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Abstract. In this paper, we propose several integer programming approaches
with a polynomial number of constraints to formulate and solve the minimum
connected dominating set problem. Further, we consider both the power dominat-
ing set problem – a special dominating set problem for sensor placement in power
systems – and its connected version. We propose formulations and algorithms to
solve these integer programs, and report results for several power system graphs.
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1 Introduction

The minimum dominating set (MDS) problem is stated as follows: For a graph G =
(V,E), a dominating set is a subset D of V such that every vertex not in D is linked to
at least one member of D by some edge. The minimum dominating set problem is to
find a dominating set with smallest cardinality. The decision version of the MDS is a
classical NP-complete problem [1].

The dominating set D of a graph G is a connected dominating set if each vertex in D
can reach any other vertex in D by a path that traverses only vertices within D. That is, D
induces a connected subgraph of G. The minimum connected dominating set (MCDS)
problem is to find a connecting dominating set with the smallest possible cardinality
among all connected dominating sets of G. The concept of a connected dominating set is
quite useful in the analysis of wireless networks, social networks, and sensor networks,
as studied extensively by Du’s group in [2–6]. The MCDS problem was recently studied
in disk graphs [7] and unit ball graphs [8]. For an extensive discussion of heuristic
algorithms for and applications of the MCDS problem, we refer to [9, 10].

Integer programming (IP) approaches for the MCDS problem have attracted less
attention than heuristic methods. In [11, 12], although IP formulations were presented,
the algorithms were still based on heuristic and simulation methods. In [13, 14], mixed
integer programming (MIP) approaches were used to formulate the MCDS, while [15]
introduced a MIP approach with exponential number O(2|V |) of constraints based on
spanning trees to exactly solve this problem.

In this paper, building on the IP formulation for the MDS problem, we add dif-
ferent kinds of constraints to ensure the connectivity of the subgraph induced by D.
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Considering the fact that a graph is connected if and only if it has a spanning tree,
constraints implementing sub-tour elimination, cutset, and other concepts, as reviewed
in [16] for the minimum spanning tree problem, can be leveraged for IP formulations
of the MCDS problem. However, because of the exponential number of constraints,
the computational expense is prohibitive for large graphs. Therefore, we use a poly-
nomial number of constraints to ensure connectivity, leveraging Miller-Tucker-Zemlin
constraints, Martin constraints, and commodity flow constraints.

The power dominating set (PDS) problem was originally proposed for solving a
sensor placement problem in power system graphs, usually referred to as the PMU
placement problem [17, 18]. A power system graph is an undirected graph G = (V,E),
where the vertex set V represents a set of buses, and the edge set E represents a set of
transmission lines. Additionally, there is a subset VZ of V , which represents the set of
zero-injection buses that consist of transhipment buses in the system. A power dominat-
ing set D is obtained by considering the following two physical laws: (i) if v ∈ D, then
v and its neighbors (denoted by N(v)) are all covered (Ohm’s law); (ii) if v ∈ VZ , and
all vertices within the set {v}∪N(v) except one are covered, then the uncovered vertex
in {v}∪N(v) is also covered (Kirchhoff’s current law). The PDS problem is to find a
subset of vertices D with smallest cardinality that covers all vertices in V . This problem
has been widely studied in the power systems literature, as shown in [18], and recently
in the area of general combinatorial optimization [19]. The PDS problem can be ex-
tended to consider connected vertex sets, yielding the connected power dominating set
(CPDS) problem.

The reminder of this paper is organized as follows. In Section 2, we introduce IP for-
mulations for the MDS and MCDS problems. In Section 3, we introduce four types of
connectivity constraints to ensure the connectivity of the subgraph induced by the dom-
inating set. In Section 4, we introduce the power dominating set problem, connected
power dominating set problem, and their associated IP formulations. In Section 5, we
test and compare our formulations and algorithms on several power system graphs. Fi-
nally, we conclude in Section 6 with a summary of our results.

2 Dominating Set Problem

In a graph G = (V,E) with V = {1,2, · · · ,n}, let A = (ai j)n×n be the neighborhood
matrix such that ai j = a ji = 1 if (i, j) ∈ E or i = j, and ai j = a ji = 0 otherwise. Without
loss of generality, we define the edge set E as follows: E = {(i, j) : ai j = 1,∀i, j ∈
V with i < j}.

For i ∈V , let xi ∈ {0,1} be a decision variable such that xi = 1 if vertex i is included
in the dominating set; xi = 0 otherwise. An IP formulation of the MDS problem can
then be given as follows:

[MDS] min ∑
i

xi (1a)

s.t. ∑
j

ai jx j ≥ 1,xi ∈ {0,1},∀i ∈V (1b)
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Any feasible solution to formulation (1) will form a dominating set D of G by D = {vi :
xi = 1}. Let GD = (D,ED) be the subgraph induced by the dominating set D, where
ED = {(i, j) ∈ E : ai jxix j = 1,∀i, j ∈V with i < j}.

To yield an IP formulation for the related MCDS problem, we must additionally
include connectivity constraints to ensure that the subgraph GD is connected. In next
section, we study four MIP approaches to model the connectivity constraints in the
MCDS for subgraphs GD.

3 Connectivity Constraints of Subgraphs

Definitionally, a graph GD is connected if and only if it has a spanning tree. Therefore,
some methods for solving the minimum spanning tree problem can be leveraged to
formulate efficient MIPs for the MCDS problem.

3.1 Miller-Tucker-Zemlin Constraints

Miller-Tucker-Zemlin constraints were originally proposed for solving the traveling
salesman problem in [20], and were used to eliminate sub-tours when solving the k-
cardinality tree problem in [21].

Following the method proposed in [21], we let Gd = (V ∪ {n+ 1,n+ 2},A) be a
directed graph based on G = (V,E), where A = {(n+1,n+2)}∪{⋃n

i=1{(n+1, i),(n+
2, i)}}∪E∪E ′ and E ′ = {( j, i) : a ji = 1,∀i, j ∈V with i > j}. That is, we introduce two
additional vertices n+ 1 and n+ 2, add directed edges n+ 1 and n+ 2 to every i ∈ V
and (n+ 1,n+ 2), and make each edge (i, j) ∈ E bi-directional.

The idea behind Miller-Tucker-Zemlin constraints is to find a directed spanning tree
Td = (V ∪{n+ 1,n+ 2},Ed) of Gd such that n+ 1 is the root connecting to both n+ 2
and those vertices not in the dominating set D, n+ 2 is connected to a vertex vr within
D, and all other vertices are formed a tree with root vr. As shown in Fig. 1, the directed
spanning tree has a connected subgraph (shown within the dashed circle) whose vertices
form the connected dominating set.

Fig. 1. The idea behind Miller-Tucker-Zemlin constraints

For (i, j)∈A, let yi j ∈ {0,1} be a decision variable such that yi j = 1 if (i, j) is selected
into the directed tree Td and yi j = 0 otherwise. Additionally, for i ∈ V ∪{n+ 1,n+ 2},
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let ui be a non-negative decision variable, as introduced in [20] to eliminate sub-tours.
The Miller-Tucker-Zemlin (MTZ) constraints to ensure connectivity are formulated as
follows:

[MTZ]

∑
i∈V

yn+2,i = 1 (2a)

∑
i:(i, j)∈A

yi j = 1,∀ j ∈V (2b)

yn+1,i+ yi, j ≤ 1,∀(i, j) ∈ E ∪E ′ (2c)

(n+ 1)yi j + ui− u j +(n− 1)y ji ≤ n,∀(i, j) ∈ E ∪E ′ (2d)

(n+ 1)yi j + ui− u j ≤ n,∀(i, j) ∈ A\ (E∪E ′) (2e)

yn+1,n+2 = 1 (2f)

un+1 = 0 (2g)

1 ≤ ui ≤ n+ 1, i ∈V ∪{n+ 2} (2h)

xi = 1− yn+1,i,∀i ∈V (2i)

In the formulation MTZ, Constraint (2a) identifies one vertex as root of the dominating
set D. Constraints (2b) ensure that all vertices within V are connected to some other
vertex. Constraints (2c) require that in any feasible solution either i ∈ V is directly
connected to n+ 1 or else it may be connected to other vertices in D. Without the term
(n− 1)y ji, Constraints (2d) and (2e) are the original Miller-Tucker-Zemlin constraints
[20] to guarantee the solutions have no sub-tours. The added term was proposed in [22]
as an improvement for sub-tour elimination constraints. Constraint (2f) requires that
the edge (n+1,n+2) is in Td . Constraints (2g) and (2h) present the choice of arbitrary
non-negative integers for variables ui. Finally, Constraints (2i) ensure that vertex i is
either connected to n+ 1 or a vertex in the dominating set.

The constraints and variables in formulation MTZ represent a portion of a mixed-
linear program. By solving MDS in conjunction with MTZ, any feasible solution x will
imply a dominating set D, and form a directed spanning tree Td of Gd . The induced
subtree of Td by D has a root, which is connected to n+ 2. Therefore, the connectivity
of the subgraph GD by D can be guaranteed. In MTZ, there are (|V |+ 2)+ (2|E|+
2|V |+1) = O(|E|+ |V |) decision variables and 1+ |V |+2|E|+2|E|+(2|V|+1)+1+
1+ |V |= O(|E|+ |V |) constraints.

3.2 Martin Constraints

In [23], Martin presented a reformulation for solving the minimum spanning tree prob-
lem with a polynomial number of constraints instead of an exponential number of con-
straints. This method was also used in [24] by Yannakakis, and was recently referenced
in [25, 26]. The objective is still to find a (undirected) spanning tree TD = (D,ET ) of
GD = (D,ED).

For i, j ∈ V , let yi j ∈ {0,1} be a decision variable such that yi j = 1 if edge (i, j)
is selected into the tree TD and yi j = 0 otherwise. For i, j,k ∈ V , let zk

i j ∈ {0,1} be a
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decision variable such that zk
i j = 1 if edge (i, j) is in the tree TD of GD and vertex k is

on side of j (i.e., vertex k is within the resulted component containing j after removal
edge (i, j) from TD), and zk

i j = 0 if edge (i, j) is in the tree and k is not on side of j, or
if edge (i, j) is not in the tree or the pair (i, j) is not an edge.

The Martin constraints to ensure connectivity of GD are formulated as follows:
[MARTIN]

∑
(i, j)∈E

yi j = ∑
i∈V

xi − 1 (3a)

yi j ≤ xi,yi j ≤ x j,∀(i, j) ∈ E (3b)

zk
i j ≤ yi j,z

k
i j ≤ xk,∀(i, j) ∈ E,k ∈V (3c)

zk
ji ≤ yi j,z

k
ji ≤ xk,∀(i, j) ∈ E,k ∈V (3d)

yi j −M(3− xi− x j − xk)≤ zk
i j + zk

ji ≤ yi j +M(3− xi− x j − xk),∀i, j,k ∈V (3e)

1−M(2− xi− x j)≤ ∑
k′∈V\{i, j}

z j
ik′ + yi j ≤ 1+M(2− xi− x j),∀i, j ∈V (3f)

yi j,z
k
i j ∈ {0,1},∀(i, j) ∈ E,k ∈V, yi j = 0,zk

i j = 0,∀i, j,k ∈V,(i, j) /∈ E (3g)

Constraint (3a) ensures that the number of edges within the tree TD is one less than the
number of vertices within TD, and Constraint (3b) ensures that the selection of edges
within ED relies on the selection of its two ends.

If any one, two, or three vertices of i, j,k ∈ V are not part of the tree of GD (i.e.,
one, two, or three of xi,x j,xk become 0), zk

i j = zk
ji = 0 by Constraints (3c)-(3d), and the

Constraints (3e) become non-binding constraints and have no influence on the results
as M is a large positive constant. Similarly, if any one or two of vertices i, j ∈V are not
part of GD, Constraint (3f) become non-binding.

If vertices i, j,k ∈V are within the proposed tree of GD (i.e., i, j,k ∈ D and xi = x j =
xk = 1), zk

i j ,z
k
ji ∈ {0,1} by Constraints (3c)-(3d), and Constraints (3e)-(3f) become

zk
i j + zk

ji = yi j, ∑
k∈D\{i, j}

z j
ik + yi j = 1,∀i, j,k ∈ D.

This represents the original formulation of Martin’s constraints, as discussed in [26].
The constraint zk

i j + zk
ji = yi j implies that (i) if (i, j) ∈ ET (i.e., yi j = 1), vertex k is

either on the side of j (zk
i j = 1) or on the side of i (zk

ji = 1); (ii) if (i, j) /∈ET (i.e., yi j = 0),

k is between i, j (zk
i j = 0,zk

ji = 0).

The constraint ∑k∈D\{i, j} z j
ik +yi j = 1 means that (i) if (i, j) ∈ ET (i.e., yi j = 1), edges

(i,k) who connect i are on the side of i (z j
ik = zk

i j = 0 and zk
i j = 1); (ii) if (i, j) /∈ ET (i.e.,

yi j = 0), there must be an edge (i,k) such that j is on the side k (z j
ik = 1 for some k).

The constraints and variables in formulation MARTIN represent a portion of a mixed-
linear program. The number of new decision variables is |V |2 + |V |3 = O(|V |3), while
the number of constraints to ensure connectivity is 1+2|E|+4|E||V |+2|V |3 +2|V |2 =
O(|V |3).
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3.3 Single-Commodity Flow Constraints

For i ∈ V , let ri ∈ {0,1} be a decision variable such that ri = 1 if vertex i is chosen
to be the root vr of GD for “sending” ∑i∈V xi − 1 unit flow to other vertices within the
dominating D, and ri = 0 otherwise. If each vertex in D except vr consumes exactly one
unit, and the vertices outside D consume none, the connectivity of GD is guaranteed.
This method was used to ensure subgraph connectivity in [27] for solving problems in
wildlife conservation.

For each edge (i, j) ∈ E ∪E ′ (see Section 3.1 for the definition of E ′), let fi j de-
note the amount of flow from vertex i to vertex j. The constraints enforcing single-
commodity flow (SCF) can then be formulated as follows:

[SCF]

∑
i∈V

ri = 1 (4a)

ri ≤ xi,∀i ∈V (4b)

fi j ≥ 0,∀(i, j) ∈ E ∪E ′ (4c)

fi j ≤ xi ∑
k∈V

xk, fi j ≤ x j ∑
k∈V

xk,∀(i, j) ∈ E ∪E ′ (4d)

∑
j

f ji ≤ n(1− ri),∀i ∈V (4e)

∑
j

f ji −∑
j

fi j = xi − ri ∑
j∈V

x j,∀i ∈V (4f)

ri ∈ {0,1},∀i ∈V (4g)

Constraints (4a) and (4b) select one vertex from the dominating set as the root to trans-
mit the single-commodity flow. Constraints (4c) ensure the non-negativity of the flow,
while Constraints (4d) require that the flow of edge (i, j) is 0 if either end of (i, j) is not
selected into the dominating set. Constraints (4e) ensure that the inflow of the selected
root is 0. Finally, Constraints (4f) ensure the balance of flows on each vertex. If vertex
i is the selected root (i.e., ri = 1,xi = 1), the outflow of i is equal to ∑ j∈V x j − 1, i.e.,
one unit is transmitted to each selected vertex. If vertex i is in the dominating set D but
is not the root (i.e., xi = 1,ri = 0), the difference between the inflow and outflow will
equal one, implying that vertex i consumes one unit; otherwise, vertex i is not in D (i.e.,
xi = 0,ri = 0), and all inflows and outflows will be 0.

Any feasible solution to the MDS problem with SCF constraints will guarantee that
every vertex within the dominating set D except the selected root will consume one unit
of flow transmitted from the root, and the connectivity of the subgraph induced by D
will be ensured.

The quadratic terms rix j can be easily linearized by introducing wi j = rix j with con-
straints wi j ≤ ri, wi j ≤ x j, wi j ≥ ri + x j −1, and wi j ≥ 0. Similarly, the quadratic terms
xixk can be linearized by introducing w′

ik = xixk.
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Additionally, the following constraints can be added such that the first appearance of
xi = 1 implies ri = 1:

ri ≤ (n+ 1−
i

∑
i′=1

xi′)/n,∀i ∈V. (5)

Such constraints can reduce the degeneracy of the choice of root vertex within the dom-
inating set. Without loss of generality, assume that ia is first vertex with xia = 1 (i.e.,
xi = 0 for i < ia) and ib is the second one with xib = 1 (i.e., xi = 0 for ia < i < ib). There-
fore, by (5), there are four cases: (i) for i < ia, ri ≤ (n+1−0)/n= 1+1/n and by (4b),
ri = 0; (ii) for i = ia, ria ≤ 1; (iii) for ia < i < ib, ri ≤ 1 and from (4b), ri = 0; (iv) for
i ≥ ib, ri ≤ (n+ 1− 2)/n= (n− 1)/n and from (4g), ri = 0. Thus, by (4a), ria = 1.

There are |V |+ 2|E| = O(|E|+ |V |) decision variables and 1+ |V |+ 2|E|+ 4|E|+
|V |+ |V |= O(|E|+ |V |) constraints in the MDS problem with SCF constraints.

3.4 Multi-commodity Flow Constraints

In Section 3.3, the connectivity of GD = (D,ED) is enforced through a single com-
modity flow. In the following, the connectivity of a selected subset D is guaranteed by
associating a separate commodity with each vertex. Assume that vr is the selected root
within D, such that there will be one unit of flow from vr to each selected vertices of
its own commodity type. This method was used to ensure subgraph connectivity in [27]
for solving problems in wildlife conservation.

For each edge (i, j) ∈ E ∪E ′ (see Section 3.1) and k ∈ V \ {vr}, let f k
i j be a decision

variable such that f k
i j! = 0 if edge (i, j) carries flow of type k, and 0 otherwise. The flow

outside of the dominating set should be 0, the flow of type k equals 0 if k is outside D,
and the flow of type vr should be 0, i.e.,

f k
i j ≤ xi, f k

i j ≤ x j, f k
i j ≤ xk, f k

i j ≤ 1− rk, f k
i j ≥ 0,∀(i, j) ∈ E ∪E ′,∀k ∈V.

For the root vr, there is no inflow, and the outflow of type k is xk, i.e.,

∑
j:( j,vr)∈E∪E ′

f k
jvr

= 0, ∑
j:(vr , j)∈E∪E ′

f k
vr j = xk,∀k ∈V \ {vr}.

For vertex i ∈V \ {vr}, the inflow of type i is xi and the outflow of type i is 0, i.e.,

∑
j:( j,i)∈E∪E ′

f i
ji = xi, ∑

j:(i, j)∈E∪E ′
f i
i j = 0,∀i ∈V \ {vr}.

For vertex i ∈V \ {vr}, the flow of type k(k �= i) should be balanced at i, i.e.,

∑
j:( j,i)∈E∪E ′

f k
ji = ∑

j:(i, j)∈E∪E ′
f k
i j ,∀i ∈V \ {vr},∀k,k �= i.

For i ∈V , let ri ∈ {0,1} be a decision variable such that ri = 1 if vertex i is chosen to be
the root of GD, and ri = 0 otherwise. The above constraints by multi-commodity flow
(MCF) to ensure connectivity of GD can be equivalently formulated as follows:
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[MCF]

f k
i j ≤ xi, f k

i j ≤ x j, f k
i j ≤ xk, f k

i j ≤ 1− rk, f k
i j ≥ 0,∀(i, j) ∈ E ∪E ′,∀k ∈V (6a)

∑
j:( j,i)∈E∪E ′

f k
ji ≤ M(1− ri),∀i,k ∈V (6b)

xk − rk −M(1− ri)≤ ∑
j:(i, j)∈E∪E ′

f k
i j ≤ xk − rk +M(1− ri),∀i,k ∈V (6c)

∑
j:( j,i)∈E∪E ′

f i
ji = xi − ri, ∑

j:(i, j)∈E∪E ′
f i
i j = 0,∀i ∈V (6d)

∑
j:(i, j)∈E∪E ′

f k
i j −Mri ≤ ∑

j:( j,i)∈E∪E ′
f k

ji ≤ ∑
j:(i, j)∈E∪E ′

f k
i j +Mri,∀i,k ∈V,k �= i (6e)

∑
i∈V

ri = 1, ri ≤ xi,∀i ∈V (6f)

where M is a sufficiently large positive constant.
Any feasible solution to the MDS problem with MCF constraints will guarantee that

every vertex i within the dominating set D excluding the selected root will consume
one unit of type i flow transmitted from the root, and the connectivity of the subgraph
induced by D will be ensured. There are |V |+ 2|E||V | = O(|E||V |) decision variables
and 8|E||V |+ 2|V |2 + |V |+ |V |2 + 1+ |V | = O(|E||V |) constraints in formulation (6).
Similarly, Constraints (5) can be added to reduce the degeneracy of the selection for the
root.

4 Power Dominating Set Problem and Connected Power
Dominating Set Problem

For a power graph G = (V,E), there is a given subset VZ ⊂V of zero-injection vertices.
As explained in [19], a power dominating set D is obtained by leveraging two physical
laws: (1) if v ∈ D, then v and its neighbors (denoted by N(v)) are all covered (Ohm’s
law); (2) if v ∈ VZ , and all vertices within the set {v}∪N(v) except one are covered,
then the uncovered vertex in {v}∪N(v) is also covered (Kirchhoff’s current law). The
power dominating set (PDS) problem is to find a subset D with smallest cardinality
that covers all vertices in V . The first law applies similarly as that for the dominating
set problem (i.e., a selected vertex covers all neighbors of itself), while the second law
can significantly reduce the dominating number for a given graph. Let the set of zero-
injection vertices be denoted by VZ = {vi ∈ V : Zi = 1}, where the parameter Zi = 1
indicates that vi is a zero-injection vertex; Zi = 0 otherwise.

For i ∈V , let xi ∈ {0,1} be a decision variable such that xi = 1 if vertex i is selected
into the power dominating set and xi = 0 otherwise. For i, j ∈ V , let pi j ∈ {0,1} be a
decision variable such that pi j = 1 if Kirchhoff’s current law applied to zero-injection
vertex i can provide a coverage for vertex j and pi j = 0 otherwise. Following the method
in [18], the PDS problem to find a smallest dominating subset can be formulated as
follows:
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Fig. 2. An example graph with 14 vertices

[PDS] min
x,p ∑

i
xi (7a)

s.t. ∑
j

ai jx j +∑
j

ai jZ j p ji ≥ 1,∀i ∈V (7b)

∑
j

ai j pi j = Zi,∀i ∈V (7c)

pi j = 0,∀i, j with ai j = 0 or i /∈VZ (7d)

xi, pi j ∈ {0,1},∀i, j ∈V (7e)

The objective (7a) is to minimize the cardinality of the power dominating set. For each
vertex i ∈ V , the first part of Constraint (7b) follows Ohm’s law while the second part
of (7b) follows Kirchhoff’s current law with possible coverage from its neighbors. In
the PDS problem, all vertices will be covered, and Constraints (7c) denote that every
zero-injection vertex i provides coverage for itself or one of its neighbors. Constraint
(7d) ensures that pi j equals 0 if the pair (i, j) is not an edge or i is not a zero-injection
vertex, and Constrains (7e) ensure the binary choices of the xi and pi j variables.

The PDS formulation is an integer linear program. Similarly, any feasible solution to
the PDS will form a dominating set D of G by D = {vi : xi = 1}. Let GD = (D,ED) be
the subgraph induced by the power dominating set D, where ED = {(i, j)∈ E : ai jxix j =
1,∀i, j ∈ V with i < j}. For the connected power dominating set (CPDS) problem, we
have to add connectivity constraints to ensure that the subgraph GD is connected, fol-
lowing the methods introduced in Section 3.

5 Numerical Experiments

All MIP formulations are implemented in C++ and solved using CPLEX 12.1 via IBM’s
Concert Technology library, version 2.9. All experiments were performed on a Linux
workstation with 4 Intel(R) Xeon(TM) CPU 3.60GHz processors and 8 GB RAM. The
optimality gap was set to be 1%.

First, we consider an illustrative example using a graph with 14 vertices and 20
edges (as shown in Fig. 2). By solving the MDS problem formulated in (1), a minimum
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Table 1. Minimum objective function values for power graphs

Dominating Set Connected Dominating
Graph Problems Set Problems

Name |V | |E| |VZ | MDS PDS MCDS CPDS
IEEE-14-Bus 14 20 1 4 3 5 4
IEEE-30-Bus 30 41 6 10 7 11 9
IEEE-57-Bus 57 78 15 17 11 31 24
RTS-96 73 108 22 20 14 32 28
IEEE-118-Bus 118 179 10 32 28 43 39
IEEE-300-Bus 300 409 65 87 68 129 112

Note: The column |VZ | denotes the number of zero-injection vertices.

Table 2. Comparison of formulation sizes

Number of MDS(1) PDS(7) MTZ(2) MARTIN(3) SCF(4) MCF(6)
decision var. |V | 2|E|+ |V | O(|E|+ |V |) O(|V |3) O(|E|+ |V |) O(|E||V |)
constraints |V | 2|V | O(|E|+ |V |) O(|V |3) O(|E|+ |V |) O(|E||V |)

dominating set is {2,6,7,9}, with cardinality 4. By solving the MCDS problem as for-
mulated in (1) coupled with any one type of connectivity constraints (2), (3), (4), or (6),
a minimum connected dominating set is {4,5,6,7,9} with cardinality 5.

For the power dominating set of the graph in Fig. 2, assume that the set of zero-
injection vertices is VZ = {7}. A minimum power dominating set is {2,6,9} with car-
dinality 3, obtained by solving the formulation (7). In this dominating set, vertices
2,1,3,4,5 are covered by vertex 2; vertices 6,5,11,12,13 are covered by vertex 6; and
vertices 9,4,7,10,14 are covered by vertex 9. By Kirchhoff’s current law, vertex 8 is
covered because vertices in {7}∪N(7) = {7,4,9,8} are all covered with the exception
of vertex 8. Similarly, the minimum connected power dominating set {4,5,6,9} with
cardinality 4 can be computed using formulation (7) with any one of the constraints (2),
(3), (4), or (6).

Next, we test our models on the six power graphs considered in [28]. First, we re-
moved all parallel edges in these graphs. The objective values for the minimum dom-
inating set, minimum connected dominating set, minimum power dominating set, and
minimum connected power dominating set problems are shown in Table 1, while the
wall clock run-times (in seconds) are reported in Table 3. In Table 1, we also present
statistical information for the test instances, including the number of vertices, edges,
and the number of zero-injection vertices in the case of the power dominating set prob-
lem.

From Table 1, we observe that the cardinality of the minimum power dominating set
is less than the cardinality of minimum dominating set for a given graph. Application
of Kirchhoff’s current law to zero-injection vertices can reduce the dominating number
of a graph. Additionally, minimum connected dominating sets have larger cardinality
than their non-connected counterparts.

In Table 2, we present the number of decision variables and constraints for each
formulation. The four types of constraints we used to ensure set connectivity have at
most O(|V |3) decision variables, and at most O(|V |3) constraints. In contrast to the
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formulation for sub-tour elimination in [15], which has exponential number O(2|V |)
number of constraints, our proposed methods should yield more tractable computation
for even larger graphs.

Table 3. Solution times for formulations with different connectivity constraints

Dominating Set Minimum Connected Dominating Minimum Connected Power
Graph Name Problems Set Problems Dominating Set Problems

MDS PDS MTZ MARTIN SCF MCF MTZ MARTIN SCF MCF
IEEE-14-Bus 0 0 0.02 0.14 0.15 0.14 0.04 0.12 0.49 0.15
IEEE-30-Bus 0 0 0.22 2.39 299.39 0.89 0.32 1.72 265.10 1.17
IEEE-57-Bus 0.01 0.01 200.59 14671.70 64641.60 6738.05 60.81 5309.74 12448.10 2579.66
RTS-96 0.01 0.03 445.69 >24h >24h 47236.40 55266.10 >24h >24h 53752.20
IEEE-118-Bus 0.01 0.04 699.83 85455.70 >24h 36263.10 50.67 >24h >24h 78715.40
IEEE-300-Bus 0.01 0.27 5033.97 >24h >24h >24h 72437.40 >24h >24h >24h

From Table 3, we observe that it is quite fast to compute optimal solutions to the
dominating set problem without connectivity constraints. In contrast, the imposition
of connectivity constraints significantly impacts computational tractability. The MTZ
constraints (2) yield the best performance. Comparing the two methods with the same
number O(|E|+ |V |) of decision variables, MTZ and SCF, MTZ (with fewer constraints)
yields significantly better performance. The other connectivity formulations are quite
slow requiring more than 24 hours for solving problems arising in large graphs. For
example, there are |V |= 73 vertices and |E|= 108 edges in the RTS-96 graph, yielding
more than 733 binary variables in formulation (3).

6 Conclusions

We presented four optimization models to ensure the connectivity of the subgraph in-
duced by the dominating set of a graph. All models are formulated as mixed integer
programs with a polynomial number of constraints, and were tested on many repre-
sentative graphs. Among these models, the one with Miller-Tucker-Zemlin constraints
to ensure connectivity has the best performance. We further note that the MIP formu-
lations we examine here can be easily extended to solve the minimum spanning tree
problem, the maximum leaf spanning tree problem, the k-cardinality tree problem, and
the Steiner tree problem.

Future research directions include using efficient branch-and-cut methods to further
reduce the computational complexity, and comparing the results obtained by formula-
tions considering an exponential number of constraints. To improve the efficiency of the
methods described in this paper, more valid inequalities should be further studied and
high-performance computing methods should be leveraged. For some graphs, for exam-
ple 1×n grid graphs, the dominating set problem can in theory be solved in polynomial
time and tests should be performed on these cases to verify computational complexity
results.
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