Otherwise, we can notice a slight 
AUC increase of the best performing heuristics which is very positive since the 
candidate term list is much longer now and we expect we will find the same number of 
b-terms much later in the candidate term list compared to the migraine-magnesium 
dataset. 

The last result in this section is the user oriented visualization of heuristics 
performance shown in Fig. 4. This gives us the final argument for the quality of the 
ensemble heuristic since it outperforms or at least equals to all the other heuristics on 
the most interesting ranked list lengths (up to 20, 100, 500 terms). The ensemble finds 
one b-term among 20 ranked terms, 2 among 100 and 3 among 500 ranked terms. At a 
first sight, this may seem a bad performance, but, note that there are 78,805 candidate 
terms which the heuristics have to rank. The evidence of the quality of the ensemble 
can be understood if we compare it to the (23)appearInAllDomn heuristic which is the 
baseline heuristic and represents the performance which is achievable without 
developing the methodology presented in this work. The (23)appearInAllDomn 
heuristic discovers in average only approximately 0.33 b-terms before position  
2000 in the ranked list while the ensemble discovers 5 – not to mention the  
shorter term lists where the ensemble is relatively even better compared to the 
(23)appearInAllDomn heurisitc. 

 

 

Fig. 4. Comparison of the ensemble and base heuristics capacity to rank the b-terms at the very 
beginning of the terms list for the autism-calcineurin dataset. The longer the dark part, the more 
b-terms a heuristic ranks at the specified partition of the ranked list. 
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5.1 A Typical Use Case
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5. At this point, the user inspects the actual appearances of the selected term in 
both domains, using the side-by-side document inspection as shown in Fig. 7. In 
this way, he can verify whether his rationale behind selecting this term as a 
bridging term can be justified based on the contents of the inspected documents. 

6. Afterwards, the user continues with the exploration by returning to step 3 or by 
choosing another term in step 4, or concludes the session. 

The most important result of the exploration procedure is a proof for a chosen term to 
be an actual bridge between the two domains, based on supporting facts from the 
documents. As experienced in sessions with the experts, the identified documents are 
an important result as well, as they usually turn out to be a valuable source of 
information providing a deeper insight into the discovered cross-domain relations. 

5.2 Other CrossBee Functionalities 

Below we list the most important additional functionalities of the CrossBee system: 

─ Document focused exploration empowers the user to filter and order the 
documents by various criteria. The user can find it more pleasing to start 
exploring the domains by reading documents and not browsing through the term 
lists. The ensemble ranking can be used to propose the user which documents to 
read by suggesting those with the highest proportion of highly ranked terms. 

─ Detailed document view provides a more detailed presentation of a single 
document including various term statistics and a similarity graph showing the 
similarity between this document and other documents from the dataset. 

─ Methodology performance analysis supports the evaluation of the methodology 
by providing various data which can be used to measure the quality of the 
results, e.g., data for plotting the ROC curves. 

─ High-ranked term emphasis marks the terms according to their bisociation score 
calculated by the ensemble heuristic. When using this feature all high-ranked 
terms are emphasized throughout the whole application making them easier to 
spot (note different font sizes in Fig. 7). 

─ b-term emphasis marks the terms defined as b-terms by the user (note yellow 
terms in Fig. 7). 

─ Domain separation is a simple but effective option which colors all the documents 
from the same domain with the same color, making an obvious distinction 
between the documents from the two domains (note different colors in Fig. 7). 

─ UI customization enables the user to decrease or increase the intensity of the 
following features: high-ranked term emphasis, b-term emphasis and domain 
separation. In cooperation with the experts, we discovered that some of them do 
like the emphasizing features while the others do not. Therefore, we introduced 
the UI customization where everybody can set the intensity of these features by 
their preferences. 

6 Discussion and Further Work 

This work presents a methodology and a system for bisociative literature mining 
focusing on b-term identification and ranking by using an ensemble heuristic. First, a 
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detailed description of the proposed methodology and its experimental evaluation are 
provided, followed by the overview of the implemented system CrossBee. 

In the experimental evaluation we tested a set of base heuristics and the proposed 
ensemble heuristic on two datasets: migraine-magnesium and autism-calcineurin. 
While the first dataset was used to develop the b-term ranking methodology, the 
second dataset was used as an independent test to validate the findings. 

The comparison of the results on both datasets has shown that the performances of 
individual heuristics vary substantially. This indicates that there are differences between 
datasets which influence the performance of individual heuristics; while some base 
heuristic can be more adapted to one dataset, the others might be better suited to 
another. The proposed ensemble heuristic, which is among the best performing 
heuristics in both datasets, is therefore suggested as a dataset independent methodology. 

The results of the heuristics were evaluated from two perspectives: (a) using the 
AUC measure, and (b) by counting the number of b-terms found in the first n term 
candidates. While the first measure (a) is used to estimate the quality of heuristics as a 
single number, which is good for ranking the heuristics, the second measure (b) is 
used to illustrate the heuristics quality from the end-user’s perspective. In a typical 
scenario, the end-user appreciates reducing the burden of exploration by browsing 
through as few b-term candidates as possible to find the b-terms bridging the two 
domains. The comparison of baseline heuristics results with the constructed ensemble 
heuristic results confirms that the proposed methodology substantially reduces the 
end-user burden in this respect. 

The CrossBee System has proved to be a user-friendly implementation of the 
presented methodology. Its visualization functionalities, in particular its presentation 
of pairs of documents which can be inspected in more detail for meaningful relations, 
is very helpful. An obvious extension planned for the near future is automatic 
download of documents from a selected bibliographic database, such as MEDLINE. 

Investigation of more general connections between properties of domains and the 
best choice of selected heuristics combined into ensemble heuristic remains an 
important issue for further work, together with a more systematic study and 
comparison with other ensemble approaches known from the literature. 
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