
Speedup of RNA Pseudoknotted Secondary

Structure Recurrence Computation
with the Four-Russians Method

Yelena Frid and Dan Gusfield

Department of Computer Science, U.C. Davis

Abstract. While secondary pseudoknotted structure prediction is com-
putationally challenging, such structures appear to play biologically im-
portant roles in both cells and viral RNA [1]. Restricting the class of
possible structures and then finding the optimal structure for that re-
stricted class is a common method employed to deal with the computa-
tional complexity.

We derive a practical and worst-case speedup algorithm using the
Four-Russians method for the O(n6) time Rivas&Eddy Algorithm [2]
describing the broadest set of structures. Fast R&E algorithm finds the
optimal Rivas&Eddy fold in O(n6/q)-time, where q ≥ log(n).

Because the solution matrix produced by Fast R&E algorithm is iden-
tical to the one produced by the original Rivas&Eddy algorithm, the
contribution of the algorithm lies not only in its stand alone practicality
but also in its ability to be implemented alongside heuristic speedups,
leading to even greater reductions in time. Our approach is the first to
achieve a Ω(log(n)) time speedup without reducing the set of possible
Rivas&Eddy pseudoknotted structures. The analysis presented here of
the original algorithm could be used to improve other pseudoknot algo-
rithms with similar recurrences.

1 Introduction

The algorithmic goal of structure prediction is motivated by the understanding
that RNA structure helps to determine function. It has been particularly observed
that in eukaryotic genomes ncRNA (Non-coding RNA) function is seen more
clearly from structure [3–5]. Pseudoknot structures, specifically, play an impor-
tant role in transcription regulation, as well as RNA splicing and catalysis [1, 6].
While algorithms that compute the optimal pseudoknot free fold for RNA1[7] are
solved in polynomial timeO(n3) [7–9] orO(n3/log(n)) [10] depending on problem
formulation, the optimal secondary structure including pseudoknots computation
is NP-hard[11]. However, there are available dynamic programs that find the opti-
mal secondary structure of RNA for a subclass of pseudoknotted structures [2, 12–
18]. These algorithms range from O(n4) to O(n6) asymptotic computation time

1 A fold does not contain a pseudoknot if for seq(1..n) an RNA sequence of size n the
folding set for seq does not contain both (i,j) and (i’,j’) if i < i′ < j < j′.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 176–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

RNA Folding Using Four-Russians 177

for a sequence of size n. The classification of RNA structure prediction algorithms
based on the size of possible structures has been examined byCondon et al.[19] and
Saule et al. [20]. The Four-Russians technique, which has been used to speedup
many dynamic programs has not yet been applied to the pseudoknotted secondary
structure problem.

Secondary structure algorithms for RNA do not easily lend themselves to
the traditional Four-Russians technique of performing some preprocessing for a
subset of all possible inputs and then computing using that preprocessing. The
Four-Russians speedup technique for non-pseudoknotted RNA secondary struc-
ture, discussed in Frid and Gusfield [10], employed simultaneous and interleaved
computation and preprocessing. Unfortunately, pseudoknotted secondary struc-
ture nesting is not guaranteed, thus requiring more analysis in order to execute
preprocessing, and computation. Through the analysis presented here featuring
encoding some optimal structures, preprocessing and sped up computation be-
comes possible. Rivas&Eddy Algorithm describes the broadest set of structures
through its recurrences and has an asymptotic time bound of O(n6) for an RNA
sequence of size n. We present Fast R&E algorithm which applies the Four-
Russians technique to a modified maximum matching Rivas&Eddy Algorithm.
Our approach is the first to achieve a Ω(log(n)) speedup without reducing the
set of possible structures.

Since the solution set of Fast R&E is identical to the solution set of the original
Rivas&Eddy Algorithm, both algorithms contain equivalent limitations: the set
of possible structures is restricted and the optimal structure chosen is dependent
on the scoring scheme. Therefore, like in the original algorithm, there is a need to
apply scoring schemes that lead to prediction of biologically accurate structures.
Our approach is also compatible with Mohl et al. [21] speedup, which based on
some simple pruning, in practice achieves a linear speedup of the Reeder and
Giegerich Algorithm [15].

The Fast R&E algorithm computes pseudoknotted RNA secondary structure
in O(n6/log(n)) time for the standard Four-Russians speedup and in
O(n6/log2(n)) time based on Pinhas et al.[22] and Williams et al. [23]. The ideas
that allow for both a log(n) and a log2(n) speedup are examined in the following
sections.

2 The Basic Optimal Folding Problem

Let seq be an RNA sequence over the four-letter alphabet {A,U,C,G}, where
each letter in the alphabet represents an RNA nucleotide. Let nucleotides x,
y at position i and j in the sequence be a permitted pair of nucleotides if
(x, y) or (y, x) ∈ {(A,U), (C,G), (G,U)}. For a given sequence seq we define the
folding set M as a set containing disjoint permitted pairs of sites in sequence
seq. Let β be a scoring scheme such that β(i, j) returns the contribution of
pairing nucleotide x at site i with the nucleotide y at site j. The basic scoring
scheme sets β(i, j) equal to ′1′ if (x, y) is a permitted pair with |j − i| > d
and set β(i, j) to ′0′ otherwise. Richer scoring schemes β allow more biologically

178 Y. Frid and D. Gusfield

significant information to be captured by the algorithm. Let foldScore be the

score associated with a folding set M where foldScore =
∑

(i,j)∈M

β(i, j).

The optimal folding problem: Find the set M for which foldScore is maxi-
mum under some constraints. Unconstrained, there is an exponential number of
possible sets M .

3 Rivas&Eddy Algorithm

We are interested in the optimal folding problem under the constraints of the
Rivas&Eddy recurrence relations. Rivas&Eddy recurrences examine the largest
subset of pseudoknot structures for which an optimal solution can be found in
polynomial time. We will make use of a maximization of base pairs version of
the Rivas&Eddy Algorithm for folding, as described by Mohl et al. [21] . That
version maximizes the pair contributions to the fold instead of minimizing the
energy of a fold.

3.1 Rivas&Eddy Recurrences

Let S[i, j;k, l], where i < j < k < l ≤ N , contain the foldscore for optimal
Rivas&Eddy fold for the subsequence seq(i..l)2, where each nucleotide in position
r such that r ∈ j + 1..k − 1 is unpaired. Clearly, S is a four dimensional matrix.

Fig. 1. Simplified S matrix recurrence as seen in Lyngso et. al. [11]

Let W[i,j] be the optimal Rivas&Eddy foldScore for subsequence seq(i, j). We
make use of the recurrences describing the different possible fold options, as seen
below:

W [i, j] = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rule a. W [i, j − 1]

Rule b. W [i + 1, j − 1] + β(i, j)

Rule c. maxk∈{i+1,...,j−1}W[i, k] + W[k + 1, j]

Rule d. maxj′,k′,l′∈{i+1,...,j−1}∧{j′<k′<l′}S[i, j
′; k′, l′] + S[j′ + 1, k′ − 1; l′ + 1, j]

(1)

2 Notational note: All subsequences will be represented as seq(a..b) where a is the
starting index of the subsequence and b is the index of the final character in that
subsequence.

RNA Folding Using Four-Russians 179

S[i, j; k, l] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rule A. max{S[i + 1, j; k, l], S[i, j − 1; k, l], S[i, j; k + 1, l], S[i, j; k, l − 1]}
Rule B. maxj′∈{i+1,...,j−1}W[i, j

′] + S[j′ + 1, j; k, l]

Rule C. maxj′∈{i+1,...,j−1}W[j
′, j] + S[i, j′ − 1; k, l]

Rule D. maxl′∈{k+1,...,l−1}W[k, l
′] + S[i, j; l′ + 1, l]

Rule E. maxl′∈{k+1,...,l−1}W[l
′, l] + S[i, j; k, l′ − 1]

Rule F. maxj′∈{i+1,...,j−1}∧k′∈{k+1,...,l−1}}S[i, j
′; k′ + 1, l] + S[j′ + 1, j; k, k′]

Rule G. maxj′∈{i+1,...,j−1}∧k′∈{k+1,...,l−1}}S[i, j
′; k, k′ − 1] + S[j′ + 1, j; k′, l]

Rule H. max{{i′,j′}∈{i+1,...,j−1}∧{i′<j′}S[i, i
′; j′ + 1, j] + S[i′ + 1, j′; k, l]

Rule I. max{{k′,l′}∈{k+1,...,l−1}∧{k′<l′}S[k, k
′; l′, l] + S[i, j; k′ + 1, l′ − 1]

(2)

Rules c, d for recurrence of matrix W and Rules B to I for the recurrence of
matrix S maximize the sum of the foldScores for two sections or the RNA string.
Let the section described first in each rule be called the head of the split and
the second score corresponding to an optimal foldScore for a subsequence be
called the tail . For example in Rule I S[k, k′; l′, l]︸ ︷︷ ︸

head

+S[i, j; k′ + 1, l′ − 1′]︸ ︷︷ ︸
tail

. We

could interpret each rule as finding the optimal head and tail sum under certain
conditions as seen in Figure 1. In the above recurrences Rules c,d, and Rules B
to I the underlined part of each rule is the head, and the non-underlined is the
tail.

3.2 Rivas&Eddy Algorithm

While many orders of evaluation are possible for these recurrences, we explic-
itly describe an order of evaluation that will make the Four-Russians speedup
possible. Any evaluation not shown below can be done in any logical order.

The W and S matrices can be computed by an algorithm that goes through
all the possible subsequences of seq finding the optimal Rivas&Eddy fold for
each. As shown in Rivas&Eddy Algorithm below, the recurrences are evaluated
in increasing order of the right endpoint of seq.

Rivas&Eddy Algorithm Compute Matrix W::

Initialization: W=0; S(i, i; k, k)=β(i, k) or S(i, j; k, l) = 0
for j=1 to N do

for i=j − 1 to 1 do
Compute Matrix S given (i, j) (Rules A to I)
branch max= compute Rule c(i, j) (Rule c)
max Rule d = compute Rule d(i, j) (Rule d)
W[i,j]=max(Rule a, Rule b, branch max, max Rule d)

Compute Matrix S given (i, l)::

for k=l − 1 to i+ 1 do
for j=i+ 1 to k − 1 do

S[i,j;k,l]=max(Rules A to I);

The score corresponding to the optimal Rivas&Eddy fold is found in W [1, n].
The overall asymptotic time to compute Rivas&Eddy Algorithm is equal to the

180 Y. Frid and D. Gusfield

total time taken to compute Rules a to d for the W matrix and Rules A to I
for the S matrix. The total asymptotic time results in { O(n2 ∗O(Rules a to d))
+ O(n4 ∗ O(RulesAtoI)) } or O(n6). Compute Matrix S give(i,j) call is the
bottleneck of the matrix W computation. For a specific i, j Compute Matrix S
takes O(n4) time. Within Compute Matrix S the computations of Rules F-I take
O(n2) time and are the bottlenecks. If you we could reduce the computation
time of Rules F-I from O(n2) to O(n2/q), the overall asymptotic time of the
entire algorithm would improve to O(n6/q).

We present the Fast R&E algorithm that, not only reduces the computation
time for the bottleneck Rules F to I, but for all the Rules B to I, as well as
Rule c and Rule d by a factor of q. This will lead to an overall speedup of
O(n6/q) where q is log(n) for the standard Four-Russians speedup. A further
improvement of log2(n) maybe achieved, for the Four-Russians implementation
of Pinhas et al. [22].

4 Conceptual Speedup of Rivas&Eddy

For simplicity of exposition we develop the speedup for Rule I. Rule I computes
in 0(n2) time and is one of the bottleneck computations. The analysis presented
below leading to the speedup is then generalized to all the Rules. Given some
i, j, k, l, Rule I can be computed by the following two loops:

compute Rule I for i, j, k, l::

for l′ = l − 1to k + 1 do
for k′ = k + 1 to l′ − 1 do

rule I max=max (rule I max, S[k, k′; l′, l]+S[i, j; k′+ 1, l′− 1])

We conceptually divide all the possible index points of seq into sets of size q
called Mgroups. Let Mg=0 be the first such group that contains the possible
index points {0, 1, ...q − 1}, let Mg=1 contain {q, ...2q − 1} and so on ... the last
group of which is Mg=n/q = {n− q, ...n− 1}. In general:

Mg = {g · q, g · q + 1, ...g · q + q − 1}

Lets define the function K∗(RuleX,Y,Mg) where RuleX ∈{Rule b - d, Rule
B - I} and Y is a set of indexes referencing seq that correspond to the partic-
ular Rule X. Let K∗(RuleX,Y,Mg) return some index z, where z ∈ Mg and
maximizes Rule X under the Y constraint. For example:

K∗(Rule I, {i, j, k, l, l′},Mg)::
for k′ ∈ Mg

return k′ such that max{S[k, k′; l′, l]+S[i, j; k′+ 1, l′− 1]}

Incorporating the K∗-function into the computation of each Rule does not
change the number of head and tail combinations examined. For example, the
computation of Rule I:

RNA Folding Using Four-Russians 181

compute Rule I for i, j, k, l::

for l′ = l − 1to k + 1 do
for g = k+1

q
to l′−1

q
do

k′ = K∗(Rule I, {i, j, k, l, l′},Mg)
rule I max=max (rule I max, S[k, k′; l′, l]+S[i, j; k′+ 1, l′− 1])

The K∗-function examines overall O(q) head and tail combinations, returning
the index in Mgroup Mg that results in the maximum sum. Therefore, Rule I

compares O(n
2

q ·O(K∗)) head and tail combinations, totaling in O(n2) compar-
isons.

4.1 Breaking Up S and W into q Size Vectors

Let us conceptually break the solution matrices S, and W into vectors of size q
such that for each Rule there is a vector that corresponds to the set of tails for
the indexes in Mg. For Rule I let Vg be a q size vector that contains the possible
tails for the indexes k′ in Mg. For a particular i, j, l′ and Mg, the tails examined
by the K∗-function are { S[i, j; gq + 1, l′ − 1]) ... S[i, j; gq + q, l′ − 1] }.

Hence, Vg ={Vg(1) = S[i, j; gq + 1, l′ − 1], ... Vg(q) = S[i, j; gq + q, l′ − 1]}.

More precisely for Rule I : Vg(m+ 1− gq) = S[i, j;m+ 1, l′ − 1].

In general for some i, j, k, l, g the vector Vg of size q indexed on x ∈ {1, ..., q} is
defined for each rule as follows:

For Rule D and I: Vg(x) = S[i, j; gq + x, l];
For Rule B, F , G and H : Vg(x) = S[gq + x; j; k, l];
For Rule C: Vg(x) = S[i, gq + x− 2; k, l];
For Rule E: Vg(x) = S[i, j; k, gq + x− 2].

We can then rewrite the computation of K∗-function replacing the input set of
indexes Mg with the vector Vg of values for the tails. We will also add the value
g to the inputs, which references which Mgroup we are maximizing.

K∗(Rule I, { ��i, j , k, l, l′}, g, Vg)::

for x = 1 to q

k′ = gq + x− 1

return k′ such that max {S[k, k′; l′, l]+ Vg(x)}
Note that index i, j are no longer input to the K∗-function for RuleI. as the
values of the scores reference by these indexes are stored in Vg

Fact 1. If x is the index point that leads to the maximum of the sum of
S[k, k′; l′, l] + Vg(x) where k′ = gq + x − 1 then k′ is also the index point that
leads to the maximum sum of S[k, k′; l′, l] + S[i, j;k′ + 1, l′− 1] where k′ ∈ Mg.

182 Y. Frid and D. Gusfield

4.2 Encoding

Optimal Rivas&Eddy scores stored in S[i, j;k, l] and S[i, j;k + 1, l] can differ
by the effect of only one more nucleotide i.e. seq[k+1]. Therefore, we can observe
that for the scoring scheme and the recurrences of the Rivas&Eddy Algorithm,
|S[i, j; k, l]−S[i, j; k+1, l]| belongs to a finite set of differences D, where D is the
set of scores created as the result of the Scoring function β. The cardinality or
size of |D| is O(1) as a function of n. For the simple β scoring function of +1 for
every permitted pair and 0 otherwise, the D set is equal to {0, 1} and therefor
|D| = 2.

For the Vg vectors of Rule I the base or smallest element of the vector is
S[i, j; gq + q, l]. Let Eg be a q size vector of differences from the base of Vg.
For Rule I, we define Eg(x) = (S[i, j; a+ x, l]− S[i, j; a+ q, l]︸ ︷︷ ︸

base

), where a = gq.

For a particular i, j, k, l we can create and store all the Eg vectors as soon as
the corresponding values in the S matrix are computed. Once computed, retrieval
of any desired Eg clearly takes O(1) time. The overall overhead for encoding the
S matrix into a set of E matrices for the entire algorithm requires an addition
of O(n4) time.

Fact 2 If x is the index point that leads to the maximum of the sum of
S[k, k′; l′, l]+Eg(x) where k

′ = gq+x−1 then x is also the index point that leads
to the maximum sum of S[k, k′; l′, l]+Vg(x). Based on Fact 1,K∗(RuleI, {k, l, l′},
Mg) will therefore return k′.

K∗(Rule I, {k, l, l′}, g,Eg)::
for x = 1 to q

k′ = gq + x− 1
return k′ such that max {S[k, k′; l′, l]+Eg(x)}

We can now incorporate encoded Eg vectors in the compute Rules functions.
For example:

compute RuleI for i, j, k, l::

for l′ = l − 1to k + 1 do
for g = k+1

q to l′−1
q do

retrieve Eg

k′ = K∗(Rule I, {k, l, l′, }, g, Eg)
rule I max=max (rule I max, S[k, k′; l′, l]+S[i, j; k′ + 1, l′− 1])

For Rule I if K*()-function could be computed in O(1) time, the asymptotic
run-time of each rule would be reduced to O(n2/q).

RNA Folding Using Four-Russians 183

Introducing table R. Let R be a table such that R[X,Y, g, E] contains the
output to the K∗(X,Y, g, Eg)-function. For example, R[I, {k, l, l′}, g,Eg] = k′

where k′ is the index point that leads to the maximum of the sum of S[k, k′; l′, l]+
Eg(x), where x = k′ − gq + 1. Clearly,

K∗(Rule I, {k, l, l′}, g, Eg) = R[I, {k, l, l′}, g, Eg].

We, therefore, can replace all calls to function K∗ with references into table R.
The precomputation of table R, developed below, will allow to achieve the

Ω(q) time speedup.

5 Precomputing the R Table

Assume the function call Compute Matrix S given(1,n) has been made, leading
the variables i, l to equal: i = 1; l = n. During the k = n−1 iteration of the outer
loop, the inner loop computes optimal foldscore for S[1, j ; n− 1, n] where j =
2, 3... and so on. Assume that the inner loop has completed the j = q−1 iteration.
Hence, we have an optimal solution for S[1,1;n − 1, n] to S[1, q − 1;n − 1, n].
These values correspond to the heads of g = 0 for Rules d, F,G,H, I. Therefore
the following algorithm precomputes K∗(Rule X, {1, n−1, n, }, g = 0, Eg=0) for
all Rules X ,for all possible Eg vectors, where X ∈ {d, F,G,H, I} and stores the
result in R-table.

for each difference vector v of size q − 1 such that ∀1<x≤q−1v[x] ∈ D do
compute (an encode vector E from v) 3

for x=1 to q do
t=g · q + x− 1
let max i be the index t that makes S[1, t;n− 1, n] +E(x) is maximum.

set for all X ∈ {d, F,G,H, I} R(X, {1, n− 1, n}, g, E)=max i

The algorithm above makes use of the fact that you can enumerate all possible
sets of differences Eg=0 in |D|q-time.

We can generalize this algorithm for any g, as well as any i, k, l by creating an
S update table function. Assume we have completed some Mg iteration of j (
i.e. we have completed j from gq to gq+ q− 1). We therefore have the scores for
all the heads of Rules d, F-I for Mgroup Mg. Then an S update table function
can precompute which the index in Mg would give the maximum score for every
possible variation of vector E.

3 set E(q) = 0 and ∀1<x�−1E(x) =
x∑

i=q−1

v[i]

184 Y. Frid and D. Gusfield

S update table function (i,k,l,g)::
for each difference vector v size q−1 such ∀1<x≤q−1v[x] ∈ D do

compute (an encode vector E from v)
for x=1 to q do

t=g · q + x− 1
max i=t if S[i, t; k, l] +E(x) is max.

for each Rule X ∈ {d, F,G,H, I} do
set R(X, {i, k, l}, g,E) = max i

Compute fast Matrix S for(i, l)::
for k=l − 1 to i+ 1 do

for g= i+1
q

to k−1
q

do
for j = g · q to gq + q−1 ∧ j < k do

S[i,j;k,l]=max(Rules A-I);
call S update table(i,k,l,g)

S update table function would be called by the Compute fast Matrix S for (i,l)
algorithm O(n ·n/q) times and each call would take O(|D|q · q) time to compute.
The Compute fast Matrix S for(i,l) algorithm is presented above. While an extra
loop iterated over g was added, it is clear that the call to maximize Rules A to
I is made still only O(n2) times.

We would need to create a similar W1 update table function Rules c, B, and
D and W2 update table function for Rules C,E. For example Rules d, F,G,H
the precomputation occurs when the heads for each Mgroup have their corre-
sponding optimal solutions.

W1 update table function(g) ::
for each vector v size q − 1 such ∀1<x≤q−1v[x] ∈ D compute E from v do

for i = 0 to gq − 1
for x = 1 to q

max i=t=gq+ x− 1 if W [i, t] + E(x) is max
for each Rule X∈{c, B,D} set R(X, {i}, g,E) = max i

The total asymptotic time for a single call to the W1 update table function(g)
function is O(|D|q · n · q).

W2 update table function(j,g) ::
for each vector v size q − 1 such ∀1<x≤q−1v[x] ∈ D compute E from v do

for x = 1 to q
max i=t=gq+ x− 1 if W [t, j] + E(x) is max

for each Rule X∈{C,E} set R(X, {i}, g, E) = max i

The total asymptotic time for a single call to the W2 update table function(g)
function is O(|D|q · q).

RNA Folding Using Four-Russians 185

6 Fast R&E Algorithm

Compute Matrix W::
for g = 0 to N

q
do

for j=gq to gq + q − 1 do
for i=j − 1 to 1 do

Compute Matrix S for (i, j)
branch max= compute Rule c(i, j)
max Rule d = Rule d(i, j)
W[i,j]=max(Rule a, Rule b, branch max, max Rule d)
if (i%q == 0) W2 update table(j,g) (Updating Table R for Rules C,E)

W1 update table(g) (Updating Table R for Rules c,B,D)

6.1 Asymptotic Analysis of Fast R&E Algorithm

For a particular g the Fast R&E calls the W1 update function O(1) times.
During one iteration of g the W2 update function is called O(n) times. The total
overhead for precomputing Rules c, B,D and Rules C,E is 0((n/q) · [n|D|qq +
|D|qnq]) time, or simplified O(n2 ∗ |D|q) time. For a particular i, j algorithm
computes Rules A to I with function Compute fast Matrix S in O(n4/q) time
and calls the S update function to precompute Rules d, F,G,H and I O(n2/q)
times. In total, asymptotic run-time for all calls made to Compute Matrix S is
O(n6/q) +O(n4 ∗ |D|q).

Finally for a particular i, j Rule c(i, j) is computed in O(n/q) time, Rule d is
computed in O(n3/q) time. The total asymptotic time for the entire Fast R&E
Algorithm is O(n6/q + n3/q + n5/q))︸ ︷︷ ︸

computation

+ O(n2|D|q) +O(n4|D|q)︸ ︷︷ ︸
preprocessing

If q=logb(n) where the log base b is constrained by |D| < b < N then the
asymptotic run-time is O(n6/log(n)).

Memory: The original Rivas&Eddy Algorithm requires O(n4)-space. For sim-
plicity of exposition we chose to describe the speedup using the preprocessing of
all possible tails and that requires a factor of O(|D|q)-space for table R. When
preprocessing both heads and tails table R requires O((|D|2q))- space in total. If
preprocessing all possible heads for a specific tail there is O(|D|q)-space require-
ment for table R.

Empirical Results: We ran empirical tests comparing Fast R&E Algorithm
to the Rivas&Eddy Algorithm for sequences ranging in length from 100-225 nu-
cleotides. We used the 0,1 scoring scheme setting |D|=2. The average times for 15
sequences of each length are reported below. The standard deviation for all tests
is within 5 seconds. The theoretical speedup for a sequence of 100 nucleotides is
6.64 (log2.001(100) = 6.64) we achieved 2.33 time improvement. For a sequence
size 225 nucleotides we achieved a 2.28 improvement compared to the theoretical
7.96 potential speedup.

186 Y. Frid and D. Gusfield

size(n) q Rivas&Eddy run-time(seconds) Fast R&E (seconds) ratio
100 3 776.0 333.30 2.32
150 3 3,915.0 2,178.1 1.79
200 3 20,544.0 9,493.33 2.16
225 3 40,687.31 17,782.04 2.28

Conclusion and Future Work. We presented the Four-Russians speedup of
Ω(log(n)) for the algorithm that examines broadest set of polynomial time com-
puted pseudoknotted secondary structures - the Rivas&Edddy Algorithm. The
analysis explored here could be used on other pseudoknotted algorithms [12–18].
Because the solution matrices of Fast R&E is the same as the solution matrices
of the original Rivas&Eddy this algorithm could be used in conjunction with
other heuristic speedups [21]. It is also interesting to note that the preprocessing
done here takes at most O(n5/log(n)) leading to the question of whether through
further preprocessing an even great speedup could be achieved.

Acknowledgments. This research was partially supported by grant IIS-0803564
from the National Science Foundation.

References

1. Condon, A., Jabbari, H.: Computational prediction of nucleic acid secondary struc-
ture: Methods, applications, and challenges. Theor. Comput. Sci. 410(4-5), 294–301
(2009)

2. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-
diction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068
(1999)

3. Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and
clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)

4. Rose, D., Hackermuller, J., Washietl, S., Reiche, K., Hertel, J., FindeiSZ, S.,
Stadler, P., Prohaska, S.: Computational rnomics of drosophilids. BMC Ge-
nomics 8(1), 406 (2007)

5. Torarinsson, E., Yao, Z., Wiklund, E.D., Bramsen, J.B., Hansen, C., Kjems,
J., Tommerup, N., Ruzzo, W.L., Gorodkin, J.: Comparative genomics beyond
sequence-based alignments: RNA structures in the encode regions. Genome
Res. 18(2), 242–251 (2008)

6. Liu, C., Song, Y., Shapiro, L.: RNA Folding Including Pseudoknots: A New Param-
eterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli,
S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 310–322. Springer, Heidelberg
(2007)

7. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop
matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

8. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bulletin
of Mathematical Biology 46(4), 591–621 (1984)

9. Waterman, M.S., Smith, T.F.: RNA secondary structure: A complete mathematical
analysis. Math. Biosc. 42, 257–266 (1978)

RNA Folding Using Four-Russians 187

10. Frid, Y., Gusfield, D.: A Simple, Practical and Complete O(n3

log n
)-Time Algorithm

for RNA Folding Using the Four-Russians Speedup. In: Salzberg, S.L., Warnow,
T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97–107. Springer, Heidelberg (2009)

11. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based mod-
els. Journal of Computational Biology 7(3-4), 409–427 (2000)

12. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Applied Mathematics 104(1-3), 45–62 (2000)

13. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary
structure including pseudoknots. Journal of Computational Chemistry 24(13),
1664–1677 (2003)

14. Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free
energy minimization. Current Opinion in Structural Biology 16(3), 270–278
(2006); Nucleic acids/Sequences and topology - Anna Marie Pyle and Jonathan
Widom/Nick V Grishin and Sarah A Teichmann

15. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practi-
cal pseudoknot folding algorithm based on thermodynamics. BMC Bioinformat-
ics 5(1), 104 (2004)

16. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining gram-
mars for RNA structure prediction. Theoretical Computer Science 210(2), 277–303
(1999)

17. Deogun, J.S., Donts, R., Komina, O., Ma, F.: RNA secondary structure prediction
with simple pseudoknots. In: Chen, Y.-P.P. (ed.) APBC. CRPIT, vol. 29, pp. 239–
246. Australian Computer Society (2004)

18. Cao, S., Chen, S.-J.: Predicting structures and stabilities for h-type pseudoknots
with interhelix loops. RNA 15(4), 696–706 (2009)

19. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseu-
doknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)

20. Saule, C., Régnier, J.-M.S.M., Denise, A.: Counting RNA pseudoknotted struc-
tures. Journal of Computational Biology 18(10), 1339–1351 (2011)

21. Möhl, M., Salari, R., Will, S., Backofen, R., Sahinalp, S.C.: Sparsification of RNA
Structure Prediction Including Pseudoknots. In: Moulton, V., Singh, M. (eds.)
WABI 2010. LNCS, vol. 6293, pp. 40–51. Springer, Heidelberg (2010)

22. Pinhas, T., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Edit Distance with Duplica-
tions and Contractions Revisited. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011.
LNCS, vol. 6661, pp. 441–454. Springer, Heidelberg (2011)

23. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some prepro-
cessing required). In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 995–1001.
SIAM (2007)

	Speedup of RNA Pseudoknotted Secondary Structure Recurrence Computation with the Four-Russians Method
	Introduction
	The Basic Optimal Folding Problem
	Rivas&Eddy Algorithm
	Rivas&Eddy Recurrences
	Rivas&Eddy Algorithm

	Conceptual Speedup of Rivas&Eddy
	Breaking Up S and W into q Size Vectors
	Encoding

	Precomputing the R Table
	Fast R&E Algorithm
	Asymptotic Analysis of Fast R&E Algorithm

	References

