
Chapter 10
Nonlinear Elasticity

Abstract Within this chapter, the case of the nonlinear elasticity, meaning strain-
dependent modulus of elasticity, will be considered. The problem will be illustrated
with the example of bar elements. First, the stiffness matrix or alternatively the
principal finite element equation will be derived under consideration of the strain
dependency. For the solving of the nonlinear system of equations three approaches
will be derived, namely the direct iteration, the complete Newton–Raphson itera-
tion and the modified Newton–Raphson iteration, and will be demonstrated with
the help of multiple examples. Within the framework of the complete Newton–
Raphson iteration the derivation of the tangent stiffness matrix will be discussed in
detail.

10.1 Introductory Remarks

In the context of the finite element method it is common to distinguish between the
following kind of nonlinearities [1]:

• Physical or material nonlinearities: This relates to nonlinear material behavior,
as, for example, in the elastic area (covered within this chapter) of rubber or elasto-
plastic behavior (covered in Chap. 11).

• Nonlinear boundary conditions: This is, for example, the case that in the course
of the load application, a displacement boundary condition changes. Typical for
this case are contact problems. This will not be covered within this book.

• Geometric or kinematic nonlinearity: This relates to large displacements and
rotations at small strains. As examples structure elements such as wires and beams
can be named. This will not be covered within this book.

• Large deformations: This relates to large displacements, rotations and large
strains. This will not be covered within this book.

• Stability problems: Here, one has to distinguish between the geometric instability
(as, for example, the buckling of bars and plates) and the material instability (as, for
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(a) (b)

Fig. 10.1 Different behavior in the elastic range: a linear ; b nonlinear stress–strain diagram

example, the necking of tensile samples or the formation of shear bands). Within
this book only the buckling of bars will be covered in Chap. 12.

The basic characteristic of elastic material behavior is that the strains go back to zero
completely after unloading.1 In the case of linear elasticity with a constant modulus
of elasticity the loading and unloading takes places in the stress–strain diagram along
a straight line, see Fig. 10.1a. The slope of this straight line equals exactly the constant
modulus of elasticity E , according to Hooke’s law. In generalization of this linear
elastic behavior the loading and unloading can also take place along a nonlinear
curve, and in this case one talks about nonlinear elasticity, see Fig. 10.1b. In this case
Hooke’s law is only valid in an incremental or differential form:

dσ(ε)

dε
= E(ε). (10.1)

One considers here that the denotation ‘linear’ or alternatively ‘nonlinear’ elastic-
ity relates to the behavior of the stress–strain curve. Furthermore, the modulus of
elasticity can also be dependent on the coordinate. This is, for example, the case of
functionally graded materials, the so-called gradient materials. Therefore the modu-
lus of elasticity in general, under the consideration of the kinematic relation, can be
indicated as

E = E(x, u). (10.2)

However, a dependency from the x-coordinate can be treated as a variable cross-
section2 and demands no further analysis at this point. Therefore, in the following,
the focus is on dependencies of the form E = E(u) or alternatively E = E

( du
dx

)
.

1 At plastic material behavior remaining strains occur. This case will be covered in Chap. 11.
2 For this, see the treatment of bar elements with variable cross-sectional areas A = A(x) in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-31797-2_12
http://dx.doi.org/10.1007/978-3-642-31797-2_11
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10.2 Element Stiffness Matrix for Strain Dependent Elasticity

The following derivations will be carried out for the example case that the modulus
of elasticity is dependent linearly on the strain, see Fig. 10.2. Under this assumption,
the according Fig. 10.2a, a nonlinear stress–strain diagram results. The linear course
of the modulus of elasticity can be defined in the following via the two sampling
points E(ε = 0) = E0 and E(ε = ε1) = E1.

(a) (b)

Fig. 10.2 a Nonlinear stress–strain diagram; b strain dependent modulus of elasticity

Therefore, the following course of the function for the strain dependent modulus of
elasticity results for the two sampling points:

E(ε) = E0 − ε

ε1
(E0 − E1) = E0

(
1 − ε × 1 − E1/E0

ε1︸ ︷︷ ︸
α01

)
= E0(1 − εα01).

(10.3)

It needs to be remarked at this point that the principal route for the derivation does not
change as long as the strain dependency of the modulus of elasticity can be described
via a polynomial. This is often the case in practical applications, since experimental
values are often approximated through a polynomial regression.
After the introduction of the kinematic relation for a bar, meaning ε = du

dx , herefrom
the modulus of elasticity results in dependence of the displacement—or, to be precise,
dependence of the derivative of the displacement—in:

E(u) = E0

(
1 − α01

du

dx

)
. (10.4)
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This strain dependent modulus of elasticity can be integrated analytically via the
differential Hooke’s law and the following stress distribution results3:

σ(ε) = E0ε − E0 − E1

2E0ε1
ε2 = E0ε − 1

2
α01 E0ε

2. (10.5)

One notes that the classical relations for linear elastic material behavior result for
E0 = E1 or alternatively α01 = 0.
For the derivation of the element stiffness matrix, the differential equation for a bar
has to be considered. For simplification reasons it is assumed at this point that the
bar cross-section A is constant and that no distributed loads are acting. Therefore the
following formulation for the differential equation results:

A
d

dx

(
E(u)

du

dx

)
= 0. (10.6)

At first, the case is regarded that E(u) is replaced by the expression according to
Eq. (10.4):

A
d

dx

(
E0

(
1 − α01

du

dx

)
du

dx

)
= AE0

d

dx

(
du

dx
− α01

(
du

dx

)2
)

= 0. (10.7)

After the completion of the differentiation the following expression results for the
differential equation, which describes the problem:

AE0
d2u(x)

dx2 − 2AE0α01
du(x)

dx

d2u(x)

dx2 = 0. (10.8)

Within the framework of the weighted residual method the inner product results
herefrom through multiplication with the weighting function W (x) and subsequent
integration via the bar length in:

L∫

0

W (x)

(
AE0

d2u(x)

dx2 − 2AE0α01
du(x)

dx

d2u(x)

dx2

)
dx

!= 0 . (10.9)

Partial integration of the first expression in brackets yields:

L∫

0

AE0 W︸︷︷︸
f

d2u

dx2
︸︷︷︸

g′

dx = AE0

[
W︸︷︷︸
f

du

dx︸︷︷︸
g

]L

0
−

L∫

0

AE0
dW

dx︸︷︷︸
f ′

du

dx︸︷︷︸
g

dx . (10.10)

3 At this point it was assumed that for ε = 0 the stress turns 0. Therefore, for example no residual
stress exists.
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Accordingly, the second expression in brackets can be reformulated via partial inte-
gration:

L∫

0

2AE0α01

(
W

du

dx

)

︸ ︷︷ ︸
f

d2u

dx2
︸︷︷︸

g′

dx

= 2AE0α01

[
W

du

dx︸ ︷︷ ︸
f

du

dx︸︷︷︸
g

]L

0
−

L∫

0

2AE0α01
d

dx

(
W

du

dx

)

︸ ︷︷ ︸
f ′

du

dx︸︷︷︸
g

dx

= 2AE0α01

[
W
(du

dx

)2]L

0
−

L∫

0

2AE0α01

(
dW

dx

du

dx
+ W

d2u

dx2

)
du

dx
dx

= 2AE0α01

[
W
(du

dx

)2]L

0
−

L∫

0

2AE0α01
dW

dx

(
du

dx

)2

dx

−
L∫

0

2AE0α01W
d2u

dx2

du

dx
dx . (10.11)

Finally, the following results for the partial integration of the second expression:

L∫

0

2AE0α01W
du

dx

d2u

dx2 dx = AE0α01

[
W
(du

dx

)2]L

0

−
L∫

0

AE0α01
dW

dx

(
du

dx

)2

dx . (10.12)

The following expression results, when the expressions of the partial integrations
according to Eqs. (10.10) and (10.12) are inserted into the inner product according
to Eq. (10.9) and when the domain and boundary integrals are arranged:

L∫

0

AE0
dW

dx

du

dx
dx −

L∫

0

AE0α01
dW

dx

(
du

dx

)2

dx

= AE0

[

W
du

dx
− α01W

(
du

dx

)2
]L

0

. (10.13)
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The introduction of the approaches for the displacement and the weighting function,
meaning u(x) = Nup and W (x) = δuT

p NT(x), leads to the following expression,

after canceling of the virtual displacement δuT
p and factoring out the displacement

vector up:

AE0

L∫

0

(
dNT(x)

dx

dN(x)

dx
− α01

dNT(x)

dx

(
dN(x)

dx
up

)
dN(x)

dx

)
dx × up

= AE0

[
dNT(x)

dx

(
du

dx
− α01

(
du

dx

)2
)]L

0

. (10.14)

Therefore, in dependence of the nodal displacement up the element stiffness matrix4

results in:

ke = AE0

L∫

0

(
dNT(x)

dx

dN(x)

dx
− α01

(
dNT(x)

dx

dN(x)

dx

)(
up

dN(x)

dx

))
dx .

(10.15)
If the shape functions are known, the stiffness matrix can be evaluated. The second
expression in the outer brackets yields an additional symmetrical expression, which
can be superposed to the classical stiffness matrix for linear elastic material behavior.
For a constant modulus of elasticity α01 = 0 results and one receives the classical
solution. The following dimensions of the single matrix products results if the bar
element has m nodes and therefore m shape functions:

dNT(x)

dx

dN(x)

dx
→ m × m matrix, (10.16)

up
dN(x)

dx
→ m × m matrix, (10.17)

(
dNT(x)

dx

dN(x)

dx

)(
up

dN(x)

dx

)
→ m × m matrix. (10.18)

However, in the following an alternative strategy is illustrated, which leads slightly
faster to the principal finite element equation. On the basis of the differential equation
in the form (10.6), the inner product can be derived without replacing the expression
for E(u) a priori:

L∫

0

W (x)A
d

dx

(
E(u(x))

du(x)

dx

)
dx

!= 0 . (10.19)

4 One considers that the associative law applies for matrix multiplications.
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Partial integration yields

L∫

0

W︸︷︷︸
f

A
d

dx

(
E(u)

du

dx

)

︸ ︷︷ ︸
g′

dx =
[

W︸︷︷︸
f

AE(u)
du

dx︸ ︷︷ ︸
g

]L

0
−

L∫

0

dW

dx︸︷︷︸
f ′

AE(u)
du

dx︸ ︷︷ ︸
g

dx = 0,

and the weak form of the problem appears as follows:

L∫

0

AE(u)
dW

dx

du

dx
dx =

[
AE(u)W

du

dx

]L

0
. (10.20)

Via the approaches for the displacement and the weighting function, the following
results herefrom:

A

L∫

0

E(u)
NT

dx

N
dx

dx

︸ ︷︷ ︸
ke

×up =
[

AE(u)
du

dx

dNT

dx

]L

0
. (10.21)

The right-hand side can be handled according to the procedure in Chap. 3 and yields
the vector of the external loads. The left-hand side, however, requires that the modulus
of elasticity E(u) is considered appropriately. If the approach for the displacement,
meaning u(x) = N(x)up, is considered in the formulation of the modulus of elas-
ticity according to Eq. (10.4), the following results:

E(up) = E0

(
1 − α01

dN
dx

up

)
. (10.22)

It can be considered at this point that the expression dN
dx up yields a scalar parameter.

Therefore, the stiffness matrix results in:

ke = AE0

L∫

0

(
1 − α01

dN
dx

up

)

︸ ︷︷ ︸
scalar

dNT

dx

dN
dx

dx . (10.23)

This stiffness matrix is—as Eq. (10.15)—symmetric since the symmetric matrix
dNT

dx
dN
dx is multiplied by a scalar.

http://dx.doi.org/10.1007/978-3-642-31797-2_3
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In the following, a bar element with two nodes, meaning linear shape functions, can
be considered. Both shape functions and their derivatives in this case result in:

N1(x) = 1 − x

L
,

dN1(x)

dx
= − 1

L
, (10.24)

N2(x) = x

L
,

dN2(x)

dx
= 1

L
. (10.25)

Therefore the stiffness matrix results in:

ke = AE0

L∫

0

(
1 − α01

dN1

dx
u1 − α01

dN2

dx
u2

)
⎡

⎢⎢
⎣

dN1

dx

dN1

dx

dN1

dx

dN2

dx
dN2

dx

dN1

dx

dN2

dx

dN2

dx

⎤

⎥⎥
⎦ dx,

(10.26)

or alternatively under consideration of the derivatives of the shape functions

ke = AE0

L2

L∫

0

(
1 + α01

L
u1 − α01

L
u2

) [1 −1
−1 1

]
dx . (10.27)

After completion of the integration herefrom the element stiffness matrix results in

ke = AE0

L2 (L + α01 u1 − α01 u2)

[
1 −1

−1 1

]
(10.28)

or the principal finite element equation as:

AE0

L2 (L + α01 u1 − α01 u2)

[
1 −1

−1 1

] [
u1
u2

]
=
[

F1
F2

]
. (10.29)

One considers that for the constant modulus of elasticity, meaning α01 = 0, the
classical solution from Chap. 3 results. For the variable modulus of elasticity the
following system of equations results in matrix notation:

ke(up)up = Fe, (10.30)

or, alternatively, with various elements for the total system

K (u)u = F. (10.31)

Since the stiffness matrix is dependent on the unknown nodal displacements u,
a nonlinear system of equations results, which cannot be solved directly through
inverting of the stiffness matrix.

http://dx.doi.org/10.1007/978-3-642-31797-2_3
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10.3 Solving of the Nonlinear System of Equations

The solving of the nonlinear system of equations can be explained in the following
for a bar, which is fixed on one side and loaded by a single force F on the other
side, with the help of various methods, see Fig. 10.3. The modulus of elasticity is,

(a) (b)

Fig. 10.3 Bar element under point load and strain dependent modulus of elasticity

according to Eq. (10.3), linearly dependent on the strain. First the discretization via
one single element takes place, so that, under consideration of the fixed support,
a system with one single degree of freedom results. The resulting equations are
therefore solely dependent on one variable, the nodal displacement at the loading
point. In the following step, one merges to the general case of a system with various
degrees of freedom. The illustration takes place via a discretization of the problem
according to Fig. 10.3a with two elements and therefore with two degrees of freedom.
For the example according to Fig. 10.3, the following values can be assumed:
Geometry: A = 100 mm2, L = 400 mm. Material characteristics: E0 = 70,000
MPa, E1 = 49,000 MPa, ε1 = 0.15. Load: F = 800 kN.

10.3.1 Direct Iteration

At the direct or Picard’s iteration [2, 3], the system of Eq. (10.31) is solved by
evaluating the stiffness matrix in the previous and therefore known step. Through the
selection of a reasonable initial value—for example from a linear elastic relation—the
solution can be determined via the following formula through gradual inserting:

K (u( j))u( j+1) = F. (10.32)

The schematic illustration of the direct iteration is shown in Fig. 10.4.
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Fig. 10.4 Schematic illustra-
tion of the direct iteration

This method converges for modest nonlinearities with linear convergence
rate.

10.3.1.1 Direct Iteration for a Finite Element Model with One Unknown

For the example corresponding to Fig. 10.3 and the principal finite element equation
according to (10.29), under consideration of the fixed support, the iteration formula
results in:

AE0

L2

(
L − α01u( j)

2

)
u( j+1)

2 = F2, (10.33)

or alternatively solved for the new displacement:

u( j+1)
2 = F2L2

AE0

(
L − α01u( j)

2

) . (10.34)

The evaluation of Eq. (10.34) for the example corresponding to Fig. 10.3 is summa-
rized in Table 10.1 for an arbitrary initial value of u(0)

2 = 20 mm. The normalized
displacement difference was indicated as convergence criteria, whose fulfillment
requires 23 iterations for a value of 10−6. Furthermore, one considers the absolute
value of the displacement at the 31st increment, which is also consulted as a reference
value in other methods.

10.3.1.2 Direct Iteration for a Finite Element Model with Various Unknowns

For the application of the direct iteration on a model with various unknowns, the
bar, according to Fig. 10.3 can be considered in the following. The discretization
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Table 10.1 Numerical values for the direct iteration in the case of one element with an external
load of F2 = 800 kN and an initial value of u(0)

2 = 20 mm. Geometry: A = 100 mm2, L = 400 mm.
Material characteristics: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) ε

( j)
2

√√√
√
(

u( j)
2 −u( j−1)

2

)2

(
u( j)

2

)2

0 20.000000 0.050000 –
1 50.793651 0.126984 0.606250
2 61.276596 0.153191 0.171076
3 65.907099 0.164768 0.070258
4 68.183007 0.170458 0.033379
5 69.360231 0.173401 0.016973
6 69.985252 0.174963 0.008931
7 70.321693 0.175804 0.004784
8 70.504137 0.176260 0.002588
9 70.603469 0.176509 0.001407
10 70.657668 0.176644 0.000767
11 70.687276 0.176718 0.000419
12 70.703461 0.176759 0.000229
13 70.712312 0.176781 0.000125
14 70.717152 0.176793 0.000068
15 70.719800 0.176800 0.000037
16 70.721248 0.176803 0.000020
17 70.722041 0.176805 0.000011
18 70.722474 0.176806 0.000006
19 70.722711 0.176807 0.000003
20 70.722841 0.176807 0.000002
21 70.722912 0.176807 0.000001
22 70.722951 0.176807 0.000001
23 70.722972 0.176807 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

31 70.722998 0.176807 0.000000

should occur through two bar elements, which have the same length. Therefore, the
following element stiffness matrix results for each of the two elements with length L

2 :

4AE0

L2

(
L

2
+ α01u1 − α01u2

)[
1 −1

−1 1

]
(element I), (10.35)

4AE0

L2

(
L

2
+ α01u2 − α01u3

)[
1 −1

−1 1

]
(element II). (10.36)

The following reduced system of equations results, if the two matrices are summa-
rized to the global principal finite element equation and if the boundary conditions
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are considered:

4AE0

L2

⎡

⎢⎢
⎣

(L − α01u3) −
(

L

2
+ α01u2 − α01u3

)

−
(

L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)

⎤

⎥⎥
⎦

[
u2
u3

]
=
[

0
F3

.

]

(10.37)

Through inversion one obtains the following iteration formula of the direct iteration:

[
u2

u3

]

( j+1)

=
L2

4AE0

DET ( j)

⎡

⎢
⎢
⎢
⎣

(
L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)

(
L

2
+ α01u2 − α01u3

)
(L − α01u3)

⎤

⎥
⎥
⎥
⎦

( j)

[
0
F3

]

( j)
,

(10.38)

whereupon the determinant of the reduced stiffness matrix is given through the fol-
lowing equation:

DET = (L − α01u3)

(
L

2
+ α01u2 − α01u3

)
−
(

L

2
+ α01u2 − α01u3

)2

.

(10.39)

In general, the iteration instruction according to Eq. (10.38) can also be written as

u( j+1) =
(

K (u( j))
)−1

F. (10.40)

The numerical results of the iteration for the example according to Fig. 10.3 with
two elements are summarized in Table 10.2. A comparison with the direct iteration
with one element, meaning Table 10.1, yields that the division in two elements has
practically no influence on the convergence behavior. One considers that the dis-
placements on node 2 and 3 are listed in Table 10.2 and that only in the converged
situation the condition u2 = 1

2 u3 results.

10.3.2 Complete Newton–Raphson Method

10.3.2.1 Newton’s Method for a Function with One Variable

For the definition of the root of a function f (x), meaning f (x) = 0, Newton’s
iteration is often used. For the derivation of the iteration method, one develops the
function f (x) around the point x0 in a Taylor’s series
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Table 10.2 Numerical values for the direct iteration in the case of two elements with an external
load of F2 = 800 kN and initial values of u(0)

2 = 10 and u(0)
3 = 20 mm. Geometry: A = 100 mm2,

L I = L II = 200 mm. Material characteristics: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√
√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 10.000000 20.000000 –
1 28.571429 49.350649 0.706244
2 32.000000 60.852459 0.174565
3 33.613445 65.739844 0.069707
4 34.430380 68.106422 0.032806
5 34.859349 69.3222247 0.016616
6 35.088908 69.9655414 0.008727
7 35.213000 70.3112206 0.004671
8 35.280446 70.4984992 0.002525
9 35.317213 70.6004116 0.001372
10 35.337288 70.6560035 0.000748
.
.
.

.

.

.
.
.
.

.

.

.

23 35.361489 70.7229715 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

31 35.361499 70.7229976 0.000000

f (x) = f (x0) +
(

d f

dx

)

x0

· (x − x0) + 1

2!
(

d2 f

dx2

)

x0

· (x − x0)
2

+ · · · + 1

k!
(

dk f

dxk

)

x0

· (x − x0)
k . (10.41)

If the expressions of quadratic and higher order are disregarded, the following approx-
imation results:

f (x) ≈ f (x0) +
(

d f

dx

)

x0

· (x − x0). (10.42)

When considering that the derivative of a function equals the slope of the tangent
line in the considered point and that the slope-intercept equation of a straight line
is given via f (x) − f (x0) = m · (x − x0), one can see that the approximation via
a Taylor’s series of first order is given through the straight line through the point
(x0, f (x0)) with slope m = (d f/dx)x0 , see Fig. 10.5.
For the derivation of the iteration formula for the definition of the roots, one
sets Eq. (10.42) equal 0 and obtains the following calculation instruction via the
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Fig. 10.5 Development of a function into a Taylor’s series of first order

substitutions x0 → x ( j) and x → x ( j+1):

x ( j+1) = x ( j) − f (x ( j))
(

d f

dx

)

x ( j)

. (10.43)

The principle course of action of a Newton’s iteration is illustrated in Fig. 10.6. At

Fig. 10.6 Definition of the
root of a function via New-
ton’s iteration

the initial point of the iteration, the tangent is pictured on the graph of the function
f (x) and subsequently the root of this tangent will be defined. In the ordinate value
of this root, the next tangent will be formed and the procedure will be continued
according to the course of action in the initial point. If f (x) is a continuous and
monotonic function in the considered interval and if the initial point of the iteration
lies ‘close enough’ to the unknown solution, the method converges quadratically
against the root.
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10.3.2.2 Newton–Raphson Method for a Finite Element Model
with One Unknown

For the example according to Fig. 10.3, the problem reduces to locating the roots of
the function, under consideration of the boundary conditions on the left-hand node

r(u2) = AE0

L2 (L − α01u2) u2 − F2 = K (u2)u2 − F2 = 0. (10.44)

When applying the iteration instruction of the previous Sect. 10.3.2.1 on the residual
function r(u2), the following Newton–Raphson iteration instruction5 results in

u( j+1)
2 = u( j)

2 − r(u( j)
2 )

dr(u( j)
2 )

du2

= u( j)
2 −

(
K ( j)

T

)−1
r(u( j)

2 ), (10.45)

whereupon the parameter KT is in general referred to as the tangent stiffness matrix.6

In the example considered at this point, KT however reduces to a scalar function. On
the basis of Eq. (10.44) the tangent stiffness matrix for our example results in:

KT(u2) = dr(u2)

du2
= K (u2) + dK (u2)

du2
u2 (10.46)

= AE0

L2 (L − α01u2) − AE0

L2 α01u2

= AE0

L2 (L − 2α01u2) . (10.47)

When using the last result in the iteration instruction (10.45) and when considering
the definition of the residual function according to (10.44), the iteration instruction
for the regarded example finally results in:

u( j+1)
2 = u( j)

2 −
AE0

L2

(
L − α01u( j)

2

)
u( j)

2 − F ( j)
2

AE0

L2

(
L − 2α01u( j)

2

) . (10.48)

The application of the iteration instruction according to Eq. (10.48) with α01 = 2
leads to the summarized results in Table 10.3. One can see that only six iteration steps
are necessary for the complete Newton–Raphson iteration, due to the quadratic
convergence behavior, to achieve the convergence criteria (<10−6) and the absolute
value of u2 = 70.722998 mm. In the general case of the method however, the

5 In the context of the finite element method Newton’s iteration is often referred to as the Newton–
Raphson iteration [4].
6 Alternative names in literature are HESSIAN, JACOBIAN or tangent matrix [1].
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Table 10.3 Numerical values for the complete Newton–Raphson method at an external load of
F2 = 800 kN. Geometry: A = 100 mm2, L = 400 mm. Material behavior: E0 = 70, 000 MPa,
E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) ε

( j)
2

√√√
√
(

u( j)
2 −u( j−1)

2

)2

(
u( j)

2

)2

0 0 0 –
1 45.714286 0.114286 1
2 64.962406 0.162406 0.296296
3 70.249443 0.175624 0.075261
4 70.719229 0.176798 0.006643
5 70.722998 0.176807 0.000053
6 70.722998 0.176807 0.000000

huge disadvantage arises that the tangent stiffness matrix has to be recalculated
and inverted for each iteration step. For huge systems of equations this leads to quite
calculational intensive operations and can perhaps compensate the advantage of the
quadratic convergence.
When increasing the external load F2, a limit value results, however, from which
no convergence can be achieved with the Newton–Raphson method any longer. A
strain dependent modulus of elasticity according to Eq. (10.4) leads through integra-
tion to the illustrated parabolic stress distribution in Fig. 10.7. Based on this illustra-

Fig. 10.7 Stress–strain course for a strain dependent modulus of elasticity according to Eq. (10.4)

tion the maximal stress to σmax = E0
2α01

or alternatively the maximal force in a bar to

Fmax = E0 A
2α01

can be defined.
However, through gradual increasing of the external force F2 in the regarded example,
it results that the convergence limit is achieved clearly lower than the maximal force
of Fmax = 1, 750 kN. Via a few iteration cycles it can be shown that starting with a
value of about 900 kN, no convergence can be achieved any longer in the considered



10.3 Solving of the Nonlinear System of Equations 249

example. One also considers that a reasonable physical choice of the external force
always has to meet the condition F2 ≤ Fmax.
To explain the loss of convergence, the residual function according to Eq. (10.44) has
to be considered more closely, whereupon it has to be considered that the iteration
method needs to define the roots of this function. The considered residual function
is a quadratic function in u2, which can be changed into the following equation of a
parabola by completing the square:

(
u2 − L

2α01

)2

+
(

F2

E0 A
− 1

4α01

)
L2

α01
= 0. (10.49)

Therefore Eq. (10.44) represents an upward facing parabola with the vertex(
L

2α01
,
(

F2
E0 A − 1

4α01

)
L2

α01

)
. Depending on the position of the vertex, a different num-

ber of roots results (see Fig. 10.8), so that the boundary value for the convergence of
the iteration method is defined through the boundary point of the parabola with the
u2-axis:

F2

E0 A
− 1

4α01
= 0. (10.50)

Therefore, the Newton–Raphson iteration method for the considered case, that
the modulus of elasticity according to Eq. (10.4) is dependent linearly on the strain,
converges solely within the following boundaries:

F2 ≤ E0 A

4α01
, or alternatively ε ≤ 1

2α01
. (10.51)

The schematic process of the Newton–Raphson iteration is illustrated in
Fig. 10.9. The tangent stiffness matrix K ( j)

T is calculated in every single iteration

point u( j)
2 , to conclude the follow-on value u( j+1)

2 via a linearization. It is impor-
tant at this point that the tangent stiffness matrix can be identified as the derivative
in the force displacement diagram, see Fig. 10.9a. To receive the illustration in a
stress–strain diagram, one has to divide the residual equation (10.44) through the
cross-sectional area and has to scale the displacement with the length, so that one
obtains the following form:

E0

(
1 − α01

u2

L

) u2

L
− F2

A
= 0, (10.52)

or alternatively in the variables stress and strain as

r(ε) = E0 (1 − α01ε)︸ ︷︷ ︸
E(ε)

ε − σ = 0. (10.53)
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Fig. 10.8 Illustration of the
residual function according
to Eq. (10.44) for different
external loads F2

(a)

(b)

(c)
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(a) (b)

Fig. 10.9 Schematic illustration of the complete Newton–Raphson iteration

It is important at this point to note that the last equation is not confused with the stress–
strain course according to Eq. (10.5), since the last equation deals with the outer and
inner forces. Application of the iteration instruction according to Eq. (10.45) leads
to the following formula at this juncture

ε( j+1) = ε( j) − r(ε( j))

dr(ε( j))

dε

, (10.54)

whereupon

dr(ε)

dε
= ET = E(ε) + dE

dε
ε, (10.55)

= E0(1 − α01ε) − E0α01ε, (10.56)

= E0(1 − 2α01ε) (10.57)

is referred to as the consistent modulus ET to the iteration formula. One considers
the difference for the continuum mechanical modulus according to Eq. (10.3). Solely
in the case of α01 = 0, meaning for a constant modulus of elasticity, both moduli
match.
At this point it needs to be remarked that the residual equation (10.44) can be further
generalized by introducing a displacement dependent external load F2 = F2(u2):

r(u2) = K (u2)u2 − F2(u2) = 0. (10.58)

In this generalized case, the tangent stiffness matrix would result as follows:

KT(u2) = dr(u2)

du2
= K (u2) + dK (u2)

du2
u2 − dF2(u2)

du2
. (10.59)
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10.3.2.3 Newton–Raphson Method for a Finite Element Model
with m Unknowns

The complete Newton–Raphson method [1, 5, 6] for a model with various
unknowns is, in general, expressed through the following equation

u( j+1) = u( j) − (K ( j)
T

)−1r(u( j)), (10.60)

whereupon the tangent stiffness matrix in general is defined as

K T = ∂ r(u)

∂u
. (10.61)

The vectorial function of the residuals is generally defined as

r(u) = K u − F (10.62)

and can be illustrated in components for a model with two linear bar elements as
follows:

⎡

⎣
r1(u)

r2(u)

r3(u)

⎤

⎦ =
⎡

⎢
⎣

K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤

⎥
⎦

⎡

⎣
u1
u2
u3

⎤

⎦−
⎡

⎣
F1
F2
F3

⎤

⎦ . (10.63)

The Jacobian matrix
∂ r
∂u

of the residual function results in general from the partial

derivatives ri to:

∂ r
∂u

(u) = K T(u) =
⎡

⎢
⎣

KT,11 KT,12 KT,13

KT,21 KT,22 KT,23

KT,31 KT,32 KT,33

⎤

⎥
⎦ =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

∂r1

∂u1

∂r1

∂u2

∂r1

∂u3

∂r2

∂u1

∂r2

∂u2

∂r2

∂u3

∂r3

∂u1

∂r3

∂u2

∂r3

∂u3

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

. (10.64)

The partial derivatives in Eq. (10.64) can be calculated the easiest, if the residual
equation (10.63) are written in detail:

r1(u1, u2, u3) = K11u1 + K12u2 + K13u3, (10.65)

r2(u1, u2, u3) = K21u1 + K22u2 + K23u3, (10.66)

r3(u1, u2, u3) = K31u1 + K32u2 + K33u3. (10.67)
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As an example, two partial derivatives are given in the following:

∂r1

∂u1
=
(

∂K11

∂u1
u1 + K11

)
+ ∂K12

∂u1
u2 + ∂K13

∂u1
u3, (10.68)

∂r1

∂u2
= ∂K11

∂u2
u1 +

(
∂K12

∂u2
u2 + K12

)
+ ∂K13

∂u2
u2. (10.69)

Therefore, the tangent stiffness matrix results in the illustrated form in Eq. (10.75),
which is composed from the stiffness matrix and a matrix with partial derivatives,
which are multiplied with the nodal displacements. In general, the tangent stiffness
matrix can therefore be formulated for a model with m degrees of freedom as

KT,i j = Ki j +
m∑

k=1

∂Kik

∂u j
uk, (10.70)

or alternatively in matrix notation as

K T = K + ∂ K
∂u

u. (10.71)

As a concluding remark, two important special cases need to be listed at this point:

• Scalar tangent stiffness matrix (see Sect. 10.3.2.2):

KT(u) = K (u) + dK

du
u. (10.72)

• Two-dimensional tangent stiffness matrix (for example linear bar element without
displacement boundary conditions):

K T(u) =
[

K11 K12

K21 K22

]

+

⎡

⎢
⎢⎢
⎣

∂K11

∂u1
u1 + ∂K12

∂u1
u2

∂K11

∂u2
u1 + ∂K12

∂u2
u2

∂K21

∂u1
u1 + ∂K22

∂u1
u2

∂K21

∂u2
u1 + ∂K22

∂u2
u2

⎤

⎥
⎥⎥
⎦

. (10.73)

The general case with u = [ u1, u2, . . . , um ]T and dim(K ) = m × m can easily be
derived from the above considerations.
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K
T

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

∂
K

11

∂
u

1
u

1
+

∂
K

12

∂
u

1
u

2
+

∂
K

13

∂
u

1
u

3
+

K
11

∂
K

11

∂
u

2
u

1
+

∂
K

12

∂
u

2
u

2
+

∂
K

13

∂
u

2
u

3
+

K
12

∂
K

11

∂
u

3
u

1
+

∂
K

12

∂
u

3
u

2
+

∂
K

13

∂
u

3
u

3
+

K
13

∂
K

21

∂
u

1
u

1
+

∂
K

22

∂
u

1
u

2
+

∂
K

23
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u

1
u

3
+

K
21

∂
K

21

∂
u

2
u

1
+

∂
K

22

∂
u

2
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2
+

∂
K

23

∂
u

2
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3
+
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22

∂
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∂
u

3
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1
+

∂
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22

∂
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3
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2
+
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3
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3
+

K
23

∂
K

31
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u

1
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1
+

∂
K

32

∂
u

1
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2
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∂
K

33

∂
u

1
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3
+

K
31
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K

31

∂
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1
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∂
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∂
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K
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3
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1
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∂
K

32

∂
u

3
u

2
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∂
K

33
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u

3
u

3
+

K
33

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

,
(1

0.
74

)

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

K
11

K
12

K
13

K
21

K
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K
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K
31

K
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K
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∂
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∂
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∂
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.
(1

0.
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)
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(a) (b)

Fig. 10.10 Illustration of the residual functions according to Eq. (10.76)

In the following, the model with two bar elements according to Fig. 10.3 can be

considered again. The discretization for two elements with the length
L

2
leads the

residual equation to:

[
r1

r2

]
= 4AE0

L2

⎡

⎢⎢
⎣

(L − α01u3) −
(

L

2
+ α01u2 − α01u3

)

−
(

L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)

⎤

⎥⎥
⎦

[
u2

u3

]
−
[

0
F3

]
= 0.

(10.76)

A graphical illustration of the residual functions according to Eq. (10.76) is given in
Fig. 10.10. Both functions are dependent on two variables, u2 and u3, in this case,
and therefore at this point, surfaces in the space result, whose intersection curves
have to be found via the u2−u3 planes. For this purpose, a tangent plane is built on
the corresponding surface in every single point within the iteration scheme.
The application of the calculation instruction according to Eq. (10.73) leads to the
tangent stiffness matrix as follows in this special case:

K T = 4AE0

L2

⎡

⎢⎢
⎣

(L − α01u3) −
(

L

2
+ α01u2 − α01u3

)

−
(

L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)

⎤

⎥⎥
⎦

+ 4AE0

L2

[
0 − α01u3 −α01u2 + α01u3
−α01u2 + α01u3 α01u2 − α01u3

]
. (10.77)
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The two matrices in the last equation can still be summarized and one obtains the
following illustration for the tangent stiffness matrix:

K T = 4AE0

L2

⎡

⎢
⎣

L − 2α01u3 − L

2
− 2α01u2 + 2α01u3

− L

2
− 2α01u2 + 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤

⎥
⎦ . (10.78)

The tangent stiffness matrix still has to be inverted7 for the iteration scheme according
to Eq. (10.85) and after a short calculation one obtains:

(K T)−1 = L2

4AE0

(
L

2
− 2α01u2

)

⎡

⎢
⎣

1 1

1
L − 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤

⎥
⎦ . (10.79)

Therefore, the iteration scheme u( j+1) = u( j) −
(

K ( j)
T

)−1
r(u( j)) can be applied as

follows for the example according to Fig. 10.3:

[
u2

u3

]

( j+1)

=
[

u2

u3

]

( j)
− L2(4AE0)

−1

L

2
− 2α01u( j)

2

⎡

⎢
⎣

1 1

1
L − 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤

⎥
⎦

( j)

×
⎛

⎜
⎝

4AE0

L2

⎡

⎢
⎣

L − α01u3 − L

2
− α01u2 + α01u3

− L

2
− α01u2 + α01u3

L

2
+ α01u2 − α01u3

⎤

⎥
⎦

( j)

[
u2

u3

]

( j)
−
[

0
F3

]
⎞

⎟
⎠ .

(10.80)

The numerical values of the iteration are summarized in Table 10.4. Due to a com-
parison with the values from Table 10.3 for a model with one single element, one can
see that the convergence behavior is identical.
For practical applications however one would not calculate the tangent stiffness
matrix of the global total system but the derivatives element by element. Subsequently
the tangent stiffness matrices of the single elements—as in the case of the total
stiffness matrix—can be put together for the tangent stiffness matrix of the global
total system:

K T =
∑

K e
T. (10.81)

7 One considers that the calculation of the inverse has to be carried out numerically in commercial
programs.



10.3 Solving of the Nonlinear System of Equations 257

Table 10.4 Numerical values for the complete Newton–Raphson method in the case of two
elements with an external load of F2 = 800 kN. Geometry: A = 100 mm2, L I = L II = 200 mm.
Material behavior: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√
√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 0 0 –
1 22.857143 45.714286 1
2 32.481203 64.962406 0.296296
3 35.124722 70.249443 0.075261
4 35.359614 70.719229 0.006643
5 35.361498 70.722998 0.000053
6 35.361499 70.722998 0.000000

For a linear element with a strain dependent modulus of elasticity according to
Eq. (10.3) follows from the stiffness matrix according to Eq. (10.28), meaning

ke = AE0

L2 (L + α01 u1 − α01 u2)

[
1 −1
−1 1

]
, (10.82)

under application of the calculation instruction (10.73), the following tangent stiff-
ness matrix for a single element with two nodes:

K e
T = ke +

[
α01u1 − α01u2 −α01u1 + α01u2
−α01u1 + α01u2 α01u1 − α01u2

]

= AE0

L2 (L + 2α01 u1 − 2α01 u2)

[
1 −1
−1 1

]
. (10.83)

10.3.3 Modified Newton–Raphson Method

10.3.3.1 Modified Newton–Raphson Method for a Finite Element
Model with One Unknown

The disadvantage of the complete Newton–Raphson method is that the tangent
stiffness matrix has to be calculated and inverted subsequently at each iteration step.
If the tangent stiffness matrix is only calculated once at the beginning, one attains
the modified Newton–Raphson method [1, 5, 6]. From Eq. (10.45) the modified
iteration scheme results in:

u( j+1)
2 = u( j)

2 − r(u( j)
2 )

dr(u(0)
2 )

du2

= u( j)
2 −

(
K (0)

T

)−1
r(u( j)

2 ). (10.84)
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Fig. 10.11 Schematic illus-
tration of the modified
Newton–Raphson itera-
tion

A schematic illustration is given in Fig. 10.11. One can see that the same initial tangent
is used in every iteration step, whereby in comparison with the complete method,
more iteration steps result; the method does not converge quadratically anymore but
only linearly. However, the calculation intensive inversion of the tangent stiffness
matrix in every step drops out and the calculation simplifies significantly.
If the iteration instruction of the modified method according to Eq. (10.84) is applied
to the problem according to Fig. 10.3, the summarized results in Table 10.5 are
obtained. Thirty-six steps are necessary at this point for the fulfillment of the con-
vergence criteria (<10−6) and the reference value of u2 = 70.722998 can only
be achieved after 53 iteration steps. A comparison with the two other iteration
schemes shows that the modified Newton–Raphson method—with functions of
one variable—converges the slowest. However one considers that this conclusion
does not have to be valid for a system of equations anymore.

10.3.3.2 Modified Newton–Raphson Method for a Finite Element
Model with Various Unknowns

The modified Newton–Raphson method for a model with various unknowns is
generally given through the following equation

u( j+1) = u( j) −
(

K (0)
T

)−1
r(u( j)), (10.85)

or alternatively for the example according to Fig. 10.3:

[
u2

u3

]

( j+1)

=
[

u2

u3

]

( j)
− L2(4AE0)

−1

L

2
− 2α01u(0)

2

⎡

⎢
⎣

1 1

1
L − 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤

⎥
⎦

(0)
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Table 10.5 Numerical values for a modified Newton–Raphson method at an external load of
F2 = 800 kN. Geometry: A = 100 mm2, L = 400 mm. Material behavior: E0 = 70, 000 MPa,
E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) ε

( j)
2

√√√
√
(

u( j)
2 −u( j−1)

2

)2

(
u( j)

2

)2

0 0 0 –
1 45.714286 0.114286 1
2 56.163265 0.140408 0.186047
3 61.485848 0.153715 0.086566
4 64.616833 0.161542 0.048455
5 66.590961 0.166477 0.029646
6 67.886066 0.169715 0.019078
7 68.756876 0.171892 0.012665
8 69.351825 0.173380 0.008579
9 69.762664 0.174407 0.005889
10 70.048432 0.175121 0.004080
11 70.248200 0.175621 0.002844
12 70.388334 0.175971 0.001991
13 70.486873 0.176217 0.001398
14 70.556282 0.176391 0.000984
15 70.605231 0.176513 0.000693
16 70.639779 0.176599 0.000489
17 70.664177 0.176660 0.000345
18 70.681416 0.176704 0.000244
19 70.693598 0.176734 0.000172
20 70.702210 0.176756 0.000122
.
.
.

.

.

.
.
.
.

.

.

.

35 70.722883 0.176807 0.000001
36 70.722916 0.176807 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

53 70.722998 0.176807 0.000000

×
⎛

⎜
⎝

4AE0

L2

⎡

⎢
⎣

L − α01u3 − L

2
− α01u2 + α01u3

− L

2
− α01u2 + α01u3

L

2
+ α01u2 − α01u3

⎤

⎥
⎦

( j)

[
u2

u3

]

( j)
−
[

0
F3

]
⎞

⎟
⎠ .

(10.86)

The numerical values of the iteration are summarized in Table 10.8. Due to a com-
parison with the values from Table 10.5 for the model with one single element, one
can see that the convergence behavior is identical.
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10.3.4 Convergence Criteria

For the evaluation, if an iterative scheme converges, the following normalized dis-
placement difference in the form

√√√√√
√

(
u( j)

2 − u( j−1)
2

)2 +
(

u( j)
3 − u( j−1)

3

)2 + · · · +
(

u( j)
m − u( j)

m

)2

(
u( j)

2

)2 +
(

u( j)
3

)2 + · · · +
(

u( j)
m

)2 (10.87)

was already used in previous chapters, whereupon m represents the number of
unknown degrees of freedom. If this value is below a certain limit value, for example
the computational accuracy in the program, the iteration can be regarded as con-
verged.
Alternatively, the residual vector r( j) = K (u( j))u( j) − F( j) can be regarded, whose
norm can be indicated as follows

√√√√
m∑

i = 1

(
r ( j)

i

)2
. (10.88)

If this norm is below a certain limit value, convergence is achieved.
At the end of this chapter, the discussed iteration instructions are summarized in
Table 10.6, and those are opposed to the calculation procedure for linear elasticity.
It needs to be remarked at this point that the three listed procedures for linear elasticity
simplify as the method of inversion of the stiffness matrix in the case of linear
elasticity.

Table 10.6 Calculation procedure in the linear and nonlinear elasticity
(N–R = Newton–Raphson)

Procedure Calculation instruction

Linear elasticity: K u = F
• Inversion of the stiffness matrix u = (K )−1 F
• · · · · · ·
Nonlinear elasticity: K (u)u = F

• Direct iteration u( j+1) = (K (u( j))
)−1

F

• Complete N–R iteration u( j+1) = u( j) −
(

K ( j)
T

)−1
r(u( j))

• Modified N–R iteration u( j+1) = u( j) −
(

K (0)
T

)−1
r(u( j))

• · · · · · ·

In the literature, a further series of methods are known, as for example the arc length
method, with which the convergence range of the discussed methods here can be
expanded significantly [7–9].
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Table 10.7 Numerical values for the complete Newton–Raphson method in the case of one
element with quadratic shape function with one external load of F2 = 800 kN. Geometry: A =
100 mm2, L = 400 mm. Material behavior: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√
√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 0 0 –
1 22.857143 45.714286 1
2 32.481203 64.962406 0.296296
3 35.124722 70.249443 0.075261
4 35.359614 70.719229 0.006643
5 35.361498 70.722998 0.000053
6 35.361499 70.722998 0.000000

10.4 Sample Problems and Supplementary Problems

10.4.1 Sample Problems

10.1 Example: Tension Bar with Quadratic Approach and Strain Dependent
Modulus of Elasticity
One needs to derive the stiffness matrix for a bar element with quadratic shape
functions for a strain dependent modulus of elasticity in the form

E(u) = E0

(
1 − α01

du

dx

)
. (10.89)

In this, the element has length L and the inner node is placed exactly in the middle
of the element. Subsequently one needs to calculate the tangent stiffness matrix K T
based on the stiffness matrix.

10.1 Solution
Based on Eq. (10.90), meaning

ke = AE0

L∫

0

(
1 − α01

dN
dx

up

)

︸ ︷︷ ︸
scalar

dNT

dx

dN
dx

dx, (10.90)

and the shape functions for a quadratic bar element, or alternatively their derivatives

N1(x) = 1 − 3
x

L
+ 2

( x

L

)2
,

dN1(x)

dx
= − 3

L
+ 4

x

L2 , (10.91)
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N2(x) = 4
x

L
− 4

( x

L

)2
,

dN2(x)

dx
= 4

L
− 8

x

L2 , (10.92)

N3(x) = − x

L
+ 2

( x

L

)2
,

dN2(x)

dx
= − 1

L
+ 2

x

L2 , (10.93)

the stiffness matrix in general results in:

ke = AE0

L∫

0

(
1 − α01

dN1

dx
u1 − α01

dN2

dx
u2 − α01

dN3

dx
u3

)

×

⎡

⎢⎢⎢⎢
⎢
⎣

dN1

dx

dN1

dx

dN1

dx

dN2

dx

dN1

dx

dN3

dx
dN2

dx

dN1

dx

dN2

dx

dN2

dx

dN2

dx

dN3

dx
dN3

dx

dN1

dx

dN3

dx

dN2

dx

dN3

dx

dN3

dx

⎤

⎥⎥⎥⎥
⎥
⎦

dx . (10.94)

After completion of the integration, the element stiffness matrix results herefrom to:

ke = AE0

3L

⎡

⎣
7 −8 1

−8 16 −8
1 −8 7

⎤

⎦

+ AE0α01

3L2

⎡

⎣
15u1 − 16u2 + u3 −16u1 + 16u2 u1 − u3

−16u1 + 16u2 16u1 − 16u3 −16u2 + 16u3
u1 − u3 −16u2 + 16u3 −u1 + 16u2 − 15u3

⎤

⎦ .

(10.95)

Application of the calculation instruction for a (3×3) matrix according to Eq. (10.75)
leads to the tangent stiffness matrix as:

K T = ke + AE0α01

3L2

⎡

⎣
15u1 − 16u2 + u3 −16u1 + 16u2 u1 − u3

−16u1 + 16u2 16u1 − 16u3 −16u2 + 16u3
u1 − u3 −16u2 + 16u3 −u1 + 16u2 − 15u3

⎤

⎦ ,

(10.96)

or, alternatively, after the summarization of the two matrices with the nodal displace-
ments to:

K e
T = AE0

3L

⎡

⎣
7 −8 1

−8 16 −8
1 −8 7

⎤

⎦

+ AE0α01

3L2

⎡

⎣
30u1 − 32u2 + 2u3 −32u1 + 32u2 2u1 − 2u3

−32u1 + 32u2 32u1 − 32u3 −32u2 + 32u3
2u1 − 2u3 −32u2 + 32u3 −2u1 + 32u2 − 30u3

⎤

⎦ .

(10.97)
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10.2 Example: One-Sided Fixed Tension Bar with Quadratic Approach
and Strain Dependent Modulus of Elasticity
With the derived bar element in example 10.1 with quadratic shape function and strain
dependent modulus of elasticity one can calculate a bar, which is fixed supported
on the left-hand end and is loaded through a single force of 800 kN on the right-
hand end. The material behavior is assumed as in example 10.1, whereupon the
values E0 = 70,000 MPa and α01 = 2 can be used. The length of the bar accounts
L = 400 mm and the cross-sectional area is A = 100 mm2. For the solution one can
make us of the complete Newton–Raphson method.

10.2 Solution
Under consideration of the boundary conditions, the principal finite element equation
results as follows from Eq. (10.95)

(
AE0

3L

[
16 −8
−8 7

]
+ AE0α01

3L2

[−16u3 −16u2 + 16u3
−16u2 + 16u3 16u2 − 15u3

])[
u2
u3

]
=
[

0
F3

]
.

(10.98)

and from Eq. (10.97) the tangent stiffness matrix follows under consideration of the
boundary conditions as

K e
T = AE0

3L

[
16 −8
−8 7

]
+ AE0α01

3L2

[
32u1 − 32u3 −32u2 + 32u3
−32u2 + 32u3 −2u1 + 32u2 − 30u3

]
.

(10.99)

The tangent stiffness matrix still has to be inverted for the iteration scheme according
to Eq. (10.85) and one obtains the following representation after a short calculation:

(K T)−1 = 3L2

AE0(3L2 − 12α01u3L + 64α2
01u2u3 − 4α2

01u2
3 − 64α2

01u2
2)

×
⎡

⎢
⎣

7

16
L + 2α01u2 − 15

8
α01u3

1

2
L + 2α01u2 − 2α01u3

1

2
L + 2α01u2 − 2α01u3 L − 2α01u3

⎤

⎥
⎦ . (10.100)

The numerical results of the iteration are summarized in Table 10.7. A comparison
with the results of the discretization with two linear elements in Table 10.4 shows
that the results for the regarded case are identical.

10.3 Example: Tension Bar with Three Different Elements for Strain
Dependent Modulus of Elasticity and Force Boundary Condition
The illustrated finite element model in Fig. 10.12 of a one-sided fixed bar consists
of three elements, which exhibit different characteristics. The bar is loaded with a
point load F0 on the right-hand end.
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Table 10.8 Numerical values for a modified Newton–Raphson method in the case of two elements
with an external load of F2 = 800 kN. Geometry: A = 100 mm2, L = 400 mm. Material behavior:
E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√
√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 0 0 –
1 22.857143 45.714286 1
2 28.081633 56.163265 0.186046
3 30.742924 61.485848 0.086566
4 32.308416 64.616833 0.048455
5 33.295481 66.590961 0.029646
6 33.943033 67.886066 0.019078
7 34.378438 68.756876 0.012665
8 34.675913 69.351825 0.008579
9 34.881332 69.762664 0.005889
10 35.024216 70.048432 0.004080
.
.
.

.

.

.
.
.
.

.

.

.

36 35.361458 70.722916 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

53 35.361499 70.722998 0.000000

Fig. 10.12 Tension bar with three different elements for strain dependent modulus of elasticity and
force boundary condition

One considers the case that all three bars have a linear strain dependent modulus of
elasticity according to Eq. (10.3) in the form

Ei (ε) = Ei
0 (1 − εα01) , i = I, II, III. (10.101)

For the considered problem the following relations for the initial axial rigidity can
be assumed:

(E0 A)I = 3E0 A, (10.102)

(E0 A)II = 2E0 A, (10.103)

(E0 A)III = 1E0 A. (10.104)

As a numerical value one can use F0 = 800 kN, A = 100 mm2, L I = L II =
L III = 400/3 mm, E0 = 70,000 MPa, E1 = 49,000 MPa, ε1 = 0.15 and one can
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define the displacement of the nodes with the complete Newton–Raphson iteration
procedure.

10.3 Solution
The element stiffness matrices according to Eq. (10.28) for the three elements result in

kI = 3E0 A

L2 (L + α01u1 − α01u2)

[
1 −1

−1 1

]
, (10.105)

kII = 2E0 A

L2 (L + α01u2 − α01u3)

[
1 −1

−1 1

]
, (10.106)

kIII = 1E0 A

L2 (L + α01u3 − α01u3)

[
1 −1

−1 1

]
, (10.107)

which can be composed to the following reduced system of equations under consid-
eration of the fixed support:

E0 A

L2

⎡

⎢⎢⎢
⎢
⎣

3L − 3α01u2 + 2L −2L − 2α01u2 + 2α01u3 0
+2α01u2 − 2α01u3

−2L − 2α01u2 + 2α01u3 2L + 2α01u2 − 2α01u3 −1L − 1α01u3 + 1α01u4

+1L + 1α01u3 − 1α01u4

0 −1L − 1α01u3 + 1α01u4 1L + 1α01u3 − 1α01u4

⎤

⎥⎥⎥
⎥
⎦

×
⎡

⎣
u2

u3

u4

⎤

⎦ =
⎡

⎣
0
0
F0

⎤

⎦ . (10.108)

The tangent stiffness matrices for the three elements result in the following according
to Eq. (10.83)

K I
T = 3E0 A

L2 (L + 2α01u1 − 2α01u2)

[
1 −1
−1 1

]
, (10.109)

K II
T = 2E0 A

L2 (L + 2α01u2 − 2α01u3)

[
1 −1
−1 1

]
, (10.110)

K III
T = 1E0 A

L2 (L + 2α01u3 − 2α01u3)

[
1 −1
−1 1

]
(10.111)

and can be combined to the following tangent stiffness matrix of the reduced system
of equations under consideration of the fixed support:

K T = E0 A

L2

⎡

⎢
⎢⎢
⎢
⎣

3L − 6α01u2 + 2L + 4α01

u2 − 4α01u3 −2L − 4α01u2 + 4α01u3 0
−2L − 4α01u2 + 4α01u3 2L + 4α01u2 − 4α01u3

+1L + 2α01u3 − 2α01u4 −1L − 2α01u3 + 2α01u4

0 −1L − 2α01u3 + 2α01u4 1L + 2α01u3 − 2α01u4

⎤

⎥
⎥⎥
⎥
⎦

.

(10.112)
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Table 10.9 Numerical values for the complete Newton–Raphson method in the case of three
elements with an external load of F2 = 800 kN. Geometry: Ai = 100 mm2, Li = 400/3 mm.
Material behavior: E0 = β i × 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm) u( j)
4 (mm)

√√√
√
∑3

i=1

(
u( j)

i −u( j−1)
i

)2

∑3
i=1

(
u( j)

i

)2

0 0 0 0 –
1 5.079365 12.698413 27.936508 1
2 5.535937 14.283733 35.937868 0.209121
3 5.539687 14.313393 37.729874 0.044001
4 5.539687 14.313407 37.886483 0.003831
5 5.539687 14.313407 37.887740 0.000030
6 5.539687 14.313407 37.887740 0.000000

The iteration scheme u( j+1) = u( j) − (K ( j)
T )−1r(u( j)) can be used via the reduced

system of equations and the tangent stiffness matrix. The numerical results are sum-
marized in Table 10.9.

10.4 Example: Tension Bar with Three Different Elements for Strain Dependent
Modulus of Elasticity and Displacement Boundary Condition
The finite element model of an one-sided fixed bar, which is illustrated in Fig. 10.13,
consists of three elements, which exhibit different characteristics. A displacement
u0 is given on the right-hand end of the bar.

Fig. 10.13 Tension bar with three different elements for strain dependent modulus of elasticity and
displacement boundary condition

One can consider the case that all three bars exhibit a linear strain dependent modulus
of elasticity according to Eq. (10.3) in the form

Ei (ε) = Ei
0 (1 − εα01) , i = I, II, III. (10.113)

The following relations for the initial axial rigidity can be assumed for the considered
problem:

(E0 A)I = βI E0 A, (10.114)

(E0 A)II = βII E0 A, (10.115)

(E0 A)III = βIII E0 A, (10.116)
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whereupon two different cases need to be analyzed:

βI βII βIII uo in mm
Case a) 1 1 1 33
Case b) 3 2 1 37.887740

. (10.117)

As further numerical values one can use A = 100 mm2, L I = L II = L III =
400/3 mm, E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15 and one can define
the displacement of the nodes and the reaction force on the right-hand end via the
complete Newton–Raphson iteration method.

10.4 Solution
According to the procedure in example 10.3, the total stiffness matrix results as
follows, under consideration of the fixed support on the left-hand end:

E0 A

L2

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

βIL − βIα01u2+
βIIL + βIIα01u2

−βIIα01u3

−βIIL − βIIα01u2

+βIIα01u3
0

−βIIL − βIIα01u2

+βIIα01u3

βIIL + βIIα01u2

−βIIα01u3 + βIIIL
+βIIIα01u3 − βIIIα01u4

−βIIIL − βIIIα01u3

+βIIIα01u4

0
−βIIIL − βIIIα01u3

+βIIIα01u4

βIIIL + βIIIα01u3

−βIIIα01u4

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

.

(10.118)

If the known displacement is brought to the ‘right-hand side’ of the system of equa-
tions, the following reduced (2 × 2) system of equations results after canceling of
the column and line, which belong to u4:

E0 A

L2

⎡

⎢
⎢⎢⎢⎢⎢
⎣

βIL − βIα01u2+
βIIL + βIIα01u2

−βIIα01u3

−βIIL − βIIα01u2

+βIIα01u3

−βIIL − βIIα01u2

+βIIα01u3

βIIL + βIIα01u2

−βIIα01u3 + βIIIL
+βIIIα01u3 − βIIIα01u4

⎤

⎥
⎥⎥⎥⎥⎥
⎦

[
u2

u3

]

= E0 A

L2

[
0

−(−βIIIL − βIIIα01u3 + βIIIα01u4)u4

]

. (10.119)

According to the procedure in example 10.3 the tangent stiffness matrix results in
(2 × 2) form in:
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K T = E0 A

L2

⎡

⎢⎢⎢⎢
⎣

βIL − 2βIα01u2+
βIIL + 2βIIα01u2

−2βIIα01u3

−βIIL − 2βIIα01u2

+2βIIα01u3

−βIIL − 2βIIα01u2

+2βIIα01u3

βIIL + 2βIIα01u2 − 2βIIα01u3

+βIL + 2βIα01u3 − 2βIα01u4

⎤

⎥⎥⎥⎥
⎦

. (10.120)

The iteration scheme u( j+1) = u( j) − (K ( j)
T )−1r(u( j)) can be used due to the

reduced system of equations and the tangent stiffness matrix. The reaction force Fr4
on the right-hand end can be calculated after each iteration step by evaluating the 4th
equation of the total system. The numerical results are summarized in Tables 10.10
and 10.11.

Table 10.10 Numerical values for the complete Newton–Raphson method in the case of three
elements with displacement boundary conditions of u0 = 33 mm. Geometry: Ai = 100 mm2,
Li = 400/3 mm. Material behavior: E0 = β i × 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15,
βI = βII = βIII = 1

Iteration j u( j)
2 (mm) u( j)

3 (mm) F ( j)
r4 (kN)

√√
√
√
∑2

i=1

(
u( j)

i −u( j−1)
i

)2

∑2
i=1

(
u( j)

i

)2

0 0 0 0 –
1 16.338235 32.676471 16.902865 1
2 11.514910 23.029821 445.153386 0.418876
3 11.005802 22.011604 481.804221 0.046258
4 11.000001 22.000002 482.212447 0.000527
5 11.000000 22.000000 482.212500 0.000000

Table 10.11 Numerical values for the complete Newton–Raphson method in the case of three ele-
ments with displacement boundary conditions of u0 = 37.887740 mm. Geometry: Ai = 100 mm2,
Li = 400/3 mm. Material behavior: E0 = β i × 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15,
βI = 3, βII = 2, βIII = 1

Iteration j u( j)
2 (mm) u( j)

3 (mm) F ( j)
r4 (kN)

√√
√√
∑2

i=1

(
u( j)

i −u( j−1)
i

)2

∑2
i=1

(
u( j)

i

)2

0 0 0 0 –
1 6.152350 15.380875 782.695217 1
2 5.539025 14.319014 799.913803 0.079871
3 5.539687 14.313407 800.000003 0.000368
4 5.539687 14.313407 800.000000 0.000000

Case (a) with the results in Table 10.10 can be considered as a test case for the iteration
scheme. Due to the displacement boundary condition on the right-hand end and the
identical elements, the iteration needs to result in u2 = 1

3 u0 and u3 = 2
3 u0 at this

point. As can be seen from Table 10.10, this is the case after five iterations for the
chosen convergence criteria. The case (b) with the results in Table 10.11 represents the
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reversion of example 10.3. Since the result for the displacement from example 10.3
has been brought up as a boundary condition, the reaction force in the converged
condition has to achieve a value of 800 kN. This is the case after four iteration
steps.

10.4.2 Supplementary Problems

10.5 Strain Dependent Modulus of Elasticity with Quadratic Course
The strain dependent modulus of elasticity, which is illustrated in Fig. 10.14 was
defined by experiment. Approximate the course with a quadratic function of the
form E(ε) = a +bε+cε2 and define the constants a, . . . , c. Subsequently, calculate
the stress–strain course through integration and illustrate the course graphically. In
the next step, derive the element stiffness matrix for a linear bar element under
consideration of the strain dependent modulus of elasticity. In the last step, define
the tangent stiffness matrix.

Fig. 10.14 Experimentally
determined strain dependent
modulus of elasticity

10.6 Direct Iteration with Different Initial Values
Discretize the bar according to Fig. 10.3 with one single linear element and use the
direct iteration for the solution at different initial values: u(0)

2 = 0 or 30 or 220 mm.
Further data can be taken from Table 10.1.

10.7 Complete Newton–Raphson Scheme for a Linear Element with Quadratic
Modulus of Elasticity
The beam illustrated in Fig. 10.15a can be discretized via one single linear element.
The strain dependent modulus of elasticity exhibits a quadratic course according
to Fig. 10.15b. Based on the element stiffness matrix from problem 10.5, solve the
problem with the complete Newton–Raphson scheme for an external force of F =
370 kN. As convergence criteria use a relative displacement difference of <10−6.
Subsequently, analyze the convergence range of the iteration scheme in general.
For the geometry the concrete values A = 100 mm2 and L = 400 mm and for
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(a) (b)

Fig. 10.15 Bar element under point load and quadratic strain dependency of the modulus of
elasticity

the material behavior the concrete values E0 = 70, 000 MPa and ε1 = 0.15 can
be used.

10.8 Strain Dependent Modulus of Elasticity with General Quadratic Course
In extension of problem 10.5 one can consider the illustrated course in Fig. 10.16
with the three sampling points (0, E0), ( 1

2ε1, β05 E0) and (ε1, β1 E0). The form of
the curve can be adapted more easily to the sampling points with the scale values
β05 and β1. The curve course can be approximated through a quadratic course in the
form E(ε) = a + bε + cε2. Define the constants a, . . . , c and derive the element
stiffness matrix for a linear bar element under consideration of the strain dependent
modulus of elasticity.

Fig. 10.16 Experimentally
determined strain dependent
modulus of elasticity; general
quadratic course
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