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Preface

The title of this book ‘One-Dimensional Finite Elements: An Introduction to the
FE Method’ stands for content and focus. Nowadays, much literature regarding the
topic of the finite element method exists. The different works reflect the multi-
faceted perceptions and application possibilities. The basic idea of this introduc-
tion into the finite element method relies on the concept of explaining the complex
method with the help of one-dimensional elements. It is the goal to introduce the
manifold aspects of the finite element method and to enable the reader to get a
methodical understanding of important subject areas. The reader learns to
understand the assumptions and derivations at different physical problems in
structural mechanics. Furthermore, he/she learns to critically evaluate possibilities
and limitations of the finite element method. Additional comprehensive mathe-
matical descriptions, which solely result from advanced illustrations for two- or
three-dimensional problems, are omitted. Hence, the mathematical description
largely remains simple and clear. The focus on one-dimensional elements, how-
ever, is not just a pure limitation on a simpler and clearer formal illustration of the
necessary equations. Within structural engineering, there are various structures—
for example bridges or high transmission towers—which are usually modeled via
one-dimensional elements. Therefore, this work also contains a ‘set of tools’,
which can also be applied in practice.

The concentration on one-dimensional elements is new for a textbook and
allows the treatment of various basic and demanding physical questions of
structural mechanics within one single textbook. This new concept, therefore,
allows a methodical understanding of important subject areas (for example plas-
ticity or composite materials), which occur to a prospective engineer during
professional work, which however are seldom treated in this way at universities.
Consequently, simple access is possible, also in supplementary areas of application
of the finite element method.

This book originates from a collection of lecture notes which were developed as
written material for lectures and training documents for specialized courses on the
finite element method. Especially, the calculated examples and the supplementary
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problems refer to typical questions which are raised by students and course
participants.

The prerequisites for a good understanding are the basics in linear algebra,
physics, materials science, and strength of materials, the way they are typically
communicated in the basic studies of a technical subject in the field of mechanical
engineering.

Within the initial chapters the one-dimensional elements will be introduced, by
which the basic load cases of tension/compression, torsion, and bending can be
illustrated. In each case, the differential equation as well as the basic equations
from the strength of materials (this is the kinematic relationship, the constitutive
relationship, and the equilibrium equation) are being derived. Subsequently, the
finite elements with the usual definitions for force and displacement parameters are
introduced. With the help of examples, the general procedure is illustrated. Short
solutions for supplementary problems are attached in the appendix.

Chapter 6 deals with questions which are independent of the loading type and
the therewith connected element formulation. A general one-dimensional finite
element, which can be constructed from the combination of basic elements, the
transformation of elements in the general three-dimensional space, and the
numerical integration as an important tool for the implementation of the finite
element method is dealt with.

The complete analysis of an entire structure is introduced in Chap. 7. The total
stiffness relation results from the single stiffness relation of the basic elements
under consideration of the relations to each other. A reduced system results due to
the boundary conditions. Unknown parameters are derived from the reduced
system. The procedure will be introduced as examples on plane and general three-
dimensional structures.

Chapters 8–12 deal with topics which are usually not part of a basics book.
The beam element with shear consideration is introduced in Chap. 8. The Timo-
shenko beam serves as a basis for this.

Within Chap. 9 a special class of material—composite materials—are introduced
into a finite element formulation. First, various ways of description for direction
dependent material behavior are introduced. Fiber composites are addressed briefly.
A composite element is demonstrated by examples of a composite bar and a com-
posite beam.

Chapters 10–12 deal with nonlinearities. In Chap. 10, the different types of
nonlinear elasticities are introduced. The case of the nonlinear elasticity is dealt
with more closeness. The problem is illustrated for bar elements. First, the prin-
cipal finite element equation is derived under consideration of the strain depen-
dency. The direct iteration as well as the complete and modified Newton–Raphson
iteration is derived for the solution of a nonlinear system of equations. In addition,
many examples serve as a demonstration of this issue.

Chapter 11 considers elastoplastic behavior, one of the most common forms of
material nonlinearities. First, the continuum mechanics basics for plasticity in the
case of the one-dimensional continuum bar are composed. The yield condition, the
flow rule, the hardening law, and the elastoplastic modulus are introduced for

viii Preface

http://dx.doi.org/10.1007/978-3-642-31797-2_6
http://dx.doi.org/10.1007/978-3-642-31797-2_7
http://dx.doi.org/10.1007/978-3-642-31797-2_7
http://dx.doi.org/10.1007/978-3-642-31797-2_8
http://dx.doi.org/10.1007/978-3-642-31797-2_8
http://dx.doi.org/10.1007/978-3-642-31797-2_12
http://dx.doi.org/10.1007/978-3-642-31797-2_8
http://dx.doi.org/10.1007/978-3-642-31797-2_8
http://dx.doi.org/10.1007/978-3-642-31797-2_9
http://dx.doi.org/10.1007/978-3-642-31797-2_9
http://dx.doi.org/10.1007/978-3-642-31797-2_10
http://dx.doi.org/10.1007/978-3-642-31797-2_10
http://dx.doi.org/10.1007/978-3-642-31797-2_12
http://dx.doi.org/10.1007/978-3-642-31797-2_10
http://dx.doi.org/10.1007/978-3-642-31797-2_10
http://dx.doi.org/10.1007/978-3-642-31797-2_11
http://dx.doi.org/10.1007/978-3-642-31797-2_11


uniaxial, monotonic load cases. Within the hardening behavior, the description is
limited to isotropic hardening. For the integration of the elastoplastic constitutive
equations, the incremental predictor–corrector method is generally introduced and
derived for the case of the fully implicit and the semi-implicit backward-Euler
algorithm. On crucial points, the difference between one- and three-dimensional
descriptions will be pointed out, to guarantee a simple transfer of the derived
methods to general problems.

Chapter 12 deals with stability, which is an issue that is especially relevant for
the designing and dimensioning of lightweight components. Finite elements
developed for this type of nonlinearities are used for the solving of the Euler’s
buckling loads.

Chapter 13 serves to introduce an FE formulation for dynamic problems. Stiff-
ness matrices as well as mass matrices will be established. Different assumptions for
the distribution of the masses, whether continuously or concentrated, lead to dif-
ferent formulations. The issue is discussed by example of axial vibrations of the bar.

As an illustration, each chapter is recessed both with precisely calculated and
commented examples as well as with supplementary problems—including short
solutions. Each chapter concludes with an extensive bibliography.

Skudai, Hüttlingen, May 2012 Andreas Öchsner
Markus Merkel
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Q Plastic potential
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T Torsional moment
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X Global spatial coordinate
Y Global spatial coordinate
Z Global spatial coordinate
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c Integration constant
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ke Element stiffness matrix
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mt Continuously distributed torsional moment per length
m Column matrix of residual functions
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r Vector of the flow direction
t Time, geometric dimension
tij Component of the transformation matrix
ux Displacement in x-direction
uy Displacement in y-direction
uz Displacement in z-direction
u Column matrix of the nodal displacements
v Argument vector (NEWTON procedure)
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�trial

nþ1 Test stress state
�ij Stress tensor
� Column matrix of the stress components
¿ Shear stress
· Coordinate
‡ Coordinate
ˆ Phase angle
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� � �eff Effective value
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Chapter 1
Introduction

Abstract In this first chapter the content as well as the focus will be classified in
various aspects. First, the development of the finite element method will be explained
and considered from different perspectives.

1.1 The Finite Element Method at a Glance

Seen chronologically, the roots of the finite element method lie in the middle of the
last century. Therefore, this method is a relatively young tool in comparison with
other tools and aids for the dimensioning and laying of components. The development
of the finite element method was configured in the 1950s. Scientists and users have
brought in ideas from quite different fields and have therefore turned the method into
a universal tool which has nowadays become an indispensable part in research and
development and engineering application.
Initially rather basic questions were focused, for example on questions regarding
the principle solvability. Regarding the software implementation, only rudimental
resources were available—from today’s point of view. The postprocessing consisted
of punching of cards, which were fed in batches to a calculating machine. Mistakes
during the programming were directly displayed with blinking lights. With progres-
sive computer development, the programming environment has become more com-
fortable and algorithms could be tested and optimized on more challenging examples.
From the point of view of engineering application, the problems, which were ana-
lyzed via the finite element method, were limited to simple examples. The computer
capacities only allowed a quite rough modeling.
Nowadays, many basic questions have been clarified, the central issue of the prob-
lem rather lies on the user side. Finite element program packages are available in
a large variety and are used in the most different forms. On the one hand there are
program packages, which are primarily used in teaching. It is the goal to illustrate
the systematic approach. Source codes are available for such programs. On the other
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hand, there are commercial program packages which are used to their full capac-
ity regarding program technology as well as the content. Especially the program
modules, which have been adapted to a computer platform or computer architecture
(parallel computer) are quite efficient and make the processing of very comprehen-
sive problems possible. Regarding the content, the authors venture to say that there
is no physical discipline for which no finite element program exists.
In regard to the development of the finite element method, the focus is nowadays
on the cooperation and integration with other development tools, as for example the
point of intersection with engineering design. Both classical disciplines calculation
and design become more and more connected and are partly already fused underneath
by a common operation interface. Besides single finite element software packages
there are also in a CAD system integrated solutions available on the market. From
the view of the user an appropriate finite element preprocessing and postprocessing
of his/her special problem is in the foreground. The time intensive process steps
of the geometry preparation should not involve a considerable extra effort for the
application of the finite element method. Calculation results are supposed to be
integrated seamlessly in the according process chain.
Regarding the application areas, there are no limits for the application of the finite
element method. The dimensioning and configuration of manufacturing elements,
subsystems or complete machines surely is the focus in mechanical and plant engi-
neering.
The application of the finite element method or in general of simulation tools in the
product development is often seen as a competing tool to the experiment or test.
The authors rather see an ideal complement at this point. Therefore, a single test
stands test rig or complete test scenarios can be optimized ex ante via finite element
simulation. In return, experimental results help to create more precise simulation
models.

1.2 Foundations of Modeling

A model of a physical or technical problem represents the initial situation for the
application of the finite element method. Part of the complete description of the
problem are

• the geometry for the description of the domain,
• the field equations in the domain,
• the boundary conditions, and
• the initial conditions for time dependent problems.

Within this book solely one-dimensional elements will be regarded. The general
procedure for two- and three-dimensional problems is similar. The mathematical
demand, however, is much more complex.
Usually the problems can be described via the differential equation. Here, differential
equations of second order are focused on. As an example, the differential equations
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of a certain class of physical problems can in general be described as follows:

− d

dx

[
a

du(x)

dx

]
+ cu(x)− f = 0. (1.1)

Depending on the physical problem a different meaning is assigned to the variables
u(x) and the parameters a, c, and f . The following table lists the meaning of the
parameters for a few physical problems [1] (Table 1.1).

Table 1.1 Physical problems in the context of the differential equation. Adapted from [1]

Field parameter Coefficient

Problem u(x) a c f
Heat conduction Temperature Heat conduction Convection Heat sources

T k A K β q
Pipe flow Pressure Pipe resistance

p 1/ R
Viscous flow Velocity Viscosity Pressure gradient

vx ν
dp
dx

Elastic bars Displacement Stiffness Distributed loads
u E A f

Elastic torsion Rotation Stiffness Torsional moments
ϕ G Ip m

Electrostatics Electrical potential Dielectricity Charge density
Φ ε ρ

To describe a problem completely, the statement about the boundary conditions
is necessary besides the differential equation. The local boundary conditions can
generally be divided into three groups:

• Boundary condition of the 1st kind or Dirichlet boundary condition
(also referred to as essential, fundamental, geometric or kinematic boundary
condition):
A boundary condition of the 1st kind exists, if the boundary condition is being
expressed in parameters in which the differential equation is being formulated.

• Boundary condition of the 2nd kind or Neumann boundary condition
(also referred to as natural or static boundary condition):
A boundary condition of the 2nd kind exists, if the boundary condition contains
the derivation in the direction of the normal of the boundary Γ .

• Boundary condition of the 3rd kind or Cauchy boundary condition
(also referred to as mixed or Robin boundary condition):
Defines a weighted sum of Dirichlet and Neumann condition on the boundary.

These three types of boundary conditions are summarized in Table 1.2, along with
their formulas.
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Table 1.2 Different
boundary conditions of a
differential equation

Differential equation Dirichlet Neumann Cauchy

L{u(x)} = b u du
dx αu + β du

dx

It needs to be considered at this point that one talks about homogeneous boundary
conditions if the corresponding variables are zero on the boundary.
Within this book, the finite element method will be highlighted from the view of
mathematics, physics or the engineering application. From a mathematical view, the
finite element method is an appropriate tool to solve partial differential equations.
From a physical view a multitude of physical problems can be worked on via the
finite element method. The areas go from electrostatics via the diffusion problem all
the way to elasticity theory. Engineers make use of the finite element method for the
configuration and the dimensioning of products. Regarding the physical problems,
at this point solely elastomechanical problems will be discussed. Within statics

• the tension bar,
• the torsion bar, and
• the bending beam with and without shear contribution,

will be covered. Vibrations of bars and beams will be covered as dynamic problems.

Reference

1. Reddy JN (2006) An Introduction to the Finite Element Method. McGraw Hill, Singapore



Chapter 2
Motivation for the Finite Element Method

Abstract The approach to the finite element method can be derived from different
motivations. Essentially there are three ways:

• a rather descriptive way, which has its roots in the engineering working method,
• a physical or
• mathematically motivated approach.

Depending on the perspective, different formulations result, which however all
result in a common principal equation of the finite element method. The different
formulations will be elaborated in detail based on the following descriptions:

• matrix methods,
• physically based working and energy methods and
• weighted residual method.

The finite element method is used to solve different physical problems. Here solely
finite element formulations related to structural mechanics are considered [1, 5–7,
9–12].

2.1 From the Engineering Perspective Derived Methods

Matrix methods can be regarded in elastostatics as the initial point for the application
of the finite element method to analyze complex structures [2, 3]. As example a plane
structure can be given (see Fig. 2.1). This example is adapted from [8].

The structure consists of various substructures I, II, III and IV. The substructures are
referred to as elements. The elements are coupled at the nodes 2, 3, 4 and 5. The
entire structure is supported on nodes 1 and 6, an external load affects node 4.

Unknown are

• the displacement and reaction forces on every single inner node and

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 5
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Fig. 2.1 Plane structure, adapted from [8]

• the support reactions

in consequence of the acting load.

To solve the problem, matrix methods can be used. In the matrix methods one dis-
tinguishes between the force method (static methods), which is based on a direct
determination of the statically indeterminate forces, and the displacement method
(kinematic method), which considers the displacements as unknown parameters.

Both methods allow the determination of the unknown parameters. The decisive
advantage of the displacement method is that during the application it is not necessary
to distinguish between statically determined and statically undeterminate structures.
Due to the generality this method is applied in the following.

2.1.1 The Matrix Stiffness Method

It is the primary subgoal to establish the stiffness relation for the entire structure
from Fig. 2.1. The following stiffness relation serves as the basis for the matrix
displacement method:

F = K u . (2.1)

F and u are column matrices, K is a square matrix. F summarizes all nodal forces
and u summarizes all nodal displacements. The matrix K represents the stiffness
matrix of the entire structure. One single element is identified as the basic unit for
the problem and is characterized by the fact that it is coupled with other elements
via nodes. Displacements and forces are introduced at every single node.
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To solve the entire problem

• the compatibility and

• the equilibrium

have to be fulfilled.

In the matrix displacement method one introduces the nodal displacements as es-
sential unknowns. The displacement vector at a node is defined to be valid for all
elements connected at this node. Therewith the compatibility of the entire structure
a priori is fulfilled.

A Single Element

Forces and displacements are introduced for each node of the single element
(see Fig. 2.2).

Fig. 2.2 Single element (e) with displacements and forces

For an entirely obvious representation the nodal forces and the nodal displacements
are provided with an index ‘p’ to highlight that these are parameters, which are
defined on nodes. The vectors of the nodal displacements up or alternatively nodal
forces Fp in general consist of various components for the respective coordinates.
An additional index ‘e’ indicates to which element the parameters relate.1 Therewith
the nodal forces result, according to Fig. 2.2, in

1 The additional index ‘e’ is to be dropped at displacements since the nodal displacement is identical
for each linked element in the displacement method.
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Fe
i =

[
Fix

Fiy

]
, Fe

j =
[

Fj x

Fjy

]
, Fe

m =
[

Fmx

Fmy

]
, (2.2)

and the nodal displacements in

ui =
[

uix

uiy

]
, u j =

[
u j x

u jy

]
, um =

[
umx

umy

]
. (2.3)

If one summarizes all nodal forces and nodal displacements at one element, the

entire node force vector Fe
p =

⎡
⎣ Fi

F j

Fm

⎤
⎦ (2.4)

as well as the

entire node displacement vector up =
⎡
⎣ ui

u j

um

⎤
⎦ (2.5)

for a single element is described. With the vectors for the nodal forces and displace-
ments the stiffness relation for a single element can be defined as follows:

Fe
p = ke up , (2.6)

or alternatively for each node:

Fe
r = ke

rs us (r, s = i, j,m) . (2.7)

The single stiffness matrix ke connects the nodal forces . In the present example the
single stiffness relation is formally defined as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fix

Fiy

Fj x

Fjy

Fmx

Fmy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ke
i i ke

i j ke
im

ke
j i ke

j j ke
jm

ke
mi ke

mj ke
mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uix

uiy

u j x

u jy

umx

umy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.8)

For further progression it needs to be assumed that the single stiffness matrices of the
elements I, II, III and IV are known. The single stiffness relations of one-dimensional
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elements will explicitly be derived in the following chapters for different loading
types.

The Overall Stiffness

The equilibrium of each single element is fulfilled via the single stiffness relation in
Eq. (2.6). The overall equilibrium is satisfied by the fact that each node is set into
equilibrium. As an example the equilibrium will be set for node 4 in Fig. 2.3:

Fig. 2.3 Equilibrium on node 4 for the problem of Fig. 2.1

With

F4 =
[

F4x

F4y

]
(2.9)

the following is valid:
F4 =

∑
e

Fe
4 = FIII

4 + FIV
4 . (2.10)

If one substitutes the nodal forces via the single stiffness relations by the nodal
displacements, this yields

F4 = kIII
43u3 +

(
kIII

44 + kIV
44

)
u4 + kIV

45 u5 + kIV
46 u6. (2.11)

If one sets up the equilibrium on each node accordingly and notes all relations in the
form of a matrix equation, the overall stiffness relation results

F = K u (2.12)

with
K =

∑
e

ke
i j , (2.13)
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or alternatively in detail

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

0

0

F4

0

F6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kI
11 kI

12 kI
13 0 0 0

kI
21 kI

22 + kII
22 kI

23 0 kII
25 0

kI
31 kI

32 kI
33 + kIII

33 kIII
34 0 0

0 0 kIII
43 kIII

44 + kIV
44 kIV

45 kIV
46

0 kII
52 0 kIV

54 kII
55 + kIV

55 kIV
56

0 0 0 kIV
64 kIV

65 kIV
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

u2

u3

u4

u5

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.14)
This equation is also referred to as the principal equation of the finite element
method. The vector of the external loads (applied loads or support reactions) is on
the left-hand side and the vector of all nodal displacements is on the right-hand side.
Both are coupled via the total stiffness matrix K . The elements of the total stiffness
matrix result according to Eq. (2.13) by adding the appropriate elements of the single
stiffness matrices.

The support conditions u1 = 0 and u6 = 0 are already considered in the displacement
vector. From the matrix equations 2 to 5 in (2.14) the unknown nodal displacements
u2, u3, u4 and u5 can be derived. If these are known, one receives, through insertion
into the matrix equations 1 and 6 in (2.14), the unknown support reactions F1 and
F6.

The matrix displacement method is precise as long as the single stiffness matrices
can be defined and as long as elements are coupled in well defined nodes. This is the
case for example in truss and frame structures within the heretofore valid theories.

With the so far introduced method the nodal displacements and forces in dependency
on the external loads can be determined. For the analysis of the strength of a single
element the strain and stress state on the inside of the element is of relevance. Usu-
ally the displacement field is described via the nodal displacements up and shape
functions. The strain field can be defined via the kinematic relation and the stress
field via the constitutive equation.
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2.1.2 Transition to the Continuum

In the previous section, the matrix displacement method was discussed for a joint
supporting structure. In contrast to this, in the continuum, the virtual discretized
finite elements are connected at infinitely many nodal points. However, in a real
application of the matrix displacement method, only a finite number of nodes can be
considered. Therewith it is not possible to exactly fulfill both demanded conditions
for compatibility and for equilibrium at the same time. Either the compatibility or
the equilibrium will be fulfilled on average (Fig. 2.4).

Fig. 2.4 Continuum with load and boundary conditions

In principle, the procedure with the force method or the displacement method can be
illustrated. In the following only the displacement method will be considered. Here

• the compatibility is exactly fulfilled and

• the equilibrium on average.

The following approach results:

1. The continuum is discretized, meaning for two-dimensional problems it is
divided by virtual lines and for three-dimensional problems through surfaces
in subregions, so-called finite elements.

2. The flux of force from element to element occurs in discrete nodes. The dis-
placements of these nodes are introduced as principal unknowns (displacement
method!).

3. The displacement state within an element is illustrated as a function of the nodal
displacement. The displacement formulations are compatible with the adjacent
neighboring elements.
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4. Through the displacement field the strain state within the element and through
the constitutive equation the stress state are known as function of the nodal
displacement.

5. Via the principle of virtual work, statically equivalent resulting nodal forces are
assigned to the stresses along the virtual element boundaries on average.

6. To maintain the overall equilibrium all nodal equilibria have to be fulfilled. Via
this condition one gets to the total stiffness relation, from which the unknown
nodal displacements can be calculated after considering the kinematic boundary
conditions.

7. If the nodal displacements are known, one knows the displacement and strain
field and therefore also the stress state of each single element.

Comments to the Single Steps

Discretization

Through discretization the entire continuum is divided into elements. An element is
in contact with one or various neighboring elements. In the two-dimensional case
lines result as contact regions, in the three-dimensional case surfaces occur. Figure 2.5
illustrates a discretization for a plane case.

Fig. 2.5 Discretization of a plane area

The discretization can be interpreted as follows: Single points do not change their
geometric position within the continuum. The relation to the neighboring points
however does change. While each point within the continuum is in interaction with
its neighboring point, in the virtual discretized continuum this is only valid within
one element. If two points lie within two different elements they are not directly
linked.
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Nodes and Displacements

The information flow between single elements only occurs via the nodes. In the dis-
placement method, displacements are introduced at the nodes as principal unknowns
(see Fig. 2.6).

Fig. 2.6 Nodes with displacements

The displacements are identical for each on the node neighboring elements. Forces
only flow via the nodes, no forces flow via the element boundaries even though the
element boundaries are geometrically identical.

Approximation of the Displacement Field

A typical way to describe the displacement field ue(x) on the inside of an element is
to approximate the field through the displacement at the nodes and so-called shape
functions (see Fig. 2.7):

Fig. 2.7 Approximation of the displacement field in the element
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ue(x) = N(x) up . (2.15)

The discretization must not lead to holes in the continuum. To ensure the compatibility
between single elements a suitable description of the displacement field has to be
chosen. The choice of the shape functions has a significant influence on the quality
of the approximation and will be discussed in detail in Sect. 6.4.

Strain and Stress Fields

From the displacement field ue(x) one can get to the strain field

εe(x) = L1ue(x) (2.16)

via the above kinematic relation. Thereby L1 is a differential operator of first
order.2 The stress within an element can be determined via the constitutive equa-
tion (Fig. 2.8):

σ e(x) = Dεe(x) = DL1 N(x) up = DB(x) up . (2.17)

Fig. 2.8 Displacement, strain and stress in the element

The expression L1 N(x) contains the derivatives of the shape functions. Usually a
new matrix entitled B is introduced.

Principle of Virtual Work, Single Stiffness Matrices

While any point can interact with a neighboring point within the continuum, this is
only possible within an element in the discretized structure. A direct exchange beyond
the element boundaries is not foreseen. The principle of virtual work represents an

2 In the one-dimensional case the differential operator simplifies to the derivative d
dx .

http://dx.doi.org/10.1007/978-3-642-31797-2_6
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appropriate tool to assign statically equivalent nodal forces to the stress along the
virtual element boundaries (Fig. 2.9).

Fig. 2.9 Principle of virtual work at one element

For this, one summarizes the nodal forces to a vector Fe
p. The virtual displacements

δup do the external virtual work δΠext with the nodal forces, the virtual strains δε
do the inner work δΠint with the stresses σ e inside:

δΠext = (Fe
p)

T δup ,

δΠint =
∫
Ω

(σ e)T δεedΩ. (2.18)

According to the principle of virtual work the following is valid:

δΠext = δΠint . (2.19)

If one transposes the equation

(Fe
p)

T δup =
∫
Ω

(σ e)T δεe dΩ

and if one inserts (2.16) and (2.17) accordingly, this yields

(δup)
T Fe

p = (δup)
T

∫
Ω

BT D B dΩ up. (2.20)

From this one receives the single stiffness relation

Fe
p = ke up (2.21)
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with the element stiffness matrix

ke =
∫
Ω

BT D BdΩ . (2.22)

Total Stiffness Relation

One receives the total stiffness relation

F = K u (2.23)

from the overall equilibrium. This can be achieved by setting up the equilibrium on
every single node. The unknown parameters cannot be gained from the total stiffness
relation yet. In the context of the equation’s solution the system matrix is not regular.
Only after taking at least the rigid-body motion (displacement and rotation) from the
overall system, a reduced system results

Fred = K red ured
p , (2.24)

which can be solved. A description of the equation solution can be found in Sect. 7.2
and in the Appendix A.1.5.

Determination of Element Specific Field Parameters

After the equation’s solution the nodal displacements are known. Therewith the
displacement, strain and stress field on the inside of every single element can be
defined. In addition the support reactions can be determined.

2.2 Integral Principles

The derivation of the finite element method often occurs via the so-called energy
principles. Therefore this chapter serves as a short summary about a few important
principles. The overall potential or the total potential energy of a system can generally
be written as

Π = Πint +Πext (2.25)

whereuponΠint represents the elastic strain energy andΠext represents the potential
of the external loads. The elastic strain energy—or work of the internal forces—

http://dx.doi.org/10.1007/978-3-642-31797-2_7
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results in general for linear elastic material behavior via the column matrix of the
stresses and strains into:

Πint = 1

2

∫
Ω

σTεdΩ . (2.26)

The potential of the external loads—which corresponds with the negative work of
the external loads—can be written as follows for the column matrix of the external
loads F and the displacements u:

Πext = −FTu. (2.27)

• Principle of Virtual Work:

The principle of virtual work comprises the principle of virtual displacements and
the principle of virtual forces. The principle of virtual displacements states that if an
element is in equilibrium, the entire internal virtual work equals the entire external
virtual work for arbitrary, compatible, small, virtual displacements, which fulfill the
geometric boundary conditions:

∫
Ω

σTδεdΩ = FTδu . (2.28)

Accordingly the principle of virtual forces results in:

∫
Ω

δσTεdΩ = δFTu . (2.29)

• Principle of Minimum of Potential Energy:

According to this principle the overall potential takes an extreme value in the equi-
librium position:

Π = Πint +Πext = minimum . (2.30)

• Castigliano’s Theorem:

Castigliano’s first theorem states that the partial derivative of the complementary
strain energy, see Fig. 2.10a with respect to an external force Fi leads to the dis-
placement of the force application point in the direction of this force. Accordingly it
results that the partial derivative of the complementary strain energy with respect to
an external moment Mi leads to the rotation of the moment application point in the
direction of this moment:
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(a) (b)

Fig. 2.10 Definition of the strain energy and the complementary strain energy: a absolute; b volume
specific

∂Π̄int

∂Fi
= ui , (2.31)

∂Π̄int

∂Mi
= ϕi . (2.32)

Castigliano’s second theorem states that the partial derivative of the strain
energy (see Fig. 2.10a) with respect to the displacements ui leads to the force Fi

in direction to the considered displacement ui . An analogous connection is valid for
the rotation and the moment:

∂Πint

∂ui
= Fi , (2.33)

∂Πint

∂ϕi
= Mi . (2.34)

2.3 Weighted Residual Method

The initial point of the weighted residual method is the differential equation, which
describes the physical problem. In the one-dimensional case such a physical problem
within the domain Ω can in general be described via the differential equation

L{u0(x)} = b (x ∈ Ω) (2.35)

as well as via the boundary conditions, which are prescribed on the boundary Γ .
The differential equation is also referred to as a strong form of the problem since the
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problem is exactly described in every point x of the domain. In Eq. (2.35) L{. . . }
represents an arbitrary differential operator, which can for example take the following
forms:

L{. . . } = d2

dx2 {. . . } , (2.36)

L{. . . } = d4

dx4 {. . . } , (2.37)

L{. . . } = d4

dx4 {. . . } + d

dx
{. . . } + {. . . } . (2.38)

Furthermore b represents a given function in Eq. (2.35), whereupon one talks about a
homogeneous differential equation in the case of b = 0: L{u0(x)} = 0. The exact or
real solution of the problem, u0(x), fulfills the differential equation in every point of
the domain x ∈ Ω and the prescribed geometric and static boundary conditions onΓ .
Since the exact solution for the most engineering problems cannot be calculated in
general, it is the goal of the following derivation to define a best possible approximate
solution

u(x) ≈ u0(x). (2.39)

For the approximate solution in Eq. (2.39) in the following an approach in the form

u(x) = α0 +
n∑

k = 1

αkϕk(x) (2.40)

is chosen, whereupon α0 needs to fulfill the non-homogeneous boundary conditions,
ϕk(x) represents a set of linear independent basis functions and αk are the free
parameters of the approximation approach, which are defined via the approximation
procedure in a way so that the exact solution u0 of the approximate solution u is
approximated in the best way.

2.3.1 Procedure on Basis of the Inner Product

If one incorporates the approximate formulation for u0 into the differential equa-
tions. (2.35), one receives a local error, the so-called residual r :

r = L{u(x)} − b �= 0 . (2.41)

Within the weighted residual method this error is weighted with a weighting function
W (x) and is integrated via the entire domain Ω , so that the error disappears on
average:
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∫
Ω

r W dΩ =
∫
Ω

(L{u(x)} − b)W dΩ
!= 0 . (2.42)

This formulation is also referred to as the inner product. One notes that the weighting
or test function W (x) allows to weigh the error differently within the domain Ω .
However the overall error must on average, meaning integrated over the domain,
become zero. The structure of the weighting function is most of the time set in a
similar way as with the approximate function u(x)

W (x) =
n∑

k = 1

βkψk(x) , (2.43)

whereupon βk represent arbitrary coefficients and ψk(x) linear independent shape
functions. The approach (2.43) includes—depending on the choice of the amount
of the summands k and the functions ψk(x)—the class of the procedures with
equal shape functions for the approximate solution and the weighting function
(ϕk(k) = ψk(x)) and the class of the procedures, at which the shape functions
are chosen differently (ϕk(k) �= ψk(x)). Depending on the choice of the weighting
function the following classic methods can be differentiated [4, 13]:

• Point-Collocation Method: ψk(x) = δ(x − xk)

The point-collocation method takes advantage of the properties of the delta function.
The error r disappears exactly on the n freely selectable points x1, x2, . . . , xn , with
xk ∈ Ω , the so-called collocation points and therefore the approximate solution
fulfills the differential equation exactly in the collocation points. The weighting
function can therefore be set as

W (x) = β1 δ(x − x1)︸ ︷︷ ︸
ψ1

+ · · · + βn δ(x − xn)︸ ︷︷ ︸
ψn

=
n∑

k = 1

βkδ(x − xk) (2.44)

whereupon the delta function is defined as follows:

δ(x − xk) =
{

0 for x �= xk

∞ for x = xk
. (2.45)

If one incorporates this approach into the inner product according to Eq. (2.42) and
considers the properties of the delta function,

∞∫
−∞

δ(x − xk) dx =
xk+ε∫

xk−ε
δ(x − xk) dx = 1 , (2.46)
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∞∫
−∞

f (x)δ(x − xk) dx =
xk+ε∫

xk−ε
f (x)δ(x − xk) dx = f (xk) , (2.47)

n linear independent equations result for the calculation of the free parameters αk :

r(x1) = L{u(x1)} − b = 0 , (2.48)

r(x2) = L{u(x2)} − b = 0 , (2.49)
...

r(xn) = L{u(xn)} − b = 0 . (2.50)

One considers that the approximate approach has to fulfill all boundary conditions,
meaning the essential and natural boundary conditions. Due to the property of the
delta function,

∫
Ω

r W (δ)dΩ = r = 0, no integral has to be calculated within
the point-collocation procedure, meaning no integration via the inner product. One
therefore does not need to do an integration and receives the approximate solution
faster—compared to for example the Galerkin procedure. A disadvantage is, how-
ever, that the collocation points can be chosen freely. These can therefore also be
chosen unfavorable.

• Subdomain-Collocation Procedure: ψk(x) = 1 in Ωk and otherwise zero

This procedure is a collocation method as well, however besides the demand that the
error has to disappear on certain points, here it is demanded that the integral of the
error becomes zero over the different domains, the subdomains:

∫
Ωi

r dΩi = 0 for a subregion Ωi . (2.51)

With this procedure the finite difference method can, for example, be derived.

• Method of Least Squares: ψk(x) = ∂r

∂αk

The average quadratic error is optimized at the method of least squares

∫
Ω

(L{u(x)} − b)2dΩ = minimum , (2.52)

or alternatively

d

dαk

∫
Ω

(L{u(x)} − b)2dΩ = 0 , (2.53)
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∫
Ω

d(L{u(x)} − b)

dαk
(L{u(x)} − b)dΩ = 0 . (2.54)

• Petrov-Galerkin Procedure: ψk(x) �= ϕk(x)

This term summarizes all procedures, at which the shape functions of the weighting
function and the approximate solution are different. Therefore, for example, the
subdomain-collocation method can be allocated to this group.

• Galerkin Procedure: ψk(x) = ϕk(x)

The basic idea of the Galerkin or Bubnov- Galerkin method is to choose the same
shape function for the approximate approach and the weighting function approach.
Therefore, the weighting function results in the following for this method:

W (x) =
n∑

k = 1

βkϕk(x) . (2.55)

Since the same shape functions ϕk(x) were chosen for u(x) and W (x) and the co-
efficients βk are arbitrary, the function W (x) can be written as a variation of u(x)
(with δα0 = 0):

W (x) = δu(x) = δα1ϕ1(x)+ · · · + δαnϕn(x) =
n∑

k = 1

δαk × ϕk(x) . (2.56)

The variations can be virtual parameters, as for example virtual displacements or
velocities. The incorporation of this approach into the inner product according to
Eq. (2.42) yields a set of n linear independent equations for a linear operator for the
definition of n unknown free parameters αk :

∫
Ω

(L{u(x)} − b) · ϕ1(x) dΩ = 0 , (2.57)

∫
Ω

(L{u(x)} − b) · ϕ2(x) dΩ = 0 , (2.58)

...∫
Ω

(L{u(x)} − b) · ϕn(x) dΩ = 0 . (2.59)

Conclusion regarding the procedure based on the inner products:
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These formulations demand that the shape functions—which have been assumed to
be defined over the entire domain Ω—fulfill all boundary conditions, meaning the
essential and natural boundary conditions. This demand, as well as the demanded
differentiation of the shape functions (L operator) often lead to a difficulty finding
appropriate functions in the practical application. Furthermore, in general, unsym-
metric coefficient matrices occur (if the L operator is symmetric the coefficient matrix
of the Galerkin method is also symmetric).

2.3.2 Procedure on Basis of the Weak Formulation

For the derivation of another class of approximate procedures the inner product is
partially integrated again and again until the derivative of u(x) and W (x) has the same
order and one reaches the so-called weak formulation. Within this formulations the
demand regarding the differentiability for the approximate function is diminished,
the demand regarding the weighting function however increased. If one uses the
idea of the Galerkin method, meaning equal shape functions for the approximate
approach and the weighting function, the demand regarding the differentiability of
the shape functions is reduced in total.

For a differential operator of second or fourth order, meaning

∫
Ω

L2{u(x)}W (x)dΩ , (2.60)

∫
Ω

L4{u(x)}W (x)dΩ , (2.61)

a one-time partial integration of Eq. (2.60) yields the weak form

∫
Ω

L1{u(x)}L1{W (x)}dΩ = [L1{u(x)}W (x)]Γ , (2.62)

or alternatively two-times partial integration the weak form of Eq. (2.61):

∫
Ω

L2{u(x)}L2{W (x)}dΩ = [L2{u(x)}L1{W (x)} − L3{u(x)}W (x)]Γ . (2.63)

For the derivation of the finite element method one switched to domain-wise defined
shape functions. For such a domain, meaning a finite element with Ωe < Ω and a
local element coordinate xe the weak formulation of (2.62), for example, results in:
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∫
Ωe

L2{u(xe)}L2{W (xe)}dΩe = [L2{u(xe)}L1{W (xe)}−L3{u(xe)}W (xe)
]
Γ e .

(2.64)
Since the weak formulation contains the natural boundary conditions—for this also
see sample problem 2.2—, it can be demanded in the following that the approach3 for
u(x) only has to fulfill the essential boundary conditions. According to the Galerkin
method it is demanded for the derivation of the principal finite element equation that
the same shape functions for the approximate and weighting function are chosen.
Within the framework of the finite element method the nodal values uk are chosen
for the free values αk and the shape functions ϕk(x) are referred to as form or shape
functions Nk(x). Therefore, the following illustrations result for the approximate
solution and the weighting function:

u(x) = N1(x)u1 + N2(x)u2 + · · · Nn(x)un =
n∑

k = 1

Nk(x)uk , (2.65)

W (x) = δu1 N1(x)+ δu2 N2(x)+ · · · δun Nn(x) =
n∑

k = 1

δuk Nk(x) , (2.66)

whereupon n represents the number of nodes per element. It is important for this
procedure that the error on the nodes, whose position has to be defined by the user,
is minimized. This is a significant difference to the classic Galerkin method on
the basis of the inner product, which has found the points with r = 0 itself. For the
further derivation of the principal finite element equation the approaches (2.65) and
(2.66) have to be written in matrix form and inserted into the weak form. For further
details of the derivation refer to the explanations in Chaps. 3 and 5 at this point.

Within the framework of the finite element method the so-called Ritz method is
often mentioned. The classic procedure takes into account the overall potentialΠ of
a system. Within this overall potential an approximate approach in the form of (2.40)
is used, which is, however, defined for the entire domainΩ in the Ritz method. The
shape functions ϕk have to fulfill the geometric, however not the static boundary
conditions.4 Via the derivative of the potential with respect to the unknown free
parameters αk , meaning definition of the extremum of Π , a system of equations
results for the definition of k free parameters, the so-called Ritz coefficients. In
general, however, it is difficult to find shape functions with unknown free values,
which fulfill all geometric boundary conditions of the problem. However, if one
modifies the classic Ritz method in a way so that only the domain Ωe of a finite

3 The index ‘e’ of the element coordinate is neglected in the following—in the case it does not
affect the understanding.
4 Since the static boundary conditions are implicitly integrated in the overall potential, the shape
functions do not have to fulfill those. However, if the shape functions fulfill the static boundary
conditions additionally, an even more precise approximation can be achieved.

http://dx.doi.org/10.1007/978-3-642-31797-2_3
http://dx.doi.org/10.1007/978-3-642-31797-2_5
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element is considered and one makes use of an approximate approach according to
Eq. (2.65) one also achieves the finite element method at this point.

2.3.3 Procedure on Basis of the Inverse Formulation

Finally it needs to be remarked that the inner product can be partially integrated
again and again for the derivation of another class of approximate procedures until
the derivative of u(x) can be completely shifted onto W (x). Therewith one achieves
the so-called inverse formulation. Depending on the choice of the weighting function
one receives the following methods:

• Choice of W so that L(W ) = 0 or L(u) �= 0.

Procedure: Boundary element method (Boundary integral equation of the first
kind).

• Use of a so-called fundamental solution W = W ∗, meaning a solution, which
fulfills the equation L(W ∗) = (−)δ(ξ).
Procedure: Boundary element method (Boundary integral equation of the second
kind).

The coefficient matrix of the corresponding system of equations is fully occupied
and not symmetric. What is decisive for the application of the method is the knowl-
edge about a fundamental solution for the L operator (in elasticity theory such an
analytical solution is known through the Kelvin solution—concentrated load at a
point of an infinite elastic medium).

• Equal shape functions for approximation approach and weighting function
approach. Procedure: Trefftz method.

• Equal shape functions for approximate approach and weighting function and
L(u) = L(W ) = 0 is valid. Procedure: Variation of the Trefftz method.

2.4 Sample Problems

2.1. Example: Galerkin Method on Basis of the Inner Product

Since the term Galerkin method is an often used term within the finite element
method, the original Galerkin method needs to be explained in the following within
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the framework of this example. For this the differential equation, which is defined in
the domain 0 < x < 1 is considered

L{u(x)} − b = d2u0

dx2 + x2 = 0 (0 < x < 1) (2.67)

with the homogeneous boundary conditions u0(0) = u0(1) = 0. For this problem
the exact solution

u0(x) = x

12

(
−x3 + 1

)
(2.68)

can be defined via integration and subsequent consideration of the boundary condi-
tions. Define the approximate solution for an approach with two free values.

2.1 Solution

For the construction of the approximate solution u(x) according to the Galerkin
method the following approach with two free parameters can be made use of:

u0(x) ≈ u(x) = α1ϕ1(x)+ α2ϕ2(x) , (2.69)

= α1x(1 − x)+ α2x2(1 − x) , (2.70)

= α1x + (α2 − α1)x
2 − α2x3 . (2.71)

One needs to consider that the functions ϕ1(x) and ϕ2(x) are chosen in a way so
that the boundary conditions, meaning u(0) = u(1) = 0, are fulfilled. Therefore,
polynomials of first order are eliminated since a linear slope could only connect the
two zero points as a horizontal line. Furthermore, both functions are chosen in a
way so that they are linearly independent. The first derivatives of the approximation
approach result in

du(x)

dx
= α1 + 2(α2 − α1)x − 3α2x2 , (2.72)

d2u(x)

dx2 = 2(α2 − α1)− 6α2x , (2.73)

and the error function results in the following via the second derivative from
Eq. (2.41):

r(x) = d2u

dx2 + x2 = 2(α2 − α1)− 6α2x + x2 . (2.74)

The insertion of the weighting function, meaning

W (x) = δu(x) = δα1x(1 − x)+ δα2x2(1 − x) , (2.75)
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into the residual equation yields

1∫
0

(
2(α2 − α1)− 6α2x + x2

)
︸ ︷︷ ︸

r(x)

×
(
δα1x(1 − x)+ δα2x2(1 − x)

)
︸ ︷︷ ︸

W (x)

dx = 0 (2.76)

or generally split into two integrals:

δα1

1∫
0

r(x)ϕ1(x)dx + δα2

1∫
0

r(x)ϕ2(x)dx = 0 . (2.77)

Since the δαi are arbitrary coefficients and the shape functions ϕi (x) are linearly
independent, the following system of equations results herefrom:

δα1

1∫
0

(
2(α2 − α1)− 6α2x + x2

)
× (x(1 − x)) dx = 0 , (2.78)

δα2

1∫
0

(
2(α2 − α1)− 6α2x + x2

)
×

(
x2(1 − x)

)
dx = 0 . (2.79)

After the integration, a system of equations results for the definition of the two
unknown free parameters α1 and α2

1

20
− 1

6
α2 − 1

3
α1 = 0 , (2.80)

1

30
− 2

15
α2 − 1

6
α1 = 0 , (2.81)

or alternatively in matrix notation:

⎡
⎢⎢⎣

1

3

1

6
1

6

2

15

⎤
⎥⎥⎦

[
α1
α2

]
=

⎡
⎢⎢⎣

1

20
1

30

⎤
⎥⎥⎦ . (2.82)

From this system of equations the free parameters result in α1 = 1
15 and α2 = 1

6 .
Therefore, the approximate solution and the error function finally result in:

u(x) = x

(
−1

6
x2 + 1

10
x + 1

15

)
, (2.83)
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(a)

(b)

Fig. 2.11 Approximate solution according to the Galerkin method, a exact solution and b residual
as a function of the coordinate

r(x) = x2 − x + 1

5
. (2.84)

The comparison between the approximate solution and exact solution is illustrated in
Fig. 2.11a. One can see that the two solutions coincide on the boundaries—one needs
to consider that the approximate approach has to fulfill the boundary conditions—as
well as on two other locations.
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Fig. 2.12 Absolute difference between exact solution and approximate solution as function of the
coordinate

It needs to be remarked at this point that the error function—see Fig. 2.11b—does
not illustrate the difference between the exact solution and the approximate solution.
Rather it is about the error, which results from inserting the approximate solution into
the differential equation. To illustrate this, Fig. 2.12 shows the absolute difference
between exact solution and approximate solution.

Finally it can be summarized that the advantage of the Galerkin method is that the
procedure itself is in search of the points with r = 0. This is quite an advantage in
comparison to the collocation method. However within the Galerkin method the
integration needs to be performed and therefore this method is in comparison to the
collocation more complex and slower.

2.2 Example: Finite Element Method

For the differential equations (2.67) and the given boundary conditions one needs to
calculate, based on the weak formulation, a finite element solution, based on two
equidistant elements with linear shape functions.

Solution

The partial integration of the inner product yields the following formulation:
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1∫
0

(
d2u(x)

dx2 + x2

)
W (x) dx = 0 , (2.85)

1∫
0

d2u(x)

dx2 W (x) dx +
1∫

0

x2W (x) dx = 0 , (2.86)

[
du(x)

dx
W (x)

]1

0

−
1∫

0

du(x)

dx

dW (x)

dx
dx +

1∫
0

x2W (x) dx = 0 , (2.87)

or alternatively the weak form in its final form:

1∫
0

du(x)

dx

dW (x)

dx
dx =

[
du(x)

dx
W (x)

]1

0
+

1∫
0

x2W (x) dx . (2.88)

For the derivation of the finite element method one merges into domain-wise defined
shape functions. For such a domainΩe < Ω , namely a finite element5 of the length
Le, the weak formulation results in:

Le∫
0

du(xe)

dxe

dW (xe)

dxe dxe =
[

du(xe)

dxe W (xe)

]Le

0
+

Le∫
0

(xe + ce)2W (xe) dxe . (2.89)

Fig. 2.13 Global coordinate system X and local coordinate system xi for every element

In the transition from Eqs. (2.88) to (2.89), meaning from the global formulation
to the consideration on the element level, in particular the quadratic expression on
the right-hand side of Eq. (2.88) needs to be considered. To ensure that the in the

5 Usually a separate local coordinate system 0 ≤ xe ≤ Le is introduced for each element ‘e’. The
coordinate in Eq. (2.88) is then referred to as global coordinate and receives the symbol X .
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(a)

(b)

Fig. 2.14 a Exact solution and approximate solution and b absolute difference between exact
solution and finite element solution as a function of the coordinate

global coordinate system defined expression X2 is considered appropriately in the
description on the element level, a coordinate transformation has to be performed
for every element ‘e’ via a term ce. From Fig. 2.13 it can be seen that the term c
turns zero for the first element (I) since global and local coordinate system coincide.
For the second element (II) cII = X I,2 = 1

3 results with an equidistant division and
cIII = X II,2 = 2

3 results accordingly for the third element (III).
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Since the weak formulation contains the natural boundary conditions—for this see
the boundary expression in Eq. (2.89)—it can be demanded in the following that the
approach for u(x) has to fulfill the essential boundary conditions only. According to
the Galerkin method it is demanded for the derivation of the principal finite element
equation that the same shape functions for the approximate and weighting function
are chosen. Within the framework of the finite element method the nodal values uk

are chosen for the free parameters αk and the shape functions ϕk(x) are referred to as
form or shape functions Nk(x). For linear shape functions the following illustrations
result for the approximate solution and the weighting function:

u(x) = N1(x)u1 + N2(x)u2 , (2.90)

W (x) = δu1 N1(x)+ δu2 N2(x) . (2.91)

For the chosen linear shape functions, an element-wise linear course of the
approximate function and a difference between the exact solution and the approx-
imate approach as shown in Fig. 2.14 are obtained. It is obvious that the error is
minimal on the nodes, at the best identical with the exact solution.
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Chapter 3
Bar Element

Abstract On the basis of the bar element, tension and compression as types of
basic load cases will be described. First, the basic equations known from the strength
of materials will be introduced. Subsequently the bar element will be introduced,
according to the common definitions for load and deformation quantities, which are
used in the handling of the FE method. The derivation of the stiffness matrix will be
described in detail. Apart from the simple prismatic bar with constant cross-section
and material properties also more general bars, where the size varies along the body
axis will be analyzed in examples [1–9] and exercises.

3.1 Basic Description of the Bar Element

In the simplest case, the bar element can be defined as a prismatic body with constant
cross-sectional area A and constant modulus of elasticity E , which is loaded with a
concentrated force F in the direction of the body axis (see Fig. 3.1).
The unknown quantities are

• the extension �L and
• the strain ε and stress σ of the bar

dependent on the external load.
The following three basic equations are known from the strength of materials: By

ε(x) = du(x)

dx
= �L

L
(3.1)

kinematics describes the relation between the strains ε(x) and the deformations u(x).
By

σ(x) = E ε(x) (3.2)

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 33
DOI: 10.1007/978-3-642-31797-2_3, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1 Tensile bar loaded by single force

the constitutive equation describes the relation between the stresses σ(x) and the
strains ε(x) and the equilibrium condition results in

σ(x) = S(x)

A(x)
= S(x)

A
= F

A
. (3.3)

The connection between the force F and the length variation�L of the bar can easily
be described with these three equations:

F

A
= σ = Eε = E

�L

L
(3.4)

or with

F = E A

L
�L . (3.5)

The relation between force and length variation is described as axial stiffness. Hence,
the following occurs for the bar regarding the tensile loading1:

F

�L
= E A

L
. (3.6)

For the derivation of the differential equation the force equilibrium at an infinitesimal
small bar element has to be regarded (see Fig. 3.2). A continuously distributed line
load q(x) acts as the load in the unit force per unit length.

1 The parlance tension bar includes the load case compression.
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Fig. 3.2 Force equilibrium at an infinitesimal small bar element

The force equilibrium in the direction of the body axis delivers:

− S(x)+ q(x)dx + S(x + dx) = 0. (3.7)

After a series expansion of S(x + dx) = S(x)+ dS(x) the following occurs

− S(x)+ q(x)dx + S(x)+ dS(x) = 0 (3.8)

or in short:
dS(x)

dx
= −q(x). (3.9)

Equations (3.1), (3.2) and (3.3) for kinematics, the constitutive equation and the
equilibrium continue to apply. If the Eqs. (3.1) and (3.3) are inserted in (3.2), one
obtains

E A(x)
du(x)

dx
= S(x). (3.10)

After the differentiation and insertion of Eq. (3.9) one obtains

d

dx

[
E A(x)

du(x)

dx

]
+ q(x) = 0 (3.11)

as the differential equation for a bar with continuously distributed load. This is a
differential equation of 2nd order within the displacements. Under constant cross-
section A and constant modulus of elasticity E the term simplifies to

E A
d2u(x)

dx2 + q(x) = 0. (3.12)

3.2 The Finite Element Tension Bar

The tension bar is defined as a prismatic body with a single body axis. Nodes are
introduced at both ends of the tension bar, where forces and displacements, as
sketched in Fig. 3.3 are positively defined. The main objective is to achieve a stiffness
relation for this element in the form
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Fig. 3.3 Definition of the finite element tension bar

Fe = ke · up

or [
F1
F2

]e

=
[ · ·

· ·
] [

u1
u2

]
. (3.13)

With this stiffness relation the bar element can be integrated in a structure. Further-
more the displacements, the strains and the stresses inside the element are unknown.
At first, an easy approach is introduced, in which the bar is modeled as a linear spring
(Fig. 3.4).

Fig. 3.4 Tension bar modeled
as a linear spring

This is possible when

• the cross-sectional area A and
• the modulus of elasticity E

are constant along the body axis. The previously derived axial rigidity of the tension
bar can then be interpreted as a spring constant or spring stiffness of a linear spring
through

F

�L
= E A

L
= k. (3.14)

For the derivation of the stiffness relation, which is requested for the finite element
method, a thought experiment is conducted. If, within the spring model at first only



3.2 The Finite Element Tension Bar 37

the spring force F2 is in effect and the spring force F1 is being faded out, the equation

F2 = k�u = k(u2 − u1) (3.15)

then describes the relation between the spring force and the length variation of the
spring. If subsequently only the spring force F1 is in effect and the spring force F2
is being faded out, the equation

F1 = k�u = k(u1 − u2) (3.16)

then describes the relation between the spring force and the length variation of the
spring. Both situations can be superimposed and summarized compactly in matrix-
form as [

F1
F2

]e

=
[

k −k
−k k

] [
u1
u2

]
. (3.17)

With that the desired stiffness relation between the forces and deformations on the
nodal points is derived.
The efficiency of this simple model however is limited. Thus no statements
regarding the displacement, strain and stress distribution on the inside can be made.
Therefore, a more elaborated model is necessary. This will be introduced in the
following.
At first the displacement distribution ue(x) inside a bar will be described through
shape functions N(x) and the displacements up at the nodes:

ue(x) = N(x) up. (3.18)

In the simplest case, the displacement distribution is approximated linearly for the
tension bar (see Fig. 3.5). With the following approach

Fig. 3.5 Linear approximation of the displacement distribution in the tension bar

ue(x) = α1 + α2x (3.19)
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the displacements at the nodes

[
u1
u2

]
=

[
1 x1
1 x2

] [
α1
α2

]
(3.20)

can be described. After the elimination ofαi the following results for the displacement
distribution:

ue(x) = x2 − x

x2 − x1
u1 + x − x1

x2 − x1
u2 (3.21)

or summarized

ue(x) = 1

L
(x2 − x)u1 + 1

L
(x − x1)u2. (3.22)

By this the shape functions N1(x) and N2(x) can be described with

N1(x) = 1

L
(x2 − x) and N2(x) = 1

L
(x − x1). (3.23)

The displacement distribution results in a compact form in:

ue(x) = N1(x)u1 + N2(x)u2 = [N1 N2]
[

u1
u2

]
= N(x) up. (3.24)

Through the kinematics relation the strain distribution results

εe(x) = d

dx
ue(x) = d

dx
N(x) up = B up (3.25)

and because of the constitutive equation the stress distribution results in

σ e(x) = Eεe(x) = E Bup, (3.26)

where the matrix B for the derivation of the shape functions is introduced. For the
linear approximation of the displacement distribution the derivatives of the shape
functions result in:

d

dx
N1(x) = − 1

L
,

d

dx
N2(x) = 1

L
(3.27)

and therefore the matrix B results in

B = 1

L
[−1 1]. (3.28)

For the derivation of the element stiffness matrix the following integral has to be
evaluated
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ke =
∫
Ω

BT DB dΩ. (3.29)

The elasticity matrix D is represented only through the modulus of elasticity E . For
the tension bar, the stiffness matrix therefore results in:

ke = AE
∫
L

1

L

[
1

−1

]
1

L
[−1 1] dx = E A

L2 L

[
1 −1

−1 1

]
. (3.30)

In a compact form, the element stiffness matrix is called:

ke = E A

L

[
1 −1

−1 1

]
. (3.31)

There are also other ways to derive the stiffness matrix, which are introduced in the
following sections.

3.2.1 Derivation Through Potential

The elastic potential energy2 of a one-dimensional problem according to Fig. 3.1
with linear-elastic material behavior results in:

Πint = 1

2

∫
Ω

εxσx dΩ. (3.32)

If stress and strain are substituted by use of the formulations according to Eqs. (3.26)
and (3.25) and if dΩ = Adx is taken into consideration, the following applies:

Πint = 1

2

L∫
0

E A
(
Bup

)T Bupdx . (3.33)

If the relation for the transpose of a product of two matrices3 is taken into account
the following results

Πint = 1

2

L∫
0

E AuT
p BT Bupdx . (3.34)

2 The formΠint = 1
2

∫
Ω

εTσdΩ can be used in the general three-dimensional case, where σ and ε

represents the column matrix with the stress and strain components.
3 (AB)T = BT AT
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Since the nodal values do not represent a function of x , both column matrices can be
eliminated from the integral:

Πint = 1

2
uT

p

⎡
⎣

L∫
0

E ABT Bdx

⎤
⎦ up. (3.35)

Under consideration of the B matrix definition according to Eq. (3.28) the following
results for constant axial rigidity E A:

Πint = 1

2
uT

p

⎡
⎣ E A

L2

L∫
0

[
1 −1

−1 1

]
dx

⎤
⎦

︸ ︷︷ ︸
ke

up. (3.36)

The last equation is equivalent to the general formulation of the potential energy of
a finite element

Πint = 1

2
uT

p keup (3.37)

and allows the identification of the element stiffness matrix ke.

3.2.2 Derivation Through Castigliano’s Theorem

If the stress in the formulation for the elastic potential energy according to Eq. (3.32)
is substituted by use of Hooke’s law according to Eq. (3.2) and if dΩ = Adx is
taken into consideration, the following results:

Πint = 1

2

∫
L

E Aε2
x dx . (3.38)

If now the strain is substituted using the kinematic relation according to Eq. (3.1) and
introduces the approach for the displacement distribution according to Eq. (3.24),
the elastic potential energy for constant axial rigidity E A finally results in:

Πint = E A

2

L∫
0

(
dN1(x)

dx
u1 + dN2(x)

dx
u2

)2

dx . (3.39)

The application of Castigliano’s theorem on the potential energy with reference to
the nodal displacement u1 leads to the external force F1 on the node 1:
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dΠint

du1
= F1 = E A

L∫
0

(
dN1(x)

dx
u1 + dN2(x)

dx
u2

)
dN1(x)

dx
dx . (3.40)

From the differentiation regarding the other deformation parameter the following
arises accordingly:

dΠint

du2
= F2 = E A

L∫
0

(
dN1(x)

dx
u1 + dN2(x)

dx
u2

)
dN2(x)

dx
dx . (3.41)

Equations (3.40) and (3.41) can be summarized as the following formulation:

E A

L∫
0

⎡
⎣

dN1(x)
dx

dN1(x)
dx

dN2(x)
dx

dN1(x)
dx

dN1(x)
dx

dN2(x)
dx

dN2(x)
dx

dN2(x)
dx

⎤
⎦ dx

[
u1
u2

]
=

[
F1
F2

]
. (3.42)

After introducing the shape functions according to Eq. (3.23) and executing the
integration the element stiffness matrix, which is given in Eq. (3.31), results.

3.2.3 Derivation Through the Weighted Residual Method

In the following, the differential equation for the displacement field according to
Eq. (3.13) is being considered. This formulation assumes that the axial rigidity E A
is constant and it results in

E A
d2u0(x)

dx2 + q(x) = 0, (3.43)

whereupon u0(x) represents the exact solution of the problem. The last equation
with the exact solution is exactly fulfilled at every position x on the bar and is also
referred to as the strong formulation of the problem. If the exact solution in Eq. (3.43)
is substituted through an approximate solution u(x), a residual or remainder r results:

r = E A
d2u(x)

dx2 + q(x) �= 0. (3.44)

Due to the introduction of the approximate solution u(x) it is in general not possible
anymore to fulfill the differential equation at every position x of the bar. As an
alternative, it is demanded in the following that the differential equation is fulfilled
over a certain length (and not at every position x anymore) and therefore ends up
with the following integral demand
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L∫
0

W (x)

(
E A

d2u(x)

dx2 + q(x)

)
dx

!= 0, (3.45)

which is also referred to as the inner product. W (x) as part of Eq. (3.45) represents
the so-called weighting function, which distributes the error or the residual over the
regarded length.
The following results through partial integration4 of the first expression in the paren-
theses of Eq. (3.45)

L∫
0

W︸︷︷︸
f

E A
d2u(x)

dx2︸ ︷︷ ︸
g′

dx = E A

[
W (x)

du(x)

dx

]L

0
−E A

L∫
0

dW (x)

dx

du(x)

dx
dx . (3.46)

Under consideration of Eq. (3.45) the so-called weak formulation of the problem
results in:

E A

L∫
0

dW (x)

dx

du(x)

dx
dx = E A

[
W

du(x)

dx

]L

0
+

L∫
0

W (x)q(x)dx . (3.47)

When considering the weak form it becomes obvious that one derivative of the
approximate solution was shifted to the weighting function through the partial
integration and that now with reference to the derivation a symmetric form arose.
This symmetry with reference to the derivation of the approximate solution and the
weighting function will subsequently guarantee that a symmetric element stiffness
matrix for the bar element results.
In the following, first the left-hand side of Eq. (3.47) needs to be considered to derive
the element stiffness matrix for a linear bar element.
The basic idea of the finite element method now is to no longer approximate the
unknown displacement distribution u(x) in the total domain, but to approximately
describe the displacement distribution through

ue(x) = N(x)up = [
N1 N2

] ×
[

u1
u2

]
(3.48)

for a subdomain, the so-called finite element. Within the context of the finite ele-
ment method the same approach as for the displacement is chosen for the weighting
function:

4 A usual representation of the partial integration of two functions f (x) and g(x) is:
∫

f g′dx =
f g − ∫

f ′gdx .
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W (x) = [
N(x) δup

]T = δuT
p NT(x) = [δu1 δu2] ×

[
N1
N2

]
, (3.49)

whereupon δui represent the so-called arbitrary or virtual displacements. The deriv-
ative of the weighting function results in

dW (x)

dx
= d

dx

(
Nδup

)T = (
Bδup

)T = δuT
p BT. (3.50)

In the following it remains to be seen that the virtual displacements can be canceled
with an identical expression on the right-hand side of Eq. (3.47) and no further
consideration will be necessary at this point. When considering the approaches for
the displacement and the weighting function on the left-hand side of Eq. (3.47), the
following results for constant axial rigidity E A:

E A

L∫
0

(
δuT

p BT
) (

Bup
)

dx (3.51)

or under consideration that the vector of the nodal displacement can be regarded as
constant:

δuT
p E A

L∫
0

BT B dx

︸ ︷︷ ︸
ke

up. (3.52)

The expression δuT
p can be canceled with an identical expression on the right-hand

side of Eq. (3.47) and up represents the column matrix of the unknown nodal dis-
placement. Therefore, the stiffness matrix can be calculated due to the derivative of
the shape function according to Eq. (3.28) and finally the formulation according to
Eq. (3.31) for the element stiffness matrix results.
In the following, the right-hand side of Eq. (3.47) is considered to derive the total
load vector for a linear bar element. The first part of the right half is

E A

[
W

du(x)

dx

]L

0
(3.53)

with the definition of the weighting function according to Eq. (3.49)

E A

[(
N δup

)T du(x)

dx

]L

0
= E A

[
δuT

p NT du(x)

dx

]L

0
(3.54)
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results, or in components

δuT
p E A

[[
N1
N2

]
du(x)

dx

]L

0
. (3.55)

The virtual displacements δuT
p in the last equation can be canceled with the corre-

sponding expression in Eq. (3.52). Furthermore, the last equation represents a system
of two equations, which have to be evaluated on the boundary of integration at x = 0
and x = L . The first line results in:

(
N1 E A

du

dx

)
x = 0

−
(

N1 E A
du

dx

)
x = 0

. (3.56)

Under consideration of the shape functions boundary values, meaning N1(L) = 0
and N1(0) = 1, the following results:

−E A
du

dx

∣∣∣∣
x = 0

(3.10)= −S(x = 0). (3.57)

The value of the second line can be calculated accordingly:

E A
du

dx

∣∣∣∣
x = 0

(3.10)= S(x = L). (3.58)

It must be noted that the forces S represent the internal reactions according to Fig. 3.2,
hence the external loads with the positive direction according to Fig. 3.3 result from
the internal reactions by reversing the positive direction on the left section and by
maintaining the positive direction of the internal reaction on the right section.
The second part of the right-hand side of Eq. (3.47), meaning after canceling of δuT

L∫
0

N(x)Tq(x)dx (3.59)

represents the general calculation rule for the definition of the equivalent nodal loads
in the case of arbitrarily distributed loads. It should be noted at this point that the
evaluation of Eq. (3.59) for a constant distributed load q results in the following load
vector:

Fq = q L

2

[
1
1

]
. (3.60)
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3.3 Sample Problems and Supplementary Problems

3.3.1 Sample Problems

3.1. Tension Bar with Variable Cross-Section

So far the cross-section A(x) was assumed to be constant along the body axis. As an
enhancement to that the cross-section needs to be variable. The cross-section A(x)
should change linearly along the body axis. The modulus of elasticity is still regarded
to be constant. Unknown is the stiffness matrix (Fig. 3.6).

Fig. 3.6 Tension bar with variable cross-section

3.1 Solution

The integral

ke =
∫
Ω

BT D B dΩ (3.61)

has to be evaluated to derive the element stiffness matrix. The displacement distrib-
ution should be approximated linearly, as in the derivation above. Nothing changes
for the shape functions or their derivatives. The following results for matrix B

B = 1

L
[−1 1]. (3.62)

In contrast to the prismatic bar with constant cross-section, the area A(x) remains
under the integral. The constant modulus of elasticity E in

ke =
∫
L

1

L

[
1

−1

]
E

1

L
[−1 1] A(x) dx (3.63)
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can be drawn in front of the integral. It remains:

ke = E

L2

[
1 −1

−1 1

] ∫
L

A(x) dx . (3.64)

The linear course of the cross-section can be described through the following:

A(x) = A1 + A2 − A1

L
x . (3.65)

After the execution of the integration

∫
L

A(x) dx =
∫
L

[
A1 + A2 − A1

L
x

]
dx = 1

2
(A1 + A2) L (3.66)

the stiffness matrix

ke = E

L

1

2
(A1 + A2)

[
1 −1

−1 1

]
(3.67)

for a tension bar with linear changeable cross-section results.

3.2. Tension Bar Under Dead Weight

Given is a bar with length L with constant cross-section A, constant modulus of
elasticity E and constant density ρ along the bar axis. The bar is now loaded through
its dead weight (see Fig. 3.7).

Fig. 3.7 Tension bar under
dead weight

Unknown are:

1. The analytical solution and
2. the finite element solution for a single bar element with linear approximation of

the displacement distribution.
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3.2 Solution

Analytical Solution for the Tension Bar Under Dead Weight

Equation (3.13) is the basis for the solution. The dead weight force needs to be
interpreted as a continuously distributed load q(x), which is constant throughout the
length of the bar:

q(x) = q0 = ρ g A. (3.68)

Starting from the differential equation of 2nd order

E A
d2u(x)

dx2 = E Au′′(x) = −q0, (3.69)

one receives the first derivative of the displacement through a one-time integration

E A
du(x)

dx
= E Au′(x) = −q0x + c1, (3.70)

and due to a further integration one receives the function of the displacement:

E Au(x) = −1

2
q0 x2 + c1 x + c2. (3.71)

The constants of integration c1 and c2 are adjusted through the boundary conditions.
The displacement is zero at the fixed support and the following applies:

u(x = 0) = 0 ⇒ c2 = 0. (3.72)

The end of the bar is without force and the following results from Eq. (3.70):

E Au′(x = L) = 0 ⇒ −q0 L + c1 = 0 ⇒ c1 = q0 L . (3.73)

If the constants of integration c1 and c2 are inserted with the term for the distributed
load, the following results for the displacement field along the bar axis

u(x) = 1

E A

[
−1

2
q0x2 + q0 Lx

]
= ρgL2

E

[
−1

2

( x

L

)2 +
( x

L

)]
(3.74)

and the strain field

ε(x) = du(x)

dx
= ρgL

E

[
1 − x

L

]
(3.75)

and the stress field
σ(x) = Eε(x) = ρgL

[
1 − x

L

]
. (3.76)
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FE Solution for the Tension Bar Under Dead Weight

The basis for the finite element solution is the stiffness relation
[

k −k
−k k

] [
u1
u2

]
= 1

2
q0 L

[
1
1

]
(3.77)

with a linear approximation of the displacement distribution. If the formulations

k = E A

L
, q0 = ρgA (3.78)

are inserted for the stiffness k and the distributed load q0, the following compact
form results [

1 −1
−1 1

] [
u1
u2

]
= 1

2

ρgL2

E

[
1
1

]
, (3.79)

from which, the displacement at the lower end of the bar

u2 = 1

2

ρgL2

E
(3.80)

can be read off, after introducing the boundary condition (u1 = 0). The displacement
at the lower end of the bar matches with the analytical solution. The displacement is
linearly distributed on the inside of the bar. The error towards the analytical solution
with a quadratic distribution can be minimized or eliminated through the use of more
elements or elements with quadratic shape functions.

3.3. Tension Bar Under Dead Weight, Two Elements

Given is the tension bar with length L under dead weight, as in Exercise 3.2. For the
determination of the solution on the basis of the FE method, two elements with linear
shape functions should be used.

3.3 Solution

The basis for the solution is the single stiffness relation for the bar under consideration
of a distributed load. One receives the total stiffness relation with two elements
through the development of two single stiffness relations.5 With the formulations for
the stiffness k and the distributed load q0

k = E A

L
, q0 = ρgA (3.81)

5 Here the FE solution is shown in brief. A detailed derivation for the development of a total stiffness
matrix, for the introduction of boundary conditions and for the identification of the unknown is
introduced in Chap. 7.

http://dx.doi.org/10.1007/978-3-642-31797-2_7
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a compact form results

E A
1
2 L

⎡
⎣ 1 −1 0

−1 1 + 1 −1
0 −1 1

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ = 1

2
ρgA

1

2
L

⎡
⎣ 1

1 + 1
1

⎤
⎦ . (3.82)

The first line and column can be eliminated due to the boundary conditions (u1 = 0).
It remains a system of equations with two unknowns

[
2 −1

−1 1

] [
u2
u3

]
= 1

8

ρgL2

E

[
2
1

]
, (3.83)

after a short transformation

[
2 −1
0 1

] [
u2
u3

]
= 1

8

ρgL2

E

[
2
4

]
(3.84)

the displacement at the end node

u3 = 1

2

ρgL2

E
(3.85)

and through insertion into Eq. (3.84) the displacement at the mid-node

u2 = 1

2

[
1

2
+ 1

8

]
ρgL2

E
= 3

8

ρgL2

E
(3.86)

can be identified.

3.3.2 Supplementary Problems

3.4. Tension Bar with Quadratic Approximation

Given is a prismatic tension bar with length L , with constant cross-section AL , and
modulus of elasticity E . In contrast to the derivation above, the displacement distri-
bution on the inside of the bar element needs to be approximated through a quadratic
shape function. Unknown is the stiffness matrix.

3.5. Tension Bar with variable Cross-Section and Quadratic Approximation

The cross-section A(x) changes linearly along the body axis. The modulus of elas-
ticity is constant further on. The displacement distribution on the inside of the bar
element needs to be approximated through quadratic shape functions.
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Chapter 4
Torsion Bar

Abstract The basic load type torsion for a prismatic bar is described with the help
of a torsion bar. First, the basic equations known from the strength of materials
will be introduced. Subsequently, the torsion bar will be introduced, according to
the common definitions for the torque and angle variables, which are used in the
handling of the FE method. The explanations are limited to torsion bars with circular
cross-section. The stiffness matrix will be derived according to the procedure for the
tension bar [1–6].

4.1 Basic Description of the Torsion Bar

In the simplest case, the torsion bar can be defined as a prismatic body with constant
circular cross-section (outside radius R) and constant shear modulus G, which is
loaded with a torsional moment M in the direction of the body axis. Figure 4.1a
illustrates the torsion bar with applied load and Fig. 4.1b shows the free body diagram.

(a) (b)

Fig. 4.1 Torsion bar a with applied load and b free body diagram

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 51
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The unknown quantities are

• the rotation �ϕ of the end cross-sections,
• the rotation ϕ(x), the shear strain γ (x) and the shear stress τ(x) on a cross-

section on the inside of the bar in dependence of the external load.

The following three basic equations are known from strength of materials. The in-
terrelationships of the kinematic state variables are shown in Fig. 4.2 under consid-
eration of a cylindrical coordinate system (x , r , ϕ).1

Fig. 4.2 Torsion bar with
state variables

Kinematics describes the relation between the shear strain and the change of angle:

γ (x) = duϕ
dx

= r
dϕ(x)

dx
. (4.1)

The constitutive equation describes the relation between the shear stress and the shear
strain with

τ(x) = Gγ (x) . (4.2)

The internal moment M(x) is calculated through

M(x) =
∫
A

r τ(x)dA , (4.3)

and with the kinematic relation from Eq. (4.1) and the constitutive equation from Eq.
(4.2) the following results

M(x) = G
dϕ

dx

∫
A

r2dA = G Ip
dϕ

dx
. (4.4)

Hereby the elastic behavior regarding the torsion can be described through

1 Besides the shear strain γxϕ(r, x) and the deformation uϕ(x, r) no further deformation parame-
ters occur during the torsion of circular cross-sections. For clarity reasons the indexing for clear
dimensions is omitted.



4.1 Basic Description of the Torsion Bar 53

dϕ(x)

dx
= M(x)

G Ip
. (4.5)

On the basis of this equation the interrelation between the rotation �ϕ of the two
end cross-sections and the torsional moment M can be described easily:

�ϕ = M

G Ip
L . (4.6)

The expression GIp is called the torsional stiffness. The stiffness for the torsion bar
results from the relation between the moment and the rotation of the end cross-section:

M

�ϕ
= G Ip

L
. (4.7)

For the derivation of the differential equation the equilibrium at the infinitesimal small
torsion bar element has to be regarded (see Fig. 4.3). A continuously distributed load
mt(x) in the unit moment per unit length serves as the load.

Fig. 4.3 Equilibrium at the infinitesimal small torsion bar element

The moment equilibrium in the direction of the body axis provides the following:

− M(x)+ mt(x)dx + M(x + dx) = 0 . (4.8)

After a series expansion of M(x + dx) = M(x)+ dM(x) the following results

− M(x)+ mt(x)dx + M(x)+ dM(x) = 0 (4.9)

or in short:
dM(x)

dx
+ mt(x) = 0. (4.10)

Equations (4.1), (4.2) and (4.3) for kinematics, the constitutive equation and the
equilibrium furthermore apply. If Eqs. (4.1) and (4.2) are inserted in (4.3), one
receives

G Ip(x)
dϕ(x)

dx
= M(x) . (4.11)
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After differentiating and inserting of Eq. (4.10) one obtains

d

dx

[
G Ip(x)

dϕ(x)

dx

]
+ mt(x) = 0 (4.12)

as the differential equation for a torsion bar with continuously distributed load. This
is a differential equation of 2nd order in the rotations. At constant torsional rigidity
GIp the term simplifies to

G Ip
d2ϕ(x)

dx2 + mt(x) = 0 . (4.13)

4.2 The Finite Element Torsion Bar

The handling of the torsion bar occurs analogous to the handling of the tension bar.
The procedure is identical. The vectors and matrices, occurring within the frame of
the FE method are similar.
The torsion bar is defined as a prismatic body with constant circular cross-section
(outside radius R) along the body axis. Nodes are introduced at both ends of the
torsion bar, at which moments and angles, as drafted in Fig. 4.4 are positively defined.
It is the objective to achieve a stiffness relation in the form

T e = ke ϕp (4.14)

Fig. 4.4 Definition for the
finite element torsion bar
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or [
T1
T2

]
=

[ · ·
· ·

] [
ϕ1
ϕ2

]
(4.15)

for this element. The torsion bar element can be integrated in a structure through this
stiffness relation.
First, an easy approach will be introduced, at which the torsion bar is modeled as a
linear torsion spring (Fig. 4.5).

Fig. 4.5 Torsion bar modeled
as a linear torsion spring

This is possible, when the torsional rigidity GIp is constant along the body axis. The
previously derived stiffness of the torsion bar can then be interpreted with

G Ip

L
= kt (4.16)

as spring constant or spring stiffness of a linear torsion spring. To avoid confu-
sion with the stiffness of the tension bar, the torsional rigidity is exposed with the
index ‘t’.
For the derivation of the stiffness relation, which is requested for the finite element
method, a thought experiment is conducted. If, within the spring model at first only
the torsional moment T2 is in effect and the moment T1 is faded out, the equation

T2 = kt�ϕ = kt(ϕ2 − ϕ1) (4.17)

then describes the relation between the spring moment and the torsion angle of the
end cross-sections. If subsequently only the torsional moment T1 is in effect and the
moment T2 is faded out, the equation

T1 = kt�ϕ = kt(ϕ1 − ϕ2) (4.18)
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then describes the relation between the spring moment and the torsion angle of the
end cross-sections. Both situations can be superimposed and summarized compactly
in matrix form as [

T1
T2

]e

=
[

kt −kt
−kt kt

] [
ϕ1
ϕ2

]
. (4.19)

With that the desired stiffness relation between the torsional moments and the rota-
tions on the nodal points is derived.
The element stiffness matrix for the finite element torsion bar is called

ke = kt

[
1 −1

−1 1

]
= G Ip

L

[
1 −1

−1 1

]
(4.20)

and is similar to the stiffness matrix of the tension bar.
The field variables on the inside of the elements are approximated through the nodal
values and shape functions. The derivation of this description as well as the derivation
of the stiffness relation through other ways are omitted. The proceeding is identical
to that for the tension bar.
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Chapter 5
Bending Element

Abstract By this element the basic deformation bending will be described. First,
several elementary assumptions for modeling will be introduced and the element used
in this chapter will be outlined towards other formulations. The basic equations from
the strength of materials, meaning kinematics, equilibrium and constitutive equation
will be introduced and used for the derivation of the differential equation of the
bending line. Analytical solutions will conclude the section of the basic principles.
Subsequently, the bending element will be introduced, according to the common
definitions for load and deformation parameters, which are used in the handling of
the FE method. The derivation of the stiffness matrix is carried out through various
methods and will be described in detail. Besides the simple, prismatic bar with
constant cross-section and load on the nodes also variable cross-sections, generalized
loads between the nodes and orientation in the plane and the space will be analyzed.

5.1 Introductory Remarks

In the following, a prismatic body will be examined, at which the load occurs per-
pendicular to the center line and therefore bends. Perpendicular to the center line
means that either the line of action of a force or the direction of a momental vector
are oriented orthogonally to the center line of the element. Consequently a differ-
ent type of deformation can be modeled with this prismatic body compared to a
bar (see Chaps. 3 and 4), see Table 5.1. A general element, which includes all these
deformation mechanisms will be introduced in Chap. 6.

Table 5.1 Differentiation between bar and beam element; center line parallel to the x-axis

Bar Beam

Force Along the bar axis Perpendicular to the beam axis
Unknown Displacement in or rotation

around bar axis
Displacement perpendicular to and rotation
perpendicular to the beam axis
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DOI: 10.1007/978-3-642-31797-2_5, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-31797-2_3
http://dx.doi.org/10.1007/978-3-642-31797-2_4
http://dx.doi.org/10.1007/978-3-642-31797-2_6


58 5 Bending Element

Generally in beam statics one distinguishes between shear rigid and shear flexible
models. The classic, shear rigid beam, also called Bernoulli beam, disregards the
shear deformation from the shear force. With this modeling one assumes that a cross-
section, which was at the right angle to the beam axis before the deformation is also
at right angles to the beam axis after the deformation, see Fig. 5.1a. Furthermore it is
assumed that a plane cross-section stays plane and unwarped. These two assumptions
are also called the Bernoulli’s hypothesis. Altogether one imagines the cross-
sections fixed on the center line of the beam,1 so that a change of the center line
affects the entire deformation. Consequently, it is also assumed that the geometric
dimensions of the cross-sections2 do not change. Regarding a shear flexible beam,
also referred to as Timoshenko beam besides the bending deformation also the
shear deformation is considered, and the cross-sections will be distorted by an angle
γ compared to the perpendicular position, see Fig. 5.1b. In general the shear part for
beams, which length is 10–20 times bigger than a characteristic dimension of the
cross-section3 is disregarded in the first approximation.

(a) (b)

Fig. 5.1 Different deformation of a bending beam: a shear rigid and b shear flexible. Adapted
from [1]

The different load types, meaning pure bending moment or shear as a consequence of
shear force, lead to different stress fractions within a bending beam. For a Bernoulli
beam solely loading occurs through normal forces, which rise linearly over the
cross-section. Hence, a tension—alternatively compression maximum on the upper—
alternatively lower side of the beam occurs, see Fig. 5.2a.

(a) (b)

Fig. 5.2 Different stress distribution at the bending beam using the example of a rectangular cross-
section for linear-elastic material behavior: a normal stress (shear rigid); b shear stress (shear
flexible)

1 More precisely this is the neutral fiber or the bending line.
2 Consequently the width b and the height h of a, for example, rectangular cross-section remain the
same.
3 For this see the explanations in Chap. 8.

http://dx.doi.org/10.1007/978-3-642-31797-2_8
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At symmetric cross-sections the zero crossing4 occurs in the middle of the
cross-section. The shear stress exhibits, for example, with a rectangular cross-section
a parabolic course and features zero at the beam boundaries.
Finally, it needs to be noted that the one-dimensional beam theory has a
counterpart in the two-dimensional, see Table 5.2. In plate theories the Bernoulli
beam is equal to the shear rigid Kirchhoff plate and the Timoshenko beam is equal
to the shear flexible Reissner–Mindlin plate, [2–4].

Table 5.2 Analogy within
the beam and plate theory

Beam theory Plate theory

Dimensionality 1D 2D
Shear rigid Bernoulli beam Kirchhoff plate
Shear flexible Timoshenko beam Reissner–Mindlin plate

Further details regarding the beam theory and the corresponding basic definitions
and assumptions can be found in Refs. [5–8]. In the following part of the chapter
solely the Bernoulli beam is considered. The consideration of the shear part takes
place in Chap. 8.

5.2 Basic Description of the Beam

5.2.1 Kinematics

For the derivation of the kinematic relation a beam with length L under constant
moment loading Mz(x) = constant, meaning under pure bending, is considered, see
Fig. 5.3. One can see that both external single moments at the left and right beam
border lead to a positive bending moment distribution Mz within the beam. The
vertical position of a point in matters of the center line of the beam without action of
an external load is described through the y-coordinate. The vertical displacement of
a point on the center line of the beam, meaning for a point with y = 0, under action
of the external load is indicated with uy . The deformed center line is represented by
the sum of these points with y = 0 and is referred to as the bending line uy(x).
In the following, the center line of the deformed beam is considered. Through the
relation for an arbitrary point (x, uy) on a circle with radius R around the central
point (x0, y0), meaning

(x − x0)
2 + (uy(x)− y0)

2 = R2 , (5.1)

4 The sum of all points with σ = 0 along the beam axis is called neutral fiber.

http://dx.doi.org/10.1007/978-3-642-31797-2_8
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(a)

(b)

Fig. 5.3 Bending beam under pure bending: a moment distribution; b deformed beam. Note that
the deformation is an overdrawn illustration. For the deformations considered in this chapter the
following applies: R � L

through differentiation regarding the x-coordinate, one obtains

2(x − x0)+ 2(uy(x)− y0)
duy

dx
= 0 (5.2)

alternatively after another differentiation:

2 + 2
duy

dx

duy

dx
+ 2(uy(x)− y0)

d2uy

dx2 . (5.3)

Equation (5.3) provides the vertical distance of the regarded point on the center line
of the beam in matters of the center of a circle to

(uy − y0) = −
1 +

(
duy
dx

)2

d2uy

dx2

, (5.4)

while the difference of the x-coordinate from Eq. (5.2) results:
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(x − x0) = −(uy − y0)
duy

dx
. (5.5)

If the expression according to Eq. (5.4) is used in (5.5) the following results:

(x − x0) = duy

dx

1 +
(

duy
dx

)2

d2uy

dx2

. (5.6)

Inserting both expressions for the coordinate difference according to Eqs. (5.6) and
(5.4) in the circle relation according to (5.1) leads to:

R2 = (x − x0)
2 + (uy − y0)

2 (5.7)

=
(

duy

dx

)2

(
1 +

(
duy
dx

)2
)2

(
d2uy

dx2

)2 +

(
1 +

(
duy
dx

)2
)2

(
d2uy

dx2

)2

=
((

d2uy

dx2

)2

+ 1

) (
1 +

(
duy
dx

)2
)2

(
d2uy

dx2

)2

=

(
1 +

(
duy
dx

)2
)3

(
d2uy

dx2

)2 . (5.8)

Since the circle configuration, shown in Fig. 5.3 is a ‘left-handed curve’
( du2

y

dx2 > 0
)
,

the radius of curvature R results in:

R = +
(−)

(
1 +

(
duy
dx

)2
)3/2

(
d2uy

dx2

) . (5.9)

Note that the expression curvature, which results as a reciprocal value from the
curvature radius, κ = 1

R , is used here as well.

For small bending deflections, meaning uy � L , duy
dx � 1 results and Eq. (5.9)

simplifies to:

R = 1
d2uy

dx2

or κ = d2uy

dx2 . (5.10)
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For the determination of the strain one goes back to the general definitions, meaning
extension referred to initial length. With the expression from Fig. 5.4 the longitudinal
extension for a fibre with the distance y to the neutral fibre results in:

εx = ds − dx

dx
. (5.11)

Fig. 5.4 Segment of a bend-
ing beam under pure bending.
Note that the deformation is
overdrawn for better illustra-
tion

The lengths of the circular arcs ds and dx result from the corresponding radii and
the central angle in the radian measure for both sectors to:

dx = Rdϕz , (5.12)

ds = (R − y)dϕz . (5.13)

If these relations are used for the circular arcs in Eq. (5.11), the following results:

εx = (R − y)dϕz − Rdϕz

dx
= −y

dϕz

dx
. (5.14)

From Eq. (5.12) dϕz
dx = 1

R results and together with relation (5.10) the strain can
finally be expressed as follows:

εx = −y
d2uy(x)

dx2 . (5.15)

An alternative derivation of the kinematic relation results from consideration of
Fig. 5.5.
From the relation for the rectangular triangle 0′1′2′, meaning sin ϕz = ux−y , the

following5 results for small angles (sin ϕz ≈ ϕz):

ux = −yϕz . (5.16)

5 Note that according to the precondition regarding the Bernoulli beam the length 01 and 0′1′
remain unchanged.
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Fig. 5.5 Alternative consideration for the derivation of the kinematic relation. Note that the defor-
mation is overdrawn for better illustration

Furthermore, it continues to apply that the rotation angle of the slope equals the
center line for small angles:

tan ϕz = duy(x)

dx
≈ ϕz . (5.17)

The definition of the positive and negative rotation angle is illustrated in Fig. 5.6.
If Eqs. (5.17) and (5.16) are summarized, the following results

(a) (b)

Fig. 5.6 For the definition of the rotation angle: a ϕz = duy
dx positive; b ϕz = duy

dx negative

ux = −y
duy(x)

dx
. (5.18)

The last relation equals (ds − dx) in Eq. (5.11) and differentiation with respect to
the x-coordinate leads directly to Eq. (5.15).
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5.2.2 Equilibrium

The equilibrium conditions are derived from an infinitesimal beam element with
the length dx , which is loaded by a constant distributed load qy , see Fig. 5.7. The
internal reactions are marked at both cutting surfaces, meaning the location x and
x + dx . One can see that the shear force in the direction of the positive y-axis
at the positive6 cutting surface is positive and that the positive bending moment
features the same rotational direction as the positive z-axis (right-hand grip rule7).
The positive orientation of the shear force and the bending moment are reversed at the
negative cutting surface to neutralize the effect of these internal reactions in sum. This
convention for the direction of the internal reactions is maintained in the following.
Furthermore from Fig. 5.7 it can be derived that an upwards directed external force or
alternatively a, in a mathematically sense positively rotating external moment on the
right-hand boundary of a beam lead to a positive shear force or alternatively a positive
internal moment. Accordingly it results that on the left-hand boundary of a beam
a downwards directed external force or alternatively a, in a mathematically sense
negatively rotating external moment, leads to a positive shear force or alternatively
positive internal moment.

Fig. 5.7 Infinitesimal beam element with internal reactions and load through constant distributed
load at deformation in the x−y plane

In the following, the equilibrium will be observed regarding the vertical forces.
Assuming that forces in the direction of the positive y-axis are applied positively,
the following results:

− Q(x)+ Q(x + dx)+ qydx = 0 . (5.19)

6 The positive cutting surface is defined by the surface normal on the cutting plane which features
the same orientation as the positive x-axis. It should be regarded that the surface normal is always
directed outwardly. Regarding the negative cutting surface the surface normal and the positive x-axis
are oriented antiparallel.
7 If the axis is grasped with the right-hand in a way so that the spread out thumb points in the
direction of the positive axis, the bent fingers then show the direction of the positive rotational
direction.
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If the shear force on the right-hand face is expanded in a Taylor’s series of first
order, meaning

Q(x + dx) ≈ Q(x)+ dQ(x)

dx
dx , (5.20)

Eq. (5.19) results in

− Q(x)+ Q(x)+ dQ(x)

dx
dx + qydx = 0 , (5.21)

or alternatively after simplification finally to:

dQ(x)

dx
= −qy . (5.22)

For the special case that no distributed load occurs (qy = 0), Eq. (5.22)
simplifies to:

dQ(x)

dx
= 0 . (5.23)

The equilibrium of moments around the point of reference at x + dx delivers:

Mz(x + dx)− Mz(x)+ Qy(x)dx − 1

2
qydx2 = 0 . (5.24)

If the bending moment on the right-hand face is expanded into a Taylor’s series
of first order according to Eq. (5.20) and consideration that the term 1

2 qydx2 as
infinitesimal small size of higher order can be disregarded, finally the following
results:

dMz(x)

dx
= −Qy(x) . (5.25)

The combination of Eqs. (5.22) and (5.26) leads to the relation between bending
moment and distributed load to:

d2 Mz(x)

dx2 = −dQy(x)

dx
= qy . (5.26)

5.2.3 Constitutive Equation

The one-dimensional Hooke’s law according to Eq. (3.2) can also be used in the
case of the bending beam, since according to the requirements only normal stress is
regarded in this chapter:

σx = Eεx . (5.27)

http://dx.doi.org/10.1007/978-3-642-31797-2_3
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Through the kinematic relation according to Eq. (5.15) stress results as a function of
deflection to:

σx (x, y) = −Ey
d2uy(x)

dx2 . (5.28)

(a) (b)

Fig. 5.8 a Schematic representation of the normal stress distributionσx = σx (y)of a bending beam;
b definition and position of an infinitesimal surface element for the derivation of the resulting effect
of moments of the normal stress distribution

In Fig. 5.8a the shown stress distribution generates the internal moment, which acts
at this point. To calculate the effect of the moment, the stress is multiplied with a
surface, so that the resulting force is obtained. Multiplication with the corresponding
lever arm then delivers the internal moment. Since this is a matter of a changeable
stress the consideration takes place on an infinitesimal small surface element:

dMz = (+y)(−σx )dA = −yσx dA . (5.29)

Therefore, the entire moment results via integration over the entire surface in:

Mz = −
∫
A

yσx dA
(5.28)= +

∫
A

yEy
d2uy

dx2 dA . (5.30)

Assuming that the modulus of elasticity is constant and under the consideration of
Eq. (5.10) the internal moment around the z-axis results in:

Mz = E
d2uy

dx2

∫
A

y2dA

︸ ︷︷ ︸
Iz

. (5.31)

The integral in Eq. (5.31) is the so-called axial second moment of area or axial surface
moment of 2nd order in the SI unit m4. This factor is only dependent on the geometry
of the cross-section and is also a measure for the stiffness of a plane cross-section
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Table 5.3 Axial second
moment of area around the z-
and y-axis

Cross-section Iz Iy

πD4

64
= πR4

4

πD4

64
= πR4

4

πba3

4

πab3

4

bh3

12

hb3

12

bh3

36

hb3

36

bh3

36

ah3

48

against bending. The values of the axial second moment of area for simple geometric
cross-sections are collected in Table 5.3.
Consequently, the internal moment can also be shown as

Mz = E Iz
d2uy

dx2
(5.10)= E Iz

R
= E Izκ. (5.32)

Equation (5.32) describes the bending line uy(x) as a function of the bending moment
and is therefore also referred to as the bending line–moment relation. The product
EIz in Eq. (5.32) is also called the bending stiffness. If the result from Eq. (5.32) is
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used in the relation for the bending stress according to Eq. (5.28), the distribution of
stress across the cross-section results in:

σx (y) = − Mz

Iz
y . (5.33)

The minus sign causes, that after the introduced sign convention for deformations
in the x−y plane, a positive bending moment (see Fig. 5.3) in the upper beam half,
meaning for y > 0, leads to a compressive stress. The corresponding equations for
a deformation in the x−z plane are collected at the end of Sect. 5.2.5.

Fig. 5.9 Deformation of a bending beam at plane bending, meaning for Mz(x) �= const

In the case of plane bending with Mz(x) �= const. the bending line can be approached
in each case locally through a circle of curvature, see Fig. 5.9. Therefore the result of
the pure bending according to Eq. (5.32) can be transferred on the result of the plane
bending:

E Iz
d2uy(x)

dx2 = Mz(x) . (5.34)

Finally, the three elementary basic equations for the bending beam for arbitrary
moment loading Mz(x) at bending in the x−y plane are summarized in Table 5.4.

Table 5.4 Elementary basic
equations for the bending
beam at deformation in the
x−y plane

Relation Equation

Kinematics εx (x, y) = −y
d2uy (x)

dx2

Equilibrium dQy (x)
dx = −qy(x) ; dMz (x)

dx = −Qy(x)

Constitutive equation σx (x, y) = Eεx (x, y)

Stress σx (x, y) = − Mz (x)
Iz

y(x)

Diff. equation E Iz
d2uy (x)

dx2 = Mz(x)

E Iz
d3uy (x)

dx3 = −Qy(x)

E Iz
d4uy (x)

dx4 = qy(x)
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5.2.4 Differential Equation of the Bending Line

Two-time differentiation of Eq. (5.32) and consideration of the relation between bend-
ing moment and distributed load according to Eq. (5.26) leads to the classic type of
differential equation of the bending line,

d2

dx2

(
E Iz

d2uy

dx2

)
= qy , (5.35)

which is also referred to as the bending line–distributed load relation. For a beam
with constant bending stiffness EIz along the beam axis, the following results:

E Iz
d4uy

dx4 = qy . (5.36)

The differential equation of the bending line can of course also be applied through
the bending moment or the shear force as

E Iz
d2uy

dx2 = Mz or (5.37)

E Iz
d3uy

dx3 = −Qy . (5.38)

Finally, the three different formulations for the differential equation for the bending
beam at bending in the x−y plane are summarized in Table 5.4.

5.2.5 Analytical Solutions

In the following, the analytical calculation of the bending line for simple statically
determinate load cases will be considered. The differential equation of the bending
line has to be integrated analytically according to Eqs. (5.36), (5.37) or (5.38). The
constants of integration occurring in this integration can be determined with the help
of the boundary conditions, see Table 5.5.
If the distributed load (or moment or shear force distribution) cannot be represented
in a closed form for the entire bending beam because supports, pin-joints, effects of
jumps or kinks in the load function occur, the integration has to be done in sections.
The additional constants of integration then have to be defined through the transition
conditions. The following transition conditions (conditions of continuity) for the
illustrated beam divisions in Fig. 5.10 can for example be named:

uI
y(a) = uII

y (a) , (5.39)

duI
y(a)

dx
= duII

y (a)

dx
. (5.40)
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Table 5.5 Boundary
conditions at bending in the
x−y plane

Symbol Type of bearing uy
duy

dx
Mz Qy

Simply supported 0 – 0 –

Roller support 0 – 0 –

Free end – – 0 0

Fixed support 0 0 – –

Support with – 0 – 0
shear force link

Spring support F
c – 0 –

Fig. 5.10 For the definition
of the transition condition
between different sections of
a beam

The analytical calculation of the bending line is executed in the following, for
example, for a bending beam subjected to a single force, see Fig. 5.11. The differen-
tial equation of the bending line in the form with the fourth order derivative according
to Eq. (5.36) is chosen as an initial point. A four-time integration gradually leads to
the following equations:

E Iz
d3uy

dx3 = c1 (= −Qy) , (5.41)

E Iz
d2uy

dx2 = c1x + c2 (= Mz) , (5.42)

E Iz
duy

dx
= 1

2
c1x2 + c2x + c3 , (5.43)

E Izuy = 1

6
c1x3 + 1

2
c2x2 + c3x + c4 . (5.44)

Consequently, the general solution via the constants of integration c1, . . . , c4 has to
be adapted to the particular problem according to Fig. 5.11a.
uy(0) = 0 and duy(0)

dx = 0 apply for the fixed support on the left-hand boundary
(x = 0), see Table 5.5. From Eqs. (5.43) and (5.44) with these boundary conditions
c3 = c4 = 0 results immediately. For the determination of the remaining constants of
integration one cannot use Table 5.5. In fact the external load has to be put in relation
to the internal reactions. Herefore the infinitesimal element shown in Fig. 5.11b, at
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Fig. 5.11 Calculation of the
bending line for the bending
beam under single force: a
General configuration and
b internal reactions at free
boundary

(a) (b)

Fig. 5.12 Calculation of the
bending line for a beam under
single force on the basis of
moment distribution

which the external force F acts has to be regarded. The equilibrium between the
external loads and the internal reactions has to be formulated at position x = L , thus
at the point of application of the external force. Therefore the external force does
not create a moment action since the case dx → 0 or in other words the position
x = L is considered. The equilibrium of moments,8 meaning Mz(x = L) = 0,
together with Eq. (5.42) leads to the relation c2 = −c1L . The vertical equilibrium
of forces according to Fig. 5.11b leads to Qy(x = L) = −F . Through Eq. (5.41) it
results therefrom that c1 = F . Consequently the equation of the bending line can be
formulated as

uy(x) = 1

E Iz

(
1

6
Fx3 − 1

2
F Lx2

)
. (5.45)

In particular the maximal bending on the right-hand boundary results in:

uy(L) = − F L3

3E Iz
. (5.46)

The calculation of the bending line can alternatively also start for example from the
moment distribution Mz(x). To do so, the beam has to be ‘cut’ in two parts at an
arbitrary position x , see Fig. 5.12. Subsequently it is enough to consider only one of
the two parts for the composition of the equilibrium condition.

8 Just for the case that an external moment Mext would act at position x = L , the internal moment
would result in: Mz(x = L) = Mext. Hereby it was assumed that the external moment Mext would
be positive in a mathematical sense.
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The equilibrium of moments on the right-hand part around the reference point at
position x delivers +Mz(x)+ (L − x)F = 0, or alternatively solved for the moment
distribution:

Mz(x) = (x − L)F . (5.47)

The differential equation of the bending line in the form with the 2nd order derivative
according to Eq. (5.37) is chosen as the initial point. Two-time integration gradually
leads to the following equations:

E Iz
d2uy

dx2 = Mz(x) = (x − L)F , (5.48)

E Iz
duy

dx
=

(
1

2
x2 − Lx

)
F + c1 , (5.49)

E Izuy(x) = 1

6
x3 F − 1

2
Lx2 F + c1x + c2 . (5.50)

The consideration of the boundary conditions on the fixed support, meaning uy(0) =
0 and duy(0)

dx = 0, finally leads to Eq. (5.45) and the maximal bending deflection
according to Eq. (5.46).
At this point it needs to be noted that regarding the bending in the x−z plane,
the basic equations have to be slightly modified at some points since the positive
orientation of the angles or rather moments are defined around the positive y-axis. The
corresponding basic equations are summarized in Table 5.6 and apply irrespective
of the orientation—either positive upwards or positive downwards—of the vertical
z-axis.

Table 5.6 Elementary basic
equations for the bending
beam at deformation in the
x−z plane

Name Equation

Kinematics εx (x, z) = −z d2uz (x)
dx2

Equilibrium dQz (x)
dx = −qz(x) ; dMy (x)

dx = Qz(x)

Constitutive equation σx (x, z) = Eεx (x, z)

Stress σx (x, z) = My (x)
Iy

z(x)

Diff. equation E Iy
d2uz (x)

dx2 = −My(x)

E Iy
d3uz (x)

dx3 = −Qz(x)

E Iy
d4uz (x)

dx4 = qz(x)

Closed-form solutions for further loading cases will be concluded at the end of this
chapter, see Table 5.7 [9, 10]. To be able to realize a closed-form presentation with
discontinuities, the so-called Föppl bracket was used for the equations of the bending
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Table 5.7 Closed-form solutions of the bending line at simple loading cases for statically deter-
minate beams at bending in the x−y plane

Load Bending line

uy(x) = −F

6E Iz
× [3ax2 − x3 + 〈x − a〉3]

uy(x) = −M

2E Iz
× [−x2 + 〈x − a〉2]

uy(x) = −q

24E Iz
× [6(a2

2 − a2
1)x

2 − 4(a2 − a1)x
3

+ 〈x − a1〉4 − 〈x − a2〉4]

uy(x) = −F

6bE Iz
× [(b − a)(b2x − x3)− x〈b − a〉3

+ b〈x − a〉3 − a〈x − b〉3]

uy(x) = −M

6bE Iz
× [b2x − x3 − 3x〈b − a〉2

+ 3b〈x − a〉2 + 〈x − b〉3]

uy(x) = −q

24bE Iz
× [2(a2

2 − a2
1 − 2b(a2 − a1))

× (x3 − b2x)− x〈b − a1〉4 + x〈b − a2〉4

+ b〈x − a1〉4 − b〈x − a2〉4

− 2(a2
2 − a2

1)〈x − b〉3]

x

line in Table 5.7. This mathematical notation, which was introduced by August Otto
Föppl (1854–1942)9 has the following meaning:

〈x − a〉n =
{

0 for x < a
(x − a)n for x ≥ a .

(5.51)

In particular with the case n = 0

〈x − a〉0 =
{

0 for x < a
1 for x ≥ a

(5.52)

the closed-form presentation of jumps can be realized. Furthermore, derivations and
integrals are defined by regarding the triangular bracket symbol as classical round
brackets:

9 In English-speaking countries this mathematical notation is mostly named after the British math-
ematician and engineer W.H. Macaulay (1853–1936)[11]. However this notation was originally
proposed by the German mathematician Rudolf Friedrich Alfred Clebsch (1833–1872) [12].
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d

dx
〈x − a〉n = n〈x − a〉n−1 , (5.53)∫

〈x − a〉ndx = 1

n + 1
〈x − a〉n+1 + c . (5.54)

5.3 The Finite Element Method of Plane Bending Beams

The bending element is defined as a prismatic body with the center line x and the y-
axis orthogonally to the center line. Nodes are introduced at both ends of the bending
element, at which displacements and rotations or alternatively forces and moments
are defined, as drafted in Fig. 5.13. The deformation and loading parameters are
assumed to be positive in the drafted direction.

Fig. 5.13 Definition of the
positive direction for the bend-
ing element at deformation in
the x−y plane: a deformation
parameters; b load parameters

(a)

(b)

Since deformation parameters are present at both nodes, meaning uy and ϕz = duy
dx ,

a polynomial with four unknown parameters will be assessed in the following for the
displacement field:

uy(x) = α0 + α1x + α2x2 + α3x3 = [
1 x x2 x3

]
⎡
⎢⎢⎣
α0
α1
α2
α3

⎤
⎥⎥⎦ = χTα . (5.55)
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Due to differentiation with regard to the x-coordinate the course of the rotation
results in:

ϕz(x) = duy(x)

dx
= α1 + 2α2x + 3α3x2 . (5.56)

Evaluation of the deformation distributions uy(x) and ϕz(x) at both nodes, meaning
for x = 0 and x = L , delivers:

Node 1: u1y(0) = α0 , (5.57)

ϕ1z(0) = α1 , (5.58)

Node 2: u2y(L) = α0 + α1L + α2L2 + α3L3 , (5.59)

ϕ2z(L) = α1 + 2α2L + 3α3L2 , (5.60)

and in matrix notation:
⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2

⎤
⎥⎥⎦

︸ ︷︷ ︸
X

⎡
⎢⎢⎣
α0
α1
α2
α3

⎤
⎥⎥⎦ . (5.61)

Solving for the unknown coefficients α1, . . . , α4 yields:

⎡
⎢⎢⎣
α0
α1
α2
α3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
− 3

L2 − 2
L

3
L2 − 1

L
2

L3
1

L2 − 2
L3

1
L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ (5.62)

or in matrix notation:
α = Aup = X−1up . (5.63)

The row matrix of the shape functions10 results from N = χTA and includes the
following components:

N1u(x) = 1 − 3
( x

L

)2 + 2
( x

L

)3
, (5.64)

N1ϕ(x) = x − 2
x2

L
+ x3

L2 , (5.65)

N2u(x) = 3
( x

L

)2 − 2
( x

L

)3
, (5.66)

N2ϕ(x) = − x2

L
+ x3

L2 . (5.67)

10 Alternatively the expression interpolation or form function is used.
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Fig. 5.14 Shape functions for the bending element at bending in the x−y plane

A graphical illustration of the shape functions is given in Fig. 5.14.
In compact form the displacement distribution herewith results in:

ue
y(x) = N1uu1y + N1ϕϕ1z + N2uu2y + N2ϕϕ2z (5.68)

= [
N1uu1y N1ϕ N2uu2y N2ϕ

]
⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ = N(x)up . (5.69)

Through the kinematic relation according to Eq. (5.15) the strain distribution
results in:

εe
x (x, y) = −y

d2ue
y(x)

dx2 = −y
d2

dx2

(
N(x)up

) = −y
d2N(x)

dx2 up . (5.70)

According to the procedure for the bar element in Chap. 3, a generalized B-matrix can
be introduced at this point for the bending element. Thus, one obtains an equivalent
formulation as in Eq. (3.25), meaning εe

x = Bup, with

B = −y
d2N(x)

dx2 . (5.71)

Through the constitutive law according to Eq. (5.27) the stress distribution results in:

σ e
x (x, y) = Eεe

x (x, y) = EBup . (5.72)

http://dx.doi.org/10.1007/978-3-642-31797-2_3
http://dx.doi.org/10.1007/978-3-642-31797-2_3
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The general approach for the derivation of the element stiffness matrix, meaning

ke =
∫
Ω

BTDBdΩ (5.73)

simplifies itself, since the elasticity matrix D in the regarded one-dimensional case
is only represented through the modulus of elasticity E . Consequently the following
results:

ke =
∫
Ω

(
−y

d2NT(x)

dx2

)
E

(
−y

d2N(x)
dx2

)
dΩ . (5.74)

If the cross-section of the beam along the x-axis is constant, the following results:

ke = E
∫
L

⎛
⎝ ∫

A

y2dA

⎞
⎠ d2NT(x)

dx2

d2N(x)
dx2 dx = E Iz

∫
L

d2NT(x)

dx2

d2N(x)
dx2 dx .

(5.75)
The conditional equation for the stiffness matrix can be written as follows

ke = E Iz

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN 2
1u

dx2

dN 2
1ϕ

dx2

dN 2
2u

dx2

dN 2
2ϕ

dx2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
dN 2

1u

dx2

dN 2
1ϕ

dx2

dN 2
2u

dx2

dN 2
2ϕ

dx2

]
dx (5.76)

due to the single shape functions. After all multiplications are done the following
then results:

ke = E Iz

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN 2
1u

dx2

dN 2
1u

dx2

dN 2
1u

dx2

dN 2
1ϕ

dx2

dN 2
1u

dx2

dN 2
2u

dx2

dN 2
1u

dx2

dN 2
2ϕ

dx2

dN 2
1ϕ

dx2

dN 2
1u

dx2

dN 2
1ϕ

dx2

dN 2
1ϕ

dx2

dN 2
1ϕ

dx2

dN 2
2u

dx2

dN 2
1ϕ

dx2

dN 2
2ϕ

dx2

dN 2
2u

dx2

dN 2
1u

dx2

dN 2
2u

dx2

dN 2
1ϕ

dx2

dN 2
2u

dx2

dN 2
2u

dx2

dN 2
2u

dx2

dN 2
2ϕ

dx2

dN 2
2ϕ

dx2

dN 2
1u

dx2

dN 2
2ϕ

dx2

dN 2
1ϕ

dx2

dN 2
2ϕ

dx2

dN 2
2u

dx2

dN 2
2ϕ

dx2

dN 2
2ϕ

dx2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx . (5.77)



78 5 Bending Element

The derivatives of the single shape functions in Eq. (5.77) result from the Eqs. (5.64)–
(5.67):

dN1u(x)

dx
= − 6x

L2 + 6x2

L3 , (5.78)

dN1ϕ(x)

dx
= 1 − 4x

L
+ 3x2

L2 , (5.79)

dN2u(x)

dx
= 6x

L2 − 6x2

L3 , (5.80)

dN2ϕ(x)

dx
= −2x

L
+ 3x2

L2 , (5.81)

or alternatively the second order derivatives:

d2 N1u(x)

dx2 = − 6

L2 + 12x

L3 , (5.82)

d2 N1ϕ(x)

dx2 = − 4

L
+ 6x

L2 , (5.83)

d2 N2u(x)

dx2 = 6

L2 − 12x

L3 , (5.84)

d2 N2ϕ(x)

dx2 = − 2

L
+ 6x

L2 . (5.85)

The integration in Eq. (5.77) can be carried out analytically and, after a short calcu-
lation, the element stiffness matrix of the bending beam in compact form results:

ke = E Iz

L3

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦ . (5.86)

Taking into account the external loads and deformations shown in Fig. 5.13, the
principal finite element equation on element level yields:

E Iz

L3

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

F1y

M1z

F2y

M2z

⎤
⎥⎥⎥⎦ . (5.87)
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5.3.1 Derivation Through Potential

The elastic potential energy at an one-dimensional problem11 with linear-elastic
material behavior yields the following:

Πint = 1

2

∫
Ω

σxεx dΩ . (5.88)

If stress and strain are formulated via the shape functions and the node deformations
according to Eq. (5.72), the following results:

Πint = 1

2

∫
Ω

E
(
Bup

)T BupdΩ . (5.89)

If the relation for the transpose of the product of two matrices, meaning (AB)T =
BT AT, is considered, the following results:

Πint = 1

2

∫
Ω

EuT
p BTBupdΩ . (5.90)

Since the nodal values do not represent a function, the following column matrix can
be taken out from the integral:

Πint = 1

2
uT

p

⎡
⎣ ∫
Ω

EBTBdΩ

⎤
⎦ up . (5.91)

Through the definition for the generalized B-matrix according to Eq. (5.71) the fol-
lowing results herefrom:

Πint = 1

2
uT

p

⎡
⎣ ∫
Ω

E(−y)
d2 NT(x)

dx2 (−y)
d2 N(x)

dx2 dΩ

⎤
⎦ up . (5.92)

The axial second moment of area can also be identified at this point, so that the last
equation displays as follows:

Πint = 1

2
uT

p

⎡
⎣

L∫
0

⎛
⎝∫

A

y2dA

⎞
⎠ E

d2 NT(x)

dx2

d2 N(x)
dx2 dx

⎤
⎦ up . (5.93)

11 In the general three-dimensional case the form Πint = 1
2

∫
Ω

εTσdΩ can be applied, whereat σ

and ε represent the column matrix with the stress and strain components.
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Hence the elastic potential energy for constant material and cross-section values
yields:

Πint = 1

2
uT

p

⎡
⎣E Iz

L∫
0

d2 NT(x)

dx2

d2 N(x)
dx2 dx

⎤
⎦

︸ ︷︷ ︸
ke

up . (5.94)

The last equation complies with the general formulation of the potential energy of a
finite element

Πint = 1

2
uT

p keup (5.95)

and therefore allows the identification of the element stiffness matrix.
The derivation of the principal finite element equation including the stiffness matrix
often takes place through extremal or variational principles as for example the princi-
ple of virtual work12 or the Hellinger–Reissner principle, [14–16]. In the follow-
ing the principal finite element equation will be derived by means of Castigliano’s
theorem,13 see [17, 18]. The elastic potential energy will be regarded as the initial
point, which represents itself from Eq. (5.88) through the kinematic relation (5.15)
and the constitutive law (5.27) as follows:

Πint = 1

2

∫
Ω

Eε2
x dΩ = 1

2

∫
Ω

E

(
−y

d2uy(x)

dx2

)2

dΩ (5.96)

= 1

2

∫
L

E

⎛
⎝ ∫

A

y2dA

⎞
⎠ (

d2uy(x)

dx2

)2

dx (5.97)

= E Iz

2

L∫
0

(
d2uy(x)

dx2

)2

dx . (5.98)

Through the approach for the displacement distribution according to Eq. (5.68) the
following results here from:

12 The principle of virtual work encompasses the principle of the virtual displacements and the
principle of the virtual forces [13].
13 Castigliano’s theorems were formulated by the Italian builder, engineer and scientist Carl
Alberto Castigliano (1847–1884). The second theorem signifies: the partial derivative of the
stored potential energy in a linear-elastic body with regards to the displacement ui yields the force
Fi in the direction of the displacement at the considered point. An analog coherence also applies
for the rotation and the moment.
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Πint = E Iz

2

L∫
0

(
d2 N1u

dx2 u1y + d2 N1ϕ

dx2 ϕ1z + d2 N2u

dx2 u2y + d2 N2ϕ

dx2 ϕ2z

)2

dx .

(5.99)

The application of the second Castigliano’s theorem on the potential energy regard-
ing the nodal distribution u1y leads to the external force F1y at node 1:

dΠint

du1y
= F1y =E Iz

L∫
0

(
d2 N1u

dx2 u1y + d2 N1ϕ

dx2 ϕ1z+

+ d2 N2u

dx2 u2y + d2 N2ϕ

dx2 ϕ2z

)
d2 N1y

dx2 dx . (5.100)

Accordingly, the following results from the differentiation with regard to the other
deformation parameters on the nodes:

dΠint

dϕ1z
= M1z =E Iz

L∫
0

(
d2 N1u

dx2 u1y + d2 N1ϕ

dx2 ϕ1z+

+ d2 N2u

dx2 u2y + d2 N2ϕ

dx2 ϕ2z

)
d2 N1ϕ

dx2 dx , (5.101)

dΠint

du2y
= F2y =E Iz

L∫
0

(
d2 N1u

dx2 u1y + d2 N1ϕ

dx2 ϕ1z+

+ d2 N2u

dx2 u2y + d2 N2ϕ

dx2 ϕ2z

)
d2 N2y

dx2 dx , (5.102)

dΠint

du2ϕ
= M2y =E Iz

L∫
0

(
d2 N1u

dx2 u1y + d2 N1ϕ

dx2 ϕ1z+

+ d2 N2u

dx2 u2y + d2 N2ϕ

dx2 ϕ2z

)
d2 N2ϕ

dx2 dx . (5.103)

After carrying out the integration, Eqs. (5.100)–(5.103) can be summarized in the
principal finite element equation in matrix form, see (5.87).
For the derivation of the principal finite element equation often the total potential is
used. The total potential or the entire potential energy of a bending beam in general
results in

Π = Πint +Πext , (5.104)

wherebyΠint represents the elastic strain energy (energy of elastic deformation) and
Πext the potential of the external load. The entire potential energy under influence
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of the external loading can be stated as follows

Π = 1

2

∫
Ω

σxεx dΩ −
m∑

i = 1

Fiyuiy −
m′∑

i = 1

Mizϕi z , (5.105)

where Fiy and Miz represent the external forces and moments acting on the nodes.

5.3.2 Weighted Residual Method

In the following, the partial differential equation of the displacement field uy(x)
according to Eq. (5.35) will be considered. Hereby the easiest case—at which the
bending stiffness EIz is constant and at which no distributed load (qy = 0) occurs—
will be considered. Thus, the partial differential equation of the displacement field
yields:

E Iz
d4u0

y(x)

dx4 = 0 , (5.106)

where u0
y(x) represents the exact solution of the problem. Equation (5.106) is exactly

fulfilled at every position x on the beam and is also referred to as the strong form of
the problem. If the exact solution in Eq. (5.106) is substituted through an approximate
solution uy(x) a residual or remainder r results in:

r(x) = E Iz
d4uy(x)

dx4 �= 0 . (5.107)

Due to the introduction of the approximate solution uy(x) it is in general not possible
to fulfill the partial differential equation at every position x of the beam anymore.
Alternatively it is demanded in the following that the differential equation is fulfilled
throughout a certain domain (and not at every position x) and one receives the
following integral requirement

L∫
0

W (x) E Iz
d4uy(x)

dx4︸ ︷︷ ︸
r

dx
!= 0 , (5.108)

which is also called the inner product. W (x) in Eq. (5.108) represents the so-called
weighting function, which distributes the error or the residual throughout the regarded
domain.
Partial integration14 of Eq. (5.108) yields:

14 A common representation of the partial integration of two functions f (x) and g(x) is:
∫

f ′g dx =
f g − ∫

f g′dx .
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L∫
0

E Iz
d4uy

dx4︸ ︷︷ ︸
f ′

W︸︷︷︸
g

dx = E Iz

[
d3uy

dx3 W

]L

0
−

L∫
0

E Iz
d3uy

dx3

dW

dx
dx = 0 . (5.109)

Partial integration of the integral on the right-hand side of Eq. (5.109) results in:

L∫
0

E Iz
d3uy

dx3︸ ︷︷ ︸
f ′

dW

dx︸︷︷︸
g

dx = E Iz

[
d2uy

dx2

dW

dx

]L

0
−

L∫
0

E Iz
d2uy

dx2

d2W

dx2 dx . (5.110)

The combination of Eqs. (5.109) and (5.110) yields the weak form of the problem to:

L∫
0

E Iz
d2uy

dx2

d2W

dx2 dx = E Iz

[
−W

d3uy

dx3 + dW

dx

d2uy

dx2

]L

0
. (5.111)

Regarding the weak form it becomes obvious that due to the partial integration, two
derivatives (differential operators) are shifted from the approximate solution to the
weighting function and regarding the derivatives, a symmetric form results. This
symmetry concerning the derivatives of the weighting function and the approximate
solution will guarantee in the following that a symmetric stiffness matrix results for
the bending element.
First the left-hand side of Eq. (5.111) will be considered to derive the stiffness matrix
for a bending element with two nodes.
The basic idea of the finite element method now is not to approximate the unknown
displacement uy for the entire domain but to describe the displacement distribution
for a subsection, the so called finite element through

ue
y(x) = N(x)up = [

N1u N1ϕ N2u N2ϕ
] ×

⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ (5.112)

approximately. Within the framework of the finite element method the same approach
is chosen for the weighting function as for the displacement:

W(x) = δuT
p NT(x) = [

δu1y δϕ1z δu2y δϕ2z
] ×

⎡
⎢⎢⎣

N1u

N1ϕ
N2u

N2ϕ

⎤
⎥⎥⎦ , (5.113)

in which δui represent arbitrary displacements or alternatively rotation values. The
following will show that these arbitrary or so-called virtual values can be canceled



84 5 Bending Element

with an identical expression on the right-hand side of Eq. (5.111) and no further
considerations are required.
If Eqs. (5.112) and (5.113) in the left-hand side of Eq. (5.111) are considered the
following results for constant bending stiffness:

E Iz

L∫
0

d2

dx2

(
δuT

p NT(x)
) d2

dx2

(
N(x)up

)
dx (5.114)

or

δuT
p E Iz

L∫
0

d2

dx2

(
NT(x)

) d2

dx2 (N(x)) dx

︸ ︷︷ ︸
ke

up . (5.115)

The expression δuT
p can be canceled with a corresponding expression on the right-

hand side of Eq. (5.111) and up represents the vector of the unknown nodal defor-
mation. Consequently the stiffness matrix can be illustrated through the single shape
functions according to Eq. (5.76).
In the following, the right-hand side of Eq. (5.111) is considered in order to derive
the column matrix of the external loads for a bending element with two nodes.
Considering in

E Iz

[
−W

d3uy

dx3 + dW

dx

d2uy

dx2

]L

0
(5.116)

the definition of the weighting function according to Eq. (5.113), the following results

E Iz

[
−δuT

p NT(x)
d3uy

dx3 + d

dx

(
δuT

p NT(x)
)d2uy

dx2

]L

0
(5.117)

or in components:

δuT
p E Iz

⎡
⎢⎢⎢⎣−

⎡
⎢⎢⎢⎣

N1u

N1ϕ

N2u

N2ϕ

⎤
⎥⎥⎥⎦

d3uy

dx3 + d

dx

⎡
⎢⎢⎢⎣

N1u

N1ϕ

N2u

N2ϕ

⎤
⎥⎥⎥⎦

d2uy

dx2

⎤
⎥⎥⎥⎦

L

0

. (5.118)

δuT
p from the last equation can be canceled with the corresponding expression in

Eq. (5.115). Furthermore (5.118) represents a system of four equations, which needs
to be evaluated on the integration boundaries, meaning on the borders x = 0 and
x = L . The first line of Eq. (5.118) results in:
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(
−N1u E Iz

d3uy

dx3 + dN1u

dx

d2uy

dx2

)
x = L

−
(

−N1u E Iz
d3uy

dx3 + dN1u

dx

d2uy

dx2

)
x = 0

.

(5.119)

Under consideration of the boundary values of the shape functions or alternatively
their derivatives according to Fig. 5.14, meaning N1u(L) = 0, dN1u

dx (L) = dN1u
dx (0) =

0 and N1u(0) = 1, the following results:

+E Iz
d3uy

dx3

∣∣∣∣
x = 0

(5.38)= −Qy(0) . (5.120)

Accordingly the values of the three other lines in Eq. (5.118) can be calculated:

Line 2 : −E Iz
d2uy

dx2

∣∣∣∣
x = 0

(5.37)= −Mz(0) , (5.121)

Line 3 : −E Iz
d3uy

dx3

∣∣∣∣
x = L

(5.38)= +Qy(L) , (5.122)

Line 4 : +E Iz
d2uy

dx2

∣∣∣∣
x = L

(5.37)= +Mz(L) . (5.123)

It needs to be considered that the results in Eqs. (5.120)–(5.123) are the internal reac-
tions according to Fig. 5.7. The external loads with the positive direction according
to Fig. 5.13b therefore result from the internal reactions15 through reversing the pos-
itive direction on the left-hand border and through maintaining the positive direction
of the internal reaction on the right-hand border.

5.3.3 Comments on the Derivation of the Shape Functions

In Sect. 5.3 the shape functions were derived via a polynomial with four unknown
parameters, see Eq. (5.55). The derivation of the shape function can also be achieved
through a clearer method. The general feature of a shape function Ni adopting the
value 1 on the node i and turning zero on all other nodes has to be considered
herefore. In the case of the bending beam it furthermore needs to be considered that
the displacement and rotation field on the nodes should be decoupled. Consequently,
a shape function for the displacement field has to adopt the value 1 on ‘its’ node as
well as the slope zero. On all other nodes j the value of the function as well as the
slope turn zero:

15 See Sect. 5.2.2 with the executions for the internal reactions and external loads.
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Fig. 5.15 Boundary conditions for the shape functions for the bending element at bending in the
x−y plane. Note that the sections for the given slopes are overdrawn for better illustration

Niu(xi ) = 1 , (5.124)

Niu(x j ) = 0 , (5.125)

dNiu(xi )

dx
= 0 , (5.126)

dNiu(x j )

dx
= 0 . (5.127)

Accordingly it results that a shape function for the rotation field reaches the slope 1
at ‘its’ node but the function value zero. At all other nodes the function value and the
slope are equally zero. Therefore, the boundary conditions shown in Fig. 5.15 result
for the four shape functions.
If the course of the shape functions should be without discontinuities, meaning kinks,
then every shape function has to change its curvature. Therefore, at least a polynomial
of 3rd order has to be applied, so that a linear function results for the curvature,
meaning the second order derivative:

N (x) = α0 + α1x + α2x2 + α3x3 . (5.128)

Since a polynomial of 3rd order usually exhibits four unknowns, α0, . . . , α3, all
unknowns can be defined due to this approach via the four boundary conditions—
two for the function values and two for the slope.
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In the following, the first shape function is regarded as an example. The boundary
conditions in this case result in:

N1u(0) = 1 , (5.129)

dN1u

dx
(0) = dN1u

dx
(L) = 0 , (5.130)

N1u(L) = 0 . (5.131)

If the boundary conditions are evaluated according to the approach by Eq. (5.128),
the following results:

1 = α0 , (5.132)

0 = α1 , (5.133)

0 = α0 + α1L + α2L2 + α3L3 , (5.134)

0 = α1 + 2α2L + 3α3L2 , (5.135)

or alternatively in matrix notation:

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
α0
α1
α2
α3

⎤
⎥⎥⎦ . (5.136)

Solving for the unknowns leads to α =
[

1 0 − 3
L2

2
L3

]T
. With these constants

exactly the shape function according to Eq. (5.64) results. Another requirement for the
shape function results from Eq. (5.77). Here the second order derivative of the shape
functions are contained. Therefore a reasonable formulation of the shape function
for a bending element has to at least be a polynomial of 2nd order, so that deriva-
tives different from zero result. To conclude it needs to be remarked that the shape
functions for the bending beam are so-called Hermite’s polynomials. A continuous
displacement and rotation on the nodes occurs since at this Hermite’s interpolation
the nodal value as well as the slope in the considered nodes are examined.

5.4 The Finite Element Bending Beam with two
Deformation Planes

In the following, it will be shown that a bending beam can deform in two mutu-
ally orthogonal planes. The stiffness matrix according to Eq. (5.86) is given for the
bending in the x−y plane:
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ke
xy = E Iz

L3

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦ . (5.137)

In the orthogonal plane, meaning for bending in the x−z plane a slightly modified
stiffness matrix results, since the positive orientation of the angles around the y-axis
is now in the clockwise direction, see Fig. 5.16. Under consideration of the definition
of the positive rotation angle according to ϕy(x) = − duz(x)

dx the stiffness matrix for
the bending in the x−z plane results in16:

ke
xz = E Iy

L3

⎡
⎢⎢⎢⎣

12 −6L −12 −6L

−6L 4L2 6L 2L2

−12 6L 12 6L

−6L 2L2 6L 4L2

⎤
⎥⎥⎥⎦ . (5.138)

(a)

(b)

Fig. 5.16 Definition of the positive deformation parameters at bending in the a x−y plane and b
x−z plane

Both stiffness matrices for the deformation in the x−y and x−z plane can easily be
superposed, so that the following form for an element with two orthogonal deforma-
tion planes results

16 Also see Table 5.6 and supplementary problems 5.6.
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ke = E

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12Iz 0 0 6Iz L −12Iz 0 0 6Iz L

0 12Iy −6Iy L 0 0 −12Iy −6Iy L 0

0 −6Iy L 4Iy L2 0 0 6Iy L 2Iy L2 0

6Iz L 0 0 4Iz L2 −6Iz L 0 0 2Iz L2

−12Iz 0 0 −6Iz L 12Iz 0 0 −6Iz L

0 −12Iy 6Iy L 0 0 12Iy 6Iy L 0

0 −6Iy L 2Iy L2 0 0 6Iy L 4Iy L2 0

6Iz L 0 0 2Iz L2 −6Iz L 0 0 4Iz L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.139)
whereupon the deformation and load matrices represent as follows:

up = [
u1y u1z ϕ1y ϕ1z u2y u2z ϕ2y ϕ2z

]T
, (5.140)

Fe = [
F1y F1z M1y M1z F2y F2z M2y M2z

]T
. (5.141)

5.5 Transformation Within the Plane

In the following, a beam, which can deform in the x−y plane will be rotated compared
to a global coordinate system in a way that an angle α results between the global
(X,Y ) and the local (x, y) coordinate system. For this see Fig. 5.17.

Fig. 5.17 Rotatory transfor-
mation of a beam element in
the plane

Every node in the global coordinate system now has two degrees of freedom, that
means a displacement in the X - and a displacement in the Y-direction. These two
displacements at one node can on the other hand be used to determine the displace-
ment perpendicular to the beam axis, meaning in the direction of the local y-axis.
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By means of the right-angled triangles illustrated in Fig. 5.17 the displacement in the
local coordinate system from the global displacement values results in

u1y = − sin α︸︷︷︸
>0

u1X︸︷︷︸
<0

+ cosα︸ ︷︷ ︸
>0

u1Y︸︷︷︸
>0

, (5.142)

u2y = − sin α u2X︸︷︷︸
<0

+ cosα u2Y︸︷︷︸
>0

. (5.143)

Accordingly, the global displacements can be calculated from the local displace-
ments:

u1X = −u1y sin α , u2X = −u2y sin α , (5.144)

u1Y = u1y cosα , u2Y = u2y cosα . (5.145)

The last relations between global and local displacements can be written in matrix
form: ⎡

⎢⎢⎣
u1X

u1Y

u2X

u2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− sin α 0
cosα 0

0 − sin α
0 cosα

⎤
⎥⎥⎦

[
u1y

u2y

]
. (5.146)

The rotations of the nodes do not need a transformation and the general transformation
rule for the calculation of the global parameters from the local deformations results
in abbreviated notation in

uXY = T Tuxy , (5.147)

or alternatively in components:

⎡
⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

ϕ1Z

u2X

u2Y

ϕ1Z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

− sin α 0 0 0
cosα 0 0 0

0 1 0 0
0 0 − sin α 0
0 0 cosα 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ . (5.148)

The last equation can also be solved for the deformations in the local coordinate
system and through inversion17 the transformation matrix results

uxy = T uXY (5.149)

or alternatively in components:

17 Since the transformation matrix T is an orthogonal matrix, the following applies: T T = T−1.
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⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− sin α cosα 0 0 0 0
0 0 1 0 0 0
0 0 0 − sin α cosα 0
0 0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

ϕ1Z

u2X

u2Y

ϕ1Z

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.150)

The vector of the external load can be transformed in the same way:

FXY = T T Fxy , (5.151)

Fxy = T FXY . (5.152)

If the transformation of the local deformation into the global coordinate system is
considered in the expression for the elastic potential energy according to Eq. (5.95),
the transformation of the stiffness matrix into the global coordinate system results in

ke
XY = T Tke

xy T , (5.153)

or alternatively in components:

ke
XY Z = E Iz

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12s2α −12sαcα −6Lsα −12s2α 12sαcα −6Lsα

−12sαcα 12c2α 6Lcα 12sαcα −12c2α 6Lcα

−6Lsα 6Lcα 4L2 6Lsα −6Lcα 2L2

−12s2α 12sαcα 6Lsα −12s2α −12sαcα 6Lsα

12sαcα −12c2α −6Lcα −12sαcα 12c2α −6Lcα

−6Lsα 6Lcα 2L2 6Lsα −6Lcα 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.154)
The sines and cosines values of the rotation angle α can be calculated through the
global node coordinates via

sα
∧= sin α = Y2 − Y1

L
or cα

∧= cosα = X2 − X1

L
(5.155)

and
L =

√
(X2 − X1)2 + (Y2 − Y1)2. (5.156)

It needs to be remarked at this point, that in a mathematical positive sense the angle
α always should be plotted from the global to the local coordinate system. The
mathematical positive direction of rotation and therefore the algebraic sign of α
is illustrated in Fig. 5.18. However, independent from the algebraic sign of α the
calculation can always occur according to Eq. (5.155).
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(a) (b)

Fig. 5.18 Rotation angle: a α positive; b α negative

5.6 Transformation Within the Space

For the derivation of the transformation relation within the space, the global (X,Y, Z)
and local (x, y, z) coordinate system, illustrated in Fig. 5.19 will be considered.

Fig. 5.19 Rotatory transformation of a beam element within the space. The unit vectors in the
direction of the global X -, Y - and Z -axis are referred to as ei . Adapted from [7]

The bending beam 0-1 is represented through the following vector L, which is ori-
ented in the direction of the local x-axis:

L = (X1 − X0)eX + (Y1 − Y0)eY + (Z1 − Z0)eZ . (5.157)
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A vector in the direction of the local y-axis can, according to Fig. 5.19, be represented
as

Y = (X2 − X0)eX + (Y2 − Y0)eY + (Z2 − Z0)eZ . (5.158)

The direction cosines between the local y-axis and the global coordinate axes result
through the global node coordinates to

ly = cos(y, X) = X2 − X0

|Y | , (5.159)

my = cos(y,Y ) = Y2 − Y0

|Y | , (5.160)

ny = cos(y, Z) = Z2 − Z0

|Y | (5.161)

at which the length of the vector Y results as follows:

|Y | =
√
(X2 − X0)2 + (Y2 − Y0)2 + (Z2 − Z0)2 . (5.162)

Accordingly, a vector in the direction of the local z-axis results in:

Z = (X3 − X0)eX + (Y3 − Y0)eY + (Z3 − Z0)eZ (5.163)

and the direction cosines as

lz = cos(z, X) = X3 − X0

|Z| , (5.164)

mz = cos(z,Y ) = Y3 − Y0

|Z| , (5.165)

nz = cos(z, Z) = Z3 − Z0

|Z| (5.166)

whereupon the length of the vector Z results as follows:

|Z| =
√
(X3 − X0)2 + (Y3 − Y0)2 + (Z3 − Z0)2 . (5.167)

An arbitrary vector v can be transformed via the following relation between the local
(x, y, z) and the global (X,Y, Z) coordinate system:

vxyz = TvXY Z , (5.168)

vXY Z = T Tvxyz , (5.169)
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whereupon the transformation matrix can be represented as follows through the
direction cosines:

T =
⎡
⎣ lx mx nx

ly my ny

lz mz nz

⎤
⎦ =

⎡
⎣ cos(x, X) cos(x,Y ) cos(x, Z)

cos(y, X) cos(y,Y ) cos(y, Z)
cos(z, X) cos(z,Y ) cos(z, Z)

⎤
⎦ . (5.170)

This bending beam does not exhibit an axial deformation, meaning in the direction
of the local x-axis, and the first line in the matrix according to Eq. (5.170) can be
eliminated.
For small angles the rotation angle can be summarized in one vector and also be
transformed according to Eqs. (5.168) and (5.169) between the coordinate systems.
Since no torsion around the length axis is designated for this element, the first line of
Eq. (5.170) can also be eliminated here. Consequently the total transformation from
global to local deformations results in:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1y

u1z

ϕ1y

ϕ1z

u2y

u2z

ϕ2y

ϕ2z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ly my ny

lz mz nz

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

ly my ny

lz mz nz

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

ly my ny

lz mz nz

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

ly my ny

lz mz nz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

u1Z

ϕ1X

ϕ1Y

ϕ1Z

u2X

u2Y

u2Z

ϕ2X

ϕ2Y

ϕ2Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.171)

If the transformation from local to global deformations is considered, the following
transpose can be used:

T T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ly lz

my mz

ny nz

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

ly lz

my mz

ny nz

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

ly lz

my mz

ny nz

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

ly lz

my mz

ny nz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.172)
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According to the executions in Sect. 5.5, the transformation of the stiffness matrix
results in:

ke
XY Z = T TkeT . (5.173)

5.7 Determination of Equivalent Nodal Loads

Within the finite element method, external loads can only take effect on the nodes.
If distributed loads or point loads18 appear between the nodes, those have to be
converted into equivalent nodal loads. The procedure can be demonstrated in the fol-
lowing for the example of a both-way clamped beam, see Fig. 5.20. First a pragmatic
approach will be shown, for which the in Fig. 5.20b the illustrated equivalent statical
system forms the basis. Support reactions, consisting of vertical forces and moments
occur on the fixed supports, whereby the goal is at this point to determine the inner
reactions, which are in effect on the beam borders.
As a starting point the differential equation of the bending line according to Eq. (5.36)
in the form according to our problem, meaning with negative load, is chosen:

E Iz
d4uy

dx4 = −qy . (5.174)

Four-time integration yields the general approach for the bending line:

E Iz
d3uy

dx3 = −qy x + c1
!= −Qy(x) , (5.175)

E Iz
d2uy

dx2 = −1

2
qy x2 + c1x + c2

!= Mz(x) , (5.176)

E Iz
d1uy

dx1 = −1

6
qy x3 + 1

2
c1x2 + c2x + c3 , (5.177)

E Izuy(x) = − 1

24
qy x4 + 1

6
c1x3 + 1

2
c2x2 + c3x + c4 . (5.178)

If the boundary conditions are taken into consideration, meaning uy(0) = uy(L) = 0
and ϕz(0) = ϕz(L) = 0, the four integration constants result in:

c3 = c4 = 0 , (5.179)

c2 = − 1

12
qy L2 , (5.180)

c1 = 1

2
qy L . (5.181)

18 If point loads appear between nodes, the discretization can of course be further sub-divided, so
that a new node is positioned on the location of the loading point. However within this chapter the
case of no further subdivision of the mesh ought to be regarded.
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Fig. 5.20 Calculation of
equivalent nodal loads: a
example configuration; b
equivalent statical system;
c free body diagram with
support reactions

(a)

(b)

(c)

Through these integration constants and the relations in Eqs. (5.175) and (5.176),
one obtains the shear force and bending moment distribution within the element:

Qy(x) = −1

2
qy L + qy x , (5.182)

Mz(x) = − 1

12
qy L2 + 1

2
qy Lx − 1

2
qy x2 . (5.183)

Evaluation on the boundaries, meaning for x = 0 and x = L leads to the following
values of the internal reactions:

Qy(0) = −1

2
qy L , Mz(0) = − 1

12
qy L2 , (5.184)

Qy(L) = +1

2
qy L , Mz(L) = − 1

12
qy L2 . (5.185)

The support reactions can be defined through the load and moment equilibrium
according to Fig. 5.21. Thus the vertical equilibrium of forces yields
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Fig. 5.21 Support and internal reactions at the boundaries of the beam from Fig. 5.20. The support
reactions have the direction, which is defined in Fig. 5.20; the internal reactions are according to
Fig. 5.7 positive oriented on the corresponding cutting planes

+F̄y(0)+ Qy(0) = 0 , (5.186)

and accordingly all support reactions F̄y and M̄z result:

F̄y(0) = −1

2
qy L , M̄z(0) = − 1

12
qy L2 , (5.187)

F̄y(L) = +1

2
qy L , M̄z(L) = − 1

12
qy L2 . (5.188)

Taking into consideration the definition of the positive direction of the external loads
of a beam element according to Fig. 5.13, the equivalent loads on nodes Fiy and Miz

result through evaluation of the internal reactions Qy and Mz to:

F1y = −1

2
qy L , M1z = − 1

12
qy L2 , (5.189)

F2y = −1

2
qy L , M2z = + 1

12
qy L2 . (5.190)

It should to be remarked at this point that the equivalent nodal loads are not the
support reactions. The equivalent nodal loads have to cause the support reactions.
At the end of this derivation it is appropriate to point out that at this point it was
distinguished between the following parameters:

• internal reactions Qy(x), Mz(x),
• support reactions F̄y, M̄z and
• equivalent nodal loads Fiy, Miz .

Alternatively, the derivation of the equivalent nodal loads can also take place through
the equivalence of the potential of the external loads, meaning the distributed load
and the equivalent nodal loads:
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Πext = −
L∫

0

qy(x)uy(x)dx
!= − (

F1yu1y + M1zϕ1z + F2yu2y + M2zϕ2z
)
.

(5.191)
Through application of the approach for the displacement uy(x) according to
Eq. (5.68) the potential of a distributed load can be illustrated as

Πext = −
L∫

0

qy(x)
(
N1uu1y + N1ϕϕ1z + N2uu2y + N2ϕϕ2z

)
dx (5.192)

or under consideration that the nodal values of the deformation can be considered as
constant for the integration, as

Πext = −
⎛
⎝

L∫
0

qy(x)N1u(x)dx u1y +
L∫

0

qy(x)N1ϕ(x)dx ϕ1z+ (5.193)

L∫
0

qy(x)N2u(x)dx u2y +
L∫

0

qy(x)N2ϕ(x)dx ϕ2z

⎞
⎠ . (5.194)

A comparison of the two potentials finally delivers equivalent nodal loads to

F1y =
L∫

0

qy(x)N1u(x) dx , (5.195)

M1z =
L∫

0

qy(x)N1ϕ(x) dx , (5.196)

F2y =
L∫

0

qy(x)N2u(x) dx , (5.197)

M2z =
L∫

0

qy(x)N2ϕ(x) dx , (5.198)

whereas the shape functions according to Eqs. (5.64)–(5.67) have to be used.
If, for example, on a point x = a an external force F acts on the beam, the external
potential results in

Πext = −Fuy(a) . (5.199)
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Table 5.8 Equivalent nodal loads for bending elements. Adapted from [19]

Load Shear force Bending moment

F1y = −q L

2
M1z = −q L2

12

F2y = −q L

2
M2z = +q L2

12

F1y = − qa

2L3 (a
3 − 2a2 L + 2L3) M1z = − qa2

12L2 (3a2−8aL+6L2)

F2y = − qa3

2L3 (2L − a) M2z = + qa3

12L2 (4L − 3a)

F1y = − 3

20
q L M1z = −q L2

30

F2y = − 7

20
q L M2z = +q L2

20

F1y = −1

4
q L M1z = −5q L2

96

F2y = −1

4
q L M2z = +5q L2

96

F1y = − Fb2(3a + b)

L3 M1z = − Fb2a

L2

F2y = − Fa2(a + 3b)

L3 M2z = + Fa2b

L2

F1y = −6M
ab

L3 M1z = −M
b(2a − b)

L2

F2y = +6M
ab

L3 M2z = −M
a(2b − a)

L2

A comparison of the two potentials delivers for this case the equivalent nodal loads
to:

F1y = F N1u(a) , (5.200)

M1z = F N1ϕ(a) , (5.201)

F2y = F N2u(a) , (5.202)

M2z = F N2ϕ(a) . (5.203)

Equivalent nodal loads for simple loading cases are summarized in Table 5.8. It needs
to be remarked at the end of this chapter, that the column matrix of the equivalent
nodal loads can be reached in an easier way, if during the application of the weighted
residual method the differential equation (5.36) under consideration of the distributed
load is used. Under consideration of an arbitrary distributed load the inner product
results in:
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Fig. 5.22 Sample problem
bending beam: a point load; b
single moment

(a)

(b)

L∫
0

W (x)
(

E Iz
d4uy(x)

dx4 − qy(x)
)

dx
!= 0 . (5.204)

After the introduction of the approach for the weighting function, meaning W (x) =
δuT

p NT(x), the expression with the distributed load can be brought on the right-hand

side and after cancelling down of δuT
p the additional load matrix results:

· · · = · · · +
L∫

0

qy(x)

⎡
⎢⎢⎣

N1u

N1ϕ
N2u

N2ϕ

⎤
⎥⎥⎦ dx . (5.205)

This expression equals exactly the Eqs. (5.195)–(5.198).

5.8 Sample Problems and Supplementary Problems

5.8.1 Sample Problems

5.1. Sample: Bending of beam under point load or moment—approximation
through a single finite element
The displacement and the rotation of the right-hand end of the beam, which is illus-
trated in Fig. 5.22 have to be determined through a single finite element. Subsequently
the course of the bending line uy = uy(x) has to be determined and the finite element
solution has to be compared with the analytical solution.
5.1 Solution
(a) The finite element equation on element level according to Eq. (5.87) reduces for
the illustrated loading case to:
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E Iz

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
−F
0

⎤
⎥⎥⎦ . (5.206)

Since the displacement and the rotation are zero on the left-hand boundary due to
the fixed support, the first two lines and columns of the system of equations can be
eliminated:

E Iz

L3

[
12 −6L

−6L 4L2

] [
u2y

ϕ2z

]
=

[−F
0

]
. (5.207)

Solving for the unknown deformations yields:

[
u2y

ϕ2z

]
= L3

E Iz

[
12 −6L

−6L 4L2

]−1 [−F
0

]
(5.208)

= L3

E Iz(48L2 − 36L2)

[
4L2 6L
6L 12

] [−F
0

]
=

⎡
⎣− F L3

3E Iz

− F L2

2E Iz

⎤
⎦ . (5.209)

According to Table 5.7, the analytical displacement results in:

uy(x = L) = − F

6E Iz

(
3L3 − L3

)
= − F L3

3E Iz
. (5.210)

The analytical solution for the rotation results from differentiation of the general
displacement distribution according to Table 5.7 for a = L to:

ϕz(x) = duy(x)

dx
= − F

6E Iz
×

[
6Lx − 3x2

]
, (5.211)

or alternatively on the right-hand boundary:

ϕz(x = L) = − F

6E Iz
×

[
6L2 − 3L2

]
= − F L2

2E Iz
. (5.212)

The course of the bending line uy = uy(x) results from the finite element solution
through Eq. (5.68) and the shape functions (5.66) and (5.67) to:

uy(x) = N2u(x)u2y + N2ϕ(x)ϕ2z

=
[

3
( x

L

)2 − 2
( x

L

)3
] (

− F L3

3E Iz

)
+

[
− x2

L
+ x3

L2

] (
− F L2

2E Iz

)

= F

6E Iz

(
x3 − 3Lx2

)
. (5.213)
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According to Table 5.7 this course matches with the analytical solution.
Conclusion: Finite element solution and analytical solution are identical!

(b) The reduced system of equations in this case results in:

E Iz

L3

[
12 −6L

−6L 4L2

] [
u2y

ϕ2z

]
=

[
0
M

]
. (5.214)

Solving for the unknown deformations yields:

[
u2y

ϕ2z

]
= L3

12E Iz L2

[
4L2 6L
6L 12

] [
0
M

]
=

⎡
⎣ M L2

2E Iz

M L
E Iz

⎤
⎦ . (5.215)

The analytical solution according to Table 5.7 delivers

uy(x = L) = − M

2E Iz

(
−L2

)
= M L2

2E Iz
, (5.216)

or alternatively the rotation in general for a = L to:

ϕz(x) = duy(x)

dx
= − M

2E Iz
(−2x) (5.217)

or only on the right-hand boundary:

ϕz(x = L) = − M

2E Iz
(−L) = M L

E Iz
. (5.218)

The course of the bending line uy = uy(x) results from the finite element solution
through Eq. (5.68) and the shape functions (5.66) and (5.67) to:

uy(x) = N2u(x)u2y + N2ϕ(x)ϕ2z

=
[

3
( x

L

)2 − 2
( x

L

)3
] (

M L2

2E Iz

)
+

[
− x2

L
+ x3

L2

] (
M L

E Iz

)

= Mx2

2E Iz
. (5.219)

According to Table 5.7 this course matches with the analytical solution.
Conclusion: Finite element solution and analytical solution are identical!

5.2. Sample: Bending beam under constant distributed load—approximation
through a single finite element
The displacement and the rotation (a) of the right-hand boundary and (b) in the
middle of the beam have to be determined for the beam under constant distributed
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load, which is illustrated in Fig. 5.23 through a single finite element. Subsequently
the course of the bending line uy = uy(x) has to be determined and the finite element
solution has to be compared with the analytical solution.

(a) (b)

Fig. 5.23 Sample problem bending beam under constant distributed load at different supports:
a cantilever beam and b simply supported beam

5.2 Solution
To solve the problem at first the constant distributed load has to be converted into
equivalent nodal loads. These equivalent nodal loads can be extracted from Table 5.8
for the considered case, and the finite element equation results to:

E Iz

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1y

ϕ1z

u2y

ϕ2z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− q L
2

− q L2

12

− q L
2

+ q L2

12

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.220)

(a) Consideration of the support conditions from Fig. 5.23a, meaning the fixed support
on the left-hand boundary, and solving for the unknowns yields:

[
u2y

ϕ2z

]
= L

12E Iz

[
4L2 6L
6L 12

] ⎡
⎣− q L

2

+ q L2

12

⎤
⎦ =

⎡
⎣− q L4

8E Iz

− q L3

6E Iz

⎤
⎦ . (5.221)

The analytical solution according to Table 5.7 yields

uy(x = L) = − q

24E Iz

(
6L4 − 4L4 + L4

)
= − q L4

8E Iz
, (5.222)

or alternatively the rotation in general for a1 = 0 and a2 = L to:

ϕz(x) = duy(x)

dx
= − q

24E Iz

(
12L2x − 12Lx2 + 4x3

)
(5.223)
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Fig. 5.24 Comparison of the analytical and the finite element solution for the beam according to
Fig. 5.23a

or only on the right-hand boundary:

ϕz(x = L) = − q

24E Iz

(
12L3 − 12L3 + 4L3

)
= − q L3

6E Iz
. (5.224)

The course of the bending line uy = uy(x) results from the finite element solution
through Eq. (5.68) and the shape functions (5.66) and (5.67) to:

uy(x) = N2u(x)u2y + N2ϕ(x)ϕ2z

=
[

3
( x

L

)2 − 2
( x

L

)3
] (

− q L4

8E Iz

)
+

[
− x2

L
+ x3

L2

] (
− q L3

6E Iz

)

= − q

24E Iz

(
−2Lx3 + 5L2x2

)
, (5.225)

however the analytical course according to Table 5.7 results in uy(x) = − q
24E Iz(

x4 − 4Lx3 + 6L2x2
)
, meaning the analytical and therefore the exact course is not

identical with the numerical solution between the nodes (0 < x < L), see Fig. 5.24.
One can see that between the nodes a small difference between the two solutions
arises. If a higher accuracy is demanded between those two nodes, the beam has to
be divided into more elements.
Conclusion: Finite element solution and the analytical solution are only identical on
the nodes!
(b) Consideration of the support conditions from Fig. 5.23b, meaning the simple
support and the roller support, yields through the elimination of the first and third
line and column of the system of equations (5.220):
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Fig. 5.25 Comparison of the analytical and the finite element solution for the beam according to
Fig. 5.23b

E Iz

L3

[
4L2 2L2

2L2 4L2

] [
ϕ1z

ϕ2z

]
=

⎡
⎣− q L2

12

+ q L2

12

⎤
⎦ . (5.226)

Solving for the unknowns yields:

[
ϕ1z

ϕ2z

]
= 1

12E Iz L

[
4L2 −2L2

−2L2 4L2

] [
− q L2

12

+ q L2

12

]
=

[
− q L3

24E Iz

+ q L3

24E Iz

]
. (5.227)

The course of the bending line uy = uy(x) results from the finite element solution
through Eq. (5.68) and the shape functions (5.65) and (5.67) to:

uy(x) = N1ϕ(x)ϕ1z + N2ϕ(x)ϕ2z

=
[

x − 2
x2

L
+ x3

L2

] (
− q L3

24E Iz

)
+

[
− x2

L
+ x3

L2

] (
+ q L3

24E Iz

)

= − q

24E Iz

(
−L2x2 + L3x

)
, (5.228)

however the analytical course according to Table 5.7 results in uy(x) = − q
24E Iz(

x4 − 2Lx3 + L3x
)
, meaning the analytical and therefore exact course is also at this

point not identical with the numerical solution between the nodes (0 < x < L), see
Fig. 5.25.
The numerical solution for the deflection in the middle of the beam yields uy(x =
1
2 L) = −4q L4

384E Iz
, however the exact solution is uy(x = 1

2 L) = −5q L4

384E Iz
.
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Conclusion: Finite element solution and analytical solution are only identical on the
nodes!

5.3. Sample: Bending beam with variable cross-section
The beam, which is illustrated in Fig. 5.26, has along the x-axis a variable cross-
section. One derives for

(a) a circular cross-section,
(b) a square cross-section

the element stiffness matrix for the case d1 = 2h and d2 = h.

Fig. 5.26 Sample problem
bending beam with variable
cross-section: a change along
the x-axis; b circular cross-
section; c square cross-section

(a)

(b) (c)

5.3 Solution
(a) Square cross-section:
Equation (5.75) can be used as an initial point for the derivation of the stiffness
matrix:

ke = E
∫
x

⎛
⎝ ∫

A

y2dA

⎞
⎠

︸ ︷︷ ︸
Iz

d2 NT(x)

dx2

d2 N(x)
dx2 dx . (5.229)

Since the axial second moment of area changes along the x-axis, a corresponding
function has to be derived at first. An elegant method would be to use the polar second
moment of area of the circle, since in this case the function equation of the radius
along the x-axis can be used. Hereby the relation, that the polar second moment of
area consists of the two axial second moments of area Iy and Iz additively, is used:

Ip =
∫
A

r2dA = Iy + Iz . (5.230)
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Since the axial second moments of area of a circle are identical, the following expres-
sion can be derived for Iz :

Iz(x) = 1

2
Ip(x) = 1

2

∫
A

r2dA = 1

2

2π∫
α= 0

r(x)∫
0

r̂2 r̂dr̂dα︸ ︷︷ ︸
dA

(5.231)

= π

r(x)∫
0

r̂3dr̂ = π

[
1

4
r̂4

]r(x)

0
= π

4
r(x)4 . (5.232)

The change of the radius along the x-axis can be easily derived from Fig. 5.26a:

r(x) = h
(

1 − x

2L

)
= h

2

(
2 − x

L

)
. (5.233)

Therefore the axial second moment of area results in

Iz(x) = πh4

64

(
2 − x

L

)4
(5.234)

and can be used in Eq. (5.229):

ke = E
πh4

64

∫
L

(
2 − x

L

)4 d2 NT(x)

dx2

d2 N(x)
dx2 dx . (5.235)

The integration can be carried out through the second order derivatives of the shape
function according to Eqs. (5.82)–(5.85). As an example for the first component of
the stiffness matrix

k11 = E
πh4

64

∫
L

(
2 − x

L

)4
(

− 6

L2 + 12x

L3

)2

dx , (5.236)

is used and the entire stiffness matrix finally results after a short calculation:

ke
circle = E

L3

πh4

64

⎡
⎢⎢⎢⎢⎢⎣

2988
35

1998
35 L − 2988

35
198

7 L
1998
35 L 1468

35 L2 − 1998
35 L 106

7 L2

− 2988
35 − 1998

35 L 2988
35 − 198

7 L
198
7 L 106

7 L2 − 198
7 L 92

7 L2

⎤
⎥⎥⎥⎥⎥⎦
. (5.237)

(b) Square cross-section:
Regarding the square cross-section, Eq. (5.229) serves as a basis as well. However
in this case it seems to be a good idea to go back to the definition of Iz immediately:
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Iz(x) =
∫
A

y2dA =
y(x)∫

−y(x)

ŷ2 bd ŷ︸︷︷︸
dA

= b

[
1

3
ŷ3

]y(x)

−y(x)
= 2b

3
y(x)3 . (5.238)

The course of the function y(x) of the cross-section is identical with the radius of
the task part 1 (a) meaning y(x) = h(1 − x

2L ) and the second moment of area in this
case results in:

Iz(x) = 2bh3

3

(
1 − x

2L

)3 = bh3

12

(
2 − x

L

)3
. (5.239)

Due to the special form of the second moment of area, the stiffness matrix therefore
results in

ke = E
bh3

12

∫
L

(
2 − x

L

)3 d2 NT(x)

dx2

d2 N(x)
dx2 dx (5.240)

or after the integration finally as:

ke
square = E

L3

bh3

12

⎡
⎢⎢⎢⎢⎣

243
5

156
5 L − 243

5
87
5 L

156
5 L 114

5 L2 − 156
5 L 42

5 L2

− 243
5 − 156

5 L 243
5 − 87

5 L
87
5 L 42

5 L2 − 87
5 L 9 L2

⎤
⎥⎥⎥⎥⎦ . (5.241)

5.8.2 Supplementary Problems

5.4. Equilibrium relation for infinitesimal beam element with variable load
The vertical balance of forces and the equilibrium of moments has to be determined
for the beam element, which is illustrated in Fig. 5.27.

Fig. 5.27 Infinitesimal beam element with internal reactions and loading through variable distrib-
uted load
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5.5. Weighted residual method with variable distributed load
One derives the finite element equation through the weighted residual method. The
initial point therefore should be the bending differential equation with an arbitrary
distributed load qy(x). Furthermore it should to be assumed, that the bending stiffness
EIz is constant.
5.6. Stiffness matrix at bending in x−z plane
One derives the stiffness matrix for a beam element at bending in the x−z plane. For
this see Eq. (5.138) and Fig. 5.16b.
5.7. Bending beam with variable cross-section
Solve problem 5.3 for arbitrary values of D1 and D2!
5.8. Equivalent nodal loads for quadratic distributed load
Calculate the equivalent nodal loads for the bending beam, which is illustrated in
Fig. 5.28 in the case of:

(a) q(x) = q0x2,
(b) q(x) = q0

( x
L

)2.

Fig. 5.28 Quadratic distributed load

5.9. Bending beam with variable cross-section under point load
For the beam with variable cross-section, which is illustrated in Fig. 5.29, calculate
for d1 = 2h and d2 = h the vertical displacement of the right-hand boundary. For
this purpose, a single finite element has to be used and the numerical solution has to
be compared with the exact solution. Advice: the stiffness matrix can be taken from
Example 5.3.

Fig. 5.29 Bending beam with variable cross-section at loading through point load
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Chapter 6
General 1D Element

Abstract Within the application the three basic types tension, torsion and bending
can occur in an arbitrary combination. This chapter serves to introduce how the
stiffness relation for a general 1D element can be gained. The stiffness relation of
the basic types build the foundation. For ‘simple’ loadings the three basic types
can be regarded separately and can easily be superposed. A mutual dependency is
nonexistent. The generality of the 1D element also relates to the arbitrary orientation
within space. Transformation rules from local to global coordinates are provided.
As an example, structures in the plane as well as in three-dimensional space will be
discussed. Furthermore there will be a short introduction in the subject of numerical
integration.

6.1 Superposition to a General 1D Element

A general 1D element can be derived from the basic types of tension, bending and
torsion without mutual dependency. For an arbitrary point, the three forces and three
moments can be represented as

• normal force N (x),
• respectively a shear force and a bending moment around an axis of the cross-

section: Qz(x), Myb(x), Qy(x), Mzb(x) and
• torsional moment Mt(x) around the body axis.

The six kinematic parameters are described as follows:

• the three displacements ux (x), uy(x) and uz(x). Usually the displacement in the
body axis equals the displacement ux (x).

• the three rotations ϕx (x), ϕy(x), ϕz(x).

Figure 6.1 shows the kinematic parameters, the forces and the moments.
The arrangement of the single parameters in the vectors defines the structure of
the total stiffness matrix. If the kinematic parameters are arranged in the order that
follows

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 111
DOI: 10.1007/978-3-642-31797-2_6, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 State variables for the general three-dimensional case

u = [ux , uy, uz, ϕx , ϕy, ϕz]T, (6.1)

the order of entries for the vector of generalizes forces in the stiffness relation results
in:

F = [Nx , Qy, Qz,Mx ,My,Mz]T. (6.2)

An alternative order results, if the vector of generalized forces is established in the
following order

• normal force (in the direction of the x-axis),
• bending (around the y-axis and around the z-axis) and
• torsion (around the x-axis),

meaning
F = [Nx , Qz,My, Qy,Mz,Mx ]T . (6.3)

For this order, the single stiffness relation in Eq. (6.4) is illustrated. Under the assump-
tion of a two-node element the stiffness matrix consists of the 6 respective entries on
both nodes. The dimension of the stiffness matrix results in 12 × 12.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1x

Q1z

M1y

Q1y

M1z

M1x

N2x

Q2z

M2y

Q2y

M2z

M2x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z 0 0 0 0 0 Z 0 0 0 0 0
0 By By 0 0 0 0 By By 0 0 0
0 By By 0 0 0 0 By By 0 0 0
0 0 0 Bz Bz 0 0 0 0 Bz Bz 0
0 0 0 Bz Bz 0 0 0 0 Bz Bz 0
0 0 0 0 0 T 0 0 0 0 0 T
Z 0 0 0 0 0 Z 0 0 0 0 0
0 By By 0 0 0 0 By By 0 0 0
0 By By 0 0 0 0 By By 0 0 0
0 0 0 Bz Bz 0 0 0 0 Bz Bz 0
0 0 0 Bz Bz 0 0 0 0 Bz Bz 0
0 0 0 0 0 T 0 0 0 0 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1z

ϕ1y

u1y

ϕ1z

ϕ1x

u2x

u2z

ϕ2y

u2y

ϕ2z

ϕ2x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)
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The stiffness matrix contains entries,

• which are marked with Z , for entries of the single stiffness matrix of the tension
bar,

• which are marked with By and Bz , for the entries of the single stiffness matrix of
beams bending around the y- and z-axis and

• which are marked with T , for the entries of the single stiffness matrix of the torsion
bar.

The stiffness matrix contains 0-entries on many spots. This documents the decoupling
of the basic types. To analyze a general three-dimensional problem, a user can choose
between various ways for the choice of the elements. Generally the general stiffness
matrix can be allocated to each 1D element. This however leads to an increased
storage effort and lengthens computing times, since for many elements ‘unneces-
sary’ ballast is dragged along. Undoubtedly a preselection by the user makes sense.
Commercial program packages mostly contain the basic types within their element
library as well as several special cases.

6.1.1 Sample 1: Bar Under Tension and Torsion

In principle, a total stiffness matrix can be established through an arbitrary combina-
tion of basic types. Within this example the stiffness relation needs to be established
through the basic types tension bar and torsion bar. Figure 6.2 illustrates the state
variables, 6.2a the force parameter and 6.2b the deformation parameters.

(a)

(b)

Fig. 6.2 Finite element for tension and torsion: a load parameters and b deformation parameters

The total stiffness relation for the 1D element

⎡
⎢⎣

N1x
M1x
N2x
M2x

⎤
⎥⎦ =

⎡
⎢⎣

Z 0 Z 0
0 T 0 T
Z 0 Z 0
0 T 0 T

⎤
⎥⎦

⎡
⎢⎣

u1x
ϕ1x
u2x
ϕ2x

⎤
⎥⎦ (6.5)

consists of the basic types tension bar and torsion bar: in the matrix, the positions,
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• which are marked with Z , state entries of the single stiffness matrix of the tension
bar,

• which are marked with T , state entries of the single stiffness matrix of the torsion
bar.

In detail, the total stiffness relation via the geometrical and material
parameters is:

⎡
⎢⎢⎣

N1x

M1x

N2x

M2x

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E A
L 0 − E A

L 0
0 G It

L 0 − G It
L− E A

L 0 E A
L 0

0 − G It
L 0 G It

L

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1x

ϕ1x

u2x

ϕ2x

⎤
⎥⎥⎦ . (6.6)

6.1.2 Sample 2: Beam in the Plane with Tension Part

For the bending beam with a normal force part the two basic load types bending
and tension have to be combined. First the bending in the x–y plane needs to be
described. The state variables of the combined load types are illustrated in Fig. 6.3.

(a)

(b)

Fig. 6.3 Bending in the x–y plane with normal force: a load parameters and b deformation
parameters

The single stiffness relation is:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1x

Q1y

M1z

N2x

Q2y

M2z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A
L 0 0 − E A

L 0 0

0 12 E Iz
L3 6 E Iz

L2 0 −12 E Iz
L3 6 E Iz

L2

0 6 E Iz
L2 4 E Iz

L 0 −6 E Iz
L3 2 E Iz

L2

E A
L 0 0 − E A

L 0 0

0 −12 E Iz
L3 −6 E Iz

L2 0 12 E Iz
L3 −6 E Iz

L2

0 6 E Iz
L2 2 E Iz

L 0 −6 E Iz
L2 4 E Iz

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1y

ϕ1z

u2x

u2y

ϕ2z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.7)

For the bending in the x–z plane the description of the combined load occurs similarly.
The state variables are illustrated in Fig. 6.4.

(a)

(b)

Fig. 6.4 Bending in the x–z plane with normal force: a load parameters and b deformation para-
meters

The single stiffness relation is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1x

Q1z

M1y

N2x

Q2z

M2y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A
L 0 0 − E A

L 0 0

0 12 E Iy

L3 −6 E Iy

L2 0 −12 E Iy

L3 −6 E Iy

L2

0 −6 E Iy

L2 4 E Iy
L 0 6 E Iy

L3 2 E Iy

L2

E A
L 0 0 − E A

L 0 0

0 −12 E Iy

L3 6 E Iy

L2 0 12 E Iy

L3 6 E Iy

L2

0 −6 E Iy

L2 2 E Iy
L 0 6 E Iy

L2 4 E Iy
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1z

ϕ1y

u2x

u2z

ϕ2y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.8)

6.2 Coordinate Transformation

So far, the stiffness relation was formulated for a single element. The basis was the
local (lo) coordinate system related to one element. For the simple tension bar the
stiffness relation is called:
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Flo = klo ulo . (6.9)

However within a plane or general three-dimensional structure the single elements
can be oriented arbitrarily within space. Usually a fixed, global coordinate system
will be defined. The transformation rule for a vector between the local (lo) and global
(glo) coordinate system is generally referred to as:

[ · ]lo = T [ · ]glo . (6.10)

T is referred to as a transformation matrix. The mathematical characteristics are
described in detail in the appendix. For the following derivation the relation

T−1 = T T (6.11)

is relevant. This transformation matrix is used for the conversion of all parameters. For
the transformation of the displacements and forces from global to local coordinates,
the following results

ulo = T uglo ,

Flo = T Fglo ,
(6.12)

and for the transformation from local to global coordinates

uglo = T T ulo ,

Fglo = T T Flo .
(6.13)

The stiffness relation, after the transformation

Flo = K lo ulo

T−1 T Fglo = T−1 K lo T uglo

Fglo = T T K lo T uglo

can be written in global coordinates:

Fglo = K glo uglo (6.14)

with
K glo = T T K lo T . (6.15)

Within the following sections the transformation will be introduced with the help of
examples for the rotation in the plane and in the general three-dimensional space.
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6.2.1 Plane Structures

The transformation for plane structures can be shown graphically. The local x–y
coordinate system is rotated with the angle α compared to the X–Y global coordinate
system (Fig. 6.5).

Fig. 6.5 Coordinate transfor-
mation in the plane

The transformation relation between the local and the global coordinate system for
a vector is called: [ ·

·
]lo

=
[

cosα sin α
− sin α cosα

] [ ·
·
]glo

. (6.16)

First, the transformation for the element tension bar will be shown. To guarantee a
better overview, Fig. 6.6 only illustrates the forces. For the displacement, an equal
procedure applies.

Fig. 6.6 Coordinate transfor-
mation for the tension bar in
the plane

With two nodes the transformation matrix is:

T =

⎡
⎢⎢⎣

cosα sin α 0 0
− sin α cosα 0 0

0 0 cosα sin α
0 0 − sin α cosα

⎤
⎥⎥⎦ . (6.17)

Based on the description in local coordinates, the state vectors are brought into the
same dimension (4 components)

Flo =

⎡
⎢⎢⎣

N1
0

N2
0

⎤
⎥⎥⎦ , Fglo =

⎡
⎢⎢⎣

F1X

F1Y

F2X

F2Y

⎤
⎥⎥⎦ (6.18)

and



118 6 General 1D Element

ulo =
⎡
⎢⎣

u1
0
u2
0

⎤
⎥⎦ , uglo =

⎡
⎢⎣

u1X
u1Y
u2X
u2Y

⎤
⎥⎦ . (6.19)

For the transformation of the single stiffness matrix, one has to conduct the transfor-
mation rule of Eq. (6.15) and finally obtains

k = kT = E A

L

⎡
⎢⎣

cos2 α cosα sin α − cos2 α − cosα sin α
sin2 α − cosα sin α − sin2 α

cos2 α cosα sin α
sym. sin2 α

⎤
⎥⎦ . (6.20)

For the rotation of the bending beam in the plane, normal force, shear force and the
momental vector are already considered in the local coordinate system (see Fig. 6.7).
This one is at a right angle and also remains so during a rotation.

Fig. 6.7 Coordinate transfor-
mation for the bending beam
in the X–Y plane

The following transformation matrix results for the bending in the X–Y plane

T XY =

⎡
⎢⎢⎢⎢⎢⎣

cosα sin α 0 0 0 0
− sin α cosα 0 0 0 0

0 0 1 0 0 0
0 0 0 cosα sin α 0
0 0 0 − sin α cosα 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(6.21)

for the beam element with tensile loading. A corresponding transformation rule can
be formulated for the bending in the X–Z plane.

6.2.2 General Three-Dimensional Structures

The transformation for general, three-dimensional structures can formally be also
described via Eq. (6.10). Graphically, however, it is not so easy anymore to display the
transformation. The local (x, y, z) coordinate system is defined via three coordinate
axes. These can be rotated arbitrarily compared to a global (X,Y, Z) coordinate
system (see Fig. 6.8).
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Fig. 6.8 Rotatory transfor-
mation of a 1D element in
the space. The unit vectors
in the direction of the global
X -, Y - and Z -axis are labelled
with ei

A one-dimensional finite element 0–1 is represented by the vector

L = (X1 − X0)eX + (Y1 − Y0)eY + (Z1 − Z0)eZ , (6.22)

which is oriented in the direction of the local x-axis. A vector in the direction of the
local y-axis can, according to Fig. 6.8 be illustrated as follows:

Y = (X2 − X0)eX + (Y2 − Y0)eY + (Z2 − Z0)eZ . (6.23)

The direction cosines between the local y-axis and the global coordinate axes result
via the global nodal coordinates to

ty X = cos(y, X) = X2 − X0

|Y | , (6.24)

tyY = cos(y,Y ) = Y2 − Y0

|Y | , (6.25)

ty Z = cos(y, Z) = Z2 − Z0

|Y | , (6.26)

whereupon the length of the vector Y results in

|Y | =
√
(X2 − X0)2 + (Y2 − Y0)2 + (Z2 − Z0)2. (6.27)

Accordingly a vector in the direction of the local z-axis results in:

Z = (X3 − X0)eX + (Y3 − Y0)eY + (Z3 − Z0)eZ (6.28)

and the direction cosines in

tz X = cos(z, X) = X3 − X0

|Z| , (6.29)
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tzY = cos(z,Y ) = Y3 − Y0

|Z| , (6.30)

tzZ = cos(z, Z) = Z3 − Z0

|Z| , (6.31)

whereupon the length of the vector Z results in

|Z| =
√
(X3 − X0)2 + (Y3 − Y0)2 + (Z3 − Z0)2. (6.32)

An arbitrary vector v can be transformed between the local (x, y, z) and global
(X,Y, Z) coordinate system with the help of the following relation:

vxyz = T 3DvXY Z , (6.33)

vXY Z = T 3DT
vxyz , (6.34)

whereupon the transformation matrix can be written as follows via the direction
cosines:

T 3D =
⎡
⎣ tx X txY tx Z

ty X tyY ty Z

tz X tzY tzZ

⎤
⎦ =

⎡
⎣ cos(x, X) cos(x,Y ) cos(x, Z)

cos(y, X) cos(y,Y ) cos(y, Z)
cos(z, X) cos(z,Y ) cos(z, Z)

⎤
⎦ . (6.35)

A general one-dimensional element bonds six kinematic state variables and six ‘force
parameters’ on one node each. For a two-node element a transformation matrix with
the dimension 12×12 results for the transformation of a state variable. With Eq. (6.36)
the transformation relation from global to local coordinates for the kinematic state
variables is represented here as an example.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1y

u1z

ϕ1x

ϕ1y

ϕ1z

u2x

u2y

u2z

ϕ2x

ϕ2y

ϕ2z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tx X txY tx Z

ty X tyY ty Z

tz X tzY tzZ

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

tx X txY tx Z

ty X tyY ty Z

tz X tzY tzZ

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

tx X txY tx Z

ty X tyY ty Z

tz X tzY tzZ

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

tx X txY tx Z

ty X tyY ty Z

tz X tzY tzZ︸ ︷︷ ︸
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

u1Z

ϕ1X

ϕ1Y

ϕ1Z

u2X

u2Y

u2Z

ϕ2X

ϕ2Y

ϕ2Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.36)
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The transformation of the stiffness matrix results in:

ke
XY Z = T 3DT

keT 3D . (6.37)

The small letters stand for the axes of the local coordinate system and the capital
letters for the axes of the global coordinate system.

6.3 Numerical Integration of a Finite Element

Within this chapter a short introduction into numerical integration is conducted. For
a comprehensive overview it is referenced to relevant literature [1–3] at this point.
The subject will be introduced with regard to one-dimensional problems.
For the approximate calculation of certain integrals, a number of numerical algo-
rithms or so-called quadrature rules is available. The basic idea is to fractionize the
integral

b∫
a

f (x) dx ≈
q∑

i = 1

f (xi )�xi (6.38)

into subintervals and to subsequently sum up. Graphically this is shown in Fig. 6.9.

Fig. 6.9 Numerical integra-
tion of a function

Formulated more generally, the integral consists of partial contributions, which are
each calculated through a function value and a weighting coefficient:

b∫
a

f (x) dx ≈
q∑

i = 1

f (ξi )Wi . (6.39)

Within the integration formula, the ξi are referred to as the integration points, the
f (ξi ) as the discrete function values on these integration points, and Wi as the
weighting coefficient. q stands for the integration order.
Numerical integration thus means a multiplication of function values of the integrand
on discrete points of support with weights. Subsequently the partial contributions are
summed up.
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Independent from the boundaries of integration, numerical integration is mostly
conducted in the unit domain between −1 and +1, which means that the integration
interval is transformed on the domain −1 ≤ ξ ≤ 1.

The Gauss quadrature

Within the framework of the finite element method mostly the quadrature formula
according to Gauss is used for the numerical integration. An essential advantage is
that a polynomial of the order

m = 2q − 1 (6.40)

with q integration points can be exactly integrated. Two integration points conse-
quently allow a cubic polynomial to be exactly integrated and with three integration
points a polynomial of 5th order can be exactly integrated. The position of the inte-
gration points as well as the corresponding weights can be found in tables. Table 6.1
shows the values up to an integration order q = 3.

Table 6.1 Points of support
and weights for the numerical
integration according to
GAUSS-LEGENDRE

q Points of support ξi Weights Wi

1 0.00000 2.00000
2 ± 1√

3
= ± 0.57735 1.00000

3 ±
√

3
5 = ± 0.77459 ± 5

9 = ± 0.55555

0.00000 + 8
9 = 0.88888

The integration illustrated for the one-dimensional case can easily be expanded to
integrals with a higher dimension.

Example

The integral
+1∫

−1

(1 + 2x + 3x2) dx (6.41)

is to be evaluated with the help of the quadrature formula according to Gauss.

Solution

The exact solution results in
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+1∫
−1

(1+2x +3x2) dx =
[
x + x2 + x3

]+1

−1
= (1+1+1)−(−1+1−1) = 4. (6.42)

The integrand is a polynomial of second order. From m = 2 = 2q − 1 the necessary
integration order is calculated to q = 1.5. Since this has to be integer, the integration
order is appointed with q = 2. The positions of the integration points ξi with the
corresponding weights Wi

ξ1/2 = ± 1√
3
, W1/2 = 1.0 (6.43)

for the integration order q = 2 are taken from Table 6.1. The numerical integration

+1∫
−1

(1 + 2x + 3x2) dx ≈
q = 2∑
i = 1

f (ξi )Wi = f (ξ1)W1 + f (ξ2)W2

=
[

1 + 2

(
− 1√

3

)
+ 3

(
− 1√

3

)2
]

· 1, 0

+
[

1 + 2

(
+ 1√

3

)
+ 3

(
+ 1√

3

)2
]

· 1, 0

=
[

1 + 2

(
− 1√

3

)
+ 1

]
+

[
1 + 2

(
+ 1√

3

)
+ 1

]
= 4

(6.44)

delivers the exact result.

6.4 Shape Function

Within the framework of the finite element method, functions have to be approxi-
mated. In previous chapters shape functions have already been introduced to approx-
imate the displacement distribution within elements. Now this subject will be intro-
duced in detail. It is the goal to describe the distribution of a physical parameter as
easily as possible. As an example, the distribution of the displacement, the strain and
the stress along the center line of a bar needs to be named. A common approach is to
describe the real distribution of a function through a combination of function values
on selected positions, the nodes of a element and functions between those points of
support. This approach is also referred to as the nodal approach. The displacement
distribution within an element is approximated with
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ue(x) = Ne(x) up. (6.45)

The parameter ue(x) describes the distribution of the displacement within the ele-
ment, N stands for the shape function. The index ‘e’ in the equation stands for the
parameter, which is related to an element. The index ‘p’ labels the node p, at which
the nodal point displacement up was introduced.
In principle, arbitrary functions can be chosen for the interpolation, however the
following conditions have to be fulfilled:

• The shape function has to be consistent on the inside of an element.
• The shape function also has to be constant on the boundaries towards neighboring

elements.
• It has to be possible to describe a rigid-body motion with the shape function, so

that no strains or stresses in the element are caused as a result.

In general, polynomials fulfill these requirements. In the framework of the FEM
such special polynomials are called Lagrange polynomials. A Lagrange poly-
nomial of the order n − 1 is defined through n function values on the coordinates
x1, x2, x3, xi , ..., xn :

Ln
i (x) = (x − x1) (x − x2) (x − xi−1)(x − xi+1) · · · (x − xn) . (6.46)

Especially it needs to be remarked that the Lagrange polynomial

• Ln
i (x j ) takes on the function values Ln

i (x j ) = 0 on the locations x j = 1, 2, ...,
n, ( j �= i) and

• Ln
i (xi ) takes on the function value Ln

i (xi ) �= 0 at the position xi .

If the points of support of the Lagrange polynomial are put on the nodes of an
element and the non-zero function value is used for the scaling, then as a result
appropriate shape functions are constructed:

Ni (x) = Ln
i (x)

Ln
i (xi )

=
n∏

j = 1, j �= i

(x − x j )

(xi − x j )
. (6.47)

For the description of a physical parameter at times it makes sense to define another
coordinate system. Element-own coordinates, so-called natural coordinates ξ are
introduced.
Figure 6.10a shows the local and Fig. 6.10b the natural coordinates. The transforma-
tion can be described through

ξ = x − xM

L
. (6.48)

The central point of the element is described with xM or in natural coordinates with
ξ = 0. The beginning and the end of the element are described with the natural
coordinates ξ = −1 and ξ = +1. The shape function can also be formulated in
natural coordinates
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Fig. 6.10 Coordinates a
physical and b natural

(a)

(b)

Ni (ξ) = Li (ξ) =
n∏

j = 1, j �= i

(ξ − ξ j )

(ξi − ξ j )
. (6.49)

For a bar element with linear shape function, with the two nodes on the coordinates
ξ1 = −1 and ξ2 = +1 the two shape functions result in

N1(ξ) = (ξ − ξ2)

(ξ1 − ξ2)
= (ξ − 1)

(−1 − (+1))
= 1

2 (1 − ξ),

N2(ξ) = (ξ − ξ1)

(ξ2 − ξ1)
= (ξ − (−)1)
(+1 − (−1))

= 1
2 (1 + ξ).

(6.50)

Fig. 6.11 Shape functions,
linear approach

Figure 6.11 shows the two shape functions for the linear approach. For a bar element
with quadratic shape functions, with the three nodes on the coordinates ξ1 = −1,
ξ2 = 0 and ξ3 = +1, the three shape functions result in

N1(ξ) = (ξ − ξ2)(ξ − ξ3)

(ξ1 − ξ2)(ξ1 − ξ3)
= (ξ − 0)(ξ − 1)

(−1 − 0)(−1 − (+1))
= 1

2ξ(ξ − 1),

N2(ξ) = (ξ − ξ1)(ξ − ξ3)

(ξ2 − ξ1)(ξ2 − ξ3)
= (ξ − (−1))(ξ − 1)

(0 − (−1)(0 − (+1))
= (1 − ξ2),

N3(ξ) = (ξ − ξ1)(ξ − ξ2)

(ξ3 − ξ1)(ξ3 − ξ2)
= (ξ − (−1))(ξ − 0)

(+1 − (−1)(+1 − 0)
= 1

2ξ(1 + ξ).

(6.51)

Figure 6.12 shows the three shape functions for a quadratic approach.
The definition of the shape functions for a cubic approach represents the content of
Exercise 6.1.
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Fig. 6.12 Shape function,
quadratic approach

6.5 Unit Domain

Within the process of finite element analysis, numerous vectors and matrices are
defined via integration through a state variable X . This is formulated as follows:

∫
Ω

X dΩ . (6.52)

Hereby X mainly is a parameter, which is dependent on the shape functions N or
their derivatives. As an example, the stiffness matrix

K =
∫
Ω

BT DB dΩ (6.53)

needs to be given. Two transformations are necessary for the transaction of the
integration. In the first step, a transformation from global to local coordinates is
conducted. This step was already discussed in Sect. 6.2. Secondly the integration
domain is transformed into a unit domain:

∫
Ω

X(x, y, z) dΩ =
+1∫

−1

+1∫
−1

+1∫
−1

X(ξ, η, ζ ) J(ξ, η, ζ ) dξ dη dζ (6.54)

with

X(x, y, z) = X(x(ξ, η, ζ ), y(ξ, η, ζ ), z(ξ, η, ζ )) = X(ξ, η, ζ ). (6.55)

In Eq. (6.54) the following expression

J(ξ, η, ζ ) = ∂(x, y, z)

∂(ξ, η, ζ )
(6.56)

stands for the JACOBIan matrix. If the integration is only conducted in one dimen-
sion, the transformation rule can be simplified to
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∫
L

X(x) dx =
+1∫

−1

X(ξ) J(ξ) dξ =
+1∫

−1

X(ξ)
∂x

∂ξ
dξ = (6.57)

with
X(x) = X(x(ξ)) = X(ξ). (6.58)

6.6 Supplementary Problems

6.1 Cubic Displacement Distribution Inside the Tension Bar

The displacement distribution for a bar element needs to be approximated through
Lagrange polynomials. Unknown are the four shape functions in natural coordi-
nates ξ for a cubic approximation of the displacement distribution in the bar element.

6.2 Coordination Transformation for a Tension Bar in the Plane

In a plane the local coordinate system for a bar is rotated by α = 30◦ compared to
the global X–Y coordinate system. The bar is represented by 2 nodes (Fig. 6.13).

Fig. 6.13 Rotated bar in the
plane

The following has to be defined

1. the transformation matrix and
2. the single stiffness relation in the global X–Y coordinate system.
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Chapter 7
Plane and Spatial Frame Structures

Abstract Within this chapter the procedure for the analysis of a load-bearing struc-
ture will be introduced. Structures will be considered, which consist of multiple
elements and are connected with each other on coupling points. The structure is
supported properly and subjected with loads. Unknown are the deformations of the
structure and the reaction forces on the supports. Furthermore, the internal reactions
of the single element are of interest. The stiffness relation of the single elements are
already known from the previous chapters. A total stiffness relation forms on the
basis of these single stiffness relations. From a mathematical point of view the evalu-
ation of the total stiffness relation equals the solving of a linear system of equations.
As examples plane and general three-dimensional structures of bars and beams will
be introduced.

7.1 Assembly of the Total Stiffness Relation

It is the goal of this section to formulate the stiffness relation for an entire structure.
It is assumed that the stiffness relations for each element are known and can be set
up. Each element is connected with the neighboring elements through nodes. One
obtains the total stiffness relation by setting up the equilibrium of forces on each
node. The structure of the total stiffness relation is therefore predetermined:

F = K u . (7.1)

The dimension of the column matrices F and u equals the sum of the degrees
of freedom on all nodes. The assembly of the total matrix K can be illustrated
graphically by sorting all submatrices ke in the total stiffness matrix. Formally this
can be noted as follows:

K =
∑

e

ke . (7.2)

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 129
DOI: 10.1007/978-3-642-31797-2_7, © Springer-Verlag Berlin Heidelberg 2013
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The setup of the total stiffness relation occurs in multiple steps:

1. The single stiffness matrix ke is known for each element.
2. It is known which nodes are attached to each element. The single stiffness relation

can therefore be formulated for each element in local coordinates:

Fe = ke up.

3. The single stiffness relation, formulated in local coordinates has to be formulated
in global coordinates.

4. The dimension of the total stiffness matrix is defined via the sum of the degrees
of freedom on all nodes.

5. A numeration of the nodes and the degrees of freedom on each node has to be
defined.

6. The entries from the single stiffness matrix have to be sorted in the corresponding
positions in the total stiffness matrix.

This can be shown with the help of a simple example.
Given is a bar-similar structure with length 2L and constant cross-section A. The
structure is divided into two parts with length L with differing material (this means
different moduli of elasticity). The structure has a fixed support on one side and is
loaded with a point load F on the other side (Fig. 7.1).

Fig. 7.1 Bar-shaped structure with the length 2L

For further analysis the structure will be divided into two parts each of length L .
The example therefore consists of two finite elements and three nodes, which are
numbered in the sequence 1–2–3 (see Fig. 7.2). The nodes 1 and 2 are attached to
element I. The single stiffness relation for the element I is:

[
N1
N2

]I

=
[

k −k
−k k

]I [
u1
u2

]I

(7.3)

with

kI = E A

L
. (7.4)

Nodes 2 and 3 are attached to element II. The single stiffness relation for the element
II is:
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Fig. 7.2 Discretized structure with two finite elements

[
N2
N3

]II

=
[

k −k
−k k

]II [
u2
u3

]II

(7.5)

with

kII = E A

L
. (7.6)

Since the local and global coordinate systems are identical for the present problem,
a coordinate transformation is omitted. The dimension of the total stiffness relation
results in 3 × 3, since one degree of freedom exists on each node. The numbering of
the degrees of freedom is defined in the sequence 1–2–3. The total stiffness relation
results by assembling all submatrices in the total stiffness matrix:

⎡
⎣ N1

N2
N3

⎤
⎦ =

⎡
⎣ kI −kI 0

−kI kI + kII −kII

0 −kII kII

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ . (7.7)

The numbering of the nodes has an influence on the structure of the total stiffness
matrix. Instead of numbering the nodes with 1–2–3, the sequence 1–3–2 can be
defined (Fig. 7.3).

Fig. 7.3 Alternative numbering of nodes for a structure with two bars
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Accordingly the total stiffness relation results in:

⎡
⎣ N1

N3
N2

⎤
⎦ =

⎡
⎣ kI −kI 0

−kI kI + kII −kII

0 −kII kII

⎤
⎦

⎡
⎣ u1

u3
u2

⎤
⎦ . (7.8)

For the case when the numbering is chosen in ascending order (1–2–3), the following
results: ⎡

⎣ N1
N2
N3

⎤
⎦ =

⎡
⎣ kI 0 −kI

0 kII −kII

−kI −kII kI + kII

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ . (7.9)

Compared to Eq. (7.7) the zero entries in the system matrix are in a different posi-
tion. The numbering of the nodes can influence the result. With an exact number
representation and a non-occurring rounding error while conducting mathematical
operations the numbering of the nodes would not have an influence on the final result.
However in practice, exclusively numerical methods are used. Herewith, for exam-
ple the sequence of the single mathematical operations and the computer internal
number representation have an influence on the subresult as well as the final result.
Especially the structure of the system matrix is of importance for the result of the
equation. Thus, the assembly process influences speed and quality of the result.
The just now considered example can easily be expanded to multiple elements. Four
bar elements are arranged behind each other in Fig. 7.4.

Fig. 7.4 Structure consisting of four bar elements

The total stiffness relation is:

⎡
⎢⎢⎢⎢⎣

N1
N2
N3
N4
N5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

kI −kI 0 0 0
−kI kI + kII −kII 0 0

0 −kII kII + kIII −kIII 0
0 0 −kIII kIII + kIV −kIV

0 0 0 −kIV kIV

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎥⎥⎦ . (7.10)

The band structure in the system matrix is clearly visible. Around the main diagonal
respectively one secondary diagonal is occupied. Large domains have zero entries. By
tendency the domains with zero entries become proportionally bigger with increasing
number of finite elements within a structure, the domains with non-zero entries
become smaller. The concentration of the non-zero entries around the main diagonal
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cannot be enforced at all times. Structures with coupling points, at which multiple
elements concur, lead to non-zero entries in the zero domains.
The unknown parameters can be found through the total stiffness relation. Herefore
at first proper preconditions have to be established. In a mathematical sense the
system matrix is still singular. Degrees of freedom have to be taken from the system.
Graphically this means that at least that so many degrees of freedom have to be taken
until the rigid-body motion of the remaining system becomes impossible. A reduced
system results from the total stiffness relation:

Fred = K red ured . (7.11)

Herefrom the unknown parameters can be determined. Within the following sequence
the solving of the system equation will be elaborated in detail.

7.2 Solving of the System Equation

The solving of a linear system of equations such as system (7.11) is part of the basic
tasks in mathematics. A common illustration yields:

A x = b . (7.12)

The matrix A is referred to as a system matrix, the vector x contains the unknowns
and the vector b represents the right-hand side. The right-hand side represents a load
case from the mechanical point of view. Multiple load cases result in a right-hand
side matrix, whose number of columns equals the number of load cases. If Eqs. (7.11)
and (7.12) are compared,

• the system matrix A with the reduced stiffness matrix K red,
• the vector of the unknown x with ured and
• the vector of the right-hand side b with Fred

can be identified. To solve the linear system of equations basically two methods are
possible:

• Direct and
• iterative method.

For an in-depth discussion it can be referred to corresponding literature at this point
[1, 2]. From the user’s point of view, the following criteria are paramount:

• the reliability of the solvers,
• the accuracy of the solution,
• the time, which is needed for the solving and
• the resources, which are made use of.

The direct methods can be characterized through the following attributes:
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• The system is solvable for a well constructed problem.
• The direct solver is implementable as a black box.
• Multiple load cases and therefore more right-hand sides can be handled without

significant additional expenditure.
• The calculating time is basically defined through the dimension of the system

matrix.
• The accuracy of the solution is basically defined through the computer internal

number representation.

For iterative methods interim solutions are determined according to a fixed algorithm,
based on an initial solution. The essential attributes are:

• The convergence of an iterative method cannot be guaranteed for every application.
• The accuracy of the solution can be influenced and given by the user.
• Multiple right-hand sides demand multiple computing times (n right-hand sides

mean n-times solution of the system of equations).

With iterative methods, solutions for many applications can be found very quickly.
The computing times for a load case can be a few percent of the computing times of
the direct solver. In commercial program packages, mainly direct methods are used
for the solution of the equation system. Extended computing times seem to be more
reasonable to the user as a possible termination of the iterative solution algorithm.

7.3 Solution Evaluation

After the solving of the linear system of equations, the following displacements up
are present on each node for general problems in a global coordinate system. For a
further evaluation in the single elements, the displacements are each transformed in
the element-own local coordinate system. With the shape functions the displacement
field in each element

ue(x) = N(x)up (7.13)

can be defined for each element. Through the kinematic relation furthermore the
strain field

εe(x) = L1 ue(x) = L1 N(x) up (7.14)

and through the constitutive equation the stress field in the element

σ e(x) = D εe(x) (7.15)

can be defined. Furthermore, the unknown support reactions can be determined with
the nodal displacement values via a so-called follow-up calculation.
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7.4 Examples in the Plane

This section serves to discuss about structures which are positioned in the plane. The
first example deals with a structure, which consists of two bars. The second example
deals with a beam and a bar.

7.4.1 Plane Structure with Two Bars

As a first and simple example a structure will be discussed which is made of two bars
(see Fig. 7.5). Both bars have the same length

√
2 × L and the same cross-section A,

consist of the same material (same modulus of elasticity E), are each simply sup-
ported at one end and are pin-jointed at the position C . A single force F acts on
position C .

Fig. 7.5 Plane structure made of two bars

Given: E , A, L and F
Unknown are

• the displacement on position C and
• the strain and stress in the elements.

The approach:
The discretization of the structure is obvious. The structure is divided into two ele-
ments. The nodes with the numbers 1, 2 and 3 are introduced at the positions B, C
and D (see Fig. 7.6).
Nodes 1 and 2 are attached to element I. The single stiffness relation for element I
is, in local coordinates:
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Fig. 7.6 Plane structure with two bar elements

[
N1
N2

]I

=
[

k −k
−k k

]I [
u1
u2

]I

(7.16)

with

kI = E A√
2L

. (7.17)

Nodes 2 and 3 are attached to element II. The single stiffness relation for element II
is, in local coordinates:

[
N2
N3

]II

=
[

k −k
−k k

]II [
u2
u3

]II

(7.18)

with

kII = E A√
2L

. (7.19)

Element I is rotated byαI = −45◦ compared to the global coordinate system, element
II is rotated by αII = +45◦. With the expressions

sin(−45◦) = −1

2

√
2 and cos(−45◦) = 1

2

√
2 (7.20)

for element I and

sin(+45◦) = +1

2

√
2 and cos(+45◦) = 1

2

√
2 (7.21)

for element II the single stiffness relations are, in global coordinates for element I:
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⎡
⎢⎢⎣

F1X

F1Y

F2X

F2Y

⎤
⎥⎥⎦ = 1

2
kI

⎡
⎢⎢⎣

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1X

u1Y

u2X

u2Y

⎤
⎥⎥⎦ (7.22)

and for element II:
⎡
⎢⎢⎣

F2X

F2Y

F3X

F3Y

⎤
⎥⎥⎦ = 1

2
kII

⎡
⎢⎢⎣

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u2X

u2Y

u3X

u3Y

⎤
⎥⎥⎦ . (7.23)

One obtains the total stiffness relation by inserting the single stiffness relations in
the corresponding positions:

⎡
⎢⎢⎢⎢⎢⎢⎣

F1X

F1Y

F2X

F2Y

F3X

F3Y

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

kI −kI −kI kI 0 0
−kI kI kI −kI 0 0
−kI kI kI + kII −kI + kII −kII −kII

kI −kI −kI + kII kI + kII −kII −kII

0 0 −kII −kII kII kII

0 0 −kII −kII kII kII

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

u2X

u2Y

u3X

u3Y

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.24)

In the next step, the boundary conditions will be worked in.

• The displacement on node 1 and on node 3 are zero in each case.
• The external force on node 2 acts in the global Y direction.

Therewith the total stiffness relation is:

⎡
⎢⎢⎢⎢⎢⎢⎣

F1X

F1Y

0
F2Y

F3X

F3Y

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

kI −kI −kI kI 0 0
−kI kI kI −kI 0 0
−kI kI kI + kII −kI + kII −kII −kII

kI −kI −kI + kII kI + kII −kII −kII

0 0 −kII −kII kII kII

0 0 −kII −kII kII kII

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

u2X

u2Y

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.25)

After the crossing out of the lines and columns 1, 2, 5 and 6, a reduced system

[
0

−F

]
= 1

2

[
kI + kII −kI + kII

−kI + kII kI + kII

] [
u2X

u2Y

]
(7.26)

with the lines and columns 3 and 4 remains. So far, the stiffnesses for the elements
are labeled with the indexes I and II, even though they are identical. For the further
approach the stiffnesses are consistently referred to as kI = kII = k = E A√

2L
. The

simplified total stiffness relation is:
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[
0

−F

]
=

[
k 0
0 k

] [
u2X

u2Y

]
. (7.27)

Herefrom the unknown displacements u2X and u2Y can be determined:

u2X = 0, u2Y = − F

k
= − F

E A

√
2L . (7.28)

Through transformation of the displacements u2X and u2Y in the element-own local
coordinate systems the following results:

uI
2 = 1

2

√
2u2X − 1

2

√
2u2Y = 1

2

√
2

(
0 −

(
− F

k

))
= +1

2

√
2

F

k
= + F

E A
L ,

(7.29)

uII
2 = 1

2

√
2u2X + 1

2

√
2u2Y = 1

2

√
2

(
0 +

(
− F

k

))
= −1

2

√
2

F

k
= − F

E A
L .

(7.30)
From the local displacements the strain in element I

εI(x) = 1√
2L
(+uI

2 − uI
1) =

(
F

E A
L − 0

)
1√
2L

= +1

2

√
2

F

E A
(7.31)

and in element II

εII(x) = 1√
2L
(+uII

3 − uII
2 ) =

(
0 −

(
− F

E A
L

))
1√
2L

= +1

2

√
2

F

E A
(7.32)

can be determined.
After the local displacements in the particular elements are known, the local forces
can be determined via the single stiffness relation:

Bar I:
N I

1 = k (+uI
1 − uI

2) = k
(

0 − 1
2

√
2 F

k

)
= − 1

2

√
2F ,

N I
2 = k (−uI

1 + uI
2) = k

(
0 + 1

2

√
2 F

k

)
= + 1

2

√
2F .

(7.33)

Bar II:

N II
2 = k (+uII

2 − uII
3 ) = k

(
− 1

2

√
2 F

k − 0
)

= −1

2

√
2F ,

N II
3 = k (−uII

2 + uII
3 ) = k

(
−

(
− 1

2

√
2 F

k

)
+ 0

)
= +1

2

√
2F .

(7.34)

From the definition of the bar force it becomes obvious that both bar I and also bar
II are tension bars. The normal stress in bar I results in:

σ I = 1

2

√
2

F

A
(7.35)
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and in bar II:

σ II = 1

2

√
2

F

A
. (7.36)

Herewith also the loading conditions in the single elements are known.

7.4.2 Plane Structure: Beam and Bar

As a second simple example a structure will be discussed which is made up of a
beam and a bar (see Fig. 7.7). The beam has a fixed support on one end (position
B). The beam is pin-jointed with the bar at position C , which is simply supported at
position D. The entire structure is loaded with a point force F .

Fig. 7.7 Plane structure composed of a beam and a bar element

Given: E , I , A, L and F
Unknown are

• the displacements and rotations on position C and
• the reaction forces on the fixed supports.

Two ways for solving will be introduced. They can be distinguished in the use of
a global coordinate system. First, the approach with the introduction of a global
coordinate system will be explained.
The discretization of the structure is obvious. The beam is element I, the bar is
element II. The nodes with the numbers 1, 2 and 3 are introduced at the positions B,
C and D. For the single elements the kinematic parameters in Fig. 7.8 and the ‘load
parameters’ in Fig. 7.9 are illustrated.
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Fig. 7.8 Plane structure with kinematic parameters on the single elements

Fig. 7.9 Plane structure with ‘load parameters’ on the single elements

Nodes 1 and 2 are attached to element I. Herewith the stiffness relation for element
I is: ⎡

⎢⎢⎣
Q1
M1
Q2
M2

⎤
⎥⎥⎦ = E I

L3

⎡
⎢⎢⎣

12 6L −12L 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
v1
ϕ1
v2
ϕ2

⎤
⎥⎥⎦ . (7.37)
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Nodes 3 and 2 are attached to element II. The element stiffness matrix for element
II is: [

N3
N2

]
=

[
k −k

−k k

] [
u3
u2

]
. (7.38)

One obtains the total stiffness relation by setting up the overall force equilibrium.
This results from the equilibrium on all nodes. The system can be described via the
following parameters:

• on position B: displacement v1 and the rotation ϕ1 ,
• on position C : displacement v2 and the rotation ϕ2 ,
• on position D: displacement u3 .

On the coupling point C

• the displacement v2 on the beam equals the displacement u2 on the bar and
• the shear force Q2 on the beam equals the normal force N2 on the bar.

The dimension of the total stiffness relation is therewith determined: a 5×5 system.
For clarity reasons the entries in the following illustration are not conducted in detail.
The abbreviation

• Z stands for the tension and compression bar and
• B stands for the bending beam:

⎡
⎢⎢⎢⎢⎣

Q1
M1
Q2
M2
N3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

B B B B 0
B B B B 0
B B B + Z B Z
B B B B 0
0 0 Z 0 Z

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1
ϕ1
v2
ϕ2
u3

⎤
⎥⎥⎥⎥⎦ (7.39)

It is already included in the total stiffness relation

• that the displacement v2 regarding the bending beam on node 2 is identical with
the displacement u2 on the bar and

• that the shear force Q2 regarding the bending beam on node 2 is identical with the
normal force of the tension bar N2.

In the next step the boundary conditions will be inserted into the total stiffness
relation.

• On node 1 the displacement v1 and the rotation ϕ1 are zero.
• On node 2 there is the external force −F , the moment M2 is zero.
• On node 3 the displacement u3 is zero.

Herewith the lines and columns 1, 2 and 5 can be removed from the total stiffness
relation. A reduced system of equations remains:

[−F
0

]
=

[
B + Z B

B B

] [
v2
ϕ2

]
. (7.40)
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The reduced system of equations in detail is:

[−F
0

]
=

[
12 E I

L3 + E A
L −6 E I

L2

−6 E I
L2 4 E I

L

] [
v2
ϕ2

]
. (7.41)

Herefrom the unknown displacement v2 and the rotation ϕ2 can be determined:

v2 = − F

3 E I
L3 + E A

L

, ϕ2 = − 3

2L

F

3 E I
L3 + E A

L

. (7.42)

Since the parameters v2 and ϕ2 are known now, the support reactions can be defined
by inserting those in Eq. (7.39).
In this example, the definition of a global coordinate system and therewith the trans-
formation from local to global coordinates was relinquished. Generally this is not
possible. In this example, due to the right-angled position to each other, parameters
of one element can be identified with those on the other element.
For the sake of completeness the approach with the coordinate transformation will
also be introduced. The single stiffness relations in local coordinates are already
known. For both elements the kinematic parameters in Fig. 7.10 as well as the ‘load
parameters’ in Fig. 7.11 are illustrated.

Fig. 7.10 Plane structure with kinematic parameters in local coordinates on the single elements

In the next step, the single stiffness relations will be illustrated in global coordinates.
First, a global coordinate system will be defined. The local and global coordinate
system are identical for element I. The single stiffness relation for element I is:
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Fig. 7.11 Plane structure with ‘load parameters’ in local coordinates on the single elements

⎡
⎢⎢⎢⎢⎢⎢⎣

F1X

F1Y

M1Z

F2X

F2Y

M2Z

⎤
⎥⎥⎥⎥⎥⎥⎦

= E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 12 6L 0 −12L 6L
0 6L 4L2 0 −6L 2L2

0 0 0 0 0 0
0 −12 −6L 0 12 −6L
0 6L 2L2 0 −6L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

ϕ1Z

u2X

u2Y

ϕ2Z

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.43)

The single stiffness relation in local coordinates for element II is:

⎡
⎢⎢⎣

F3x

F3y

F2x

F2y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E A
L 0 − E A

L 0
0 0 0 0

− E A
L 0 E A

L 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u3x

u3y

u2x

u2y

⎤
⎥⎥⎦ . (7.44)

Element II is rotated by α = 90◦ compared to the global coordinate system. The
transformation matrix for a vector is:

T =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ . (7.45)

The single stiffness relation therefore results for element II in global coordinates:
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⎡
⎢⎢⎣

F3X

F3Y

F2X

F2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
0 E A

L 0 − E A
L

0 0 0 0
0 − E A

L 0 E A
L

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u3X

u3Y

u2X

u2Y

⎤
⎥⎥⎦ . (7.46)

The dimension of the total stiffness relation result in 8 × 8. The kinematic parameters
are

• on node 1: u1X , u1Y , ϕ1Z ,
• on node 2: u2X , u2Y , ϕ2Z and
• on node 3: u3X , u3Y .

The ‘load parameter’ are

• on node 1: F1X , F1Y , M1Z ,
• on node 2: F2X , F2Y , M2Z and
• on node 3: F3X , F3Y .

The total stiffness relation therefore results in:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1X

F1Y

M1Z

F2X

F2Y

M2Z

F3X

F3Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 B B 0 B B 0 0
0 B B 0 B B 0 0
0 0 0 0 0 0 0 0
0 B B 0 B + Z B 0 Z
0 B B 0 B B 0 0
0 0 0 0 0 0 0 0
0 0 0 0 Z 0 0 Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

ϕ1Z

u2X

u2Y

ϕ2Z

u3X

u3Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.47)

The boundary conditions are inserted into the total stiffness relation.

• On node 1, the fixed support of the beam, the displacement u1X , u1Y and the angle
ϕ1Z are zero.

• On node 2 the external force acts against the Y -direction.
• On node 3 the displacements u3X and u3Y are zero.

Therewith the corresponding lines and columns (1, 2, 3, 4, 7, 8) can be removed from
the total stiffness relation. A reduced system of the dimension 2 × 2 remains:

[−F
0

]
=

[
B + Z B

B B

] [
u2Y

ϕ2Z

]
. (7.48)

This system of equations is similar to the system shown above, which resulted from
the description in local coordinates. The displacement v2 equals u2Y and the rotation
ϕ2 equals ϕ2Z . The latter approach is identical.
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7.5 Examples in the Three-Dimensional Space

The structure consists of three plane sections, which are oriented differently within
space. The sections are each arranged mutually right-angled (see Fig. 7.12). The
entire structure is fixed supported at position B and is loaded with a point load F at
position G.

Fig. 7.12 General structure in space

Given: E , ν, A, L und F

Unknown are

• the displacement and rotation on each coupling point (these are the positions
B, C, D) and

• the reaction force at the fixed support (position B).

Solution :
The sections each equal an 1D element at the modeling as a finite element model.
First the elements and nodes are labeled with numbers. For the description of the
displacement and rotation a global (X , Y , Z ) coordinate system is defined.
In principle, the total stiffness matrix of a general 1D element could be used for any
element. This leads to quite extensive descriptions. Alternatively, the corresponding
stiffness matrices of the basic load types for each element can be named:

• Element I is loaded by bending and torsion,
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• element II by bending and
• element III by compression.

The shear part in element I and II is disregarded.
Figure 7.13 illustrates the state variables for element I in local coordinates. For clarity
reasons only the parameters relevant for the description of the bending and compres-
sion load are considered.

Fig. 7.13 Element I with state variables in local coordinates

In local coordinates the column matrix of the state variables is

[
u1x , u1y, u1z, ϕ1x , ϕ1y, ϕ1z, u2x , u2y, u2z, ϕ2x , ϕ2y, ϕ2z

]T
, (7.49)

[
F1x , F1y, F1z,M1x ,M1y,M1z, F2x , F2y, F2z,M2x ,M2y,M2z

]T (7.50)

and the stiffness matrix for element I:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 12 E Iy

L3 0 −6 E Iy

L2 0 0 0 −12 E Iy

L3 0 −6 E Iy

L3 0
0 0 0 G It

L 0 0 0 0 0 − G It
L 0 0

0 0 −6 E Iy

L2 0 4 E Iy
L 0 0 0 6 E Iy

L2 0 2 E Iy
L 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 −12 E Iy

L3 0 6 E Iy

L2 0 0 0 12 E Iy

L3 0 6 E Iy

L2 0
0 0 0 − G It

L 0 0 0 0 0 G It
L 0 0

0 0 −6 E Iy

L2 0 2 E Iy
L 0 0 0 6 E Iy

L2 0 4 E Iy
L 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.51)

The transformation rule from local to global coordinates for a vector regarding ele-
ment I is:
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⎡
⎣ cos

(
π
2

)
cos(0) cos

(
π
2

)
cos(π) cos

(
π
2

)
cos

(
π
2

)
cos

(−π
2

)
cos

(−π
2

)
cos(0)

⎤
⎦ . (7.52)

Element I has two nodes with respectively six scalar parameters. Therefore a 12×12
system results:

T I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.53)

After the transformation in global coordinates the single stiffness relation for element
I is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 12 E Iy

L3 6 E Iy

L2 0 0 0 0 −12 E Iy

L3 6 E Iy

L2 0 0

0 0 6 E Iy

L2 4 E Iy
L 0 0 0 0 −6 E Iy

L2 2 E Iy
L 0 0

0 0 0 0 G It
L 0 0 0 0 0 − G It

L 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −12 E Iy

L3 −6 E Iy

L2 0 0 0 0 12 E Iy

L3 −6 E Iy

L2 0 0

0 0 6 E Iy

L2 2 E Iy
L 0 0 0 0 −6 E Iy

L2 4 E Iy
L 0 0

0 0 0 0 − G It
L 0 0 0 0 0 G It

L 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X

u1Y

u1Z

ϕ1X

ϕ1Y

ϕ1Z

u2X

u2Y

u2Z

ϕ2X

ϕ2Y

ϕ2Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.54)

For element II the local and global coordinates are identical. Figure 7.14 illustrates
the state variables for element II in local coordinates. Therewith the single stiffness
relation for element II results in:
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Fig. 7.14 Element II with state variables in local coordinates

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F2X

F2Y

F2Z

M2X

M2Y

M2Z

F3X

F3Y

F3Z

M3X

M3Y

M3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 12 E Iy

L3 0 −6 E Iy

L2 0 0 0 −12 E Iy

L3 0 −6 E Iy

L2 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 −6 E Iy

L2 0 4 E Iy
L 0 0 0 6 E Iy

L2 0 2 E Iy
L 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 −12 E Iy

L3 0 6 E Iy

L2 0 0 0 12 E Iy

L3 0 6 E Iy

L2 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 −6 E Iy

L2 0 2 E Iy
L 0 0 0 6 E Iy

L2 0 4 E Iy
L 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Y

u2Z

ϕ2X

ϕ2Y

ϕ2Z

u3X

u3Y

u3Z

ϕ3X

ϕ3Y

ϕ3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.55)
For element III the local coordinate system is turned compared to the global one.
The state variables are illustrated in local coordinates in Fig. 7.15.
The single stiffness relations for element III in local coordinates:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F3x

F3y

F3z

M3x

M3y

M3z

F4x

F4y

F4z

M4x

M4y

M4z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A
L 0 0 0 0 0 − E A

L 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

− E A
L 0 0 0 0 0 E A

L 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u3x

u3y

u3z

ϕ3x

ϕ3y

ϕ3z

u4x

u4y

u4z

ϕ4x

ϕ4y

ϕ4z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.56)
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Fig. 7.15 Element III with state variables in local coordinates

The transformation rule of local to global coordinates for a vector regarding element
III is called: ⎡

⎣ cos
(−π

2

)
cos

(
π
2

)
cos(π)

cos
(
π
2

)
cos(0) cos

(
π
2

)
cos(0) cos

(−π
2

)
cos

(−π
2

)
⎤
⎦ . (7.57)

The total transformation matrix T III therefore results in:

T III =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.58)

The single stiffness relation for element III in global coordinates:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F3X

F3Y

F3Z

M3X

M3Y

M3Z

F4X

F4Y

F4Z

M4X

M4Y

M4Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 E A

L 0 0 0 0 0 − E A
L 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 − E A

L 0 0 0 0 0 E A
L 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u3X

u3Y

u3Z

ϕ3X

ϕ3Y

ϕ3Z

u4X

u4Y

u4Z

ϕ4X

ϕ4Y

ϕ4Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.59)

Now all single stiffness relations in global coordinates are known. The total stiffness
relation can be established by arranging the single stiffness relations adequately. The
dimension of the total stiffness relation results in 24×24, respectively six parameters
are considered on the four nodes.
Only the lines and columns with non-zero entries are considered in the illustration
of the total stiffness relation. The column matrices of the state variables in global
coordinates are called:

[u1Z , ϕ1X , ϕ1Y , u2Z , ϕ2X , ϕ2Y , u3Z , ϕ3Y , u4Z ]T (7.60)

and
[F1Z ,M1X ,M1Y , F2Z ,M2X ,M2Y , F3Z ,M3Y , F4Z ]T (7.61)

and the total stiffness matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 E Iy

L3 6 E Iy

L2 0 −12 E Iy

L3 6 E Iy

L2 0 0 0 0

6 E Iy

L2 4 E Iy
L 0 −6 E Iy

L2 2 E Iy
L 0 0 0 0

0 0 kT 0 0 −kT 0 0 0

−12 E Iy

L3 −6 E Iy

L2 0 24 E Iy

L3 −6 E Iy

L2 −6 E Iy

L3 −12 E Iy

L3 −6 E Iy

L2 0

6 E Iy

L2 2 E Iy
L 0 −6 E Iy

L2 4 E Iy
L 0 0 0 0

0 0 −kT −6 E Iy

L2 0 kT + 4 E Iy
L 6 E Iy

L2 2 E Iy
L 0

0 0 0 −12 E Iy

L3 0 6 E Iy

L2 12 E Iy

L3 + kZ 6 E Iy

L2 −kZ

0 0 0 −6 E Iy

L2 0 2 E Iy
L 6 E Iy

L 4 E Iy
L 0

0 0 0 0 0 0 −kZ 0 kZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.62)
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with

kT = G It

L
, kZ = E A

L
. (7.63)

The boundary conditions are included in the total stiffness relation. The displacement
u1Z and the angles ϕ1X and ϕ2Y are zero at the fixed support. Therewith the according
lines and columns can be removed from the total stiffness relation. A reduced system
remains.

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
F

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24
E Iy

L3 −6
E Iy

L2 −6
E Iy

L3 −12
E Iy

L3 −6
E Iy

L2 0

−6
E Iy

L2 4
E Iy

L
0 0 0 0

−6
E Iy

L2 0
G It

L
+ 4

E Iy

L
6

E Iy

L2 2
E Iy

L
0

−12
E Iy

L3 0 6
E Iy

L2 12
E Iy

L3 + k 6
E Iy

L2 −k

−6
E Iy

L2 0 2
E Iy

L
6

E Iy

L
4

E Iy

L
0

0 0 0 −k 0 k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u2Z

ϕ2X

ϕ2Y

u3Z

ϕ3Y

u4Z

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.64)
with

k = E A

L
. (7.65)

Herefrom the unknown parameters can be determined:

⎡
⎢⎢⎢⎢⎢⎢⎣

u2Z

ϕ2X

ϕ2Y

u3Z

ϕ3Y

u4Z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ F

3 E Iy

L3

+ F

2 E Iy

L2

− F

2 G It
L

+2G It + 3E Iy)L3 F

3E IyG It

− L2(G It + 2E Iy)F

2E IyG It

+ (3G It Iy + 2G It AL2)L F

3E Iy AG It

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.66)
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By inserting the now known kinematic parameters into the total stiffness relation the
clamping forces F1X and fixed-end moments M1X and M1Y can be determined.

7.6 Supplementary Problems

7.1. Structure of Beams in the Three-Dimensional Space

For the above executed example, the displacements and rotations needs to be
determined for concrete numerical values: E = 210000 MPa, G = 80707 MPa,
a = 20 mm, It = 0.141a4, F = 100 N .

7.2. Structure of Beams in the Three-Dimensional Space, Alternative
Coordinate System

For the above executed example a second global coordinate system needs be defined.
Figure 7.16 shows the definition of the coordinate axes. The global Z -coordinate
remained the same, the X - and Y -coordinate have changed positions.

Fig. 7.16 General structure in the space with alternative global coordinate system

The kinematic parameters on the nodal points need to be determined.
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Chapter 8
Beam with Shear Contribution

Abstract By this element the basic deformation bending under consideration of the
shear influence will be described. First, several basic assumptions for the modeling
of the Timoshenko beam will be introduced and the element used in this chapter will
be distinguished from other formulations. The basic equations from the strength of
materials, meaning kinematics, the equilibrium as well as the constitutive equation
will be introduced and used for the derivation of a system of coupled differential
equations. The section about the basics is ended with analytical solutions. Subse-
quently the Timoshenko bending element will be introduced with the definitions
for load and deformation parameters which are commonly accepted at the handling
via the FE method. The derivation of the stiffness matrix at this point also takes
place via various methods and will be described in detail. Besides linear shape func-
tions a general concept for an arbitrary arrangement of the shape functions will be
introduced.

8.1 Introductory Remarks

The general differences regarding the deformation and stress distribution of a bending
beam with and without shear influence have already been discussed in Chap. 5. In this
chapter the shear influence needs to be considered with the help of the Timoshenko
beam theory. Within the framework of the following introductive remarks, first the
definition of the shear strain and the connection between shear force and shear stress
needs to be covered.
For the derivation of the equation for the shear strain in the x − y plane, the infinites-
imal rectangular beam element ABC D, shown in Fig. 8.1 will be considered, which
deforms under exposure of shear stress. Here, a change of the angle of the original
right angles as well as a change in the lengths of the edges occurs.
The deformation of the point A can be described via the displacement fields ux (x, y)
and uy(x, y). These two functions of two variables can be expanded in TAYLOR’s

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 155
DOI: 10.1007/978-3-642-31797-2_8, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-31797-2_5
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Fig. 8.1 Definition of the shear strain γxy in the x − y plane at an infinitesimal beam element

series1 of first order around point A to calculate the deformations of the points B
and D approximatively:

ux,B = ux (x + dx, y) = ux (x, y)+ ∂ux

∂x
dx + ∂ux

∂y
dy, (8.1)

uy,B = uy(x + dx, y) = uy(x, y)+ ∂uy

∂x
dx + ∂uy

∂y
dy, (8.2)

or alternatively

ux,D = ux (x, y + dy) = ux (x, y)+ ∂ux

∂x
dx + ∂ux

∂y
dy, (8.3)

uy,D = uy(x, y + dy) = uy(x, y)+ ∂uy

∂x
dx + ∂uy

∂y
dy. (8.4)

In Eqs. (8.1) up to (8.4) ux (x, y) and uy(x, y) represent the so-called rigid-body
displacement, which does not cause a deformation. If one considers that point B has

1 For a function f (x, y) of two variables usually a TAYLOR’s series expansion of first order is
assessed around the point (x0, y0) as follows: f (x, y) = f (x0 + dx, y0 + dx) ≈ f (x0, y0) +(

∂ f
∂x

)
x0,y0

× (x − x0)+
(

∂ f
∂y

)
x0,y0

× (y − y0).
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the coordinates (x + dx, y) and D the coordinates (x, y + dy), the following results:

ux,B = ux (x, y)+ ∂ux

∂x
dx, (8.5)

uy,B = uy(x, y)+ ∂uy

∂x
dx, (8.6)

or alternatively

ux,D = ux (x, y)+ ∂ux

∂y
dy, (8.7)

uy,D = uy(x, y)+ ∂uy

∂y
dy. (8.8)

The total shear strain γxy of the deformed beam element A′ B ′C ′D′ results, according
to Fig. 8.1 from the sum of the angles α and β, which can be identified at the rectan-
gle, which is deformed as a rhombus. Under consideration of the two right-angled
triangles A′D∗ D′ and A′ B∗ B ′ these two angles can be expressed via

tan α =
∂uy

∂x
dx

dx + ∂ux

∂x
dx

and tan β =
∂ux

∂y
dy

dy + ∂uy

∂y
dy
. (8.9)

It holds approximately for small deformations that tan α ≈ α and tan β ≈ β or

alternatively ∂ux
∂x � 1 and ∂uy

∂y � 1, so that the following expression results for the
shear strain:

γxy = ∂uy

∂x
+ ∂ux

∂y
. (8.10)

This total change of the angle is also called the engineering definition. In contrast

the expression εxy = 1
2 γxy = 1

2

(
∂uy
∂x + ∂ux

∂y

)
is enlisted as tensorial definition in the

literature. Due to the symmetry of the strain tensor, in general γi j = γ j i applies.
The algebraic sign of the shear strain needs to be explained in the following with the
help of Fig. 8.2 for the special case that only one shear force acts in parallel to the
y-axis. If a shear force acts in direction of the positive y-axis at the right-hand face—
hence a positive shear force distribution is assumed at this point—, according to
Fig. 8.2a under consideration of Eq. (8.10) a positive shear strain results. Accordingly,
a negative shear force distribution, according to Fig. 8.2b leads to a negative shear
strain.
It has already been mentioned in Chap. 5 that the shear stress distribution is alterable
through the cross-section. As an example, the parabolic shear stress distribution was
illustrated through a rectangular cross-section in Fig. 5.2. Via Hooke’s law for a
one-dimensional shear stress state (for this see Sect. 4.1), it can be derived that the

http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_4
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(a) (b)

Fig. 8.2 Definition of a a positive and b negative shear strain in the x–y plane

shear stress has to exhibit a corresponding parabolic course. From the shear stress
distribution in the cross-sectional area at the location x of the beam2 generally through
integration, meaning

Qy =
∫
A

τxy(y, z)dA, (8.11)

the acting shear force results. To simplify it is however assumed for the Timoshenko
beam that an equivalent constant shear stress and strain act:

τxy(y, z) → τxy . (8.12)

This constant shear stress results from the shear force, which acts in an equivalent
cross-sectional area, the so-called shear area As:

τxy = Qy

As
, (8.13)

whereupon the relation between the shear area As and the actual cross-sectional area
A is referred to as the shear correction factor ks:

ks = As

A
. (8.14)

For the calculation of the shear correction factor different assumptions can be made
[3]. As an example, it can be demanded [4] that the elastic strain energy of the equiv-
alent shear stress has to be identical with the energy, which results from the acting

2 A closer analysis of the shear stress distribution in the cross-sectional area shows that the shear
stress does not just alter through the height of the beam but also through the width of the beam.
If the width of the beam is small compared to the height, only a small change along the width
occurs and one can assume in the first approximation a constant shear stress throughout the width:
τxy(y, z) → τxy(y). See for example [1, 2].
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Table 8.1 Characteristics of different cross-sections in the y−z plane

Cross-section Iz Iy A ks

πR4

4

πR4

4
πR2 9

10

πR3t πR3t 2πRt 0.5

bh3

12

hb3

12
hb

5

6

h2

6
(htw + 3btf)

b2

6
(btf + 3htw) 2(btf + htw)

2htw
A

h2

12
(htw + 6btf)

b3tf
6

htw + 2btf
htw
A

Iz and Iy axial second moment of area; A cross-sectional area; ks shear correction factor. Adapted
from [5]

shear stress distribution in the actual cross-sectional-area. Different characteristics
of simple geometric cross-sections — including the shear correction factor3 — are
composed in Table 8.1 [5, 6]. Further details regarding the shear correction factor for
arbitrary cross-sections can be taken from [7].
Of course the equivalent constant shear stress can alter along the center line of
the beam, in case the shear force along the center line of the beam changes. The

3 One notes that in the English literature often the so-called form factor for shear is stated. This
results as the reciprocal of the shear correction factor.
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attribute ‘constant’ thus just refers to the cross-sectional area at the location x and
the equivalent constant shear stress is therefore in general a function of the coordinate
of length for the Timoshenko beam:

τxy = τxy(x). (8.15)

8.2 Basic Description of the Beam with Shear Contribution

The so-called Timoshenko beam can be generated by superposing a shear deforma-
tion on a Bernoulli beam according to Fig. 8.3.
One can see that the Bernoulli hypothesis is partly no longer fulfilled at the Timo-
shenko beam: plane cross-sections also remain plane after the deformation, however
a cross-section, which stood at the right angle on the beam axis before the deforma-
tion is not at a right angle on the beam axis any longer after the deformation. If the
demand for planeness of the cross-sections is also given up, one reaches theories of
third-order [8–10], at which a parabolic course of the shear strain and stress in the
displacement field are considered, see Fig. 8.4. Therefore a shear correction factor is
unnecessary for these theories of third-order.

8.2.1 Kinematics

According to the alternative derivation in Sect. 5.2.1, the kinematic relation can also
be derived for the beam with shear action, by considering the angle φz instead of
the angle ϕz , see Fig. 8.3c. Following an equivalent procedure as in Sect. 5.2.1, the
following relationships are obtained:

sin φz = ux

y
≈ φz or ux = −yφz, (8.16)

wherefrom, via the general relation for the strain, meaning εx = dux/dx , the kine-
matic relation results through differentiation:

εx = −y
dφz

dx
. (8.17)

Note that φz → ϕz = duy

dx
results from neglecting of shear deformation and the

relation according to Eq. (5.15) results as a special case. Furthermore, the following
connection between the angles can be derived from Fig. 8.3c

φz = duy

dx
− γxy, (8.18)

http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_5
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Fig. 8.3 Superposition of the Bernoulli beam a and the shear deformation b to the Timoshenko
beam c in the x–y plane. The marked orientations of the angles equal the positive definitions
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Fig. 8.4 Deformation of
originally plane cross-sections
at the Timoshenko beam
(left) and at the theory of
third-order (right) [11]

which complements the set of the kinematic relations. It needs to be remarked that at
this point the so-called bending line was considered and therefore the displacement
field uy is just a function of one variable: uy = uy(x).

8.2.2 Equilibrium

The derivation of the equilibrium condition for the Timoshenko beam is identical
with the derivation for the Bernoulli beam according to Sect. 5.2.2:

dQy(x)

dx
= −qy(x), (8.19)

dMz(x)

dx
= −Qy(x). (8.20)

8.2.3 Constitutive Equation

For the consideration of the constitutive relation Hooke’s law for a one-dimensional
normal stress state and for a shear stress state is used:

σx = Eεx , (8.21)

τxy = Gγxy, (8.22)

whereupon the shear modulus G can be calculated through the elasticity modulus E
and the Poisson’s ratio ν via

G = E

2(1 + ν)
. (8.23)

According to the equilibrium of Fig. 5.8 and Eq. (5.29) the connection between the
internal moment and the bending stress can be used for the Timoshenko beam as
follows:

dMz = (+y)(−σx )dA, (8.24)

http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_5
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or alternatively after integration under the use of the constitutive Eq. (8.21) and the
kinematic relation (8.17):

Mz(x) = EIz
dφz(x)

dx
. (8.25)

The connection between shear force and cross-section rotation results via the equi-
librium relation (8.20) in:

Qy(x) = −dMz(x)

dx
= −EIz

d2φz(x)

dx2 . (8.26)

Before passing over to the differential equations of the bending line, the basic equa-
tions for the Timoshenko beam are summarized in Table 8.2. Note that the normal
stress and strain are functions of both coordinates of space x and y, however the shear
stress and strain is only dependent on x , since an equivalent constant shear stress
has been introduced via the cross-section as an approximation of the Timoshenko
beam approach.

Table 8.2 Elementary basic equations for the bending beam with shear contribution at the defor-
mation in the x–y plane

Description Equation

Kinematics εx (x, y) = −y
dφz(x)

dx
and φz(x) = duy(x)

dx
− γxy(x)

Equilibrium
dQy(x)

dx
= −qy(x) ;

dMz(x)

dx
= −Qy(x)

Constitutive Equation σx (x, y) = Eεx (x, y) and τxy(x) = Gγxy(x)

8.2.4 Differential Equation of the Bending Line

Within the previous section the relation between the internal moment and the
cross-section rotation was derived for the normal stress with the help of Hooke’s
law. Differentiation of this relation according to Eq. (8.25) leads to the following
connection

dMz

dx
= d

dx

(
EIz

dφz

dx

)
, (8.27)

which can be transformed with the help of the equilibrium relation (8.20) and the
relation for the shear stress according to (8.13) and (8.14) to
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d

dx

(
EIz

dφz

dx

)
= −ksGAγxy . (8.28)

If the kinematic relation (8.18) is considered in the last equation, the so-called bending
differential equation results in:

d

dx

(
EIz

dφz

dx

)
+ ksG A

(
duy

dx
− φz

)
= 0. (8.29)

If now for the shear stress according to (8.22) the relation for the shear stress according
to (8.13) and (8.14) is considered in Hooke’s law, one obtains

Qy = ks AGγxy . (8.30)

Via the equilibrium relation (8.20) and the kinematic relation (8.18) the following
results herefrom:

dMz

dx
= −ks AG

(
duy

dx
− φz

)
. (8.31)

After differentiation and the consideration of the equilibrium relation according to
(8.19) and (8.20) finally the so-called shear differential equation results in:

d

dx

[
ks AG

(
duy

dx
− φz

)]
= −qy(x). (8.32)

Therefore the shear flexible Timoshenko beam will be described through the fol-
lowing two coupled differential equations of second order:

d

dx

(
EIz

dφz

dx

)
+ ks AG

(
duy

dx
− φz

)
= 0, (8.33)

d

dx

[
ks AG

(
duy

dx
− φz

)]
= −qy(x). (8.34)

This system contains two unknown functions, namely the deflection uy(x) and the
cross-sectional rotation φz(x). Boundary conditions can be formulated for both func-
tions to be able to solve the system of differential equations.

8.2.5 Analytical Solutions

For the definition of analytical solutions, the system of coupled differential equations
according to (8.33) and (8.34) has to be solved. Through the use of a computer algebra
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system (CAS) for the symbolic calculation of mathematical expressions,4 the general
solution of the system results in:

uy(x) = 1

EIz

(
qy(x)x4

24
+ c1

x3

6
+ c2

x2

2
+ c3x + c4

)
, (8.35)

φz(x) = 1

EIz

(
qy(x)x3

6
+ c1

x2

2
+ c2x + c3

)
+ qy(x)x

ks AG
+ c1

ks AG
. (8.36)

The constants of integration c1, . . . , c4 are to be defined through appropriate bound-
ary conditions to calculate the special solution of a concrete problem, meaning under
consideration of the support and the load of the beam.

Fig. 8.5 For the calculation
of the analytical solution of
a Timoshenko beam under
distributed line load

As an example, the beam, which is illustrated in Fig. 8.5, needs to be considered
in the following. The loading occurs due to a distributed load qy and the boundary
conditions are given as follows for this example:

uy(x = 0) = 0, φz(x = 0) = 0, (8.37)

Mz(x = 0) = qy L2

2
, Mz(x = L) = 0. (8.38)

The application of the boundary condition (8.37)1 in the general analytical solution
for the deflection according to Eq. (8.35) immediately yields c4 = 0. With the second
boundary condition in Eq. (8.37) the relation c3 = −c1

EIz
ks AG results with the general

analytical solution for the rotation according to Eq. (8.36). The further definition of
the constants of integration demands that the bending moment is expressed with the
help of the deformation. Via Eq. (8.25) the moment distribution results in

Mz(x) = EIz
dφz

dx
=
(

c1x + c2 + 3qy x2

6

)
+ qyEIz

ks AG
, (8.39)

and the consideration of boundary conditions (8.38)1 yields c2 = qy L2

2 − qyEIz
ks AG .

Accordingly, consideration of the second boundary condition in Eq. (8.38) yields the

4 Maple®, Mathematica®and Matlab® can be listed at this point as commercial examples.
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first constant of integration to c1 = −qy L and finally c3 = qy LEIz
ks AG . Therefore the

deflection distribution results in

uy(x) = 1

EIz

(
qy x4

24
− qy L

x3

6
+
[

qy L2

2
− qyEIz

ks AG

]
x2

2
+ qy LEIz

ks AG
x

)
, (8.40)

or alternatively the maximal deflection on the right-hand end of the beam, meaning
for x = L , to:

uy(x = L) = qy L4

8EIz
+ qy L2

2ks AG
. (8.41)

Further analytical equations for the maximal deflection of a Timoshenko beam
are summarized in Table 8.3. Through comparison with the analytical solutions in
Sect. 5.2.5 it becomes obvious that the analytical solutions for the maximal deflection
compose additively from the classical solution for the Bernoulli beam and an
additional shear part.

Table 8.3 Maximal deflection of Timoshenko beams at simple load cases for bending in the x-y
plane

Load Maximal deflection

uy,max = uy(L) = F L3

3EIz
+ F L

ks AG

uy,max = uy(L) = qy L4

8EIz
+ qy L2

2ks AG

uy,max = uy

(
L

2

)
= F L3

48EIz
+ F L

4ks AG

To highlight the influence of the shear part the maximal deflection needs to be pre-
sented in the following over the relation of beam height to beam length. As an
example three different loading and support cases for a rectangular cross-section
with the width b and the height h are presented in Fig. 8.6. It becomes obvious that
the difference between the Bernoulli and the Timoshenko beam becomes smaller
and smaller for a decreasing slenderness ratio, meaning for beams at which the length
L is significantly bigger compared to the height h.
The relative difference between the Bernoulli and the Timoshenko solution
results, for example for a Poisson’s ratio of 0.3 and a slenderness ratio of 0.1 —

http://dx.doi.org/10.1007/978-3-642-31797-2_5
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(b)

(c)

(a)

Fig. 8.6 Comparison of the analytical solutions for the Bernoulli and Timoshenko beam for
different boundary conditions
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meaning for a beam, at which the length is ten times bigger than the height — depend-
ing on the support and load in: 0.77 % for the cantilever with point load, 1.03 % for
the cantilever with distributed load and 11.10 % for the simply supported beam. Fur-
ther analytical solutions for the Timoshenko beam can be withdrawn for example
from [12].
Conclusively it needs to be pointed out at this point that for considerations in the
x − z plane slightly modified equations occur compared to Table 8.2. The corre-
sponding equations for bending in the x–z plane with shear part are summarized in
Table 8.4.

Table 8.4 Elementary basic equations for the bending beam with shear contribution at deformations
in the x − z plane

Notation Equation

Kinematics εx (x, z) = −z
dφy(x)

dx
and φy(x) = −duz(x)

dx
+ γxz(x)

Equilibrium
dQz(x)

dx
= −qz(x) ;

dMy(x)

dx
= +Qz(x)

Constitutive Equation σx (x, z) = Eεx (x, z) and τxz(x) = Gγxz(x)

Differential Equation − d

dx

(
EI y

dφy

dx

)
+ ks AG

(
duz

dx
+ φy

)
= 0

d

dx

[
ks AG

(
duz

dx
+ φy

)]
= −qz(x)

8.3 The Finite Element of Plane Bending Beams with Shear
Contribution

According to Sect. 5.3 the bending element is defined as a prismatic body with the
center line x and the y-axis orthogonally to the center line. Also at this point nodes,
at which displacements and rotations or alternatively forces and moments, as drafted
in Fig. 8.7, are defined, will be introduced at both ends of the bending element. The
deformation and load parameters are as positive in the drafted direction.
The two unknowns, meaning the deflection uy(x) and the herefrom independent
cross-sectional rotation φz(x) will be approximated with the help of the following
nodal approach:

uy(x) = N1u(x)u1y + N2u(x)u2y, (8.42)

φz(x) = N1φ(x)φ1z + N2φ(x)φ2z, (8.43)

or alternatively in matrix notation as

http://dx.doi.org/10.1007/978-3-642-31797-2_5
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Fig. 8.7 Definition of the
positive direction for the
bending element with shear
contribution at deformation in
the x–y plane: a deformation
parameters; b load parameters

(b)

(a)

uy(x) = [
N1u(x) 0 N2u(x) 0

]
⎡
⎢⎢⎢⎣

u1y

φ1z

u2y

φ2z

⎤
⎥⎥⎥⎦ = Nu up, (8.44)

φz(x) = [
0 N1φ 0 N2φ(x)

]
⎡
⎢⎢⎢⎣

u1y

φ1z

u2y

φ2z

⎤
⎥⎥⎥⎦ = Nφup. (8.45)

With these relations the derivative of the cross-sectional rotation in the coupled
differential equations (8.33) and (8.34) results in

dφz(x)

dx
= dN1φ(x)

dx
φ1z + dN2φ(x)

dx
φ2z = dNφ

dx
up. (8.46)

8.3.1 Derivation Through Potential

The elastic strain energy for a Timoshenko beam at linear elastic material behavior
results in:
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Πint = 1

2

∫
Ω

εTσdΩ = 1

2

∫
Ω

[
εx γxy

] [σx

τxy

]
dΩ (8.47)

= 1

2

∫
Ω

εxσx dΩ + 1

2

∫
Ω

γxyτxydΩ = Πint,b +Πint,s. (8.48)

The bending and shear part of the elastic strain energy will be regarded separately in
the following and subsequently be superposed.
The bending part of the elastic strain energy results through Hooke’s law according
to Eq. (8.21) in:

Πint,b = 1

2

∫
Ω

εxσx dΩ = 1

2

∫
Ω

εx Eεx dΩ. (8.49)

The kinematic relation (8.17) can be written as follows via Eq. (8.46)

εx = −y
dφ

dx
= −y

(
dN1φ(x)

dx
φ1z + dN2φ(x)

dx
φ2z

)
(8.50)

= −y

[
0

dN1φ(x)

dx
0

dN2φ(x)

dx

]
⎡
⎢⎢⎣

u1y

φ1z

u2y

φ2z

⎤
⎥⎥⎦ = Bbup (8.51)

whereupon a generalized Bb matrix as

Bb = −y
dNφ

dx
(8.52)

has been introduced. With this result therefore the bending part of the elastic strain
energy according to Eq. (8.49) results in:

Πint,b = 1

2

∫
Ω

(
Bbup

)T
E
(
Bbup

)
dΩ = 1

2

∫
Ω

uT
p BT

b E BbupdΩ

= 1

2
uT

p

⎡
⎣∫
Ω

BT
b E BbdΩ

⎤
⎦ up = 1

2
uT

p

⎡
⎣∫
Ω

(−y)
dNT

φ

dx
E(−y)

dNφ

dx
dΩ

⎤
⎦ up

= 1

2
uT

p

[ L∫
0

⎛
⎝∫

A

y2dA

⎞
⎠

︸ ︷︷ ︸
Iz

E
dNT

φ

dx

dNφ

dx
dx

]
up.



8.3 The Finite Element of Plane Bending Beams with Shear Contribution 171

= 1

2
uT

p

[ L∫
0

EIz
dNT

φ

dx

dNφ

dx
dx

]

︸ ︷︷ ︸
ke

b

up. (8.53)

The element stiffness matrix was identified in the last equation with the help of
the general formulation of the strain energy according to Eq. (5.95). Herefrom the
element stiffness matrix for constant bending stiffness EIz in components results in:

ke
b = EIz

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
dN1φ

dx

dN1φ

dx
0

dN1φ

dx

dN2φ

dx

0 0 0 0

0
dN2φ

dx

dN1φ

dx
0

dN2φ

dx

dN2φ

dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx . (8.54)

A further evaluation of Eq. (8.54) demands the introduction of the shape
functions Ni .
The shear part of the elastic strain energy results in the following with the help of
Eqs. (8.11) up to (8.14):

Πint,s = 1

2

∫
Ω

γxyτxydΩ = 1

2

L∫
0

γxy(x, y)

⎛
⎝∫

A

τxy(x, y)dA

⎞
⎠ dx (8.55)

= 1

2

L∫
0

γxyksG Aγxydx . (8.56)

Via Eqs. (8.42) and (8.43) the kinematic relation can be written as follows

γxy = duy

dx
− φ = dN1u

dx
u1y + dN2u

dx
u2y − N1φφ1z − N2φφ2z (8.57)

=
[

dN1u

dx
−N1φ

dN2u

dx
−N2φ

]⎡⎢⎢⎣
u1y

φ1z

u2y

φ2z

⎤
⎥⎥⎦ = Bsup, (8.58)

whereupon at this point a generalized Bs matrix for the shear part has been introduced.
With this result the shear part of the elastic strain energy according to Eq. (8.55)
therefore results in:

http://dx.doi.org/10.1007/978-3-642-31797-2_5
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Πint,s = 1

2

L∫
0

(
Bsup

)T
ksG A

(
Bsup

)
dx (8.59)

= 1

2
uT

p

[ L∫
0

ksG ABT
s Bsdx

]

︸ ︷︷ ︸
ke

s

up. (8.60)

The element stiffness matrix for constant shear stiffness GA results herefrom in
components to:

ke
s =ksG A

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1u

dx

dN1u

dx

dN1u

dx
(−N1φ)

dN1u

dx

dN2u

dx

dN1u

dx
(−N2φ)

(−N1φ)
dN1u

dx
(−N1φ)(−N1φ) (−N1φ)

dN2u

dx
(−N1φ)(−N2φ)

dN2u

dx

dN1u

dx

dN2u

dx
(−N1φ)

dN2u

dx

dN2u

dx

dN2u

dx
(−N2φ)

(−N2φ)
dN1u

dx
(−N2φ)(−N1φ) (−N2φ)

dN2u

dx
(−N2φ)(−N2φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx .

(8.61)

The two expressions for the bending and shear parts of the element stiffness matrix
according to Eqs. (8.54) and (8.61) can be superposed for the principal finite element
equation of the Timoshenko beam on the element level

keup = Fe, (8.62)

whereupon the total stiffness matrix according to Eq. (8.63) is given.
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣k s
G

A
∫ L 0

d
N

1u

dx

d
N

1u

dx
dx

k s
G

A
∫ L 0
(−

N
1φ
)

d
N

1u

dx
dx

k s
G

A
∫ L 0

d
N

2u

dx

d
N

1u

dx
dx

k s
G

A
∫ L 0
(−

N
2φ
)

d
N

1u

dx
dx

k s
G

A
∫ L 0

d
N

1u

dx
(−

N
1φ
)

dx

k s
G

A
∫ L 0
(−

N
1φ
)(

−N
1φ
)

dx

+
E

I z
∫ L 0

d
N

1φ

dx

d
N

1φ

dx
dx

k s
G

A
∫ L 0

d
N

2u

dx
(−

N
1φ
)

dx

k s
G

A
∫ L 0
(−

N
2φ
)(

−N
1φ
)

dx

+
E

I z
∫ L 0

d
N

1φ

dx

d
N

2φ

dx
dx

k s
G

A
∫ L 0

d
N

1u

dx

d
N

2u

dx
dx

k s
G

A
∫ L 0
(−

N
1φ
)

d
N

2u

dx
dx

k s
G

A
∫ L 0

d
N

2u

dx

d
N

2u

dx
dx

k s
G

A
∫ L 0
(−

N
2φ
)

d
N

2u

dx
dx

k s
G

A
∫ L 0

d
N

1u

dx
(−

N
2φ
)

dx

k s
G

A
∫ L 0
(−

N
1φ
)(

−N
2φ
)

dx

+
E

I z
∫ L 0

d
N

2φ

dx

d
N

1φ

dx
dx

k s
G

A
∫ L 0

d
N

2u

dx
(−

N
2φ
)

dx

k s
G

A
∫ L 0
(−

N
2φ
)(

−N
2φ
)

dx

+
E

I z
∫ L 0

d
N

2φ

dx

d
N

2φ

dx
dx

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
︸

︷︷
︸

ke

(8
.6

3)
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8.3.2 Derivation Through the Castigliano’s Theorem

The elastic strain energy for a Timoshenko beam according to Eq. (8.48) results via
Hooke’s law (8.21) and the kinematic relation (8.17) or alternatively via the equation
for the equivalent shear stress according to (8.11) up to (8.14) in:

Πint = 1

2

∫
Ω

εxσx dΩ + 1

2

∫
Ω

γxy(x, y) τxy(x, y)dΩ

= 1

2

∫
Ω

Eε2
x dΩ + 1

2

L∫
0

γxy(x, y)

⎛
⎝∫

A

τxy(x, y)dA

⎞
⎠ dx

= 1

2

∫
Ω

E

(
dφ

dx

)2

y2dΩ + 1

2

L∫
0

γxy Qydx

= 1

2

L∫
0

E

(
dφ

dx

)2
⎛
⎝∫

A

y2dA

⎞
⎠ dx + 1

2

L∫
0

γxyτxyks Adx

= 1

2

L∫
0

EIz

(
dφ

dx

)2

dx + 1

2

L∫
0

ksG Aγ2
xydx . (8.64)

Herefrom the elastic strain energy for a Timoshenko beam with constant bending
and shear stiffness results, via the approaches for the derivation of the cross-sectional
rotation φz(x) according to Eq. (8.46) and the shear strain (8.57), in:

Πint = 1

2
EIz

L∫
0

(
dN1φ(x)

dx
φ1z + dN2φ(x)

dx
φ2z

)2

dx

+ 1

2
ksG A

L∫
0

(
dN1u

dx
u1y + dN2u

dx
u2y − N1φφ1z − N2φφ2z

)2

dx . (8.65)

Application of Castigliano’s theorem on the strain energy in regards to the nodal
displacement u1y yields the external force F1y on node 1:

dΠint

du1y
= F1y = ksG A

L∫
0

(
dN1u

dx
u1y + dN2u

dx
u2y − N1φφ1z − N2φφ2z

)
dN1u

dx
dx .

(8.66)
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Accordingly the following results from the differentiation according to other defor-
mation parameters on the nodes:

dΠint

dφ1z
= M1z = EIz

L∫
0

(
dN1φ(x)

dx
φ1z + dN2φ(x)

dx
φ2z

)
dN1φ(x)

dx
dx

+ ksG A

L∫
0

(
dN1u

dx
u1y + dN2u

dx
u2y − N1φφ1z − N2φφ2z

)
(−N1φ)dx .

(8.67)

dΠint

du2y
= F2y = ksG A

L∫
0

(
dN1u

dx
u1y + dN2u

dx
u2y − N1φφ1z − N2φφ2z

)
dN2u

dx
dx .

(8.68)

dΠint

dφ2z
= M2z = EIz

L∫
0

(
dN1φ(x)

dx
φ1z + dN2φ(x)

dx
φ2z

)
dN2φ(x)

dx
dx

+ ksG A

L∫
0

(
dN1u

dx
u1y + dN2u

dx
u2y − N1φφ1z − N2φφ2z

)
(−N2φ)dx .

(8.69)

The last four equations can be summarized as the principal finite element equation
in matrix form, see Eqs. (8.62) and (8.63).

8.3.3 Derivation Through the Weighted Residual Method

According to the procedure in Sect. 5.3.2 one introduces approximate solutions into
the differential equations (8.33) and (8.34) and demands that equations have to be
fulfilled over a certain domain.
In the following first of all the shear differential equation is considered, which is
multiplied with a deflection weighting function Wu(x) to attain the following inner
product:

L∫
0

{
ks AG

(
d2uy

dx2 − dφz

dx

)
+ qy(x)

}
Wu(x)dx

!= 0. (8.70)

Partial integration of both expressions in the round brackets yields:

http://dx.doi.org/10.1007/978-3-642-31797-2_5
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L∫
0

ks AG
d2uy

dx2 Wudx =
[

ks AG
duy

dx
Wu

]L

0
−

L∫
0

ks AG
duy

dx

dWu

dx
dx, (8.71)

−
L∫

0

ks AG
dφz

dx
Wudx = − [

ks AGφz Wu
]L

0 +
L∫

0

ks AGφz
dWu

dx
dx . (8.72)

Next, the bending differential equation (8.33) is multiplied with a rotation weighting
function Wφ(x) and is transformed in the inner product:

L∫
0

{
d

dx

(
EIz

dφz

dx

)
+ ks AG

(
duy

dx
− φz

)}
Wφ(x)dx

!= 0 (8.73)

Partial integration of the first expression yields

L∫
0

EIz
d2φz

dx2 Wφdx =
[

EIz
dφz

dx
Wφ

]L

0
−

L∫
0

EIz
dφz

dx

dWφ

dx
dx (8.74)

and the bending differential equations results in:

[
EIz

dφz

dx
Wφ

]L

0
−

L∫
0

EIz
dφz

dx

dWφ

dx
dx +

L∫
0

ks AG

(
duy

dx
− φz

)
Wφ(x)dx = 0.

(8.75)
Adding of the two converted differential equations yields

[
ks AG

duy

dx
Wu

]L

0
−

L∫
0

ks AG
duy

dx

dWu

dx
dx − [

ks AGφz Wu
]L

0

+
L∫

0

ks AGφz
dWu

dx
dx +

L∫
0

qy Wudx +
L∫

0

ks AG

(
duy

dx
− φz

)
Wφ(x)dx

−
L∫

0

EIz
dφz

dx

dWφ

dx
dx +

[
EIz

dφz

dx
Wφ

]L

0
= 0, (8.76)

or alternatively after a short conversion the weak form of the shear flexible bending
beam:
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L∫
0

EIz
dφz

dx

dWφ

dx
dx +

L∫
0

ks AG

(
duy

dx
− φz

)
︸ ︷︷ ︸

γxy

(
dWu

dx
− Wφ

)
︸ ︷︷ ︸

δγxy

dx

=
L∫

0

qy Wudx +
[

ks AG

(
duy

dx
− φz

)
Wu

]L

0

+
[

EIz
dφz

dx
Wφ

]L

0

. (8.77)

One can see that the first part of the left-hand half represents the bending part and
the second half the shear part. The right-hand side results from the external loads of
the beam. In the following, first of all the left-hand half of the weak form will be
considered to derive the stiffness matrix:

L∫
0

EIz
dφz

dx

dWφ

dx
dx +

L∫
0

ks AG

(
dWu

dx
− Wφ

)(
duy

dx
− φz

)
dx . (8.78)

In the next step the approaches for the deflection and rotation of the nodes or alter-
natively their derivatives according to Eqs. (8.44) and (8.45), meaning

uy(x) = Nu(x)up,
duy(x)

dx
= dNu(x)

dx
up, (8.79)

φz(x) = Nφ(x)up,
dφz(x)

dx
= dNφ(x)

dx
up, (8.80)

have to be considered. The approaches for the weighting functions are chosen anal-
ogous to the approaches for the unknowns:

Wu(x) = δuT
p NT

u (x), (8.81)

Wφ(x) = δuT
p NT

φ(x), (8.82)

or alternatively for the derivatives:

Wu(x)

dx
= δuT

p
NT

u (x)

dx
, (8.83)

Wφ(x)

dx
= δuT

p

NT
φ(x)

dx
. (8.84)

Therefore the left-hand half of Eq. (8.78) — under consideration that the rotation
or alternatively the virtual rotation can be considered as constant respective to the
integration — results in:
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δuT
p

L∫
0

EIz
dNT

φ

dx

dNφ

dx
dx up

+ δuT
p

L∫
0

ks AG

(
dNT

u

dx
− NT

φ

)(
dNu

dx
− Nφ

)
dx up. (8.85)

In the following, it remains to be seen that the virtual deformations δuT can be can-
celed with a corresponding expression on the right-hand side of Eq. (8.77). Therefore,
on the left-hand side there remains

L∫
0

EIz
dNT

φ

dx

dNφ

dx
dx

︸ ︷︷ ︸
ke

b

up +
L∫

0

ks AG

(
dNT

u

dx
− NT

φ

)(
dNu

dx
− Nφ

)
dx

︸ ︷︷ ︸
ke

s

up (8.86)

and the bending or alternatively the shear stiffness matrix can be identified, see
Eqs. (8.54) and (8.61).
Finally, the right-hand side of the weak form according to Eq. (8.77) is considered:

L∫
0

qy Wudx +
[

ks AG

(
duy

dx
− φz

)
Wu

]L

0

+
[

EIz
dφz

dx
Wφ

]L

0

. (8.87)

Consideration of the relations for the shear force and the internal moment according
to Eqs. (8.30) and (8.25) in the right-hand side of the weak form yields

L∫
0

qy Wudx + [
Qy(x)Wu(x)

]L
0 + [

Mz(x)Wφ(x)
]L

0 , (8.88)

or alternatively after the introduction of the approaches for the deflection and rotation
of the nodes according to Eqs. (8.44) and (8.45):

δuT
p

L∫
0

qy NT
u dx + δuT

p

[
Qy(x)NT

u (x)
]L

0
+ δuT

p

[
Mz(x)NT

φ(x)
]L

0
. (8.89)

δuT
p can be canceled with the corresponding expression in Eq. (8.85) and the follow-

ing remains
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L∫
0

qy NT
u dx +

[
Qy(x)NT

u (x)
]L

0
+
[

Mz(x)NT
φ(x)

]L

0
, (8.90)

or alternatively in components:

L∫
0

qy(x)

⎡
⎢⎢⎣

N1u

0
N2u

0

⎤
⎥⎥⎦ dx +

⎡
⎢⎢⎣

−Qy(0)
0
+Qy(L)

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
−Mz(0)
0
+Mz(L)

⎤
⎥⎥⎦ . (8.91)

One notes that the general characteristics of the shape function have been used during
the evaluation of the boundary integrals:

1st row : Qy(L) N1u(L)︸ ︷︷ ︸
0

−Qy(0) N1u(0)︸ ︷︷ ︸
1

, (8.92)

2nd row : Mz(L) N1φ(L)︸ ︷︷ ︸
0

−Mz(0) N1φ(0)︸ ︷︷ ︸
1

, (8.93)

3rd row : Qy(L) N2u(L)︸ ︷︷ ︸
1

−Qy(0) N2u(0)︸ ︷︷ ︸
0

, (8.94)

4th row : Mz(L) N2φ(L)︸ ︷︷ ︸
1

−Mz(0) N2φ(0)︸ ︷︷ ︸
0

. (8.95)

8.3.4 Linear Shape Functions for the Deflection
and Displacement Field

Only the first order derivatives of the shape functions appear in the element stiff-
ness matrices ke

b and ke
s according to Eqs. (8.54) and (8.61). This demand on the

differentiability of the shape functions leads to polynomials of minimum first order
(linear functions) for the deflection and displacement field, so that in the approaches
according to Eqs. (8.42) and (8.43) the following linear shape functions can be used:

N1u(x) = N1φ(x) = 1 − x

L
, (8.96)

N2u(x) = N2φ(x) = x

L
. (8.97)
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The necessary derivatives result in:

dN1u

dx
= dN1φ

dx
= − 1

L
, (8.98)

dN2u

dx
= dN2φ

dx
= 1

L
. (8.99)

A graphical illustration of the shape function is given in Fig. 8.8. Additionally the
shape functions in the natural coordinate ξ ∈ [−1, 1] are given. This formulation is
more beneficial for the numerical integration of the stiffness matrices.

(a)

(b)

Fig. 8.8 Linear shape functions N1 = N1u(x) = N1φ(x) and N2 = N2u(x) = N2φ(x) for the
Timoshenko element in a physical (x) and b natural coordinates (ξ)

The integrals of the element stiffness matrices ke
b and ke

s according to Eqs. (8.54) and
(8.61) need to be calculated analytically in the following. For the bending stiffness
matrix the following results, using the linear approaches for the shape functions:

ke
b = EIz

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
1

L2 0 − 1

L2

0 0 0 0

0 − 1

L2 0
1

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dx = EIz

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
x

L2 0 − x

L2

0 0 0 0

0 − x

L2 0
x

L2

⎤
⎥⎥⎥⎥⎥⎥⎦

L

0

, (8.100)

or alternatively under consideration of the integration boundaries:
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ke
b = EIz

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0
1

L
0 − 1

L
0 0 0 0

0 − 1

L
0

1

L

⎤
⎥⎥⎥⎥⎥⎦
. (8.101)

For the shear stiffness matrix the following results, using the linear approaches for
the shape functions:

ke
s = ks AG

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

L2

(
1 − x

L

) 1

L
− 1

L2

x

L2(
1 − x

L

) 1

L

(
1 − x

L

)2 −
(

1 − x

L

) 1

L

(
1 − x

L

) x

L
− 1

L2 −
(

1 − x

L

) 1

L

1

L2 − x

L2

x

L2

(
1 − x

L

) x

L
− x

L2

x2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx

(8.102)

= ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

L2

x(−2L + x)

2L2 − x

L2

x2

2L2

x(−2L + x)

2L2

(−L + x)3

3L2

x(−2L + x)

2L2

x2(2x − 3L)

6L2

− x

L2

x(−2L + x)

2L2

x

L2 − x2

2L2

x2

2L2

x2(2x − 3L)

6L2 − x2

2L2

x3

3L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L

0
(8.103)

and finally after considering the constants of integration:

ke
s = ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 1

L
+1

2
− 1

L
+1

2

+1

2
+ L

3
−1

2
+ L

6

− 1

L
−1

2
+ 1

L
−1

2

+1

2
+ L

6
−1

2
+ L

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.104)

The two stiffness matrices according to Eqs. (8.101) and (8.104) can be summarized
additively to the total stiffness matrix of the Timoshenko beam:
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ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ks AG

L

ks AG

2
−ks AG

L

ks AG

2
ks AG

2

ks AGL

3
+ EIz

L
−ks AG

2

ks AGL

6
− EIz

L
−ks AG

L
−ks AG

2

ks AG

L
−ks AG

2
ks AG

2

ks AGL

6
− EIz

L
−ks AG

2

ks AGL

3
+ EIz

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.105)

or alternatively via the abbreviation α = 4EIz
ks AG

ke = ks AG

4L

⎡
⎢⎢⎢⎢⎢⎣

4 2L −4 2L

2L
4

3
L2 + α −2L

4

6
L2 − α

−4 −2L 4 −2L

2L
4

6
L2 − α −2L

4

3
L2 + α

⎤
⎥⎥⎥⎥⎥⎦

(8.106)

or alternatively via the abbreviation Λ = EIz

ks AGL2

ke = EIz

6ΛL3

⎡
⎢⎢⎣

6 3L −6 3L
3L L2(2 + 6Λ) −3L L2(1 − 6Λ)
−6 −3L 6 −3L
3L L2(1 − 6Λ) −3L L2(2 + 6Λ)

⎤
⎥⎥⎦ . (8.107)

In the following, the deformation behavior of this analytically integrated5 Timo-
shenko element needs to be analyzed. For this, the configuration in Fig. 8.9 needs
to be considered for which a beam has a fixed support on the left-hand side and a
point load on the right-hand side. The displacement of the loading point has to be
analyzed.

Fig. 8.9 Analysis of a Timo-
shenko element under point
load

(a)
(b)

Through the stiffness matrix according to Eq. (8.106), the principal finite element
equation for a single element results in

5 A numerical Gauss integration with two integration points yields the same results as the exact
analytical integration.
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ks AG

4L

⎡
⎢⎢⎢⎢⎢⎣

4 2L −4 2L

2L
4

3
L2 + α −2L

4

6
L2 − α

−4 −2L 4 −2L

2L
4

6
L2 − α −2L

4

3
L2 + α

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u1y

φ1z

u2y

φ2z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
. . .

. . .

F
0

⎤
⎥⎥⎦ , (8.108)

or alternatively after considering the fixed support (u1y = 0,φ1z = 0) of the left-
hand side:

ks AG

4L

[
4 −2L

−2L
4

3
L2 + α

][
u2y

φ2z

]
=
[

F
0

]
. (8.109)

Solving this 2×2 system of equations for the unknown parameters on the right-hand
end yields:

[
u2y

φ2z

]
= 4L

ks AG
× 1

4

(
4

3
L2 + α

)
− (−2L)(−2L)

[ 4

3
L2 + α 2L

2L 4

][
F
0

]
,

(8.110)
or alternatively solved for the unknown displacement on the right-hand end:

u2y(L) = 12EIz + 4ks AGL2

12EIz + ks AGL2 ×
(

F L

ks AG

)
. (8.111)

Considering the rectangular cross-section, illustrated in Fig. 8.9, meaning A = hb
and ks = 5

6 and furthermore the relation for the shear modulus according to Eq. (8.23),
after a short calculation the displacement on the right-hand end results:

u2y(L) =
12(1 + ν)

(
h

L

)2

+ 20

60 + 25

(
L

h

)2 1

1 + ν

×
(

F L3

EIz

)
. (8.112)

For very compact beams, meaning h � L , L
h → 0 results and Eq. (8.112) converges

against the analytical solution.6 For very slender beams however, meaning h � L ,
a boundary value7 of 4F L

ks AG results from Eq. (8.111).
This boundary value only contains the shear part without bending and runs against
a wrong solution. This phenomenon is called shear locking. A graphical illustra-
tion of this behavior is given in Fig. 8.10 via the normalized deflection with the
Bernoulli solution. One can clearly see the different convergence behaviors for
different domains of the slenderness ratio, meaning for slender and compact beams.

6 For this see Fig. 8.6 and the supplementary problem 8.6.
7 One considers the definition of Iz and A in Eq. (8.111) and divides the fraction by h3.
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(a)

(b)

Fig. 8.10 Comparison of the analytical solution for a Timoshenko beam and the corresponding
discretization via one single finite element at analytical integration of the stiffness matrix

For the improvement of the convergence behavior, the literature suggests [13, 14] to
conduct the integration via numerical Gauss integration with only one integration
point. Therefore the arguments and the integration boundaries in the formulations
of the element stiffness matrices for ke

b and ke
s according to Eqs. (8.54) and (8.61)

have to be transformed into the natural coordinate −1 ≤ ξ ≤ 1. Furthermore the
shape functions need to be used according to Fig. 8.8. Via the transformation of
the derivative to the new coordinate, meaning dN

dx = dN
dξ

dξ
dx and the transformation of

the coordinate ξ = −1+2 x
L or alternatively dξ = 2

L dx , the bending stiffness matrix
results in:



8.3 The Finite Element of Plane Bending Beams with Shear Contribution 185

ke
b = EIz

L∫
0

4

L2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
dN1φ

dξ

dN1φ

dξ
0

dN1φ

dξ

dN2φ

dξ

0 0 0 0

0
dN2φ

dξ

dN1φ

dξ
0

dN2φ

dξ

dN2φ

dξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

L

2
dξ, (8.113)

ke
b = 2EIz

L

L∫
0

4

L2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
1

4
0 −1

4
0 0 0 0

0 −1

4
0

1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dξ = EIz

2L

1∑
i = 1

⎡
⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦× 2 (8.114)

and after all in the final formulation in:

ke
b = EIz

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
1

L
0 − 1

L

0 0 0 0

0 − 1

L
0

1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.115)

One can see that the same result for the bending stiffness matrix results as for the
analytical integration. In the case of the bending stiffness matrix therefore the Gauss
integration with just one integration point is accurate.
The following expression results for the shear stiffness matrix under the use of the
natural coordinate:

2ksG A

L

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1u

dξ

dN1u

dξ

L

2

dN1u

dξ
(−N1φ)

dN1u

dξ

dN2u

dξ

L

2

dN1u

dξ
(−N2φ)

L

2
(−N1φ)

dN1u

dξ

L2

4
(N1φ)(N1φ)

L

2
(−N1φ)

dN2u

dξ

L2

4
(N1φ)(N2φ)

dN2u

dξ

dN1u

dξ

L

2

dN2u

dξ
(−N1φ)

dN2u

dξ

dN2u

dξ

L

2

dN2u

dξ
(−N2φ)

L

2
(−N2φ)

dN1u

dξ

L2

4
(N2φ)(N1φ)

L

2
(−N2φ)

dN2u

dξ

L2

4
(N2φ)(N2φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dξ,

(8.116)
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or alternatively after the introduction of the shape functions

2ksG A

L

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

4

L

2

(
1

4
− x

4

)
−1

4

L

2

(
1

4
+ x

4

)

L

2

(
1

4
− x

4

)
L2

4

(
(−1 + x)2

4

)
L

2

(
−1

4
+ x

4

)
L2

4

(
1

4
− x2

4

)

−1

4

L

2

(
−1

4
+ x

4

)
1

4

L

2

(
−1

4
− x

4

)

L

2

(
1

4
+ x

4

)
L2

4

(
1

4
− x2

4

)
L

2

(
−1

4
− x

4

)
L2

4

(
(1 + x)2

4

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dξ

(8.117)
or after the transition to the numerical integration

2ksG A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

4

L

2

1

4
−1

4

L

2

1

4
L

2

1

4

L2

4

1

4

L

2

(
−1

4

)
L2

4

1

4

−1

4

L

2

(
−1

4

)
1

4

L

2

(
−1

4

)

L

2

1

4

L2

4

1

4

L

2

(
−1

4

)
L2

4

1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξi = 0

× 2 (8.118)

and after all in the final formulation in:

ke
s = ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

L

1

2
− 1

L

1

2
1

2

L

4
−1

2

L

4

− 1

L
−1

2

1

L
−1

2
1

2

L

4
−1

2

L

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.119)

The two stiffness matrices according to Eqs. (8.115) and (8.119) can be summa-
rized additively to the total stiffness matrix of the Timoshenko beam and with the
abbreviation α = 4EIz

ks AG the following results:

ke = ks AG

4L

⎡
⎢⎢⎣

4 2L −4 2L
2L L2 + α −2L L2 − α
−4 −2L 4 −2L
2L L2 − α −2L L2 + α

⎤
⎥⎥⎦ (8.120)
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or alternatively via the abbreviation Λ = EIz
ks AGL2 :

ke = EIz

6ΛL3

⎡
⎢⎢⎣

6 3L −6 3L
3L L2(1, 5 + 6Λ) −3L L2(1, 5 − 6Λ)
−6 −3L 6 −3L
3L L2(1, 5 − 6Λ) −3L L2(2 + 6Λ)

⎤
⎥⎥⎦ . (8.121)

With the help of this formulation for the stiffness matrix the example according to
Fig. 8.9 needs to be analyzed once again in the following to analyze the differences
to the analytical integration. Via the stiffness matrix according to Eq. (8.120), the
principal finite element equation for a single element under consideration of the
fixed support (u1y = 0,φ1z = 0) on the left-hand side results in:

ks AG

4L

[
4 −2L

−2L L2 + α

] [
u2y

φ2z

]
=
[

F
0

]
. (8.122)

Solving of this 2 × 2 system of equations for the unknown displacement on the
right-hand side yields:

u2y(L) =
(

1 + 4EIz

ks AGL2

)
× F L3

4EIz
. (8.123)

If the illustrated rectangular cross-section in Fig. 8.9 is considered at this point as
well, after a short calculation the displacement on the right-hand side, via A = hb,
ks = 5

6 and the relation for the shear modulus according to Eq. (8.23) results in:

u2y(L) =
(

1

4
+ 1

5
(1 + ν)

(
h

L

)2
)

×
(

F L3

EIz

)
. (8.124)

For very compact beams, meaning h � L , the solution converges against the analyt-
ical solution.8 For very slender beams however, meaning h � L , a boundary value
of F L3

4EIz
results from Eq. (8.124), whereupon the analytical solution yields a value

of F L3

3EIz
. However, the phenomenon of shear locking does not occur and therefore,

compared to the stiffness matrix based on the analytical integration, an improvement
of the element formulation has been achieved.
A graphical illustration of this behavior via the normalized deflection is given in
Fig. 8.11. One can clearly see the improved convergence behavior for small slender-
ness ratios. For big slenderness ratios the behavior remains according to the result
of the analytical integration, since both approaches converge against the analytical
solution.

8 For this see Fig. 8.6 and the supplementary problem 8.6.
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(a)

(b)

Fig. 8.11 Comparison of the analytical solution for a Timoshenko beam and the appropriate
discretization via one single finite element at numerical integration of the corresponding matrix
with the help of one integration point

When the differential equations according to (8.33) and (8.34) are considered, it
becomes obvious that the derivative duy

dx and the function φz itself are contained
there. If linear shape functions are used for uy and φz , the degree for polynomials

for duy
dx and φz is different. In the limiting case of slender beams however the relation

φ≈ duy
dx has to be fulfilled and the consistency of the polynomials for duy

dx and φz

is of importance. The linear approach for uy yields for duy
dx a constant function

and therefore also for φz a constant would be desirable. However, at this point it
needs to be considered that the demand for the differentiability of φz at least results
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in a linear function. The one-point integration9 in the case of the shear stiffness
matrix with the expressions NiφN jφ causes however that the linear approach for φz

is treated as a constant term, since two integration points would have to be used for an
exact integration. A one-point integration can at most integrate a polynomial of first
order exactly, meaning proportional to x1, and therefore the following point of view
results (NiφN jφ) ∼ x1. This however means that at most Niφ ∼ x0.5 or alternatively
N jφ ∼ x0.5 holds. Since the polynomial approach solely allows integer values for
the exponent of x , Niφ ∼ x0 or alternatively N jφ ∼ x0 results and the rotation needs
to be seen as a constant term. This is consistent with the demand that the shear strain
γxy = duy

dx − φz has to be constant in an element for constant bending stiffness EIz .
Therefore in this case shear locking does not occur.
As another option for the improvement of the convergence behavior of linear Timo-
shenko elements with numerical one-point integrations [13, 15] suggests to correct
the shear stiffness ks AG according to the analytical correct solution.10 To this the
elastic strain energy is regarded, which results from Eqs. (8.49) and (8.56) for the
energies and the kinematic relations (8.17) and (8.18) as follows:

Πint = 1

2

L∫
0

EIz

(
dφz(x)

dx

)2

dx + 1

2

L∫
0

ks AG

(
duy(x)

dx
− φz(x)

)2

dx . (8.125)

It is now demanded that the strain energy for the analytical solution and the finite
element solution under the use of the corrected shear stiffness (ks AG)∗ are identical.
The analytical solution11 for the problem in Fig. 8.9 results in

uy(x) = 1

EIz

(
−F

x3

6
+ F L

x2

2
+ EIz F

ks AG
x

)
, (8.126)

φz(x) = 1

EIz

(
−F

x2

2
+ F Lx

)
, (8.127)

and the elastic strain energy for the analytical solution therefore results in:

Πint = F2

2EIz

L∫
0

(L − x)2dx + F2(EIz)
2

2ks AG

L∫
0

dx = F2L3

6EIz
+ F2L

2ks AG
. (8.128)

Via Eq. (8.122) the finite element solution of the elastic strain energy results in:

9 The numerical integration according to the Gauss–Legendre method with n integration points
integrates a polynomial, which degree is at most 2n − 1, exactly.
10 MacNeal hereford uses the expression ‘residual bending flexibility’ [16, 17].
11 For this see the supplementary problem 8.5.
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Πint = EIz

2

L∫
0

(
F L

2EIz

)2

dx

+ (ks AG)∗

2

L∫
0

((
1 + 4EIz

(ks AG)∗L2

)
F L2

4EIz
− F Lx

2EIz

)2

dx . (8.129)

This integral has to be evaluated numerically with a one-point integration rule and
it is therefore necessary to introduce the natural coordinate via the transformation

x = L

2
(ξ + 1):

Πint = F2L3

8EIz

+ (ks AG)∗

2

L∫
0

((
1 + 4EIz

(ks AG)∗L2

)
F L2

4EIz
− F L

2EIz
(ξ + 1)

L

2

)2
L

2
dξ

= F2L3

8EIz
+ (ks AG)∗

2

(
4EIz

(ks AG)∗L2 × F L2

4EIz

)2
L

2
2 (8.130)

and finally

Πint = F2L3

8EIz
+ F2L

2(ks AG)∗
. (8.131)

Equalizing of the two energy expressions according to Eqs. (8.128) and (8.131) finally
yields the corrected shear stiffness:

(ks AG)∗ =
(

L2

12EIz
+ 1

ks AG

)−1

. (8.132)

By inserting these with the ‘residual bending flexibility’ L2

12EIz
corrected shear stiff-

ness into the finite element solution according to Eq. (8.123), the analytically exact
solution results. The same result is derived in [15], starting from the general —
meaning without considering a certain support of the beam — solution for the beam
deflection, and in [13] the derivation for the equality of the deflection on the load-
ing point according to the analytical and the corrected finite element solution takes
place. It is to be considered that the derived corrected shear stiffness is not just valid
for the cantilevered beam under point load, but yields the same value for arbitrary
support and load on the ends of the beam. However, the derivation of the corrected
shear stiffness for nonhomogeneous, anisotropic and non-linear materials appears
problematic [13].



8.3 The Finite Element of Plane Bending Beams with Shear Contribution 191

8.3.5 Higher-Order Shape Functions for the Beam with Shear
Contribution

Within the framework of this subsection, first a general approach for a Timoshenko
element with an arbitrary amount of nodes will be derived [14]. Furthermore the
number of nodes, at which the deflection and the rotation are evaluated, can be
different here. Therefore in the generalization of Eqs. (8.42) and (8.43) the following
approach for the unknowns on the nodes results:

uy(x) =
m∑

i = 1

Niu(x)uiy, (8.133)

φz(x) =
n∑

i = 1

Niφ(x)φi z, (8.134)

or alternatively in matrix notation as

uy(x) = [
N1u . . . Nmu 0 . . . 0

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1y
...

umy

φ1z
...

φnz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Nu up, (8.135)

φz(x) = [
0 . . . 0 N1φ . . . Nnφ

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1y
...

umy

φ1z
...

φnz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Nφup. (8.136)

With this generalized approach the deflection can be evaluated on m nodes and the
rotation on n nodes. For the shape functions Ni usually Lagrange polynomials12

are used, which in general are calculated as follows in the case of deflection:

12 At the so-called Lagrange interpolation, m points are approximated via the ordinate values with
the help of a polynomial of the order m − 1. In the case of the Hermite interpolation the slope of
the regarded points is considered in addition to the ordinate value. For this see Chap. 6.

http://dx.doi.org/10.1007/978-3-642-31797-2_6
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Ni =
m∏

j = 0∧ j �= i

x j − x

x j − xi

= (x1 − x)(x2 − x) · · · [xi − x] · · · (xm − x)

(x1 − xi )(x2 − xi ) · · · [xi − xi ] · · · (xm − xi )
, (8.137)

whereupon the expressions in the square brackets for the i th shape function remains
unconsidered. The abscissa values x1, . . . , xm represent the x-coordinates of the m
nodes. In the case of rotation the variable m has to be replaced by n in Eq. (8.137).
For the derivation of the general stiffness matrix we revert at this point to different
methods. If, for example, the weighted residual method is considered, one can use
the new approaches (8.135) and (8.136) in Eq. (8.86). Execution of the multiplication
for the bending stiffness matrix yields

ke
b =

L∫
0

EIz

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0
... (m × m)

...
... (m × n)

...

0 · · · 0 0 · · · 0

0 · · · 0
dN1φ

dx

dN1φ

dx
· · · dN1φ

dx

dNnφ

dx
... (n × m)

...
... (n × n)

...

0 · · · 0
dNnφ

dx

dN1φ

dx
· · · dNnφ

dx

dNnφ

dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx (8.138)

and accordingly the execution of the multiplication for the shear stiffness matrix ke
s

yields

L∫
0

ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1u

dx

dN1u

dx
· · · dN1u

dx

dNmu

dx

dN1u

dx
(−N1φ) · · · dN1u

dx
(−Nnφ)

... (m×m)
...

... (m×n)
...

dNmu

dx

dN1u

dx
· · · dNmu

dx

dNmu

dx

dNmu

dx
(−N1φ) · · · dNmu

dx
(−Nmφ)

−N1φ
dN1u

dx
· · · −N1φ

dNmu

dx
N1φN1φ · · · N1φNnφ

... (n×m)
...

... (n×n)
...

−Nnφ
dN1u

dx
· · · −Nnφ

dNmu

dx
NnφN1φ · · · NnφNnφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx .

(8.139)
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These two stiffness matrices can be superposed additively at this point and the fol-
lowing general structure for the total stiffness matrix yields:

ke =
[

k11 k12

k21 k22

]
, (8.140)

with

k11
kl =

L∫
0

ks AG
dNku

dx

dNlu

dx
dx, (8.141)

k12
kl =

L∫
0

ks AG
dNku

dx
(−Nlφ)dx, (8.142)

k21
kl = k12,T

kl =
L∫

0

ks AG(−Nkφ)
dNlu

dx
dx, (8.143)

k22
kl =

L∫
0

(
ks AG NkφNlφ + EIz

dNkφ

dx

dNlφ

dx

)
dx . (8.144)

The derivation of the right-hand side can occur according to Eq. (8.91) and the fol-
lowing load vector results:

Fe =
L∫

0

qy(x)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1u

...

Nmu

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1y

...

Fmy

M1z

...

Mnz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.145)

In the following, a quadratic interpolation for uy(x) as well as a linear interpolation

for φz(x) are chosen [14]. Therefore for duy(x)
dx and φz(x) functions of the same order

result and the phenomenon of shear locking can be avoided. Quadratic interpolation
for the deflection means that the deflection will be evaluated on three nodes. The
linear approach for the rotation means that the unknowns will be evaluated on only
two nodes. Therefore the illustrated configuration in Fig. 8.12 for this Timoshenko
element results.
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Fig. 8.12 Timoshenko bend-
ing element with quadratic
shape functions for the deflec-
tion and linear shape functions
for the rotation: a deformation
parameters; b load parameters

(a)

(b)

Evaluation of the general Lagrange polynomial according to Eq. (8.137) for the
deflection, meaning under consideration of three nodes, yields

N1u = (x2 − x)(x3 − x)

(x2 − x1)(x3 − x1)
= 1 − 3

x

L
+ 2

( x

L

)2
, (8.146)

N2u = (x1 − x)(x3 − x)

(x1 − x2)(x3 − x2)
= 4

x

L
− 4

( x

L

)2
, (8.147)

N3u = (x1 − x)(x2 − x)

(x1 − x3)(x2 − x3)
= − x

L
+ 2

( x

L

)2
, (8.148)

or alternatively for both nodes for the rotation:

N1φ = (x2 − x)

(x2 − x1)
= 1 − x

L
, (8.149)

N2φ = (x1 − x)

(x1 − x2)
= x

L
. (8.150)

A graphical illustration of the shape functions is given in Fig. 8.13. One can see that
the typical characteristics for shape functions, meaning Ni (xi ) = 1 ∧ Ni (x j ) = 0
and

∑
i Ni = 1 are fulfilled.

With these shape functions the submatrices k11, . . . , k22 in Eq. (8.140) result in the
following via the analytical integration:
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(a) (b)

Fig. 8.13 Shape functions for a Timoshenko element with a quadratic approach for the deflection
and b linear approach for the rotation

k11 = ks AG

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦ , (8.151)

k12 = ks AG

6

⎡
⎣ 5 1

−4 4
−1 −5

⎤
⎦ = (k21)T, (8.152)

k22 = ks AGL

6

[
2 1
1 2

]
+ EIz

L

[
1 −1

−1 1

]
, (8.153)

which can be put together for the principal finite element equation by making use of
the abbreviation Λ = EIz

ks AGL2 :

ks AG

6L

⎡
⎢⎢⎢⎢⎣

14 −16 2 5L 1L
−16 32 −16 −4L 4L

2 −16 14 −1L −5L
5L −4L −1L 2L2(1 + 3Λ) L2(1 − 6Λ)
1L 4L −5L L2(1 − 6Λ) 2L2(1 + 3Λ)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1y

u2y

u3y

φ1z

φ3z

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

F1y

F2y

F3y

M1z

M3z

⎤
⎥⎥⎥⎥⎦ .

(8.154)

Since only one displacement is evaluated on the middle node, the number of
unknowns is not the same on each node. This circumstance complicates the cre-
ation of the global system of equations for several of these elements. The degree of
freedom u2y , however, can be expressed via the remaining unknowns and therefore
the possibility exists to eliminate this node from the system of equations. For this,
the second Eq. (8.154)13 has to be evaluated:

13 It needs to be remarked that the influence of distributed loads is disregarded in the derivation. If
distributed loads occur, the equivalent nodal loads have to be distributed on the remaining nodes.
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ks AG

6L

(−16u1y + 32u2y − 16u3y − 4Lφ1z + 4Lφ3z
) = F2y, (8.155)

u2y = 6L

32ks AG
F2y + u1y + u3y

2
+ φ1z − φ3z

8
L . (8.156)

Furthermore, it can be demanded that no external force should have an effect on the
middle node, so that the relation between the deflection on the middle node and the
other unknowns yields as follows:

u2y = u1y + u3y

2
+ φ1z − φ3z

8
L . (8.157)

This relation can be introduced into the system of Eq. (8.154) to eliminate the degree
of freedom u2u . Finally, after a new arrangement of the unknowns, the following
principal finite element equation results, which is reduced by one column and one
row:

EIz

6ΛL3

⎡
⎢⎢⎣

6 3L −6 3L
3L L2(1, 5 + 6Λ) −3L L2(1, 5 − 6Λ)
−6 −3L 6 −3L
3L L2(1, 5 − 6Λ) −3L L2(1, 5 + 6Λ)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

u1y

φ1z

u3y

φ3z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F1y

M1z

F3y

M3z

⎤
⎥⎥⎦ .
(8.158)

This element formulation is identical with Eq. (8.121), which was derived with linear
shape functions and numerical one-point integration. However, it is to be considered
that the interpolation between the nodes during the use of (8.158) takes place with
quadratic functions.
Further details and formulations regarding the Timoshenko element can be found
in the scientific papers [11, 18].

8.4 Sample Problems and Supplementary Problems

8.4.1 Sample Problems

8.1. Discretization of a Beam with five Linear Elements with Shear Contribution
The beam,14 which is illustrated in Fig. 8.14 needs to be discretized equally with
five linear Timoshenko elements and the displacement of the loading point needs
to be discussed as dependent on the slenderness ratio and the Poisson’s ratio. One
considers the case of the (a) analytical and (b) the numerical (one integration point)
integrated stiffness matrix.

8.1 Solution
(a) Stiffness matrix via analytical integration:

14 A similar example is presented in [19].
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Fig. 8.14 Discretization of a
beam structure with elements
under consideration of the
shear contribution

The element stiffness matrix according to Eq. (8.106) can be used for each of the five
elements, whereupon it has to be considered that the single element length results
in L

5 . The resulting total stiffness matrix has the dimension 12 × 12, which reduces
to a 10 × 10 matrix due to the consideration of the fixed support on the left-hand
boundary (u1y = 0,φ1z = 0). Through inversion of the stiffness matrix, the reduced
system of equations can be solved via u = K−1 F. The following extract shows the
most important entries in this system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u2y

...

u6y

φ6z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
4

5
L

ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x · · · x x

...
...

...

x · · · 125(3α + 4L2)

4(75α + L2)
x

x · · · x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
10×10 matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

...

F
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.159)

Multiplication of the 9th row of the matrix with the load vector yields the displace-
ment of the loading point to:

u6y = 25(3α + 4L2)

75α + L2 × F L

ks AG
, (8.160)

or alternatively via A = hb, ks = 5
6 and the relation for the shear modulus according

to Eq. (8.23) after a short calculation:

u6y = 12(1 + ν)
( h

L

)2 + 20

60 + ( L
h

)2 1
1+ν

× F L3

EIz
. (8.161)

A graphical illustration of the displacement dependent on the slenderness ratio can be
seen in Fig. 8.15. A comparison with Fig. 8.10 shows that the convergence behavior
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Fig. 8.15 Discretization of a beam via five linear Timoshenko elements at analytical integration
of the stiffness matrix

in the lower domain of the slenderness ratio for 0.2 < h
L < 1.0 has significantly

improved through the fine discretization, the phenomenon of the shear lockings for
h
L → 0 however still occurs.
(b) Stiffness matrix via numerical integration with one integration point:
According to the procedure in part (a) of this problem, the following 10 × 10 system
of equations results at this point via the stiffness matrix according to Eq. (8.120)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u2y

...

u6y

φ6z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
4

5
L

ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x · · · x x

...
...

...

x · · · 25α + 33L2

20α
x

x · · · x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
10×10 matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

...

F
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (8.162)

from which the displacement on the right-hand boundary can be defined as the
following

u6y = 4

5

(
5

4
+ 33L2

20α

)
× F L

ks AG
. (8.163)

With the use of A = hb, ks = 5
6 and the relation for the shear modulus according to

Eq. (8.23) results in the following after a short calculation:
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Fig. 8.16 Discretization of a beam via five linear Timoshenko elements at numerical integration
of the stiffness matrix with one integration point

u6y =
(

33

100
+ 1

5
(1 + ν)

(
h

L

)2
)

× F L3

EIz
. (8.164)

The graphical illustration of the displacement in Fig. 8.16 shows that an excellent
conformity with the analytical solution throughout the entire domain of the slender-
ness ratio results through the mesh refinement. Therefore the accuracy at a Timo-
shenko element with linear shape functions and reduced numerical integration can
be increased considerably through mesh refinement.

8.2. TIMOSHENKO Bending Element with Quadratic Shape Functions for the
Deflection and the Rotation
The stiffness matrix and the principal finite element equation keup = Fe are to be
derived for the illustrated Timoshenko bending element in Fig. 8.17 with quadratic
shape functions. One distinguishes in the derivation between the analytical and
numerical integration. Subsequently the convergence behavior of an element needs
to be analyzed for the illustrated configuration in Fig. 8.9.

8.2. Solution
Evaluation of the general Lagrange polynomial according to Eq. (8.137) under
consideration of 3 nodes yields the following shape functions for the deflection and
the rotation:
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Fig. 8.17 Timoshenko bend-
ing element with quadratic
shape functions for the deflec-
tion and the rotation: a defor-
mation parameters; b load
parameters

(a)

(b)

N1u = N1φ = (x2 − x)(x3 − x)

(x2 − x1)(x3 − x1)
= 1 − 3

x

L
+ 2

( x

L

)2
, (8.165)

N2u = N2φ = (x1 − x)(x3 − x)

(x1 − x2)(x3 − x2)
= 4

x

L
− 4

( x

L

)2
, (8.166)

N3u = N3φ = (x1 − x)(x2 − x)

(x1 − x3)(x2 − x3)
= − x

L
+ 2

( x

L

)2
. (8.167)

With these shape functions the submatrices k11, . . . , k22 in Eq. (8.140) result as
follows through analytical integration:

k11 = ks AG

6L

⎡
⎣ 14 −16 2

−16 32 −16
2 −16 14

⎤
⎦ , (8.168)

k12 = ks AG

6L

⎡
⎣ 3L 4L −1L

−4L 0 4L
1L −4L −3L

⎤
⎦ = (k21)T, (8.169)

k22 = ks AGL

30

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦+ EIz

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦ , (8.170)

which can be composed to the stiffness matrix ke via the use of the abbreviation
Λ = EIz

ks AGL2 :
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ks AG

6L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −16 2 3L 4L −1L
−16 32 −16 −4L 0 4L
2 −16 14 1L −4L −3L

3L −4L 1L L2
(

4

5
+ 14Λ

)
L2
(

2

5
− 16Λ

)
L2
(

−1

5
+ 2Λ

)

4L 0 −4L L2
(

2

5
− 16Λ

)
L2
(

16

5
+ 32Λ

)
L2
(

2

5
− 16Λ

)

−1L 4L −3L L2
(

−1

5
+ 2Λ

)
L2
(

2

5
− 16Λ

)
L2
(

4

5
+ 14Λ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8.171)

With this stiffness matrix the principal finite element equation results in keup = Fe,
at which the deformation and load vector contains the following components:

up = [
u1y u2y u3y φ1z φ2z φ3z

]T
, (8.172)

Fe = [
F1y F2y F3y M1z M2z M3z

]T
. (8.173)

For the analysis of the convergence behavior of an element for the illustrated beam
in Fig. 8.9 with point load, the columns and rows for the entries u1y and φ1z in
Eq. (8.171) can be canceled due to the fixed support on this node. This reduced
4 × 4 stiffness matrix can be inverted and the following system of equations for the
definition of the unknown degrees of freedom results:

⎡
⎢⎢⎢⎣

u2y

u3y
...

φ3z

⎤
⎥⎥⎥⎦ = 6L

ks AG

⎡
⎢⎢⎢⎢⎢⎣

x · · · · · · x

x
−3 + 340Λ+ 1200Λ2

8(−1 − 45Λ+ 900Λ2)
· · · x

...
...

x · · · x

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
4×4 matrix

⎡
⎢⎢⎢⎣

0
F
...

0

⎤
⎥⎥⎥⎦ , (8.174)

from which, through evaluation of the second row, the displacement on the right-hand
boundary can be defined as:

u3y = 6L

ks AG︸ ︷︷ ︸
6ΛL3

EIz

× −3 + 340Λ+ 1200Λ2

8(−1 − 45Λ+ 900Λ2)
× F. (8.175)

For a rectangular cross-section Λ = 1
5 (1 + ν)

( h
L

)2
results, and one can see that

shear locking occurs also at this point for slender beams with L � h, since in the
limit case u3y → 0 occurs.
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In the following, the reduced numerical integration of the stiffness matrix needs to
be analyzed. For the definition of a reasonable amount of integration points one takes
into account the following consideration:
If quadratic shape functions are used for uy and φz , the degree of the polynomials

for duy
dx and φz differs. The quadratic approach for uy yields for duy

dx a linear function
and thus a linear function would also be desirable for φz . The two-point integration
however determines that the quadratic approach for φz is treated as a linear function.
A two-point integration can exactly integrate a polynomial of third order, meaning
proportional to x3, at most and therefore the following view results: (NiφN jφ) ∼ x3.
This however means that Niφ ∼ x1.5 or alternatively N jφ ∼ x1.5 applies at most.
Since the polynomial approach only allows integer values for the exponent, Niφ ∼ x1

or alternatively N jφ ∼ x1 results and the rotation needs to be regarded as a linear
function.
The integration via numerical Gauss integration with two integration points demands
that the arguments and the integration boundaries in the formulations of the subma-
trices k11, . . . , k22 in Eq. (8.140) have to be transformed to the natural coordinate
−1 ≤ ξ ≤ 1. Via the transformation of the derivative onto the new coordinate,
meaning dN

dx = dN
dξ

dξ
dx and the transformation of the coordinate ξ = −1 + 2 x

L or

alternatively dξ = 2
L dx , the numerical approximation of the submatrices for two

integration points ξ1,2 = ± 1√
3

results in:

k11 =
2∑

i = 1

2ks AG

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1u

dξ

dN1u

dξ

dN1u

dξ

dN2u

dξ

dN1u

dξ

dN3u

dξ

dN2u

dξ

dN1u

dξ

dN2u

dξ

dN2u

dξ

dN2u

dξ

dN3u

dξ

dN3u

dξ

dN1u

dξ

dN3u

dξ

dN2u

dξ

dN3u

dξ

dN3u

dξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 1, (8.176)

k12 =
2∑

i = 1

ks AG

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1u

dξ
(−N1φ)

dN1u

dξ
(−N2φ)

dN1u

dξ
(−N3φ)

dN2u

dξ
(−N1φ)

dN2u

dξ
(−N2φ)

dN2u

dξ
(−N3φ)

dN3u

dξ
(−N1φ)

dN3u

dξ
(−N2φ)

dN3u

dξ
(−N3φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 1, (8.177)



8.4 Sample Problems and Supplementary Problems 203

k22 =
2∑

i = 1

ks AGL

2

⎡
⎣N1φN1φ N1φN2φ N1φN3φ

N2φN1φ N2φN2φ N2φN3φ

N3φN1φ N3φN2φ N3φN3φ

⎤
⎦× 1 (8.178)

+
2∑

i = 1

2EIz

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dN1φ

dξ

dN1φ

dξ

dN1φ

dξ

dN2φ

dξ

dN1φ

dξ

dN3φ

dξ

dN2φ

dξ

dN1φ

dξ

dN2φ

dξ

dN2φ

dξ

dN2φ

dξ

dN3φ

dξ

dN3φ

dξ

dN1φ

dξ

dN3φ

dξ

dN2φ

dξ

dN3φ

dξ

dN3φ

dξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× 1. (8.179)

The quadratic shape functions, which have already been introduced in Eqs. (8.146) up
to (8.148), still have to be transformed onto the new coordinates via the transformation
x = (ξ +1) L

2 . Therefore for the shape functions or alternatively their derivatives the
following results:

N1(ξ) = −1

2
(ξ − ξ2),

dN1

dξ
= −1

2
(1 − 2ξ), (8.180)

N2(ξ) = 1 − ξ2,
dN2

dξ
= −2ξ, (8.181)

N3(ξ) = 1

2
(ξ + ξ2),

dN3

dξ
= 1

2
(1 + 2ξ). (8.182)

The use of these shape functions or alternatively their derivatives finally leads to the
following submatrices

k11 = ks AG

6L

⎡
⎣ 14 −16 2

−16 32 −16
2 −16 14

⎤
⎦ , (8.183)

k12 = ks AG

6L

⎡
⎣ 3L 4L −L

−4L 0 4L
+L −4L −3L

⎤
⎦ , (8.184)

k22 = ks AG

6L

⎡
⎢⎢⎢⎢⎢⎢⎣

2

3
L2 2

3
L2 −1

3
L2

2

3
L2 8

3
L2 2

3
L2

−1

3
L2 2

3
L2 2

3
L2

⎤
⎥⎥⎥⎥⎥⎥⎦

+ EIz

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

7

3
L2 −8

3
L2 1

3
L2

−8

3
L2 16

3
L2 −8

3
L2

1

3
L2 −8

3
L2 7

3
L2

⎤
⎥⎥⎥⎥⎥⎥⎦
, (8.185)

which can be put together to the stiffness matrix ke under the use of the abbreviation
Λ = EIz

ks AGL2 :
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ks AG

6L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −16 2 3L 4L − 1L
−16 32 −16 − 4L 0 4L

2 −16 14 1L − 4L − 3L

3L −4L 1L L2
(

2

3
+ 14Λ

)
L2
(

2

3
− 16Λ

)
L2
(

−1

3
+ 2Λ

)

4L 0 −4L L2
(

2

3
− 16Λ

)
L2
(

8

3
+ 32Λ

)
L2
(

2

3
− 16Λ

)

−1L 4L −3L L2
(

−1

3
+ 2Λ

)
L2
(

2

3
− 16Λ

)
L2
(

2

3
+ 14Λ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(8.186)

whereupon the deformation and load vector also contains the following components
at this point:

up = [
u1y u2y u3y φ1z φ2z φ3z

]T
, (8.187)

Fe = [
F1y F2y F3y M1z M2z M3z

]T
. (8.188)

For the analysis of the convergence behavior for the beam according to Fig. 8.9 the
columns and rows for the entries u1y and φ1z in the present system of equations can
be canceled. The inverted 4 × 4 stiffness matrix can be used for the definition of the
unknown degrees of freedom:

⎡
⎢⎢⎢⎣

u2y

u3y
...

φ3z

⎤
⎥⎥⎥⎦ = 6L

ks AG

⎡
⎢⎢⎢⎢⎣

x · · · · · · x

x
1 + 3Λ

18Λ
· · · x

...
...

x · · · x

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
4×4 matrix

⎡
⎢⎢⎢⎣

0
F
...

0

⎤
⎥⎥⎥⎦ , (8.189)

from which, through evaluation of the second row, the deformation on the right-hand
boundary can be defined as:

u3y = 6L

ks AG︸ ︷︷ ︸
6ΛL3

EIz

×1 + 3Λ

18Λ
× F =

(
1

3
+Λ

)
F L3

EIz
. (8.190)

For a rectangular cross-sectionΛ = 1
5 (1+ν)

( h
L

)2
results and one receives the exact

solution15 of the problem as:

15 For this see the supplementary problem 8.6.
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u3y =
(

1

3
+ 1 + ν

5

(
h

L

)2
)

× F L3

EIz
. (8.191)

According to the procedure for the Timoshenko element with quadratic-linear
shape functions in the Sect. 8.3.5, the middle node can be eliminated. Under the
assumption that no forces or moments should have an effect on the middle node,
the 2nd and 5th row of Eq. (8.186) yields the following relation for the unknowns on
the middle node:

u2y = 1

2
u1y + 1

2
u3y + 1

8
Lφ1z − 1

8
Lφ3z, (8.192)

φ2z = −4u1y

L
( 8

3 + 32Λ
) + 4u3y

L
( 8

3 + 32Λ
) −

( 2
3 − 16λ

)
φ1z( 8

3 + 32Λ
) −

( 2
3 − 16λ

)
φ3z( 8

3 + 32Λ
) . (8.193)

These two relations can be considered in Eq. (8.186) so that the following principal
finite element equation results after a short conversion:

2EIz

L3(1 + 12Λ)

⎡
⎢⎢⎣

6 3L −6 3L
3L 2L2(1 + 3Λ) −3L L2(1 − 6Λ)
−6 −3L 6 −3L
3L L2(1 − 6Λ) −3L 2L2(1 + 3Λ)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1y

φ1z

u3y

φ3z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F1y

M1z

F3y

M3z

⎤
⎥⎥⎦ .
(8.194)

With this formulation the one-beam problem according to Fig. 8.9 can be solved
a little bit faster since after the consideration of the boundary conditions only a
2 × 2 matrix needs to be inverted. In this case, for the definition of the unknown the
following results:

L3(1 + 12Λ)

2EIz

⎡
⎢⎣

2(1 + 3Λ)

3(1 + 12Λ)

1

L(1 + 12Λ)
1

L(1 + 12Λ)

2

L2(1 + 12Λ)

⎤
⎥⎦
[

F
0

]
=
[

u3y

φ3z

]
, (8.195)

which results from the exact solution for the deflection according to Eq. (8.191).

8.4.2 Supplementary Problems

8.3. Calculation of the Shear Correction Factor for Rectangular Cross-Section
For a rectangular cross-section with width b and height h, the shear stress distribution
is given as follows [20]:

τxy(y) = 6Qy

bh3

(
h2

4
− y2

)
with − h

2
≤ y ≤ h

2
. (8.196)
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Compute the shear correction factor ks under the assumption that the constant — in
the surface As acting — equivalent shear stress τxy = Qy/As yields the same shear
strain energy as the actual shear stress distribution τxy(y), which acts in the actual
cross-sectional area A of the beam.

8.4. Differential Equation Under Consideration of Distributed Moment
For the derivation of the equilibrium condition, the infinitesimal beam element, illus-
trated in Fig. 8.18 needs to be considered, which is additionally loaded with a constant
‘distributed moment’ mz = moment

length . Subsequently one needs to derive the differen-

tial equation for the Timoshenko beam under consideration of a general moment
distribution mz(x).

Fig. 8.18 Infinitesimal beam element with internal reactions and distributed loads

8.5. Analytical Calculation of the Distribution of the Deflection and Rotation
for a Cantilever Under Point Load
For the illustrated cantilever in Table 8.3, which is loaded with a point load F at
the right-hand end, calculate the distribution of the deflection uy(x) and the rota-
tion φz(x) under consideration of the shear influence. Subsequently, the maximal
deflection and the rotation at the loading point needs to be determined. Furthermore,
the boundary value of the deflection at the loading point for slender (h � L) and
compact (h � L) beams has to be determined.

8.6. Analytical Calculation of the Normalized Deflection for Beams with Shear
Contribution
For the illustrated courses of the maximal normalized deflection uy, norm in Fig. 8.6
as a function of the slenderness ratio, the corresponding equations have to be derived.

8.7. Timoshenko Bending Element with Quadratic Shape Functions for the
Deflection and Linear Shape Functions for the Rotation
For a Timoshenko bending element with quadratic shape functions for the deflection
and linear shape functions for the rotation, the stiffness matrix, after elimination of
the middle node according to Eq. (8.158), is given. One has to derive the additional
load vector on the right-hand side of the principal finite element equation which
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results from a distributed load qy(x). Subsequently the result for a constant load has
to be simplified.

8.8. Timoshenko Bending Element with Cubic Shape Functions for the Deflec-
tion and Quadratic Shape Functions for the Rotation
For a Timoshenko bending element with cubic shape functions for the deflection and
quadratic shape functions for the rotation, the stiffness matrix and the principal finite
element equation keup = Fe have to be derived. The exact solution has to be used for
the integration. Subsequently the convergence behavior of an element configuration,
which is illustrated in Fig. 8.9, has to be analyzed. The element deforms in the x–y
plane. How does the principal finite element equation change, when the deformation
in the x–z plane occurs?
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Chapter 9
Beams of Composite Materials

Abstract The beam elements discussed so far consist of homogeneous, isotropic
material. Within this chapter a finite element formulation for a special material type
— composite materials — will be introduced. On the basis of plane layers the behav-
ior for the one-dimensional situation on the beam will be developed. First, differ-
ent description types for direction dependent material behavior will be introduced.
Shortly a special type of composite material, the fiber reinforced materials, will be
considered.

9.1 Composite Materials

In the previous chapters, homogeneous, isotropic material has been assumed. How-
ever, in practice, elements or components are made of different materials to fulfill the
multiple operational demands through the combination of different materials with
their specific characteristics. At this point, the treatment of these materials will be
shown for bars and beams within the framework of the finite element formulation
[1–4].
Figure 9.1a illustrates the assembly of a beam of composite material in the longi-
tudinal cross-section. The single layers represent different materials with different
material characteristics and can be variably thick. Figure 9.1b illustrates a quite sim-
ple composite beam. It consists of only two different materials. Figure 9.1c illustrates
an often occurring special case. The assembly is symmetric. Figure 9.1d illustrates
the assembly for a sandwich structure. The relatively thick core material and the
relatively thin cover layers are typical. The fiber reinforced materials stand for a
composite material, at which the direction dependent behavior is predetermined via
the structural assembly. Figure 9.2a illustrates a layer with fibers, which are embed-
ded into a matrix.
In general, the fiber direction can be different for each layer (see Fig. 9.2b). In
practice, one can often find a symmetric assembly.
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DOI: 10.1007/978-3-642-31797-2_9, © Springer-Verlag Berlin Heidelberg 2013
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(a)

(c)

(b)

(d)

Fig. 9.1 Beams of composite materials: a general, b two materials, c symmetric assembly and d
sandwich with thick core material and thin cover layers

(a) (b)

Fig. 9.2 a Composite layer with fibers and b composite with layers of different fiber directions

9.2 Anisotropic Material Behavior

Direction dependent behavior is a typical behavior of composite materials. As an
extension to an isotropic material, other description forms for the relation between
the strains and stress result. These will be introduced in the following. Regardless of
this, within this chapter a linear elastic behavior is assumed for each material.
The general material description (constitutive description) for anisotropic bodies,
connects with

σij = Cijpq εpq (9.1)

the strain tensor (2nd order) via a so-called elasticity tensor (4th order tensor) with
the stress tensor (2nd order tensor). Due to the symmetries of the stress and strain
tensor the first as well as the second index groups in the elasticity tensor

Cjipq = Cijpq; Cijqp = Cijpq (9.2)
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are invariant against permutation. Therewith only 36 from the originally 81 compo-
nents of the elasticity tensor remain. Usually column matrices are introduced for the
symmetric stress tensor

⎡
⎣σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎤
⎦ ⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σzx

σxy

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.3)

and the symmetric strain tensor

⎡
⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎦ ⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εzx

εxy

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.4)

Therewith the stress strain relation (9.1) can be formulated in matrix notation as

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C31 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.5)

or in compact form as
σ = C ε. (9.6)

The specific elastic strain energy (related to the volume element) in matrix form

π = 1

2
εT σ , (9.7)

looks like this, which leads to the following, together with the constitutive equation
according to Eq. (9.1)

π = 1

2
εT C ε. (9.8)

Due to its energetic character this form has to be defined positively (π ≥ 0). This
however requires CT = C, thus the symmetry of the C matrix. Because of this, only
21 components from the 36 components of the stiffness matrix are independent from
each other (Cij = Cji). This material is also referred to as triclinic material.
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In the strain-stress relation
ε = S σ (9.9)

the compliance matrix S connects the stress with the strains. The valid relation for
the general three-dimensional case

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S31 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.10)

can be simplified for various special cases. This will be introduced in the following
section.

9.2.1 Special Symmetries

For further simplifications special symmetries will be considered. The following
system can be regarded as an important selection. The stress–strain relation is rep-
resented in detail with the stiffness matrix C. The same derivation is valid for the
strain-stress relation with the compliance matrix S.

Monoclinic Systems

Plane z = 0, for example, is a plane of symmetry, then all components of the C
matrix, which are related with the z-axis

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.11)

are invariant against change of signs. Therewith 13 independent material constants
remain.



9.2 Anisotropic Material Behavior 213

Orthotropic Systems

Here, 3 mutually perpendicular planes of symmetry in the material exist. The cor-
responding invariancy against the change of signs yields for orthotropic systems in

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13
C12 C22 C23 0
C13 C23 C33

C44
0 C55

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.12)

just nine independent material constants.

Transversely Isotropic Systems

This, for the fiber reinforced material important group, is characterized through an
isotropic behavior in one plane (for example in the y–z plane). Therewith just five
independent material constants are necessary for the description of the stress–strain
relation ⎡

⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12
C12 C22 C23 0
C12 C23 C22

(C22−C23)
2

0 C66
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.13)

for transversely isotropic systems. The relation for the constant C44 comes from the
equivalence of pure shear and a combined tension and compression load.

Isotropic Systems

If two material is isotropic, meaning invariant under all orthogonal transformations,
just two independent material constants are needed for the stress–strain relation

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12
C12 C11 C12 0
C12 C12 C11

(C11−C12)
2

0 (C11−C12)
2

(C11−C12)
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.14)

(Hooke’s material).
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9.2.2 Engineering Constants

In the theory of isotropic continua usually the two material properties E (modulus
of elasticity) and ν (lateral contraction number, Poisson’s ratio) are used, which
are easily defined experimentally. Likewise, based on the differential equation, the
Lamé’s coefficients λ and μ are used or the bulk modulus K , the shear modulus G.
The single parameters are dependent on each other and can be converted with

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
= G , K = E

2(1 − 2ν)
(9.15)

ν = λ

2(λ+ μ)
, E = μ(3λ+ 2μ)

λ+ μ
, K = λ+ 2

3
μ.

The meaning of these parameters can be read functionally from the compliance
matrix.

Isotropic Systems

For isotropic materials the strain-stress relation looks as follows

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E

−ν
E

−ν
E

1
E

−ν
E 0
1
E

1
G

sym. 1
G

1
G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.16)

Through inversion of the so-called compliance matrix the stiffness matrix follows.
The components of the stiffness matrix

C11 = (1 − ν)E (9.17)

C12 = νE
(C11 − C12)

2
= E

2(1 + ν)
= G

with

E = E
1

(1 + ν)(1 − 2ν)
(9.18)

result from comparison with Eq. (9.14).
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Transversely Isotropic Systems

As an example, the transversely isotropic behavior for the x-plane is assumed.
Of course the considerations can also be adopted to other directions in space. The
compliance matrix for transversely isotropic system looks as follows

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E2

−ν12
E2

1
E2

−ν23
E2

0
1

E2
1

2G23

sym. 1
2G12

1
2G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.19)

The shear modulus G23 can be calculated as with isotropic media from E2 and ν23.
The indexing of the lateral contraction ratio is carried out according to the following
scheme:

• 1st index = direction of the contraction,
• 2nd index = direction of the load, which elicits this contraction.

Through inversion of the compliance matrix and comparison one obtains

C11 = (1 − ν2
23) ν E1 (9.20)

C22 = (1 − ν12ν21) ν E2 (9.21)

C12 = ν12(1 + ν23) ν E1 = ν21 (1 + ν1) ν E2 (9.22)

C23 = (ν23 + ν21ν12) ν E2 (9.23)

C22 − C23 = (1 − ν22 − 2ν21ν12) ν E2 (9.24)

C66 = G12 (9.25)

with

ν = 1

(1 + ν23) (1 − ν23 − 2ν21ν12)
(9.26)

the relation between the engineering constants and the components Cij of the stiffness
matrix. With the relation

ν12 E1 = ν21 E2 (9.27)

the single material values are connected.
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9.2.3 Transformation Behavior

In a composite material, materials for the single layers are used, which behave direc-
tionally dependent due to their structural configuration. This preferential direction
— mostly it is one — is characteristic for one layer. The preferential directions can
be defined variably in layers when consolidating in the network. For the macroscopic
description of the composite material, transformation instructions are therefore nec-
essary to consider the preferential direction of a single layer in the network. An
instruction has to be given on how the material equations transform in case of a
change of the coordinate system. This instruction can be gained from the transforma-
tion behavior of tensors. Thereby however only against each other rotated Cartesian
coordinate systems are necessary (so-called orthogonal transformations).
For an arbitrary tensor of 2nd order Aij the following transformation is applicable in
the case of a change from a Cartesian (ij) into another (kl′) Cartesian system (herein
are the cij the so-called direction cosines):

A′
kl = cki clj Aij (9.28)

and therefore especially for the strain and for the stress tensor

ε′kl = cki clj εij , (9.29)

σ ′
kl = cki clj σij . (9.30)

If the stresses and strains are each expressed as column matrices, the transformation
can then be written as

ε′ = Tε ε (9.31)

σ ′ = Tσ σ (9.32)

or

ε = T−1
ε ε′ (9.33)

σ = T−1
σ σ ′. (9.34)

With the properties for these transformation matrices

T−1
ε = TT

σ , T−1
σ = TT

ε (9.35)

the relations for the transformations of the stiffness matrix follow based on

σ ′ = C′ ε′ (9.36)
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with the conversions

Tσ σ = C′ Tε ε (9.37)

(Tσ )−1 Tσ σ = (Tσ )−1 C′ Tε ε

σ = (Tσ )T C′ Tε ε

or based on
σ = C ε (9.38)

with the conversions

(Tσ )−1 σ ′ = C′(Tσ )−1 C′ (9.39)

(Tσ ) (Tσ )−1 σ ′ = (Tσ )C(Tσ )−1 ε′

σ ′ = (Tσ )C(Tε)T ε′

finally in

C′ = Tσ C TT
σ (9.40)

C = TT
ε C′ Tε. (9.41)

On the lines of this one obtains the following for the transformation of the compliance
matrix

S′ = Tε S (Tε)T (9.42)

S = TT
σ S′ Tσ . (9.43)

For the important group of transversal isotropic materials the following transforma-
tion matrices

Tσ =

⎡
⎢⎢⎢⎢⎢⎢⎣

c2 s2 0 0 0 2cs
s2 c2 0 0 0 −2cs
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−sc −sc 0 0 0 c2 − s2

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.44)

and

Tε =

⎡
⎢⎢⎢⎢⎢⎢⎣

c2 s2 0 0 0 cs
s2 c2 0 0 0 −ss
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−2cs −2cs 0 0 0 c2 − s2

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.45)

for a rotation around the z-axis with s = sin α and c = cosα result.
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9.2.4 Plane Stress States

A crucial simplification of the stress–strain relation results from the reduction to
two-dimensional, instead of spatial stress states. A thin layer in the composite can be
regarded under the assumption of the plane stress state. Stress components, which
are not in the considered plane, are set equal to zero. It should be remarked that the
plane stress state is only valid by approximation. Here the plane stress state for the
x–y plane will be considered. For the stress states in the x–z or y–z plane similar
formulations result.
The assumption of the plane stress states simplifies the stress–strain relation. Only
three equations remain

σ1 = C11ε1 + C12ε2 + C13ε3 + C16ε6 (9.46)

σ2 = C12ε1 + C22ε2 + C23ε3 + C26ε6 (9.47)

σ6 = C16ε1 + C26ε2 + C33ε3 + C66ε6 (9.48)

for the three stress components σ1, σ2 and σ6. The strain ε3 at the right angle to the
considered plane can be determined from the relation

ε3 = − 1

C33
(C13ε1 + C23ε2 + C36ε3). (9.49)

If ε3 is replaced in the above three equations, a modified form results

σi =
(

Cij − Ci3 Cj3

C33

)
εj , i, j = 1, 2, 6 (9.50)

which is usually described with
σi = Qij εj (9.51)

or in matrix notation with
σ = Qε. (9.52)

For the plane stress state the components of the compliance matrix Sij in the strain-
stress relation

ε = Sσ (9.53)

remain the same. In further considerations the stress–strain relations and the strain-
stress relations for the different lamina will be specified under a plane stress state.
In a practical application three different layers occur:

1. Layers, which are treated as quasi homogeneous and quasi isotropic. The elastic
behavior does not show a preferential direction. A typical example are layers,
whose matrix is supported with short fibers, whose direction is however arbitrary.
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2. Layers, at which long fibers with preferential direction are embedded in a
matrix, so-called unidirectional lamina. The load also occurs in this preferential
direction. From a macroscopic point of view the material is regarded as quasi-
homogeneous and orthotropic.

3. Layers as in (2). The load however can occur in any direction.

Isotropic Lamina

For isotropic lamina only two independent from each other material components are
needed in the stress–strain relation

⎡
⎣σ1
σ2
σ6

⎤
⎦ =

⎡
⎣ Q11 Q12 0

Q12 Q11 0
0 0 Q66

⎤
⎦

⎡
⎣ ε1
ε2
ε6

⎤
⎦ (9.54)

with

Q11 = E/(1 − ν2) (9.55)

Q12 = Eν/(1 − ν2) (9.56)

C66 = E/2(1 + ν) (9.57)

and in the strain-stress relation
⎡
⎣ ε1
ε2
ε6

⎤
⎦ =

⎡
⎣ S11 S12 0

S12 S11 0
0 0 S66

⎤
⎦

⎡
⎣σ1
σ2
σ6

⎤
⎦ (9.58)

with

S11 = 1/E (9.59)

S12 = −ν/E (9.60)

S66 = 1/G = 2(1 + ν)/E. (9.61)

The equations show that no coupling exists between the normal stress and the shear
stress.

Unidirectional Lamina, Load in Direction of the Fiber

Usually a lamina related coordinate system (1′, 2′) is introduced for the description of
the unidirectional lamina. The direction 1′ equals the fiber direction (L), the direction
2′ equals the direction perpendicular to the fiber direction (T). In the stress–strain
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relation ⎡
⎣σ

′
1
σ ′

2
σ ′

6

⎤
⎦

⎡
⎣ Q′

11 Q′
12 0

Q′
12 Q′

22 0
0 0 Q′

66

⎤
⎦

⎡
⎣ ε

′
1
ε′2
ε′6

⎤
⎦ (9.62)

with

Q′
11 = E′

1/(1 − ν′
12ν

′
21) (9.63)

Q′
22 = E′

2/(1 − ν′
12ν

′
21) (9.64)

Q′
12 = E′

2ν
′
12/(1 − ν′

12ν
′
21) (9.65)

Q′
66 = G′

12 (9.66)

and in the strain-stress relation
⎡
⎣ ε

′
1
ε′2
ε′6

⎤
⎦ =

⎡
⎣ S′

11 S′
12 0

S′
12 S′

22 0
0 0 S′

66

⎤
⎦

⎡
⎣σ

′
1
σ ′

2
σ ′

6

⎤
⎦ (9.67)

with

S′
11 = 1/E′

1 (9.68)

S′
22 = 1/E′

2 (9.69)

S′
12 = −ν′

12/E
′
1 = −ν′

21/E
′
2 (9.70)

S′
66 = G′

12 (9.71)

Four independent from each other material parameters are necessary. The valid
parameters in the lamina own coordinate system can be formulated with the fol-
lowing

E′
1 = EL , E′

2 = ET , G′
12 = GLT , ν′

12 = νLT (9.72)

in the engineering constants.

Unidirectional Lamina, Arbitrary Load Direction in the Plane

In contrast to the above considerations the load cannot just occur in the preferential
direction of the lamina, but in every direction of the plane. However, to be able to use
the material values of the (1′, 2′) coordinate system, a transformation of the stiffness
and compliance matrix from the (1′, 2′) system into the (1, 2) system is necessary.
The material equation for the plane stress state in the (1′, 2′) system appears as
follows:
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⎡
⎣ ε

′
1
ε′2
ε′6

⎤
⎦ =

⎡
⎢⎣

1
E′

1

−ν12
E′

1
0

−ν12
E′

1

1
E′

2
0

0 0 1
2G12

⎤
⎥⎦

⎡
⎣σ

′
1
σ ′

2
σ ′

6

⎤
⎦ . (9.73)

Through the application of the transformation relation of the transversal isotropic
body with the ‘plane’ transformation matrix one obtains for the compliance matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

S11
S12
S16
S22
S26
S66

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c4 2c2s2 s4 c2s2

c2s2 c4 + s4 c2s2 −c2s2

2c3s −2cs(c2 − s2) −2cs3 −cs(c2 − s2)

s4 2c2s2 c4 c2s2

2cs3 2cs(c2 − s2) −2c3s cs(c2 − s2)

4c2s2 −8c2s2 4c2s2 (c2 − s2)2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

S′
11

S′
12

S′
22

S′
66

⎤
⎥⎥⎦ (9.74)

and for the stiffness matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11
Q12
Q16
Q22
Q26
Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c4 2c2s2 s4 4c2s2

c2s2 c4 + s4 c2s2 −4c2s2

c3s −cs(c2 − s2) −cs3 −2cs(c2 − s2)

s4 2c2s2 c4 4c2s2

cs3 cs(c2 − s2) −c3s 2cs(c2 − s2)

c2s2 −2c2s2 c2s2 (c2 − s2)2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Q′
11

Q′
12

Q′
22

Q′
66

⎤
⎥⎥⎦ (9.75)

with
s = sin α, c = cosα . (9.76)

Therewith the stiffness and compliance matrix for transversely isotropic lamina
in arbitrary (in the plane rotated) Cartesian coordinate systems can be illustrated
(Assumption here: the rotation occurs in the plane around the z-axis, which is at
right angles to the lamina plane) (Fig. 9.3).

Fig. 9.3 Lamina with angular
misalignment between prefer-
ential and load direction
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Table 9.1 Material models
with the amount of none-zero
entries and independent
parameters

Material model Three-dimensional Two-dimensional

�= 0 Independent �= 0 Independent
parameter parameter

Isotropic 12 2 5 2
Transversely isotropic 12 5 - -
Orthotropic 12 9 5 4
Monoclinic 20 13 - -
Anisotropic 36 21 9 6

In the following Table 9.1, the number of non-zero entries and the number of inde-
pendent parameters are summarized for different material models. One distinguishes
between the general three-dimensional and the plane stress state.

9.3 Introduction to the Micromechanics of the Fiber
Composite Materials

Micromechanics serves to determine the properties of a composite from the properties
of the single components. For the description of the fiber composite materials (FCM)
so-called unidirectional lamina are used as the model, which belongs to the group of
transversely isotropic materials. The model is based on the following assumptions:

1. the fibers are distributed equally in the matrix,
2. between the fibers and the matrix there are ideal contact conditions (consistency

of the tangential component of the displacement)
3. the matrix does not contain any cavities,
4. the external load acts in the direction of the fibers or perpendicular to that,
5. no eigenstress exists in the lamina,
6. the fiber as well as the matrix material are linear elastic and
7. the fibers are infinitely long.

At the load of fiber composite materials one needs to distinguish between the load in
and perpendicular to the fiber direction. Figure 9.4 illustrates the occurrent parameters
for the load in the fiber direction.

Fig. 9.4 Stress–strain relation
at load in fiber direction
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Due to precondition (2) the following occurs

εf = εm = εl (9.77)

and according to precondition (6) the following is valid

σf = Ef εf = Ef εl
σm = Em εm = Em εl.

(9.78)

Since in general Ef ≥ Em applies, σf ≥ σm follows.
From the equilibrium of forces

F = Ff + Fm (9.79)

with Af as the cross-section of the fibre and Am as the cross-section of the matrix

σlAl = σfAf + σmAm (9.80)

the stress in the lamina results in

σl = σf
Af

Al
+ σm

Am

Al
. (9.81)

Due to
Al = Af + Am (9.82)

and the abbreviations

vf = Af

Al
and vm = Am

Al
(9.83)

the following results
Am

Al
= 1 − vf = vm (9.84)

and therewith
σl = σfvf + σm(1 − vf) . (9.85)

The division of this relation by εl leads to the so-called rule of mixtures

El = Ef vf + Em vm = Ef vf + Em (1 − vf). (9.86)

With the relation

Ff

Fl
= σfvf

σfvf + σm(1 − vf)
= Efvf

Efvf + Em(1 − vf)
(9.87)

the load fraction, which is transferred from the fibers from the total load is described.
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9.4 Multilayer Composite

A composite material usually consists of various layers. These layers can differ in
the geometric dimensions as well as in the material properties. In the following, a
single layer will be analyzed at first, subsequently the entire composite. For the finite
element formulation, the often occurring cases in practice will be introduced. The
macromechanical behavior is described under the following assumptions:

• The single layers of the composite are perfectly connected with each other. There
is no intermediate layer.

• Each layer can be regarded as quasi-homogeneous.
• The displacements and strains are continuously throughout the entire composite.

Within one layer the displacements and strains can be described with a linear
course.

9.4.1 One Layer in the Composite

For a single layer (lamina) it should be assumed that the thickness of the layer is
much smaller than the length dimension. Therewith a plane stress state can be used
for the description.
Furthermore two situations need to be distinguished. The stresses are

• constant or
• not constant

within a composite layer. In the first case a, from the stress resulting force vector for
the kth layer in the composite results in

Nk = [Nk
1 ,Nk

2 ,Nk
6 ]T , (9.88)

which is defined through

Nk =
∫
h

σ dz. (9.89)

Nk
i are forces, which are related to a unit width, the real normal forces one receives

through multiplication with the width bk of a composite layer. Nk
1 ,Nk

2 are resulting
normal forces, Nk

6 stands for a shear force in the plane. For a constant stress over the
cross-section the following results:

Nk = σ k hk . (9.90)

In the reduced stiffness matrix Q the components are constant, too. With
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σ k = Qk ε0 (9.91)

the following results
Nk = Qk ε0 hk = Akε0 . (9.92)

For the case when the stresses are not constant over the layer thickness, a resulting
momental vector occurs

Mk = [Mk
1 , Mk

2 , Mk
6 ]T , (9.93)

which is defined via

Mk =
∫
h

σ k(z) z dz. (9.94)

Mk
i are moments, which are related to a unit width, whereupon Mk

1 ,Mk
2 stand for

bending moments and Mk
6 for the torsional moment. According to the deformation

model the strains run linearly over the cross-section and can be expressed via

εk(z) = z κ . (9.95)

For the resulting momental vector therefore the following results

Mk =
∫
h

Qk εk z dz = Qkκ

+h/2∫
−h/2

z2dz = Qkκ
(hk)3

12
= Dkκ . (9.96)

If, for a layer, a constant as well as a linear fraction in the strains occur, the following
is valid

ε(z) = ε0 + z κ (9.97)

and therefore

Nk =
∫
h

σ k(z) dz =
∫
h

Qk(ε0 + zκ)dz (9.98)

and

Mk =
∫
h

σ k(z) z dz =
∫
h

Qk(ε0 + zκ) z dz . (9.99)

Both a resulting force and momental vector occur. Both derived formulations can be
combined as

Nk = Akε0 + Bkκ (9.100)

Mk = Bkε0 + Dkκ (9.101)
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and compactly summarized as

[
Nk

Mk

]
=

[
Ak Bk

Bk Dk

] [
ε0

κ

]
. (9.102)

For layers, which are symmetric to the center plane z = 0, the coupling matrix Bk

disappears and it remains

[
Nk

Mk

]
=

[
Ak 0
0 Dk

] [
ε0

κ

]
(9.103)

with

Ak = Qkhk , Dk = Qk (h
k)3

12
. (9.104)

A special case, for which solely one preferential direction is considered with

Ak
11 = Qk

11hk , D11 = Qk
11
(hk)3

12
(9.105)

serves for the description of a composite layer in a beam.

9.4.2 The Multilayer Composite

The composite is built by various layers (laminate). In the determination of the result-
ing forces and moments one needs to integrate throughout the total heights. Since the
stiffness matrices per lamina are independent of the z-coordinate, the integration can
be substituted through a corresponding summation. Therewith the following results:

N = Aε0 + Bk , (9.106)

M = Bε0 + Dk , (9.107)

or summarized [
N
M

]
=

[
A B
B D

] [
ε0

k

]
. (9.108)

The matrices A, B and D represent abbreviations for:

A =
N∑

k = 1

Qk (zk − zk−1), (9.109)



9.4 Multilayer Composite 227

B = 1

2

N∑
k = 1

Qk (zk − zk−1)2, (9.110)

D = 1

3

N∑
k = 1

Qk (zk − zk−1)3. (9.111)

In the case of a layer construction of the composite, which is symmetric to the center
plane (z = 0), the coupling matrix B disappears.
The general process to describe a composite is:

1. Calculation of the layer stiffness from the engineering constants for each layer in
the corresponding layer coordinate system.

2. Potential transformation of each layer stiffness matrix into the layer coordinate
system.

3. Calculation of the layer stiffnesses in the composite.
4. Through inversion of the stiffness matrix one can receive the compliance matrices

of the composite from

ε0 = αN + βM, (9.112)

k = βTN + δM, (9.113)

whereupon the following matrices are introduced for the abbreviation

α = A−1 + A−1BD̃
−1

BA−1 , (9.114)

β = A−1 + BD̃
−1
, (9.115)

βT = D̃
−1

BA−1 , (9.116)

δ = D̃
−1
, (9.117)

D̃
−1 = D − B A−1 B . (9.118)

From the above equations, layer deformations can be defined under given external
loads. Through reverse transformation the layer deformations result in the accord-
ing lamina coordinate system and, through the stiffness matrices of the lamina, the
intralaminar stress results.

9.5 A Finite Element Formulation

Within this chapter, a finite element formulation for a composite element is derived.
The considerations about the general two-dimensional composite serve as a basis.
Here, the derivation concentrates on the one-dimensional situation, whereupon one
needs to distinguish between the following two loading cases:
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• The loading occurs in the direction of the center line of the beam. The beam can
therefore be described as a bar. Tension and compression loads occur.

• The load occurs perpendicular to the center line of the beam. Bending and shear
occur.

9.5.1 The Composite Bar

Figure 9.5 illustrates a composite bar under tensile loading. The general procedure
for the determination of the stiffness matrix remains the same. The displacement
distribution in the element is approximated via the nodal displacements and the shape
functions. In the simplest case the approach is described with a linear approach. The
stiffness matrix can be derived via various motivations, for example via the principle
of virtual work or via the potential. For the tension bar with homogeneous, isotropic
material, constant modulus of elasticity E and cross-sectional area A the stiffness
matrix results in:

ke = EA

L

[
1 −1

−1 1

]
. (9.119)

Fig. 9.5 Composite bar under
tensile loading

If one also assumes for the derivation of the stiffness matrix for the composite bar
that the material properties and the cross-sectional area are constant along the bar
axis, a similar formulation results:

ke = (EA)V

L

[
1 −1

−1 1

]
(9.120)

The expression (EA)V stands for an axial stiffness, which refers to the unit length.
From the comparison with the composite the following results

(EA)V = A11 b = b
N∑

k = 1

Qk
11 hk . (9.121)

If the single composite layers each consist of a quasi-homogeneous, quasi-isotropic
material, the relation simplifies
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(EA)V = A11 b = b
N∑

k = 1

Ek
1 hk . (9.122)

The context can be simply but precisely interpreted as follows. The macroscopic
axial stiffness which is represented of the composite material is composed of the
weighted moduli of the elasticity of the single composite layers. At equal width the
weights equate to the heights fractions.

Summary:
For a composite bar with a symmetric composition throughout the thickness, the
stiffness matrix can be derived similarly to the bar with homogeneous, isotropic
material.

9.5.2 The Composite Beam

Figure 9.6 illustrates a composite beam under bending condition.

Fig. 9.6 Symmetric com-
posite beam under bending
conditions

First it needs to be assumed that only bending occurs as the loading condition.
Therewith only the matrix D has to be provided in the relation, which reduces to
D11 for the one-dimensional beam. The connection between bending moment and
curvature results as

M1 = D11 κ . (9.123)

For a beam of homogeneous, isotropic material the relation between bending moment
and curvature appears as follows:

M = EI κ . (9.124)

From the comparison a similar formulation for the composite beam can be gained:

(EI)V = b D11 . (9.125)

The expression (EI)V represents macroscopically the bending stiffness of the com-
posite beam. For a single composite layer the relation is
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Dk
11 = Qk

11
h3

12
= Qk

11
1

12
(zk − zk−1)3 , (9.126)

whereupon as the absolute layer the z = 0 axis was assigned as the center plane. In the
composite beam the cross-section dislocates from the 0-layer. Under consideration
of the Steiner’s fraction (parallel axis theorem)

(
1

2
(zk + zk−1)

)2

bk hk = 1

4
(zk + zk−1)2 bk (zk − zk−1) (9.127)

the following relation results:

(EI)V = D11 b = b
1

3

N∑
k = 1

Qk
11 ((z

k)3 − (zk−1)3) . (9.128)

If the single composite layers each consist of a homogeneous, isotropic material, the
relation simplifies to

(EI)V = D11 b = b
1

3

N∑
k = 1

Ek
1 ((z

k)3 − (zk−1)3) . (9.129)

The context can be simply but precisely interpreted as follows. The macroscopic
bending stiffness which is representative of the composite material is composed of
the weighted moduli of the elasticity of the single composite layers. At equal width
the weights equate to the heights fractions under consideration of Steiner’s fraction
due to the eccentric position of a layer.

Summary:
For a composite beam — designed symmetrically in respect to the thickness — the
bending stiffness can be derived similarly to the homogeneous, isotropic beam.

9.6 Sample Problems and Supplementary Problems

9.1. Composite Bar with Three Layers

Given is a composite which is constructed symmetrically in height. The three layers
are equally thick, which means the same heights h. Figure 9.7 illustrates the composite
in the longitudinal section. Each layer consists of homogeneous, isotropic material.
For each layer the modulus of elasticity is given with E(1), E(2) and E(3) = E(1).
Furthermore E(2) = 1

10 E(1) should be valid.
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Fig. 9.7 Symmetric compos-
ite beam with three layers

All layers in the composite have the same length L and the same width b.

Unknown are

1. the axial stiffness matrix for a load in the longitudinal direction of the composite
and

2. the bending stiffness at a bending load. The bending moment is perpendicular to
the x–z plane.
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Chapter 10
Nonlinear Elasticity

Abstract Within this chapter, the case of the nonlinear elasticity, meaning strain-
dependent modulus of elasticity, will be considered. The problem will be illustrated
with the example of bar elements. First, the stiffness matrix or alternatively the
principal finite element equation will be derived under consideration of the strain
dependency. For the solving of the nonlinear system of equations three approaches
will be derived, namely the direct iteration, the complete Newton–Raphson itera-
tion and the modified Newton–Raphson iteration, and will be demonstrated with
the help of multiple examples. Within the framework of the complete Newton–
Raphson iteration the derivation of the tangent stiffness matrix will be discussed in
detail.

10.1 Introductory Remarks

In the context of the finite element method it is common to distinguish between the
following kind of nonlinearities [1]:

• Physical or material nonlinearities: This relates to nonlinear material behavior,
as, for example, in the elastic area (covered within this chapter) of rubber or elasto-
plastic behavior (covered in Chap. 11).

• Nonlinear boundary conditions: This is, for example, the case that in the course
of the load application, a displacement boundary condition changes. Typical for
this case are contact problems. This will not be covered within this book.

• Geometric or kinematic nonlinearity: This relates to large displacements and
rotations at small strains. As examples structure elements such as wires and beams
can be named. This will not be covered within this book.

• Large deformations: This relates to large displacements, rotations and large
strains. This will not be covered within this book.

• Stability problems: Here, one has to distinguish between the geometric instability
(as, for example, the buckling of bars and plates) and the material instability (as, for
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(a) (b)

Fig. 10.1 Different behavior in the elastic range: a linear ; b nonlinear stress–strain diagram

example, the necking of tensile samples or the formation of shear bands). Within
this book only the buckling of bars will be covered in Chap. 12.

The basic characteristic of elastic material behavior is that the strains go back to zero
completely after unloading.1 In the case of linear elasticity with a constant modulus
of elasticity the loading and unloading takes places in the stress–strain diagram along
a straight line, see Fig. 10.1a. The slope of this straight line equals exactly the constant
modulus of elasticity E , according to Hooke’s law. In generalization of this linear
elastic behavior the loading and unloading can also take place along a nonlinear
curve, and in this case one talks about nonlinear elasticity, see Fig. 10.1b. In this case
Hooke’s law is only valid in an incremental or differential form:

dσ(ε)

dε
= E(ε). (10.1)

One considers here that the denotation ‘linear’ or alternatively ‘nonlinear’ elastic-
ity relates to the behavior of the stress–strain curve. Furthermore, the modulus of
elasticity can also be dependent on the coordinate. This is, for example, the case of
functionally graded materials, the so-called gradient materials. Therefore the modu-
lus of elasticity in general, under the consideration of the kinematic relation, can be
indicated as

E = E(x, u). (10.2)

However, a dependency from the x-coordinate can be treated as a variable cross-
section2 and demands no further analysis at this point. Therefore, in the following,
the focus is on dependencies of the form E = E(u) or alternatively E = E

( du
dx

)
.

1 At plastic material behavior remaining strains occur. This case will be covered in Chap. 11.
2 For this, see the treatment of bar elements with variable cross-sectional areas A = A(x) in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-31797-2_12
http://dx.doi.org/10.1007/978-3-642-31797-2_11
http://dx.doi.org/10.1007/978-3-642-31797-2_3
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10.2 Element Stiffness Matrix for Strain Dependent Elasticity

The following derivations will be carried out for the example case that the modulus
of elasticity is dependent linearly on the strain, see Fig. 10.2. Under this assumption,
the according Fig. 10.2a, a nonlinear stress–strain diagram results. The linear course
of the modulus of elasticity can be defined in the following via the two sampling
points E(ε = 0) = E0 and E(ε = ε1) = E1.

(a) (b)

Fig. 10.2 a Nonlinear stress–strain diagram; b strain dependent modulus of elasticity

Therefore, the following course of the function for the strain dependent modulus of
elasticity results for the two sampling points:

E(ε) = E0 − ε

ε1
(E0 − E1) = E0

(
1 − ε × 1 − E1/E0

ε1︸ ︷︷ ︸
α01

)
= E0(1 − εα01).

(10.3)

It needs to be remarked at this point that the principal route for the derivation does not
change as long as the strain dependency of the modulus of elasticity can be described
via a polynomial. This is often the case in practical applications, since experimental
values are often approximated through a polynomial regression.
After the introduction of the kinematic relation for a bar, meaning ε = du

dx , herefrom
the modulus of elasticity results in dependence of the displacement—or, to be precise,
dependence of the derivative of the displacement—in:

E(u) = E0

(
1 − α01

du

dx

)
. (10.4)
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This strain dependent modulus of elasticity can be integrated analytically via the
differential Hooke’s law and the following stress distribution results3:

σ(ε) = E0ε − E0 − E1

2E0ε1
ε2 = E0ε − 1

2
α01 E0ε

2. (10.5)

One notes that the classical relations for linear elastic material behavior result for
E0 = E1 or alternatively α01 = 0.
For the derivation of the element stiffness matrix, the differential equation for a bar
has to be considered. For simplification reasons it is assumed at this point that the
bar cross-section A is constant and that no distributed loads are acting. Therefore the
following formulation for the differential equation results:

A
d

dx

(
E(u)

du

dx

)
= 0. (10.6)

At first, the case is regarded that E(u) is replaced by the expression according to
Eq. (10.4):

A
d

dx

(
E0

(
1 − α01

du

dx

)
du

dx

)
= AE0

d

dx

(
du

dx
− α01

(
du

dx

)2
)

= 0. (10.7)

After the completion of the differentiation the following expression results for the
differential equation, which describes the problem:

AE0
d2u(x)

dx2 − 2AE0α01
du(x)

dx

d2u(x)

dx2 = 0. (10.8)

Within the framework of the weighted residual method the inner product results
herefrom through multiplication with the weighting function W (x) and subsequent
integration via the bar length in:

L∫
0

W (x)

(
AE0

d2u(x)

dx2 − 2AE0α01
du(x)

dx

d2u(x)

dx2

)
dx

!= 0 . (10.9)

Partial integration of the first expression in brackets yields:

L∫
0

AE0 W︸︷︷︸
f

d2u

dx2︸︷︷︸
g′

dx = AE0

[
W︸︷︷︸
f

du

dx︸︷︷︸
g

]L

0
−

L∫
0

AE0
dW

dx︸︷︷︸
f ′

du

dx︸︷︷︸
g

dx . (10.10)

3 At this point it was assumed that for ε = 0 the stress turns 0. Therefore, for example no residual
stress exists.
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Accordingly, the second expression in brackets can be reformulated via partial inte-
gration:

L∫
0

2AE0α01

(
W

du

dx

)
︸ ︷︷ ︸

f

d2u

dx2︸︷︷︸
g′

dx

= 2AE0α01

[
W

du

dx︸ ︷︷ ︸
f

du

dx︸︷︷︸
g

]L

0
−

L∫
0

2AE0α01
d

dx

(
W

du

dx

)
︸ ︷︷ ︸

f ′

du

dx︸︷︷︸
g

dx

= 2AE0α01

[
W
(du

dx

)2]L

0
−

L∫
0

2AE0α01

(
dW

dx

du

dx
+ W

d2u

dx2

)
du

dx
dx

= 2AE0α01

[
W
(du

dx

)2]L

0
−

L∫
0

2AE0α01
dW

dx

(
du

dx

)2

dx

−
L∫

0

2AE0α01W
d2u

dx2

du

dx
dx . (10.11)

Finally, the following results for the partial integration of the second expression:

L∫
0

2AE0α01W
du

dx

d2u

dx2 dx = AE0α01

[
W
(du

dx

)2]L

0

−
L∫

0

AE0α01
dW

dx

(
du

dx

)2

dx . (10.12)

The following expression results, when the expressions of the partial integrations
according to Eqs. (10.10) and (10.12) are inserted into the inner product according
to Eq. (10.9) and when the domain and boundary integrals are arranged:

L∫
0

AE0
dW

dx

du

dx
dx −

L∫
0

AE0α01
dW

dx

(
du

dx

)2

dx

= AE0

[
W

du

dx
− α01W

(
du

dx

)2
]L

0

. (10.13)
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The introduction of the approaches for the displacement and the weighting function,
meaning u(x) = Nup and W (x) = δuT

p NT(x), leads to the following expression,

after canceling of the virtual displacement δuT
p and factoring out the displacement

vector up:

AE0

L∫
0

(
dNT(x)

dx

dN(x)
dx

− α01
dNT(x)

dx

(
dN(x)

dx
up

)
dN(x)

dx

)
dx × up

= AE0

[
dNT(x)

dx

(
du

dx
− α01

(
du

dx

)2
)]L

0

. (10.14)

Therefore, in dependence of the nodal displacement up the element stiffness matrix4

results in:

ke = AE0

L∫
0

(
dNT(x)

dx

dN(x)
dx

− α01

(
dNT(x)

dx

dN(x)
dx

)(
up

dN(x)
dx

))
dx .

(10.15)
If the shape functions are known, the stiffness matrix can be evaluated. The second
expression in the outer brackets yields an additional symmetrical expression, which
can be superposed to the classical stiffness matrix for linear elastic material behavior.
For a constant modulus of elasticity α01 = 0 results and one receives the classical
solution. The following dimensions of the single matrix products results if the bar
element has m nodes and therefore m shape functions:

dNT(x)

dx

dN(x)
dx

→ m × m matrix, (10.16)

up
dN(x)

dx
→ m × m matrix, (10.17)

(
dNT(x)

dx

dN(x)
dx

)(
up

dN(x)
dx

)
→ m × m matrix. (10.18)

However, in the following an alternative strategy is illustrated, which leads slightly
faster to the principal finite element equation. On the basis of the differential equation
in the form (10.6), the inner product can be derived without replacing the expression
for E(u) a priori:

L∫
0

W (x)A
d

dx

(
E(u(x))

du(x)

dx

)
dx

!= 0 . (10.19)

4 One considers that the associative law applies for matrix multiplications.
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Partial integration yields

L∫
0

W︸︷︷︸
f

A
d

dx

(
E(u)

du

dx

)
︸ ︷︷ ︸

g′

dx =
[

W︸︷︷︸
f

AE(u)
du

dx︸ ︷︷ ︸
g

]L

0
−

L∫
0

dW

dx︸︷︷︸
f ′

AE(u)
du

dx︸ ︷︷ ︸
g

dx = 0,

and the weak form of the problem appears as follows:

L∫
0

AE(u)
dW

dx

du

dx
dx =

[
AE(u)W

du

dx

]L

0
. (10.20)

Via the approaches for the displacement and the weighting function, the following
results herefrom:

A

L∫
0

E(u)
NT

dx

N
dx

dx

︸ ︷︷ ︸
ke

×up =
[

AE(u)
du

dx

dNT

dx

]L

0
. (10.21)

The right-hand side can be handled according to the procedure in Chap. 3 and yields
the vector of the external loads. The left-hand side, however, requires that the modulus
of elasticity E(u) is considered appropriately. If the approach for the displacement,
meaning u(x) = N(x)up, is considered in the formulation of the modulus of elas-
ticity according to Eq. (10.4), the following results:

E(up) = E0

(
1 − α01

dN
dx

up

)
. (10.22)

It can be considered at this point that the expression dN
dx up yields a scalar parameter.

Therefore, the stiffness matrix results in:

ke = AE0

L∫
0

(
1 − α01

dN
dx

up

)
︸ ︷︷ ︸

scalar

dNT

dx

dN
dx

dx . (10.23)

This stiffness matrix is—as Eq. (10.15)—symmetric since the symmetric matrix
dNT

dx
dN
dx is multiplied by a scalar.

http://dx.doi.org/10.1007/978-3-642-31797-2_3
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In the following, a bar element with two nodes, meaning linear shape functions, can
be considered. Both shape functions and their derivatives in this case result in:

N1(x) = 1 − x

L
,

dN1(x)

dx
= − 1

L
, (10.24)

N2(x) = x

L
,

dN2(x)

dx
= 1

L
. (10.25)

Therefore the stiffness matrix results in:

ke = AE0

L∫
0

(
1 − α01

dN1

dx
u1 − α01

dN2

dx
u2

)
⎡
⎢⎢⎣

dN1

dx

dN1

dx

dN1

dx

dN2

dx
dN2

dx

dN1

dx

dN2

dx

dN2

dx

⎤
⎥⎥⎦ dx,

(10.26)

or alternatively under consideration of the derivatives of the shape functions

ke = AE0

L2

L∫
0

(
1 + α01

L
u1 − α01

L
u2

) [1 −1
−1 1

]
dx . (10.27)

After completion of the integration herefrom the element stiffness matrix results in

ke = AE0

L2 (L + α01 u1 − α01 u2)

[
1 −1

−1 1

]
(10.28)

or the principal finite element equation as:

AE0

L2 (L + α01 u1 − α01 u2)

[
1 −1

−1 1

] [
u1
u2

]
=
[

F1
F2

]
. (10.29)

One considers that for the constant modulus of elasticity, meaning α01 = 0, the
classical solution from Chap. 3 results. For the variable modulus of elasticity the
following system of equations results in matrix notation:

ke(up)up = Fe, (10.30)

or, alternatively, with various elements for the total system

K (u)u = F. (10.31)

Since the stiffness matrix is dependent on the unknown nodal displacements u,
a nonlinear system of equations results, which cannot be solved directly through
inverting of the stiffness matrix.

http://dx.doi.org/10.1007/978-3-642-31797-2_3
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10.3 Solving of the Nonlinear System of Equations

The solving of the nonlinear system of equations can be explained in the following
for a bar, which is fixed on one side and loaded by a single force F on the other
side, with the help of various methods, see Fig. 10.3. The modulus of elasticity is,

(a) (b)

Fig. 10.3 Bar element under point load and strain dependent modulus of elasticity

according to Eq. (10.3), linearly dependent on the strain. First the discretization via
one single element takes place, so that, under consideration of the fixed support,
a system with one single degree of freedom results. The resulting equations are
therefore solely dependent on one variable, the nodal displacement at the loading
point. In the following step, one merges to the general case of a system with various
degrees of freedom. The illustration takes place via a discretization of the problem
according to Fig. 10.3a with two elements and therefore with two degrees of freedom.
For the example according to Fig. 10.3, the following values can be assumed:
Geometry: A = 100 mm2, L = 400 mm. Material characteristics: E0 = 70,000
MPa, E1 = 49,000 MPa, ε1 = 0.15. Load: F = 800 kN.

10.3.1 Direct Iteration

At the direct or Picard’s iteration [2, 3], the system of Eq. (10.31) is solved by
evaluating the stiffness matrix in the previous and therefore known step. Through the
selection of a reasonable initial value—for example from a linear elastic relation—the
solution can be determined via the following formula through gradual inserting:

K (u( j))u( j+1) = F. (10.32)

The schematic illustration of the direct iteration is shown in Fig. 10.4.
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Fig. 10.4 Schematic illustra-
tion of the direct iteration

This method converges for modest nonlinearities with linear convergence
rate.

10.3.1.1 Direct Iteration for a Finite Element Model with One Unknown

For the example corresponding to Fig. 10.3 and the principal finite element equation
according to (10.29), under consideration of the fixed support, the iteration formula
results in:

AE0

L2

(
L − α01u( j)

2

)
u( j+1)

2 = F2, (10.33)

or alternatively solved for the new displacement:

u( j+1)
2 = F2L2

AE0

(
L − α01u( j)

2

) . (10.34)

The evaluation of Eq. (10.34) for the example corresponding to Fig. 10.3 is summa-
rized in Table 10.1 for an arbitrary initial value of u(0)2 = 20 mm. The normalized
displacement difference was indicated as convergence criteria, whose fulfillment
requires 23 iterations for a value of 10−6. Furthermore, one considers the absolute
value of the displacement at the 31st increment, which is also consulted as a reference
value in other methods.

10.3.1.2 Direct Iteration for a Finite Element Model with Various Unknowns

For the application of the direct iteration on a model with various unknowns, the
bar, according to Fig. 10.3 can be considered in the following. The discretization
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Table 10.1 Numerical values for the direct iteration in the case of one element with an external
load of F2 = 800 kN and an initial value of u(0)2 = 20 mm. Geometry: A = 100 mm2, L = 400 mm.
Material characteristics: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) ε

( j)
2

√√√√
(

u( j)
2 −u( j−1)

2

)2

(
u( j)

2

)2

0 20.000000 0.050000 –
1 50.793651 0.126984 0.606250
2 61.276596 0.153191 0.171076
3 65.907099 0.164768 0.070258
4 68.183007 0.170458 0.033379
5 69.360231 0.173401 0.016973
6 69.985252 0.174963 0.008931
7 70.321693 0.175804 0.004784
8 70.504137 0.176260 0.002588
9 70.603469 0.176509 0.001407
10 70.657668 0.176644 0.000767
11 70.687276 0.176718 0.000419
12 70.703461 0.176759 0.000229
13 70.712312 0.176781 0.000125
14 70.717152 0.176793 0.000068
15 70.719800 0.176800 0.000037
16 70.721248 0.176803 0.000020
17 70.722041 0.176805 0.000011
18 70.722474 0.176806 0.000006
19 70.722711 0.176807 0.000003
20 70.722841 0.176807 0.000002
21 70.722912 0.176807 0.000001
22 70.722951 0.176807 0.000001
23 70.722972 0.176807 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

31 70.722998 0.176807 0.000000

should occur through two bar elements, which have the same length. Therefore, the
following element stiffness matrix results for each of the two elements with length L

2 :

4AE0

L2

(
L

2
+ α01u1 − α01u2

)[
1 −1

−1 1

]
(element I), (10.35)

4AE0

L2

(
L

2
+ α01u2 − α01u3

)[
1 −1

−1 1

]
(element II). (10.36)

The following reduced system of equations results, if the two matrices are summa-
rized to the global principal finite element equation and if the boundary conditions
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are considered:

4AE0

L2

⎡
⎢⎢⎣

(L − α01u3) −
(

L

2
+ α01u2 − α01u3

)

−
(

L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)
⎤
⎥⎥⎦
[

u2
u3

]
=
[

0
F3
.

]

(10.37)

Through inversion one obtains the following iteration formula of the direct iteration:

[
u2

u3

]
( j+1)

=
L2

4AE0

DET ( j)

⎡
⎢⎢⎢⎣

(
L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)

(
L

2
+ α01u2 − α01u3

)
(L − α01u3)

⎤
⎥⎥⎥⎦
( j)

[
0
F3

]
( j)
,

(10.38)

whereupon the determinant of the reduced stiffness matrix is given through the fol-
lowing equation:

DET = (L − α01u3)

(
L

2
+ α01u2 − α01u3

)
−
(

L

2
+ α01u2 − α01u3

)2

.

(10.39)

In general, the iteration instruction according to Eq. (10.38) can also be written as

u( j+1) =
(

K (u( j))
)−1

F. (10.40)

The numerical results of the iteration for the example according to Fig. 10.3 with
two elements are summarized in Table 10.2. A comparison with the direct iteration
with one element, meaning Table 10.1, yields that the division in two elements has
practically no influence on the convergence behavior. One considers that the dis-
placements on node 2 and 3 are listed in Table 10.2 and that only in the converged
situation the condition u2 = 1

2 u3 results.

10.3.2 Complete Newton–Raphson Method

10.3.2.1 Newton’s Method for a Function with One Variable

For the definition of the root of a function f (x), meaning f (x) = 0, Newton’s
iteration is often used. For the derivation of the iteration method, one develops the
function f (x) around the point x0 in a Taylor’s series



10.3 Solving of the Nonlinear System of Equations 245

Table 10.2 Numerical values for the direct iteration in the case of two elements with an external
load of F2 = 800 kN and initial values of u(0)2 = 10 and u(0)3 = 20 mm. Geometry: A = 100 mm2,
L I = L II = 200 mm. Material characteristics: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 10.000000 20.000000 –
1 28.571429 49.350649 0.706244
2 32.000000 60.852459 0.174565
3 33.613445 65.739844 0.069707
4 34.430380 68.106422 0.032806
5 34.859349 69.3222247 0.016616
6 35.088908 69.9655414 0.008727
7 35.213000 70.3112206 0.004671
8 35.280446 70.4984992 0.002525
9 35.317213 70.6004116 0.001372
10 35.337288 70.6560035 0.000748
.
.
.

.

.

.
.
.
.

.

.

.

23 35.361489 70.7229715 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

31 35.361499 70.7229976 0.000000

f (x) = f (x0)+
(

d f

dx

)
x0

· (x − x0)+ 1

2!
(

d2 f

dx2

)
x0

· (x − x0)
2

+ · · · + 1

k!
(

dk f

dxk

)
x0

· (x − x0)
k . (10.41)

If the expressions of quadratic and higher order are disregarded, the following approx-
imation results:

f (x) ≈ f (x0)+
(

d f

dx

)
x0

· (x − x0). (10.42)

When considering that the derivative of a function equals the slope of the tangent
line in the considered point and that the slope-intercept equation of a straight line
is given via f (x) − f (x0) = m · (x − x0), one can see that the approximation via
a Taylor’s series of first order is given through the straight line through the point
(x0, f (x0)) with slope m = (d f/dx)x0 , see Fig. 10.5.
For the derivation of the iteration formula for the definition of the roots, one
sets Eq. (10.42) equal 0 and obtains the following calculation instruction via the
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Fig. 10.5 Development of a function into a Taylor’s series of first order

substitutions x0 → x ( j) and x → x ( j+1):

x ( j+1) = x ( j) − f (x ( j))(
d f

dx

)
x ( j)

. (10.43)

The principle course of action of a Newton’s iteration is illustrated in Fig. 10.6. At

Fig. 10.6 Definition of the
root of a function via New-
ton’s iteration

the initial point of the iteration, the tangent is pictured on the graph of the function
f (x) and subsequently the root of this tangent will be defined. In the ordinate value
of this root, the next tangent will be formed and the procedure will be continued
according to the course of action in the initial point. If f (x) is a continuous and
monotonic function in the considered interval and if the initial point of the iteration
lies ‘close enough’ to the unknown solution, the method converges quadratically
against the root.
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10.3.2.2 Newton–Raphson Method for a Finite Element Model
with One Unknown

For the example according to Fig. 10.3, the problem reduces to locating the roots of
the function, under consideration of the boundary conditions on the left-hand node

r(u2) = AE0

L2 (L − α01u2) u2 − F2 = K (u2)u2 − F2 = 0. (10.44)

When applying the iteration instruction of the previous Sect. 10.3.2.1 on the residual
function r(u2), the following Newton–Raphson iteration instruction5 results in

u( j+1)
2 = u( j)

2 − r(u( j)
2 )

dr(u( j)
2 )

du2

= u( j)
2 −

(
K ( j)

T

)−1
r(u( j)

2 ), (10.45)

whereupon the parameter KT is in general referred to as the tangent stiffness matrix.6

In the example considered at this point, KT however reduces to a scalar function. On
the basis of Eq. (10.44) the tangent stiffness matrix for our example results in:

KT(u2) = dr(u2)

du2
= K (u2)+ dK (u2)

du2
u2 (10.46)

= AE0

L2 (L − α01u2)− AE0

L2 α01u2

= AE0

L2 (L − 2α01u2) . (10.47)

When using the last result in the iteration instruction (10.45) and when considering
the definition of the residual function according to (10.44), the iteration instruction
for the regarded example finally results in:

u( j+1)
2 = u( j)

2 −
AE0

L2

(
L − α01u( j)

2

)
u( j)

2 − F ( j)
2

AE0

L2

(
L − 2α01u( j)

2

) . (10.48)

The application of the iteration instruction according to Eq. (10.48) with α01 = 2
leads to the summarized results in Table 10.3. One can see that only six iteration steps
are necessary for the complete Newton–Raphson iteration, due to the quadratic
convergence behavior, to achieve the convergence criteria (<10−6) and the absolute
value of u2 = 70.722998 mm. In the general case of the method however, the

5 In the context of the finite element method Newton’s iteration is often referred to as the Newton–
Raphson iteration [4].
6 Alternative names in literature are HESSIAN, JACOBIAN or tangent matrix [1].
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Table 10.3 Numerical values for the complete Newton–Raphson method at an external load of
F2 = 800 kN. Geometry: A = 100 mm2, L = 400 mm. Material behavior: E0 = 70, 000 MPa,
E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) ε

( j)
2

√√√√
(

u( j)
2 −u( j−1)

2

)2

(
u( j)

2

)2

0 0 0 –
1 45.714286 0.114286 1
2 64.962406 0.162406 0.296296
3 70.249443 0.175624 0.075261
4 70.719229 0.176798 0.006643
5 70.722998 0.176807 0.000053
6 70.722998 0.176807 0.000000

huge disadvantage arises that the tangent stiffness matrix has to be recalculated
and inverted for each iteration step. For huge systems of equations this leads to quite
calculational intensive operations and can perhaps compensate the advantage of the
quadratic convergence.
When increasing the external load F2, a limit value results, however, from which
no convergence can be achieved with the Newton–Raphson method any longer. A
strain dependent modulus of elasticity according to Eq. (10.4) leads through integra-
tion to the illustrated parabolic stress distribution in Fig. 10.7. Based on this illustra-

Fig. 10.7 Stress–strain course for a strain dependent modulus of elasticity according to Eq. (10.4)

tion the maximal stress to σmax = E0
2α01

or alternatively the maximal force in a bar to

Fmax = E0 A
2α01

can be defined.
However, through gradual increasing of the external force F2 in the regarded example,
it results that the convergence limit is achieved clearly lower than the maximal force
of Fmax = 1, 750 kN. Via a few iteration cycles it can be shown that starting with a
value of about 900 kN, no convergence can be achieved any longer in the considered
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example. One also considers that a reasonable physical choice of the external force
always has to meet the condition F2 ≤ Fmax.
To explain the loss of convergence, the residual function according to Eq. (10.44) has
to be considered more closely, whereupon it has to be considered that the iteration
method needs to define the roots of this function. The considered residual function
is a quadratic function in u2, which can be changed into the following equation of a
parabola by completing the square:

(
u2 − L

2α01

)2

+
(

F2

E0 A
− 1

4α01

)
L2

α01
= 0. (10.49)

Therefore Eq. (10.44) represents an upward facing parabola with the vertex(
L

2α01
,
(

F2
E0 A − 1

4α01

)
L2

α01

)
. Depending on the position of the vertex, a different num-

ber of roots results (see Fig. 10.8), so that the boundary value for the convergence of
the iteration method is defined through the boundary point of the parabola with the
u2-axis:

F2

E0 A
− 1

4α01
= 0. (10.50)

Therefore, the Newton–Raphson iteration method for the considered case, that
the modulus of elasticity according to Eq. (10.4) is dependent linearly on the strain,
converges solely within the following boundaries:

F2 ≤ E0 A

4α01
, or alternatively ε ≤ 1

2α01
. (10.51)

The schematic process of the Newton–Raphson iteration is illustrated in
Fig. 10.9. The tangent stiffness matrix K ( j)

T is calculated in every single iteration

point u( j)
2 , to conclude the follow-on value u( j+1)

2 via a linearization. It is impor-
tant at this point that the tangent stiffness matrix can be identified as the derivative
in the force displacement diagram, see Fig. 10.9a. To receive the illustration in a
stress–strain diagram, one has to divide the residual equation (10.44) through the
cross-sectional area and has to scale the displacement with the length, so that one
obtains the following form:

E0

(
1 − α01

u2

L

) u2

L
− F2

A
= 0, (10.52)

or alternatively in the variables stress and strain as

r(ε) = E0 (1 − α01ε)︸ ︷︷ ︸
E(ε)

ε − σ = 0. (10.53)
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Fig. 10.8 Illustration of the
residual function according
to Eq. (10.44) for different
external loads F2

(a)

(b)

(c)
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(a) (b)

Fig. 10.9 Schematic illustration of the complete Newton–Raphson iteration

It is important at this point to note that the last equation is not confused with the stress–
strain course according to Eq. (10.5), since the last equation deals with the outer and
inner forces. Application of the iteration instruction according to Eq. (10.45) leads
to the following formula at this juncture

ε( j+1) = ε( j) − r(ε( j))

dr(ε( j))

dε

, (10.54)

whereupon

dr(ε)

dε
= ET = E(ε)+ dE

dε
ε, (10.55)

= E0(1 − α01ε)− E0α01ε, (10.56)

= E0(1 − 2α01ε) (10.57)

is referred to as the consistent modulus ET to the iteration formula. One considers
the difference for the continuum mechanical modulus according to Eq. (10.3). Solely
in the case of α01 = 0, meaning for a constant modulus of elasticity, both moduli
match.
At this point it needs to be remarked that the residual equation (10.44) can be further
generalized by introducing a displacement dependent external load F2 = F2(u2):

r(u2) = K (u2)u2 − F2(u2) = 0. (10.58)

In this generalized case, the tangent stiffness matrix would result as follows:

KT(u2) = dr(u2)

du2
= K (u2)+ dK (u2)

du2
u2 − dF2(u2)

du2
. (10.59)
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10.3.2.3 Newton–Raphson Method for a Finite Element Model
with m Unknowns

The complete Newton–Raphson method [1, 5, 6] for a model with various
unknowns is, in general, expressed through the following equation

u( j+1) = u( j) − (K ( j)
T

)−1r(u( j)), (10.60)

whereupon the tangent stiffness matrix in general is defined as

K T = ∂ r(u)
∂u

. (10.61)

The vectorial function of the residuals is generally defined as

r(u) = K u − F (10.62)

and can be illustrated in components for a model with two linear bar elements as
follows: ⎡

⎣ r1(u)
r2(u)
r3(u)

⎤
⎦ =

⎡
⎢⎣

K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎥⎦
⎡
⎣u1

u2
u3

⎤
⎦−

⎡
⎣ F1

F2
F3

⎤
⎦ . (10.63)

The Jacobian matrix
∂ r
∂u

of the residual function results in general from the partial

derivatives ri to:

∂ r
∂u
(u) = K T(u) =

⎡
⎢⎣

KT,11 KT,12 KT,13

KT,21 KT,22 KT,23

KT,31 KT,32 KT,33

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂r1

∂u1

∂r1

∂u2

∂r1

∂u3

∂r2

∂u1

∂r2

∂u2

∂r2

∂u3

∂r3

∂u1

∂r3

∂u2

∂r3

∂u3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.64)

The partial derivatives in Eq. (10.64) can be calculated the easiest, if the residual
equation (10.63) are written in detail:

r1(u1, u2, u3) = K11u1 + K12u2 + K13u3, (10.65)

r2(u1, u2, u3) = K21u1 + K22u2 + K23u3, (10.66)

r3(u1, u2, u3) = K31u1 + K32u2 + K33u3. (10.67)
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As an example, two partial derivatives are given in the following:

∂r1

∂u1
=
(
∂K11

∂u1
u1 + K11

)
+ ∂K12

∂u1
u2 + ∂K13

∂u1
u3, (10.68)

∂r1

∂u2
= ∂K11

∂u2
u1 +

(
∂K12

∂u2
u2 + K12

)
+ ∂K13

∂u2
u2. (10.69)

Therefore, the tangent stiffness matrix results in the illustrated form in Eq. (10.75),
which is composed from the stiffness matrix and a matrix with partial derivatives,
which are multiplied with the nodal displacements. In general, the tangent stiffness
matrix can therefore be formulated for a model with m degrees of freedom as

KT,i j = Ki j +
m∑

k=1

∂Kik

∂u j
uk, (10.70)

or alternatively in matrix notation as

K T = K + ∂K
∂u

u. (10.71)

As a concluding remark, two important special cases need to be listed at this point:

• Scalar tangent stiffness matrix (see Sect. 10.3.2.2):

KT(u) = K (u)+ dK

du
u. (10.72)

• Two-dimensional tangent stiffness matrix (for example linear bar element without
displacement boundary conditions):

K T(u) =
[

K11 K12

K21 K22

]
+

⎡
⎢⎢⎢⎣

∂K11

∂u1
u1 + ∂K12

∂u1
u2
∂K11

∂u2
u1 + ∂K12

∂u2
u2

∂K21

∂u1
u1 + ∂K22

∂u1
u2
∂K21

∂u2
u1 + ∂K22

∂u2
u2

⎤
⎥⎥⎥⎦ . (10.73)

The general case with u = [ u1, u2, . . . , um ]T and dim(K ) = m × m can easily be
derived from the above considerations.
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(a) (b)

Fig. 10.10 Illustration of the residual functions according to Eq. (10.76)

In the following, the model with two bar elements according to Fig. 10.3 can be

considered again. The discretization for two elements with the length
L

2
leads the

residual equation to:

[
r1

r2

]
= 4AE0

L2

⎡
⎢⎢⎣

(L − α01u3) −
(

L

2
+ α01u2 − α01u3

)

−
(

L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)
⎤
⎥⎥⎦
[

u2

u3

]
−
[

0
F3

]
= 0.

(10.76)

A graphical illustration of the residual functions according to Eq. (10.76) is given in
Fig. 10.10. Both functions are dependent on two variables, u2 and u3, in this case,
and therefore at this point, surfaces in the space result, whose intersection curves
have to be found via the u2−u3 planes. For this purpose, a tangent plane is built on
the corresponding surface in every single point within the iteration scheme.
The application of the calculation instruction according to Eq. (10.73) leads to the
tangent stiffness matrix as follows in this special case:

K T = 4AE0

L2

⎡
⎢⎢⎣

(L − α01u3) −
(

L

2
+ α01u2 − α01u3

)

−
(

L

2
+ α01u2 − α01u3

) (
L

2
+ α01u2 − α01u3

)
⎤
⎥⎥⎦

+ 4AE0

L2

[
0 − α01u3 −α01u2 + α01u3
−α01u2 + α01u3 α01u2 − α01u3

]
. (10.77)
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The two matrices in the last equation can still be summarized and one obtains the
following illustration for the tangent stiffness matrix:

K T = 4AE0

L2

⎡
⎢⎣ L − 2α01u3 − L

2
− 2α01u2 + 2α01u3

− L

2
− 2α01u2 + 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤
⎥⎦ . (10.78)

The tangent stiffness matrix still has to be inverted7 for the iteration scheme according
to Eq. (10.85) and after a short calculation one obtains:

(K T)
−1 = L2

4AE0

(
L

2
− 2α01u2

)
⎡
⎢⎣

1 1

1
L − 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤
⎥⎦ . (10.79)

Therefore, the iteration scheme u( j+1) = u( j)−
(

K ( j)
T

)−1
r(u( j)) can be applied as

follows for the example according to Fig. 10.3:

[
u2

u3

]
( j+1)

=
[

u2

u3

]
( j)

− L2(4AE0)
−1

L

2
− 2α01u( j)

2

⎡
⎢⎣

1 1

1
L − 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤
⎥⎦
( j)

×
⎛
⎜⎝4AE0

L2

⎡
⎢⎣ L − α01u3 − L

2
− α01u2 + α01u3

− L

2
− α01u2 + α01u3

L

2
+ α01u2 − α01u3

⎤
⎥⎦
( j)

[
u2

u3

]
( j)
−
[

0
F3

]⎞⎟⎠ .

(10.80)

The numerical values of the iteration are summarized in Table 10.4. Due to a com-
parison with the values from Table 10.3 for a model with one single element, one can
see that the convergence behavior is identical.
For practical applications however one would not calculate the tangent stiffness
matrix of the global total system but the derivatives element by element. Subsequently
the tangent stiffness matrices of the single elements—as in the case of the total
stiffness matrix—can be put together for the tangent stiffness matrix of the global
total system:

K T =
∑

K e
T. (10.81)

7 One considers that the calculation of the inverse has to be carried out numerically in commercial
programs.
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Table 10.4 Numerical values for the complete Newton–Raphson method in the case of two
elements with an external load of F2 = 800 kN. Geometry: A = 100 mm2, L I = L II = 200 mm.
Material behavior: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 0 0 –
1 22.857143 45.714286 1
2 32.481203 64.962406 0.296296
3 35.124722 70.249443 0.075261
4 35.359614 70.719229 0.006643
5 35.361498 70.722998 0.000053
6 35.361499 70.722998 0.000000

For a linear element with a strain dependent modulus of elasticity according to
Eq. (10.3) follows from the stiffness matrix according to Eq. (10.28), meaning

ke = AE0

L2 (L + α01 u1 − α01 u2)

[
1 −1
−1 1

]
, (10.82)

under application of the calculation instruction (10.73), the following tangent stiff-
ness matrix for a single element with two nodes:

K e
T = ke +

[
α01u1 − α01u2 −α01u1 + α01u2
−α01u1 + α01u2 α01u1 − α01u2

]

= AE0

L2 (L + 2α01 u1 − 2α01 u2)

[
1 −1
−1 1

]
. (10.83)

10.3.3 Modified Newton–Raphson Method

10.3.3.1 Modified Newton–Raphson Method for a Finite Element
Model with One Unknown

The disadvantage of the complete Newton–Raphson method is that the tangent
stiffness matrix has to be calculated and inverted subsequently at each iteration step.
If the tangent stiffness matrix is only calculated once at the beginning, one attains
the modified Newton–Raphson method [1, 5, 6]. From Eq. (10.45) the modified
iteration scheme results in:

u( j+1)
2 = u( j)

2 − r(u( j)
2 )

dr(u(0)2 )

du2

= u( j)
2 −

(
K (0)

T

)−1
r(u( j)

2 ). (10.84)
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Fig. 10.11 Schematic illus-
tration of the modified
Newton–Raphson itera-
tion

A schematic illustration is given in Fig. 10.11. One can see that the same initial tangent
is used in every iteration step, whereby in comparison with the complete method,
more iteration steps result; the method does not converge quadratically anymore but
only linearly. However, the calculation intensive inversion of the tangent stiffness
matrix in every step drops out and the calculation simplifies significantly.
If the iteration instruction of the modified method according to Eq. (10.84) is applied
to the problem according to Fig. 10.3, the summarized results in Table 10.5 are
obtained. Thirty-six steps are necessary at this point for the fulfillment of the con-
vergence criteria (<10−6) and the reference value of u2 = 70.722998 can only
be achieved after 53 iteration steps. A comparison with the two other iteration
schemes shows that the modified Newton–Raphson method—with functions of
one variable—converges the slowest. However one considers that this conclusion
does not have to be valid for a system of equations anymore.

10.3.3.2 Modified Newton–Raphson Method for a Finite Element
Model with Various Unknowns

The modified Newton–Raphson method for a model with various unknowns is
generally given through the following equation

u( j+1) = u( j) −
(

K (0)
T

)−1
r(u( j)), (10.85)

or alternatively for the example according to Fig. 10.3:

[
u2

u3

]
( j+1)

=
[

u2

u3

]
( j)

− L2(4AE0)
−1

L

2
− 2α01u(0)2

⎡
⎢⎣

1 1

1
L − 2α01u3

L

2
+ 2α01u2 − 2α01u3

⎤
⎥⎦
(0)
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Table 10.5 Numerical values for a modified Newton–Raphson method at an external load of
F2 = 800 kN. Geometry: A = 100 mm2, L = 400 mm. Material behavior: E0 = 70, 000 MPa,
E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) ε

( j)
2

√√√√
(

u( j)
2 −u( j−1)

2

)2

(
u( j)

2

)2

0 0 0 –
1 45.714286 0.114286 1
2 56.163265 0.140408 0.186047
3 61.485848 0.153715 0.086566
4 64.616833 0.161542 0.048455
5 66.590961 0.166477 0.029646
6 67.886066 0.169715 0.019078
7 68.756876 0.171892 0.012665
8 69.351825 0.173380 0.008579
9 69.762664 0.174407 0.005889
10 70.048432 0.175121 0.004080
11 70.248200 0.175621 0.002844
12 70.388334 0.175971 0.001991
13 70.486873 0.176217 0.001398
14 70.556282 0.176391 0.000984
15 70.605231 0.176513 0.000693
16 70.639779 0.176599 0.000489
17 70.664177 0.176660 0.000345
18 70.681416 0.176704 0.000244
19 70.693598 0.176734 0.000172
20 70.702210 0.176756 0.000122
.
.
.

.

.

.
.
.
.

.

.

.

35 70.722883 0.176807 0.000001
36 70.722916 0.176807 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

53 70.722998 0.176807 0.000000

×
⎛
⎜⎝4AE0

L2

⎡
⎢⎣ L − α01u3 − L

2
− α01u2 + α01u3

− L

2
− α01u2 + α01u3

L

2
+ α01u2 − α01u3

⎤
⎥⎦
( j)

[
u2

u3

]
( j)
−
[

0
F3

]⎞⎟⎠ .

(10.86)

The numerical values of the iteration are summarized in Table 10.8. Due to a com-
parison with the values from Table 10.5 for the model with one single element, one
can see that the convergence behavior is identical.
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10.3.4 Convergence Criteria

For the evaluation, if an iterative scheme converges, the following normalized dis-
placement difference in the form

√√√√√√
(

u( j)
2 − u( j−1)

2

)2 +
(

u( j)
3 − u( j−1)

3

)2 + · · · +
(

u( j)
m − u( j)

m

)2

(
u( j)

2

)2 +
(

u( j)
3

)2 + · · · +
(

u( j)
m

)2 (10.87)

was already used in previous chapters, whereupon m represents the number of
unknown degrees of freedom. If this value is below a certain limit value, for example
the computational accuracy in the program, the iteration can be regarded as con-
verged.
Alternatively, the residual vector r( j) = K (u( j))u( j)− F( j) can be regarded, whose
norm can be indicated as follows

√√√√ m∑
i = 1

(
r ( j)

i

)2
. (10.88)

If this norm is below a certain limit value, convergence is achieved.
At the end of this chapter, the discussed iteration instructions are summarized in
Table 10.6, and those are opposed to the calculation procedure for linear elasticity.
It needs to be remarked at this point that the three listed procedures for linear elasticity
simplify as the method of inversion of the stiffness matrix in the case of linear
elasticity.

Table 10.6 Calculation procedure in the linear and nonlinear elasticity
(N–R = Newton–Raphson)

Procedure Calculation instruction

Linear elasticity: K u = F
• Inversion of the stiffness matrix u = (K )−1 F
• · · · · · ·
Nonlinear elasticity: K (u)u = F

• Direct iteration u( j+1) = (K (u( j))
)−1

F

• Complete N–R iteration u( j+1) = u( j) −
(

K ( j)
T

)−1
r(u( j))

• Modified N–R iteration u( j+1) = u( j) −
(

K (0)
T

)−1
r(u( j))

• · · · · · ·

In the literature, a further series of methods are known, as for example the arc length
method, with which the convergence range of the discussed methods here can be
expanded significantly [7–9].
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Table 10.7 Numerical values for the complete Newton–Raphson method in the case of one
element with quadratic shape function with one external load of F2 = 800 kN. Geometry: A =
100 mm2, L = 400 mm. Material behavior: E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 0 0 –
1 22.857143 45.714286 1
2 32.481203 64.962406 0.296296
3 35.124722 70.249443 0.075261
4 35.359614 70.719229 0.006643
5 35.361498 70.722998 0.000053
6 35.361499 70.722998 0.000000

10.4 Sample Problems and Supplementary Problems

10.4.1 Sample Problems

10.1 Example: Tension Bar with Quadratic Approach and Strain Dependent
Modulus of Elasticity
One needs to derive the stiffness matrix for a bar element with quadratic shape
functions for a strain dependent modulus of elasticity in the form

E(u) = E0

(
1 − α01

du

dx

)
. (10.89)

In this, the element has length L and the inner node is placed exactly in the middle
of the element. Subsequently one needs to calculate the tangent stiffness matrix K T
based on the stiffness matrix.

10.1 Solution
Based on Eq. (10.90), meaning

ke = AE0

L∫
0

(
1 − α01

dN
dx

up

)
︸ ︷︷ ︸

scalar

dNT

dx

dN
dx

dx, (10.90)

and the shape functions for a quadratic bar element, or alternatively their derivatives

N1(x) = 1 − 3
x

L
+ 2

( x

L

)2
,

dN1(x)

dx
= − 3

L
+ 4

x

L2 , (10.91)
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N2(x) = 4
x

L
− 4

( x

L

)2
,

dN2(x)

dx
= 4

L
− 8

x

L2 , (10.92)

N3(x) = − x

L
+ 2

( x

L

)2
,

dN2(x)

dx
= − 1

L
+ 2

x

L2 , (10.93)

the stiffness matrix in general results in:

ke = AE0

L∫
0

(
1 − α01

dN1

dx
u1 − α01

dN2

dx
u2 − α01

dN3

dx
u3

)

×

⎡
⎢⎢⎢⎢⎢⎣

dN1

dx

dN1

dx

dN1

dx

dN2

dx

dN1

dx

dN3

dx
dN2

dx

dN1

dx

dN2

dx

dN2

dx

dN2

dx

dN3

dx
dN3

dx

dN1

dx

dN3

dx

dN2

dx

dN3

dx

dN3

dx

⎤
⎥⎥⎥⎥⎥⎦

dx . (10.94)

After completion of the integration, the element stiffness matrix results herefrom to:

ke = AE0

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦

+ AE0α01

3L2

⎡
⎣15u1 − 16u2 + u3 −16u1 + 16u2 u1 − u3

−16u1 + 16u2 16u1 − 16u3 −16u2 + 16u3
u1 − u3 −16u2 + 16u3 −u1 + 16u2 − 15u3

⎤
⎦ .

(10.95)

Application of the calculation instruction for a (3×3)matrix according to Eq. (10.75)
leads to the tangent stiffness matrix as:

K T = ke + AE0α01

3L2

⎡
⎣15u1 − 16u2 + u3 −16u1 + 16u2 u1 − u3

−16u1 + 16u2 16u1 − 16u3 −16u2 + 16u3
u1 − u3 −16u2 + 16u3 −u1 + 16u2 − 15u3

⎤
⎦ ,

(10.96)

or, alternatively, after the summarization of the two matrices with the nodal displace-
ments to:

K e
T = AE0

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦

+ AE0α01

3L2

⎡
⎣30u1 − 32u2 + 2u3 −32u1 + 32u2 2u1 − 2u3

−32u1 + 32u2 32u1 − 32u3 −32u2 + 32u3
2u1 − 2u3 −32u2 + 32u3 −2u1 + 32u2 − 30u3

⎤
⎦ .

(10.97)
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10.2 Example: One-Sided Fixed Tension Bar with Quadratic Approach
and Strain Dependent Modulus of Elasticity
With the derived bar element in example 10.1 with quadratic shape function and strain
dependent modulus of elasticity one can calculate a bar, which is fixed supported
on the left-hand end and is loaded through a single force of 800 kN on the right-
hand end. The material behavior is assumed as in example 10.1, whereupon the
values E0 = 70,000 MPa and α01 = 2 can be used. The length of the bar accounts
L = 400 mm and the cross-sectional area is A = 100 mm2. For the solution one can
make us of the complete Newton–Raphson method.

10.2 Solution
Under consideration of the boundary conditions, the principal finite element equation
results as follows from Eq. (10.95)

(
AE0

3L

[
16 −8
−8 7

]
+ AE0α01

3L2

[−16u3 −16u2 + 16u3
−16u2 + 16u3 16u2 − 15u3

])[
u2
u3

]
=
[

0
F3

]
.

(10.98)

and from Eq. (10.97) the tangent stiffness matrix follows under consideration of the
boundary conditions as

K e
T = AE0

3L

[
16 −8
−8 7

]
+ AE0α01

3L2

[
32u1 − 32u3 −32u2 + 32u3
−32u2 + 32u3 −2u1 + 32u2 − 30u3

]
.

(10.99)

The tangent stiffness matrix still has to be inverted for the iteration scheme according
to Eq. (10.85) and one obtains the following representation after a short calculation:

(K T)
−1 = 3L2

AE0(3L2 − 12α01u3L + 64α2
01u2u3 − 4α2

01u2
3 − 64α2

01u2
2)

×
⎡
⎢⎣

7

16
L + 2α01u2 − 15

8
α01u3

1

2
L + 2α01u2 − 2α01u3

1

2
L + 2α01u2 − 2α01u3 L − 2α01u3

⎤
⎥⎦ . (10.100)

The numerical results of the iteration are summarized in Table 10.7. A comparison
with the results of the discretization with two linear elements in Table 10.4 shows
that the results for the regarded case are identical.

10.3 Example: Tension Bar with Three Different Elements for Strain
Dependent Modulus of Elasticity and Force Boundary Condition
The illustrated finite element model in Fig. 10.12 of a one-sided fixed bar consists
of three elements, which exhibit different characteristics. The bar is loaded with a
point load F0 on the right-hand end.
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Table 10.8 Numerical values for a modified Newton–Raphson method in the case of two elements
with an external load of F2 = 800 kN. Geometry: A = 100 mm2, L = 400 mm. Material behavior:
E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm)

√√√√
(

u( j)
2 −u( j−1)

2

)2+
(

u( j)
3 −u( j−1)

3

)2

(
u( j)

2

)2+
(

u( j)
3

)2

0 0 0 –
1 22.857143 45.714286 1
2 28.081633 56.163265 0.186046
3 30.742924 61.485848 0.086566
4 32.308416 64.616833 0.048455
5 33.295481 66.590961 0.029646
6 33.943033 67.886066 0.019078
7 34.378438 68.756876 0.012665
8 34.675913 69.351825 0.008579
9 34.881332 69.762664 0.005889
10 35.024216 70.048432 0.004080
.
.
.

.

.

.
.
.
.

.

.

.

36 35.361458 70.722916 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

53 35.361499 70.722998 0.000000

Fig. 10.12 Tension bar with three different elements for strain dependent modulus of elasticity and
force boundary condition

One considers the case that all three bars have a linear strain dependent modulus of
elasticity according to Eq. (10.3) in the form

Ei (ε) = Ei
0 (1 − εα01) , i = I, II, III. (10.101)

For the considered problem the following relations for the initial axial rigidity can
be assumed:

(E0 A)I = 3E0 A, (10.102)

(E0 A)II = 2E0 A, (10.103)

(E0 A)III = 1E0 A. (10.104)

As a numerical value one can use F0 = 800 kN, A = 100 mm2, L I = L II =
L III = 400/3 mm, E0 = 70,000 MPa, E1 = 49,000 MPa, ε1 = 0.15 and one can
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define the displacement of the nodes with the complete Newton–Raphson iteration
procedure.

10.3 Solution
The element stiffness matrices according to Eq. (10.28) for the three elements result in

kI = 3E0 A

L2 (L + α01u1 − α01u2)

[
1 −1

−1 1

]
, (10.105)

kII = 2E0 A

L2 (L + α01u2 − α01u3)

[
1 −1

−1 1

]
, (10.106)

kIII = 1E0 A

L2 (L + α01u3 − α01u3)

[
1 −1

−1 1

]
, (10.107)

which can be composed to the following reduced system of equations under consid-
eration of the fixed support:

E0 A

L2

⎡
⎢⎢⎢⎢⎣

3L − 3α01u2 + 2L −2L − 2α01u2 + 2α01u3 0
+2α01u2 − 2α01u3

−2L − 2α01u2 + 2α01u3 2L + 2α01u2 − 2α01u3 −1L − 1α01u3 + 1α01u4

+1L + 1α01u3 − 1α01u4

0 −1L − 1α01u3 + 1α01u4 1L + 1α01u3 − 1α01u4

⎤
⎥⎥⎥⎥⎦

×
⎡
⎣ u2

u3

u4

⎤
⎦ =

⎡
⎣ 0

0
F0

⎤
⎦ . (10.108)

The tangent stiffness matrices for the three elements result in the following according
to Eq. (10.83)

K I
T = 3E0 A

L2 (L + 2α01u1 − 2α01u2)

[
1 −1
−1 1

]
, (10.109)

K II
T = 2E0 A

L2 (L + 2α01u2 − 2α01u3)

[
1 −1
−1 1

]
, (10.110)

K III
T = 1E0 A

L2 (L + 2α01u3 − 2α01u3)

[
1 −1
−1 1

]
(10.111)

and can be combined to the following tangent stiffness matrix of the reduced system
of equations under consideration of the fixed support:

K T = E0 A

L2

⎡
⎢⎢⎢⎢⎣

3L − 6α01u2 + 2L + 4α01

u2 − 4α01u3 −2L − 4α01u2 + 4α01u3 0
−2L − 4α01u2 + 4α01u3 2L + 4α01u2 − 4α01u3

+1L + 2α01u3 − 2α01u4 −1L − 2α01u3 + 2α01u4

0 −1L − 2α01u3 + 2α01u4 1L + 2α01u3 − 2α01u4

⎤
⎥⎥⎥⎥⎦ .

(10.112)
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Table 10.9 Numerical values for the complete Newton–Raphson method in the case of three
elements with an external load of F2 = 800 kN. Geometry: Ai = 100 mm2, Li = 400/3 mm.
Material behavior: E0 = β i × 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15

Iteration j u( j)
2 (mm) u( j)

3 (mm) u( j)
4 (mm)

√√√√∑3
i=1

(
u( j)

i −u( j−1)
i

)2

∑3
i=1

(
u( j)

i

)2

0 0 0 0 –
1 5.079365 12.698413 27.936508 1
2 5.535937 14.283733 35.937868 0.209121
3 5.539687 14.313393 37.729874 0.044001
4 5.539687 14.313407 37.886483 0.003831
5 5.539687 14.313407 37.887740 0.000030
6 5.539687 14.313407 37.887740 0.000000

The iteration scheme u( j+1) = u( j) − (K ( j)
T )−1r(u( j)) can be used via the reduced

system of equations and the tangent stiffness matrix. The numerical results are sum-
marized in Table 10.9.

10.4 Example: Tension Bar with Three Different Elements for Strain Dependent
Modulus of Elasticity and Displacement Boundary Condition
The finite element model of an one-sided fixed bar, which is illustrated in Fig. 10.13,
consists of three elements, which exhibit different characteristics. A displacement
u0 is given on the right-hand end of the bar.

Fig. 10.13 Tension bar with three different elements for strain dependent modulus of elasticity and
displacement boundary condition

One can consider the case that all three bars exhibit a linear strain dependent modulus
of elasticity according to Eq. (10.3) in the form

Ei (ε) = Ei
0 (1 − εα01) , i = I, II, III. (10.113)

The following relations for the initial axial rigidity can be assumed for the considered
problem:

(E0 A)I = βI E0 A, (10.114)

(E0 A)II = βII E0 A, (10.115)

(E0 A)III = βIII E0 A, (10.116)
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whereupon two different cases need to be analyzed:

βI βII βIII uo in mm
Case a) 1 1 1 33
Case b) 3 2 1 37.887740

. (10.117)

As further numerical values one can use A = 100 mm2, L I = L II = L III =
400/3 mm, E0 = 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15 and one can define
the displacement of the nodes and the reaction force on the right-hand end via the
complete Newton–Raphson iteration method.

10.4 Solution
According to the procedure in example 10.3, the total stiffness matrix results as
follows, under consideration of the fixed support on the left-hand end:

E0 A

L2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βIL − βIα01u2+
βIIL + βIIα01u2

−βIIα01u3

−βIIL − βIIα01u2

+βIIα01u3
0

−βIIL − βIIα01u2

+βIIα01u3

βIIL + βIIα01u2

−βIIα01u3 + βIIIL
+βIIIα01u3 − βIIIα01u4

−βIIIL − βIIIα01u3

+βIIIα01u4

0
−βIIIL − βIIIα01u3

+βIIIα01u4

βIIIL + βIIIα01u3

−βIIIα01u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10.118)

If the known displacement is brought to the ‘right-hand side’ of the system of equa-
tions, the following reduced (2 × 2) system of equations results after canceling of
the column and line, which belong to u4:

E0 A

L2

⎡
⎢⎢⎢⎢⎢⎢⎣

βIL − βIα01u2+
βIIL + βIIα01u2

−βIIα01u3

−βIIL − βIIα01u2

+βIIα01u3

−βIIL − βIIα01u2

+βIIα01u3

βIIL + βIIα01u2

−βIIα01u3 + βIIIL
+βIIIα01u3 − βIIIα01u4

⎤
⎥⎥⎥⎥⎥⎥⎦

[
u2

u3

]

= E0 A

L2

[
0

−(−βIIIL − βIIIα01u3 + βIIIα01u4)u4

]
. (10.119)

According to the procedure in example 10.3 the tangent stiffness matrix results in
(2 × 2) form in:
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K T = E0 A

L2

⎡
⎢⎢⎢⎢⎣

βIL − 2βIα01u2+
βIIL + 2βIIα01u2

−2βIIα01u3

−βIIL − 2βIIα01u2

+2βIIα01u3

−βIIL − 2βIIα01u2

+2βIIα01u3

βIIL + 2βIIα01u2 − 2βIIα01u3

+βIL + 2βIα01u3 − 2βIα01u4

⎤
⎥⎥⎥⎥⎦ . (10.120)

The iteration scheme u( j+1) = u( j) − (K ( j)
T )−1r(u( j)) can be used due to the

reduced system of equations and the tangent stiffness matrix. The reaction force Fr4
on the right-hand end can be calculated after each iteration step by evaluating the 4th
equation of the total system. The numerical results are summarized in Tables 10.10
and 10.11.

Table 10.10 Numerical values for the complete Newton–Raphson method in the case of three
elements with displacement boundary conditions of u0 = 33 mm. Geometry: Ai = 100 mm2,
Li = 400/3 mm. Material behavior: E0 = β i × 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15,
βI = βII = βIII = 1

Iteration j u( j)
2 (mm) u( j)

3 (mm) F ( j)
r4 (kN)

√√√√∑2
i=1

(
u( j)

i −u( j−1)
i

)2

∑2
i=1

(
u( j)

i

)2

0 0 0 0 –
1 16.338235 32.676471 16.902865 1
2 11.514910 23.029821 445.153386 0.418876
3 11.005802 22.011604 481.804221 0.046258
4 11.000001 22.000002 482.212447 0.000527
5 11.000000 22.000000 482.212500 0.000000

Table 10.11 Numerical values for the complete Newton–Raphson method in the case of three ele-
ments with displacement boundary conditions of u0 = 37.887740 mm. Geometry: Ai = 100 mm2,
Li = 400/3 mm. Material behavior: E0 = β i × 70, 000 MPa, E1 = 49, 000 MPa, ε1 = 0.15,
βI = 3, βII = 2, βIII = 1

Iteration j u( j)
2 (mm) u( j)

3 (mm) F ( j)
r4 (kN)

√√√√∑2
i=1

(
u( j)

i −u( j−1)
i

)2

∑2
i=1

(
u( j)

i

)2

0 0 0 0 –
1 6.152350 15.380875 782.695217 1
2 5.539025 14.319014 799.913803 0.079871
3 5.539687 14.313407 800.000003 0.000368
4 5.539687 14.313407 800.000000 0.000000

Case (a) with the results in Table 10.10 can be considered as a test case for the iteration
scheme. Due to the displacement boundary condition on the right-hand end and the
identical elements, the iteration needs to result in u2 = 1

3 u0 and u3 = 2
3 u0 at this

point. As can be seen from Table 10.10, this is the case after five iterations for the
chosen convergence criteria. The case (b) with the results in Table 10.11 represents the
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reversion of example 10.3. Since the result for the displacement from example 10.3
has been brought up as a boundary condition, the reaction force in the converged
condition has to achieve a value of 800 kN. This is the case after four iteration
steps.

10.4.2 Supplementary Problems

10.5 Strain Dependent Modulus of Elasticity with Quadratic Course
The strain dependent modulus of elasticity, which is illustrated in Fig. 10.14 was
defined by experiment. Approximate the course with a quadratic function of the
form E(ε) = a +bε+cε2 and define the constants a, . . . , c. Subsequently, calculate
the stress–strain course through integration and illustrate the course graphically. In
the next step, derive the element stiffness matrix for a linear bar element under
consideration of the strain dependent modulus of elasticity. In the last step, define
the tangent stiffness matrix.

Fig. 10.14 Experimentally
determined strain dependent
modulus of elasticity

10.6 Direct Iteration with Different Initial Values
Discretize the bar according to Fig. 10.3 with one single linear element and use the
direct iteration for the solution at different initial values: u(0)2 = 0 or 30 or 220 mm.
Further data can be taken from Table 10.1.

10.7 Complete Newton–Raphson Scheme for a Linear Element with Quadratic
Modulus of Elasticity
The beam illustrated in Fig. 10.15a can be discretized via one single linear element.
The strain dependent modulus of elasticity exhibits a quadratic course according
to Fig. 10.15b. Based on the element stiffness matrix from problem 10.5, solve the
problem with the complete Newton–Raphson scheme for an external force of F =
370 kN. As convergence criteria use a relative displacement difference of <10−6.
Subsequently, analyze the convergence range of the iteration scheme in general.
For the geometry the concrete values A = 100 mm2 and L = 400 mm and for
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(a) (b)

Fig. 10.15 Bar element under point load and quadratic strain dependency of the modulus of
elasticity

the material behavior the concrete values E0 = 70, 000 MPa and ε1 = 0.15 can
be used.

10.8 Strain Dependent Modulus of Elasticity with General Quadratic Course
In extension of problem 10.5 one can consider the illustrated course in Fig. 10.16
with the three sampling points (0, E0), ( 1

2ε1, β05 E0) and (ε1, β1 E0). The form of
the curve can be adapted more easily to the sampling points with the scale values
β05 and β1. The curve course can be approximated through a quadratic course in the
form E(ε) = a + bε + cε2. Define the constants a, . . . , c and derive the element
stiffness matrix for a linear bar element under consideration of the strain dependent
modulus of elasticity.

Fig. 10.16 Experimentally
determined strain dependent
modulus of elasticity; general
quadratic course
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Chapter 11
Plasticity

Abstract The continuum mechanics basics for the one-dimensional bar will be
compiled at the beginning of this chapter. The yield condition, the flow rule, the hard-
ening law and the elasto-plastic modulus will be introduced for uniaxial, monotonic
loading conditions. Within the scope of the hardening law, the description is limited
to isotropic hardening, which occurs for example for the uniaxial tensile test with
monotonic loading. For the integration of the elasto-plastic constitutive equation,
the incremental predictor-corrector method is generally introduced and derived for
the fully implicit and semi-implicit backward-Euler algorithm. On crucial points the
difference between one- and three-dimensional descriptions will be pointed out, to
guarantee a simple transfer of the derived methods to general problems. Calculated
examples and supplementary problems with short solutions serve as an introduction
for the theoretical description.

11.1 Continuum Mechanics Basics

The characteristic feature of plastic material behavior is that a remaining strain εpl

occurs after complete unloading, see Fig. 11.1a. Solely the elastic strains εel return
to zero at complete unloading. An additive composition of the strains by their elastic
and plastic parts

ε = εel + εpl (11.1)

is permitted at restrictions to small strains. The elastic strains εel can hereby be
determined via Hooke’s law, whereby ε in Eq. (3.2) has to be substituted by εel.
Furthermore, no explicit correlation is given anymore for plastic material behavior
in general between stress and strain, since the strain state is also dependent on the
loading history. Due to this, rate equations are necessary and need to be integrated
throughout the entire load history. Within the framework of the time-independent

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 273
DOI: 10.1007/978-3-642-31797-2_11, © Springer-Verlag Berlin Heidelberg 2013
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(a) (b)

Fig. 11.1 Uniaxial stress–strain diagrams for different isotropic hardening approaches: a arbitrary
hardening; b linear hardening and ideal plasticity

plasticity investigated here, the rate equations can be simplified to incremental
relations. From Eq. (11.1) the additive composition of the strain increments
results in:

dε = dεel + dεpl . (11.2)

The constitutive description of plastic material behavior includes

• a yield condition,
• a flow rule and
• a hardening law.

In the following, solely the case of the monotonic loading1 is considered, so that
solely the isotropic hardening is considered in the case of the material hardening. This
important case, for example, occurs in the experimental mechanics at the uniaxial
tensile test with monotonic loading. Furthermore, it is assumed that the yield stress
is identical in the tensile and compressive regime: kt = kc = k.

11.1.1 Yield Condition

The yield condition enables one to determine whether the relevant material suffers
only elastic or also plastic strains at a certain stress state at a point of the relevant
body. In the uniaxial tensile test, plastic flow begins when reaching the initial yield

1 The case of unloading or alternatively load reversal will not be regarded at this point due to
simplification reasons.
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(a) (b)

Fig. 11.2 Schematic illustration of the values of the yield condition and the direction of the stress
gradient in the a one-dimensional and b multi-dimensional stress space. Here the σ–σ coordinate
system represents a schematic illustration of the n-dimensional stress space

stress kinit, see Fig. 11.1. The yield condition in its general one-dimensional form
can be set as follows (IR × IR → IR):

F = F(σ,κ), (11.3)

whereupon κ represents the inner variable of the isotropic hardening. In the case of
the ideal plasticity, see Fig. 11.1b, the following is valid: F = F(σ). The values of
F have the following mechanical meaning, see Fig. 11.2:

F(σ,κ) < 0 → elastic material behavior, (11.4)

F(σ,κ) = 0 → plastic material behavior, (11.5)

F(σ,κ) > 0 → invalid. (11.6)

A further simplification results under the assumption that the yield condition can
be split into a pure stress fraction f (σ), the so-called yield criterion,2 and into an
experimental material parameter k(κ), the so-called flow stress:

F(σ,κ) = f (σ)− k(κ) . (11.7)

For a uniaxial tensile test (see Fig. 11.1) the yield condition can be noted in the
following form:

F(σ,κ) = |σ| − k(κ) ≤ 0. (11.8)

2 If the unit of the yield criterion equals the stress, f (σ) represents the equivalent stress or effective
stress. In the general three-dimensional case the following is valid under consideration of the
symmetry of the stress tensor σeff : (IR6 → IR+).
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If one considers the idealized case of the linear hardening (see Fig. 11.1b), Eq. (11.8)
can be written as

F(σ,κ) = |σ| − (kinit + Eplκ) ≤ 0. (11.9)

Parameter Epl hereby is the plastic modulus (see Fig. 11.3), which becomes zero in
the case of the ideal plasticity:

F(σ,κ) = |σ| − kinit ≤ 0. (11.10)

11.1.2 Flow Rule

The flow rule serves as a mathematical description of the evolution of the infinitesimal
increments of the plastic strain dεpl in the course of the load history of the body. In
its most general one-dimensional form, the flow rule can be set up as follows [1]:

dεpl = dλ r(σ,κ), (11.11)

whereupon the factor dλ is described as the consistency parameter (dλ ≥ 0) and
r : (IR × IR → IR) as the function of the flow direction.3 One considers that solely
for dεpl = 0 dλ = 0 results. Based on the stability postulate of Drucker [2] the
following flow rule can be derived4:

dεpl = dλ
∂F(σ,κ)

∂σ
. (11.12)

Such a flow rule is referred to as the normal rule5 (see Fig. 11.2a) or due to r =
∂F(σ,κ)/∂σ as the associated flow rule.
Experimental results, among other things from the area of the granular materials [4]
can however be approximated better if the stress gradient is substituted through a
different function, the so-called plastic potential Q. The resulting flow rule is then
referred to as the non-associated flow rule:

dεpl = dλ
∂Q(σ,κ)

∂σ
. (11.13)

3 In the general three-dimensional case r hereby defines the direction of the vector dεpl, while the
scalar factor defines the absolute value.
4 A formal alternative derivation of the associated flow rule can occur via the Lagrange multiplier
method as extreme value with side-conditions from the principle of maximum plastic work [3].
5 In the general three-dimensional case the image vector of the plastic strain increment has to be
positioned upright and outside oriented to the yield surface, see Fig. 11.2b.
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In the case of quite complicated yield conditions often the case occurs that a more
simple yield condition is used for Q in the first approximation, for which the gradient
can easily be determined.
The application of the associated flow rules (11.12) to the yield conditions according
to Eqs. (11.8)–(11.10) yields for all three types of yield conditions (meaning arbitrary
hardening, linear hardening and ideal plasticity):

dεpl = dλ sgn(σ), (11.14)

whereupon sgn(σ) represents the so-called sign function,6 which can adopt the fol-
lowing values:

sgn(σ) =
⎧⎨
⎩

−1 for σ < 0
0 for σ = 0

+1 for σ > 0
. (11.15)

11.1.3 Hardening Law

The hardening law allows the consideration of the influence of material hardening
on the yield condition and the flow rule. Within isotropic hardening the yield stress
is described as dependent on an inner variable κ:

k = k(κ) . (11.16)

If the equivalent plastic strain7 is used for the hardening variable (κ = |εpl|), then
one talks about strain hardening.
Another possibility is to describe the hardening in dependency of the specific8 plastic
work

(
κ = wpl = ∫

σdεpl
)
. Then one talks about work hardening. If Eq. (11.16) is

combined with the flow rule according to (11.14), the evolution equation for the
isotropic hardening variable results in:

dκ = d|εpl| = dλ . (11.17)

6 Also signum function; from the Latin ‘signum’ for ‘sign’.
7 The effective plastic strain is in the general three-dimensional case the function ε

pl
eff : (IR6 → IR+).

In the here regarded one-dimensional case the following is valid: ε
pl
eff = √

εplεpl = |εpl|. Attention:
Finite element programs optionally use the more general definition for the illustration in the post

processor, this means ε
pl
eff =

√
2
3

∑
�ε

pl
i j

∑
�ε

pl
i j , which considers the lateral contraction at uniaxial

stress problems in the plastic area via the factor 2
3 . However in pure one-dimensional problems

without lateral contraction, this formula leads to an illustration of the effective plastic strain, which

is reduced by the factor
√

2
3 ≈ 0.816.

8 This is the volume-specific definition, meaning
[
wpl

] = N
m2

m
m = kg m

s2m2
m
m = kg m2

s2m3 = J
m3 .
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Fig. 11.3 Flow curve for dif-
ferent hardening approaches

Figure 11.3 shows the flow curve, meaning the graphical illustration of the yield
stress in dependence on the inner variable for different hardening approaches.

11.1.4 Elasto-Plastic Material Modulus

At plastic material behavior the stiffness of the material changes and the strain state
is dependent on the loading history. Therefore, the valid Hooke’s law for the linear-
elastic material behavior according to Eq. (3.2) has to be replaced by the following
infinitesimal incremental relation:

dσ = Eelpldε. (11.18)

In (11.18) Eelpl refers to the elasto-plastic material modulus (see Fig. 11.1b), which
is derived in the following.9 The total differential of the yield condition (11.8) gives:

dF =
(

∂F

∂σ

)
dσ +

(
∂F

∂κ

)
dκ = sgn(σ)dσ +

(
∂F

∂κ

)
dκ = 0 . (11.19)

If Hooke’s law (3.2) and the flow rule (11.14) are inserted in Eq. (11.2) for the
additive composition of the elastic and plastic strain, one obtains:

dε = 1

E
dσ + dλ sgn(σ). (11.20)

Multiplication of Eq. (11.20) with sgn(σ)E and integration in Eq. (11.19) yields,
under the use of the evolution equation of the hardening variables (11.17), the

9 In the general three-dimensional case one talks about the elasto-plastic stiffness matrix Celpl.

http://dx.doi.org/10.1007/978-3-642-31797-2_3
http://dx.doi.org/10.1007/978-3-642-31797-2_3
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consistency parameter:

dλ = sgn(σ)E

E −
(

∂F
∂κ

) dε . (11.21)

Insertion of the consistency parameters in Eq. (11.20) and solving for dσ finally
yields the elasto-plastic material modulus:

Eelpl = dσ

dε
=

E ×
(

∂F
∂κ

)
(

∂F
∂κ

)
− E

. (11.22)

For the special case of linear hardening, meaning ∂F
∂κ = −Epl, Eq. (11.22) can be

simplified as follows:

Eelpl = E × Epl

E + Epl . (11.23)

The different general definitions of the moduli are given comparatively in Table 11.1.

Table 11.1 Comparison of
the different definitions of the
stress–strain characteristics
(moduli)

Range Definition

Elastic E = dσ

dεel

Plastic Eelpl = dσ

dε
for ε > εinit

Epl = dσ

d|εpl|

A comparison of the different equations and formulations of the one-dimensional
plasticity with the general three-dimensional illustration (see for example [1, 5]) is
given in Table 11.2.
Further details regarding plasticity can be taken from, for example, [6–10].

11.2 Integration of the Material Equations

In comparison to a FE calculation with pure linear-elastic material behavior, the
calculation at a simulation of plastic material behavior cannot be conducted in one
step any longer, since at this point in general no obvious connection between stress
and strain exists.10 The load is instead applied incrementally, whereupon in each
increment a nonlinear system of equations has to be solved (for example Newton-
Raphson algorithm). The principal finite element equation therefore has to be set in

10 In the general case with six stress and strain components (under consideration of the symmetry
of the stress and strain tensor) an obvious relation only exists between effective stress and effective
plastic strain. In the one-dimensional case however these parameters reduce to: σeff = |σ| and
ε

pl
eff = |εpl|.
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Table 11.2 Comparison between general 3D plasticity and 1D plasticity with isotropic (arbitrary
or ideal) strain hardening

General 3D plasticity 1D plasticity arbitrary hardening 1D plasticity linear hardening

Yield condition
F(σ, q) ≤ 0 F = |σ| − k(κ) ≤ 0 F = |σ| − (kinit + Eplκ) ≤ 0
Flow rule
εpl = dλ × r(σ, q) dεpl = dλ × sgn(σ) dεpl = dλ × sgn(σ)
Hardening law
q = [κ,α]T κ κ

dq = dλ × h(σ, q) dκ = dλ dκ = dλ

Elasto-plastic material modulus

Celpl =
⎛
⎝C − (Cr)⊗

(
C ∂F

∂σ

)
(

∂F
∂σ

)T
Cr− ∂F

∂q h

⎞
⎠ Eelpl = E×

(
∂F
∂κ

)
(

∂F
∂κ

)
−E

Eelpl = E×Epl

E+Epl

the following incremental form:

K�u = �F . (11.24)

Additionally, the state variables—as for example the stress σn+1—have to be calcu-
lated for each increment (n + 1) in each integration point (Gauss point), based on
the stress state at the end of the previous increment (n) and the given strain increment
(�εn) (see Fig. 11.4).

Fig. 11.4 Schematic illustration of the integration algorithm for plastic material behavior in the
FEM; adopted from [11]. Integration points are marked schematically through the symbol ‘+’

To that, the explicit material law in infinitesimal form given has to be integrated
numerically according to Eqs. (11.2) and (11.22). Explicit integration methods, as
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(a) (b) (c)

Fig. 11.5 Schematic illustration of the predictor-corrector method in the stress–strain diagram:
a elastic predictor in the elastic area; b and c elastic predictor outside the yield surface boundary

for example the Euler procedure11 however are inaccurate and possibly unstable,
since a global error could accumulate [12]. Within the FEM one uses so-called
predictor-corrector methods (see Fig. 11.5), in which, first a so-called predictor is
explicitly determined and afterwards implicitly corrected instead of explicit integra-
tion procedures. In a first step, a test stress state (the so-called trial stress condition)
is calculated under the assumption of pure linear-elastic material behavior via an
elastic predictor12:

σtrial
n+1 = σn + E�εn︸ ︷︷ ︸

predictor�σel
n

. (11.25)

The given hardening condition in this test stress state equals the condition at the end
of the previous increment. Therefore, it is assumed that the load step occurs pure
elastically, meaning without plastic deformation and therefore without hardening:

κtrial
n+1 = κn . (11.26)

Based on the location of the test stress state in the stress space two elementary
conditions can be distinguished with the help of the yield condition:

(a) The stress state is in the elastic area (see Fig. 11.5a) or on the yield surface
boundary (valid stress state):

F
(
σtrial

n+1,κ
trial
n+1

)
≤ 0 . (11.27)

11 The explicit Euler procedure or polygon method (also Euler-Cauchy method) is the most
simple procedure for the numerical solution of an initial value problem. The new stress state results
according to this procedure in σn+1 = σn + Eelpl

n �ε, whereupon the initial value problem can be
named as dσ

dε = Eelpl(σ, ε) with σ(ε0) = σ0.
12 In the general three-dimensional case the relation is applied on the stress vector and the increment
of the strain vector: σtrial

n+1 = σn + C�εn .
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In this case, the test state can be taken on as the new stress/hardening state, since
it equals the real state:

σn+1 = σtrial
n+1, (11.28)

κn+1 = κtrial
n+1. (11.29)

In conclusion, one devolves to the next increment.
(b) The stress state is outside the yield surface boundary (invalid stress state), see

Fig. 11.5b, c:

F
(
σtrial

n+1,κ
trial
n+1

)
> 0 . (11.30)

If this case occurs, a valid state (F(σn+1,κn+1) = 0) on the yield surface
boundary is calculated in the second part of the procedure from the invalid test
state. Therefore, the necessary stress difference

�σpl = σtrial
n+1 − σn+1 (11.31)

is referred to as the plastic corrector.

For the calculation of the plastic corrector, the terms back projection, return map-
ping or catching up are used. Figure 11.6 illustrates the predictor-corrector method
schematically in the one- and multi-dimensional stress space in comparison.
In the following the back projection is considered closely. Detailed illustrations can
be found in [1, 5, 12–15].
The stress difference between initial and final state (stress increment)

�σn = σn+1 − σn (11.32)

results, according to Hooke’s law from the elastic part of the strain increment, which
results as the difference from the total strain increment and its plastic part:

�σn = E�εel
n = E

(
�εn −�ε

pl
n

)
. (11.33)

Figure 11.7 shows that the total strain increment in dependence on the test stress
state can be illustrated as follows:

�εn = εn+1 − εn = 1

E

(
σtrial

n+1 − σn

)
. (11.34)

If the last equation as well as the flow rule13 according to (11.14) are inserted in
Eq. (11.33), the final stress state σn+1 in dependence on the test stress state σtrial

n+1

13 At this point within the notation it is formally switched from dλ to �λ. Therefore the transition
from the differential to the incremental notation occurs.
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(a)

(b)

(c)

Fig. 11.6 Schematic illustration of the predictor-corrector method in the one-dimensional and
multi-dimensional stress space. Here the σ–σ coordinate system represents a schematic illustration
of the n-dimensional stress space. a elastic predictor in the elastic area; b and c elastic predictor
outside of the yield surface

results in:
σn+1 = σtrial

n+1 −�λn+1 E sgn(σ) . (11.35)

Dependent on the location of the evaluation of the function sgn(σ) different methods
result in the general case (see Table 11.3) to calculate the initial value for the plastic
corrector or alternatively to define the final stress state iteratively. To obtain an initial
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Fig. 11.7 Schematic illustration of the back projection in the stress–strain diagram. Adapted
from [1]

value for the plastic corrector, sgn(σ) can either be evaluated in the test stress state
(backward-Euler) or on the yield surface (forward-Euler; at the transition from
the elastic to the plastic area this is the initial yield surface, see Fig. 11.5b). If the
function sgn(σ) is evaluated in the final state at the iterative calculation, the normal
rule (see Sect. 11.1.2) is fulfilled in the final state. For this fully implicit backward-
Euler algorithm [also referred to as the closest point projection (CPP)] [1] however
in the general three-dimensional case derivatives of higher order must be calculated.
In the so-called cutting-plane algorithm [16] the function sgn(σ) is calculated in the
stress state of the i th iteration step. The normal rule is not exactly fulfilled in the
final state, however no calculations of derivatives of higher order are necessary. At
the so-called mid-point rule [17] the function sgn(σ) is evaluated in the final state
and on the yield surface as well as weighted in equal parts. If the function sgn(σ) is
only evaluated on the yield surface, this leads to the semi-implicit backward-Euler
algorithm [18], for which only derivatives of first order are necessary.
If one considers the dependency of the yield condition from the hardening vari-
able, one needs another equation, which describes the hardening. From the evolution
equation of the hardening variables (11.17) the following incremental relation results

κn+1 = κn +�λn+1 (11.36)

for the definition of the hardening variable.
Finally, it can be remarked that three of the listed integration rules in Table 11.3 can
be summarized via the following equation

σn+1 = σtrial
n+1 −�λn+1 E ([1 − η]sgn(σn)+ η sgn(σn+1)) . (11.37)

The parameter η then becomes 1, 0 or 1
2 .
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Table 11.3 Overview over the predictor-corrector methods

Location of the evaluation of sgn(n) Equation (11.35)

Initial value for corrector
Trial condition σn+1 = σtrial

n+1 −�λn+1 E sgn(σtrial
n+1)

On the flow curve σn+1 = σtrial
n+1 −�λn+1 E sgn(σn)

During the iteration
In the final stress state (fully implicit

backward-Euler algorithm) (closest
point projection)

σn+1 = σtrial
n+1 −�λn+1 E sgn(σn+1)

On the flow curve (semi-implicit
backward-Euler algorithm)

σn+1 = σtrial
n+1 −�λn+1 E sgn(σn)

In the final state on the flow curve
(mid-point rule)

σn+1 = σtrial
n+1 −�λn+1 E 1

2 × (sgn(σn+1)+ sgn(σn))

Stress state of i th iteration step
(cutting-plane algorithm)

σn+1 = σtrial
n+1 −�λn+1 E sgn(σ(i))

11.3 Derivation of the Fully Implicit Backward-Euler Algorithm

11.3.1 Mathematical Derivation

In this back projection method, the stress location on the yield surface, which is
energetically closest to the test state (see Sect. 11.3.2) is calculated. Therefore this
does not involve, as the name suggests, a calculation of the closest geometric point.
The assumption that the plastic work takes on a maximum at a given strain serves as a
basis for the method. Together with the elementary demand that the calculated stress
state has to lie on the flow curve (yield surface), the CPP method can be interpreted
in the mathematical sense as a solution of an extremal value problem (maximum of
the plastic work) with side-conditions (the unknown stress condition has to be on the
yield surface) [1]. The method is hereby implicit in the calculation of the function
sgn(σ) since the evaluation occurs in the final state n + 1. Because of this, the CPP
algorithm is also referred to as the fully implicit backward-Euler algorithm. In the
final state the following equations are therefore fulfilled:

σn+1 = σtrial
n+1 −�λn+1 E sgn(σn+1), (11.38)

κn+1 = κn +�λn+1, (11.39)

F = F(σn+1,κn+1) = 0. (11.40)

Outside of the final state, however, at each of these equations a residual14 r remains:

rσ(σ,κ,�λ) = σ − σtrial
n+1 +�λE sgn(σ) �= 0 or

= E−1σ − E−1σtrial
n+1 +�λ sgn(σ) �= 0 , (11.41)

14 from the Latin ‘residuus’ for left or remaining.
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rκ(κ,�λ) = κ − κn −�λ �= 0 or

= −κ + κn +�λ �= 0 , (11.42)

rF (σ,κ) = F(σ,κ) = |σ| − k(κ) �= 0 . (11.43)

The unknown stress/hardening state therefore represents the root of a vector function
m, which consists of the single residual functions. Furthermore, it seems to make
sense to also summarize the arguments for a single vector argument v:

m(v) ∈ (IR3 → IR3) =
⎡
⎣rσ(v)

rκ(v)

rF (v)

⎤
⎦ , v =

⎡
⎣ σ

κ
�λ

⎤
⎦ . (11.44)

The Newton method (iteration index: i) is used for the definition of the root15:

v(i+1) = v(i) −
(

dm
dv

(v(i))

)−1

m(v(i)) , (11.45)

whereupon the following

v(0) =
⎡
⎣ σ(0)

κ(0)

�λ(0)

⎤
⎦ =

⎡
⎣σtrial

n+1
κn

0

⎤
⎦ (11.46)

has to be used as the initial value. The Jacobian matrix ∂m
∂v

of the residual functions
results from the partial derivatives of the Eqs. (11.41)–(11.43) to:

∂m
∂v

(σ,κ,�λ) =

⎡
⎢⎢⎢⎢⎣

∂rσ
∂σ

∂rσ

∂κ

∂rσ

∂�λ
∂rκ
∂σ

∂rκ

∂κ

∂rκ

∂�λ
∂rF
∂σ

∂rF

∂κ

∂rF

∂�λ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ E−1 0 sgn(σ)

0 −1 1
sgn(σ) −∂k(κ)

∂κ 0

⎤
⎦ . (11.47)

Next to the fulfillment of Eqs. (11.38)–(11.40), which are given due to plasticity,
in each integration point also the global force equilibrium hast to be fulfilled. In
order to make use of the Newton method, it is even necessary at small strains in the
general three-dimensional case to define the elasto-plastic stiffness matrix,16 which
is consistent to the integration algorithm [11]. The consistent elasto-plastic modulus

15 The Newton method is usually used as follows for a one-dimensional function: x (i+1) =
x (i) −

(
d f
dx (x

(i))
)−1 × f (x (i)).

16 Also referred to as consistent elasto-plastic tangent modulus matrix, consistent tangent stiffness
matrix or algorithmic stiffness matrix.
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results from the following in the one-dimensional case:

Eelpl
n+1 = ∂σn+1

∂εn+1
= ∂�σn

∂εn+1
. (11.48)

With the inversion of the Jacobian matrix ∂m
∂v

, which has to be evaluated in the
converged condition of the above listed Newton iteration,

[(
∂m
∂v

)
n+1

]−1

=
⎡
⎣m̃11 m̃12 m̃13

m̃21 m̃22 m̃23
m̃31 m̃32 m̃33

⎤
⎦

n+1

(11.49)

= E

E + ∂k
∂κ

⎡
⎣

∂k
∂κ −sgn(σ) ∂k

∂κ sgn(σ)
sgn(σ) −1 −E−1

sgn(σ) E−1 ∂k
∂κ −E−1

⎤
⎦

n+1

(11.50)

the elasto-plastic modulus can be defined from

Eelpl
n+1 = m̃11. (11.51)

For this consider Eq. (11.22) and note that under the assumption of Eq. (11.7) the rela-
tion ∂F

∂κ = − ∂k
∂κ results. As can be seen from Eq. (11.50), the consistent elasto-plastic

modulus in the one-dimensional case does not depend on the chosen integration algo-
rithm and equals the continuum form given in Eq. (11.22). However at this point it
needs be considered that this identity does not have to exist at higher dimensions any
longer.
For the special case of linear hardening, meaning ∂k

∂κ = Epl = const., Eq. (11.45)
is not to be solved iteratively and the unknown solution vector vn+1 results directly
with the help of the initial value (11.46) in:

vn+1 = v(0) −
(

dm
dv

(v(0))

)−1

m(v(0)) , (11.52)

or in components as:

⎡
⎣ σn+1

κn+1
�λn+1

⎤
⎦ =

⎡
⎣σtrial

n+1
κn

0

⎤
⎦− E

E +Epl

×
⎡
⎢⎣

Epl −sgn(σtrial
n+1)E

pl sgn(σtrial
n+1)

sgn(σtrial
n+1) −1 −E−1

sgn(σtrial
n+1) E−1 Epl −E−1

⎤
⎥⎦
⎡
⎣ 0

0
F trial

n+1

⎤
⎦ . (11.53)



288 11 Plasticity

The third equation of (11.53) yields the consistency parameter in the case of the
linear hardening to:

�λn+1 = F trial
n+1

E + Epl . (11.54)

The insertion of the consistency parameter into the first equation of (11.53) yields
the stress in the final stress state to:

σn+1 =
(

1 − F trial
n+1

E + Epl × E

|σtrial
n+1|

)
σtrial

n+1 . (11.55)

From the second equation of (11.53) the isotropic hardening variable in the final
stress state is given in the following with the last two results:

κn+1 = κn + F trial
n+1

E + Epl = κn +�λn+1 . (11.56)

Finally, the plastic strain results into the following via the flow rule

ε
pl
n+1 = ε

pl
n +�λn+1 sgn(σn+1) , (11.57)

and the consistent elasto-plastic modulus can be defined according to Eq. (11.23).
To conclude, the calculation steps of the CPP algorithm are presented in compact
form:

I. Calculation of the Test State

σtrial
n+1 = σn + E�εn

κtrial
n+1 = κn

II. Test of Validity of the Stress State

III. Back Projection
Initial Values:

v(0) =
⎡
⎣ σ(0)

κ(0)

�λ(0)

⎤
⎦ =

⎡
⎣σtrial

n+1
κn

0

⎤
⎦
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Root Finding with the Newton Method:

In the termination criterion the vector norm (or length) of a vector has been used,

which results in the following ‖x‖ =
(∑n

i = 1 x2
i

)0.5
for an arbitrary vector x.

IV. Actualization of the Parameters

σn+1 = σ(i+1)

κn+1 = κ(n+1)

Eelpl
n+1 = m̃11

The internally used calculation precision in the FE system appears perfect as termi-
nation precision tvend in the Newton method.
Figure 11.7 shows that the entire strain increment in dependence on the test stress
state can be illustrated as

�εn = εn+1 − εn = E−1(σtrial
n+1 − σn). (11.58)

If one integrates the last equation and the flow rule17 according to (11.14) in
Eq. (11.33), the final stress state σn+1 in dependence on the test stress state σtrial

n+1
results in:

σn+1 = σtrial
n+1 −�λn+1 E sgn

(
σtrial

n+1

)
. (11.59)

The general procedure of an elasto-plastic finite element calculation is illustrated in
Fig. 11.8.
One can see that the solution of an elasto-plastic problem occurs on two levels. On
the global level, meaning for the global system of equations under consideration
of the boundary conditions, the Newton-Raphson iteration scheme is made use
of to define the incremental global displacement vector �un . By summing the dis-
placement increments, the total global displacement vector un+1 of the unknown
nodal displacement of a structure consisting of finite elements results. Via the strain-
displacement relation the strain εn+1 or, alternatively the strain increment �εn per

17 At this point it is switched from dλ to �λ.
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Fig. 11.8 General procedure of an elasto-plastic finite element calculation

element, can be determined from the nodal displacement.18 The strain increment of
an element is now used on the level of the integration points, to define the remaining
state variables iteratively with the help of a predictor-corrector method.

11.3.2 Interpretation as Convex Optimization Problem

The fully implicit backward-Euler algorithm can also be understood as a solution
of a convex optimization problem. A general derivation of the following is given in

18 At this point for the considered linear bar elements a constant strain distribution per element
results. In general, the strain results as a function of the element coordinates which is usually
evaluated on the integration points. Therefore, one would in the general case normally define a
strain vectorε per element, which combines the different strain values on the integration points.
This however is unnecessary for a linear bar element. A scalar strain or alternative stress value is
enough for the description.
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[1]. As an objective function the complementary energy has to be minimized hereby
under the side-condition that the yield condition is fulfilled.
In the following, the derivation of the optimization problem for the example of
isotropic strain hardening is illustrated. The complementary energy19 between the
test stress state and an arbitrary state (σ, |εpl|) at an increment of the back projection
can be split into its elastic and plastic parts according to

π̄(σ, |εpl|) = π̄el(σ, |εpl|)+ π̄pl(σ, |εpl|). (11.60)

At this point in the case of the considered linear elasticity, the complementary energy
π̄el and the potential energy πel are the same. Due to the assumption of the linear
isotropic hardening accordingly it is valid that π̄pl = πpl (see Fig. 11.9). Therefore
the following occurs for the complementary energy

π̄ = πel + π̄pl

=
∫ (

σtrial
n+1 − σ

)
dεel +

∫ (
|εpl| − |εpl

n |
)

dσ . (11.61)

The assumption of linearity in the elastic and plastic area, meaning dσ = Edεel and
dσ = Epldεpl, can be used in Eq. (11.61) so that the following finally results for the
complementary energy

π̄(σ, |εpl|) = 1

2
(σtrial

n+1 −σ)
1

E
(σtrial

n+1 −σ)+ 1

2
(|εpl

n |−|εpl|)Epl(|εpl
n |−|εpl|). (11.62)

The fractions of π̄ result as triangular areas in Fig. 11.9, which can also be used
directly for the definition of the complementary energy. For the case that the flow
curve k exhibits a certain course, the plastic energy parts for an arbitrary state (σ, |εpl|)
can be calculated via

πpl =
|εpl|∫

|εpl
n |

(
k(|εpl|)− σn

)
d|εpl|, (11.63)

π̄pl =
|εpl|∫

|εpl
n |

(
σ − k(|εpl|)

)
d|εpl|. (11.64)

The side-condition of the optimization problem is given through the yield condition
and states that the final stress state has to be within or on the boundary of the elastic

19 Hereby the energy per unit volume is considered.
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(a) (b)

Fig. 11.9 Illustration of the elastic potential and plastic dissipative energy and the corresponding
complementary energy between two states of the back projection in the case of the linear hardening

area. From Eq. (11.9) a limiting line results in a εpl−σ coordinate system:

εpl ≥ 1

Epl

(
|σ| − kinit

)
and εpl ≥ 0 . (11.65)

Generally, the side-condition, meaning the elastic area, can also be specified as

IEσ :=
{
(σ, |εpl|) ∈ IR × IR+|F(σ, |εpl|) ≤ 0

}
(11.66)

and the convex optimization problem can be formulated as follows:

Define(σn+1, |εpl
n+1|) ∈ IEσ, so that

π̄(σn+1, |εpl
n+1|) = min

{
π̄(σ, |εpl|)

}∣∣∣
(σ,|εpl|)∈IEσ

.

Since E > 0—and under the assumption Epl > 0—it results that π̄ is a convex
function. The side-condition, meaning F ≤ 0, also represents a convex function,20

and the application of the Lagrange multiplier method leads to

L(σ, |εpl|, dλ) := π̄(σ, |εpl|)+ dλF(σ, |εpl|) . (11.67)

20 The convexity of a yield condition can be derived from the Drucker’s stability postulate
[19, 20].



11.3 Derivation of the Fully Implicit Backward-Euler Algorithm 293

Fig. 11.10 Interpretation of the fully implicit backward-Euler algorithm as a convex optimization
problem. Adapted from [1]

The gradients of the Lagrange function L result in:

∂

∂σ
L(σn+1, |εpl

n+1|, dλ) = 0 , (11.68)

∂

∂|εpl| L(σn+1, |εpl
n+1|, dλ) = 0. (11.69)

For Eqs. (11.68) and (11.69) the following results

∂L
∂σ

= (σtrial
n+1 − σ)

(
− 1

E

)
+ dλ sgn(σ) = 0 , (11.70)

∂L
∂|εpl| = (|εpl

n | − |εpl|)(−Epl)+ dλ(−Epl) = 0 . (11.71)

The last two equations comply with the rules (11.56) and (11.35) of the previous
section. A graphical interpretation of the implicit backward-Euler algorithm in the
sense of a convex optimization problem is given in Fig. 11.10. If an invalid test state
(F > 0) results, the ellipsoid of the complementary energy lies outside of the valid
area of the elastic energy. It needs to be remarked at this point that the absolute
minimum (without side-condition) of the complementary energy lies in the σ−|εpl|
plane and therefore results in π̄

(
σtrial

n+1, |εpl
n |
)

= 0.
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The minimum of the complementary energy under consideration of the side-
condition, meaning F ≤ 0, therefore has to be localized on the cutting curve between
the ellipsoid of the complementary energy and the plane along the flow curve21 (see
Eq. 11.65). If Eq. (11.65) in the complementary energy according to (11.62) is con-
sidered, the following results

π̄(σ, |εpl|) = 1

2E
(σtrial

n+1 − σ)2 + 1

2
Epl

(
|εpl

n | − 1

Epl

(
σ − kinit

))2

, (11.72)

this means a polynomial of 2nd order in the variable σ. The minimum of this
function—and therefore the state n + 1—results via partial derivative for σ > 0
(meaning for a tensile test) in:

∂π̄

∂σ
= −σtrial

n+1 − σn+1

E
−
(

|εpl
n | − σn+1 − kinit

Epl

)
(11.73)

or

σn+1 = E Epl

E + Epl︸ ︷︷ ︸
Eelpl

(
kinit

Epl + σtrial
n+1

E
+ |εpl

n |
)
. (11.74)

Via Eq. (11.65) the plastic strain in the final stress state results in:

ε
pl
n+1 = E Epl

E + Epl︸ ︷︷ ︸
Eelpl

(
kinit

E Epl + σtrial
n+1

E Epl + |εpl
n |

Epl

)
− kinit

Epl . (11.75)

A graphical illustration of the cutting curve is given in Fig. 11.11. One can consider
at this point that |εpl

n | equals the test stress state.

11.4 Derivation of the Semi-Implicit Backward-Euler
Algorithm

To avoid the higher derivatives in the Jacobian matrix ∂m
∂v

of the residual functions
in the general three-dimensional case, the so-called semi-implicit backward-Euler
algorithm can be made use of. This procedure is implicit in the consistency parameter
(state n + 1), however explicit in the function sgn(σ) since the calculation occurs
in the initial state n. Because of that, the normal rule in the final state n + 1 is not

21 This plane has to stand vertically on the σ−|εpl| plane. For a tensile test the plane has to go
through the limit curve in the area σ > 0. For a compression test the according straight line from
the area σ < 0 has to be chosen.
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Fig. 11.11 Illustration of the
complementary energy in a
cutting plane along the flow
curve

fulfilled exactly. To avoid a drift away from the flow curve, the yield condition in the
final state n + 1 is fulfilled exactly. Therefore the integration scheme results in:

σn+1 = σtrial
n+1 −�λn+1 E sgn(σn), (11.76)

κn+1 = κn +�λn+1, (11.77)

F = F(σn+1,κn+1) = 0. (11.78)

Outside of the final state also at this point a residual r remains at each of these
equations:

rσ(σ,κ,�λ) = E−1σ − E−1σtrial
n+1 +�λ sgn(σn) �= 0 ,

rκ(κ,�λ) = −κ + κn +�λ �= 0 ,

rF (σ,κ) = F(σ,κ) = |σ| − k(κ) �= 0 . (11.79)

The partial derivatives of the residual functions finally lead to the following Jacobian
matrix:

∂m
∂v

(σ,κ,�λ) =
⎡
⎣ E−1 0 sgn(σn)

0 −1 1
sgn(σ) −∂k(κ)

∂κ 0

⎤
⎦ . (11.80)

If one compares the Jacobian matrix according to Eqs.(11.80) and (11.47) one
can see that the integration requirements for the fully implicit and semi-implicit
algorithm are identical for the considered one-dimensional case at this point, as long
as the stress state σ and σn lie in the same quadrant, meaning exhibiting the same
algebraic sign. Similar conclusions can be drawn for the, in Table 11.3 summarized
integration requirements.
To conclude, it can be remarked that the concept of the plastic material behavior,
which was originally developed for the permanent deformation of metals, is also
applied for other classes of material. Typically the macroscopic stress–strain diagram
is regarded at this point, which exhibits a similar course as for classic metals. As an
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example, the following materials and disciplines can be listed here for:

• Plastics [21],
• Fibre-reinforced plastics [22],
• Soil mechanics [23, 24],
• Concrete [25].

11.5 Sample Problems and Supplementary Problems

11.5.1 Sample Problems

11.1 Example: Back Projection at Linear Hardening: Continuum Bar
Figure 11.12a shows an idealized stress–strain diagram as it can, for example, be
derived experimentally from an uniaxial tensile test. With the help of this mater-
ial behavior the deformation of a tension bar (see Fig. 11.12b) can be simulated.
Thereby the right-hand end is displaced by u = 8 × 10−3 m in total, whereupon the
deformation is applied in 10 equal increments. The bar needs to be regarded as a
continuum hereby and should not be discretized with finite elements.
(a) Calculate the stress state with the help of the CPP algorithm in each increment
and mark all values, which have to be updated.
(b) Graphically illustrate the stress distribution.

(a) (b)

Fig. 11.12 Sample problem back projection at linear hardening: a stress–strain distribution;
b geometry and boundary conditions

11.1 Solution
(a) For the back projection various material properties of the elastic and plastic regime
are needed. The modulus of elasticity E results as a quotient from the stress and strain
increment in the elastic regime in:

E = �σ

�ε
= 350 MPa

0.005
= 70000 MPa . (11.81)
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The plastic modulus Epl results as a quotient from the yield stress and the plastic
strain increment in:

Epl = �k

�εpl = 636.3636 MPa − 350 MPa

(0.05 − 636.3636 MPa/E)− (0.005 − 350 MPa/E)

= 7000 MPa. (11.82)

Therefore the elasto-plastic material modulus can be calculated via Eq. (11.23) in

Eelpl = E × Epl

E + Epl = 70000 MPa × 7000 MPa

70000 MPa + 7000 MPa
= 6363.636 MPa. (11.83)

Finally the equation of the flow curve results in the following via the initial yield
stress:

k(κ) = 350 MPa + 7000 MPa × κ . (11.84)

Fig. 11.13 Flow curve for
continuum bar

A graphical illustration of the flow curve is given in Fig. 11.13. For the integration
algorithm the strain increment is additionally necessary. At a total displacement of
8 × 10−3 m and 10 equidistant steps, the strain increment can be determined via:

�ε = 1

10
× 0.008 m

0.4 m
= 0.002. (11.85)

For the first two increments test stress states in the elastic regime (F < 0) result,
and the resulting stress can be calculated via Eq. (11.25) via Hooke’s law. From
the third increment on an invalid test stress state (F > 0) results for the first time
and the stress has to be calculated via Eq. (11.53), whereupon the constant matrix
expression results in: ⎡

⎣7000 −7000 1
1 −1 −(70000)−1

1 0, 1 −(70000)−1

⎤
⎦ . (11.86)
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Table 11.4 Numerical values of the back projection for a continuum bar with linear hardening (10
increments, Δε = 0.002)

inc ε σtrial σ κ dλ Eelpl

– – MPa MPa 10−3 10−3 MPa

1 0.002 140.0 140.0 0.0 0.0 0.0
2 0.004 280.0 280.0 0.0 0.0 0.0
3 0.006 420.0 356.364 0.909091 0.909091 6363.636
4 0.008 496.364 369.091 2.727273 1.818182 6363.636
5 0.010 509.091 381.818 4.545455 1.818182 6363.636
6 0.012 521.818 394.545 6.363636 1.818182 6363.636
7 0.014 534.545 407.273 8.181818 1.818182 6363.636
8 0.016 547.273 420.000 10.000000 1.818182 6363.636
9 0.018 560.000 432.727 11.818182 1.818182 6363.636
10 0.020 572.727 445.455 13.636364 1.818182 6363.636

Fig. 11.14 Stress distribution in the case of the back projection for a continuum bar with linear
hardening (10 increments, �ε = 0.002)

Table 11.4 summarizes the numerical results for the 10 increments.
(b) A graphical illustration of the stress distribution is given in Fig. 11.14. Due to
the linear hardening, the back projection for each increment occurs in one step.
Finally it needs to be remarked at this point that for the special case of linear hardening
at uniaxial stress states, the stress in the plastic area (inc≥3) can directly be calculated
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via (see Fig. 11.1b)

σ(ε) = kinit
t + Eelpl × (ε − εinit

t )

= Eεinit
t + Eelplε − Eelplεinit

t

σ(ε) = (E − Eelpl)× εinit
t + Eelpl × ε. (11.87)

The intention of this example however is to illustrate the concept of the back projec-
tion and not to define the stress according to the simplest method.

11.2 Example: Back Projection at Linear Hardening: Discretization via one
Finite Element, Displacement and Force Boundary Condition
The continuum bar from example 1.1 can be discretized within the frame of this
example via one single finite element. The material behavior can be made as shown
in Fig. 11.12a. The load on the right-hand end of the bar can be applied in 10 equal
increments, whereupon

(a) u = 8 × 10−3 m,
(b) F = 100 kN

can be applied. Calculate the stress state in each increment with the help of the CPP
algorithm and mark all values, which have to be updated. As convergence criteria an
absolute displacement difference of 1 × 10−5 mm can be assigned (Fig. 11.15).

(b)
(a)

Fig. 11.15 Sample problem back projection in the case of linear hardening: (a) displacement
boundary condition; (b) force boundary condition

11.2 Solution
When using solely one element, the global system of equations results in the
following—without the consideration of the boundary conditions:

AẼ

L

[
1 −1

−1 1

] [
�u1
�u2

]
=
[
�F1
�F2

]
. (11.88)

Since in general this is a nonlinear system of equations, an incremental form has been
assigned. The modulus Ẽ equals the elasticity modulus E in the elastic range and
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the elasto-plastic material modulus Eelpl in the plastic range. Since a fixed support
is given on the left-hand node (�u1 = 0), Eq. (11.88) can be simplified to

AẼ

L
×�u2 = �F2. (11.89)

Case (a) Displacement boundary condition u = 8 × 10−3 m on the right-hand node:
In the case of the displacement boundary condition Eq. (11.89) must not be solved,
since for each increment �u2 = 8 × 10−3/10 = 8 × 10−4 m is known. Via the
equation for the strain in the element, meaning ε = 1

L (u2 −u1), the strain increment
results in the following in the case of the fixed support on the left-hand node:

�ε = 1

L
×�u2 = 8 × 10−4 m

0.4 m
= 0.002 . (11.90)

The entire displacement or alternatively strain can be calculated through the summa-
tion of the incremental displacement or alternatively strain values, see Table 11.5. It
can be remarked at this point that for this case of displacement boundary condition
at one element, the calculation of the displacement or alternatively the strain for all
increments can be done without a stress calculation.

Table 11.5 Numerical values
of the displacement and strain
for displacement boundary
condition (10 increments,
�ε = 0.002)

inc �u2 �ε u2 ε

– 10−4 m – 10−4 m –

1 8.0 0.002 8.0 0.002
2 8.0 0.002 16.0 0.004
3 8.0 0.002 24.0 0.006
4 8.0 0.002 32.0 0.008
5 8.0 0.002 40.0 0.010
6 8.0 0.002 48.0 0.012
7 8.0 0.002 56.0 0.014
8 8.0 0.002 64.0 0.016
9 8.0 0.002 72.0 0.018
10 8.0 0.002 80.0 0.020

To calculate the stress and plastic strain in each increment, the calculation via the
CPP algorithm for each increment has to be conducted via the strain increment �ε
from Table 11.5. This is exactly what is calculated in example 11.1 and the numerical
results can be taken from Table 11.4.
Case (b) Force boundary condition F = 100 kN on the right-hand node:
In the case of the force boundary condition, Eq. (11.89) can be solved via the
Newton-Raphson method. To do so, this equation has to be written in the form
of a residual r as

r = AẼ

L
×�u2 −�F2 = Ẽ(u2)× A

L
×�u2 −�F2 = 0 . (11.91)
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If one develops the last equation into a Taylor’s series and neglects the terms of
higher order, the following form results

r(�u(i+1)
2 ) = r(�u(i)2 )+

(
∂r

∂�u2

)(i)
× δ(�u2)+ · · · , (11.92)

whereupon
δ(�u2) = �u(i+1)

2 −�u(i)2 (11.93)

is valid and

(
∂r

∂�u2

)(i)
= K (i)

T (11.94)

represents the tangent stiffness matrix22 in the i-th iteration step. Then Eq. (11.92)
can also be written as

δ(�u2)K
(i)
T = −r(�u(i)2 ) = �F (i) − Ẽ A

L
�u(i)2 . (11.95)

Multiplication via
(

K (i)
T

)−1
and the use of Eq. (11.93) finally leads to

�u(i+1)
2 = �F (i) × L

Ẽ A
, (11.96)

whereupon Ẽ = E is valid in the elastic range (increment 1–3) and Ẽ = Eelpl in the
plastic range (increment 4–10).
Application of Eq. (11.96) leads to a value of �u2 = 0.571429 mm in the elastic
range (increment 1–3) and in the plastic range (increment 4–10) a displacement
increment of �u2 = 6.285715 mm occurs. It can be remarked at this point that the
calculation of the displacement increments (increments 1–3 and 4–10) does not need
an iteration and the application of Eq. (11.96) directly yields the desired result. As
soon as the displacement increments (�u2) are calculated, the entire displacement on
node 2 results via summation of the incremental values. Subsequently the strain in the
element can be calculated via the relation ε = 1

L (u2 − u1), and the strain increments
result through subtraction of two consecutive strain values (see Table 11.7).
The calculation of the stress and the plastic strain now requires that the CPP algorithm
is used in each increment, based on the strain increment�ε. The graphical illustration
of the back projection is given in Fig. 11.16. One can see clearly that the strain
increments at a force boundary condition differ in the elastic and plastic range. As

22 In the considered example with linear hardening, Ẽ is constant in the elastic range (increment
1–3) and in the plastic range (increment 4–10) and therefore not a function of u2. In the general
case however Ẽ has to be differentiated as well.
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Fig. 11.16 Stress distribution in the case of the back projection for a continuum bar with linear
hardening (10 increments, �F = 1 × 104)

a consequence, quite high values result for the test stress state in the plastic range.
Thus for the increments 5–10 σtrial

n+1 = σn+1 + 1000 MPa is valid (Table 11.6).

Table 11.6 Numerical values
for one element in the case of
linear hardening
(10 increments;
�F = 1 × 104 N)

inc ex. Force �u2 u2 ε �ε σ εpl

– 104 N mm mm 10−2 10−2 MPa 10−2

1 1.0 0.5714 0.5714 0.1429 0.1429 100.0 0.0
2 2.0 0.5714 1.1427 0.2857 0.1429 200.0 0.0
3 3.0 0.5714 1.7143 0.4286 0.1429 300.0 0.0
4 4.0 4.4286 5.1429 1.2857 0.8571 400.0 0.7143
5 5.0 6.2857 11.4286 2.8571 1.5714 500.0 2.1429
6 6.0 6.2857 17.7143 4.4286 1.5714 600.0 3.5714
7 7.0 6.2857 24.0000 6.0000 1.5714 700.0 5.0000
8 8.0 6.2857 30.2857 7.5714 1.5714 800.0 6.4286
9 9.0 6.2857 36.5714 9.1429 1.5714 900.0 7.8571
10 10.0 6.2857 42.8571 10.7143 1.5714 1000.0 9.2857

Particular attention is required at the transition from the elastic to the plastic regime,
meaning from increment 3 to 4. Here the modulus Ẽ is not defined clearly and
Eq. (11.96) has to be solved iteratively. For the first cycle of the calculation (cycle
j = 0) the arithmetic mean between the modulus of elasticity E and the elasto-
plastic material modulus Eelpl can be applied. For the further cycles (cycle j ≥ 1) Ẽ
can be approximated via an intermediate modulus (secant modulus, see Fig. 11.17).
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Fig. 11.17 Definition of the
intermediate modulus Ẽ in
the case of the transition from
the elastic to the plastic range

Therefore the following relation results as a calculation requirement for the interme-
diate modulus Ẽ in the elasto-plastic transition regime (at this point in the considered
example at the transition from increment 3 to 4):

Ẽ =

⎧⎪⎨
⎪⎩

E+Eelpl

2 for j = 0

σ
( j)
n+1−σn

ε
( j)
n+1−εn

for j > 0
. (11.97)

The numerical values of the intermediate modulus Ẽ at the transition from increment
3 to 4 and the differences of the displacement, which result herefrom on node 2 are
summarized in Table 11.7. Since an absolute displacement difference of 1×10−5 mm
was required as convergence criteria, 18 cycles are necessary to iterate the difference
between the new and the old displacement on node 2 under these values. It can be
considered at this point that the difference between the displacements on node 2 in
the first cycle (cycle 0) result in unew

2 −uold
2 = u( j=0)

2 − u2|inc 3 and for the following

cycles of the iteration via u( j+1)
2 − u( j)

2 .
The convergence behavior of the iteration rule is illustrated graphically in Fig. 11.18.
An equidistant division was chosen in Fig. 11.18a and a logarithmic division (to be
base 10) in Fig. 11.18b. One can see that quite a high convergence rate occurs at the
beginning of the iteration, which flattens throughout the different cycles. At the cho-
sen convergence criteria here of 10−5 the 18 iteration steps are therefore necessary,
to finally reach the required absolute displacement difference. If one would require
an absolute difference of 10−6 as convergence criteria, 21 iteration steps would be
necessary.

11.3 Example: Back Projection for Bimaterial Bar
Two different material behaviors (see Fig. 11.19a) can be considered in the following
to model a bimaterial bar (see Fig. 11.19 b) via the FE method. The right-hand end
is displaced by u = 8 × 10−3 m hereby, whereupon the deformation is applied in
10 equal increments. The bar can be discretized with two finite elements hereby.
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Table 11.7 Numerical values for the transition from increment 3 to 4

cycle Ẽ (i) unew
2 − uold

2
– MPa mm

0 38181.84 1.048×10−0

1 23719.00 6.388×10−1

2 17145.00 6.466×10−1

3 14157.16 4.925×10−1

4 12798.56 2.999×10−1

5 12181.16 1.584×10−1

6 11900.52 7.744×10−2

7 11772.96 3.642×10−2

8 11715.00 1.682×10−2

9 11688.64 7.699×10−3

10 11676.64 3.511×10−3

11 11671.20 1.598×10−3

12 11668.72 7.270×10−4

13 11667.60 3.305×10−4

14 11667.08 1.503×10−4

15 11666.88 6.831×10−5

16 11666.76 3.105×10−5

17 11666.72 1.411×10−5

18 11666.68 6.416×10−6

(b)(a)

Fig. 11.18 Convergence behavior in the case of the transition from increment 3 to 4: a equidistant
division; b logarithmic division of the absolute displacement difference

Examine the following material combinations:

(a) Material I: pure elastic; Material II: pure elastic,
(b) Material I: elasto-plastic; Material II: elasto-plastic,
(c) Material I: pure elastic; Material II: elasto-plastic,
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(b)(a)

Fig. 11.19 Sample problem back projection in the case of a bar with different materials: a stress–
strain distributions, b geometry and boundary conditions

to calculate the displacement of the middle node. Furthermore, calculate the stress
state in each element with the help of the CPP algorithm and mark all values, which
have to be updated.

11.3 Solution
When using two finite elements, the global system of equations, without consider-
ation of the boundary conditions, results in the following incremental form for this
example:

A

L
×
⎡
⎣ Ẽ I −Ẽ I 0

−Ẽ I Ẽ I + Ẽ II −Ẽ II

0 −Ẽ II Ẽ II

⎤
⎦
⎡
⎣�u1
�u2
�u3

⎤
⎦ =

⎡
⎣�F1
�F2
�F3

.

⎤
⎦ (11.98)

The consideration of the boundary condition on the left-hand side, meaning
u1 = 0, yields the following reduced global system of equations:

A

L
×
[

Ẽ I + Ẽ II −Ẽ II

−Ẽ II Ẽ II

] [
�u2
�u3

]
=
[
�F2
�F3

.

]
(11.99)
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The consideration of the displacement boundary condition on the right-hand side,
meaning u3 = u(t), and that �F2 = �F3 = 0 is valid, yields:

A

L
× (Ẽ I + Ẽ II)�u2 = Ẽ2 A

L
�u3 , (11.100)

or (
Ẽ I

Ẽ II
+ 1

)
�u2 = �u3 . (11.101)

For the application of the Newton-Raphson method, Eq. (11.101) is written as a
residual equation:

r =
(

Ẽ I

Ẽ II
+ 1

)
�u2 −�u3 = 0 . (11.102)

If one develops the last equation into a Taylor’s series and neglects the terms
of higher order according to the procedure in Example 11.2, finally the following
iteration rule results for the definition of the displacement of the middle node:

�u(i+1)
2 =

(
Ẽ I

Ẽ II
+ 1

)−1

×�u(i)3 . (11.103)

In Eq. (11.103) in the elastic regime the elasticity modulus E has to be used for Ẽ
and in the plastic regime the elasto-plastic material modulus Eelpl.
Case (a) Material I: pure elastic; Material II: pure elastic:
For the case that both sections exhibit pure elastic material behavior with E I = E II,
Eq. (11.103) simplifies in:

�u(i+1)
2 = (1 + 1)−1×�u(i)3 = 1

2
×�u(i)3 = 4 mm . (11.104)

The strain in the left-hand element—which is identical with the strain in the right-
hand element—can easily be defined via�ε = 1

200 mm ×�u2, and the stress results
from the strain through multiplication with the modulus of elasticity. The results of
this pure elastic calculation are summarized in Table 11.8.
In addition to the displacement, strain and stress values23 Table 11.8 also contains
the reaction forces on node 3. These reaction forces result due to multiplication of
the stiffness matrix with the resultant vector of the displacements and have to be in
equilibrium with the resulting forces from the stress: Fr,3 = σA.
Case (b) Material I: elasto-plastic; Material II: elasto-plastic:
For the case that both sections exhibit the same elasto-plastic material behavior,
Ẽ I = Ẽ II is always valid, and Eq. (11.103) also at this point yields a displacement

23 One considers that in both sections or alternatively elements, the stress and strain are identical.
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Table 11.8 Numerical values
for a bimaterial bar in the case
of pure linear-elastic behavior
(10 increments; �u3 =
0.8 mm; A = 100 mm2)

inc �u2 u2 �ε ε σ Fr,3

– mm mm – – MPa 104 N

1 0.4 0.4 0.002 0.002 140.0 1.4
2 0.4 0.8 0.002 0.004 280.0 2.8
3 0.4 1.2 0.002 0.006 420.0 4.2
4 0.4 1.6 0.002 0.008 560.0 5.6
5 0.4 2.0 0.002 0.010 700.0 7.0
6 0.4 2.4 0.002 0.012 840.0 8.4
7 0.4 2.8 0.002 0.014 980.0 9.8
8 0.4 3.2 0.002 0.016 1120.0 11.2
9 0.4 3.6 0.002 0.018 1260.0 12.6
10 0.4 4.0 0.002 0.020 1400.0 14.0

increment on the middle node from �u(i+1)
2 = 1

2 ×�u(i)3 = 4 mm or alternatively
a strain increment of �ε = 0.002. For the calculation of the stress and the plastic
strain for element II in the non-linear regime, the CPP algorithm has to be made use
of, as in Example 11.1. The corresponding values are summarized in Table 11.9.

Table 11.9 Numerical values
for a bimaterial bar in the case
of elasto-plastic behavior (10
Increments; �u3 = 0.8 mm;
A = 100 mm2)

inc �u2 u2 �ε ε σ εpl Fr,3

– mm mm – – MPa 10−3 104 N

1 0.4 0.4 0.002 0.002 140.0 0.0 1.4
2 0.4 0.8 0.002 0.004 280.0 0.0 2.8
3 0.4 1.2 0.002 0.006 356.364 0.909091 3.56364
4 0.4 1.6 0.002 0.008 369.091 2.727273 3.69091
5 0.4 2.0 0.002 0.010 381.818 4.545455 3.81818
6 0.4 2.4 0.002 0.012 394.545 6.363636 3.94545
7 0.4 2.8 0.002 0.014 407.273 8.181818 4.07273
8 0.4 3.2 0.002 0.016 420.000 10.000000 4.20000
9 0.4 3.6 0.002 0.018 432.727 11.818182 4.32727
10 0.4 4.0 0.002 0.020 445.455 13.636364 4.45455

Case (c) Material I: pure elastic; Material II: elasto-plastic:
At this point in the elastic regime of both elements also it occurs that the displacement
at the middle node amounts to half of the displacement, which occurred on the right-
hand node. As soon as the plastic flow occurs in the right-hand half of the bar, Ẽ I �=
Ẽ II occurs and for the right-hand half of the bar, the elasto-plastic material modulus
has to be made use of. Therefore the calculation requirement for the displacement
increment can be summarized as follows:

�u(i+1)
2 =

⎧⎨
⎩

1
2 ×�u(i)3 in the elastic region(

E I

Eelpl,II + 1
)−1×�u(i)3 in the plastic region

. (11.105)
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Table 11.10 Numerical values for a bimaterial bar in the case of different material behavior
(10 Increments; �u3 = 0.8 mm; A = 100 mm2)

inc �u2 u2 εI εII σI σII εpl,I εpl,II Fr,3

– mm mm 10−3 10−3 MPa MPa 10−3 10−3 104 N
1 0.4 0.4 2.0 2.0 140.0 140.0 0.0 0.0 1.4
2 0.4 0.8 4.0 4.0 280.0 280.0 0.0 0.0 2.8
3 0.23333 1.03333 5.16667 6.83333 361.667 361.667 0.0 1.66667 3.61667
4 0.06667 1.10000 5.50000 10.50000 385.000 385.000 0.0 5.00000 3.85000
5 0.06667 1.16667 5.83333 14.16667 408.333 408.333 0.0 8.33333 4.08333
6 0.06667 1.23333 6.16667 17.83333 431.667 431.667 0.0 11.66667 4.31667
7 0.06667 1.30000 6.50000 21.50000 455.000 455.000 0.0 15.00000 4.55000
8 0.06667 1.36667 6.83333 25.16667 478.333 478.333 0.0 18.33333 4.78333
9 0.06667 1.43333 7.16667 28.83333 501.667 501.667 0.0 21.66667 5.01667
10 0.06667 1.50000 7.50000 32.50000 525.000 525.000 0.0 25.00000 5.25000

Table 11.11 Numerical values for transition from increment 2 to 3

cycle Ẽ II,(i) �u(i)2 u(i)2 |unew
2 − uold

2 | εII,(i) �εII,(i) σII,(i)

– MPa mm mm 10−2mm 10−3 10−3 MPa

0 38181.82 0.282353 1.082353 28.235294 6.588235 2.588235 360.1070
1 30950.41 0.245272 1.045272 3.708073 6.773639 2.773639 361.2868
2 29306.91 0.236092 1.036092 0.918059 6.819542 2.819542 361.5789
3 28933.39 0.233962 1.033963 0.212904 6.830187 2.830187 361.6466
4 28848.50 0.233476 1.033476 0.0486115 6.832618 2.832618 361.6621
5 28829.20 0.233366 1.033366 0.0110598 6.833171 2.833171 361.6656
6 28824.82 0.233341 1.033341 0.0025142 6.833296 2.833296 361.6664
7 28823.82 0.233335 1.033335 0.0005714 6.833325 2.833325 361.6666

The total displacement at the middle node results from the displacement increments
through summation and the strain for each element can be defined via ε = 1

L (−ul +
ur) (Index ‘l’ for left-hand and index ‘r’ for right-hand node of the bar element). As
soon as the right-hand part of the bar enters the plastic region, the predictor-corrector
method has to be made use of to be able to calculate the state variables. The numerical
values of the incremental solution method are summarized in Table 11.10. At this
point it can be remarked that in the plastic region a similar relation as in the elastic
region can be set to calculate the stress increment from the strain increment (see
Eq. 11.106). However thereby it has to be considered that the modulus of elasticity
has to be substituted by the elasto-plastic material modulus (Table 11.11):

�σ =
{
�ε × E in the elastic region
�ε × Eelpl in the plastic region

. (11.106)

The transition from the elastic to the plastic region, meaning from increment 2 to 3,
demands a special consideration at this point. The intermediate modulus Ẽ II hereby
has to be calculated according to Eq. (11.97), to be able to define the displacement
increment subsequently according to Eq. (11.105)2. The absolute displacement on
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the middle node results from the summation, meaning u(i)2 = �u(i)2 + u2|inc 2. The
difference of the displacement on the middle node has to be determined in the first
cycle (cycle 0) via |u(i = 0)

2 − u2|inc 2 and for each further cycle (i) via |u(i)2 −u(i−1)
2 |.

The calculation of the strain in the right-hand half of the bar can occur via the given

boundary condition u3 via εII,(i) = 1
L

(
−u(i)2 + u3

)
. Finally the stress results via

the CPP algorithm, based on the strain increment �εII,(i) = εII,(i) − εII|inc 2. If the
stress and strains are known, the new intermediate modulus can be determined for
the next cycle via Eq. (11.97). As convergence criteria for the absolute displacement
difference a value of 10−5 was given within this example.

11.5.2 Supplementary Problems

11.4 Plastic Modulus and Elasto-Plastic Material Modulus
Discuss the case (a) Epl = E and (b) Eelpl = E .

11.5 Back Projection at Linear Hardening
Calculate Example 11.1 for the following linear flow curve of a steal:
k(κ) = (690 + 21000κ) MPa. The modulus of elasticity amounts 210000 MPa. The
geometric dimensions of Example 11.1 can be assumed.

(a) For 10 increments with �ε = 0.001,
(b) For 20 increments with �ε = 0.0005,
(c) For 20 increments with �ε = 0.001.

Compare and interpret all the results.

11.6 Back Projection at Non-Linear Hardening
Calculate Example 11.1 for the following non-linear flow curve:
k(κ) = (350 + 12900κ − 1.25 × 105κ2) MPa. All other parameters can be taken as
in Example 11.1.

11.7 Back Projection for Bar at Fixed Support at Both Ends
Calculate for the illustrated bar in Fig. 11.20 with fixed support at both ends, the
displacement of the point of load application. The bar has an elasto-plastic material
behavior (E = 1 × 105 MPa; Eelpl = 1 × 103 MPa; kinit

t = 200 MPa) and a force
of F = 6 × 104 N is applied in 3 increments equally. It can be assumed that the
material behavior is identical under tensile and compression loading. Calculate the
displacement of the point of load application and determine the stress and strain in
both elements. As convergence criteria an absolute displacement difference on the
point of load application of 10−5 mm can be given.
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Fig. 11.20 Sample problem back projection for a bar with fixed supports at both ends

11.8 Back Projection for a Finite Element at Ideal-Plastic Material Behavior
Discuss the case of a single finite element with force boundary condition at ideal-
plastic material behavior. It can be assumed thereby that the applied force increases
linearly starting with zero. The problem and the material behavior are schemati-
cally illustrated in Fig. 11.21. Why is no convergence achieved in the plastic region
at the force boundary condition? What changes if the force boundary condition is
substituted by a displacement boundary condition?

(a) (b)

Fig. 11.21 Sample problem back projection for a finite element in the case of ideal-plastic material
behavior: a material behavior and b general configuration
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Chapter 12
Stability (Buckling)

Abstract In common and technical parlance the term stability is used in many ways.
Here it is restricted to the static stability of elastic structures. The derivations con-
centrate on elastic bars and beams. The initial situation is a loaded elastic structure.
If the acting load remains under a critical value, the structure reacts ‘simple’ and one
can describe the reaction with the models and equations of the preceding chapters.
If the load reaches or exceeds the critical value, bars and beams begin to buckle.
The situation becomes ambiguous, beyond the initial situation several equilibrium
positions can exist. From the technical application the smallest load is critical for
which buckling in either bars or beams appears.

12.1 Stability in Bar/Beam

The initial situation is a structure, which consists of bars and beams. Bars and beams
are connected through nodes grids, through which forces and moments are introduced
into each single element. As long as the loads lie on an element lower than the critical
limit, the element reacts linear elastic. If, however, a critical value is reached or
exceeded, buckling occurs. Figure 12.1 illustrates various situations when buckling
can occur.
For the analysis of the stability performance several description possibilities are
available [1–4]. In the following the energy-approach is used.
The total potential Π of a bar or beam can be generally described as

Π = 1

2
uT K u − uT F, (12.1)

where u stands for the vector of deformation, K for the stiffness matrix and F for
the vector of external loads. In an equilibrium state the entire potential energy Π
of a system is stationary. For a stationary value of Π the first variation δΠ has to
disappear:

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 313
DOI: 10.1007/978-3-642-31797-2_12, © Springer-Verlag Berlin Heidelberg 2013
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(a) (b)

Fig. 12.1 Buckling of structures at a two elements b one element

δΠ = ∂Π

∂u
δu

!= 0. (12.2)

For the clarification of the type of the stationary value the second variation of the
potential has to be analyzed. Three states of equilibrium arise, see Fig. 12.2.

Fig. 12.2 Stability: states of equilibrium

In the case of δ2Π > 0 a stable equilibrium occurs. If the second variation disap-
pears, one talks about an indifferent or neutral equilibrium. In the case of δ2Π < 0
an unstable equilibrium exists. When buckling of bars and beams occurs, one assumes
an indifferent balance. The second variation is called:

δ2Π = ∂2Π

∂u2 δ
2u = 0. (12.3)

The demand for the second variation of Π to disappear can solely be fulfilled if the
determinant of K becomes 0.
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The stiffness matrix K for large deformations consists of an elastic and geometric
fraction:

K = K el + K geo. (12.4)

K el stands for the stiffness matrix, which serves as a basis in the description of
the linear elastic reaction. It is already known from the previous paragraphs. The
assembly of K el is independent of the axial load. In contrast, K geo contains the axial
load F as a prefactor. The detailed derivation of the geometric stiffness matrix K geo

follows later on.
If this force is scaled with a factor λ, one obtains:

K = K el + λK̃
geo
. (12.5)

The requirement that the determinant K has to disappear leads to:

det(K ) = det
[

K el + λK̃
geo

] != 0. (12.6)

With this equation, an eigenvalue problem is formulated, where λ represents the
unknown value. The formation of the determinant leads to a scalar function in λ,
which is called the characteristic equation. It is obvious that this equation does not
just possess a single eigenvalue. The roots of the characteristic equation correspond
with the eigenvalues of the problem. The expression λF stands for the so-called
buckling load. From a technical point of view, the smallest eigenvalue and therefore
the smallest buckling load are interesting.

12.2 Large Deformations

Thus far, it was assumed that the occurring deformations are small. Equilibrium was
established on the undeformed body. Within the discussion of nonlinear problems
however, large deformations can occur. Those will now be described in more detail.
The linear relation between the deformations and strains will be complemented by
the nonlinear term in the strain-deformation relation

ε = 1

2
(∇uT + u∇T)+ 1

2
(∇uT × u∇T). (12.7)

The second addend expresses the nonlinear term. During large deformations of the
considered bars and beams a deformation in axial direction as well as another defor-
mation occur. The complete strain matrix is called:

ε =
[
εxx εxy

εyx εyy

]
(12.8)

and results from:
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ε = 1

2

[[
∂
∂x
∂
∂y

]
(ux uy)+

(
ux

uy

) [
∂

∂x

∂

∂y

]]
(12.9)

+ 1

2

[[
∂
∂x
∂
∂y

]
(ux uy)×

(
ux

uy

) [
∂

∂x

∂

∂y

]]
. (12.10)

For further considerations only the elongation εxx towards the bar or beam axis is of
relevance. This component can be extracted as

εxx = dux

dx
+ 1

2

[(
dux

dx

)2

+
(

duy

dx

)2
]

(12.11)

from the complete strain matrix. Under the condition dux/dx � 1 as well as
(dux/dx)2 � (

duy/dx
)2 the entire term simplifies itself to

εxx = dux

dx
+ 1

2

(
duy

dx

)2

. (12.12)

This relation for the strain can be used directly for bars. For beams, the complete
deformation results from two parts

ux = uxs + uxb. (12.13)

The first term represents the amount of deformation on the neutral axis of the beam.
The second term represents the amount of pure bending and can be described as

uxb = −y
duy

dx
. (12.14)

With that said, the entire strain of the beam is represented in the following form:

εxx = duxs

dx
− y

d2uy

dx2 + 1

2

(
duy

dx

)2

. (12.15)

The elastic strain energy of the bar can be formulated as

Πint = 1

2

∫
Ω

Eε2
xx dΩ =

∫
Ω

E

[
dux

dx
+ 1

2

(
duy

dx

)2
]2

dΩ (12.16)
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through the strains. After a few transformations the strain energy converts itself into
the following:

Πint = 1

2
AE

∫
L

(
dux

dx

)2

dx + 1

2
F

∫
L

(
duy

dx

)2

dx . (12.17)

The elastic strain energy of the beam can be formulated as

Πint =
∫
Ω

Eε2
xx dΩ =

∫
Ω

E

[
duxs

dx
− y

d2uy

dx2 + 1

2

(
duy

dx

)2
]2

dΩ (12.18)

through the strains. After a few transformations the strain energy converts itself into
the following:

Πint = 1

2
AE

∫
L

(
duxs

dx

)2

dx + 1

2
E I

∫
L

(
d2uy

dx2

)2

dx + 1

2
F

∫
L

(
duy

dx

)2

dx .

(12.19)

The 1st and 3rd term is equivalent to the strain energy of the bar. The 2nd term is
equivalent to the energy fraction of the bending.

12.3 Stiffness Matrices in Large Deformations

As for the small deformations, it should also be assumed that for large deformations
the course through the nodal values and form functions can be described. Figure 12.3
shows the kinematical quantities, which are relevant for buckling.

Fig. 12.3 State variables for
buckling behavior

y
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In general, various shape functions can be used for different directions of the dis-
placement:

ux (x) = N x (x)up, (12.20)

uy(x) = N y(x)up. (12.21)

In the following, the stiffness matrices for large deformations for the bar and the
beam will be derived.

12.3.1 Bar with Large Deformations

Within the strains according to the Eq. (12.12) the first derivatives dux/dx and duy/dx
occur. These lead to

dux (x)

dx
= d

dx
N x (x)up = N ′

x (x)up, (12.22)

duy(x)

dx
= d

dx
N y(x)up = N ′

y(x)up. (12.23)

In discretized form the entire potential can be formulated as

Π = 1

2
uT

p AE
∫
L

N ′T
x N ′

x dx

︸ ︷︷ ︸
K el, bar

up + 1

2
uT

p F
∫
L

N ′T
y N ′

ydx

︸ ︷︷ ︸
K geo, bar

up − uT
p F. (12.24)

The stiffness matrices can be determined from Eq. (12.24). The submatrices
result in:

K el, bar = AE
∫
L

N ′T
x N ′

x dx, (12.25)

K geo, bar = F
∫
L

N ′T
y N ′

ydx . (12.26)

Depending on the type of shape function, different stiffness matrices result. The
shape functions for the displacement field ux (x) are described in Chap. 3. With

uy(x) = N1(x)u1y + N2(x)u2y = [0 N1(x) 0 N2(x)]

⎡
⎢⎢⎣

u1x

u1y

u2x

u2y

⎤
⎥⎥⎦ (12.27)

http://dx.doi.org/10.1007/978-3-642-31797-2_3
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an appropriate approach for the displacement field uy(x) is chosen. First of all, with

N1(x) = 1

L
(x2 − x) and N2(x) = 1

L
(x − x1) (12.28)

a simple, linear approach for the deformation perpendicular to the principal bar axis
is chosen. The derivatives of the shape functions N ′

y is needed in Eq. (12.26). These
result in:

∂N y(x)

∂x
=

[
0
∂N1(x)

∂x
0
∂N2(x)

∂x

]
=

[
0 − 1

L
0 + 1

L

]
. (12.29)

With this, the integration
∫

L N ′T
y N ′

ydx can be conducted. The geometric stiffness
matrix, in dependence on the external load F results in:

K geo, bar = F
∫
L

1

L2

⎡
⎢⎢⎢⎣

0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 −1

⎤
⎥⎥⎥⎦ dx = F

L

⎡
⎢⎢⎢⎣

0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 −1

⎤
⎥⎥⎥⎦ . (12.30)

With this, the overall stiffness matrix can be assembled through two submatrices

K bar = E A

L

⎡
⎢⎢⎢⎣

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦ + F

L

⎡
⎢⎢⎢⎣

0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤
⎥⎥⎥⎦ . (12.31)

12.3.2 Beams with Large Deformations

In the strains according to Eq. (12.15) the first derivatives duxs/dx and duy/dx as
well as the second derivative d2uy/du2

y occur. These result in

duxs(x)

dx
= d

dx
N x (x)up = N ′

x (x)up, (12.32)

duy(x)

dx
= d

dx
N y(x) up = N ′

y(x)up, (12.33)

d2uy(x)

dx2 = d2

dx2 N y(x) up = N ′′
y(x)up. (12.34)
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With this, the entire potential can be presented in discretized form as

Π = 1

2
uT

p AE
∫
L

N ′T
x N ′

x dx

︸ ︷︷ ︸
K el, bar

up + 1

2
uT

p E I
∫
L

N ′′T
y N ′′

ydx

︸ ︷︷ ︸
K el, bending

up

+ 1

2
uT

p F
∫
L

N ′T
y N ′

ydx

︸ ︷︷ ︸
K geo

up − uT
p F. (12.35)

The elastic stiffness matrix K el consists of the fractions K el, bar and K el, bending.
The geometric stiffness matrix K geo is represented in the third term. The stiffness
matrices can be calculated through Eq. (12.35). The submatrices result in:

K el, bar = AE
∫
L

N ′T
x N ′

x dx, (12.36)

K el, bending = E I
∫
L

N ′′T
y N ′′

ydx, (12.37)

K geo = F
∫
L

N ′T
y N ′

ydx . (12.38)

According to the usual procedure the fraction from the elongation of the bar is
approximatively disregarded when describing the beam. For further considerations
only the fraction from the bending is considered. Depending on the type of shape
function different stiffness matrices occur. The general approach was already intro-
duced in Chap. 5 and reads as follows:

uy(x) = N1(x)u1y + N2(x)ϕ1 + N3(x)u2y + N4(x)ϕ2. (12.39)

A cubic approach for the deformation perpendicular to the axial direction is chosen.
The following shape functions are already known through Chap. 5

N1(x) = 1 − 3
x2

L2 + 2
x3

L3 ,

N2(x) = x − 2
x2

L
+ x3

L2 ,

N3(x) = 3
x2

L2 − 2
x3

L3 ,

N4(x) = − x2

L
+ x3

L2 . (12.40)

http://dx.doi.org/10.1007/978-3-642-31797-2_5
http://dx.doi.org/10.1007/978-3-642-31797-2_5
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The derivatives of the shape functions N ′
y are needed in Eq. (12.35). These result in:

∂N1(x)

∂x
= −6

x

L2 + 6
x2

L3 ,

∂N2(x)

∂x
= 1 − 4

x

L
+ 3

x2

L2 ,

∂N3(x)

∂x
= 6

x

L2 − 6
x2

L3 ,

∂N4(x)

∂x
= −2

x

L
+ 3

x2

L2 . (12.41)

With this, the integration
∫

L N ′T
y N ′

ydx can be done. The integration is shown as an
example using the matrix element (1,1):

k11 =
L∫

0

(
− 6x

L2 + 6x2

L3

)2

dx = 36

L2

L∫
0

(
−x + x2

L

)2

dx

= 36

L2

[
1

3
x3 − 1

2L
x4 + 1

5L2 x5
]L

0
= 36

L2

L3

30
= 36

30L
. (12.42)

The geometric stiffness matrix, depending on the external load F results in:

K geo = F

30L

⎡
⎢⎢⎣

36 3L −36 3L
4L2 −3L −L2

36 −3L2

sym. 4L2

⎤
⎥⎥⎦ . (12.43)

The entire stiffness matrix therefore consists of the two submatrices

K = E I

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦ + F

30L

⎡
⎢⎢⎣

36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L2

3L −L2 −3L2 4L2

⎤
⎥⎥⎦ . (12.44)

12.4 Examples of Buckling: The Four Euler’s Buckling Loads

Given is a prismatic beam, which is loaded with a concentrated force F in axial direc-
tion on one end. The beam has a cross-sectional area A, the second moment of area I
and the modulus of elasticity E . All factors are constant along the body axis. Required
are the critical load Fcrit and the buckling length Lcrit, respectively (Fig. 12.4).
The four Euler’s buckling cases vary according to the boundary conditions on both
ends.
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Fig. 12.4 The four Euler’s buckling cases

12.4.1 Analytical Solutions for Euler’s Buckling Loads

The differential equation of the buckling is [2]:

u′′′′
y + λ2u′′

y = 0 with λ2 = F

E I
. (12.45)

The general solution of the differential equation

uy(x) = Ā cos(λx)+ B̄ sin(λx)+ C̄ λx + D̄ (12.46)

consists of four constant terms.1 The constant term D̄ describes the translational rigid-
body motion of the beam, the term C̄ λx describes the rigid-body rotation of the beam
around the origin. The trigonometrical parts describe the deformation of the beam in
the deformed position. The constant terms Ā, B̄, C̄ and D̄ can be determined from the
boundary conditions. Required are the derivatives of the deformation from (12.46):

u′
y(x) = − Āλ sin(λx)+ B̄λ cos(λx)+ C̄λ, (12.47)

u′′
y(x) = − Āλ2 cos(λx)− B̄λ2 sin(λx), (12.48)

u′′′
y (x) = + Āλ3 sin(λx)− B̄λ3 cos(λx), (12.49)

u′′′′
y (x) = + Āλ4 cos(λx)+ B̄λ4 sin(λx). (12.50)

Table 12.1 shows the critical loads and buckling lengths for the Euler’s buckling
cases. Analogous to the critical load, the buckling lengths Lcrit for Euler’s buckling

1 In order to avoid conflicts with other variables the constants are headed by a bar.
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Table 12.1 Buckling load
and buckling length

Euler case I II III IV

Buckling load Fcrit = π2 E I
L2 × 1

4 1 1.432 4
Buckling length Lcrit = L× 2 1 1

1.43
1
2

can be introduced. The critical load and the buckling length are, regardless of the
boundary conditions, connected through

Fcrit = π2 E I

L2
crit

. (12.51)

These values serve as a reference for the established solutions of the finite element
method.

12.4.2 The Finite Element Method

The basis for the finite element analysis of the buckling behavior of beams is the
stiffness matrix (12.44). With the abbreviations e = E I

L3 and f = F
30L the compact

form of the entire stiffness matrix results in:

K =

⎡
⎢⎢⎣

12e − 36λ f 6eL − 3λ f L −12e + 36λ f 6eL − 3λ f L
6eL − 3λ f L 4eL2 − 4λ f L2 −6eL + 3λ f L 2eL2 + λ f L2

−12e + 36λ f −6eL + 3λ f L 12e − 36λ f −6eL + 3λ f L2

6eL − 3λ f L 2eL2 + 3λ f L2 −6eL + 3λ f L2 4eL2 − 4λ f L2

⎤
⎥⎥⎦ .

(12.52)

The four Euler’s cases differ due to the boundary conditions. In the following the
first Euler’s buckling case will be described. Node 1 is clamped firmly. By this, the
displacement u1x and the torsion ϕ1 vanish. The most simple finite element model
consists of exactly one beam. The rows 1 and 2 as well as the columns 1 and 2 will
be deleted in the system matrix. What remains is a reduced submatrix:

K red =
[

12e − 36λ f L −6eL + 3λ f
−6eL + 3λ f L 4eL2 − 4λ f L

]
. (12.53)

To define the eigenvalue λi , the determinant of the reduced system matrix has to be
constituted. This leads to the characteristic equation. Two solutions result from the
quadratic equation. For statements regarding the stability, the smallest eigenvalue is
of relevance. With this, the following emerges for the buckling load:

Fcrit = λmin F = 4

3
(13 − 2

√
31)

E I

L2 = 2.486
E I

L2 . (12.54)

Compared to the precise solution F = π2

4
E I
L2 an error of 0.8 % occurs.
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12.5 Supplementary Problems

12.1 Entries of the Geometric Stiffness Matrix

In the above descriptions, the integration
∫

L N ′T
y N ′

ydx for an assembly of the geo-
metric stiffness matrix of a bending beam has only been shown for the matrix
element (1,1).
The geometric stiffness matrix can be defined for a cubic displacement approach
perpendicular to the bending axis in all matrix elements.

12.2 Euler’s Buckling Cases II, III and IV, One Element

The above descriptions relate to Euler’s buckling case I. Unknown are the finite
element solution for the buckling load for Euler’s buckling cases II, III and IV.
Thereby discretization for the buckling can occur with one single beam element.

Problem:

1. Set up of the system matrix consisting of elastic and geometric stiffness matrix.
2. Definition of the eigenvalues.

12.3 Euler’s Buckling Cases, Two Elements

Unknown are finite element solutions for the critical buckling load of Euler’s buck-
ling cases I, II, III and IV. Thereby the buckling bar can be discretized with two beam
elements.

12.4 Euler’s Buckling Cases, Error in Regard to Analytical Solution

With the help of the finite element method the error from the determined solution
of the critical buckling load in regard to the analytical solution can be discussed
depending on the number of applied elements. Unknown are the finite element so-
lution for critical buckling load of Euler’s buckling cases I, II, III and IV. Thereby
the bending bar can be discretized with various beam elements.

References

1. Gross D, Hauger W, Schröder J, Werner EA (2008) Hydromechanik, Elemente der Höheren
Mechanik. Numerische Methoden, Springer, Berlin

2. Gross D, Hauger W, Schröder J, Wall WA (2009) Technische Mechanik 2: Elastostatik. Springer,
Berlin



References 325

3. Klein B (2000) FEM. Grundlagen und Anwendungen der Finite-Elemente-Methode, Vieweg-
Verlag, Wiesbaden

4. Kwon YW, Bang H (2000) The finite element method using MATLAB. CRC Press, Boca Raton



Chapter 13
Dynamics

Abstract Within the chapter on dynamics the transient behavior of the acting loads
on the structure will be introduced additionally into the analysis. The procedure
for the analysis of dynamic problems depends essentially on the character of the
time course of the loads. At deterministic loads the vector of the external loads is
a given function of the time. The major amount of problems in engineering, plant
and vehicle construction can be analyzed under this assumption. In contrast to that,
the coincidence is relevant in the case of stochastic loads. Such cases will not be
regarded here. For deterministic loads a distinction is drawn between

• periodic and non-periodic,
• slow and fast changing load-time functions (relatively related to the dynamic

eigenbehaviour of the structure).

In the following chapter linear dynamic processes will be considered, which can be
traced back to an external stimulation. The field of self-excited oscillation will not
be covered.

13.1 Principles of Linear Dynamics

The point of origin is an elastic continuum with mass which is, in contrast to previous
problems, stressed with time-dependent loads. The mass with density ρ extends itself
over the volumeΩ (Fig. 13.1). For dealing with dynamic problems in the context of
the finite element method various model assumptions can be discussed [1–7]:

1. the distribution of the mass and
2. the treatment of the time dependency of all involved parameters.

Within the framework of the FE method the continuum will be discretized. A first
model assumes that the distribution of the masses is not influenced by the discretiza-
tion. The masses are also distributed continuously in the discretized condition. Figure
13.2a shows the continuously distributed mass for a bar. Another model assumes that

A. Öchsner and M. Merkel, One-Dimensional Finite Elements, 327
DOI: 10.1007/978-3-642-31797-2_13, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 13.1 Elastic continuum with mass under time-dependent load

m

(a) (b)

Fig. 13.2 Models of dynamic systems with a continuously and b discrete distributed masses

the originally continuously distributed mass can be concentrated on discrete points
(see Fig. 13.2b).
The total mass

m =
n∑
i

mi (13.1)

of the system remains. The connection between the points with mass will be applied
with elements without mass, which may represent further physical properties, for
example stiffness.
Regarding the time dependency of the state variables, both the loads and the deforma-
tions as response of the system to the external loads are time changeable. Depending
on the character of the external load, different problem areas are distinguished in
dynamics (see Fig. 13.3) and pursue different strategies for the solution:

• Modal analysis
Here the vibration behavior is considered without external loads. Eigenfrequency
and eigenmodes are determined.

• Forced vibrations
An external periodic force excites the component to resonate in the excitation
frequency.

• Transient analysis
The external stimulating force F(t) is an arbitrary non-periodic function of time.

Problem definition
In addition to the elastic forces at pure static problems, inertia forces and fric-
tional forces occur. According to the principle of d’Alembert, these forces are
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Fig. 13.3 Solution strategies structured according to the time course of the external loads

at equilibrium with the external forces at all times:

Fm + Fc + Fk = F(t). (13.2)

In Eq. (13.2)

• Fm stands for the vector of the inertia forces,
• Fc stands for the vector of the damping forces, whereas in the following a velocity-

related damping is assumed,
• Fk stands for the vector of the elastic reset forces and
• F stands for the vector of the external acting forces.

In static problems the deformation state on the inside of an element

ue(x) = N(x) up (13.3)

is expressed through shape functions and nodal displacements. This assumption also
applies for dynamics. With ü as acceleration and second derivative of the displace-
ment after the time and u̇ as velocity and first derivative of the displacement after
the time one obtains a differential equation

Mü + Cu̇ + K u = F(t) (13.4)

in the displacements u as basic equation of dynamics. Thereby

• M stands for the mass matrix,
• C stands for the damping matrix and
• K stands for the stiffness matrix, which is already known from statics.

In the continuum, this equation stands for a partial differential equation in space and
time (wave equation). Resulting from the spatial discretization in the framework of
the FE method, Eq. (13.4) only represents a system of common differential equations
in time.
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13.2 The Mass Matrices

The structure of the mass matrices is essentially defined through the assumption of
the distribution of the masses. For an element, with continuously distributed mass,
equivalent forces, which are acting in the nodal points can be determined via the
principle of virtual work

�uT
p Mup =

∫
Ω

ρ(�u)Tu dΩ. (13.5)

With the approaches for the displacements u and the accelerations ü one obtains the
following as the mass matrix

M =
∫
Ω

ρNT NdΩ. (13.6)

Consideration of the frictional forces Fc leads to the damping matrix

C =
∫
Ω

NTμNdΩ. (13.7)

For a distribution of the masses in discrete points, the mass matrix can be determined
much easier. The proceeding will be shown in Sect. 13.6.2 for the example of the
axial vibration of a bar.

13.3 Modal Analysis

An elastic, mass containing structure reacts to a time limited, external stimulation
with a response in certain frequencies and modes of oscillation, whose entity is
considered as an eigensystem of eigenfrequency and eigenmode. A basic assumption
for the solution is that the changeable displacements in space and time are described
in a separation approach

u(x, t) = Φ(x) q(t), (13.8)

whereby with Φ(x) the dependence of the displacement on space and with q(t) the
dependence of the displacement on the time are described.

Development of Eigenmodes and Eigenfrequencies

For low damped systems the eigenmodes can be established from the corresponding
undamped system:

Mü + K u = 0. (13.9)
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With the approach for the displacement:

u(x, t) = Φ(x) eiωt (13.10)

this leads to the generalized eigenvalue problem

(−ω2 M + K )Φ = 0. (13.11)

The nontrivial solutions (standing for the statics) one obtains from

det(−ω2 M + K ) = 0. (13.12)

the ωi , i = 1, ..., n, which fulfill the equation, are referred to as eigenfrequencies,
and the corresponding Φ i are referred to as eigenmodes of the system with n degrees
of freedom.1 The single eigenmodes Φ i can be summarized in the modal matrix Φ

Φ = [Φ1 Φ2 Φ3 . . . Φn] . (13.13)

The eigenmodes possess essential characteristics:

1. The orthogonality of two eigenmodes:

ΦT
i Φ j = 0 , i �= j. (13.14)

2. The normalization regarding M:
The eigenmodes and therefore the eigenvectors can be M-normalized. The eigen-
vectors can be stretched or bulged, so that an M-orthonormality occurs. If the
mass matrix M is multiplied with ΦT from the left-hand and with Φ from the
right-hand, the modal mass matrix M̃ results, which has entries exclusively on
the main diagonal, to be precise a ‘1’:

ΦT MΦ = M̃ =
[

1 0
0 1

]
. (13.15)

If the stiffness matrix K is multiplied accordingly from the left-hand and the
right-hand, the modal stiffness matrix K̃ results, which has entries exclusively on
the main diagonal, to be precise the squares of the eigenfrequencies ωi :

ΦT KΦ = K̃ =
[
ω2

1 0
0 ω2

2

]
. (13.16)

1 With the eigenmodes the space dependent displacements are characterized. However, the absolute
magnitude of any displacement cannot be determined. The reason is that the system (13.13) has
always more unknowns than equations. For the illustration of eigenmodes one assigns a value for
an arbitrary eigenmode and relates all other eigenmodes to that.



332 13 Dynamics

3. Modal Damping:
If the damping matrix C is multiplied accordingly from the left-hand and the
right-hand, the modal damping matrix C̃ results, which has entries exclusively on
the main diagonal, to be precise the eigenfrequencies ωi and the modal damping
coefficients ζi :

ΦTCΦ = C̃ =
[
ω1ζ1 0

0 ω2ζ2

]
. (13.17)

The damping approach is known under the name Rayleigh’s damping and is
possible, when the damping matrix is represented in the following form:

C = αM + βK . (13.18)

4. Decoupling:
In total, one receives an equivalent system of decoupled differential equations

ΦT MΦ + ΦTCΦ + ΦT KΦ = 0, (13.19)

which can be written in generalized displacements q, also called modal coordi-
nates, as

q j + 2ω j q̇ j + ω2
j = F̃j . (13.20)

13.4 Forced Oscillation, Periodic Load

One talks about forced oscillation if a system suffers a periodic stimulation. Any
eigenoscillations are decayed due to damping. Since every periodic stimulation can
be analyzed via a Fourier analysis, it is enough to assume single forces of the
following kind

F(t) = F0eiωt , (13.21)

which take effect periodically with the frequency ω. In linear systems the total
response comes from the superposition of the single responses. It can be assumed
that in the equation of motion

Mü + Cu̇ + K u = F0eiωt (13.22)

the deformation, the velocities and the accelerations can be illustrated as vectors of
the following type

u(t) = u0ei(ωt−ψ), (13.23)

u̇(t) = iωu0ei(ωt−ψ), (13.24)

ü(t) = −ω2u0ei(ωt−ψ). (13.25)
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If the splitting of the complex displacement is inserted into the real and imaginary
part

u(t) = uReeiωt + iuImeiωt = u0eiωt (cosψ + i sinψ). (13.26)

one obtains from

[−ω2 M(uRe + iuIm)+ iωC(uRe + iuIm)+ K (uRe + iuIm)]eiωt = F0eiωt (13.27)

via

[(K − ω2 M)uRe − ωCuIm] + i[(K − ω2 M)uIm + ωCuRe] = F0 (13.28)

after the separation of the products of the real matrix with the complex vectors in the
real and imaginary parts 2n equations of the following kind

(K − ω2 M)uRe − ωCuIm = F0, (13.29)

(K − ω2 M)uIm + ωCuRe = 0. (13.30)

With n degrees of freedom this is a solvable linear system of equations with the
2n unknowns of the respective n component of the real and imaginary part of the
complex displacement u = uRe + iuIm. For each of the n degrees of freedom the
amplitude is defined through

uk =
√

u2
k,Re + u2

k,Im (13.31)

and the phase shift through

ψk = arctan

(
uk,Im

uk,Re

)
, (13.32)

except the multiples of π .

13.5 Direct Methods of Integration, Transient Analysis

Transient dynamic requires the integration of the equation of motion (13.4), which
describes the correlation between acceleration, damping, deformation and the exter-
nal force throughout the time interval of interest. Needed are integration procedures,
which identify the deformation in the regarded time interval from the equation of
motion

ü (t) = M−1 [F (t)− [Cu̇ (t)+ K u (t)]] . (13.33)
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An estimation of the displacement regarding time t + �t can be received through
the expansion in series up to the 2nd element

u (t +�t) ≈ u (t)+�t u̇ (t)+ �t2

2
ü (t) (13.34)

and an estimation of the velocity through an expansion of the series

u̇ (t +�t) ≈ u̇ (t)+�t ü (t) , (13.35)

which interrupts after the 1st element. To be able to make use of the integration
instructions according to Eqs. (13.33) and (13.35), displacement and velocity from
the initial moment t0 have to be known. The necessity of two instructions follows
from the fact that the equation of motion (13.4) represents a PDE of 2nd order
in time (two time derivatives occur). With a sufficiently small �t , the thus found
displacement approximates the time course of the displacement u(t) satisfactorily.
The basic construction of the two mostly used integration procedures, which are
ideally similar to the quadratic procedures (or procedures of 2nd order), will be
described here.

13.5.1 Integration According to Newmark

In the time interval [t, t +�t] the constant averaged acceleration

üm = 1

2
[u̇ (t)+ ü (t +�t)] (13.36)

is assumed. Therewith a quadratic course results for the displacement

u (t +�t) = u (t)+�t u̇ (t)+ �t2

4
ü (t)+ ü (t +�t) (13.37)

and a linear course for the velocity u̇ (t)

u̇ (t +�t) = u̇ (t)+ �t2

2
ü (t)+ ü (t +�t). (13.38)

Together with the equation of motion (13.4) at the point of time t +�t

Mü (t +�t)+ Cu̇ (t +�t)+ K u (t +�t) = F (t +�t) (13.39)

three equations for three unknowns are available u (t +�t) , u̇ (t +�t) , ü (t+�t).
Setting�u = u (t +�t)− u (t), for this increase of the displacement the following
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results

�u = S−1 F (t +�t)− K u (t)+ M
[

ü (t)+ 4

�t
u̇ (t)

]
+ Cu̇ (t) (13.40)

with

S = 4

�t2 M + 2

�t
C + K . (13.41)

The velocity u̇ (t +�t) and the acceleration ü (t +�t) are calculated from
Eqs. (13.35) and (13.33). The time integration according to Newmark in fact requires
the often expensive calculation of these inverses, however allows relatively large time
steps, so that this disadvantage is compensated for in many cases. In particular, for
linear problems, in which the system matrices are not dependent on the actual dis-
placements, this procedure can be used very effectively since the inverse S−1 only
has to be calculated once.

13.5.2 Central Difference Method

The velocity u̇ (t), as first derivative of the displacement according to time, can be
approximated through the displacement to the times t −�t and t +�t at sufficiently
small time step �t through

u̇ (t) ≈ u (t +�t)− u (t −�t)

2�t
. (13.42)

The acceleration ü (t) as second derivative of the displacement according to time is
approximated with

ü (t) ≈ u (t +�t)− 2u (t)+ u (t −�t)

�t2 . (13.43)

If these relations are inserted into the equation of motion (13.4) at the point of time t ,
one obtains with the abbreviations u1 = u (t +�t) , u0 = u (t) und u−1 =
u (t −�t)

M
u1 − 2u0 + u−1

�t2 + C
u1 − u−1

2�t
+ K u0 = F (t) (13.44)

a relation, from which the displacement u1 = u (t +�t) can be calculated, if the
displacement at the previous points of time t and t −�t are known:

u1 = S−1 F (t)−
(

K − 2M
�t2

)
u0 −

(
M
�t2 − C

2�t

)
u−1 (13.45)
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with

S = 1

�t2 M + 1

2�t
C. (13.46)

To calculate the new displacement u1 = u(t +�t), values of the displacement u at
two points of time are necessary. Since for a transient problem, initial displacement
and velocity and therefore according to Eq. (13.33) also the acceleration at the point
of time t = 0 have to be known, a virtual displacement at the time −�t from the
expansion of series is supplied

u1 = u (t −�t) ≈ u (0)−�t u̇ (0)+ �t2

2
ü (0) (13.47)

and, in the first time step, the displacement u1 = u (�t) can be calculated.
The central difference method is explicitly named, since the displacement
u (t +�t) is calculated from the conditions at the point of time t and not with
an analysis of the equation of motion at the point of time t +�t , while the implicit
Newmark method considers the equilibrium of forces at the point of time t +�t .
This explicit method is of great importance for diagonal mass and damping matrices
M and C, at which the inverses can easily be defined by

S =

⎡
⎢⎢⎢⎢⎣

S1,1 0 · · · 0
0 S2,2 · · · 0
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · Sn,n

⎤
⎥⎥⎥⎥⎦ (13.48)

through

S−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
S1,1

0 · · · 0

0 1
S2,2

· · · 0

· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · 1

Sn,n

⎤
⎥⎥⎥⎥⎥⎦

(13.49)

with

Si,i = Mi

�t2 + Ci

2�t
, (i = 1 − n). (13.50)

The extremely fast, nonlinear crash programs, which conduct hundreds of thousands
of integration steps during a calculation and in the process constantly calculate new
matrices, make use of this or the herefrom derived methods. The time steps, with
which the motion of a component can be calculated satisfactory, are clearly smaller
than with the Newmark method, in return the calculations are done very easily and
are outstandingly parallelizable, meaning very fast on computers with various or
many processors. Furthermore only little storage space is needed, since the matrices
in Eq. (13.50) never have to be derived completely.
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13.6 Examples

So far, the introduced approaches can be discussed with the help of examples:

• Axial vibration in the bar and
• Bending vibration in the bending beam.

Essentially three models will be analysed:

1. The analytical solution, which results from the solution of the differential
equation,

2. the solution according to the FE method, whereupon the masses are continuously
distributed and

3. the solution according to the FE method, when the masses are concentrated on
discrete points.

First of all the necessary mass and stiffness matrices will be given in general.

13.6.1 Provision of Mass and Stiffness Matrices

The general calculation instruction for the mass matrix

Me =
∫
Ω

ρNT N dΩ (13.51)

with continuously distributed mass and for the stiffness matrix

K e =
∫
Ω

BT DB dΩ (13.52)

are known from previous chapters. In the following, the issue will be discussed with
the help of examples.

Axial Vibration in the Bar

In Fig. 13.4 the bar is drafted with degrees of freedom, which serve as a basis for
the analysis of the dynamic behavior. The names are closely connected with the
definition of the degrees of freedom in statics.

Fig. 13.4 Bar with degrees
of freedom for the dynamic
analysis
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Besides the displacement u(x) also the acceleration ü(x) is a state variable within
the considered system. Figure 13.5 illustrates the bar element with the degrees of
freedom for a linear approach.

Fig. 13.5 Bar with linear
approach

With linear shape functions the following mass matrix results

Me = ρAL

6

[
2 1
1 2

]
(13.53)

and the following stiffness matrix results

K e = E A

L

[
1 −1

−1 1

]
. (13.54)

The expression
Meüe + K eue (13.55)

can therefore be written as

ρAL

6

[
2 1
1 2

] [
ü1
ü2

]
+ E A

L

[
1 −1

−1 1

] [
u1
u2

]
. (13.56)

Figure 13.6 shows the bar element with the degrees of freedom for a quadratic
approach.

Fig. 13.6 Bar element with quadratic approach
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With a quadratic shape function the mass matrix results in

Me = ρAL

30

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦ (13.57)

and the stiffness matrix in:

K e = E A

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦ . (13.58)

The expression
Meüe + K eue (13.59)

can therefore be written as

ρAL

30

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦

⎡
⎣ ü1

ü2
ü3

⎤
⎦ + E A

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ . (13.60)

Bending Vibration in the Beam

In Fig. 13.7 the bending beam with the degrees of freedom is drafted, which serve as
a basis for the analysis of the dynamic behavior. The notation is closely connected
with the definition of the degrees of freedom in statics. First of all the influence
of the inertia in rotation can be disregarded. This issue will be introduced later on.
From static analysis the relation, how the deflection uz(x) at an arbitrary point x is
connected with the fixed nodal values u1z , ϕ1y, u2z and ϕ2y is already known. The
basis for this is an approach for the displacement in the form

uz(x) =
4∑
i

Ni (x) ui . (13.61)

Fig. 13.7 Bending beam with
degrees of freedom for the
dynamic analysis
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With the four shape functions

N1(x) = 1 − 3
x2

L2 + 2
x3

L3 ,

N2(x) = −x + 2
x2

L
− x3

L2 ,

N3(x) = 3
x2

L2 − 2
x3

L3 ,

N4(x) = x2

L
− x3

L2 (13.62)

one obtains the following description for the deformation

uz(x) =
(

1 − 3
x2

L2 + 2
x3

L3

)
u1z +

(
− x

L
+ 2

x2

L2 − x3

L3

)
L ϕ1y

+
(

3x2

L2 − 2
x3

L3

)
u2z +

(
x2

L2 − x3

L3

)
L ϕ2y (13.63)

regarding nodal values and shape functions.
Single entries can be determined with the shape functions from the calculation
instruction for the mass matrix (13.51). For the bending beam 16 entries result for
the mass matrix. The calculation will be illustrated as an example on the entries m11
and m12. From the matrix element m11

m11 = ρA

L∫
0

(
1 − 3x2

L2 + 2x3

L3

)
dx

= ρA

L∫
0

(
1 − 6x2

L2 + 4x3

L3 + 9x4

L4 − 12x5

L5
+ 4x6

L6

)
dx

= ρA

[
x − 2x3

L2 + x4

L3 + 9x5

5L4 − 2x6

L5
+ 4x7

7L6

]
|L
0

= 156

420
ρAL (13.64)

the matrix element m12

m12 = ρA

L∫
0

(
1 − 3x2

L2 + 2x3

L3

)
×

(
− x

L
+ 2x2

L2 − x3

L3

)
L dx

= 22

420
ρ A L2, (13.65)
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up to the matrix element m44

m44 = ρA

L∫
0

(
x2

L2 − x3

L3

)2

× L2dx = 4

420
ρAL3 (13.66)

the total mass matrix results

M = ρ AL

420

⎡
⎢⎢⎣

156 −22L 54 13L
4L2 −13L −3L

156 22L
sym. 4L2

⎤
⎥⎥⎦ (13.67)

for the description of the bending vibration in the bending beam.
So far, the influence of the cross-sectional rotation is disregarded. Besides the deflec-
tion uz in z-direction the cross-section rotates around the y-axis. For the vibration
behavior the inertia in rotation is additionally considered.
The total mass matrix

Me = ρ A L

420

⎡
⎢⎢⎣

156 −22L 54 13L
4L2 −13L −3L2

156 22L
sym. 4L2

⎤
⎥⎥⎦ (13.68)

+ ρ A L

30

(
Iy

A × L2

) ⎡
⎢⎢⎣

36 −3L −36 3L
4L2 3L −L2

36 −3L
sym. 4L2

⎤
⎥⎥⎦ (13.69)

can be dispersed in a translational and a rotatory part. The expression Iy stands for
the axial second moment of area of 2nd order around the y-axis. The first matrix
corresponds with the already known matrix from consideration without the rotatory
part.

13.6.2 Axial Vibration in the Bar

A prismatic tension bar serves as the point of origin, which is continuously loaded
with mass (density ρ) and whose modulus of elasticity E and cross-sectional area A
are constant. Unknown are the eigenfrequencies (Fig. 13.8).
From the differential equation for the axial vibration of a bar

∂2u(x, t)

∂t2 = E

ρ

∂2u(x, t)

∂x2 (13.70)
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Fig. 13.8 Cantilevered bar

the eigenfrequencies result in:

ωn = 2n − 1

2
π

√
E

ρL2 . (13.71)

The first eigenfrequencies calculate for n = 1, 2, 3, 4 in the following:

ω1 = 1

2
π = 1.5708

√
E/ρL2, (13.72)

ω2 = 3

2
π = 4.7124

√
E/ρL2, (13.73)

ω3 = 5

2
π = 7.854

√
E/ρL2, (13.74)

ω4 = 7

2
π = 10.99

√
E/ρL2. (13.75)

Figure 13.9 shows a finite element discretization with continuously distributed mass.
The total mass and stiffness matrix can be established by combining the formulated
matrices for a single element properly. Therefore one obtains the general equation
of motion:

m

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ü0
ü1
ü2
...

ün

⎤
⎥⎥⎥⎥⎥⎦

+k

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2
. . .

. . .
. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u0
u1
u2
...

un

⎤
⎥⎥⎥⎥⎥⎦

= 0 (13.76)

with m = ρA 1
n L

6 and k = E A
1
n L

. On the fixed support the boundary conditions ü0 = 0

(no acceleration) and u0 = 0 (no displacement) apply. Hence the first row and the first
column of a matrix in each case can be cancelled from the entire system of equations.

ρA 1
n L

6

⎡
⎢⎢⎢⎢⎢⎣

4 1
1 4 1
. . .

. . .
. . .

1 4 1
1 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ü1
ü2
...

üN

⎤
⎥⎥⎥⎦ + E A

1
n L

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2

. . .
. . .

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ = 0.

(13.77)
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Fig. 13.9 FE discretization for axial vibration in the bar

The matrices do not have a diagonal shape. Between two nodes (i) and (i + 1)
respectively there is a partial mass. This leads to secondary diagonals. In a nodal
point (i) two ‘finite masses’ bump against each other, in the endpoint only one. This
becomes noticeable on the main diagonal in the last entry. Both matrices have a band
structure with a band width of 3.

Lumped Mass Equivalent System
For a Lumped Mass Method (LMM) equivalent system the continuously distributed
mass will be concentrated on discrete points. When modeling the bar it needs to
be considered that at the bar beginning and at the bar end only m/2 needs to be
added respectively. One obtains the mass and stiffness matrix according to the above
described procedure. The first row and the first column can be canceled in the equation
of motion with n + 1 nodes since the following values for the displacement u0 = 0
and the acceleration ü0 = 0 hold (Fig. 13.10).

Fig. 13.10 FE discretization (concentrated mass) for tension vibration in a bar

ρA
1

n
L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1 0

1
. . .

0 1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ü1
ü2
...

ün

⎤
⎥⎥⎥⎦ + E A

1
n L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1 0

−1 2 −1
. . .

. . .
. . .

0 −1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ = 0.

(13.78)
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To be noted:
The mass matrix has a diagonal shape, the stiffness matrix has a band structure with
a band width of three.

13.6.2.1 Solutions with Linear Shape Functions

The number of finite elements has a decisive influence on the accuracy of the results.
First of all the tension bar will be discretized with linear and later on with quadratic
shape functions. The solution with continuously distributed masses as well as the
solution with concentrated masses will be introduced.

Continuously Distributed Masses

First of all the entire bar is regarded as a single element (Fig. 13.11).

Fig. 13.11 An element with continuously distributed mass

With the mass and stiffness matrix

M = ρAL

6

[
2 1
1 2

]
and K = E A

L

[
1 −1
−1 1

]
(13.79)

the equation of motion results as

[
2 1
1 2

] [
ü0
ü1

]
+ 6

E

ρL2

[
1 −1

−1 1

] [
u0
u1

]
=

[
0
0

]
. (13.80)

No acceleration (ü = 0) and no displacement (u = 0) occur on the node 0 with the
coordinate x0. The first row of the system of equations can therefore be cancelled.
Two equations result from the second line:

ü1 − 6
E

ρL2 u1 = 0, 2ü1 + 6
E

ρL2 u1 = 0. (13.81)
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With the approach u1 = û1e(iωt) one obtains the following from the first equation:

(
−ω2 − 6

E

ρL2

)
û1 = 0 ⇒ ω =

√
6

E

ρL2 i. (13.82)

The second equation leads to:

(
−2ω2 + 6

E

ρL2

)
û1 = 0 ⇒ ω = √

3

√
E

ρL2 (13.83)

or alternatively

ω = 1.7321

√
E

ρL2 . (13.84)

The result deviates significantly from that of the analytical solution. An improvement
can be achieved via a discretization with two finite elements.

Two Elements

The system now consists of two finite elements with linear shape functions and three
nodes 0, 1 and 2 on the coordinates x0, x1 and x2 (Fig. 13.12). No accelerations
(ü = 0) and no displacements u = 0 occur on the fixing point. From the above
considerations the reduced mass and stiffness matrix can be established

Fig. 13.12 Two elements with continuously distributed masses

Mred = ρA 1
2 L

6

[
4 1
1 2

]
and K red = E A

1
2 L

[
2 −1
−1 1

]
(13.85)
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so that the following characteristic equation

∣∣∣∣−4λ2 + 2 −1λ2 − 1
−1λ2 − 1 −2λ2 + 1

∣∣∣∣ != 0 ⇒ 2(1 − 2λ2)2 = (1 + λ2)2 (13.86)

with the abbreviations

λ2 = 1

6

ρ 1
4 L2

E
ω2 (13.87)

results. Two solutions result

λ2
1 =

√
2 − 1

1 + 2
√

2
and λ2

2 = 1 + √
2

2
√

2 − 1
, (13.88)

which look as follows, written in detail:

ω2
1 =

24
(√

2 − 1
)

1 + 2
√

2

E

ρL2 ⇒ ω1 = 1.61

√
E

ρL2 , (13.89)

ω2
2 =

24
(

1 + √
2
)

2
√

2 − 1

E

ρL2 ⇒ ω2 = 5.63

√
E

ρL2 . (13.90)

The values for the eigenfrequencies so far deviate significantly from the analyti-
cal solutions. The next simplification equals a division of the bar into three finite
elements.

Three Elements

The system now consists of three finite elements with linear shape functions and four
nodes 0, 1, 2 and 3 on the coordinates x0, x1, x2 and x3. No accelerations (ü0 = 0)
and no displacements (u0 = 0) occur at the fixing point. Therefore the first row
and the first column can be cancelled from the system of equations (Fig. 13.13). The
reduced mass and stiffness matrix remains

Mred = ρA 1
3 L

6

⎡
⎣ 4 1 0

1 4 1
0 1 2

⎤
⎦ and K red = E A

1
3 L

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎦ , (13.91)

with which the following characteristic equation

∣∣∣∣∣∣
−4λ2 + 2 −1λ2 − 1 0
−1λ2 − 1 −2λ2 + 1 −1λ− 1

0 −1λ 1

∣∣∣∣∣∣
!= 0 (13.92)
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Fig. 13.13 Three elements with continuously distributed masses

with the abbreviations

λ2 = 1

6

ρ( 1
3 L)2

E
ω2 = 1

6

1

9

ρL2

E
ω2 (13.93)

can be gained. Three solutions result

λ2
1 = 2 − √

3

4 + √
3
, λ2

2 = 1

2
, λ2

3 = 2 + √
3

4 − √
3
, (13.94)

which appear as follows, written in detail

ω1 =
54

(
2 − √

3
)

4 + √
3

E

ρL2 ⇒ ω1 = 1.59

√
ρL2

E
, (13.95)

ω2 = 27
E

ρL2 ⇒ ω2 = 5.19

√
ρL2

E
, (13.96)

ω3 =
54

(
2 + √

3
)

4 − √
3

E

ρL2 ⇒ ω3 = 9.43

√
ρL2

E
. (13.97)

The deviation from the analytical solution will be considered later on.

Lumped Mass Method

Within this method discretizations with one, two and three finite elements will be
introduced. First of all, a discretization with just one element will be considered
(Fig. 13.14).
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Fig. 13.14 One element with concentrated masses on the ends

From Eq. (13.78) one obtains directly

− ω2ρAL × 1

2
+ E A

L
= 0 (13.98)

and herefrom the solution

ω = √
2

√
E

ρL2 (13.99)

for the eigenfrequency. This result deviates significantly from the analytical
solution.

Two Elements

Through a refining of the discretization with two elements a better solution can be
achieved (Fig. 13.15). The system consists of two finite elements with linear shape
functions and three nodes 0, 1, and 2 on the coordinates x0, x1 and x2. With the mass
and stiffness matrix

M = ρA
1

2
L

⎡
⎣ 1 0 0

0 1 0
0 0 1

2

⎤
⎦ K = E A

1
2 L

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎦ (13.100)

the equation of motion results in:

⎡
⎣ 1 0 0

0 1 0
0 0 1

2

⎤
⎦

⎡
⎣ ü0

ü1
ü2

⎤
⎦ + E

ρ 1
4 L2

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎦

⎡
⎣ u0

u1
u2

⎤
⎦ = 0. (13.101)

No acceleration (ü0 = 0) and no displacement (u0 = 0) occur on the fixing point.
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Fig. 13.15 Two elements with concentrated masses

The first row and the first column can be canceled from the system. From

det

(
−λ2

[
1 0
0 1

2

]
+

[
2 −1

−1 1

])
= 0 (13.102)

with

λ2 = 1

4

ρL2

E
ω2 (13.103)

one obtains via
∣∣∣∣−λ

2 + 2 −1
−1 − 1

2λ
2 + 1

∣∣∣∣ = 0 ⇒
(

2 − λ2
)2 = 2 ⇒ 2 − λ2 = ±√

2

(13.104)

the solution λ2
1 = 2 − √

2 and λ2
2 = 2 + √

2. These can be written in detail as

ω2
1 = 4

(
2 − √

2
) E

ρL2 ⇒ ω1 = 1.53

√
E

ρL2 (13.105)

and

ω2
2 = 4

(
2 + √

2
) E

ρL2 ⇒ ω2 = 3.70

√
E

ρL2 . (13.106)

The solutions deviate significantly from the analytical solutions.

Three Elements

During the next refining the tension bar with three elements will be discretized.
Therewith four nodes (0, 1, 2, 3) are on the coordinates x0, x1, x2 and x3 in the
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Fig. 13.16 Three elements with concentrated masses

system. The tension bar is fixed on the node 0 (Fig. 13.16). No acceleration (ü0 = 0)
and no displacement u0 = 0 occur on the fixing point. Therefore the respective first
rows and columns can be canceled from the mass and stiffness matrix. The reduced
matrices remain

Mred = ρA
1

3
L

⎡
⎣ 1 0 0

0 1 0
0 0 1

2

⎤
⎦ and K red = E A

1
3 L

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎦ . (13.107)

With the abbreviation

λ2 = 1

9

ρL2

E
ω2 (13.108)

one obtains the determinant and the characteristic equation

∣∣∣∣∣∣
−λ2 + 2 −1 0

−1 −λ2 + 2 −1
0 −1 − 1

2λ
2 + 1

∣∣∣∣∣∣
!= 0 ⇒

(
2 − λ2

) [(
2 − λ2

)2
]

= 0

(13.109)
and herefrom the solutions

λ1 =
√

2 − √
3, λ2 = √

2, λ3 =
√

2 + √
3 , (13.110)

from which the eigenfrequency can be determined as follows

ω1 = 1.55

√
ρL2

E
, ω2 = 4.24

√
ρL2

E
, ω3 = 5.78

√
ρL2

E
. (13.111)

Table 13.1 summarizes all results. Therein are the relative errors in % for the FE
solutions with continuously distributed and discretized masses (LMM). The errors
relate to the analytical solution.
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Table 13.1 Relative errors in % respective to the analytically determined eigenfrequency on the
basis of elements with linear shape functions

Number of Elements 1 2 3
Eigenfrequencies 1st 1st 2nd 1st 2nd 3rd

FEM +10.27 +2.59 +19.5 +1.13 +8.23 +20.1
LMM −9.97 −2.55 −21.5 −1.14 −9.96 −26.4

Table 13.2 Relative error in % respective to the analytically determined eigenfrequency on the
basis of elements with quadratic shape functions

Number of elements 1 2
Eigenfrequencies 1st 2nd 1st 2nd 3rd 4th

FEM +0.38 +20.4 +0.03 +1.65 +11.77 +28.0
LMM −0.8 −11.04 −0.17 −2.38 −5.52 −18.0

Remarks: From the comparison in Table 13.1 one can see that the lumped mass
method (LMM) delivers values which are too low, while one obtains values which
are too high from the finite element method (FEM). Through the concentration of the
continuously mass on the nodal points, the inertia effects are enlarged, whereby the
eigenfrequencies become smaller. In contrast, the inertia effects are reduced when
making use of a mass matrix M according to the FEM, which is based on a linear form
function matrix N . This leads to too high eigenfrequencies. Consequently a lower
bound (LMM) and an upper bound (FEM) have been found for the limitation of
the exact solution. If quadratic interpolation functions are used, the computing time
of course increases. However a smaller number of elements is enough to achieve
comparable results (Table 13.2).

13.6.2.2 The Tension Bar with Quadratic Shape Functions

The problem will be described similarly to the previous section (see Fig. 13.11).
In contrast to a linear approach, the element with three nodes is described in a
quadratic approach. First of all, the entire bar with only one element is presented.
The system consists of one finite element with quadratic shape function and three
nodes 0, 1 and 2 on the coordinates x0, x1 and x2 (Fig. 13.17). With the mass and
stiffness matrix for quadratic shape functions the following results for the equation
of motion

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦

⎡
⎣ ü0

ü1
ü2

⎤
⎦ + 10E

ρL2

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦

⎡
⎣ u0

u1
u2

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ , (13.112)
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Fig. 13.17 One element with distributed mass and quadratic shape function

which can be simplified due to the boundary conditions on the fixing point
ü0 = 0, u0 = 0 to

[
16 2
2 4

] [
ü1
ü2

]
+ 10E

ρL2

[
16 −8
−8 7

] [
u1
u2

]
=

[
0
0

]
. (13.113)

With the abbreviation

λ2 = ρL2

10E
ω2 (13.114)

one obtains the characteristic equation

∣∣∣∣−16λ2 + 16 −2λ2 − 8
−2λ2 − 8 −4λ2 + 7

∣∣∣∣ != 0 ⇒ λ4 − 52

15
λ2 = −4

5
(13.115)

with the solutions

λ2 = 26

15
± 1

15

√
496, (13.116)

which can be written in detail as

ω2
1 = 2.486

E

ρL2 ⇒ ω1 = 1.57

√
E

ρL2 (13.117)

and

ω2
2 = 32.18

E

ρL2 ⇒ ω2 = 5.67

√
E

ρL2 . (13.118)

In contrast to the exact values ω1 is affected by an error of +0.38 % and ω2 is
affected by an error of +20.4 %. A slightly lower value for ω1 with an error of



13.6 Examples 353

+1.13% was not achieved until a division of the bar into three finite elements on the
basis of a linear displacement approach took place. For a single element, a value of
ω1 = 1.7321

√
E/ρL2 has been achieved, which is affected by an error of 10.27 %.

Therefore the value for ω1 could be improved by +9.89 % through a quadratic dis-
placement approach. To receive a comparable value for ω2, two finite elements are
required.

Two Elements

With this modeling, the bar is divided into two elements with quadratic shape func-
tions. The system consists of five nodes in total 0, 1, 2, 3 and 4 on the coordinates
x0, x1, x2, x3 and x4 (Fig. 13.18).

Fig. 13.18 Two elements with distributed masses and quadratic shape functions

The mass matrix

M = ρA 1
2 L

30

⎡
⎢⎢⎢⎢⎣

4 2 −1 0 0
2 16 2 0 0

−1 2 8 2 −1
0 0 2 16 2
0 0 −1 2 4

⎤
⎥⎥⎥⎥⎦ (13.119)

and the stiffness matrix

K = E A

3 1
2 L

⎡
⎢⎢⎢⎢⎣

7 −8 1 0 0
−8 16 −8 0 0
1 −8 14 −8 1
0 0 −8 16 −8
0 0 1 −8 7

⎤
⎥⎥⎥⎥⎦ (13.120)

have the dimension 5 × 5. No acceleration (ü0 = 0) and no displacement (u0 = 0)
occur on the fixing point. Therefore the first row and the corresponding first column
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of the matrices can be canceled. From the equation of motion

⎡
⎢⎢⎣

16 2 0 0
2 8 2 −1
0 2 16 2
0 −1 2 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ü1
ü2
ü3
ü4

⎤
⎥⎥⎦ + 40E

ρL2

⎡
⎢⎢⎣

16 −8 0 0
−8 14 −8 1
0 −8 16 −8
0 1 −8 7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (13.121)

the eigenvalue problem can be formulated

det

⎛
⎜⎜⎝−ω2

⎡
⎢⎢⎣

16 2 0 0
2 8 2 −1
0 2 16 2
0 −1 2 4

⎤
⎥⎥⎦ + 40E

ρL2

⎡
⎢⎢⎣

16 −8 0 0
−8 14 −8 1
0 −8 16 −8
0 1 −8 7

⎤
⎥⎥⎦

⎞
⎟⎟⎠ = 0 (13.122)

from which the solution for ω2 or alternatively the eigenfrequency ω

ω2
1 = 2.468664757

E

ρL2 ⇒ ω1 = 1.5712

√
E

ρL2 , (13.123)

ω2
2 = 22.94616601

E

ρL2 ⇒ ω2 = 4.7902

√
E

ρL2 , (13.124)

ω2
3 = 77.06313717

E

ρL2 ⇒ ω3 = 8.7786

√
E

ρL2 , (13.125)

ω2
4 = 198.6985027

E

ρL2 ⇒ ω4 = 14.0961

√
E

ρL2 (13.126)

can be determined. The deviations from the analytical solutions are significantly
lower in comparison with the approximations which were achieved with linear shape
functions.

Method with Concentrated Masses (LMM)

In the first step of discretization the system consists of only one finite element with
quadratic shape function and three nodes 0, 1 and 2 on the coordinates x0, x1 and x2
(Fig. 13.19).
With the mass and stiffness matrix

M = ρAL

4

⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦ and K = E A

3L

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦ (13.127)
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Fig. 13.19 One element with concentrated masses and quadratic shape function

the equation of motion appears as follows:

⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦

⎡
⎣ ü0

ü1
ü2

⎤
⎦ + 4

3

E

ρL2

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦

⎡
⎣ u0

u1
u2

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ . (13.128)

No acceleration (ü0 = 0) and no displacement (u0 = 0) occur on the fixing point.
Therefore the first row and the respective first column of the matrices can be cancelled.
With the abbreviation

λ2 = 3

4

ρL2

E
ω2 (13.129)

one obtains the characteristic equation

∣∣∣∣−2λ2 + 16 −8
−8 −λ2 + 7

∣∣∣∣ != 0 ⇒ (λ2 − 8)(λ2 − 7) = 32 (13.130)

and therefore the solutions for λi

λ2
2,1 = 15

2
± 1

2

√
129 (13.131)

and therefrom the eigenfrequencies

ω2 = 4.192

√
E

ρL2 and ω1 = 1.558

√
E

ρL2 . (13.132)

In comparison to the exact factor of 1.5708, the approximate value ω1 is affected by
an error of −8 %, whileω2 differs by −11.04 %. One compares these results with the
corresponding errors of +0.38 and +20.4 % which result when using the equivalent
mass matrix instead of the lumped-mass system.
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Two Elements

In this step of discretization the system consists of two finite elements with quadratic
shape functions and five nodes 0, 1, 2, 3 and 4 on the coordinates x0, x1, x2, x3 and
x4 (Fig. 13.20).

Fig. 13.20 Two elements with concentrated masses and quadratic shape functions

With the mass and stiffness matrix

M = ρA 1
2 L

4

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ and K = E A

3 1
2 L

⎡
⎢⎢⎢⎢⎣

7 −8 1 0 0
−8 16 −8 0 0
1 −8 14 −8 1
0 0 −8 16 −8
0 0 1 −8 7

⎤
⎥⎥⎥⎥⎦ (13.133)

one obtains, under consideration of the boundary conditions (ẍ0 = 0, x0 = 0) the
equation of motion:

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ü1
ü2
ü3
ü4

⎤
⎥⎥⎦ + 16

3

E

ρL2

⎡
⎢⎢⎣

16 −8 0 0
−8 14 −8 1
0 −8 16 −8
0 1 −8 7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ . (13.134)

From the solution of the eigenvalue problem

det

⎛
⎜⎜⎝−ω2

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ + 16

3

E

ρL2

⎡
⎢⎢⎣

16 −8 0 0
−8 14 −8 1
0 −8 16 −8
0 1 −8 7

⎤
⎥⎥⎦

⎞
⎟⎟⎠ = 0 (13.135)

one obtains the four real solutions

ω2
1 = 2.459021

E

ρL2 ⇒ ω1 = 1.5681

√
E

ρL2 , (13.136)
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ω2
2 = 21.16383

E

ρL2 ⇒ ω2 = 4.6004

√
E

ρL2 , (13.137)

ω2
3 = 55.064934

E

ρL2 ⇒ ω3 = 7.4206

√
E

ρL2 , (13.138)

ω2
4 = 81.3122153

E

ρL2 ⇒ ω4 = 9.0173

√
E

ρL2 (13.139)

for ω2
i or alternatively the four eigenfrequencies ωi .

Remark:
The eigenfrequencies approximated via the LMM are smaller as the analytically
determined ones (lower bound). The following table summarizes all solutions.
Given are the relative errors in % for the FE solutions with continuously distrib-
uted and discretized masses (LMM). The errors relate to the analytical solutions
(Table 13.3).

Table 13.3 Relative error in % respective to the analytically determined eigenfrequency on the
basis of elements with quadratic shape functions

Number of elements 1 2

Eigenfrequencies 1st 2nd 1st 2nd 3rd 4th

FEM +0.38 +20.4 +0.03 +1.65 +11.77 +28.0
LMM −0.8 −11.04 −0.17 −2.38 −5.52 −18.0

13.7 Supplementary Problems

13.1. Analytical Solutions for Bending Vibrations
Determine the first four eigenfrequencies for the one-sided fixed mass loaded beam
with length L with constant bending stiffness E I .
Given: ρ, L , E I

13.2 FE Solution for Bending Vibrations
Determine the first four eigenfrequencies for the one-sided fixed mass loaded beam
with length L with constant bending stiffness E I .
Given: ρ, L , E I
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Appendix A

A.1 Mathematics

A.1.1 The Greek Alphabet

Table A.1 The Greek
Alphabet

Name Lower case Capital

Alpha a A
Beta b B
Gamma c C
Delta d D
Epsilon � E
Zeta f Z
Eta g H
Theta h; # H
Iota i I
Kappa j K
Lambda k K
My l M
Ny m N
Xi n N
Omikron o O
Pi p P
Rho q; . P
Sigma r R
Tau s T
Ypsilon t �

Phi /;u U
Chi v X
Psi w W
Omega x X

A. Öchsner and M. Merkel, One-Dimensional Finite Elements,
DOI: 10.1007/978-3-642-31797-2, � Springer-Verlag Berlin Heidelberg 2013
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A.1.2 Often Used Constants

p ¼ 3:14159

e ¼ 2:71828
ffiffiffi

2
p
¼ 1:41421
ffiffiffi

3
p
¼ 1:73205
ffiffiffi

5
p
¼ 2:23606
ffiffiffi

e
p
¼ 1:64872

ffiffiffi

p
p
¼ 1:77245

A.1.3 Special Products

ðxþ yÞ2 ¼ x2 þ 2xyþ y2 ; ðA:1Þ

ðx� yÞ2 ¼ x2 � 2xyþ y2 ; ðA:2Þ

ðxþ yÞ3 ¼ x3 þ 3x2yþ 3xy2 þ y3 ; ðA:3Þ

ðx� yÞ3 ¼ x3 � 3x2yþ 3xy2 � y3 ; ðA:4Þ

ðxþ yÞ4 ¼ x4 þ 4x3yþ 6x2y2 þ 4xy3 þ y4 ; ðA:5Þ

ðx� yÞ4 ¼ x4 � 4x3yþ 6x2y2 � 4xy3 þ y4 : ðA:6Þ

A.1.4 Trigonometric Functions

Definition of the right-angled triangle
The triangle ABC has a right angle at C and the edge lengths a; b; c. The
trigonometric functions of the angle a are defined in the following kind, see
Fig. A.1 and (Table A.1):
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Sine of a ¼ sin a ¼ a

c
¼ Opposite

Hypotenuse
; ðA:7Þ

Cosine of a ¼ cos a ¼ b

c
¼ Adjacent

Hypotenuse
; ðA:8Þ

Tangent of a ¼ tan a ¼ a

b
¼ Opposite

Adjacent
; ðA:9Þ

Cotangent of a ¼ cot a ¼ b

a
¼ Adjacent

Opposite
; ðA:10Þ

Secant of a ¼ sec a ¼ c

b
¼ Hypotenuse

Adjacent
; ðA:11Þ

Cosecant of a ¼ csc a ¼ c

a
¼ Hypotenuse

Opposite
: ðA:12Þ

Addition Theorem

sinða� bÞ ¼ sin a cos b� cos a sin b; ðA:13Þ

cosða� bÞ ¼ cos a cos b� sin a sin b; ðA:14Þ

tanða� bÞ ¼ tan a� tan b
1� tan a tan b

; ðA:15Þ

cotða� bÞ ¼ cot a cot b� 1
cot b� cot b

: ðA:16Þ

Mutual Presentation

sin2 aþ cos2 a ¼ 1 ; ðA:17Þ

tan a ¼ sin a
cos a

: ðA:18Þ

Fig. A.1 Triangle with a
right angle at C
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Analytical Values for Different Angles

Table A.2 Analytical values
of sine, cosine, tangent and
cotangent for different angels

a in Degree a in Radian sin a cos a tan a cot a

0 0 0 1 0 �1
30 1

6 p 1
2

ffiffi

3
p

2

ffiffi

3
p

3

ffiffiffi

3
p

45 1
4 p

ffiffi

2
p

2

ffiffi

2
p

2
1 1

60 1
3 p

ffiffi

3
p

2
1
2

ffiffiffi

3
p ffiffi

3
p

3

90 1
2 p 1 0 �1 0

120 2
3 p

ffiffi

3
p

2
� 1

2 �
ffiffiffi

3
p

�
ffiffi

3
p

3

135 3
4 p

ffiffi

2
p

2 �
ffiffi

2
p

2
1 1

150 5
6 p 1

2 �
ffiffi

3
p

2 �
ffiffi

3
p

3
�

ffiffiffi

3
p

180 p 0 �1 0 �1
210 7

6 p � 1
2 �

ffiffi

3
p

2

ffiffi

3
p

3

ffiffiffi

3
p

225 5
4 p �

ffiffi

2
p

2 �
ffiffi

2
p

2
1 1

240 4
3 p �

ffiffi

3
p

2
� 1

2

ffiffiffi

3
p ffiffi

3
p

3

270 3
2 p �1 0 �1 0

300 5
3 p �

ffiffi

3
p

2
1
2 �

ffiffiffi

3
p

�
ffiffi

3
p

3

315 7
4 p �

ffiffi

2
p

2

ffiffi

2
p

2
�1 �1

330 11
6 p � 1

2

ffiffi

3
p

2 �
ffiffi

3
p

3
�

ffiffiffi

3
p

360 2p 0 1 0 �1

Double Angle Functions

sinð2aÞ ¼ 2 sin a � cos a ; ðA:19Þ

cosð2aÞ ¼ cos2 a� sin2 a

¼ 2 cos2 a� 1

¼ 1� 2 sin2 a ; ðA:20Þ

tanð2aÞ ¼ 2 tan a
1� tan2 a

: ðA:21Þ

Reduction Formulae

Table A.3 Reduction
formulae for trigonometric
functions

�a 90� � a 180� � a 270� � a kð360�Þ � a
p
2 � a p� a 3p

2 � a 2kp� a

sin � sin a cos a � sin a � cos a � sin a
cos cos a � sin a � cos a � sin a cos a
tan � tan a � cot a � tan a � cot a � tan a
csc � csc a sec a � csc a � sec a � csc a
sec sec a � csc a � sec a � csc a sec a
cot � cot a � tan a � cot a � tan a � cot a
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A.1.5 Basics for Linear Algebra

Vectors

With

a ¼ a1 a2 ai ::: an½ � ðA:22Þ

a row vector and with

a ¼

a1

a2

ai

..

.

an

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ðA:23Þ

a column vector1 of dimension n is defined, whereupon the following is valid for
all components: ai 2 IR ¼ 1; 2; :::; n (Tables A.2 and A.3).

Matrices
The term matrix can be shown with the help of a simple example. The linear
relation between a system of variables xi and bi

a11x1 þ a12x2 þ a13x3 þ a14x4 ¼ b1 ðA:24Þ

a21x1 þ a22x2 þ a23x3 þ a24x4 ¼ b2 ðA:25Þ

a31x1 þ a32x2 þ a33x3 þ a34x4 ¼ b3 ðA:26Þ

can be summarized in a compact form as

Ax ¼ b ðA:27Þ

or

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

2

6

4

3

7

5

x1

x2

x3

x4

2

6

6

6

4

3

7

7

7

5

¼
b1

b2

b3

2

6

4

3

7

5

: ðA:28Þ

1 The expression vector is used differently in mathematics and physics. In physics, a vector
represents a physical dimension such as, for example, a force. A direction as well as an absolute
value can be assigned to this vector. In mathematics, the expression vector is used for a
positioning of components. Also here values can be defined, which however are without any
physical meaning. Therefore at times vectors are also referred to as row or column matrices.
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Thereby the following is valid for all coefficients aij and all components bi and xi:
aij; bi; xj 2 IR ¼ 1; 2; 3; j ¼ 1; 2; 3; 4.
Generally speaking a matrix A of the dimension m � n

Am�n ¼

a11 a12 ::: a1n

a21 a22 ::: a2n

..

. ..
.

::: ..
.

am1 am2 ::: amn

2

6

6

6

6

4

3

7

7

7

7

5

ðA:29Þ

consists of m rows and n columns.
The transpose of a matrix results from interchanging of rows and columns:

AT ¼

a11 a21 ::: am1

a12 a22 ::: am2

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

a1n a2n ::: amn

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

: ðA:30Þ

Quadratic matrices have equivalent rows and columns:

An�n ¼

a11 a12 ::: a1n

a21 a22 ::: a2n

..

. ..
.

::: ..
.

an1 an2 ::: ann

2

6

6

6

6

4

3

7

7

7

7

5

: ðA:31Þ

If the following is valid additionally for a quadratic matrix

aij ¼ aji; ðA:32Þ

a symmetric matrix results. As an example, a symmetric (3� 3) matrix has the
form

A3�3 ¼
a11 a12 a13

a12 a22 a23

a13 a23 a33

2

6

4

3

7

5

: ðA:33Þ

Matrix Operations
The multiplication of two matrices looks as follows in index notation

cij ¼
X

m

k¼ 1

aikbkj
i ¼ 1; 2; :::; n

j ¼ 1; 2; :::; r
ðA:34Þ

or in matrix notation

C ¼ AB : ðA:35Þ
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Thereby the matrix An�m has n rows and m columns, matrix Bm� rm rows and r
columns and the matrix product Cn� r n rows and r columns.
The multiplication of two matrices is not commutative, this means

AB 6¼ BA : ðA:36Þ

The product of two transposed matrices ATBT results in

ATBT ¼ ðBAÞT : ðA:37Þ

The transpose of a matrix product can be split with the help of

ðABÞT ¼ BTAT ðA:38Þ

into the product of the transposed matrices. When multiplying various matrices,
the associative law

ðA BÞC ¼ A ðB CÞ ¼ A B C ðA:39Þ

and the distributive law are valid

A ðBþ CÞ ¼ A Bþ AC: ðA:40Þ

Determinant of a Matrix
The determinant of a quadratic matrix A of the dimension n can be determined
recursively via

Aj j ¼
X

n

i¼ 1

ð�1Þiþ1 a1i A1ij j ðA:41Þ

The submatrix A1i of dimension ðn� 1Þðn� 1Þ emerges due to canceling of the
1st row and the ith column of A.

Inverse of a Matrix
A is a quadratic matrix. The inverse A�1 is quadratic as well. The product of
matrix and inverse matrix

A�1A ¼ I ðA:42Þ

yields the unit matrix.
The inverse of a matrices product results as a product of the inverses of the
matrices:

ðABÞ�1 ¼ B�1A�1 : ðA:43Þ

The inverse of the transposed matrix results as the transpose of the inverse matrix:

½AT��1 ¼ ½A�1�T : ðA:44Þ
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Formally, with the inverse of a matrix, the system of equations

A x ¼ b ðA:45Þ

can be solved. Thereby the quadratic matrix A and the vectors x and b have the
same dimension. With the multiplication of the inverse from the left

A�1Ax ¼ A�1b ðA:46Þ

one obtains the vector of the unknown to

x ¼ A�1b : ðA:47Þ

For a (2� 2)- and a (3� 3)-matrix the inverses are given explicitly. For a
quadratic (2� 2)-matrix

A ¼
a11 a12

a21 a22

� �

ðA:48Þ

the inverse results in

A�1 ¼ 1
jAj

a11 a12

a21 a22

� �

ðA:49Þ

with

jAj ¼ a11a22 � a12a21 : ðA:50Þ

For the quadratic (3� 3)-matrix

A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

2

6

4

3

7

5

ðA:51Þ

the inverse results in

A�1 ¼ 1
jAj

~a11 ~a12 ~a13

~a21 ~a22 ~a23

~a31 ~a32 ~a33

2

6

4

3

7

5

ðA:52Þ

with the coefficients of the inverses
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~a11 ¼ þa22a33 � a32a23

~a12 ¼ �ða12a33 � a13a32Þ
~a13 ¼ þa12a23 � a22a13

~a21 ¼ �ða21a33 � a31a23Þ
~a22 ¼ þa11a33 � a13a31

~a23 ¼ �ða11a23 � a21a13Þ
~a31 ¼ þa21a32 � a31a22

~a32 ¼ �ða11a32 � a31a12Þ
~a33 ¼ þa11a22 � a12a21

ðA:53Þ

and with the determinant

jAj ¼ a11a22a33 þ a13a21a32 þ a31a12a23

�a31a22a13 � a33a12a21 � a11a23a32 :
ðA:54Þ

Equation Solving
The initial point is the system of equations

A x ¼ b ðA:55Þ

with the quadratic matrix A and the vectors x and b, which both have the same
dimension. The matrix A and the vectors b are both assigned with known values. It
is the goal to determine the vector of the unknowns x.
The central operation at the direct equations solving is the partition of the system
matrix

A ¼ LU ðA:56Þ

into a lower and a upper triangular matrix. In detail this operation looks as follows:

LU ¼

1 0 ::: 0

L21 1 ::: 0

..

. . .
. ..

.

Ln1 Ln2 ::: 1

2

6

6

6

6

4

3

7

7

7

7

5

U11 U12 ::: U1n

0 U22 ::: U2n

..

. . .
. ..

.

0 0 ::: Unn

2

6

6

6

6

4

3

7

7

7

7

5

: ðA:57Þ

The triangular decomposition is quite computationally intensive. Variants of the
GAUSS elimination are used as algorithms. Crucial is the structure of the system
matrix A. If blocks with zero entries can be identified in advance in the system
matrix the row and column operations can then be used for the blocks only with
non-zero entries.

The equations solution is conducted with the paired solution of the two
equations

Ly ¼ b ðA:58Þ
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and

Ux ¼ y ðA:59Þ

whereupon y is solely an auxiliary vector. The single operations proceed as
follows:

y1 ¼ b1 ðA:60Þ

yi ¼ bi �
X

i�1

j¼ 1

Lijyj i ¼ 2; 3; :::; n ðA:61Þ

and

xn ¼
yn

Unn
ðA:62Þ

xi ¼
1

Uii
yi �

X

n

j¼ iþ1

Uijxj

 !

i ¼ n� 1; n� 2; :::; 1: ðA:63Þ

The first two steps are referred to as forward partition and the last two steps as
backward substitution.

In the last equation it is divided through the value of the diagonal of the upper
triangular matrix. For very small and very large values this can lead to
inaccuracies. An improvement can be achieved via a so-called pivoting, at
which in the current row or column one has to search for the ‘best’ factor.

A.1.6 Derivatives

• d
dx

1
x

� �

¼ � 1
x2

• d
dx

xn ¼ n� xn�1

• d
dx

ffiffiffi

xn
p
¼ 1

n�
ffiffiffiffiffiffiffiffiffi

xn�1n
p

• d
dx

sinðxÞ ¼ cosðxÞ
• d

dx
cosðxÞ ¼ � sinðxÞ

• d
dx

lnðxÞ ¼ 1
x

• d
dx
jxj ¼ �1 if x\0

1 if x [ 0

�
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A.1.7 Integration

A.1.7.1 Antiderivatives

•
R

ex dx ¼ ex

•
R

ffiffiffi

x
p

dx ¼ 2
3 x

3
2

•
R

sinðxÞ dx ¼ � cosðxÞ
•
R

cosðxÞ dx ¼ sinðxÞ
•
R

sinðaxÞ � cosðaxÞ dx ¼ 1
2a sin2ðaxÞ

•
R

sin2ðaxÞ dx ¼ 1
2 ðx� sinðaxÞ cosðaxÞÞ ¼ 1

2 ðx� 1
2a sinð2axÞÞ

•
R

cos2ðaxÞ dx ¼ 1
2 ðxþ sinðaxÞ cosðaxÞÞ ¼ 1

2 ðxþ 1
2a sinð2axÞÞ

A.1.7.2 Partial Integration

One-Dimensional Case:

Z

b

a

f ðxÞg0ðxÞdx ¼ f ðxÞgðxÞjba �
Z

b

a

f 0ðxÞgðxÞdx ðA:64Þ

¼ f ðxÞgðxÞjb � f ðxÞgðxÞja �
Z

b

a

f 0ðxÞgðxÞ dx : ðA:65Þ

A.1.7.3 Integration and Coordinate Transformation

One-Dimensional Case:
T : IR! IR with x ¼ gðuÞ is a one-dimensional transformation of S to R. If g has a
continuous partial derivative, so that the JACOBIAN matrix becomes nonzero, the
following is valid

Z

R

f ðxÞ dx ¼
Z

S

f ðgðuÞÞ dx

du

�

�

�

�

�

�

�

�

du ; ðA:66Þ

whereupon the JACOBIAN matrix in the one-dimensional case is given through
J ¼ dx

du

�

�

�

� ¼ xu.
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A.1.7.4 One-Dimensional Integrals for the Calculation
of the Stiffness Matrix

Z

1

�1

ð1� xÞdx ¼ 2
Z

1

�1

ð1� xÞ2ð1þ xÞdx ¼ 4
3

Z

1

�1

ð1þ xÞdx ¼ 2
Z

1

�1

ð1� x2Þdx ¼ 4
3

Z

1

�1

ð1� xÞð1þ xÞdx ¼ 4
3

Z

1

�1

ð1þ x2Þdx ¼ 8
3

Z

1

�1

ð1� xÞ2dx ¼ 8
3

Z

1

�1

ð1� 2xÞxdx ¼ � 4
3

Z

1

�1

ð1þ xÞ2dx ¼ 8
3

Z

1

�1

ð1þ 2xÞxdx ¼ 4
3

Z

1

�1

ð1� xÞ3dx ¼ 4
Z

1

�1

ð1� 2xÞ2dx ¼ 14
3

Z

1

�1

ð1þ xÞ3dx ¼ 4
Z

1

�1

ð1þ 2xÞ2dx ¼ 14
3

Z

1

�1

ð1� xÞð1þ xÞ2dx ¼ 4
3

Z

1

�1

ð1� 2xÞð1þ 2xÞdx ¼ � 2
3
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A.1.8 Expansion of a Function in a Taylor’s Series

The expansion of a function f ðxÞ in a TAYLOR’s series at the position x0 yields:

f ðxÞ ¼ f ðx0Þ þ
df

dx

	 


x0

�ðx� x0Þ þ
1
2!

d2f

dx2

	 


x0

�ðx� x0Þ2 þ � � � þ
1
k!

dkf

dxk

	 


x0

�ðx� x0Þk :

ðA:67Þ

An approximation of first order only takes into account the first derivative, and the
approach for the function results in:

f ðxÞ ¼ f ðx0 þ dxÞ 	 f ðx0Þ þ
df

dx

	 


x0

�ðx� x0Þ : ðA:68Þ

If one considers from the analytical geometry that the first derivative of a function
equals the slope of the tangent in the considered point and that the point-slope
form of a straight line is given through f ðxÞ � f ðx0Þ ¼ m � ðx� x0Þ, it results that
the approximation of first order represents the equation of a straight line through
the point ðx0; f ðx0ÞÞ with the slope m ¼ f 0ðx0Þ ¼ ð df = dxÞx0

, compare Fig. A.2.

A.2 Units and Conversions

A.2.1 Consistent Units

In applying a finite element program usually there is no regulation on a specific
physical mass or unit system. A finite element program retains consistent units
throughout the analysis and requires the user to only enter absolute measure values
without the information about a certain unit. Therewith the units, which are used by
the user for the input, are also kept consistent in the output. The user therefore has to

Fig. A.2 Approximation of a
function f ðxÞ via a TAYLOR’s
series of first order
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ensure for himself that his/her chosen units are consistent, meaning compatible with
each other. The following Table A.4 shows an example of consistent units.

One can consider at this point the unit of the density. The following example
shows the conversion of the density for steal:

.St ¼ 7:8
kg

dm3 ¼ 7:8� 103 kg
m3
¼ 7:8� 10�6 kg

mm3
: ðA:69Þ

With

1 N ¼ 1
m kg

s2
¼ 1� 103 mm kg

s2
und 1 kg ¼ 1� 10�3 Ns2

mm
ðA:70Þ

the consistent density results in:

.St ¼ 7:8� 10�9 Ns2

mm4
: ðA:71Þ

Since in the literature at one point or another also other units occur, the following
Table A.5 shows an example of consistent English units:

Table A.4 Examples of
consistent units

Size Unit

Length mm
Area mm2

Force N
Stress MPa ¼ N

mm2

Moment Nmm
Moment of inertia mm4

Elastic modulus MPa ¼ N
mm2

Density Ns2

mm4

Time s
Mass 103kg

Table A.5 Example of
consistent English units

Size Unit

Length in
Area in2

Force lbf
Stress psi ¼ lbf

in2

Moment lbf in
Moment of inertia in4

Elastic modulus psi ¼ lbf
in2

Density lbf sec2

in4

Time sec
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One also considers at this point the conversion of the density (Table A.6):

. St ¼ 0:282
lb

in3 ¼ 0:282
1

in3 � 0:00259
lbf sec2

in

¼ 0:73038� 10�3 lbf sec2

in4 : ðA:72Þ

A.2.2 Conversion of Important English Units

Table A.6 Conversion of important English units

Type English-speaking unit Conversion

Length Inch 1 in ¼ 0:025400 m
Foot 1 ft ¼ 0:304800 m
Yard 1 yd ¼ 0:914400 m
Mile (Statute) 1 mi ¼ 1609:344 m
Mile (Nautical ) 1 nm ¼ 1852:216 m

Area Square inch 1 sq in ¼ 1 in2 ¼ 6:45160 cm2

Square foot 1 sq ft ¼ 1 ft2 ¼ 0:092903040 m2

Square yard 1 sq yd ¼ 1 yd2 ¼ 0:836127360 m2

Square mile 1 sq mi ¼ 1 mi2 ¼ 2589988:110336 m2

Acre 1 ac ¼ 4046:856422400 m2

Volume Cubic inch 1 cu in ¼ 1 in3 ¼ 0:000016387064 m3

Cubic foot 1 cu ft ¼ 1 ft3 ¼ 0:028316846592 m3

Cubic yard 1 cu yd ¼ 1 yd3 ¼ 0:764554857984 m3

Mass Ounce 1 oz ¼ 28:349523125 g
Pound (mass) 1 lb m ¼ 453:592370 g
Short ton 1 sh to ¼ 907184:74 g
Long ton 1 lg to ¼ 1016046:9088 g

Force Pound-force 1 lbf ¼ 1 lb F ¼ 4:448221615260500 N
Poundal 1 pdl ¼ 0:138254954376 N

Stress Pound-force per square inch 1 psi ¼ 1 lbf
in2 ¼ 6894:75729316837 N

m2

Pound-force per square foot 1 lbf
ft2 ¼ 47:880258980336 N

m2

Energy British thermal unit 1 Btu ¼ 1055:056 J
Calorie 1 cal ¼ 4185:5 J

Power Horsepower 1 hp ¼ 745:699871582270 W
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Short Solutions of the Exercises

Problems from Chap. 3

3.4 Short solution: Tension bar with quadratic approximation
Three nodes are being introduced in a quadratic approach. The three form
functions are:

N1ðxÞ ¼ 1� 3
x

L
þ 2

x

L

� �2
;

N2ðxÞ ¼ 4 x
L ð1� x

LÞ;
N3ðxÞ ¼ x

L ð�1þ 2 x
LÞ:

ðA:73Þ

The derivatives of the three form functions result in:

dN1ðxÞ
dx
¼ N 01ðxÞ ¼ �3þ 4

x

L
;

dN2ðxÞ
dx
¼ N 02ðxÞ ¼ 4� 8

x

L
;

dN3ðxÞ
dx
¼ N 03ðxÞ ¼ �1þ 4

x

L
:

ðA:74Þ

With the general calculation rule for the stiffness matrix

ke ¼
Z

X

BTDB dX ¼ EA

Z

L

0

BTBdx ¼ EA

Z

L

0

N0
T
N0dx ðA:75Þ

the following results for a three-nodal element

ke ¼ EA

Z

L

0

N 01
2 N 01N 02 N 01N 03

N 02
2 N 02N 03

sym. N 03
2

2

6

4

3

7

5

dx : ðA:76Þ

A. Öchsner and M. Merkel, One-Dimensional Finite Elements,
DOI: 10.1007/978-3-642-31797-2, � Springer-Verlag Berlin Heidelberg 2013
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After the integration

Z

L

0

ð�3þ 4 x
LÞ

2 ð�3þ 4 x
LÞð4� 8 x

LÞ ð�3þ 4 x
LÞð�1þ 4 x

LÞ
ð4� 8 x

LÞ
2 ð4� 8 x

LÞð�1þ 4 x
LÞ

sym. ð�1þ 4 x
LÞ

2

2

6

6

4

3

7

7

5

dx ðA:77Þ

the stiffness matrix for a bar element with quadratic shape function results in:

ke ¼ EA

3L

7 �8 1

�8 16 �8

1 �8 7

2

6

4

3

7

5

: ðA:78Þ

A.6 Problems from Chap. 5

5.4 Equilibrium relation for infinitesimal beam element with changeable load
For the setup of the equilibrium relation the changeable load is evaluated in the
middle of the interval:

�QðxÞ þ Qðxþ dxÞ þ qy xþ 1
2

dx
� �

dx ¼ 0: ðA:79Þ

Mzðxþ dxÞ �MzðxÞ þ QyðxÞdx� 1
2

qy xþ 1
2

dx
� �

dx2 ¼ 0: ðA:80Þ

5.5 Weighted residual method with variable distributed load

Z

L

0

EIz
d4uyðxÞ

dx4
� qyðxÞ

	 


WðxÞ dx ¼ 0 ðA:81Þ

Z

L

0

EIz
d2uy

dx2

d2W

dx2
dx ¼

Z

L

0

WqyðxÞdxþ �W
d3uy

dx3
þ dW

dx

d2uy

dx2

� �L

0

ðA:82Þ

� � � ¼ duT
p

Z

L

0

NTqyðxÞdxþ � � � ðA:83Þ

� � � ¼
Z

L

0

N1u

N1u

N2u

N2u

2

6

6

6

4

3

7

7

7

5

qyðxÞdxþ � � � ðA:84Þ

The additional expression on the right-hand side yields the equivalent nodal loads
for a load according to Eqs. (5.197) up to (5.200).
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5.6 Stiffness matrix at bending in x�zplane
Bending in the x�z plane can be considered that the rotation is defined via
uyðxÞ ¼ �duzðxÞ

dx
. Therefore, the following shape functions can be derived:

Nxz
1u ¼ 1� 3

x

L

� �2
þ2

x

L

� �3
; ðA:85Þ

Nxz
1u ¼ �xþ 2

x2

L
� x3

L2
; ðA:86Þ

Nxz
2u ¼ 3

x

L

� �2
�2

x

L

� �3
; ðA:87Þ

Nxz
2u ¼

x2

L
� x3

L2
: ðA:88Þ

A comparison with the shape functions in bending in the x� y plane according to
Eqs. (5.64) up to (5.67) yields that the shape functions for the rotation have been
multiplied with ð�1Þ.

5.7 Bending beam with changeable cross-section
The axial second moments of area result in:

IzðxÞ ¼
p
64

d1 þ ðd2 � d1Þ
x

L

� �4
(circle) ; ðA:89Þ

IzðxÞ ¼
b

12
d1 þ ðd2 � d1Þ

x

L

� �3
(rectangle) : ðA:90Þ

The following results for the circular and rectangular cross-section:
5.8 Equivalent nodal load for quadratic load

qðxÞ ¼ q0x2 qðxÞ ¼ q0
x
L

� �2

F1y ¼ �
q0L3

15
F1y ¼ �

q0L

15

M1z ¼ �
q0L4

60
M1z ¼ �

q0L2

60

F2y ¼ �
4q0L3

15
F2y ¼ �

4q0L

15

M1z ¼
q0L4

30
M1z ¼

q0L2

30
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k
e
¼

p
E

64
L

3
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þ
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5.9 Bending beam with changeable cross-section under point load
Analytical Solution:

EIzðxÞ
d2uyðxÞ

dx2
¼ MzðxÞ ; ðA:93Þ

Eph4

64
2� x

L

� �4 d2uyðxÞ
dx2

¼ �FðL� xÞ : ðA:94Þ

uyðxÞ ¼
FL

Eph4

64L3

2ð�2Lþ xÞ þ
64L4

6ð�2Lþ xÞ

	 


þ 16L

3
xþ 40L2

3
: ðA:95Þ

uyðLÞ ¼ �
8
3

FL3

Eph4
	 �2:666667

FL3

Eph4
: ðA:96Þ

Finite Element Solution:

uyðLÞ ¼ �
7;360
2;817

FL3

Eph4
	 �2:612709

FL3

Eph4
: ðA:97Þ

Problems from Chap. 6

6.1 Cubic displacement distribution in the tension bar
The natural coordinates of the four integration points are n1 ¼ �1, n2 ¼ �1=3,
n3 ¼ þ1=3 und n4 ¼ þ1. The four shape functions

N1 ¼
ðn� n2Þðn� n3Þðn� n4Þ
ðn1 � n2Þðn1 � n3Þðn1 � n4Þ

¼ þ 9
19

n2 � 1
9

	 


ðn� 1Þ ;

N2 ¼
ðn� n1Þðn� n3Þðn� n4Þ
ðn2 � n1Þðn2 � n3Þðn2 � n4Þ

¼ � 27
16

n� 1
3

	 


ðn2 � 1Þ ;

N3 ¼
ðn� n1Þðn� n2Þðn� n4Þ
ðn3 � n1Þðn3 � n2Þðn3 � n4Þ

¼ � 27
16

nþ 1
3

	 


ðn2 � 1Þ ;

N4 ¼
ðn� n1Þðn� n2Þðn� n3Þ
ðn4 � n1Þðn4 � n2Þðn4 � n3Þ

¼ þ 9
19

n2 � 1
9

	 


ðnþ 1Þ

ðA:98Þ

result via evaluation of Eq. (6.51) for i ¼ 1 bis i ¼ n ¼ 4.
6.2 Coordinate transformation for tension bar in the plane
For the bar a normal force and a displacement in normal direction are defined on a
node in local coordinates. In the plane the parameters each separate in the X- and
Y-direction. Therefore, the transformation matrix has the dimension 4 � 4. In the
transformation matrix according to Eq. (6.16) it is the task to define the following
expressions

sinð30�Þ ¼ 1
2

and cosð30�Þ ¼ 1
2

ffiffiffi

3
p

: ðA:99Þ
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With this, the transformation matrix results in

T ¼
1
2

ffiffiffi

3
p

1
2

� 1
2

1
2

ffiffiffi

3
p

" #

: ðA:100Þ

The single stiffness relation in global coordinates

F1X

F1Y

F2X

F2Y

2

6

6

6

4

3

7

7

7

5

¼ 1
4

EA

L

3
ffiffiffi

3
p

�3 �
ffiffiffi

3
p

ffiffiffi

3
p

1 �
ffiffiffi

3
p

�1

�3 �
ffiffiffi

3
p

3
ffiffiffi

3
p

�
ffiffiffi

3
p

�1
ffiffiffi

3
p

1

2

6

6

6

4

3

7

7

7

5

u1X

u1Y

u2X

u2Y

2

6

6

6

4

3

7

7

7

5

ðA:101Þ

results via the evaluation of Eq. (6.20).

Problems from Chap. 7

7.1 Short solution: Structure of beams in the three-dimensional
Via integration the following solution vector results:

u2Z

u2X

u2Y

u3Z

u3Y

u4Z

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

þ11:904

þ0:01785

�0:05492

þ78:731

�0:07277

þ78:732

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: ðA:102Þ

7.2 Structure of beams in the three-dimensional, alternative coordinate system
The column matrices of the state variables are the following in global coordinates:

u1Z ;u1X;u1Y ; u2Z ;u2X;u2Y ; u3Z ;u3X ; u4Z½ � T ðA:103Þ

and

F1Z ;M1X;M1Y ;F2Z ;M2X ;M2Y ;F3Z ;M3X ;F4Z½ � T : ðA:104Þ

The order of the entries on node 2 have changed in comparison to the original
coordinate system. The angles for bending and torsion are exchanged:
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u2Z
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7

7
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7
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7

7

5

¼

þ F

3 EIy

L3

þ F

2 GIt

L

þ F

2 EIy

L2

þð2GIt þ 3EIyÞL3F

3EIyGIt

þ L2ðGIt þ 2EIyÞF
2EIyGIt

þð3GItIy þ 2GItAL2ÞLF

3EIyAGIt
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6
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7
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7
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7
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7
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7

7
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7

7

7

5

: ðA:105Þ

The following solution vector results with the same numerical values as above
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6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

þ11:904

þ0:05492

þ0:01785

þ78:731

þ0:07277

þ78:732

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ðA:106Þ

with the same values. The algebraic signs as well as the order of the entries on
node 2 have changed. The angle for torsion and bending have changed positions.

Problems from Chap. 8

8.3 Calculation of the shear correction factor for rectangular cross-section
Z

X

1
2G

s2
xydX !

=

Z

Xs

1
2G

Qy

As

	 
2

dXs; ðA:107Þ

ks ¼
Qy

A
R

A
s2

xy dA
¼ 5

6
: ðA:108Þ

8.4 Differential Equation under consideration of distributed moment

Shear force: no difference, meaning dQyðxÞ
dx
¼ �qyðxÞ.

Bending moment:
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Mzðxþ dxÞ �MzðxÞ þ QyðxÞ dx� 1
2

qy dx2 þ mz dx ¼ 0 : ðA:109Þ

dMzðxÞ
dx

¼ �QyðxÞ � mz ; ðA:110Þ

d2MzðxÞ
dx2

þ dmzðxÞ
dx

¼ qyðxÞ : ðA:111Þ

Differential Equations:

d
dx

EIz
d/z

dx

	 


þ ksAG
duy

dx
� /z

	 


¼� mzðxÞ ; ðA:112Þ

d
dx

ksAG
duy

dx
� /z

	 
� �

¼� qyðxÞ : ðA:113Þ

8.5 Analytical calculation of the course of the bending
and distortion for cantilever under point load
Boundary Conditions:

uyðx ¼ 0Þ ¼ 0; /zðx ¼ 0Þ ¼ 0; ðA:114Þ

Mzðx ¼ 0Þ ¼ FL; Qyðx ¼ 0Þ ¼ F: ðA:115Þ

Integration Constants:

c1 ¼ �F; c2 ¼ FL; c3 ¼
EIz

ksAG
F; c4 ¼ 0 : ðA:116Þ

Course of the Displacement:

uyðxÞ ¼
1

EIz
�F

x3

6
þ FL

x2

2
þ EIzF

ksAG
x

	 


: ðA:117Þ

Course of the Rotation:

/zðxÞ ¼
1

EIz
�F

x2

2
þ FLx

	 


: ðA:118Þ

Maximal Bending:

uyðx ¼ LÞ ¼ 1
EIz

FL3

3
þ EIzFL

ksAG

	 


: ðA:119Þ

Bending at the Loading Point:

/zðx ¼ LÞ ¼ FL2

2EIz
: ðA:120Þ
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Limit Value:

uyðx ¼ LÞ ¼ 4F

b

L

h

	 
3

þ F

ksbG

L

h

	 


: ðA:121Þ

uyðLÞ
�

�

h
L
! 4F

b

L

h

	 
3

¼ FL3

3EIz
; ðA:122Þ

uyðLÞ
�

�

h�L
! F

ksbG

L

h

	 


¼ FL

ksAG
: ðA:123Þ

8.6 Analytical calculation of the normalized displacement for beams with
shear

Iz ¼
bh3

12
; A ¼ hb ; k s ¼

5
6
;G ¼ E

2ð1þ mÞ :
ðA:124Þ

uy; norm ¼
1
3
þ 1þ m

5
h

L

	 
2

; ðA:125Þ

uy; norm ¼
1
8
þ 1þ m

10
h

L

	 
2

; ðA:126Þ

uy; norm ¼
1

48
þ 1þ m

5
h

L

	 
2

: ðA:127Þ

8.7 Timoshenko bending element with quadratic shape functions for the
displacement and linear shape functions for the rotation
The nodal point displacement on the middle node as a function of the other
unknown results in:

u2y ¼
u1y þ u3y

2
þ /1z � /3z

8
Lþ 1

32
6L

ksAG

Z

L

0

qyðxÞN2uðxÞ dx : ðA:128Þ

The additional load vector on the right-hand side results in:

� � � ¼ � � � þ

R

L

0
qyðxÞN1u dxþ 1

2

R

L

0
qyðxÞN2u dx

þ 1
8 L
R L

0 qyðxÞN2u dx

R

L

0
qyðxÞN3u dxþ 1

2

R

L

0
qyðxÞN2u dx

� 1
8 L
R L

0 qyðxÞN2u dx

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

: ðA:129Þ

With
R L

0 N1udx ¼ L
6,
R L

0 N2udx ¼ 2L
3 and

R L
0 N3udx ¼ L

6 the following results for a
constant line load qy:
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� � � ¼ � � � þ

1
2 qyL

þ 1
12 qyL2

1
2 qyL

� 1
12 qyL2

2

6

6

6

4

3

7

7

7

5

: ðA:130Þ

This result is identical with the equivalent line load for a BERNOULLI beam. For this
see Table 5.8.

8.8 Timoshenko bending element with cubic shape functions for the
displacement and quadratic shape functions for the rotation
The element is exact!

Deformation in the x�y plane:

2EIz

L3ð1þ 12KÞ

6 3L �6 3L

3L 2L2ð1þ 3KÞ �3L L2ð1� 6KÞ
�6 �3L 6 �3L

3L L2ð1� 6KÞ �3L 2L2ð1þ 3KÞ

2

6

6

6

4

3

7

7

7

5

u1y

/1z

u2y

/2z

2

6

6

6

4

3

7

7

7

5

¼

F1y

M1z

F2y

M2z

2

6

6

6

4

3

7

7

7

5

:

ðA:131Þ

Deformation in the x�z plane:

2EIy

L3ð1þ 12KÞ

6 �3L �6 �3L

�3L 2L2ð1þ 3KÞ 3L L2ð1� 6KÞ
�6 3L 6 3L

�3L L2ð1� 6KÞ 3L 2L2ð1þ 3KÞ

2

6

6

6

4

3

7

7

7

5

u1z

/1y

u2z

/2y

2

6

6

6

4

3

7

7

7

5

¼

F1z

M1y

F2z

M2y

2

6

6

6

4

3

7

7

7

5

:

ðA:132Þ

Problems from Chap. 9

9.1 Solution for 1: Determination of the stiffness matrix
The stiffness matrix can directly be taken on from the above derivation:

ke ¼ ðEAÞV

L

1 �1

�1 1

� �

: ðA:133Þ

The expression ðEAÞV has to be determined for the composite. Since each layer is
homogeneous and isotropic and additionally all layers have the same thickness, the
generally valid relation in Eq. (9.122) simplifies to

ðEAÞV ¼ A11 b ¼ b
X

3

k¼ 1

Qk
11 hk ¼ b

1
3

h
X

3

k¼ 1

EðkÞ ðA:134Þ

and furtermore to
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ðEAÞV ¼ 1
3

b hðEð1Þ þ Eð2Þ þ Eð3ÞÞ ¼ 1
3

b hð2 Eð1Þ þ Eð2ÞÞ : ðA:135Þ

If one considers furthermore that Eð2Þ = 1
10 Eð1Þ is valid, the relation simplifies to:

ðEAÞV ¼ 1
3

b h 2:1 Eð1Þ ¼ 0:7 EA : ðA:136Þ

For the control of the result it can to be assumed that both moduli of elasticity are
the same (Eð1Þ ¼ Eð2Þ ¼ Eð3Þ ¼ E). Then the stiffness known for the homogeneous,

isotropic tension bar with ðEAÞV ¼ Ebh ¼ EA results.

Solution for 2: Determination of the bending stiffness
The bending stiffness results according to Eq. (9.128) for three layers in the
composite to

ðEIÞV ¼ b
1
3

X

3

k¼ 1

Ek ððzkÞ3 � ðzk�1Þ3Þ : ðA:137Þ

The z-coordinates result in zð0Þ ¼ �3=2h, zð1Þ ¼ �1=2h, zð2Þ ¼ þ1=2h and zð3Þ ¼
þ3=2h if the layer thickness h is equal and if the construction is symmetric to the
(z ¼ 0)-axis. Via integration one obtains:

ðEIÞV ¼ b
1
3

h3 Eð1Þ � 1
2

	 
3

� � 3
2

	 
3
 !"

ðA:138Þ

þ Eð2Þ ðþ 1
2
Þ3 � ð� 1

2
Þ3

	 


þ Eð1Þ ðþ 3
2
Þ3 � ðþ 3

2
Þ3

	 
�

ðA:139Þ

¼ 1
3

b h3 Eð1Þ � 1
8
þ 27

8
þ 27

8
� 1

8

	 


þ Eð2Þ þ 1
8
þ 1

8

	 
� �

ðA:140Þ

and finally

ðEIÞV ¼ 1
3

b h3 26
4

Eð1Þ þ 1
4

Eð2Þ
� �

: ðA:141Þ

For the control of the result it can to be assumed that all moduli of elasticity are
equal (Eð1Þ ¼ Eð2Þ ¼ Eð3Þ ¼ E). Then the bending stiffness EI for a homogeneous
beam with the cross-section b and 3h results in 9

4 E b h3.
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Problems from Chap. 10

10.5 Strain dependent modulus of elasticity with quadratic distribution

a ¼ E0; b ¼ � E0

10e1
; c ¼ � 4E0

5e2
1

; ðA:142Þ

EðeÞ ¼ E0 1� 1
10e1
|{z}

a1

e� 4
5e2

1
|{z}

a2

e2

0

B

B

B

@

1

C

C

C

A

; ðA:143Þ

rðeÞ ¼ E0e 1� e
20e1

� 4e2

15e2
1

	 


; ðA:144Þ

ke ¼ AE0

L2
Lþ a1u1 � a1u2 �

a2

L
u2

1 þ
2a2

L
u1u2 �

a2

L
u2

2

	 


1 �1

�1 1

� �

;

ðA:145Þ

Ke
T ¼

AE0

L2
Lþ 2a1u1 � 2a1u2 � 3

a2

L
u2

1 þ 4
a2

L
u1u2 � 3

a2

L
u2

2

� � 1 �1

�1 1

� �

:

ðA:146Þ

10.6 Direct iteration with different initial values
10.7 Complete Newton-Raphson’s scheme for a linear element with quadratic

modulus of elasticity
Residual function:

rðu2Þ ¼
AE0

L2
L� a1u2 �

a2

L
u2

2

� �

u2 � F2 ¼ Kðu2Þu2 � F2 ¼ 0 : ðA:147Þ

Fig. A.3 Stress–strain dia-
gram, based on quadratic
modulus of elasticity
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Table A.7 Numerical values for direct iteration at an external load of F2 ¼ 800 kN and different
initial values

Iteration j uðjÞ2 eðjÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðjÞ2 �uðj�1Þ
2ð Þ2

uðjÞ2ð Þ
2

r

mm – –

Initial value: uð0Þ2 ¼ 0 mm
0 0 0 –
1 45.714286 0.114286 1.000000
2 59.259259 0.148148 0.228571

..

. ..
. ..

. ..
.

23 70.722968 0.176807 0.000000

..

. ..
. ..

. ..
.

31 70.722998 0.176807 0.000000

Initial value: uð0Þ2 ¼ 30 mm
0 30.000000 0.075000 –
1 53.781513 0.134454 0.442187
2 62.528736 0.156322 0.139891

..

. ..
. ..

. ..
.

22 70.722956 0.176807 0.000000

..

. ..
. ..

. ..
.

31 70.722998 0.176807 0.000000

Initial value: uð0Þ2 ¼ 220 mm
0 220.000000 0.550000 –
1 �457.142857 �1.142857 1.481250
2 13.913043 0.034783 33.857143

..

. ..
. ..

. ..
.

25 70.722971 0.176807 0.000000

..

. ..
. ..

. ..
.

33 70.722998 0.176807 0.000000

Geometry: A ¼ 100 mm2, L ¼ 400 mm. Material properties: E0 ¼ 70;000 MPa,
E1 ¼ 49;000 MPa, e1 ¼ 0:15

Tangent stiffness:

KTðu2Þ ¼
AE0

L2
L� 2a1u2 �

3a2

L
u2

2

	 


: ðA:148Þ

Iteration scheme:

uðjþ1Þ
2 ¼ uðjÞ2 �

AE0
L2 L� a1uðjÞ2 � a2

L ðu
ðjÞ
2 Þ

2
� �

uðjÞ2 � FðjÞ2

AE0
L2 L� 2a1uðjÞ2 � 3a2

L ðu
ðjÞ
2 Þ

2
� � : ðA:149Þ
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Table A.8 Numerical values for complete NEWTON-RAPHSON’s method at an external load of
F2 ¼ 370 kN. Geometry: A ¼ 100 mm2, L ¼ 400 mm. Material properties: quadratic course with
E0 ¼ 70;000 MPa and e1 ¼ 0:15

Iteration j uðjÞ2 eðjÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðjÞ2 �uðj�1Þ
2ð Þ2

uðjÞ2ð Þ
2

r

mm – –

0 0 0 –
1 21.142857 0.052857 1
2 25.648438 0.064121 0.175667
3 26.363431 0.065909 0.027121
4 26.384989 0.065962 0.000031
5 26.385009 0.065963 0.000001
6 26.385009 0.065963 0.000000

Fig. A.4 Illustration of the residual function according to Eq. (A.147)

Condition for convergence according to Eq. A.4:

rðu2;maxÞ !

� 0
ðA:150Þ

or

F AE0

27a2
2

6a2 � a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ 3a2

a2
2

s

a2 þ a2
1

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ 3a2

a2
2

s

a2 � a1

 !

: ðA:151Þ
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The following results for the given numerical values, F 410:803 kN so that the
iteration scheme converges (Fig. A.3) and (Tables A.7 and A.8).

10.8 Strain dependant modulus of elasticity with general quadratic course

a ¼ E0 ; b ¼
E0

e1
4b05 � b1 � 3ð Þ ; c ¼ � 4E0

e2
1

b05 �
1
2

b1 �
1
2

	 


: ðA:152Þ

Table A.9 Numerical values of the back projection for a continuum bar in the case of linear
hardening (10 increments; De ¼ 0:001)

Inc e r trial r j dk E elpl

– – MPa MPa 10�3 10�3 MPa

1 0.001 210.0 210.0 0.0 0.0 0.0
2 0.002 420.0 420.0 0.0 0.0 0.0
3 0.003 630.0 630.0 0.0 0.0 0.0
4 0.004 840.0 703.636 0.649 0.649 19090.909
5 0.005 913.636 722.727 1.558 0.909 19090.909
6 0.006 932.727 741.818 2.468 0.909 19090.909
7 0.007 951.818 760.909 3.377 0.909 19090.909
8 0.008 970.909 780.000 4.286 0.909 19090.909
9 0.009 990.000 799.091 5.195 0.909 19090.909
10 0.010 1009.091 818.182 6.104 0.909 19090.909

Table A.10 Numerical values of the back projection for a continuum bar in the case of linear
hardening (20 increments; De ¼ 0:0005)

Inc e r trial r j dk E elpl

– – MPa MPa 10�3 10�3 MPa

1 0.0005 105.0 105.0 0.0 0.0 0.0
2 0.0010 210.0 210.0 0.0 0.0 0.0
3 0.0015 315.0 315.0 0.0 0.0 0.0
4 0.0020 420.0 420.0 0.0 0.0 0.0
5 0.0025 525.0 525.0 0.0 0.0 0.0
6 0.0030 630.0 630.0 0.0 0.0 0.0
7 0.0035 735.0 694.091 0.195 0.195 19090.909
8 0.0040 799.091 703.636 0.649 0.455 19090.909
9 0.0045 808.636 713.182 1.104 0.455 19090.909
10 0.0050 818.182 722.727 1.558 0.455 19090.909
11 0.0055 827.727 732.273 2.013 0.455 19090.909
12 0.0060 837.273 741.818 2.468 0.455 19090.909
13 0.0065 846.818 751.364 2.922 0.455 19090.909
14 0.0070 856.364 760.909 3.377 0.455 19090.909
15 0.0075 865.909 770.455 3.831 0.455 19090.909
16 0.0080 875.455 780.000 4.286 0.455 19090.909
17 0.0085 885.000 789.545 4.740 0.455 19090.909
18 0.0090 894.545 799.091 5.195 0.455 19090.909
19 0.0095 904.091 808.636 5.649 0.455 19090.909
20 0.0100 913.636 818.182 6.104 0.455 19090.909
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Table A.11 Numerical values of the back projection for continuum bar at linear hardening
(20 increments; De ¼ 0:001)

Inc e r trial r j dk E elpl

– MPa MPa 10�3 10�3 MPa

1 0.001 210.0 210.0 0.0 0.0 0.0
2 0.002 420.0 420.0 0.0 0.0 0.0
3 0.003 630.0 630.0 0.0 0.0 0.0
4 0.004 840.0 703.636 0.649 0.649 19090.909
5 0.005 913.636 722.727 1.558 0.909 19090.909
6 0.006 932.727 741.818 2.468 0.909 19090.909
7 0.007 951.818 760.909 3.377 0.909 19090.909
8 0.008 970.909 780.000 4.286 0.909 19090.909
9 0.009 990.000 799.091 5.195 0.909 19090.909
10 0.010 1009.091 818.182 6.104 0.909 19090.909
11 0.011 1028.182 837.273 7.013 0.909 19090.909
12 0.012 1047.273 856.364 7.922 0.909 19090.909
13 0.013 1066.364 875.455 8.831 0.909 19090.909
14 0.014 1085.455 894.545 9.740 0.909 19090.909
15 0.015 1104.545 913.636 10.649 0.909 19090.909
16 0.016 1123.636 932.727 11.558 0.909 19090.909
17 0.017 1142.727 951.818 12.468 0.909 19090.909
18 0.018 1161.818 970.909 13.377 0.909 19090.909
19 0.019 1180.909 990.000 14.286 0.909 19090.909
20 0.020 1200.000 1009.091 15.195 0.909 19090.909

Table A.12 Numerical values of the back projection for a continuum bar in the case of nonlinear
hardening (10 increments; e ¼ 0:002)

Inc e rtrial r j dk Eelpl

– – MPa MPa 10�3 10�3 MPa

1 0.002 140.0 140.0 0.0 0.0 0.0
2 0.004 280.0 280.0 0.0 0.0 0.0
3 0.006 420.0 360.817 0.845469 0.845469 10741.553
4 0.008 500.817 381.995 2.542923 1.697454 10435.865
5 0.010 521.995 402.557 4.249179 1.706256 10125.398
6 0.012 542.557 422.494 5.964375 1.715196 9810.025
7 0.014 562.494 441.794 7.688654 1.724279 9489.616
8 0.016 581.794 460.449 9.422161 1.733507 9164.034
9 0.018 600.449 478.447 11.165046 1.742885 8833.140
10 0.020 618.447 495.778 12.917462 1.752416 8496.787
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Table A.13 Numerical values for bar with fixed support on both sides (3 increments; DF2 ¼
2� 104 N)

inc u2 e I e II r I r II epl;I epl;II

– mm 10�3 2c10�3 MPa MPa 10�3 10�3

1 0.0666667 0.666667 �1.33333 66.6667 �133.333 0.0 0.0
2 0.19806 1.9806 �3.9612 198.060 �201.938 0.0 �1.94182
3 6.88003 68.8003 �137.601 266.008 �333.992 66.1402 �134.261

EðeÞ ¼ E0

�

1� ð3þ b1 � 4b05Þ
e1

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

a1

�e� 4ð�1
2� 1

2b1 þ b05Þ
e2

1
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a2

�e2
�

:
ðA:153Þ

With the introduced definitions here of a1 and a2 a course according to
Eq. (A.143) results. Thus under consideration of the here introduced definitions of
the stiffness matrix according to Eq. (A.145) as well as the tangent stiffness matrix
according to Eq. (A.146) can be used for a1 and a2 (Fig. A.4).

Problems from Chap. 11

11.4 Plastic modulus and elasto-plastic modulus

a. E elpl ¼ E�E pl

EþE pl ¼ E ) E ¼ 0:

Pure linear-plastic behavior without elastic part, meaning pure elastic behavior
on macro-level.

b. Epl ¼ E :) Eelpl ¼ E�E
EþE ¼ 1

2 E:
Linear hardening, whereupon the elasto-plastic modulus is half of the elastic
modulus E.

11.5 Back projection at linear hardening
11.6 Back projection at nonlinear hardening
11.7 Back projection for bar with fixed support on both sides
The flow curve results in:

kðjÞ ¼ 200 MPaþ 1010: �10 MPa� j : ðA:154Þ

The iteration scheme of the NEWTON-RAPHSON method can be used as follows:

Duðiþ1Þ
2 ¼ DFðiÞ

A
~EI

LI
þ ~EII

LII

� �
: ðA:155Þ

For the fulfillment of the convergence criteria nine cycles are necessary for the
second increment and four cycles for the third increment (Table A.9).
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11.7 Back projection for a finite element at ideal-plastic material behavior
In the elastic region, the calculation of the displacement on the node can take place.
As soon as plastic material behavior occurs, no convergence can be achieved since
no clear connection between load and strain exists. If the boundary force condition
is being substituted by a boundary displacement condition, the stress in the bar is
known and the stress can be calculated (Tables A.10, A.11, A.12 and A.13).

Problems from Chap. 12

12.2 Short solution for Euler’s buckling loads II, III and IV, one element
The elastic and geometric stiffness matrix is obtained as in the description to
EULER’s buckling load I. Due to the boundary conditions two eigenvalues result for
case II and one eigenvalue for case III. Case IV cannot be modeled with just one
element. The eigenvalues result for the EULER’s buckling load II:

k1=2 ¼ ð36� 24ÞEI

L2
ðA:156Þ

and for the EULER’ buckling load III:

k ¼ 30
EI

L2
: ðA:157Þ

For the definition of the critical load respectively the smallest eigenvalues are of
interest. The deviations from the analytical solutions are significant.
12.3 Short solution for Euler’s buckling loads, two elements
The entire stiffness matrix consists of elastic and geometric stiffness matrix. Load
IV can also be modeled with two elements. The eigenvalues can only be
determined numerically, only for load I can an analytical solution with reasonable
expense be named. The eigenvalues for EULER’s buckling load I:

16
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EI
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ffiffiffi

2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5;847þ 3;550
ffiffiffi

2
pq
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ffiffiffi

2
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5;847þ 3;550
ffiffiffi

2
pq

80� 19
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2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
pq

80� 19
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2
p
�
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2
pq
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6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼ EI

L2

198:69

2:4686

77:063

22:946

2

6

6

6

4

3

7

7

7

5

; ðA:158Þ

for EULER’s buckling load II:

EI

L2

48:0

128:72

9:9438

240:0

2

6

6

6

4

3

7

7

7

5

; ðA:159Þ
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for EULER’s buckling load III:

EI

L2

197:52

20:708

75:101

2

6

4

3

7

5

; ðA:160Þ

for EULER’s buckling load IV:

EI

L2

120:0

40:0

� �

: ðA:161Þ

For the determination of the critical load respectively the smallest eigenvalues are
of interest. The deviations from the analytical solutions are significant.

12.4 Euler’s buckling loads, errors in regard to analytical solution
The following table shows the relative error of the solution of the critical buckling
load, which was determined via the finite element method in regard to the
analytical solution.

error ¼ FE solution� analytical solution
analytical solution

ðA:162Þ

The errors strongly differ for the different EULER’s buckling loads. The error for the
EULER’s buckling load I is always the smallest, the one for the EULER’s buckling
load IV always the biggest. The difference in the single loads extends over two
dimensions. At a cross-linking with four elements the error is already smaller 0.01
for all cases (Table A.14).
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Table A.14 Relative error in relation to analytical buckling load

EULER case

Number of elements I II III IV

1 7:52� 10�3 0:215854 0:485830 –
2 5:12� 10�4 7:52� 10�3 2:57� 10�2 1:32� 10�2

3 1:03� 10�4 1:58� 10�3 6:14� 10�3 2:19� 10�2

4 3:28� 10�5 5:12� 10�4 2:05� 10�3 7:52� 10�3

5 1:35� 10�5 2:12� 10�4 8:64� 10�4 3:21� 10�3

6 6:50� 10�6 1:03� 10�4 4:23� 10�4 1:58� 10�3

7 3:51� 10�6 5:58� 10�5 2:30� 10�4 8:66� 10�4

8 2:06� 10�6 3:28� 10�5 1:36� 10�4 5:12� 10�4

9 1:29� 10�6 2:05� 10�5 8:50� 10�5 3:22� 10�4

10 8:44� 10�7 1:35� 10�5 5:59� 10�5 2:12� 10�4



Index

A
Anisotropic, 210
Approximation, 13
Arc length method, 260
Axial stiffness, 34, 228
Axial vibration

differential equation, 341
eigenfrequency, 342, 350, 354, 357

B
Back projection, 282
Band structure, 132
Bending

plane, 68
pure, 59
theories of third-order, 160

Bending deformation. See Bernoulli beam
Bending line, 59

distributed load relation, 69
moment relation, 67
shear force relation, 69

Bending stiffness, 67, 230
Bernoulli beam, 58

analytical calculation, 69
analytical solution, 69
constitutive equation, 65
differential equation, 69
equilibrium, 64
finite element, 74
internal reactions, 64
kinematic relation, 59, 62
rotation angle, 63

shape functions, 76
Bernoulli’s hypothesis, 58, 160
Boundary conditions

Cauchy, 3
Dirichlet, 3
homogeneous, 4
Neumann, 3

Boundary element method, 25
Buckling, 313

buckling length, 323
characteristic equation, 315
critical load, 323

Bulk modulus, 214

C
Castigliano’s theorem, 17

Bernoulli beam, 58
tension bar, 35
Timoshenko beam, 174

Catching up, 282
Central Difference Method, 335
Closest point projection. See Euler algorithm
Composite

composite bar, 228
composite beam, 229

Concrete, 296
Consistency parameter, 276, 279, 288
Convergence criteria, 260
Coordinate

Coordinate system 2D, 117
Coordinate system 3D, 118
Coordinate transformation, 115
modal, 332

A. Öchsner and M. Merkel, One-Dimensional Finite Elements,
DOI: 10.1007/978-3-642-31797-2, � Springer-Verlag Berlin Heidelberg 2013

395



C (cont.)
natural, 124

Curvature, 61
Curvature radius, 61
Cutting-plane algorithm, 284

D
d’ALEMBERT, 328
Damping

damping matrix, 329
modal, 332
Rayleigh, 332

Delta function, 20
Differential equation, 2

buckling, 322
tension bar, 35
torsion bar, 54

Direct iteration, 241
Discretization, 12
Displacement method. See Matrix method

E
Eigenform, 331
Eigenfrequency, 331
Elastic strain energy

elastic bar, 316
elastic beam, 317

Energy
complementary, 291
potential, 291

Engineering constants, 214
Equation of motion, 332–334
Equivalent nodal loads, 44, 95, 99
Equivalent plastic strain, 277
Euler algorithm

backward, 284
fully implicit, 284, 285, 290, 293
semi-implicit, 284

explicit, 281
forward, 284
semi-implicit, 294

Euler’s buckling, 321

F
Föppl bracket, 72
Fiber composite materials, 222
Fibre-reinforced plastics, 296
Finite difference method, 21
Flow curve, 278

hardening, 278
Flow direction, 276
Flow rule, 276

associated, 276
comparison 1D-3D, 280
non-associated, 276

Flow stress, 275
Force method. See Matrix method
Fourier analysis, 332

G
Galerkin method, 22
Gauss point. See Integration point
Gauss quadrature, 122

H
Hardening

isotropic, 274
linear, 276, 279, 287

Hardening law, 277
comparison 1D-3D, 280

Hooke’s law
incremental, 278

I
Inertia of rotation, 341
Initial yield stress, 274
Inner product, 20

Bernoulli beam, 82
tension bar, 42
Timoshenko beam, 174

Inner variable, 277
Integration

numerical, 121
Integration point, 280
Interpolation function, 124
Inverse form, 25
Isotropic

quasi-isotropic, 218
Isotropic systems, 213

J
Jacobian matrix, 294, 295

K
Kirchhoff plate, 59
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L
Lagrange multiplier method, 292
Lagrange polynomials, 124, 191
Lamina

isotropic, 219
unidirectional, 219

Lateral contraction number, 214
Least square method, 21
Loading history, 278

M
Mass matrix, 329, 337
Matrix displacement method, 7
Matrix methods, 6
Matrix stiffness method, 6
Mid-point rule, 284
Modal matrix, 331
Modulus, 279

elasto-plastic, 279
comparison 1D-3D, 280
consistent, 286

intermediate, 303
plastic, 276

Monoclinic systems, 212

N
Neutral fiber, 59
Newton method, 286, 289

termination precision, 289
Newton–Raphson iteration, 279, 289

complete, 247
modified, 257

Newton’s iteration, 244
Nonlinearity, 233
Normal rule, 276

O
Optimization problem, 290
Orthotropic systems, 213

P
Petrov–Galerkin method, 22
Picard’s iteration. See Direct iteration
Plasticity

ideal, 275
three-dimensional, 280

Plastic potential, 276
Plastics, 296
Point-collocation method, 20
Polygon method. See Euler procedure

Potential energy
Bernoulli beam, 79

Predictor-Corrector method, 281, 282, 290
Predictor, 281, 282, 290

elastic, 281
Principal equation of the FEM, 10

Q
Quadrature. See Integration

R
Reissner–Mindlin plate, 59
Remaining strain. See Strain
Residual, 19

plasticity, 285, 295
Return mapping, 282
Rigid-body motion, 16
Ritz method, 24
Rule of mixtures, 223

S
Second moment of area, 66, 67
Separation approach, 330
Shape functions

Bernoulli beam, 76, 86
Hermite’s polynomials, 87

Shear correction factor, 158, 159
Shear deformation. See Timoshenko beam
Shear flexible beam. See Timoshenko beam
Shear force, 158
Shear locking, 183, 193
Shear modulus, 162
Shear rigid beam. See Bernoulli beam
Shear stress

equivalent, 158
Sign function, 277
Signum function. See Sign functions
Soil mechanics, 296
Stability, 313
Stability postulate, 276
Stiffness matrix

torsion, 56
Stiffness relation, 129
Strain

effective plastic, 279
elastic, 273
plastic, 274, 276

Strain energy
tension bar, 39
Timoshenko beam, 169
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S (cont.)
Strain hardening, 277
Stress

effective, 275, 279
Stress state

plane, 218
Strong form, 18

Bernoulli beam, 58
tension bar, 45

Structure
plane, 135, 139
three-dimensional, 145

Subdomain collocation method, 21
Support reaction, 142
System of equation, 133

T
Tangent stiffness matrix, 247
Tensile test, 274, 275, 296
Test function.See Weighting function
Timoshenko beam, 58

analytical solution, 165, 166
basic equations, 163, 168
constitutive relation, 162
differential equations, 163
equilibrium condition, 162
finite element, 168

higher order shape functions, 191
linear shape functions, 179

kinematic relation, 160
Torsion

torsion spring, 55
torsion stiffness, 55

Transformation matrix
plane, 221

Transversely isotropic systems, 213
Trefftz method, 25

U
Unit domain, 126

V
Virtual deformations

Timoshenko beam, 178
Virtual displacements

Bernoulli beam, 57
tension bar, 39

W
Weak form, 23

Bernoulli beam, 83
tension bar, 39

Weighted residual method, 18
Bernoulli beam, 82
nonlinear elasticity, 234
Timoshenko beam, 174

Weighting function, 19, 83
tension bar, 39

Work
plastic, 277

Work hardening, 277

Y
Yield condition, 274, 280

comparison 1D-3D, 280
Yield criterion, 275
Yield stress, 274
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