
Chapter 3
Bar Element

Abstract On the basis of the bar element, tension and compression as types of
basic load cases will be described. First, the basic equations known from the strength
of materials will be introduced. Subsequently the bar element will be introduced,
according to the common definitions for load and deformation quantities, which are
used in the handling of the FE method. The derivation of the stiffness matrix will be
described in detail. Apart from the simple prismatic bar with constant cross-section
and material properties also more general bars, where the size varies along the body
axis will be analyzed in examples [1–9] and exercises.

3.1 Basic Description of the Bar Element

In the simplest case, the bar element can be defined as a prismatic body with constant
cross-sectional area A and constant modulus of elasticity E , which is loaded with a
concentrated force F in the direction of the body axis (see Fig. 3.1).
The unknown quantities are

• the extension �L and
• the strain ε and stress σ of the bar

dependent on the external load.
The following three basic equations are known from the strength of materials: By

ε(x) = du(x)

dx
= �L

L
(3.1)

kinematics describes the relation between the strains ε(x) and the deformations u(x).
By

σ(x) = E ε(x) (3.2)
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Fig. 3.1 Tensile bar loaded by single force

the constitutive equation describes the relation between the stresses σ(x) and the
strains ε(x) and the equilibrium condition results in

σ(x) = S(x)

A(x)
= S(x)

A
= F

A
. (3.3)

The connection between the force F and the length variation �L of the bar can easily
be described with these three equations:

F

A
= σ = Eε = E

�L

L
(3.4)

or with

F = E A

L
�L . (3.5)

The relation between force and length variation is described as axial stiffness. Hence,
the following occurs for the bar regarding the tensile loading1:

F

�L
= E A

L
. (3.6)

For the derivation of the differential equation the force equilibrium at an infinitesimal
small bar element has to be regarded (see Fig. 3.2). A continuously distributed line
load q(x) acts as the load in the unit force per unit length.

1 The parlance tension bar includes the load case compression.
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Fig. 3.2 Force equilibrium at an infinitesimal small bar element

The force equilibrium in the direction of the body axis delivers:

− S(x) + q(x)dx + S(x + dx) = 0. (3.7)

After a series expansion of S(x + dx) = S(x) + dS(x) the following occurs

− S(x) + q(x)dx + S(x) + dS(x) = 0 (3.8)

or in short:
dS(x)

dx
= −q(x). (3.9)

Equations (3.1), (3.2) and (3.3) for kinematics, the constitutive equation and the
equilibrium continue to apply. If the Eqs. (3.1) and (3.3) are inserted in (3.2), one
obtains

E A(x)
du(x)

dx
= S(x). (3.10)

After the differentiation and insertion of Eq. (3.9) one obtains

d

dx

[
E A(x)

du(x)

dx

]
+ q(x) = 0 (3.11)

as the differential equation for a bar with continuously distributed load. This is a
differential equation of 2nd order within the displacements. Under constant cross-
section A and constant modulus of elasticity E the term simplifies to

E A
d2u(x)

dx2 + q(x) = 0. (3.12)

3.2 The Finite Element Tension Bar

The tension bar is defined as a prismatic body with a single body axis. Nodes are
introduced at both ends of the tension bar, where forces and displacements, as
sketched in Fig. 3.3 are positively defined. The main objective is to achieve a stiffness
relation for this element in the form
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Fig. 3.3 Definition of the finite element tension bar

Fe = ke · up

or [
F1
F2

]e

=
[ · ·

· ·
] [

u1
u2

]
. (3.13)

With this stiffness relation the bar element can be integrated in a structure. Further-
more the displacements, the strains and the stresses inside the element are unknown.
At first, an easy approach is introduced, in which the bar is modeled as a linear spring
(Fig. 3.4).

Fig. 3.4 Tension bar modeled
as a linear spring

This is possible when

• the cross-sectional area A and
• the modulus of elasticity E

are constant along the body axis. The previously derived axial rigidity of the tension
bar can then be interpreted as a spring constant or spring stiffness of a linear spring
through

F

�L
= E A

L
= k. (3.14)

For the derivation of the stiffness relation, which is requested for the finite element
method, a thought experiment is conducted. If, within the spring model at first only
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the spring force F2 is in effect and the spring force F1 is being faded out, the equation

F2 = k�u = k(u2 − u1) (3.15)

then describes the relation between the spring force and the length variation of the
spring. If subsequently only the spring force F1 is in effect and the spring force F2
is being faded out, the equation

F1 = k�u = k(u1 − u2) (3.16)

then describes the relation between the spring force and the length variation of the
spring. Both situations can be superimposed and summarized compactly in matrix-
form as [

F1
F2

]e

=
[

k −k
−k k

] [
u1
u2

]
. (3.17)

With that the desired stiffness relation between the forces and deformations on the
nodal points is derived.
The efficiency of this simple model however is limited. Thus no statements
regarding the displacement, strain and stress distribution on the inside can be made.
Therefore, a more elaborated model is necessary. This will be introduced in the
following.
At first the displacement distribution ue(x) inside a bar will be described through
shape functions N(x) and the displacements up at the nodes:

ue(x) = N(x) up. (3.18)

In the simplest case, the displacement distribution is approximated linearly for the
tension bar (see Fig. 3.5). With the following approach

Fig. 3.5 Linear approximation of the displacement distribution in the tension bar

ue(x) = α1 + α2x (3.19)
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the displacements at the nodes

[
u1
u2

]
=

[
1 x1
1 x2

] [
α1
α2

]
(3.20)

can be described. After the elimination of αi the following results for the displacement
distribution:

ue(x) = x2 − x

x2 − x1
u1 + x − x1

x2 − x1
u2 (3.21)

or summarized

ue(x) = 1

L
(x2 − x)u1 + 1

L
(x − x1)u2. (3.22)

By this the shape functions N1(x) and N2(x) can be described with

N1(x) = 1

L
(x2 − x) and N2(x) = 1

L
(x − x1). (3.23)

The displacement distribution results in a compact form in:

ue(x) = N1(x)u1 + N2(x)u2 = [N1 N2]
[

u1
u2

]
= N(x) up. (3.24)

Through the kinematics relation the strain distribution results

εe(x) = d

dx
ue(x) = d

dx
N(x) up = B up (3.25)

and because of the constitutive equation the stress distribution results in

σ e(x) = Eεe(x) = E Bup, (3.26)

where the matrix B for the derivation of the shape functions is introduced. For the
linear approximation of the displacement distribution the derivatives of the shape
functions result in:

d

dx
N1(x) = − 1

L
,

d

dx
N2(x) = 1

L
(3.27)

and therefore the matrix B results in

B = 1

L
[−1 1]. (3.28)

For the derivation of the element stiffness matrix the following integral has to be
evaluated
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ke =
∫
Ω

BT DB dΩ. (3.29)

The elasticity matrix D is represented only through the modulus of elasticity E . For
the tension bar, the stiffness matrix therefore results in:

ke = AE
∫
L

1

L

[
1

−1

]
1

L
[−1 1] dx = E A

L2 L

[
1 −1

−1 1

]
. (3.30)

In a compact form, the element stiffness matrix is called:

ke = E A

L

[
1 −1

−1 1

]
. (3.31)

There are also other ways to derive the stiffness matrix, which are introduced in the
following sections.

3.2.1 Derivation Through Potential

The elastic potential energy2 of a one-dimensional problem according to Fig. 3.1
with linear-elastic material behavior results in:

Πint = 1

2

∫
Ω

εxσx dΩ. (3.32)

If stress and strain are substituted by use of the formulations according to Eqs. (3.26)
and (3.25) and if dΩ = Adx is taken into consideration, the following applies:

Πint = 1

2

L∫
0

E A
(
Bup

)T Bupdx . (3.33)

If the relation for the transpose of a product of two matrices3 is taken into account
the following results

Πint = 1

2

L∫
0

E AuT
p BT Bupdx . (3.34)

2 The form Πint = 1
2

∫
Ω

εTσdΩ can be used in the general three-dimensional case, where σ and ε

represents the column matrix with the stress and strain components.
3 (AB)T = BT AT
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Since the nodal values do not represent a function of x , both column matrices can be
eliminated from the integral:

Πint = 1

2
uT

p

⎡
⎣

L∫
0

E ABT Bdx

⎤
⎦ up. (3.35)

Under consideration of the B matrix definition according to Eq. (3.28) the following
results for constant axial rigidity E A:

Πint = 1

2
uT

p

⎡
⎣ E A

L2

L∫
0

[
1 −1

−1 1

]
dx

⎤
⎦

︸ ︷︷ ︸
ke

up. (3.36)

The last equation is equivalent to the general formulation of the potential energy of
a finite element

Πint = 1

2
uT

p keup (3.37)

and allows the identification of the element stiffness matrix ke.

3.2.2 Derivation Through Castigliano’s Theorem

If the stress in the formulation for the elastic potential energy according to Eq. (3.32)
is substituted by use of Hooke’s law according to Eq. (3.2) and if dΩ = Adx is
taken into consideration, the following results:

Πint = 1

2

∫
L

E Aε2
x dx . (3.38)

If now the strain is substituted using the kinematic relation according to Eq. (3.1) and
introduces the approach for the displacement distribution according to Eq. (3.24),
the elastic potential energy for constant axial rigidity E A finally results in:

Πint = E A

2

L∫
0

(
dN1(x)

dx
u1 + dN2(x)

dx
u2

)2

dx . (3.39)

The application of Castigliano’s theorem on the potential energy with reference to
the nodal displacement u1 leads to the external force F1 on the node 1:
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dΠint

du1
= F1 = E A

L∫
0

(
dN1(x)

dx
u1 + dN2(x)

dx
u2

)
dN1(x)

dx
dx . (3.40)

From the differentiation regarding the other deformation parameter the following
arises accordingly:

dΠint

du2
= F2 = E A

L∫
0

(
dN1(x)

dx
u1 + dN2(x)

dx
u2

)
dN2(x)

dx
dx . (3.41)

Equations (3.40) and (3.41) can be summarized as the following formulation:

E A

L∫
0

⎡
⎣

dN1(x)
dx

dN1(x)
dx

dN2(x)
dx

dN1(x)
dx

dN1(x)
dx

dN2(x)
dx

dN2(x)
dx

dN2(x)
dx

⎤
⎦ dx

[
u1
u2

]
=

[
F1
F2

]
. (3.42)

After introducing the shape functions according to Eq. (3.23) and executing the
integration the element stiffness matrix, which is given in Eq. (3.31), results.

3.2.3 Derivation Through the Weighted Residual Method

In the following, the differential equation for the displacement field according to
Eq. (3.13) is being considered. This formulation assumes that the axial rigidity E A
is constant and it results in

E A
d2u0(x)

dx2 + q(x) = 0, (3.43)

whereupon u0(x) represents the exact solution of the problem. The last equation
with the exact solution is exactly fulfilled at every position x on the bar and is also
referred to as the strong formulation of the problem. If the exact solution in Eq. (3.43)
is substituted through an approximate solution u(x), a residual or remainder r results:

r = E A
d2u(x)

dx2 + q(x) �= 0. (3.44)

Due to the introduction of the approximate solution u(x) it is in general not possible
anymore to fulfill the differential equation at every position x of the bar. As an
alternative, it is demanded in the following that the differential equation is fulfilled
over a certain length (and not at every position x anymore) and therefore ends up
with the following integral demand
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L∫
0

W (x)

(
E A

d2u(x)

dx2 + q(x)

)
dx

!= 0, (3.45)

which is also referred to as the inner product. W (x) as part of Eq. (3.45) represents
the so-called weighting function, which distributes the error or the residual over the
regarded length.
The following results through partial integration4 of the first expression in the paren-
theses of Eq. (3.45)

L∫
0

W︸︷︷︸
f

E A
d2u(x)

dx2︸ ︷︷ ︸
g′

dx = E A

[
W (x)

du(x)

dx

]L

0
−E A

L∫
0

dW (x)

dx

du(x)

dx
dx . (3.46)

Under consideration of Eq. (3.45) the so-called weak formulation of the problem
results in:

E A

L∫
0

dW (x)

dx

du(x)

dx
dx = E A

[
W

du(x)

dx

]L

0
+

L∫
0

W (x)q(x)dx . (3.47)

When considering the weak form it becomes obvious that one derivative of the
approximate solution was shifted to the weighting function through the partial
integration and that now with reference to the derivation a symmetric form arose.
This symmetry with reference to the derivation of the approximate solution and the
weighting function will subsequently guarantee that a symmetric element stiffness
matrix for the bar element results.
In the following, first the left-hand side of Eq. (3.47) needs to be considered to derive
the element stiffness matrix for a linear bar element.
The basic idea of the finite element method now is to no longer approximate the
unknown displacement distribution u(x) in the total domain, but to approximately
describe the displacement distribution through

ue(x) = N(x)up = [
N1 N2

] ×
[

u1
u2

]
(3.48)

for a subdomain, the so-called finite element. Within the context of the finite ele-
ment method the same approach as for the displacement is chosen for the weighting
function:

4 A usual representation of the partial integration of two functions f (x) and g(x) is:
∫

f g′dx =
f g − ∫

f ′gdx .
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W (x) = [
N(x) δup

]T = δuT
p NT(x) = [δu1 δu2] ×

[
N1
N2

]
, (3.49)

whereupon δui represent the so-called arbitrary or virtual displacements. The deriv-
ative of the weighting function results in

dW (x)

dx
= d

dx

(
Nδup

)T = (
Bδup

)T = δuT
p BT. (3.50)

In the following it remains to be seen that the virtual displacements can be canceled
with an identical expression on the right-hand side of Eq. (3.47) and no further
consideration will be necessary at this point. When considering the approaches for
the displacement and the weighting function on the left-hand side of Eq. (3.47), the
following results for constant axial rigidity E A:

E A

L∫
0

(
δuT

p BT
) (

Bup
)

dx (3.51)

or under consideration that the vector of the nodal displacement can be regarded as
constant:

δuT
p E A

L∫
0

BT B dx

︸ ︷︷ ︸
ke

up. (3.52)

The expression δuT
p can be canceled with an identical expression on the right-hand

side of Eq. (3.47) and up represents the column matrix of the unknown nodal dis-
placement. Therefore, the stiffness matrix can be calculated due to the derivative of
the shape function according to Eq. (3.28) and finally the formulation according to
Eq. (3.31) for the element stiffness matrix results.
In the following, the right-hand side of Eq. (3.47) is considered to derive the total
load vector for a linear bar element. The first part of the right half is

E A

[
W

du(x)

dx

]L

0
(3.53)

with the definition of the weighting function according to Eq. (3.49)

E A

[(
N δup

)T du(x)

dx

]L

0
= E A

[
δuT

p NT du(x)

dx

]L

0
(3.54)
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results, or in components

δuT
p E A

[[
N1
N2

]
du(x)

dx

]L

0
. (3.55)

The virtual displacements δuT
p in the last equation can be canceled with the corre-

sponding expression in Eq. (3.52). Furthermore, the last equation represents a system
of two equations, which have to be evaluated on the boundary of integration at x = 0
and x = L . The first line results in:

(
N1 E A

du

dx

)
x = 0

−
(

N1 E A
du

dx

)
x = 0

. (3.56)

Under consideration of the shape functions boundary values, meaning N1(L) = 0
and N1(0) = 1, the following results:

−E A
du

dx

∣∣∣∣
x = 0

(3.10)= −S(x = 0). (3.57)

The value of the second line can be calculated accordingly:

E A
du

dx

∣∣∣∣
x = 0

(3.10)= S(x = L). (3.58)

It must be noted that the forces S represent the internal reactions according to Fig. 3.2,
hence the external loads with the positive direction according to Fig. 3.3 result from
the internal reactions by reversing the positive direction on the left section and by
maintaining the positive direction of the internal reaction on the right section.
The second part of the right-hand side of Eq. (3.47), meaning after canceling of δuT

L∫
0

N(x)Tq(x)dx (3.59)

represents the general calculation rule for the definition of the equivalent nodal loads
in the case of arbitrarily distributed loads. It should be noted at this point that the
evaluation of Eq. (3.59) for a constant distributed load q results in the following load
vector:

Fq = q L

2

[
1
1

]
. (3.60)
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3.3 Sample Problems and Supplementary Problems

3.3.1 Sample Problems

3.1. Tension Bar with Variable Cross-Section

So far the cross-section A(x) was assumed to be constant along the body axis. As an
enhancement to that the cross-section needs to be variable. The cross-section A(x)

should change linearly along the body axis. The modulus of elasticity is still regarded
to be constant. Unknown is the stiffness matrix (Fig. 3.6).

Fig. 3.6 Tension bar with variable cross-section

3.1 Solution

The integral

ke =
∫
Ω

BT D B dΩ (3.61)

has to be evaluated to derive the element stiffness matrix. The displacement distrib-
ution should be approximated linearly, as in the derivation above. Nothing changes
for the shape functions or their derivatives. The following results for matrix B

B = 1

L
[−1 1]. (3.62)

In contrast to the prismatic bar with constant cross-section, the area A(x) remains
under the integral. The constant modulus of elasticity E in

ke =
∫
L

1

L

[
1

−1

]
E

1

L
[−1 1] A(x) dx (3.63)
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can be drawn in front of the integral. It remains:

ke = E

L2

[
1 −1

−1 1

] ∫
L

A(x) dx . (3.64)

The linear course of the cross-section can be described through the following:

A(x) = A1 + A2 − A1

L
x . (3.65)

After the execution of the integration

∫
L

A(x) dx =
∫
L

[
A1 + A2 − A1

L
x

]
dx = 1

2
(A1 + A2) L (3.66)

the stiffness matrix

ke = E

L

1

2
(A1 + A2)

[
1 −1

−1 1

]
(3.67)

for a tension bar with linear changeable cross-section results.

3.2. Tension Bar Under Dead Weight

Given is a bar with length L with constant cross-section A, constant modulus of
elasticity E and constant density ρ along the bar axis. The bar is now loaded through
its dead weight (see Fig. 3.7).

Fig. 3.7 Tension bar under
dead weight

Unknown are:

1. The analytical solution and
2. the finite element solution for a single bar element with linear approximation of

the displacement distribution.
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3.2 Solution

Analytical Solution for the Tension Bar Under Dead Weight

Equation (3.13) is the basis for the solution. The dead weight force needs to be
interpreted as a continuously distributed load q(x), which is constant throughout the
length of the bar:

q(x) = q0 = ρ g A. (3.68)

Starting from the differential equation of 2nd order

E A
d2u(x)

dx2 = E Au′′(x) = −q0, (3.69)

one receives the first derivative of the displacement through a one-time integration

E A
du(x)

dx
= E Au′(x) = −q0x + c1, (3.70)

and due to a further integration one receives the function of the displacement:

E Au(x) = −1

2
q0 x2 + c1 x + c2. (3.71)

The constants of integration c1 and c2 are adjusted through the boundary conditions.
The displacement is zero at the fixed support and the following applies:

u(x = 0) = 0 ⇒ c2 = 0. (3.72)

The end of the bar is without force and the following results from Eq. (3.70):

E Au′(x = L) = 0 ⇒ −q0 L + c1 = 0 ⇒ c1 = q0 L . (3.73)

If the constants of integration c1 and c2 are inserted with the term for the distributed
load, the following results for the displacement field along the bar axis

u(x) = 1

E A

[
−1

2
q0x2 + q0 Lx

]
= ρgL2

E

[
−1

2

( x

L

)2 +
( x

L

)]
(3.74)

and the strain field

ε(x) = du(x)

dx
= ρgL

E

[
1 − x

L

]
(3.75)

and the stress field
σ(x) = Eε(x) = ρgL

[
1 − x

L

]
. (3.76)



48 3 Bar Element

FE Solution for the Tension Bar Under Dead Weight

The basis for the finite element solution is the stiffness relation
[

k −k
−k k

] [
u1
u2

]
= 1

2
q0 L

[
1
1

]
(3.77)

with a linear approximation of the displacement distribution. If the formulations

k = E A

L
, q0 = ρgA (3.78)

are inserted for the stiffness k and the distributed load q0, the following compact
form results [

1 −1
−1 1

] [
u1
u2

]
= 1

2

ρgL2

E

[
1
1

]
, (3.79)

from which, the displacement at the lower end of the bar

u2 = 1

2

ρgL2

E
(3.80)

can be read off, after introducing the boundary condition (u1 = 0). The displacement
at the lower end of the bar matches with the analytical solution. The displacement is
linearly distributed on the inside of the bar. The error towards the analytical solution
with a quadratic distribution can be minimized or eliminated through the use of more
elements or elements with quadratic shape functions.

3.3. Tension Bar Under Dead Weight, Two Elements

Given is the tension bar with length L under dead weight, as in Exercise 3.2. For the
determination of the solution on the basis of the FE method, two elements with linear
shape functions should be used.

3.3 Solution

The basis for the solution is the single stiffness relation for the bar under consideration
of a distributed load. One receives the total stiffness relation with two elements
through the development of two single stiffness relations.5 With the formulations for
the stiffness k and the distributed load q0

k = E A

L
, q0 = ρgA (3.81)

5 Here the FE solution is shown in brief. A detailed derivation for the development of a total stiffness
matrix, for the introduction of boundary conditions and for the identification of the unknown is
introduced in Chap. 7.

http://dx.doi.org/10.1007/978-3-642-31797-2_7
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a compact form results

E A
1
2 L

⎡
⎣ 1 −1 0

−1 1 + 1 −1
0 −1 1

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ = 1

2
ρgA

1

2
L

⎡
⎣ 1

1 + 1
1

⎤
⎦ . (3.82)

The first line and column can be eliminated due to the boundary conditions (u1 = 0).
It remains a system of equations with two unknowns

[
2 −1

−1 1

] [
u2
u3

]
= 1

8

ρgL2

E

[
2
1

]
, (3.83)

after a short transformation

[
2 −1
0 1

] [
u2
u3

]
= 1

8

ρgL2

E

[
2
4

]
(3.84)

the displacement at the end node

u3 = 1

2

ρgL2

E
(3.85)

and through insertion into Eq. (3.84) the displacement at the mid-node

u2 = 1

2

[
1

2
+ 1

8

]
ρgL2

E
= 3

8

ρgL2

E
(3.86)

can be identified.

3.3.2 Supplementary Problems

3.4. Tension Bar with Quadratic Approximation

Given is a prismatic tension bar with length L , with constant cross-section AL , and
modulus of elasticity E . In contrast to the derivation above, the displacement distri-
bution on the inside of the bar element needs to be approximated through a quadratic
shape function. Unknown is the stiffness matrix.

3.5. Tension Bar with variable Cross-Section and Quadratic Approximation

The cross-section A(x) changes linearly along the body axis. The modulus of elas-
ticity is constant further on. The displacement distribution on the inside of the bar
element needs to be approximated through quadratic shape functions.
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