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Abstract. Traditional study of wireless sensor networks has relied on the as-
sumption that sensors transmit and receive using an omnidirectional antenna.
There has been some recent study using a model where sensors transmit using
a directional antenna. This study has focused on the problem of finding an op-
timal transmission range so that there exists an orientation of the antennae at
each sensor which creates a strongly connected communication network. This is
known as the Antenna Orientation Problem for Strong Connectivity. In this paper
we examine a similar problem: we wish to optimize not only the transmission
range, but also the hop-stretch factor of the communication network (in relation
to the omnidirectional model). We refer to this as the Antenna Orientation Prob-
lem with Constant Stretch Factor. We present approximations to this problem for
antennae with angles π/2 ≤ φ ≤ 2π.
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Stretch Factor, Wireless Sensor Networks.

1 Introduction

A wireless sensor is a computational device which transmits and receives information
using a radio antenna. The traditional study of wireless sensor networks (WSNs) as-
sumes that the sensors employ omnidirectional antennae. In this model, a sensor (the
sender) can transmit messages successfully to another sensor (the receiver) if and only
if the Euclidean distance between the sender and receiver is less than or equal to the
transmission range of the sender. Typically it is assumed that all sensors in a WSN have
the same transmission range. This leads to an undirected communication graph which
is a unit disk graph (UDG), where the unit is the transmission range of the sensors. This
model has been studied extensively.

There is, however, no reason a sensor cannot use directional antennae to transmit
and/or receive information. Recently, there has been some study in a directional WSN
model where sensors receive information omnidirectionally, but transmit in a sector of
angle (or beam width) φ with range r.

The use of directional rather than omnidirectional antennae has many possible ad-
vantages: longer ranges are achievable with the same amount of energy; different radia-
tion patterns might lower interference in the network and lead to increased throughput;
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there may also be an increase in the security of a network by reducing the risk of eaves-
dropping. These possible advantages are of particular interest in connected networks.
However not all connected networks are created equal. If replacing omnidirectional an-
tenna with directed ones leads to a network with significantly longer paths between
sensors, then any possible advantages may be offset by the increased path lengths.

Study of this directional antennae model has until now been focused on the Antenna
Orientation Problem for Strong Connectivity. Solutions to this problem guarantee that
a WSN with directional antennae can be strongly connected, but nothing more. The
resulting communication graph could have shortest paths between sensors containing a
very large number of hops. This may be unavoidable depending on the distribution of
the sensors. It becomes a problem if these paths are very long compared to their coun-
terparts in the omnidirectional model, i.e., if the sensors had omnidirectional antennae
instead of directional antennae, would these paths remain fairly long? We examine a
problem similar to the Antenna Orientation Problem, but which places a bound on the
length of paths in the directional case compared to those in the omnidirectional case.

For P, a set of points, let U(P) be the UDG on P where the unit is the longest edge
of the MST of P. Let G(P) be a (strongly) connected (di)graph on the vertices in P.

For any two vertices u,v in P, let dG(u,v) denote the minimum number of edges of
any (directed) path from u to v in G. For the rest of the paper, we refer to a path with
dG(u,v) edges as a shortest path from u to v. We will also refer to dG(u,v) as the hop
count from u to v.

The hop-stretch factor of G(P) on U(P), denoted as τG(P), is defined as the maxi-
mum ratio dG(u,v)/dU(u,v) among all pairs of vertices u,v in P.

τG(P) = max
∀u,v∈P

dG(u,v)
dU(u,v)

.

The hop-stretch factor (hereafter referred to interchangeably as simply stretch factor)
may depend on the size of the network. This raises an interesting problem when one
attempts to construct a transmission network with minimum range for a given angle
which guarantees a constant stretch factor.

Antenna Orientation Problem with Constant Stretch Factor. Given a con-
nected UDG U(S) on a set of sensors S in the plane. Suppose the sensors have
beam width φ ≥ 0. For a given hop stretch factor k, compute the minimum
range, denoted by rk(U(S),φ), so that an orientation of the antennae of the sen-
sors of S creates a strongly connected communication digraph Gφ(S) such that
τGφ(S)≤ k.

1.1 Related Work

The Antennae Orientation Problem for Strong Connectivity was first proposed by Cara-
gianis et al. [4]. They proved the Antenna Orientation Problem is NP-complete for
angles less than 2π/3. They also presented a polynomial algorithm for determining a
solution for angles φ ≥ π. A similar problem was studied by Dobrev et al. [8], who
studied the Antennae Orientation Problem when each sensor has more than one direc-
tional antenna. They proved the problem remains NP-Complete when each sensor has
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two directional antennae with sum of angles at most 9π/20 even for a scaling range of
1.3. They also showed that when each sensor has k ≤ 5 directional antennae, the upper

bound on the range is bounded by 2sin
(

φ
k+1

)
times the optimal range, for every angle.

A comprehensive survey of the antenna orientation problem is presented in [10]. In 3D,
the problem was studied in [9] where the authors consider the case when each sensor
has one directional antenna.

The Antenna Orientation Problem with Constant Stretch Factor was studied for the
first time by Damian and Flatland [7]. They examined the particular cases when φ =
π/2 and φ = 2π/3. They proved that r6(S,π/2)≤ 7 and r5(S,2π/3)≤ 5 respectively.
Recently, Bose et al.[3] studied the case when φ ≤ π/3.

A distinct model is studied in [1,2] and [5] in which sensors both transmit and receive
using the same directional antenna. In [1,5] it is proven that it is always possible to
create a connected graph with angle φ ≥ π/3 and unbounded range. In [2] the authors
also considered how to bound the range and stretch factor. They proved that a connected
graph with stretch factor 8 can be constructed with angle π/2 and range 14

√
2 times the

range necessary to create a connected UDG on the set of sensors.

1.2 Outline and Results of the Paper

The strategies used for deriving our results rely on partitioning an arbitrary set of sen-
sors into many small subsets. We then orient these subsets independently of each other
and show that these orientations lead to our desired results.

In Section 2 we describe how we can orient and connect small groups of sensors. In
Section 3 we address the Antenna Orientation Problem with Constant Stretch Factor.
We provide a global algorithm for beam widths π ≤ φ ≤ 2π, and a local algorithm for
beam widths π/2 ≤ φ < π. All approximations are in relation to the longest edge of the
MST of the sensors. This is a trivial lower bound on the optimal range, as it is a lower
bound for strong connectivity. The summary of our results, along with existing results
is shown in Table 1.

Table 1. Results for the Antenna Orientation Problem with Constant Stretch Factor

Beam Width Approximation Ratio of rs Stretch Factor Scope Proof

5π
3 ≤ φ < 2π 1

2 Global Theorem 1
π ≤ φ < 5π

3 2sin( φ
2 )

π
2 ≤ φ < π 4cos( φ

2 )+3 3 Local Theorem 2

φ = π
3 36

√
2 10 Global [3]

φ < π
3 4

√
2( 7π

φ −6) �8log( 2π
φ )	−1 Global [3]

1.3 Preliminaries and Notation

A sensor is an object at a point in the plane. It is able to receive transmissions omnidi-
rectionally. A sensor with an omnidirectional antenna is able to transmit in all directions
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up to a distance r called the transmission range. A sensor with a single directional an-
tenna is able to transmit in a sector whose angle is referred to as the beam width of
the antenna. This antenna may be initially facing any direction, but once oriented the
antenna is fixed in this orientation. Any point that lies within the sector defined by the
antenna, regardless of its distance from the sensor, is in the sensor’s line of sight.

For the purposes of this paper, any sensors referred to are assumed to be sensors with
a single directional antenna. Furthermore, the term sensor may be used interchangeably
to mean the location of the sensor in the plane, the sensor object itself, or the vertex
representing the sensor in a graph. We may also use the terminology ”orienting a sensor”
to mean orienting the antenna at a sensor.

We assume that any sensor, s, is able to determine its distance from other sensors,
as well as the angle formed by any other two sensors with vertex s. While assuming
that sensors have location awareness will satisfy these assumptions, it is not strictly
necessary as sensors do not need access to a global co-ordinate system for our results.
Furthermore, we assume that each sensor has the ability to communicate with all nearby
sensors during the orientation process. This could be accomplished through the rotation
of its directional antenna, or the use of its omnidirectional antenna to transmit as well
as receive.

Let D(a,r) denote the open disk centered at a with radius r and D[a,r] denote the
closed disk centered at a with radius r.

Definition 1 (Coverage). Let a,b be sensors with range r. Sensor a covers sensor b
if b ∈ D[a,r] and b is within the line of sight of sensor a. This means that b will be a
neighbour of a (although the reverse is not necessarily true). Sensor a covers area A if
∀ points p ∈ A, a sensor at p would be covered by a. A set of sensors S covers an area
A if ∀ points p ∈ A, a sensor at p would be covered by at least one sensor s ∈ S

Let a,b be two sensors. We say that sensor a can reach sensor b if a covers b, or a
covers a sensor c which can reach b. In general terms, this means that a can reach b if
there exists a directed path from a to b.

Definition 2 (k-orientation). Let S be a set of sensors. An orientation of the antennae
of S is a k-orientation if the directed communication graph G(S) is strongly connected,
and ∀s ∈ S:

1. D[s,1] is covered by S, and
2. ∀p∈ D[s,1], the shortest path from s to a sensor covering p has length at most k−1

hops.

2 Orientating Small Groups of Sensors

In this section we begin by showing how to merge k-orientations. We then relate k-
orientations to stretch factor. We conclude the section by showing how we can orient
various groups of small sensors to form k-orientations. These orientations will form the
building blocks for our later results. Any omitted proofs can be found in the full paper.
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2.1 Merging k-Orientations

Orienting small groups of sensors is the foundation for our results, however we first
show how these small orientations can be put together to form an orientation for an
entire graph.

Lemma 1. Let S,T be two sets of sensors which have been oriented to form an i-
orientation and a j-orientation, respectively. Suppose, without loss of generality, that
i ≤ j. If ∃s1 ∈ S, t1 ∈ T such that s1 covers t1 and ∃s2 ∈ S, t2 ∈ T such that t2 covers s2,
then the orientations of S,T is a j-orientation of S∪T .

Proof. Let the orientations of S,T remain identical, so that the coverage and path length
conditions hold for S∪T . All that remains is to show that S∪T is strongly connected.
This is trivial however, as both S and T are strongly connected and there is a path from
S to T and vice versa.

2.2 Stretch Factor of k-Orientations

Lemma 2. Let S be a set of sensors which have been oriented to form an i-orientation
with the directed communication graph G(S). The stretch factor of G(S) on UDG(S,1),
τG(S)≤ i.

Proof. Assume there exists G(S) such that τG(S) > i. Therefore there must be two
vertices u,v ∈ S such that dG(u,v)/dU(u,v) > i. Since the ratio along the path in G
from u to v is greater than i, this means that there must exist two vertices a,b ∈ S such
that dU(a,b) = 1 and dG(a,b)/dU(a,b) > i. Therefore, dG(a,b) > i. Note that since
dU(a,b) = 1, b ∈ D[a,1] and vice versa. However, since G(S) is the communication
graph of an i-orientation of S, the shortest path between a and a sensor covering b
cannot be more than i− 1. Therefore, dG(a,b) ≤ i. This contradicts our assumption,
and the lemma follows.

2.3 Forming k-Orientations from Small Groups of Sensors

Groups of 2 Sensors

Lemma 3. Given two sensors u,v with beam width φ ≥ π/2. If the sensors are sepa-
rated by Euclidean distance δ ≥ 2cos(φ/2), then there exists a 2-orientation of u and v
with transmission range r = δ+ 1.

Proof. Suppose u,v are oriented as in Figure 1. Let c be the midpoint of the line segment
uv. Each sensor beam pattern edge intersects with the intersection of the circles D[u,1]
and D[v,1] at point i. This intersection forms a right angle triangle with c and u. Since
the intersection lies on the boundary of D[u,1], the hypotenuse of this triangle has length
1. Since uv bisects the sensor of beam width φ, the angle ∠(ivc) = φ/2. Using simple
trigonometry we calculate the length of the side cv = cos(φ/2). Similarly, the side uc =
cos(φ/2), so the length of uv, δ = cos(φ/2).

Consider any point p ∈ D[u,1]. The farthest p can be from v is δ+ 1. Similarly, the
farthest any point q ∈ D[v,1] can be from u is δ+ 1. Therefore r = δ+ 1 is a sufficient
transmission range to ensure that both D[u,1] and D[v,1] are covered.
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φ cos(φ/2)

1

φ/2

cu v

i

Fig. 1. Antenna orientation of two sensors with beam width 2π
3 ≤ φ < π

In the proposed antennae orientation, u covers v and vice versa, so each are connected
by a path of length 1. Therefore this orientation of u and v is a 2-orientation.

A more specific version of the following result was first given in [6]. We derive a more
general version and include the proof for completeness.

Lemma 4. Given two sensors u,v with beam width φ ≥ π. Suppose the Euclidean dis-
tance between them is δ. There exists a 2-orientation of u and v with transmission range
max(1,δ,

√
1+ δ2 − 2δcos(φ)).

Groups of 3 Sensors

Lemma 5. Given three sensors u,v and w with beam width φ ≥ π/2. If two of the
sensors are separated by Euclidean distance δ ≥ 2cos(φ/2), there is a 3-orientation of
{u,v,w} with transmission range r = δ+ 1.

Lemma 6. Given a set S of n ≥ 3 sensors with beam width φ ≥ π. Suppose ∃c ∈ S such
that the maximum distance between c, and any other sensor s ∈ S−{c} is δ. If all the
sensors s ∈ S−{c} are contained within a sector centered at c with angle φ, there is a
2-orientation of S with transmission range r = max(1,δ,

√
1+ δ2− 2δcos(φ)).

Groups of 4 Sensors

Lemma 7. Given a set S of four sensors with beam width φ ≥ π/2. Suppose the maxi-
mum Euclidean distance between any two sensors in S is δ. There is a 3-orientation of
S with transmission range r = δ+ 1.
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Proof. Let us first consider the case where the sensors have infinite transmission range.
Label the sensors t,u,v,w ∈ S such that the greatest pairwise Euclidean distance be-
tween sensors occurs between t and w. We then obtain one of two cases (Figure 2).

Case (a): Both sensors u and v are on the same side of the line tw. We orient the
antennae of t and w to cover the half plane above (and including) the line tw. We then
orient the antennae of u and v to cover the half plane below tw. Since t and w cover
the half plane above tw, and u and v cover the half plane below tw, the entire plane is
covered. Since t and w are the two sensors farthest apart, both u and v must lie between
t and w. Therefore, t covers u, v, and w. Similarly w covers t, u and v. The sensors u
and v each cover one of t and w. Therefore t and w cover each other, and u and v each
cover one of t or w and are covered by both. This means the induced graph is strongly
connected.

Case (b): u and v are on opposing sides of the line tw. We label u as the point whose
projection on the line tw is closest to t. We can then orient the antennae of t and w so
that they cover the entire plane except the shaded areas in Fig 2(b). The antenna of u
(similarly v) can then be oriented to cover the shaded area adjacent to w (t) as well as
sensors v,w (t,u). Collectively, the sensors t,u,v and w cover the entire plane. In this
orientation, t covers u, u covers w, w covers v, and v covers t. Therefore the sensors are
strongly connected.

In both cases, the antennae are oriented so that they cover the plane, and so that the
sensors are strongly connected. Now consider any point p ∈ D[t,1]∪D[u,1]∪D[v,1]∪
D[w,1]. The farthest p can be from any of t, u, v, or w is δ+1. Therefore a transmission
range of r = δ+ 1 is sufficient to obtain a k-orientation in both cases.

Furthermore, an examination of the orientations reveals that the shortest path be-
tween any two of the sensors is at most 2. Therefore these are both 3-orientations. Since
we always obtain one of the two cases, the proof follows.

Case (a) Case (b)

t

u

v

w
t w

u

v

Fig. 2. Antenna orientation of four sensors with beam width φ ≥ π
2

Corollary 1. Given a set S of n ≥ 4 sensors with beam width φ ≥ π/2. Suppose the
maximum Euclidean distance between any two sensors in S is δ. There is a 3-orientation
of S with transmission range r = δ+ 1.
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3 Orienting Antennae with Constant Stretch Factor

In this section we will present some approximations for the Antenna Orientation Prob-
lem with Constant Stretch Factor. These approximations will have transmission ranges
dependant on the beam width of the sensors, the desired stretch factor, as well as
whether the orientation is to be found with local or global information.

3.1 Orienting Antennae of Beam Width φ ≥ π with Constant Stretch Factor

Theorem 1. Given a connected UDG U(S) on a set of sensors S each with one direc-
tional antenna of beam width φ ≥ π. There exists an antennae orientation of S with
range max(1,2sin(φ/2)) which creates a connected transmission network Gφ(S) such
that τGφ(S)≤ 2.

Proof. For any graph H, denote C(H) as the vertices of the convex hull of each of the
connected components of H. We then define the following hierarchical structure, Q:
Q0(V0,E0) = U(S), Qk+1(Vk+1,Ek+1) = Qk[Vk −C(Qk)] (the subset of Qk induced by
Vn −C(Qn)). Intuitively, every iteration of the structure is the previous graph with the
convex hulls of its connected components peeled away. We note that every iteration is
a proper subset of the previous: Qk+1 ⊂ Qk, unless Qk+1 = Qk = /0. The construction of
such a hierarchical structure is illustrated in Figure 3.

(a) Q0(V,E) and C(Q0) (b) Q1 = Q0[V − C(Q0)] and C(Q1) (c) Q2 and C(Q2)

Fig. 3. Construction of Q for a given graph G(V,E). C(Qi) denoted by hollow points

We want to use induction to show that we can find a suitable orientation for some Qi

and that given an orientation for any Qk we can find an orientation for Qk−1. We do this
by ensuring that each sensor is either: oriented so that it part of a k-orientation, or the
sensor is convex. We say that a sensor s is convex in a graph H if s is on the convex hull
of NH(s)∪{s}, where NH(s) is the set of neighbours of s in H. Intuitively, s is convex in
H if a line can be drawn through s such that all neighbours of s in H are on one side of
the line. Since the sensors have beam width φ ≥ π, the antennae of convex sensors can
be positioned so that they cover all their neighbours. Therefore if all sensors in S are
either oriented or convex, there exists an orientation of S which is strongly connected.

Let i be the smallest value such that Qi = Qi+1 = /0. Consider Qi−1. It must contain at
least one sensor, and all sensors are on the convex hull of their connected components,
so they are all convex. Therefore we have a valid orientation for Qi−1.
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Consider now Qi−2. We know that all the sensors in C(Qi−2) are convex. What about
the remaining sensors? None have yet been oriented, some may remain convex, but
some may not. It is the sensors that are no longer convex which prevent an orientation
from being achieved. For each sensor s which is no longer convex, there must exist at
least one sensor in C(Qi−1) which is a neighbour of s in U(S) (otherwise s would still be
convex). Suppose each such unoriented, non-convex sensor selects one of its neighbours
in C(Qi−1) and requests to orient with it. Let us now consider each sensor in C(Qi−1).
A sensor may receive no requests to orient, in which case it remains convex. It may
receive a single request, in which case the two sensors orient themselves according to
Lemma 4 to form a 2-orientation. It may also receive multiple requests, in which case
the sensors can orient themselves according to Lemma 6 to form a 2-orientation. After
each sensor of C(Qi−1) has taken the appropriate action, we now have the case where
all sensors are either oriented or convex, so we have a valid orientation for Qi−2.

Consider now Qk−1. Assume that we have a valid orientation for Qk. We know that
all the sensors in C(Qk−1) are convex. What about the remaining sensors? Some sensors
may have already been oriented, some may remain convex, but some may not. Using
the same method as above, we can orient all the unoriented, non-convex sensors with
sensors in C(Qk−1) to achieve a valid orientation of Qk−1.

Since we have proven we can find an orientation for Qi−2, and since we can find a
valid orientation for Qk−1 given a valid orientation for Qk, we know that we can find a
valid orientation Gφ(S) for Q0 =U(S).

All sensors in the orientation Gφ(S) are either part of a 2-orientation or convex. Sen-
sors in a 2-orientation can reach all their neighbours in U(S) is at most two hops. Convex
sensors can directly reach all their neighbours in U(S). This means that τGφ(S)≤ 2.

3.2 Orienting Antennae of Beam Width π/2 ≤ φ < π with Constant Stretch
Factor

Definition 3. We define the annulus graph A(P,r,R) on a set of points P as the straight
line graph where two points a,b at distance d are connected if and only if r ≤ d ≤ R.

Theorem 2. Given a connected UDG, U(S,1), on a set of sensors S each with beam
width π/2≤ φ< π. There exists an antenna orientation of S with range at most 4cos(φ/2)
+3 which creates a strongly connected communication graph Gφ(S) such that τGφ(S)≤
3. This communication graph can be constructed in constant time.

Proof. Let A = A(S,2cos(φ/2),2cos(φ/2)+ 1) be an annulus graph on S.

Claim. Let u be any point in S and v the farthest point in S from u. If d(u,v) ≥
2cos(φ/2), then the degree of u in A, dA(u) is at least 1.

Proof. Assume there exist two points u and v such that d(u,v)≥ 2cos(φ/2) and dA(u)=
0. Since U is connected we can always find a path P = u = u0,u1, ...uk = v. Observe
that d(ui,ui+1) ≤ 1 for all i. Therefore, at least one vertex in the path u1, ...uk = v is at
distance between 2cos(φ/2) and 2cos(φ/2)+ 1 since P crosses the annulus of u. This
contradicts the assumption, therefore dA(u)> 0.
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Given two sensors u,v in S, we say that they form a 2-group if d(u,v)≥ 2cos(φ/2). By
Lemma 3 there exists a 2-orientation of the antennae at u and v with angle φ and range
d(u,v)+ 1.

Given three sensors u,v,w in S where δ = max(d(u,v),d(u,w),d(w,v)). We say that
u,v,w form a 3-group if δ ≥ 2cos(φ/2). By Lemma 5 there exists a 3-orientation of
u,v,w with range δ+ 1.

We say that two points u,v are close if d(u,v)≤ 4cos(φ/2)+2. Given S′ ⊆ S, we say
that S′ is a 4-strong subset if there exists four sensors u,v,w,x ∈ S′ such that ∀a,b ∈ S′,
a is close to b. By Corollary 1 we can find a 3-orientation of u,v,w and x with range
4cos(φ/2)+ 3.

If no two vertices are distance at least 2cos(φ/2) apart, either U is a 4-strong set, or
there are three or fewer sensors in U . If U is a 4-strong set, we can orient it according to
Corollary 1. If U consists of only three sensors u,v,w, then they can be oriented so that
u covers v, v covers w and w covers u. If there are two or fewer sensors, the orientation
is trivial. In the rest of the proof we assume that there exist two vertices separated by
distance at least 2cos(φ/2).

Let M be a maximal matching of A . Consider the following geometric graph G =
(S,E) where {a,b} ∈ E if and only if a is an unmatched sensor and b is the nearest
matched sensor to a.

Claim. For each edge {a,b} in G, d(a,b)≤ 2cos(φ/2)+ 1

Proof. From the first claim we know that each point has degree at least one in A .
Therefore, a point is only unmatched if all its neighbours in A are matched. Thus,
d(a,b)≤ 2cos(φ/2)+ 1.

Let {u,v} be any edge in M and NG(u) denote the neighbours of u in G. Since M is a
matching, clearly u,v are not incident to any other edge in M. From our definition of
G, v /∈ NG(u). Furthermore, ∀a,b ∈ M,NG(a)∩NG(b) = /0. Since every sensor in U is
incident to at least one edge in either M or G, the previous conditions mean that we can
partition the graph based on the edges in M. For each edge {u,v} in M, we define a
subset S′{u,v} = {u,v}∪NG(u)∪NG(v). Each subset is non-empty since it must contain
u,v. As mentioned previously, every sensor will be part of one and only one subset. This
is therefore a valid partition. We will show that each subset can be oriented to form a
3-orientation.

Without loss of generality assume that |NG(u)| ≤ |NG(v)|. There are now multiple
cases we may encounter.

Case 1: |NG(u)|= |NG(v)|= 0.
In this case, S′{u,v} forms a 2-group.

Case 2: |NG(u)|= 0 and |NG(v)| ≥ 1.
If |NG(v)|= 1, S′{u,v} forms a 3-group. Otherwise, it is a 4-strong subset.

Case 3: |NG(u)|= 1 and |NG(v)| ≥ 1.
Let x ∈ NG(u). If d(x,v)≤ 2cos(φ/2)+1, S′{u,v} is a 4-strong subset. If not, we
consider three possible cases:
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– |NG(v)| = 1. Let y ∈ NG(v). If d(y,u) ≤ cos(φ/2)+ 1, S′{u,v} is a 4-strong
subset. Otherwise, {x,v} forms a 2-group and {y,u} forms a 2-group. If
two groups are formed, we remove S′{u,v} from the partition and add {x,v}
and {y,u}.

– |NG(v)|= 2. Let y and z be the elements in NG(v). If max(d(y,u),d(z,v))≤
2cos(φ/2) + 1, S′{u,v} is a 4-strong subset. Otherwise, {x,v} forms a 2-
group and {u,y,z} forms a 3-group. If two groups are formed, we remove
S′{u,v} from the partition and add {x,v} and {u,y,z}.

– |NG(v)| ≥ 3. Let z,w be the nearest sensor of v in NG(v)\{y}. NG(v)∪{u}
is a 4-strong subset and {x,v} forms a 2-group. We remove S′{u,v} from the
partition and add NG(v)∪{u} and {x,v}.

Case 4: |NG(u)|= 2 and |NG(v)| ≥ 2.
If there are two sensors x,y in NG(u) ∪ NG(v) that are at distance at most
2cos(φ/2)+ 1 of u and v, S′{u,v} is a 4-strong subset. Otherwise, NG(u)∪{v}
forms a 3-group. If dG(v) = 2, NG(v)∪{u} forms a 3-group, otherwise it is a
4-strong subset. If two groups are formed remove S′{u,v} from the partition and
add NG(v)∪{v} and NG(v)∪{u}.

Case 5: |NG(u)| ≥ 3 and |NG(v)| ≥ 3.
NG(u)∪{u} is a 4-strong subset and NG(v)∪{v} is a 4-strong subset. We re-
move S′{u,v} from the partition and add NG(v)∪{u} and NG(v)∪{v}.

Once we have oriented every subset in the partition, we observe that they now all con-
sist of 2-groups, 3-groups and 4-strong subsets. As mentioned previously, we know
that we can form 3-orientations for each of these. Therefore we now have a partition
of the sensors of U such that each sensor is a part of a 3-orientation. Note that the
transmission range required to orient any of the sensor groups was always less than
or equal to 2cos(φ/2)+ 3. What is left to show is that U is a 3-orientation. Consider
any edge {a,b} ∈ U . Suppose a,b are not in the same 3-orientation. Since b ∈ D[a,1],
there is a sensor in a’s 3-orientation which covers b. Similarly, there is a sensor in
b’s 3-orientation which covers a. Therefore, by Lemma 1 these 3-orientations can be
combined to form a larger 3-orientation of which both a and b are members. Since
U is connected, this process can be repeated until all sensors are a part of the same 3-
orientation. Therefore there must exist some orientation Gφ(S) of the sensors of S which
is a 3-orientation. Therefore by Lemma 2, there must exist some orientation Gφ(S) of
the sensors of S such that τGφ(S)≤ 3.

Regarding the complexity, a maximal matching can be constructed in constant time
[11] and each other step is local.

One may ask whether we can improve our result by considering the annulus graph G =
A(P,2cos(φ/2),2cos(φ/2) + 1− ε). However, we cannot guarantee minimum degree
greater than zero on G and consequently the properties of the unmatched vertices do
not hold.
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4 Conclusion

In this paper we have examined issues relating to connectivity in the directional an-
tenna model. There remain unanswered questions relating to this problem. Can approx-
imations can be found for angles between π/2 and π/3? Can tighter bounds on range
and/or stretch factor be found? How does the Antenna Orientation Problem with Con-
stant Stretch Factor relate to the Antenna Orientation Problem for Strong Connectivity?
How would multiple antennae per sensor affect connectivity? How does the problem
change if Euclidean stretch factor is considered instead of hop-stretch factor?

The properties of this model may be of particular interest for questions such as: How
would routing work? What level of sender and receiver interference would be expected?
These are interesting questions and are worthy of study.
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