
Review of BisoNet Abstraction Techniques�

Fang Zhou, Sébastien Mahler, and Hannu Toivonen

Department of Computer Science and
Helsinki Institute for Information Technology HIIT,
P.O. Box 68, FI-00014 University of Helsinki, Finland

{fang.zhou,sebastien.mahler,hannu.toivonen}@cs.helsinki.fi

Abstract. BisoNets represent relations of information items as net-
works. The goal of BisoNet abstraction is to transform a large BisoNet
into a smaller one which is simpler and easier to use, although some in-
formation may be lost in the abstraction process. An abstracted BisoNet
can help users to see the structure of a large BisoNet, or understand
connections between distant nodes, or discover hidden knowledge. In
this paper we review different approaches and techniques to abstract a
large BisoNet. We classify the approaches into two groups: preference-
free methods and preference-dependent methods.

1 Introduction

Bisociative information networks (BisoNets) [2] are a representation for many
kinds of relational data. The BisoNet model is a labeled and weighted graph G =
(V,E). For instance, in a BisoNet describing biological information, elements
of the vertex set V are biological entities, such as genes, proteins, articles, or
biological processes. Connections between vertexes are represented by edges E,
which have types such as “codes for”, “interacts with”, or “is homologous to”,
and have weights to show how strong they are.

BisoNets are often large. One example is Biomine1. It currently consists of
about 1 million vertices and 10 million edges, so that it is difficult for users to
directly visualize and explore it. One solution is to present to a user an abstract
view of a BisoNet. We call this BisoNet abstraction.

The goal of BisoNet abstraction is to transform a large BisoNet into one that
is simpler and therefore easier to use, even though some information is lost in
the abstraction process. An abstracted view can help users see the structure
of a large BisoNet, or understand connections between distant nodes, or even
discover new knowledge difficult to see in a large BisoNet. This chapter is a
literature review of applicable approaches to BisoNet abstraction.

An abstracted BisoNet can be obtained through different approaches. For
example, a BisoNet can be simplified by removing irrelevant nodes or edges.

� This chapter is a modified version of article “Review of Network Abstraction Tech-
niques” in Workshop on Explorative Analytics of Information Networks, Sep 2009,
Bled, Slovenia [1].

1 http://biomine.cs.helsinki.fi/

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 166–178, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com

http://biomine.cs.helsinki.fi/


Review of BisoNet Abstraction Techniques 167

Another example is that a BisoNet can be divided into several components, or
some parts of a BisoNet can be replaced by general structures. Furthermore,
user preference can be considered during abstraction. For instance, a user can
specify which parts of a BisoNet should retain more details.

Structure of the review. Although this chapter reviews potential techniques with
the goal to abstract large BisoNets, the techniques present here are also applica-
ble to general networks. In the rest of this chapter, we therefore use the general
term “network” instead of “BisoNet”. We first review methods which do not take
user preference into account in Section 2, and then review methods in which a
user can specify preference in Section 3. We conclude in Section 4.

2 Preference-Free Methods

In this section, we discuss network abstraction methods where the user has no
control over how specific parts of the graph are handled (but there may be
numerous other parameters for the user to set).

2.1 Relative Neighborhood Graph

The Relative Neighborhood Graph (RNG) [3, 4] only contains edges whose two
endpoints are relatively close: by definition, nodes a and b are connected by an
edge if and only if there is no third node c which is closer to both endpoints a and
b than a and b are to each other. RNG has originally been defined for points,
but it can also be used to prune edges between nodes a and b that do have
a shared close neighbor c. The relative neighborhood graph then is a superset
of the Minimum Spanning Tree (MST) and a subset of Delaunay Triangulation
(DT). According to Toussaint [3], RNG can in most cases capture a perceptually
more significant subgraph than MST and DT.

2.2 Node Centrality

The field of social network analysis has produced several methods to measure the
importance or centrality of nodes [5–8]. Typical definitions of node importance
are the following.

1. Degree centrality simply means that nodes with more edges are more central.

2. Betweenness centrality [9–11] measures how influential a node is in connect-
ing pairs of nodes. A node’s betweenness is the number of times the node
appears on the paths between all other nodes. It can be computed for shortest
paths or for all paths [12]. Computation of a node’s betweenness involves all
paths between all pairs of nodes of a graph. This leads to high computational
costs for large networks.



168 F. Zhou, S. Mahler, and H. Toivonen

3. Closeness centrality [13] is defined as the sum of graph-theoretic distances
from a given node to all others in the network. The distance can be defined as
mean geodesic distance, or as the reciprocal of the sum of geodesic distances.
Computation of a node’s closeness also involves all paths between all pairs
of nodes, leading to a high complexity.

4. Feedback centrality of a vertex is defined recursively by the centrality of its
adjacent vertices.

5. Eigenvector centrality has also been proposed [14].

Node centrality measures focus on selecting important nodes, not on selecting
a subgraph (of a very small number of separate components). Obviously, cen-
trality measures can be used to identify least important nodes to be pruned.
For large input networks and small output networks, however, the result of such
straightforward pruning would often consist of individual, unconnected nodes,
not an abstract network in the intended sense.

Methods in the following subsections (2.3 and 2.4) are similar in this sense:
they help to rank nodes individually based on their importance, but do not as
such produce (connected) subgraphs.

2.3 PageRank and HITS

In Web graph analysis, PageRank algorithm [15, 16] is proposed to find the
most important web pages according to the web’s link structure. The process
can be understood as the probability of a random walk on a directed graph; the
quality of each page depends on the number and quality of all pages that link
to it. It emphasizes highly linked pages and their links. A closely related link
analysis method is HITS (Hyperlink-Induced Topic Search) [17, 18], which also
aims to discover web pages of importance. Unlike PageRank, it has two values
for each page, and is processed on a small subset of pages, not the whole web.
Haveliwala [19] discusses the relative benefits of PageRank and HITS.

In their basic forms, both PageRank and HITS value a node just according
to the graph topology. An open question is to add edge weights to them.

2.4 Birnbaum’s Component Importance

Birnbaum importance [20] is defined on (Bernoulli) random graphs where edge
weights are probabilities of the existence of the edge. The Birnbaum importance
of an edge depends directly on the overall effect of the existence of the edge. An
edge whose removal has a large effect on the probability of other nodes to be
connected, has a high importance. The importance of a node can be defined in
terms of the total importance of its edges. This concept has been extended for
two edges by Hong and Lei [21].

2.5 Graph Partitioning

Inside a network, there often are clusters of nodes (called communities in social
networks), within which connections are stronger, while connections between



Review of BisoNet Abstraction Techniques 169

clusters are weaker and less frequent. In such a situation, a useful abstraction is
to divide the network into clusters and present each one of them separately to
the user.

A prevalent class of approaches to dividing a network into small parts is based
on graph partitioning [22, 23]. The basic goal is to divide the nodes into subsets
of roughly equal size and minimize the sum of weights of edges crossing different
subsets. This problem is NP-complete. However, many algorithms have been
proposed to find a reasonably good partition.

Popular graph partitioning techniques include spectral bisection methods
[24, 25] and geometric methods [26, 27]. While they are quite elegant, they
have some downsides. Spectral bisection in its standard form is computation-
ally expensive for very large networks. The geometric methods in turn require
coordinates of vertices of the graph.

Another approach is multilevel graph partitioning [28, 29]. It first collapses
sets of nodes and edges to obtain a smaller graph and partitions the small graph,
and then refines the partitioning while projecting the smaller graph back to
the original graph. The multilevel method combines a global view with local
optimization to reduce cut sizes.

An issue with many of these partitioning methods is that they only bisect net-
works [30]. Good results are not guaranteed by repeating bisections when more
than two subgroups are needed. For example, if the graph essentially has three
subgroups, there is no guarantee that these three subgroups can be discovered
by finding the best division into two and then dividing one of them again.

Other methods take a rough partitioning as input. A classical representative is
Kernighan-Lin (K-L) algorithm [31]. It iteratively looks for a subset of vertices,
from each part of the given graph, so that swapping them will lead to a partition
with smaller edge-cut. It does not create partitions but rather improves them.
The first (very!) rough partitioning can be obtained by randomly partitioning
the set of nodes. A weakness of the The K-L method is that it only has a
local view of the problem. Various modifications of K-L algorithm have been
proposed [32, 33], one of them dealing with an arbitrary number of parts [32].

2.6 Hierarchical Clustering

Another popular technique to divide networks is hierarchical clustering [34]. It
computes similarities (or distances) between nodes, for which typical choices
include Euclidean distance and Pearson correlation (of neighborhood vectors),
as well as the count of edge-independent or vertex-independent paths between
nodes.

Hierarchical clustering is well-known for its incremental approach. Algorithms
for hierarchical clustering fall into agglomerative or divisive class. In an agglom-
erative process, each vertex is initially taken as an individual group, then the
closest pair of groups is iteratively merged until a single group is constructed or
some qualification is met. Newman [35] indicates that agglomerative processes
frequently fail to detect correct subgroups, and it has tendency to find only the
cores of clusters. The divisive process iteratively removes edges between the least



170 F. Zhou, S. Mahler, and H. Toivonen

similar vertices, thus it is totally the opposite of an agglomerative method. Ob-
viously, other clustering methods can be applied on nodes (or edges) as well to
partition a graph.

2.7 Edge Betweenness

One approach to find a partitioning is through removing edges. This is similar to
the divisive hierarchical clustering, and is based on the principle that the edges
which connect communities usually have high betweenness [36]. Girvan and New-
man define edge betweenness as the number of paths that run along that given
edge [35]. It can be calculated using shortest-path betweenness, random-walk
betweenness and current-flow betweenness. The authors first use edge central-
ity indices to find community boundaries. They then remove high betweenness
edges in a divisive process, which eventually leads to a division of the origi-
nal network into separate parts. This method has a high computational cost: in
order to compute each edge’s betweenness, one should consider all paths in which
it appears. Many authors have already proposed different approaches to speed
up that algorithm [37, 38].

2.8 Frequent Subgraphs

A frequent subgraph may be considered as a general pattern whose instances can
be replaced by a label of that pattern (i.e., a single node or edge representing
the pattern). Motivation for this is two-fold. Technically, this operation can
be seen as compression. On the other hand, frequent patterns possibly reflect
some semantic structures of the domain and therefore are useful candidates for
replacement.

Two early methods for frequent subgraph mining use frequent probabilis-
tic rules [39] and compression of the database [40]. Some early approaches use
greedy, incomplete schemes [41, 42]. Many of the frequent subgraph mining
methods are based on the Apriori algorithm [43], for instance AGM [44] and
FSG [45, 46]. However, such methods usually suffer from complicated and costly
candidate generation, and high computation time of subgraph isomorphism [47].
To circumvent these problems, gSpan [47] explores depth-first search in frequent
subgraph mining. CloseGraph [48] in turn mines closed frequent graphs, which
reduces the size of output without losing any information. The Spin method [49]
only looks for maximal connected frequent subgraphs.

Most of the methods mentioned above consider a database of graphs as input,
not a single large graph. More recently, several methods have been proposed to
find frequent subgraphs also in a single input graph [50–53].

3 Preference-Dependent Methods

In this section, we discuss abstraction methods in which a user can explicitly
indicate which parts or aspects are more important, according to his interests.
Such network abstraction methods are useful when providing more flexible ways
to explore a BisoNet.



Review of BisoNet Abstraction Techniques 171

3.1 Relevant Subgraph Extraction

Given two or more nodes, the idea here is to extract the most relevant subnetwork
(of a limited size) with respect to connecting the given nodes as strongly as
possible. This subnetwork is then in some sense maximally relevant to the given
nodes. There are several alternatives for defining the objective function, i.e., the
quality of the extracted subnetwork.

An early approached proposed by Grötschel et al. [54] bases the definition
on the count of edge-disjoint or vertex-disjoint paths from the source to the
sink. A similar principle has later been applied to multi-relational graphs [55],
where a pair of entities could be linked by a myriad of relatively short chains of
relationships.

The problem in its general form was later formulated as the connection sub-
graph problem by Faloutsos et al. [56]. The authors also proposed a method
based on electricity analogies, aiming at maximizing electrical currents in a net-
work of resistors. However, Tong and Faloutsos later point out the weaknesses of
using delivered current criterion as a goodness of connection [57]: it only deals
with query node pair, and is sensible to the order of the query nodes. Thus, they
propose method to extract a subgraph with strong connections to any arbitrary
number of nodes.

For random graphs, work from reliability research suggests network reliability
as suitable measure [58]. This is defined as the probability that query nodes
are connected, given that edges fail randomly according to their probabilities.
This approach was then formulated more exactly and algorithms were proposed
by Hintsanen and Toivonen [59]. Hintsanen and Toivonen restrict the set of
terminals to a pair, and propose two incremental algorithms for the problem.

A logical counterpart of this work, in the field of probabilistic logic learning, is
based on ProbLog [60]. In a ProbLog program, each Prolog clause is labeled with
a probability. The ProbLog program can then be used to compute the success
probabilities of queries. In the theory compression setting for ProbLog [61], the
goal is to extract a subprogram of limited size that maximizes the success prob-
ability of given queries. The authors use subgraph extraction as the application
example.

3.2 Detecting Interesting Nodes or Paths

Some techniques aim to detect interesting paths and nodes, with respect to given
nodes. Lin and Chapulsky [62] focus on determining novel, previously unknown
paths and nodes from a labeled graph. Based on computing frequencies of similar
paths in the data, they use rarity as a measure to find interesting paths or nodes
with respect to the given nodes.

An alternative would be to use node centrality to measure the relative im-
portance. White and Smyth [63] define and compute the importance of nodes in
a graph relative to one or more given root nodes. They have also pointed out
advantages and disadvantages of such measurement based on shortest paths,
k-short paths and k-short node-disjoint paths.



172 F. Zhou, S. Mahler, and H. Toivonen

3.3 Personalized PageRank

On the basis of PageRank, Personlized PageRank (PPR) is proposed to person-
alize ranking of web pages. It assigns importance according to the query or user
preferences. Early work in this area includes Jeh and Widom [64] and Haveli-
wala [19]. Later, Fogaras et al. [65] have proposed improved methods for the
problem.

An issue for network abstraction with these approaches is that they can
identity relevant individual nodes, but not a relevant subgraph.

3.4 Exact Subgraph Search

Some substructures may represent obvious or general knowledge, which may
moreover occur frequently. Complementary to the approach of Subsection 2.8
where such patterns are identified automatically, here we consider user-input
patterns or replacement rules. We first introduce methods that find all exact
specified subgraphs.

Finding all exact instances of a graph structure reduces to the subgraph iso-
morphism problem, which is NP-complete. Isomorphisms are mappings of node
and edge labels that preserve the connections in the subgraph.

Ullmann [66] has proposed a well-known algorithm to number the isomor-
phisms with a refinement procedure that overcomes brute-force tree-search
enumeration. Cordella et al. [67] include more selective feasibility rules to prune
the state search space of their VF algorithm.

A faster algorithm, GraphGrep [68], builds an index of a database of graphs,
then uses filtering and exact matching to find isomorphisms. The database is
indexed with paths, which are easier to manipulate than trees or graphs. As
an alternative, GIndex [69] relies on frequent substructures to index a graph
database.

3.5 Similarity Subgraph Search

A more flexible search is to find graphs that are similar but not necessarily
identical to the query. Two kinds of similarity search seem interesting in the
context of network abstraction. The first one is the K-Nearest-Neighbors (K-
NN) query that reports the K substructures which are the most similar to the
user’s input; the other is the range query which returns subgraphs within a
specific dissimilarity range to user’s input.

These definitions of the problem imply computation of a similarity measure
between two subgraphs. The edit distance between two graphs has been used
for that purpose [70]: it generally refers to the cost of transforming one object
into the other. For graphs, the transformations are the insertion and removal
of vertices and edges, and the changing of attributes on vertices and edges. As
graphs have mappings, the edit distance between graphs is the minimum distance
over all mappings.



Review of BisoNet Abstraction Techniques 173

Tian et al. [71] propose a distance model containing three components: one
measures the structural differences, a second component is the penalty associated
with matching two nodes with different labels, and the third component measures
the penalty for the gap nodes, nodes in the query that cannot be mapped to any
nodes in the target graph.

Another family of similarity measures is based on the maximum common sub-
graph of two graphs [72]. Fernandez and Valiente [73] propose a graph distance
metric based on both maximum common subgraph and minimum common su-
pergraph. The maximum percentage of edges in common has also been used as
a similarity measure [74].

Processing pairwise comparisons is very expensive in term of computational
time. Grafil [74] and PIS [75] are both based on GIndex [69], indexing the
database by frequent substructures.

The concept of graph closure [70] represents the union of graphs, by recording
the union of edge labels and vertex labels, given a mapping.

The derived algorithm, Closure-tree, organizes graphs in a hierarchy where
each node summarizes its descendants by a graph closure: efficiency of similarity
query may improve, and that may avoid some disadvantages of path-based and
frequent substructure methods.

The authors of SAGA (Substructure Index-based Approximate Graph Align-
ment) [71] propose the FragmentIndex technique, which indexes small and
frequent substructures. It is efficient for small graph queries, however, process-
ing large graph queries is much more expensive. TALE (Tool for Approximate
Subgraph Matching of Large Queries Efficiently) [76] is another approximate
subgraph matching system. The authors propose to use NH-Index (Neighbor-
hood Index) to index and capture the local graph structure of each node. An
alternative approach uses structured graph decomposition to index a graph
database [77].

4 Conclusion

There is a large literature on methods suitable for BisoNet abstraction. We
reviewed some of the most important approaches, classified by whether they
allow user focus or not. Even though we did not cover the literature exhaustively,
we can propose areas for further research based on the gaps and issues observed
in the review.

First, we noticed that different node ranking measures (Sections 2.2–2.4) are
useful for picking out important nodes, as evidenced by search engines, but the
result is just that – a set of nodes. How to better use those ideas to find a
connected, relevant subBisoNet is an open question.

Second, although there are lots of methods for partitioning a BisoNet (Sec-
tion 2.5–2.7), the computational complexity usually is prohibitive for large
BisoNets, such as Biomine, with millions of nodes and edges. Obviously, parti-
tioning would be a valuable tool for BisoNet abstraction there.



174 F. Zhou, S. Mahler, and H. Toivonen

Third, we observed that some more classical graph problems have been re-
searched much more intensively for graph databases consisting of a number of
graphs, rather than for a single large graph. This holds especially for frequent
subgraphs (Section 2.8) and subgraph search (Section 3.5).

Finally, a practical exploration system needs an integrated approach to ab-
straction, using several of the techniques reviewed here to complement each other
in producing a simple and useful abstract BisoNet.

Acknowledgements. This work has been supported by the Algorithmic Data
Analysis (Algodan) Centre of Excellence of the Academy of Finland and by the
European Commission under the 7th Framework Programme FP7-ICT-2007-C
FET-Open, contract no. BISON-211898.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribu-

tion, and reproduction in any medium, provided the original author(s) and source are

credited.

References

1. Zhou, F., Mahler, S., Toivonen, H.: Review of Network Abstraction Techniques.
In: Workshop on Explorative Analytics of Information Networks at ECML PKDD
2009, pp. 50–63 (2009)

2. Dubitzky, W., Kötter, T., Schmidt, O., Berthold, M.R.: Towards Creative In-
formation Exploration Based on Koestler’s Concept of Bisociation. In: Berthold,
M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), pp. 11–32. Springer,
Heidelberg (2012)

3. Toussaint, G.T.: The Relative Neighbourhood Graph of a Finite Planar Set. Pat-
tern Recogn. 12(4), 261–268 (1980)

4. Jaromczyk, J., Toussaint, G.: Relative Neighborhood Graphs and Their Relatives.
Proc. IEEE 80(9), 1502–1517 (1992)

5. Freeman, L.C.: Centrality in social networks: Conceptual clarification. Soc. Net-
works 1(3), 215–239 (1979)

6. Stephenson, K.Z.M.: Rethinking centrality: Methods and examples. Soc. Net-
works 11(1), 1–37 (1989)

7. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

8. Katz, L.: A new status index derived from sociometric analysis. Psychome-
trika 18(1), 39–43 (1953)

9. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Networks 27(1), 31–38
(2005)

10. Brandes, U.: A Faster Algorithm for Betweenness Centrality. J. Math. Sociol. 25(2),
163–177 (2001)

11. Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociome-
try 40, 35–41 (1977)

12. Friedkin, N.E.: Theoretical Foundations for Centrality Measures. Am. J.
Sociol. 96(6), 1478–1504 (1991)

13. Gert, S.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)



Review of BisoNet Abstraction Techniques 175

14. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. J. Math. Sociol. 2(1), 113–120 (1972)

15. Lawrence, P., Sergey, B., Rajeev, M., Terry, W.: The PageRank Citation Ranking:
Bringing Order to theWeb. Technical report, Stanford Digital Library Technologies
Project (1998)

16. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Comput. Netw. ISDN Syst. 30, 107–117 (1998)

17. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

18. Li, L., Shang, Y., Zhang, W.: Improvement of HITS-based algorithms on web
documents. In: WWW 2002: Proc. 11th International Conf. on World Wide Web,
pp. 527–535. ACM, New York (2002)

19. Haveliwala, T.H.: Topic-Sensitive PageRank. In: WWW 2002: Proc. 11th Interna-
tional Conf. World Wide Web, pp. 517–526. ACM, New York (2002)

20. Birnbaum, Z.W.: On the importance of different components in a multicomponent
system. In: Multivariate Analysis - II, pp. 581–592. Academic Press, New York
(1969)

21. Hong, J., Lie, C.: Joint reliability-importance of two edges in an undirected net-
work. IEEE Trans. Reliab. 42, 17–23, 33 (1993)

22. Fjällström, P.O.: Algorithms for graph partitioning: A Survey. Linköping Elec-
tronic Atricles in Computer and Information Science. Linköping University Elec-
tronic Press, Linköping (1998)

23. Elsner, U.: Graph Partitioning - A Survey. Technical Report SFB393/97-27, Tech-
nische Universität Chemnitz (1997)

24. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning Sparse Matrices with Eigenvec-
tors of Graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

25. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM J. Sci. Comput. 16(2), 452–469 (1995)

26. Miller, G.L., Teng, S.H., Thurston, W., Vavasis, S.A.: Geometric Separators for
Finite-Element Meshes. SIAM J. Sci. Comput. 19(2), 364–386 (1998)

27. Berger, M.J., Bokhari, S.H.: A Partitioning Strategy for Nonuniform Problems on
Multiprocessors. IEEE Trans. Comput. 36(5), 570–580 (1987)

28. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partition-
ing Irregular Graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

29. Hendrickson, B., Leland, R.: A Multi-Level Algorithm For Partitioning Graphs.
In: Proc. 1995 ACM/IEEE Conf. Supercomputing (CDROM). ACM, New York
(1995)

30. Newman, M.E.J.: Detecting community structure in networks. Eur. Phy. J.
B - Condensed Matter and Complex Systems 38(2), 321–330 (2004)

31. Kernighan, B.W., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs.
Bell Sys. Tech. J. 49(1), 291–307 (1970)

32. Fiduccia, C.M., Mattheyses, R.M.: A Linear-Time Heuristic for Improving Network
Partitions. In: DAC 1982: P. 19th Conf. Des. Autom., pp. 175–181. ACM, New York
(1982)

33. Diekmann, R., Monien, B., Preis, R.: Using Helpful Sets to Improve Graph Bisec-
tions. In: Interconnection Networks and Mapping and Scheduling Parallel Compu-
tations, pp. 57–73. American Mathematical Society, USA (1995)

34. Scott, J.: Social Network Analysis: A Handbook. SAGE Publications, UK (2000)
35. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69, 026113 (2004)



176 F. Zhou, S. Mahler, and H. Toivonen

36. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

37. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658–2663 (2004)

38. Wu, F., Huberman, B.: Finding Communities in Linear Time: A Physics Approach.
Eur. Phys. J. B - Condensed Matter and Complex Systems 38, 331–338 (2004)

39. Dehaspe, L., Toivonen, H., King, R.D.: Finding Frequent Substructures in Chem-
ical Compounds. In: Agrawal, R., Stolorz, P., Piatetsky-Shapiro, G. (eds.) 4th
International Conf. Knowl. Disc. Data Min., USA, pp. 30–36. AAAI Press (1998)

40. Holder, L.B., Cook, D.J., Djoko, S.: Substructure Discovery in the SUBDUE Sys-
tem. In: Proc. AAAIWorkshop Knowl. Disc. Databases, pp. 169–180. AAAI, Menlo
Park (1994)

41. Cook, D.J., Holder, L.B.: Substructure Discovery Using Minimum Description
Length and Background Knowledge. J. Artif. Intell. Res. 1, 231–255 (1994)

42. Yoshida, K., Motoda, H.: CLIP: Concept Learning from Inference Patterns. Artif.
Intell. 75(1), 63–92 (1995)

43. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Bocca,
J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th International Conf. Very Large Data
Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

44. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Fre-
quent Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow,
J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000)

45. Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In: Proc. 2001 IEEE
International Conf. Data Min., ICDM 2001, pp. 313–320. IEEE Computer Society,
Washington, DC (2001)

46. Kuramochi, M., Karypis, G.: An Efficient Algorithm for Discovering Frequent Sub-
graphs. IEEE Trans. on Knowl. and Data Eng. 16(9), 1038–1051 (2004)

47. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proceed-
ings of the 2002 IEEE International Conf. Data Min., pp. 721–724. IEEE Computer
Society, Washington, DC (2002)

48. Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: KDD
2003: Proc. 9th ACM SIGKDD International Conf. Knowl. Disc. Data Min., pp.
286–295. ACM, New York (2003)

49. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: Mining Maximal Frequent Sub-
graphs from Graph Databases. In: KDD 2004: Proc. 10th ACM SIGKDD Interna-
tional Conf. Knowl. Disc Data Min., pp. 581–586. ACM, New York (2004)

50. Bringmann, B., Nijssen, S.: What Is Frequent in a Single Graph? In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 858–863. Springer, Heidelberg (2008)

51. Fiedler, M., Borgelt, C.: Subgraph Support in a Single Large Graph. In: ICDMW
2007: Proc. 7th IEEE International Conf. Data Min. Workshops, pp. 399–404.
IEEE Computer Society, Washington, DC (2007)

52. Fiedler, M., Borgelt, C.: Support Computation for Mining Frequent Subgraphs in
a Single Graph. In: Proc. 5th Int. Workshop on Mining and Learning with Graphs,
MLG 2007, Florence, Italy, pp. 25–30 (2007)

53. Kuramochi, M., Karypis, G.: Finding Frequent Patterns in a Large Sparse Graph.
Data Min. Knowl. Disc. 11(3), 243–271 (2005)

54. Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable networks. In:
Handbooks in Operations Research and Management Science, vol. 7, pp. 617–672
(1995)



Review of BisoNet Abstraction Techniques 177

55. Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering Informative
Connection Subgraphs in Multi-relational Graphs. SIGKDD Explor. Newsl. 7(2),
56–63 (2005)

56. Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast Discovery of Connection Sub-
graphs. In: KDD 2004: Proc. 10th ACM SIGKDD International Conf. Knowl. Disc.
Data Min., pp. 118–127. ACM, New York (2004)

57. Tong, H., Faloutsos, C.: Center-Piece Subgraphs: Problem Definition and Fast
Solutions. In: KDD 2006: Proc. 12th ACM SIGKDD International Conf. Knowl.
Disc. Data Min., pp. 404–413. ACM, New York (2006)

58. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link Discovery in
Graphs Derived from Biological Databases. In: Leser, U., Naumann, F., Eckman,
B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg
(2006)

59. Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic
graphs. Data Min. Knowl. Discov. 17, 3–23 (2008)

60. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and its
Application in Link Discovery. In: Proc. 20th International Joint Conf. Artif. Intel.,
pp. 2468–2473. AAAI Press, Menlo Park (2007)

61. Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing
probabilistic Prolog programs. Mach. Learn. 70(2-3), 151–168 (2008)

62. Lin, S., Chalupsky, H.: Unsupervised Link Discovery in Multi-relational Data via
Rarity Analysis. In: ICDM 2003: Proc. 3rd IEEE International Conf. Data Min.,
p. 171. IEEE Computer Society, Washington, DC (2003)

63. White, S., Smyth, P.: Algorithms for Estimating Relative Importance in Networks.
In: KDD 2003: Proc. 9th ACM SIGKDD International Conf. Knowl. Disc. Data
Min., pp. 266–275. ACM, New York (2003)

64. Jeh, G., Widom, J.: Scaling Personalized Web Search. In: WWW 2003: Proc. 12th
International Conf. World Wide Web, pp. 271–279. ACM, New York (2003)

65. Forgaras, D., Rácz, B., Csalogány, K., Sarlós, T.: Towards Scaling Fully Personal-
ized PageRank: Algorithms, Lower Bounds and Experiments. Internet Mathemat-
ics 2(3), 335–358 (2005)

66. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. J. ACM 23(1), 31–42
(1976)

67. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (Sub)Graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. 26(10), 1367–
1372 (2004)

68. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and Applications of Tree and
Graph Searching. In: PODS 2002: Proc. 21st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 39–52. ACM, New York (2002)

69. Yan, X., Yu, P.S., Han, J.: Graph Indexing: A Frequent Structure-based Approach.
In: SIGMOD 2004: Proc. 2004 ACM SIGMOD International Conf. Management
of Data, pp. 335–346. ACM, New York (2004)

70. He, H., Singh, A.K.: Closure-Tree: An Index Structure for Graph Queries. In: ICDE
2006: Proc. 22nd International Conf. Data Eng., p. 38. IEEE Computer Society,
Los Alamitos (2006)

71. Tian, Y., Mceachin, R.C., Santos, C., States, D.J., Patel, J.M.: SAGA: a subgraph
matching tool for biological graphs. Bioinformatics 23(2), 232–239 (2007)

72. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recogn. Lett. 19(3-4), 255–259 (1998)



178 F. Zhou, S. Mahler, and H. Toivonen

73. Fernández, M.-L., Valiente, G.: A graph distance metric combining maximum com-
mon subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6-7),
753–758 (2001)

74. Yan, X., Yu, P.S., Han, J.: Substructure Similarity Search in Graph Databases.
In: SIGMOD 2005: Proc. 2005 ACM SIGMOD International Conf. Management
of Data, pp. 766–777. ACM, New York (2005)

75. Yan, X., Zhu, F., Han, J., Yu, P.S.: Searching Substructures with Superimposed
Distance. In: ICDE 2006: Proc. 22nd International Conf. Data Eng. IEEE Com-
puter Society, Washington, DC (2006)

76. Tian, Y., Patel, J.M.: TALE: A Tool for Approximate Large Graph Matching. In:
Proc. 2008 IEEE 24th International Conf. Data Eng., pp. 963–972. IEEE Computer
Society, Los Alamitos (2008)

77. Williams, D., Huan, J., Wang, W.: Graph Database Indexing Using Structured
Graph Decomposition. In: Proc. 2007 IEEE 23rd International Conf. Data Eng,
pp. 976–985. IEEE Computer Society Press, Los Alamitos (2007)


	Review of BisoNet Abstraction Techniques

	Introduction
	Preference-Free Methods
	Relative Neighborhood Graph
	Node Centrality
	PageRank and HITS
	Birnbaum's Component Importance
	Graph Partitioning
	Hierarchical Clustering
	Edge Betweenness
	Frequent Subgraphs

	Preference-Dependent Methods
	Relevant Subgraph Extraction
	Detecting Interesting Nodes or Paths
	Personalized PageRank
	Exact Subgraph Search
	Similarity Subgraph Search

	Conclusion
	References





