


Lecture Notes in Computer Science 7402
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Guohui Lin (Ed.)

Combinatorial
Optimization
and Applications

6th International Conference, COCOA 2012
Banff, AB, Canada, August 5-9, 2012
Proceedings

13



Volume Editor

Guohui Lin
University of Alberta
Department of Computing Science
Edmonton, Alberta T6G 2E8, Canada
E-mail: guohui@ualberta.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31769-9 e-ISBN 978-3-642-31770-5
DOI 10.1007/978-3-642-31770-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012941667

CR Subject Classification (1998): F.2, G.2.2, G.2, G.1.6, I.2.8, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at COCOA 2012: The 6th Annual
International Conference on Combinatorial Optimization and Applications, held
during August 5–9, 2012, in Banff, Alberta, Canada.

COCOA provides an annual forum for researchers working in the areas of
combinatorial optimization and its applications. In addition to theoretical re-
sults, the conference is particularly focused on recent works on experimental
and applied research of general algorithmic interest. Past COCOA conferences
were held in Xi’an, China (2007), Newfoundland, Canada (2008), Huangshan,
China (2009), Hawaii, USA (2010), and Zhangjiajie, China (2011).

There were 57 high-quality submissions. Using EasyChair, each submission
was reviewed by at least 2, and on average 3.5, Program Committee members.
The committee decided to accept 33 papers. The program also included one
invited talk and one keynote talk. COCOA 2012 also organized a post-conference
workshop on computational biology.

We wish to thank the authors for submitting their papers to the conference.
We are grateful to the members of the Program Committee and the external
referees for their work within demanding time constraints. We would like to thank
the Alberta Innovates Technology Futures and the University of Alberta for their
funding support. Members of the Omics Research Group in the Department of
Computing Science at the University of Alberta, including Yi Shi, Ronghong Li,
Yining Wang and Weitian Tong, were extremely helpful on the organizing side.
Without their service, this conference would not have been successful.

August 2012 Guohui Lin



Organization

Program Committee

Zhipeng Cai Georgia State University, USA
Zhi-Zhong Chen Tokyo Denki University, Japan
Qi Cheng University of Oklahoma, USA
Yongxi Cheng Xi’an Jiaotong University, China
Annalisa De Bonis Università degli Studi di Salerno, Italy
Donglei Du University of New Brunswick, USA
Adrian Dumitrescu University of Wisconsin-Milwaukee, USA
Stephane Durocher University of Manitoba, Canada
Martin Fürer Pennsylvania State University, USA
Carosten Gutwenger Technische Universität Dortmund, Germany
Pinar Heggernes University of Bergen, Norway
Iyad Kanj DePaul University, USA
George Karakostas McMaster University, Canada
Naoki Katoh Kyoto University, Japan
Wonjun Lee Korea University, Korea
Fei Li George Mason University, USA
Guohui Lin University of Alberta, Canada (Chair)
Bin Ma University of Waterloo, Canada
Ian McQuillan University of Saskatchewan, Canada
Peter Miltersen Aarhus University, Denmark
Mitsunori Ogihara University of Miami, USA
Hans Simon Ruhr-Universität Bochum, Germany
Jack Snoeyink University of North Carolina at Chapel Hill, USA
Daniel Stefankovic University of Rochester, USA
Martin Strauss University of Michigan, USA
Wing-Kin Sung National University of Singapore
Zhiyi Tan Zhejiang University, China
My Thai University of Florida, USA
Weitian Tong University of Alberta, Canada
Lusheng Wang City University of Hong Kong, SAR China
Carola Wenk University of Texas at San Antonio, USA
Boting Yang University of Regina, Canada
Kaizhong Zhang University of Western Ontario, Canada
Binhai Zhu Montana State University, USA



VIII Organization

Additional Reviewers

Ahmed, Mahmuda
Buchin, Kevin
Chen, Danny
Chen, Xujin
Cheng, Siyao
Dash, Sajal
Fink, Martin
Flatland, Robin
Gethner, Ellen
Han, Aram
Han, Qiaoming
Han, Xin
Li, Weiming

Liang, Zhewei
Liu, Yi
Mahajan, Meena
Mehrabi, Saeed
Sherette, Jessica
Shuai, Tianping
Skala, Matthew
Verma, Vishal
Yaroslavtsev, Grigory
Yu, Huiwen
Zey, Bernd
Zhang, Peng



Table of Contents

Load-Balanced Virtual Backbone Construction for Wireless Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Jing (Selena) He, Shouling Ji, Yi Pan, and Zhipeng Cai

Maximum Matching in Multi-Interface Networks . . . . . . . . . . . . . . . . . . . . . 13
Adrian Kosowski, Alfredo Navarra, Dominik Pajak, and
Cristina M. Pinotti

Stretch Factor in Wireless Sensor Networks with Directional
Antennae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Evangelos Kranakis, Fraser MacQuarrie, and Oscar Morales-Ponce

On the Minimum Diameter Cost-Constrained Steiner Tree Problem . . . . 37
Wei Ding and Guoliang Xue

The Edge-Centered Surface Area of the Arrangement Graph . . . . . . . . . . . 49
Eddie Cheng, Ke Qiu, and Zhizhang Shen

On Zero Forcing Number of Permutation Graphs . . . . . . . . . . . . . . . . . . . . . 61
Eunjeong Yi

Complexity Results for the Empire Problem in Collection of Stars . . . . . . 73
Basile Couetoux, Jérome Monnot, and Sonia Toubaline

Hamiltonian Paths and Cycles in Planar Graphs . . . . . . . . . . . . . . . . . . . . . 83
Sudip Biswas, Stephane Durocher, Debajyoti Mondal, and
Rahnuma Islam Nishat

Feedback Vertex Sets on Tree Convex Bipartite Graphs . . . . . . . . . . . . . . . 95
Chaoyi Wang, Tian Liu, Wei Jiang, and Ke Xu

Crossing Angles of Geometric Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Karin Arikushi and Csaba D. Tóth

Multicut on Graphs of Bounded Clique-Width . . . . . . . . . . . . . . . . . . . . . . . 115
Martin Lackner, Reinhard Pichler, Stefan Rümmele, and
Stefan Woltran

Radiation Hybrid Map Construction Problem Parameterized . . . . . . . . . . 127
Chihao Zhang, Haitao Jiang, and Binhai Zhu

On the Central Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Yongding Zhu and Jinhui Xu



X Table of Contents

On the Generalized Multiway Cut in Trees Problem . . . . . . . . . . . . . . . . . . 151
Hong Liu and Peng Zhang

Algorithms for Forest Local Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Zhewei Liang and Kaizhong Zhang

Speedup of RNA Pseudoknotted Secondary Structure Recurrence
Computation with the Four-Russians Method . . . . . . . . . . . . . . . . . . . . . . . . 176

Yelena Frid and Dan Gusfield

An Improved Approximation Algorithm for the Bandpass-2 Problem . . . 188
Zhi-Zhong Chen and Lusheng Wang

The b-Matching Problem in Hypergraphs: Hardness and
Approximability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Mourad El Ouali and Gerold Jäger

Resource Scheduling with Supply Constraint and Linear Cost . . . . . . . . . . 212
Qiang Zhang, Weiwei Wu, and Minming Li

On Certain Geometric Properties of the Yao-Yao Graphs . . . . . . . . . . . . . . 223
Iyad A. Kanj and Ge Xia

Distance-d Independent Set Problems for Bipartite and Chordal
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Hiroshi Eto, Fengrui Guo, and Eiji Miyano

Domatic Partition on Several Classes of Graphs . . . . . . . . . . . . . . . . . . . . . . 245
Sheung-Hung Poon, William Chung-Kung Yen, and Chin-Ting Ung

Online Bottleneck Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Barbara M. Anthony and Christine Chung

Streaming with Minimum Space: An Algorithm for Covering by Two
Congruent Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Chung Keung Poon and Binhai Zhu

Online Joint Pricing and Booking Policies in Airline Revenue
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Guanqun Ni and Yinfeng Xu

Minimizing Total Weighted Completion Time with Unexpected
Machine Unavailability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Yumei Huo, Boris Reznichenko, and Hairong Zhao

Characterizing Mechanisms in Obnoxious Facility Game . . . . . . . . . . . . . . 301
Ken Ibara and Hiroshi Nagamochi

Efficiency of Dual Equilibria in Selfish Task Allocation to Selfish
Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Xujin Chen, Xiaodong Hu, Weidong Ma, and Changjun Wang



Table of Contents XI

Fast-Mixed Searching on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Boting Yang

Inapproximability after Uniqueness Phase Transition in Two-Spin
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Jin-Yi Cai, Xi Chen, Heng Guo, and Pinyan Lu

Dynamic Programming for a Biobjective Search Problem in a Line . . . . . 348
Lúıs Paquete, Mathias Jaschob, Kathrin Klamroth, and
Jochen Gorski

Characterizing Graphs of Small Carving-Width . . . . . . . . . . . . . . . . . . . . . . 360
Rémy Belmonte, Pim van ’t Hof, Marcin Kamiński,
Daniël Paulusma, and Dimitrios M. Thilikos

Solving the Connected Dominating Set Problem and Power Dominating
Set Problem by Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Neng Fan and Jean-Paul Watson

Measuring Structural Similarities of Graphs in Linear Time . . . . . . . . . . . 384
Zheng Fang, You Li, and Jie Wang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397



Load-Balanced Virtual Backbone Construction

for Wireless Sensor Networks

Jing (Selena) He, Shouling Ji, Yi Pan, and Zhipeng Cai

Department of Computer Science,
Georgia State University, Atlanta, GA, USA

{jhe9,sji,pan,zcai}@cs.gsu.edu

Abstract. Virtual Backbones (VBs) are expected to bring substantial
benefits to routing in Wireless Sensor Networks (WSNs). Connected
Dominating Sets (CDSs) based VBs are competitive approaches among
the existing methods used to establish VBs in WSNs. Most existing
works focus on constructing Minimum-sized CDSs (MCDSs). However,
few works consider the load-balance factor. In this work, the size and
the load-balance factor are both taken into account when constructing
VBs in WSNs. Specifically, three problems are investigated in the paper,
namely, the MinMax Degree Maximal Independent Set (MDMIS) prob-
lem, the Load-Balanced Virtual Backbone (LBVB) problem, and the
MinMax Valid-Degree non Backbone node Allocation (MVBA) prob-
lem. We claim that MDMIS and LBVB are NP-Complete and MVBA is
NP-Hard. Moveover, approximation algorithms and comprehensive the-
oretical analysis of the approximation factors are presented in the paper.

1 Introduction

Wireless sensor networks (WSNs) are usually deployed for monitoring and con-
trolling systems where human intervention is not desirable or feasible. Therefore,
WSNs are widely used in many military and civilian applications such as battle-
field surveillance, health care applications, environment and habitat monitoring,
and traffic control [1]. Compared with traditional computer networks, WSNs
have no fixed or pre-defined infrastructure as a hierarchical structure, resulting
the difficulty to achieve routing scalability and efficiency [2]. To better improve
the performance and increase the efficiency of routing protocols, a Connected
Dominating Set (CDS) has become a well known approach to form a Virtual
Backbone (VB) in WSNs. A Dominating Set (DS) is defined as a subset of nodes
in a WSN such that each node in the network is either in the set or adjacent to
some node in the set. If the induced graph by the nodes in a DS is connected,
then this DS is called a CDS. The nodes in a CDS are called backbone nodes,
otherwise, non backbone nodes. In a WSN with a CDS as its VB, non backbone
nodes may forward their data only to their neighboring backbone nodes. With
the help of a CDS, the average message burden of a WSN could be reduced so
that routing becomes much easier and can adapt quickly to network topology
changes [3]. In addition to routing protocols, a CDS-based VB has many other

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. He et al.

applications in WSNs [4–7]. Clearly, the benefits of a CDS-based VB can be
magnified by making its size smaller. In general, the smaller the CDS is, the
less communication and storage overhead are incurred. Hence, it is desirable to
build a Minimum-sized CDS (MCDS)-based VB. Since VBs are bring substantial
benefits in WSNs, a huge amount of effort has been made to construct different
CDS-based VBs for different applications, such as, a k -connect m-dominating
CDS [8], a minimum routing cost CDS [9] or a bounded-diameter CDS [10].

(a) (b) (c) (d)

Fig. 1. Illustration of a regular VB vs a load balanced VB; and a regular Allocation vs a
load-balanced allocation: (a) regular VB; (b) load-balanced VB; (c) regular allocation;
(d) load-balanced allocation

Unfortunately, all the aforementioned works did not consider the load-balance
factor when they construct a VB. For instance, when the MCDS-based VB is
used in the network shown in Fig. 1(a), backbone node v4 is adjacent to 5
different non backbone nodes, whereas, backbone node v7 only connects to 2 non
backbone nodes. If every non backbone node has the same amount of data to be
transferred through the neighboring backbone node at a fixed data rate, then the
number of neighboring non backbone nodes of each backbone node is a potential
indicator of the traffic load on each backbone node. Hence, backbone nodes v4
must deplete its energy much faster than backbone node v7. A counter-example is
shown in Fig. 1(b), the set {v3, v6, v7} is served as a VB. Compared with the VB
constructed in Fig. 1(a), the numbers of neighboring non backbone nodes of all
the backbone nodes in Fig. 1(b) are very similar. On the other hand, the criterion
to allocate a non backbone node to a neighboring backbone node is also critical
to balance traffic load on each backbone node. An illustration of the allocation
schemes for non backbone nodes is depicted in Fig. 1(c) and (d), in which arrow
lines represent that the non backbone nodes are allocated to the arrow pointed
backbone nodes, while the dashed lines represent the communication links in
the original network topological graph. Although the potential traffic load on
each backbone node are evenly distributed in the VB constructed in Fig. 1(c)
and (d), different allocation schemes for non backbone nodes might break the
balance. In Fig. 1(c) and (d), only the gray non backbone node v4 is adjacent to
more than one backbone node. Allocating v4 to different backbone nodes leads to
distinct traffic load on the allocated backbone node. In Fig. 1(c), v4 is allocated
to backbone node v3, while in Fig. 1(d), v4 is allocated to backbone node v6.
Apparently, backbone node v3 has more traffic load than backbone nodes v6 and
v7 in Fig. 1(c). However, traffic loads are balanced among backbone nodes in



Load-Balanced Virtual Backbone Construction for WSNs 3

Fig. 1(d). Intuitively, compared with the WSN shown in Fig. 1(c), the VB and
the allocation scheme for non backbone node v4 shown in Fig. 1(d) can extend
network lifetime notably.

To benefit from the CDS-based VB in WSNs and also take the load-balance
factor into consideration, few attempts have been carried out to construct a VB
in this manner [11, 12]. In our previous work, we proposed a genetic-algorithm
based method to build a load-balanced CDS (LBCDS) in WSNs. However, there
is no performance ratio analysis in that paper. In this research, we first investi-
gate how to construct an LBVB. It is well known that in graph theory, a Maximal
Independent Set (MIS) is also a DS. MIS can be defined formally as follows: given
a graph G = (V,E), an Independent Set (IS) is a subset I ⊂ V such that for any
two vertex v1, v2 ∈ I, they are not adjacent, i.e., (v1, v2) /∈ E. An IS is called an
MIS if we add one more arbitrary node to this subset, the new subset will not
be an IS any more. Therefore, we construct an LBVB with two steps. The first
step is to find a MinMax Degree MIS (MDMIS), and the second step is to make
this MIS connected. Subsequently, we explore how to load-balancedly allocate
non backbone nodes to backbone nodes, followed by comprehensive performance
ratio analysis.

Particularly, our contributions mainly include three aspects as follows: 1) We
first claim that the LBVB problem is NP-Complete. Hence, we solve LBVB
with two steps. First, we propose an approximation algorithm to solve the Min-
Max Degree Maximal Independent Set (MDMIS) problem. It is shown that this
algorithm yields a solution upper bounded by O(Δ ln(n))OPTMDMIS , where
OPTMDMIS is the optimal result of MDMIS, Δ is the maximum node degree in
the network, and n is number of sensors in a WSN. Subsequently, the minimum-
sized set of nodes are found to make the MDMIS connected. The theoretical
upper bound of the size of the constructed LBVB is analyzed in this paper
as well. 2) We claim that the load-balancedly allocate non backbone nodes to
backbone nodes problem is NP-Hard. Consequently, we present a randomized
approximation algorithm, which produces a solution in which the traffic load
on each backbone node is upper bounded by O(log2(n))(OPTMV BA + 1

α2 ) with
probability 7

8 , where α = log(n) + 3, OPTMV BA is the optimal result.

2 Problem Formulation

2.1 Network Model

We assume a static connected WSN and all the nodes in the WSN have the same
transmission range. Hence, we model a WSN as an undirected graph G = (V,E),
where V is the set of n sensor nodes, denoted by vi, where 1 ≤ i ≤ n, i is called
the node ID of vi in the paper; E represents the link set ∀ u, v ∈ V, u �= v, there
exists a link (u, v) in E if and only if u and v are in each other’s transmission
range. In this paper, we assume links are undirected (bidirectional), which means
two linked nodes are able to transmit and receive data from each other. Moreover,
the degree of a node vi is denoted by di, whereas Δ denotes the maximum degree
in the network graph G.



4 J. He et al.

2.2 Problem Definition

As we mentioned in Section 1, we solve LBVB in two steps. The first step con-
structs a MinMax Degree Maximal Independent Set (MDMIS), and the second
step selects additional nodes which together with the nodes in the MDMIS in-
duce a connected topology LBVB. In this subsection, we first formally define the
MDMIS problem, followed by the problem definition of LBVB.

Definition 21. MinMax Degree Maximal Independent Set (MDMIS) Problem.
For a WSN represented by graph G(V,E), the MDMIS problem is to find a node
set D ⊆ V such that:

1) ∀u ∈ V and u /∈ D, ∃ v ∈ D, such that (u, v) ∈ E.
2) ∀u ∈ D, ∀v ∈ D, and u �= v, such that (u, v) /∈ E.
3) There exists no proper subset or superset of D satisfying the above two

conditions.

4) Minimize max{di | ∀vi ∈ D}.

Taking the load-balance factor into consideration, we are seeking an MIS in
which the maximum degree of the nodes in the constructed MIS is minimized.
In other words, the potential traffic load on each node in the MIS is as balance
as possible. Now, we are ready to define the LBVB problem.

Definition 22. Load-Balanced Virtual Backbone (LBVB) Problem. For a WSN
represented by graph G(V,E) and an MDMIS D, the LBVB problem is to find
a node set C ⊆ V\D such that:

1) The induced graph G[D
⋃
C] on G is connected.

2) Minimize |C|, where |C| is the size of set C.

For convenience, the nodes in the set D are called independent nodes, whereas,
the nodes in the set C are called MIS connectors. Moreover, B = D

⋃
C is an

LBVB of G. Specifically speaking, ∀vi ∈ B, vi is a backbone node.
Constructing an LBVB is a part of the work to balance traffic load on each

backbone node. One more important task needs to be resolved is how to allocate
non backbone nodes to its neighboring backbone nodes. The formal definition of
the non backbone node allocation scheme are given as follows:

Definition 23. Non Backbone Node Allocation Scheme (A ). For a WSN rep-
resented by graph G(V,E) and a VB B = {v1, v2, · · · , vm}, we need to find m
disjoint sets on V, denoted by A(v1),A(v2), · · · ,A(vm), such that:

1) Each set A(vi) (1 ≤ i ≤ m) contains exactly one backbone node vi.

2)
⋃m

i=1 A(vi) = V, and A(vi)
⋂
A(vj) = ∅ (1 ≤ i �= j ≤ m).

3) ∀vu ∈ A(vi) (1 ≤ i ≤ m) and vu �= vi, such that (vu, vi) ∈ E.

A Non Backbone Node Allocation Scheme is: A = {A(vi) | ∀vi ∈ B, 1 ≤ i ≤ m}.



Load-Balanced Virtual Backbone Construction for WSNs 5

As we mentioned in Section 1, the potential traffic load indicator on each back-
bone node is the degree of the node, i.e., di, for ∀vi ∈ B. However, di is not the
actual traffic load. The actual traffic load only can be determined when a non
backbone node allocation scheme A is decided. In other words, the number of
allocated non backbone nodes is an indicator of the actual traffic load on each
backbone node. According to this observation, we give the following definition:

Definition 24. Valid Degree (d′). The Valid Degree of a backbone node vi is
the number of its allocated non backbone nodes, i.e., ∀vi ∈ B, d′i = |A(vi)| − 1,
where |A(vi)| represents the cardinality of the set A(vi).

Finally, we are dedicated to find a load-balanced non backbone node alloca-
tion scheme A , namely, the maximum valid degree of all the backbone nodes is
minimized under A .

Definition 25. MinMax Valid-Degree non Backbone node Allocation (MVBA)
Problem. For aWSN represented by graphG(V,E) and an LBVB B = {v1, v2, · · ·
, vm}, the MVBA problem is to find a backbone allocation scheme A ∗, such that:
the max{d′i | ∀vi ∈ B)} is minimized under A ∗.

3 Load Balanced Virtual Backbone Problem

In this section, we first introduce how to solve the MinMax Degree Maximal
Independent Set (MDMIS) Problem. Since finding an MIS is a well-known NP-
complete problem [13] in graph theory, LBVB is NP-complete as well. Next, we
formulate the MDMIS problem as an Integer Nonlinear Programming (INP).
Subsequently, we show how to obtain an O(Δ ln(n)) approximation solution by
using Linear Programming (LP) relaxation techniques. Finally, we present how
to find a minimum-sized set of MIS connectors to form an LBVB B.

3.1 INP Formulation of MDMIS

Consider a WSN described by graph G = (V,E). First we define the 1-Hop
Neighborhood of a node vi.

Definition 31. 1-Hop Neighborhood (N1(vi)). ∀vi ∈ V, the 1-Hop Neighborhood
of node vi is defined as: N1(vi) = {vj | vj ∈ V, eij = (vi, vj) ∈ E}.
The physical meaning of 1-Hop Neighborhood is the set of the nodes that can
be directly reached from node vi.

Next we formally model the MDMIS problem as an Integer Nonlinear Program
(INP).

DS Property Constraint. As we mentioned early, an MIS is also a DS.
Hence, we should formulate the DS constraint for the MDMIS problem. For
convenience, we assign a decision variable xi for each sensor vi ∈ V, which is
allowed to be 0/1 value. This variable sets to 1 iff the node is an independent
node, i.e., ∀vi ∈ D, xi = 1. Otherwise, it sets to 0. The DS property states that
each non independent node must reside within the 1-hop neighborhood of at
least one independent node. We therefore have: xi +

∑
vj∈N1(vi)

xj ≥ 1, ∀vi ∈ V.



6 J. He et al.

IS Property Constraint. Since the solution of the MDMIS problem is at
least an IS, the IS property is also a constraint of MDMIS. The IS property
indicates that no two independent nodes are adjacent, i.e., ∀vi, vj ∈ D, (vi, vj) /∈
E. In other words, we have:

∑
vj∈N1(vi)

xi · xj = 0, ∀vi ∈ V.

Consequently, the objective of the MDMIS problem is to minimize the max-
imum degree of all the independent nodes. We denote z as the objective of the
MDMIS problem, i.e., z = max

vi∈D

(di). Mathematically, the MDMIS problem can

be formulated as an integer nonlinear programming INPMDMIS as follows:

min z = max{di | ∀vi ∈ D}
s.t. xi +

∑
vj∈N1(vi)

xj ≥ 1;∑
vj∈N1(vi)

xi · xj = 0;

xi, xj ∈ {0, 1}, ∀vi, vj ∈ V.

(INPMDMIS)

Since the IS property constraint is quadratic, the formulated integer program-
ming INPMDMIS is not linear. To linearize INPMDMIS , the quadratic con-
straint is eliminated by applying the techniques proposed in [14]. More specifi-
cally, the product xi · xj is replaced by a new binary variable χij , on which sev-
eral additional constraints are imposed. As a consequence, we can reformulate
INPMDMIS exactly to an Integer Linear Programming ILPMDMIS by intro-
ducing the following linear constraints:∑

vj∈N1(vi)

χij = 0;

xi ≥ χij ;
xj ≥ χij ;
xi + xj − 1 ≤ χij ;
χij ∈ {0, 1}, ∀vi, vj ∈ V.

For convenience, we assign a random variable lij for each edge in the graph

G modeled from a WSN, i.e., lij =

{
1, if (vi, vj) ∈ E.

0, otherwise.
Thus, we obtain that

di =
∑

vj∈N1(vi)

xilij , ∀vi ∈ V. Moreover, by relaxing the conditions xj ∈ {0, 1},

and χij ∈ {0, 1} to xj ∈ [0, 1], and χij ∈ [0, 1], correspondingly, we obtain the
following relaxed linear programming LP ∗

MDMIS :

min z = max{1,max{di =
∑

vj∈N1(vi)

xilij | ∀vi ∈ V}}

s.t. xi +
∑

vj∈N1(vi)

xj ≥ 1;∑
vj∈N1(vi)

χij = 0;

xi ≥ χij ;
xj ≥ χij ;
xi + xj − 1 ≤ χij ;
xi, xj , χij ∈ [0, 1], ∀vi, vj ∈ V.

(LP ∗
MDMIS)



Load-Balanced Virtual Backbone Construction for WSNs 7

3.2 Approximation Algorithm

Due to the relaxation enlarged the optimization space, the solution of LP ∗
MDMIS

corresponds to a lower bound to the objective of INPMDMIS . Given an instance
of MDMIS modeled by the integer nonlinear programming INPMDMIS , the
sketch of the proposed approximation algorithm (see Algorithm 1) is summa-
rized as follows: first, solve the relaxed linear programming LP ∗

MDMIS to get an
optimal fractional solution, denoted by (x∗, z∗), where x∗ =< x∗

1, x
∗
2, · · · , x∗

n >,
and then round x∗

i to integers x̂i according to five steps: 1) Sort sensor nodes
by the x∗

i value (where 1 ≤ i ≤ n) in the decreasing order (line 2). 2) Set all
x̂i to be 0 (line 3-5). 3) Start from the first node in the sorted node array A
(line 8). If there is no node been selected as an independent node in vi’s 1-hop
neighborhood (line 11), then let x̂i = 1 with probability pi = max(x∗

i ,
1
di
) (line

12). 4) Repeat step 3) till reaching the end of array A (line 9 - 15). 5) Repeat
step 3) and 4) for 3(Δ + 1) ln(n) times (line 7 - 17). Next the correctness of
our proposed approximation algorithm (Algorithm 1) is proven, followed by the
performance ratio analysis. Before showing the correctness of Algorithm 1, two
important lemmas are derived as follows. The proofs of Lemma 1, Lemma 2, and
Theorem 1 are omitted due to space limitation.

Algorithm 1. Approximation Algorithm for MDMIS

Require: A WSN represented by graph G = (V,E); Node degree di.
1: Solve LP ∗

MDMIS. Let (x∗, z∗) be the optimum solution, where x∗ =<
x∗
1, x

∗
2, · · · , x∗

n >, z∗ = max(1,
∑

vj∈N1(vi)

x∗
i lij).

2: Sort all the sensor nodes by the x∗
i value in the decreasing order. The sorted node

ID i is stored in the array denoted by A[n].
3: for i = 1 to n do
4: x̂i = 0.
5: end for
6: counter = 0.
7: while counter ≤ β, where β = 3(Δ+ 1) ln(n) do
8: k = 0.
9: while k < n do
10: i = A[k].
11: if ∀vj ∈ N1(vi), x̂j = 0, then
12: x̂i = 1 with probability pi = max(x∗

i ,
1
di
).

13: end if
14: k = k + 1.
15: end while
16: counter = counter + 1.
17: end while
18: return (x̂, ẑ = max(1, di =

∑
vj∈N1(vi)

x̂ilij)).

Lemma 1. For a WSN represented by G = (V,E), if a subset S ⊆ V is a DS
and meanwhile S is also an IS, then this subset S is an MIS of G.



8 J. He et al.

Lemma 2. The set D = {vi | x̂i = 1, 1 ≤ i ≤ n}, where x̂i is derived from
Algorithm 1, is a DS almost surely.

Theorem 1. The set D = {vi|x̂i = 1, 1 ≤ i ≤ n}, where x̂i is derived from
Algorithm 1, is an MIS.

From Theorem 1, the solution of our proposed approximation Algorithm 1 is
an MIS. Subsequently, we analyze the approximation factor of Algorithm 1 in
Theorem 2. We only provide proof sketch of Theorem 2 in the paper due to space
limitation.

Theorem 2. Let OPTMDMIS denote the optimal solution of the MDMIS prob-
lem. The proposed algorithm yields a solution of O(Δ ln(n))OPTMDMIS .

Proof Sketch: The expected di of the independent node vi found by Algorithm
1 is:

E[
∑

vj∈N1(vi)

x̂ilij ] ≤
∑

vj∈N1(vi)

(βx∗
i )E[lij ] ≤ βz∗. (1)

The first inequality holds because the procedure, setting x̂i = 1 with probability
pi, is repeated β times. By the union bound, we get Pr[x̂i = 1] = Pr[

⋃
t≤β x̂i =

1 at round t] ≤ βx∗
i . This implies E(x̂i) ≤ βx∗

i . The last inequality follows from
the fact that

∑
vj∈N1(vi)

x∗
i · E[lij ] ≤ max{di | vi ∈ D} = z∗.

Applying the Chernoff bound, we obtain the bound:

Pr[
∑

vj∈N1(vi)

x̂ilij ≥ (1 + μ)βz∗] ≤ (
eμ

(1 + μ)1+μ
)βz

∗
. (2)

for arbitrary μ > 0. To simplify this bound, let μ = e− 1, we get

Pr[
∑

vj∈N1(vi)

x̂ilij ≥ (1 + μ)βz∗] ≤ 1

n3
. (3)

The inequality holds since z∗ = max{1,max{di =
∑

vj∈N1(vi)

xilij | ∀vi ∈ V}} ≥ 1.

Applying the union bound, we get the probability that some independent node
has a degree larger than (1 + μ)βz∗,

Pr[ẑ ≥ (1 + μ)βz∗] ≤ n
1

n3
=

1

n2
. (4)∑

n>0

1
n2 is a particular case of the Riemann Zeta function, then

∑
n>0

1
n2 is bound,

i.e.,
∑
n>0

1
n2 < ∞ by the result of the Basel problem. Thus, according to the

Borel-Cantelli Lemma, P [ẑ ≥ (1 + μ)βz∗] ∼ 0.
According to Lemma 2, and Inequality (4), we get

Pr[some node is selected to be an independent node in 1-hop neighborhood⋂
ẑ ≤ (1 + μ)βz∗] = 1 · (1− 1

n2 ) ∼ 1, when n ∼ ∞, and μ = e− 1.

�



Load-Balanced Virtual Backbone Construction for WSNs 9

3.3 Connected Virtual Backbone

To solve the LBVB problem, one more step is needed after constructing an
MDMIS, which is to make the MDMIS connected. Next, we introduce how to
find a minimum-sized set of MIS connectors to connect the MDMIS.

We first divide the MDMIS D into disjoint node sets according to the following
criterion:

D0 = {vi | ∀vi ∈ D and vi has the minimized node ID among all the nodess in D}

Dι = {vi | vi ∈ D, ∃vj ∈ Dι−1, vi ∈ N2(vj), vi /∈
ι−1⋃
k=0

Dk}

The independent node with smallest node ID is put into D0. Clearly, |D0| = 1.
All the independent nodes in the 2-Hop Neighborhood of the nodes in Dι−1 are
put into Dι. Hence, ι is called the level of an independent node. Dι represents
the set of independent nodes of level ι in G with respect to the node in D0.
Additionally, suppose the maximum level of an independent node is L. For each
0 ≤ i ≤ L− 1, let Si be the set of the nodes adjacent to at least one node in Di

and at least one node in Di+1. Subsequently, compute a minimum-sized set of

nodes Ci ⊆ Si cover node set Di+1. Let C =
L−1⋃
i=0

Ci and therefore B = D
⋃
C is

a Load Balanced Virtual Backbone of the original graph G.
We use the WSN shown in Fig. 2 (a) as an example to explain the construction

process of an LBVB. In Fig. 2 (a), each circle represents a sensor node. As we
mentioned early, the construction process consists of two steps. In the first step,
it solves the MDMIS problem by Algorithm 1 to obtain D which is shown in Fig.
2 (b) by black circles. In D, suppose vi is the node with the smallest node ID.
Then, the number besides each independent node is the level of that node with
respect to vi. In the second phase, we choose the appropriate MIS connectors
(C), shown by gray nodes in Fig. 2 (c), to connect all the nodes in D to form
an LBVB (B). Next, we analyze the number of backbone nodes |B| produced by
our algorithm. The proof of Theorem 3 is omitted due to space limitation.

Theorem 3. The number of backbone nodes |B| ≤ 2|D|.

v
i

(a)

0

1
1

1

1 1

1

1

2

2

2

2

v
i

(b)

v
i

(c)

Fig. 2. Illustration of LBVB construction process



10 J. He et al.

4 MinMax Valid-Degree Non Backbone Node Allocation

4.1 ILP Formulation of MVBA

According to Definition 25, the MVBA problem can be modeled by a binary
problem with an linear objective functions, which is a known NP-Hard problem.
In this subsection, we first model the MVBA problem as an ILP.

We define a binary variable bi to indicate whether the sensor vi is a back-
bone node or not. bi sets to be 1 iff the sensor vi is a backbone node. Oth-
erwise, bi sets to be 0 iff the sensor vi is a non backbone node. Addition-
ally, we assign a random variable aij for each edge connecting a backbone
node vi and a non backbone node vj on the graph modeled from a WSN, i.e.,

aij =

{
1, if non backbone node vj is allocated to backbone node vi.

0, otherwise.

Consequently, the MVBA problem can be formulated as an Integer Linear
Programming ILPMV BA as follows:

min y = max{d′i | ∀vi ∈ B}
s.t.

∑
vi∈N1(vj)

biaij = 1, ∀vj /∈ B;

aij ∈ {0, 1}.
(ILPMV BA)

The objective function y is the maximum valid degree (d′) of all the backbone
nodes. The first constraint states that each non backbone node can be allocated
to only one backbone node, whereas the second constraint indicates that aij
is a binary variable. By relaxing variable aij ∈ {0, 1} to aij ∈ [0, 1], we get
the relaxed formulation which falls into a standard Linear Programming (LP)
problem, denoted by LP ∗

MV BA as follows:

min y = max{1,max{
∑

vj∈N1(vi)

biaij | ∀vi ∈ B}}

s.t.
∑

vi∈N1(vj)

biaij = 1, ∀vj /∈ B;

aij ∈ [0, 1].

(LP ∗
MV BA)

Due to the relaxation enlarged the optimization space, the solution of LP ∗
MV BA

corresponds to a lower bound to the objective of ILPMV BA.

4.2 Randomized Approximation Algorithm

Given an instance of MVBA modeled by the integer linear programming
ILPMV BA, the sketch of the randomized approximation algorithm (see Al-
gorithm 2) is summarized as follows: first, solve the relaxed linear program-
ming LP ∗

MV BA to get an optimal fractional solution, denoted by (a∗, y∗), where
a∗ =< a∗11, · · · , a∗1n, a∗21, · · · , a∗2n, · · · , a∗m1, · · · , a∗mn >, and then round a∗ij to in-
tegers âij by a random rounding procedure, which consists of four steps: 1) Set
all âij to be 0 (line 2). 2) Let âij = 1 with probability a∗ij and execute this step



Load-Balanced Virtual Backbone Construction for WSNs 11

Algorithm 2. Approximation Algorithm for MVBA

Require: A WSN represented by graph G = (V,E).
1: Solve LP ∗

MV BA. Let (a
∗, y∗) be the optimum solution.

2: âij = 0.
3: while k ≤ α2, where α = log(n) + 3 do
4: âij = 1 with probability a∗

ij

5: k = k + 1
6: end while
7: if ((vi, vj) ∈ E) and (vi ∈ B or vj ∈ B) then
8: âij = 1 with probability 1

Δ
.

9: end if
10: repeat
11: line 3 - 6
12: until

∑
vi∈N1(vj)

biâij = 1

13: return (â, ŷ = max(1,
∑

vj∈N1(vi)

biâij)).

for α2 times (line 3 - 6), where α = log(n) + 3. 3) Let âij = 1 with probability
1
Δ (line 7). 4) To ensure (âij , ŷ) is a feasible solution to ILPMVBA, repeat steps
2) and 3) until every non backbone node is assigned a backbone node.

From the similar techniques we used in Theorem 2, we can obtain the approx-
imation factor of Algorithm 2 is O(log2(n))(OPTMV BA + 1

α2 ) with probability
7
8 , when α = log(n) + 3. The proof is omitted due to space limitation.

5 Conclusion

In this paper, we address three fundamental problems of constructing a load-
balanced VB in a WSN. More specifically, we solve the LBVB problem which is
claimed to a NP-Complete problem with two steps. First, the MDMIS problem
aims to find the optimal MIS such that the maximum degree of all the indepen-
dent nodes is minimized. To solve this problem, a near optimal approximation
algorithm is proposed, which yields an O(Δ ln(n)) approximation factor. Subse-
quently, the minimum-sized set of MIS connectors are found to make the MDMIS
connected. The theoretical upper bound of the number of backbone nodes is an-
alyzed in this paper as well. In the end, the MVBA problem is dedicated to
allocate non backbone nodes to proper backbone nodes with an objective to
minimize the maximum valid degree of all the backbone nodes, which is a NP-
Hard problem. To solve this problem, we propose an approximation algorithm
by using linear relaxing and random rounding techniques, which yields a solution
of O(log2(n)) approximation factor of traffic load on each backbone node.

Acknowledgments. This research was supported in part by the National Sci-
ence Foundation (NSF) under Grants CNS-1152001, CNS-0831634, and the 111
project of China under the grant No. 111-2-14.



12 J. He et al.

References

1. Hadim, G., Mohamed, N.: Middleware Challenges and Approaches for Wireless
Sensor Networks. IEEE Distributed Systems 7(3), 1–1 (2006)

2. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The Broadcast Storm Problem in a Mobile
Ad Hoc Network. In: MOBICOM, pp. 152–162 (1999)

3. Das, B., Bharghavan, V.: Routing in Ad Hoc Networks Using Minimum Connected
Dominating Sets. In: ICC (1997)

4. Ji, S., Li, Y., Jia, X.: Capacity of Dual-Radio Multi-Channel Wireless Sensor Net-
works for Continuous Data Collection. In: Infocom (2011)

5. Wan, P.J., Huang, S.C.-H., Wang, L., Wan, Z., Jia, X.: Minimumlatency aggrega-
tion scheduling in multihop wireless networks. In: MobiHoc (2009)

6. Yan, M., He, J., Ji, S., Li, Y.: Multi-Regional Query Scheduling in Wireless Sensor
Networks with Minimum Latency. To appear in the Wireless Communications and
Mobile Computing, WCMC (2012)

7. Cai, Z., Ji, S., He, J., Bourgeois, A.G.: Optimal Distributed Data Collection for
Asynchronous Cognitive Radio Networks. In: ICDCS (2012)

8. Kim, D., Wang, W., Li, X., Zhang, Z., Wu, W.: A New Constant Factor Approxi-
mation for Computing 3-Connected m-Dominating Sets in Homogeneous Wireless
Networks. In: INFOCOM (2010)

9. Ding, L., Gao, X., Wu, W., Lee, W., Zhu, X., Du, D.Z.: Distributed Construction
of Connected Dominating Sets with Minimum Routing Cost in Wireless Networks.
In: ICDCS (2010)

10. Kim, D., Wu, Y., Li, Y., Zou, F., Du, D.Z.: Constructing Minimum Connected
Dominating Sets with Bounded Diameters in Wireless Networks. TPDS 20(2)
(2009)

11. He, J., Ji, S., Pan, Y., Li, Y.: Greedy Construction of Load-Balanced Virtual Back-
bones in Wireless Sensor Networks. To appear in the Wireless Communications and
Mobile Computing, WCMC (2012)

12. He, J., Ji, S., Yan, M., Pan, Y., Li, Y.: Load-Balanced CDS Construction in Wire-
less Sensor Networks Via Genetic Algorithm. International Journal of Sensor Net-
works (IJSNET) 11(3), 166–178 (2012)

13. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York (1983)

14. Gueyea, S., Michelonb, P.: A linearization framework for unconstrained quadratic
(0-1) problems. Discrete Applied Mathematics 157, 1255–1266 (2009)



Maximum Matching

in Multi-Interface Networks�

Adrian Kosowski1, Alfredo Navarra2,
Dominik Pajak1, and Cristina M. Pinotti2

1 INRIA Bordeaux Sud-ouest, LaBRI, 33400 Talence, France
{adrian.kosowski,dominik.pajak}@labri.fr

2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy
{alfredo.navarra,pinotti}@unipg.it

Abstract. In heterogeneous networks, devices can communicate by
means of multiple wireless interfaces. By choosing which interfaces to
switch on at each device, several connections might be established. That
is, the devices at the endpoints of each connection share at least one
active interface.

In this paper, we consider the standard matching problem in the con-
text of multi-interface wireless networks. The aim is to maximize the
number of parallel connections without incurring in interferences. Given
a network G = (V,E), nodes V represent the devices, edges E repre-
sent the connections that can be established. If node x participates in
the communication with one of its neighbors by means of interface i,
then another neighboring node of x can establish a connection (but not
with x) only if it makes use of interface j �= i. The size of a solution for
an instance of the outcoming matching problem, that we call Maximum
Matching in Multi-Interface networks (3MI for short), is always in be-
tween the sizes of the solutions for the same instance with respect to the
standard matching and its induced version problems. However, we prove
that 3MI is NP -hard even for proper interval graphs and for bipartite
graphs of maximum degree Δ ≥ 3. We also show polynomially solvable
cases of 3MI with respect to different assumptions.

1 Introduction

Wireless networks have been deeply considered as one of the most interesting
topics from both practical and theoretical points of view. One of their more
challenging characteristics is certainly related to the heterogeneity of the in-
volved devices that might interact in order to exchange data. Wireless networks
are, in fact, composed of devices with different capabilities like computational
power, energy consumption, radio interfaces, supported communication proto-
cols, and so forth. In this paper, we are interested in devices equipped with
multiple interfaces (e.g., Bluetooth, WiFi, GPRS). Connections among devices
might be accomplished by means of different communication networks according

� Research supported by the LaBRI under the “Project émergent” program.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



14 A. Kosowski et al.

Fig. 1. An instance for 3MI represented by a set of devices connected according to
their proximities and their available interfaces. The black full edges represent a possible
solution for 3MI if they are correctly activated by means of suitable interfaces.

to connectivity and quality of service requirements. The selection of the most
suitable interface for a specific connection might depend on various factors. Such
factors include: its availability in specific devices, the required communication
bandwidth, the cost (in terms of energy consumption) of maintaining an active
interface, the available neighbors, and so forth.

We study communication problems in wireless networks supporting multiple
interfaces. In the considered model, the input network is described by a graph
G = (V,E), where nodes V represent the set of wireless devices and E is the
set of possible connections according to the devices’ proximity and the available
interfaces that they may share. Each v ∈ V is associated with a set of available
interfaces W (v). The set of all the interfaces available in the network is then de-
termined by

⋃
v∈V W (v); we denote the cardinality of this set by k. We say that

a connection is satisfied (or covered) when the endpoints of the corresponding
edge share at least one active interface. In this setting, we study the problem of
establishing the maximum set of communication edges without incurring in in-
terferences. We assume that two communications/edges do interfere if they share
a node or if they are activated by means of the same interface and connected
by one edge. Note that, in the latter case, i.e., when two edges at distance one
are activated by means of the same interface, then also the edge in the middle is
activated by means of the same interface, since its endpoints do share a common
active interface. An example of such a behavior is shown in Figure 1. The two
black full edges represent a possible solution to 3MI if the black edge on the top
is activated by means of the WiFi interface and the one on the bottom by means
of the GSM interface. If both edges are activated by means of the GSM interface,
then it will not represent a feasible solution since the connection between the
laptop and the PDA on its top will be activated as well.



Maximum Matching in Multi-Interface Networks 15

Related Work. Multi-interface wireless networks have been recently studied in a
variety of contexts, usually focusing on the benefits of multiple radio devices of
each node. Many basic problems of standard wireless network optimization can
be reconsidered in such a setting [2], in particular, focusing on issues related to
routing [10] and network connectivity [7,13]. The study of combinatorial prob-
lems on multi-interface wireless networks has originated from [6]. That paper, as
well as [9,19], investigates the so called Coverage problem, where the goal is the
activation of the minimum cost set of interfaces in such a way that all the edges
of G are covered. Connectivity issues have been addressed in [1,9,21]. The goal
becomes to activate the minimum cost set of interfaces in G in order to guarantee
a path of communication between every pair of nodes. In [21], the attention has
been devoted to the so called Cheapest path problem. This corresponds to the
well-known shortest path problem but in the context of multi-interface networks.
Bandwidth constraints have been addressed in [8], by studying flow problems on
multi-interface networks.

A natural continuation on investigating such kind of networks is certainly to
consider another basic problem like the matching. Given a graph G = (V,E),
a maximum matching M ⊆ E in G is given by the largest set of pairwise dis-
joint edges (that is, no two edges in M share a common node). The maximum
matching is well-known and it is polynomially solvable [12]. For a positive integer
p, the distance-p maximum matching problem, asks for a maximum size set of
edges whose pairwise distance1 is at least p in G. Such a problem is in general
NP -hard [4,5]. In particular, the special case of p = 2 is referred in the literature
as the maximum induced matching problem, MIM for short, and it has been
extensively studied. For instance, a solution for MIM on the underlying graph
shown in Figure 1 would be given by only one edge. MIM has been shown to
be NP -hard for various graph classes like bipartite graphs [5], line graphs (and
hence including claw-free graphs) [20], and trapezoid graph [16]. Moreover, it
is APX -complete in d-regular graphs, d ≥ 3 [11], and a d − 1-approximation
algorithm has been provided for d-regular graphs, d ≥ 3. The size of MIM on
twinless graphs and planar graphs has been studied in [18], while for subcubic
planar graphs in [17]. Polynomial time algorithms have been devised for chordal
graphs [5], trees [22], and other special graphs. It is worth mentioning that, when
p = 3, the problem is NP -hard [4] even for strongly chordal graphs.

Our Results. In this paper, we study the maximum matching problem in the
context of multi-interface networks. The aim is to maximize the number of par-
allel connections without incurring in interferences. The main difference with
the standard matching problem is that when an edge is selected, it is associated
with an interface by which the connection is established. Hence, if an edge e ∈ E
is selected for the matching along with a communication interface i, then any
other edge e′ ∈ E selected for the matching at distance 1 from e in G must be
selected with interface j �= i. We refer to this problem as the Maximum Match-
ing in Multi-Interface networks (3MI for short). In general, we do also consider

1 The distance between two edges is defined as the length (number of edges) of the
shortest path connecting them.



16 A. Kosowski et al.

Table 1. Complexity results achieved for 3MI

Graph classes k Complexity

Complete Unbounded Optimally solvable in O(n3/2k3/2)

Complete bipartite Unbounded Optimally solvable in O(n3/2k3/2)

Bounded treewidth Unbounded Optimally solvable in polynomial time

Interval Bounded Optimally solvable in polynomial time

Unit interval Unbounded NP -hard

Bipartite, Δ ≥ 3 Bounded NP -hard (from [5])

Claw-free Bounded NP -hard (from [20])

the total number k of available interfaces among the network as part of the in-
put (unbounded case). However, sometimes k is differently specified as a fixed
constant (bounded case). Clearly, the size of a solution to an instance G of 3MI
cannot be bigger than that of the solution provided by the standard maximum
matching, and cannot be smaller than that of a solution provided by its induced
version, i.e.:

MIM(G) ≤ 3MI(G) ≤ Matching(G).

In particular, when k = 1, 3MI coincides with MIM. Hence, all the hardness re-
sults concerningMIM do also hold for 3MI. However, it is worth mentioning that
MIM has been proved to be polynomially solvable on chordal graphs while the
distance-3 maximum matching, whose size is clearly smaller than MIM, is NP -
hard for chordal graphs but polynomially solvable on strongly chordal graphs.
In this paper, we prove that 3MI is NP -hard on proper interval graphs (that are
contained in the chordal graphs class), and we present some polynomial time
algorithms for complete graphs, complete bipartite graphs, bounded treewidth
graphs, and even for interval graphs but under the bounded case. Table 1 sum-
marizes the obtained results.

2 Definitions and Notation

For a graph G, we denote by V its node set, by E its edge set, and by Δ its max-
imum node degree. Unless otherwise stated, the graph G = (V,E) representing
the network is assumed to be undirected, connected, and without multiple edges
and loops. A global assignment of the interfaces to the nodes in V is given in
terms of an appropriate interface assignment function W , as follows.

Definition 1. A function W :V → 2{1,2,...,k} is said to cover graph G if for each
{u, v} ∈ E we have W (u) ∩W (v) �= ∅.



Maximum Matching in Multi-Interface Networks 17

Fig. 2. a) Example of a clique G with allocation function W (v1) = {1, 3}, W (v2) =
{2, 3}, W (v3) = {3}, W (v4) = {1, 2, 3}; b) The corresponding bipartite graph G′

The considered 3MI optimization problem is formulated as follows.

3MI: Maximum Matching in Multi-Interface Networks

Input : A graph G = (V,E), a set of interfaces I = {1, 2, . . . , k}, an alloca-
tion of available interfaces W :V → 2I covering graph G.

Solution : An allocation of active interfaces WA:V → {∅, {1}, {2}, . . . , {k}},
WA(v) ⊆ W (v) for all v ∈ V such that for all v ∈ V if WA(v) �= ∅,
then there is exactly one neighbor of v, say w, withWA(w) = WA(v).

Goal : Maximize the number of edges (v, w) ∈ E such that WA(v) =
WA(w) �= ∅.

Note that we do consider two variants of the above problem: the parameter k
can be considered as part of the input (this is called the unbounded case), or k
may be a fixed constant (the bounded case). When k = 1, i.e., a single interface is
available, 3MI coincides with the well-known induced matching. When each edge
can be covered by means of an interface different from any other, 3MI coincides
with the standard maximum matching problem.

3 Polynomial Time Algorithms

In this section, we design polynomial time algorithms to solve 3MI for various
graph classes. Moreover, under the bounded case assumption, we polynomially
solve 3MI even for interval graphs.

Theorem 1. 3MI is solvable within O(n3/2k3/2) time for complete graphs.

Proof. Consider the bipartite graph G′ = (V ′ ∪U,E′), where one bipartite par-
tition is a copy of the set of nodes of the complete graph, V ′ = {v′ : v′ ∈ V },
the other bipartite partition U corresponds to the set of available interfaces,
U = {u1, u2, . . . , uk}, and the neighborhood of each node from V ′ is defined as
the set of nodes representing interfaces available at the corresponding node of
G, E′ = {{v′, ui} : v′ ∈ V, i ∈W (v′)}.



18 A. Kosowski et al.

For any allocation of interfaces W on the complete graph G = (V,E), an ac-
tivation WA is a solution to the 3MI problem if and only if it is a function
WA : V → {∅, {1}, {2}, . . . , {k}} satisfying the following two properties:

(A) Each interface is either activated on exactly one pair of nodes or not at all,
i.e., |W−1

A ({i})| ∈ {0, 2}, for all 1 ≤ i ≤ k;
(B) For all v ∈ V , only interfaces available at v may be used, i.e., WA(v) ⊆W (v).

Consequently, there is a one-to-one correspondence between activations WA

which solve 3MI in G and subsets of edges F ⊆ E′ in G′ such that:

(1) degF (v
′) ≤ 1, for all v′ ∈ V ′,

(2) degF (ui) ∈ {0, 2}, for all ui ∈ U .

For the sake of completeness, we note that the set of edges F corresponding
to a given activation WA is given by F = {{v′, ui} : v ∈ V, i ∈ WA(v)}, and
conversely, the activation WA corresponding to such a set of edges F is given
by the function WA(v) = {i ∈ 1, . . . , k : {v′, ui} ∈ F}, for all v ∈ V . Moreover,
the number of vertices active in WA is precisely equal to 2|F |. Since the trans-
formation between set F and function WA can be performed in linear time, it
now suffices to provide a polynomial time algorithm for finding a maximum-size
set of edges F ⊆ E′ satisfying constraints (1) and (2). Next, form a graph G′∗,
starting with graph G′, and appending a triangle to each vertex ui ∈ U , i.e.,
adding two new vertices, u∗

i and u∗∗
i , and three new edges, {ui, u

∗
i }, {u∗

i , u
∗∗
i },

and {u∗∗
i , ui}, to G′∗. Consider now the maximum subset of edges F ∗ of G′∗

satisfying the following degree constraints in G′∗:

– degF∗(v′) ≤ 1, for all v′ ∈ V ′,
– degF∗(ui) = 2 and degF∗(u∗

i ) = degF∗(u∗∗
i ) = 1, for all ui ∈ U .

It follows by a local analysis in the triangles ofG′∗ that the size f of the maximum
subset F in G′, and the size f∗ of the maximum subset F ∗ in G′∗ satisfy the
relation: f∗ = 2k+ f

2 . Consequently, it suffices to find the maximum subset F ∗ in
G′∗. Due to the nature of the imposed degree constraint for set F ∗, this problem
can be solved in O(n3/2k3/2) time by means of the algorithm for the maximum
cardinality simple b-matching problem due to [14]. This determines the overall
complexity of the algorithm. �

The next theorem characterizes MIM on complete bipartite graphs. Its proof
proceeds by a slight modification of the argument used for complete graphs.

Theorem 2. 3MI is solvable in O(n3/2k3/2) time for complete bipartite graphs.

Proof. Let G = (V1 ∪ V2, E) be the complete bipartite graph with bipartition
V = V1 ∪ V2. The proof proceeds by a slight modification of the argumentation
for complete graphs.

We first consider the pair of bipartite graphs G′j = (V ′j ∪U j, E′j), j ∈ {1, 2},
where one bipartite partition is a copy of the chosen vertex partition of the
original graph, V ′j = {v′j : v ∈ Vj}, the other bipartite partition U j corresponds



Maximum Matching in Multi-Interface Networks 19

to the set of available interfaces, U j = {uj
1, u

j
2, . . . , u

j
k}, and the set of edges is

given as E′j = {{v′j , uj
i} : v ∈ Vj , i ∈W (v)}.

Next, graph G′ = (V ′, E′) is obtained by taking a copy of graph G′1, a copy
of graph G′2, and connecting corresponding interfaces from U1 and U2 by edges;
formally, V ′ = V ′1∪U1∪V ′2∪U2 and E′ = E′1∪E′2∪{{u1

i , u
2
i } : i ∈ {1, . . . , k}}.

We now make the following characterization of functions WA : V →
{∅, {1}, {2}, . . . , {k}} which are valid activations for the instance W of 3MI in a
complete bipartite graph:

(A) Each interface is either activated on exactly one pair of nodes (one in V1

and one in V2) or not at all, i.e., |W−1
A ({i})| = 0 or |W−1

A ({i}) ∩ V1| =
|W−1

A ({i}) ∩ V2| = 1, for all 1 ≤ i ≤ k;
(B) For all v ∈ V , only interfaces available at v may be used, i.e., WA(v) ⊆W (v).

Let w denote the maximum possible number of nodes activated, taken over valid
solutions to 3MI. In view of the above characterization, consider subsets of edges
F ⊆ E′ in graph G′ which satisfy the following conditions:

(1) degF (v
′j) ≤ 1, for all v′j ∈ V ′j , j ∈ {1, 2},

(2) degF (u) = 1, for all u ∈ U1 ∪ U2.

Let f denote the size of the maximum subset F ⊆ E′ satisfying the above
constraints. By a local analysis of edge arrangements, we obtain that f = k+ w

2 ,
and knowing an appropriate maximum subset F , we can in linear time find the
corresponding optimum activation WA. As in the proof of Theorem 1, such a
subset F can be found by directly applying the algorithm for the b-matching
problem, leading to an optimal solution to 3MI in O(n3/2k3/2) time. �

A wide class of problems, known as ECC, admit polynomial-time algorithms
in graphs of bounded tree width using an approach due to Bodlaender (for a
definition of the class ECC and details of the approach, the reader is referred
to [3]). The next theorem shows that 3MI ∈ ECC.

Theorem 3. 3MI is solvable within polynomial time in the unbounded case when
the input graph is a graph with bounded treewidth.

Proof. Consider the underlying decision problem, denoted by 3MID. We need
to add one further bound B ∈ Z+

0 to 3MI such that the problem will be to ask
whether there exists a solution for 3MI of size at least B. Note that, 3MID is
equivalent to the following decision problem through a straightforward linear-
time reduction of input data.

Input : Graph G = (V,E), function W , set X = (I ∪ {∅})× V , positive integer
B ≤ n.

Question: Do there exist function f : V → X , where f(·) = (f1(·), f2(·)),
f1:V → I ∪ {∅}, f2:V → V , such that:
(1) ∀v∈V f1(v) ⊆W (v),
(2) ∀(v,w)∈E if f1(v) = f1(w) �= ∅, then f2(v) = w and f2(w) = v,
(3) the number of v ∈ V such that f1(v) �= ∅ is at least B.



20 A. Kosowski et al.

In the above, f1(v) describes the active interface at v (a value of ∅ means that
the node does not turn on any interface), and f2(v) serves as a “pointer” to
the neighbor of v which activates the same interface as v. If f1(v) �= ∅, the
pair {v, f2(v)} belongs to the matching and the connection between this pair
uses interface f1(v). Thus, any function f satisfying condition (2) yields some
matching which is a solution to 3MI in G. Thus, 3MID belongs to the class
ECC. Since in [3] a polynomial time algorithm, based on dynamic programming,
is given for problems of the class ECC for graphs with bounded treewidth,
3MID is polynomially solvable for graphs with bounded treewidth. A polynomial-
time solution for 3MI follows directly by considering different values of B ∈
{0, 1, . . . , n}. �

The complexity of the above algorithm depends on the treewidth of the graph.
We remark that when G is a tree, 3MI can in fact be solved in O(nk) time.

Finally, concerning the bounded case, the next theorem can be stated:

Theorem 4. 3MI is solvable within polynomial time for interval graphs in the
bounded case.

Proof. We recall that G is an interval graph if and only if the set of inclusion-
wise maximal cliques of G can be ordered in a sequence (M1,M2, . . . ,Ms) such
that for any v ∈ Mi ∩ Mj , where i < j, it is also the case that v ∈ Mr for
any r, i ≤ r ≤ j. Such an ordering of cliques can be performed in linear time
(assuming a suitable data representation). For i ≤ r ≤ s, let Sr =

⋃r
i=1 Mr, and

let M ′
r = Mr \ Sr−1 (where we assume S0 = ∅).

We provide a polynomial-time algorithm for 3MI using dynamic programming,
and compute in the r-th step, 1 ≤ r ≤ s, an array Ar indexed by all possible
activations Er of edges incident to at least one vertex of Mr, which may appear
in some solution to 3MI in graph G[Sr]. Then, Ar[Er] stores the size of the best
solution to 3MI in G[Sr] having precisely activation Er on the neighborhood of
Mr. In any solution to 3MI in G[Sr], the number of vertices of Mr which have
at least one interface activated cannot exceed 2k, and each of these vertices can
be used to activate at most one incident edge. Hence, the size of array Ar is
bounded by (|Sr|+ 1)2k(Δ+ 1)2k = O(n4k).

In order to perform the (r + 1)-th step, it suffices to consider all feasible sets
E′

r+1 of edges from G[Sr+1], incident to at least one vertex from the set M ′
r+1,

which may be active in some solution to 3MI. By a similar argument as before,
there are O(n4k) such sets to consider. We observe that any edge of G[Sr+1],
having one end-vertex in M ′

r+1 must have the other end-vertex either in M ′
r+1

or in Mr, by the properties of the clique ordering. Consequently, we build array
Ar+1 starting with an empty set, and for any pair of feasible activations Er

(indexing array Ar) and E′
r+1, modifying the array as follows:

– If Er and E′
r+1 contain a pair of edges which share an end-vertex, then no

change is introduced to Ar+1.
– If Er and E′

r+1 contain a pair of edges which are activated using the same
interface and which have at least one pair of end-vertices at distance one,
then no change is introduced to Ar+1.



Maximum Matching in Multi-Interface Networks 21

– Otherwise, let Er+1 be the union of activations Er and E′
r+1, restricted

to those edges which are incident to Mr+1. We then add a new ele-
ment Ar+1[Er+1]:= Ar[Er] + |E′

r+1| (or set Ar+1[Er+1]:= max{Ar+1[Er+1],
Ar[Er] + |E′

r+1|}, if an element already exists at this index).

Eventually, after step s, the maximum of values stored in As is the size of the
optimal solution. A valid solution can be reconstructed using the set of data
structures {A1, . . . , As}. Taking into account that s ≤ n and that each step of
dynamic programming can be completed in O(n8k+1) time, the overall runtime
of the algorithm is bounded by O(n8k+2). �

4 Hardness

In this section, we provide the main challenging but negative result for 3MI. In
fact, 3MI turns out to be NP -hard even for proper interval graphs, while it is
known that MIM is polynomially solvable for chordal graphs.

Theorem 5. 3MI is NP-hard even when for the class of proper interval graphs.

Proof. We prove that the underlying decision problem 3MID obtained from 3MI
by adding the bound B (as described in the proof of Theorem 3), is in general
NP -complete. The proof then proceeds by a reduction from the 3SAT problem,
which is known to be NP -complete [15].

3SAT

Input : A set U of variables, a collection C of clauses over U such that each
c ∈ C satisfies |c| = 3.

Question: Is there a satisfying truth assignment for C?

Given an instance of 3SAT , we construct an instance of 3MID provided by a
proper interval graph G where we need to decide which interfaces to activate at
each node, see Figure 3. For each variable v ∈ U there is a chain of unit intervals
(as shown in Figure 3 for the four variables x, y, z and w), each interval is
associated with interfaces v, −v, and one further interface denoted as 1. Actually,
all the nodes of G contain interface 1. Each clause c ∈ C composed of three
literals corresponds in G to 10 unit intervals vertically disposed as shown in the
figure. There are two intervals associated per each literal l with interfaces −l, 1,
and one further interface among the set {2, 3, 4}, a different one per pair. Plus,
there are two intervals associated with interfaces 1, 2, 3, and 4, and other two
intervals with only interface 1. The bound B is set to (5 + 2|U |)|C|.

(⇒) Assume that 3SAT has a positive answer, i.e., there exists a satisfying
truth assignment for C. We show that also 3MID has a positive answer, i.e., there
exists an activation of the available interfaces such that the number of edges in
the obtained matching is at least B = (5 + 2|U |)|C|. For each variable v, if v
is set to true in the solution of 3SAT , then, along the chain of unit intervals
corresponding to v we switch on interface v at the first two intervals, interface
−v at the second two intervals, again interface v at the third two intervals, and



22 A. Kosowski et al.

1

x, −x, 1

y, −y, 1

z, −z, 1

w, −w, 1 w, −w, 1

z, −z, 1

y, −y, 1

x, −x, 1

1, 2, 3, 4

−x, 1, 2

−z, 1, 4

1, 2, 3, 4

1

−y, 1, 3

x, 1, 2

−y, 1, 3

−w, 1, 4

Fig. 3. The outcoming proper interval graph G from the transformation of clauses xyz
and −xyw to 3MID. Interfaces hold by the intervals are specified between the lines.

so forth, always alternating between v and −v. If v is set to false in the solution
of 3SAT , then the activations of interfaces v and −v in the chain corresponding
to variable v would be still alternated but starting with −v. This provides a
contribution of 2|U ||C| activated edges to the final solution. Note that, in this
way all the intervals corresponding to the clauses will be located below intervals
that have activated interface v in the first case, and interface −v in the second
case. In the first case (in the second case, resp.), it follows that all the clauses
containing the literal v (−v, resp.) have two intervals in their representation in
G containing interface −v (v, resp.). Hence, such intervals are allowed to switch
on the interface corresponding to the negation of the appearing literal since this
is not in conflict with the activation on the chain above. Since 3SAT has been
supposed to be solved, then there will always be an available interface for each
clause that determines the connection of one pair of intervals among the 10
associated to the clause, as described above. This will contribute of |C| edges to
the final solution. Then, we activate interface 1 at all the bottom edges that hold
only such interface, for a contribution of other |C| activated edges. Finally, the
remaining three pairs of intervals corresponding to each clause can be connected
by means of interfaces 2, 3 and 4, hence contributing other 3|C| edges. In total,
the obtained solution for 3MID is composed of (5 + 2|U |)|C| edges.

(⇐) Now, let us assume we have a positive answer to 3MID. As graph G is
composed of 2(5 + 2|U |)|C| nodes, the solution for 3MID must be composed of
exactly (5+2|U |)|C| edges, hence all the nodes participate to the matching. This
means that nodes holding only interface 1 must be coupled among themselves.
Any other node cannot use interface 1. For each generic clause c = l1l2l3, the
corresponding nodes holding only interfaces 1, 2, 3, and 4, must be connected



Maximum Matching in Multi-Interface Networks 23

among themselves by using one interface among the set {2, 3, 4} since one of them
do not share any available interface with other intervals. This means that among
the other 6 intervals representing c, at least two of them must be connected
among themselves by means of interface −l1, or −l2, or −l3. Without loss of
generality, let −l1 be the interface used. It follows that on top of graph G, in
the chain corresponding to variable |l1|, the two intervals neighbors to the ones
connected by means of interface −l1, must be connected by means of interface l1,
as no other options are available. As “chain effect”, the subsequent two intervals
on the same chain (if any), and the previous two intervals on the same chain
(if any) must make use of interface −l1. The same arguments can be applied
to each chain, and the corresponding truth assignment for the underlying 3SAT
problem is given by the interface used at the first two intervals of each chain. In
fact, from the assumption that the solution for 3MID has size (5 + 2|U |)|C|, we
have that all the intervals representing a clause have used at least one interface
corresponding to the set of variables appearing in the instance of 3SAT . That
is, the assignment provided by the solution of 3MID is compatible with the
satisfaction of all the clauses of 3SAT . �

5 Conclusion

In this paper, we have considered the maximum matching problem in the con-
text of multi-interface networks. As it has happened with other basic problems
studied in the context of multi-interface networks, 3MI turns out to be a very
challenging problem. It is strictly related to the well-known maximum induced
matching problem that has been extensively studied in the context of the stan-
dard graph theory. We have shown how the size of a solution for an instance of
3MI is always in between the one for MIM and that for the maximum match-
ing. Surprisingly, 3MI has been shown to be harder than MIM. In fact, MIM
is polynomially solvable on chordal graphs (and thus on interval graphs, which
are a subfamily of the chordal graph), while 3MI is NP -hard even for proper
interval graphs. Moreover, polynomial time algorithms have been designed for
some interesting graph classes, as reported in Table 1.

References

1. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Papaioannou, E.: Energy-
Efficient Communication in Multi-interface Wireless Networks. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 102–111. Springer, Heidelberg
(2009)

2. Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with
multiple radios. SIGCOMM Comput. Commun. Rev. 34(5), 39–46 (2004)

3. Bodlaender, H.L.: Dynamic Programming on Graphs with Bounded Treewidth.
In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118.
Springer, Heidelberg (1988)

4. Brandstädt, A., Mosca, R.: On distance-3 matchings and induced matchings. Dis-
crete Applied Mathematics 159, 509–520 (2011)



24 A. Kosowski et al.

5. Cameron, K.: Induced matching. Discrete Applied Mathematics 24, 97–102 (1989)
6. Caporuscio, M., Charlet, D., Issarny, V., Navarra, A.: Energetic Performance of

Service-oriented Multi-radio Networks: Issues and Perspectives. In: Proceedings of
the 6th International Workshop on Software and Performance (WOSP), pp. 42–45.
ACM Press (2007)

7. Cavalcanti, D., Gossain, H., Agrawal, D.: Connectivity in multi-radio, multi-
channel heterogeneous ad hoc networks. In: Proceedings of the IEEE 16th In-
ternational Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 1322–1326. IEEE (2005)

8. D’Angelo, G., Di Stefano, G., Navarra, A.: Bandwidth Constrained Multi-interface
Networks. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 202–213. Springer,
Heidelberg (2011)

9. D’Angelo, G., Stefano, G.D., Navarra, A.: Minimize the maximum duty in multi-
interface networks. Algorithmica 63(1–2), 274–295 (2012)

10. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh
networks. In: Proceedings of the 10th Annual International Conference on Mobile
Computing and Networking (MobiCom), pp. 114–128. ACM (2004)

11. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum
induced matching problem. Journal of Discrete Algorithms 3, 79–91 (2005)

12. Edmonds, J.: Paths, trees and flowers. Journal of Mathematics 17, 449–467 (1965)
13. Faragó, A., Basagni, S.: The effect of multi-radio nodes on network connectivity—a

graph theoretic analysis. In: Proceedings of the IEEE International Workshop on
Wireless Distributed Networks (WDM). IEEE (2008)

14. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In: Proceedings of the 15th Annual ACM
Symposium on Theory of Computing (STOC), pp. 448–456. ACM (1983)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

16. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discrete Ap-
plied Mathematics 101, 157–165 (2000)

17. Kang, R.J., Mnich, M., Müller, T.: Induced Matchings in Subcubic Planar Graphs.
In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 112–122. Springer,
Heidelberg (2010)

18. Kanj, I., Pelsmajer, M.J., Schaefer, M., Xia, G.: On the induced matching problem.
Journal on Computer System Science 77, 1058–1070 (2011)

19. Klasing, R., Kosowski, A., Navarra, A.: Cost Minimization in Wireless Networks
with a Bounded and Unbounded Number of Interfaces. Networks 53(3), 266–275
(2009)

20. Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-
free and p5-free graphs, and in graphs with matching and induced matching of
equal maximum size. Algorithmica 37, 327–346 (2003)

21. Kosowski, A., Navarra, A., Pinotti, M.: Exploiting Multi-Interface Networks: Con-
nectivity and Cheapest Paths. Wireless Networks 16(4), 1063–1073 (2010)

22. Zito, M.: Induced Matchings in Regular Graphs and Trees. In: Widmayer, P.,
Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 89–100. Springer,
Heidelberg (1999)



Stretch Factor in Wireless Sensor Networks
with Directional Antennae

Evangelos Kranakis�, Fraser MacQuarrie�, and Oscar Morales-Ponce��

School of Computer Science, Carleton University, Ottawa, Ontario, Canada

Abstract. Traditional study of wireless sensor networks has relied on the as-
sumption that sensors transmit and receive using an omnidirectional antenna.
There has been some recent study using a model where sensors transmit using
a directional antenna. This study has focused on the problem of finding an op-
timal transmission range so that there exists an orientation of the antennae at
each sensor which creates a strongly connected communication network. This is
known as the Antenna Orientation Problem for Strong Connectivity. In this paper
we examine a similar problem: we wish to optimize not only the transmission
range, but also the hop-stretch factor of the communication network (in relation
to the omnidirectional model). We refer to this as the Antenna Orientation Prob-
lem with Constant Stretch Factor. We present approximations to this problem for
antennae with angles π/2 ≤ φ≤ 2π.

Keywords: Antenna Orientation Problem, Connectivity, Directional Antenna,
Stretch Factor, Wireless Sensor Networks.

1 Introduction

A wireless sensor is a computational device which transmits and receives information
using a radio antenna. The traditional study of wireless sensor networks (WSNs) as-
sumes that the sensors employ omnidirectional antennae. In this model, a sensor (the
sender) can transmit messages successfully to another sensor (the receiver) if and only
if the Euclidean distance between the sender and receiver is less than or equal to the
transmission range of the sender. Typically it is assumed that all sensors in a WSN have
the same transmission range. This leads to an undirected communication graph which
is a unit disk graph (UDG), where the unit is the transmission range of the sensors. This
model has been studied extensively.

There is, however, no reason a sensor cannot use directional antennae to transmit
and/or receive information. Recently, there has been some study in a directional WSN
model where sensors receive information omnidirectionally, but transmit in a sector of
angle (or beam width) φ with range r.

The use of directional rather than omnidirectional antennae has many possible ad-
vantages: longer ranges are achievable with the same amount of energy; different radia-
tion patterns might lower interference in the network and lead to increased throughput;

� Supported in part by NSERC and MITACS grants.
�� Supported by MITACS Postdoctoral Fellowship.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



26 E. Kranakis, F. MacQuarrie, and O. Morales-Ponce

there may also be an increase in the security of a network by reducing the risk of eaves-
dropping. These possible advantages are of particular interest in connected networks.
However not all connected networks are created equal. If replacing omnidirectional an-
tenna with directed ones leads to a network with significantly longer paths between
sensors, then any possible advantages may be offset by the increased path lengths.

Study of this directional antennae model has until now been focused on the Antenna
Orientation Problem for Strong Connectivity. Solutions to this problem guarantee that
a WSN with directional antennae can be strongly connected, but nothing more. The
resulting communication graph could have shortest paths between sensors containing a
very large number of hops. This may be unavoidable depending on the distribution of
the sensors. It becomes a problem if these paths are very long compared to their coun-
terparts in the omnidirectional model, i.e., if the sensors had omnidirectional antennae
instead of directional antennae, would these paths remain fairly long? We examine a
problem similar to the Antenna Orientation Problem, but which places a bound on the
length of paths in the directional case compared to those in the omnidirectional case.

For P, a set of points, let U(P) be the UDG on P where the unit is the longest edge
of the MST of P. Let G(P) be a (strongly) connected (di)graph on the vertices in P.

For any two vertices u,v in P, let dG(u,v) denote the minimum number of edges of
any (directed) path from u to v in G. For the rest of the paper, we refer to a path with
dG(u,v) edges as a shortest path from u to v. We will also refer to dG(u,v) as the hop
count from u to v.

The hop-stretch factor of G(P) on U(P), denoted as τG(P), is defined as the maxi-
mum ratio dG(u,v)/dU(u,v) among all pairs of vertices u,v in P.

τG(P) = max
∀u,v∈P

dG(u,v)
dU(u,v)

.

The hop-stretch factor (hereafter referred to interchangeably as simply stretch factor)
may depend on the size of the network. This raises an interesting problem when one
attempts to construct a transmission network with minimum range for a given angle
which guarantees a constant stretch factor.

Antenna Orientation Problem with Constant Stretch Factor. Given a con-
nected UDG U(S) on a set of sensors S in the plane. Suppose the sensors have
beam width φ ≥ 0. For a given hop stretch factor k, compute the minimum
range, denoted by rk(U(S),φ), so that an orientation of the antennae of the sen-
sors of S creates a strongly connected communication digraph Gφ(S) such that
τGφ(S)≤ k.

1.1 Related Work

The Antennae Orientation Problem for Strong Connectivity was first proposed by Cara-
gianis et al. [4]. They proved the Antenna Orientation Problem is NP-complete for
angles less than 2π/3. They also presented a polynomial algorithm for determining a
solution for angles φ ≥ π. A similar problem was studied by Dobrev et al. [8], who
studied the Antennae Orientation Problem when each sensor has more than one direc-
tional antenna. They proved the problem remains NP-Complete when each sensor has



Stretch Factor in WSNs with Directional Antennae 27

two directional antennae with sum of angles at most 9π/20 even for a scaling range of
1.3. They also showed that when each sensor has k ≤ 5 directional antennae, the upper

bound on the range is bounded by 2sin
(

φ
k+1

)
times the optimal range, for every angle.

A comprehensive survey of the antenna orientation problem is presented in [10]. In 3D,
the problem was studied in [9] where the authors consider the case when each sensor
has one directional antenna.

The Antenna Orientation Problem with Constant Stretch Factor was studied for the
first time by Damian and Flatland [7]. They examined the particular cases when φ =
π/2 and φ = 2π/3. They proved that r6(S,π/2)≤ 7 and r5(S,2π/3)≤ 5 respectively.
Recently, Bose et al.[3] studied the case when φ≤ π/3.

A distinct model is studied in [1,2] and [5] in which sensors both transmit and receive
using the same directional antenna. In [1,5] it is proven that it is always possible to
create a connected graph with angle φ ≥ π/3 and unbounded range. In [2] the authors
also considered how to bound the range and stretch factor. They proved that a connected
graph with stretch factor 8 can be constructed with angle π/2 and range 14

√
2 times the

range necessary to create a connected UDG on the set of sensors.

1.2 Outline and Results of the Paper

The strategies used for deriving our results rely on partitioning an arbitrary set of sen-
sors into many small subsets. We then orient these subsets independently of each other
and show that these orientations lead to our desired results.

In Section 2 we describe how we can orient and connect small groups of sensors. In
Section 3 we address the Antenna Orientation Problem with Constant Stretch Factor.
We provide a global algorithm for beam widths π ≤ φ ≤ 2π, and a local algorithm for
beam widths π/2≤ φ < π. All approximations are in relation to the longest edge of the
MST of the sensors. This is a trivial lower bound on the optimal range, as it is a lower
bound for strong connectivity. The summary of our results, along with existing results
is shown in Table 1.

Table 1. Results for the Antenna Orientation Problem with Constant Stretch Factor

Beam Width Approximation Ratio of rs Stretch Factor Scope Proof

5π
3 ≤ φ < 2π 1

2 Global Theorem 1
π≤ φ < 5π

3 2sin( φ
2 )

π
2 ≤ φ < π 4cos( φ

2 )+3 3 Local Theorem 2

φ = π
3 36

√
2 10 Global [3]

φ < π
3 4

√
2( 7π

φ −6) �8log( 2π
φ )�−1 Global [3]

1.3 Preliminaries and Notation

A sensor is an object at a point in the plane. It is able to receive transmissions omnidi-
rectionally. A sensor with an omnidirectional antenna is able to transmit in all directions



28 E. Kranakis, F. MacQuarrie, and O. Morales-Ponce

up to a distance r called the transmission range. A sensor with a single directional an-
tenna is able to transmit in a sector whose angle is referred to as the beam width of
the antenna. This antenna may be initially facing any direction, but once oriented the
antenna is fixed in this orientation. Any point that lies within the sector defined by the
antenna, regardless of its distance from the sensor, is in the sensor’s line of sight.

For the purposes of this paper, any sensors referred to are assumed to be sensors with
a single directional antenna. Furthermore, the term sensor may be used interchangeably
to mean the location of the sensor in the plane, the sensor object itself, or the vertex
representing the sensor in a graph. We may also use the terminology ”orienting a sensor”
to mean orienting the antenna at a sensor.

We assume that any sensor, s, is able to determine its distance from other sensors,
as well as the angle formed by any other two sensors with vertex s. While assuming
that sensors have location awareness will satisfy these assumptions, it is not strictly
necessary as sensors do not need access to a global co-ordinate system for our results.
Furthermore, we assume that each sensor has the ability to communicate with all nearby
sensors during the orientation process. This could be accomplished through the rotation
of its directional antenna, or the use of its omnidirectional antenna to transmit as well
as receive.

Let D(a,r) denote the open disk centered at a with radius r and D[a,r] denote the
closed disk centered at a with radius r.

Definition 1 (Coverage). Let a,b be sensors with range r. Sensor a covers sensor b
if b ∈ D[a,r] and b is within the line of sight of sensor a. This means that b will be a
neighbour of a (although the reverse is not necessarily true). Sensor a covers area A if
∀ points p ∈ A, a sensor at p would be covered by a. A set of sensors S covers an area
A if ∀ points p ∈ A, a sensor at p would be covered by at least one sensor s ∈ S

Let a,b be two sensors. We say that sensor a can reach sensor b if a covers b, or a
covers a sensor c which can reach b. In general terms, this means that a can reach b if
there exists a directed path from a to b.

Definition 2 (k-orientation). Let S be a set of sensors. An orientation of the antennae
of S is a k-orientation if the directed communication graph G(S) is strongly connected,
and ∀s ∈ S:

1. D[s,1] is covered by S, and
2. ∀p∈D[s,1], the shortest path from s to a sensor covering p has length at most k−1

hops.

2 Orientating Small Groups of Sensors

In this section we begin by showing how to merge k-orientations. We then relate k-
orientations to stretch factor. We conclude the section by showing how we can orient
various groups of small sensors to form k-orientations. These orientations will form the
building blocks for our later results. Any omitted proofs can be found in the full paper.



Stretch Factor in WSNs with Directional Antennae 29

2.1 Merging k-Orientations

Orienting small groups of sensors is the foundation for our results, however we first
show how these small orientations can be put together to form an orientation for an
entire graph.

Lemma 1. Let S,T be two sets of sensors which have been oriented to form an i-
orientation and a j-orientation, respectively. Suppose, without loss of generality, that
i≤ j. If ∃s1 ∈ S, t1 ∈ T such that s1 covers t1 and ∃s2 ∈ S, t2 ∈ T such that t2 covers s2,
then the orientations of S,T is a j-orientation of S∪T .

Proof. Let the orientations of S,T remain identical, so that the coverage and path length
conditions hold for S∪T . All that remains is to show that S∪T is strongly connected.
This is trivial however, as both S and T are strongly connected and there is a path from
S to T and vice versa.

2.2 Stretch Factor of k-Orientations

Lemma 2. Let S be a set of sensors which have been oriented to form an i-orientation
with the directed communication graph G(S). The stretch factor of G(S) on UDG(S,1),
τG(S)≤ i.

Proof. Assume there exists G(S) such that τG(S) > i. Therefore there must be two
vertices u,v ∈ S such that dG(u,v)/dU(u,v) > i. Since the ratio along the path in G
from u to v is greater than i, this means that there must exist two vertices a,b ∈ S such
that dU(a,b) = 1 and dG(a,b)/dU(a,b) > i. Therefore, dG(a,b) > i. Note that since
dU(a,b) = 1, b ∈ D[a,1] and vice versa. However, since G(S) is the communication
graph of an i-orientation of S, the shortest path between a and a sensor covering b
cannot be more than i− 1. Therefore, dG(a,b) ≤ i. This contradicts our assumption,
and the lemma follows.

2.3 Forming k-Orientations from Small Groups of Sensors

Groups of 2 Sensors

Lemma 3. Given two sensors u,v with beam width φ ≥ π/2. If the sensors are sepa-
rated by Euclidean distance δ≥ 2cos(φ/2), then there exists a 2-orientation of u and v
with transmission range r = δ+ 1.

Proof. Suppose u,v are oriented as in Figure 1. Let c be the midpoint of the line segment
uv. Each sensor beam pattern edge intersects with the intersection of the circles D[u,1]
and D[v,1] at point i. This intersection forms a right angle triangle with c and u. Since
the intersection lies on the boundary of D[u,1], the hypotenuse of this triangle has length
1. Since uv bisects the sensor of beam width φ, the angle ∠(ivc) = φ/2. Using simple
trigonometry we calculate the length of the side cv = cos(φ/2). Similarly, the side uc =
cos(φ/2), so the length of uv, δ = cos(φ/2).

Consider any point p ∈ D[u,1]. The farthest p can be from v is δ+ 1. Similarly, the
farthest any point q ∈ D[v,1] can be from u is δ+ 1. Therefore r = δ+ 1 is a sufficient
transmission range to ensure that both D[u,1] and D[v,1] are covered.



30 E. Kranakis, F. MacQuarrie, and O. Morales-Ponce

φ cos(φ/2)

1

φ/2

cu v

i

Fig. 1. Antenna orientation of two sensors with beam width 2π
3 ≤ φ < π

In the proposed antennae orientation, u covers v and vice versa, so each are connected
by a path of length 1. Therefore this orientation of u and v is a 2-orientation.

A more specific version of the following result was first given in [6]. We derive a more
general version and include the proof for completeness.

Lemma 4. Given two sensors u,v with beam width φ ≥ π. Suppose the Euclidean dis-
tance between them is δ. There exists a 2-orientation of u and v with transmission range
max(1,δ,

√
1+ δ2− 2δcos(φ)).

Groups of 3 Sensors

Lemma 5. Given three sensors u,v and w with beam width φ ≥ π/2. If two of the
sensors are separated by Euclidean distance δ≥ 2cos(φ/2), there is a 3-orientation of
{u,v,w} with transmission range r = δ+ 1.

Lemma 6. Given a set S of n≥ 3 sensors with beam width φ≥ π. Suppose ∃c ∈ S such
that the maximum distance between c, and any other sensor s ∈ S−{c} is δ. If all the
sensors s ∈ S−{c} are contained within a sector centered at c with angle φ, there is a
2-orientation of S with transmission range r = max(1,δ,

√
1+ δ2− 2δcos(φ)).

Groups of 4 Sensors

Lemma 7. Given a set S of four sensors with beam width φ ≥ π/2. Suppose the maxi-
mum Euclidean distance between any two sensors in S is δ. There is a 3-orientation of
S with transmission range r = δ+ 1.



Stretch Factor in WSNs with Directional Antennae 31

Proof. Let us first consider the case where the sensors have infinite transmission range.
Label the sensors t,u,v,w ∈ S such that the greatest pairwise Euclidean distance be-
tween sensors occurs between t and w. We then obtain one of two cases (Figure 2).

Case (a): Both sensors u and v are on the same side of the line tw. We orient the
antennae of t and w to cover the half plane above (and including) the line tw. We then
orient the antennae of u and v to cover the half plane below tw. Since t and w cover
the half plane above tw, and u and v cover the half plane below tw, the entire plane is
covered. Since t and w are the two sensors farthest apart, both u and v must lie between
t and w. Therefore, t covers u, v, and w. Similarly w covers t, u and v. The sensors u
and v each cover one of t and w. Therefore t and w cover each other, and u and v each
cover one of t or w and are covered by both. This means the induced graph is strongly
connected.

Case (b): u and v are on opposing sides of the line tw. We label u as the point whose
projection on the line tw is closest to t. We can then orient the antennae of t and w so
that they cover the entire plane except the shaded areas in Fig 2(b). The antenna of u
(similarly v) can then be oriented to cover the shaded area adjacent to w (t) as well as
sensors v,w (t,u). Collectively, the sensors t,u,v and w cover the entire plane. In this
orientation, t covers u, u covers w, w covers v, and v covers t. Therefore the sensors are
strongly connected.

In both cases, the antennae are oriented so that they cover the plane, and so that the
sensors are strongly connected. Now consider any point p ∈ D[t,1]∪D[u,1]∪D[v,1]∪
D[w,1]. The farthest p can be from any of t, u, v, or w is δ+1. Therefore a transmission
range of r = δ+ 1 is sufficient to obtain a k-orientation in both cases.

Furthermore, an examination of the orientations reveals that the shortest path be-
tween any two of the sensors is at most 2. Therefore these are both 3-orientations. Since
we always obtain one of the two cases, the proof follows.

Case (a) Case (b)

t

u

v

w
t w

u

v

Fig. 2. Antenna orientation of four sensors with beam width φ≥ π
2

Corollary 1. Given a set S of n ≥ 4 sensors with beam width φ ≥ π/2. Suppose the
maximum Euclidean distance between any two sensors in S is δ. There is a 3-orientation
of S with transmission range r = δ+ 1.



32 E. Kranakis, F. MacQuarrie, and O. Morales-Ponce

3 Orienting Antennae with Constant Stretch Factor

In this section we will present some approximations for the Antenna Orientation Prob-
lem with Constant Stretch Factor. These approximations will have transmission ranges
dependant on the beam width of the sensors, the desired stretch factor, as well as
whether the orientation is to be found with local or global information.

3.1 Orienting Antennae of Beam Width φ≥ π with Constant Stretch Factor

Theorem 1. Given a connected UDG U(S) on a set of sensors S each with one direc-
tional antenna of beam width φ ≥ π. There exists an antennae orientation of S with
range max(1,2sin(φ/2)) which creates a connected transmission network Gφ(S) such
that τGφ(S)≤ 2.

Proof. For any graph H, denote C(H) as the vertices of the convex hull of each of the
connected components of H. We then define the following hierarchical structure, Q:
Q0(V0,E0) = U(S), Qk+1(Vk+1,Ek+1) = Qk[Vk−C(Qk)] (the subset of Qk induced by
Vn−C(Qn)). Intuitively, every iteration of the structure is the previous graph with the
convex hulls of its connected components peeled away. We note that every iteration is
a proper subset of the previous: Qk+1 ⊂Qk, unless Qk+1 = Qk = /0. The construction of
such a hierarchical structure is illustrated in Figure 3.

(a) Q0(V,E) and C(Q0) (b) Q1 = Q0[V − C(Q0)] and C(Q1) (c) Q2 and C(Q2)

Fig. 3. Construction of Q for a given graph G(V,E). C(Qi) denoted by hollow points

We want to use induction to show that we can find a suitable orientation for some Qi

and that given an orientation for any Qk we can find an orientation for Qk−1. We do this
by ensuring that each sensor is either: oriented so that it part of a k-orientation, or the
sensor is convex. We say that a sensor s is convex in a graph H if s is on the convex hull
of NH(s)∪{s}, where NH(s) is the set of neighbours of s in H. Intuitively, s is convex in
H if a line can be drawn through s such that all neighbours of s in H are on one side of
the line. Since the sensors have beam width φ≥ π, the antennae of convex sensors can
be positioned so that they cover all their neighbours. Therefore if all sensors in S are
either oriented or convex, there exists an orientation of S which is strongly connected.

Let i be the smallest value such that Qi = Qi+1 = /0. Consider Qi−1. It must contain at
least one sensor, and all sensors are on the convex hull of their connected components,
so they are all convex. Therefore we have a valid orientation for Qi−1.



Stretch Factor in WSNs with Directional Antennae 33

Consider now Qi−2. We know that all the sensors in C(Qi−2) are convex. What about
the remaining sensors? None have yet been oriented, some may remain convex, but
some may not. It is the sensors that are no longer convex which prevent an orientation
from being achieved. For each sensor s which is no longer convex, there must exist at
least one sensor in C(Qi−1) which is a neighbour of s in U(S) (otherwise s would still be
convex). Suppose each such unoriented, non-convex sensor selects one of its neighbours
in C(Qi−1) and requests to orient with it. Let us now consider each sensor in C(Qi−1).
A sensor may receive no requests to orient, in which case it remains convex. It may
receive a single request, in which case the two sensors orient themselves according to
Lemma 4 to form a 2-orientation. It may also receive multiple requests, in which case
the sensors can orient themselves according to Lemma 6 to form a 2-orientation. After
each sensor of C(Qi−1) has taken the appropriate action, we now have the case where
all sensors are either oriented or convex, so we have a valid orientation for Qi−2.

Consider now Qk−1. Assume that we have a valid orientation for Qk. We know that
all the sensors in C(Qk−1) are convex. What about the remaining sensors? Some sensors
may have already been oriented, some may remain convex, but some may not. Using
the same method as above, we can orient all the unoriented, non-convex sensors with
sensors in C(Qk−1) to achieve a valid orientation of Qk−1.

Since we have proven we can find an orientation for Qi−2, and since we can find a
valid orientation for Qk−1 given a valid orientation for Qk, we know that we can find a
valid orientation Gφ(S) for Q0 =U(S).

All sensors in the orientation Gφ(S) are either part of a 2-orientation or convex. Sen-
sors in a 2-orientation can reach all their neighbours in U(S) is at most two hops. Convex
sensors can directly reach all their neighbours in U(S). This means that τGφ(S)≤ 2.

3.2 Orienting Antennae of Beam Width π/2 ≤ φ < π with Constant Stretch
Factor

Definition 3. We define the annulus graph A(P,r,R) on a set of points P as the straight
line graph where two points a,b at distance d are connected if and only if r ≤ d ≤ R.

Theorem 2. Given a connected UDG, U(S,1), on a set of sensors S each with beam
width π/2≤ φ< π. There exists an antenna orientation of S with range at most 4cos(φ/2)
+3 which creates a strongly connected communication graph Gφ(S) such that τGφ(S)≤
3. This communication graph can be constructed in constant time.

Proof. Let A = A(S,2cos(φ/2),2cos(φ/2)+ 1) be an annulus graph on S.

Claim. Let u be any point in S and v the farthest point in S from u. If d(u,v) ≥
2cos(φ/2), then the degree of u in A, dA(u) is at least 1.

Proof. Assume there exist two points u and v such that d(u,v)≥ 2cos(φ/2) and dA(u)=
0. Since U is connected we can always find a path P = u = u0,u1, ...uk = v. Observe
that d(ui,ui+1) ≤ 1 for all i. Therefore, at least one vertex in the path u1, ...uk = v is at
distance between 2cos(φ/2) and 2cos(φ/2)+ 1 since P crosses the annulus of u. This
contradicts the assumption, therefore dA(u)> 0.



34 E. Kranakis, F. MacQuarrie, and O. Morales-Ponce

Given two sensors u,v in S, we say that they form a 2-group if d(u,v)≥ 2cos(φ/2). By
Lemma 3 there exists a 2-orientation of the antennae at u and v with angle φ and range
d(u,v)+ 1.

Given three sensors u,v,w in S where δ = max(d(u,v),d(u,w),d(w,v)). We say that
u,v,w form a 3-group if δ ≥ 2cos(φ/2). By Lemma 5 there exists a 3-orientation of
u,v,w with range δ+ 1.

We say that two points u,v are close if d(u,v)≤ 4cos(φ/2)+2. Given S′ ⊆ S, we say
that S′ is a 4-strong subset if there exists four sensors u,v,w,x ∈ S′ such that ∀a,b ∈ S′,
a is close to b. By Corollary 1 we can find a 3-orientation of u,v,w and x with range
4cos(φ/2)+ 3.

If no two vertices are distance at least 2cos(φ/2) apart, either U is a 4-strong set, or
there are three or fewer sensors in U . If U is a 4-strong set, we can orient it according to
Corollary 1. If U consists of only three sensors u,v,w, then they can be oriented so that
u covers v, v covers w and w covers u. If there are two or fewer sensors, the orientation
is trivial. In the rest of the proof we assume that there exist two vertices separated by
distance at least 2cos(φ/2).

Let M be a maximal matching of A . Consider the following geometric graph G =
(S,E) where {a,b} ∈ E if and only if a is an unmatched sensor and b is the nearest
matched sensor to a.

Claim. For each edge {a,b} in G, d(a,b)≤ 2cos(φ/2)+ 1

Proof. From the first claim we know that each point has degree at least one in A .
Therefore, a point is only unmatched if all its neighbours in A are matched. Thus,
d(a,b)≤ 2cos(φ/2)+ 1.

Let {u,v} be any edge in M and NG(u) denote the neighbours of u in G. Since M is a
matching, clearly u,v are not incident to any other edge in M. From our definition of
G, v /∈ NG(u). Furthermore, ∀a,b ∈M,NG(a)∩NG(b) = /0. Since every sensor in U is
incident to at least one edge in either M or G, the previous conditions mean that we can
partition the graph based on the edges in M. For each edge {u,v} in M, we define a
subset S′{u,v} = {u,v}∪NG(u)∪NG(v). Each subset is non-empty since it must contain
u,v. As mentioned previously, every sensor will be part of one and only one subset. This
is therefore a valid partition. We will show that each subset can be oriented to form a
3-orientation.

Without loss of generality assume that |NG(u)| ≤ |NG(v)|. There are now multiple
cases we may encounter.

Case 1: |NG(u)|= |NG(v)|= 0.
In this case, S′{u,v} forms a 2-group.

Case 2: |NG(u)|= 0 and |NG(v)| ≥ 1.
If |NG(v)|= 1, S′{u,v} forms a 3-group. Otherwise, it is a 4-strong subset.

Case 3: |NG(u)|= 1 and |NG(v)| ≥ 1.
Let x∈ NG(u). If d(x,v)≤ 2cos(φ/2)+1, S′{u,v} is a 4-strong subset. If not, we
consider three possible cases:



Stretch Factor in WSNs with Directional Antennae 35

– |NG(v)| = 1. Let y ∈ NG(v). If d(y,u) ≤ cos(φ/2)+ 1, S′{u,v} is a 4-strong
subset. Otherwise, {x,v} forms a 2-group and {y,u} forms a 2-group. If
two groups are formed, we remove S′{u,v} from the partition and add {x,v}
and {y,u}.

– |NG(v)|= 2. Let y and z be the elements in NG(v). If max(d(y,u),d(z,v))≤
2cos(φ/2) + 1, S′{u,v} is a 4-strong subset. Otherwise, {x,v} forms a 2-
group and {u,y,z} forms a 3-group. If two groups are formed, we remove
S′{u,v} from the partition and add {x,v} and {u,y,z}.

– |NG(v)| ≥ 3. Let z,w be the nearest sensor of v in NG(v)\{y}. NG(v)∪{u}
is a 4-strong subset and {x,v} forms a 2-group. We remove S′{u,v} from the
partition and add NG(v)∪{u} and {x,v}.

Case 4: |NG(u)|= 2 and |NG(v)| ≥ 2.
If there are two sensors x,y in NG(u) ∪ NG(v) that are at distance at most
2cos(φ/2)+ 1 of u and v, S′{u,v} is a 4-strong subset. Otherwise, NG(u)∪{v}
forms a 3-group. If dG(v) = 2, NG(v)∪{u} forms a 3-group, otherwise it is a
4-strong subset. If two groups are formed remove S′{u,v} from the partition and
add NG(v)∪{v} and NG(v)∪{u}.

Case 5: |NG(u)| ≥ 3 and |NG(v)| ≥ 3.
NG(u)∪{u} is a 4-strong subset and NG(v)∪{v} is a 4-strong subset. We re-
move S′{u,v} from the partition and add NG(v)∪{u} and NG(v)∪{v}.

Once we have oriented every subset in the partition, we observe that they now all con-
sist of 2-groups, 3-groups and 4-strong subsets. As mentioned previously, we know
that we can form 3-orientations for each of these. Therefore we now have a partition
of the sensors of U such that each sensor is a part of a 3-orientation. Note that the
transmission range required to orient any of the sensor groups was always less than
or equal to 2cos(φ/2)+ 3. What is left to show is that U is a 3-orientation. Consider
any edge {a,b} ∈U . Suppose a,b are not in the same 3-orientation. Since b ∈ D[a,1],
there is a sensor in a’s 3-orientation which covers b. Similarly, there is a sensor in
b’s 3-orientation which covers a. Therefore, by Lemma 1 these 3-orientations can be
combined to form a larger 3-orientation of which both a and b are members. Since
U is connected, this process can be repeated until all sensors are a part of the same 3-
orientation. Therefore there must exist some orientation Gφ(S) of the sensors of S which
is a 3-orientation. Therefore by Lemma 2, there must exist some orientation Gφ(S) of
the sensors of S such that τGφ(S)≤ 3.

Regarding the complexity, a maximal matching can be constructed in constant time
[11] and each other step is local.

One may ask whether we can improve our result by considering the annulus graph G =
A(P,2cos(φ/2),2cos(φ/2) + 1− ε). However, we cannot guarantee minimum degree
greater than zero on G and consequently the properties of the unmatched vertices do
not hold.



36 E. Kranakis, F. MacQuarrie, and O. Morales-Ponce

4 Conclusion

In this paper we have examined issues relating to connectivity in the directional an-
tenna model. There remain unanswered questions relating to this problem. Can approx-
imations can be found for angles between π/2 and π/3? Can tighter bounds on range
and/or stretch factor be found? How does the Antenna Orientation Problem with Con-
stant Stretch Factor relate to the Antenna Orientation Problem for Strong Connectivity?
How would multiple antennae per sensor affect connectivity? How does the problem
change if Euclidean stretch factor is considered instead of hop-stretch factor?

The properties of this model may be of particular interest for questions such as: How
would routing work? What level of sender and receiver interference would be expected?
These are interesting questions and are worthy of study.

References

1. Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. Arxiv preprint
arXiv:1106.0855 (2011)

2. Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional antennas.
Arxiv preprint arXiv:1108.0492 (2011)

3. Bose, P., Carmi, P., Damian, M., Flatland, R., Katz, M., Maheshwari, A.: Switching to direc-
tional antennas with constant increase in radius and hop distance. In: Proceedings of Work-
shop on Algorithms and Data Structures, pp. 134–146 (2011)

4. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in
Wireless Networks with Directional Antennae. In: Proceedings of 20th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2008), Munich, Germany, June 14-16,
pp. 344–351 (2008)

5. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks
with directional antennas. Comput. Geom. Theory Appl. 44(9), 477–485 (2011)

6. Damian, M., Flatland, R.: Connectivity of graphs induced by directional antennas. Arxiv
preprint arXiv:1008.3889 (2010)

7. Damian, M., Flatland, R.: Spanning properties of graphs induced by directional antennas. In:
Electronic Proc. 20th Fall Workshop on Computational Geometry. Stony Brook University,
Stony Brook (2010)

8. Dobrev, S., Kranakis, E., Krizanc, D., Opatrny, J., Ponce, O.M., Stacho, L.: Strong Connec-
tivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle.
In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 72–86. Springer,
Heidelberg (2010)

9. Kranakis, E., Krizanc, D., Modi, A., Morales Ponce, O.: Maintaining connectivity in 3D
wireless sensor networks using directional antennae. In: 25th IEEE International Parallel
& Distributed Processing Symposium (IPDPS 2011), May 16–20. IEEE Press, Anchorage
(2011)

10. Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks using
directional antennae. In: Nikoletseas, S., Rolim, J. (eds.) Theoretical Aspects of Distributed
Computing in Sensor Networks. Springer (2010)

11. Wiese, A., Kranakis, E.: Local Maximal Matching and Local 2-Approximation for Vertex
Cover in UDGs (Extended Abstract). In: Coudert, D., Simplot-Ryl, D., Stojmenovic, I. (eds.)
ADHOC-NOW 2008. LNCS, vol. 5198, pp. 1–14. Springer, Heidelberg (2008)



On the Minimum Diameter Cost-Constrained

Steiner Tree Problem

Wei Ding1,� and Guoliang Xue2

1 Zhejiang Water Conservancy and Hydropower College
Hangzhou, Zhejiang 310000, China

dingweicumt@163.com
2 Department of Computer Science and Engineering

Arizona State University, Tempe, AZ 85287-8809, USA
xue@asu.edu

Abstract. Given an edge-weighted undirected graph G = (V,E, c, w)
where each edge e ∈ E has a cost c(e) ≥ 0 and another weight w(e) ≥ 0,
a set S ⊆ V of terminals and a given constant C0 ≥ 0, the aim is to find
a minimum diameter Steiner tree whose all terminals appear as leaves
and the cost of tree is bounded by C0. The diameter of tree refers to the
maximum weight of the paths connecting two different leaves in the tree.
This problem is called the minimum diameter cost-constrained Steiner
tree problem, which is NP-hard even when the topology of the Steiner
tree is fixed. In this paper, we deal with the fixed-topology restricted ver-
sion. We prove the restricted version to be polynomially solvable when
the topology is not part of the input and propose a weakly fully polyno-
mial time approximation scheme (weakly FPTAS) when the topology is
part of the input, which can find a (1+ε)–approximation of the restricted
version problem for any ε > 0 with specific characteristic.

Keywords: Minimum diameter, cost-constrained Steiner tree, weakly
fully polynomial time approximation scheme, fixed topology.

1 Introduction

The Steiner minimum tree (SMT) problem in graphs asks for a minimum length
connected subgraph of the given graph spanning a set of given terminals, which
has many applications in a variety of fields [9,14], such as communication net-
works, computational biology. The problem has been proved to be NP-hard in
the strong sense [11] and admitted a number of approximation algorithms with
a constant performance ratio [9,19,28]. In the paper, we are concerned with a
variant of SMT, called terminal Steiner tree (TeST), which requires all termi-
nals as its leaves. Since Lin and Xue proposed the definition of TeST and proved
the problem of finding a minimum length TeST to be NP-complete and MAX
SNP-hard [16], many researchers have put interests onto this problem in past a
decade and devised some constant performance ratio approximation algorithms
[3,8,10,16,17].

� Correspondence author.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 37–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



38 W. Ding and G. Xue

1.1 Related Works

A computer or communication network is frequently modeled as an undirected
edge-weighted graph G = (V,E, c, w) [2], where c(e) ≥ 0 and w(e) ≥ 0 represent
the cost and another weight on e respectively for each edge e ∈ E. Given a
subset s ⊂ V of terminals, let T = (U, F, c, w) be a TeST in G spanning S.
Clearly U ⊆ V and F ⊆ E. The cost of T is the sum of its all costs of edge,
denoted as c(T ) =

∑
e∈F c(e). For any two different nodes u, v ∈ U, u �= v, let

pT (u, v) denote the unique u-to-v path of T and w(pT (u, v)) denote the weight
of pT (u, v), similarly w(pT (u, v)) =

∑
e∈pT (u,v) w(e). Specially we call pT (u, v) a

leaf-to-leaf path when u, v ∈ S, u �= v. The maximum weight of leaf-to-leaf path of
T is called the diameter of T , denoted as w(T ) = maxu,v∈S,u�=v

∑
e∈pT (u,v) w(e).

A leaf-to-leaf path of T with its weight equal to the diameter of T is called a
diameter leaf-to-leaf path of T , denoted by p(T ). The number of edges on a path
p of T is called hop count of p, denoted by h(p). It is noted that the diameter
of tree involved in this paper is the maximum weight of path connecting two
different leaves instead of the maximum hop count between leaves [4,12,20].

The diameter-constrained Steiner tree (DCST) is a kind of extended Steiner
tree with its diameter no more than a given constant D0. The objective of the
minimum cost diameter-constrained Steiner Tree problem (MCDCSTP) is to find
a DCST with its cost minimized from the given graph. Marathe et al. [18] studied
the generalized MCDCSTP and proved it NP-hard to approximate the general-
ization within a logarithmic factor, presented a (1 + γ)�log |S|�–approximation
algorithm for a fixed γ > 0 and proved the weight of any leaf-to-leaf path in
the approximation is at most 2�log |S|�D0. When the solution tree is restricted
as a TeST, Ding et al. [6] studied the fixed topology version of MCDCSTP,
namely minimum cost diameter-constrained realization of objective tree problem
(MCDCRP), and gave a fully polynomial time approximation scheme (FPTAS).
The cost-constrained Steiner tree (CCST) is another kind of extension of Steiner
tree with its cost bounded by a given constant C0. The minimum diameter
cost-constrained Steiner Tree problem (MDCCSTP) aims to find a CCST with
a minimum diameter from the given graph. In [18], Marathe et al. studied the
generalization of MDCCSTP and proved its inapproximability, designed an ap-
proximation algorithm with a performance ratio of 2�log |S|� and proved the
cost of the approximation is no more than (1 + γ)�log |S|�C0 for a fixed γ > 0.

1.2 Our Contribution

In this paper, we are the first one to propose the weakly fully polynomial time
approximation scheme (weakly FPTAS). For ease of comparison, we present the
definitions of the classical FPTAS and weakly FPTAS as follows.

Definition 1. Given an input I, the algorithm Aε is a fully polynomial time ap-
proximation scheme (FPTAS) provided that it can find an approximation Aε(I)
satisfying Aε(I) ≤ (1 + ε)OPT (I) for any ε > 0 within a polynomial time in 1

ε
and |I|. In addition, Aε(I)→ OPT (I) when ε→ 0.



Minimum Diameter Cost-Constrained Steiner Tree 39

Definition 2. Given an input I, the algorithm AΣ is a weakly fully polynomial
time approximation scheme (weakly FPTAS or WFPTAS) provided that it can
find an approximation AΣ(I) satisfying AΣ(I) ≤ (1 + ε)OPT (I) for any ε > 0
with specific characteristic Π, i.e., ε ∈ Σ(Π, I) = {ε > 0 : ε satisfies Π for I},
within a polynomial time in 1

ε and |I|. Also, AΣ(I)→ OPT (I) when ε→ 0.

According to Definition 1, a classical FPTAS can find a (1 + ε)–approximation
of the problem definitely in a fully polynomial time for any real number ε > 0,
see [6,13,15,21,23,26,27]. However, Definition 2 implies that a weakly FPTAS
can find a (1+ ε)–approximation only for some available values of ε with specific
characteristic. Simply speaking, whether a weakly FPTAS can find a (1 + ε)–
approximation or not depends on the value of ε.

In the paper, we focus on the fixed topology restricted version of MDCCSTP,
called the minimum diameter cost-constrained realization of objective tree prob-
lem (MDCCRP) (formally defined in Sect. 2.2). Here, we give its rough definition
as follows: given an undirected edge-weighted complete graph G = (V,E, c, w), a
subset S ⊂ V of terminals, a given constant C0 ≥ 0, a sample TeST T = (V , E),
we let T –ROT denote a realization of T in G and aim to find a minimum di-
ameter T –ROT as T = (U, F, c, w) subject to the constraint of c(T ) ≤ C0. The
major contribution of this paper is to design a weakly FPTAS for MDCCRP.

The rest of this paper is organized as follows. In Sect. 2, we define MDCCRP
formally as well as its decision version, prove its NP-hardness, and make some
fundamental preliminaries. In Sect. 3, we present a pseudo-polynomial-time al-
gorithm for MCDCRP. In Sect. 4, we design a weakly FPTAS for MDCCRP. In
Sect. 5, we present some concluding remarks on this paper.

2 Preliminaries

2.1 Illustrate the Realization of Objective Tree

In [6], Ding et al. formally proposed the definition of realization of objective tree
in the given graph although the rudiment of such realization has been introduced
by Wang et al. in [24] and Xue et al. in [26] independently. Now let us recall the
realization of objective tree.

Let J represent an input as follows: an undirected edge-weighted complete
graph G = (V,E, c, w) in which every edge e ∈ E has a real-number cost c(e) ≥ 0
and an integer weight w(e) ≥ 0, a subset S ⊂ V of terminals and a sample TeST
T = (V , E).

Given a J , we always take T as a rooted tree since any unrooted tree can be
transformed into a rooted tree by designating its any nonleaf vertex as the root.
Let T –ROT denote a realization of objective tree T and T (α)–ROT denote a
realization of T (α) where T (α) is the subtree of T rooted at α for any vertex
α ∈ V . The T –ROT consists of all realizations of edge of T . In essence, for any
edge {α, β} ∈ E , the realization of {α, β} in G is determined by the mappings
of two endpoints α and β to two vertices of G. That is, the realization of T
is determined by all mappings of vertex of T . It is noted that each leaf (i.e., a



40 W. Ding and G. Xue

Fig. 1. Illustrating a realization of a binary objective tree

terminal) s ∈ S ⊂ V is required to be mapped to a fixed vertex s ∈ S ⊂ V
and each nonleaf α ∈ V \ S to a nonterminal v ∈ V \ S. Consequently, the key
task is to map all nonleaves of T to some nonterminals of G, which forms an
mapping function, denoted as λ : V \ S → V \ S where λ(α) = v means that
α ∈ V \ S is mapped to v ∈ V \ S. As an example in Fig. 1, the left-hand
graph is a given binary objective tree T = (V , E) and the right-hand graph is
a given graph G = (V,E, c, w) where all weights on edges are not marked for
ease of view. Three nonleaves x, y, r of T are mapped to three nonterminals
e, h, f of G respectively, and then {x, a}, {x, b}, {y, c}, {y, d}, {r, x}, {r, y} of T
are mapped to {e, a}, {e, b}, {h, c}, {h, d}, {f, e}, {f, h} of G respectively. These
form a realization of T in G distinguished by bold edges. Evidently, T –ROT has
a same tree topology as T .

An objective tree T always can be taken as a rooted tree by designating its
any nonleaf as its root, as well transformed into a binary tree using the method in
[6,22]. All vertices of V can be labeled by numbers 1, . . . , |V| in the order of from
bottom to root and from left to right on a level amongst T . Clearly |V| represents
the root ν of T . Let |S| = k, |V | = n, and then |V \ S| = k − 1, |V \ S| = n− k.
Let the maximum hop count between two different leaves in T be m.

According to above analysis, there exist three kinds of T –ROT in all. We call
T –ROT degenerate if different nonleaves of T are mapped to a same nontermi-
nal of G and undegenerate otherwise. Furthermore, we call a degenerate T –ROT
strongly degenerate if two adjacent vertices of T are mapped to a same nonter-
minal of G and weakly degenerate otherwise. In practice, the strongly degenerate
T –ROT is invalid and easy to be avoided by letting w(v, v) = ∞ additionally
for each vertex v of G.



Minimum Diameter Cost-Constrained Steiner Tree 41

2.2 The Problems and NP-Hardness

Problem 1. Given an input J and a real number C0 ≥ 0, the minimum diameter
cost-constrained realization of objective tree problem (MDCCRP) aims to find a
minimum diamter T –ROT as T = (U, F, c, w) in G subject to the constraint
that c(T ) ≤ C0.

The decision version of MDCCRP is formally defined as follows.

Problem 2. Given an input J , a real number C0 ≥ 0, and a constant B ≥ 0, is
there a T –ROT as T = (U, F, c, w) in G subject to the constraint that c(T ) ≤ C0

such that w(T ) ≤ B?

Theorem 1. Problem 2 is NP-hard.

Theorem 1 implies that the undegenerate version of MDCCRP is NP-hard (its
hardness is no less than that of Hamilton Path Problem) when T is part of
the input. Given any T , the number of all available undegenerate T –ROT’s is(|V \S|
|V\S|

)
·(|V \S|)! =

(
n−k
k−1

)
·(k−1)! = (n−k)!

(n−2k+1)! = Ω(nk−1). Since we can compute

its diameter and cost by using DF (depth-first search) procedure to travel it for
a given TeST spanning S, the time complexity of computing the undegenerate
version of MDCCRP is O(knk−1). Thus the undegenerate version of MDCCRP is
polynomially solvable when T is not part of the input but fixed. Fortunately, the
weakly degenerate T –ROT arises frequently in practice and more representative
than the undegenerate one. Therefore, we focus on the weakly degenerate version
of MDCCRP in the rest of this paper where the objective tree is a rooted binary
tree.

Problem 3. Given an input J and a real number D0 ≥ 0, the minimum cost
diameter-constrained realization of objective tree problem (MCDCRP) aims to
find a minimum cost T –ROT as T = (U, F, c, w) in G subject to the constraint
that w(T ) ≤ D0.

3 A Pseudo-polynomial-Time Algorithm for MCDCRP

In this section, we present a pseudo-polynomial-time algorithm for MCDCRP,
which can compute the minimum cost of T –ROT with a diameter of no more
than η, for given η ≥ 0. Let w(T ) denote the minimum diameter of T –ROT
with a cost of no more than C0. On basis of this algorithm, we devise another
algorithm described as Algorithm 1, which can decide whether w(T ) > η or
w(T ) ≤ η for MDCCRP in a pseudo polynomial time.

Given an objective tree T , we use the bottom-up dynamic programming to
realize it. For any T –ROT as T = (U, F, c, w), we refer to the radius of T as
the maximum weight of pT (s, r), s ∈ S in T provided that λ(ν) = r. For any
α ∈ V , when λ(α) = v, we use C[α, v,D,R] to denote the minimum cost of all
T (α)–ROT’s with a diameter bounded by D and a radius bounded by R.



42 W. Ding and G. Xue

For all D = 0, 1, . . . , η and R = 0, 1, . . . ,D, when α ∈ V is a leaf of T ,
considering that T (α) has a single vertex, we initialize C[s, s,D,R] = 0 if α = s ∈
S. When α ∈ V is a nonleaf of T , it is required that λ(α) = v ∈ V \ S. We show
a recurrence equation for computing C[α, v,D,R] in Theorem 2. Moreover, we
set C[α, v,D,R] =∞ when either D < 0 or R < 0. It is noted that λ(β) = λ(α)
if α is a dummy vertex for β in the resulting binary tree T B, as well the cost and
weight on {x, y} are both set to zero if {x, y} is an artificial edge in T B. Here,
for any edge {u, v} ∈ E, we let c(u, v) and w(u, v) denote the cost and weight
on {u, v} respectively.

Theorem 2. For all D = 0, 1, . . . , η and R = 0, 1, . . . ,D, when λ(α) = v, we
can compute C[α, v,D,R] by

C[α, v,D,R] = min
Rl+Rr≤D,

0≤Rl,Rr≤R

{
min

vl∈V \S
{C[αl, vl,D,Rl − w(vl, v)] + c(vl, v)}

+ min
vr∈V \S

{C[αr, vr,D,Rr − w(vr , v)] + c(vr, v)}
}

.

(1)

We can accelerate the computation of C[α, v,D,R] using the following way. Let
CD[α, v,D,R] denote the minimum cost of all T (α)–ROT’s with diameter D and
a radius of no more than R, and CD

R
[α, v,D,R] denote the minimum cost of all

T (α)–ROT’s with diameter D and radius R. We have

– C[α, v,D,R] = min{C[α, v,D − 1,R], CD[α, v,D,R]};

– CD[α, v,D,R] = min{CD[α, v,D,R− 1], CD

R
[α, v,D,R]}.

When α is the root ν, we compute minR=0,1,...,D minv∈V \S C[ν, v,D,R] for all
D = 0, 1, . . . , η, the value of which is just the minimum cost of T –ROT with
diameter bounded by η. Above discussions form a pseudo-polynomial-time al-
gorithm for finding a minimum cost T –ROT with diameter bounded by η for
MCDCRP, see the analysis of Step 2 in the proof of Theorem 3. By investiga-
tion, we discover that either none or some of them are no more than C0 in all
values of minR=0,1,...,D minv∈V \S C[ν, v,D,R],D = 0, 1, . . . , η. Let

w(T , η) = min

{
D ∈ {0, 1, . . . , η} : min

R=0,1,...,D
min

v∈V \S
C[ν, v,D,R] ≤ C0

}
. (2)

If the former occurs, we set w(T , η) = ∞ and output NO. Else if the latter
occurs, we record w(T , η) and output YES. This leads us to Algorithm 1, the
step 2 of which uses the dynamic programming approach [6,7,26] for deciding
whether w(T ) > η or w(T ) ≤ η for MDCCRP. Theorem 3 shows that the time
complexity of Algorithm 1 is also pseudopolynomial.

Theorem 3. Given an MDCCRP where G has n vertices and k terminals, the
time complexity of Algorithm 1 is O(kn2η3). Furthermore, we infer w(T ) ≤ η if
the output is YES and w(T ) > η if the output is NO.



Minimum Diameter Cost-Constrained Steiner Tree 43

Algorithm 1. Pseudo-polynomial-time algorithm for MDCCRP.

Input: An input J , two positive integers C0 and η.
Output: Either YES together with w(T , η) or NO.

Step 1 for {∀α ∈ V; ∀v ∈ V ; D = 0 to η; R = 0 to η} do
Initialize C[α, v,D,R] := 0;

endfor
Step 2 for α = 1 to |V| do

if α ∈ S then break;
else for {∀v ∈ V \ S; D = 0 to η; R = 0 to D} do

Compute C[α, v,D,R] by Eq. (1);
endfor

Step 3 w(T , η) := min

{
D ∈ {0, 1, . . . , η} : min

R=0,1,...,D
min

v∈V \S
C[ν, v,D,R] ≤ C0

}
;

if w(T , η) = ∞ then output NO; else output YES;
When the answer is YES, a minimum diameter T –ROT with cost
bounded by C0 can be traced out top-down from ν of T .

4 A Weakly FPTAS for MDCCRP

In this section, we apply standard technique of scaling and rounding to design
a weakly FPTAS for MDCCRP based on Algorithm 1, see [6,13,15,21,26,27]. To
prepare for the weakly FPTAS, we need several auxiliary algorithms which are
used as subroutines in the weakly FPTAS. In the following subsections, we will
present these in detail.

4.1 Auxiliary Graphs

Let wθ be the scaled edge weight function such that wθ(e) = w(e) × θ for each
e ∈ E. Then we construct an auxiliary graph Gθ = (V,E, c, wθ) which is the
same as G = (V,E, c, w) except that the weight w(e) is changed to wθ(e) for
each e ∈ E. Correspondingly, we have wθ(T , η) and wθ(T ). Let w�θ	(e) be the
scaled-rounding edge weight function such that w�θ	(e) = �w(e) × θ� for each
e ∈ E. Similarly, we construct G�θ	 = (V,E, c, w�θ	). Let T , Tθ and T�θ	 be
a minimum diameter T –ROT with cost bounded by C0 in G, Gθ and G�θ	
respectively. Lemma 1 follows immediately.

Lemma 1. wθ(T ) = wθ(Tθ) ≤ wθ(T�θ	), w�θ	(T�θ	) ≤ w�θ	(T ).

For ease of presentation, we also use �θ� to represent the edge scaled-rounding
operation. Each �θ� results in a G�θ	. Let p(T ) be a diameter leaf-to-leaf path
of T in G and p(T�θ	) be a diameter leaf-to-leaf path of T�θ	 in G�θ	. Clearly,
w(T ) = w(p(T )) and wθ(T ) = wθ(p(T )). All θ such that p(T ) is also a diameter
leaf-to-leaf path of T in G�θ	 form a set, formulated as Eq. (3), and all θ such
that p(T�θ	) in G�θ	 is also a diameter leaf-to-leaf path of T�θ	 in G, formulated
as Eq. (4), and otherwise. An input J together with C0 are represented as I.

Θ1(I) = {θ : w(T ) = w(p(T )), w�θ	(T ) = w�θ	(p(T ))} , (3)



44 W. Ding and G. Xue

Θ2(I) = {θ : w(T�θ	) = w(p(T�θ	)), w�θ	(T�θ	) = w�θ	(p(T�θ	))} . (4)

Lemma 2. For any θ > 0, we infer that θ ∈ Θ1(I) if θ satisfies that w(p(T ))−
w(p1) ≥ h(p(T ))

θ for any leaf-to-leaf path p1 on T , and θ ∈ Θ2(I) if θ satisfies
that w�θ	(p(T�θ	))− w�θ	(p2) ≥ h(p2) for any leaf-to-leaf path p2 on T�θ	.

As a counterexample, given a graph G and a T , T has two different leaf-to-
leaf paths p′ = e1e2e3e4e5e6 with w(e1) = . . . = w(e6) = 3 and p′′ = e7e8 with
w(e7) = 8, w(e8) = 9. Let p(T ) = p′ in G. We have w(p′) = w(e1)+ . . .+w(e6) =
18 and w(p′′) = w(e7)+w(e8) = 17. Set θ1 = 3.3, then �θ1� to G generates G�θ1	
with w�θ1	(e1) = . . . = w�θ1	(e6) = �3 × 3.3� = 9 and w�θ1	(e7) = �8 × 3.3� =
26, w�θ1	(e8) = �9×3.3� = 29. We have w�θ1	(p

′) = w�θ1	(e1)+ . . .+w�θ1	(e6) =
54 and w�θ1	(p

′′) = w�θ1	(e7) + w�θ1	(e8) = 55. Therefore, p′ is not a diameter
leaf-to-leaf path of T in G�θ1	. As a result, θ1 = 3.3 /∈ Θ1(I). Likewise, we can
get a counterexample of θ2 /∈ Θ2(I).

Theorem 4. Given any I of MDCCRP, it is certain that every θ ≥ 2m satisfies
that θ ∈ Θ1(I) ∩Θ2(I).

4.2 Polynomial Time Approximate Testing

Given a real number W > 0, deciding whether w(T ) > W or w(T ) < W for MD-
CCRP is NP-hard. However, for any given constant ε > 0, we can decide whether
w(T ) > W or w(T ) < (1 + ε) ×W in a fully polynomial time using the stan-
dard technique of scaling and rounding [6,13,15,21,26,27]. The technique plays
an important role in our weakly FPTAS. This approximate testing is described
as TEST, see Algorithm 2.

Algorithm 2. TEST(W, ε).

Input: An input J , two positive constants C0 and W, and a positive real number
ε ∈ (0, 1

W
].

Output: Either YES or NO.

Step 1 Set θ := 2m
W×ε

; w�θ�(e) := 	w(e)× θ
 for each e ∈ E; Set η := 	W × θ
;
Step 2 Replace G by G�θ� into J ; Apply Algorithm 1;

if w�θ�(T , η) ≤ η then output YES; else output NO;

Theorem 5. Given a J , three constants W > 0,C0 ≥ 0 and 0 < ε ≤ 1
W , we

infer w(T ) > W if TEST(W, ε) = NO and w(T ) < (1+ ε)×W if TEST(W, ε) =

YES. In addition, the worst-case time complexity of TEST(W, ε) is O(kn
2m3

ε3 ).

4.3 Weakly Fully Polynomial Time Approximation Schemes

In this subsection, we will present a weakly fully polynomial time approximation
scheme (abbreviated to weakly FPTAS or WFPTAS), described as Algorithm 3,



Minimum Diameter Cost-Constrained Steiner Tree 45

and an improved weakly FPTAS based on Algorithm 3, described as Algorithm
4. There exists some constant Ω such that both of Algorithm 3 and 4 can find
a (1 + ε)-approximation of MDCCRP for a subset of available values of ε > Ω
with specific characteristic of θ = θ(ε) ∈ Θ1(I) ∩ Θ2(I), and find one definitely
for all ε ≤ Ω .

Algorithm 3. WFPTAS1(ε).

Input: An input J , three positive constants LB,UB and C0, and a positive real
number ε ∈ (0, 1

2×LB
].

Output: A cost-constrained T –ROT as TA such that w(TA) < (1 + ε)×w(T ).

Step 1 Set θ := m
LB×ε

; w�θ�(e) := 	w(e)× θ
 for each e ∈ E; Set η := 	UB× θ
;
Step 2 Replace G by G�θ� into J ; Apply Algorithm 1;

Theorem 6. Given an input J , a known lower bound LB and an upper bound
UB on w(T ), and two constants C0 ≥ 0 and 0 < ε ≤ 1

2×LB , WFPTAS1(ε) can

compute a T –ROT as TA such that w(TA) < (1 + ε)× w(T ) in O(kn
2m3×UB3

ε3×LB3 )

time, provided that we get a scaled-rounding weight function w�θ	(e) = �w(e)×θ�
and set η = �UB× θ� using θ = m

LB×ε .

Theorem 6 shows that the time complexity of WFPTAS1 is related to the ratio
UB
LB . As in [6,13,26], we can reduce the time complexity by initializing LB and UB
as easily computable values and then using the bisection method to reduce the
ratio. An initial value of LB can be computed as follows. Use the method in [5]
to compute the minimum diameter of T –ROT ignoring the bound on cost, which
occupies O(n3 + k(n− k)3) time. We can take this minimum as the initial value
of LB. If W < LB (sufficient but unnecessary condition), there is no T –ROT
with cost bounded by C0. An initial value of UB can be computed as follows.
Find the maximum edge weight in G, which occupies O(logn) time. We can take
m×maxe∈E w(e) as the initial value of UB.

Let ζ = 1
UB , we apply the bisection method to drive UB

LB down to some number
below 2× (1+ ζ). Suppose that our lower bound LB and upper bound UB satisfy

that UB
LB > 2 × (1 + ζ). Let W = (LB×UB

1+ζ )
1
2 . If TEST(W, ζ) = NO then W is a

new lower bound and UB is also an upper bound on w(T ). If TEST(W, ζ) = YES
then (1 + ζ)×W is a new upper bound and LB is also a lower bound on w(T ).
Therefore, the ratio of the new upper bound over the new lower bound will be
always no more than (UBLB × (1+ζ))

1
2 since θ ∈ Θ1(I)∩Θ2(I) always follows from

θ = 2m
W×ζ ≥ 2m by Theorem 4. Above process is called an iteration. Such an

iteration can be accomplished in a fully polynomial time (according to Theorem
5). Moreover, UB

LB will be reduced to a number below 4 in logS iterations (S
is the input size of the given instance), see [6,26]. Above analysis leads to our
WFPTAS2, described as Algorithm 4. The time complexity of Algorithm 4 is
shown in Theorem 7.



46 W. Ding and G. Xue

Algorithm 4. WFPTAS2(ε).

Input: An input J , two positive constants C0 and ε.

Output: A cost-constrained T –ROT as TA such that w(TA) < (1 + ε)× w(T ).

Step 1 Set both LB and UB to their initial values as mentioned above;
if 0 < ε ≤ 1

2×UB
then

Let ζ := 1
UB , goto Step 2;

else Return;
endif

Step 2 if UB ≤ 2(1 + ζ)× LB then
goto Step 3;

else

W := ( LB×UB
1+ζ

)
1
2 ;

if TEST(W, ζ) = NO, then set LB := W;
if TEST(W, ζ) = YES, then set UB := (1 + ζ)×W;
goto Step 2;

endif
Step 3 Set θ := m

LB×ε
; w�θ�(e) := 	w(e)× θ
 for each e ∈ E; Set η := 	UB× θ
;

Replace G by G�θ� into J ; Apply Algorithm 1;

Theorem 7. Given an input J , two constants C0 ≥ 0 and ε > 0, if there is
a cost-constrained T –ROT, WFPTAS2(ε) will find a cost-constrained T –ROT
as TA such that w(TA) < (1 + ε) × w(T ). Furthermore, the time complexity of

WFPTAS2(ε) is O(kn
2m3

ε3 × logS), where S is the input size of the given instance.

5 Concluding Remarks

In this paper, we are concerned with MDCCRP in a complete graph and have
presented two weakly FPTAS’s. The major difference between a classical FPTAS
and a weakly FPTAS is that, given a real number ε > 0, the former can find
a (1 + ε)–approximation of problem definitely regardless of the value of ε while
the latter indefinitely. Theorems 5, 6 and 7 reflect a common fact that whether
their corresponding results hold or not relies on θ ∈ Θ1(I) ∩ Θ2(I) or not, that
is, essentially on the value of ε. The characteristic of θ = θ(ε) ∈ Θ1(I)∩Θ2(I) is
represented as Π . As a whole, for a subset of available values of ε with specific
characteristic of admitting Π , WFPTAS can find a (1 + ε)–approximation of
problem. The subset can be formulated as

Σ(Π, I) = {ε > 0 : θ = θ(ε) ∈ Θ1(I) ∩Θ2(I)} . (5)

Theorem 4 shows that every θ ≥ 2m satisfies θ ∈ Θ1(I)∩Θ2(I), i.e., there exists
a constant Ω such that every 0 < ε ≤ Ω satisfies θ = θ(ε) ≥ 2m, which ensures
that w(TA)→ w(T ) when ε→ 0. However, only a subset of available values of ε
satisfies θ = θ(ε) ∈ Θ1(I) ∩Θ2(I) when ε > Ω. This paper gives Ω = θ−1(2m).
It is also of interests to improve the value of Ω.



Minimum Diameter Cost-Constrained Steiner Tree 47

Given a real number ε > 0, LB[0] and UB[0] as discussed in Sect. 4.3, when

0 < ε ≤ 1
2×UB[0]

, WFPTAS1 can find a (1 + ε)–approximation of MDCCRP

in O(kn
2m3

ε3 × Δ1) time where Δ1 = (UB[0]/LB[0])
3 and WFPTAS2 can find

a (1 + ε)–approximation of MDCCRP in O(kn
2m3

ε3 × Δ2) time where Δ2 =
�log(logUB[0] − log LB[0])�. From the theoretical point of view, since Δ2 � Δ1,
the time complexity of WFPTAS2 is quite lower than that of WFPTAS1.

References

1. Apostolopoulos, G., Guerin, R., Kamat, S., Tripathi, S.: Quality of service based
routing: a performance perspective. In: Proc. ACM SigComm 1998, pp. 17–28
(1998)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan, London
(1976)

3. Chen, Y.H.: An Improved Approximation Algorithm for the Terminal Steiner Tree
Problem. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O.
(eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 141–151. Springer, Heidelberg
(2011)

4. Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree
in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000.
LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

5. Ding, W.: Many-to-Many Multicast Routing Under a Fixed Topology: Basic Ar-
chitecture, Problems and Algorithms. In: First International Conference on Net-
working and Distributed Computing (ICNDC 2010), pp. 128–132 (2010)

6. Ding, W., Lin, G., Xue, G.: Diameter-Constrained Steiner Trees. Discrete Mathe-
matics, Algorithms and Applications 3(4), 491–502 (2011)

7. Ding, W., Xue, G.: A Linear Time Algorithm for Computing a Most Reliable
Source on a Tree Network with Faulty Nodes. Theor. Comput. Sci. 412, 225–232
(2011)

8. Drake, D.E., Hougrady, S.: On Approximation Algorithms for the Terminal Steiner
Tree Problem. Info. Proc. Lett. 89, 15–18 (2004)

9. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks.
World Scientific Publishing Co. Pte. Ltd., Singapore (2008)

10. Fuchs, B.: A Note on the Terminal Steiner tree Problem. Info. Proc. Lett. 87,
219–220 (2003)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

12. Gouveia, L., Magnanti, T.L.: Network Flow Models for Designing Diameter-
Constrained Minimum Spanning and Steiner Trees. Networks 41, 159–173 (2003)

13. Hassin, R.: Approximation Schemes for the Restricted Shortest Path Problem.
Math. of Oper. Res. 17, 36–42 (1992)

14. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of
Disc. Math., vol. 53. North-Holland, Amsterdam (1992)

15. Ibarra, O., Kim, C.: Fast Approximation Algorithms for the Knapsack and Sum
of Subset Problems. J. ACM 22(4), 463–468 (1975)

16. Lin, G., Xue, G.: On the Terminal Steiner Problem. Info. Proc. Lett. 84, 103–107
(2002)



48 W. Ding and G. Xue

17. Martineza, F.V., Pinab, J.C.D., Soares, J.: Algorithm for Terminal Steiner Trees.
Theor. Comput. Sci. 389, 133–142 (2007)

18. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria Network Design Problems. J. Algorithms 28(1), 142–171 (1998)

19. Robins, G., Zelikovsky, A.: Improved Steiner Tree Approximation in Graphs. In:
Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA
2000), pp. 770–779 (2000)

20. dos Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving Diameter Constrained Min-
imum Spanning Tree Problems in Dense Graphs. In: Ribeiro, C.C., Martins, S.L.
(eds.) WEA 2004. LNCS, vol. 3059, pp. 458–467. Springer, Heidelberg (2004)

21. Sahni, S.: General Techniques for Combinatorial Approximations. Oper. Res. 35,
70–79 (1977)

22. Tamir, A.: An O(pn2) Algorithm for the p-Median and Related Problems on Tree
Graphs. Oper. Res. Lett. 19, 59–64 (1996)

23. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
24. Wang, L., Jia, X.: Note Fixed Topology Steiner Trees and Spanning Forests. Theor.

Comput. Sci. 215(1-2), 359–370 (1999)
25. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia ap-

plications. IEEE Journal on Selected Areas in Communications 14, 1228–1234
(1996)

26. Xue, G., Xiao, W.: A Polynomial Time Approximation Scheme for Minimum Cost
Delay-Constrained Multicast Tree under a Steiner Topology. Algorithmica 41(1),
53–72 (2004)

27. Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial Time Approximation
Algorithms for Multi-Constrained QoS Routing. IEEE/ACM Trans. Netw. 16, 656–
669 (2008)

28. Zelikovsky, A.: An 11
6
-Approximation Algorithm for the Network Steiner Problem.

Algorithmica 9(5), 463–470 (1993)



The Edge-Centered Surface Area

of the Arrangement Graph

Eddie Cheng1, Ke Qiu2, and Zhizhang Shen3

1 Dept. of Mathematics and Statistics, Oakland University, USA
echeng@oakland.edu

2 Dept. of Computer Science, Brock University, Canada
kqiu@brocku.ca

3 Dept. of Computer Science and Technology, Plymouth State University, USA
zshen@plymouth.edu

Abstract. We suggest the notion of the surface area centered at an
edge for an interconnection network, which generalizes the usual notion
of surface area of a network centered at a vertex. Following an elementary
approach, we derive an explicit expression of the edge-centered surface
area of the arrangement graph.

Keywords: Edge-centered surface area, arrangement graph, combina-
torial studies, interconnection networks.

1 Introduction

Given a vertex v in a graph G, a question one may ask is how many vertices are
at distance i from v, i ∈ [0, D(G)], where D(G) stands for the diameter of G.
This quantity is referred to in the literature, among others, as the surface area
with radius i centered at v [6].

The surface area of a (di)graph can find several applications in network per-
formance evaluation, e.g., in computing various bounds for the problem of k-
neighborhood broadcasting[5] and in identifying spanning trees [9]. As a result,
this surface area problem has been studied for a variety of graphs, including the
rotator graph, the star graph, the k-ary n-cube, the (n, k)-star graph, and the
arrangement graph (For the solution to this problem for the aforementioned and
other graphs, readers are referred to[6,10] and the references cited within.)

In this paper, we study a related question: given a reference edge (v, w) in a
graph G, how many vertices are at distance i from (v, w), i ∈ [0, D(G)]. We refer
to this quantity as the surface area with radius i centered at (v, w), denoted as
BG(v, w, i) in this paper. We will dropG from this notation, and the others, when
the context is clear. We also use (BG(v, w, 0), BG(v, w, 1), . . . , BG(v, w,D(G)))
to refer to the (v, w)-centered surface area sequence of G.

This notion of edge-centered surface area of a graph is clearly an immediate
generalization of the above vertex-centered surface area, thus interesting in its
own right as a combinatorial problem. Moreover, it is recently suggested that

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 49–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



50 E. Cheng, K. Qiu, and Z. Shen

the surface area centered at a path of length 2 is directly related to the con-
ditional diagnosability of interconnection networks [11]. Thus, the study of the
edge-centered surface area provides a starting point to this unexplored territory.

Let G be a simple and connected graph, and let (v, w) be an edge in G. It is
clear that BG(v, w, 0) = 2, since the only such vertices of distance 0 from (v, w)
are v and w themselves. In general, let i ∈ [1, D(G)], for a vertex u, if d(u, v) = i,
but d(u,w) < i, then the distance from u to (v, w) would be strictly less than
i. On the other hand, the very existence of (v, w) implies d(u,w) ≤ i+ 1. These
facts and a symmetric consideration lead to the following definition.

Definition 1. Let G be a simple and connected graph, and let (v, w) be an edge
of G. For i ∈ [1, D(G)],

BG(u, v, i) = EG(v, w, i) + SG(v, w, i) + LG(v, w, i), (1)

where

EG(v, w, i) = |{u|(d(u, v) = i) ∧ (d(u,w) = d(u, v))}| , (2)

SG(v, w, i) = |{u|(d(u, v) = i) ∧ (d(u,w) = d(u, v) + 1)}| , and (3)

LG(v, w, i) = |{u|(d(u, v) = i+ 1) ∧ (d(u,w) = d(u, v)− 1)}| . (4)

We note that, for u, v, w ∈ V (G), if (v, w) is an edge in G and d(u, v) = d(u,w) ≥
1, then any pair of shortest paths from u to v and w, respectively, together with
(v, w), induces an odd cycle in G. Since no bipartite graph contains an odd cycle,
the following result is immediate.

Proposition 1. Let G be a bipartite graph. For all (v, w) ∈ G, and i ∈ [1, D(G)],
EG(v, w, i) = 0.

The rest of the paper proceeds as follows: in the next section, after a brief
discussion of the arrangement graph, we explore the relevant structures of its
vertices. We then derive the edge-centered surface area of the arrangement graph
in Section 3, and those of some of the other structures in Section 4, which also
concludes this paper.

2 Arrangement Graph and Its Vertex Structures

The arrangement graph [4] preserves many of the nice properties of the well-
known star graph [1]: both vertex and edge symmetric, a small diameter, a hier-
archical structure, simple minimum routing, and various fault tolerance features;
while bringing a solution to the scalability issue associated with the star graph
by providing flexibility, with an additional parameter, in choosing an appropriate
graph for a network with a given size.

Let n ≥ 2, 〈n〉 = {1, 2, . . . , n}, and k ∈ [1, n), an arrangement graph, An,k(V,E),
An,k for short, is defined as follows: V is the collection of all the k-permutations,
p1p2 · · · pk, over 〈n〉, and for all u, v ∈ V, (u, v) ∈ E if and only if u and v differ
in exactly one position. We call ek = 12 . . . k the identity vertex of An,k, all the



The Edge-Centered Surface Area of the Arrangement Graph 51

symbols in [1, k] internal symbols, and those in (k, n] external. We also call all
positions in [1, k] internal positions, and those in (k, n] external. Fig. 1 shows
A4,2, where 12 is adjacent to 13 and the external symbol 3 occurs in the internal
position 2 of node 13.

41

42

12 32

14 34

13 31
24

23 2143

Fig. 1. A4,2

It is pointed out in [4,10,2] that a vertex u(�= ek) in An,k, as a partial permu-
tation, can be converted to an extended permutation on 〈n〉 and then be factored
as a collection of cycles, referred to as the cycle structure of u, denoted by C(u) in
this paper. Such a cycle structure is unique except for the order of these cycles.
Furthermore, for u ∈ An,k, C(u) with b(u) symbols consists of gI(u) non-trivial
internal cycles1 of bI(u) symbols and gE(u) non-trivial external cycles of bE(u)
symbols. Each non-trivial internal cycle contains at least two internal symbols
and no external symbol and each non-trivial external cycle contains exactly one
external symbol and at least one internal symbol.

For example, given z = 6351792 ∈ A9,7, we first convert z to z′ = 635179284
on 〈9〉 as follows: Since 8 does not occur in z, we let z′8 = 8. On the other hand,
since z6 = 9, z1 = 6, and z4 = 1, but 4 does not occur in z, we define z′9 = 4.
Then, it is easy to see that C(z′), always denoted by C(z), is (9; 4, 1, 6)(2, 3, 5, 7),
where (9; 4, 1, 6) is a non-trivial external cycle and 9 its external symbol, as
indicated with ‘;’, (2, 3, 5, 7) is a non-trivial internal cycle, and, incidentally, 8 is
a fixed point of C(z). Thus, gI(z) = gE(z) = 1, bI(z) = bE(z) = 4, and b(z) = 8.

Let u ∈ An,k, C(u) be its cycle structure, its distance to ek can be expressed
as follows [4,2]:

d(u, ek) = b(u) + gI(u)− gE(u). (5)

For example, d(z, e7) = 8, and a shortest path from z to e7 is given as follows:

635179284
(4,9)→ 635479281

(1,9)→ 135479286
(6,9)→ 135476289

(7,8)→ 135476829
(2,8)→ 125476839

(3,8)→ 123476859
(5,8)→ 123456879

(7,8)→ 123456789,

1 When a cycle contains exactly one symbol, we call it a trivial cycle, and the symbol
a fixed point of C(u).



52 E. Cheng, K. Qiu, and Z. Shen

where, with “u
(p1,p2)→ v”, we obtain an extended permutation v by applying a

transposition (p1, p2) to another extended permutation u.
The vertex-centered surface area problem of An,k has been studied and solved

in [2]. When investigating the edge-centered surface area of An,k, since this graph
is edge symmetric, we can choose any edge as the reference edge of the sought
surface area. Let u ∈ An,k, we define ϕ(u) by replacing 1 with k + 1, if 1 occurs
in u, and/or replacing k + 1 with 1, if k + 1 occurs in u. For example, in A4,2,
ϕ(13) = 31, ϕ(32) = 12 since only 2 occurs in (32), and ϕ(24) = 24, since neither
1 nor 3 occurs in 24. Clearly, ϕ(ek) = (k+1)2 · · · k, and ϕ(ϕ(ek)) = ek. Moreover,
since ϕ is an automorphism of An,k, for u ∈ An,k, d(u, ϕ(ek)) = d(ϕ(u), ek). We
henceforth adopt (ek, ϕ(ek)) as the reference edge.

We are now ready to characterize, for any vertex u ∈ An,k, the relationship
between d(u, ek) and d(u, ϕ(ek)), in terms of its cycle structure.

Theorem 1. Let u be a vertex of An,k, then

1. if k + 1 occurs in a trivial external cycle in C(u), and 1 is a fixed point of
C(u), then d(u, ϕ(ek)) = d(u, ek) + 1;

2. if k+1 occurs in a trivial external cycle and 1 occurs in a non-trivial internal
cycle in C(u), then d(u, ϕ(ek)) = d(u, ek)− 1;

3. if k+1 occurs in a trivial external cycle and 1 occurs in a non-trivial external
cycle in C(u), then d(u, ϕ(ek)) = d(u, ek);

4. if k + 1 occurs in a non-trivial external cycle and 1 is a fixed point of C(u),
then d(u, ϕ(ek)) = d(u, ek) + 1;

5. if k + 1 occurs in a non-trivial external cycle and 1 occurs in a non-trivial
internal cycle in C(u), then d(u, ϕ(ek)) = d(u, ek)− 1;

6. if k+1 and 1 occur in the same non-trivial external cycle, (k+1, . . . , 1), in
C(u), then d(u, ϕ(ek)) = d(u, ek)− 1;

7. if k+1 and 1 occur in the same non-trivial external cycle, (k+ 1, . . . , 1, A),
A �= ε, in C(u), then d(u, ϕ(ek)) = d(u, ek) + 1;

8. if k+1 and 1 occur in two different non-trivial external cycles in C(u), then
d(u, ϕ(ek)) = d(u, ek).

Proof: We prove the first case when k+1 occurs in a trivial external cycle, and 1
occurs in a trivial internal cycle. Since u1 = 1, by definition, ϕ(u)1 = k+1.On the
other hand, since k+1 does not occur in u, 1 does not occur in ϕ(u)1 · · ·ϕ(u)k. By
definition, ϕ(u)′k+1 = 1. This leads to an extra external cycle (k+1; 1), containing
two extra symbols, in C(ϕ(u)). Since none of the other cycles is involved, by Eq. 5,

d(ϕ(u), e) = b(ϕ(u)) + gI(ϕ(u))− gE(ϕ(u)) = (b(u) + 2) + gI(u)− (gE(u) + 1)

= d(u, e) + 1.

The other cases can be similarly proved. �
We use Table 1 to demonstrate Theorem 1 in terms of A4,2, where the Case
column refers to the case index as given in the Theorem 1. We note one case is
missing, i.e., when k + 1 occurs in an external cycle and 1 occurs in an internal
cycle in C(u), then d(u, ϕ(ek)) = d(u, ek) − 1. Indeed, in A4,2, if the symbol 3



The Edge-Centered Surface Area of the Arrangement Graph 53

occurs in a non-trivial external cycle, containing at least one internal symbol,
which cannot be 1, thus, 2 has to be associated with 3. Then, as a non-trivial
internal cycle has to contain at least two internal symbols but only the symbol
1 is remaining, no vertex in A4,2 could fall into Case 5.

Table 1. (ek, ϕ(ek))-centered surface area for A4,2

u u′ C(u) ϕ(u) d(u, ek) d(u, ϕ(ek)) i = d(u, (ek, ϕ(ek))) Case

12 1234 ∅ 3214 1 0 0 1

32 3214 (3; 1) 1234 0 1 0 6

14 1432 (4; 2) 3412 2 1 1 1

42 4231 (4; 1) 4231 1 1 1 3

13 1324 (3; 2) 3124 2 1 1 4

34 3412 (3; 1)(4; 2) 1432 1 2 1 6

31 3124 (3; 2, 1) 1324 1 2 1 6

21 2134 (1, 2) 2314 2 3 2 2

41 4132 (4; 2, 1) 4321 2 2 2 3

24 2431 (4; 1, 2) 2431 2 2 2 3

23 2314 (3; 1, 2) 2134 3 2 2 7

43 4321 (3; 2)(4; 1) 4132 2 2 2 8

3 Derivation of the Surface Area Expression

We now proceed to derive the surface area of the arrangement graph, An,k,
centered at the edge (ek, ϕ(ek)). We start with the following result, which is
immediate by Theorem 1, Eqs. 2, 3 and 4.

Corollary 1. Let u ∈ An,k, for i ∈ [1, D(An,k)],

EAn,k(ek, ϕ(ek), i) = |{u|d(u, ek) = i, and C(u) falls into either Case 3 or 8 }| .

SAn,k(ek, ϕ(ek), i) = |{u|d(u, ek) = i, and C(u) falls into either Case 2, 5, or 6 }| .
LAn,k(ek, ϕ(ek), i) = |{u|d(u, ek) = i+ 1, and C(u) falls into either Case 1, 4, or 7}| .

We notice that the distance formula, i.e., Eq. 5, holds even if we allow trivial
external cycles in the cycle structure, since any such a cycle contains exactly one
external symbol, thus is counted in the b(u) term exactly once, which is canceled
out in the gE(u) term. We thus slightly overload the quantity gE(u), u ∈ An,k,
by using it to refer to the number of all the non-trivial external cycles in u, plus
the one containing k+ 1, referred to as the 〈k+ 1〉-cycle henceforth, which may
be trivial. We can then combine, e.g., Cases 3 and 8 to one case where k+1 and
1 occur in two separate external cycles, and the 〈k + 1〉-cycle may be trivial.
Similarly, Cases 1 and 4, and Cases 2 and 5, can be so combined, as well. As a
result, we only need to discuss five, instead of eight, cases in our analysis: the
combined cases of 1 and 4 (Case 1+4), that of 2 and 5 (Case 2+5), that of 3 and
8 (Case 3+8), Case 6, and Case 7.



54 E. Cheng, K. Qiu, and Z. Shen

We are ready to enumerate cycle structures by constructing them in the fol-
lowing steps: select the needed external symbols (ES); select internal symbols
for these external cycles (IE); construct these external cycles (EC); and select
internal symbols and construct the non-trivial internal cycles (IC). We discuss
these steps in terms of the above five cases:

ES: We need to select gE external symbols for the gE external cycles. For all
the cases, the external symbol k+1 occurs in a potentially trivial external
cycle, thus one of the chosen. Besides k + 1, we need to choose gE − 1
external symbols from the range of (k, n] in

(
n−k−1
gE−1

)
ways.

For all the cases, 1 ≤ gE ≤ n − k, except Case 3+8, where the two
symbols 1 and k + 1 have to occur in two different external cycles, thus,
2 ≤ gE ≤ n− k.

IE: We need to select internal symbols for these external cycles. For Cases 1+4,
and 2+5, the symbol 1 does not occur in any external cycle, thus we need
to choose bE − gE internal symbols out of the range (1, k], excluding 1, in(

k−1
bE−gE

)
ways. On the other hand, for Cases 3+8, 6, and 7, the symbol 1

does occur in an external cycle, thus, we choose bE − gE − 1 such symbols
out of (1, k], again excluding 1, in

(
k−1

bE−gE−1

)
ways, and then add 1 into

such a chosen set to have a total of bE − gE symbols.

For Cases 1+4, 2+5 and 3+8, the symbol k + 1 may occur in a trivial
external cycle. Since any non-trivial external cycle contains at least two
symbols, and a trivial cycle contains at least one symbol, for these cases,
bE ≥ 2(gE − 1) + 1 = 2gE − 1; while for Cases 6, and 7, no external cycle
can be trivial, thus, bE ≥ 2gE.

Similarly, for Cases 1+4 and 2+5, 1 does not occur in any external cycle,
thus, bE − gE ≤ k − 1, i.e., bE ≤ gE + k − 1; while for Cases 3+8, 6 and 7,
bE ≤ gE + k.

EC: When constructing these external cycles, we first select lE internal symbols
out of the bE − gE internal symbols as chosen in Step IE to construct the
potentially trivial 〈k + 1〉-cycle together with the external symbol k + 1.

For Cases 1+4, and 2+5, the symbol 1 does not occur in an external
cycle, thus not one of the chosen in Step IE. As a result, we simply select
lE internal symbols out of bE − gE chosen internal symbols in

(
bE−gE

lE

)
ways. Since for these two cases, the 〈k + 1〉-cycle can be trivial, lE ≥ 0.
Moreover, since the 〈k + 1〉-cycle contains exactly lE + 1 symbols, and
each of the remaining gE − 1 external cycles contains at least two symbols,
bE ≥ lE + 1 + 2(gE − 1) = lE + 2gE − 1, i.e., lE ≤ bE − 2gE + 1.

For Case 3+8, the symbol 1 has to stay in an external cycle different
from the 〈k+1〉-cycle, thus, we have to chose lE external symbols intended
for the 〈k + 1〉-cycle out of bE − gE − 1 internal symbols, excluding 1,
in
(
bE−gE−1

lE

)
ways. The bounds of lE for this case are the same as those

for the above two cases. We note there are bE − gE − lE internal symbols
left for the other gE − 1 non-trivial external cycles, after putting back the
symbol 1.



The Edge-Centered Surface Area of the Arrangement Graph 55

It is clear that for these three combined cases, assuming k+1 sits at the
very first position in its cycle, any permutation of these lE internal symbols
leads to a unique 〈k + 1〉-cycle.

For Cases 6, and 7, the symbol 1 has to be in the same external cycle
as k + 1 does, so, we choose lE − 1 internal symbols out of bE − gE − 1,
in
(
bE−gE−1

lE−1

)
ways, then add back the symbol 1, lE symbols in total. For

Case 6, lE − 1 ≥ 0, i.e., lE ≥ 1; while, for Case 7, we have to insert at least
one number in between k + 1 and 1, hence, lE − 1 ≥ 1, i.e., lE ≥ 2. The
upper bound of lE is the same for both cases, i.e., bE − 2gE + 1.

We note that, for Case 6, where 1 is required to occur in the last position,
while k+1 occurs in the first place, any permutation of those chosen lE−1
internal symbols will lead to a unique 〈k+1〉-cycle. On the other hand, for
Case 7, the symbol 1 can’t sit in the last position. We thus have to choose
such a symbol out of these chosen lE − 1 symbols in lE − 1 ways, then any
permutation of the remaining lE − 2 symbols, together with 1, a total of
lE − 1 symbols, lead to a unique 〈k + 1〉-cycle.

We then have to distribute the remaining bE − gE − lE internal symbols
to the other gE−1 external cycles, in which the associated external symbol
sits there as the very first symbol. Although the order of these external
cycles does not matter, that of those internal symbols in each and every of
those cycles does. In general, to insert q(≥ 1) symbols into r ∈ [1, k) blocks,
each containing at least one symbol, and, while the order of these blocks
is not important, that of those symbols within these blocks is, we first
order those q symbols in q! ways, then, for each such a permutation, insert
r− 1 “slashes” to separate them while making sure that no two slashes are
adjacent to each other. It is clear that we can select r−1 positions for these
slashes, out of a total of q−1 possible positions. Thus, for all the above five
cases, there are p(bE − gE − lE , gE − 1) ways to distribute the remaining
internal symbols to the remaining non-trivial external cycles, where

p(1, 1) = 1,

∀q ≥ 1, r ∈ [1, q),p(q, r) = q!

(
q − 1
r − 1

)
. (6)

IC: We will now wrap up the construction by selecting bI = b − bE internal
symbols, out of the remaining internal symbols, to construct the gI internal
cycles, each of which contains at least two internal symbols.

For Case 1+4, symbol 1 is a fixed point in C(u). It was thus not chosen
for any of the external cycles, and it should not be chosen for any of the
internal cycles, either. Thus, we have to choose those bI symbols out of
k − 1− (bE − gE), excluding 1, in

(
k−1−bE+gE

bI

)
ways.

For Case 2+5, symbol 1 has to appear in a non-trivial internal cycle,
thus, not chosen in Step ES. What we will do now is to choose bI − 1
symbols out of k − 1 − (bE − gE) symbols, excluding 1, then throw 1 into
this chosen set of bI symbols.



56 E. Cheng, K. Qiu, and Z. Shen

Finally, for Cases 3+8, 6 and 7, symbol 1 has already been reserved for
a non-trivial external cycle, we simply choose these bI internal symbols out
of the remaining k − (bE − gE) symbols in

(
k−bE+gE

bI

)
ways.

For any such a chosen set of bI symbols, we are going to construct
gI non-trivial internal cycles, each of which contains at least 2 symbols.
The general quantity of d(q, r), the number of ways of factoring n distinct
symbols into r non-trivial cycles, is discussed in [8, §4.4]. Based on Eqs. 4.9
and 4.18 [8]: for q ≥ 2r ≥ 1,

d(q, r) =

q∑
j=0

(−1)q+r−j

(
q
j

)
s(q − j, r − j). (7)

In the above, s( , ) stands for the signless Stirling numbers of the first kind,
which can be represented as an explicit formula itself [6, Eqs. 5 and 6].

Since each internal cycle contains at least two symbols, by Eq. 5, 2gI ≤
bI = b − bE = d− gI + gE − bE , i.e., 3gI ≤ d+ gE − bE. We note that, for
cycle structures C(u) falling into EAn,k

(ek, ϕ(ek), i) and SAn,k
(ek, ϕ(ek), i),

by Corollary 1, d(u, ek) = i; and for those falling into LAn,k
(ek, ϕ(ek), i),

d(u, ek) = i+ 1.
Furthermore, for cycle structures falling into Cases 1+4, 3+8, 6, and 7,

where the symbol 1 either occurs in a trivial internal cycle, or an external
cycle, we just use the chosen bI symbols to construct gI internal cycles.
Based on the above discussion, for those falling into Cases 1+4, and 3+8,
there are d(i − gI + gE − bE, gI) ways to construct the internal cycles,
where 3gI ≤ i + gE − bE ; and for those falling into Case 6, there are
d(i + 1 − gI + gE − bE , gI) ways to construct such cycles, where 3gI ≤
i+ 1 + gE − bE .

For Case 2+5 where the symbol 1 is intended for a non-trivial internal
cycle, we have to select lI symbols out of bI − 1 symbols, excluding 1, to
form this internal cycle with 1. For each permutation of such a chosen set
of lI symbols, there is a unique internal cycle for 1 and these lI symbols.
We then use the remaining bI − lI − 1 symbols to form the other gI − 1
internal cycles in d(bI − lI − 1, gI − 1) ways. Clearly, 1 ≤ lI ≤ bI − 1, and
for this case, bI = b− bE = i+ 1− gI + gE − bE .

Finally, for Cases 1+4, 3+8, 6 and 7, gI ≥ 0, and for Case 2+5, gI ≥ 1.
We also notice that, for Cases 1+4, 6, and 7, gE +gI ≥ 1, and for the other
cases, gE + gI ≥ 2. Since

(
n
k

)
= 0, whenever k < n, for Cases 1+4, 3+8,

and 7, k − bE + gE ≥ i − gI − bE + gE , thus, gI ≥ i + 1 − k, and for the
other two cases, gI ≥ i− k.

We use Tables 2, 3, and 4 to summarize our findings, where the IC term for
Case 2+5 is given as follows:

IC(2 + 5) =

i−gI+gE−bE∑
lI=1

(
k − 1− bE + gE
i− gI + gE − bE

)(
i− gI + gE − bE

lI

)
(lI)!d(i − gI + gE − bE − lI , gI − 1). (8)



The Edge-Centered Surface Area of the Arrangement Graph 57

Table 2. Results by Cases (I)

Case ES Range of gE IE Range of bE

1+4
(
n−k−1
gE−1

)
[1, n− k]

(
k−1

bE−gE

)
[2gE − 1, gE + k − 1]

2+5
(
n−k−1
gE−1

)
[1, n− k]

(
k−1

bE−gE

)
[2gE − 1, gE + k − 1]

3+8
(
n−k−1
gE−1

)
[2, n− k]

(
k−1

bE−gE−1

)
[2gE − 1, gE + k]

6
(
n−k−1
gE−1

)
[1, n− k]

(
k−1

bE−gE−1

)
[2gE , gE + k]

7
(
n−k−1
gE−1

)
[1, n− k]

(
k−1

bE−gE−1

)
[2gE , gE + k]

Table 3. Results by Cases (II)

Case EC Range of lE

1+4 lE!
(
bE−gE

lE

)
p(bE − gE − lE , gE − 1) [0, bE − 2gE + 1]

2+5 lE!
(
bE−gE

lE

)
p(bE − gE − lE , gE − 1) [0, bE − 2gE + 1]

3+8 lE !
(
bE−gE−1

lE

)
p(bE − gE − lE , gE − 1) [0, bE − 2gE + 1]

6 (lE − 1)!
(
bE−gE−1

lE−1

)
p(bE − gE − lE , gE − 1) [1, bE − 2gE + 1]

7 (lE − 1)(lE − 1)!
(
bE−gE−1

lE−1

)
p(bE − gE − lE, gE − 1) [2, bE − 2gE + 1]

To summarize, let R(Q(C)) stand for the range of Q ∈ {gE, bE, lE , gI} and
C ∈ {1 + 4, 2 + 5, 3 + 8, 6, 7}, for i ∈ [1, D(An,k)− 1],

EAn,k(ek, ϕ(ek), i)

=
∑

R(gE (3+8))

∑
R(bE(3+8))

∑
R(lE (3+8))

∑
R(gI (3+8))

ES(3 + 8)IE(3 + 8)EC(3 + 8)IC(3 + 8)

=
n−k∑
gE=2

gE+k∑
bE=2gE−1

bE−2gE+1∑
lE=0

⌊
i−bE+gE

3

⌋
∑

max{0,i−k,2−gE}

(
n− k − 1

gE − 1

)(
k − 1

bE − gE − 1

)(
bE − gE − 1

lE

)

lE !p(bE − gE − lE , gE − 1)

(
k − bE + gE

i− gI + gE − bE

)
d(i− gI + gE − bE, gI). (9)

For i ∈ [0, D(An,k)],

SAn,k
(ek, ϕ(ek), i)

=
∑

C∈{2+5,6}

∑
R(gE(C))

∑
R(bE(C))

∑
R(lE(C))

∑
R(gI (C))

ES(C)IE(C)EC(c)IC(C), (10)

and, for i ∈ [0, D(An,k)],

LAn,k
(ek, ϕ(ek), i)

=
∑

C∈{1+4,7}

∑
R(gE(C))

∑
R(bE(C))

∑
R(lE(C))

∑
R(gI (C))

ES(C)IE(C)EC(C)IC(C). (11)



58 E. Cheng, K. Qiu, and Z. Shen

Table 4. Results by Cases (III)

Case IC Range of gI

1+4
(
k−1−bE+gE
i−gI+gE−bE

)
d(i− gI + gE − bE , gI)

[
max{0, , i− k, 1− gE},

⌊
i−bE+gE

3

⌋]
2+5 Eq. 8

[
max{1, i+ 1− k, 2− gE},

⌊
i+1−bE+gE

3

⌋]
3+8

(
k−bE+gE

i−gI+gE−bE

)
d(i− gI + gE − bE , gI)

[
max{0, i− k, 2− gE},

⌊
i−bE+gE

3

⌋]
6

(
k−bE+gE

i+1−gI+gE−bE

)
d(i+ 1− gI + gE − bE , gI)

[
max{0, i+ 1− k, 1− gE},

⌊
i+1−bE+gE

3

⌋]
7

(
k−bE+gE

i−gI+gE−bE

)
d(i− gI + gE − bE , gI)

[
max{0, i− k, 1− gE},

⌊
i−bE+gE

3

⌋]

Readers might notice that EAn,k
(ek, ϕ(ek), i) is not given in the above for i = 0,

or i = D(An,k). Indeed, we may conclude that EAn,k
(ek, ϕ(ek), i) = 0, for these

two values of i, for the following reasons: Let u ∈ An,k, by Eq. 5, d(u, ek) =
b(u) + gI(u)− gE(u). Assume that d(u, ek) = 0, then2 C(u) = ∅, in particular, it
contains no external cycle. On the other hand, when d(u, ek) = D(An,k), since
d(u, ek) is maximized, gE(u) = 0, i.e., C(u) necessarily contains no non-trivial
external cycle. In either case, by Theorem 1, d(ϕ(u), ek) �= d(u, ek).

By Eq. 1, we have the following central result of this paper.

Theorem 2. The edge-centered surface area of An,k with radius i ∈ [0, D(An,k)],
centered at (ek, ϕ(ek)), is given as follows:

BAn,k
(ek, ϕ(ek), 0) = 2,

and, for i ∈ [1, D(An,k)],

BAn,k
(ek, ϕ(ek), i) = EAn,k

(ek, ϕ(ek), i) + SAn,k
(ek, ϕ(ek), i) + LAn,k

(ek, ϕ(ek), i),

where EAn,k
(ek, ϕ(ek), i), SAn,k

(ek, ϕ(ek), i), and LAn,k
(ek, ϕ(ek), i), are given in

Eqs. 9, 10, and 11, respectively.

One can then easily find out that the (12, 32)-centered surface area sequence of
A4,2 is (2, 5, 5, 0), consistent with Table 1.

An upper bound of the total number of terms as contained in Eq. 10, an
explicit-form expression of SAn,k

(ek, φ(ek), i), can be estimated as follows, when
factorial is considered as a basic operation:

TTS(n, k) =

n−k∑
gE=1

gE+k∑
bE=2gE−1

bE−2gE+1∑
lE=0

bI∑
lI=1

b−bE
2∑

gI=1

1.

2 Assume for some u, b(u)+ gI(u) = gE(u). Since every non-trivial internal (external)
cycle contains at least two symbols, by definition, we have gE(u) − gI(u) = b(u) =
bE(u)+ bI(u) ≥ 2gE(u)+2gI(u), i.e., gE(u)+3gI(u) ≤ 0. Thus, we have to conclude
gE(u) = gI(u) = 0, as neither can be negative.



The Edge-Centered Surface Area of the Arrangement Graph 59

Since gE ≥ 1, bI = b− bE , b ≤ n, gE ≤ n− k, we have 1− 2gE ≤ 0, bI ≤ n− bE ,
and gE + k ≤ n, which leads to the following estimation:

TTS(n, k) = O
(
n4(n− k)

)
.

Similarly, for Eqs. 9 and 11, we have the following results:

TTE(n, k) = TTL(n, k) = O
(
n3(n− k)

)
.

Therefore, these explicit form expressions all contain a polynomial number of
terms, thus computationally feasible. It is certainly straightforward to come up
with a computer program to calculate BAn,k

(ek, ϕ(ek), i), i ∈ [0, D(An,k)], based
on the result as given in Theorem 2. For example, Table 5 showsBA8,k

(ek, ϕ(ek), i),
k ∈ [1, 7], i ∈ [0, D(A8,k)]. These sample results agree with what have been di-
rectly derived via a BFS search.

Table 5. Sample data for A8,k(i)

i

k 0 1 2 3 4 5 6 7 8 9 10

1 2 6 0 0 0 0 0 0 0 0 0

2 2 17 37 0 0 0 0 0 0 0 0

3 2 24 112 194 4 0 0 0 0 0 0

4 2 27 171 576 847 57 0 0 0 0 0

5 2 26 184 828 2,260 2,980 434 6 0 0 0

6 2 21 145 740 2,690 6,390 7,988 2,089 95 0 0

7 2 12 72 390 1,640 5,220 11,538 14,628 6,188 630 0

Since An,k is edge symmetric, this edge-centered surface area result as given
in Theorem 2 holds for any reference edge.

4 Concluding Remarks

In this paper, we proposed the notion of the edge-centered surface area of a
structure, and derived an explicit expression of the edge-centered surface area
of the general arrangement graph by following an elementary approach. Readers
are referred to [3] for a solution of the same problem following a generating
function approach.

The class of arrangement graphs are relatively general in the sense that sev-
eral interesting interconnection structures are isomorphic to certain arrangement
graphs. Thus, various topological properties of the arrangement graph, including
the just discovered one related to the edge-centered surface area, also hold in
such graphs.



60 E. Cheng, K. Qiu, and Z. Shen

As is pointed out in [4, §1] that Sn, the well-studied star graph of n dimensions
[1], is isomorphic to An,n−1. Theorem 2 thus provides the edge-centered surface
area result for Sn, when setting k = n− 1. For example, the last row in Table 5
gives the edge-centered surface area for S8.

Incidentally, EAn,n−1(ek, ϕ(ek), i) = 0, as the range of gE for Case 3+8 be-
comes [2, 1]. Indeed, since Sn is a bipartite graph, by Proposition 1,ESn(v, w, i) =
0, i ∈ [1, D(Sn)].

The class of the alternating group graphs is proposed in [7]. When compared
with the star graph of the same dimension, an alternating group graph has half
the vertices, but nearly twice the degree. It is both vertex and edge symmetric,
and performs better than the star graph and close to the hypercube, as far as
the contention problem is concerned. It is also known that, for all n ≥ 3, AGn

is isomorphic to An,n−2, where, we take (v, ϕ(v)) = ((n− 1)n12 · (n− 2), n1(n−
1)2 · · · (n − 2)) as the reference edge for AGn. Hence, Theorem 2 also provides
the edge-centered surface area result for AGn, n ≥ 3, when setting k = n − 2.
As an example, the second last row, i.e., the one for k = 6, as shown in Table 5
provides the edge-centered surface area for AG8.

References

1. Akers, S.B., Krishnamurthy, B.: A group theoretic model for symmetric intercon-
nection networks. IEEE Trans. on Computers 38, 555–566 (1989)

2. Cheng, E., Qiu, K., Shen, Z.: On deriving explicit formulas of the surface areas for
the arrangement graphs and some of the related graphs. International Journal of
Computer Mathematics 87, 2903–2914 (2010)

3. Cheng, E., Qiu, K., Shen, Z.: A generating function approach to the edge surface
area of the arrangement graphs. To appear in the Computer Journal

4. Day, K., Tripathi, A.: Arrangement graphs: a class of generalized star graphs.
Information Processing Letters 42, 235–241 (1992)

5. Fertin, G., Raspaud, A.: k-Neighbourhood broadcasting. In: 8th International Col-
loquium on Structural Information and Communication Complexity, pp. 133–146.
Carleton Scientific, Ontario (2001)

6. Imani, N., Sarbazi-Azad, H., Akl, S.G.: On some combinatorial properties of the
star graph. In: 2005 International Symposium on Parallel Architecture, Algorithms
and Networks, pp. 58–65. IEEE Computer Society, California (2005)

7. Jwo, J.S., Lakshmivarahan, S., Dhall, S.K.: A new class of interconnection networks
based on the alternating graph. Networks 23, 315–326 (1993)

8. Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1980)
9. Sarbazi-Azad, H., Ould-Khaoua, M., Mackenzie, L.M., Akl, S.G.: On some prop-

erties of k-ary n-cubes. In: Eighth International Conference on Parallel and Dis-
tributed Systems, pp. 517–524. IEEE Computer Society, California (2001)

10. Shen, Z., Qiu, K., Cheng, E.: On the surface area of the (n, k)-star graph. Theo-
retical Computer Science 410, 5481–5490 (2009)

11. Stewart, I.: A general technique to establish the asymptotic conditional diagnos-
ability of interconnection networks (2011) (manuscript)



On Zero Forcing Number of Permutation Graphs

Eunjeong Yi

Texas A&M University at Galveston, Galveston, TX 77553, USA
yie@tamug.edu

Abstract. Zero forcing number, Z(G), of a graph G is the minimum
cardinality of a set S of black vertices (whereas vertices in V (G)\S are
colored white) such that V (G) is turned black after finitely many applica-
tions of “the color-change rule”: a white vertex is converted black if it is
the only white neighbor of a black vertex. Zero forcing number was intro-
duced and used to bound the minimum rank of graphs by the “AIM Min-
imum Rank – Special Graphs Work Group”. Let G1 and G2 be disjoint
copies of a graph G and let σ : V (G1) → V (G2) be a permutation. Then
a permutation graph Gσ = (V,E) has the vertex set V = V (G1)∪V (G2)
and the edge set E = E(G1)∪E(G2)∪{uv | v = σ(u)}. It is readily seen
that 1+δ(G) ≤ Z(Gσ) ≤ n, if G is a graph of order n ≥ 2; here δ(G) is the
minimum degree of G. We give examples showing that |Z(G) − Z(Gσ)|
can be arbitrarily large. Further, we characterize permutation graphs Gσ

satisfying Z(Gσ) = n for a graph G that is a nearly complete graph, a
complete k-partite graph, a cycle, and a path, respectively, on n vertices.

Keywords: zero forcing set, zero forcing number, permutation graph,
generalized prism, nearly complete graph, complete k-partite graph, cy-
cle, path.

1 Introduction

LetG = (V (G), E(G)) be a finite, simple, and undirected graph of order |V (G)| =
n ≥ 2. For a given graph G and S ⊆ V (G), we denote by 〈S〉 the sub-
graph induced by S. For a vertex v ∈ V (G), the open neighborhood of v is
the set NG(v) = {u | uv ∈ E(G)}, and the closed neighborhood of v is the set
NG[v] = NG(v)∪{v}. The degree degG(v) of a vertex v ∈ V (G) is the number of
edges incident with the vertex v in G. We denote by δ(G) the minimum degree of
a graph G. We denote by Kn, Cn, and Pn the complete graph, the cycle, and the
path on n vertices, respectively. For other terminologies in graph theory, refer
to [7].

The notion of a zero forcing set, as well as the associated zero forcing number,
of a simple graph was introduced by the “AIM Minimum Rank – Special Graphs
Work Group” in [1] to bound the minimum rank of associated matrices for
numerous families of graphs. Let each vertex of a graph G be given one of two
colors, “black” and “white” by convention. Let S denote the (initial) set of black
vertices of G. The color-change rule converts the color of a vertex from white
to black if the white vertex u2 is the only white neighbor of a black vertex

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



62 E. Yi

u1; we say that u1 forces u2, which we denote by u1 → u2. And a sequence,
u1 → u2 → · · · → ui → ui+1 → · · · → ut, obtained through iterative applications
of the color-change rule is called a forcing chain. Note that, at each step of the
color change, there may be two or more vertices capable of forcing the same
vertex. The set S is said to be a zero forcing set of G if all vertices of G will be
turned black after finitely many applications of the color-change rule. The zero
forcing number of G, denoted by Z(G), is the minimum of |S|, as S varies over
all zero forcing sets S ⊆ V (G).

Since its introduction by the aforementioned “AIM group”, zero forcing num-
ber has become a graph parameter studied for its own sake, as an interesting
invariant of a graph. In [8], the authors studied the number of steps it takes for
a zero forcing set to turn the entire graph black; they named this new graph
parameter the iteration index of a graph: from the “real world” modeling (or
discrete dynamical system) perspective, if the initial black set is capable of pass-
ing a certain condition or trait to the entire population (i.e. “zero forcing”),
then the iteration index of a graph may represent the number of units of time
(anything from days to millennia) necessary for the entire population to acquire
the condition or trait. Independently, Hogben et al. studied the same parameter
(iteration index) in [15], which they called propagation time. It’s also noteworthy
that physicists have independently studied the zero forcing parameter, referring
to it as the graph infection number, in conjunction with the control of quantum
systems (see [4], [5], and [19]). More recently in [10] and [11], the authors initi-
ated a comparative study between metric dimension and zero forcing number for
graphs. For more articles and surveys pertaining to the zero forcing parameter,
see [2], [3], [8], [9], [12], [13], [14], [17], [18].

Chartrand and Harary [6] introduced a “permutation graph”, which is also
called a “generalized prism”.

Definition 1. Let G1 and G2 be disjoint copies of a graph G, and let σ :
V (G1)→ V (G2) be a permutation. A permutation graph Gσ = (V,E) consists of
the vertex set V = V (G1)∪V (G2) and the edge set E(G) = E(G1)∪E(G2)∪{uv |
v = σ(u)}.

It is readily seen that 1 + δ(G) ≤ Z(Gσ) ≤ n, if G is a graph of order n ≥ 2. In
this paper, we investigate the zero forcing number of permutation graphs. First,
we give examples showing that |Z(G)−Z(Gσ)| can be arbitrarily large. Second,
we characterize permutation graphs Gσ satisfying Z(Gσ) = n for a graph G
that is a nearly complete graph, a complete k-partite graph, a cycle, and a path,
respectively, on n vertices. Further, we prove that the zero forcing number of
any complete k-partite graph of order n ≥ 3, which is not the complete graph,
is n− 2.

2 Z(G) versus Z(Gσ)

The path cover number P (G) of G is the minimum number of vertex disjoint
paths, occurring as induced subgraphs of G, that cover all the vertices of G.



On Zero Forcing Number of Permutation Graphs 63

Next, we recall the definition that is stated in [16]. A graph G is a graph of
two parallel paths if there exist two independent induced paths of G that cover
all the vertices of G and such that G can be drawn in the plane in such a way
that the two paths are parallel and the edges (drawn as segments, not curves)
between the two paths do not cross. A simple path is not considered to be such
a graph. A graph that consists of two connected components, each of which is a
path, is considered to be such a graph.

Theorem 1. [1], [2], [18]

(a) [2] For any graph G, P (G) ≤ Z(G).
(b) [1] For any tree T , P (T ) = Z(T ).
(c) [18] For any unicyclic graph G, P (G) = Z(G).

Theorem 2. [3] For any graph G, Z(G) ≥ δ(G).

Theorem 3. [1] For any graphs G and H, Z(G�H) ≤ min{Z(G)|V (H)|,
Z(H)|V (G)|}, where G�H denotes the Cartesian product of G and H.

Theorem 4. Let G be a connected graph of order n ≥ 2. Then

(a) [10], [18] Z(G) = 1 if and only if G = Pn,
(b) [18] Z(G) = 2 if and only if G is a graph of two parallel paths,
(c) [10], [18] Z(G) = n− 1 if and only if G = Kn.

Theorem 5. [9] Let G be any graph. Then

(a) For v ∈ V (G), Z(G)− 1 ≤ Z(G− {v}) ≤ Z(G) + 1.
(b) For e ∈ E(G), Z(G)− 1 ≤ Z(G− e) ≤ Z(G) + 1.

Theorem 6. [18] Let G be a graph with cut-vertex v ∈ V (G). Let W1,W2, . . . ,Wk

be the vertex sets for the connected components of 〈V (G)\{v}〉, and for 1 ≤ i ≤ k,

let Gi = 〈Wi ∪ {v}〉. Then Z(G) ≥ [
∑k

i=1 Z(Gi)]− k + 1.

If G is a graph of order 2, then Z(Gσ) = 2 for any permutation σ. So, we only
consider a graph G of order n ≥ 3 for the rest of the paper. Noting that Z(G1)
forms a zero forcing set for Gσ, together with Theorem 2, we have the following

Corollary 1. Let G be a graph of order n ≥ 3, and let σ : V (G1) → V (G2) be
a permutation. Then 1 + δ(G) ≤ Z(Gσ) ≤ n.

A graph G is strongly regular with parameters (n, k, α, β) if |V (G)| = n, G is
k-regular (i.e., the degree of each vertex in G is k), every pair of adjacent vertices
has α common neighbors, and every pair of non-adjacent vertices has β common
neighbors.

Proposition 1. [1] If G is a strongly regular graph, then Z(G) ≥
⌊
|V (G)|

2

⌋
.

Remark 1. The Petersen graph P (see Fig. 1) is strongly regular; thus, Z(P) = 5
by Corollary 1 and Proposition 1.



64 E. Yi

∼=

Fig. 1. The Petersen graph P with Z(P) = 5

Remark 2. There exists a permutation graph Gσ such that Z(Gσ)−Z(G) can be
arbitrarily large; takeG = mP2 (m copies of P2) and σ = id, the identity, form ≥
1 (see (A) of Fig. 2), and notice that Z(G) = m and Z(Gσ) = 2m. For another
permutation graph, with a connected graph G, satisfying that Z(Gσ) − Z(G)
can be arbitrarily large, see (B) of Fig. 2; notice that Z(G) = m + 1 by (b) of
Theorem 1, and Z(Gσ) ≥ 2m since at least a vertex in each Bi \ {ui, vi} must
belong to any zero forcing set of Gσ (otherwise, each of ui and vi has two white
neighbors in Bi).

u2m

(B)(A)

V (G2)V (G2) V (G1)
σ

V (G1)
σ

v1

v2

v2m

u1

u2

B1

B2m

Fig. 2. Examples showing that Z(Gσ)− Z(G) can be arbitrarily large

u2m

(B)(A)

V (G2)V (G2) V (G1)
σ

V (G1)
σ

u1

u2
u3

u4

u2m−1

Fig. 3. Examples showing that Z(G) − Z(Gσ) can be arbitrarily large



On Zero Forcing Number of Permutation Graphs 65

Remark 3. There exists a permutation graph Gσ such that Z(G) − Z(Gσ) can
be arbitrarily large; take G = mP2 and Gσ

∼= C2m for m > 2 (see (A) of Fig.
3), and notice that Z(G) = m and Z(Gσ) = 2. For another permutation graph,
with a connected graph G, satisfying that Z(G)−Z(Gσ) can be arbitrarily large,
see (B) of Fig. 3; notice that Z(G) ≥ 2m+ 1 by successively applying Theorem
6, and Z(Gσ) ≤ m+ 2 since the solid vertices form a zero forcing set for Gσ.

3 Zero Forcing Number of Permutation Graphs on
Nearly Complete Graphs and on Complete k-Partite
Graphs

We define a “nearly complete graph” to be a graph G of order n ≥ 3 with
δ(G) = n− 2.

Theorem 7. [17] Let G = Kn be the complete graph of order n ≥ 3, and let
σ : V (G1)→ V (G2) be a permutation. Then Z(Gσ) = n.

Theorem 8. Let G be a nearly complete graph of order n ≥ 4, and let σ :
V (G1)→ V (G2) be a permutation. Then Z(Gσ) = n.

Proof. Let S be a zero forcing set for Gσ; notice that |S| ≥ n−1 by Corollary 1.
Without loss of generality, assume that u1 ∈ S∩V (G1) forces first. If degG1

(u1) =
n− 1, then |S| ≥ n. Next, we consider the case degG1

(u1) = n− 2. Suppose that
u1u2 �∈ E(G1) for some u2 ∈ V (G1); notice that degG1

(u1) = degG1
(u2) = n−2.

If S = NG1 [u1] with |S| = n−1, then u1 → σ(u1). Since each vertex ui ∈ S\{u1}
(3 ≤ i ≤ n) has two white neighbors u2 and σ(ui), no vertex in S \ {u1} can
force. And, noting that n ≥ 4, σ(u1) has at least two white neighbors in G2, and
thus σ(u1) cannot force any vertex in Gσ. So, |S| ≥ n. Therefore, in each case,
Z(Gσ) = n by Corollary 1. �

Next, we consider the zero forcing number of a complete k-partite graph G =
Ka1,a2,...,ak

and its permutation graph Gσ, where k ≥ 2.

Proposition 2. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite of order∑k

i=1 ai = n ≥ 3. If G �∼= Kn, then Z(G) = n− 2.

Proof. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite of order

∑k
i=1 ai =

n ≥ 3, and let G �∼= Kn. Let V (G) be partitioned into k-partite sets V1, V2, . . . , Vk,
where |Vi| = ai (1 ≤ i ≤ k). Since G �∼= Kn, Z(G) ≤ n− 2 by (c) of Theorem 4.
Next, we show that Z(G) ≥ n−2. Let S be a zero forcing set for G. Suppose that,
for some ai ≥ 2, vi ∈ S∩Vi forces first (If ai = 1, then degG(vi) = n−1, and thus
|S| ≥ n− 1). First, notice that |S ∩ (V (G) \ Vi)| ≥ n− ai − 1; otherwise, vi has
at least two white neighbors in V (G) \ Vi. Second, notice that |S ∩ Vi| ≥ ai − 1;
otherwise, each vertex in V (G)\Vi has two white neighbors in Vi, and no vertex in
Vi\{vi} can be forced by any vertex in Vi. So, Z(G) ≥ n−2. Thus, Z(G) = n−2.

�



66 E. Yi

Theorem 9. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite graph of

order n =
∑k

i=1 ai ≥ 3, where ak ≥ aj (1 ≤ j ≤ k− 1); let V (G1) be partitioned
into k-partite sets V1, V2, ..., Vk, and let V (G2) be partitioned into k-partite sets
V ′
1 , V

′
2 , ..., V

′
k, where ai = |Vi| = |V ′

i | (1 ≤ i ≤ k). Let σ : V (G1) → V (G2) be a
permutation. Then Z(Gσ) < n if and only if either Vk satisfies |σ(Vk) ∩ V ′

k| ≥ 2

and |σ(Vk) ∩ (∪k−1
i=1 V ′

i )| = (
∑k−1

i=1 ai)− 1, or V ′
k satisfies |σ−1(V ′

k) ∩ Vk| ≥ 2 and

|σ−1(V ′
k) ∩ (∪k−1

i=1 Vi)| = (
∑k−1

i=1 ai)− 1.

Proof. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite graph of order

n =
∑k

i=1 ai ≥ 3, where ak ≥ ak−1 ≥ . . . ≥ a1 ≥ 1. Let V (G1) be partitioned
into k-partite sets V1, V2, ..., Vk, and let V (G2) be partitioned into k-partite sets
V ′
1 , V

′
2 , ..., V

′
k, where ai = |Vi| = |V ′

i | (1 ≤ i ≤ k). For each i (1 ≤ i ≤ k), let
Vi = {ui,1, ui,2, . . . , ui,ai}, and let V ′

i = {u′
i,1, u

′
i,2, . . . , u

′
i,ai
}. Let S be a zero

forcing set for Gσ. We consider two cases.

Case 1: Either Vk satisfies |σ(Vk)∩V ′
k | ≥ 2 and |σ(Vk)∩(∪k−1

i=1 V ′
i )| = (

∑k−1
i=1 ai)−

1, or V ′
k satisfies |σ−1(V ′

k) ∩ Vk| ≥ 2 and |σ−1(V ′
k) ∩ (∪k−1

i=1 Vi)| = (
∑k−1

i=1 ai)− 1.

Notice that ak ≥ (
∑k−1

i=1 ai) + 1 in this case. Without loss of generality, we may

assume that |σ(Vk) ∩ V ′
k | ≥ 2 and |σ(Vk) ∩ (∪k−1

i=1 V
′
i )| = (

∑k−1
i=1 ai)− 1. Further,

we may assume that (∪k−1
i=1 V

′
i )\σ(Vk) = {u′

1,1} and σ(Vk)∩V ′
k = {u′

k,1, u
′
k,2}, by

relabeling if necessary. Then S = V (G1) \ {σ−1(u′
k,2)} forms a zero forcing set

(It suffices to show that all vertices of G1 are turned black after finitely many
applications of the color-change rule on S.): (i) after one global application of
the color change-rule, vertices in [(∪k−1

i=1 V
′
i )\{u′

1,1}]∪{u′
k,1} ⊆ V (G2) are turned

black; (ii) u′
k,1 → u′

1,1; (iii) σ−1(u′
1,1)→ σ−1(u′

k,2). Thus, Z(Gσ) < n. (See Fig.
4, where the solid vertices form a zero forcing set for Gσ.)

Case 2: Vk satisfies |σ(Vk)∩V ′
k| ≤ 1 or |σ(Vk)∩ (∪k−1

i=1 V
′
i )| �= (

∑k−1
i=1 ai)− 1, and

V ′
k satisfies |σ−1(V ′

k) ∩ Vk| ≤ 1 or |σ−1(V ′
k) ∩ (∪k−1

i=1 Vi)| �= (
∑k−1

i=1 ai)− 1.

Subcase 2.1: S∩V (G1) = ∅ or S∩V (G2) = ∅. Without loss of generality, assume
that S ∩ V (G2) = ∅. Suppose S = V (G1) \ {ui,x} for some i (1 ≤ i ≤ k); then
ui,s → σ(ui,s), where 1 ≤ s ≤ ai and s �= x. In order for a vertex in G2 to force
the vertex σ(ui,x), there must exist a vertex, say σ(ui,s∗) ∈ V ′

t for s∗ �= x and
for some t (1 ≤ t ≤ k), in G2 such that all vertices in (V (G2) \ V ′

t ) \ {σ(ui,x)}
are turned black after one global application of the color-change rule, where
σ(ui,x) �∈ V ′

t ; otherwise, each vertex uα,j ∈ V (G1) \ Vi has two white neigh-
bors, ui,x and σ(uα,j), and each vertex σ(ui,s) has at least two white neighbors
in G2. That is, σ(Vi \ {ui,x}) ⊇ [(V (G2) \ V ′

t ) \ {σ(ui,x)}] ∪ σ(ui,s∗), and thus
ai − 1 ≥ n− at ⇐⇒ ai + at ≥ n+ 1, which is impossible. Thus, S of cardinality
n− 1 fails to be a zero forcing set for Gσ, and hence Z(Gσ) ≥ n. By Corollary
1, Z(Gσ) = n.

Subcase 2.2: S ∩ V (G1) �= ∅ and S ∩ V (G2) �= ∅. Suppose that a vertex in
Vi ⊆ V (G1) forces first. Then |S∩V (G1)| ≥ n−ai+�, where 1 ≤ � = |S∩Vi| < ai.



On Zero Forcing Number of Permutation Graphs 67

In order for a vertex in G2 to be able to force, |S ∩ V (G2)| ≥ n− aj − �+1. So,
|S| ≥ n+ 1 + (n − ai − aj). If i �= j, then |S| ≥ n+ 1. If i = j and i �= k, then
|S| ≥ n+1. So, we only need to consider when i = j = k; then |S| ≥ 2(n−ak)+1.
If ak ≤ 1

2 (n + 1), then |S| ≥ n; thus, Z(Gσ) = n by Corollary 1. So, suppose

that ak > 1
2 (n+1); then ak ≥ (

∑k−1
i=1 ai) + 2. First, notice that |σ(Vk)∩ V ′

k| ≤ 1

is impossible, since ak ≥ (
∑k−1

i=1 ak)+ 2. Next, we consider |σ(Vk)∩ (∪k−1
i=1 V ′

i )| �=
(
∑k−1

i=1 ai)−1. Let |S∩Vk| = � = �1+�2 such that |σ(S∩Vk)∩(∪k−1
i=1 V ′

i )| = �1 and
|σ(S ∩Vk)∩V ′

k| = �2. Assume that |S| < n. In order for vertices in V ′
k to be able

to force vertices in G1 so that V (G1) turns black after finitely many applications

of the color-change rule, |S∩(∪k−1
i=1 V ′

i )| = (
∑k−1

i=1 ai)−�1 and |S∩V ′
k | ≥ ak−�−1.

So, |S| ≥ (
∑k−1

i=1 ai)+ �+(
∑k−1

i=1 ai)− �1+ak− �− 1 = n+(
∑k−1

i=1 ai)− �1− 1. If∑k−1
i=1 ai ≥ �1 + 1, then |S| ≥ n, contradicting the assumption. If

∑k−1
i=1 ai = �1,

then |S ∩ V ′
k| ≥ ak − �; otherwise, after applying the color-change rule on S as

long as possible, either (i) two or more vertices in Vk are still white or (ii) one
vertex in Vk is still white and each vertex ui,r ∈ ∪k−1

i=1 Vi has two white neighbors,

σ(ui,r) and the one white vertex in Vk. Thus, |S| ≥ (
∑k−1

i=1 ai) + �+ ak − � = n.
So, Z(Gσ) ≥ n in each case, and thus Z(Gσ) = n by Corollary 1. �

V (G1) V ′1

V ′2

V ′3V3

V1

V2

G = K1,3

G = K2,2,5

V (G2)

V ′1

V ′2

V (G2)

V1

V2

V (G1)
σ

σ

Fig. 4. Permutation graphs on complete k-partite graphs with Z(Gσ) < |V (G)|

4 Zero Forcing Number of Permutation Graphs on Cycles

In this section, we characterize permutation graphs achieving the lower or upper
bounds of Corollary 1 when G is a cycle Cn on n ≥ 3 vertices. Let V (G1) =
{ui | 1 ≤ i ≤ n} and let E(G1) = {uiui+1 | 1 ≤ i ≤ n− 1} ∪ {u1un}; similarly,
let V (G2) = {vi | 1 ≤ i ≤ n} and let E(G2) = {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {v1vn}.
By vi < vj , we mean that i < j.

Proposition 3. [1] For s ≥ 3 and t ≥ 2, Z(Cs�Pt) = min{s, 2t}.

Theorem 10. Let G = Cn be the cycle of order n ≥ 3, and let σ : V (G1) →
V (G2) be a permutation. Then

(a) Z(Gσ) = 3 if and only if n = 3 (for any σ);



68 E. Yi

(b) Z(Gσ) = n if and only if n = 3 or n = 4 (for any σ) or Gσ
∼= P, the

Petersen graph.

Proof. Let G = Cn be the cycle of order n ≥ 3; then Z(Gσ) ≥ 3 by Corollary 1.
If n = 3, then Z(Gσ) ≤ 3 by Corollary 1; thus Z(Gσ) = 3 for any permutation
σ. If n = 4, then G = C4 is a nearly complete graph since δ(C4) = 2; thus, by
Theorem 8, Z(Gσ) = 4 for any permutation σ.

Next, we consider n ≥ 5. One can easily verify that Z(Gσ) > 3 for any per-
mutation σ. Let �(Gσ) denote the maximum over all a such that there exists an
i with 〈{σ(ui), σ(ui+1), . . . σ(ui+a)}〉 ∼= Pa+1, where σ(ui), σ(ui+1), . . . , σ(ui+a)
form a monotone sequence. And, let H = 〈V (G2) \ {σ(u1), σ(u2), σ(u3)}〉. We
consider three cases.

Case 1: �(Gσ) ≥ 2. Without loss of generality, we may assume that σ(u1) = v1,
σ(u2) = v2, and σ(u3) = v3. Then S = V (G1) \ {u2} forms a zero forcing set
for Gσ: (i) after one global application of the color-change rule, each vertex in
V (Gσ) \ {u2, v1, v2, v3} are turned black; (ii) v4 → v3 and vn → v1; (iii) u1 → u2

and v1 → v2. So, Z(Gσ) < n.

Case 2: �(Gσ) = 1. Without loss of generality, we may assume that σ(u1) = v1
and σ(u2) = v2. We will show that S = V (G1) \ {u2} forms a zero forcing set
for Gσ. We consider two subcases.

Subcase 2.1: H contains P2. Suppose that {v3, v4, . . . , vt} ⊆ V (H). Notice (i)
after one global application of the color-change rule, each vertex in V (Gσ) \
{u2, v1, v2, σ(u3)} are turned black; (ii) vt → σ(u3) and vn → v1 → v2 → u2. A
similar argument works for other cases. So, S is a zero forcing set for Gσ, and
thus Z(Gσ) < n.

Subcase 2.2: H consists of isolated vertices. This implies that n = 5 and that
σ(u3) = v4. If σ(u5) = v5, then Gσ satisfy the condition of Case 1. So, σ(u5) = v3
and σ(u4) = v5 (see (A) of Fig. 5); one can easily check that V (G1)\ {u1} forms
a zero forcing set for Gσ, and thus Z(Gσ) < 5.

(C)(A) (B)

Fig. 5. Gσ for G = Cn such that (Gσ) ≤ 1 and H consists of isolated vertices

Case 3: �(Gσ) = 0. Without loss of generality, let σ(u1) = v1, and we may
assume that v1 < σ(u2) < σ(u3) by relabeling if necessary. We consider two
subcases.



On Zero Forcing Number of Permutation Graphs 69

Subcase 3.1: H contains P2. Suppose that {v2, v3, . . . , vt} ⊆ V (H). Then S =
V (G1) \ {u2} forms a zero forcing set for Gσ: (i) after one global application of
the color-change rule, each vertex in V (Gσ) \ {u2, v1, σ(u2), σ(u3)} are turned
black; (ii) v2 → v1 and vt → σ(u2); (iii) u1 → u2; (iv) u3 → σ(u3). A similar
argument works for other cases. So, S is a zero forcing set for Gσ, and thus
Z(Gσ) < n.

Subcase 3.2: H consists of isolated vertices. This implies that n ≤ 6, and
that σ(u2) = v3 and σ(u3) = v5. First, suppose n = 5. If σ(u4) = v4, then
σ(u3)σ(u4) ∈ E(G2), contradicting the hypothesis that �(Gσ) = 0. So, σ(u4) =
v2 and σ(u5) = v4 (see (B) of Fig. 5); since Gσ

∼= P , the Petersen graph,
Z(Gσ) = 5 by Remark 1. Second, suppose n = 6. Then σ(u4) = v2, σ(u5) = v6,
and σ(u6) = v4 (see (C) of Fig. 5); since S = V (G2) \ {v1} forms a zero forcing
set for Gσ, Z(Gσ) < 6. �

5 Zero Forcing Number of Permutation Graphs on Paths

In this section, we characterize permutations graphs achieving the lower or upper
bounds of Corollary 1 when G is a path Pn on n ≥ 3 vertices. Let V (G1) =
{ui | 1 ≤ i ≤ n} and let E(G1) = {uiui+1 | 1 ≤ i ≤ n − 1}; similarly, let
V (G2) = {vi | 1 ≤ i ≤ n} and let E(G2) = {vivi+1 | 1 ≤ i ≤ n− 1}. By vi < vj ,
we mean that i < j.

Proposition 4. [1] For s, t ≥ 2, Z(Ps�Pt) = min{s, t}.

Theorem 11. Let G = Pn be the path of order n ≥ 3, and let σ : V (G1) →
V (G2) be a permutation. Then

(a) Z(Gσ) = 2 if and only if Gσ
∼= Pn�P2;

(b) Z(Gσ) = n if and only if (i) n = 3 and Gσ �∼= P3�P2, or (ii) n = 4 and Gσ

is isomorphic to (B) of Fig. 7.

Proof. Let G = Pn be the path of order n ≥ 3. Part (a) of the present theo-
rem follows by (b) of Theorem 4. So, it remains to prove part (b). Notice that
Z(Gσ) ≥ 2 by Corollary 1. First, we consider n = 3; notice that Z(Gσ) ≤ 3 by
Corollary 1. There are two non-isomorphic permutation graphs (see Fig. 6). If
Gσ is isomorphic to (A) of Fig. 6, then Z(Gσ) = 2 by Proposition 4. If Gσ is
isomorphic to (B) of Fig. 6, then Z(Gσ) = 3 by (b) of Theorem 4.

(A) (B)

Fig. 6. Two non-isomorphic Gσ for G = P3



70 E. Yi

Next, we consider n ≥ 4. We consider two cases.

Case 1: {σ(u1), σ(un)} ∩ {v1, vn} �= ∅. We may assume that σ(u1) = v1, by
relabeling if necessary. We will show that S = V (G1) \ {u1} forms a zero forcing
set for Gσ, and thus Z(Gσ) < n. If dG2(v1, σ(u2)) ≥ 3, then (i) after one global
application of the color-change rule on S, V (Gσ) \ {u1, v1, σ(u2)} are turned
black; (ii) v2 → v1 → u1; (iii) u2 → σ(u2). If dG2(v1, σ(u2)) = 2 (notice that
σ(u2) = v3), then (i) after one global application of the color-change rule on
S, V (Gσ) \ {u1, v1, v3} are turned black; (ii) v4 → v3; (iii) u2 → u1 → v1. If
dG2(v1, σ(u2)) = 1 (notice that σ(u2) = v2), then (i) after one global applica-
tion of the color-change rule on S, V (Gσ) \ {u1, v1, v2} are turned black; (ii)
v3 → v2 → v1 → u1. In each case, S is a zero forcing set for Gσ with Z(Gσ) < n.

Case 2: {σ(u1), σ(un)} ∩ {v1, vn} = ∅. We may assume that σ(u1) < σ(u2), by
relabeling if necessary. If dG2(σ(u1), σ(u2)) ≥ 3, then (i) after one global appli-
cation of the color-change rule on S = V (G1) \ {u1}, V (Gσ) \ {u1, σ(u1), σ(u2)}
are turned black; (ii) if 〈{σ(u1), vs, vs+1, . . . , vt, σ(u2)}〉 is an induced path in
G2, then vs → σ(u1) → u1 and vt → σ(u2). If dG2(σ(u1), σ(u2)) = 2, then
(i) after one global application of the color-change rule on S = V (G1) \ {u1},
V (Gσ)\{u1, σ(u1), σ(u2)} are turned black; (ii) if 〈{vs, σ(u1), vt, σ(u2)}〉 ∼= P4 in
G2, then vs → σ(u1)→ u1; (iii) vt → σ(u2). So, suppose dG2(σ(u1), σ(u2)) = 1,
and we consider two subcases.

Subcase 2.1: dG2(σ(u1), σ(u2)) = 1 and σ(u2) �= vn. Then (i) after one global ap-
plication of the color-change rule on S = V (G1)\{u1}, V (Gσ)\{u1, σ(u1), σ(u2)}
are turned black; (ii) if 〈{σ(u1), σ(u2), vt}〉 ∼= P3 in G2 with σ(u1) < σ(u2) < vt,
then vt → σ(u2)→ σ(u1)→ u1.

Subcase 2.2: dG2(σ(u1), σ(u2)) = 1 and σ(u2) = vn. This implies that σ(u1) =
vn−1. First, we consider n ≥ 5. We will show that S = V (G1)\{u2} forms a zero
forcing set for Gσ, and thus Z(Gσ) < n. If dG2(vn−1, σ(u3)) ≥ 3, then (i) after
one global application of the color-change rule on S, V (Gσ)\{u2, σ(u3), vn−1, vn}
are turned black; (ii) if 〈{σ(u3), vs, vs+1, . . . , vn−1}〉 is an induced path in G2,
then vs → σ(u3) and vn−2 → vn−1 → vn → u2. If dG2(vn−1, σ(u3)) = 2 (notice
that σ(u3) = vn−3), then (i) after one global application of the color-change
rule on S, V (Gσ) \ {u2, vn−3, vn−1, vn} are turned black; (ii) vn−4 → vn−3; (iii)
vn−2 → vn−1 → vn → u2. If dG2(vn−1, σ(u3)) = 1 (notice that σ(u3) = vn−2),
then (i) after one global application of the color-change rule on S, V (Gσ) \
{u2, vn−2, vn−1, vn} are turned black; (ii) vn−3 → vn−2 → vn−1 → vn → u2. So,
for each case, S is a zero forcing set for Gσ with Z(Gσ) < n for n ≥ 5. Second,
we consider n = 4. In this case, Gσ is isomorphic to (A) or (B) of Fig. 7. If Gσ is
isomorphic to (A) in Fig. 7, one can easily check that {u1, u2, u3} forms a zero
forcing set for Gσ, and thus Z(Gσ) < 4. If Gσ is isomorphic to (B) of Fig. 7, no
three vertices form a zero forcing set for Gσ, and thus Z(Gσ) = 4. �



On Zero Forcing Number of Permutation Graphs 71

(B)(A)

Fig. 7. Two non-isomorphic Gσ for G = P4, where σ(u1) = u3 and σ(u2) = v4

6 Open Problems

We conclude this paper with some open problems. Let G be a graph, and let
σ : V (G1)→ V (G2) be a permutation.

(1) Some permutation graphs achieving the upper bound of Corollary 1 are
shown in sections 3, 4, and 5. Can we characterize permutation graphs Gσ

satisfying Z(Gσ) = |V (G)|?
(2) A characterization of graphs G with Z(G) = 2 is given in [18]. Can we

characterize graphs G for which Z(G) = |V (G)| − 2?

Acknowledgement. The author wishes to thank anonymous referees for valu-
able comments and suggestions, which improved the paper.

References

1. (AIM Minimum Rank - Special Graphs Work Group) Barioli, F., Barrett, W.,
Butler, S., Cioabă, S.M., Cvetković, D., Fallat, S.M., Godsil, C., Haemers, W.,
Hogben, L., Mikkelson, R., Narayan, S., Pryporova, O., Sciriha, I., So, W., Ste-
vanović, D., van der Holst, H., Vander Meulen, K., Wehe, A.W.: Zero forcing sets
and the minimum rank of graphs. Linear Algebra Appl. 428/7, 1628–1648 (2008)

2. Barioli, F., Barrett, W., Fallat, S.M., Hall, H.T., Hogben, L., Shader, B., van
den Driessche, P., van der Holst, H.: Zero forcing parameters and minimum rank
problems. Linear Algebra Appl. 433, 401–411 (2010)

3. Berman, A., Friedland, S., Hogben, L., Rothblum, U.G., Shader, B.: An upper
bound for the minimum rank of a graph. Linear Algebra Appl. 429, 1629–1638
(2008)

4. Burgarth, D., Giovannetti, V.: Full Control by Locally Induced Relaxation. Phys.
Rev. Lett. 99, 100501 (2007)

5. Burgarth, D., Maruyama, K.: Indirect Hamiltonian identification through a small
gateway. New J. Phys. 11, 103019 (2009)

6. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincare
(Sect. B) 3, 433–438 (1967)

7. Chartrand, G., Zhang, P.: Introduction to Graph Theory. McGraw-Hill, Kalamazoo
(2004)

8. Chilakamarri, K., Dean, N., Kang, C.X., Yi, E.: Iteration Index of a Zero Forcing
Set in a Graph. Bull. Inst. Combin. Appl. 64, 57–72 (2012)

9. Edholm, C.J., Hogben, L., Hyunh, M., LaGrange, J., Row, D.D.: Vertex and edge
spread of zero forcing number, maximum nullity, and minimum rank of a graph.
Linear Algebra Appl. 436, 4352–4372 (2012)



72 E. Yi

10. Eroh, L., Kang, C.X., Yi, E.: A Comparison between the Metric Dimension and
Zero Forcing Number of Trees and Unicyclic Graphs (submitted)

11. Eroh, L., Kang, C.X., Yi, E.: A Comparison between the Metric Dimension and
Zero Forcing Number of Line Graphs (submitted)

12. Eroh, L., Kang, C.X., Yi, E.: On Zero Forcing Number of Graphs and Their Com-
plements (submitted)

13. Fallat, S.M., Hogben, L.: The minimum rank of symmetric matrices described by
a graph: A survey. Linear Algebra Appl. 426, 558–582 (2007)

14. Fallet, S.M., Hogben, L.: Variants on the minimum rank problem: A survey II.
arXiv:1102.5142v1

15. Hogben, L., Huynh, M., Kingsley, N., Meyer, S., Walker, S., Young, M.: Propaga-
tion time for zero forcing on a graph (preprint)

16. Johnson, C.R., Loewy, R., Smith, P.A.: The graphs for which the maximum mul-
tiplicity of an eigenvalue is two. Linear Multilinear Algebra 57, 713–736 (2009)

17. Kang, C.X., Yi, E.: On Zero Forcing Number of Functigraphs (submitted)
18. Row, D.D.: A technique for computing the zero forcing number of a graph with a

cut-vertex. Linear Algebra Appl., doi:10.1016/j.laa.2011.05.012
19. Severini, S.: Nondiscriminatory propagation on trees. J. Phys. A: Math. Theor. 41,

482002 (2008)



Complexity Results for the Empire Problem
in Collection of Stars

Basile Couetoux1, Jérome Monnot3,2, and Sonia Toubaline4

1 Laboratoire d’Informatique Fondamentale, Faculté des Sciences de Luminy,
163, av. de Luminy F-13288 Marseille cedex 9, France

Basile.Couetoux@lif.univ-mrs.fr
2 PSL, Université Paris-Dauphine, LAMSADE,

Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
3 CNRS, UMR 7243

monnot@lamsade.dauphine.fr
4 Department of Security and Crime Science, UCL Jill Dando Institute,

University College London,
35 Tavistock Square, London, WC1H 9EZ, UK

s.toubaline@ucl.ac.uk

Abstract. In this paper, we study the Empire Problem, a generalization of the
coloring problem to maps on two-dimensional compact surface whose genus is
positive. Given a planar graph with a certain partition of the vertices into blocks
of size r, for a given integer r, the problem consists of deciding if s colors are
sufficient to color the vertices of the graph such that vertices of the same block
have the same color and vertices of two adjacent blocks have different colors.
In this paper, we prove that given a 5-regular graph, deciding if there exists a
4-coloration is NP-complete. Also, we propose conditional NP-completeness re-
sults for the Empire Problem when the graph is a collection of stars. A star is a
graph isomorphic to K1,q for some q ≥ 1. More exactly, we prove that for r ≥ 2,
if the (2r− 1)-coloring problem in 2r-regular connected graphs is NP-complete,
then the Empire Problem for blocks of size r+1 and s = 2r− 1 is NP-complete
for forests of K1,r . Moreover, we prove that this result holds for r = 2. Also for
r ≥ 3, if the r-coloring problem in (r + 1)-regular graphs is NP-complete, then
the Empire Problem for blocks of size r+1 and s = r is NP-complete for forests
of K1,1 = K2, i.e., forest of edges. Additionally, we prove that this result is valid
for r = 2 and r = 3. Finally, we prove that these results are the best possible,
that is for smallest value of s or r, the Empire Problem in these classes of graphs
becomes polynomial.

Keywords: Empire Problem, Coloring in regular graphs, NP-completeness,
Forests of stars.

1 Introduction

Graph coloring problem is an important optimization problem because scheduling prob-
lems appearing in real-life situations may often be modeled as graph coloring problems
(see [1,7,13]). For instance, scheduling problems involving only incompatibility con-
straints correspond to the classical vertex coloring problem. A k-coloration of a graph

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 73–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



74 B. Couetoux, J. Monnot, and S. Toubaline

G = (V,E) is a mapping c : V → {1, . . . , k} such that c(u) �= c(v) for all [u, v] ∈ E.
It is well known that, given an integer k, deciding if a graph admits a k-coloration is
a NP-complete problem if k ≥ 3 and polynomial otherwise [6]. The coloring problem
consists in finding the minimum k such that G is k-colorable, this number is called the
chromatic number of G denoted χ(G).

Using the Brooks’ theorem, it is well known that a connected graph with maximum
degree Δ, for any Δ ≥ 3, is Δ-colorable, except for KΔ+1, and such a coloration can
be found within polynomial time. So, an open question concerning the coloration is to
know the complexity of the k-coloring problem in (k + 1)-regular graphs and such a
result will help narrowing down the gap between P and NP-complete classes for the
coloration with respect to the maximum degree of the graph. Dailey [3] proved that the
3-coloring problem in 4-regular graph is NP-complete, even if the graph is planar. To
our best knowledge, no result exist for k > 3. We prove in this paper that the 4-coloring
problem in 5-regular graph is NP-complete.

The Empire Problem is a generalization of the coloring problem to maps on two-
dimensional compact surfaces whose genus is positive. In graph theory terminology,
the Empire Problem can be described as follows: given an integer r and a planar graph
G = (V,E), what is the minimum number s of colors needed to color a map in which
each country has r colonies? A country and its colonies should be colored the same,
and no pair of distinct colonies (belonging to two different countries) are adjacent.
Each country is called block (sometimes a block is also called empire). We denote the
decision version of the Empire Problem by s-COLr.

In 1890, Heawood [8] conjectured that at most 6r colors are necessary to color every
instance of the Empire Problem in the plane, where blocks are of size at most r. He
could only proved the conjecture for r = 2. In 1981, Taylor [5] proved Heawood’s
conjecture for r = 3 and r = 4. Later, in 1984 this conjecture has completely been
proved by Jackson and Ringel [9] for every r ≥ 2. For random graphs, better bounds
exist. For instance, McGrae and Zito [10] proved that for every fixed integer r > 1
there exists a positive integer sr = O( r

log r ) such that sr < s ≤ 2r asymptotically
almost surely for a random n-vertex tree. Later, Coper, McGrae and Zito [2] improved
this result and showed that for every fixed integer r > 1, sr ≤ s ≤ sr+6. Furthermore,

if r > 2(sr−1)2

2sr−3 log sr then sr + 1 ≤ s ≤ sr + 6.
From a deterministic point of view, the complexity of the Empire Problem in several

classes of planar graphs, has been mainly studied by McGrae and Zito in two recent
papers [12,11]. The case r = 1 corresponds to the coloring problem in planar graphs.
Conversely, for any s, r, the complexity of s-COLr in G is equivalent to the complexity
of the s-coloring problem in the reduced graph Rr(G), where Rr(G) is obtained from
G by contracting each country into a distinct node. In particular, s-COLr is polynomial
as soon as s ≤ 2. Hence, the complexity of the Empire Problem seems interesting only
when we deal with very particular classes of planar graphs. For instance in [12], the
authors give a full dichotomy theorem for trees. More exactly, McGrae and Zito proved
that for fixed positive integers r and s, with r ≥ 2, s-COLr in trees is NP-complete, if
3 ≤ s ≤ 2r− 1 and polynomial otherwise. For general planar graphs, McGrae and Zito
[12] showed that for fixed positive integers r and s, with r ≥ 2, s-COLr is NP-complete
if 3 ≤ s ≤ 6(r− 1). They proved also in [11] that s-COLr is NP-complete if s < 7 for



The Empire Problem in Collection of Stars 75

r = 2 and s < 6r − 3 for r ≥ 3. Finally, for linear forests, i.e., collection of induced
paths, McGrae and Zito [12] proved on the one hand that (2r− 1)-COLr is polynomial
for paths of length at most 2r − 1, for fixed positive integer r ≥ 2, and on the other
hand, they showed that s-COLr is NP-complete for any fixed positive integers r and s,
with 3 ≤ s < r, if the paths have an arbitrary length. In [11], the values of r, s have

been improved to any r ≥ 2 and 3 ≤ s ≤ 2r −
√
2r + 1

4 + 3
2 , but the length of the

paths remain arbitrary large. Here, as corollary of Theorem 2, we strengthen this result
by proving that 3-COL3 is NP-complete, even for linear forests of length exactly 2, i.e.,
collection of disjoint K1,2.

A related problem is the selective graph coloring problem. It consists of selecting one
vertex per empire (not all the empire) in such a way that the chromatic number of the
resulting induced selection is the smallest possible. In [4], some complexity results for
various classes of graphs are given. Hence, the decision version of the selective graph
coloring problem can be viewed as the restriction of the Empire Problem to select one
vertex per empire.

This paper is organized as follows. In Section 2 we introduce some definition and no-
tation. We show in Section 3 that the 4-coloring problem in 5-regular graph
is NP-complete. We present in Section 4 some polynomial results and conditional
NP-completeness results for s-COLr for special classes of graphs and for given val-
ues of s and r. Indeed, we prove in this section that for r ≥ 2, if the (2r − 1)-coloring
problem in 2r-regular connected graphs is NP-complete, then (2r− 1)-COLr+1 is NP-
complete for forests of K1,r. For r = 2, the result is valid without conditions. We prove
that for r ≥ 2 and s ≥ 2r, s-COLr+1 is polynomial for forests of K1,r, showing that the
previous conditional NP-complete result will be the best possible for forests of K1,r.
Also, for any r ≥ 3, if the r-coloring problem in (r+1)-regular graphs is NP-complete,
then r-COLr+1 is NP-complete for graphs of disjoint edges. For r = 3, 4, the result is
valid without conditions. Moreover, we have that r-COLr is polynomial in forest of
edges. Finally, we conclude by some discussions and perspectives in Section 5.

2 Definitions

All graphs in this paper are finite, simple and loopless. Let G = (V,E) be a graph. An
edge between u and v will be denoted [u, v]. For a vertex v ∈ V , let NG(v) denote the
set of vertices in G that are adjacent to v, i.e., the neighbors of v and the degree of v is
dG(v) = |NG(v)|. A graph G = (V,E) is r-regular if ∀v ∈ V , dG(v) = r. For any
V ′ ⊆ V , G[V ′] is the graph induced by the set of vertices V ′, i.e., the graph obtained
from G by deleting the vertices of V − V ′ and all edges incident to at least one vertex
of V − V ′. If the graph is directed we denote the set of oriented edges

−→
E and (u, v)

is the arc from u to v. For a directed graph, let N+−→
G
(v) = {u ∈ V : (v, u) ∈ −→E } be

the outgoing neighbors of v and N−−→
G
(v) = {u ∈ V : (u, v) ∈ −→E } be the incoming

neighbors of v. Finally, d+−→
G
(v) = |N+−→

G
(v)| and d−−→

G
(v) = |N−−→

G
(v)|.



76 B. Couetoux, J. Monnot, and S. Toubaline

A simple graph G = (V,E) is called Eulerian if it has a cycle (called Eulerian cycle)
which visits each edge exactly once. The famous Euler’s theorem asserts that a graph
G = (V,E) is Eulerian iff it is connected and the degree of all its vertices is even. An
independent set in a graph G = (V,E) is a set S ⊆ V of pairwise nonadjacent vertices.
Alternatively, a k-coloration of G = (V,E) can be viewed as a partition of V into k
independent sets.

We denote by nG the disjoint union of n copies of a graph G. As usual Pn denotes
the path induced by n vertices. The length of a path is the number of its edges. The
complete bipartite graph K1,q is also called a q-star, ie., a root adjacent to q leafs. For
more graph definitions and notations see [14].

In this paper we will be interested in the following two problems. Let r ≥ 3 be a
fixed integer.

r-COLORING in (r + 1)-regular graph
Input: A (r + 1)-regular connected graph G = (V,E)
Output: Deciding if there is an assignment of vertices to r colors such that no edge is
monochromatic (no two adjacent vertices share the same color).

THE EMPIRE PROBLEM (denoted s-COLr)
Input: A planar graph (not necessary connected) G = (V,E) on pr vertices; a partition
V = (V1, . . . , Vp) of V where ∀i = 1, . . . , p, |Vi| = r.
Output: Deciding if there is an assignment of vertices to r colors such that no edge
between Vi and Vj with 1 ≤ i < j ≤ p is monochromatic and all vertices in each Vi

have the same colors.

Without loss of generality, we can assume that the partition V of the Empire Problem
is a coloring. For an instance of s-COLr formed by a graph G, we denote Rr(G) its
reduced graph. Rr(G) is obtained from G by contracting each empire to a distinct
pseudo-vertex and by adding an edge between a pair of pseudo-vertices if there exists
in G at least one edge between one vertex of the first empire of this pair and one vertex
of the second empire of this pair.

3 The 4-Coloring Problem in 5-Regular Graphs

We study in this section the complexity of the k-coloring problem in (k + 1)-regular
graphs. We prove in the following theorem that the problem is NP-complete for k = 4.

Theorem 1. 4-COLORING in 5-regular connected graphs is NP-complete.

Proof : We propose a polynomial reduction from 3-COLORING in 4-regular connected
graphs, proved to be NP-complete in [3]. Let G = (V,E) be a 4-regular connected
graph on n vertices instance of the 3-coloring problem. We construct a 5-regular con-
nected graph H in the following way: it contains two copies of G where copies of
the i − th vertex are vi, v

′
i and a gadget F depicted in Figure 1. This gadget contains

n − 3 copies H1, . . . , Hn−3 of a same graph, n special vertices u1, . . . , un where for
i = 1, . . . , n − 4, ui is in copy Hi while the last four vertices un−3, . . . , un are in



The Empire Problem in Collection of Stars 77

u1

u2

un−3un−2un−1un

H1

H2

Hn−3

Fig. 1. The gadget F

Hn−3. In F , all vertices have a degree 5 except special vertices u1, . . . , un of degree 3.
Finally, each vertex ui is linked to vi and v′i. Hence, H is a 5-regular connected graph
and this construction can be done within polynomial time.

We claim that G is 3-colorable iff H is 4-colorable.
Actually, by pointing out that F is 4-colorable and the special vertices u1, . . . , un

must have the same color in any 4-coloration, the result follows. �

4 Complexity Results for the Empire Problem

We propose in this section some conditional NP-completeness results as well as poly-
nomial results for the Empire Problem when the graph is a collection of stars.



78 B. Couetoux, J. Monnot, and S. Toubaline

Theorem 2. Let r ≥ 2 be an integer. If (2r − 1)-COLORING in 2r-regular connected
graphs is NP-complete, then (2r − 1)-COLr+1 is NP-complete in nK1,r.

Proof : We propose a polynomial reduction from (2r − 1)-COLORING in 2r-regular
connected graphs.

Let r ≥ 2. Consider an instance I of (2r − 1)-COLORING formed by a 2r-regular
connected graph G = (V,E) with V = {1, . . . , n}. We define an orientation on the
edges of E according to an Eulerian cycle in G. This cycle exists since G is connected
and all vertices of V have an even degree (see Figure 2 for an illustration when r = 2).

8

1

2 3

4

5

67

8

1

2 3

4

5

67

Fig. 2. Case r = 2. Orienting the edges of a 3-regular connected graph G according to an Eulerian
cycle.

Denote by
−→
G = (V,

−→
E ) the corresponding digraph. For i ≤ n, let e�(i), for � =

1, . . . , r, be the arcs incoming in vertex i in
−→
E . We have

−→
E = {e�(i), � = 1, . . . , r :

i ≤ n} because G is 2r-regular. Let
−→
G i = (V,

−→
Ei), where

−→
Ei = {e�(j), � = 1, . . . , r :

j ≤ i}. By construction
−→
E0 = ∅.

We construct an instance I ′ of (2r − 1)-COLr+1 problem formed by a graph G′ =
(V ′, E′) as follows (see Figure 3 for the case r = 2 and the 3-regular graph G given
in Figure 2). We associate to each vertex i ∈ V , r + 1 copies in V ′, for p = 0, . . . , r,
denoted ip, which form an empire of size r + 1 in G′. Let N−−→

G
(i) = {h1, . . . , hr} be

the incoming neighbors vertices of i. For each vertex i, for i = 1, . . . , n, noting e�(i) =

(h�, i), for � = 1, . . . , r, we add to G′ the edges [h
d+−→Gi−1

(h�)+1

� , i0], for � = 1, . . . , r.
Since d+−→

G
(i) = r, ∀i ∈ V , we have dG′(ip) ≤ r, ∀i ≤ n and ∀p = 0, . . . , r. Indeed, by

construction :

– dG′(i0) = r, because dG′(i0) corresponds to the r arcs e�(i), for � = 1, . . . , r, the
only r arcs incoming in vertex i in

−→
G .

– dG′(ip) = 1, for p = 1, . . . , r, because by construction ip has an edge incident if
and only if d+−→

G jp−1

(i) = p − 1 at the iteration jp. Since d+−→
G
(i) = r, the iteration

jp exists.



The Empire Problem in Collection of Stars 79

1

1′

1′′

2

2′

2′′

3

3′

3′′

4

4′

4′′

5′′

5′

5

6

6′

6′′

7

7′

7′′
8′′

8′

8

Fig. 3. Construction of G′ from G when r = 2

Thus, since by construction dG′(i0) = r and dG′(ip) = 1, for p = 1, . . . , r and i =
1, . . . , n, G′ is a nK1,r and this construction can be done within polynomial time. We
remark that Rr+1(G

′) = G.
We show that G is (2r − 1)-colorable if and only if G′ is (2r − 1)-colorable.
Suppose first that G is (2r − 1)-colorable. We assign to vertices ip in V ′, for p =

0, . . . , r, the same color as i in V , for i = 1, . . . , n. Hence, the coloring defines a truth
assignment of vertices of G′ to 2r − 1 colors. Therefore G′ is (2r − 1)-colorable.

Suppose now that G′ is (2r − 1)-colorable. Since Rr+1(G
′) = G, we have that

G is (2r − 1)-colorable by assigning to every vertex i ∈ V the same color as its
copies in V ′. �
In [12,11], McGrae and Zito have obtained, on the one hand that for any fixed inte-
ger k ≥ 1, � 2kr

k+1�-COLr in collection of paths of length at most k is polynomial (p.
182 in [12]. Indeed, it is a corollary of a more general result in sparse graphs). For
instance, � 4r3 �-COLr in collection of paths of length at most 2 are polynomial. On
the other hand, they proved that s-COLr is NP-complete for any r > s ≥ 3 in lin-
ear forests, i.e., collection of paths of arbitrary length (Theorem 3 in [12]) and (in [11],



80 B. Couetoux, J. Monnot, and S. Toubaline

Theorem 6), they have strengthen this result to any r ≥ 2 and 3 ≤ s ≤ 2r −√
2r + 1/4 + 3/2. Here, we deduce from Theorem 2 that 3-COL3 is NP-complete

in collection of paths of length exactly 2.

Corollary 1. 3-COL3 is NP-complete in nK1,2 = nP3.

Proof : Since 3-COLORING in 4-regular connected graphs has been proved
NP-complete in [3], the result follows from Theorem 2 with r = 2. �
Now, we prove that the result given in Theorem 2 is the best possible according the
parameter s.

Proposition 1. Let r and s be two integers such that r ≥ 2 and s ≥ 2r. s-COLr+1 is
polynomial in nK1,r.

Proof : Let G be a nK1,r. G is a planar graph containing no induced subgraph of aver-
age degree larger than 2r

r+1 . According to Theorem 1 of [11], s-COLr is polynomial for
planar graphs containing no induced subgraph of average degree larger than s

r . Since,
s ≥ 2r we have that s

r ≥
2r
r+1 . Therefore, s-COLr+1 is polynomial in nK1,r for r ≥ 2

and s ≥ 2r. �

Theorem 3. If r-COLORING in (r+1)-regular graphs is NP-complete, then r-COLr+1

is NP-complete in nK1,1 = nK2 = nP2.

Proof : We propose a polynomial reduction from r-COLORING defined on (r + 1)-
regular graph.

Consider an instance I of r-COLORING formed by a (r + 1)-regular graph G =
(V,E) with V = {1, . . . , n} and E = {e1, . . . , em}. We construct an instance I ′ of
r-COLr+1 problem formed by a graph G′ = (V ′, E′) as follows. We associate to each
vertex i ∈ V , r + 1 copies ieh in V ′ with eh ∈ EG(i) where EG(i) are the subset of
edges incident to i in G. These r + 1 copies form an empire of size r + 1 in G′. For
each edge e� = [i, j] ∈ E, we add the edge [ie� , je� ] in G′.

Since dG(i) = r + 1 and each edge is exactly incident to two vertices, we have that
dG′(ie�) = 1, ∀ie� ∈ V ′. Thus G′ is isomorphic to nK2 and this construction can be
done within polynomial time. We remark that Rr+1(G

′) = G.
We show that G is r-colorable if and only if G′ is r-colorable.
Suppose first that G is r-colorable. We assign to vertices ieh in V ′, for eh ∈ EG(i),

the same color as i in V , for i = 1, . . . , n. This coloring constitutes a truth assignment
of vertices of G′ to r colors. Therefore G′ is r-colorable.

Suppose now that G′ is r-colorable. Since Rr+1(G
′) = G, we have that G is r-

colorable by assigning to every vertex i ∈ V the same color as its copies in V ′. �
From [12], we know that s-COLr in collection of disjoint edges and isolated vertices is
polynomial for s ≥ r. Here, we deduce that this result is the best possible for r = 3, 4.

Corollary 2. r-COLr+1 is NP-complete in nK2 for r = 3, 4.



The Empire Problem in Collection of Stars 81

Proof : Since 3-COLORING in 4-regular graphs and 4-COLORING in 5-regular graphs
have been proved NP-complete in [3] and in Theorem 1 respectively, the result follows
from Theorem 3 with r = 3 and r = 4. �

Proposition 2. Let r ≥ 1 be integer. r-COLr is polynomial in forest of edges.

Proof : In [12,11], McGrae and Zito showed that
⌈

2kr
k+1

⌉
-COLr can be decided in poly-

nomial time for forests of paths of length at most k. Thus, for k = 1 we have that
r-COLr is polynomial in forest of edges. �

5 Conclusion

We are interested in this paper to some coloration problems. First, we gave a partial
answer to the open question about the complexity of the k-coloring problem in (k+1)-
regular graphs, or more generally in graphs of maximum degree k + 1. To the best of
our knowledge, this question has never been raised in the literature, although the case
k = 3 was solved in 1980 by Dailey [3]. Here, we have continued the investigation of
this problem for the particular case of k = 4. Indeed, we showed that 4-COLORING in
5-regular connected graphs is NP-complete. We are not able to solve the cases k ≥ 5,
but we think that this question is important to better understand the complexity of the
coloring problem. Based on this open problem, we have proposed some complexity re-
sults on the Empire Problem in sparse planar graphs. More exactly, we studied the Em-
pire Problem a generalization of the k-coloring problem for which we proposed some
conditional NP-completeness results for collection of stars. Hence, we proved that if
(2r − 1)-COLORING in 2r-regular connected graphs is NP-complete, then (2r − 1)-
COLr+1 is NP-complete for forests of K1,r. This result holds for r = 2 and strengthens
the results obtained by McGrae and Zito in [12,11] for s-COLr in forests of paths of
arbitrary length. Furthermore, we proved that if r-COLORING in (r + 1)-regular con-
nected graphs is NP-complete, then r-COLr+1 is NP-complete for forests of edges.
This results is valid for r = 2 and r = 3. Also, we showed that these results are best
possible, that is for smallest values of s and r, the Empire Problem in these classes of
graphs becomes polynomial.

Looking for the approximation, we show that the optimization version of the Em-
pire Problem with blocks of size r, noted MIN COLr, is 4

3 -approximable for forests of
paths of length at most 2. Indeed, if R(G) is bipartite then G is 2-empire colorable.

Otherwise, in [12,11], the authors showed that
⌈

2kr
k+1

⌉
-COLr can be decided in polyno-

mial time for forests of paths of length at most k. Since G is not bipartite, G is at least
3-colorable which means that the value of an optimal coloration of G is larger than 3.
Therefore, MIN COLr is 4

3 -approximable for forests of paths of length at most 2. It is
then interesting to study the approximation of MIN COLr more generally for forests
of stars. Using Proposition 1, we trivially get that MIN COLr is 2r

3 -approximable in
nK1,r. Thus, an interesting perspective is to try to improve this approximation ratio.

Another perspective is to study the complexity and approximation of the Empire
Problem for other classes of sparse planar graphs with small average degree like nK3

and nK4.



82 B. Couetoux, J. Monnot, and S. Toubaline

References

1. Al-Mouhamed, M., Dandashi, A.: Graph coloring for class scheduling. In: IEEE/ACS Inter-
nation Conference on Computer Systems and Applications (AICCSA), pp. 1–4 (2010)

2. Cooper, C., McGrae, A.R.A., Zito, M.: Martingales on Trees and the Empire Chromatic
Number of Random Trees. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009.
LNCS, vol. 5699, pp. 74–83. Springer, Heidelberg (2009)

3. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphes are NP-
complete. Discrete Mathematics 30(3), 289–293 (1980)

4. Demange, M., Monnot, J., Pop, P., Ries, B.: Selective graph coloring in some special classes
of graphs. In: Proceedings of 2nd International Symposium on Combinatorial Optimization,
ISCO 2012 (to appear in LNCS, 2012)

5. Gardner, M.: M-Pire Maps. In: The last recreations. Hydras, Eggs and Other Mathematical
Mystifications, pp. 85–100. Spring-Verlag New York, Inc. (1997)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

7. Giaro, K., Kubale, M., Obszarski, P.: A graph coloring approach to scheduling of multipro-
cessor tasks on dedicated machines with availability constraints. Discrete Applied Mathe-
matics 157(17), 3625–3630 (2009)

8. Heawood, P.J.: Map colour theorem. Quarterly Journal of Pure and Applied Mathematics 24,
332–338 (1890)

9. Jackson, B., Ringel, G.: Solution of heawood’s empire problem in the plane. Journal für die
Reine und Angewandte Mathematik 347, 146–153 (1984)

10. McGrae, A.R.A., Zito, M.: Colouring Random Empire Trees. In: Ochmański, E., Tyszkiewicz,
J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 515–526. Springer, Heidelberg (2008)

11. McGrae, A.R.A., Zito, M.: The complexity of the empire colouring problem. CoRR,
abs/1109.2162 (2011)

12. McGrae, A.R.A., Zito, M.: Empires Make Cartography Hard: The Complexity of the Empire
Colouring Problem. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp.
179–190. Springer, Heidelberg (2011)

13. Ries, B.: Complexity of two coloring problems in cubic planar bipartite mixed graphs. Dis-
crete Applied Mathematics 158(5), 592–596 (2010)

14. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)



Hamiltonian Paths and Cycles in Planar Graphs

Sudip Biswas1, Stephane Durocher2,�,
Debajyoti Mondal2, and Rahnuma Islam Nishat3

1 Department of Computer Science, Louisiana State University
2 Department of Computer Science, University of Manitoba
3 Department of Computer Science, University of Victoria
sudipid@gmail.com, {durocher,jyoti}@cs.umanitoba.ca,

rnishat@cs.uvic.ca

Abstract. We examine the problem of counting the number of Hamil-
tonian paths and Hamiltonian cycles in outerplanar graphs and planar
graphs, respectively. We give an O(nαn) upper bound and an Ω(αn)
lower bound on the maximum number of Hamiltonian paths in an outer-
planar graph with n vertices, where α ≈ 1.46557 is the unique real root
of α3 = α2 + 1. For any positive integer n ≥ 6, we define an outerpla-
nar graph G, called a ZigZag outerplanar graph, such that the number
of Hamiltonian paths starting at a single vertex in G is the maximum
over all possible outerplanar graphs with n vertices. Finally, we prove
a 2.2134n upper bound on the number of Hamiltonian cycles in planar
graphs, which improves the previously best known upper bound 2.3404n .

1 Introduction

Counting of combinatorial objects is a fundamental problem in combinatorics.
Given a graph G with n vertices, a straightforward approach to count the num-
ber of Hamiltonian paths in G is to use a naive backtracking algorithm that
enumerates all possible paths in G. Since the problem of determining whether
any Hamiltonian path exists in a given graph is NP-hard [7], determining their
exact number is also NP-hard.

Much research effort has been devoted to counting as well as bounding the
number of Hamiltonian paths and Hamiltonian cycles in graphs [1,3,4] and var-
ious classes of graphs, such as cubic graphs [8,6], grid graphs [3] and planar
graphs [2]. The currently best known upper and lower bounds on the number of
Hamiltonian cycles in planar graphs are established by Buchin et al. [2], which
are 2.3404n and 2.0845n, respectively. They also gave a 2.8927n upper bound
and a 2.4262n lower bound on the number of simple cycles in planar graphs.
Recently, de Mier and Noy [5] proved that the number of simple cycles in an
outerplanar graph is Θ(1.502837n).

Although there exists a polynomial-time algorithm to determine the number
of Hamiltonian paths in the graphs with bounded treewidth [9], finding a tight

� Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 83–94, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



84 S. Biswas et al.

upper bound on that number is a non-trivial task (e.g., counting Hamiltonian
paths in a rectangular grid of small width [3]). On the other hand, we can find a
fairly tight upper bound on the number of Hamiltonian paths in an outerplanar
graph G with n vertices by simply solving a recurrence formula as follows. Let a
be a vertex of G (without loss of generality assume that G is maximal). We can
define the number of Hamiltonian paths of G starting at a recursively, as shown
in Figures 1(a)–(c). The numbers k1 and k2 represent the number of vertices
(that are not shown explicitly) in the corresponding shaded regions. A partial
Hamiltonian path starting at a can be extended along the path shown in bold,
where the vertices already visited are shown in gray, the current vertex is shown
in white. The vertices still to be visited either lie in the dark gray region or are
shown in black. Consequently, the number of Hamiltonian paths starting at a is

T (n) = max{T (n− k2 − 2) + T (n− k2 − 3) + T (n− k1 − 3) + T (n− k1 − 2),

T (n− 1) + T (n− 3), T (n− k1 − 2) + T (n− k2 − 2)},

which is dominated by T (n− 1)+T (n− 3) and hence bounded by O(1.46557n).
This also suggests that the number of Hamiltonian paths of an outerplanar graph
is maximized when the graph has low maximum degree.

(b)(a) (c)

1k 2k

1k 2k

1k

1k 2k 1k1k 2k

a

b c

d

a

b c

d

a

b c

d

a

b c

d
2k

a

b c

d
2k

1k

a

b c

a

b c

a

b c

d

a

b c

d
1k 1k

1k

a

b c

d

k2

Fig. 1. Counting Hamiltonian Paths. Illustration for the cases when (a) degree(a)=2
and k1, k2 > 0, (b) degree(a)=2 and k2 = 0, and (c) degree(a)> 2 and k1, k2 ≥ 0.

We give a combinatorial proof for an O(nαn) upper bound and an Ω(αn)
lower bound on the maximum number of Hamiltonian paths in an outerplanar
graph with n vertices, where α ≈ 1.46557 is the unique real root of α3 = α2 +1.
Our proof relies on graph transformation. We show that given a maximal out-
erplanar graph G with n vertices and a vertex x in G, one can insert/delete
constant number of vertices and edges to obtain another combinatorially dif-
ferent maximal outerplanar graph G′ with n vertices such that the maximum
number of Hamiltonian paths starting at some vertex y in G′ is at least as large
as the maximum number of Hamiltonian paths in G that start at x. If we ap-
ply such a transformation repeatedly, then within 3n/2 steps we can find an



Hamiltonian Paths and Cycles in Planar Graphs 85

outerplanar graph G′′ such that the number of Hamiltonian paths starting at a
vertex in G′′ is maximum over all the outerplanar graphs with n vertices. Con-
trary to proofs using recurrence relations, this proof helps characterize some of
the structural properties of outerplanar graphs. Furthermore, we prove a 2.2134n

upper bound on the number of Hamiltonian cycles in planar graphs, which
improves the previously best known upper bound 2.3404n and reduces the pre-
vious gap between the upper and lower bound for the exponential growth from
0.46 to 0.13.

2 Preliminaries

Let G be a graph with n vertices. By V (G) and E(G) we denote the set of
vertices and the set of edges in G, respectively. By |V (G)| we denote the number
of vertices of G, i.e., |V (G)| = n. By (u, v) we denote an edge between the
vertices u and v. Let G be a graph and let G′ be a subgraph of G. By G−G′ we
denote the graph obtained by deleting all the vertices of G′ from G. A separating
pair of G is a pair of vertices {x, y} whose deletion disconnects G. If x and y are
neighbors, then the pair is called a separating edge.

A graph is outerplanar if it has a planar embedding with all its vertices on the
outer face. An outerplanar graph is maximal if the addition of any edge violates
outerplanarity. Let G be a maximal outerplanar graph with n > 3 vertices and
let {x, y} be a separating edge of G. Then deletion of the vertices x and y from
G will give two connected components G′ and G′′. We call the subgraphs G−G′

and G−G′′ the split graphs with respect to {x, y}. By 〈u1, u2, . . . , uk〉 we denote
a simple path of k vertices. We now have the following fact.

Fact 1. Let G be a maximal outerplanar graph with n vertices. For any Hamil-
tonian path 〈v1, v2, . . . , vn〉 in G, the edge (v1, v2) must be an outer edge of G.
Let (u, v) be an outer edge of G. Then the Hamiltonian path that starts at u and
ends at v is unique and lies along the outer face of G.

It is straightforward to design a backtracking algorithm based on Fact 1 that
takes a maximal outerplanar graph G (a fixed combinatorial plane embedding
of G) and a vertex x of G as input and then enumerates all the Hamiltonian
paths of G that start at vertex x. Starting at x such an algorithm constructs
a Hamiltonian path incrementally by visiting the unvisited vertices one after
another. At each vertex the algorithm can have at most two choices to move
forward to the next vertex and at each forward phase the algorithm is guaranteed
to produce a new Hamiltonian path. Once a Hamiltonian path is produced, the
algorithm backtracks to find a vertex that can initiate a forward move that has
not been taken yet. If there is no such vertex, then the algorithm terminates. We
will use this idea of enumerating Hamiltonian paths in our counting technique.

3 Hamiltonian Paths in Outerplanar Graphs

In this section we give an O(n1.47n) upper bound on the number of Hamiltonian
paths in an outerplanar graph with n vertices. Since the addition of an edge in a



86 S. Biswas et al.

graph does not decrease the number of Hamiltonian paths, it suffices to consider
only maximal outerplanar graphs.

Let G be a maximal outerplanar graph and let v be a vertex of G. By h(G)v we
denote the number of Hamiltonian paths in G starting at vertex v. If the number
of Hamiltonian paths starting from v in G is the maximum over all vertices of
G, then we say v is an ace vertex of G. By N (G) we denote the number of
Hamiltonian paths in G starting at an ace vertex of G. In the following we give
an outline of our proof technique.

Step 1: Let Sn be the set of all maximal outerplanar graphs of n vertices,
where n ≥ 6, whose weak dual is a path. We prove that there exists a graph
G ∈ Sn, such that N (G) is the maximum over all possible maximal outerplanar
graphs of n vertices. See Theorem 1.
Step 2: We then identify such a graph G and refer to that graph as a ZigZag
graph. See Theorem 2.
Step 3: Finally, we identify an ace vertex v in G. We give an O(1.47n) up-
per bound on h(G)v. Consequently, we obtain an O(n1.47n) upper bound on
the number of Hamiltonian paths in any outerplanar graph of n vertices. See
Theorem 3.

Let G be a maximal outerplanar graph with n vertices. Then the weak dual T
of G is a binary tree which has a vertex for each bounded face of G, and two
vertices in T are adjacent if the corresponding faces in G share an edge. Let f
be a face in G. Then the node in T that corresponds to the face f is the dual
node of f . We can define the weak dual T as a rooted ordered binary tree as
follows. If n = 3, then T contains a single node which is the root r. Otherwise,
n > 3 and we take any vertex of degree one as the root r of T . Observe that r
has only one child v. By convention, we set v to be the left child of r. For any
node u �= r in T , let the parent of u be w and let (a, b) be the common edge
of the two faces of G that correspond to the vertices u and w. Let the vertices
on the triangular face corresponding to u be a, b, c in clockwise order. Let f and
f ′ be the triangular faces (if any) other than abc that contain the edges (a, c)
and (b, c), respectively. Then the dual nodes of f and f ′ are the left and right
children of u, respectively.

We now prove the correctness of Step 1. For any maximal outerplanar graph
G with n ≥ 6 vertices we construct another maximal outerplanar graph G′ with
n vertices such that N (G′) ≥ N (G) and the number of vertices of degree three
in the weak dual of G′ is less than the number of vertices of degree three in the
weak dual of G.

We first examine the properties of Hamiltonian paths in G. Let the number of
vertices of degree three in T be x, where x ≥ 1. Let abc be a face of G such that
no edge of abc is an outer edge. Then the dual node v of abc must be a vertex
of degree three in T . See Figure 2. Let G1 and G2 be the two split graphs of G
with respect to the separating edge {a, b}, where G1 contains the vertex c. Let
p be any vertex in G2 other than a, b. Since {a, b} is a separating edge in G, any
Hamiltonian path starting at p must contain a subpath, which is a Hamiltonian
path of G1, G1 − {a} or G1 − {b}.



Hamiltonian Paths and Cycles in Planar Graphs 87

For convenience, we redefine T as an ordered rooted tree, where the root
corresponds to some face in G2. We now compute h(G1)a, h(G1)b, and then
h(G1−{b})a, h(G1−{a})b. We need the following lemma, whose proof is omitted
due to space constraints.

Lemma 1. Let G be a maximal outerplanar graph and let (a, b) be an outer edge
of G. Then there exists a Hamiltonian path in G−{a} starting from b that ends
at a vertex of degree two in G.

Let GL (resp., GR) be the subgraph of G that contains the left (resp., right)
subtree of v as its weak dual. We now compute h(G1)a and h(G1)b considering
the following cases.

(a) The Hamiltonian paths that start at a, visit the vertices in GL along the
outer face ending at c, and then visit GR starting at c.

(b) The Hamiltonian paths that start at a, visit the vertices in GR along the
outer face starting at b and ending at c, and then visit the vertices in
GL−{a, c}.

(c) The Hamiltonian paths that start at b, visit the vertices in GR along the
outer face ending at c, and then visit the vertices in GL starting at c.

(d) The Hamiltonian paths that start at b, visit the vertices inGL along the outer
face starting at a and ending at c, and then visit the vertices in GR−{b, c}.

(a) (b)

v

u

v

u

L
G R

G

c

a
b

G
L

G

R
G

b

a
c

a b

c

G

a c

bG
2

G
2

Fig. 2. Illustration for (a) G, and (b) G′

Therefore, h(G1)a = h(GR)c+h(GL−{a})c and h(G1)b = h(GL)c+h(GR−{b})c.
In the following we construct the graph G′. By Lemma 1, at least one Hamil-

tonian path in GR − {b} starts from c and ends at a vertex of degree two in
GR−{b}. Let that vertex be c′ and let the vertex just before c′ on that path be
a′. Let u be the dual node of the face a′b′c′ of G. See Figure 2(a). Take a copy
of G, remove all the vertices of GL other than a and c from that copy. Let the
resulting graph be X . Now take a copy of GL and merge the vertices a and c of
GL with the vertices a′ and c′ of X , respectively, and then remove any resulting



88 S. Biswas et al.

multi-edges. We denote the resulting graph by G′. See Figure 2(b). Let the weak
dual of G′ be T ′. Observe that the construction of G′ can be described by an
operation on T as follows: remove the left subtree of v and add that subtree as
a subtree of u. We call this operation child swap. Since u and v are vertices of
degree two in T ′, the number of vertices of degree three in T ′ is x− 1.

Let G′
1 be the subgraph of G′, where the weak dual of G′

1 is the subtree of
T ′ rooted at v. Observe that the two split graphs of G′

1 − {a} with respect to
{a′, c′} consist of a copy of GL and a copy of GR. For simplicity, we use the
same notation, i.e., GL and GR, to denote those split graphs. We now compute
h(G′

1)a and h(G′
1)b considering the following cases.

(a) The paths that start at a and then visit the vertices in GR starting at c.
For every such path that does not end at c′, we replace the subpath 〈a′, c′〉
(resp., 〈c′, a′〉) with the outer face of GL starting at a′ and ending at c′

(resp., starting at c′ and ending at a′). For every path that ends at c′, we
extend that path along the outer face of GL − {a′}. Therefore, the number
of such Hamiltonian paths is at least h(GR)c.

(b) The paths that start at a and then visit the vertices in GR starting at b. For
every such path we replace the subpath 〈a′, c′〉 (resp., 〈c′, a′〉) with the outer
face of GL starting at a′ and ending at c′ (resp., starting at c′ and ending at
a′). If we visit c after b, then by construction of G′, at least one Hamiltonian
path in GR − {b} that starts from c must end at c′. Recall that the path
visits a′ just before c′. Therefore, we can take the sequence a to a′ of that
path and extend it in h(GL)a′ ways. Otherwise, we start from b and visit the
outer face of G′

1 − {a} ending at c. Therefore, the number of Hamiltonian
paths is at least h(GR −{b})c− 1+ h(GL)a′ +1 = h(GR −{b})c + h(GL)a′ .

(c) The paths that start at b, visit a, then visit the vertices in GR−{b} starting
at c. As in Case 2, i.e., (b), these paths can be extended to at least h(GR −
{b})c − 1 + h(GL)a′ Hamiltonian paths in G′

1.
(d) The Hamiltonian path that starts at b and then visits the outer face of G′

1

ending at a. This Hamiltonian path is unique by Fact 1.

Before the child swap operation we relabel the vertices a, c of G in the following
way so that after child swap h(GL)a′ ≥ h(GL)c′ holds. If h(GL)a < h(GL)c, we
swap the labels of the vertices a and c. In the case when we do not change labels,
h(GL)a′ = h(GL)a > h(GL − {a})c. Otherwise, h(GL)a′ = h(GL)c > h(GL)a >
h(GL−{a})c. Therefore, h(G′

1)a ≥ h(GR)c+h(GR−{b})c+h(GL)a′ ≥ h(G1)a,
and h(G′

1)b ≥ h(GR − {b})c + h(GL)a′ ≥ h(G1)b.
Similarly, we can compute that h(G1−{a})b = h(GL−{a})c, h(G1−{b})a =

h(GR−{b})c, h(G′
1−{a})b ≥ h(GR−{b})c+h(GL)a′ , and h(G′

1−{b})a ≥ h(GR−
{b})c. Therefore, h(G′

1−{b})a ≥ h(G1−{b})a and h(G′
1−{a})b ≥ h(G1−{a})b.

Recall that for any vertex p ∈ V (G2 − {a, b}), any Hamiltonian path starting
at p must contain a subpath, which is a Hamiltonian path of G1, G1 − {a} or
G1−{b}. We have proved that in each of these cases, the number of such subpaths
in G′ is greater than or equal to the number of such subpaths in G. Therefore,
for any vertex p ∈ V (G2 − {a, b}), h(G′)p ≥ h(G)p. We use the above technique
to prove the following theorem.



Hamiltonian Paths and Cycles in Planar Graphs 89

Theorem 1. For any positive integer n ≥ 6, there exists an outerplanar graph
G such that the weak dual of G is a path and N (G) is the maximum over all
possible outerplanar graphs of n vertices.

Proof (Outline). Let Y be a graph whose weak dual is not a path and N (Y ) is
the maximum over all possible outerplanar graphs of n vertices. Suppose for a
contradiction that there is no graph G whose weak dual is a path and h(G)x ≥
N (Y ), for some vertex x in G.

Let T be the weak dual of Y . Since T is not a path, there is at least one node
v of degree three in T . Let abc be the face of Y that corresponds to v, where the
vertices a, b, c appear on the face abc in clockwise order. Let Sab be the set of
outer vertices between a and b in clockwise order on the outer face of Y . Define
sets Sbc and Sca in a similar way. Let w be an ace vertex of Y .

If w belongs to Sab, Sbc or Sca, then by the child swap operation we can
construct a graph Y ′ from Y such that h(Y ′)w ≥ N (Y ) and the number of
vertices of degree three in the weak dual of Y ′ is one less than that of T . Oth-
erwise, w ∈ {a, b, c}. Also in this case, we can prove that h(Y ′)w ≥ N (Y ); a
detailed proof is omitted due to space constraints. We apply the process repeat-
edly on the resulting graph to construct a graph G whose weak dual is a path
and h(G)x ≥ N (Y ), for some vertex x in G, a contradiction. �

We now prove the correctness of Step 2. Let G be a maximal outerplanar graph
with n ≥ 3 vertices and let T be its weak dual. Let T be a path 〈r, u1, u2, . . . , un−3〉
rooted at r. By definition, u1 is the left child of r. For each i, 1 ≤ i ≤ n − 4,
assume that ui+1 is the left child of ui if i is even, and right child of ui oth-
erwise. We then call G a ZigZag outerplanar graph. See Figure 3(d). Let G′ be
another outerplanar graph of n vertices such that the weak dual T ′ of G′ is a
path v1, v2, . . . , vn−2 rooted at v1. If G

′ is not a ZigZag outerplanar graph, then
there is a subpath 〈vi−1, vi, vi+1〉, 1 < i < n− 2, such that either each of vi and
vi+1 is the left child of their parents, or both of them are the respective right
children of their parents. We call such a subpath a repeated ancestry. Without
loss of generality, suppose that both of vi and vi+1 are the respective left chil-
dren of their parents and the child of vi+1 is a right child, if any. We construct
a graph G′′ from G′, by applying one of the following flip operations such that
the number of repeated ancestries in the weak dual T ′′ of G′′ is at least one less
than the number of repeated ancestries in T ′. See Figures 3(a)–(c).

Child Flip: Let Y be the subgraph of G′ that contains the subtree rooted at vi
as its weak dual. This operation takes a copy of G′ and replaces the subgraph Y
with a mirror copy of Y . This construction can be described by T ′ as follows: for
each node y in the subtree rooted at vi, this operation flips the left-right order
of the child of y. See Figure 3(b), where v = vi and w = vi+1.

Parent Flip: Let (a, e) be the common edge of the faces that correspond to the
vertices vi−1 and vi of T

′. Let the two split graphs with respect to {a, e} be Y
and Z, where the weak dual T1 of Y is rooted at vi. Let z be the leaf of T1 and
let the vertices of Y on the face corresponding to z be a′, b′, c′ in clockwise order



90 S. Biswas et al.

such that c′ is a vertex of degree two. If z is the left child of its parent then we
connect the weak dual of Z rooted at vi−1 as a right subtree of z, by merging
vertices e, a to the vertices b′, c′, respectively. Otherwise, we merge the vertices
e, a to the vertices a′, c′, respectively. See Figure 3(c), where u = vi−1, v = vi
and z is the right child of its parent.

Lemma 2. Let G be an outerplanar graph, where the weak dual of G is a path
with at least one repeated ancestry. Then there exists an outerplanar graph G′

that can be obtained from G by a single flip operation such that N (G′) ≥ N (G).

We apply flip operations on G repeatedly using Lemma 2. Since at each step the
number of repeated ancestries decreases, we finally obtain a ZigZag outerplanar
graph. Consequently, we have the following theorem.

Theorem 2. Let G be a ZigZag outerplanar graph with n ≥ 6 vertices. Then
N (G) is the maximum among all possible outerplanar graphs with n ≥ 6 vertices.

We now prove the correctness of Step 3. Let G be a ZigZag graph with n vertices.
See Figure 3(d). We now give a bound onN (G). For any n ≥ 6, a ZigZag graph of
n vertices has exactly two vertices of degree two and exactly two vertices of degree
three; all the other vertices are of degree four. Let a, y and b, x be the vertices
of degree two and degree three in G, respectively. Using the zigzag structure
of G, it is straightforward to observe that h(G)a = h(G)y and h(G)b = h(G)x,
independent of the parity of n. Let {hn}i, i ∈ {2, 3, 4}, be the maximum number
of Hamiltonian paths in a ZigZag graph of n vertices starting from any vertex
of degree i.

(a) (b) (c) (d)

. . .

y x

b

d

f

a

c

e

u

Gb

d

a

e

b

c

b

c

a

Gb

Gb

a

cd

e

v
w

bd

ba

c

e

G
2x

u

v
w

y

y

G
2

G
2x

v

y

w

u

x

z

Fig. 3. (a) G′. (b) G′′, which is obtained by a child flip on G′. (c) G′′, which is obtained
by a parent flip on G′. (d) A ZigZag graph.

We first compute {hn}2. Without loss of generality we compute the number
of Hamiltonian paths starting at a in G. Any Hamiltonian path that starts
from a, chooses either b or c as the next vertex to visit. If the next vertex is
b, then the number of such Hamiltonian paths will be equal to the number of
Hamiltonian paths in the ZigZag graph G − {a} starting at a vertex of degree
two, which is {hn−1}2. If the next vertex is c, then there are two ways to choose



Hamiltonian Paths and Cycles in Planar Graphs 91

the next vertex. If we visit vertex b and then vertex d, then the number of
Hamiltonian paths will be equal to the number of Hamiltonian paths in the
ZigZag graph G− {a, b, c} starting at a vertex of degree two, which is {hn−3}2.
Otherwise, we have to visit e after c and then we can complete a Hamiltonian
path in only one way, i.e., by visiting the vertices along the outer face. Therefore,
{hn}2 = {hn−1}2 + {hn−3}2 + 1. The solution to this recurrence is bounded by
O(αn), where α ≈ 1.46557 is the unique real root of α3 = α2+1. This recurrence
establishes a lower bound of Ω(αn) on the maximum number of Hamiltonian
paths in an outerplanar graph of n vertices, as follows.

Observe that {hn}2 > {hn−1}2+ {hn−3}2. We claim that {hn}2 > αn−1. The
case when n ∈ {6, 7, 8} is straightforward since {h6}2 = 9 > α5, {h7}2 = 14 > α6

and {h8}2 = 21 > α7. Assume that for all k, where 8 < k < n, {hk}2 > αk−1.
Now {hn}2 > {hn−1}2 + {hn−3}2 > αn−2 + αn−4 = αn−4(α2 + 1) = αn−1.
Consequently, {hn}2 ∈ Ω(αn).

We compute {hn}3 and {hn}4, and prove that {hn}2 > {hn}3 and {hn}2 >
{hn}4. We thus have the following theorem.

Theorem 3. The number of Hamiltonian paths in any outerplanar graph with
n vertices is O(nαn). Furthermore, there exists a maximal outerplanar graph
with n vertices that contains Ω(αn) Hamiltonian paths.

4 Hamiltonian Cycles in Planar Graphs

In this section we modify the idea of the proof of Buchin et al. [2] to obtain an
improved upper bound on the number of Hamiltonian cycles in planar graphs.

Since the number of simple cycles in a planar graph G is an upper bound on
the number of Hamiltonian cycles in G, we first find a recurrence relation for the
number of simple cycles in G using a similar argument as in [2, Lemma 1]. We
then simplify that recurrence relation to obtain an upper bound on the number
of Hamiltonian cycles. Unlike Buchin et al., we impose some restrictions on the
cycles that we count, as shown in the following lemma. We will need the concept
of cycle-path, which is a simple path in G that can be completed to a simple
cycle in G.

Lemma 3. Let G = (V,E) be a maximal plane graph with n ≥ 3 vertices. For
each vertex v ∈ V , partition the edges incident to v into two non-empty sets sv
and s′v, which are local to v, such that the edges in each set appear consecutively
around v in clockwise order. Let H(G) be the number of restricted Hamiltonian
cycles in G, where a Hamiltonian cycle h is called restricted if for every vertex
v, the two edges that are incident to v in h do not belong to the same set sv or
s′v. Then H(G) = O(n2n).

Proof. A cycle-path P of G is called restricted if for every internal vertex v of
P , the two edges that are incident to v in P do not belong to the same set sv or
s′v. Figure 4(a) illustrates a restricted cycle-path.

Every edge e ∈ E can have two orientations, which we denote by e′ and
e′′. We first count the number of cycle-paths starting at a fixed edge e ∈ E.



92 S. Biswas et al.

Let P ′ and P ′′ be the upper bounds on the total number of restricted cycle-
paths starting from e with orientation e′ and e′′, respectively. Then P ′ and P ′′

must be the same by the symmetry of the edge orientations. To simplify the
explanation, assume that the total number P of restricted Hamiltonian cycles
starting from e is min{P ′, P ′′}. Without loss of generality we give the starting
edge the orientation e′.

We associate restricted cycle-paths with the nodes of a tree. The root of
the tree contains the path of length one corresponding to the starting edge.
The children of a tree node contain paths starting with the path stored in the
predecessor plus an additional edge. Every restricted cycle-path is stored in only
one tree node. The children of a tree node φ are defined as follows: If the oriented
path arrives to a vertex v, and the last edge of the oriented path belongs to sv
(respectively, s′v), then the children of that tree node consist of the edges in s′v
(respectively, sv).

No matter which child we choose to continue the path, we will mark all the
faces incident to v so that we can avoid reconsidering these faces while continuing
the path. Let kv be the number of unmarked faces that lie among the edges
corresponding to the children of φ. Then the number of children of φ is kv + 1.
Figure 4(b) gives an example of φ and its children. It is now straightforward to
verify that P ′ can be expressed by the following recurrence:

P ′(n, f) ≤ (kv + 1) · P ′(n− 1, f − kv) + 1, (1)

where f is the number of faces in G and P ′(i, j) is the number of cycle-paths in
G with i unvisited nodes and j unmarked faces.

Since we want to maximize the number of nodes in the recursion tree, we can
assume that the kvs for all v within a level l of the tree are equal [2, Lemma 1].
Let kl be the number kv for the vertices v on level l.

P ′ = P ′(n − 2, 2n − 6) will give us the number of nodes in the tree, where
P ′(0, ·) = P ′(·, 0) = 1. Observe that for each oriented cycle, we can define
another cycle with the opposite orientation. Define a term k′

l analogous to the
term kl for the cycle with opposite direction. Then all kls and k′

ls have to be non-
negative numbers. Now the kls and k′

ls along a cycle have to fulfill the condition∑
l≤L(kl+k′

l) ≤ 2n−6, where L ≤ n−1. We now bound the number of restricted
Hamiltonian cycles P as follows:

P ≤ min{P ′, P ′′} ≤ min

⎧⎨
⎩

n−1∑
L=1

∏
l≤L

(kl + 1),

n−1∑
L=1

∏
l≤L

(k′
l + 1)

⎫⎬
⎭ . (2)

We are interested in a set kl which maximizes (1). Due to the convexity of∏
1≤l≤n−1(kl+1) (respectively,

∏
1≤l≤n−1(k

′
l+1)), the maximum will be attained

when all kl (respectively, all k
′
l) are equal. To maximize Equation (2), we now

need to maximize kl or k′
l. Since

∑
1≤l≤n−1(kl + k′

l) ≤ 2n − 6 holds and we

are taking min{P ′, P ′′}, Equation (2) is maximized when kl and k′
l are equal1.

1 Since we are bounding only the number of restricted Hamiltonian cycles, we can
safely ignore the effect of restricted cycle-paths that are not Hamiltonian.



Hamiltonian Paths and Cycles in Planar Graphs 93

Consequently, kl = k′
l =

2n−6
2(n−1) and

P ≤
n−1∏
l=1

(kl + 1) =

n−1∏
l=1

(
2n− 6

2(n− 1)
+ 1). (3)

We ignore the summation since P is an upper bound only on the number of re-
stricted Hamiltonian cycles. Therefore, the exponential growth of the maximum
number of restricted Hamiltonian cycles that contains the edge e is 2n. �

a

b

c

e
f

g

d

b

c

e

g

(a) (b) (c)

h fa

d

a

b

cd

e
f

g

Fig. 4. (a) A restricted cycle-path in G, which is shown in dashed line. For each vertex
v, the sets sv and s′v are shown in dark-gray and light-gray, respectively. Assume that
φ = (a, b, c, d). Then (d, b), (d, a) and (d, g) are the candidates for the children of φ. (b)
The faces that are marked are shown in light-gray. Since the faces incident to (d, b)
are already marked, we only consider (a, b, c, d, a) and (a, b, c, d, g) as the children of φ.
Therefore, kv + 1 = 2. (c) Illustration for the proof of Theorem 4, where the edges in
M are shown with dashed lines.

Theorem 4. The exponential growth of the maximum number of Hamiltonian
cycles in a planar graph with n vertices is 2.2134n.

Proof. First consider the case when n is even. Any Hamiltonian cycle in a
maximal planar graph G with an even number of vertices splits into two non-
intersecting perfect matchings. We now count the number of ways that a perfect
matching M in G can be extended to a Hamiltonian cycle. Let e be an edge of
M , where x and y are the end vertices of e. We define two sets se and s′e, which
are local to e, such that se and s′e consists of the edges incident to x and y,
respectively. We define such pair of sets for every edge in M , as shown in Fig-
ure 4(c). Observe that each edge in M plays the role of a single vertex and hence
the number of ways that M can be extended to a Hamiltonian cycle is equal
to the number of restricted Hamiltonian cycles in G. We count these restricted
Hamiltonian cycles in a way similar to Lemma 3 by modifying the parameters
n, f, kl, k

′
l as follows.

For each edge e in M we mark the faces adjacent to e. Since for any two edges
{e1, e2} ⊆M , the pair of faces incident to e1 and the pair of faces incident to e2
are different, the number of unmarked faces in G is (2n− 4)− n = n− 4. Since



94 S. Biswas et al.

each edge in M play the role of a single vertex, kl = k′
l =

n−4
2.(n/2) . Therefore, the

the number of ways that M can be extended to a Hamiltonian cycle is

O(n) ·
n/2−1∏
l=1

(kl + 1) = O(n) ·
n/2−1∏
l=1

(
n− 4

n
+ 1) = O(n2n/2). (4)

Observe that the upper bound on the number of Hamiltonian cycles in G is the
number of perfect matchings M in G times O(n2n/2). Since M ≤ 6n/4 [2], the
exponential growth of the maximum number of Hamiltonian cycles in a planar
graph with n vertices is 6n/4 · 2n/2 < 2.2134n. The case when n is odd can be
dealt in a similar way as in [2, Theorem 4]. �

5 Conclusion

In this paper we have given an 2.2134n upper bound on the number of Hamil-
tonian cycles in planar graphs. We have also proved an O(nαn) upper bound
and an Ω(αn) lower bound on the number of Hamiltonian paths in outerpla-
nar graphs, where α ≈ 1.46557. It would be interesting to examine whether the
techniques of this paper can be extended to establish similar results for planar
graphs with bounded treewidth.

We have proved the 2.2134n upper bound on the number of Hamiltonian cycles
in a planar graph under certain assumptions on the recursion tree determined
by Equation (1). It would be nice to have an alternative proof that achieves the
same upper bound, but does not use any such assumptions.

References

1. Bax, E.T.: Inclusion and exclusion algorithm for the Hamiltonian path problem.
Information Processing Letters 47(4), 203–207 (1993)

2. Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles
in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107.
Springer, Heidelberg (2007)

3. Collins, K.L., Krompart, L.B.: The number of Hamiltonian paths in a rectangular
grid. Discrete Mathematics 169(1-3), 29–38 (1997)

4. Curran, S.J., Gallian, J.A.: Hamiltonian cycles and paths in Cayley graphs and
digraphs - A survey. Discrete Mathematics 156(1-3), 1–18 (1996)

5. de Mier, A., Noy, M.: On the maximum number of cycles in outerplanar and series-
parallel graphs. Electronic Notes in Discrete Mathematics 34, 489–493 (2009)

6. Eppstein, D.: The traveling salesman problem for cubic graphs. Journal of Graph
Algorithms and Applications 11(1), 61–81 (2007)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company (1979)

8. Gebauer, H.: Finding and enumerating Hamilton cycles in 4-regular graphs. Theo-
retical Computer Science 412(35), 4579–4591 (2011)

9. Pichler, R., Rümmele, S., Woltran, S.: Counting and enumeration problems with
bounded treewidth. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS
(LNAI), vol. 6355, pp. 387–404. Springer, Heidelberg (2010)



Feedback Vertex Sets on Tree Convex

Bipartite Graphs

Chaoyi Wang1, Tian Liu1,�, Wei Jiang1, and Ke Xu2,�

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
{wchaoyi,lt}@pku.edu.cn

2 National Lab of Software Development Environment,
Beihang University, Beijing 100191, China

kexu@nlsde.buaa.edu.cn

Abstract. A feedback vertex set in a graph is a subset of vertices, such
that the complement of this subset induces a forest. Finding a mini-
mum feedback vertex set (FVS) is NP-complete on bipartite graphs,
but tractable on chordal bipartite graphs. A bipartite graph is called
tree convex, if a tree is defined on one part of the vertices, such that for
every vertex in the other part, the neighborhood of this vertex induces
a subtree. First, we show that chordal bipartite graphs form a proper
subset of tree convex bipartite graphs. Second, we show that FVS is
NP-complete on the tree convex bipartite graphs where the sum of the
degrees of vertices whose degree is at least three on the tree is unbounded.
Combined with known tractability where this sum is bounded, we show
a dichotomy of complexity of FVS on tree convex bipartite graphs.

1 Introduction

A feedback vertex set in a graph G = (V,E) is a subset D of vertices, such that
there is no cycle in the subgraph induced by V \D. Finding a minimum feedback
vertex set (FVS, in short) is among Karp’s twenty one classical NP-complete
combinatorial optimization problems [5]. FVS is also NP-complete on bipartite
graphs [9], but tractable on convex bipartite graphs [7] and chordal bipartite
graphs [6]. A good survey on tractability of FVS in various graph classes as well
as on various kind of FVS algorithms before this century is [2].

Recently, the so-called tree convex bipartite graphs were introduced as a gen-
eralization to convex bipartite graphs [3,4,8]. A bipartite graph G = (A,B,E)
is called tree convex, if a tree T = (A,F ) is defined, such that for every vertex b
in B, the neighborhood of b induces a subtree in T . For T as a path or a star,
G is called convex or star convex, respectively. For T as a triad, which consists

� Corresponding authors. Partially supported by National Natural Science Foun-
dation of China (Grant No. 60973033) and National 973 Program of China
(Grant No. 2010CB328103). We are grateful to the unknown reviewers whose com-
ments are helpful to improve our presentations.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 95–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



96 C. Wang et al.

of three paths with a common end, the bipartite graph is called triad convex. It
was shown that FVS is NP-complete on star convex bipartite graphs [3], but
becomes tractable on triad convex bipartite graphs and even on tree convex bi-
partite graphs where the sum of the degrees of vertices whose degree is at least
three in T is bounded by a constant [4]. These results refined both the known
intractability [9] and tractability [7] results of FVS on bipartite graphs. For some
applications and other recent progresses on FVS, see introductions in [3,4,8,6].

With these progresses in mind, one naturally asks the following two questions

– What is the relationship between tree convex bipartite graphs and other well
known restricted bipartite graphs, such as the chordal bipartite graphs?

– What is the boundary between intractability and tractability of FVS on bi-
partite graphs?

In this paper, we give some possible answers to these two questions. We first
show that chordal bipartite graphs form a proper subset of tree convex bipartite
graphs. Then we show that FVS is NP-complete on the tree convex bipartite
graphs where the sum of the degrees of vertices whose degree is at least three
on the tree is unbounded. Combined with known tractability results when this
sum is bounded [4], this shows a dichotomy of complexity of FVS on tree convex
bipartite graphs. Actually, our reduction shows that FVS is NP-complete on
tree convex bipartite graphs where the maximum degree of the tree is three.

The remaining part of this paper is organized as follows. The proper con-
tainment of the chordal bipartite graphs in the tree convex bipartite graphs is
shown in Section 2, and the intractability of FVS on tree convex bipartite graphs
is shown in Section 3.

2 Tree Convex Bipartite Graphs versus Chordal Bipartite
Graphs

Chordal bipartite graphs have been extensively studied in literature. We refer to
[1,6] for different equivalent definitions of the chordal bipartite graphs. A chord of
a cycle on a graph is an edge between two vertices of the cycle but the edge itself
is not a part of the cycle. A graph (not necessarily bipartite) is chordal if every
cycle of length at least four has a chord. A bipartite graph is chordal bipartite
if every cycle of length at least six has a chord. Note that in general chordal
bipartite graphs are not chordal. Both the tree convex bipartite graphs and the
chordal bipartite graphs are generalizations to the convex bipartite graphs.

Theorem 1. There is a bipartite graph which is tree convex but not chordal
bipartite.

Proof. The bipartite graph G is shown in Figure 1 (left). G is not chordal bi-
partite, because the cycle axbzcya has no chord. G is tree convex bipartite,
because the neighborhoods of a, b, c are N(a) = {x, y, w}, N(b) = {x, z, w} and
N(c) = {z, y, w}, respectively. If we define a tree T on vertices {x, y, z, w}, which



Feedback Vertex Sets on Tree Convex Bipartite Graphs 97

Fig. 1. The bipartite graph G and the tree T

is a star with the center w and three leaves x, y, z, then N(a) = {x, y, w} is a
subtree of T , as shown in Figure 1 (right). For N(b) and N(c), the situations
are similar. �

Theorem 2. Every chordal bipartite graph is tree convex bipartite.

Proof. Let G = (A,B,E) be a chordal bipartite graph. From G, we can define
a new hypergraph H and a new graph L(H) respectively as follows.

First, we define H . For each vertex b in B, its neighborhood N(b) = {a ∈
A|(a, b) ∈ E} is a subset of A. The set system E contains all these neighborhoods
of vertices in B, namely E = {N(b)|b ∈ B}. The hypergraph H is defined as
H = (A, E). The vertex set of H is A and each N(b) is a hyperedge of H . When
G is chordal, we can show that H has the Helly property. A set system E has
the Helly property, if for any subsystem E ′ of E , whenever the sets in E ′ have
non-empty pairwise intersections, then all sets in E have a common element ([1],
p.8, Definition 1.3.4). If E has the Helly property, then H = (A, E) is called a
Helly hypergraph.

Lemma 1. If G = (A,B,E) is chordal bipartite, then H = (A, E) is a Helly
hypergraph.

Proof. Let E ′ be a subsystem of E . Assume that any two subsets of E ′ have a
non-empty intersection. We will show that all sets in E ′ have a common element.
We do induction on the cardinality of E ′.

The base step. If E ′ has three sets N(b1), N(b2), N(b3), and a1 ∈ N(b2) ∩
N(b3), a2 ∈ N(b1) ∩N(b3), a3 ∈ N(b1) ∩N(b2). If any two of a1, a2, a3 are the
same, then we have a common element in N(b1), N(b2), N(b3). If a1, a2, a3 are
all distinct, then a1b2a3b1a2b3a1 is a cycle of length six in G. Since G is chordal
bipartite, the cycle has a chord, say (ai, bi) (1 ≤ i ≤ 3). Then ai is a common
element of sets in E ′.

The induction step. Assume that for all E ′ of cardinality no more than k (k ≥
3) in which sets are pairwise intersecting, all sets in E ′ has a common element.
We show that for E ′ of cardinality k+1 in which sets are pairwise intersecting, all
sets in E ′ has a common element. Assume that E ′ = {N(bi)|i = 1, 2, . . . , k + 1}.
Let S =

⋂
{N(bi)|i = 3, . . . , k+1}. By the induction hypothesis, N(b1)∩S �= ∅,

N(b2) ∩ S �= ∅. By the assumption on E ′, N(b1) ∩ N(b2) �= ∅. Similarly, let



98 C. Wang et al.

a1 ∈ N(b2) ∩ S, a2 ∈ N(b1) ∩ S, a3 ∈ N(b1) ∩ N(b2). Suppose that a1, a2, a3
are all distinct, then we have k − 1 cycles of length 6, that is a1b2a3b1a2bia1,
i = 3, . . . , k + 1. If a1 ∈ N(b1) or a2 ∈ N(b2), then S,N(b1), N(b2) have a
common element. If a1 �∈ N(b1) and a2 �∈ N(b2), then all the cycles must have
chords a3bi. Hence a3 ∈ N(bi), i = 3, . . . , k + 1. By definition of S, we obtain
a3 ∈ S. Thus, S,N(b1), N(b2) always have a common element, which in turn is
a common element of sets in E ′. The induction is finished.

Thus H is a Helly hypergraph. �

Next, we define graph L(H) = (E ,F), the line graph or intersection graph of
H ([1], p.7-8, Definition 1.3.3), where F = {(N(bi), N(bj))|N(bi) ∩ N(bj) �=
∅, bi, bj ∈ B}. We will show that L(H) is chordal.

Lemma 2. If G = (A,B,E) is chordal bipartite, then L(H) = (E ,F) is chordal.

Proof. Assume that N(b1)N(b2) · · ·N(bk)N(b1) is a cycle of length k (k ≥ 4)
in L(H). By the definition of L(H), there are a1, . . . , ak in A, such that ai ∈
N(bi) ∩ N(bi+1) for i = 1, . . . , k − 1 and ak ∈ N(bk) ∩ N(b1). If all these ai’s
are all distinct, then b1a1b2a2 · · · bkakb1 is a cycle in G of length at least eight.
Since G is chordal bipartite, there is a chord for this cycle of G, say (ai, bj)
(1 ≤ i, j ≤ k), then (N(bi), N(bj)) will be a chord for the cycle of L(H). If some
of the ai’s are the same, say ai = aj , then (N(bi), N(bj+1)) will be a chord for
the cycle of L(H). Thus L(H) is chordal. �

A hypergraph H is called a hypertree, if there is a tree T with the same ver-
tices of H , such that all hyperedges induce subtrees in T ([1], p.8-9, Definition
1.3.6). A hypergraph H is a hypertree, if and only if H has the Helly property
and its line graph L(H) is chordal ([1], p.9, Theorem 1.3.1). Thus, by above
two lemmas, the graph H defined from the chordal bipartite G is a hypertree.
But H is a hypertree is equivalent to that G is a tree convex bipartite graph,
by definitions. �

3 Intractability of FVS on Tree Convex Bipartite Graphs

Theorem 3. FVS is NP-complete in the tree convex bipartite graphs where the
maximum degree of the tree is bounded by three.

Proof. We reduce from Vertex Cover in general graphs to FVS in the tree convex
bipartite graphs where the maximum degree of the tree is bounded by three.
Given a graph G = (V,E) with n vertices and m edges, where V = {v1, . . . , vn}
and E = {e1, . . . , em}, without loss of generality, we may assume that G is
not a complete graph, that is, there is at least one pair of vertices which are
not connected by any edge. We will construct a tree convex bipartite graph
G′ = (A,B,E′) and a tree T = (A,F ), such that for every vertex b in B, the
neighborhood of b, N(b) = {v ∈ A|(v, b) ∈ E′}, is a subtree on A, and the
maximum degree of T is three.



Feedback Vertex Sets on Tree Convex Bipartite Graphs 99

Fig. 2. The input graph G (left) and the constructed graph G′ after the first stage
(right). The black vertices are solutions to Vertex Cover and FVS, respectively.

The construction will be in four stages. In the first stage, we keep the vertices
of graph G unchanged but replace each edges of G with two independent paths
both of length two. This stage actually reduces the Vertex Cover to FVS on gen-
eral bipartite graphs. Figure 2 shows an example of this construction. Formally,
after the first stage of the reduction, the constructed graph G′ = (A,B,E′) has
the following form, A = U = {u1, . . . , un}, B = {ak, bk|ek ∈ E, k = 1, . . . ,m},
and E′ = {(ui, ak), (ui, bk), (ak, uj), (bk, uj)|ek = (vi, vj) ∈ E, k = 1, . . . ,m}. It
is easy to see that, for each edge ek = (vi, vj) in G, the corresponding vertices
ak, bk in G′ only appear on a unique cycle ui → ak → uj → bk → ui. Then
whenever there is a vertex ak or bk in a solution to FVS in G′, we can safely
replace this vertex either by ui or by uj without destroying the solution or in-
creasing the size of the solution. Thus, we can assume that the optimal solution
of FVS in G′ is totally contained in A and has no intersection with B. When
the construction is completed in the fourth stage, this property will still hold.
Also note that at the moment, the graph G has a minimum vertex cover of size
no more than s if and only if G′ has a minimum feedback vertex set of size no
more than s, in a clear one-to-one correspondence to each other.

In the second stage, we construct a tree T on A whose maximum degree
is three and whose vertex set is an extension of U . To this end, we introduce
another set of n vertices W = {w1, . . . , wn}. Now the vertex subset A of G′ is
changed to A = U ∪W and the other vertex subset B is unchanged. The edges
in T are consisted of two parts. The first part of edges connects the vertices in
W into a single path of length n−1. This part of edges is the set {(wi, wi+1)|i =
1, . . . , n − 1}. The second part of edges connects the vertices in U and W in
a one-to-one correspondence, namely this part of edges is the set {(ui, wi)|i =
1, . . . , n}. Formally, the tree T = (A,F ), A = U ∪W = {ui, wi|i = 1, . . . , n},
and F = {(wi, wi+1)|i = 1, . . . , n − 1} ∪ {(ui, wi)|i = 1, . . . , n}. In this way, we
not only keep the maximum degree of T no more than three, but also are ready
for the next stage to make G′ become a tree convex bipartite graph based on
the tree T . Figure 3 (left) is an example of the tree T resulted from the input in
Figure 2.

In the third stage, we change the graph G′ to be a tree convex bipartite
graph where the tree T is constructed in last stage. To this end, for each edge
ek = (vi, vj) in G (k = 1, . . . ,m), without loss of generality, we can assume that



100 C. Wang et al.

Fig. 3. The tree T (left) and the graph G′ after the third stage (right). The edges
added in the third stage are shown in dashed lines.

1 ≤ i < j ≤ n, then we add the following set of edges in G′, {(ak, wr), (bk, wr)|i ≤
r ≤ j}. This makes G′ tree convex bipartite, since for any k (1 ≤ k ≤ m), if the
edge ek in G has two ends vi and vj where we can assume that i < j, then the
neighborhoods of ak and bk inG′ areN(ak) = N(bk) = {ui, wi, wi+1, . . . , wj , uj},
which induces a path (thus a subtree) on tree T . For example, in Figure 3 (right),
the neighborhoods of a3 and b3 in G′ are {u2, w2, w3, w4, u4}, which are subtrees
on T (see Figure 3 (left)).

In the fourth stage, we add more vertices and edges to G′ to make sure
that the minimum feedback vertex set of G′ contains all vertices in W , while
keeping G tree convex bipartite. To this end, for each vertex vi in G (1 ≤ i ≤
n), we add three new vertices ci, di, fi to G′, and connect each of them to all
vertices in {ui} ∪W . The added edges form the set {(ci, ui), (di, ui), (fi, ui)} ∪
{(ci, wr), (di, wr), (fi, wr)|r = 1, . . . , n}. Figure 4 shows the added vertices and
edges for the vertex u1 only.

Now we have finished the construction of bipartite grpah G′ = (A,B,E′).
The graph G′ is still tree convex bipartite, because for any k (1 ≤ k ≤ n), the
neighborhoods of ck, dk, fk are N(ck) = N(dk) = N(fk) = {uk, w1, w2, w3, w4},
which are subtrees on T (see Figure 3 (left)). Moreover, the minimum feedback
vertex set of G′ contains all vertices in W . This will be shown in the next lemma.

Fig. 4. For vertex u1, the added three vertices c1, d1, f1 and the added fifteen edges
between {c1, d1, f1} and {u1, w1, w2, w3, w4}. The edges added are shown in dashed
lines. The similar constructions for vertices u2, u3, u4 are not shown.



Feedback Vertex Sets on Tree Convex Bipartite Graphs 101

Lemma 3. The minimum feedback vertex set of G′ contains all vertices in W .

Proof. Let D be the minimum feedback vertex set of G′. We consider the size of
D in the following three cases.

– Case 1: W ⊆ D. Since we have assumed that the input graph G is not a
complete graph, there is a pair of vertices vi and vj which are not connected
by any edge. Then W ∪ U \ {ui, uj} is a feedback vertex set of G′. This is
because when deleting W ∪U \{ui, uj} from G′, all cycles created at the first,
third and fourth stages in G′ are broken. Since D is the minimum feedback
vertex set of G′, we have that |D| ≤ |W |+ |U | − 2 = 2n− 2.

– Case 2: (W \{wi}) ⊆ D and wi �∈ D for some 1 ≤ i ≤ n. In this case, we must
have that U ⊆ D. For otherwise, if uj is not in D for some j (1 ≤ j ≤ n),
then the five vertices uj, cj , dj , fj , wi make a complete bipartite graph K2,3

by the fourth stage of the construction. Since neither wi nor uj is in D, to
break the cycles in this small K2,3, we have to put at least two of the three
vertices cj , dj , fj into D. But this will be a contradiction to the minimum
property of D, since instead of at least two of the three vertices cj , dj , fj , we
only need to put one vertex uj into D to broken the cycles in this small K2,3.
Note that replacing two of the three vertices {cj, dj , fj} by uj will cause no
harm to D, since we do not need any vertex in {cj, dj , fj} to broken any
other cycles. In fact, the other cycles containing {cj, dj , fj} have already
been broken by W \ {wi}. Thus, (U ∪W \ {wi}) ⊆ D and |D| ≥ 2n− 1.

– Case 3: |W \D| ≥ 2. Assume that neither wi nor wj is in D for some 1 ≤ i ≤
j ≤ n. Then for each uk (1 ≤ k ≤ n), the five vertices ck, dk, fk, wi, wj make
a small complete bipartite graph K2,3. To broken the cycles in this K2,3, D
has to contain at least two of the three vertices ck, dk, fk. This holds for each
k (1 ≤ k ≤ n). Thus |D| ≥ 2n.

Since D is the feedback vertex set in G′ with the minimum cardinality, we
conclude that the above Case 1 must be true, namely W ⊆ D. �

Now the correctness of the reduction is shown by the following two lemmas.

Lemma 4. If G has a vertex cover of size no more than s, then G′ has a feedback
vertex set of size no more than s+ n.

Proof. Let S be a vertex cover in G of size no more than s, then {ui|vi ∈ S}∪W
is feedback vertex set in G′ of size no more than s + n. Indeed, all the cycles
created at the first stage are broken by {ui|vi ∈ S} (see the discussions at the
end of the description of the first stage), and all the cycles created at the third
and fourth stages are broken by W . �

Lemma 5. If G′ has a feedback vertex set of size no more than s + n, then G
has a vertex cover of size no more than s.

Proof. Assume that D is the minimum feedback vertex set in G, then |D| ≤ s+n.
By the Lemma 3, we have that W ⊆ D. All the cycles created at the third



102 C. Wang et al.

and fourth stages are broken by W . By the discussions in the first stage, all
the cycles created at the first stages can be broken by vertices in U , instead
of by any vertices in {ak, bk|k = 1, . . . ,m}, without increasing the size of the
feedback vertex set. Thus, we can assume that D ⊆ (U ∪W ) = A. Then the set
S = {vi|ui ∈ D\W} is a vertex cover in G of size no more than s. For otherwise,
there is an edge ek = (vi, vj) inG but neither of vi and vj is in S. By the definition
of S, we have that neither of ui and uj is in D. We have already assumed that
neither of ak and bk is in D. Thus, the cycle ui → ak → uj → bk → ui in G′ is
not broken by D, a contradiction to the fact that D is a feedback vertex set. �

The proof of this theorem is finished. �

Note that in above reduction, the sum t =
∑

vi:degT (vi)≥3 degT (vi) in tree T is
unbounded. Thus we have the following intractability result.

Theorem 4. FVS is NP-complete on tree convex bipartite graphs where the
sum t =

∑
vi:degT (vi)≥3 degT (vi) in tree T is unbounded.

Combined with the tractability results in [4], we get a dichotomy of complexity
of FVS in tree convex bipartite graphs. When t is a constant, the problem is
tractable. When t is unbounded, the problem is NP-complete.

A similar dichotomy for Independent Dominating Sets is shown in [8].

References

1. Brandstad, A., Le, V.B., Spinrad, J.P.: Graph Classes - A Survey. Society for In-
dustrial and Applied Mathematics, Philadelphia (1999)

2. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback Set Problems. In: Handbook
of Combinatorial Optimization (Supplement Volume A), pp. 209–258. Kluwer Aca-
demic Publishers (1999)

3. Jiang, W., Liu, T., Ren, T., Xu, K.: Two Hardness Results on Feedback Vertex Sets.
In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp.
233–243. Springer, Heidelberg (2011)

4. Jiang, W., Liu, T., Xu, K.: Tractable Feedback Vertex Sets in Restricted Bipartite
Graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 424–434. Springer, Heidelberg (2011)

5. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, pp. 85–103. Plenum Press, New York (1972)

6. Kloks, T., Liu, C.H., Poon, S.H.: Feedback Vertex Set on Chordal Bipartite Graphs.
arXiv:1104.3915v1 (2011)

7. Liang, Y.D., Chang, M.S.: Minimum feedback vertex sets in cocomparability graphs
and convex bipartite graphs. Acta Informatica 34, 337–346 (1997)

8. Song, Y., Liu, T., Xu, K.: Independent Domination on Tree Convex Bipartite
Graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW
2012. LNCS, vol. 7285, pp. 129–138. Springer, Heidelberg (2012)

9. Yannakakis, M.: Node-deletion problem on bipartite graphs. SIAM J. Comput. 10,
310–327 (1981)



Crossing Angles of Geometric Graphs�

Karin Arikushi and Csaba D. Tóth

Department of Mathematics and Statistics, University of Calgary, Calgary, AB
{karikush,cdtoth}@ucalgary.ca

Abstract. We study the crossing angles of geometric graphs in the
plane. We introduce the crossing angle number of a graph G, denoted
can(G), which is the minimum number of angles between crossing edges
in a straight line drawing of G. We show that an n-vertex graph G with
can(G) = O(1) has O(n) edges, but there are graphs G with bounded
degree and arbitrarily large can(G). We also initiate studying the global
crossing-angle rigidity of geometric graphs. We construct bounded de-
gree graphs G = (V,E) such that for any two straight-line drawings of
G with the same prescribed crossing angles, there is a subset V ′ ⊂ V of
|V ′| ≥ |V |/2 vertices that are similar in the two drawings.

1 Introduction

Graphs with n vertices and more than 3n − 6 edges are not planar and their
drawings in the plane have crossing edges. The crossing number cr(G) (resp.,
rectilinear crossing number cr(G)) of a graph G is the minimum number of
crossings in any drawing (resp., straight-line drawing) of G in the plane. Bien-
stock and Dean [4] showed that there are families of graphs with unbounded
rectilinear crossing number, but crossing number at most k, for any k ≥ 4. How-
ever, cr(G) = cr(G) if cr(G) ≤ 3. Moreover, there are families of bounded degree
graphs (even cubic graphs [18]) with arbitrarily large crossing numbers.

Angle conditions on the crossing edges have only been recently considered.
The motivation comes from cognitive experiments, which show that having small
crossing angles is negatively correlated to path-tracking ability in a graph draw-
ing. Previous research focused on the crossing resolution [6] of straight-line (or
polyline) drawings, that is, the minimum angle at which crossing edges meet. In
this paper, we consider the number of different angles between crossing edges.
A crossing angle in a straight-line drawing of a graph is an angle α, 0 < α ≤ π

2 ,
between two crossing edges. The crossing angle number of a graph G, denoted
can(G), is the minimum number of crossing angles in a straight line drawing ofG.
In Section 2, we show that every n-vertex graph G has less than (6 can(G)+3)n
edges. We also show that for every ε > 0, there are n-vertex graphs of maximum
degree O(1/ε) such that can(G) = Ω(n1/2−ε).

Global Rigidity. A graph G = (V,E) is globally rigid in the plane if for every
function � : E → R+, any two straight-line drawings of G in which the Euclidean

� Research supported in part by the NSERC grant RGPIN 35586.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 103–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



104 K. Arikushi and C.D. Tóth

length of each edge e ∈ E is �(e) are congruent. In other words, the edge lengths
determine at most one straight-line drawing up to congruency. For instance,
complete graphs are globally rigid. Saxe [19] showed that it is strongly NP-hard
to decide whether a graph is globally rigid. Jackson and Jordan [14] gave a
simple combinatorial characterization of generic global rigidity, where the edge
lengths determine at most one straight-line drawing (up to congruency) if the
vertices are in general position. They also extended this notion to a so-called
length-direction rigidity [15], where each edge has either a prescribed length or
a prescribed direction vector.

Global Crossing-Angle Rigidity. We adapt the notion of global rigidity to
crossing angles. Let G = (V,E) be a graph with a crossing-angle function α :
E2 → [0, π)∪{�}. We say that a straight-line drawing of G complies with α if for
every crossing pair of edges (e, f), a counterclockwise rotation through α(e, f)
carries the supporting line of e to that of f ; and for every noncrossing pair of
edges, we have α(e, f) = �. In a first approach, we would like to find graphs G
where every function α : E2 → [0, π)∪{�} complies with at most one straight-line
drawing up to similarity. This requirement is too strict: we will see that no graph
with n ≥ 3 vertices (not even the complete graph Kn) satisfies this condition.
Therefore, we relax this condition, and require α to determine (up to similarity)
the locations of at least a constant fraction of the vertices. A graph G = (V,E)
is globally crossing-angle rigid if for every function α : E2 → [0, π) ∪ {�}, and
for any two straight-line drawings of G complying with α, there is a vertex set
V ′(α) ⊂ V of size |V ′(α)| ≥ |V |/2 such that the two drawings of V ′ are similar.
We prove that K24 is globally crossing-angle rigid, and we also construct an
infinite family of globally crossing-angle rigid graphs with maximum degree 47
and diameter O(log n) for n ≥ 24 vertices.

Extensions and Open Problems. Our result is a first step towards a possible
combinatorial characterization of globally crossing-angle rigid graphs. In our
definition of globally crossing-angle rigid graphs, α determines at least half of
the vertices up to similarity, but the choice of the ratio 1

2 was arbitrary. For every
constant c ∈ (0, 1), there are infinitely many graphs G = (V,E) of maximum
degree Δ(c) where α determines at least c|V | vertices up to similarity. It remains
an open problem to find the smallest degree bound Δ(c) as a function of c.
Our crossing angle function α : E2 → [0, π) ∪ {�} encodes the directed angle
between and ordered pair of edges (e, f) ∈ E2. It would be natural to consider
an undirected angle crossing function β :

(
E
2

)
→ (0, π/2) ∪ {�} for unordered

pairs {e, f} ∈
(
E
2

)
. Our methods can easily be extended to handle this variant

of the problem, albeit with higher vertex degrees.

Related Work. Didimo et al. [8] consider graphs that admit straight line draw-
ings where crossing edges meet at a right angle. Such drawings are called RAC
(right angle crossing) drawings. They prove that graphs with n vertices admit-
ting a RAC drawing have at most 4n−10 edges, and this bound is best possible.
Argyriou [1] showed that it is NP-hard to decide whether a graph admits a RAC



Crossing Angles of Geometric Graphs 105

drawing. Refer to [5, 7, 12] for recent results on RAC drawings. Note that if a
graph G admits a RAC drawing, then can(G) ≤ 1. However, a graph G with
can(G) = 1 may have 4.5n−O(

√
n) edges. (Let V (G) be a section of a hexagonal

lattice, and let E(G) be all hexagon edges and 6 diagonals per hexagon, where di-
agonals cross at 60◦.) Dujmović et al. [10] generalize RAC-drawings and consider
so-called α angle crossing (αAC) graphs, for 0 < α ≤ π

2 . These are straight-line
drawings where crossing edges meet at an angle at least α. They prove that an
n-vertex αAC graph has at most (π/α)(3n − 6) edges for 0 < α < π/2 and at
most 6n− 12 edges for 2π/5 < α < π/2.

The crossing angle number is also related to the slope number of a graph G,
introduced by Wade and Chu [21]. It is the smallest integer s such that G has
a straight line drawing with edges of at most s distinct slopes. Mukkamala and
Pálvölgyi [16] show that every cubic graph has slope number at most 4. On
the other hand, Pach et al. [17] show that there are graphs of maximum degree
d ≥ 5 with arbitrarily large slope numbers. Dujmović et al. [11] improve the
lower bound on slope number for d ≥ 9 and showed that for every ε > 0, there
are Δ-regular graphs with slope number at least n1−(8+ε)/(Δ+4). It is unknown
whether the slope number is bounded for graphs of maximal degree 4.

2 Graphs with Bounded Crossing Angle Numbers

In a straight-line drawing of a graph G = (V,E), the vertices V are represented
by distinct points in the plane, and the edges are drawn as line segments between
the corresponding vertices that do no pass through any other vertex. A geometric
graph is a graph G = (V,E) together with a straight-line drawing. The geometric
thickness [9] of a graph, denoted gth(G), is the smallest number of layers such
that one can draw G in the plane with straight-line edges and assign each edge
to a layer so that no two edges on the same layer cross. We establish a relation
between the geometric thickness and the crossing angle number.

Theorem 1. For every graph G, we have gth(G) ≤ 2 can(G) + 1.

Proof. Consider a straight-line drawing D of G with can(G) crossing angles. We
begin by decomposing the edges of G into blocks. We define a binary relation on
the edges of G where two edges are related if and only if they cross in D. The
transitive closure of this relation is an equivalence relation. A block of G is the
union of all edges in an equivalence class.

Let k = can(G). We partition each block into the union of at most 2k + 1
subsets, each of which is crossing-free in D. Let A = {α1, . . . , αk} denote the
set of crossing angles in the drawing D. We construct a (possibly infinite) graph
H whose vertices are the elements in A′ = 〈α1, . . . , αk〉, the Abelian group
generated by the angles αi where addition is performed modulo π. Two vertices
of H are adjacent if and only if their difference is ±αi for some αi ∈ A.

For a fixed α ∈ A and β ∈ A′, there exists a unique β′ ∈ A′ such that
β − β′ = α. Hence, the degree of each β ∈ H is at most 2k and there exists a
proper coloring of the vertices of H with at most 2k + 1 colors. Moreover, each



106 K. Arikushi and C.D. Tóth

color class is an independent set in H . We use the color classes to partition each
block of G into planar subgraphs.

Consider a block of G and assume without loss of generality that one edge has
slope zero in D. Thus, every edge in the block has a direction in 〈α1, . . . , αk〉.
(An edge has direction α ∈ [0, π) if it intersects a horizontal line at angle α.)
Thus, if βi and βj are in a color class of V (H), then edges with direction βi

and βj do not cross. We may partition the edges in each block independently to
obtain a partition of all edges of G into subgraphs, each of which is planar in
the drawing D. �

We show that every n-vertex graph with bounded crossing angles number has
O(n) edges. Recall that an n-vertex planar graph has at most 3n− 6 edges.

Corollary 1. Every n-vertex graph G has at most (2 can(G)+1)(3n− 6) edges.

Barát et al. [3] proved that for everyΔ ≥ 9, ε > 0 and n ∈ N, there is a Δ-regular
graph with at least n vertices and geometric thickness Ω(

√
Δn1/2−Δ/4ε).

Corollary 2. For every Δ ≥ 9, ε > 0 and n ∈ N, there is a Δ-regular graph G
with at least n vertices and can(G) = Ω(

√
Δn1/2−Δ/4−ε).

We note here that the crossing angle number of the n-vertex complete graph Kn

is less than n
2 .

Proposition 1. For n ≥ 2, we have can(Kn) ≤ �n/2� − 2.

Proof. Consider the straight-line drawing of Kn such that the vertices are repre-
sented by the vertices of a regular n-gon with a horizontal side. Let the direction
of an edge of G be the angle it makes with a horizontal line. The set of edge
directions in this drawing is U = {iπ/n : 0 ≤ i ≤ n/2}, and so |U | = �n/2�.
Hence, the angle between any two edges is in U . However, if the angle is 0, then
the two edges are parallel; and if the angle is π/n, then they do not cross. Hence,
U yields only |U | − 2 crossing angles. �

3 Globally Angle-Rigid Graphs with Bounded Degree

For every n ≥ 24, we construct a globally crossing-angle rigid graph F = (V,E)
with n vertices, bounded vertex degree, and O(log n) diameter. We start with
an auxiliary graph F0 on a vertex set V0 = {v1, . . . , vn0}, for some fixed n0 ≥ 2.
Let F0 be a binary tree of diameter O(log n0). The graph F is obtained from F0

by replacing each vertex in V0 with a clique K12, and replacing each edge of F0

with a biclique K12,12 between the corresponding cliques. The vertex set of F is
V =

⋃n0

i=1 Vi, where Vi is a set of 12 vertices corresponding to vi. Hence F has
n = 12n0 vertices.

Theorem 2. Let D1 be a straight-line drawing of F = (V,E) that complies
with a crossing-angle function α : E2 → [0, π) ∪ {�}. Then there is a subset
V ′(α) ⊂ V of vertices such that (i) V ′(α) contains at least 8 vertices from each
Vi, 1 ≤ i ≤ k, and (ii) for any straight-line drawing D2 complying with α, a
similarity can carry all vertices in V ′(α) to the corresponding vertices in D1.



Crossing Angles of Geometric Graphs 107

For the proof of Theorem 2, we study the crossing-angles of cliques and bi-
cliques in depth. Throughout this section, we assume that we are given a graph
G = (V,E) with a crossing-angle function α : E2 → [0, π)∪{�}, and we consider
straight-line drawing complying with α. That is, whenever α(e, f) = �, then
the relative interiors of edges e and f are disjoint (although, they may share a
common endpoint); and whenever α(e, f) ∈ [0, π), then edges e and f cross at
angle α(e, f). We assume that the locations of some vertices are already given and
we wish to determine the positions of additional vertices based on the function
α. We start with a simple observation.

Proposition 2. Let G = (V,E) be a graph with edges pp1, pp2, p1p2, e1, e2 ∈ E,
and let α be a crossing-angle function such that α(pp1, e1) �= � and α(pp2, e2) �=
�. Then in any straight-line drawing complying with α, the position of p is de-
termined by the slopes of e1 and e2, and the positions of p1 and p2.

p2p1

p

e1
e2

Proof. The slope of e1 and the crossing angle
∠(pp1, e1) determine the slope of edge pp1. This
slope together with the location of p1 determines
the supporting line of pp1. Similarly, ∠(pp2, e2),
the slope of e2, and the location of p2 determine
the supporting line of pp2. Note that pp1 and pp2
cannot be collinear, otherwise an edge would pass
through a vertex in the straight-line drawing of
G. Hence, p is the unique intersection point of the
supporting lines of pp1 and pp2. �

Crossing Free and Almost Crossing Free Vertices. We say that a vertex p of a
geometric graph is crossing free if no edge incident to p crosses any other edge;
and p is almost crossing free if exactly one edge incident to p crosses other edges.
A point p convexly avoids a point set Q if for every q ∈ Q, the segment pq is
disjoint from the interior of conv(Q). Note that if p convexly avoids Q, then it
also convexly avoids every subset of Q. Two point sets P and Q are convexly
avoiding if for every p ∈ P and q ∈ Q, the segment pq is disjoint from the interior
of both convex hulls conv(P ) and conv(Q). We show that a complete geometric
graph has at most one crossing free or almost crossing free vertex.

Proposition 3. Let G = (V,E) be a complete geometric graph with at least 5
vertices. If p ∈ V is a crossing free vertex, then it lies on conv(V ) and it convexly
avoids V \ {p}.
Proof. Suppose that p lies strictly in the interior of conv(G), and let q1, q2, q3
be vertices on the boundary of conv(G) such that ∠q1pq2,∠q2pq3,∠q1pq3 < π.
Since |V | ≥ 5, there is another vertex r of G and w.l.o.g. we may assume that
r lies between q1 and q2 in the circular order about p. Note that the edge rq3
must cross either pq1 or pq2, otherwise q1 or q2 would not lie on the boundary
of conv(G). This contradicts our assumption that p is crossing free.

Now suppose that p does not convexly avoid V \ {p}. Then there are three
vertices, say q1, q2, and q3, such that conv(p, q1, q2, q3) is a convex quadrilateral.



108 K. Arikushi and C.D. Tóth

The two diagonals of the quadrilateral cross, hence an edge incident to p crosses
another edge of G. This contradicts our assumption that p is crossing free. �

Corollary 3. Let G = (V,E) be a complete geometric graph with at least 6
vertices. If p ∈ V is an almost crossing free vertex, then it lies on conv(V ), and
it convexly avoids a subset of V \ {p} of size at least |V | − 2. �

Mutually Avoiding Sets. Let P and Q be two point sets in the plane. P avoids
Q if no supporting line of two points in P intersects conv(Q); and P and Q are
mutually avoiding if P avoids Q and Q avoids P . Aronov et al. [2] proved that
any two point sets, P and Q, of size |P | = |Q| = n/2 contain two mutually
avoiding subsets P ′ ⊆ P and Q′ ⊆ Q of size |P ′|, |Q′| ≥

√
n/24. We strengthen

their results when P or Q is in convex position.

Proposition 4. Let P and Q be disjoint point sets such that every q ∈ Q con-
vexly avoids a subset of at least |P | − 1 elements of P . Then,

(i) there is a subset P ′ ⊆ P of size |P ′| ≥ |P |−3 such that every q ∈ Q convexly
avoids P ′, and P ′ avoids Q;

(ii) there are subsets P ′′ ⊆ P and Q′′ ⊆ Q, with |P ′′| ≥ |P | − 1 and |Q′′| ≥
�|Q|/3�, such that every q ∈ Q′′ convexly avoids P ′′, and P ′′ avoids Q′′.

q

p1

p2
p3pt−3

pt−2
pt−1

�1 �2+ +− −

q7

p1

p8

p9

p7

p2

�3 +
−
q1

p3

Fig. 1. Illustration for Case 1 (left) and Case 2 (right) in the proof of Proposition 4

Proof. Let t = |P |. We distinguish two cases.

Case 1: conv(P ) has t − 1 vertices. In this case, every q ∈ Q convexly avoids
the set of vertices of conv(P ). Pick an arbitrary point q0 ∈ Q. Set conv(P ) =
(p1, . . . , pt−1) such that q0p1 and q0pt−1 are tangent to conv(P ). Let P ′ =
{p2, . . . , pt−2}. It is clear that every q ∈ Q convexly avoids P ′. It remains to show
that P ′ avoids Q. Let �1 and �2 be the supporting lines of p2p3 and pt−3pt−2,
resp., (Fig. 1, left). Lines �1 and �2 subdivide the plane into 4 wedges. Assume
that q lies in the wedge �+1 ∩ �+2 . It is clear that every point q′ in �+1 ∩ �+2 sees
P ′ in the same order. If q′ ∈ �+1 ∩ �−2 (resp., q′ ∈ �−1 ∩ �+2 ) then pt−2q

′ (resp.,
p1q

′) intersects the interior of conv(P ). For every point q′ ∈ �−1 ∩ �−2 , segment
p3q

′ intersects the interior of conv(P ). Hence, Q ⊂ �+1 ∩ �+2 , and so P ′ avoids
Q. This proves part (i). For part (ii), notice that every q ∈ Q sees the vertices



Crossing Angles of Geometric Graphs 109

of conv(P ) in order (p1, . . . , pt−1), (p2 . . . , pt−1, p1) or (pt−1, p1, . . . , pt−2), hence
the vertices of conv(P ) avoid a subset Q′′ ⊆ Q of size at least �|Q|/3�.
Case 2: conv(P ) has t vertices. Let conv(P ) = (p1, . . . , pt) and let B be the set
of points pi ∈ P such that piqi intersects the interior of conv(P ) for some qi ∈ Q.
If |B| ≤ 1, then Case 1 applied to P \ B completes the proof. If |B| ≥ 2, then
we show that for any two vertices in B, the cyclic distance along conv(P ) is at
most 2. It follows that |B| ≤ 3, and we let P ′ = P \B.

Suppose, to the contrary, that p1, pi ∈ B, where 4 ≤ i ≤ t − 2. Then there are
q1, qi ∈ Q such that both p1q1 and piqi intersect the interior of conv(P ). Let
�3 be the supporting line of p2p3 such that p1 ∈ �+3 . Now q1, qi ∈ �−3 , since no
segment from {q1, qi} to {p2, p3} intersects the interior of conv(P ) (Fig. 1, right).
Let pj be the furthest point of the convex chain (pi+1, . . . , pt) from the line �3.
If j = t, then segment pt−1qi intersects the interior of conv(P ). If j < t, then
ptq1 intersects the interior of conv(P ). Hence, a point in Q convexly avoids a
subset of P of size at most t−2, contradicting our assumptions. This proves part
(i). For part (ii), notice that every q ∈ Q convexly avoids one of at most three
possible subsets of P (namely, subsets P \ {b} for b ∈ B). Hence some P ′′ ⊆ P
of size t− 1 avoids a subset Q′′ ⊆ Q of size �|Q|/3�. �
Proposition 5. Let P and Q be disjoint point sets such that every q ∈ Q con-
vexly avoids P , and P avoids Q. Then, they have subsets P ′ ⊂ P and Q′ ⊂ Q
of size |P ′| ≥ �|P |/2� and |Q′| ≥ �

√
|Q|� such that P ′ and Q′ are mutually

avoiding.

Proof. Let t = |P |. Since P and Q are convexly avoiding, the points in P =
{p1, . . . , pt} are in convex position. Since P avoids Q, every q ∈ Q sees the same
convex arc on the boundary of conv(P ), say (p1, . . . , pt) in counterclockwise
order. Let �1 and �2 be the supporting lines of p1p2 and pt−1pt, respectively. The
points in Q must lie in the wedge between �1 and �2 not containing points of P .
Perform an affine transformation on P ∪Q so that �1 and �2 are orthogonal and
parallel to the coordinate axes. Without loss of generality, assume that P lies in
the 1st quadrant and Q lies in the 3rd quadrant.

Q

p1

p4

p5

�1

p2�2

P
p3

The midpoint m of segment p�t/2p�(t+1)/2 de-
composes the convex arc (p1, . . . , pt) into arcs P1 =
(p1, . . . , p�t/2) and P2 = (p�(t+1)/2, . . . , p5). Con-
sider the points in Q written in polar coordinates
(r, θ) where m is the origin and θ is measured
counter-clockwise. First, order qi = (ri, θi) ∈ Q
in decreasing distance ri from p3. By the Erdős-
Szekeres theorem [13], there is a subsequence Q′ =
(qki) of length at least �

√
|Q|� whose angles θki are

either increasing or decreasing. Suppose they are
increasing. (The argument is analogous if they are
decreasing). We show that Q′ avoids P2. If qki and qkj are two points in Q′

with i < j then qkj is to the right of qki and below the supporting line of pqk1 .
Therefore, the supporting line of qkiqkj does not intersect conv(P2). �



110 K. Arikushi and C.D. Tóth

Proposition 6. Let G be the complete graph on the vertex set V = P ∪Q, with
|P | ≥ 3 and |Q| ≥ 3. Let α be a crossing-angle function. Consider a straight-line
drawing of G that complies with α such that every q ∈ Q convexly avoids P , and
P and Q are mutually avoiding. Then the positions of the vertices in P uniquely
determine the position of a vertex in Q.

Proof. Let {p1, p2, p3} ⊆ P where the vertices are seen in counterclockwise order
p1, p2, p3 from any vertex in Q. Similarly, let {q1, q2, q3} ⊆ Q where any vertex
in P sees q1, q2, q3 in counterclockwise order. The edge p1q1 crosses edges q2p2
and q2p3, and these three edges bound a triangular region in the plane. Since the
crossing angles are known, ∠p2q2p3 is uniquely determined (Fig. 2(a)). Similarly,
using edge p3q3, angle ∠p1q2p2 is uniquely determined.

p1

p2

p3

q1

q2
q3

θ2 θ1

(a)

p1

p2

p3

�1

�2

q1

q2

2θ12θ2

C2
C1

q3

(b)

Fig. 2. (a) Determining ∠p2q2p3. (b) Inscribed angles.

Let �1 and �2 be the supporting lines of p1p2 and p2p3, respectively. The lines
�1 and �2 subdivide the plane into 4 wedges, and we may assume w.l.o.g. that
Q lies in �+1 ∩ �+2 . We use a fact from elementary geometry: given two points a
and b and an angle θ ∈ (0, π), the locus of points c with ∠abc = θ is the union
of two circular arcs. However, q2 ∈ �+1 ∩ �+2 so q2 lies on the intersection of two
circles, C1 defined by p1, p2,∠p1q2p2, and C2 defined by p2, p3,∠p2q2p3. Since
p2 ∈ C1 ∩ C2, the coordinates of q2 are uniquely determined unless C1 = C2.
If C1 = C2 then p1, p2, p3, q2 lie on a common circle and edge p1q1 intersects
conv(P ), contradicting our assumption that q1 convexly avoids P . �

Complete Bipartite Graphs. The following lemma states that if we already know
the positions of 8 vertices of a complete graph, then the crossing-angle function
uniquely determines the positions of all but 4 remaining vertices.

Lemma 1. Let G be the complete graph with vertices V = P ∪ Q such that
|P | ≥ 8 and |Q| ≥ 5. Let α be a crossing angle function α. In a straight-line
drawing complying with α, the positions of the vertices in P uniquely determine
the position of a vertex in Q.

Proof. The vertex set ofG is P∪Q, with |P | ≥ 8 and |Q| ≥ 5, where the positions
of the vertices in P are known. If there is a vertex q ∈ Q such that edges p1q, p2q



Crossing Angles of Geometric Graphs 111

cross some edges induced by P for some p1, p2 ∈ P , then the position of q is
determined by Proposition 2. Otherwise, every vertex q ∈ Q is crossing free or
almost crossing free in the subgraph induced by P ∪{q}. By Proposition 3, every
q ∈ Q convexly avoids a subset of at least 8 points of P . By Propositions 4(i),
there is a subset P ′ ⊂ P of size 5 such that every q ∈ Q convexly avoids P ′

and P ′ avoids Q. By Propositions 5 there are mutually avoiding subsets P ′′ ⊆ P
and Q′′ ⊆ Q, with |P ′′| ≥ �5/2� = 3 and |Q′′| ≥ �

√
5� = 3, such that every

q ∈ Q′′ convexly avoids P ′′. By Proposition 6, the position of some point q ∈ Q′′

is uniquely determined. �

The First 8 Vertices. Lemma 1 states that if we know the positions of 8 vertices,
then the position of another vertex is uniquely determined. The positions of the
first 8 vertices in our construction are determined (up to similarity) by Lemma 2
below, the proof of which relies on properties of points in convex position.

Proposition 7. Let P be a convex n-gon, and let G be a complete geometric
graph on the vertices of P . Then, the slope of one diagonal of P and the directed
crossing angles of G determine the slopes of all diagonals of P .

Proof. Suppose we are given the slope of a diagonal e of P , and all directed
crossing angles between diagonals. Let e′ be another diagonal of P . If e crosses
e′, then their crossing angle determines the slope of e′. If e and e′ do not cross
(Fig. 4(a)), then there is a third diagonal f that crosses both e and e′, and the
slope of e′ is determined by the angles ∠(e, f) and ∠(f, e′). �

Proposition 8. Let P and Q be two convexly avoiding sets of size |P |, |Q| ≥ 3.
Then they have subsets P ′ ⊆ P and Q′ ⊂ Q such that |P ′|+ |Q′| ≥ |P |+ |Q|− 1,
and P ′ and Q′ are mutually avoiding.

p1 p2

q1q2 Q

P

(a)

q1

p2
P

Q

p1

(b)

Fig. 3. (a) conv(P ∪Q) is a quadrilateral. (b) conv(P ∪Q) is a triangle.

Proof. Notice that the convex hulls conv(P ) and conv(Q) are disjoint, so conv(P )
and conv(Q) have exactly two common tangents. No three consecutive vertices
of conv(P ∪ Q) are in P or Q, otherwise the middle vertex would be incident
to an edge piqi that intersects the interior of conv(P ) or conv(Q). Therefore,
conv(P∪Q) is either a triangle or a quadrilateral. If conv(P∪Q) is a quadrilateral
(Fig. 3(a)), then we show that P and Q are mutually avoiding. Let conv(P ) =
conv(p1, . . . , pt) and conv(P ∪ Q) = (p1, p2, q1, q2) in counterclockwise order.



112 K. Arikushi and C.D. Tóth

Suppose that the supporting line of pipj intersects conv(Q). Assume w.l.o.g. that
i < j and pi is closer to the supporting line of p1p2 than pj . Rotate ray −−→pipj
about pi counterclockwise until it reaches a point q ∈ Q. Now piq intersects the
interior of conv(P ).

Suppose that conv(P ∪Q) is a triangle. Since P avoids Q, we have conv(P ∪
Q) = (p1, p2, q1). In this case, conv(P ∪ (Q \ {q1})) is a quadrilateral (Fig. 3(b)).
The previous argument readily implies that P and Q \ {q1} are mutually
avoiding. �

Szekeres and Peters [20] proved, by an exhaustive computer search, that every
set of 17 points in the plane, no three of which are collinear, contains 6 points
in convex position. We use two convex hexagons in the proof of Lemma 2.

p6
p1

p2

p3
p4

p5

e

e′

f

(a)

p6 p1

p2

p3
p4

p5

(b)

p6 p1

p2

p3
p4

p5
r1

r2

(c)

Fig. 4. (a) Diagonals of a convex hexagon. (b) If Δp1p3p5 is fixed, Δp2p4p6 has one
degree of freedom. (c) A point r1 in the interior of conv(P ), and a point r2 in the
exterior conv(P ) that does not convexly avoid P .

Lemma 2. Let G be a complete graph with 24 vertices and a crossing-angle
function α. Then in any straight-line drawing complying with α, the positions of
at least 20 vertices of G are uniquely determined up to similarities.

Proof. Denote by V the vertex set of G. Since |V | ≥ 17+6 and no three vertices
of G are collinear, we can successively choose two set, P ⊂ V and Q ⊆ (V \ P ),
each consisting of 6 points in convex position. Let conv(P ) = (p1, . . . , p6) and
conv(Q) = (q1, . . . , q6).

By Proposition 7, the crossing angles determine the slopes of all diagonals of
a convex hexagon up to similarities. For instance, if we fix any two vertices in
either Δp1p3p5 or Δp2p4p6, then the third vertex of the triangle is determined.



Crossing Angles of Geometric Graphs 113

However, if we fix Δp1p3p5, then the vertices of Δp2p4p6 are not uniquely de-
termined (Fig. 4(b)). We distinguish three cases.

Case 1: There is a vertex r ∈ V lying in the interior of conv(P ) or conv(Q).
Suppose r lies in the interior of conv(P ). Fix the positions of p1 and p3. At least
two edges in {p1r, p3r, p5r} cross some diagonals of conv(P ), and by Proposi-
tion 2, the position of r is uniquely determined. Then the positions of p1, p3, p5,
and r uniquely determine p2, p6, and p6, by repeatedly applying Proposition 2.

Case 2: There is a vertex r ∈ V lying in the exterior of conv(P ) and conv(Q)
such that an edge from r to P intersects the interior of conv(P ) or an edge from
r to Q intersects the interior of conv(Q). Suppose, w.l.o.g., that p1r crosses the
interior of conv(P ). Fix the positions of p1 and p3. The location of pi and the
crossing angle with a diagonal of conv(P ) determine the supporting line of p1r.
The supporting line of p1r crosses an edge of conv(P ), which is incident to a
vertex pj , j ∈ {2, 4, 6}. Now the position of pj is determined by Proposition 2.
By repeatedly applying Proposition 2, we determine the positions of p2, p4,
and p6.

Case 3: P lies in the exterior of conv(Q), Q lies in the exterior of conv(P ),
and no edge between P and Q crosses conv(P ) or conv(Q). By Proposition 8, P
and Q have mutually avoiding subsets of total size 11. W.l.o.g., {p1, . . . , p5} and
{q1, . . . , q6} are mutually avoiding. Fix the positions of p1, p3, which immediately
determines the position of p5. By Proposition 6, the positions of q2, . . . , q5 are
uniquely determined.

In all three cases, the positions of at least 6 vertices are determined up to simi-
larities. Let A ⊂ V be the set of these vertices. Use Proposition 2 successively to
determine as many more vertices as possible. If we know the positions of at most
7 vertices in V , then each of the remaining 17 vertices in V convexly avoids some
subset of at least 5 vertices in A. By Proposition 4(ii), there are subsets A′ ⊂ A
and B′ ⊂ (V \ A), of size |A′| ≥ 5 and |B′| ≥ 5, such that every point in B′

convexly avoids A′, and A′ avoids B′. By Propositions 5 and 6, the position of
some point in B′ is uniquely determined. Finally, if we already know 8 vertices
in V , then we can use Lemma 1 to determine the positions of all but at most 4
vertices in V . �

We are now ready to prove Theorem 2.

Proof (of Theorem 2). Applying Lemma 2 for V1 ∪ V2, we find a subset V ′
1 ⊂ V1

of size |V ′
1 | = 8 such that the positions of all vertices in V ′

1 are determined up to
similarities by the crossing angles. Pick two arbitrary points a, b ∈ V ′

1 , and fix
the coordinates of a and b. Then the positions of all other points in V ′

1 are fixed.
If we have already chosen a subset V ′

i ⊂ Vi, |V ′
i | = 8, and vivj is an edge of graph

F0, then by Lemma 1 we can choose a set V ′
j ⊂ Vj of 8 vertices (one at a time)

such that the positions of the vertices in V ′
i and the crossing angles uniquely

determine the positions of vertices in V ′
j . If we fix the coordinates of a, b and the

crossing-angle function α, then the coordinates of all points in V ′ = ∪n0

i=1V
′
i are

uniquely determined. �



114 K. Arikushi and C.D. Tóth

References

1. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The Straight-Line RAC Drawing
Problem Is NP-Hard. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K.,
Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp.
74–85. Springer, Heidelberg (2011)

2. Aronov, B., Erdős, P., Goddard, W., Kleitman, D.J., Klugerman, M., Pach, J.,
Schulman, L.J.: Crossing families. Combinatorica 14(2), 127–134 (1994)

3. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large
geometric thickness. Electr. J. Comb. 13(1) (2006)

4. Bienstock, D., Dean, N.: Bounds for rectilinear crossing numbers. J. Graph The-
ory 17(3), 333–348 (1993)

5. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-Layer Right Angle Crossing
Drawings. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056,
pp. 156–169. Springer, Heidelberg (2011)

6. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity and
crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3),
565–575 (2011)

7. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite rac
graphs. Inf. Process. Lett. 110(16), 687–691 (2010)

8. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

9. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete
graphs. J. Graph Alg. & Appl. 4(3), 5–17

10. Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing
graphs. Chicago J. Theor. Comput. Sci (2011)

11. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Com-
put. Geom. 38(3), 181–193 (2007)

12. Eades, P., Liotta, G.: Right Angle Crossing Graphs and 1-Planarity. In: Speck-
mann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 148–153. Springer, Heidelberg (2011)

13. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2,
463–470 (1935)

14. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of
graphs. J. Combin. Theory, Ser. B 94, 1–29 (2005)

15. Jackson, B., Jordán, T.: Globally rigid circuits of the directionlength rigidity ma-
troid. J. Combin. Theory, Ser. B 100, 1–2 (2010)

16. Mukkamala, P., Pálvölgyi, D.: Drawing Cubic Graphs with the Four Basic Slopes.
In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Hei-
delberg (2011)

17. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electr. J. Comb. 13(1) (2006)

18. Riskin, A.: The crossing number of a cubic plane polyhedral map plus an edge.
Studia Sci. Math. Hungar. 31, 405–413 (1996)

19. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In:
17th Allerton Conf. in Communications, Control and Computing, pp. 480–489
(1979)

20. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős-Szekeres problem.
ANZIAM J. 48(2), 151–164 (2006)

21. Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set.
Comput. J. 37(2), 139–142 (1994)



Multicut on Graphs of Bounded Clique-Width�

Martin Lackner, Reinhard Pichler,
Stefan Rümmele, and Stefan Woltran

Institute of Information Systems, Vienna University of Technology, Austria
{lackner,pichler,ruemmele,woltran}@dbai.tuwien.ac.at

Abstract. Several variants of Multicut problems arise in applications
like circuit and network design. In general, these problems are NP-
complete. The goal of our work is to investigate the potential of clique-
width for identifying tractable fragments of Multicut. We show for several
parameterizations involving clique-width whether they lead to tractabil-
ity or not. Since bounded tree-width implies bounded clique-width, our
tractability results extend previous results via tree-width, in particular
to dense graphs.

1 Introduction

Multicut problems are graph problems with many applications to circuit and
network design, telecommunication, and recently even databases [15]. An in-
stance of a Multicut problem is given by an undirected graph G and a set H
of pairs of so-called terminal vertices. The aim is to find a minimum cut that
separates all terminal pairs. Different kinds of cuts are considered. For the Edge
Multicut (EMC) problem, the cut is a set of edges whose removal disconnects
each terminal pair. In case of the Restricted (resp. Unrestricted) Vertex

Multicut problem (RVMC resp. UVMC), the cut is a set of non-terminal (resp.
arbitrary) vertices. All three variants of Multicut problems are intractable, i.e.
the corresponding decision problems (asking if a cut of a given cardinality exists)
are NP-complete. RVMC and EMC remain NP-hard even on trees [2,7].

An important approach in dealing with intractable problems is to search for
fixed-parameter tractability in order to confine the combinatorial explosion to
certain problem parameters. More formally, we say that a problem is in the
class FPT with respect to a parameter k, if the problem is solvable in time
f(k) · nO(1), where n denotes the size of the input instance. The function f
is usually exponential but only depends on k. The related complexity class XP
contains the problems solvable in time O(ng(k)) where function g depends only on
the parameter k. In general algorithms with FPT runtime are clearly preferable
to those with XP runtime. In Table 1 we recall previous complexity results on
various parameters of Multicut problems. For several parameters, like the size m
of the cut plus cardinality |H | [19] and very recently even the size m alone [1,20],

� This work was supported by the Austrian Science Fund (FWF): P20704-N18.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 115–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



116 M. Lackner et al.

Table 1. (Parameterized) Complexity of Multicut problems for various
parameters

Graph classes UVMC RVMC EMC

Interval graphs NP-c [13] P [13] NP-c [11]
Trees P [13] NP-c [2] NP-c [11]
Cographs NP-c (Thm 1) P (Thm 4) NP-c [11]3

Parameters1 UVMC RVMC EMC

m, |H | FPT [19] FPT [19] FPT [19]
m FPT [1,20] FPT [1,20] FPT [1,20]
tw(G) NP-c [2] NP-c [2] NP-c [11]
tw(G ∪H) FPT [12] FPT [12] FPT [12]
tw(G), |H | FPT [13] FPT [13] FPT [13]
|H | NP-c [19] NP-c [13] NP-c [7]

cw(G) NP-c (Thm 1) NP-c [2]4 NP-c [11]3

cw(G ∪H) NP-c (Cor 2) FPT2 (Thm 9) NP-c (Thm 3)
cw(G), |H | FPT (Thm 7) FPT (Thm 7) XP (Section 4.3)
1 NP-c refers here to NP-completeness even if the parameter value is
fixed by a constant.

2 For graphs without edges between terminal vertices (cf. Section 4.2).
3 Follows from NP-hardness of EMC on stars (trees of height 1) [11].
4 Follows from NP-hardness of RVMC on trees [2].

FPT membership could be shown. Also several parameterizations involving tree-
width (a parameter which measures the “tree-likeness” of a graph), like the tree-
width of the structure representing both G and H (denoted by tw(G ∪H)) [12]
and the tree-width of G plus |H | [13], lead to FPT membership. In contrast,
for some other parameters it was shown that the Multicut problems remain NP-
complete even if the parameters are bounded by a constant. This is the case for
a parameterization with tw(G) alone [2] and with |H | alone [7,13,19].

We recall that all previous FPT algorithms based on tree-width are only
applicable to sparse graphs. To identify FPT fragments of Multicut which addi-
tionally apply to dense graphs, we study here the parameter clique-width. Clique-
width generalizes the class of cographs similarly as tree-width generalizes trees.
A formal definition of clique-width is given in Section 2. Many graph classes
are known to have bounded clique-width, such as cliques, cographs, trees, tree-
cographs, probe cographs, distance-hereditary, P4-reducible, and series-parallel
graphs. Hence, all fixed-parameter tractability results w.r.t. clique-width imme-
diately yield tractability for these graph classes. Moreover, recall the following
important connection between clique-width and tree-width (shown in [3], im-
proving a result from [6]). For every graph G, cw(G) ≤ 3 · 2tw(G)−1 + 1 holds.
Hence, our tractability results strictly extend previous ones that are based on
tree-width. Furthermore, by the relationship between clique-width and rank-
width proved in [21], both our NP-completeness results and our tractability
results immediately carry over to rank-width.



Multicut on Graphs of Bounded Clique-Width 117

Our main results, as summarized in the lower part of Table 1, are as follows:

• NP-completeness results. The NP-completeness of Multicut parameterized by
tree-width tw(G) carries over to parameter cw(G) by the relationship of tw(G)
and cw(G) recalled above. However, this leaves a gap for Multicut instances with
small clique-width. We fill this gap by extending NP-completeness to these cases,
with the notable exception of RVMC, which we show to be tractable on graphs
with cw(G) ≤ 2. Completely new NP-hard cases arise for UVMC and EMC with
respect to the parameter cw(G ∪ H), as opposed to the parameter tw(G ∪ H)
for which both problems are in FPT.

• FPT results. We prove the FPT membership of UVMC and RVMC with re-
spect to the parameter cw(G)+|H |. Under a weak additional assumption, RVMC
is also shown to be in FPT with respect to cw(G ∪ H). It is noteworthy that
these FPT results can also be obtained by exploiting the Monadic Second-Order
logic (MSO) characterizations of UVMC and RVMC and by applying the clique-
width metatheorem from [5]. However, by designing concrete algorithms we are
able to show better upper bounds for the runtime. The presented algorithms
have a runtime that is double-exponential in cw(G) but only single-exponential
in |H |. Furthermore, the runtime depends only linearly on the input size. These
algorithms are therefore tailored for large instances with small clique-width and
a moderate number of terminal pairs. Note that graphs of small clique-width
can have unbounded tree-width. This makes our algorithms more versatile than
those based on tree-width.

2 Preliminaries

For a set S and n ∈ N, we write S[n] to denote the set of all subsets of S with
cardinality n, formally S[n] := {S′ ⊆ S : |S′| = n}. For a set of sets S, the union
of S, denoted

⋃
S, is defined as {a : ∃B ∈ S with a ∈ B}. We consider here

finite simple undirected graphs and refer to edges via two-element subsets of V .
An induced subgraph (by a vertex set V ′) is denoted as G[V ′].

An instance of a Multicut problem is given by a triple (G,H,m), where

G :=(VG, EG) is a graph, H ⊆ V
[2]
G is a set of terminal pairs, and m is a non-

negative integer. We write VH :=
⋃

H ⊆ VG to denote the terminal vertices or
terminals in such a problem. The Multicut problem asks if a cut of size at most m
exists, which separates all terminal pairs. In case of the {UVMC, RVMC, EMC}
problem, a cut is a set of {arbitrary vertices, non-terminal vertices, edges}. A
solution graph is a valid graph that remains after “cutting”.

Clique-width is a graph property introduced in [4]. For a formal definition of
clique-width we require k-expressions. Each k-expression s has a corresponding
(labeled) graph G(s), which is obtained by the following construction (k ∈ N):

– Adding a new vertex. Let v be a vertex and i ∈ {1, ..., k} a label. Then i(v)
is a k-expression and G(i(v)) consists of the vertex v labeled with i.

– Renaming labels. Let i, j ∈ {1, ..., k} be labels with i �= j and let s be a
k-expression. Then ρj←i(s) is a k-expression and G(ρj←i(s)) is obtained by
re-labeling each i-labeled vertex in G(s) with j.



118 M. Lackner et al.

– Connecting vertices. Let i, j ∈ {1, ..., k} be labels with i �= j and s a k-ex-
pression. Then ηi,j(s) is a k-expression and G(ηi,j(s)) is obtained from G(s)
by connecting every i-labeled vertex with every j-labeled vertex.

– Disjoint union. Let s, t be k-expressions with no vertices in common. Then
s⊕ t is a k-expression and G(s⊕ t) is the disjoint union of G(s) and G(t).

A graph G has clique-width k, written cw(G) = k, if k is the smallest number
such that there is a k-expression s for which the unlabeled version of G(s) is G.
In Figure 1 we illustrate these concepts by graph GEx and the parse tree of a
possible 3-expression of GEx.

η2,3

⊕
s7

ρ2←3
s5

η1,3
s4

⊕
η2,3

s3

⊕
η1,2

s2

⊕
s1

1(h′) 2(b)

3(a)

1(h)

⊕
s6

η1,3

⊕

3(c) 1(g′)

3(g)

g h

b a

c h′

g′

Fig. 1. The graph GEx and its 3-expression

In general, finding a k-expression is hard: [9] reports NP-completeness for
determining whether a graph has clique-width k. However, a (possibly) sub-
optimal k-expression can be computed efficiently: [21] contains an FPT algorithm
which, for a given k, either concludes that cw(G) > k or outputs a (23k+2 − 1)-
expression of the graph. It is an open problem whether finding a k-expression
is fixed-parameter tractable with respect to k. A more detailed introduction to
width parameters and graph decompositions can be found in [18].

In this paper, we want to focus on the complexity of several variants of Multi-
cut rather than the complexity of computing a k-expression.We therefore assume
that an appropriate k-expression is given as part of the input. The runtime esti-
mates in this paper are performed under the assumption that basic set operations
(union, set difference, intersection) can be computed in linear time with respect
to the cardinality of the sets.

3 Complexity Results

In this section we address the complexity of the problems UVMC, RVMC, and
EMC with regard to the parameters cw(G) and cw(G∪H). Let G∪H denote the



Multicut on Graphs of Bounded Clique-Width 119

=⇒

Γ G (VH ,H)

Fig. 2. An example for the reduction in the proof of Theorem 1

graph (VG, EG∪H), i.e. the primal graph of the structure (VG, EG, H). Whereas
some results for cw(G) follow from previous work, no complexity analysis has
been done for cw(G∪H)-bounded graphs yet. Since graphs of clique-width 1 do
not contain edges, we do not mention them in this chapter.

UVMC. UVMC is known to be NP-complete on series-parallel graphs [2], i.e.
for graphs of clique-width 4. To close the gap for graphs of clique-width 2 and
3, we show that UVMC is NP-complete on cographs (and even on cliques). The
analogous result for cw(G ∪H)-bounded graphs follows immediately.

Theorem 1. UVMC remains NP-complete if G is restricted to cliques.

Proof sketch. We use a reduction from Vertex cover. Let Γ := (VΓ , EΓ ) be
an arbitrary graph for which we want to find a vertex cover of size at most k, i.e.

a set of vertices that covers every edge. Our input for UVMC is G := (VΓ , V
[2]
Γ ),

i.e. the complete graph on VΓ , and H := EΓ . An example is given in Figure 2.
One can show that a set of vertices is a cut in G iff it is a vertex cover of Γ . �

Corollary 2. UVMC remains NP-complete if G ∪H is restricted to cliques.

These results prove NP-hardness for UVMC for a class of input instances with
cw(G) = 2 (resp. cw(G∪H) = 2) and therefore for input instances where cw(G)
(resp. cw(G ∪H)) is bounded by any number ≥ 2.

EMC. In [11] it is shown that EMC is NP-complete on trees of depth 1, i.e.
stars. We show that EMC also remains NP-complete if G ∪ H is restricted to
cliques. Since both stars and cliques are cographs and hence their clique-width
is 2, it follows that EMC remains NP-complete even if either G or G ∪ H is
restricted to graphs of clique-width 2.

Theorem 3. EMC is NP-complete even if G ∪H is a clique.

Proof sketch. The NP-complete P3-edge deletion problem [8] asks if it is
possible to obtain a graph containing no induced P3, i.e. a path on 3 vertices,
by deleting a given number of edges. This problem can be reduced to UVMC
where G ∪ H is a clique. To do so, let G be the given graph and H the edge
complement. Now observe that a subgraph of G contains no induced P3 iff it
consists of disjoint cliques, which holds iff no terminal pair is connected. �



120 M. Lackner et al.

RVMC. RVMC for input instances where cw(G) is bounded by a number ≥ 3
is NP-complete. This follows directly from the fact that RVMC is NP-complete
on trees [2] and that trees have clique-width 3. However, Theorem 4 shows that
RVMC becomes tractable on graphs of clique-width 2. For the parameter cw(G∪
H) a new situation arises, which is analyzed in Section 4.3.

Theorem 4. RVMC can be solved on cographs in O(|H | · |VG|) time.

Proof sketch. First note that if a cograph contains a path from a to c of length
≥ 2 then either there is a vertex b in this path such that (a, b, c) is itself a path
or {a, c} is an edge. Now, if there is a connected terminal pair in the cograph,
the algorithm rejects the input. Otherwise we construct C := {b ∈ VG : ∃(a, c) ∈
H s.t. (a, b, c) is a path}. Because of the aforementioned fact, C contains the
vertices that have to be removed. Therefore if C contains a terminal vertex, the
algorithm rejects the input. Otherwise C is the minimal cut. �

4 Algorithms

We now present FPT and XP results with several parameterizations related to
clique-width. Recall from Section 2 that when dealing with clique-width, we
consider a k-expression (referred to as κ) as part of the input. Furthermore, |κ|
denotes the number of operations in κ.

4.1 Vertex Multicut with cw(G) + |H| as Parameter

We give an FPT algorithm based on dynamic programming for UVMC and
RVMC with cw(G) + |H | as parameter. The central idea of our algorithm is
to keep track of the connected components of G, while G is built according
to its k-expression and potential cuts are performed. Especially the connected
components that contain terminal vertices are important. For this purpose, we
will use the concept of connected component sets (CCSs), which only hold the
“relevant” information on each connected component VC , namely: (i) all terminal
vertices occurring in VC and (ii) all labels of the vertices in VC . Observe that
as long as no terminal pair is in a single connected component, the graph under
consideration is a solution graph. Variations of the concept of CCSs will be used
later in all following algorithms.

Definition 5. Let G = (V,E) be a labeled graph, let VH ⊆ V and let L(V ′)
denote the set of labels of V ′ ⊆ V . The connected component set (CCS) of the
pair (G,H) is

ccs(G, VH) := {(VC ∩ VH) ∪ L(VC) : VC ⊆ V forms a connected component} .

Observe that in case an element of a CCS contains a terminal vertex, it corre-
sponds to exactly one connected component. However, if an element of a CCS
does not contain a terminal, several corresponding components may exist.



Multicut on Graphs of Bounded Clique-Width 121

In the following we will give a detailed description of the algorithm. We start
by describing the data structure, which for each subexpression s of the input k-
expression κ consists of a set Ss of CCSs and a function cutss from Ss to N. The
algorithm traverses the parse tree of the k-expression bottom-up manipulating
this data structure (details are given below). The main idea of the algorithm is
that for each subexpression s of κ,

Ss = {ccs(G(s)[VG \ C], VH) : C is a cut w.r.t. G(s) ∧ |C| ≤ m}.

This means that Ss contains all possible CCSs of solution graphs for the UVMC
or RVMC problem (G(s), H,m). Furthermore for each CCS Δ ∈ Ss, cutss(Δ) is
the minimum number of cuts required to obtain a graph represented by Δ from
the original graph G(s). The function cuts is essential to discard CCSs that have
size greater than m. Since we are only interested in cuts of size ≤ m, cutss(Δ)
is always ≤ m. Once the algorithm reaches the root node, which corresponds
to the k-expression κ, Sκ contains all possible CCSs of solution graphs for the
UVMC or RVMC problem (G,H,m). Hence there is a cut set of size ≤ m if and
only if Sκ is not empty.

The functions ren and con will allow us to give a succinct description of the
algorithm. ren is closely related to the ρ-operation, con to the η-operation.

Definition 6. reni←j and con i,j are functions that map a CCS Δ to another
CCS as follows:

reni←j(Δ) := {c ∪ {i} \ {j} : c ∈ Δ with j ∈ c} ∪ {c : c ∈ Δ with j /∈ c} ,

coni,j(Δ) := {c ∈ Δ : i /∈ c ∧ j /∈ c} ∪
{⋃

{c ∈ Δ : i ∈ c ∨ j ∈ c}
}
.

We now describe what the algorithm does in each node of the parse tree of κ.
The only distinction between UVMC and RVMC is in the leaves. Below, we
let s (and possibly t) be the k-expression of the subtree(s) below the current
(internal) node.

i(v): If v is a non-terminal vertex, we have two CCSs Si(v) := {∅, {{i}}} with
cutsi(v)(∅) := 1 and cutsi(v)({{i}}) := 0. If v is a terminal vertex, we do the
same for UVMC but add the vertex to the CCS, i.e. Si(v) := {∅, {{i, v}}},
cutsi(v)(∅) = 1 and cutsi(v)({{i, v}}) = 0. For RVMC, we cannot remove v,
thus only Si(v) := {{{i, v}}} with cutsi(v)({{i, v}}) = 0 remains.

ρi←j(s): Sρi←j(s) := {reni←j(Δ) : Δ ∈ Ss} and for each Δ′ ∈ Sρi←j(s) we have
cutsρi←j(s)(Δ

′) := min{cutss(Δ) : reni←j(Δ) = Δ′}.
s⊕ t: Ss⊕t:= {Δs ∪Δt : Δs ∈ Ss, Δt ∈ St, cutss(Δs) + cutst(Δt) ≤ m} and

cutss⊕t(Δ
′) := min{cutss(Δs) + cutst(Δt) : Δs ∪Δt = Δ′}.

ηi,j: For each Δ ∈ Ss there are two cases: (1) {i, j} �
⋃

Δ, i.e. there is no i-
labeled or no j-labeled vertex in the graphs represented by Δ. Therefore no
connections are introduced and hence Δ is added to Sηi,j(s). (2) Otherwise we
consider con i,j(Δ). Here, edges might have been added such that a terminal
pair was connected. If this is not the case, i.e. there is no set in con i,j(Δ)



122 M. Lackner et al.

which contains a terminal pair, coni,j(Δ) is added to Sηi,j(s). In both cases
– (1) and (2) – cutsηi,j(s) (Δ

′) is the minimum number of cuts of all CCSs
in Ss that lead to Δ′ if i-labeled and j-labeled vertices are connected.

Theorem 7. UVMC and RVMC are FPT with respect to the parameters cw(G)
and |VH | and can be solved in time

O
(
42

cw(G) · (|VH |+ 2cw(G))2|VH | · (|VH | · (cw(G) + 1) + cw(G) · 2cw(G)) · |κ|
)
.

Proof. The algorithm described above operates on the parse tree of κ. We there-
fore analyze the cost of each of the four operations. The operation i(v) requires
constant time. The operations ηi,j(s) and ρi←j(s) perform basic set operations
on each set in each CCS in Ss. A CCS has size at most |VH | · (cw(G) + 1) +
cw(G) · 2cw(G). That is for each element of VH a set with at most cw(G) + 1
elements plus at most 2cw(G) subsets of cw(G) each having size at most cw(G).
In order to bound the size of Ss, we have to bound the number of possible CCSs.
Recall that each h ∈ VH appears in at most one set in a CCS. Therefore, we can
estimate the number of possible CCSs as follows. For the first h1 ∈ VH there are
1+2cw(G) many possibilities, since it is either not contained or it occurs together
with an arbitrary subset of cw(G). For the second h2 ∈ VH there are at most
2 + 2cw(G) many possibilities, since it is either not contained, or it occurs in the
set of h1, or it occurs together with an arbitrary subset of cw(G). This scheme

repeats for the other elements from VH . After fixing these, we still have 22
cw(G)

many possibilities for choosing arbitrary subsets of cw(G). This results in less

than 22
cw(G) · (|VH | + 2cw(G))|VH | CCSs in Ss. In total this yields a runtime of

at most O
(
22

cw(G) · (|VH |+ 2cw(G))|VH | · (|VH | · (cw(G) + 1) + cw(G) · 2cw(G))
)

for η- and ρ-operations. In order to compute s ⊕ t we have to consider pairs of

CCSs, i.e. at most 42
cw(G) · (|VH | + 2cw(G))2|VH | combinations. Computing the

union is bounded by the maximum size of a CCS. �

Note that although the runtime depends on |VH |, this can also be seen as an FPT
algorithm for cw(G) + |H | since |VH | ≤ 2 |H |. Actually, this FPT result could
also be obtained via the metatheorem of [5] and an encoding of the UVMC and
RVMC problem by a Monadic Second-Order (MSO) formula in the spirit of [12].
However, a precise upper bound on the runtime in terms of an O(·)-expression
would remain obscure if the FPT result were proved via the metatheorem.

Example for RVMC. We apply the above algorithm to the RVMC instance
(GEx, HEx, 2), where GEx and a 3-expression of GEx are shown in Figure 1.
Moreover, suppose that the terminal set is HEx := {{g, g′}, {h, h′}}. In the
parse tree certain nodes are marked with s1, ..., s7. These denote the subexpres-
sions corresponding to the subtrees rooted at these nodes. For these nodes we
give the data structure Ssi and the cuts function in Table 2.

The operation in node s1 is⊕. Here we take the union of the CCSs from the left
and right branch. Observe that h′ is present in every CCS, since it is a terminal
vertex. The next operations are η1,2 and η2,3. Both times the components in the



Multicut on Graphs of Bounded Clique-Width 123

Table 2. The RVMC algorithm applied to the graph in Figure 1

CSSs cuts CCSs cuts

s1
{
{1, h′}

}
∪
{
{2}

}
0 s5

{
{1, 2, h′}, {1, h}

}
1

(⊕)
{
{1, h′}

}
∪
{}

1 (ρ2←3)
{
{1, h′}, {1, h}

}
2

s2
{
{1, 2, h′}

}
0 s6

{
{1, 3, g′}

}
∪
{
{3, g}

}
0

(η1,2)
{
{1, h′}

}
1 (⊕)

{
{1, g′}

}
∪
{
{3, g}

}
1

s3
{
{1, 2, 3, h′}

}
0 s7

{
{1, 2, h′}, {1, h}

}
∪
{
{1, 3, g′}, {3, g}

}
1

(η2,3)
{
{1, h′}, {3}

}
1 (⊕)

{
{1, h′}, {1, h}

}
∪
{
{1, 3, g′}, {3, g}

}
2{

{1, 2, h′}
}

1
{
{1, 2, h′}, {1, h}

}
∪
{
{1, g′}, {3, g}

}
2{

{1, h′}
}

2 root
{
{1, 2, 3, g, g′, h′}, {1, h}

}
1

s4
{
{1, 2, h′}, {1, h}

}
1 (η2,3)

{
{1, h′}, {1, h}, {1, 3, g′}, {3, g}

}
2

(η1,3)
{
{1, h′}, {1, h}

}
2

{
{1, 2, 3, g, h′}, {1, h}, {1, g′}

}
2

first CCS are merged, whereas the other CCSs do not change. In s3 the four
rows correspond to (in this order): no vertex cut, vertex b cut, vertex a cut, and
both a and b cut. The s4-operation is η1,3. Since both h and h′ are labeled with
1, CCSs with 3-labeled vertices yield invalid CCSs and are therefore not listed
anymore. Subexpression s6 denotes the right branch of the parse tree. The first
CCS required no cuts whereas in the second CCS vertex c has been cut. The
root node contains two valid CCSs and therefore there are valid cuts of size 2.
The first solution corresponds to the cut set {a, b} and the second to the cut set
{a, c}. Note that in general a CCS may correspond to several cuts.

4.2 RVMC with cw(G ∪ H) as Parameter

In Section 3 we left open the complexity of RVMC with regard to cw(G ∪ H).
Now we present an FPT algorithm for that problem on a slightly restricted
class of inputs, namely those that do not contain edges (in G) between terminal
vertices. If this restriction holds, edges between terminal vertices in G∪H always
correspond to terminal pairs. Note that an edge between two terminal vertices
which do not form a terminal pair in H , does not automatically prohibit a cut
set. This restriction is not necessary if the following conjecture1 holds.

Conjecture 8. There is a computable function f such that for every class of
graphs G, if the clique-width of G is bounded by k then the clique-width of G′ is
bounded by f(k), where G′ is the class obtained from G by closing G under edge
contractions.

If this conjecture holds, we can contract all edges in G ∪ H between terminal
vertices a and b with {a, b} ∈ EG. Then we use the f(k)-expression of this
graph as input, i.e. the clique-width of the modified graph is still bounded. This
modified graph has exactly the same cut sets as the original graph.

The algorithm presented here is based on the one in Section 4.1. Especially the
cuts function is defined in exactly the same way, but we use a slightly different

1 A stronger statement, namely that edge contractions do not increase the clique-width
at all, is mentioned as an open problem in [14].



124 M. Lackner et al.

form of CCSs. Here, CCSs are subsets of P({1, . . . , k, 1̂, . . . , k̂}). To define such
CCSs, L(V ′) is as before and L̂(V ′) := {î : i ∈ L(V ′)}. Now ĉcs(G, VH) :=

{L̂(VC ∩VH)∪L(VC \VH) : VC ⊆ V forms a conn. comp.}. Let K̂ := {1̂, . . . , k̂}.
The data structure consists of a set S of CCSs, forbidden sets N ⊆ K̂ [1] ∪ K̂ [2]

and a function cuts from S to N. The intended meaning is that î is contained
in an element of a CCS iff this component contains an i-labeled terminal. If
{î, ĵ} ∈ N , then there must not be an edge introduction between a component
containing an i-labeled and one containing a j-labeled terminal. If {î} ∈ N ,
then there must not be an edge introduction between a component containing
an i-labeled terminal and any other component. The operations are as follows:

i(v): If v is a non-terminal vertex, we have two CCSs Si(v) := {∅, {{i}}}. If v is

a terminal vertex, Si(v) := {{{î}}}. In both cases N := ∅.
ρi←j(s): All CCSs are relabeled: j #→ i and ĵ #→ î. N is also changed accordingly;

this might lead to N containing sets of size 1.
s⊕ t: Here Ss⊕t is calculated in exactly the same way as in the algorithm of

Section 4.1 and Ns⊕t := Ns ∪Nt.
ηi,j: If î and ĵ are present in Ss, Nηi,j(s) := Ns∪{î, ĵ}, otherwise Nηi,j(s) := Ns.

The reason for this is that there is no edge between terminal nodes in G.
Consequently, there exists a terminal pair in H that has labels i and j.
Sηi,j(s) is calculated similar to the original algorithm. However, checking if
a terminal pair is contained in a component works differently. We have to
distinguish four cases: both i and j appear in components in the CCS Δ,
only i (only j) appears in a component and fourthly neither appears. The
reason why the four cases only consider the occurence of i and j but not
of î and ĵ is again the precondition that in G there exists no edge between
terminal nodes.

In the first case Δ is not valid iff there is an h ∈ Nηi,j(s) with h ⊆
⋃
{c ∈

Δ : i ∈ c ∨ j ∈ c ∨ î ∈ c ∨ ĵ ∈ c}, i.e. if the newly connected component is a
superset of a forbidden set in Nηi,j(s). In the second case we have to check

whether h ⊆
⋃
{c ∈ Δ : i ∈ c ∨ ĵ ∈ c}. If this is the case a terminal pair has

been connected and hence the CCS Δ has to be discarded. Case 3 works
analogously to Case 2. In Case 4 no new edges are introduced. Nevertheless
we have to check if not already an i- and j-labeled terminal pair is contained
in a connected component.

Theorem 9. RVMC is FPT with respect to cw(G ∪ H) on graphs that do not
contain edges between terminal vertices.

Runtime estimates can be found similarly to Theorem 7. It can easily be seen
that Conjecture 8 holds for cographs. Hence,

Corollary 10. RVMC is in P if G ∪H is restricted to cographs.

4.3 Edge Multicut with cw(G) + |H| as Parameter

For EMC, contrary to Vertex Multicut, cuts occur during η-operations, i.e. when
new edges are introduced. Therefore it is necessary to store the number of vertices



Multicut on Graphs of Bounded Clique-Width 125

in a component with a certain label. Otherwise we would not be able to calculate
the number of cuts required to separate two components. However, adding this
information to the data structure yields up to nf(k) branchings in the algorithm,
where f(k) is defined as k, the number of labels, times the number of components
in a CCS. Clearly such an algorithm is in XP.

5 Conclusion and Future Work

We have pinpointed the parameterized complexity of the UVMC, RVMC and
EMC problem for several parameterizations involving clique-width. In the liter-
ature, also weighted versions of Multicut have been studied where the vertices
or the edges are assigned a weight and one seeks to minimize the weight rather
than the cardinality of the cut. Our algorithms for UVMC and RVMC can be
easily extended so as to also handle weights. In contrast, there is no obvious
extension of our EMC algorithm to the weighted version of this problem. For
the XP-algorithm for EMC it would be of interest to prove a corresponding
W[1]-hardness result which would imply that no FPT algorithm exists.

One drawback of clique-width is that it is in general NP-complete to detect if
a given graph has clique-width ≤ k [9]. However, there has been recent progress
in identifying graph classes for which the computation of k-expression can be
done in polynomial time [16,17]. Another approach, by Oum and Seymour [21],
is the notion of rank-width, which is strongly related to clique-width and which
admits good algorithms for finding decompositions. Since rw(G) ≤ cw(G) ≤
21+rw(G) − 1 holds [21], all our NP-completeness results as well as all our FPT
and XP membership results also hold for rank-width. Nevertheless, it is to be
expected that custom-made algorithms for rank-width perform better than algo-
rithms using a “detour” via clique-width. The construction of such algorithms,
e.g. building on [10], is a task for future work.

Finally, the question of how much edge contractions can increase the clique-
width of graphs (Conjecture 8) seems to be a problem worthwhile to study.

References

1. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vad-
han, S.P. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, STOC 2011, pp. 459–468. ACM, New York (2011)

2. Calinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree-width. J. Algorithms 48(2), 333–
359 (2003)

3. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

4. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

5. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)



126 M. Lackner et al.

6. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (2000)

7. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

8. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Transactions on Circuits and Systems (1988)

9. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-
complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)

10. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discrete Applied Mathematics 158(7), 851–867
(2010); Third Workshop on Graph Classes, Optimization and Width Parameters
Eugene, Oregon, USA (October 2007)

11. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and Multicut in trees. Algorithmica 18(1), 3–20 (1997)

12. Gottlob, G., Lee, S.T.: A logical approach to Multicut problems. Information Pro-
cessing Letters 103(4), 136–141 (2007)

13. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and Ex-
act Algorithms for Multicut. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková,
M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 303–312. Springer, Hei-
delberg (2006)

14. Gurski, F.: Graph operations on clique-width bounded graphs. CoRR
abs/cs/0701185 (2007)

15. Gutierrez, C., Hurtado, C., Vaisman, A.: RDFS Update: From Theory to Prac-
tice. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De
Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 93–107.
Springer, Heidelberg (2011)

16. Heggernes, P., Meister, D., Rotics, U.: Exploiting Restricted Linear Structure to
Cope with the Hardness of Clique-Width. In: Kratochv́ıl, J., Li, A., Fiala, J.,
Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 284–295. Springer, Heidelberg
(2010)

17. Heggernes, P., Meister, D., Rotics, U.: Computing the Clique-Width of Large Path
Powers in Linear Time via a New Characterisation of Clique-Width. In: Kulikov,
A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 233–246. Springer,
Heidelberg (2011)

18. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. The Computer Journal 51(3), 326–362 (2008)

19. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006)

20. Marx, D., Razgon, I.: Fixed-parameter tractability of Multicut parameterized by
the size of the cutset. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 469–478.
ACM, New York (2011)

21. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96(4), 514–528 (2006)



Radiation Hybrid Map Construction

Problem Parameterized

Chihao Zhang1, Haitao Jiang2, and Binhai Zhu3

1 Department of Computer Science, Shanghai Jiao Tong University,
Shanghai, 200240, China
chihao.zhang@gmail.com

2 School of Computer Science and Technology, Shandong University,
Jinan, Shandong, 250100, China

htjiang@mail.sdu.edu.cn
3 Department of Computer Science, Montana State University,

Bozeman, MT, 59717-3880, USA
bhz@cs.montana.edu

Abstract. In this paper, we study the Radiation Hybrid Map Con-
struction (RHMC) problem which is about reconstructing a genome from
a set of gene clusters. The problem is known to be NP-complete even
when all gene clusters are of size two and the corresponding problem
(RHMC2) admits efficient constant-factor approximation algorithms. In
this paper, for the first time, we consider the more general case when the
gene clusters can have size either two or three (RHMC3). Let p-RHMC
be a parameterized version of RHMC where the parameter is the size of
solution. We present a linear kernel for p-RHMC3 of size 22k, together
with a bounded search tree algorithm, we obtain an FPT algorithm run-
ning in O(6kk+n) time. For p-RHMC2 we present a bounded search tree
algorithm which runs in O∗(2.45k) time, greatly improving the previous
bound using weak kernels.

1 Introduction

Radiation hybrid (Rh) mapping is a popular and powerful technique for mapping
unique DNA sequences onto chromosomes and whole genomes. The achieved
map of these DNA sequences provide a basis for association studies in modern
genetics. The technique has been used since 1990 for construction maps of small
chromosomal regions for human and several other mammals [5,10,11].

In Rh mapping experiments, chromosomes of the target organism are ran-
domly broken into small DNA fragments through gamma radiation. The under-
lying mechanism is that, when two markers are physically close to each other on
the chromosome, the probability that these two markers are broken down by the
gamma radiation is low, and so with a high probability they are either co-present
in or co-absent from a DNA fragment. The radiation hybrid map construction
(RHMC) problem is to determine the most likely linear order of the markers
using the observed co-occurrences. We will formally define this problem in the
next section.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 127–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



128 C. Zhang, H. Jiang, and B. Zhu

Traditional Rh map construction methods are mostly heuristics, and often
they are only able to produce framework maps on a small portion of all the
markers [6]. Slonim et al. proposed a hidden Markov model on the Rh mapping
data and used a maximum-likelihood approach to compute the map [11]; Givry
et al. proposed to take advantage of known sequence information for target
chromosomes for building more robust maps [3]. In [2], the RHMC2 problem (i.e.,
each cluster contains two genes) was shown to be NP-hard and a 2-approximation
algorithm was presented. The approximation ratio was then improved to 10/7
in [1].

In this paper, we study the problem under the framework of parameterized
complexity. We restrict our attention on the case when the size of each cluster
is at most 3. We show that this problem is Fixed-Parameter Tractable (FPT)
by presenting a 22k kernel for it. Moreover, on top of the kernel, we present a
bounded search tree algorithm which runs in O(6kk + n) time. Furthermore, in
the case when the size of each cluster is at most 2, we give an improved FPT
algorithm which runs in O∗(2.45k) time.

This paper is organized as follows. In Section 2, we give some necessary defini-
tions regarding the problem as well as FPT algorithms. In Section 3, we present
the linear kernel for RHMC3, where each cluster has at most three genes, and
then give an FPT algorithm based on the kernel. In Section 4, we present an im-
proved FPT algorithm for RHMC2. Finally in Section 5, we conclude the paper
with several open questions.

2 Preliminaries

Radiation Hybrid Map Construction Problem. Let Σ be a set of markers, and
C = {Ci ⊆ Σ : 1 ≤ i ≤ n} be a set of clusters, with |Ci| ≤ d. The problem is
to decide whether after deleting some k clusters, there is a total order ≤ on Σ
under which for every remaining cluster C, the markers in C are consecutive.

For example, take Σ = {a, b, c, d} and C1 = {b, c, d}, C2 = {a, c, d}, C3 =
{a, b}. If none of C1, C2, C3 is deleted, there is no total order on Σ satisfying
our requirement. However, if we delete C1, the order c ≤ d ≤ a ≤ b satisfies the
condition since both C2 = {a, c, d} and C3 = {a, b} appear consecutively.

We denote this problem by RHMC. For fixed d, we call it RHMCd. It is easy
to see that RHMC2 is equivalent to the so-called Minimum co-Path problem:
Given a simple undirected graph, decide whether one can delete some k edges,
resulting a graph which is a disjoint union of paths. Minimum co-Path problem
can be viewed as the complement of the Hamiltonian path problem, hence it is
NP-hard [2].

Fixed-Parameter Tractable Algorithm. Let (I, k) be an instance of parameter-
ized problem. An FPT algorithm decides (I, k) in time O(f(k) · nc), where f is
an arbitrary computable function that only depends on k and c is a constant.
We often use the notation O∗(f(k)) to suppress the polynomial term. A basic
approach towards FPT algorithm is to consider the problem kernel. Formally, a
polynomial time algorithm K is a kernelization if it reduces the instance (I, k)



Radiation Hybrid Map Construction Problem Parameterized 129

to another instance (I ′, k′) such that (1) (I, k) is a YES instance if and only if
(I ′, k′) is a YES instance, and (2) there is a computable function h such that
|I ′| ≤ h(k). The reduced instance (I ′, k′) is called the kernel, and if h is a linear
function, we say that the kernel is linear. It is well known that a parameterized
problem is FPT if and only if it has a kernel. In many cases, the kernelization K
consists of many reduction rules which reduce the size of the input instance. For
more information on parameterized complexity and algorithms, one can refer to
[4,7,9]. The parameterized version of RHMCd is defined as follows:

p-RHMCd Problem

Input: A set of clusters C = {Ci ⊆ Σ : 1 ≤ i ≤ n} with
|Ci| ≤ d, and an integer k ∈ N.

Parameter: k.
Problem: Decide whether after deleting some k clusters, there is

a total order ≤ on Σ under which for every remaining
cluster C, the markers in C are consecutive.

3 A Linear Kernel for p-RHMC3

Let Σ be a set of markers, and I = (C = {Ci ⊂ Σ : 1 ≤ i ≤ n}, k) be an instance
of p-RHMC3 such that |Ci| ≤ 3 for all 1 ≤ i ≤ n. We can rephrase p-RHMC3 as
a problem on graphs:

Let G(I) = (V (I), E(I)) be an undirected graph. We consider each marker
c ∈ Σ as a vertex in G(I). We add edge {u, v} to E(I) if u, v ∈ Ci for some i
and u �= v. Since each cluster contains at most 3 markers, it can be viewed as
a subgraph (a vertex, or two vertices on an edge, or a K3) in the G(I). We call
a subgraph of G(I) legal if it corresponds to some cluster. We say two clusters
Ci, Cj are neighbors if Ci ∩Cj �= ∅, i.e. their corresponding subgraphs share at
least one vertex.

Then RHMC3 is equivalent to deciding whether one can remove a set S(I)
of k clusters such that there exists a set of disjoint paths T (I) in G(I) and for
each remaining legal subgraph: (1) if it is a triangle, then it contains exactly two
edges covered by some path in T (I); (2) if it is an edge or a vertex, it belongs
to some path in T (I). We call T (I) the valid set.

In Section 3.1 we will define the notion of good pattern and present a linear
kernel in Section 3.2.

3.1 Good Patterns

To ease the presentation, we first consider the case that all clusters are of size 3,
i.e. all the legal subgraphs are triangles. We denote this problem by p-RHMC3

∗.
At the end of Section 3.2, we will consider the general case of p-RHMC3.

For a fixed cluster, consider all its neighbors, only 10 patterns as illustrated
in Figure 1 are allowed to draw a valid path. (The fixed cluster is the one shaded
and the thick line denote the path.)



130 C. Zhang, H. Jiang, and B. Zhu

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. 10 good patterns of shaded cluster

A cluster C is good if its neighbors and itself form a pattern in Figure 1 where
C is the shaded one; a good cluster is free if all of its neighbors are good. If a
cluster is not good, we call it bad.

Given an instance I, if all clusters are good, then it is easy to solve this
instance. If G(I) contains more than one component, then we can consider each
component independently. Hence in the following we assume that at least one
cluster is bad and G(I) is connected.

We immediately have the following lemma:

Lemma 1. Let I = ({Ci : 1 ≤ i ≤ n}, 0) be an instance of RHMC3
∗, then I is

a YES instance if and only if (1) all the clusters are good (hence free) and (2)
G(I) contains no cycle.

Proof. The “only if” direction is straightforward.
If all clusters are good, by recognizing all patterns in Figure 1, it is easy

to verify that we can also connect two valid paths when attaching two good
clusters. �

This lemma directly implies a bounded search tree algorithm for p-RHMC3
∗: For

a bad cluster, consider (at most) 5 of its neighbors and itself, and branch on all
possible ways to form a good pattern (in Figure 1) by removing at least one of
the 6 clusters. The worst case occurs around case (j) in Figure 1, where we have
a band of 6 triangles forming a cycle — with each triangle sharing exactly one
edge with each of its two neighbors. In this case, any of the 6 clusters can be
deleted to obtain the good pattern (j) and we need to branch on each of these
6 cases. Hence this bounded search tree algorithm runs in O∗(6k) time. After
all the bad patterns are destroyed, we need to in addition break all the cycles
(which can be done in an arbitrary fashion as these cycles must be all disjoint).

Theorem 1. p-RHMC3
∗ can be solved in O(6kn) time.



Radiation Hybrid Map Construction Problem Parameterized 131

3.2 Kernelization Algorithm

In this section, we present a kernelization algorithm for p-RHMC3
∗. Let I be

an instance. We first define an operation on good patterns called contraction.
Let C be a good cluster of size 3, if its pattern is among (a)(b)(f)(g)(h)(i)(j)
in Figure 1, then contracting C means removing C from I. Otherwise, if C’s
pattern is among (c)(d)(e), then by contraction we mean removing C from I
and identifying two vertices of its neighbors, as depicted in Figure 2.

a b

c

d e

f g

a b

c

f g

(c)

a b

c

d e

f

a b

c e

f

(d)

a b

c

d e

f g

a b

c
d

e
f

(e)

Fig. 2. Contraction of patterns (c)(d) and (e)

Our kernelization algorithm is exhaustively applying the following rule:

Rule: If there is a free cluster C in G, then contract it.

Lemma 2. Let I = ({Ci : 1 ≤ i ≤ n}, k) be an instance of p-RHMC3
∗, C be a

free cluster and I ′ be the instance obtained from I by contracting C. Then I is
a YES instance if and only if I ′ is a YES instance.

Proof. We first prove the “only if” direction: Assume that I is a YES instance,
if C is of pattern (a)(b)(f)(g)(h)(i)(j), contracting C is equivalent to deleting C,
hence a solution set of I is also a solution set of I ′. Otherwise, let S(I) and T (I)
be the solution set and valid set of I respectively. If C �∈ S(I), then S(I) is also
a solution set of I ′. If C ∈ S(I), we distinguish between three cases:

(1) If C’s pattern is (c), since C ∈ S(I), T (I) must contain edges ac, cb, fd, dg.
In this case, we know S(I)\{C} ∪ {C ′} is a solution set of I ′, where C′ is
the cluster {a, b, c}.

(2) If C’s pattern is (d), first let T (I ′) = T (I). If it is the case that T (I) contains
edges ab, bc, de, df , then we can safely change df to ef in T (I ′). Thus S(I)
is also a solution set of I ′. The other cases are symmetric.

(3) If C’ pattern is (e), again let T (I ′) = T (I). It must be the case that T (I)
contains edges ac, bc, and de (or eg), then we can remove de (or eg) from
T (I ′) after contacting C. Thus S(I) is also a solution set of I ′.

To prove the “if” part we need more effort. Assume I ′ is a YES instance and
S(I ′) be one of its solution of size at most k, we show that S(I ′) is also a solution
set of I.



132 C. Zhang, H. Jiang, and B. Zhu

We know that after removing S(I ′) in G(I ′), we can find a valid set T (I ′).
We claim that after restoring C in G(I ′), either

(1) there exists a path in C that connects two paths in T (I ′), or
(2) C already has two edges covered by some path in T (I ′).

We first prove the claim. Since C is free, all its neighbors are good, and hence it
is among the 10 patterns illustrated in Figure 1. Let C′ be one of its neighbors,
we justify the claim by examing the pattern of C′.

The pattern illustrated in Figure 3 encompasses all situations, where C′ is
cluster 2(the one shaded). We analyse this pattern in detail and other patterns
can be checked similarly.

1

2

3
4

a b

c

d
e

f g

Fig. 3. One good pattern of C′

a. If C is cluster 1, after contracting C, the path in T (I ′) must be P = cedgf .
thus after restoring C, we can extend P with path cba or cab (depending on
which one of a and b is identified with c while contracting).

b. If C is cluster 3, after contracting C, the path in T (I ′) across this pattern
may be P1 = abcedgf , P2 = bacedgf , P3 = abcedfg or P4 = bacedfg.
Restoring C does not affect P1 and P2. If it is the case of P3 (resp. P4), we
can safely replace the path by abcedgf (resp. bacedgf). This is because we
only have two ways to force the existence of edge df in some path:
(1) We have some cluster {d, f, x} (x is not among {a, b, c, d, e, f, g}, but this

cluster shares a vertex with cluster 2 and hence it is impossible in this
pattern.

(2) We have some cluster {g, x, y} (x, y are not among {a, b, c, d, e, f, g}),
but in this situation, cluster 3 is no longer good.

c. If C is cluster 4, after contracting C, the path in T (I ′) across this pattern
may be P1 = abcedg, P2 = bacedg, P3 = abcdeg or P4 = bacdeg. Restoring
C does not affect P1 and P2. If it is the case of P3 (resp. P3), we can safely
replace the path by abcedg (resp. bacedg). The reason is similar to case b
above.

By the claim, if (1) happens, restoring C only extends some path in T (I ′);
if (2) happens, restoring C does not affect T (I ′). Then we know S(I ′) is also a
solution set of I. �

Now we come to the general case of p-RHMC3, i.e. some clusters may be of size
2. We first generalize the operation of contraction in the following way: Let I be



Radiation Hybrid Map Construction Problem Parameterized 133

an instance and C a 2-sized cluster. If there is another 3-sized cluster C′ such
that C ⊂ C′, then contracting C is equivalent to removing C. Similarly, for a
3-sized cluster C, if there is another 2-sized cluster C′ such that C′ ⊂ C, then
contracting C is equivalent to removing C. Otherwise, for a 2-sized cluster C, the
operation is equivalent to contracting the edge in G(I) and for a 3-sized cluster,
the definition of contraction is the same as the case in p-RHMC3

∗. Secondly, in
RHMC3, some new patterns are introduced, both for 2-sized clusters and 3-sized
clusters. Figure 4 illustrates good patterns of a 2-sized cluster whose neighbors
are triangles.

Fig. 4. Good patterns of 2-sized clusters such that all the neighbors are triangles

The analysis of free 2-sized clusters is similar to 3-sized ones. Now we consider
the influence of 2-sized clusters to proof of Lemma 2, i.e. the analysis of 3-sized
cluster. It introduces a new way to force the existence of some edge in case (b)
and (c). Taking (b) for instance, if edge df is some 2-sized cluster, then we know
that we must keep it in the valid set. However, it is easy to check that, in this
case, cluster df is not good as we cannot draw a path across its pattern. The
similar argument holds for (c).

Therefore both Theorem 1 and Lemma 2 can be generalized to p-RHMC3.

Theorem 2. p-RHMC3 can be solved in O(6kn) time.

Lemma 3. Let I = ({Ci : 1 ≤ i ≤ n}, k) be an instance of p-RHMC3 and C
a free cluster, I ′ be the instance obtained from I by contracting C. Then I is a
YES instance if and only if I ′ is a YES instance.

Lemma 4. Let I ′ = ({Ci : 1 ≤ i ≤ n′}, k) be the reduced instance of p-RHMC3

after exhaustively applying the reduction rule. If I ′ is a YES instance, then n′ ≤
22k.

Proof. Since I ′ is a YES instance, there exists a set of clusters S(I ′) with
|S(I ′)| ≤ k such that after removing S(I ′), all the clusters left are free. Let L
be these free clusters left and C ∈ S(I ′) be a cluster. Consider the set L ∪ {C},
some free cluster may become non-free. But this number is bounded by some
constant because C can only touch a constant number of clusters which are of
good pattern, and since these clusters are good before adding C, they can only



134 C. Zhang, H. Jiang, and B. Zhu

have a constant number of neighbors. After an exhaustive seach for all the pat-
terns, we conclude that adding C to L can change at most 21 clusters from free
to non-free ones, the extreme case is shown in Figure 5. Therefore, the total
number of clusters in I ′ does not exceed 22k. �

Fig. 5. The shaded cluster affects 21 clusters

Theorem 3. p-RHMC3 has a kernel of size 22k.

Remark 1. The 22k kernel directly implies a 22-approximation algorithm for
RHMC3, i.e. choose all the clusters in the kernel as solution.

Combining Theorem 2 and Theorem 3, we have

Corollary 1. p-RHMC3 can be solved in time O(k · 6k + n).

4 An FPT Algorithm for p-RHMC2

In [8], a 5k weak kernel (loosely speaking, parameterized search space) is con-
structed for p-RHMC2. That immediately implies an FPT algorithm which runs
in O∗(

(
5k
k

)
) = O∗(23.61k) time. Here we present an FPT algorithm which runs

in O∗(2.45k) time, using the well-known bounded search tree algorithm.
First notice that RHMC2 problem is equivalent to Minimum co-Path Set

problem.
Given a simple undirected graph G, a co-path set is a set S of edges in G

whose removal leaves a graph in which every connected component is a path.
And the problem is to decide whether there exists a co-path set of size k.

For an instance of RHMC2, we let V (G) be the set of markers Σ, and {u, v} ∈
E(G) if there is some cluster Ci = {u, v}. It is then easy to verify these two
problems are equivalent.

Hence in the following, we describe the algorithm in term of Minimum co-Path
Set problem.

We start with a simple lemma.



Radiation Hybrid Map Construction Problem Parameterized 135

Lemma 5. If there are two edges e1 = (u, v) and e2 = (v, w) in G, where
d(u) = d(w) = 3 and d(v) = 2, then there exists an optimal solution for RHMC2

which does not delete e1 and e2.

Proof. Let N(u) = {v, u′, u′′} and N(w) = {v, w′, w′′}. It suffices to prove that
if e1 or e2 (or both) is deleted in some optimal solution S, then we can replace
e1 with one edge from (u, u′) and (u, u′′) or replace e2 with one of (w,w′) and
(w,w′′) (or both) to obtain another optimal solution which is at least as good as
S. Suppose that e1 is deleted in some optimal solution S for RHMC2, then after
all the edges in S are deleted, v is the end of some path P . We consider three
cases.

(1) If u′ ∈ P and u′′ /∈ P (or vice versa), which means (u, u′) (resp. (u, u′′))
is also deleted for S, then replace e1 with this deleted edge (u, u′) (resp.
(u, u′′)). Clearly, P is replaced by a new path of the same length.

(2) If u′ ∈ P and u′′ ∈ P , then we can assume that u ∈ P (otherwise, we can add
e1 back to P to obtain a longer path whose endpoint is u). Consequently,
the path is either in the form 〈v, · · · , u′, u, u′′, · · · 〉 or 〈v, · · · , u′′, u, u′, · · · , 〉.
We can replace e1 with (u, u′) in the former case or replace e1 with (u, u′′)
in the latter case, to obtain a new path with the same size as P .

(3) If u′ /∈ P and u′′ /∈ P , then we can replace e1 with either (u, u′) or (u, u′′)
to have a new solution of the same size as that of S. The argument for e2 is
similar hence omitted. �

Corollary 2. If there is a path P = 〈u, v1, · · · , vk, w〉 in G with d(u) = d(w) =
3, and d(vi) = 2 for all 1 ≤ i ≤ k, then there is an optimal solution for RHMC2

in which all the edges along the path P are reserved (i.e., not deleted).

Lemma 6. Given a vertex v, if N(v) = {v1, v2, v3} and d(v1) = d(v2) = d(v3) =
2, then there exists an optimal solution for RHMC2 which deletes either (v, v1)
or (v, v2).

Proof. Assume to the contrary that the optimal solution does not delete (v, v1)
and (v, v2), instead it deletes (v, v3). Then, due to the fact that d(v3) = 2 before
the deletion, v3 is the endpoint of some path P . We have two cases. (1) If v1 ∈ P
and v2 ∈ P , then the path is either in the form 〈v3, · · · , v1, v, v2, · · · , 〉 or in the
form 〈v3, · · · , v2, v, v1, · · · , 〉, and we can replace (v, v3) with (v, v1) in the former
case or replace (v, v3) with (v, v2) in the latter case. (2) If v1 /∈ P and v2 /∈ P ,
we can replace (v, v3) with either (v, v1) or (v, v2). In both cases we obtain an
alternative optimal solution for RHMC2. �



136 C. Zhang, H. Jiang, and B. Zhu

Algorithm Bounded Search Co-path Set
Input: Graph G, integer k
Output: A Co-path set S of size k
1 If some component of G contains at most 10 vertices, then use brute-force to
solve that component optimally.
2 While there exists a vertex v such that d = d(v) ≥ 4, choose all but two of
its incident edges and put them in S.
3 While there exists a vertex v satisfying Lemma 6, choose one of its two
incident edges and put it in S following Lemma 6.
4 While there exists vertices u, v, w satisfying Lemma 5, reserve edges (u, v) and
(v, w) following Lemma 5.
5 For a path P = 〈u, v, w〉, where N(v) = {u, w, a}, N(u) = {v, b, c},
and N(w) = {v, g, h}

5.1 add (u, v) and (w, g) to S;
5.2 or add (u, v) and (w, h) to S;
5.3 or add (u, b) and (v, w) to S;
5.4 or add (u, b) and (v, a) to S;
5.5 or add (u, c) and (v, w) to S;
5.6 or add (u, c) and (v, a) to S.

6 Repeat Steps 3,4,5 until every vertex has degree less than 3.
7 Choose an arbitrary edge from each cycle and put it in S.
8 Return S.

Theorem 4. Algorithm Bounded Search Co-path Set computes a co-path set in
O∗(6k/2) ≈ O∗(2.45k) time.

Proof. Step 1 uses constant time.
Step 2 has a recurrence relation

f(k) =

(
d

d− 2

)
f(k − (d− 2)), d ≥ 4.

Step 3 has a recurrence relation

f(k) = 2f(k − 1).

Step 4 has a recurrence relation

f(k) = 4f(k − 2).

Step 5 branches on whether (u, v) is deleted or not. If (u, v) is deleted, then
(v, w) is reserved and either (w, g) or (w, h) is also deleted; if (u, v) is reserved
then at least one of (u, b) and (u, c), as well as at least one of (v, w) and (v, a)
are deleted. So step 5 has a recurrence relation

f(k) = 6f(k − 2).

f(k) achieves its maximum value when d = 4 or f(k) = 6f(k − 2), so we have
f(k) ≤ O∗((6)k/2) ≈ O∗(2.45k). �



Radiation Hybrid Map Construction Problem Parameterized 137

5 Conclusing Remarks

In this paper, we studied the Radiation Hybrid Map Construction problem using
parameterized algorithms. For p-RHMC3, where each gene cluster contains at
most three genes, we showed an FPT algorithm based on a linear kernel of
it. For p-RHMC2, we presented a bounded search tree algorithm which runs in
O∗(2.45k) time, greatly improving the previous bound using weak kernels. An
important open question is whether one can extend these methods to handle
p-RHMCd, where each gene cluster contains at most d genes. Furthermore, does
the generalized version p-RHMC remain FPT?

Acknowledgments. This research is partially supported by NSF of China un-
der project 60928006 and 60970011, and by the Open Fund of Top Key Discipline
of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang
Normal University.

References

1. Chen, Z.-Z., Lin, G., Wang, L.: An approximation algorithm for the minimum
co-path set problem. Algorithmica 60(4), 969–986 (2011)

2. Cheng, Y., Cai, Z., Goebel, R., Lin, G., Zhu, B.: The radiation hybrid map con-
struction problem: recognition, hardness, and approximation algorithms (2008)
(unpublished manuscript)

3. De Givry, S., Bouchez, M., Chabrier, P., Milan, D., Schiex, T.: Carh ta Gene: multi-
population integrated genetic and radiation hybrid mapping. Bioinformatics 21(8),
1703 (2005)

4. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York
(1999)

5. Cox, D.R., Burmeister, M., Price, E.R., Kim, S., Myers, R.M.: Radiation hybrid
mapping: a somatic cell genetic method for constructing high resolution maps of
mammalian chromosomes. Science 250, 245–250 (1990)

6. Faraut, T., De Givry, S., Chabrier, P., Derrien, T., Galibert, F., Hitte, C., Schiex,
T.: A comparative genome approach to marker ordering. Bioinformatics 23(2), e50
(2007)

7. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, New York (2006)
8. Jiang, H., Zhang, C., Zhu, B.: Weak kernels. Electronic Colloquium on Computa-

tional Complexity, ECCC Report TR10-005 (October 2010)
9. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press,

USA (2006)
10. Richard, C.W., et al.: A radiation hybrid map of the proximal long arm of human

chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and
bcl-1 disease loci. American Journal of Human Genetics 49(6), 1189 (1991)

11. Slonim, D., Kruglyak, L., Stein, L., Lander, E.: Building human genome maps with
radiation hybrids. Journal of Computational Biology 4(4), 487–504 (1997)



On the Central Path Problem�

Yongding Zhu and Jinhui Xu

Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, NY 14260, USA
{yzhu3,jinhui}@buffalo.edu

Abstract. In this paper we consider the following Central Path Problem (CPP):
Given a set of m arbitrary (i.e., non-simple) polygonal curves Q = {P1, P2, . . . , Pm}
in 2D space, find a curve P, called central path, that best represents all curves in
Q. In order for P to best represent Q, P is required to minimize the maximum dis-
tance (measured by the directed Hausdorff distance) to all curves in Q and is the
locus of the center of minimal spanning disk of Q. For the CPP problem, a direct
approach is to first construct the farthest-path Voronoi diagram FPVD(Q) of Q
and then derive the central path from it, which could be rather costly. In this pa-
per, we present a novel approach which computes the central path in an “output-
sensitive” fashion. Our approach sweeps a minimal spanning disk through Q and
computes only a partial structure of the FPVD(Q) directly related to P. The run-
ning time of our approach is thus O((H + mk + n + s) log m log2 n) and the worst
case running time is O(n22α(n) log n), where n is the size of Q, s is the total number
of self-intersecting points of each individual curve in Q, k is the size of the visited
portion of FPVD(Q) by the central path algorithm, and H is the number of inter-
sections between the visited portion of FPVD(Q) and VD(Pi)(i = 1, 2, . . . ,m).

1 Introduction

In this paper, we consider the following Central Path Problem (CPP): Given a set of
2D polygonal curves (also called paths) Q = {P1, P2, . . . , Pm} with a total complexity
of n, find a curve P (called central path) which minimizes the maximum distance to Q
and best represents Q, where the distance from P to any curve Pi ∈ Q is measured by
the directed Hausdorff distance (DHD) δH(P, Pi). To ensure that the computed central
path P best represents Q, we require that P be formed by centers of minimal spanning
disks (MSD) of Q. In CPP, the set of input curves may be non-simple and could entwine
each other, making the central path computation quite expensive. In the worst case, the
central path has size Ω(n2).

The CPP studied in this paper is motivated by applications in several areas, such as
segmentation, medical imaging, data mining and pattern recognition. In segmentation,
the accurate boundary of an object in noisy images often needs to first generate a set
of candidate segmentations using algorithms following different optimization criteria
and then derive the most likely solution from them, which can be formulated as a CPP.

� This research was partially supported by NSF through a CAREER award CCF-0546509 and
grants IIS-0713489 and IIS-1115220.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 138–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On the Central Path Problem 139

In data mining or pattern recognition, CPP can be used to model the problem of find-
ing moving patterns of vehicles or other objects in data collected from sensor or other
networks. In such applications, the trajectory of each moving object can be viewed as
an arbitrary polygonal curve and the common pattern of a set of moving objects can be
captured by the median (such as central path) of the set of trajectories [4,8].

In this paper, we use directed Hausdorff distance (DHD) and minimal spanning disks
(MSD) to compute P. DHD ensures that the computed path P has the smallest distance
to Q, and MSD allows P to preserve the “shape” of Q. The rationale behind using
the direct Hausdorff distance from P to Q, instead of undirected Hausdorff distance, is
that the directed Hausdorff distance from Q to P could lead to a 0-distance path which
is meaningless to CPP as shown in Figure 2. More importantly, undirected Hausdorff
distance could make the central path lose the critical “center” property. In [4], Buchin
et al. suggested some criteria for median trajectory. For example, they require that the
median trajectory should be part of the input and be conceptually in the “middle” of
the input trajectories defined by the level of the arrangement. Similar to their criteria,
we also require that our central path be conceptually at the “center” of input curves.
Roughly speaking, the central path should be within the region bounded by the upper
and lower envelopes of the input curves. Furthermore, our central path preserves the
shapes of input curves (e.g., P1 and P2 in Figure 3) and is capable of reducing possible
spike noises associated with the input curves in applications like segmentation. It also
worth mentioning that Fréchet distance has exactly the same weakness as undirected
Hausdorff distance.

P1

P
P2

a

b1b2

c

Fig. 1. Central paths of {P1, P2}, ab1c: using
DHD and MSD, and ab2c: using DHD only

P1

P2

P3

P

Fig. 2. 0-distance central path for CCP under
δH(Q, P)

P1 P2

P

P ′

Fig. 3. The central paths of P1 and P2 con-
structed by using undirected Hausdorff dis-
tance (green path) and our definition (red one)

P1

P2

P3

1

2

3

1 2

3

Fig. 4. FPVD of P1, P2 and P3. The plane is
subdivided into farthest-path Voronoi cell of Pi

(marked by i, i = 1, 2, 3)

Although techniques exist for computing median of trajectories [4], their objectives
are quite different (e.g., the median trajectory is part of the input trajectories). To our



140 Y. Zhu and J. Xu

best knowledge, no existing algorithm directly solves the CPP problem. One possible
solution is to first construct the farthest-path Voronoi diagram FPVD(Q) [9,10] of Q
(see Figure 4), and then find the central path P from it (since P is a substructure of
FPVD(Q)). Thus the time complexity of such an approach is at least as large as that
of constructing FPVD(Q) (whose complexity can be easily quadratic). Available effi-
cient algorithms for farthest Voronoi diagram are only for points, disjoint segments, and
disjoint polygons [2,3,6,5,10]. For arbitrary non-disjoint polygonal curves, no efficient
and output sensitive algorithm is previously known, and existing solutions have a com-
plexity which is at least as large as the number of intersections of the set of curves (i.e.,
Ω(n2) in the worst case), and could be much higher than the actual size of the FPVD(Q).
(Note that the size of FPVD(Q) could be o(n) even if the number of intersections of
Q is quadratic.) Another possible solution to the CPP problem is to first determine all
critical minimal spanning disks of Q and then connect (part of) them to form the central
path. However, as shown in article [1], determining the minimum spanning disks takes
O(m3n log n) time, which is much higher than the actual complexity of the central path.

To obtain a more efficient solution, in this paper we present a novel algorithm for the
CPP problem. Our algorithm is based on the observation that the central path P does
not need to have the whole FPVD(Q). Thus it constructs only the portion of FPVD(Q)
directly related to the central path. Consequently, it significantly improves the afore-
mentioned possible solutions. More specifically, it first sweeps a minimal spanning
disk through the set of curves to find a backbone path of the central path and then
search around the backbone to obtain the central path. Our algorithm finds the central
path in O((H + mk + n + s) log m log2 n) time which is bounded by O(n22α(n) log n) in
the worst case, where s is the total number of self-intersections (e.g. intersections of
the same curve) in Q, k is the size of the portion of FPVD(Q) the algorithm visited,
and H is the number of intersections between the visited portion of FPVD(Q) and the
Voronoi diagram of each Pi. Our result is based on a number of interesting geometric
observations and can be easily implemented for practical purpose. Furthermore, our al-
gorithm can be naturally extended to find FPVD or colored farthest Voronoi diagrams
in an output-sensitive fashion.

2 Preliminaries

Let Q = {P1, P2, · · · , Pm} be the set of input polygonal curves. Each curve in Q is
viewed as a set of vertices and open segments, both called sites. For the simplicity of our
description, we make the following assumptions on Q: (1) General position assumption:
Sites in Q are in general positions ( i.e., no 4 sites are co-circular). In particular, no
3 segments intersect at one common point. (2) Non-overlapping assumption: No two
segments partially or fully overlap, and no vertex of one input curve lies on another
curve. (3) Common starting and ending assumption: All curves start at the same vertical
starting line, end at the same vertical ending line, and lie completely between them.

The assumptions are reasonable and can be easily satisfied. For the first two assump-
tions, we can slightly perturb the vertices of the curves. For the third assumption, we
extend each violating curve in the way as shown in Figure 5.



On the Central Path Problem 141

Starting
line

Ending
line

Fig. 5. Extend the starting point of a curve
to the common starting line by using in-
finitesimally close edges

P1

P2

P3

P4

P

Starting Ending
line line

s
t

New
Starting
line

New
Ending
line

Fig. 6. Dummy extension of Q; the red line is the
central path; the dotted lines segments are parallel

A (closed) disk D is called a spanning disk of Q if D intersects every curve in Q. D is
a minimal spanning disk (MSD) if any disk shrinking from D (a disk D′ is shrunk from
D if D′ ⊂ D) is no longer a spanning disk. D is a critical minimal spanning disk of Q if
there are three curves in Q intersecting D only at its boundary circle. The center of D is
called a center point and the three curves are called touching curves of D. Clearly each
non-critical MSD D has two touching curves and each critical MSD has three touching
curves. No MSD touches more than three curves due to the above assumptions.

In this paper, we use two types of Voronoi diagrams, the Voronoi diagram VD(Pi)
of each input curve Pi and the farthest-path Voronoi diagram FPVD(Q) of Q. Each
VD(Pi) is defined as the Voronoi diagram of the set of sites of Pi. VD(Pi) has a size
of O(ni + si) and can be computed in O((ni + si) log (ni + si)) time [7], where ni is the
complexity of Pi and si is the number of self-intersections in Pi.

FPVD(Q) is a partition of the 2D space into cells such that each cell is the union
of points which have the farthest distance to one input curve than to any other curve
in Q (see Figure 4). Note that the farthest Voronoi region of an input curve could be
empty or consist of a number of disjoint cells. Each edge in FPVD(Q) is a line segment
or parabolic curve. The size of FPVD(Q) varies from O(1) to Ω(n2). As mentioned
earlier, the central path can be found by solving a shortest path problem on FPVD(Q)
as shown in the following lemma.
Lemma 1. CCP can be solved in O(n22α(n) log n) time, where n is the size of Q.

3 Algorithms for the Central Path Problem

In this section, we present our algorithms for computing the central path P.

Lemma 2. The central path P lies on the farthest-path Voronoi diagram FPVD(Q).

From the above lemma, we know that one way to compute the central path P is to con-
struct FPVD(Q) first and then find P from it by some shortest path algorithm. Since
constructing FPVD(Q) takes at least quadratic time in the worst case, the time com-
plexity for computing P is bottlenecked by the computation of FPVD(Q). To obtain a
better solution, we have to avoid explicitly constructing the whole FPVD(Q). For this
purpose, we first perform a dummy extension to all input curves as shown in Figure 6.
More specifically, we extend the starting and ending vertices of each input curve hor-
izontally by a large enough distance (e.g., d

2 , where d is the vertical distance between



142 Y. Zhu and J. Xu

the top and bottom curves along the starting or ending line) so that the disks centered
at the points (denoted as s and t respectively) on the vertical starting and ending lines
and tangent to the top and bottom curves are minimal spanning disks of Q. With the
dummy extension, our main idea is thus, starting from s, to construct on the fly a par-
tial structure of FPVD(Q) which is barely enough for determining P. More specifically,
our approach sweeps a minimal spanning disk D from s to t, and determines the moving
direction and radius of D using local information of Q and FPVD(Q).

To implement this idea is actually quite challenging. This is because the local struc-
ture of FPVD(Q) close to D could be rather complicated and its construction depends
on curves far away from D. This seemingly suggests that we have to maintain a substan-
tial amount of information of FPVD(Q) and Q in order to sweep the minimal spanning
disk D. To overcome this difficulty, our main idea is to make use of the continuity prop-
erty of each input curve. For this reason, we view each input curve as a directed graph.
Let VPi = {v1, v2, . . . , vni+1} and EPi = {−→e1,

−→e2, . . . ,
−→eni} be the sets of vertices and directed

edges of Pi, where Pi ∈ Q, i = 1, 2, . . . ,m. Each edge is oriented such that Pi starts at
the starting line and ends at the ending line.

Since the input curves may not be simple, it is hard to maintain the sweeping disk in
a consistent manner. To resolve this issue, we first preprocess them.

Lemma 3. Q can be converted into a set of simple curves in O(s+n log n) time without
changing the structures of VD(Pi), 1 ≤ i ≤ m, and FPVD(Q), where s =

∑m
i=1 si and si

is the number of self-intersecting points of Pi.

With the modified input curves, we now consider how to sweep D. First we notice that
at each center point, D faces two possible directions while sweeping along the bisector
of two touching curves, as D touches 3 curves at such a location. To determine the
correct moving direction, we define a direction for each point of the bisector.

Definition 1. Let ab be an edge (i.e., a segment or a parabolic curve) in a bisector of
two sites in Q with D sweeping from a to b. Let f (t), t ∈ [0, 1], be a parametrization of
ab such that f (0) = a and f (1) = b. Then the forward direction of any interior point
p of ab (with respect to D) is f ′(tp), where f (tp) = p. If p is the left endpoint a, the
forward direction is the right derivative of the parametrization function, i.e., f ′(x+).

From the above definition, we know that any point other than the center points of
FPVD(Q) can have at most one forward direction depending on how D sweeps. At a
center point, we have two candidate forward directions. If D sweeps toward both direc-
tions, the sweeping will lead to a full construction of FPVD(Q). However, for the CPP,
this could be too costly. Therefore it is crucial to determine which forward direction to
sweep when D reaches a center point.

With the orientations of input curves and bisectors, we now consider how to sweep
an MSD D starting from s. From the definition of s, it is easy to see that s is an interior
point of a bisector, say sa, for the the top and bottom sites of Q at the starting line, and
has a unique forward direction (i.e., toward the ending line). Thus, D can be moved
along sa until a center point is encountered.

To determine the next center point, our idea is to observe the change of the touching
curves of the sweeping disk D. The next definition and lemma give some property of
any new touching curve.



On the Central Path Problem 143

Definition 2. Let D be the sweeping disk touching two input curves P1 and P2 at p1 and
p2 respectively. p1 and p2 divide the bounding circle of D into two portions. The portion
intersected by the ray (or half line) originated from the center of D in the forward
direction is the front portion and the other is rear portion.

Lemma 4. While moving the sweeping disk D in a given forward direction, D touches
a new input curve only at its rear portion.

As mentioned earlier, the sweeping disk D keeps moving along the bisector of its two
touching curves until it reaches the next center point. Each point on the bisector is then
associated with a forward direction by Definition 2. A bisector oriented in such a way is
called directed bisector. At a center point, D picks only one of the two directed bisectors
to continue the sweeping. Our algorithm chooses the one such that the orientations of
the directed bisector and the two touching sites are coherent. As we will show later in
Lemma 9, the choice uniquely exists.

Definition 3. Let ab be an edge of a directed bisector of two sites S 1 and S 2 in Q, c � b
be a point in ab, and ηc be the forward direction of c. ηc is coherent with S 1 (similarly
defined for S 2), if one of the following conditions is satisfied:

1. S 1 is a segment; the angle between ηc and the associated direction of S 1 is acute;
2. S 1 is a vertex, say p, incident to segments p1 p and pp2, and c′ is any point in cb.

The angle from pc to pp2 is larger than that from pc′ to pp2.

Definition 4. A directed bisector ab of S 1 and S 2 is coherent with S 1 if for any point of
ab (other than b), its forward direction is coherent with S 1. If ab is coherent with both
S 1 and S 2, ab is a coherent bisector.

Intuitively, the coherence of a bisector and one of its bisecting sites means that they
point to the “same” direction. Note that if a directed bisector is coherent with neither
sites that it bisects, then the bisector associated with the opposite forward direction is
coherent with both sites that it bisects.

Lemma 5. Let L1 be a closed simple curve on a 2D plane P and L2 be a continuous
curve on P with endpoints a and b, which touches, but not intersects, L1 at two points
α and β. Let R be the closed region bounded by L1 and L2 and with α and β on its
boundary. If both a and b are located outside of R and there exists a point γ ∈ L2 in the
interior of R, then L2 is not simple.

Lemma 6. During the sweeping process, a coherent bisector b keeps its coherence
until the center of the sweeping disk D reaches the next center point.

Definition 5. Let b and b′ be two directed bisectors incident to a center point O. b
and b′ are consecutive if the forward direction of b points toward O and the forward
direction of b′ points away from O, or vice versa.

Lemma 7. Let b and b′ be two consecutive bisectors incident to a center point O with
b being the bisector of curves Pi and P j and b′ being the bisector of Pi and Pk. Then if
b is coherent with Pi, b′ is coherent with Pi.



144 Y. Zhu and J. Xu

Let S i and S j be two sites of an input curve with S i appearing before S j in the curve
order. We say that D retrospectively visits S i if it touches S j before S i.

Lemma 8. Let B = {b1, b2, . . . , bm} be a sequence of consecutive and coherent bi-
sectors (i.e., bi and bi+1 are consecutive bisectors for i = 1, 2, . . . ,m − 1), where the
MSD D centered at any point on any bisector of B touches an input curve Pr. Let
S = {S 1, S 2, . . . , S l} be the set of sites of Pr touched by their corresponding bisectors
in B. Then the sites can only be retrospectively visited at most once by B.

Pr

Si

Sj

B

Sk

Fig. 7. Illustration of Lemma 8

P1

P2

P3

bisectors
loopA B

Fig. 8. A closed cell in FPVD(Q)

The following lemma shows that if D is swept along a coherent bisector and reaches a
center point, then we can find one and only one coherent and consecutive bisector for D
to sweep away from the center point. Thus if D always sweeps along coherent bisectors,
it will never be stalled unless it encounters t. This means that the sweeping disk will
generate a simple path from s to t such that all constituent bisectors are coherent.

Lemma 9. At any center point O, if there exists an incident bisector which can be
oriented to be coherent, then exactly one of the other incident bisectors can be oriented
to be coherent. Furthermore, the two coherent bisectors are consecutive.

The above lemmas give properties of coherent bisectors. Next, we show that coherent
bisectors can be used to identify a backbone path for the central path.

Definition 6. A backbone is a path on FPVD(Q) starting from the s and ending at t
with each of its segments being a coherent bisector.

Lemma 10. For any input set of simple polygonal curves Q, there exists a unique and
simple backbone.

Below we discuss our idea for finding the next center point on the backbone.
Let v be the current center point on the backbone. To find the next center point,

we sweep a minimal spanning disk D along the unvisited coherent bisector b(v) (by
Lemma 9) until a third input curve Pr becomes a touching curve. Let Pi and P j be the
two touching curves bisected by b(v). By Lemma 6, we know that the coherence of b(v)
will be preserved until the center O of D reaches the center point u defined by the three
touching curves Pi, P j and Pr. Clearly, the main difficulty is how to efficiently find Pr.
By Lemma 4, we know that Pr touches D at its rear portion.

To facilitate the search of Pr, we maintain a status array stA for the sweeping disk D.
In this array, we store the current center point v, the next coherent bisector b(v), and the
closest site siμi , i = 1, 2, . . . ,m, from the center O of D to the input curve Pi. The set of



On the Central Path Problem 145

siμi is maintained for determining the third touching curve Pr. Clearly, when D moves
along b(v), the set of closest sites changes, and thus needs to be updated.

To keep track of siμi , we construct Voronoi diagram VD(Pi) for each input curve Pi,
and for each cell C of VD(Pi), build a binary search tree T (C) for all vertices of C
according to their circular orders along the boundary of C. With T (C), we can search
the intersection of b(v) and the boundary of C in O(log |C|) time, if C is the Voronoi cell
of siμi [10]. This means that when sweeping D along b(v), we can efficiently determine
when and where O leaves C and enters into a new Voronoi cell C′, and accordingly
replace siμi with the site associated with C′ in stA.

To determine the new center point u, we maintain a priority queue priQ for candi-
date vertices, as well as the intersections of b(v) and the boundary of the Voronoi cells
VDC(slμl ) (l = 1, 2, . . . ,m) as follows. For each site slμl (1 ≤ l ≤ m, l � i, j) in the
status array stA, we compute the center o of the circle that touches slμl , siμi and s jμ j (in
case that there are 2 such circles, one at each side of slμl , the one that does not contain
v is considered). There are 3 cases to consider. (1) If the center o is on b(v) and within
VDC(slμl ), add it to priQ according to its distance to v. (2) If the center o is on b(v) but
located outside of VDC(slμl ), add the intersection point between b(v) and VDC(slμl ) to
priQ according to its distance to v. Note that if there are 2 intersection points due to the
existence of parabolic arc in either b(v) or some VDC(slμl ) edge, we always use the first
one along b(v) from v. (3)If the center o is not on b(v), add∞ to priQ.

With the above data structures, we can determine u by keeping extracting event
points from priQ, and process them accordingly. Depending on the type of extracted
event, we have 3 cases to consider.

(a) If the event is a center point, say c. Assume that the new touching site is slμl , l � i, j.
We first add the bisector portion vc ⊂ b(v) as part of the backbone, and replace v
by c (i.e., c becomes the new current center point). Then compute the bisectors
between slμl and siμi and between slμl and s jμ j (both starting from c), replace b(v)
by the new coherent bisector (the existence of a new coherent bisector is ensured
by Lemma 9), and update stA accordingly. Finally, clear priQ and recompute priQ
according to the new stA.

(b) If the event is an intersection point of b(v) and VDC(slμl ) for some l, replace slμl

by the site associated with the neighboring Voronoi cell, compute the new center of
the circle that touches slμ′l , siμi and s jμ j , and update priQ.

(c) If the event is ∞, find the third touching site of the sweeping disk D when it is
centered at the other endpoint v′ of b(v). The third site must belong to either Pi or
P j. In this case, we replace either siμi or s jμ j by the new touching site, compute the
new bisector b(v′), and update stA and priQ accordingly.

Backbone Algorithm

1. Compute the Voronoi diagram VD(Pi) for each input curve Pi and build binary
search tree T (C) for each Voronoi cell C;

2. Construct an empty priority queue priQ and an empty array stA;
3. Let v be the current center point (initially, v← s); compute stA and priQ;
4. Extract an event from priQ and update stA accordingly;
5. Repeat step 4 until D reaches t.



146 Y. Zhu and J. Xu

Lemma 11. The total number of intersections between the backbone B and each Voro-
noi diagram VD(Pi)(i = 1, 2, . . . ,m), denoted by H, is at most O((n + s)k), where n is
the total complexity of Q, s is the total number of self-intersecting points in Q, and k is
the complexity of backbone B.

Theorem 1. The above algorithm correctly computes the backbone in O((H+mk+n+
s) log m log n) time, where k is the size of backbone B, m is the number of input curves
in Q, H is the total number intersection points between the backbone path and each
Voronoi Diagram, n is the total complexity of Q and s is the number of self-intersecting
points in Q.

With the backbone B, one might tempt to think that B is the central path. Unfortunately,
this is not always true. When all cells of FPVD(Q) are unbounded, B is indeed the
central path. However, when FPVD(Q) contains some closed cells, the backbone may
not always be the central path. For example, in Figure 8, the backbone passes the two
points A and B through the upper curve of the loop, whereas the central path uses the
lower curve. In the presence of closed cells in FPVD(Q), the central path P may not
faithfully follow the backbone. This means that P may go through some incoherent
bisectors in E[FPVD(Q)]. Since each center point is adjacent to at least one incoherent
bisector, this seemingly suggests that we may need to examine an exponential number
of paths. To efficiently determine the central path, our idea is to augment Q without
changing FPVD(Q) so that the central path follows the coherent bisectors.

Definition 7. Given an input path Pi (i = 1, 2, . . . ,m), an aperture is a point p on
an edge of VD(Pi) not bisecting two adjacent edges of Pi, such that p has the local
minimum distance to Pi (see Figure 9). The distance from p to Pi is the size of the
aperture. Let p1 and p2 be the two points in Pi closest to p (there are exactly two such
points to be shown in Lemma 12). Then the line segment connecting p1 and p2 is called
the bridge. All bridges and edges in Pi form a set of polygons called pockets. The radius
of the maximum inscribed circle of a pocket is called the radius of the pocket (Fig. 9).

Lemma 12. Any aperture p is on an open edge of VD(Pi). The total number of aper-
tures in Q is O(n + s).

Lemma 13. Let d1 be the smallest size of apertures in Q, and d2 be the minimum di-
rected Hausdorff distance from backbone B to input curves in Q. If d1 > d2, then B is
an optimal central path.

Let MS (Pi, d) be the Minkowski sum of Pi and a disk centered at the origin and with
radius d.

Corollary 1. Let d be the minimum directed Hausdorff distance from backbone B to
input curves in Q. If there are no holes in ∩m

i=1MS (Pi, d) and ∩m
i=1 MS (Pi, d) contains s

and t, then B is an optimal central path.

Lemma 14. Let d > 0 and r > 0 be the maximum aperture size and minimum pocket
radius in Q respectively, and d1 and d2 be the minimum directed Hausdorff distances
from backbone B and central path to input curves in Q respectively. Then d1 ≤ d, if and
only if d2 ≤ d; d1 ≥ r, if and only if d2 ≥ r.



On the Central Path Problem 147

Lemma 13 and Corollary 1 imply that holes in ∩m
i=1MS (Pi, d) could cause the central

path and backbone behave differently, where d is the minimum directed Hausdorff dis-
tance from backbone B to Q. Although detecting holes in ∩m

i=1 MS (Pi, d) could be quite
costly, discovering holes in each MS (Pi, d) is relatively easy, since it is closely related
to the sizes of apertures in Pi. A hole in MS (Pi, d) indicates that the central path may
have to go through the aperture or its surroundings instead of following the forward
bisectors. To make use of this observation, our idea for computing central path is to
modify Q so that the backbone will ultimately become the central path.

Definition 8. Given an input curve Pi, another curve P̃i starting from the common
starting line and ending at the ending line is a twin curve, if it satisfies the following
conditions:
1. Pi and P̃ have the same complexity;
2. given an infinitesimally small number ε, for any point p1 on Pi, there exist a point

p2 on P̃ such that the distance between p1 and p2 is less than ε, and vice versa.
Furthermore, P̃i is the left twin curve, denoted by Pl

i, if it is on the left side of Pi, and
the right twin curve, denoted by Pr

i , if it is on the right side of Pi.

Pi

aperture
bridge

1

2

3

4

r

Fig. 9. Pi and its apertures (red dots), bridges
(dotted segments), and 4 pockets. r is the ra-
dius of pocket 1

P

P r
i

d

pt

Fig. 10. A simple curve P coherent with some
portion of a pocket pt of Pr

i but not coherent
with other portions

For any Pi ∈ Q, we can construct a pair of twin curves Pl
i and pr

i in O(ni+ si) time. If we
replace Pi by Pl

i and pr
i in Q for all i = 1, 2, . . . ,m, the size of Q is still O(n + s). After

the replacement, the MSD D originally touching Pi on its left-hand (or right-hand) side
now can be considered touching Pr

i (or Pl
i). This means that no MSD touches Pl

i on
its left-hand side and touches Pr

i on its right-hand side. That also indicates that each
pocket, aperture, or bridge is only associated with one of the two twin paths, not both.
Since Pl

i (or Pr
i ) and Pi are infinitesimally close to each other, the replacement does not

change the structure of FPVD(Q). Let Q′ be the new set of input curves. It is sufficient
for us to find the central path in Q′.

Definition 9. A virtual edge is an open edge added to a curve Pi that is not considered
as part of it while computing bisectors.

Intuitively, a virtual edge is added to ensure the continuity of an input curve during
pocket orientation reversal (described below). It is not a real edge of the curve. If a
virtual edge connects two vertices v1 and v2 on an input curve, the next site to be visited
after v1 is not the virtual edge but v2 during the computation of backbone or central



148 Y. Zhu and J. Xu

P r
i

1

2

3

bridge

virtual edge

v

Fig. 11. Orientation reversal for pocket 1 of Pr
i

P r
i

1

2

3

bridge

virtual edge

v

Fig. 12. Orientation reversal for pocket 2 of Pr
i

after reversing pocket 1

path. Since virtual edges have no effect on the Voronoi diagram of the corresponding
input curves, Backbone Algorithm still works for input curves with virtual edges.

With twin curves and virtual edges, we now modify the structure of pockets so that
holes in MS (Pi, d) can be easily detected. We first define an operation called Pocket
Orientation Reversal (POR). Given a pocket of Pr

i (Pl
i can be handled similarly) in Q′,

pick an arbitrary point v of Pr
i which is not an endpoint of any bridge. Let v′ and v′′

be two points on Pr
i infinitesimally close to v. Without loss of generality, we assume

v′, v, v′′ are ordered so that v′ → v and v → v′′ are forward directions of Pr
i . For each

vertex and endpoint of bridges (denoted by u) of the pocket, generate an infinitesimally
close point u′ on the internal angular bisector of the two adjacent edges or bridges of
u. For each bridge of the pocket, let v1 and v2 be the two endpoints and v′1 and v′2 be
the generated infinitesimally close points. If v′1v′2 is not a virtual edge of Pr

i , then add
v′1v′2 to Pr

i as a virtual edge (see Figure 11). Otherwise, delete it from Pr
i (see Figure

12). Consider a curve v1v2 · · · vη of the pocket that satisfies the following conditions:
(1) For vi (i � 1, η), vi � v′, v′′, and vi is not an endpoint of some bridge; (2) v1 is either
endpoint of a bridge or v′′; (3) If vη is either endpoint of a bridge or v′. Then we connect
v′1, v

′
2, . . . , v

′
η(if v1 = v′′, then v′1 = v1; similarly, if vη = v′, then v′η = vη) and add the

new curve v′1v′2 · · · v′η to Pr
i . Obviously, the two curves do not intersect but do share one

endpoint if v′ or v′′ is involved. Thus, after adding all possible new curves to Pr
i , Pr

i is
still simple.

To make use of the POR operation, we first consider the following decision problem
Backbone-POR. Given a number d > 0 and a set of twin curves Q′, determine whether
there exists a backbone B(d) with δH(B(d),Q′) ≤ d by allowing POR operations in
Q′. To find the backbone B(d) with POR, we sweep a MSD D from s to t as in Back-
bone Algorithm. In order to efficiently perform POR operations, we use a data structure
PKT for pocket. PKT maintains the following information for each pocket pt: 1) The
bounding edges and vertices; 2) a flag indicating whether the pocket has been touched
by the sweeping disk D; 3) the center point (called the first center point of pt) when D
first touches one site of the pocket; 4) a flag indicating whether the pocket orientation
has been reversed. We also maintain a stack called pocket stack for all the pockets that
have been touched by the MSD D and whose orientations have not been reversed. For
a newly touched (by D) pocket pt, we can first check its second field of PKT . If its sta-
tus is “not touched”, we can change its status and push it into the pocket stack. While
sweeping D, if the radius of D is larger than d and the pocket stack is not empty, then
pop a pocket off the pocket stack and reverse its orientation. Then continue sweeping D
from the first center point of the popped pocket. If, on the other hand, the pocket stack
is empty, then no such backbone is found. Below are the main steps of the algorithm.



On the Central Path Problem 149

BACKBONE-POR (d) Algorithm

1. Generate twin curves to form Q′;
2. Compute the Voronoi diagrams VD(Pl

i) and VD(Pr
i ) for i = 1, 2, . . . ,m;

3. Initialize B as the backbone, and PS as the pocket stack;
4. Sweep D from s to t as in Backbone Algorithm; let v be the current center point;
5. Let f be the latest site touched by D, and pt is the pocket associated with f (if there

exists a pocket); Mark pt as touched and push pt to PS ;
6. If the radius of D is larger than d and PS is not empty, pop a pocket pt from PS

and reverse its orientation. Move D to the first center point O of pt, discard the
computed portion of B between O and v and continue sweeping D;

7. If the radius of D is larger than d and PS is empty, there does not exist a backbone
B such that δH(B,Q′) ≤ d; Return FALSE;

8. If the radius of D is smaller than or equal to d, continue sweeping D to find the next
center point v and repeat step 5 − 7 until v = t;

9. Return TRUE and output B as the backbone.

Lemma 15. Let P be a simple path on FPVD(Q′) from s to t. If the maximum directed
Hausdorff distance from P to Q′ is no larger than d, then for any pocket pt in Q′ with
radius larger than d, P is coherent with either pt or the reversed pt.

Lemma 16. If there exists a path in FPVD(Q′) from s to t whose directed Hausdorff
distance to Q′ is at most d, then the backbone algorithm with POR (w.r.t. d) correctly
generates the backbone of Q′.

Lemma 17. The running time of BACKBONE-POR(Q,d) is O((H+mk+n+s) log m log n),
where k is the complexity of the portion of FPVD(Q′) the center of D traversed and H
is the number of intersections between the traversed portion of FPVD(Q′) and Voronoi
diagrams VD(Pi) (i = 1, 2, . . . , k).

Now we are ready to present our central path algorithm. The idea is to perform a binary
search on the radii of all pockets in Q′ to find a backbone with POR.

CENTRAL-PATH Algorithm

1. Preprocess Q to make every input curve simple;
2. Perform dummy extension on Q, and determine s and t;
3. Construct twin curves to form Q′;
4. Compute the Voronoi diagrams VD(Pl

i) and VD(Pr
i ) for i = 1, 2, . . . ,m;

5. Compute all pockets PT = {pt1, pt2, . . . , ptβ} of Q′ and sort them by radii;
6. Binary search on PT ; let pt be the current pocket and d be its radius; call

BACKBONE-POR Algorithm with Q and d as input and maintain a counter to
record the number of steps elapsed (initially it is 0); if the counter is larger than
Θ(n22α(n) log n), suspend the current algorithm and call the basic algorithm in
Lemma 1 instead; return the final backbone path B.



150 Y. Zhu and J. Xu

Theorem 2. The Central Path Algorithm returns an optimal central path in O((H +
mk + n + s) log m log2 n) time bounded by O(n22α(n) log n), where k is size of the visited
portion of FPVD(Q), H is the number of intersections between the visited portion of
FPVD(Q) and VD(Pi)(i = 1, 2, . . . , k), m is the number of input curves in Q, n is the
total complexity of Q and s is the number of self-intersecting points in Q.

Acknowledgment. The authors would like to thank Professor Joseph S.B. Mitchell,
State University of New York at Stony Brook, for helpful suggestions and discussions.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Sacristán, V.: The
farthest color voronoi diagram and related problems (extended abstract). In: 17th European
Workshop Computational Geometry, pp. 113–116 (2001)

2. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure.
ACM Computing Surveys 23(3), 345–405 (1991)

3. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment voronoi diagrams.
Information Processing Letters 100(6), 220–225 (2006)

4. Buchin, K., Buchin, M., Van Kreveld, M., Löffler, M., Silveira, R.I., Wenk, C., Wiratma,
L.: Median trajectories. In: Proceedings of the 18th Annual European Conference on Algo-
rithms: Part I, pp. 463–474 (2010)

5. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na,
H.S.: Farthest-polygon voronoi diagrams. In: Proceedings of the 15th Annual European Sym-
posium on Algorithms, pp. 407–418 (2007)

6. de Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications, 2nd edn. (2000)

7. Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the 2nd Annual
Symposium on Computational Geometry, pp. 313–322 (1986)

8. Har-Peled, S., Raichel, B.: The frechet distance revisited and extended. In: Proc. of the 27th
Annual ACM Symposium on Computational Geometry, SoCG 2011, pp. 448–457 (2011)

9. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of voronoi surfaces and its
applications. In: Proceedings of the 7th Annual Symposium on Computational Geometry, pp.
194–203 (1991)

10. Zhu, Y., Xu, J.: Improved Algorithms for Farthest Colored Voronoi Diagram of Segments. In:
Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 372–386. Springer,
Heidelberg (2011)



On the Generalized Multiway Cut

in Trees Problem

Hong Liu� and Peng Zhang ��

School of Computer Science and Technology,
Shandong University, Jinan 250101, China

{hong-liu,algzhang}@sdu.edu.cn

Abstract. Given a tree T = (V,E) with n vertices and a collection of
terminal sets D = {S1, S2, . . . , Sc}, where each Si is a subset of V and c is
a constant, the generalized Multiway Cut in trees problem (GMWC(T))
asks to find a minimum size edge subset E′ ⊆ E such that its removal
from the tree separates all terminals in Si from each other for each termi-
nal set Si. The GMWC(T) problem is a natural generalization of the clas-
sical Multiway Cut in trees problem, and has an implicit relation to the
Densest k-Subgraph problem. In this paper, we show that the GMWC(T)
problem is fixed-parameter tractable by giving an O(n2 + 2k) time al-
gorithm, where k is the size of an optimal solution, and the GMWC(T)
problem is polynomial time solvable when the problem is restricted in
paths. We also discuss some heuristics for the GMWC(T) problem.

1 Introduction

The cut problem is a classical and long-standing active topic in combinatorial
optimization. In this paper, we study a generalized version of the Multiway Cut
in trees problem. The related definitions are given below.

Given a graph G = (V,E) and a vertex subset S ⊆ V , we say that the removal
of an edge subsetE′ ⊆ E cuts S if every vertex pair coming from S is disconnected
when E′ is removed from G. In this case we say that E′ is a (multiway) cut for S.

The Multiway Cut Problem. Given a graph G = (V,E) and a terminal
set S ⊆ V , the Multiway Cut Problem asks to find a minimum size edge subset
E′ ⊆ E whose removal cuts S.

The Generalized Multiway Cut Problem (GMWC). Given a graph
G = (V,E) and a collection of terminal sets D = {S1, S2, . . . , Sc}, where c is a
constant, the problem asks to find a minimum size edge subset E′ ⊆ E whose
removal cuts all terminal sets in D.

� The author is supported by the Independent Innovation Foundation of Shandong
University (2012TS071).

�� Corresponding author. The author is supported by the National Natural Sci-
ence Foundation of China (60970003), China Postdoctoral Science Foundation
(200902562), the Special Foundation of Shandong Province Postdoctoral Innova-
tion Project (200901010), and the Independent Innovation Foundation of Shandong
University (2012TS072).

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 151–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



152 H. Liu and P. Zhang

The GMWC problem generalizes the Multiway Cut problem in the sense that
the number of terminal sets is generalized from one to a constant c. Note that
the terminal set number c, which is a constant, is not a part of the GMWC
instance. We denote by GMWC(T) the GMWC problem when the input graph
is a tree. Actually, we have one specified problem corresponding to each distinct
value of c. We thus denote these problems by 1-MWC(T), 2-MWC(T), and so
on. Note that 1-MWC(T) is just the traditional Multiway Cut in trees problem.

Throughout the paper, we use n to denote the number of vertices in an input
graph, OPT (I) (or OPT ) to denote the value of the optimal solution to an
instance I. We also use OPT to denote the optimal solution itself by abusing
notations slightly.

1.1 Motivation

Zhang [16,17] studied the generalized k-Multicut in trees problem (k-GMC(T)),
which is a generalization of the k-Multicut in trees problem [13].

The Multicut Problem. Given a graph G = (V,E) and a collection of
terminal pairs D = {(s1, t1), (s2, t2), · · · , (sq, tq)}, the Multicut problem asks to
find a minimum size edge subset E′ ⊆ E such that its removal cuts all terminal
pairs in D.

The k-Multicut Problem. Given a graph G = (V,E), a collection of ter-
minal pairs D = {(s1, t1), (s2, t2), · · · , (sq, tq)}, and an integer k > 0, the k-
Multicut problem asks to find a minimum size edge subset E′ ⊆ E such that its
removal cuts at least k terminal pairs in D.

The Generalized k-Multicut Problem (k-GMC). Given a graph G =
(V,E), a collection of terminal sets D = {S1, S2, · · · , Sq}, and an integer k > 0,
the k-GMC problem asks to find a minimum size edge subset E′ ⊆ E such that
its removal cuts at least k terminal sets in D.

The k-GMC problem generalizes the k-Multicut problem in the sense that a
terminal pair (s, t) is generalized to a terminal set S.

The generalized k-Multicut problem restricted in trees (i.e., k-GMC(T)), is
a particularly interesting problem, since there is an approximation preserving
reduction from the famous Densest k-Subgraph problem (DkS) to k-GMC(T),
which was given in [16]. The reduction says that an f(n)-approximation algo-
rithm for k-GMC(T) will lead to a 2f2(n)-approximation algorithm for DkS. A
remarkable feature of the k-GMC(T) instance used in the reduction [16] is that
the input tree is only a star and each terminal set is of size exactly 3.

Therefore, the k-GMC(T) problem is almost as hard as the DkS problem,
although k-GMC(T) is defined in trees. After a series of approximation results

for the DkS problem, an improved ratio O(n
1
4+ε) for the problem just appeared

[1] recently, where ε > 0 is any constant. By contrast, the k-Multicut in trees
problem admits 2 + ε-approximation [13]. This means that for the k-GMC(T)
problem, simply augmenting the size of each terminal set from 2 to 3 significantly
increase the difficulty of approximating it.

Very recently, using the linear programming technique, Zhang and Zhu et al.
[17] designed an O(

√
q)-approximation algorithm for the k-GMC(T) problem



On the Generalized Multiway Cut in Trees Problem 153

and an O(
√
q logn)-approximation algorithm for the k-GMC problem in general

graphs. Then we would like to consider some special cases of the k-GMC(T) prob-
lem. An interesting problem arises: How about the k-GMC(T) problem when k is
a constant? This problem can be solved by enumerating all

(
q
k

)
sub-collections of

D and solving the resulting problem corresponding to each enumeration, that is,
to cut constant number terminal sets in a tree, which is precisely the GMWC(T)
problem we study in this paper.

1.2 Related Work

The Multiway Cut in trees problem (that is, 1-MWC(T)) is proved to be poly-
nomial time solvable [5,6]. Chopra and Rao [5] gave a polynomial-time greedy
algorithm for 1-MWC(T) and proved that the solution found by their algorithm
is optimal via the optimal criteria in linear programming. Costa and Billion-
net [6] proved that 1-MWC(T) can even be solved in linear time by dynamic
programming.

The Multiway Cut in graphs problem was proved to be NP-hard and APX-
hard by Dahlhaus et al. [7]. The current best approximation ratio for Multiway
Cut in graphs is 1.3438, according to Karger et al. [10]. The Multicut in trees
problem is already NP-hard and APX-hard, and its current best approximation
ratio is 2, according to Garg et al. [8]. From the negative side, if the Unique
Games Conjecture is true, then the Multiway Cut in graphs problem can not be
approximated within a factor equal to the integrality gap of the so-called earth-
mover linear program for the problem [12], and the Multicut in trees problem
can not be approximated within 2− ε [11].

From the aspect of parameterized algorithms, Xiao [15] gave an O(2krT )
time parameterized algorithm for the Multiway Cut in graphs problem, where
r is the number of terminals and T is the time of finding a minimum s-t cut
in a graph. Chen et al. [4] gave an O(k4kn3) time parameterized algorithm
for the node version of the Multiway Cut problem. Guo and Niedermeier [9]
gave a parameterized algorithm for the Multicut in trees problem, whose time
complexity is O(k3k + q3n + n3q). Very recently, Bousquet et al. [3] solved a
long-standing open problem, showing that the Multicut in graphs problem is
fixed-parameter tractable.

1.3 Our Results

In this paper, we investigate several solving approaches for the GMWC(T) prob-
lem. The precise complexity of GMWC(T) is still unknown at the current time.

We design an O(n2 + 2k) time algorithm for the GMWC(T) problem, where
the parameter k is the size of an optimal cut for the problem. This means that
GMWC(T) is fixed-parameter tractable. First, we give three simple data reduc-
tion rules which are used to reduce the size of the input instance, obtaining the
so-called problem kernel. Then, by a careful classification of the vertices in the
kernel, we prove that the kernel is of a small size. Finally, we design a parameter-
ized O(n2+2k) time algorithm based on the kernel for the GMWC(T) problem,



154 H. Liu and P. Zhang

by using the basic depth-bounded search tree technique and the interleaving
technique [14].

Note that GMWC(T) can be solved by converting to the Multicut in trees
problem and hence admits a parameterized algorithm by Guo and Niedermeier
[9], since there are at most O(n2) terminal pairs for all the c terminal sets in D.
However, the running time of our algorithm for GMWC(T) is much faster than
that of the above trivial conversion approach.

We prove that when restricted in paths, the GMWC(T) problem is polynomial
time solvable by a dynamic programming approach. We also give counterexam-
ples for several heuristics for GMWC(T) based on dynamic programming and
greedy approach.

2 An FPT Algorithm

2.1 Data Reduction Rules

A trivial solution to the GMWC(T) problem is to convert the problem to the
Multicut in trees problem by enumerating all possible terminal pairs from the
terminal set collectionD. This will lead to O(n2) terminal pairs in the worst case.
Thus, the time complexity would be O(k3k+n7) by the parameterized algorithm
in [9]. In this section and the subsequent section, we shall give a parameterized
algorithm for GMWC(T) with significantly improved time complexity.

Recall that the input graph of the GMWC(T) problem is a tree T . At the
first step, we root the tree T at any non-leaf vertex.

(Remove nonterminal leaves.) If a leaf is not a terminal in any terminal
set, then remove the leaf from the tree.

(Remove nonterminal degree-2 vertices.) If a degree-2 vertex is not a
terminal, then merge its two incident edges into a single edge and delete this
degree-2 vertex from the tree.

The correctness of the removing nonterminal leaves rule and the removing
nonterminal degree-2 vertices rule is straightforward.

(Remove terminal leaves conditionally.) If a terminal leaf v appears only
once in terminal set collection D, and has its parent u not being a terminal of
any terminal set, then replace v by u in terminal set collection D and remove
vertex v from the tree.

Lemma 1. The optimal value does not change after applying the conditionally
removing terminal leaves rule.

Proof. Let I be the instance before applying the conditionally removing terminal
leaves rule, and I ′ be the new instance after applying the rule. As the optimal
solution to instance I ′ is a feasible solution to instance I, obviously we have
OPT (I) ≤ OPT (I ′).

For the opposite direction, let OPT (I) be an optimal solution to instance
I. Suppose the edge (u, v) removed by the rule is in OPT (I). (Otherwise we
have OPT (I ′) ≤ OPT (I) and are done.) After removing all edges in OPT (I)



On the Generalized Multiway Cut in Trees Problem 155

from the tree, all terminal sets are cut. If we put edge (u, v) back to the tree
again, then by the optimality of OPT (I), there is a unique vertex w on the
tree which is in the same terminal set as that of v, such that v and w are
connected. Since u is not a terminal, u itself can not be vertex w. So, there is
a path P between u and w and we can replace edge (u, v) in OPT (I) by any
edge on path P , without changing the feasibility (w.r.t. instance I) of OPT (I).
This suggests that OPT (I) is also a feasible solution to instance I ′, resulting in
OPT (I ′) ≤ OPT (I). This concludes the lemma. �

2.2 Problem Kernel and the Algorithm

To show that we can get a small kernel for the GMWC(T) problem by repeatedly
applying the data reduction rules given in Section 2.1 until none of them can
apply further, we need the following classification for vertices of the input tree.

0

3I

1

2I
1

3I

1I
1I

1I

1

2I

0

2I1I

Fig. 1. Classification of internal vertices

First, let I be the set of all internal vertices, and L be the set of all leaves.
Then, all the internal vertices are classified into four categories according to

the adjacency to other internal vertices. Given a vertex v in the tree, let N(v)
be the neighborhood of v, i.e., the set of all vertices in the tree adjacent to v.

– I0 = {v ∈ I | N(v) ∩ I = 0}. That is, each internal vertex in I0 has no any
adjacent internal vertex.

– I1 = {v ∈ I | N(v)∩ I = 1}. Each internal vertex in I1 has just one adjacent
internal vertex.

– I2 = {v ∈ I | N(v) ∩ I = 2}. Each internal vertex in I2 has exactly two
adjacent internal vertices.

– I3 = {v ∈ I | N(v) ∩ I ≥ 3}. Each internal vertex in I3 has at least three
adjacent internal vertices.

Finally, vertices in I2 are further classified into two categories. Suppose u is a
vertex in the tree. Let p(u) be the parent vertex of u.



156 H. Liu and P. Zhang

– I12 = {v ∈ I2 | ∃u ∈ L, p(u) = v}. That is, I12 is the set of all I2-vertices that
have at least one leaf child.

– I02 = I2 \ I12 is the set of all I2-vertices that have no leaf child.

Similarly, we have two categories I13 and I03 .

– I13 = {v ∈ I3 | ∃u ∈ L, p(u) = v}.
– I03 = I3 \ I13 .

For a vertex v in subset Ij , we also say that v is of type Ij and call v an Ij-vertex.
We note here that I0 is a very special internal vertex set, since it can contain
only one element and this will happen only if the input tree is a star. For a tree
that is not a star, there is no any I0-vertex at all.

We bound the size of the problem kernel by parameter k, which is the size of
an optimal multiway cut, i.e., OPT (I).

Lemma 2. If the input tree is a star, then |I0|+ |L| ≤ c+ k.

Proof. By the removing nonterminal leaves rule, each leaf is a terminal.
If the unique I0-vertex, i.e., the star center, is not a terminal, then by the

conditionally removing terminal leaves rule, there must be at least one leaf that
appears at least twice in terminal set collection D. We thus can charge one of
the terminal appearances to the star center.

So, we may assume that all vertices in the star are terminals.
When all edges in OPT are removed from the star, the star is broken into

k + 1 connected components. In the component which the star center belongs
to, by the definition of the generalized multiway cut, there are exactly c distinct
terminals, while all the remaining components are of size one. This gives the
lemma. �

Lemma 3. If the input tree is not a star, then |I1|+ |I2|+ |I13 |+ |L| ≤ c(k+1).

Proof. By the removing nonterminal degree-2 vertices rule, each I02 -vertex is a
terminal. By the removing nonterminal leaves rule, each leaf is also a terminal.

If a I1-vertex, to say, u is not a terminal, then by the conditionally removing
terminal leaves rule, u must have at least one leaf v as its child such that v
appears at least twice in terminal set collection D. So we can charge one terminal
appearance on v to the I1-vertex u. The same argument applies to each I12 -vertex
and each I13 -vertex.

Therefore, the sum |I1|+ |I2|+ |I13 |+ |L| is bounded from above by the total
number of terminal appearances.

When all edges in OPT are removed from the input tree, the tree is broken
into k + 1 connected components. In each component, by the definition of the
generalized multiway cut, there are at most c distinct terminals. Thus there are
at most c(k + 1) terminal appearances in total. The lemma follows. �

Lemma 4. If the input tree is not a star, then |I13 |+ |I03 | ≤ |I1| − 1.



On the Generalized Multiway Cut in Trees Problem 157

Proof. By removing all leaves from the input tree T , we get a tree T ′ whose
vertices are all I-vertices of T . Denote by n′

i the number of vertices in T ′ each
of which has exactly i child, for i = 0, 1, and by n′

2 the number of vertices in T ′

that has at least 2 children. Then we have n′
0 = |I1|, n′

1 = |I2| and n′
2 = |I3|. It

is well-known that n′
2 = n′

0 − 1 in a binary tree. For a tree such as T ′ in which
internal vertices may have more than two children, we have n′

2 ≤ n′
0 − 1. �

Theorem 1. The GMWC(T) problem admits a problem kernel of size at most
2c(k + 1).

Proof. By Lemmas 2, 3 and 4. �

Lemma 5. The problem kernel of GMWC(T) can be obtained in O(n) time.

Proof. By scanning each vertex in the input tree T , all nonterminal leaves (cor-
responding to the removing nonterminal leaves rule) and nonterminal degree-2
vertices (corresponding to the removing nonterminal degree-2 vertices rule) can
be removed in O(n) time.

Noticing that the terminal set collectionD contains only c terminal sets, which
is a constant number, the conditionally removing terminal leaves rule can also
be performed in O(n) time by scanning each terminal in D. �

Before giving the the main theorem of this section, we first show that there is a
so-called interleaving technique which can be used to accelerate a class of FPT
algorithms. Let I be an instance of a problem Π and (I, k) be the input to an
FPT algorithm A for Π . Suppose algorithm A works in two stages that the first
stage is a reduction to problem kernel and the second stage is a bounded search
tree of size O(ξk), where ξ is a constant. Reduction to problem kernel takes P (|I|)
steps and results in an instance of size at most q(k). The expansion of a node in
the search tree takes R(|I|) steps. All of P , q and R are polynomially bounded.
The overall time complexity of algorithm A is then O(P (|I|) +R(q(k))ξk). The
following theorem shows that algorithm A can be accelerated.

Theorem 2 ([14]). Suppose algorithm A is a two-stage FPT algorithm for
problem Π running in O(P (|I|)+R(q(k))ξk) time as described above. Then there
is an FPT algorithm for problem Π with improved time complexity O(P (|I|) +
ξk).

The parameterized algorithm solving the GWMC(T) problem is given in the
proof of the following theorem.

Theorem 3. The Generalized Multiway Cut in trees problem can be solved in
O(n2 + 2k) time.

Proof. The basic strategy of solving GMWC(T) is to use a bounded depth search
tree. First we obtain the problem kernel of size at most 2c(k + 1). By Theorem
1 and Lemma 5, this can be done in O(n) time.

Next we convert terminal set collection D into a terminal pair set by gener-
ating all possible

(|S|
2

)
terminal pairs for each terminal set S ∈ D. Let LIST be



158 H. Liu and P. Zhang

the resulting set of terminal pair. The size of LIST is at most
(
2c(k+1)

2

)
= O(k2).

For each pair in LIST , we record its least common ancestor in the kernel. By
[2], this will consume a preprocessing time linear in the size of the kernel and
a constant query time for each terminal pair. Thus the total time of computing
least common ancestor for all terminal pairs in LIST is O(k2).

Then, root the kernel at any vertex. This is the only one node of the initial
search tree at the current time. In the bottom-up manner, we scan each internal
vertex of the kernel. Suppose the current scanned vertex u is the least common
ancestor for some pair (s, t) in LIST . If it is not the case, then we scan the next
vertex.

Let P be the unique path between s and t in the kernel. If u is s or t,
then remove the edge on P incident to u from the kernel, and remove all pairs
disconnected by such an edge removal from LIST , resulting in a new node of the
search tree which is the unique child of the current node. We get in the new node
and scan the next vertex of the kernel. Otherwise u is an intermediate vertex
on P . Let (l, u) and (u, r) be the two edges on P incident to u. The search tree
splits into two branches at the current node, which corresponds to each of the
two edges. In the either new node, we remove the corresponding edge from the
kernel, and remove all pairs thus disconnected from LIST . Then we get in each
of the two nodes and scan the next vertex of the kernel recursively.

Since OPT (I) is equal to k, the depth of the search tree is bounded by k.
The work at each node of the search tree (including determining on u, removing
edge from the kernel, and removing disconnected pairs) can be done in O(k3)
time. Therefore, the total time of computing the desired optimal solution is
O(n+ k2 + k32k) = O(n2 + k32k).

Finally, using the interleaving technique introduced in [14], the above param-
eterized algorithm can be accelerated to run in O(n2 + 2k) time. The proof is
finished. �

3 Some Observations

3.1 About the Complexity of GMWC(T)

It is well-known that the Multiway Cut in trees problem (i.e., 1-MWC(T)) is
polynomial-time solvable [5,6], while the Multicut in trees problem is NP-hard
[8], even the problem is restricted in stars. From the viewpoint of problem goal,
the GMWC(T) problem lies exactly between the Multiway Cut in trees prob-
lem and the Multicut in trees problem. To determine the precise complexity of
GMWC(T) thus becomes an intriguing and subtle problem.

In the Multicut in trees problem, we have to disconnect q terminal pairs
{(si, ti)}, where q is a part of the problem input. In the GMWC(T) problem,
we have to disconnect c terminal sets {Si}, where c is independent of the input
of the problem. If there is a polynomial time algorithm for GMWC(T) whose
time complexity has nothing to do with the constant c, then we can solve the
Multicut in trees problem in polynomial time, since Multicut in trees is nothing



On the Generalized Multiway Cut in Trees Problem 159

more than q-MWC(T). However, this would be absurd, since the Multicut in
trees problem is NP-hard and P is not equal to NP, as believed.

Theorem 4. If the GMWC(T) problem can be solved in polynomial time, the
time complexity of the supposed algorithm must depend on constant c, assuming
P �= NP . �

3.2 A Special Case of GMWC(T)

Suppose we are given a GMWC(T) instance (T,D). Let us consider the weighted
version of GMWC(T) and thus {w(e)} be the weights defined on edges in T . For
each terminal set S ∈ D, let TS be the subtree of T obtained by uniting the
unique paths between all the

(|S|
2

)
possible terminal pairs coming from S.

Consider an optimal solution E∗ ⊆ E(T ) to the instance (T,D). E∗ must
contain at least one edge for the subtree TS corresponding to terminal set S.
This observation suggests we can express the optimal value as

OPT = min
E′⊆E(T ) : |E′|≤c

{
w(E′) +

∑
Tj

OPT (Tj)
}
, (1)

where Tj stands for a tree in the forest led by removing E′ from T , and OPT (Tj)
is the optimal value of the instance (T,D) restricted on subtree Tj .

Equation (1) may suggest a dynamic programming algorithm for GMWC(T):
Just compute the value of the GMWC(T) instance on each subtree of T in a
systematic way. Unfortunately, the number of subtrees of a tree is unpracti-
cally large and consequently we can not get a polynomial time algorithm for
GMWC(T) by this way. For example, a star with h leaves may have Ω(2h)
subtrees.

When the input tree is simply a path, the number of subtrees is
(
n
2

)
, a polyno-

mially bounded quantity. The above dynamic programming algorithm will work
in polynomial time for this special case. So we have

Theorem 5. If the input tree is a path, then the GMWC(T) problem can be
solved in polynomial time. �

3.3 Counterexamples for Some Heuristics

In this section we show the counterexamples for some simple heuristics for
GMWC(T). First we define two terminologies for the problem. Two terminals
are homologous if they come from the same terminal set. Given a tree, a terminal
in the tree is called an orphan if there is no any other terminal in the tree that
is homologous with this terminal.

Heuristics Based on Dynamic Programming. Since the GMWC(T) prob-
lem is defined in trees, the heuristic that is easily thought may be the dynamic
programming approach. We root the input tree at an arbitrary vertex, and then
scan each vertex v in the tree from the bottom to the top one by one. For the



160 H. Liu and P. Zhang

subtree T (v) rooted at v, we find by enumerating the minimum cost edge subset
E′ ⊆ E(T (v)) such that the removal of E′ can disconnect all homologous termi-
nal pairs. Note that this dynamic programming approach is different to the one
in Theorem 5.

RR RG G G

v1 v2 v3 v4 v5 v6e1 e2 e3 e4 e5

Fig. 2. Instance A of GMWC(T)

However, the instance A shown in Figure 2 is a counterexample to the above
dynamic programming approach. In Instance A, there are two (that is, c = 2)
terminal sets with R = {v1, v3, v5} and G = {v2, v4, v6}. When the tree is rooted
at v6, the dynamic programming approach will finally output {e1, e3, e5} as a
solution. On the other hand, the optimal solution is {e2, e4}. (Note that Instance
A can be optimally solved by the dynamic programming approach in Theorem
5.) Some other variants of this dynamic programming approach also do not work.
We omit their descriptions here due to the limitation of space.

Heuristics Based on Greedy Approach. Based on the observations in The-
orems 4 and 5, one can suggest a framework of greedy approach for GMWC(T)
as follows. (i) Find by enumerating an edge subset E′ with |E′| ≤ c′ in the
current tree T ′ (which is the input tree T initially) such that a certain criterion
is met, where c′ is the number of terminal sets (of size at least 2) in T ′. (ii)
Remove E′ from T ′. This will break T ′ into several subtrees. (iii) Recursively
repeat the above two steps on each resulting subtree, until all terminal sets are
disconnected. (iv) Remove the redundant edges (with respect to constituting a
feasible cut) from the edge set finally obtained.

We discuss several criteria that can be used in step (i).
Firstly, the criterion could be a minimum weight edge subset E′ of size at most

c′ such that the removal of E′ splits every terminal set. In this case, Instance A
in Figure 2 acts as a counterexample. The algorithm will pick edge e3 in its first
iteration, resulting in two subtrees. It will pick edge e1 and then pick edge e5 in
the two resulting subtrees. Of course, this is not an optimal solution.

Secondly, the criterion could be an edge subset E′ of size at most c′ such that
the ratio of the total weight w(E′) to pairs(E′) is minimized, where pairs(E′) is
the number of homologous terminal pairs disconnected by removing E′. In this
case, Instance A in Figure 2 also acts as a counterexample. The algorithm will
pick edge e3 (with ratio of 1

4 ) in its first iteration, resulting in two subtrees. It
will pick edge e1 and then pick edge e5 in the two resulting subtrees (with ratio
of 1

1 in both of the two subcases).
Thirdly, the criterion could be an edge subsetE′ of size at most c′ such that the

ratio of the total weight w(E′) to orphans(E′) is minimized, where orphans(E′)
is the number of orphans generated by removing E′. This greedy approach will
compute the optimal solution to Instance A.



On the Generalized Multiway Cut in Trees Problem 161

RR

RG

G

G

e1

e2

e3 e4 e5

R

G

e6

e7

Fig. 3. Instance B of GMWC(T)

However, the instance B in Figure 3 is a counterexample. In the first iteration,
the algorithm will remove e4 with corresponding ratio being 1

2 (one edge and
two resulting orphans). In its subsequent four iterations, the algorithm will pick
e1, e2, e6 and e7 successively. However, an optimal solution to Instance B is
{e2, e3, e5, e6}.

Finally, let us consider as the criterion an edge subset E′ of size at most c′

such that orphans(E′) is maximized. (In case of ties, a minimum weight edge
subset is picked.) For this greedy approach, Instances A and B are no longer
counterexamples. However, there is still a counterexample for this approach,
namely, Instance C as shown in Figure 4.

RR

R

G

G

G
e1 e2

e3

e4

e5
G

G

R

e6 e7

e8

e9

Fig. 4. Instance C of GMWC(T)

When running on Instance C, the algorithm will pick {e3, e5} in its first iter-
ation, generating four orphans. In its subsequent four iterations, the algorithm
will pick edges e1, e4, e8 and e9 successively. However, an optimal solution to
Instance C is {e2, e5, e7, e9}.

4 Conclusions

In this paper, we propose the GMWC(T) problem. We show the GMWC(T)
problem is fixed-parameter tractable and is polynomial time solvable when re-
stricted in paths. At the current time, we have neither an algorithm to show the
GMWC(T) problem is in P, nor a proof to show the problem is NP-hard. To
determine the complexity of GMWC(T) remains an interesting open problem.



162 H. Liu and P. Zhang

References

1. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities – an O(n1/4) approximation for densest k-subgraph. In: Schul-
man, L. (ed.) Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing, STOC, pp. 201–210. ACM (2010)

2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vad-
han, S. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, STOC, pp. 459–468. ACM (2011)

4. Chen, J.-E., Liu, Y., Lu, S.-J.: An improved parameterized algorithm for the min-
imum node multiway cut problem. Algorithmica 55, 1–13 (2009)

5. Chopra, S., Rao, M.: On the Multiway Cut Polyhedron. Networks 21, 51–89 (1991)
6. Costa, M.-C., Billionnet, A.: Multiway cut and integer flow problems in trees.

Electronic Notes in Discrete Mathematics 17, 105–109 (2004)
7. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The

complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)
8. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithm for

integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)
9. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for mul-

ticut in trees. Networks 46(3), 124–135 (2005)
10. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms

for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research 29(3), 436–461 (2004)

11. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

12. Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC
hardness for multiway cut, 0-extension, and metric labeling. In: Dwork, C. (ed.)
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC,
pp. 11–20. ACM (2008)

13. Mestre, J.: Lagrangian relaxation and partial cover (extended abstract). In: Albers,
S., Weil, P. (eds.) Proceedings of the 25th International Symposium on Theoretical
Aspects of Computer Science (STACS), pp. 539–550. LIPIcs 1 Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2008)

14. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters 73, 125–129 (2000)

15. Xiao, M.-Y.: Simple and improved parameterized algorithms for multiterminal cuts.
Theory of Computing Systems 46, 723–736 (2010)

16. Zhang, P.: Approximating Generalized Multicut on Trees. In: Cooper, S.B., Löwe,
B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 799–808. Springer, Heidelberg
(2007)

17. Zhang, P., Zhu, D.-M., Luan, J.-F.: An approximation algorithm for the generalized
k-Multicut problem. Discrete Applied Mathematics 160(7-8), 1240–1247 (2012)



Algorithms for Forest Local Similarity

Zhewei Liang and Kaizhong Zhang

Department of Computer Science, The University of Western Ontario,
London, Ontario, Canada, N6A 5B7
{zliang32,kzhang}@csd.uwo.ca

Abstract. An ordered labelled tree is a tree where the left-to-right or-
der among siblings is significant. Ordered labelled forests are sequences
of ordered labelled trees. Given two ordered labelled forests F and G,
the local forest similarity is to find two sub-forests F ′ and G′ of F and G
respectively such that they are the most similar over all possible F ′ and
G′. In this paper, we present efficient algorithms for the local forest sim-
ilarity problem for two types of sub-forests: sibling subforests and closed
subforests. Our algorithms can be used to locate the structurally similar
regions in RNA secondary structures since RNA molecules’ secondary
structures could be represented as ordered labelled forests.

Keywords: local forest similarity, closed subforests, sibling subforests,
forest removing similarity, RNA secondary structure comparison.

1 Introduction

Ordered labelled trees are trees where each node has a label and the left-to-right
order among siblings is significant. An ordered labelled forest is a sequence of
ordered labelled trees. Ordered labelled trees and forests are very useful data
structures for hierarchical data representation such as RNA secondary struc-
tures [11,7,14,4] and XML documents [1]. Fig.1 [10] shows an example of the
RNA GI:2347024 structure. Algorithms for the edit distance between two forests
(trees) [15,3] could be used to measure the global similarity of forests (trees). Re-
cently the Forest (tree) Pattern Matching (FPM) problem and the Local Forest
(tree) Similarity (LFS) problem became interesting and attracted some attention
[13,4,10,5,6,16].

In this paper, the FPM problem is defined as the following: Given a target
forest F and a pattern forestG, find a sub-forest F ′ of F which is the most similar
to G over all possible F ′. And the LFS problem is defined as the following: Given
two forests F and G, find two sub-forests F ′ and G′ of F and G respectively, such
that they are the most similar over all possible F ′ and G′. There are various ways
to define the term “sub-forest”. Here we will consider two types of “sub-forests”:
sibling subforests and closed subforests.

For sibling subforests and closed subforests, we present two efficient algo-
rithms for solving the LFS problem. Our algorithms can be used to locate the
structurally similar regions in RNA secondary structures since RNA molecules’
secondary structures could be represented as ordered labelled forests.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 163–175, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



164 Z. Liang and K. Zhang

Fig. 1. RNA structures and forest representation. (a) A segment of the RNA GI:
2347024 primary structure [8], (b) its secondary structure, (c) its forest representation.

2 Preliminaries

We shall use the following definitions and notations in this paper.
Let F be any given ordered forest, and the nodes in F be labelled with a left-

to-right postorder numbering. Given any two nodes, they are either in ancestor-
descendant relationship, or in left-right relationship. Let |F | be the number of
nodes in F . A subtree of F is any connected sub-graph of F , and a subforest of
F is an ordered sequence of subtrees of F . A complete-subtree of F is a subtree
consisting of a root and all of its descendants in F . A complete-subforest of F
is an ordered sequence of complete-subtrees of F . F [i..j] is generally an ordered
subforest of F in the postorder numbering, induced by the nodes numbered
from i to j inclusively. f [i] denotes the label of ith node in F . We also use f [i] to
represent the ith node if there is no confusion. F [i] denotes the complete-subtree
rooted at f [i]. Let l(i) be the postorder number of the leftmost leaf descendant of
f [i]. If f [i1] and f [i2] (or just i1 and i2) have the same parent, they are siblings.
DF and LF denote the depth and the number of leaves of F , respectively. We
assume that the forest F has an imaginary root node, denoted by p(F ). Let the
key roots of F be the set K(F ) = {p(F )} ∪ {i | i ∈ F and i has a left sibling}
and from [15] we have |K(F )| ≤ LF .

2.1 Forest Edit Similarity

Similarity and distance measures are used in sequence alignment [12] and forest
edit distance (similarity) [15] problems. Local alignment is normally based on
similarity measures. Our algorithms are based on forest edit similarity metric.

The forest edit similarity uses a similarity measure, s(a, b), between labels of
forest nodes or λ. If both a and b are labels, then s(a, b) is a score for match or
mismatch; if b is λ, then s(a, b) is a score for deletion; and if a is λ, then s(a, b)
is a score for insertion. The forest edit similarity also uses a forest edit mapping
[15]. An forest edit mapping between F and G is defined as (M,F,G), where M



Algorithms for Forest Local Similarity 165

is a set of integer pairs (i, j) satisfying: (1) 1 ≤ i ≤ |F |, 1 ≤ j ≤ |G|; (2) for
any pair (i1, j1) and (i2, j2) in M , (a) i1 = i2 if and only if j1 = j2 (one-to-one
condition); (b) f(i1) is an ancestor of f(i2) if and only if g(j1) is an ancestor of
g(j2) (ancestor condition); (c) f(i1) is to the left of f(i2) if and only if g(j1) is
to the left of g(j2) (sibling condition). The similarity score of an edit mapping
M is given by:

s(M) =
∑

(i,j)∈M

s(f [i], g[j]) +
∑
i/∈M

s(f [i], λ) +
∑
j /∈M

s(λ, g[j]).

And the forest similarity between F and G is defined as

φ(F,G) = max{s(M) | M is an edit mapping between F and G}.

If s(a, b) is a similarity metric, then φ(F,G) is also a similarity metric [2].

2.2 Sub-Forests Definitions

In this paper, we consider local forest similarity problem for two types of sub-
forests of forest F : (1) a sibling subforest : a sequence of subtrees of F such
that their roots are siblings. (2) a closed subforest : a sequence of subtrees of F
such that their roots are consecutive siblings. Examples of these two types of
sub-forests are shown in Fig. 2 as the forests enclosed by dashed lines.

Restricting subtrees to complete-subtrees, we can have another two types of
sub-forests: (1′) a sibling complete-subforest : a sequence of complete-subtrees of
F such that their roots are siblings. (2′) a closed complete-subforest : a sequence
of complete-subtrees of F such that their roots are consecutive siblings.

UG
|

GC
|

AU
|

UA
|

AU

A A G A G C A G U C ACG
|

AU
|

GC

AU
|

UG
|

CG
|

CG
|

CG
|

UA
|

GU

U G U G

A A A A

UG
|

GC
|

AU
|

UA
|

AU

A A G A G C A G U C ACG
|

AU
|

GC

AU
|

UG
|

CG
|

CG
|

CG
|

UA
|

GU

U G U G

A A A A

1F 2F

Fig. 2. Examples of two types of sub-forests of the forest in Fig. 1.(c). F1: a sibling
subforest, F2: a closed subforest.

FPM and LFS problems for the complete-subtree and complete-subforest were
considered though the subtree and subforest were used to represent the complete-
subtree and complete-subforest in [10,6,16]. While in this paper we use subtree,
subforest, and closed subforest to represent a more general situation.



166 Z. Liang and K. Zhang

2.3 Previous Work

For the local forest similarity problem for sibling subforests and closed subforests,
we present two efficient algorithms. To the best of our knowledge, these are the
first algorithms for this problem.

In a related work [10], Peng gave an algorithm for LFS on “closed complete-
subforests” using distance metrics that runs in O(|F | · |G| · LF · LG) time and
O(|F | · |G|) space. Note that under distance metrics, the goal is to find the
minimum score, so the local similarity may end up with two identical leaves
matched that produced an optimal distance score zero. Therefore for local forest
similarity, we will have to use similarity metrics [14,2].

The problem considered by Jansson and Peng [6] and Zhang and Zhu [16] is
the forest pattern matching (FPM) problem which is different from local forest
similarity (LFS) problem considered in this paper.

2.4 Our Results

In this paper, we show how to solve the LFS problem on “sibling subforests” and
“closed subforests” efficiently. The time and space complexities are summarized
in Table 1.

Table 1. Our algorithms for LFS problem for sibling subforests and closed subforests

LFS Time Space Section

Sibling Subforests O(|F | · |G| ·min{DF , LF } ·min{DG, LG}) O(|F | · |G|) 3.1

Closed Subforests O(|F | · |G| ·min{DF , LF } ·min{DG, LG}) O(|F | · |G|) 3.2

Our first algorithm modifies the global forest distance algorithm [15]. Our
second algorithm combines the idea of [15] and the method of Smith-Waterman
for local alignment between two sequences [12].

3 Algorithms for the Local Forest Similarity Problem

In this section, we present efficient algorithms for the LFS problem for two types
of sub-forests, sibling subforests and closed subforests, respectively. We also refer
the LFS problem as the problem of finding two most similar sub-forests.

3.1 An Algorithm for Finding Two Most Similar Sibling Subforests

Now we consider the problem of finding two most similar sibling subforests,
which is also called forest removing similarity problem.

Let the degree of node i be di and its children be i1, i2, . . . , idi , let the degree
of node j be dj and its children be j1, j2, . . . , jdj . Let subf(F ) be the set of
complete-subforests of F . Let F \ f represent the subforest resulting from the
deletion of complete-subforest f from F .



Algorithms for Forest Local Similarity 167

Given two forests F and G, the forest removing similarity (FRS) between F
and G, Φrr(, ), is defined as follows where f ∈ subf(F ) and g ∈ subf(G):

Φrr(F,G) = max{φ(F \ f,G \ g)}.

Fig. 3 shows the situation of finding two most similar sibling subforests between
F and G.

F Gmost similar

. . .. . .

Fig. 3. Find two most similar sibling subforests between F and G

From this definition and the algorithm in [15,16], we have the following
lemma for Φrr(F [l(i)..i′], G[l(j)..j′]) when consider two cases: (1) F [l(i)..i′] and
G[l(j)..j′] are both trees; (2) F [l(i)..i′] or G[l(j)..j′] is a forest.

Lemma 1. Let i, j, F and G be defined as above, where l(i) ≤ i′ ≤ i and
l(j) ≤ j′ ≤ j, then
(1) If l(i′) = l(i) and l(j′) = l(j),

Φrr(F [l(i)..i′], G[l(j)..j′])

= max

⎧⎪⎪⎨
⎪⎪⎩

0,
Φrr(F [l(i)..i′ − 1], G[l(j)..j′]) + s(f [i′], λ),
Φrr(F [l(i)..i′], G[l(j)..j′ − 1]) + s(λ, g[j′]),
Φrr(F [l(i)..i′ − 1], G[l(j)..j′ − 1]) + s(f [i′], g[j′]).

(2) If l(i′) �= l(i) or l(j′) �= l(j),

Φrr(F [l(i)..i′], G[l(j)..j′])

= max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Φrr(F [l(i)..l(i′)− 1], G[l(j)..j′]),
Φrr(F [l(i)..i′], G[l(j)..l(j′)− 1]),
Φrr(F [l(i)..i′ − 1], G[l(j)..j′]) + s(f [i′], λ),
Φrr(F [l(i)..i′], G[l(j)..j′ − 1]) + s(λ, g[j′]),
Φrr(F [l(i)..l(i′)− 1], G[l(j)..l(j′)− 1])

+ Φrr(F [i′], G[j′]).

Proof. Due to the page limitation, we omit the proof. Please refer to [9] for
detail.

Our algorithm for forest removing similarity problem is based on Lemma 1.

Theorem 1. Our algorithm for FRS problem can be implemented to run in
O(|F | · |G| ·min{DF , LF} ·min{DG, LG}) time and O(|F | · |G|) space.

Proof. This is same to Theorem 2 in [15].



168 Z. Liang and K. Zhang

3.2 An Algorithm for Finding Two Most Similar Closed Subforests

We first examine Local Sequence Similarity (LSS) method and then give a nat-
ural extension from LSS to LFS for closed subforests.

Given two sequences A[1..m] and B[1..n], the LSS problem [12] is to find a pair
of subsequences that satisfies max{φ(F [k..l], G[q..r])| 1 ≤ k ≤ l ≤ m, 1 ≤ q ≤
r ≤ n}. Smith and Waterman [12] gave an efficient algorithm for this problem
using dynamic programming. The idea is that when calculating a similarity score
for F [1..i](1 ≤ i ≤ m) and G[1..j](1 ≤ j ≤ n), any prefix of F [1..i] or G[1..j]
could be deleted without any penalty. In other words, the maximum similarity
score is max{φ(F [i′..i], G[j′..j]) | 1 ≤ i′ ≤ i+ 1, 1 ≤ j′ ≤ j + 1}.

In order to solve the LFS problem for closed subforests, we need to use the
removing similarity Φrr(, ) described in the last section. We also need another
removing similarity: the maximum similarity between a closed subforest and a
sibling subforest, which we shall introduce first.

Let i, j, F , and G be defined as above, now we consider finding the maximum
similarity between a closed subforest under one node i of forest F and a sibling
subforest under one node j of forest G.

Let m be a node which satisfies i1 ≤ m < i, let n be a node which satisfies
j1 ≤ n < j, we define r1(m) and r2(n) as follows:

r1(m) = max{k1 | 1 ≤ k1 ≤ di, ik1 ≤ m, k1 ∈ Z},
r2(n) = max{k2 | 1 ≤ k2 ≤ dj , jk2 ≤ n, k2 ∈ Z}.

Fig. 4 shows the definition of r1(m).

F[i] i
id
i

. . . . . .

i1
F[i] i

id
i

. . . . . .

i1

},,,{)1( 21 id
iiim

)(1 mr
im

},,,{)2( 21 id
iiim

)(1 mr
i 1)(1 mr

i
m

Fig. 4. Definition of r1(m)

Let subf(F, node set) be the set of complete-subforests of F such that nodes
in node set are not in any of the complete-subforests. We define another re-
moving edit similarity ΦRr(, ) where f ∈ subf(F [l(i1)..m], {i1, . . . ir1(m)}) and
g ∈ subf(G[l(j1)..n]):

ΦRr(F [l(i1)..m], G[l(j1)..n]) = max{φ(F [l(i1)..m] \ f,G[l(j1)..n] \ g])}.

Now we can define the score Θ1(F [l(i1)..m], G[l(j1)..n]) where i1 ≤ m ≤ idi and
j1 ≤ n ≤ jdj , using ΦRr(, ) and r1(m) as follows:

max{ΦRr(F [l(iu)..m], G[l(j1)..n]) | 1 ≤ u ≤ r1(m) + 1}.



Algorithms for Forest Local Similarity 169

Notice that if m = ik1 where 1 ≤ k1 ≤ di, the value of r1(m) is therefore k1.
Under this situation, for convenience, when u = k1+1, we let F [l(ik1+1)..ik1 ] = ∅.
Therefore, if m ∈ {i1, . . . , idi}, then {F [l(iu)..m] | 1 ≤ u ≤ r1(m) + 1} can
be written as {F [l(i1)..m], . . . , F [l(m)..m], ∅}; otherwise it can be written as
{F [l(i1)..m], . . . , F [l(ir1(m)+1)..m]}. Fig. 5 shows these two different cases.

i1 m=i2

m=i2 i2

i1

m

i2
u=1

F[l(i1)..i2]

u=2
F[l(i2)..i2]

u=1
F[l(i1)..m]

u=2
F[l(i2)..m]

u=3
F[l(i3)..i2]

2)(&)1( 12 mrim 1)(&)()2( 122 mrimil

m

Fig. 5. Two cases of F [l(iu)..m] where l(i2) ≤ m ≤ i2 and 1 ≤ u ≤ r1(m) + 1

With these definitions, what we want to compute for F [i] and G[j] is
max{Θ1(F [l(i1)..iu], G[l(j1)..jdj ]) | 1 ≤ u ≤ di}. Fig. 6 shows this situation.

. . .

F[i]

id
i

. . . . . .

i1
most similar

ilik
i G[j]

. . .

j
jd
j

. . . . . .

j1

Fig. 6. Find the maximum similarity between a closed subforest of F [i] and a sibling
subforest of G[j]

To calculate Θ1(F [l(i1)..m], G[l(j1)..n]), we have the following lemmas.

Lemma 2. Let i, j, F , and G be defined as above, where l(iu) ≤ m ≤ idi,
j1 ≤ n ≤ jdj , and 1 ≤ u ≤ r1(m), then

ΦRr(F [l(iu)..m], G[l(j1)..n])

= max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΦRr(F [l(iu)..l(m)− 1], G[l(j1)..n]), if m /∈ {i1, i2, . . . , idi}
ΦRr(F [l(iu)..m], G[l(j1)..l(n)− 1]),
ΦRr(F [l(iu)..m− 1], G[l(j1)..n]) + s(f [m], λ),
ΦRr(F [l(iu)..m], G[l(j1)..n− 1]) + s(λ, g[n]),
ΦRr(F [l(iu)..l(m)− 1], G[l(j1)..l(n)− 1])

+ Φrr(F [l(m)..m− 1], G[l(n)..n− 1]) + s(f [m], g[n]).

Proof. Please refer to [9] for detail.



170 Z. Liang and K. Zhang

Lemma 3. Let i, j, F , and G be defined as above, then
(1) Θ1(F [i1], G[j1]) = Φrr(F [i1], G[j1]).
(2) Θ1(F [i1], G[l(j1)..n]) = Φrr(F [i1], G[l(j1)..n]).
(3) If i1 < m ≤ idi and n = j1, then

Θ1(F [l(i1)..m], G[j1])

= max

⎧⎪⎪⎨
⎪⎪⎩

Θ1(F [l(i1)..l(m)− 1], G[j1]), if m /∈ {i2, . . . , idi}
Θ1(F [l(i1)..m− 1], G[j1]) + s(f [m], λ),
Θ1(F [l(i1)..m], G[l(j1)..j1 − 1]) + s(λ, g[j1]),
Φrr(F [m], G[j1]).

(4) If i1 < m ≤ idi and j1 < n ≤ jdj , then

Θ1(F [l(i1)..m], G[l(j1)..n])

= max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ1(F [l(i1)..l(m)− 1], G[l(j1)..n]), if m /∈ {i2, . . . , idi}
Θ1(F [l(i1)..m], G[l(j1)..l(n)− 1]),
Θ1(F [l(i1)..m− 1], G[l(j1)..n]) + s(f [m], λ),
Θ1(F [l(i1)..m], G[l(j1)..n− 1]) + s(λ, g[n]),
Θ1(F [l(i1)..l(m)− 1], G[l(j1)..l(n)− 1])

+ Φrr(F [l(m)..m− 1], G[l(n)..n− 1]) + s(f [m], g[n]).

Proof. Due to the page limitation, here we only prove case (3).
(1) For m ∈ {i2, . . . , idi}, we know that m = ir1(m). From the definition of Θ1(, ),
we have

max

⎧⎨
⎩

Θ1(F [l(i1)..m− 1], G[j1]) + s(f [m], λ),
Θ1(F [l(i1)..m], G[l(j1)..j1 − 1]) + s(λ, g[j1]),
Φrr(F [m], G[j1]).

= max

⎧⎨
⎩

max{ΦRr(F [l(iu)..ir1(m) − 1], G[j1]) | 1 ≤ u ≤ r1(m− 1) + 1}+ s(f [ir1(m)], λ),

max{ΦRr(F [l(iu)..ir1(m)], G[l(j1)..j1 − 1]) | 1 ≤ u ≤ r1(m) + 1}+ s(λ, g[j1]),

Φrr(F [m], G[j1]).

According to Lemma 2, we have

max{ΦRr(F [l(iu)..ir1(m)], G[j1]) | 1 ≤ u ≤ r1(m) + 1}

= max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΦRr(F [l(iu)..ir1(m)], G[l(j1)..l(j1)− 1]),

ΦRr(F [l(iu)..ir1(m) − 1], G[j1]) + s(f [ir1(m)], λ),

ΦRr(F [l(iu)..ir1(m)], G[l(j1)..j1 − 1]) + s(λ, g[j1]),

ΦRr(F [l(iu)..l(ir1(m)) − 1], G[l(j1)..l(j1) − 1])

+ Φrr(F [l(ir1(m))..ir1(m) − 1], G[l(j1)..j1 − 1])

+ s(f [ir1(m)], g[j1]).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

1 ≤ u ≤ r1(m) + 1

= max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{ΦRr(F [l(iu)..ir1(m)], ∅) | 1 ≤ u ≤ r1(m) + 1},
max{ΦRr(F [l(iu)..ir1(m) − 1], G[j1]) | 1 ≤ u ≤ r1(m− 1) + 1}+ s(f [ir1(m)], λ),

max{ΦRr(F [l(iu)..ir1(m)], G[l(j1)..j1 − 1]) | 1 ≤ u ≤ r1(m) + 1}+ s(λ, g[j1]),

max{ΦRr(F [l(iu)..l(ir1(m))− 1], ∅) | 1 ≤ u ≤ r1(l(m) − 1) + 1}
+ Φrr(F [l(ir1(m))..ir1(m) − 1], G[l(j1)..j1 − 1]) + s(f [ir1(m)], g[j1]).



Algorithms for Forest Local Similarity 171

= max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0,

max{ΦRr(F [l(iu)..ir1(m) − 1], G[j1]) | 1 ≤ u ≤ r1(m− 1) + 1}+ s(f [ir1(m)], λ),

max{ΦRr(F [l(iu)..ir1(m)], G[l(j1)..j1 − 1]) | 1 ≤ u ≤ r1(m) + 1}+ s(λ, g[j1]),

Φrr(F [l(ir1(m))..ir1(m) − 1], G[l(j1)..j1 − 1]) + s(f [ir1(m)], g[j1]).

And we know that ΦRr(F [ir1(m)], G[j1]) ≥ Φrr(F [l(ir1(m))..ir1(m) −
1], G[l(j1)..j1 − 1]) + s(f [ir1(m)], g[j1]) since the latter formula repre-
sents a particular mapping of F [ir1(m)] to G[j1], so we can use
ΦRr(F [ir1(m)], G[j1]) to substitute Φrr(F [l(ir1(m))..ir1(m)− 1], G[l(j1)..j1− 1])+
s(f [ir1(m)], g[j1]) here because ΦRr(F [ir1(m)], G[j1]) is a possible mapping of
max{ΦRr(F [l(iu)..ir1(m)], G[j1]) | 1 ≤ u ≤ r1(m) + 1}. From the definition
of ΦRr(, ) and Φrr(, ), we have max{0, ΦRr(F [m], G[j1])} = Φrr(F [m], G[j1]).
Therefore

max

⎧⎨
⎩

Θ1(F [l(i1)..m− 1], G[j1]) + s(f [m], λ),
Θ1(F [l(i1)..m], G[l(j1)..j1 − 1]) + s(λ, g[j1]),
Φrr(F [m], G[j1]).

= max{ΦRr(F [l(iu)..ir1(m)], G[j1]) | 1 ≤ u ≤ r1(m) + 1}
= max{ΦRr(F [l(iu)..ir1(m)], G[j1]) | 1 ≤ u ≤ r1(m), 0}.

From the definition of Θ1(F [l(i1)..m], G[j1]), we have Θ1(F [l(i1)..m], G[j1]) =
max{ΦRr(F [l(iu)..ir1(m)], G[j1]) | 1 ≤ u ≤ r1(m), 0}. Therefore,

Θ1(F [l(i1)..m], G[j1]) = max

⎧⎨
⎩

Θ1(F [l(i1)..m− 1], G[j1]) + s(f [m],−),
Θ1(F [l(i1)..m], G[l(j1)..j1 − 1]) + s(−, g[j1]),
Φrr(F [m], G[j1]).

(2) For m /∈ {i2, . . . , idi}, it is similar to above (1).

To find the maximum similarity between a sibling subforest and a closed subfor-
est, we can also define the third removing edit similarity ΦrR(, ) and the score
Θ2(, ) using ΦrR(, ) and r2(n). They are symmetric to ΦRr(, ) and Θ1(, ), we do
not describe them again.

Finally, we are ready to find the maximum similarity between two closed
subforests. Fig. 7 shows this situation under two nodes and our goal is to find
the maximum score between all of the nodes of F and G, respectively.

. . .

F[i]

id
i

. . . . . .

i1

G[j]most similar

. . .

jd
j

. . . . . .

j1 jq jrilik
i j

Fig. 7. Find two most similar closed subforests between F [i] and G[j]



172 Z. Liang and K. Zhang

We give the definition for the fourth removing edit similarity ΦRR(, ) where
f ∈ subf(F [l(i1)..m], {i1, . . . ir1(m)}) and g ∈ subf(G[l(j1)..n], {j1, . . . jr2(n)}):

ΦRR(F [l(i1)..m], G[l(j1)..n]) = max{φ(F [l(i1)..m] \ f,G[l(j1)..n] \ g])}.

Now we can define the score Ψ(F [l(i1)..m], G[l(j1)..n]) for F [l(i1)..m] and
G[l(j1)..n] using ΦRR(, ) for closed subforests as follows:

max{ΦRR(F [l(iu)..m], G[l(jv)..n]) | 1 ≤ u ≤ r1(m) + 1, 1 ≤ v ≤ r2(n) + 1}.

With these definitions, what we want to compute for node i, j is
max{Ψ(F [l(i1)..iu], G[l(j1)..jv ]) | 1 ≤ u ≤ di, 1 ≤ v ≤ dj}. For the calcula-
tion of Ψ(F [l(i1)..m], G[l(j1)..n]), we have the following lemma.

Lemma 4. Let i, j, F , and G be defined as above, then
(1) Ψ(F [i1], G[j1]) = Φrr(F [i1], G[j1]).
(2) If i1 < m ≤ idi and n = j1, then

Ψ(F [l(i1)..m], G[j1])

= max

⎧⎪⎪⎨
⎪⎪⎩

Ψ(F [l(i1)..l(m)− 1], G[j1]), if m /∈ {i2, . . . , idi}
Ψ(F [l(i1)..m− 1], G[j1]) + s(f [m], λ),
Θ1(F [l(i1)..m], G[l(j1)..j1 − 1]) + s(λ, g[j1]),
Φrr(F [m], G[j1]).

(3) If m = i1 and j1 < n ≤ jdj , then

Ψ(F [i1], G[l(j1)..n])

= max

⎧⎪⎪⎨
⎪⎪⎩

Ψ(F [i1], G[l(j1)..l(n)− 1]), if n /∈ {j2, . . . , jdj}
Θ2(F [l(i1)..i1 − 1], G[l(j1)..n]) + s(f [i1], λ),
Ψ(F [i1], G[l(j1)..n− 1]) + s(λ, g[n]),
Φrr(F [i1], G[n]).

(4) If i1 < m ≤ idi and j1 < n ≤ jdj , then

Ψ(F [l(i1)..m], G[l(j1)..n])

= max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
Ψ(F [l(i1)..l(m)− 1], G[l(j1)..n]), if m /∈ {i2, . . . , idi}
Ψ(F [l(i1)..m], G[l(j1)..l(n)− 1]), if n /∈ {j2, . . . , jdj}
Ψ(F [l(i1)..m− 1], G[l(j1)..n]) + s(f [m], λ),
Ψ(F [l(i1)..m], G[l(j1)..n− 1]) + s(λ, g[n]),
Ψ(F [l(i1)..l(m)− 1], G[l(j1)..l(n)− 1])

+ Φrr(F [l(m)..m− 1], G[l(n)..n− 1]) + s(f [m], g[n]).

Proof. Please refer to [9] for detail.

With above lemmas, we can calculate max{Ψ(F [l(i1)..iu], G[l(j1)..jv]) | 1 ≤ u ≤
di, 1 ≤ v ≤ dj} using dynamic programming. However, we have to do this
for every node i of F and every node j of G, respectively. Because for each



Algorithms for Forest Local Similarity 173

child subtree of F [i] and G[j], the calculation starts at i1 (the leftmost child
of i) and j1 (the leftmost child of j) instead of l(i1) and l(j1) respectively, and
Φrr(F [i1], G[j1]), Θ1(F [l(i1)..m], G[j1]) and Θ2(F [i1], G[l(j1)..n]) are needed in
the calculation. It is better to do the calculations for all the nodes on the paths
of F and G from the leaves to their nearest ancestor key roots together. In this
way, we do the computation layer by layer on both F and G.

F[i]

1st layer

2nd layer

i
e=i1

a=l(i1)

b

h

c

d

f g

Fig. 8. Layer and path representation

We shall need the following definitions: lp(i): a set which contains the nodes
on the leftmost path of F [i] except the root i; layer(i): a set which contains
all of the sibling nodes of nodes in lp(i) including lp(i). In the Fig. 8, the bold
line is the leftmost path of F [i], the black nodes {a, e} belong to lp(i) and the
black and gray nodes {a, d, e, h} belong to layer(i). With these definitions, we
can extend Lemma 3 - 4 from two nodes to two leftmost paths of two key roots
of F and G, respectively.

Our algorithm for the LFS problem is a dynamic programming algorithm.
In the first stage of our algorithm, we call FRS algorithm

RemovingSimilarity(F,G) in Section 3.1 for F and G to get Φrr(F [i′], G[j′])
and Φrr(F [l(i′)..i′− 1], G[l(j′)..j′− 1]) (1 ≤ i′ ≤ p(F ), 1 ≤ j′ ≤ p(G)) needed in
ForestRemovingSimi(, ), Theta1(, ), Theta2(, ) and Psi(, ) in the second stage.

In the second stage, the key roots of F and G are sorted in the increasing order
and put in two arrays KF and KG, respectively. For any key root i of F and any
key root j of G, we first call LeftmostPath(i, j) to get lp(i) and lp(j) needed in
Theta1(, ), Theta2(, ) and Psi(, ); we second call ForestRemovingSimi(, ) for
F [i] and G[j] to get Φrr(, ) needed in Theta1(, ), Theta2(, ) and Psi(, ); then we
call Theta1(, ) and Theta2(, ) for F [i] and G[j] to get Θ1(, ) and Θ2(, ) needed
in Psi(, ); and at last we call Psi(, ) for F [i] and G[j].

We can now show our algorithm for finding two most closed subforests between
F and G.

Theorem 2. Algorithm LFS correctly computes the cost of an optimal solution.

Proof. In Algorithm LFS, because of step 1, all the Φrr(i
′, j′) used in step 7, 8,

9, 10 are available. At the same time, all the Φrr(F [l(i′)..i′ − 1], G[l(j′)..j′ − 1])
used in step 8, 9, 10 are available.



174 Z. Liang and K. Zhang

Input: Two forests F and G.
Output: max{Ψ(F [l(i1)..il], G[l(j1)..jr ]) | i1 is il’s leftmost sibling, j1 is jr’s

leftmost sibling}.
1 Call RemovingSimilarity(F,G) according to Lemma 1
2 for i′ := 1 to |KF | do
3 for j′ := 1 to |KG| do
4 i := KF [i

′]
5 j := KG[j

′]
6 Call LeftmostPath(i, j)
7 Call ForestRemovingSimi(i, j) according to Lemma 1
8 Call Theta1(i, j) according to Lemma 3
9 Call Theta2(i, j) according to Lemma for Θ2(i, j)

10 Call Psi(i, j) according to Lemma 4

11 end

12 end

Algorithm LFS: Find two most closed subforests between F and G

Because of step 6, all the lp(i) and lp(j) used in step 8, 9, 10 are available.
Because of step 7, all the Φrr(, ) used in step 8,9 are available.
Because of step 8, all the Θ1(, ) used in step 10 are available.
Because of step 9, all the Θ2(, ) used in step 10 are available.

Theorem 3. Our algorithm for LFS problem can be implemented to run in
O(|F | · |G| ·min{DF , LF} ·min{DG, LG}) time and O(|F | · |G|) space.

Proof. The time and space complexity of the computation for the removing simi-
larity of all subtree pairs of F and G are O(|F |·|G|·min{DF , LF}·min{DG, LG})
and O(|F | · |G|) respectively, due to Theorem 1.

For one key root i of F and one key root j of G, the time and space complexity
for LeftmostPath(i, j), ForestRemovingSimi(i, j), Theta1(i, j), Theta2(i, j),
and Psi(i, j) are the same: O(|F [i]| · |G[j]|). And for all key roots of F and G, the
time complexity is O(min{DF , LF} · min{DG, LG}) and the space complexity
is O(|F | · |G|) due to Lemma 7 in [15]. Therefore, the total time and space
complexity of our algorithm are O(|F | · |G| ·min{DF , LF} ·min{DG, LG}) and
O(|F | · |G|), respectively.

4 Conclusion

In this paper, we studied the local forest similarity problem. We presented two
efficient algorithms for this problem when sub-forests are sibling subforests and
closed subforests. These algorithms could be used to locate structurally similar
regions in RNA secondary structures or in other hierarchical data.

When the inputs are two sequences represented as linear forests (trees), our
second algorithm can be reduced to the sequence local alignment algorithm [12].



Algorithms for Forest Local Similarity 175

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0. W3C Recommendation 6 (2000)

2. Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric.
Theor. Comput. Sci. 410(24-25), 2365–2376 (2009)

3. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An Optimal Decomposition
Algorithm for Tree Edit Distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

4. Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA sec-
ondary structures. In: Proceedings of the IEEE Computational Systems Bioinfor-
matics Conference, pp. 159–168 (2003)

5. Jansson, J., Hieu, N.T., Sung, W.K.: Local Gapped Subforest Alignment and Its
Application in Finding RNA Structural Motifs. Journal of Computational Biol-
ogy 13(3), 702–718 (2006)

6. Jansson, J., Peng, Z.: Algorithms for Finding a Most Similar Subforest. In: Lewen-
stein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 377–388. Springer,
Heidelberg (2006)

7. Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit.
Theoretical Computer Science 143, 137–148 (1995)

8. Motifs database, http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi
9. Liang, Z.: Efficient Algorithms for Local Forest Similarity. Thesis(M.Sc), School

of Graduate and Postdoctoral Studies, University of Western Ontario, London,
Ontario, Canada (2011)

10. Peng, Z.: Algorithms for Local Forest Similarity. In: Deng, X., Du, D.-Z. (eds.)
ISAAC 2005. LNCS, vol. 3827, pp. 704–713. Springer, Heidelberg (2005)

11. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using
tree comparisons. Computer Applications in the Biosciences 6(4), 309–318 (1990)

12. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

13. Wang, J., Shapiro, B.A., Shasha, D., Zhang, K., Currey, K.M.: An algorithm for
finding the largest approximately common substructures of two trees. IEEE Trans.
Pattern Anal. Mach. Intell. 20(8), 889–895 (1998)

14. Zhang, K.: Computing similarity between RNA secondary structures. In: Proceed-
ings of IEEE International Joint Symposia on Intelligence and Systems, Rockville,
Maryland, pp. 126–132 (May 1998)

15. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

16. Zhang, K., Zhu, Y.: Algorithms for Forest Pattern Matching. In: Amir, A., Parida,
L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 1–12. Springer, Heidelberg (2010)

http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi


Speedup of RNA Pseudoknotted Secondary

Structure Recurrence Computation
with the Four-Russians Method

Yelena Frid and Dan Gusfield

Department of Computer Science, U.C. Davis

Abstract. While secondary pseudoknotted structure prediction is com-
putationally challenging, such structures appear to play biologically im-
portant roles in both cells and viral RNA [1]. Restricting the class of
possible structures and then finding the optimal structure for that re-
stricted class is a common method employed to deal with the computa-
tional complexity.

We derive a practical and worst-case speedup algorithm using the
Four-Russians method for the O(n6) time Rivas&Eddy Algorithm [2]
describing the broadest set of structures. Fast R&E algorithm finds the
optimal Rivas&Eddy fold in O(n6/q)-time, where q ≥ log(n).

Because the solution matrix produced by Fast R&E algorithm is iden-
tical to the one produced by the original Rivas&Eddy algorithm, the
contribution of the algorithm lies not only in its stand alone practicality
but also in its ability to be implemented alongside heuristic speedups,
leading to even greater reductions in time. Our approach is the first to
achieve a Ω(log(n)) time speedup without reducing the set of possible
Rivas&Eddy pseudoknotted structures. The analysis presented here of
the original algorithm could be used to improve other pseudoknot algo-
rithms with similar recurrences.

1 Introduction

The algorithmic goal of structure prediction is motivated by the understanding
that RNA structure helps to determine function. It has been particularly observed
that in eukaryotic genomes ncRNA (Non-coding RNA) function is seen more
clearly from structure [3–5]. Pseudoknot structures, specifically, play an impor-
tant role in transcription regulation, as well as RNA splicing and catalysis [1, 6].
While algorithms that compute the optimal pseudoknot free fold for RNA1[7] are
solved in polynomial timeO(n3) [7–9] orO(n3/log(n)) [10] depending on problem
formulation, the optimal secondary structure including pseudoknots computation
is NP-hard[11]. However, there are available dynamic programs that find the opti-
mal secondary structure of RNA for a subclass of pseudoknotted structures [2, 12–
18]. These algorithms range from O(n4) to O(n6) asymptotic computation time

1 A fold does not contain a pseudoknot if for seq(1..n) an RNA sequence of size n the
folding set for seq does not contain both (i,j) and (i’,j’) if i < i′ < j < j′.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 176–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



RNA Folding Using Four-Russians 177

for a sequence of size n. The classification of RNA structure prediction algorithms
based on the size of possible structures has been examined byCondon et al.[19] and
Saule et al. [20]. The Four-Russians technique, which has been used to speedup
many dynamic programs has not yet been applied to the pseudoknotted secondary
structure problem.

Secondary structure algorithms for RNA do not easily lend themselves to
the traditional Four-Russians technique of performing some preprocessing for a
subset of all possible inputs and then computing using that preprocessing. The
Four-Russians speedup technique for non-pseudoknotted RNA secondary struc-
ture, discussed in Frid and Gusfield [10], employed simultaneous and interleaved
computation and preprocessing. Unfortunately, pseudoknotted secondary struc-
ture nesting is not guaranteed, thus requiring more analysis in order to execute
preprocessing, and computation. Through the analysis presented here featuring
encoding some optimal structures, preprocessing and sped up computation be-
comes possible. Rivas&Eddy Algorithm describes the broadest set of structures
through its recurrences and has an asymptotic time bound of O(n6) for an RNA
sequence of size n. We present Fast R&E algorithm which applies the Four-
Russians technique to a modified maximum matching Rivas&Eddy Algorithm.
Our approach is the first to achieve a Ω(log(n)) speedup without reducing the
set of possible structures.

Since the solution set of Fast R&E is identical to the solution set of the original
Rivas&Eddy Algorithm, both algorithms contain equivalent limitations: the set
of possible structures is restricted and the optimal structure chosen is dependent
on the scoring scheme. Therefore, like in the original algorithm, there is a need to
apply scoring schemes that lead to prediction of biologically accurate structures.
Our approach is also compatible with Mohl et al. [21] speedup, which based on
some simple pruning, in practice achieves a linear speedup of the Reeder and
Giegerich Algorithm [15].

The Fast R&E algorithm computes pseudoknotted RNA secondary structure
in O(n6/log(n)) time for the standard Four-Russians speedup and in
O(n6/log2(n)) time based on Pinhas et al.[22] and Williams et al. [23]. The ideas
that allow for both a log(n) and a log2(n) speedup are examined in the following
sections.

2 The Basic Optimal Folding Problem

Let seq be an RNA sequence over the four-letter alphabet {A,U,C,G}, where
each letter in the alphabet represents an RNA nucleotide. Let nucleotides x,
y at position i and j in the sequence be a permitted pair of nucleotides if
(x, y) or (y, x) ∈ {(A,U), (C,G), (G,U)}. For a given sequence seq we define the
folding set M as a set containing disjoint permitted pairs of sites in sequence
seq. Let β be a scoring scheme such that β(i, j) returns the contribution of
pairing nucleotide x at site i with the nucleotide y at site j. The basic scoring
scheme sets β(i, j) equal to ′1′ if (x, y) is a permitted pair with |j − i| > d
and set β(i, j) to ′0′ otherwise. Richer scoring schemes β allow more biologically



178 Y. Frid and D. Gusfield

significant information to be captured by the algorithm. Let foldScore be the

score associated with a folding set M where foldScore =
∑

(i,j)∈M

β(i, j).

The optimal folding problem: Find the set M for which foldScore is maxi-
mum under some constraints. Unconstrained, there is an exponential number of
possible sets M .

3 Rivas&Eddy Algorithm

We are interested in the optimal folding problem under the constraints of the
Rivas&Eddy recurrence relations. Rivas&Eddy recurrences examine the largest
subset of pseudoknot structures for which an optimal solution can be found in
polynomial time. We will make use of a maximization of base pairs version of
the Rivas&Eddy Algorithm for folding, as described by Mohl et al. [21] . That
version maximizes the pair contributions to the fold instead of minimizing the
energy of a fold.

3.1 Rivas&Eddy Recurrences

Let S[i, j;k, l], where i < j < k < l ≤ N , contain the foldscore for optimal
Rivas&Eddy fold for the subsequence seq(i..l)2, where each nucleotide in position
r such that r ∈ j + 1..k − 1 is unpaired. Clearly, S is a four dimensional matrix.

Fig. 1. Simplified S matrix recurrence as seen in Lyngso et. al. [11]

Let W[i,j] be the optimal Rivas&Eddy foldScore for subsequence seq(i, j). We
make use of the recurrences describing the different possible fold options, as seen
below:

W [i, j] = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rule a. W [i, j − 1]

Rule b. W [i + 1, j − 1] + β(i, j)

Rule c. maxk∈{i+1,...,j−1}W[i, k] + W[k + 1, j]

Rule d. maxj′,k′,l′∈{i+1,...,j−1}∧{j′<k′<l′}S[i, j
′; k′, l′] + S[j′ + 1, k′ − 1; l′ + 1, j]

(1)

2 Notational note: All subsequences will be represented as seq(a..b) where a is the
starting index of the subsequence and b is the index of the final character in that
subsequence.



RNA Folding Using Four-Russians 179

S[i, j; k, l] = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rule A. max{S[i + 1, j; k, l], S[i, j − 1; k, l], S[i, j; k + 1, l], S[i, j; k, l − 1]}
Rule B. maxj′∈{i+1,...,j−1}W[i, j

′] + S[j′ + 1, j; k, l]

Rule C. maxj′∈{i+1,...,j−1}W[j
′, j] + S[i, j′ − 1; k, l]

Rule D. maxl′∈{k+1,...,l−1}W[k, l
′] + S[i, j; l′ + 1, l]

Rule E. maxl′∈{k+1,...,l−1}W[l
′, l] + S[i, j; k, l′ − 1]

Rule F. maxj′∈{i+1,...,j−1}∧k′∈{k+1,...,l−1}}S[i, j
′; k′ + 1, l] + S[j′ + 1, j; k, k′]

Rule G. maxj′∈{i+1,...,j−1}∧k′∈{k+1,...,l−1}}S[i, j
′; k, k′ − 1] + S[j′ + 1, j; k′, l]

Rule H. max{{i′,j′}∈{i+1,...,j−1}∧{i′<j′}S[i, i
′; j′ + 1, j] + S[i′ + 1, j′; k, l]

Rule I. max{{k′,l′}∈{k+1,...,l−1}∧{k′<l′}S[k, k
′; l′, l] + S[i, j; k′ + 1, l′ − 1]

(2)

Rules c, d for recurrence of matrix W and Rules B to I for the recurrence of
matrix S maximize the sum of the foldScores for two sections or the RNA string.
Let the section described first in each rule be called the head of the split and
the second score corresponding to an optimal foldScore for a subsequence be
called the tail . For example in Rule I S[k, k′; l′, l]︸ ︷︷ ︸

head

+S[i, j; k′ + 1, l′ − 1′]︸ ︷︷ ︸
tail

. We

could interpret each rule as finding the optimal head and tail sum under certain
conditions as seen in Figure 1. In the above recurrences Rules c,d, and Rules B
to I the underlined part of each rule is the head, and the non-underlined is the
tail.

3.2 Rivas&Eddy Algorithm

While many orders of evaluation are possible for these recurrences, we explic-
itly describe an order of evaluation that will make the Four-Russians speedup
possible. Any evaluation not shown below can be done in any logical order.

The W and S matrices can be computed by an algorithm that goes through
all the possible subsequences of seq finding the optimal Rivas&Eddy fold for
each. As shown in Rivas&Eddy Algorithm below, the recurrences are evaluated
in increasing order of the right endpoint of seq.

Rivas&Eddy Algorithm Compute Matrix W::

Initialization: W=0; S(i, i; k, k)=β(i, k) or S(i, j; k, l) = 0
for j=1 to N do

for i=j − 1 to 1 do
Compute Matrix S given (i, j) (Rules A to I)
branch max= compute Rule c(i, j) (Rule c)
max Rule d = compute Rule d(i, j) (Rule d)
W[i,j]=max(Rule a, Rule b, branch max, max Rule d)

Compute Matrix S given (i, l)::

for k=l − 1 to i+ 1 do
for j=i+ 1 to k − 1 do

S[i,j;k,l]=max(Rules A to I);

The score corresponding to the optimal Rivas&Eddy fold is found in W [1, n].
The overall asymptotic time to compute Rivas&Eddy Algorithm is equal to the



180 Y. Frid and D. Gusfield

total time taken to compute Rules a to d for the W matrix and Rules A to I
for the S matrix. The total asymptotic time results in { O(n2 ∗O(Rules a to d))
+ O(n4 ∗ O(RulesAtoI)) } or O(n6). Compute Matrix S give(i,j) call is the
bottleneck of the matrix W computation. For a specific i, j Compute Matrix S
takes O(n4) time. Within Compute Matrix S the computations of Rules F-I take
O(n2) time and are the bottlenecks. If you we could reduce the computation
time of Rules F-I from O(n2) to O(n2/q), the overall asymptotic time of the
entire algorithm would improve to O(n6/q).

We present the Fast R&E algorithm that, not only reduces the computation
time for the bottleneck Rules F to I, but for all the Rules B to I, as well as
Rule c and Rule d by a factor of q. This will lead to an overall speedup of
O(n6/q) where q is log(n) for the standard Four-Russians speedup. A further
improvement of log2(n) maybe achieved, for the Four-Russians implementation
of Pinhas et al. [22].

4 Conceptual Speedup of Rivas&Eddy

For simplicity of exposition we develop the speedup for Rule I. Rule I computes
in 0(n2) time and is one of the bottleneck computations. The analysis presented
below leading to the speedup is then generalized to all the Rules. Given some
i, j, k, l, Rule I can be computed by the following two loops:

compute Rule I for i, j, k, l::

for l′ = l − 1to k + 1 do
for k′ = k + 1 to l′ − 1 do

rule I max=max (rule I max, S[k, k′; l′, l]+S[i, j; k′+ 1, l′− 1])

We conceptually divide all the possible index points of seq into sets of size q
called Mgroups. Let Mg=0 be the first such group that contains the possible
index points {0, 1, ...q − 1}, let Mg=1 contain {q, ...2q − 1} and so on ... the last
group of which is Mg=n/q = {n− q, ...n− 1}. In general:

Mg = {g · q, g · q + 1, ...g · q + q − 1}

Lets define the function K∗(RuleX,Y,Mg) where RuleX ∈{Rule b - d, Rule
B - I} and Y is a set of indexes referencing seq that correspond to the partic-
ular Rule X. Let K∗(RuleX,Y,Mg) return some index z, where z ∈ Mg and
maximizes Rule X under the Y constraint. For example:

K∗( Rule I, {i, j, k, l, l′},Mg)::
for k′ ∈ Mg

return k′ such that max{S[k, k′; l′, l]+S[i, j; k′+ 1, l′− 1]}

Incorporating the K∗-function into the computation of each Rule does not
change the number of head and tail combinations examined. For example, the
computation of Rule I:



RNA Folding Using Four-Russians 181

compute Rule I for i, j, k, l::

for l′ = l − 1to k + 1 do
for g = k+1

q
to l′−1

q
do

k′ = K∗( Rule I, {i, j, k, l, l′},Mg)
rule I max=max (rule I max, S[k, k′; l′, l]+S[i, j; k′+ 1, l′− 1])

The K∗-function examines overall O(q) head and tail combinations, returning
the index in Mgroup Mg that results in the maximum sum. Therefore, Rule I

compares O(n
2

q ·O(K∗)) head and tail combinations, totaling in O(n2) compar-
isons.

4.1 Breaking Up S and W into q Size Vectors

Let us conceptually break the solution matrices S, and W into vectors of size q
such that for each Rule there is a vector that corresponds to the set of tails for
the indexes in Mg. For Rule I let Vg be a q size vector that contains the possible
tails for the indexes k′ in Mg. For a particular i, j, l′ and Mg, the tails examined
by the K∗-function are { S[i, j; gq + 1, l′ − 1]) ... S[i, j; gq + q, l′ − 1] }.

Hence, Vg ={Vg(1) = S[i, j; gq + 1, l′ − 1], ... Vg(q) = S[i, j; gq + q, l′ − 1]}.

More precisely for Rule I : Vg(m+ 1− gq) = S[i, j;m+ 1, l′ − 1].

In general for some i, j, k, l, g the vector Vg of size q indexed on x ∈ {1, ..., q} is
defined for each rule as follows:

For Rule D and I: Vg(x) = S[i, j; gq + x, l];
For Rule B, F , G and H : Vg(x) = S[gq + x; j; k, l];
For Rule C: Vg(x) = S[i, gq + x− 2; k, l];
For Rule E: Vg(x) = S[i, j; k, gq + x− 2].

We can then rewrite the computation of K∗-function replacing the input set of
indexes Mg with the vector Vg of values for the tails. We will also add the value
g to the inputs, which references which Mgroup we are maximizing.

K∗(Rule I, { ��i, j , k, l, l′}, g, Vg)::

for x = 1 to q

k′ = gq + x− 1

return k′ such that max {S[k, k′; l′, l]+ Vg(x)}

Note that index i, j are no longer input to the K∗-function for RuleI. as the
values of the scores reference by these indexes are stored in Vg

Fact 1. If x is the index point that leads to the maximum of the sum of
S[k, k′; l′, l] + Vg(x) where k′ = gq + x − 1 then k′ is also the index point that
leads to the maximum sum of S[k, k′; l′, l] + S[i, j;k′ + 1, l′− 1] where k′ ∈Mg.



182 Y. Frid and D. Gusfield

4.2 Encoding

Optimal Rivas&Eddy scores stored in S[i, j;k, l] and S[i, j;k + 1, l] can differ
by the effect of only one more nucleotide i.e. seq[k+1]. Therefore, we can observe
that for the scoring scheme and the recurrences of the Rivas&Eddy Algorithm,
|S[i, j; k, l]−S[i, j; k+1, l]| belongs to a finite set of differences D, where D is the
set of scores created as the result of the Scoring function β. The cardinality or
size of |D| is O(1) as a function of n. For the simple β scoring function of +1 for
every permitted pair and 0 otherwise, the D set is equal to {0, 1} and therefor
|D| = 2.

For the Vg vectors of Rule I the base or smallest element of the vector is
S[i, j; gq + q, l]. Let Eg be a q size vector of differences from the base of Vg.
For Rule I, we define Eg(x) = (S[i, j; a+ x, l]− S[i, j; a+ q, l]︸ ︷︷ ︸

base

), where a = gq.

For a particular i, j, k, l we can create and store all the Eg vectors as soon as
the corresponding values in the S matrix are computed. Once computed, retrieval
of any desired Eg clearly takes O(1) time. The overall overhead for encoding the
S matrix into a set of E matrices for the entire algorithm requires an addition
of O(n4) time.

Fact 2 If x is the index point that leads to the maximum of the sum of
S[k, k′; l′, l]+Eg(x) where k′ = gq+x−1 then x is also the index point that leads
to the maximum sum of S[k, k′; l′, l]+Vg(x). Based on Fact 1,K∗(RuleI, {k, l, l′},
Mg) will therefore return k′.

K∗(Rule I, {k, l, l′}, g,Eg)::
for x = 1 to q

k′ = gq + x− 1
return k′ such that max {S[k, k′; l′, l]+Eg(x)}

We can now incorporate encoded Eg vectors in the compute Rules functions.
For example:

compute RuleI for i, j, k, l::

for l′ = l − 1to k + 1 do
for g = k+1

q to l′−1
q do

retrieve Eg

k′ = K∗(Rule I, {k, l, l′, }, g, Eg )
rule I max=max (rule I max, S[k, k′; l′, l]+S[i, j; k′ + 1, l′− 1])

For Rule I if K*()-function could be computed in O(1) time, the asymptotic
run-time of each rule would be reduced to O(n2/q).



RNA Folding Using Four-Russians 183

Introducing table R. Let R be a table such that R[X,Y, g, E] contains the
output to the K∗(X,Y, g, Eg)-function. For example, R[I, {k, l, l′}, g,Eg] = k′

where k′ is the index point that leads to the maximum of the sum of S[k, k′; l′, l]+
Eg(x), where x = k′ − gq + 1. Clearly,

K∗(Rule I, {k, l, l′}, g, Eg) = R[I, {k, l, l′}, g, Eg].

We, therefore, can replace all calls to function K∗ with references into table R.
The precomputation of table R, developed below, will allow to achieve the

Ω(q) time speedup.

5 Precomputing the R Table

Assume the function call Compute Matrix S given(1,n) has been made, leading
the variables i, l to equal: i = 1; l = n. During the k = n−1 iteration of the outer
loop, the inner loop computes optimal foldscore for S[1, j ; n− 1, n] where j =
2, 3... and so on. Assume that the inner loop has completed the j = q−1 iteration.
Hence, we have an optimal solution for S[1,1;n − 1, n] to S[1, q − 1;n − 1, n].
These values correspond to the heads of g = 0 for Rules d, F,G,H, I. Therefore
the following algorithm precomputes K∗(Rule X, {1, n−1, n, }, g = 0, Eg=0) for
all Rules X ,for all possible Eg vectors, where X ∈ {d, F,G,H, I} and stores the
result in R-table.

for each difference vector v of size q − 1 such that ∀1<x≤q−1v[x] ∈ D do
compute (an encode vector E from v) 3

for x=1 to q do
t=g · q + x− 1
let max i be the index t that makes S[1, t;n− 1, n] +E(x) is maximum.

set for all X ∈ {d, F,G,H, I} R(X, {1, n− 1, n}, g, E)=max i

The algorithm above makes use of the fact that you can enumerate all possible
sets of differences Eg=0 in |D|q-time.

We can generalize this algorithm for any g, as well as any i, k, l by creating an
S update table function. Assume we have completed some Mg iteration of j (
i.e. we have completed j from gq to gq+ q− 1). We therefore have the scores for
all the heads of Rules d, F-I for Mgroup Mg. Then an S update table function
can precompute which the index in Mg would give the maximum score for every
possible variation of vector E.

3 set E(q) = 0 and ∀1<x�−1E(x) =
x∑

i=q−1

v[i]



184 Y. Frid and D. Gusfield

S update table function (i,k,l,g)::
for each difference vector v size q−1 such ∀1<x≤q−1v[x] ∈ D do

compute ( an encode vector E from v)
for x=1 to q do

t=g · q + x− 1
max i=t if S[i, t; k, l] +E(x) is max.

for each Rule X ∈ {d, F,G,H, I} do
set R(X, {i, k, l}, g,E) = max i

Compute fast Matrix S for(i, l)::
for k=l − 1 to i+ 1 do

for g= i+1
q

to k−1
q

do
for j = g · q to gq + q−1 ∧ j < k do

S[i,j;k,l]=max(Rules A-I);
call S update table(i,k,l,g)

S update table function would be called by the Compute fast Matrix S for (i,l)
algorithm O(n ·n/q) times and each call would take O(|D|q · q) time to compute.
The Compute fast Matrix S for(i,l) algorithm is presented above. While an extra
loop iterated over g was added, it is clear that the call to maximize Rules A to
I is made still only O(n2) times.

We would need to create a similar W1 update table function Rules c, B, and
D and W2 update table function for Rules C,E. For example Rules d, F,G,H
the precomputation occurs when the heads for each Mgroup have their corre-
sponding optimal solutions.

W1 update table function(g) ::
for each vector v size q − 1 such ∀1<x≤q−1v[x] ∈ D compute E from v do

for i = 0 to gq − 1
for x = 1 to q

max i=t=gq+ x− 1 if W [i, t] + E(x) is max
for each Rule X∈{c, B,D} set R(X, {i}, g,E) = max i

The total asymptotic time for a single call to the W1 update table function(g)
function is O(|D|q · n · q).

W2 update table function(j,g) ::
for each vector v size q − 1 such ∀1<x≤q−1v[x] ∈ D compute E from v do

for x = 1 to q
max i=t=gq+ x− 1 if W [t, j] + E(x) is max

for each Rule X∈{C,E} set R(X, {i}, g, E) = max i

The total asymptotic time for a single call to the W2 update table function(g)
function is O(|D|q · q).



RNA Folding Using Four-Russians 185

6 Fast R&E Algorithm

Compute Matrix W::
for g = 0 to N

q
do

for j=gq to gq + q − 1 do
for i=j − 1 to 1 do

Compute Matrix S for (i, j)
branch max= compute Rule c(i, j)
max Rule d = Rule d(i, j)
W[i,j]=max(Rule a, Rule b, branch max, max Rule d)
if (i%q == 0) W2 update table(j,g) (Updating Table R for Rules C,E)

W1 update table(g) (Updating Table R for Rules c,B,D)

6.1 Asymptotic Analysis of Fast R&E Algorithm

For a particular g the Fast R&E calls the W1 update function O(1) times.
During one iteration of g the W2 update function is called O(n) times. The total
overhead for precomputing Rules c, B,D and Rules C,E is 0((n/q) · [n|D|qq +
|D|qnq]) time, or simplified O(n2 ∗ |D|q) time. For a particular i, j algorithm
computes Rules A to I with function Compute fast Matrix S in O(n4/q) time
and calls the S update function to precompute Rules d, F,G,H and I O(n2/q)
times. In total, asymptotic run-time for all calls made to Compute Matrix S is
O(n6/q) +O(n4 ∗ |D|q).

Finally for a particular i, j Rule c(i, j) is computed in O(n/q) time, Rule d is
computed in O(n3/q) time. The total asymptotic time for the entire Fast R&E
Algorithm is O(n6/q + n3/q + n5/q))︸ ︷︷ ︸

computation

+ O(n2|D|q) +O(n4|D|q)︸ ︷︷ ︸
preprocessing

If q=logb(n) where the log base b is constrained by |D| < b < N then the
asymptotic run-time is O(n6/log(n)).

Memory: The original Rivas&Eddy Algorithm requires O(n4)-space. For sim-
plicity of exposition we chose to describe the speedup using the preprocessing of
all possible tails and that requires a factor of O(|D|q)-space for table R. When
preprocessing both heads and tails table R requires O((|D|2q))- space in total. If
preprocessing all possible heads for a specific tail there is O(|D|q)-space require-
ment for table R.

Empirical Results: We ran empirical tests comparing Fast R&E Algorithm
to the Rivas&Eddy Algorithm for sequences ranging in length from 100-225 nu-
cleotides. We used the 0,1 scoring scheme setting |D|=2. The average times for 15
sequences of each length are reported below. The standard deviation for all tests
is within 5 seconds. The theoretical speedup for a sequence of 100 nucleotides is
6.64 (log2.001(100) = 6.64) we achieved 2.33 time improvement. For a sequence
size 225 nucleotides we achieved a 2.28 improvement compared to the theoretical
7.96 potential speedup.



186 Y. Frid and D. Gusfield

size(n) q Rivas&Eddy run-time(seconds) Fast R&E (seconds) ratio
100 3 776.0 333.30 2.32
150 3 3,915.0 2,178.1 1.79
200 3 20,544.0 9,493.33 2.16
225 3 40,687.31 17,782.04 2.28

Conclusion and Future Work. We presented the Four-Russians speedup of
Ω(log(n)) for the algorithm that examines broadest set of polynomial time com-
puted pseudoknotted secondary structures - the Rivas&Edddy Algorithm. The
analysis explored here could be used on other pseudoknotted algorithms [12–18].
Because the solution matrices of Fast R&E is the same as the solution matrices
of the original Rivas&Eddy this algorithm could be used in conjunction with
other heuristic speedups [21]. It is also interesting to note that the preprocessing
done here takes at most O(n5/log(n)) leading to the question of whether through
further preprocessing an even great speedup could be achieved.

Acknowledgments. This research was partially supported by grant IIS-0803564
from the National Science Foundation.

References

1. Condon, A., Jabbari, H.: Computational prediction of nucleic acid secondary struc-
ture: Methods, applications, and challenges. Theor. Comput. Sci. 410(4-5), 294–301
(2009)

2. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-
diction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068
(1999)

3. Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and
clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)

4. Rose, D., Hackermuller, J., Washietl, S., Reiche, K., Hertel, J., FindeiSZ, S.,
Stadler, P., Prohaska, S.: Computational rnomics of drosophilids. BMC Ge-
nomics 8(1), 406 (2007)

5. Torarinsson, E., Yao, Z., Wiklund, E.D., Bramsen, J.B., Hansen, C., Kjems,
J., Tommerup, N., Ruzzo, W.L., Gorodkin, J.: Comparative genomics beyond
sequence-based alignments: RNA structures in the encode regions. Genome
Res. 18(2), 242–251 (2008)

6. Liu, C., Song, Y., Shapiro, L.: RNA Folding Including Pseudoknots: A New Param-
eterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli,
S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 310–322. Springer, Heidelberg
(2007)

7. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop
matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

8. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bulletin
of Mathematical Biology 46(4), 591–621 (1984)

9. Waterman, M.S., Smith, T.F.: RNA secondary structure: A complete mathematical
analysis. Math. Biosc. 42, 257–266 (1978)



RNA Folding Using Four-Russians 187

10. Frid, Y., Gusfield, D.: A Simple, Practical and Complete O( n3

log n
)-Time Algorithm

for RNA Folding Using the Four-Russians Speedup. In: Salzberg, S.L., Warnow,
T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97–107. Springer, Heidelberg (2009)

11. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based mod-
els. Journal of Computational Biology 7(3-4), 409–427 (2000)

12. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Applied Mathematics 104(1-3), 45–62 (2000)

13. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary
structure including pseudoknots. Journal of Computational Chemistry 24(13),
1664–1677 (2003)

14. Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free
energy minimization. Current Opinion in Structural Biology 16(3), 270–278
(2006); Nucleic acids/Sequences and topology - Anna Marie Pyle and Jonathan
Widom/Nick V Grishin and Sarah A Teichmann

15. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practi-
cal pseudoknot folding algorithm based on thermodynamics. BMC Bioinformat-
ics 5(1), 104 (2004)

16. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining gram-
mars for RNA structure prediction. Theoretical Computer Science 210(2), 277–303
(1999)

17. Deogun, J.S., Donts, R., Komina, O., Ma, F.: RNA secondary structure prediction
with simple pseudoknots. In: Chen, Y.-P.P. (ed.) APBC. CRPIT, vol. 29, pp. 239–
246. Australian Computer Society (2004)

18. Cao, S., Chen, S.-J.: Predicting structures and stabilities for h-type pseudoknots
with interhelix loops. RNA 15(4), 696–706 (2009)

19. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseu-
doknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)

20. Saule, C., Régnier, J.-M.S.M., Denise, A.: Counting RNA pseudoknotted struc-
tures. Journal of Computational Biology 18(10), 1339–1351 (2011)

21. Möhl, M., Salari, R., Will, S., Backofen, R., Sahinalp, S.C.: Sparsification of RNA
Structure Prediction Including Pseudoknots. In: Moulton, V., Singh, M. (eds.)
WABI 2010. LNCS, vol. 6293, pp. 40–51. Springer, Heidelberg (2010)

22. Pinhas, T., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Edit Distance with Duplica-
tions and Contractions Revisited. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011.
LNCS, vol. 6661, pp. 441–454. Springer, Heidelberg (2011)

23. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some prepro-
cessing required). In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 995–1001.
SIAM (2007)



An Improved Approximation Algorithm

for the Bandpass-2 Problem

Zhi-Zhong Chen1 and Lusheng Wang2

1 Division of Information System Design, Tokyo Denki University, Hatoyama,
Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 Department of Computer Science, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong SAR
lwang@cs.cityu.edu.hk

Abstract. The bandpass-2 problem (Bandpass-2, for short) is a gen-
eralization of the maximum traveling salesman problem (Max TSP, for
short). Of particular interest is the difference between the two problems,
where the edge weights in Bandpass-2 are dynamic rather than given at
the front. A trivial approximation algorithm for Bandpass-2 can achieve
a ratio of 0.5. Recently, Tong et al. [19] have presented a nontrivial ap-
proximation algorithm for Bandpass-2 that achieves a ratio of 21

40
. In this

paper, we present a new approximation algorithm that achieves a ratio
of 0.5318.

Keywords: Bandpass-2 problem, approximation algorithm, maximum
weight matching, maximum weight 2-matching, worst-case performance
ratio.

1 Introduction

Let M be a binary matrix and suppose that each column of M has a nonnegative
weight. A bandpass B in M consists of two consecutive 1’s in the same column
of M . The weight of B is the same as that of the column in which B resides.
Two bandpasses B1 and B2 are disjoint if they contain no common entry of M .
The weight of a set S of pairwise-disjoint bandpasses in M is the total weight of
bandpasses in S. The weight of M is the maximum weight of a set of pairwise-
disjoint bandpasses in M . In the bandpass-2 problem (Bandpass-2, for short),
we are given a binary matrix M and want to permute the rows of M so that
the weight of the permuted matrix is maximized. The unweighted version of
Bandpass-2 has been studied in [1, 3, 15, 19], and it has applications in optical
communication networks [1].

Let M be the incidence matrix of an edge-weighted complete undirected graph
G. Clearly, solving Bandpass-2 for M is equivalent to finding a maximum-weight
Hamiltonian path in G. In this sense, Bandpass-2 is a generalization of Max TSP
and is hence NP-hard and APX-hard because so is Max TSP [2]. Thus, we want
to design efficient approximation algorithms for Bandpass-2, just like that many

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 188–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2-Bandpass Problem 189

approximation algorithms for Max TSP have been designed in the literature
[4–6, 9–14, 16, 17].

A trivial approximation algorithm for Bandpass-2 proceeds as follows. Given
a column-weighted binary matrix M with n rows, the algorithm first constructs
a complete undirected graph G from M where the vertex set of G is {1, 2, . . . , n}
and the weight of each edge {i, j} in G is the total weight of bandpasses that can
be formed between the i-th and the j-th rows ofM . It then computes a maximum-
weightmatchingN and further permutes the rows ofM so that the two rows corre-
sponding to the endpoints of each edge inN appear consecutively in the permuted
matrix. It is easy to see that this algorithm achieves a ratio of 0.5.

Recently, Tong et al. [19] have presented a refinement on the trivial algorithm
and their algorithm achieves a ratio of 21

40 . Their idea can be sketched as follows.
First, we use M and N to modify G into another graph G′ (by deleting the
edges of N from G and decreasing the weights of some of the remaining edges).
We then compute a maximum-weight matching N ′ in G′. The subgraph of G
formed by the edges in N ∪ N ′ is a collection of vertex-disjoint paths or even
cycles and hence can be transformed into a collection P of vertex-disjoint paths
by removing one edge of the smallest weight from each cycle. Finally, we use P
to permute the rows of M so that for each path Q in P , the rows corresponding
to the vertices of Q appear consecutively in the permuted matrix.

In one word, Tong et al.’s algorithm is a matching-based algorithm. In con-
trast, all the known approximation algorithms for Max TSP are cycle-cover-based
algorithms [4–6, 9–14, 16, 17]. Intuitively speaking, computing a cycle cover C
in G is not useful for the following reason: For every two adjacent edges {i, j}
and {j, k} of C, even if we permute the rows of M so that the i-th, j-th, and
k-th rows appear consecutively (in this order), it is possible that the total weight
of edges {i, j} and {j, k} in G is twice the total weight of bandpasses that can
be formed between the i-th and the j-th rows or between the j-th and the k-th
rows. It is also not clear how to use cycle covers to improve the second step of
Tong et al.’s algorithm because N can be assumed to be a perfect matching of
G (without loss of generality) and in turn only a matching can be added to N
in order to expand N to a collection of vertex-disjoint paths. Indeed, Tong et
al. [19] ask if we can use cycle covers to obtain a better approximation algorithm
for Bandpass-2.

In this paper, we show that cycle covers can be used to design a better approx-
imation algorithm for Bandpass-2 than Tong et al.’s algorithm. More precisely,
we show that we can use cycle covers to improve the second step of their algo-
rithm. One of our key lemmas says that if N is a matching of a graph H and P is
a collection of vertex-disjoint paths of H such that no edge of N is also an edge
of a path in P , then we can partition the edge set of P into three matchings X0,
X1, and X2 such that for all j ∈ {0, 1, 2}, the edges in N ∪Xj form a collection
of vertex-disjoint paths. This lemma may be of independent interest and can be
applied to other problems. Besides this lemma, the design of our algorithm is
based on a deeper understanding of the structure of Bandpass-2 than that of
Tong et al.’s algorithm.



190 Z.-Z. Chen and L. Wang

The remainder of this paper is organized as follows. In Section 2, we prove
two general lemmas that are independent of the problem studied in this paper
(namely, Bandpass-2). In Section 3, we present our new approximation algorithm
for Bandpass-2. In Section 4, we use the two lemmas to prove that our algorithm
achieves a ratio of 0.5318.

2 Two Useful Lemmas

Throughout this section, fix an edge-weighted complete undirected graph G =
(V,E) and a matching N in G. Let n be the number of vertices in G. We assume
that n ≥ 3. For a set F of edges in G, we use w(F ) to denote the total weight of
edges in F , and use G[F ] to denote the graph (V, F ). Similarly, for a subgraph
H of G, we use w(H) to denote the total weight of edges in H .

A 2-matching of G is a subgraph of G in which the degree of each vertex
is at most 2. Note that a 2-matching is a collection of vertex-disjoint cycles or
paths. A 2-matching of G is acyclic if it does not contain any cycle (i.e., it is a
collection of vertex-disjoint paths). A 2-matching of G is a cycle cover of G if it
is a collection of vertex-disjoint cycles and contains all vertices of G.

Lemma 1. Let C be a 2-matching of G such that no edge of N is also an edge of
C. Then, we can partition the edge set of C into four matchings X0, . . . , X3 such
that G[N ∪ Xj] is an acyclic 2-matching for all j ∈ {0, . . . , 3}. Moreover, the
partitioning takes O(nα(n)) time, where α is the inverse Ackermann function.

In general, Lemma 1 cannot be improved by partitioning the edge set of C into
three matchings instead of four matchings. To see this, it suffices to consider a
concrete example, where C is just a cyle of length 4 and N consists of the two
edges connecting nonadjacent vertices in C. The next lemma says that Lemma 1
can be improved if C is acyclic.

Lemma 2. Let P be an acyclic 2-matching of G such that no edge of N is also
an edge of P. Then, we can partition the edge set of P into three matchings Y0,
Y1, and Y2 such that G[N ∪ Yj ] is an acyclic 2-matching for all j ∈ {0, 1, 2}.
Moreover, the partitioning takes O(nα(n)) time.

In general, Lemma 2 cannot be improved by partitioning the edge set of P into
two matchings instead of three matchings. To see this, it suffices to consider a
concrete example, where P is just a path with edges {v1, v2}, {v2, v3}, {v3, v4}
and N consists of edges {v1, v3} and {v2, v4}.

3 The New Algorithm

Throughout this section, fix a column-weighted matrix M . Let n (respectively,
m) be the number of rows (respectively, columns) of M . We next detail how to
solve Bandpass-2 for M .



2-Bandpass Problem 191

As in the trivial algorithm, we first construct an edge-weighted complete undi-
rected graph G from M , where the vertex set of G is {1, 2, . . . , n} and the weight
of each edge {i, j} in G is the total weight of bandpasses that can be formed
between the i-th and the j-th rows of M . Note that the construction of G takes
O(n2m) time.

Again as in the trivial algorithm, we then compute a maximum-weight match-
ing N in G. This takes O(n3) time [7]. Let M ′ be the matrix obtained by mod-
ifying M as follows:

– For each {i, j} ∈ N and for each column k of M , if the (i, k) and the (j, k)
entries of M are both a 1, then change both of them to a 0.

Similar to the construction ofG fromM , we construct an edge-weighted complete
undirected graph G′ from M ′ as follows. The vertex set of G′ is {1, 2, . . . , n} and
the weight of each edge {i, j} in G′ is the total weight of bandpasses that can be
formed between the i-th and the j-th rows of M ′. Note that N is also a matching
of G′ but the weight of each edge of N in G′ is 0.

From here on, our algorithm differs from Tong et al.’s algorithm [19]. More
specifically, our algorithm proceeds as follows.

1. Compute a maximum-weight cycle cover C in G′. (Comment: This step can
be done in O(n3) time [8]. Moreover, C is also a cycle cover in G.)

2. Modify C by remove those edges e with e ∈ N .

3. Use Lemma 1 to partition the edge set of C into four matchings X0, . . . , X3

such tha G[N ∪Xj ] is an acyclic 2-matching of G for all j ∈ {0, . . . , 3}.
4. Compute a Hamiltonian path P in G′ whose weight is at least 7

9 times the
maximum weight of a Hamiltonian path in G′. (Comment: Paluch et al. [16]
have shown that this step can be done in O(n3) time. Moreover, P is also
an acyclic 2-matching in G.)

5. Modify P by remove those edges e with e ∈ N .

6. Use Lemma 2 to partition the edge set of P into three matchings Y0, Y1, and
Y2 such tha G[N ∪ Yj ] is an acyclic 2-matching of G for all j ∈ {0, 1, 2}.

7. Let Z be the heaviest matching among X0, . . . , X3, Y0, . . . , Y2. (Comment:
G[N ∪ Z] is an ayclic 2-matching of G and hence is a collection of vertex-
disjoint paths.)

8. Permute the rows of M so that for each path Q in G[N ∪ Z], the rows
corresponding to the vertices of Q appear consecutively in the permuted
matrix.

9. Output the permuted matrix M ′′.

Obviously, we have the next lemma:

Lemma 3. The above algorithm takes O
(
n2(n+m)

)
time.

We note that both the trivial algorithm and Tong et al.’s algorithm [19] takes
O
(
n2(n+m)

)
time.



192 Z.-Z. Chen and L. Wang

4 Performance Analysis

We inherit the notations from Section 3. If n is odd, then we can add a new
row consisting of 0’s only without changing the problem. So, without loss of
generality, we may assume that n is even. By this assumption, we may further
assume that N is a perfect matching of G. Then, we can view N as a bijection
from {1, 2, . . . , n} to itself by defining N(i) = j and N(j) = i for each edge
{i, j} ∈ N .

The weight of an edge {i, j} in G is denoted by w(i, j) and the total weight of
edges in a subgraph H of G is denoted by w(H). Similarly, the weight of an edge
{i, j} in G′ is denoted by w′(i, j) and the total weight of edges in a subgraph H
of G′ is denoted by w′(H).

Several more definitions are in order. For each integer c ∈ {1, 2, . . . ,m}, we
use wc to denote the weight given to the c-th column of M . A permutation of
{1, 2, . . . , n} is a bijection from {1, 2, . . . , n} to itself. Let π be a permutation of
{1, 2, . . . , n}. We use Mπ to denote the matrix whose i-th row is the π(i)-th row
of M for each i ∈ {1, 2, . . . n}. A strip of Mπ is a maximal segment of consecutive
1’s in a column of Mπ. The length of a strip is the number of 1’s therein. For
each integer c ∈ {1, 2, . . . ,m} and each integer � ≥ 2, we use Sc,�(π) to denote
the set of length-� strips in the c-th column of Mπ, and define sc,�(π) = |Sc,�(π)|.
We use W (π) to denote the weight of Mπ. Since each strip in Sc,�(π) contains a
set of � �2� pairwise-disjoint bandpasses, we have

W (π) =
m∑
c=1

n∑
�=2

wcsc,�(π)�
�

2
� =

m∑
c=1

wcsc,2(π) +
m∑
c=1

n∑
�=3

wcsc,�(π)�
�

2
�. (1)

We say that π is optimal ifW (π) is maximized over all permutations of {1, 2, . . . , n}.
In the remainder of this section, fix an optimal permutation π∗ of {1, 2, . . . , n}

and let πo be the permutation of {1, 2, . . . , n} with Mπo = M ′′, where M ′′ is the
output of our algorithm on input M . By Equation 1, we have

W (π∗) =
m∑
c=1

wcsc,2(π
∗) +

m∑
c=1

n∑
�=3

wcsc,�(π
∗)� �

2
�. (2)

Obviously, G contains a Hamiltonian path P ∗ in which π∗(1), π∗(2), . . . , π∗(n)
appear (as the vertices) in this order. Obviously, we have the following equation:

w(P ∗) =
m∑
c=1

wcsc,2(π
∗) +

m∑
c=1

n∑
�=3

wcsc,�(π
∗)(� − 1). (3)

Since the edge set of P ∗ can be partitioned into two matchings of G and N is a
maximum-weight matching of G, we have:

w(N) ≥ 1

2
w(P ∗) =

1

2

m∑
c=1

wcsc,2(π
∗) +

1

2

m∑
c=1

n∑
�=3

wcsc,�(π
∗)(�− 1)

≥ 1

2

m∑
c=1

wcsc,2(π
∗) +

3

4

m∑
c=1

n∑
�=3

wcsc,�(π
∗)� �

2
�, (4)



2-Bandpass Problem 193

where the last inequality holds because �− 1 ≥ 3
2�

�
2� for all integers � ≥ 3.

By Equation 2, Inequality 4, and the trivial fact that W (πo) ≥ w(N), we
know that if

∑m
c=1 wcsc,2(π

∗) is significantly smaller than W (π∗), then W (πo)
is already significantly larger than 1

2W (π∗). So, we can concentrate on the case
where

∑m
c=1 wcsc,2(π

∗) is not significantly smaller than W (π∗). To take care of
this case, we want to partition Sc,2(π

∗) into four subsets S1
c,2(π

∗), . . . , S4
c,2(π

∗)
below.

First, we need several definitions. Let B and B′ be two disjoint bandpasses
in Sc,2(π

∗). Suppose that i (respectively, i′) is the integer in {1, 2, . . . , n − 1}
such that B (respectively, B′) is formed between the i-th and the (i + 1)-th
(respectively, the i′-th and the (i′ + 1)-th) rows of Mπ∗ . Since B and B′ are
disjoint and reside in the same column of Mπ∗ , {i, i + 1} ∩ {i′, i′ + 1} = ∅.
Consider the four edges of G:

{π∗(i), π∗(i′)}, {π∗(i), π∗(i′ + 1)}, {π∗(i + 1), π∗(i′)}, {π∗(i + 1), π∗(i′ + 1)}.

Since N is a matching, N contains at most two of the four edges. If N contains
at least one of the four, then B is linked to B′ by N . In particular, if N contains
exactly one (respectively, two) of the four, then B is singly (respectively, doubly)
linked to B′ by N . If B is singly linked to B′ by N , then the edge among the
four that is contained in N is referred to as the edge of N supporting the linkage
between B and B′.

Obviously, B can be linked to at most two bandpasses in Sc,2(π
∗) by N .

Indeed, if B is linked to two bandpasses in Sc,2(π
∗) by N , then B is singly

linked to both of them by N .
B is kept by N if {π∗(i), π∗(i+1)} ∈ N . Note that if B is kept by N , then B

is also a bandpass in Mπo . B is completely isolated by N if both the (N(π∗(i)), c)
and the (N(π∗(i+ 1)), c) entries of M are a 0. Similarly, B is partially isolated
by N if exactly one of the (N(π∗(i)), c) and the (N(π∗(i + 1)), c) entries of M
is a 0. Obviously, if B is kept by N , then it is neither partially nor completely
isolated by N . Moreover, if B is completely isolated by N , then B is linked to no
bandpass in Sc,2(π

∗) by N . Furthermore, if B is partially isolated by N , then B
is linked to at most one bandpass in Sc,2(π

∗) by N . In particular, if B is partially
isolated by N and is also linked to a bandpass B′ in Sc,2(π

∗) by N , then B is
singly linked to B′ by N .

Now, we are ready to partition Sc,2(π
∗) into four subsets S1

c,2(π
∗), . . . , S4

c,2(π
∗)

as follows. For each bandpass B ∈ Sc,2(π
∗),

– if B is kept by N , then B belongs to S1
c,2(π

∗);
– if B is completely isolated by N , then B belongs to S2

c,2(π
∗);

– if B is partially isolated by N , B is linked to one bandpass B′ in Sc,2(π
∗)

by N , and B′ is also partially isolated by N , then B belongs to S3
c,2(π

∗);
– otherwise, B belongs to S4

c,2(π
∗).

Obviously, we have the following equation:

sc,2(π
∗) = |S1

c,2(π
∗)|+ |S2

c,2(π
∗)|+ |S3

c,2(π
∗)|+ |S4

c,2(π
∗)|. (5)



194 Z.-Z. Chen and L. Wang

So, by Inequality 4, we have:

w(N) ≥ 1

2

m∑
c=1

wc ·
(
|S1

c,2(π
∗)|+ |S2

c,2(π
∗)|+ |S3

c,2(π
∗)|+ |S4

c,2(π
∗)|
)

+
3

4

m∑
c=1

n∑
�=3

wcsc,�(π
∗)� �

2
� (6)

Essentially, the next lemma has been shown by Tong et al. [19].

Lemma 4. w(N) ≥
m∑
c=1

wc ·
(
|S1

c,2(π
∗)|+ 1

2
|S3

c,2(π
∗)|+ 2

3
|S4

c,2(π
∗)|
)
.

Lemma 5. The maximum weight of a Hamiltonian path in G′ is not smaller

than

m∑
c=1

wc|S2
c,2(π

∗)|. Consequently, w′(Z) ≥ 7

27

m∑
c=1

wc|S2
c,2(π

∗)|.

Proof. Obviously, P∗ is a Hamiltonian path in G′. For each bandpass B ∈
S2
c,2(π

∗), both entries of B remain to be a 1 in M ′ because B is completely
isolated by N . Consequently, B contributes a weight of wc to w′(P ∗).

Finally, w′(Z) ≥ max{w′(Y0), . . . , w
′(Y2)} ≥ 1

3

∑2
i=0 w

′(Yi) = 1
3w

′(P) ≥
7
27w

′(P∗) ≥ 7
27

∑m
c=1 |S2

c,2(π
∗)|wc. Q.E.D.

The next lemma is a key in the analysis of our algorithm.

Lemma 6. w′(C) ≥ 1

4

m∑
c=1

wc|S3
c,2(π

∗)|. Consequently, w′(Z) ≥ 1

16

m∑
c=1

wc|S3
c,2

(π∗)|.

Proof. Consider an arbitrary column c ∈ {1, 2, . . . ,m}. The bandpasses in
S3
c,2(π

∗) can be paired up so that the two bandpasses in each pair are singly
linked to each other by N . In the remainder of this proof, we assume that the
bandpasses in S3

c,2(π
∗) have been paired up in this way. For each bandpass

B ∈ S3
c,2(π

∗), we refer to the bandpass B′ ∈ S3
c,2(π

∗) paired up with B as the
mate of B. We also call {B,B′} a couple in column c.

We construct an edge-weighted multigraph Hc (possibly with parallel edges
and self-loops) as follows. The vertices of Hc are {1, 2, . . . , n} and each of them
is initially incident to no edge in Hc. Then, for each edge {π∗(i), π∗(i′)} ∈ N
(say, with i < i′), we perform the following steps:

S1. If (1) the (i − 1, c)-th and the (i, c)-th entries of M∗ exist and form a
bandpass B in S3

c,2(π
∗) and (2) the (i′ − 1, c)-th and the (i′, c)-th entries of

M∗ exist and form a bandpass B′ in S3
c,2(π

∗), then add an edge between
vertices i − 1 and i′ − 1 in Hc.

S2. If (1) the (i − 1, c)-th and the (i, c)-th entries of M∗ exist and form a
bandpass B in S3

c,2(π
∗) and (2) the (i′ + 1, c)-th and the (i′, c)-th entries of

M∗ exist and form a bandpass B′ in S3
c,2(π

∗), then add an edge between
vertices i − 1 and i′ + 1 in Hc.



2-Bandpass Problem 195

S3. If (1) the (i + 1, c)-th and the (i, c)-th entries of M∗ exist and form a
bandpass B in S3

c,2(π
∗) and (2) the (i′ − 1, c)-th and the (i′, c)-th entries of

M∗ exist and form a bandpass B′ in S3
c,2(π

∗), then add an edge between
vertices i + 1 and i′ − 1 in Hc.

S4. If (1) the (i + 1, c)-th and the (i, c)-th entries of M∗ exist and form a
bandpass B in S3

c,2(π
∗) and (2) the (i′ + 1, c)-th and the (i′, c)-th entries of

M∗ exist and form a bandpass B′ in S3
c,2(π

∗), then add an edge between
vertices i + 1 and i′ + 1 in Hc.

Furthermore, we assign a weight of wc to each edge in Hc.
Note that only one “if”-condition in Steps S1 through S4 can be true. More-

over, if the “if”-condition in a step is true, then the bandpasses B and B′ in that
step form a couple in column c. Conversely, if {B,B′} is a couple in column c,
then for the edge {π∗(i), π∗(i′)} of N supporting the linkage between B and B′,
the “if” condition in one of Steps S1 through S4 holds. Thus, Hc has as many
edges as couples in column c. In other words, Hc has 1

2 |S3
c,2(π

∗)| edges. So, the
total weight of edges in Hc is 1

2 |S3
c,2(π

∗)|wc.
We claim that Hc contains no self-loops. To see this, first note that a self-loop

can be added to Hc only in Step S3 and only when i′ = i+2, because we assume
i < i′. Moreover, when i′ = i+2, we have i+1 = i′− 1 and so the “if”-condition
in Step S3 implies that the (i + 1, c)-th and the (i, c)-th entries of M∗ form a
bandpass B in S3

c,2(π
∗) and the (i+1, c)-th and the (i′, c)-th entries of M∗ form a

bandpass B′ in S3
c,2(π

∗). However, since the bandpasses in S3
c,2(π

∗) are disjoint,
B and B′ cannot coexist. Thus, Hc contains no self-loops.

We further claim thatHc does not contain parallel edges, either. To see this, let
j and j′ be two (distinct) adjacent vertices in Hc. Then, by Steps S1 through S4,
at least one of {π∗(j−1), π∗(j′−1)}, {π∗(j−1), π∗(j′+1)}, {π∗(j+1), π∗(j′−1)},
and {π∗(j+1), π∗(j′+1)} belongs to N . Obviously, if only one of the four edges
belongs to N , then there is at most one edge between vertices j and j′ in Hc. So,
we assume that at least two of the four edges belong to N . Then, since N is a
matching,N contains either both {π∗(j−1), π∗(j′−1)} and {π∗(j+1), π∗(j′+1)},
or both {π∗(j − 1), π∗(j′ + 1)} and {π∗(j + 1), π∗(j′ − 1)}. We assume that N
contains both {π∗(j−1), π∗(j′−1)} and {π∗(j+1), π∗(j′+1)}; the other case is
similar. Clearly, if performing Steps S1 through S4 for the edge {π∗(j−1), π∗(j′−
1)} ∈ N results in the addition of an edge to Hc between vertices j and j′, then
the (j−1, c) and the (j, c) entries of M∗ form a bandpass B1 in S3

c,2. Similarly, if
performing Steps S1 through S4 for the edge {π∗(j + 1), π∗(j′ + 1)} ∈ N results
in the addition of an edge to Hc between vertices j and j′, then the (j, c) and the
(j+1, c) entries of M∗ form a bandpass B2 in S3

c,2. Now, since the bandpasses in
S3
c,2 are disjoint, B1 and B2 cannot coexist in S3

c,2 and in turn we know that at
most one edge can exist between vertices j and j′ in Hc even if N contains both
{π∗(j − 1), π∗(j′ − 1)} and {π∗(j + 1), π∗(j′ + 1)}. Hence, Hc does not contain
parallel edges. Consequently, Hc is a (simple) graph by the first claim in the
proof.

We next construct an edge-weighted multigraph H (possibly with parallel
edges but without self-loops) as follows. The vertices of H are {1, 2, . . . , n}. For



196 Z.-Z. Chen and L. Wang

every column c ∈ {1, 2, . . . ,m}, every edge of Hc is also an edge of H with weight
wc. So, the total weight of edges in H is 1

2

∑m
c=1 |S3

c,2(π
∗)|wc.

We further construct an edge-weighted graph H ′ by modifying H as follows.
For every i ∈ {1, 2, . . . , n} and every j ∈ {1, 2, . . . , n} such that H contains at
least one edge between i and j, we merge the edges between i and j into a single
edge whose weight is the total weight of edges between i and j in H . Note that
the weight of each edge between two distinct vertices in H ′ does not exceed the
weight of the same edge in G′. This follows from the simplicity of graph Hc and
the fact that for each edge {k, �} added to Hc in Steps S1 through S4, a bandpass
can be formed in column c between the π∗(k)-th and the π∗(�)-th rows of matrix
M ′.

Consider an arbitrary j ∈ {1, 2, . . . , n}. By Steps S1 through S4, we know
that for each neighbor j′ of vertex j in H ′, at least one of {π∗(j−1), π∗(j′−1)},
{π∗(j−1), π∗(j′+1)}, {π∗(j+1), π∗(j′−1)}, and {π∗(j+1), π∗(j′+1)} belongs
to N . So, the following claim holds:

C1. Let j be an arbitrary integer in {1, 2, . . . , n}. Then, only k− 1, k+1, �− 1,
and �+ 1 can be neighbors of vertex j in H ′, where k and � are the integers
in {1, 2, . . . , n} with {π∗(j − 1), π∗(k)} ∈ N and {π∗(j + 1), π∗(�)} ∈ N .

We finally claim that the edge set of H ′ can be partitioned into two subsets
E1 and E2 such that both H ′[E1] and H ′[E2] are 2-matchings of H ′. To see
this, it suffices to show that we can color the edges of H ′ red or blue so that
for each vertex j of H ′, no three edges incident to j get the same color. To find
such a coloring, consider an arbitrary edge {π∗(i), π∗(i′)} in N with 1 ≤ i <
i′ ≤ n. When we perform Steps S1 through S4 for this edge (in any column c ∈
{1, 2, . . . ,m}), we add to Hc zero or more edges among {i−1, i′−1}, {i−1, i′+1},
{i + 1, i′ − 1}, and {i + 1, i′ + 1}. In other words, the edge {π∗(i), π∗(i′)} ∈ N
contributes at most four edges (namely, {i−1, i′−1}, {i−1, i′+1}, {i+1, i′−1},
and {i+1, i′+1}) to H ′. In the following case-analysis, we describe how to color
these possible edges in H ′.

Case 1: i′ > i + 2. In this case, we color {i − 1, i′ − 1} and {i+ 1, i′ + 1} red
and color {i− 1, i′ +1} and {i+1, i′− 1} blue. Note that no two adjacent edges
receive the same color here.

Case 2: i′ = i+2. In this case, {i− 1, i′− 1}, {i− 1, i′+1}, {i+1, i′− 1}, and
{i+1, i′+1} become {i− 1, i+1}, {i− 1, i+3}, {i+1, i+1}, and {i+1, i+3},
respectively. So, only {i−1, i+1}, {i−1, i+3}, and {i+1, i+3} can be possible
edges in H ′. We color {i− 1, i+1} and {i+ 1, i+ 3} red and color {i− 1, i+ 3}
blue. Note that no two edges incident to vertex i− 1 (respectively, i+3) receive
the same color here. However, two edges incident to vertex i+1 receive the same
color here. Fortunately, by Claim C1, these two edges are the only possible edges
incident to vertex i + 1 in H ′. For convenience, we refer to this kind of vertex
i+ 1 as a done vertex.

Case 3: i′ = i + 1. In this case, {i − 1, i′ − 1}, {i − 1, i′ + 1}, {i + 1, i′ − 1},
and {i+ 1, i′ + 1} become {i− 1, i}, {i− 1, i+ 2}, {i+ 1, i}, and {i+ 1, i+ 2},
respectively. We color {i− 1, i} and {i+1, i+2} red and color {i− 1, i+2} and
{i+ 1, i} blue. Note that no two adjacent edges receive the same color here.



2-Bandpass Problem 197

We want to show that for each undone vertex j in H ′, no three edges incident
to j in H ′ get the same color. To this end, let j, k, and � be as in Claim C1.
By Claim C1, the possible edges incident to j in H ′ are {j, k − 1}, {j, k + 1},
{j, �− 1}, and {j, �+1}. Obviously, the first two possible edges receive different
colors when we consider the above cases (namely, Cases 1 through 3) for the
edge {π∗(j − 1), π∗(k)} ∈ N , while the last two receive different colors when we
consider the above cases for the edge {π∗(j+1), π∗(�)} ∈ N . Therefore, no three
edges incident to j in H ′ get the same color.

Recall that the total weight of edges in H ′ is the same as that in H , namely,
1
2

∑m
c=1 |S3

c,2(π
∗)|wc. So, by the final claim, there is an i ∈ {1, 2} such that the

total weight of edges in H ′[Ei] is at least 1
4

∑m
c=1 |S3

c,2(π
∗)|wc. Also recall that

the weight of each edge between two distinct vertices in H ′ does not exceed the
weight of the same edge in G′. Therefore, w′ (G′[Ei]) ≥ 1

4

∑m
c=1 |S3

c,2(π
∗)|wc.

Since G′[Ei] is isomorphic to H ′[Ei], G
′[Ei] is also a 2-matching of G′. Hence,

w′ (G′[Ei]) ≤ w′(C) because C is a maximum-weight matching in G′. At last, we
have w′(C) ≥ 1

4

∑m
c=1 |S3

c,2(π
∗)|wc.

Finally, w′(Z) ≥ max{w′(X0), . . . , w
′(X3)} ≥ 1

4

∑3
i=0 w

′(Xi) = 1
4w

′(C) ≥
1
16

∑m
c=1 |S3

c,2(π
∗)|wc. Q.E.D.

We are now ready to show the following lemma:

Lemma 7. The algorithm achieves a ratio of 0.5318.

Proof. Let x be a real number with 0 ≤ x ≤ 1. Then, we can obtain the following
inequality by (1) multiplying both sides of the second inequality in Lemma 6
by x, (2) multiplying both sides of the inequality in Lemma 5 by 1 − x, and
(3) adding the left-hand sides and the right-hand sides of the resulting two
inequalities, respectively.

w′(Z) ≥ x

16

m∑
c=1

wc|S3
c,2(π

∗)|+ 7(1− x)

27

m∑
c=1

wc|S2
c,2(π

∗)|. (7)

Let y be a real number with 0 ≤ y ≤ 1. Then, we can obtain the following
inequality by (1) multiplying both sides of Inequality 6 by y, (2) multiplying
both sides of the inequality in Lemma 4 by 1 − y, and (3) adding the left-hand
sides and the right-hand sides of the resulting two inequalities, respectively.

w(N) ≥ 2− y

2

m∑
c=1

wc|S1
c,2(π

∗)|+ y

2

m∑
c=1

wc|S2
c,2(π

∗)|+ 1

2

m∑
c=1

wc|S3
c,2(π

∗)|

+
4− y

6

m∑
c=1

wc|S4
c,2(π

∗)|+ 3y

4

m∑
c=1

n∑
�=3

wcsc,�(π
∗)� �

2
�. (8)

By the algorithm, W (πo) ≥ w(N)+w′(Z). So, by Inequalities 8 and 7, we have:

W (πo) ≥ 2− y

2

m∑
c=1

wc|S1
c,2(π

∗)|+ 14− 14x+ 27y

54

m∑
c=1

wc|S2
c,2(π

∗)|



198 Z.-Z. Chen and L. Wang

+
8 + x

16

m∑
c=1

wc|S3
c,2(π

∗)|+ 4− y

6

m∑
c=1

wc|S4
c,2(π

∗)|

+
3y

4

m∑
c=1

n∑
�=3

wcsc,�(π
∗)� �

2
�. (9)

Consider the following linear programming (LP) problem:

Maximize z

Subject to : z ≤ 2− y

2

z ≤ 14− 14x+ 27y

54

z ≤ 8 + x

16

z ≤ 4− y

6

z ≤ 3y

4
0 ≤ x, y, z ≤ 1.

Solving the above LP, we obtain z = 0.531818 . . . So, by Inequality 9 and Equa-
tion 5, we have:

W (πo) ≥ 0.5318

(
m∑
c=1

wcsc,2(π
∗) +

m∑
c=1

n∑
�=3

wcsc,�(π
∗)� �

2
�
)

.

Now, by Equation 2, we have W (πo) ≥ 0.5318 · W (π∗). This completes the
proof. Q.E.D.

By Lemmas 3 and 7, we finally have the following theorem:

Theorem 1. There is an O
(
n2(n+m

)
-time approximation algorithm for

Bandpass-2 which achieves a ratio of 0.5318.

References

1. Babayev, D.A., Bell, G.I., Nuriyev, U.G.: The Bandpass Problem: Combinatorial
Optimization and Library of Problems. Journal of Combinatorial Optimization 18,
151–172 (2009)

2. Barvinok, A., Johnson, D.S., Woeginger, G.J., Woodroofe, R.: The Maximum Trav-
eling Salesman Problem Under Polyhedral Norms. In: Bixby, R.E., Boyd, E.A.,
Ŕıos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 195–201. Springer,
Heidelberg (1998)

3. Bell, G.I., Babayev, D.A.: Bandpass Problem. In: Annual INFORMS Meeting,
Denver, CO, USA (2004)

4. Chen, Z.-Z., Nagoya, T.: Improved Approximation Algorithms for Metric Max
TSP. Journal of Combinatorial Optimization 13, 321–336 (2007)



2-Bandpass Problem 199

5. Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algo-
rithms for Max TSP. Information Processing Letters 95, 333–342 (2005)

6. Chen, Z.-Z., Wang, L.: An Improved Randomized Approximation Algorithm for
Max TSP. Journal of Combinatorial Optimization 9, 401–432 (2005)

7. Gabow, H.: Implementation of Algorithms for Maximum Matching on Nonbipar-
tite Graphs. Ph.D. Thesis, Department of Computer Science, Stanford University,
Stanford, California (1973)

8. Gabow, H.: An Efficient Reduction Technique for Degree-Constrained Subgraph
and Bidirected Network Flow Problems. In: Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, STOC 1983, pp. 448–456. ACM (1983)

9. Hassin, R., Rubinstein, S.: An Approximation Algorithm for the Maximum Trav-
eling Salesman Problem. Information Processing Letters 67, 125–130 (1998)

10. Hassin, R., Rubinstein, S.: Better Approximations for Max TSP. Information Pro-
cessing Letters 75, 181–186 (2000)

11. Hassin, R., Rubinstein, S.: A 7/8-Approximation Approximations for Metric
Max TSP. Information Processing Letters 81, 247–251 (2002)

12. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms
for Asymmetric TSP by Decomposing Directed Regular Multigraphs. Journal of
the ACM 52, 602–626 (2005)

13. Kostochka, A.V., Serdyukov, A.I.: Polynomial Algorithms with the Estimates 3
4

and 5
6
for the Traveling Salesman Problem of Maximum. Upravlyaemye Sistemy 26,

55–59 (1985) (in Russian)
14. Kowalik, L., Mucha, M.: Deterministic 7/8-Approximation for the Metric Maxi-

mum TSP. Theor. Comput. Sci. 410, 5000–5009 (2009)
15. Lin, G.: On the Bandpass Problem. Journal of Combinatorial Optimization 22,

71–77 (2011)
16. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 - Approximation Algorithm for the

Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

17. Serdyukov, A.I.: An Algorithm with an Estimate for the Traveling Salesman Prob-
lem of Maximum. Upravlyaemye Sistemy 25, 80–86 (1984) (in Russian)

18. Tarjan, R.E.: Efficiency of a Good But Not Linear Set Union Algorithm. Journal
of the ACM 225, 215–225 (1975)

19. Tong, W., Goebel, R., Ding, W., Lin, G.: An Improved Approximation Algorithm
for the Bandpass Problem. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM
2012 and FAW 2012. LNCS, vol. 7285, pp. 351–358. Springer, Heidelberg (2012)



The b-Matching Problem in Hypergraphs:

Hardness and Approximability

Mourad El Ouali1 and Gerold Jäger2

1 Computer Science Institute
Christian-Albrechts-University of Kiel

Christian-Albrechts-Platz 4
D-24098 Kiel, Germany

meo@informatik.uni-kiel.de
2 Department of Mathematics and Mathematical Statistics

University of Ume̊a
SE-901-87 Ume̊a, Sweden

gerold.jaeger@math.umu.se

Abstract. In this paper we analyze the maximum cardinality b-matching
problem in l-uniform hypergraphs with respect to the complexity class
Max-Snp, where b-matching is defined as follows: for given b ∈ N and
a hypergraph H = (V, E) a subset Mb ⊆ E with maximum cardinality
is sought so that no vertex is contained in more than b hyperedges of
Mb. We show that if the maximum degree of the vertices is bounded by
a constant B ∈ N, this problem has no approximation scheme, unless
P = NP . This result generalizes a result of Kann from b = 1 to the case
that b ∈ N with 0 < b ≤ B

3
. Furthermore, we extend a result of Srivastav

and Stangier, who gave an approximation algorithm for the unweighted
b-matching problem.

Keywords: Hypergraphs, matching, L-reduction, Boolean satisfiability,
randomized rounding, Max-Snp-hardness.

1 Introduction

Packing problems are widely explored in discrete optimization. Classical prob-
lems in this field include the b-matching problem which is a generalization of the
set packing problem. An instance of the b-matching problem provides a hyper-
graph H = (V, E), |V | = n, E ⊆ 2V and b ∈ N and asks for a subset Mb ⊆ E
with maximum cardinality (or, in a weighted version, with maximum weight)
such that no vertex is contained in more than b sets. One of our goals is to
prove that the restriction of the b-matching problem to a certain class of hyper-
graphs has no polynomial time approximation scheme PTAS, unless P = NP .
We utilize the concept of L-reduction (see [7]) instead of directly using a PTAS-
reduction, because it is often easier to show that a reduction is an L-reduction
than a PTAS-reduction. As mentioned above, the main part of this work deals
with the b-matching problem on the subclass of l-uniform hypergraphs with
vertex degree at most a constant B.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 200–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The b-Matching Problem in Hypergraphs: Hardness and Approximability 201

Several positive results (i.e., approximation ratios) were achieved under var-
ious aspects for the b-matching problem in hypergraphs [5, 8–10, 12]. However,
concerning its algorithmic complexity, the problem has still not been investi-
gated extensively, which motivated us to study the problem with respect to this
aspect. The recent known inapproximability result was found by El Ouali et
al. [2]. They showed that for 1 ≤ b ≤ l

ln l the b-matching problem in l-uniform

hypergraphs cannot be efficiently approximated with a factor of O( l
b ln l ), unless

P = NP . To our knowledge, the only known result of the problem related to the
class Max-Snp is due to Kann [3], who proved that there is no approximation
scheme for the case b = 1, unless P = NP . No similar result is known for b > 1.

There are several applications for the b-matching problem in medicine, com-
putational geometry, and combinatorial auctions (CA). Here we briefly explain
an example for combinatorial auctions (see [4]); the reader may consult the ref-
erences for more details.

An auctioneer wants to sell n kinds of goods (vertices) to m bidders. Every
good v ∈ V is available only b times. Assume that each bidder j ∈ {1, . . . ,m} can
valuate a subset (hyperedge) E ∈ {E1, . . . , Em} ⊆ 2V of goods. In the weighted
case of the problem, a valuation wj(E) ∈ R≥0 is the maximum amount of money
that the bidder j is ready to pay for the subset E. The objective of the auctioneer
is to get the maximum profit, i.e., max

∑m
i=1 wj .

In this work, we generalize Kann’s result and show that for an arbitrary
b ≤ B

3 , the b-matching problem in l-uniform hypergraphs with vertex degree at
most a constant B has no PTAS, unless P = NP . Further we will analyze the
approximability of this problem and present a (1 − ε)-approximation algorithm

for ε ∈ (0, 1) and b ≥ 2ε−1
√

Δ ln(
√
n), where Δ is the maximum vertex degree

in the hypergraph. This improves the result of [12] for unweighted hypergraphs.

2 Definitions and Preliminaries

A hypergraph H is an ordered pair (V, E) where V is the set of vertices and E is
the set of (hyper-)edges (i.e., a collection of distinct non-empty subsets of V ). As
usually, the degree of a vertex v ∈ V is the number of hyperedges it appears in
(notation: deg(v)).H is called of bounded degree B if the degree of each vertex
is at most B. Furthermore if the degree of every vertex is exactly B, then the
hypergraph is called B-regular. We call the number of vertices of a hyperedge
as its size. If the size of each hyperedge is exactly l, i.e., ∀E ∈ E : |E| = l, then
H is called l-uniform.

Formulation of the Problems

b-matching Problem: For given b ∈ N we call a set Mb ⊆ E a b-matching if
no vertex is contained in more than b edges of Mb. The b-matching problem is
the problem of finding a b-matching with maximum cardinality. We denote the
b-matching problem in hypergraphs with bounded degree B by (b, B)-matching.



202 M. El Ouali and G. Jäger

l-dimensional b-matching Problem: This problem is a variant of b-matching
in l-uniform hypergraphs, where the vertices of the input hypergraph are a union

of l disjoint sets, V = V1

·
∪ V2

·
∪ . . .

·
∪ Vl, and each hyperedge contains exactly

one vertex from each set such that we have E ⊆ V1 × V2 × · · · × Vl. We will
denote this problem in hypergraphs with bounded degree B by l-dimensional
(b, B)-matching problem

The following reduction was introduced by Papadimitriou and Yannakakis [7].

Definition 1. Let P = (X, (Sx)x∈X , w, goal) and P ′ = (X ′, (S′
x)x∈X , w′, goal′)

be two optimization problems with non-negative weights. An L-reduction from
P to P ′ is a pair of functions f and g, both computable in polynomial time, and
two constants α, β ∈ R+ such that it holds for any instance x of P :

1. f(x) is an instance of P ′ with Opt(f(x)) ≤ α ·Opt(x),
2. For any feasible solution y′ of f(x), g(x, y′) is a feasible solution of x such

that |w(g(x, y′)−Opt(x)| ≤ β · |w′(y′)−Opt(f(x)|.

We denote by Opt(x) the optimum value of instance x.
We say that P is L-reducible to P ′ if there is an L-reduction from P to P ′.

Note that “L” stands for “linear”. The L-reduction can be composed as follows:

Proposition 1 (Composition of two L-Reductions).
Let P1, P2, P3 be optimization problems with non-negative weights. If (f1, g1, α1,
β1) is an L-reduction from P1 to P2 and (f2, g2, α2, β2) is an L-reduction from
P2 to P3, then their composition (f3, g3, α1α2, β1β2) is an L-reduction from P1

to P3, where f3(x) = f2(f1(x)) and g3(x, y3) = g1(x, g2(f1(x), y3)).

To introduce the Max-Snp-hardness of an optimization problem we have to
define the maximum 3-satisfiability problem:

Definition 2. Consider a set X = {x1, . . . , xn} of variables and a family C =
{c1, . . . , cm} of different clauses, each involving exactly three literals (a variable
or a negated variable) over X.

Maximum 3-satisfiability (in short Max-3-Sat) is the problem of finding an
assignment A of X so that the number of clauses in C satisfied by A is maximum.
The variant of the problem, where the number of occurrences of each variable is
bounded by a constant B ∈ R+ will be denoted by Max-3-Sat-B.

Definition 3. An optimization problem P with non-negative weights is called
Max-Snp-hard if Max-3-Sat is L-reducible to P .

Corollary 1. No approximation scheme for any Max-Snp-hard problem exists,
unless P = NP.

For the approximation result we need the following theorem, which is well-known
as the independent bounded differences inequality theorem:



The b-Matching Problem in Hypergraphs: Hardness and Approximability 203

Theorem 1. [1] Let X = (X1, . . . , Xn) be a family of independent random vari-
ables with Xk taking values in a set Ak for each k. Suppose that the real valued
function f defined on

∏n
k=1 Ak satisfies |f(x) − f(x′)| ≤ ck, where the vector x

and x′ differ only in in the k-th coordinate. Let E(X) be the expected value of
the random variable f(X). Then for any t ≥ 0,

Pr[f(X) ≥ E(f(X)) + t] ≤ exp

(
−2t2∑n
k=1 c

2
k

)
.

3 Main Result

Theorem 2. For every b ≤ B
3 , the 3-dimensional (b, B)-matching problem is

Max-Snp-hard.

Proof. To prove Theorem 2, we will describe an L-reduction (f, g, α, β) from
a Max-3-Sat-B instance to 3-dimensional (b, B)-matching instance. This is an
extension of the reduction used to prove that 3-dimensional (1, B)-matching
problem is Max-Snp-hard in [3]. The reduction consists of two steps. We con-
sider an instance I of Max-3-Sat-B with a set of variables X = {x1, . . . , xn}
and a set of clauses C = {c1, . . . , cm}.
First Step: We make b − 1 copies of C in a way to obtain b identical sets of
clauses C1, . . . , Cb. For every set of clauses Cj , j ∈ [b], this part of the construction
remains the same as in [3] and can be described as follows:

We consider a set of clauses Cj = {cj1, . . . , cjm}. We assume that every variable
xi ∈ X appears c(xi) times in Cj (either as xi or as x̄i). Moreover, let K =

2�log
3
2 b

2B+1	 be the largest power of 2 such that K ≤ 3
2b

2B + 1.
For every variable xi we construct K identical rings of triples (in a trian-

gle form) that we denote by R(xi, k, j), k ∈ [K]. Each ring contains 2c(xi)
triples. The free vertices in the ring triples (the apices of the triangles) are
denoted by x(ρ, λ, j) and x̄(ρ, λ, j), where (ρ, λ, j) ∈ [c(xi)]× [K]× [b] (see Fig-
ure 1a). The K rings R(xi, 1, j), . . . , R(xi,K, j) are connected by tree triples
in 2c(xi) binary trees, denoted by Txi(ρ,j) and Tx̄i(ρ,j) (ρ ∈ [c(xi)]) in such a
way that x̄i(ρ, 1, j), x̄i(ρ, 2, j), . . . , x̄i(ρ, k, j) are leaves in the tree Txi(ρ,j) and
x̄i(ρ, 1, j), x̄i(ρ, 2, j), . . . , x̄i(ρ, k, j) are leaves in the tree Tx̄i(ρ,j) (see Figure 1b).
The root of Txi(ρ,j) is xi(ρ, j) and the root of Tx̄i(ρ,j) is x̄i(ρ, j). We denote by

T̂xi(ρ,j) and T̂x̄i(ρ,j) the binary tree consisting of Txi(ρ,j) and Tx̄i(ρ,j), respec-
tively, and the K ring triples with the nodes xi(ρ, 1, j), xi(ρ, 2, j), . . . , xi(ρ, k, j)
and x̄i(ρ, 1, j), x̄i(ρ, 2, j), . . . , x̄i(ρ, k, j).

Finally, the clause triples connect some of the roots. For each clause cjl , l ∈ [m],
we introduce two new elements s1(l, j) and s2(l, j). If the variable xi occurs in
this clause and this is its ρ-th occurrence in Cj, then the root element in the
triple is xi(ρ, j) or x̄i(ρ, j), depending on whether the occurrence is xi or x̄i (see
Figure 2).

Second Step: The construction in the first step holds for every set of clauses
Cj for all j ∈ [b]. Consider two constructed binary trees T̂xi(ρ,j) and T̂xi(ρ,j′)



204 M. El Ouali and G. Jäger

corresponding to the same variable xi ∈ X and the same occurrence number
ρ ∈ [c(xi)], but belonging to two different sets of clauses Cj and Cj′ analogously
for trees T̂x̄i(ρ,j) and T̂x̄i(ρ,j′).

Furthermore let L be the number of levels of T̂xi(ρ,j) and T̂xi(ρ,j′). We con-

sider a triple (triangle) T in T̂xi(ρ,j). Then the apex of T belongs to level r
for an r ∈ {0, . . . , L − 1} and the two vertices from the base belong to level
r + 1. In the tree T̂xi(ρ,j′) we have exactly one triangle T ′ between levels r
and r + 1 corresponding to T . We connect the apex of T with two vertices
of T ′ in level r + 1 and the apex of T ′ with two vertices of T in level r + 1
to obtain two new triangles. This is done for every pair of corresponding tri-
angles of T̂xi(ρ,j) and T̂xi(ρ,j′). The same will be done for the clause triples
(s1(l, j), s2(l, j), xi(ρ, j)) and (s1(l, j

′), s2(l, j
′), xi(ρ, j

′)) in order to obtain two
new clause triples (s1(l, j), s2(l, j), xi(ρ, j

′)) and (s1(l, j
′), s2(l, j

′), xi(ρ, j)). This
process is applied to every pair of symmetric triangles for every pair of symmetric
trees T̂xi(ρ,j) and T̂xi(ρ,j′). Finally, we obtain two new binary trees T̂xi(ρ,j→j′) and

T̂xi(ρ,j′→j) between each pair of binary trees such that the set of their vertices al-

ternates between the sets of vertices of the trees T̂xi(ρ,j) and T̂xi(ρ,j′) (or T̂x̄i(ρ,j)

and T̂x̄i(ρ,j′)) (see Figure 3). The constructed instance contains b2
∑

x∈X c(x)
clause triples, 2Kb2

∑
x∈X c(x) ring triples and 2b2(K−1)

∑
x∈X c(x) tree triples.

To achieve the final instance, namely a 3-dimensional hypergraph, we label the
vertices of the constructed instance above as follows: For the ring, tree and clause
triples, we define a 3-dimensional hypergraph H with E(H) ⊆ Z × U × Y , and
label the elements of H with Z, U or Y . Consider the set Cj , and label all trees
in Cj identically as follows. Start with the root and label it with Z and label
the elements in every tree triple Z, U and Y anti-clockwise. The elements in
ring triples are labelled anti-clockwise in xi-trees and clockwise in x̄i-trees. The
elements s1(l, j) and s2(l, j) are labelled with U and Y , respectively (see Figure
4). We obtain an instance H for which the set of hyperedges has cardinality at
most 9b2m+ 6b4B2n:

|E(H)| = b2
∑
x∈X

c(x) + 2Kb2
∑
x∈X

c(x) + 2b2(K − 1)
∑
x∈X

c(x)

≤ 3b2m+ b2
∑
x∈X

2c(x)(K +K − 1)

≤ 3b2m+ b2
∑
x∈X

2c(x)(3b2B + 1)

(
∑

x∈X c(x)≤3m)

≤ 3b2m+ b2
∑
x∈X

6b2B2 + 6b2m

= b2(9m+ 6b2B2n).

We conclude that f can be computed in time polynomial in m and n. Moreover,
every element in a ring triangle or tree triangle occurs exactly 2b times in the
edges of H. The half of the root elements occurs b times and the remaining
elements are s1(l, j) and s2(l, j) in the clause triples. They occur at most 3b



The b-Matching Problem in Hypergraphs: Hardness and Approximability 205

•
•xi(1, 1, j)•

•
x̄i(1, 1, j)

••xi(2, 1, j)

•
•x̄i(2, 1, j)

•
•

xi(3, 1, j)

• •x̄i(3, 1, j)

(a) The ring R(xi, 1, j), the
first of K rings for the set of
clauses Cj for a variable xi

with c(xi) = 3 occurrences.

xi(ρ, j)

x̄i(ρ, j)

T

T

T

R
R

R
R

(b) An example of binary trees of triples with
c(xi) = 3 and K = 4.

Fig. 1.

••
C
•

•

•

• •

•

• •

•

•

• •

•

• •

s2(5, j) s1(5, j)

xi(1, j)

TT

T

RRR R

•

•

•

• •

•

• •

•

•

• •

•

• •

x̄i(1, j)

TT

T

R RR R

Fig. 2. An example of binary trees for xi and the adjacent clause triple and ring triples,
where the first occurrence of xi in Cj is in the 5-th clause. The triples are marked with
R, T and C for ring, tree and clause, respectively.

•

•

• •

•

xi(1, j
′)

xi(1, 1, j
′) xi(1, 2, j

′)

•

•

• •

•

xi(1, j)

xi(1, 1, j) xi(1, 2, j)

T

TT

T

Fig. 3. An example of connecting the elements between two symmetric trees, namely
T̂xi(ρ,j) and T̂xi(ρ,j

′) in two different sets of clauses Cj and Cj′



206 M. El Ouali and G. Jäger

•

•

•

• •

•

• •

•

•

• •

•

• •

z

u y y z

z u

yu

z u u y

y z
T T

T

R R R R

•

•

•

• •

•

• •

•

•

• •

•

• •

z

y u z y

z u

yu

u z y u

y z
TT

T

RRR R

Fig. 4. An example of element labeling in a tree with two levels. Dots representing
identical elements are connected with arcs.

times each, because a clause contains at most three literals and is connected
with b root elements in the b sets of clauses. Thus, f(I) is an instance of the
Max 3-dimensional (b, B)-matching problem for B ≥ 3b.

Definition 4. A b-matching M in f(I) is called standard b-matching if its
ring triples are matched in an even distance. We denote it by stand(M). More-
over, for every i ∈ [n] an optimal standard b-matching contains either all ring
triples corresponding to xi or all corresponding to x̄i.

Let denote by Rx,j resp. Tx,j the set of ring triples resp. the set of tree triples
corresponding to the variable x and a set of clauses Cj in the final instance. By
Rx,j(k) we denote the set Rx,j restricted to the k-th set of ring triples. The
following assertions are useful to understand the subsequent analysis.

Assertion 1. In an optimal b-matching of set
⋃

j∈[b]Rx,j , for every j ∈ [b] all
sets of ring triples are matched in the same way.

Assertion 2. For our choice of K, any maximum b-matching of the whole prob-
lem contains an maximum b-matching of the subset T̂xi,j := Rx,j ∪ Tx,j (i.e.,
f(I) without clause triples).

Assertion 3. To every maximum b-matching M we can construct a correspond-
ing standard b-matching.

Proof. Assertion 1: Let M be a given 3-dimensional b-matching in f(I). For
every variable xi we consider the setsM∩Rxi,j(1) andM∩Rxi,j(2). Suppose that
the first set has cardinality t1 and the second set has cardinality t2 and w.l.o.g.,
t1 ≥ t2. Since the two sets of ring triples have an empty cut (Rxi,j(1)∩Rxi,j(2) =
∅), we are able to construct on Rxi,j(1) ∪ Rxi,j(2) a new b-matching that is
larger than the original one by matching the triples in Rxi,j(2) like Rxi,j(1).
This increases its cardinality to t1 and also increases the b-matching.

Now we consider two adjacent pairs of sets of rings (M∩Rxi,j(1),M∩Rxi,j(2))
and (M ∩Rxi,j(3),M ∩Rxi,j(4)) and its connecting tree triples situated in the
lowest level of Txi,j . We suppose as above that the cardinality of the first pair
and its connecting tree triples is t1 and of the second pair and its connecting
tree triples is t2 with t1 ≥ t2. In this way along the K rings, we can gain a



The b-Matching Problem in Hypergraphs: Hardness and Approximability 207

b-matching from the sets of rings and its connecting tree triples that is larger
than the original one. �
Assertion 2: After finishing the b-matching of the set of ring triples of the in-
stance, we continue on T̂xi,j with the same procedure as described above. In each
iteration we go one level up and continue in log2 K−1 steps in the same manner.

Now we are done with constructing a new b-matching M ′ from the given b-
matching M on the structure of ring triples and tree triples T̂xi,j, and we want
to extend the constructed new b-matching over the entire instance. Therefore,
we have to carefully include some triples from the clause triples. We suppose
that we cannot include all the p clause triples belonging to the b-matching M in
the new b-matching M ′. This case occurs if in M ′ there are some roots xi(ρ

′, j)
for ρ′ ∈ [c(xi)] with b incident tree triples.

The easiest way to include all the p clause triples is by sacrificing some other
tree or ring triples. W.l.o.g., sacrifice δ ring triples to include the p clauses triples
in the b-matching.

Moreover, the cardinality of the b-matching on the structure of ring and tree
triples T̂xi,j is the cardinality of the matched ring triples plus the cardinality of
the tree triples in the tree connected to the matched ring plus the cardinality of
the matched tree triples in trees connected to non-matched ring triples. In the
case of an odd number of levels this cardinality is smaller than

((bc(xi)− δ) ·K + ((bc(xi)− δ) · K − 2

3
+ (bc(xi) + δ) · 2K − 1

3

= bc(xi)(2K − 1)− δ · 2K − 1

3
.

The above equality shows howmany triples comparedwith amaximum b-matching
we can lose if we sacrifice δ ring triples. If we don’t sacrifice any ring triples, i.e.,
δ = 0, we obtain a maximum b-matching of cardinality bc(xi) · (2K − 1).

To extend a given maximum b-matching of T̂xi,j over the set of clause triples
in order to gain a large b-matching over the whole instance, we have to include as
many of the clause triples as possible. For every clause in Cj at most b triples can
be included. Depending on how the substructure T̂xi(ρ,j) is matched, we include

b − r(ρ) with r(ρ) ≤ b clause triples if r(ρ) triples of T̂xi(ρ,j) are included that
contain the root xi(ρ, j).

A further important property of b-matchings in the constructed instance is
that every ring triple included in the b-matching is more valuable than the in-
clusion of some clause triples. We will verify this in the following paragraph.

We still concentrate on a variable xi and consider T̂xi,j . Assume that we
include only bc(xi) − δ ring triples in order to include p clause triples in the
b-matching. From the included p clause triples we can always choose �p2� ones
which contain either x(ρ, j) or x̄(ρ, j) for ρ ∈ [c(xi)]. Therefore, we can always

obtain a b-matching of bc(xi)(2K − 1) + γ�p
′
2 � triples for γ = p

p′ without sacri-

ficing any ring triple. We show that sinceK > 3
2γ�

p′

2 �+
1
2 , this is greater than any



208 M. El Ouali and G. Jäger

b-matching of bc(xi)(2K − 1)− δ(2K−1
3 ) + p triples, where some ring triples are

sacrificed. Then we have

K = 2�log
3
2 bB

2+1	 ≥ 2�log
3
2 b(c(xi))

2+1	 > 2log(
3
4 b(c(xi))

2+ 1
2 )

=
3

4
· b(c(xi))

2 +
1

2
≥ 3

2
· γ
⌊
c(xi)

2

⌋
+

1

2
.

Since p′ ≤ c(xi), it follows

2

3
·
(
K − 1

2

)
> γ

⌊
p′

2

⌋
= γ ·

(
p′ −

⌈
p′

2

⌉)
and since δ ≥ 1,

bc(xi) · (2K − 1) + γ ·
⌈
p′

2

⌉
> bc(xi) · (2K − 1)− bδ ·

(
2K − 1

3

)
+ p

�
Assertion 3: A standard matching of cardinality bc(xi)(2K−1) on the substruc-
ture T̂xi,j is easy to construct, depending on the structure of the given b-matching
and can be described as follows:

Let M be a b-matching in f(I). For every xi ∈ X we consider the restriction
of M on the ring triples. If |M ∩Rxi,j | ≥ |M ∩Rx̄i,j |. Then we include for every
vertex xi(ρ, λ, j) for (ρ, λ, j) ∈ [c(xi)]× [K]× [b], b incident triples from the sets
of ring triples Rxi,j and delete all ring triples in M ∩Rx̄i,j. Otherwise the same
is applied to x̄i. Assume that we deal with the first case and suppose that the
set of tree triples Txi,j (i.e., binary tree corresponding to xi without ring and
clause triples), and Tx̄i,j , respectively, has L levels. Then we include from Txi,j

all triples in level L − 1 and from Tx̄i,j all triples in level L. This procedure is
applied along both sets of trees by going two levels up in each step. As K and
the occurrence for every xi are constants (K, c(xi) = O(1)), the construction of
stand(M) can be done in deterministic polynomial time. As a property of the
standard b-matching is that both ways of including triples (whether xi or x̄i)
correspond to the truth values of xi, we are done. �
Let M be a b-matching in f(I) and consider the set M|T̂xi,j

which is the restric-

tion of M on the set T̂xi,j for all i ∈ [n] (i.e., M without the clause triples).
As mentioned in the above assertions, it is easy to find a maximum b-matching
for M|T̂xi,j

and therewith a corresponding standard matching stand(M|T̂xi,j
)

such that both b-matchings have the same cardinality. As described in the ap-
pendix, part B, there are two manners to construct such a standard b-matching
stand(M|T̂xi,j

). These two ways conform with the truth values of xi. Further-

more we know that every maximum b-matching of f(I) contains a maximum
b-matching of the subset T̂xi,j. In order to obtain the optimal b-matching on
f(I), we have to include as many of the clause triples as possible and this de-
pends on how the ring triples in T̂xi,j were chosen in the b-matching.

Hence, we can claim that solving a Max-3-Sat-B problem is equivalent to
solving the b-matching problem in f(I).



The b-Matching Problem in Hypergraphs: Hardness and Approximability 209

Lemma 1. The transformation f : Max-3-Sat-B −→Max-3-dimensional-
(b, B)−matching, gives an L-reduction, with α = b2(18b2B + 7) and β = 1.

Proof: Let I be an instance of Max-3-Sat-B. Then the following holds

Opt(f(I)) ≤ b2
n∑

i=1

(c(xi)(2K − 1)) + b2Opt(I) = b2(2K − 1)

n∑
i=1

c(xi) + b2Opt(I)

≤ b2
(
3m

(
2
3

2
b2B + 1

)
+Opt(I)

)
≤ b2(18b2B + 7)Opt(I).

because Opt(I) ≥ m/2. Therefore, α = b2(18b2B+7) satisfies the first constraint
of an L-reduction.

Furthermore, for every b-matching M of cardinality c2 we can construct in
polynomial time a solution of I with c1 satisfied clauses and Opt(f(I)) − c2 ≥
β−1(Opt(I)− c1), where β−1 = 1. As explained above, if a given b-matching M
restricted on T̂xi,j is not optimal, we can make it optimal on this substructure.
We presume that the b-matching M|T̂xi,j

is optimal. We construct a standard op-

timal b-matching Stand(M|T̂xi,j
) over T̂xi,j corresponding to M . Thus, it follows

Opt(f(I))− |M|T̂xi,j
| = Opt(f(I))− |Stand(M|T̂xi,j

)|. We set the variables of I,

as the b-matching Stand(M|T̂xi,j
) indicates. By looking at the ring triples in the

b-matching, we obtain an approximate solution to I that satisfies c1 clauses and
Opt(f(I))− c2 ≥ (Opt(I) − c1). �
From the construction and Lemma 1, Theorem 2, it follows.

Theorem 3. There exists an L-Reduction from the 3-dimensional (b, B)-
matching problem to the (b, B)-matching problem in l-uniform hypergraphs with
α = β = 1.

Proof: It is easy to transform a 3-dimensional (b, B)-matching instance to an
instance of b-matching in a 3-uniform hypergraph, where the set of vertices is
the union of the three sets of the partition, and the set of hyperedges is still
the same. This transformation is an L-reduction with α = 1 and β = 1. If we
compose the above two transformations, we obtain an L-reduction f ′ from the
bounded Max-3-Sat-B to the bounded (b, B)-matching restricted to 3-uniform
hypergraphs with the same α and β as given in the first reduction. So we conclude
that b-matching restricted to 3-uniform hypergraphs is also Max-Snp-hard.

For l > 3, by extending all hyperedges of the constructed 3-uniform hypergraph
to l elements and by introducing extra dummy elements, we obtain also an L-
reduction with α = 1 and β = 1. With the same argument, by composing this
transformation and f ′, we obtain a new L-reduction with α and β like for f . �
The following corollary is an easy consequence of Theorem 2.

Corollary 2. The (b, B)-matching problem in l-uniform hypergraphs is Max-

Snp-hard.

Proof. By Theorem 2, Theorem 3 and Proposition 1 we get an L-reduction
from Max-3-Sat-B to the (b, B)-matching problem in l-uniform hypergraphs



210 M. El Ouali and G. Jäger

with α = b2(18b2B + 7) and β = 1. Hence, the (b, B)-matching problem in
l-uniform hypergraphs is Max-Snp-hard. �

4 Approximation Result

Let H be a hypergraph with maximum vertex degree Δ. The following result
is an improvement of a result presented by Srivastav and Stangier [12] for the
unweighted b-matching problem. We reach the same performance as in [12],
but by a deeper analysis we improve the value of b from b ≥ 24ε−2 lnn to
b ≥ 2ε−1

√
Δ ln(

√
n).

Theorem 4. Let ε ∈ (0, 1) and b ≥ 2ε−1
√

Δ ln(
√
n). Then an approximation

algorithm exists which returns a b-matching M with |M | ≥ (1 − ε)Opt with
probability at least 0.5, where Opt is the cardinality of a maximum b-matching.

Let b ∈ N and A = (aij)i∈[n], j∈[m] ∈ {0, 1}n×m be the vertex-edge incidence ma-
trix. An integer linear programming formulation of b-matching (ILP-b-matching)
in H follows:

max

m∑
j=1

xj : Ax ≤ b, x ∈ {0, 1}m (ILP)

Its linear programming relaxation, denoted by LP-b-matching, is given by relax-
ing the integrality constraints to xj ∈ [0, 1] ∀j ∈ [m]. Let Opt∗ be the value of
an optimal solution to LP-b-matching and (x∗

j )j∈[m] be an optimal solution of
LP-b-matching. The basic randomized algorithm for b-matching was introduced
by Raghavan and Thomson in [8] and later by Srivastav and Stangier [12] and
consists of two steps: randomized rounding and scaling down the probability of
setting the variables xi to 1 by a factor of 1− ε

2 for all j = 1, . . . ,m.
We may assume that |E| ≥ b and |V | ≥ 4 (otherwise the problem can be

solved by enumeration). Let us denote by M the b-matching set returned by the
algorithm, i.e., M := {Ej ∈ E ; Xj = 1}.
Claim 1: Pr[X is not feasible] ≤ 1

4 .

Proof of Claim 1: For i ∈ [n] let (AX)i =
∑m

j=1 aijXj be a random variable.

We have to prove: Pr[(AX)i > b] ≤ 1
4n which implies

Pr[∃i ∈ [n] : (AX)i > b] ≤
n∑

i=1

Pr[(AX)i > b] ≤ n · 1

4n
=

1

4

First it is easy to check that E[(AX)i] ≤ (1 − ε
2 )b.

Let δ := (1− ε
2 )b − E[(AX)i] ≥ 0 and Y := (AX)i + δ. It follows that

E[Y] =
(
1− ε

2

)
b. On the other hand we have:

Pr[(AX)i > b] ≤ Pr[(AX)i + δ > b] = Pr
[
Y >

(
1− ε

2

)
b+

ε

2
b
]

For each i ∈ [n] we consider the function fi : {0, 1}m → N with fi(X1, . . . , Xm) :=
Y =

∑m
j=1 aijXj . For a coordinate j we get: According to Theorem 1 we get:



The b-Matching Problem in Hypergraphs: Hardness and Approximability 211

m∑
j=1

c2j =

m∑
j=1

a2ij =

m∑
j=1

aij = deg(i) ≤ Δ (1)

Let b ≥ 2

√
Δ ln(

√
4n)

ε , applying Theorem 1 to the function fi, it follows:

Pr
[
Y >

(
1− ε

2

)
b+ ε

2
b
]
= Pr

[
Y > E(Y ) + ε

2
b
]
≤ Pr

[
Y > E(Y ) +

√
Δ ln(

√
n)

]
≤

exp

(
−2(

√
Δ ln(

√
4n))2

Δ

)
.

Hence, Claim 1 holds.

Claim 2: Pr[
∑m

j=1 Xj < (1− ε) · Opt∗] ≤ 1
4 .

Proof of Claim 2: (See [12].)

Pr

⎡
⎣Ax ≤ b ∧

m∑
j=1

Xj ≥ (1− ε)Opt∗

⎤
⎦ = 1− Pr

⎡
⎣AX �≤ b ∨

m∑
j=1

Xj < (1 − ε)Opt∗

⎤
⎦

≥ 1− 1

4
− 1

4
=

1

2

As Opt ≤ Opt∗, Theorem 4 follows. �

References

1. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)
2. El Ouali, M., Fretwurst, A., Srivastav, A.: Inapproximability of b-Matching in k-

Uniform Hypergraphs. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS,
vol. 6552, pp. 57–69. Springer, Heidelberg (2011)

3. Kann, V.: Maximum bounded 3-dimensional matching is Max-Snp-complete. Inf.
Process. Lett. 37(1), 27–35 (1991)

4. Krysta, P.: Greedy Approximation via Duality for Packing, Combinatorial Auc-
tions and Routing. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 615–627. Springer, Heidelberg (2005)

5. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13,
383–390 (1975)

6. McDiarmid, C.: On the method of bounded differences. Surveys in Combinatorics.
In: Siemons, J. (ed.) London Math. Soc., vol. 141, pp. 148–188. Cambridge Uni-
versity Press (1989)

7. Papadimitriou, C.H., Yannakakis, M.: Optimization, Approximation, and Com-
plexity Classes. In: Proc. 20th STOC, pp. 229–234 (1988)

8. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

9. Srinivasan, A.: Improved approximation guarantees for packing and covering inte-
ger programs. SIAM J. Comput. 29(2), 648–670 (1999)

10. Srinivasan, A.: An extension of the Lovász Local Lemma and its applications to
integer programming. SIAM J. Comput. 36, 609–634 (2006)

11. Srinivasan, A.: New approaches to covering and packing problems. In: Kosaraju,
S.R. (ed.) Proc. 12th SODA, pp. 567–576 (2001)

12. Srivastav, A., Stangier, P.: Weighted fractional and integral k-matching in hyper-
graphs. Disc. Appl. Math. 57, 255–269 (1995)



Resource Scheduling with Supply Constraint

and Linear Cost

Qiang Zhang1, Weiwei Wu2, and Minming Li1

1 Department of Computer Science
City University of Hong Kong, Hong Kong SAR, China

qianzhang8@student.cityu.edu.hk, minming.li@cityu.edu.hk
2 Division of Mathematical Sciences

Nanyang Technological University, Singapore
wweiwei2@gmail.com

Abstract. We consider the following resource scheduling problem to
minimize the total weighted completion time. There are m resources
available at each time unit, and n jobs, each requiring an arbitrary num-
ber si of resources. Each resource can only be assigned to one job. The
objective is to find a schedule that minimizes

∑
wici, where wi is the

weight/importance of job Ji and ci is the time that job Ji receives all
resources it requires. We show this problem is NP-hard when m is the
input of the problem. We then give a simple greedy algorithm with 2-
approximation ratio. Finally, we present a polynomial time algorithm
with complexity O(nd+1) to solve this problem when the number of dif-
ferent resources requirements that are not multiples of m is at most d.

Keywords: Algorithms, Machine scheduling, Parallel tasks, Supply al-
location.

1 Introduction

Resource scheduling has a long history in operations research, economics and
computer science literature. In this paper, we consider the following resource
scheduling problem. There are a fixed number of resources available at each
time unit and a lot of projects or jobs. Each of the projects or jobs needs a
number of resources. They value their cost based on the time they receive all the
resources. The fundamental problem here is how to allocate these resources to
the projects or jobs such that the social cost is minimized. This problem can be
easily found in the real life. For example, a steel factory has a fixed amount of
steel production each week. The factory receives orders from a lot of customers.
Each of them needs a specific amount of steel. The question left to the factory is
how to allocate its steel to customers in order to minimize the social cost under
the supply constraint.

This problem also falls in the field of machine scheduling in computer sci-
ence. In the literature of machine scheduling, a machine scheduling problem is
denoted by a 3-tuple α|β|γ introduced in [10], where α denotes the machine

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 212–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Resource Scheduling with Supply Constraint and Linear Cost 213

environment, β denotes the additional constraints on the jobs, and γ denotes
the objective function. Weighted completion time minimization is one of the
well studied problems in machine scheduling. The classical scheduling problem
1||
∑

wici can be solved by a greedy algorithm. In the multiple machines schedul-
ing, two fundamental models were previously studied. In the single machine
scheduling model, problem Pm||

∑
wici where the jobs are not allowed to be

executed on two different machines, are well studied. While in the traditional
parallel scheduling model Pm|sizei|

∑
wici, the parallel jobs must be executed

on a number sizei of machines at the same time. In other words, each parallel
job is assigned to a time × machine rectangle. (see Figure 1). It formulates the
constraint that machines once occupied by a job cannot be released separately
before the job finishes. In contrast, we study the unconstrained model where
the jobs are allowed to be scheduled arbitrarily at any number of machines at
different time. A job is said satisfied once it has been processed for a number
of time that it requires regardless it is continuously or cumulatively scheduled.
The aim of our fully parallel scheduling (FPS problem for short) problem is
to minimize the weighted completion time in the unconstrained model. In FPS
problem, we consider time unit to be the processing unit, which applies to all the
jobs. Therefore, each job requires an integer number of time units which makes
FPS problem nontrivial. Figure 1 illustrates the fundamental differences among
non-migration multiple machines scheduling, migration job scheduling and our
proposed FPS problem.

Job 1

Job 2 Job 3 Job 4

Job 5

1. Single machine scheduling

Job 2

J
o
b
3

J
o
b
1

J
o
b
5

3. Our FPS problem

Job 1
Job 2

Job 3
Job 5

Job 4

2. Traditional parallel scheduling

M1

M2

M3

M1

M2

M3

M1

M2

M3

Fig. 1. Fundamental differences among three scheduling problems

In this paper we present the FPS problem as a machine scheduling problem.
We believe it can be easily transformed to other interesting problems with the
same characterization.



214 Q. Zhang, W. Wu, and M. Li

1.1 Our Results

It is the first time that the machine scheduling problem, without any parallel
constraint, is studied. Similar to the other machine scheduling problems, we use
the total weighted completion time as the objective in this paper. The objective
of FPS problem is to give a schedule that minimizes the total weighted comple-
tion time. The main contributions of this paper are the analysis of complexity
of this machine scheduling problem and the design of exact algorithm and ap-
proximation algorithm to solve it. We first prove that it is NP-hard to obtain
the optimal schedule even when the number of machines available at each time
unit is a constant. The proof is based on the reduction from 3-partition problem.
We then show a greedy algorithm that computes a 2-approximation schedule.
At last, we design a O(nd+1) polynomial time algorithm to solve this problem
when the number of different jobs’ sizes that are not multiples of the number of
machines is at most d.

1.2 Related Work

In the literature of operations research, resource scheduling has been stud-
ied in different settings. Kolisch [14] studied the parallel and serial schedul-
ing method for the classical resource-constrained project problem (RCPSP). In
RCPSP where only a limited amount of resources are available, there are two
types of constraints: precedence constrains - an activity cannot start until all its
predecessors have been finished, and resource constraints - each activity needs a
certain type of resources during its execution period. The objective of RCPSP
is to minimize the makespan subject to the above two constraints. Kolisch and
Hartmann [15] gave an experimental analysis on this problem. Gonçalves et al.
[9] presented a heuristic algorithm for the resource constrained multi-project
scheduling problem (RCMPSP) that is a generalization of RCPSP. More works
on resource scheduling in operations research can be found in [2] [13] [11] [12].

Resource allocations are also studied by auctions in economics. One of the
most important problems in auction is social welfare maximization. Our FPS
problem can be considered as a variant of social welfare maximization problem
in the way that each job has a value for a bundle of processing units. Social
welfare maximization problem is an NP-hard problem in general combinatorial
auctions since it is well-known that computing an optimal solution for social wel-
fare maximization requires an exponential number of queries even in the general
queries model [18]. Therefore, most works in this field focus on the approxima-
bility of this problem. It is known that there is a (1−1/e)-approximation for the
general submodular welfare maximization problem in a stronger demand oracle
model [4], which was improved to (1 − 1/e + ε) in [5]. Mirrokni et al. [17] gave
the tight lower bounds for the welfare maximization via value query model in
combinatorial auctions when the valuation function is submodular, subadditive
and superadditive.

In the literature of machine scheduling in computer science. There are a lot of
studies on algorithms for classical scheduling problems (see [16] for more details).



Resource Scheduling with Supply Constraint and Linear Cost 215

The most relevant works to ours are as follows. Problem 1||
∑

wici can be solved
by the Largest Ratio First rule in [20]. When multiple machines are considered,
Garey and Johnson [8] showed that problem Pm||

∑
wici becomes NP-hard

but solvable in pseudo polynomial time. Skutella and Woeginger [19] gave a
PTAS for this problem and Conway, Maxwell and Miller [3] solved the special
case of this problem Pm||

∑
ci when all jobs have the same weight/importance.

Fishkin et al.[6] gave a PTAS for problem Pm|sizej|
∑

wici. Further with the
introduction of release dates, most of weighted completion time minimization
problems are NP-hard. Afratie et al. [1] gave PTASs for some classes of total
weighted completion time minimization problems with release dates.

2 Basic Definitions and Notation

Let m denote the number of machines available at every single time t > 0. There
are n jobs which are indexed as J1, J2, . . . , Jn. Job Ji requires si ∈ Z+ processing
units and has weight/importance wi ∈ R+. We also say si is the size of job Ji.
Without loss of generality, we assume that w1

s1
≥ w2

s2
≥ . . . ≥ wn

sn
. Otherwise, it

takes O(n logn) to sort the jobs in non-increasing order of w
s . Let J(k) denote the

set of jobs whose sizes are k where k is not the multiples of m, that is, J(k) =
{Ji|si = k, k is not a multiple of m}, and J(m) denotes the set of jobs whose
sizes are the multiples of m, that is, J(m) = {Ji|si = zm, for some integer z}.
Let d = |{k|J(k) �= ∅ and k is not a multiple of m}| be the number of different
sizes that are not multiples of m.

A schedule is a tuple (t11, t12, . . . , t1m, . . .) where job txy ∈ {1, 2, . . . n} is
scheduled in machine y at time x. A schedule is feasible if |{(x, y)|txy = i}| =
si, ∀i ∈ {1, 2, . . . n}. We say a job is satisfied if it receives its required processing
units. For a certain schedule A, let rAi be the time that Ji receives its first
processing unit and cAi be the time that Ji gets all required number of processing
units. We say job Jj starts at time rAi and finishes at time cAi . We also say that
job Ji is scheduled before Jj if rAi < rAj .

Schedule A incurs cost wic
A
i for Ji. The objective of the fully parallel schedul-

ing (FPS) problem is to find a feasible schedule that minimizes total weighted
completion time

∑
wici. Let OPT be the optimal solution to FPS problem.

Hence, the minimum total weighted completion time is
∑

wic
OPT
i . We say a

schedule A is β-approximation if
∑

wic
A
i ≤ β

∑
wic

OPT
i .

If it is clear in context, the symbol A would be omitted on the above notations.

3 Analysis of Complexity

In this section, we show that FPS problem is NP-hard by a reduction from the
well-known 3-partition problem.

Definition 1 (3-partition problem). Given a positive integer b and a set
S = {a1, a2, . . . , an} of n = 3k positive integers such that

∑n
j=1 aj = kb. The

problem is to determine whether S can be partitioned into k subsets S1, S2, . . . , Sk



216 Q. Zhang, W. Wu, and M. Li

such that each subset contains 3 elements and the sum of the numbers in each
subset is equal.

Gary and Johnson [7] proved 3-partition problem to be NP-complete.

Definition 2 (Fully scheduled). For a certain schedule A, we say machines
at time t are fully scheduled if the total sizes of jobs that start and finish at time
t equals the number of machine, i.e.

∑
Jj |rAj =t and cAj =t sj = m.

Lemma 1. Assume that there are m machines available at each time, n jobs
with wi = si and

∑
si = mt where t > 0, then the total weighted completion

time is at least 1+t
2 mt in any feasible schedule.

Proof. Let vi denote the total size of jobs finished at time i in any schedule.
Since there are only m machines available at each time, we have

∑j
i=1 vi ≤

jm, 0 ≤ j ≤ t. The total weighted completion time is
∑t

i=1 ivi. We also know∑t
i=1 vi =

∑
si = mt because all the jobs could finish at time t. The minimum

total weighted completion time occurs when all machines are fully scheduled at
every time unit, i.e. vi = m for all i. Therefore, the total weighted completion
time is at least

∑t
i=1 im = 1+t

2 mt.

Theorem 1. FPS problem is NP-hard when the number of machines is large,
i.e. m is also the input of FPS.

Proof. We prove this theorem by a reduction from the 3-partition problem to
FPS problem. For an arbitrary instance I1 in 3-partition problem, we create an
instance I2 of FPS problem in the following way. For any positive number ai ∈ S
in I1, we create a corresponding job Ji such that wi = si = ai in I2. There are
b machines available at every time unit in I2. It is clear that this construction
takes polynomial time.

First, we show that any partition solution in I1 can be mapped to an optimal
schedule in I2. Suppose that a partition S1, S2, . . . , Sk is the solution of instance
I1 , then the corresponding schedule A in I2 assigns the jobs in set {Ji|si ∈ St}
to all the b machines at time t. Since all the jobs finishing on time k has total
weight b, the total weighted completion time

∑
wic

A
i is bk k+1

2 . Since wi = si in

I2, by Lemma 1, we know that any feasible schedule A
′
in I2 would have total

weighted completion time at least bk k+1
2 . Therefore, schedule A is the optimal

solution in I2.
Second, we show that the optimal schedule in I2 suggests the answer to I1.

Suppose that A is the optimal schedule in I2, since wi = si in I2 and
∑

si = kb,
any feasible schedule A

′
in I2 would have total weighted completion time at least

bk k+1
2 . The case

∑
wic

A
′

i = bk k+1
2 occurs if and only if the machines are fully

scheduled at every time unit. Therefore, the answer to 3-partition problem I1 is
to check whether the total weighted completion time

∑
wic

A
i equals bk k+1

2 . If
it is the case, the partition solution for I1 can be constructed by assigning the
numbers in set {si|cAi = t} to St in I1.



Resource Scheduling with Supply Constraint and Linear Cost 217

4 Characterizations of the Optimal Schedule

In this section, we make some fundamental observations on the structure of
this problem, which will guide us to design and analyze the algorithms in the
following sections.

Lemma 2. There exists an optimal schedule where cAi ≤ rAj if rAi ≤ rAj .

Proof. We prove this lemma by construction. Suppose A is an optimal schedule
and there are two jobs Ji and Jj in A where Ji is scheduled before Jj and Jj

receives processing unit when Ji has not finished, that is, r
A
i ≤ rAj and cAi > rAj .

Then another schedule A
′
can be constructed as follows: keep processing unit

assignments unchanged except Ji and Jj in A, and assign the first si processing
units assigned to job Ji and Jj to job Ji and remaining sj processing units to

Jj . Note that in A
′
job Ji will not finish later than in A, that is, cA

′

i ≤ cAi , and

Jj finishes at the same time as in A. Therefore,
∑

wic
A

′

i ≤
∑

wic
A
i . Then the

lemma directly follows.

Lemma 2 allows us to only concentrate on the schedules in which all jobs re-
ceive the processing units in a non-preemptive way when we design and analyze
algorithms for FPS problem since the optimal cost can be computed once the
processing order of the jobs are fixed. From now on, we can simply describe a
schedule in terms of the processing order of the jobs, i.e. schedule A is an n-tuple
(t1, . . . , tn) that specifies the processing order of the jobs where job ti is the i-th
job scheduled in schedule A.

Lemma 3. In the optimal solution OPT , for any two jobs Ji, Jj ∈ J(m), if
wi

si
>

wj

sj
, then cOPT

i ≤ cOPT
j .

Proof. We prove this lemma by contradiction. Suppose that OPT is the optimal
schedule which minimizes

∑
wici and cOPT

i > cOPT
j . By Lemma 2, it is sufficient

to only consider the case where cOPT
j ≤ rOPT

i . Let B be the set of jobs scheduled

between cOPT
j and rOPT

i . Since OPT is the optimal solution, we know that
advancing B before Jj will not reduce the total weighted completion time. Since

sj is multiples of m, it implies that
wj

sj/m
≥

∑
b∈B wb

t1
where sj/m is the time that

jobs in the set B advance and t1 is the time that Jj delays if advancing B before
Jj . By the similar argument, advancing Ji before B will not reduce the total

weighted completion time, we get wi

si/m
≤

∑
b∈B wb

t2
where si/m is the time that

jobs in the set B delay and t2 is the time that Ji advances if advancing Ji before
B. Since both si and sj are multiples of m, it is easy to verify that t1 = t2.

Therefore, we have
wj

sj/m
≥

∑
b∈B wb

t2
≥ wi

si/m
which contradicts the assumption

wi

si
>

wj

sj
.

Lemma 4. In the optimal solution OPT , for any two jobs Ji, Jj and k, if
Ji, Jj ∈ J(k) and wi > wj (wi

si
>

wj

sj
equivalently since si = sj), then cOPT

i ≤
cOPT
j .



218 Q. Zhang, W. Wu, and M. Li

Proof. We prove this lemma by contradiction. Suppose OPT is the optimal
schedule to minimize

∑
i wici and job Ji finishes later than Jj in OPT , i.e.

cOPT
i > cOPT

j . The total weighted completion time can be reduced (wi − wj)

(cOPT
i − cOPT

j ) by swapping the processing unit assignments for Ji and Jj in
schedule OPT . It contradicts the fact that OPT is the optimal schedule.

We will use Lemma 3 and 4 in Section 6 to design an efficient algorithm to solve
FPS problem when d is a constant.

5 2-Approximation Algorithm

In this section we show that the classical Largest Ratio First (LRF ) schedule
is 2-approximation for total weighted completion time

∑
wici in FPS problem

when each job has an arbitrary size and weight/importance.

Definition 3 (Largest Ratio First). A Largest Ratio First(LRF) schedule is
a schedule that assigns time units to the jobs in non-increasing order of w

s .

Theorem 2. LRF schedule gives 2-approximation for total weighted comple-
tion time when each job has an arbitrary size and weight, i.e.

∑
wic

LRF
i ≤

2
∑

wic
OPT
i .

We prove Theorem 2 by examining the lower bound of the optimal schedule and
the upper bound on total weighted completion time

∑
i wici of LRF schedule.

Theorem 2 directly follows by combining the following two lemmas.

Lemma 5.
∑

wic
OPT
i is at least

∑
wi max(

∑
j≤i sj

m , 1).

Proof. Let A∗ denote the optimal schedule in FPS problem. We first prove a
lower bound that the minimum total weighted completion time

∑
i wic

A∗
i is

at least the optimal cost in the following minimization problem P . The input
consists of the same n jobs as those in our problem and m machines are available
at every time unit. Each machine can only be assigned to one job at a time.
Instead of minimizing

∑
wici, the objective is to find a schedule of jobs S that

minimizes
∑

wi

∑
Jj∈FS(i) sj

m , where FS(i) is the set of jobs scheduled before Ji

including Ji itself in sequence S.
It is easy to verify that minimization problem P is equivalent to problem

1||
∑

wici which is the weighted completion time minimization problem in single
machine scheduling. Therefore, LRF schedule gives the optimal objective value∑

wi

∑
j≤i sj

m for problem P . Since problem P and the FPS problem share the
same set of feasible sequences and cSi in FPS problem is greater than or equal to

the

∑
Jj∈FS(i) sj

m in P for every feasible schedule S, the minimum total weighted

completion time
∑

wic
A∗
i is lower bounded by

∑
wj

∑
i≤j si

m .
Another lower bound

∑
i wi directly follows since the minimum cj is at least 1

for any feasible schedule. Combining the two lower bounds completes the proof.



Resource Scheduling with Supply Constraint and Linear Cost 219

Lemma 6.
∑

wic
LRF
i is at most

∑
wi

(∑
j≤i sj

m + m−1
m

)
.

Proof. Since the jobs are scheduled by their orders in LRF schedule and there
are m machines available at every time unit, we have the following

∑
wic

LRF
i =

∑
wi�
∑

j≤i sj

m
�

The lemma follows by bounding �
∑

j≤i si

m � by
∑

j≤i sj

m + m−1
m .

The following example shows that the analysis for LRF schedule is tight. Sup-
pose that there are two jobs and m machines available at each time. Let w1 =
1 + ε, s1 = 1 and w2 = m, s2 = m. The total weighted completion time from
LRF schedule is (1+ ε)+ 2m and the minimum total weighted completion time
is m+ 2(1 + ε). Therefore, LRF schedule is (2− ε

′
) approximation.

6 Jobs with Limited Sizes

We showed that FPS problem is NP-hard in general. In this section we present a
polynomial time algorithm with complexity O(nd+1) to find the optimal solution
in our scheduling problem when d is a constant. Recall that d is the number of
different sizes that are not multiples of m. We say that the jobs in the same set
J(k) form a group. Therefore, there are d+ 1 groups. We assume that the jobs
in the same group are listed in non-increasing order of w

s . Let gji be the j-th job
in group i and |gi| be the size of group i. By Lemma 3 and 4, we know that,
for any i, the jobs {Jj ∈ gi} must be placed in non-increasing order of w

s . An
optimal schedule can be computed once the processing order of jobs are fixed.
Moreover, once we can identify the group where the k-th scheduled job comes
from, the optimal schedule can also be fixed. Therefore, by associating the k-th
scheduled job to one of the d groups, there is an exponential algorithm with
complexity O((d + 1)n) to compute the optimal solution. For constant value d,
the merit of this section is to show that the optimal solution can be computed
with a significantly lower complexity O(nd+1).

The intuition behind our algorithm for this restricted problem is to con-
struct the optimal schedule step by step by applying Lemma 3, 4 and the non-
preemptive property of the optimal solution. Our algorithm assigns the process-
ing order one by one and always favors the schedule with smaller total cost. We
present and analyze the computation complexity of our algorithm in terms of a
dynamic programming in Algorithm 1. Let c(a1, . . . , ad+1) denote the minimum
weighted completion time where ai jobs have been scheduled in group i and the
number of scheduled jobs in each group cannot exceed the number of jobs in
this group, i.e. for all i, ai ≤ |gi|. The dynamic programming is initialized at
c(0, . . . , 0) = 0. Recall that a schedule is determined once the execution order of
groups is determined by Lemma 4, the corresponding schedule to the minimum
weighted completion time can be easily constructed. Moreover, by Lemma 4, it
is easy to see that c(a1, . . . , ad+1) = mini c(a1, . . . , ai − 1, . . . , ad+1) + wg

ai
i
cgai

i



220 Q. Zhang, W. Wu, and M. Li

Algorithm 1:

Input: A set of jobs J1, J2, . . . , Jn are divided into d+ 1 groups based on their
sizes

Output: The minimum total weighted completion time
∑

wici

Initialization:
// initialize the base case
c(0, . . . , 0) = 0 ;
ki = |gi|, ∀i;

Main:
// compute the minimum total weighted completion time by procedure c
min

∑
wici = c(k1, . . . , kd+1);

Procedure c(a1, . . . , ad+1):
// H are the indexes of the groups in c(·) which are not zero
H = {i|ai ≥ 1} ;
// append job gai

i into the previous schedule c(a1, . . . , ai − 1, . . . , ad+1)
and compute the resulting weighted completion time.

// return the one with minimum total weighted completion time
return mini∈H c(a1, . . . , ai − 1, . . . , ad+1) + wg

ai
i
cgai

i
;

where cgai
i

is the completion time of the athi job in group i by appending it after

the previous schedules. By recursively computing c(·), the minimum weighted
completion time directly follows.

Lemma 7. Algorithm 1 computes a schedule that minimizes the cost
∑

wici.

Proof. Recall that Lemma 3 and 4 are the necessary conditions for any optimal
schedule that minimizes total weighted completion time

∑
wici. Algorithm 1

examines all the schedules satisfying Lemma 3 and 4. Therefore, it gives an
optimal schedule.

Lemma 8. Algorithm 1 terminates in O(nd+1) time.

Proof. We analyze the running time of our algorithm by counting the size of
dynamic programming in Algorithm 1. For a particular number l ≤ n, there are
at most

(
d

l+d

)
schedules such at

∑
ai = l. Each schedule needs d+1 computations

to get the minimum. Therefore, there are at most (d + 1)
(

d
l+d

)
computations.

Since l can only take n different values, the total required computations are
bounded by O(nd+1). This completes the proof.

7 Conclusions and Discussions

In this paper we consider the weighted completion time as the objective in the
fully parallel scheduling problem. We prove that total weighted completion time



Resource Scheduling with Supply Constraint and Linear Cost 221

minimization is NP-hard in general and show that a greedy algorithm is 2-
approximation. We also give a polynomial time algorithm to compute the op-
timal solution when the sizes of the jobs are restricted. It would be interesting
to explore other classes of this problem where algorithms can be designed to
compute the optimal solution. Besides the weighted completion time, other ob-
jectives could be considered such as minimization of maximum lateness when
the deadlines are introduced. Furthermore, with the introduction of release time
of each job in the online environment, the problem could be more challenging.

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenkom, M.: Approximation schemes
for minimizing average weighted completion time with release dates. In: Proceed-
ings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
pp. 32–43 (1999)

2. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: Notation, classification, models, and methods. European Jour-
nal of Operational Research 112(1), 3–41 (1999)

3. Conway, R., Maxwell, W., Miller, L.: Theory of scheduling. Dover Publications
(2003)

4. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In: Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithm, pp. 1064–1073 (2006)

5. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1-1/e. In: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 667–676 (2006)

6. Fishkin, A., Jansen, K., Porkolab, L.: On minimizing average weighted completion
time: A ptas for scheduling general multiprocessor tasks. In: Proceedings of the
13th International Symposium on Fundamentals of Computation Theory, pp. 495–
507 (2001)

7. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling un-
der resource constraints. SIAM Journal on Computing 4, 397 (1975)

8. Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

9. Gonçalves, J., Mendes, J., Resende, M.: A genetic algorithm for the resource con-
strained multi-project scheduling problem. European Journal of Operational Re-
search 189(3), 1171–1190 (2008)

10. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathemat-
ics 5(2), 287–326 (1979)

11. Graves, S.C.: A review of production scheduling. Operations Research, 646–675
(1981)

12. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Re-
search 207(1), 1–14 (2010)

13. Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165(2), 289–306 (2005)



222 Q. Zhang, W. Wu, and M. Li

14. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods re-
visited: Theory and computation. European Journal of Operational Research 90(2),
320–333 (1996)

15. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Re-
search 174(1), 23–37 (2006)

16. Leung, J.Y.T.: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press (2004)

17. Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions. In: Proceedings of the 9th
ACM Conference on Electronic Commerce, pp. 70–77 (2008)

18. Nisan, N., Segal, I.: The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory 129(1), 192–224 (2006)

19. Skutella, M., Woeginger, G.: A ptas for minimizing the weighted sum of job com-
pletion times on parallel machines. In: Proceedings of the 31th Annual ACM Sym-
posium on Theory of Computing, pp. 400–407. ACM (1999)

20. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3(1-2), 59–66 (1956)



On Certain Geometric Properties

of the Yao-Yao Graphs

Iyad A. Kanj1 and Ge Xia2

1 School of Computing, DePaul University,
243 S. Wabash Avenue, Chicago, IL 60604-2301

ikanj@cs.depaul.edu
2 Department of Computer Science, Acopian Engineering Center,

Lafayette College, Easton PA 18042
gexia@cs.lafayette.edu

Abstract. We show that, for any constant ρ > 1, there exists an integer
constant k such that the Yao-Yao graph with parameter k defined on a
civilized unit disk graph is a geometric spanner of stretch factor ρ. This
improves the results of Wang and Li in several aspects, as described
in the paper. We also show that the Yao-Yao graph with parameter
k = 4 defined on the complete Euclidean graph is not a spanner and is
not plane. This partially answers an open problem posed by Demaine,
Mitchell and O’Rourke about the spanner properties of Yao-Yao graphs.

Keywords: Yao graphs, Yao-Yao graphs, unit disk graphs, spanners.

1 Introduction

Let E be the complete Euclidean graph on a set of points S in the plane, and let
G be a spanning subgraph of E . Fix an ordering ≺ on the edges in G such that
shorter edges appear before longer edges and ties are broken arbitrarily. Given
an integer parameter k > 0, the Yao graph [21] with parameter k defined on G,

denoted
−→
Yk(G), is constructed as follows. For each point p in G, partition the

space into k cones of equal measure whose apex is p (the orientation of the cones
is fixed for all points), thus creating k closed cones of angle 2π/k each. In each
cone, choose the smallest edge according to the ordering ≺ in G incident to p

(if any) and add it to
−→
Yk(G) as a directed edge outgoing from p. The undirected

Yao graph with parameter k defined on G, denoted Yk(G), is the underlying

undirected graph of
−→
Yk(G).

The Yao-Yao graph with parameter k > 0, denoted
−−→
Y Yk(G), is constructed in

two stages. The first stage proceeds as in the construction of
−→
Yk(G): each point

p in G partitions the space into k cones of equal measure whose apex is p and
chooses the smallest edge according to the ordering ≺ in G incident to p (if any)
in each cone as an outgoing edge from p. In the second stage, for each point

p ∈ G, and for each cone defined by p in the construction of
−→
Yk(G), point p

keeps only the smallest incoming edge in the cone according to the ordering ≺.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 223–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



224 I.A. Kanj and G. Xia

The directed edges kept by the points inG in the second stage constitute
−−→
Y Yk(G).

Y Yk(G) denotes the underlying directed graph of
−−→
Y Yk(G). Clearly,

−−→
Y Yk(G) is a

subgraph of
−→
Yk(G), and Y Yk(G) is a subgraph of Yk(G). For simplicity, we write

Yk for Y Yk(E) and Y Yk for Y Yk(E).
The Yao graphs have been extensively studied, and many of their geometric

properties have been discovered. In particular, it is known that Y2 and Y3 are
not geometric spanners [17] (of E), Y4 is a spanner with stretch factor 8

√
2(29+

23
√
2) [2], Y6 is a spanner with stretch factor 17.7 [6], and that for k ≥ 7, Yk is

a spanner with stretch factor (1+
√
2− 2 cos (2π/k))/(2 cos (2π/k)− 1) [3]. The

question of whether or not Y5 is a spanner remains open.
Whereas the Yao graphs were extensively studied, little work has been done on

the Yao-Yao graphs. One advantage of the Yao-Yao graphs over the Yao graphs
is that their maximum degree is bounded: Whereas Yk(G) can have unbounded
degree, the maximum degree of Y Yk(G) is at most 2k. Demaine, Mitchell and
O’Rourke [10] asked whether the Yao-Yao graphs are geometric spanners of E .

Wang and Li [19] studied the Yao-Yao graphs. Their study was motivated by
the problem of computing bounded-degree spanners. The problem of construct-
ing bounded-degree spanners has been extensively studied within computational
geometry (for example, see [1, 4, 7–9, 11, 13, 15, 21], and the following book
on spanners [18]). More recently, wireless network researchers have approached
the problem as well. Emerging wireless distributed system technologies, such as
wireless ad hoc and sensor networks, are often modeled as a unit disk graph
(UDG) in the Euclidean plane: the points of the UDG correspond to the mo-
bile wireless devices, and its edges connect pairs of points whose correspond-
ing devices are in each other’s transmission range equal to one unit. Spanners
of UDGs are fundamental to wireless systems because they represent topolo-
gies that can be used for efficient unicasting, multicasting, and/or broadcasting
(see [4, 5, 11, 12, 14, 16, 20], to name a few). For these applications, span-
ners are typically required to have bounded degree; this requirement is moti-
vated by interference issues and the physical limitations of wireless devices (e.g.,
[4, 5, 11, 12, 14, 20]).

Wang and Li [19] investigated some geometric properties of the Yao-Yao
graphs on unit disk graphs. They proved that if the minimum distance between
any two points in a UDG U is lower-bounded by a positive constant (referred to
as a civilized UDG), then there exists a constant k such that the Yao-Yao graph
of U with parameter k is a power spanner with stretch factor 2. Although Wang
and Li [19] claimed a stretch factor of 2, their proof implies a stretch factor of
1 + ε for any ε > 0. A power spanner is a spanner in which the weight of any
edge ab is defined to be ||ab||β, where ||ab|| is the Euclidean distance between a
and b and β ∈ [2, 5], whereas in a geometric spanner the edge-weight is defined
to be ||ab||. Observe that any geometric spanner is also a power spanner.

In this paper we improve Wang and Li’s results [19]. We prove that, for any
ρ > 1, there exists a constant k such that the Yao-Yao graph with parameter k
defined on a civilized unit disk graph is a geometric spanner with stretch factor
ρ. Whereas the general outline of our proof resembles that of Wang and Li [19],



On Certain Geometric Properties of the Yao-Yao Graphs 225

Wang and Li’s proof works only for power weights because their proof depends
on some properties of power spanners that are not shared by geometric spanners.
For example, at several places in their proof they used the fact that in a triangle
&abc, if the angle ∠abc is not acute, then the power weights satisfy

||ab||β + ||bc||β ≤ ||ac||β,

for β ∈ [2, 5], which is not true for geometric weights (i.e., β = 1). We need to
overcome nontrivial technical issues to prove the results for geometric spanners.
Since any geometric spanner is also a power spanner, this improves Wang and
Li’s results in terms of the spanner type (geometric spanner vs. power spanner).
We note that both Wang and Li’s results and ours apply to the directed Yao-Yao
graphs, and hence obviously apply as well to their undirected counterparts. We
also show in the current paper that Y Y4 is not a spanner and is not plane. This
partially answers (for k = 4) an open problem posed by Demaine, Mitchell and
O’Rourke [10].

The paper is organized as follows. In Section 2, we introduce the notations
and terminology used throughout the paper. In Section 3, we prove that the
Yao-Yao graph is a spanner for civilized unit disk graphs. In Section 4 we show
that Y Y4 is not a spanner, and in Section 5 we show that Y Y4 is not plane. We
conclude the paper in Section 6.

2 Preliminaries

Given a set of points S in the two-dimensional Euclidean plane, the complete
Euclidean graph E on S is defined to be the complete graph whose point-set is
S. Each edge ab connecting points a and b is assumed to be embedded in the
plane as the straight line segment ab; we define its weight to be the Euclidean
distance ||ab||. We define the unit disk graph (UDG) U whose point set is S to
be the subgraph of E consisting of all edges ab with ||ab|| ≤ 1. We assume in
this paper that the UDG U is connected. The unit disk graph U is said to be
civilized if the minimum distance between any two points in S is at least λ, for
some pre-specified constant λ > 0.

Let G be a subgraph of E . The weight of a simple path a = m0,m1, . . . ,mr = b
between two points a, b in G is

∑r−1
j=0 ||mjmj+1||. For two points a, b in G, we

denote by dG(a, b) the weight of a shortest path from a to b in G. A spanning
subgraph H of G is said to be a geometric spanner of G if there is a constant ρ
such that, for every two points a, b ∈ G, dH(a, b) ≤ ρ ·dG(a, b). The constant ρ is
called the stretch factor of H (with respect to G). The following is a well-known
and obvious fact:

Fact 1. A subgraph H of graph G has stretch factor ρ with respect to
G if and only if for every edge xy ∈ G, dH(x, y) ≤ ρ||xy||.

A graph embedded in the Euclidean plane is said to be a plane graph if its edges
do not cross.



226 I.A. Kanj and G. Xia

3 Y Yk Is a Spanner for Civilized UDG

Let U be a civilized UDG with parameter λ > 0 defined on a point-set S.

Let
−→
Y k(U) be the directed Yao graph with parameter k defined on U , and let

−−→
Y Y k(U) be the directed Yao-Yao graph with parameter k defined on U .

Theorem 1. For any constant ρ > 1, there is a positive integer constant k0
such that, for all k ≥ k0, the stretch factor of

−−→
Y Y k(U) is at most ρ, where k0 is

dependent only on ρ and λ.

Proof. By Fact 1, it will suffice to prove that there is a constant c ∈ ( 1ρ , 1) (to be

determined later) such that the following two statements are true for all points
u, v in U .

1. If −→uv is not in the graph
−→
Y k(U), then there is a directed path from

u to v in
−−→
Y Y k(U) whose length is at most ρ||uv||.

2. If −→uv is in the graph
−→
Y k(U), then there is a directed path from u to

v in
−−→
Y Y k(U) whose length is at most cρ||uv||.

We proceed by induction on the ordering ≺ of the edges uv in U .
For the base case when ||uv|| is smallest according to ≺, it is easy to verify that

−→uv is an edge in
−−→
Y Y k(U) and the statement is true. Assume that the statement

is true for all edges ts ∈ U where ts ≺ uv. We distinguish the following cases.

1. −→uv is not in the graph
−→
Y k(U). In this case there is an edge uw in U such

that uv and uw belong to the same cone for point u, uw ≺ uv, and −→uw is in

the graph
−→
Y k(U). By the inductive hypothesis, there is a directed path from

u to w in
−−→
Y Y k(U) whose length is at most cρ||uw||. For k large enough,

we have ||wv|| < ||uv|| because ∠vuw is small and ||uw|| ≤ ||uv||. This
means that wv is an edge in U and wv ≺ uv. By the inductive hypothesis,

there is a directed path from w to v in
−−→
Y Y k(U) whose length is at most

ρ||wv||. Therefore, there is a directed path from u to v in
−−→
Y Y k(U) whose

length is at most cρ||uw|| + ρ||wv||. Let x = ||uw||
||uv|| and θ = ∠vuw. Note

that 0 < x < 1 and θ ≤ 2π
k . Applying trigonometric identities, we have

||wv|| =
√
1 + x2 − 2x cos θ · ||uv||. In order to prove the inductive statement,

it suffices to show that:

cρ||uw||+ ρ||wv||
ρ||uv|| ≤ 1

⇔ cx+
√
1 + x2 − 2x cos θ ≤ 1

⇔
√
1 + x2 − 2x cos θ ≤ 1− cx

⇔ 1 + x2 − 2x cos θ ≤ (1− cx)2

⇔ x2 − 2x cos θ ≤ (cx)2 − 2cx

⇔ x− 2 cos θ ≤ c2x− 2c

⇔ (1− c2)x+ 2c ≤ 2 cos θ. (1)



On Certain Geometric Properties of the Yao-Yao Graphs 227

Since 1
ρ < c < 1 and 0 < x < 1, we have

(1− c2)x < 1− c2. (2)

From (1) and (2), in order to prove that the inductive statement holds for
this case, it suffices to show that:

1− c2 + 2c = 2− (1 − c)2 ≤ 2 cos θ. (3)

For any fixed value of 1
ρ < c < 1, there is a k0 such that

2 cos
2π

k0
≥ 2− (1 − c)2.

For all k ≥ k0, we have

2 cos θ ≥ 2 cos
2π

k
≥ 2 cos

2π

k0
≥ 2− (1− c)2,

i.e., (3) is true and the claim holds.

2. −→uv is in the graph
−→
Y k(U). If −→uv is also in

−−→
Y Y k(U) then we are done. If −→uv is

not in
−−→
Y Y k(U), then there is an edge wv in U such that uv and wv are in the

same cone for point v, wv ≺ uv, and −→wv is in the graph
−−→
Y Y k(U). For k large

enough, we have ||uw|| < ||uv|| because ∠wvu is small and ||wv|| ≤ ||uv||.
By the inductive hypothesis, there is a directed path from u to w in

−−→
Y Y k(U)

whose length is at most ρ||uw||. Therefore, there is a directed path from

u to v in
−−→
Y Y k(U) whose length is at most ρ||uw|| + ||wv||. Let x = ||wv||

||uv||
and θ = ∠uvw. Note that 0 < x < 1 and θ ≤ 2π

k . Applying trigonometric

identities, we have ||uw|| =
√
1 + x2 − 2x cos θ · ||uv||. In order to prove the

inductive statement, it suffices to show that

ρ||uw||+ ||wv||
cρ||uv|| ≤ 1

⇔ 1

c

√
1 + x2 − 2x cos θ +

x

cρ
≤ 1

⇔
√
1 + x2 − 2x cos θ ≤ c− x

ρ

⇔ 1 + x2 − 2x cos θ ≤ (c− x

ρ
)2

⇔ 1 + x2 − (c− x

ρ
)2 ≤ 2x cos θ

⇔
1 + x2 − (c− x

ρ )
2

x
≤ 2 cos θ

⇔
1 + x2 − c2 − x2

ρ2 + 2cx
ρ

x
≤ 2 cos θ

⇔ 1− c2

x
+ (1 − 1

ρ2
)x+

2c

ρ
≤ 2 cos θ. (4)



228 I.A. Kanj and G. Xia

Fixing the values of c and ρ, it can be easily verified that the maximum

value of 1−c2

x + (1 − 1
ρ2 )x in the interval [λ, 1] is achieved when x is mini-

mized (x = λ) or maximized (x = 1).

(a) If x = 1, then plugging it into the LHS of (4) we get

1− c2

x
+ (1− 1

ρ2
)x+

2c

ρ
= 1− c2 + 1− 1

ρ2
+

2c

ρ
= 2− (c− 1

ρ
)2.

For any fixed values of ρ > 1 and 1
ρ < c < 1, there is a k0 such that

2 cos
2π

k0
≥ 2− (c− 1

ρ
)2.

For all k ≥ k0, we have

2 cos θ ≥ 2 cos
2π

k
≥ 2 cos

2π

k0
≥ 2− (c− 1

ρ
)2,

i.e., (4) is true and the claim holds.

(b) If x = λ, then plugging it into the LHS of (4) we get

1− c2

x
+ (1− 1

ρ2
)x+

2c

ρ
=

(1− c)(1 + c)

λ
+ (1− 1

ρ2
)λ+

2c

ρ

<
2(1− c)

λ
+ (1− 1

ρ2
)λ+

2c

ρ
(since 1 + c < 2)

=
2(1− c)

λ
+ (1− 1

ρ2
)λ+

2

ρ
− 2(1− c)

ρ

= 2(1− c)(
1

λ
− 1

ρ
) + (1− 1

ρ2
)λ+

2

ρ

< 2(1− c)(
1

λ
− 1

ρ
) + 1− 1

ρ2
+

2

ρ

= 2(1− c)(
1

λ
− 1

ρ
) + 2− (1− 1

ρ
)2. (5)

Set

c = 1−
(1− 1

ρ)
2

4( 1λ −
1
ρ )

.

Because 1 > λ > 0 and ρ > 1, we have 0 <
1− 1

ρ

4( 1
λ− 1

ρ )
< 1. Hence c < 1 and

c = 1−
(1− 1

ρ )
2

4( 1λ −
1
ρ)

= 1− (1− 1

ρ
) ·

1− 1
ρ

4( 1λ −
1
ρ)

> 1− (1− 1

ρ
)

=
1

ρ
.



On Certain Geometric Properties of the Yao-Yao Graphs 229

Therefore 1
ρ < c < 1 as required.

Substituting the value of c into the RHS of (5) we get

2(1− c)(
1

λ
− 1

ρ
) + 2− (1 − 1

ρ
)2 =

1

2
(1 − 1

ρ
)2 + 2− (1− 1

ρ
)2

= 2− 1

2
(1 − 1

ρ
)2. (6)

For any fixed value of ρ > 1, there is a k0 such that

2 cos
2π

k0
≥ 2− 1

2
(1− 1

ρ
)2.

For all k ≥ k0, we have

2 cos θ ≥ 2 cos
2π

k
≥ 2 cos

2π

k0
≥ 2− 1

2
(1 − 1

ρ
)2. (7)

Combining (5), (6) and (7), we have proven (4) and hence the claim
holds.

This completes the proof.

4 Y Y4 Is Not a Spanner

In this section we show that the Y Y4 graph defined on the complete Euclidean
graph is not a spanner. We do so by exhibiting, for every stretch factor ρ > 1, a
set of points in the Euclidean plane whose stretch factor is more than ρ. The set
of points consists of two sequences (pi)

n
i=0, (qi)

n
i=0, and hence, is of cardinality

2n+2. The two sequences of points are placed in the Euclidean plane such that
dY Y4(p0, q0) > ρ. Since there are four rectilinear cones around each point in Y Y4,
we will refer to the cones as quadrants, and number them in the same way the
quadrants around the origin in the Cartesian system are numbered.

Let ρ > 1 be given. Choose n large enough so that ε = 1 − ρ/2n satisfies
0 < ε < 1, and choose δ > 0 such that δ < (2ε − ε2)/(4n). The sequence of
points (pi)

n
i=0 belongs to a ray starting at p0 whose slope is −δ/(1 − ε), and

the sequence of points (qi)
n
i=0 belongs to a ray starting at q0 whose slope is

δ/(1− ε). More precisely, the coordinates of the points in the sequences (pi)
n
i=0

and (qi)
n
i=0 are defined as follows: pi has coordinates ((1− ε)i, 1− δi) and qi has

coordinates ((1− ε)i, δi), for i = 0, . . . , n. Since points pi and qi lie on the same
vertical line, we will assume, without loss of generality, that point qi is in the
third quadrant of point pi (equivalently, point pi is in the first quadrant of point
qi), for i = 0, . . . , n. This assumption can be justified by perturbing the points
in the sequence (qi) so that each of them is slightly shifted horizontally by a
vector −→v = (−c, 0), where c is a very small positive constant chosen in such a
way that it does not affect the desired properties.



230 I.A. Kanj and G. Xia

Based on the definition of the two sequences (pi)
n
i=0, (qi)

n
i=0, we have ||p0q0|| =

1 and ||piqi|| = 1 − 2δi; ||pipi+1|| = ||qiqi+1|| =
√
1 + ε2 + δ2 − 2ε. Moreover, it

is not difficult to verify that by the choice of ε and δ above we have ||qiqi+1|| =√
1 + ε2 + δ2 − 2ε < 1 − 2δn ≤ 1 − 2δi = ||piqi||. For completeness, we present

in the following the details of the edge selection process. First, it is easy to
verify that the following holds after the first stage of the edge selection in the
construction of Y Y4 (refer to Figure 1 for illustration):

– For a point pi, i = 0, . . . , n, its first quadrant/cone is empty. Its second
quadrant is empty if i = 0, and contains points p0, . . . , pi−1 if i ∈ {1, . . . , n};
hence, point p0 does not select any point in its second quadrant, and for
i �= 0 point pi selects point pi−1 in its second quadrant. Its third quadrant
contains points q0, . . . , qi, and point pi selects point qi in this quadrant. Its
fourth quadrant is empty if i = n, and contains points qi+1, . . . , qn plus
points pi+1, . . . , pn if i ∈ {0, . . . , n − 1}; hence, point pi selects point pi+1

in this quadrant if i �= n, and point pn does not select any point in this
quadrant.

– For a point qi, i = 0, . . . , n−1, its first quadrant contains points qi+1, . . . , qn
plus points pi, . . . , pn, and qi selects point qi+1 in this quadrant; if i = n
then its first quadrant contains only pn, and qn selects pn in this quadrant.
The second quadrant of qi is empty if i = 0, and contains points p0, . . . , pi−1

if i ∈ {1, . . . , n}; hence, point qi selects point pi−1 in this quadrant if i ∈
{1, . . . , n}, and if i = 0 point q0 does not select any point in its second
quadrant. The third quadrant of qi is empty if i = 0, and otherwise contains
points q0, . . . , qi−1; hence, point q0 does not select any point in its third
quadrant, and for i �= 0 point qi selects point qi−1 in its third quadrant.
Its fourth quadrant is empty and qi does not select any point in its fourth
quadrant.

Based on the above, after the second stage of the edge selection in the Y Y4

construction, the final edge-set of the Y Y4 graph G defined by the two sequences
of points (pi)

n
i=0 and (qi)

n
i=0 is: {pipi+1 : i = 0, . . . n−1}∪{qiqi+1 : i = 0, . . . , n−

1} ∪ {pnqn}. Therefore, the shortest path between points p0 and q0 in G has

length at least
∑n−1

i=0 ||pipi+1|| +
∑n−1

i=0 ||qiqi+1|| + ||pnqn|| >
∑n−1

i=0 ||pipi+1|| +∑n−1
i=0 ||qiqi+1|| > 2n(1− ε) = ρ. This shows that the stretch factor of G is more

than ρ and completes the proof.

5 Y Y4 Is Not Plane

In this section we show that the Y Y4 graph defined on the complete Euclidean
graph is not plane. Consider the set of points {u, v, w, r, s, t} in the Euclidean
plane, whose coordinates are u(4, 4), v(1, 7), w(−3/2, 9), r(0, 0), s(−2, 1/2), and
t(−5, 1). For completeness, we give a detailed description of the edge selection
process. First, it is easy to verify that the following holds after the first stage of
the edge selection in the construction of Y Y4 (refer to Figure 2 for illustration).



On Certain Geometric Properties of the Yao-Yao Graphs 231

Fig. 1. An illustration of the construction showing that the Y Y4 graph is not a spanner.
The illustration shows a Y Y4 graph whose stretch factor ρ > 5. In this illustration n is
chosen to be 5, and ε = 1/2.

– For point u, its first quadrant/cone is empty. Its second quadrant contains
points v, w, and u selects v in its second quadrant. Its third quadrant contains
r, s, t, and u selects r in its third quadrant. Its fourth quadrant is empty.

– For point v, its first quadrant is empty. Its second quadrant contains w, and
hence v selects w in its second quadrant. Its third quadrant contains r, s, t,
and v selects r in its third quadrant. Its fourth quadrant contains u, and v
selects u in its fourth quadrant.

– For point w, its first and second quadrants are empty. Its third quadrant con-
tains s, t, and w selects s in its third quadrant. Its fourth quadrant contains
u, v, r, and w selects v in its fourth quadrant.

– For point r, its first quadrant contains u, v, and r selects u in its first quad-
rant. Its second quadrant contains w, s, t, and r selects s in its second quad-
rant. Its third and fourth quadrants are empty.

– For point s, its first quadrant contains u, v, w, and s selects u in its first quad-
rant. Its second quadrant contains t, and s selects t in its second quadrant.
Its third quadrant is empty. Its fourth quadrant contains r, and s selects r
in its fourth quadrant.

– For point t, its first quadrant contains u, v, w, and t selects v in its first
quadrant. Its second and third quadrants are empty. Its fourth quadrant
contains r, s, and t selects s in its fourth quadrant.

Based on the above, after the second stage of the edge selection in the Y Y4

construction, the final edge-set of the Y Y4 graph G defined by the set of points
{u, v, w, r, s, t} is: {uv, , vw, ur, rs, st, sw, tv}. The two edges sw and tv intersect,
and hence G is not a plane graph. It follows that the Y Y4 graph defined on a
set of points is not necessarily a plane graph.



232 I.A. Kanj and G. Xia

r
s

t

u

v

w

Fig. 2. A set of points for which the Y Y4 graph is not plane

6 Concluding Remarks

In this paper we studied some geometric properties of the Yao-Yao graphs. We
showed that the Yao-Yao graphs defined on civilized unit disk graphs are span-
ners with a stretch factor that is arbitrarily close to 1. We also showed that Y Y4

is not a spanner and is not plane.
Clearly, the Yao-Yao graphs are less well understood than the Yao graphs.

Several questions about the properties of Yao-Yao graphs remain unresolved.
For example, are the Yao-Yao graphs geometric spanner of E? More precisely,
for what values of k (if any) is Y Yk a geometric spanner? We leave those as open
problems.

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

2. Bose, P., Damian, M., Doüıeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer,
S.: π/2-Angle Yao Graphs Are Spanners. In: Cheong, O., Chwa, K.-Y., Park, K.
(eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 446–457. Springer, Heidelberg
(2010)

3. Bose, P., Damian, M., Doüıeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer,
S.: π/2-angle Yao graphs are spanners. CoRR, abs/1001.2913 (2010)

4. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

5. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

6. Damian, M., Raudonis, K.: Yao Graphs Span Theta Graphs. In: Wu, W., Daescu,
O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 181–194. Springer, Heidelberg
(2010)

7. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-
dimensional Euclidean space. In: Proceedings of the 19th ACM Symposium on
Computational Geometry, pp. 53–62 (1993)



On Certain Geometric Properties of the Yao-Yao Graphs 233

8. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean span-
ners. In: Proceedings of the 20th ACM Symposium on Computational Geometry,
pp. 132–139 (1994)

9. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean
graphs. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 215–222 (1995)

10. Demaine, E., Mitchell, J., O’Rourke, J. (eds.): The open problems project: Problem
70, http://maven.smith.edu/~orourke/TOPP/P70.html

11. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM Journal on Computing 31(5), 1479–
1500 (2002)

12. Kanj, I., Perković, L., Xia, G.: On spanners and lightweight spanners of geometric
graphs. SIAM Journal on Computing 39(6), 2132–2161 (2010)

13. Keil, J., Gutwin, C.: Classes of graphs which approximate the complete Euclidean
graph. Discrete & Computational Geometry 7, 13–28 (1992)

14. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
Proceedings of the 11th Canadian Conference on Computational Geometry, pp.
51–54 (1999)

15. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-
plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3),
251–256 (1992)

16. Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation
with application in Ad Hoc wireless networks. IEEE Transactions on Parallel and
Distributed Systems 14(10), 1035–1047 (2003)

17. Molla, N.: Yao spanners for wireless ad hoc networks. M.S. Thesis, Department of
Computer Science, Villanova University (December 2009)

18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press (2007)

19. Wang, Y., Li, X.-Y.: Distributed spanner with bounded degree for wireless ad
hoc networks. In: Proceedings of the 16th International Parallel and Distributed
Processing Symposium (2002)

20. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. Mobile Networks and Applications 11(2), 161–175
(2006)

21. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

http://maven.smith.edu/~orourke/TOPP/P70.html


Distance-d Independent Set Problems

for Bipartite and Chordal Graphs

Hiroshi Eto, Fengrui Guo, and Eiji Miyano

Department of Systems Design and Informatics, Kyushu Institute of Technology,
Fukuoka 820-8502, Japan

{eto,guo}@theory.ces.kyutech.ac.jp, miyano@ces.kyutech.ac.jp

Abstract. The paper studies a generalization of the Independent Set

(IS) problem. A distance-d independent set for a positive integer d ≥ 2 in
an unweighted graph G = (V,E) is a set S ⊆ V of vertices such that for
any pair of vertices u, v ∈ S, the distance between u and v is at least d in
G. Given an unweighted graph G and a positive integer k, the Distance-

d Independent Set (DdIS) problem is to decide whether G contains a
distance-d independent set S such that |S| ≥ k. D2IS is identical to the
original IS and thus D2IS is in P for bipartite graphs and chordal graphs.
In this paper, we show that for every fixed integer d ≥ 3, DdIS is NP-
complete even for planar bipartite graphs of maximum degree three, and
also NP-complete even for chordal bipartite graphs. Furthermore, we
show that if the input graph is restricted to chordal graphs, then DdIS
can be solved in polynomial time for any even d ≥ 2, whereas DdIS is
NP-complete for any odd d ≥ 3.

1 Introduction

One of the most important and most investigated computational problems in
theoretical computer science is the Independent Set problem (IS for short)
because of its many applications in scheduling, computer vision, pattern recog-
nition, coding theory, map labeling, computational biology, and some other fields.
The input of IS is an unweighted graphG = (V,E) and a positive integer k ≤ |V |.
An independent set of G is a subset S ⊆ V of vertices such that, for all u, v ∈ S,
the edge (u, v) is not in E. IS asks whether G contains an independent set S hav-
ing |S| ≥ k. IS is among the first problems ever to be shown to be NP-complete,
and has been used as a starting point for proving the NP-completeness of other
problems [10]. Moreover, it is well known that IS remains NP-complete even for
substantial restricted graph classes such as cubic planar graphs [9], triangle-free
graphs [18], and graphs with large girth [17].

In this paper, we consider a generalization of IS, named the Distance-d
Independent Set problem (DdIS for short). A distance-d independent set for
a positive integer d ≥ 2 in an unweighted graph G = (V,E) is a set S ⊆ V of
vertices such that for any pair of vertices u, v ∈ S, the distance between u and
v is at least d in G. For a fixed constant d ≥ 2, DdIS considered in this paper is
formulated as the following class of problems [1]:

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 234–244, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Distance-d Independent Set Problems 235

Distance-d Independent Set (DdIS)

Instance: An unweighted graph G = (V,E) and a positive integer
k ≤ |V |.

Question: Does G contains a distance-d independent set of size k
or more?

One can see that D2IS is identical to the original IS, and DdIS is equivalent to
IS on the (d− 1)th power graph Gd−1 of the input graph G.

IS, i.e., D2IS is evenNP-complete, and thus it would be easy to show that DdIS
is NP-complete in general. Fortunately, however, it is known that if the input
graph is restricted to, for example, bipartite graphs [14], chordal graphs [11], cir-
cular arc graphs [12], comparability graphs [13], and many other classes [16,15,4],
then D2IS admits polynomial-time algorithms. Furthermore, Agnarsson, Dam-
aschke, Halldórsson [1] show the following tractability of DdIS by using the clo-
sure property under taking power [7,8,19]:

Fact 1 ([1]). Let n denote the number of vertices in the input graph G. Then,
for every integer d ≥ 2, DdIS is solvable in O(n) time for interval graphs, in
O(n(log logn+ log d)) time for trapezoid graphs, and in O(n) time for circular-
arc graphs.

This tractability suggests that if we restrict the set of instances to, for example,
subclasses of bipartite graphs and chordal graphs, then DdIS for a fixed d ≥ 3
might be also solvable efficiently. On the other hand, however, we have a “nega-
tive” fact that if G is planar/bipartite, then the (d− 1)th power graph Gd−1 is
not necessarily planar/bipartite. From those points of view, this paper investi-
gates DdIS, namely, our work focuses on the complexity of DdIS on (subclasses
of) bipartite graphs and chordal graphs.

Our main results are summarized in the following list:

(i) For every fixed integer d ≥ 3, DdIS is NP-complete even for planar
bipartite graphs of maximum degree three.

(ii) For every fixed integer d ≥ 3, DdIS is NP-complete even for chordal
bipartite graphs.

(iii) For any ε > 0 and fixed integer d ≥ 3, it is NP-hard to approximate
the maximization version of DdIS to within a factor of n1/2−ε for
chordal bipartite graphs of n vertices.

(iv) For every fixed integer d ≥ 3, DdIS is W [1]-hard with respect to the
size k of the distance-d independent set as a parameter for chordal
bipartite graphs.

(v) For every fixed even integer d ≥ 2, DdIS is in P for chordal graphs.

(vi) For every fixed odd integer d ≥ 3, DdIS is NP-complete for chordal
graphs.

(vii) For any ε > 0 and fixed odd integer d ≥ 3, it is NP-hard to approx-
imate the maximization version of DdIS to within a factor of n1/2−ε

for chordal graphs of n vertices.



236 H. Eto, F. Guo, and E. Miyano

(viii) For every fixed odd integer d ≥ 3, DdIS is W [1]-hard with respect
to the size k of the distance-d independent set as a parameter for
chordal graphs.

One can see that the complexity of DdIS depends on the parity of d if the set of
input graphs is restricted to chordal graphs.

The organization of the paper is as follows: Section 2 is devoted to our notation
and terminology. In Section 3 we prove the NP-completeness of the problem for
planar bipartite graphs and for chordal bipartite graphs. In Section 4, we provide
tractable and intractable cases for chordal graphs.

2 Preliminaries

Let G = (V,E) be an unweighted graph, where V and E denote the set of vertices
and the set of edges, respectively. V (G) and E(G) also denote the vertex set and
the edge set of G, respectively. We denote an edge with endpoints u and v by
(u, v). For a pair of vertices u and v, the length of a shortest path from u to v,
i.e., the distance between u and v is denoted by distG(u, v), and the diameter G
is defined as diam(G) = maxu,v∈V distG(u, v).

A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G) and E(GS) ⊆ E(G).
For a subset of vertices U ⊆ V , let G[U ] be the subgraph induced by U . For a
subgraph GS = (VS , ES) of G, if ES = VS × VS , then GS (or G[VS ]) and VS are
called a clique and a clique set, respectively.

For a positive integer d ≥ 1 and a graph G, the dth power of G, denoted by
Gd = (V (G), Ed), is the graph formed from V (G), where all pairs of vertices
u, v ∈ G such that distG(u, v) ≤ d are connected by an edge (u, v). Note that
E(G) ⊆ Ek, i.e., the original edges in E(G) are retained.

A path of length �, denoted by P�, from a vertex v0 to a vertex v� is represented
as a sequence of vertices such that P� = 〈v0, v1, · · · , v�〉. A cycle of length �,
denoted by C�, is similarly written as C� = 〈v0, v1, · · · , v�−1, v0〉. An even (odd)
cycle (path) is a cycle (path) of even (odd) length. A chord of a path (cycle) is
an edge between two vertices of the path (cycle) that is not an edge of the path
(cycle).

A graph G = (V,E) is bipartite if there is a partition of V into two disjoint
independent sets V1 and V2. A graph G is chordal if each cycle in G of length
at least four has at least one chord. A graph G is weakly chordal if G and its
complementG contains no induced cycle C� for � ≥ 5. A graph is chordal bipartite
if it is simultaneously weakly chordal and bipartite, equivalently a bipartite graph
is chordal bipartite if it has no induced cycle C� for � ≥ 6. A graph G = (V,E)
is split if there is a partition of V into a clique set V1 and an independent set V2

such that V1 ∩V2 = ∅ and V1 ∪V2 = V . Note that the split graphs are a subclass
of the chordal graphs (see, e.g., [5]). A graph is star if it is a rooted tree of height
one.

The objective of the maximization version of DdIS is to find a distance-
d independent set of maximum size in an input graph G, which is denoted
by MaxDdIS for short. For the maximization problems, an algorithm ALG is



Distance-d Independent Set Problems 237

called a σ-approximation algorithm and the approximation ratio of ALG is σ
if OPT (G)/ALG(G) ≤ σ holds for every input G, where ALG(G) and OPT (G)
are the numbers of vertices of obtained subsets by ALG and an optimal algorithm,
respectively.

3 Bipartite Graphs

First, we consider the class of bipartite graphs. As mentioned in Section 1, D2IS
is solvable in polynomial time by using a polynomial time algorithm which finds
the maximum complete matching in a given bipartite graph. On the other hand,
in this section, we show the NP-completeness of DdIS on planar bipartite graphs
and on chordal bipartite graphs when d ≥ 3.

3.1 Planar Bipartite Graphs

For planar bipartite graphs, we have the following theorem:

Theorem 1. For every fixed integer d ≥ 3, DdIS is NP-complete even for pla-
nar bipartite graphs of maximum degree three.

Proof. We first show the NP-completeness of D3IS and then one of the general
DdIS for d ≥ 4. Obviously, DdIS is in NP for every d ≥ 3. To show that D3IS is
NP-complete, we reduce the NP-complete problem D2IS on any cubic planar
graph G0 = (V0, E0) to D3IS on a new planar bipartite graph G = (V,E) of
maximum degree three.

Let V0 = {v1, v2, · · · , vn} and E0 = {e1, e2, · · · , em} be vertex and edge sets
of G0. We construct the planar bipartite graph G which consists of (i) n vertices,
u1 through un, which are associated with n vertices in V0, v1 through vn, respec-
tively, and (ii) m subgraphs, G1 through Gm, which are associated with m edges
in E0, e1 through em, respectively. For every i (1 ≤ i ≤ m), the ith subgraph
Gi contains three vertices, wi,0, wi,1, and wi,2 and two edges, (wi,0, wi,1) and
(wi,1, wi,2) such that Gi forms a path P2 of length 2. (iii) If ei = (vj , vk) ∈ E0,
then we introduce two edges (wi,0, uj) and (wi,0, uk).

Just to make the above construction clear, see Figure 1. For example, if the
instance G0 is the left graph, then the reduced graph G is illustrated in the right
graph. Clearly, the constructed graph G is planar bipartite and the construction
can be accomplished in polynomial time.

For the above construction of G, we show that G has a distance-3 independent
set S such that |S| ≥ k + m if and only if G0 has a distance-2 independent set
S0 such that |S0| ≥ k.

Suppose that the graph G0 of D2IS has the distance-2 independent set S0 =
{v1∗ , v2∗ , · · · vk∗} in G0, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n}. Then, we select
subsets of vertices S′ = {u1∗ , u2∗ , · · · , uk∗} and S′′ = {w1,2, w2,2, · · · , wm,2}
such that |S′| = k and |S′′| = m. One can see that S = S′ ∪ S′′ is a distance-3
independent set in G since the pairwise distance in S′ is at least four and the
distance between wi,2 in S′′ and every vertex in S′ is at least three for each i.



238 H. Eto, F. Guo, and E. Miyano

v1

v2

v5

v3 v4

e1

e3

e2

e4

e5

e6

G0

v6

e7

e8

e9

G

u1 u5

u2 u6

u3 u4

w1,0w1,1w1,2

w2,2
w2,1

w2,0

w4,1

w4,2

w4,0

w3,0 w3,1

w3,2
w6,0

w5,0

w7,0

w8,0
w9,0

G1

Fig. 1. (Left) graph G0 of D2IS and (Right) reduced graph G from G0

Conversely, suppose that the graph G has the distance-3 independent set S
such that |S| ≥ k+m. First, from each subgraph Gi which is the path of length
2, we can select at most one vertex as the distance-3 independent set. Thus, the
maximum size of the distance-3 independent set in V (G1)∪V (G2)∪· · ·∪V (Gm) is
at most m, which means that |S ∩{u1, u2, · · · , un}| ≥ k. Let {u1∗ , u2∗ , · · · , uk∗}
be a subset of k vertices in S ∩ {u1, u2, · · · , un}. Then, the pairwise distance in
the corresponding subset of vertices {v1∗ , v2∗ , · · · , vk∗} of G0 is surely at least 2,
i.e., G0 has a distance-2 independent set S0 such that |S0| ≥ k. This completes
the proof of the NP-hardness of D3IS.

In the following, we give a brief sketch of the ideas to prove the NP-hardness
of DdIS for d ≥ 4. In the case of D4IS, all we have to do is replace the 2-
length path Gi corresponding to the edge ei with the 3-length path GIV

i =
({wi,0, wi,1, wi,2, wi,3}, {(wi,0, wi,1), (wi,1, wi,2), (wi,2, wi,3)}) for each i. See the
left graph in Figure 2. In the case of D5IS, Gi is replaced with GV

i = (V V
i , EV

i ):

V V
i = {w0

i,0, w
1
i,0, w

2
i,0, wi,1, wi,2, wi,3}

EV
i = {(w0

i,0, w
1
i,0), (w

1
i,0, w

2
i,0), (w

1
i,0, wi,1), (wi,1, wi,2), (wi,2, wi,3)}.

Then, uj (uk) corresponding to the vertex vj (vk) is connected to w0
i,0 (w2

i,0) if
ei = (vj , vk) ∈ E0 (see the center graph in Figure 2). For d = 6, we connect one
vertex wi,4 to the top vertex wi,3 of GV

i (see the right graph in Figure 2). For
d ≥ 7, we only add a similar modification to the subgraph corresponding to the
edge ei. Further details are omitted here. �



Distance-d Independent Set Problems 239

uj

wi,1

wi,2

ukwi,0

wi,3

GV I
i

uj

wi,1

wi,2

uk
w0

i,0

wi,3

GV
i

w1
i,0 w2

i,0 uj

wi,1

wi,2

uk
w0

i,0

wi,3

GV I
i

w1
i,0 w2

i,0

wi,4

Fig. 2. (Left) subgraphs GIV
i for d = 4, (Center) GV

i for d = 5, and (Right) GV I
i for

d = 6

3.2 Chordal Bipartite Graphs

This subsection investigates chordal bipartite graphs. Note that chordal bipar-
tite graphs are not chordal in general (e.g., C4 is chordal bipartite), but of
course bipartite. Thus, D2IS on chordal bipartite graphs is solvable in polyno-
mial time. Unfortunately, however, for d ≥ 3, DdIS on chordal bipartite graphs
is intractable:

Theorem 2. For every fixed integer d ≥ 3, DdIS is NP-complete even for
chordal bipartite graphs.

Proof. We only give a reduction from D2IS on general graphs to D3IS on chordal
bipartite graphs since the proof for the case d ≥ 4 is very similar to the case d = 3.
Given a graph G0 = (V0, E0) of D2IS with n vertices, V0 = {v1, v2, · · · , vn}, and
m edges, E0 = {e1, e2, · · · , em}, we construct the chordal bipartite graph G in
the following way. The constructed graph G consists of (i) n vertices, u1 through
un, each ui of which is corresponding to vi ∈ V0, (ii) m vertices, w1 through wm,
each wi of which is corresponding to ei ∈ E0, and (iii) two special vertices α and
β. (iv) The vertex α is connected to each {β} ∪ {w1, · · · , wm}, i.e., the induced
graph G[{α, β} ∪ {w1, · · · , wm}] is star. (v) If ei = (vj , vk) ∈ E0, then we add
two edges (wi, uj) and (wi, uk). Figure 3 illustrates the reduced graph G from
G0 in Figure 1. It is clear that this reduction can be done in polynomial time.
Note that since all the vertices w1 through wm are connected to one vertex α,
every cycle C� for � ≥ 6 has a chord and thus G is chordal bipartite.

For the above construction of G, we show that G has a distance-3 independent
set S such that |S| ≥ k+1 if and only if G0 has a distance-2 independent set S0

such that |S0| ≥ k.
Suppose that the graph G0 of D2IS has the distance-2 independent set S0 =

{v1∗ , v2∗ , · · · vk∗} in G0, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n}. Then, we select
subsets of vertices S = {u1∗ , u2∗ , · · · , uk∗} ∪ {β} of size k + 1. Note that the
distance distG(β, ui) for every i is three. Since the distance distG0(vi∗ , vj∗) for



240 H. Eto, F. Guo, and E. Miyano

G

u1 u5u2 u6u3 u4

w1

w2 w8
w9

α
β

Fig. 3. An illustration of the construction

any pair of vertices vi∗ , vj∗ ∈ S0 (i∗ �= j∗) is at least two, the shortest path
from ui∗ to uj∗ contains two vertices in {w1, w2, · · · , wm}. This means that the
distance distG(ui∗ , uj∗) for any i∗ �= j∗ is four. Thus, the selected vertex set S
of size k + 1 is a distance-3 independent set.

Conversely, suppose that the graph G has the distance-3 independent set
S such that |S| ≥ k + 1. First, take a look at the induced graph G[{α, β} ∪
{w1, · · · , wm}]. Since its diameter diam(G[{α, β} ∪ {w1, · · · , wm}]) is two, S ∩
V (G[{α, β} ∪ {w1, · · · , wm}]) ≤ 1 holds, i.e., |S ∩ {u1, u2, · · · , un}| ≥ k holds.
Let {u1∗ , u2∗ , · · · , uk∗} be a subset of k vertices in S ∩ {u1, u2, · · · , un}. Then,
the pairwise distance of vertices in {v1∗ , v2∗ , · · · , vk∗} of G0 corresponding to
{u1∗ , u2∗ , · · · , uk∗} in G is surely at least 2, i.e., G0 has a distance-2 independent
set S0 such that |S0| ≥ k. This completes the proof of the NP-hardness of D3IS.
The proof for the case d ≥ 4 is omitted. �

Now consider the maximization versionMaxDdIS of the decision one DdIS, which
asks for a distance-d independent set of maximum size in an input graph G.
The above reduction can preserve the approximation-gap and thus gives us the
following inapproximability of MaxDdIS.

Corollary 1. For any ε > 0 and a fixed integer d ≥ 3, it is NP-hard to approx-
imate MaxDdIS to within a factor of n1/2−ε for chordal bipartite graphs.

Proof. Let OPT1(G0) denote the number of vertices of an optimal solution for
an input graph G0 of MaxD2IS. Let OPT2(G) denote the number of vertices of
an optimal solution for an input chordal bipartite graph G of MaxDdIS for a
fixed d ≥ 3. Let g(n) be a parameter function of the instance G of D2IS. Note
that the reduction described in the proof of Theorem 2 is the following gap-
preserving reduction: (1) If OPT1(G0) ≥ g(n), then OPT2(G) ≥ g(n) + 1, and

(2) if OPT1(G0) < g(n)
n1−ε1

for a positive constant ε1, then OPT2(G) < g(n)
n1−ε + 1.



Distance-d Independent Set Problems 241

Since |V (G)| ≤ 2n2 and so the approximation gap is Θ(|V (G)|1/2−ε) for any
ε > 0, the corollary holds. �

Also, the reduction in the proof of Theorem 2 shows the following fixed-parameter
intractability of DdIS:

Corollary 2. For every fixed integer d ≥ 3, DdIS is W [1]-hard with respect to
the size k of the distance-d independent set as a parameter for chordal bipartite
graphs. (The proof is omitted.)

4 Chordal Graphs

In this section we restrict the instances to chordal graphs. In [11], Gavril shows
that D2IS admits an efficient algorithm for chordal graphs:

Lemma 1 ([11]). D2IS is in P for chordal graphs.

Recall that if the dth power graph Gd is interval (trapezoid, or circular arc,
resp.), then the (d + 1)th power Gd+1 is also interval [19] (trapezoid [7], or
circular arc [8], resp.) for any integer d ≥ 1. The class of chordal graphs does not
satisfy the closure property under the graph power operation, i.e., the square G2

of a chordal graph G is not necessarily chordal, but it does satisfy the closure
property under the graph odd power operation:

Lemma 2 ([2,3]). Let d ≥ 1 be an odd integer. If G is a chordal graph, then
Gd is also chordal.

Together with Lemma 1, this yields:

Theorem 3. For every fixed even integer d ≥ 2, DdIS is in P for chordal graphs.

Proof. Given a graph G, we first construct the odd power graph Gd−1 in polyno-
mial time, which must be chordal by Lemma 2. Then, by using a polynomial-time
algorithm for D2IS in Lemma 1, we can obtain a solution of DdIS in polynomial
time. �

For an odd d, DdIS is hard:

Theorem 4. For every fixed odd d ≥ 3, DdIS is NP-complete for chordal
graphs.

Proof. Obviously, DdIS on chordal graphs is in NP for every odd d ≥ 3. To
show that DdIS on chordal graphs is NP-complete, we reduce D2IS on any
graph G0 = (V0, E0) to DdIS on a new chordal graph G = (V,E).

Given a graph G0 = (V0, E0) of D2IS with n vertices, V0 = {v1, v2, · · · , vn},
and m edges, E0 = {e1, e2, · · · , em}, we construct the following chordal graph
G: (i) We prepare n paths of length (d − 3)/2, G1 = 〈u1,1, u1,2, · · · , u1,(d−1)/2〉
through Gn = 〈un,1, un,2, · · · , un,(d−1)/2〉, each Gi of which is corresponding to



242 H. Eto, F. Guo, and E. Miyano

G

u1,1
w1

w2

w3

w4

u1,3

w5

w9

u2,1

u2,3

u3,1 u4,1

u5,1

u6,1

u6,3

u1,2 u6,2

u3,3 u4,3

u5,3

w6

Fig. 4. An illustration of the construction when d = 7

vi ∈ V0, and (ii) m vertices, w1 through wm, each wi of which is correspond-
ing to ei ∈ E0. (iii) All the vertices w1 through wm are connected such that
G[{w1, · · · , wm}] forms a clique of m vertices. (iv) If ei = (vj , vk) ∈ E0, then we
connect wi to two vertices uj,1 and uk,1.

Figure 4 illustrates the reduced graph G from G0 in Figure 1 when d = 7. The
constructed graphG is chordal since all C4’s in the clique graphG[{w1, · · · , wm}]
have chords and also G[{w1, · · · , wm}∪{vi,0}] contains only cycles C3’s for every
i. Also, G can be constructed in polynomial time from G0.

We show that the reduction satisfies that if G has a distance-d independent set
S such that |S| ≥ k if and only in G0 has a distance-2 independent set S0 such
that |S0| ≥ k. In the remaining of this proof, the crucial observations are: (1) The
distance between any vertex v in V \ {u1,(d−1)/2, u2,(d−1)/2, · · · , un,(d−1)/2} and
another vertex u in V \ {v} is at most d − 1. (2) The pairwise distance of
{u1,(d−1)/2, u2,(d−1)/2, · · · , un,(d−1)/2} is at most d. The two observations (1) and
(2) imply that the distance-d independent set S must be a subset of outside
vertices {u1,(d−1)/2, u2,(d−1)/2, · · · , un,(d−1)/2}. (3) If vj and vk are two endpoints
of single edge ei in G0, then there must be a path

〈uj,(d−1)/2, uj,(d−3)/2, · · · , uj,1, wi, uk,1, uk,2, · · · , uk,(d−1)/2〉

by the above reduction rules. Thus, the distance between uj,d and uk,d in G is
(d− 1)/2× 2 = d− 1.



Distance-d Independent Set Problems 243

Now suppose that the graph G0 of D2IS has the distance-2 independent set
S0 = {v1∗ , v2∗ , · · · vk∗} in G0, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n}. Then, we
select a subset S = {u1∗,(d−1)/2, u2∗,(d−1)/2, · · · , uk∗,(d−1)/2} of size k. Note that
the pairwise distance in S is exactly d.

Conversely, suppose that the graph G has the distance-d independent set S =
{u1∗,(d−1)/2, u2∗,(d−1)/2, · · · , uk∗,(d−1)/2} of size k. Then, the pairwise distance
in the corresponding subset of vertices {v1∗ , v2∗ , · · · , vk∗} of G0 is surely at least
2, i.e., G0 has a distance-2 independent set S0 such that |S0| ≥ k. �

Corollary 3. D3IS is NP-complete for split graphs.

Proof. When d = 3 in the proof of Theorem 4, the constructed graph G is a split
graph since there is a partition of V (G) into a clique set {w1, w2, · · · , wm} and
an independent set {u1,1, u2,1, · · · , un,1}. �

Similarly to the previous section, it can be shown that the reduction in the proof
of Theorem 4 can preserve the approximation gap, and also it is an ftp-reduction
(details are omitted):

Corollary 4. For any ε > 0 and fixed odd integer d ≥ 3, it is NP-hard to
approximate MaxDdIS to within a factor of n1/2−ε for chordal graphs.

Corollary 5. For every fixed odd integer d ≥ 3, DdIS is W [1]-hard with respect
to the size k of the distance-d independent set as a parameter for chordal graphs.

Acknowledgments. This work is partially supported by KAKENHI 23500020.

References

1. Agnarsson, G., Damaschke, P., Halldórsson, M.H.: Powers of geometric intersection
graphs and dispersion algorithms. Discrete Applied Mathematics 132, 3–16 (2004)

2. Agnarsson, G., Greenlaw, R., Halldórsson, M.M.: On powers of chordal graphs and
their colorings. Congr. Numer. 144, 41–65 (2000)

3. Balakrishnan, R., Paulraja, P.: Powers of chordal graphs. Australian Journal of
Mathematics, Series A 35, 211–217 (1983)

4. Brandstädt, A., Giakoumakis, V.: Maximum weight independent sets in hole- and
co-chair-free graphs. Information Processing Letters 112, 67–71 (2012)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On

completeness for W[1]. Theoretical Computer Science A 141(1-2), 109–131 (1995)
7. Flotow, C.: On powers of m-trapezoid graphs. Discrete Applied Mathematics 63,

187–192 (1995)
8. Flotow, C.: On powers of circular arc graphs and proper circular arc graphs. Dis-

crete Applied Mathematics 74, 199–207 (1996)
9. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph

problems. Theoretical Computer Science 1, 237–267 (1976)
10. Garey, M.R., Johnson, D.A.: Computers and intractability - A guide to the theory

of NP-completeness (1979)



244 H. Eto, F. Guo, and E. Miyano

11. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of chordal graph. SIAM J. Comput. 1,
180–187 (1972)

12. Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357–369 (1974)
13. Golumbic, M.C.: The complexity of comparability graph recognition and coloring.

Computing 18, 199–208 (1977)
14. Harary, F.: Graph Theory. Addison-Wesley (1969)
15. Lozin, V.V., Milanič, M.: A polynomial algorithm to find an independent set of

maximum weight in a fork-free graph. J. Discrete Algorithms 6, 595–604 (2008)
16. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Com-

bin. Theory Ser. B 28, 284–304 (1980)
17. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete

Applied Mathematics 35, 167–170 (1992)
18. Poljak, S.: A note on stable sets and coloring of graphs. Comment. Math. Univ.

Carolin. 15, 307–309 (1974)
19. Raychaudhuri, A.: On powers of interval and unit interval graphs. Congr. Nu-

mer. 459, 235–242 (1987)



Domatic Partition on Several Classes

of Graphs�,��

Sheung-Hung Poon1, William Chung-Kung Yen2, and Chin-Ting Ung1

1 Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan

spoon@cs.nthu.edu.tw, s9862657@m98.nthu.edu.tw
2 Department of Information Management,

Shih Hsin University, Taipei, Taiwan
ckyen001@ms7.hinet.net

Abstract. The domatic number of a graph G, denoted byDN(G), is the
maximum number k such that V can be partitioned into k disjoint dom-
inating sets. The domatic partition problem is to find a partition of the
vertices of G into DN(G) dominating sets. The k-domatic partition prob-
lem with fixed k is to find a partition of the vertices of G into k dominat-
ing sets. In this paper, we show that 3-domatic partition problem is NP-
complete on planar bipartite graphs, and the domatic partition problem
is NP-complete on co-bipartite graphs. We further show that the unique
3-domatic partition problem is NP-hard on general graphs. Moreover, we
propose an O(n)-time algorithm on the 3-domatic partition problem for
maximal planar graphs, and O(n3)-time algorithms on the domatic par-
tition problem for P4-sparse graphs and tree-cographs, respectively.

1 Introduction

A dominating set in a graph G = (V,E) is a subset D of the vertex set V such
that every vertex v ∈ V −D is adjacent to a vertex in D. The domatic number
of a graph G, denoted DN(G), is the maximum number k such that V can be
partitioned into k disjoint dominating sets. The domatic partition problem is to
find a partition of the vertices of G into DN(G) dominating sets. The k-domatic
partition problem with fixed k is to find a partition of the vertices of G into k
dominating sets. The domatic partition problems are important and hard prob-
lems in the field of graph algorithms. Nearly three decades, there have been many
applications and results on these problems. For instance, one application area
lies in communication networks [4]. The network is modelled by an undirected
graph in which edges represent communication links and vertices represent cities.
A transmitting group is a set of cities which, acting as transmitting stations, can
transmit messages to all cities in the network. Hence, a transmitting group in

� This research was supported by National Science Council, Taiwan, under the grant
numbers NSC99-2221-E-128-003 and NSC100-2628-E-007-020-MY3.

�� Every author contributes to this research equally.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 245–256, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



246 S.-H. Poon, W.C.-K. Yen, and C.-T. Ung

the network is a dominating set in the graph. However, when some party in the
transmitting group fails to work, the whole network may not be fully served.
Consequently, we tend to search for a maximum number of disjoint transmit-
ting groups as backups. We can see that finding a maximum number of disjoint
transmitting groups in a communication network is same as finding a domatic
partition in the corresponding graph.

It is easy to see that DN(G) ≤ δ(G) + 1, where δ(G) is the minimum de-
gree of G [5]. Graphs for which DN(G) = δ(G) + 1 are called domatically full.
The domatic partition problem is NP-complete for general graphs [9]. Cock-
ayne and Hedetniemi [5] showed that trees, complete graphs, and maximal out-
erplanar graphs are domatically full. Bonuccelli [2] showed that the domatic
partition problem is NP-complete even for circular-arc graphs and proposed
an O(n2 logn)-time algorithm for proper circular-arc graphs. Bertossi [1] pro-
posed an O(n2.5)-time algorithm for interval graphs and an O(n logn)-time al-
gorithm for proper interval graphs. Later, Lu et al. [12] and Rao and Rangan [16]
independently showed that interval graphs are domatically full and gave an
O(m + n)-time algorithm for interval graphs. Few years later, Manacher and
Mankus [13] proposed an O(n)-time algorithm for interval graphs with sorted
intervals. Moreover, Peng and Chang [15] showed that strongly chordal graphs
are domatically full and proposed an O(n + m)-time algorithm for such kind
of graphs. Tsui [19] further presented an O(m+ n)-time algorithm for bipartite
permutation graphs. In addition, Rautenbach and Volkmann [17] showed that
block-cactus graphs are domatically full in some special cases. On the complex-
ity side, Kaplan and Shamir [11] showed that the domatic partition problem for
chordal graphs, co-chordal graphs, split graphs, bipartite graphs, comparability
graphs, and uniquely partially orderable graphs are all NP-complete.

The rest of the paper is organized as follows. In Section 2, we show that 3-
domatic partition problem is NP-complete on planar-bipartite graphs, and the
domatic partition problem is NP-complete on co-bipartite graphs. We also show
that the unique 3-domatic partition problem is NP-hard on general graphs. In
Section 3, we propose an O(n)-time algorithm for the 3-domatic partition prob-
lem on maximal planar graphs, and O(n3)-time algorithms for finding domatic
partitions on P4-sparse graphs and tree-cographs, respectively.

2 NP-Hardness

In this section, we show that the domatic partition problem is NP-complete for
planar bipartite graphs and co-bipartite graphs, respectively. Moreover, we also
show that the unique 3-domatic partition problem is NP-hard.

Planar bipartite graphs. A planar-bipartite graph is a graph that is both planar
and bipartite. We show that the 3-domatic partition problem for such graphs is
NP-complete.

Theorem 1. The 3-domatic partition problem for planar-bipartite graphs with
vertex degree at most 8 is NP-complete.



Domatic Partition on Several Classes of Graphs 247

v1

v2

v4

v5

G Ĝ
v3

v1

v2

v4

v5

v3
v12 v23

v13

v35

v34

Fig. 1. An example construction for
Thereom 1

B (a clique)

L (an independent set)

H
B (a clique)

L (an independent set)

H

(a) (b)

Fig. 2. (a) A thin spider. (b) A thick spider.

Proof: Clearly, this problem is in NP. We give a reduction from the known
NP-complete problem, the planar 3-colorability problem for a planar graph G =
(V,E) with vertex degree at most 4 [8]. The planar 3-colorability problem is to
decide whether the vertices of G can be colored with three distinct colors such
that each pair of adjacent vertices possesses different colors. We then construct
a new graph Ĝ = (V̂ , Ê) by augmenting some new vertices and edges as follows.
First, we add a new vertex vij for each original edge (vi, vj) ∈ E. Then, we

connect vij to vi and vj , respectively. Precisely, V̂ = V ∪ {vij | (vi, vj) ∈ E} and
E′ = E∪{(vi, vij), (vj , vij)| (vi, vj) ∈ E}. Now for each edge e ∈ E′, we add one
new vertex xe to divide edge e into two new edges, e1 and e2. Thus we obtain
the final edge set Ê = {e1, e2| e ∈ E′}. See Figure 1 for an example construction.

Clearly, Ĝ is a planar-bipartite graph with vertex degree at most 8 and the
construction of Ĝ takes polynomial time in terms of the size of graph G. We then
need to claim that G is 3-colorable if and only if Ĝ has a 3-domatic partition. We
first consider the forward direction. Suppose that G is 3-colorable. A 3-coloring
of G induces a partition Π = {V1, V2, V3} where Vi is the set of vertices colored
by color i. We then modify partition Π to another partition Π̂ = {V̂1, V̂2, V̂3}
as follows. First, we place all vertices of Vi into V̂i. Then, for each vij , if vi ∈ V̂p

and vj ∈ V̂q, we then assign vij to the third class V̂r where r �= p, q. Since vij
is of degree two, we also have that p �= q. Similarly, for each xi, we assign xi to
the third class that is distinct from the two classes to which its two neighbors
belong. Now, it is clear to see that each V̂i is a dominating set of Ĝ.

We then consider the backward direction. Suppose that Ĝ has a 3-domatic
partition, V̂1, V̂2, and V̂3. For a new vertex xe in V̂ , since the degree of xe is 2,
xe and its two neighbors must belong to distinct dominating sets. Now, we color
each vertex v of G by index number of the partition subset to which v belongs.
Such a coloring for V is thus a 3-coloring for G. �

Co-bipartite graphs. A co-bipartite graph is the complement of a bipartite graph.
We show, in this section, that the domatic partition problem for co-bipartite
graphs is NP-complete.

Theorem 2. The domatic partition problem for co-bipartite graphs is NP-
complete.



248 S.-H. Poon, W.C.-K. Yen, and C.-T. Ung

Proof: Clearly, this problem is in NP. We give a reduction from the set cover
problem. The set cover problem is defined as follows: LetA = {a1, a2, a3, ......, an}
be a finite set of size n and let S = {s1, s2, s3, ......, sp} be a subset collection
of A, that is si ⊆ A and |S| = p. Then a subset S′ of S is a set cover of A
if
⋃

si∈S′ si = A. Given an integer k ≤ |S|, the set cover problem is to check
if there exists a set cover S′, |S′| ≤ k. We give one more restriction n ≤ p on
the set cover problem instance. The reason is that if n > p, we can add some
more occurrences of sp into set S until n = p. The newly created set cover prob-
lem instance is equivalent to the original set cover problem. Thus the set cover
problem is still NP-complete even under the restriction that n ≤ p.

Given a set cover problem instance as described above, we will construct a
co-bipartite graph G = (V1, V2, E) as follows. First, we place all elements of A
into V1, and place all elements of S to V2. If sj contains ai, we construct a new
edge connecting ai and sj . See Figure 3(a). Second, we add |p− n| new vertices
X = {xi|1 ≤ i ≤ |p − n|} into V1, and we then connect each vertex xi ∈ X
to all elements in S. See Figure 3(b). Furthermore, we add k isolated vertices
Y = {yj |1 ≤ j ≤ k} into V2. See Figure 3(c). Finally, we add edges to form
cliques on vertex sets V1 and V2, respectively. See Figure 3(d) for a complete
constructed example for G.

a1

a2

a3

s1

s2

s3

s4

S
A

s5

y1
y2

Y

a1

a2

a3

s1

s2

s3

s4

s5

x1

x2
X

V1

V1

A
S

(a) (b) (c) (d)

a1

a2

a3

s1

s2

s3

s4

s5

x1

x2
X

A

S

V2

y1
y2

Y

a1

a2

a3

s1

s2

s3

s4

s5

x1

x2
X

A
S

V1 V2

K7K5

Fig. 3. We assume that n = 3, p = 5 and k = 2. A = {a1, a2, a3} and S =
{s1, s2, s3, s4, s5}, where s1 = {a1, a2}, s2 = {a3}, s3 = {a2}, s4 = {a1, a2}, and
s5 = {a3}. X = {x1, x2} and Y = {y1, y2}. Also V1 = A + X, and V2 = S + Y . In
figure (d), G[V1] = K5 and G[V2] = K7, where G[Vi] is the induced subgraph of G with
vertex set Vi.

Clearly, G is a co-bipartite graph and the construction of G takes polynomial
time in terms of n and p. Now, we need to claim that there is a set cover S′ of A
such that |S′| ≤ k if and only if there exist a domatic partition which contains
at least β = p + 1 dominating sets. We first consider the proof for the forward
direction. Suppose that there is a set cover S′ of A such that |S′| ≤ k. Since S′

is a set cover and it is also a subset of V2, S
′ is clearly a dominating set of G.

Moreover, since V1 and V2 are two cliques, we can find p more dominating sets,
each of which is formed by picking one vertex from V1 and another vertex from
V2 − S′. Thus we obtain p+ 1 dominating sets.



Domatic Partition on Several Classes of Graphs 249

Next we consider the proof for backward direction. Assume that we obtain
β = p + 1 dominating sets in G. We need to show that there is a set cover S′

of A such that |S′| ≤ k. First, we observe that we have k vertices yi in Y that
do not connect to any vertex in V1. Thus in order to dominate the vertices in
Y , every dominating set must contain at least one vertex in V2. Among these
β dominating sets, suppose that there does not exist any dominating set that
is completely contained in V2, i.e., each of these β dominating sets contains at
least one vertex in V1. Then we could only obtain at most p dominating sets.
This contradicts to our assumption. Therefore, there exists one dominating set
D that is completely contained in V2. We can simply assume that D does not
contain any vertex in Y . If D contain some vertices in Y , we can just delete
them and D − Y is still a dominating set. It is clear that D is a set cover of A.
If |D| > k, then |V2 −D| < p and we can only obtain at most p dominating sets
in total. This is again a contradiction. Hence, we have shown that the set cover
D has size |D| ≤ k. �

Unique 3-domatic partition problem. The unique 3-domatic partition problem on
a graph G is to decide whether there is a unique 3-domatic partition in G. We
show that the unique 3-domatic partition problem on general graphs is NP-hard.
We reduce the unique 3-colorability problem [14] to this problem. Its proof is
omitted here.

Theorem 3. The unique 3-domatic partition problem is NP-hard.

3 Domatic Partition Algorithms

In this section, we present three polynomial time algorithms for domatic parti-
tion problems on P4-sparse graphs, tree-cographs, and maximal planar graphs,
respectively.

3.1 Domatic Partition on P4-Sparse Graphs

A P4-sparse graph is a graph in which every set of five vertices induces at most
one P4. Such graphs are super class of cographs. Hoáng [10] showed that a
graph G is a P4-sparse graph if and only if G has a corresponding decomposition
tree T which can be constructed from vertices by performing a finite sequence
of union, join, thin spider and thick spider operations, which are denoted by
operators 0©, 1©, 2©, and 3©, respectively. Suppose that we are given a P4-sparse
graph G. Our algorithm uses dynamic programming strategy by performing one
of these four operations on each internal node of the decomposition tree of G
in a bottom-up fashion. In the following, we introduce these four operations,
respectively. Given two disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) with
|V1| = n1 and |V2| = n2, we define union, and join operations as the following
formulas:

– G1 0©G2 = (V1 ∪ V2, E1 ∪E2);
– G1 1©G2 = (V1 ∪ V2, E1 ∪E2 ∪ {xy| x ∈ V1, y ∈ V2}).



250 S.-H. Poon, W.C.-K. Yen, and C.-T. Ung

A spider is a graph whose vertices can be partitioned into three vertex sets,
H,B, and L such that B is a clique with k vertices, L is an independent set with
k vertices, H is a general graph with m vertices, and H and B join together.
Let f be a bijection from L to B. when each vertex v in L is only connected
to one vertex f(v) in B, we call such a graph a thin spider. See Figure 2(a)
for an example. On the other hand, when each vertex v in L is connected to
all vertices in B − f(v), we call such a graph a thick spider. See Figure 2(b)
for an example. We now have a close look on how spider operations appear
in the decomposition tree T in Hoáng’s construction [10]. Consider a spider S
with corresponding vertex sets, H,B, and L, and edge set E. In T , the spider
operation for S involves two subgraphs G1 and G2, which are given as follows:
G1 = (V1, φ) and G2 = (V2, E2), where V1 = L− {v} and V2 = {v} ∪H ∪B for
some v ∈ L, and E2 contains the edges in the induced subgraph S[V2] of spider
S. We also note that |L| = |V1|+ 1 = |B|, and every vertex in H is adjacent to
every vertex in B. Now we can examine the neighborhood N(v) of vertex v to
determine whether the corresponding spider S is thin or thick. If N(v) = {v′} for
some vertex v′ ∈ B, then S is a thin spider, and we need to perform thin spider
operation 2©; otherwise if N(v) = B − {v′} for some vertex v′ ∈ B, then S is a
thick spider, and we need to perform thick spider operation 3©; Let the bijection
f : L→ B be the corresponding bijection for spider S. Note that f(v) = v′. We
then describe the thin and thick spider operations, 2© and 3©, as follows.

– G1 2©G2 = (V1 ∪ V2, E2 ∪E′) with E′ = {xf(x)| x ∈ V1};
– G1 3©G2 = (V1 ∪ V2, E2 ∪E′) with E′ = {xz| x ∈ V1, z ∈ B − {f(x)}}.

In our dynamic programming algorithm, we need to compute the result for one
of the above four operations corresponding to each internal node in the decom-
position tree T of G. In order to compute the results for the operations, we
need to introduce the following new concept. For any integer m, an m-vertex
domatic partition of a graph G is a collection D1, D2, ...Dk of k pairwise dis-
joint dominating sets of G such that |D1 ∪ D2 ∪ ... ∪ Dk| ≤ m. The m-vertex
domatic number DN(G|m) of G is the maximum k such that there are k pair-
wise disjoint dominating sets for m-vertex domatic partition problem. Note that
DN(G) = DN(G|n) for graph G of n vertices. Now we consider an internal node
v in the decomposition tree T ofG. LetGv be subgraph corresponding to the sub-
tree v in the decomposition tree. We denote the vertex set of graph Gv by V (Gv).
We plan to store at v all values of DN(Gv|m), where m = 1, 2, . . . , |V (Gv)|. Let
G1 and G2 be the subgraphs corresponding to two child subtrees of v. Then in
our dynamic programming, we need to compute DN(Gv|m) from DN(G1|i) and
DN(G2|j) for varying values of i, j and m when Gv is obtained by performing
the corresponding operation τv at v on G1 and G2. We need to divide into four
cases, each of which corresponds to one of the four aforementioned operations.
We first consider the case that τv is the join operation. This case has been done
by Chang [3], who obtained the formula to compute the result m-vertex do-
matic number DN(Gv|m) for the join operation. See the following lemma. In
the following, we let n1 (resp. n2) be the number of vertices of G1(resp. G2).



Domatic Partition on Several Classes of Graphs 251

Lemma 1. [3] Suppose that G1, G2 does not contain any dominating vertex.
Then

DN(G1 1©G2|m) =

{
�m2 �, if 0 ≤ m ≤ 2n1

n1 +DN(G2|m− 2n1), if 2n1 < m ≤ n1 + n2.

Next, we consider the case that τv is the union operation. It is clear that the
domatic number DN(G1 0©G2) of the union of G1, G2 is the minimum number
of DN(G1) and DN(G2). By this observation, we obtain the following lemma.

Lemma 2. For 1 ≤ m ≤ n1 + n2,

DN(G1 0©G2|m) = max {min(DN(G1|i), DN(G2|m− i)) : ∀i = 1, 2, . . . ,m} .

Since cographs can be constructed using these two operations only, thanking to
these two formulas, we thus obtain a dynamic programming algorithm for the
domatic partition problem on cographs. Now, we proceed to derive the formulas
for the two remaining operations, the thin and thick spider operations. The proof
of Lemma 4 about thick spider is omitted here.

Lemma 3. Let thin spider Gv be the corresponding subgraph at node v of T ,
and G1 = (V1, φ) and G2 = (V2, E2) be its two disjoint child subgraphs such that
Gv = G1 2©G2, where H,B, and L are, respectively, the head, body, and leg of
Gv, and V1 = L−{v} and V2 = {v}∪H ∪B for some v ∈ L. Also let n1 = |V1|,
n2 = |V2|, and k = |L| = |B| = n1 + 1 ≥ 2. Then

DN(Gv|m) =

⎧⎨
⎩

0, if 0 ≤ m < k
1, if k ≤ m < 2k
2, if 2k ≤ m ≤ n1 + n2.

Proof: First we note that n2 = 1 + |H |+ |B| > k + 1, L is an independent set
and B is a clique. Let the bijection f : L → B be the corresponding bijection
for spider Gv. Since the edges (v, f(v)) for all vertices v ∈ L are the only edges
between L and B, if we want to dominate all vertices in L, we have to select either
v or f(v) for each edge (v, f(v)) between L and B. As |L| = k, any dominating
set of spider Gv contains at least k vertices. Thus if 0 ≤ m < k, there cannot be
any dominating set of size m for spider Gv.

Next we consider the case that k ≤ m < 2k. We can form a dominating set D
of size k as follows: D = {f(v) : v ∈ L}. Since m−k < k, we cannot form another
dominating set of size m−k. Thus we can only obtain one dominating set. Lastly,
we consider the case that 2k ≤ m ≤ n1+n2. First of all, as the minimum vertex
degree of Gv is one, there exist at most two disjoint dominating sets in Gv. We
can form two disjoint dominating sets D1, D2 by taking vertices in turn from B
and L. |D1| = |D2| = k. Hence, for this case, the domatic number is just two. �

Lemma 4. Let thick spider Gv be the corresponding subgraph at node v of T ,
and G1 = (V1, φ) and G2 = (V2, E2) be its two disjoint child subgraphs such that
Gv = G1 3©G2, where H,B, and L are, respectively, the head, body, and leg of



252 S.-H. Poon, W.C.-K. Yen, and C.-T. Ung

Gv, and V1 = L−{v} and V2 = {v}∪H ∪B for some v ∈ L. Also let n1 = |V1|,
n2 = |V2|, and k = |L| = |B| = n1 + 1 ≥ 2. Then

DN(G1 3©G2|m) =

{
�m2 �, if 0 ≤ m ≤ 2k
k, if 2k < m ≤ n1 + n2.

The dynamic programming runs from the leaves of decomposition tree T in a
bottom-up fashion. Whenever we encounter an internal node v labeled 0©, 1©, 2©,
or 3©, we perform the specific operation using the corresponding lemma among
Lemmas 1—4. In fact, we compute and store the domatic numbers DN(Gv|m)
for all m = 1, 2, . . . , |V (Gv)|. In order to compute one value DN(Gv|m) at node
v from its two child subgraphs, G1 and G2, it takes O(1) time if the operation is
join, thin spider or thick spider whereas it takes O(|V (Gv)|) = O(n) time if the
operation is union. Since there are O(n) nodes in T and we store O(n) domatic
numbers at each node of T , the dynamic programming takes O(n3) time. In the
above description, we only compute and store all domatic numbers DN(Gv|m)
at any node v in T . In fact, we can even compute and store the corresponding
m-vertex domatic partitions at v as well. The time complexity still stays the
same. We thus have an O(n3)-time algorithm for finding the domatic partitions
on P4-sparse graphs, which is stated as the following theorem. Its detailed proof
is omitted here.

Theorem 4. There is an O(n3)-time algorithm for the domatic partition prob-
lem on P4-sparse graphs.

3.2 Domatic Partition on Tree-Cographs

In this section, we will present an O(n3)-time algorithm to solve domatic parti-
tion problem for tree-cographs. Tree-cographs are defined recursively as follows:
(i) trees are tree-cographs; (ii) the union of tree-cographs is still a tree-cograph;
(iii) the complement of a tree-cograph is also a tree-cograph [18]. We observe
that the complement of an union operation G1 0©G2 of two subgraphs G1 and
G2 is the join of their complements, i.e., G1 0©G2 = G1 1©G2. Symmetrically,
G1 1©G2 = G1 0©G2. Thus any tree-cograph G can be represented by a corre-
sponding decomposition tree T such that any internal node of T is labeled as
an union node 0© or a join node 1©, and the leaves of T stores the trees and
the complements of trees. Our algorithm uses dynamic programming strategy by
performing the union or join operation on each internal node of the decomposi-
tion tree T of G in a bottom-up fashion. Since we have known how to perform
an union or join operation on two subgraphs in previous section. Therefore, in
this section, we only need to compute the m-vertex domatic number DN(H |m),
m = 1, 2, . . . , |V (H)|, where H is a tree or the complement of a tree. In the fol-
lowing two subsections, we present the algorithms for computing the m-vertex
domatic numbers for a tree and the complement of a tree, respectively.

Domatic partition on trees. Since δ(T ) = 1 for any tree T , by either selecting
all vertices on odd levels or on even levels, we obtain two disjoint dominating



Domatic Partition on Several Classes of Graphs 253

sets for T . Thus the domatic number of tree T is always equal to two, and conse-
quentlyDN(T |m) only have three possible choices, 0, 1, or 2. Let σ1(T ) be the size
of minimum dominating set of T , and let σ2(T ) be the minimum size of the union
of any two disjoint dominating sets of T . Goodman [6] presented a linear time al-
gorithm to compute σ1(T ) and the corresponding minimum dominating set for a
tree. DN(T ) is at most two. In fact, we can always form two disjoint dominating
sets in T . On the other hand, in the following, we show how to compute σ2(T ) on
tree T in linear time.

......

v

p

c1 c2 c3 ck

Tc1 Tc2 Tc3
Tck

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tv

Fig. 4. The subtree Tv at
node v

Let D1, D2 be the two disjoint dominating sets in
T realizing the optimal value σ2(T ). In order to com-
pute σ2(T ), our algorithm uses dynamic program-
ming, which runs in bottom-up fashion by starting
from the leaves of tree T . At any internal node v, we
assume that v has k children c1, c2, . . . , ck and one par-
ent p. Let Tv be the subtree rooted at v. See Figure 4
for illustration. At node v, three possible domination
situations can happen: v belongs to either D1 or D2,
or none of them. At its parent node p, the same three domination situations can
happen. Thus by considering the domination situations of v and p by D1 and D2

altogether, we have nine different cases in total. When the dynamic programming
runs up to this node v, we need to compute and store the optimal domination
values σ2(Tv) on subtree Tv for all these nine possible restricted domination sit-
uations on nodes v and p. Its full proof omitted here. As an example, we will
consider how to deal with the case that v and p both belong to D1. See Figure 4.
Since v is already dominated by D1, at least one child of v has to lie in D2. First,
for each child ci of v, we compute the minimum mi among the three domination
values σ2(Tci) of Tci under the restrictions that the parent v of ci belongs to
D1 and ci may belong to either D1 or D2, or none of them. We examine the
domination situations corresponding to mi for all children ci of v, and if there
is some child ci which belongs to D2, then we are done for this case. Otherwise,
we need to change the domination situation of some child cj to a new one such
that cj belongs to D2 in this new domination situation. We traverse all children
of v to search for a child which has minimum absolute difference Δ among the
difference values between mi and the minimum domination value σ2(Tci) under
the restriction that ci belongs to D2 and the parent v of ci belongs to D1. We
denote such a child corresponding to minimum difference Δ by cj . Then we can
simply change the domination situation for subtree Tcj by the domination situ-
ation corresponding to the minimum difference Δ. The proof for the rest of the
cases is omitted. We thus obtain the following lemma.

Lemma 5. There is a linear time algorithm to compute σ2(T ) for a tree T .

With these two values σ1(T ) [6] and σ2(T ) (from Lemma 5), we can compute
the m-vertex domatic numbers for tree T , as stated in the following lemma.



254 S.-H. Poon, W.C.-K. Yen, and C.-T. Ung

Lemma 6. Let T be a tree with |V (T )| ≥ 2. Then

DN(T |m) =

⎧⎨
⎩

0, if 0 ≤ m < σ1(T )
1, if σ1(T ) ≤ m < σ2(T )
2, if σ2(T ) ≤ m ≤ |V (T )|

Domatic partition on complements of trees. In this part, we first show that the
domatic number DN(T ) of the complement T of a tree T can be computed in
O(n2.38 time. Its proof is omitted here. With this domatic number, we immedi-
ately obtain the following formula for computing the m-vertex domatic number
on the complement T , where m = 1, 2, . . . , |V (T )|.

Lemma 7. Let T be the complement of a tree T . Then

DN(T |m) =

{
�m2 �, if 0 ≤ m < 2 ·DN(T )
DN(T ), if 2 ·DN(T ) ≤ m ≤ |V (T )|.

Our dynamic programming algorithm runs in a bottom-up fashion on the de-
composition tree T of the given tree-cograph G. Thus we obtain the following
theorem, whose proof is omitted here.

Theorem 5. There is an O(n3)-time algorithm for the domatic partition prob-
lem on tree-cographs.

3.3 3-Domatic Partition on Maximal Planar Graphs

In Section 2, we have shown that the 3-domatic partition problem on general
planar bipartite graphs is NP-complete. To the other end, we find a surprising
result that the 3-domatic partition problem on maximal planar graphs can in
fact be solved in O(n) time. A maximal planar graph G is a planar graph to
which no new edge can be added without violating the planarity of G. In other
words, a graph G is a maximal planar graph if every face is bounded by three
edges. Fraysseix, Pach, and Pollack [7] showed that in any maximal planar graph
G, there exists a labeling of vertices, called canonical labeling, which is defined in
Definition 1. Moreover, they also showed that such a labeling can be computed
in O(n) time.

Definition 1. Let G be a maximal planar graph of n vertices with exterior face
uvw. Then the canonical labeling of vertices of G is a labeling of vertices v1 =
u, v2 = v, v3, ..., vn = w satisfying following conditions for each k (4 ≤ k ≤ n).

(i) Boundary of exterior face of subgraph Gk−1 of G induced by {v1, v2, ..., vk−1}
is a cycle Ck−1 containing edge uv.

(ii) vk is in the exterior face of Gk−1, and its neighbors in Gk−1 are some (at
least two) consecutive vertices along the path Ck−1 − uv.

See Figure 5(a) for an example of a canonical labeling. Such a labeling is the main
technique we use to derive an O(n)-time algorithm for the 3-domatic partition
problem on maximal planar graphs. We state our result in the following theorem.



Domatic Partition on Several Classes of Graphs 255

Gk−1G

(a) (b)

Gk

(c)
v1 = u v2 = v

v17 = w

v3

v12

v6 v7

v14

v5

v15

v10

v13

v16

v4

v11 v9
v8

v1 v2

v3
v5

vk−1

v4

Ck−1

u1 = v1 um = v2

v3
v5

vk

v4

Ck

u2

u3

up

uq

up+1

Fig. 5. (a) A canonical labeling v1 = u, v2 = v, v3, ..., vn = w; (b) Gk−1 and Ck−1; (c)
Gk and Ck

Theorem 6. There is an O(n)-time algorithm for the 3-domatic partition prob-
lem on maximal planar graphs.

Proof: Suppose that G is a maximal planar graph with a canonical labeling
v1, v2, . . . , vn. Let Gk denote the subgraph induced by {v1, v2, ..., vk}, and Ck

denote the outer boundary of Gk. We conduct our proof by applying induction
on n ≥ 3. In the basis step, the graph G3 is a triangle &v1v2v3, and by setting
the three dominating sets D1 = {v1}, D2 = {v2}, and D3 = {v3}, we obtain the
3-domatic partition {D1, D2, D3} of G3. In the hypothesis step, we assume that
there exists a 3-domatic partition Π = {D1, D2, D3} for graph Gk−1, k ≥ 4,
such that each pair of consecutive vertices on cycle Ck−1 belongs to distinct sets
in partition Π .

In the inductive step, we need to consider how to obtain a 3-domatic partition
for the graph Gk. See Figure 5(c) for an example of Gk. We know that Gk−1 is
obtained by removing vertex vk from Gk. Thus we plan to extend the domination
on Gk−1 to the graph Gk by re-inserting vertex vk back into graph Gk−1. By
induction hypothesis, we know that there exists a 3-domatic partition Π =
{D1, D2, D3} for graph Gk−1, k ≥ 4, such that each pair of consecutive vertices
on cycle Ck−1 belongs to distinct sets in partition Π . Now we only need to decide
to which set among D1, D2, and D3 vertex vk belongs. Since vk is only adjacent
to some consecutive vertices on Ck−1, the answer to this question depends only
on the domination situation of the vertices on Ck−1 adjacent to vk. Thus we first
let Ck−1 = u1u2 . . . um such that u1 = v1, um = v2, as shown in Figure 5(c).
We also let up, up+1, . . . , uq, 1 ≤ p < q ≤ m, be the consecutive sequence of
vertices on Ck−1 adjacent to vk. Since each pair of consecutive vertices on cycle
Ck−1 belongs to distinct sets in partition Π , the neighbors of vk cannot all
belong to some same set in Π . Now, we need to consider two cases for our proof.
First, if the neighbors of vk belong to either one of two sets in partition Π , say
Di, Dj (i �= j), then we only need to place vk in the third set Dk which is distinct
from Di, Dj , i.e., k �= i, j. In another situation, the neighbors of vk belong to
either one of all three sets in Π . For this case, we suppose that up ∈ Di and
uq ∈ Dj , where Di, Dj ∈ Π . Then we can we can simply place vk in another
set Dk (k �= i, j) in partition Π . Thus the updated partition Π = {D1, D2, D3}
is a 3-domatic partition for graph Gk satisfying the condition that each pair of
consecutive vertices on cycle Ck−1 belongs to distinct sets in partition Π .



256 S.-H. Poon, W.C.-K. Yen, and C.-T. Ung

In our algorithm, we only need to traverse all edges in G according to the
order of the canonical labeling on vertices of G. As any planar graph has O(n)
edges, the time complexity of our algorithm is thus O(n). �

References

1. Bertossi, A.A.: On the domatic number of internal graphs. Information Processing
Letters 28, 275–280 (1988)

2. Bonuccelli, M.A.: Dominating sets and domatic number of circular arc graphs.
Discrete Applied Mathematics 12, 203–213 (1985)

3. Chang, G.J.: The domatic number problem. Discrete Mathematics 125(1-3), 115–
122 (1994)

4. Cockayne, E.J., Hedetniemi, S.T.: Optimal domination in graphs. IEEE Transac-
tions on Circuits and Systems 22, 855–857 (1975)

5. Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Net-
works 7, 247–261 (1977)

6. Cockayne, E.J., Hedetniemi, S.T.: A linear algorithm for the domination number
of a tree. Information Processing Letters 4, 41–44 (1975)

7. Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Com-
binatorica 10, 41–51 (1990)

8. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete graph
problems. Theoretical Computer Science 1, 237–267 (1976)

9. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of np-completeness (1979)

10. Hoang, C.: Ph.d. thesis. McGill University, Montreal, Canada (1985)
11. Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph

families. Information Processing Letters 49, 51–56 (1994)
12. Lu, T.L., Ho, P.H., Chang, G.J.: The domatic number problem in interval graphs.

SIAM Journal on Discrete Mathematics 3, 531–536 (1990)
13. Manacher, G.K., Mankus, T.A.: Finding a domatic partition of an interval graph

in time o(n). SIAM Journal on Discrete Mathematics 9, 167–172 (1996)
14. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs

are np-complete. Discrete Mathematics 30, 289–293 (1980)
15. Peng, S.L., Chang, M.S.: A simple linear time algorithm for the domatic partition

problem on strongly chordal graphs. Information Processing Letters 43, 297–300
(1992)

16. Rao, A.S., Rangan, C.P.: Linear algorithm for domatic number problem on interval
graphs. Information Processing Letters 33, 29–33 (1989)

17. Rautenbach, D., Volkmann, L.: The domatic number of block-cactus graphs. Dis-
crete Mathematics 187, 185–193 (1998)

18. Tinhofer, G.: Strong tree-cographs are birkhoff graphs. Discrete Applied Mathe-
matics 22, 275–288 (1988)

19. Tsui, K.W.: On the domatic number of bipartite permutation graphs. Master the-
sis, Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan,
R.O.C (2010)



Online Bottleneck Matching

Barbara M. Anthony1 and Christine Chung2

1 Math and Computer Science Department, Southwestern University, Georgetown, TX, USA
anthonyb@southwestern.edu

2 Department of Computer Science, Connecticut College, New London, CT, USA
cchung@conncoll.edu

Abstract. We consider the online bottleneck matching problem, where k server-
vertices lie in a metric space and k request-vertices that arrive over time each
must immediately be permanently assigned to a server-vertex. The goal is to
minimize the maximum distance between any request and its server. Because
no algorithm can have a competitive ratio better than O(k) for this problem, we
use resource augmentation analysis to examine the performance of three algo-
rithms: the naive GREEDY algorithm, PERMUTATION, and BALANCE. We show
that while the competitive ratio of GREEDY improves from exponential (when
each server-vertex has one server) to linear (when each server-vertex has two
servers), the competitive ratio of PERMUTATION remains linear. The competitive
ratio of BALANCE is also linear with an extra server at each server-vertex, even
though it has been shown that an extra server makes it constant-competitive for
the min-weight matching problem.

1 Introduction

We consider the online bottleneck matching problem, where we are given k server-
vertices located in a metric space, and k request-vertices that arrive over time. As each
request-vertex arrives, it must be immediately and permanently matched to a server-
vertex. Our goal is to minimize the maximum distance between any request-vertex and
its assigned server-vertex.

The standard technique for studying algorithms for online problems is competitive
analysis. The competitive ratio of an algorithm is the worst-case ratio of the cost of the
algorithm’s solution to the cost of the optimal offline solution (which knows all request
locations in advance). Kalyansundaram and Pruhs [4] proposed an algorithm, PER-
MUTATION, in the context of the corresponding online min-weight matching problem,
where the goal is to minimize the total (or average) distance between request-vertices
and server-vertices. Without proof, [4] mentioned that PERMUTATION achieves a com-
petitive ratio of 2k − 1 for the online bottleneck matching problem. Idury and Schäffer
[3] then proved that no algorithm can achieve a competitive ratio better than approxi-
mately 1.5k. The basic GREEDY algorithm, which assigns each arriving request to the
nearest available server-vertex, has a competitive ratio that is Ω(2k) (see Section 2).

The prohibitive general lower bound on the problem and the exceedingly poor per-
formance of a simple and natural algorithm like GREEDY motivate us to consider a
benchmark that is less formidable than the optimal solution, in order to attain a more

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 257–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



258 B.M. Anthony and C. Chung

informative analysis of these algorithms. Specifically, we employ a weak adversary
model of analysis in pursuit of further insight on the performance of these (and related)
algorithms for the bottleneck matching problem. The weak adversary, or resource aug-
mentation, model of analysis has long been used effectively in the study of matching
and scheduling problems (e.g., [5,6,8,1]). Results obtained under this model can be
viewed as “bicriteria” results, which have also become an informative and successful
approach in other sub-fields of algorithms (e.g., [9,2]).

In our setting with resource augmentation, we ask how well the online algorithm
performs when it has multiple servers (namely two) per server-vertex, while the opti-
mal offline solution only has one; thus the online algorithm can service twice as many
request-vertices with each server-vertex. Following [5], we will use the term halfOPT-
competitive ratio to refer to the competitive ratio of an online algorithm with server-
vertices that have two servers when compared with an optimal offline solution with
each server-vertex having a single server.

Resource augmentation was used to study the corresponding online min-weight match-
ing problem in [5]. They showed that by having two servers per server-vertex, the
competitive ratio of GREEDY improves from Θ(2k) to a halfOPT-competitive ratio of
Θ(log k). They then proposed an algorithm BALANCE, which is a modified form of
GREEDY that is more judicious in its use of the additional server at each server-vertex.
They show that BALANCE has a halfOPT-competitive ratio of O(1).

Our results for the online bottleneck matching problem for k ≥ 2 are as follows.
(Naturally, when there is a single request-vertex and server-vertex (k = 1) the algo-
rithms all perform optimally.)

1. GREEDY has a competitive ratio of at least 2k−1, and at most k2k−1.
2. PERMUTATION (proposed in [4] and [7]) is (2k − 1)-competitive, and this is tight.

This is comparable to its performance for the min-weight objective, for which it is
also (2k − 1)-competitive. This O(k) upper bound on the ratio is asymptotically
tight with the Ω(k) general lower bound for the problem of [3].

3. GREEDY has a halfOPT-competitive ratio of no more than (k − 1). Note that this
is an exponential improvement in competitive ratio from simply having two servers
available per server-vertex.

4. GREEDY has a halfOPT-competitive ratio of at least (k + 1)/2. Interestingly, this
is still exponentially worse than its performance for the corresponding min-weight
problem, where it has a halfOPT-competitive ratio of 2 log k [5].

5. BALANCE (proposed in [5]), a modified form of GREEDY designed for the setting
of multiple servers per server-vertex, has a halfOPT-competitive ratio of k − 1.

6. BALANCE has a halfOPT-competitive ratio of at least (1c + 1)log(k+1)−1 = Ω(k).
This is in contrast with the fact that BALANCE has a halfOPT-competitive ratio of
O(1) for the corresponding min-weight problem [5].

7. PERMUTATION has a halfOPT-competitive ratio of k and this is tight. (Note that
having two servers per server-vertex does not improve PERMUTATION’s asymptotic
performance guarantee, as it did so dramatically with GREEDY.)

A table summarizing these and related results is shown below.



Online Bottleneck Matching 259

Table 1. Lower bounds and upper bounds for the various algorithms. All bottleneck objective
results are from the present work, though the PERMUTATION bounds without resource augmen-
tation were hinted at in [4]. The result marked by † is immediate from the corresponding bound
without resource augmentation. BALANCE is only defined in the resource augmentation setting.

Algorithm

Objective Adversary GREEDY PERMUTATION BALANCE

LB UB LB UB LB UB

min-bottleneck
OPT 2k−1 k2k−1 2k − 1 2k − 1 N/A N/A
halfOPT (k + 1)/2 k − 1 k k Ω(k) k − 1

min-weight
OPT [4] 2k − 1 2k − 1 2k − 1 2k − 1 N/A N/A
halfOPT Θ(log k) [5] O(1) 2k − 1† Θ(1) [5]

While resource augmentation has the potential to improve the competitive ratio, these
results suggest that in some sense the bottleneck objective is more difficult than the to-
tal distance objective. Resource augmentation greatly helps GREEDY for the minimum
weight objective, but none of the three algorithms break the Ω(k) barrier for the bot-
tleneck objective. Perhaps this can be explained by noting that for the minimum weight
objective, any sub-optimal assignment is mitigated by the total cost, whereas with the
bottleneck objective, a poor assignment can dominate, even with resource augmenta-
tion. Our results suggest that GREEDY can be a reasonable choice of algorithm for
the bottleneck objective with resource augmentation, due to its relative simplicity, and
comparable performance to BALANCE and PERMUTATION, despite its decay in perfor-
mance as its adversary gets stronger.

Section 2 provides some results for the algorithms without resource augmentation.
We then consider three algorithms with resource augmentation: GREEDY (Section 3),
BALANCE (Section 4), and PERMUTATION (Section 5).

2 Preliminaries

Formally, the online bottleneck matching problem is as follows: Given a collection
S = {s1, s2, . . . , sk} of server-vertices in a metric space M , the online algorithm A
sees over time a sequence of request-vertices R = {r1, r2, . . . , rk} also in M . When
request-vertex ri arrives, algorithm A must assign a server-vertex sσ(i) to service that
request, with cost equaling the distance d(ri, sσ(i)) (we use the terms cost and distance
interchangeably). Once an assignment is made, it cannot be changed. While A does
not know the sequence of requests in advance, its goal is to minimize the bottleneck
distance of the overall assignment, that is minimize maxi d(ri, sσ(i)). We refer to the
assignment (or “matching”) that optimizes this objective as OPT. As is typical of online
problems, we use competitive analysis, and seek to minimize the worst-case ratio of
the online bottleneck cost to the optimal (offline) bottleneck cost. An online algorithm
is α-competitive if this ratio is at most α for all possible instances. We use cost(·) to
represent the bottleneck weight of a particular assignment, e.g. cost(OPT). Throughout



260 B.M. Anthony and C. Chung

the paper, ε > 0 represents an arbitrarily small constant, typically used to break ties
when assigning requests to servers.

We now prove a few basic results about the online bottleneck matching problem
without resource augmentation that have been hinted at in the existing literature (e.g.,
see the Conclusion of [4]). We consider both the standard GREEDY algorithm, as well
as PERMUTATION, introduced by Kalyanasundaram and Pruhs (a similar algorithm was
also studied by [7]). Note that the algorithm BALANCE is only defined when there are
multiple servers per server-vertex.

2.1 Analysis of GREEDY

As its name suggests, GREEDY assigns the nearest available server at a server-vertex
to each request-vertex as it arrives. While this algorithm can perform well on some
instances, GREEDY is exponentially bad against OPT. In fact, this can be exhibited by
the same instance of [4] that demonstrates GREEDY is exponentially bad against OPT
for the corresponding objective of minimizing total weight.

The proofs of the following two theorems can be found in the full version of the
paper.

Theorem 1. The competitive ratio of GREEDY is at least 2k−1 for the bottleneck match-
ing problem.

Theorem 2. The competitive ratio of GREEDY is at most k2k−1 for the bottleneck
matching problem.

2.2 Analysis of PERMUTATION

Informally, PERMUTATION assigns requests as follows. Note that the assignment of
request-vertices to server-vertices is a matching. To choose a server for request ri, con-
sider the optimal matching of the first i requests, and the optimal matching of the first
i − 1 requests. There is exactly one server that is matched in the former scenario and
not in the latter. PERMUTATION matches that server to the current request ri. Observe
that PERMUTATION guarantees that if a request arrives at an unused server-vertex, it is
matched to the server at that server-vertex.

More formally, as defined in [4], let Ri ⊂ R be the first i request-vertices. A partial
matching of Ri is a perfect matching of Ri with a subset of the servers of S. Let M0 and
P0 be empty. Define Mi to be the edges that form a minimal weight partial matching
on Ri where the number of edges in Mi −Mi−1 is minimized, choosing arbitrarily if
multiple such matchings exist. Let Si ⊂ S be the server-vertices incident to an edge
in Mi. Let Pi denote the partial matching constructed by PERMUTATION after the first
i requests. PERMUTATION constructs Pi+1 by computing Mi+1, assigning ri+1 to the
unique server-vertex s ∈ Si+1 − Si, and adding that edge to the matching Pi.

We now show that PERMUTATION is (2k−1)-competitive, which was stated without
proof in the Conclusion of the preliminary version of [4]. The proof, given in the full
version of the paper, is similar to the proof in [4] which shows that PERMUTATION is
(2k − 1)-competitive for the online minimum-weight matching problem.



Online Bottleneck Matching 261

Theorem 3. PERMUTATION is (2k− 1)-competitive for the bottleneck matching prob-
lem.

Theorem 4. The competitive ratio of PERMUTATION is at least 2k − 1 for the bottle-
neck matching problem.

Proof. Let M be a subspace of the real line, with the standard distance metric. Set
si = i for 1 ≤ i ≤ k. Let ri = i + .5 + ε for 1 ≤ i ≤ k. PERMUTATION matches
ri to si+1 when it exists, and matches the final request, rk, to s1, for a bottleneck cost
of k − .5 + ε. OPT assigns ri to si, so all edges have a cost of .5 + ε, which is thus
cost(OPT). Thus, the performance on this instance is (2k − 1 + 2ε)/(1 + 2ε), which
approaches 2k − 1. (The ε could be removed if ties can be broken arbitrarily.)

Resource augmentation was used in [5] to show that, for the min-weight objective,
GREEDY has a halfOPT-competitive ratio of O(log k), in contrast with its Ω(2k) com-
petitive ratio without resource augmentation. Motivated in part by these results, we turn
to a resource augmentation setting for the bottleneck objective.

3 Bicriteria Analysis of GREEDY

Noting that “the poor competitive ratio of an intuitive greedy algorithm may not reflect
the fact that it may perform reasonably well on ‘normal’ inputs”, [5] adopts a weak
adversary model, in which the adversary has fewer resources than the online algorithm.
Their work address the online transportation problem, which is a generalization of the
min-weight matching problem. We perform a similar analysis for the bottleneck match-
ing problem, and show that the improvement for GREEDY is more limited for our ob-
jective.

While each server-vertex in OPT can service exactly one request, the online algo-
rithm can assign requests to two servers at each server-vertex. Thus, as in [5] we say
that the halfOPT-competitive ratio of an online algorithm A is the supremum over all
instances I with at most k requests of A(I)/OPT (I) where A has two servers available
at each server-vertex, while OPT only has one.

We now show that the halfOPT-competitive ratio for GREEDY is linear in the number
of requests. Since each server-vertex si has two servers in the online setting, we denote
them by s1i and s2i as needed. Without loss of generality, we assume that s2i is not used
unless s1i is already in use. The adversary has only s1i available to it. We first prove a
lemma about the response graph G, defined in [5] to be G = (S ∪ R,E), where E is
the set of edges that includes the online edge (ri, sσ(i)) and adversary edge (ri, si) for
each request ri. The proof of the following lemma is found in the full version of the
paper.

Lemma 1. Each connected component of G contains exactly one cycle.

Theorem 5. The halfOPT-competitive ratio of GREEDY for the bottleneck matching
problem is at most k − 1 for k ≥ 2 server-vertices.



262 B.M. Anthony and C. Chung

Proof. Let (ri, sj) be the online bottleneck edge in the response graph, G. (If there
are multiple edges with the maximum bottleneck cost, pick one arbitrarily.) Let (ri, si)
be the edge in OPT that serves request ri. If si = sj then we’re done. So we only
consider the case that si �= sj . Now consider the connected component containing ri.
By Lemma 1 this connected component has exactly one cycle. Note that this cycle may
have trees joined to it at the vertices on the cycle. Observe that all such junctions must
represent a server-vertex, since each request can have at most two incident edges in
the response graph, one for the online edge and one for the optimal edge. Consider
separately the cases when ri lies on the cycle, and when it does not.

If ri is a vertex on the cycle, then since only server-vertices can be junctions, both the
online and offline edges incident on ri must lie on the cycle. Removing the online edge
(ri, sj) from the cycle yields a tree which can be rooted at ri. Since there are k request-
vertices and k server-vertices, there are at most 2k vertices in the tree. Furthermore, the
tree contains alternating levels of server-vertices and request-vertices. Each request-
vertex has one child (the server-vertex chosen for it by OPT), and each server-vertex
can have up to two children (the online edges).

si

ri

Greedy

OPT

rb re

sb se
ra

sa

rc

sc

rd

sd

Fig. 1. An example response graph

To upper bound the cost of the edge (ri, sj), it suffices to upper bound the distance
of the shortest path from ri to some server-vertex sa with s2a unused, since GREEDY

picked sj instead of sa. Since ri is the root of the tree, it suffices to find the cost of a
path requiring the minimum number of edges that must be traversed to arrive at a leaf.
Consider a version of the tree where the edges from a request to its child are contracted,
thus resulting in a binary tree T with at most k vertices. Let kT ≤ k refer to the number
of vertices in the contracted tree. Since a full binary tree would have log(kT ) levels,
a leaf of T , which may or may not be full, is reachable in at most log(kT ) edges.
Uncontracting the edges (at most one per server-vertex) indicates that in the original
graph, there are at most log(kT ) optimal and log(kT )−1 online edges between the root
and some leaf, call it sa.

Now consider the cost of the path in the tree from ri to server-vertex sa. By defini-
tion, any edge used in OPT must have cost at most cost(OPT ). Since all leaves of the
tree are incident only with one edge, an OPT edge, the edge (ra, sa) is an edge in OPT,
and thus has cost at most cost(OPT ). Proceeding from sa to the root, the next edge
on the path is an online edge, call it (ra, sb). GREEDY chose to assign ra to sb rather
than sa which had a server available, and thus has cost at most the cost of the edge
from (ra, sa), which is again at most cost(OPT ). The next edge in the path, (rb, sb)



Online Bottleneck Matching 263

is an edge in OPT, and thus has cost at most cost(OPT ). The next edge, the online
edge (rb, sc) again was again chosen by GREEDY over the edge (rb, sa) and thus has
cost at most the distance in the tree from rb to sa, which is bounded by the three edges
previously mentioned in the path, for a total cost of at most 3 ·cost(OPT ). This process
continues, with successive edges in OPT having cost at most cost(OPT ) and succes-
sive online edges having cost at most (2h − 1) · cost(OPT ) where h represents the
height of the request in the tree with the online edges contracted. As the edge incident
to ri in the subtree is an edge in OPT, the final edge in the path from sa to ri has cost at
most cost(OPT ). Thus, the total cost of the path is at most cost(OPT ) for each of the

log(k) edges in OPT and
∑log(k)−1

h=1 (2h − 1) · cost(OPT ) for the online edges, giving∑log(k−1)
h=0 2h ·cost(OPT ) = (2log(k)−1)·cost(OPT ) = (k−1)·cost(OPT ). Hence,

since GREEDY assigned ri to sj instead of sa, the online bottleneck edge cost is at most
(k − 1) · cost(OPT ).

Now consider the case where ri does not lie on the cycle. Removing (ri, sj) from the
response graph partitions the original connected component into two connected com-
ponents, with ri and the original cycle now in separate connected components. As the
original connected component contained exactly one cycle, the connected component
rooted at ri is a tree. By the same process, the upper bound on the distance from ri to
some leaf server-vertex sa is at most (k − 1) · cost(OPT ), completing the proof.

The example used in [5] to provide a lower bound for GREEDY for the online trans-
portation problem gives a lower bound of k/2 for GREEDY in this setting. We prove a
slightly improved lower bound of (k + 1)/2 in Corollary 1 in Section 4.

4 Bicriteria Analysis of BALANCE

In this section we consider the BALANCE algorithm detailed in [5]. We first define some
convenient notation for our resource augmentation model. As in the previous section,
each server-vertex si in S is said to have a primary server s1i and a secondary server s2i .
Thus, while there are k vertices in S, one for each request in R, the online algorithm
effectively has 2k servers to choose from. For BALANCE, the pseudo-distance from
a request ri to a primary server s1j is the actual distance d(ri, sj), while the pseudo-
distance from the same request ri to the secondary server s2j is c·d(ri, sj), for a constant
c > 1. (In [5], a c > 11 was specified.) BALANCE then uses GREEDY to assign arriving
requests to servers, based on their pseudo-distances. (Thus BALANCE with c = 1 is
precisely GREEDY.) Note also that BALANCE only applies in the resource augmentation
setting because it uses primary and secondary servers explicitly.

We begin with a lower bound on the halfOPT-competitive ratio of BALANCE.

Theorem 6. The halfOPT-competitive ratio of BALANCE for the bottleneck matching
problem is at least (1c + 1)log(k+1)−1 = Ω(k), where k is the number of requests and c
is the constant in the definition of BALANCE.

Proof. Consider the following example on the line, where at each location the number
of requests and server-vertices are powers of two. Let L0, L1, L2, . . . , Lm be the m+1
server-vertex locations, where Li has 2m−i server-vertices. Similarly, the m+1 request



264 B.M. Anthony and C. Chung

locations are R0, R1, R2, . . . , Rm where Ri has 2m−i requests. Let L0 = −c, R0 = 0,
and for 1 ≤ i ≤ m, Li = Ri.

We now determine the most extreme placement for the server-vertices so that OPT
will assign requests at Ri to servers at Li but that BALANCE will choose not to send any
requests to L0 until the final request. Thus OPT will have a bottleneck cost of c while
BALANCE will pay c plus the location of the final server. Since c is fixed, the ratio will
grow with the location Lm.

We break ties at our convenience. (Alternatively, a small ε > 0 could be used to
perturb the locations slightly to enforce such choices.) L1 must be at 1 so that the
secondary servers at L1 (with a cost of c ·1) are equally desirable as the primary servers
at L0 (cost of c) for the requests at R0. L2 must be chosen so that the requests at
R1 consider the secondary servers at L2 (with cost c · d(L1, L2)) as desirable as the
primary servers at L0 = −c, with cost c + 1. Thus, d(L1, L2) = c+1

c , placing L2 at

2 + 1
c . Repeating this process, Li can be placed at

∑i
j=1

(
i
j

)
1

cj−1 for all 1 ≤ i ≤ m.
We now find a closed form for the location of server Lm, as shown in (1).

Lm =

m∑
j=1

(
m

j

)
1

cj−1
= c

m∑
j=1

(
m

j

)
1

cj
= c

⎛
⎝ m∑

j=0

(
m

j

)
1

cj

⎞
⎠− c

(
m

0

)
1

c0
. (1)

Using the binomial theorem on the summation gives the expression c(1c+1)m−c. Thus,
if Lm is the rightmost server, the bottleneck distance from L0 to Lm is c(1c + 1)m.

Note that the total number of requests is k =
∑m

i=0 2
i = 2m+1 − 1. Thus m =

log(k + 1)− 1. Thus the bottleneck cost for BALANCE is c(1c + 1)log(k+1)−1 where k
is the number of servers/requests, and the bottleneck cost for OPT is c. If c is a fixed
constant, then the lower bound on the competitive ratio is (1c + 1)log(k+1)−1.

Corollary 1. The halfOPT-competitive ratio of GREEDY for the bottleneck matching
problem is at least k+1

2 , where k is the number of servers.

Proof. Noting that c = 1 is precisely GREEDY, observe that if c = 1 this gives a
competitive ratio of 2log(k+1)−1 = k+1

2 .

We now show that the upper bound on the halfOPT-competitive ratio of BALANCE is a
matching O(k).

Theorem 7. BALANCE has a halfOPT-competitive ratio of k for the bottleneck match-
ing problem.

Proof. The same argument as for the GREEDY upper bound (Theorem 5) applies. Note
that it holds because the server-vertex sa used in the argument is a leaf of the tree, which
means the online algorithm has not used either of its servers. Thus the pseudo-distance
to that vertex in BALANCE is the same as the original distance in GREEDY.

5 Bicriteria Analysis of PERMUTATION

We next consider PERMUTATION with resource augmentation. As before, each server-
vertex si has two servers in the online setting, the primary server s1i and the secondary



Online Bottleneck Matching 265

server s2i . Without loss of generality, we assume that a secondary server can only be
used if the corresponding primary server is used. Again, we compare PERMUTATION

to OPT which can serve exactly one request per server-vertex.
We now note how the definition of PERMUTATION from Section 2.2 applies to the

resource augmentation setting. Let Saug be the set of 2k servers available to the online
algorithm. Then a partial matching of the first i requests is a perfect matching of these
requests with a subset of Saug . Define Mi to be the set of edges in a minimal weight
partial matching of the first i requests that is “most similar” to Mi−1, in the sense that
the number of edges in Mi −Mi−1 is minimized. Let Si ⊂ Saug be the set of servers
incident to an edge in Mi. By convention, M0 is empty.

Suppose that PERMUTATION services request ri with a server sxj at vertex sj . Then
define M ′ to be the union of Mi−1 with the edge (ri, s

x
j ). Let Pi denote the partial

matching constructed by PERMUTATION for the first i requests.
Intuitively, it may seem that PERMUTATION should benefit substantially from re-

source augmentation; the availability of a secondary server seemingly allows the algo-
rithm to ‘correct’ itself if a request arrives and finds that the primary server it would
have used in OPT was already in use. Yet, PERMUTATION has a halfOPT-competitive
ratio of k and this is tight, as illustrated by the following lower bound instance and a
matching upper bound guarantee. This is in comparison with its competitive ratio of
2k − 1 in the absence of resource augmentation.

Theorem 8. PERMUTATION has a halfOPT-competitive ratio of Ω(k) for the bottle-
neck matching problem.

Proof. Fix a small constant ε > 0. Without loss of generality, let k be odd. Consider the
following instance, as depicted in Figure 2 for k = 9. Server vertices and requests si, ri
for 1 ≤ i ≤ k with i odd are placed along the line, in the order s1, r1, s3, r3, . . . , sk, rk
where the distance between si and ri is 1 + ε, and the distance between ri and si+2 is
1. For each i ≥ 3, let request ri−1 be 1 away from si, and let server-vertex si−1 be at a
distance of 1 + 2ε from ri−1. All other distances are additive based on this graph.

Since PERMUTATION assigns requests based on Mi, note that M1 assigns r1 to s13.
Thus, PERMUTATION does the same. In M2, this assignment remains, and r2 is assigned
to s23, and again PERMUTATION behaves identically. In general, Mj for j < k behaves
as follows: if j is odd, rj is assigned to s1j+2 and if j is even, rj is assigned to s2j+1.
PERMUTATION’s assignments are identically Mj for j < k. Naturally, this pattern
cannot continue for request rk; observe that Mk that shares only about half of its edges
with Mk−1. In particular, Mk assigns ri to s1i for i odd, and assigns rj to s2j+1 for j
even. Thus, PERMUTATION assigns the final request rk to the only server used in Mk

that was not used in Mk−1, that is, s11. Hence, PERMUTATION assigns rk to s1, for a
bottleneck cost of k + k+1

2 ε (its other assignments all have cost 1).
Observe that OPT matches each ri to its corresponding si, for a bottleneck cost of

1 + 2ε. Hence, PERMUTATION has a halfOPT-competitive ratio of Ω(k).

We now develop a sequence of lemmas which show that cost(PERMUTATION) is at most
O(k) · cost(OPT ) for any instance. As in [4], let H := Mi ⊕M ′. For convenience,
we say that a server is in H if there is an edge in H incident on the server. Lemma 3,



266 B.M. Anthony and C. Chung

s1 r1 s3 r3 s5 r5 s7 r7 s9 r9

s2

r2

s4

r4

s6

r6

s8

r8

9 + 5ε

1 + ε 1 + ε 1 + ε 1 + ε 1 + ε1 1 1 1

1 1 1 1

1 + 2ε 1 + 2ε 1 + 2ε 1 + 2ε

M9 Permutation OPT

Fig. 2. Even with resource augmentation, PERMUTATION’s cost can still be k · cost(OPT)

which says that any given server-vertex appears at most once in H , uses a “displacement
sequence” in its proof which provides some intuition for the choice of H .

Lemma 2. The servers used in M ′ are exactly the servers used in Mi.

Proof. The name PERMUTATION in [4] comes from maintaining the invariant that “for
all i, the vertices in S incident to an edge in Mi are exactly the vertices in S that are
incident to an edge in Pi.” By Lemma 3.2 of [4], Si and Si−1 differ by exactly one
server. Thus, by definition of how PERMUTATION chooses sxj , at each step i, Mi and
Mi−1 ∪ (ri, s

x
j ) have used the same servers.

Corollary 2. H is a single alternating cycle.

Proof. As in [4], this follows immediately from server vertices in Mi and M ′ being
identical (Lemma 2).

Lemma 3. If s1� is in H , then s2� is not in H , and if s2� is in H , then s1� is not in H .

Proof. Suppose for the sake of a contradiction that H contains both the primary server
and corresponding secondary server for some s�. By Lemma 2, s1� and s2� must each be
used in both Mi and in M ′. Let requests ra and rb be assigned to s1� and s2� , respectively,
by matching Mi. Let requests r′a and r′b be assigned to s1� and s2� , respectively, in M ′.
To prove the lemma, it suffices to prove the following claim.

Claim: if r′a �= ra and r′a �= rb, then r′b = ra or r′b = rb. In other words, at least one
of the two requests matched to a server of s� in Mi must also be matched to a server of
s� in M ′. Assume not. So r′a �= ra and r′a �= rb, and r′b �= ra and r′b �= rb. Let sj be the
server-vertex assigned to ri in M ′.

Case s� �= sj . Then, since M ′ = Mi−1 ∪ (ri, sj), in Mi−1 we must also have
r′a → s� and r′b → s�, where “→” means “is assigned to.” So upon the arrival of ri, in
the transition from Mi−1 to Mi, both r′a and r′b were displaced by ra and rb.

Define the displacement sequence of ri to be a sequence of server vertices and re-
quests affected by the arrival of ri, written as follows:

ri −→ si ��� r1 −→ s1 ��� r2 −→ s2...



Online Bottleneck Matching 267

where forward-edges are from Mi and backward edges are from Mi−1. Here, r1 is a
request that was “displaced” from si upon the arrival of ri; it was displaced to server-
vertex s1. Then r2 is a request that was displaced from s1 by r1, and s2 is the server-
vertex it was displaced to, and so forth. Note that each server-vertex in this sequence
can only have one incoming backward edge because it only has one incoming forward
edge. Further note that if a server-vertex is not in the displacement sequence of ri, then it
must be matched to the same requests as it was in Mi−1, since otherwise the optimality
of Mi−1 or Mi or the assumption that Mi is the most similar optimal matching to
Mi−1 would be violated. So s� must be in the displacement sequence of ri. Since s�
has two displaced requests, r′a and r′b, then s� must appear twice in the sequence. But
if it appears twice in the sequence, then there is a “cycle” in the sequence. Consider
the displacements just in this cycle. The total cost of the forward edges in the cycle
must be lower than the total cost of the backward edges, otherwise this cycle would not
be present in the displacement sequence of ri, it would just be cut out altogether (by
optimality of Mi). But if the total cost of the forward edges is less than the backward
edges, then Mi−1 was not optimal.

Case s� = sj . Without loss of generality, let us assume that r′a = ri. Thus in Mi−1,
only one request was assigned to s� and it was r′b. So upon arrival of ri, ra was assigned
to s� and r′b was replaced by rb. This means in the displacement sequence of ri, s� again
must appear twice, giving the same contradiction as in the previous case.

Now consider the server-vertices Mi uses exactly once (i.e. only their primary servers).
The next lemma says at most one of these server-vertices can appear in H . The proof
appears in the full version of the paper.

Lemma 4. Let s1i be in H . If an edge of Mi is not incident on s2i , then for all other
servers s1j in H , an edge of Mi must be incident on s2j .

Theorem 9. PERMUTATION has a halfOPT-competitive ratio of O(k) for the bottle-
neck matching problem.

Proof. Let αk be the number of primary servers used by PERMUTATION. (This is the
same as the number of primary servers used by Mk.) Since a secondary server is only
used if its corresponding primary server is used, there are (1−α)k server-vertices with
neither their primary nor secondary server used. Since exactly k requests are served,
there must be (1− α)k secondary servers used. Together these guarantee 1 ≥ α ≥ 1

2 .
Let the bottleneck edge of the final PERMUTATION assignment be (ri, sj). Now

consider the graph of H after the arrival of ri. Recall that by Corollary 2, H is a single
alternating cycle. As in [4], by the triangle inequality, the weight of the newest edge
(ri, sj) is at most the aggregate weight of the edges in H minus its weight d(ri, sj).
Thus, if we can bound the number of edges in H by n, then the bottleneck edge for
PERMUTATION is at most n − 1 times the bottleneck edge in Mi, as the cost of the
bottleneck edge only increases from Mi−1 to Mi.

If for every primary server that is used in Mi, the corresponding secondary server is
also used in Mi, i.e., α = 1

2 , then by Lemmas 3 and 4, H is an alternating cycle with
at most k/2 server vertices (and the same number of requests), for at most k edges. If
instead the number of primary servers used exceeds the number of secondary servers



268 B.M. Anthony and C. Chung

used, then αk− (1−α)k ≥ 1 which guarantees that α ≥ k+1
2k . By Lemmas 3 and 4, H

contains at most (1−α)k+1 servers, and thus the number of edges in H is maximized
when α is as small as possible. Plugging in the lower bound on α gives k+1

2 servers,
guaranteeing at most k + 1 edges in H . Hence, in either case, PERMUTATION costs at
most k more than the bottleneck edge in Mi; the optimality of Mk and the bottleneck
edge of Mi monotonically non-decreasing as i increases complete the proof.

6 Conclusion

Resource augmentation results in a substantial improvement in the performance of the
GREEDY algorithm for the bottleneck matching problem, from an exponential lower
bound to a guarantee linear in the number of requests. While still exponentially worse
than its performance for the objective of minimizing total distance, it is a natural al-
gorithm that is easy to implement. Two algorithms that perform notably better than
GREEDY for the min-weight objective (PERMUTATION and BALANCE) also have lin-
ear competitive ratios for the bottleneck objective with resource augmentation. These
results suggest that in some sense the bottleneck objective is more difficult than the
total distance objective, as none of the three algorithms break the Ω(k) barrier for the
bottleneck objective. Determining if the lower bound (under resource augmentation) is
in fact Ω(k) remains an open question.

References

1. Chung, C., Pruhs, K., Uthaisombut, P.: The Online Transportation Problem: On the Exponen-
tial Boost of One Extra Server. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.)
LATIN 2008. LNCS, vol. 4957, pp. 228–239. Springer, Heidelberg (2008)

2. Hartline, J.D., Roughgarden, T.: Simple versus optimal mechanisms. In: ACM Conference on
Electronic Commerce, pp. 225–234 (2009)

3. Idury, R., Schaffer, A.: A better lower bound for on-line bottleneck matching (1992)
(manuscript)

4. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488
(1993); Preliminary version appeared in SODA, pp. 231–240 (1991)

5. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J. Discrete
Math. 13(3), 370–383 (2000); Preliminary version appeared in ESA, pp. 484–493 (1995)

6. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47, 617–643
(2000); Preliminary version appeared in FOCS, pp. 214–221 (1995)

7. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching
and stable marriages. Theor. Comput. Sci. 127, 255–267 (1994)

8. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource
augmentation. Algorithmica 32(2), 163–200 (2002); Preliminary version appeared in STOC,
pp. 140–149 (1997)

9. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002);
Preliminary version appeared in STOC, pp. 140–149 (1997); Preliminary version appeared in
FOCS, pp. 93–102 (2000)



Streaming with Minimum Space: An Algorithm

for Covering by Two Congruent Balls

Chung Keung Poon1 and Binhai Zhu2

1 Department of Computer Science,
City University of Hong Kong, Kowloon, Hong Kong

csckpoon@cityu.edu.hk
2 Department of Computer Science, Montana State University,

Bozeman, MT 59717, USA
bhz@cs.montana.edu

Abstract. In this paper we design a simple streaming algorithm for
maintaining two smallest balls (of equal radius) in d-dimension to cover
a set of points in an on-line fashion. Different from most of the traditional
streaming models, at any step we use the minimum amount of space by
only storing the locations and the (common) radius of the balls. Previ-
ously, such a geometric algorithm is only investigated for covering with
one ball (one-center) by Zarrabi-Zadeh and Chan. We give an analysis
of our algorithm, which is significantly different from the one-center al-
gorithm due to the obvious possibility of grouping points wrongly under
this streaming model. We obtain upper bounds of 2 and 5.708 for the
case of d = 1 and d > 1 respectively. We also present some lower bounds
for the corresponding problems.

1 Introduction

In the past years we have seen huge progress made on streaming algorithms for
geometric problems. Streaming algorithms for these problems (like convex hull),
are mostly based on the concept of core-sets ([4,3]) and the slightly later concept
of extent ([1]) and blurred ball cover ([2]); namely, given any ε, store O(poly(1ε ))
of points such that applying a standard (convex hull) algorithm on these points
would give a (1 + ε)-approximation for the original (convex hull) problem. Most
of these algorithms then go for improving the space complexity for the core-sets
or extents, the detailed list of references can be found, for example, in [6,15].

1.1 Streaming with Minimum Space

One different but related problem was due to Zarrabi-Zadeh and Chan [16],
who tried to maintain the minimum enclosing ball for a set of points (in fixed
d-dimension) while only storing the location and radius of the current ball; more-
over, the data will be scanned in exactly one pass. They analyzed a simple algo-
rithm, i.e., if pi is inside the current ball Di−1, return Di−1; otherwise, return the
smallest ball enclosingDi−1∪{pi}. Each update obviously takes O(d) time. They

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 269–280, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



270 C.K. Poon and B. Zhu

proved that the algorithm admits an approximation ratio of 1.5, which is tight
(for the algorithm). They also gave a 1.207 lower bound on any deterministic
algorithm that only stores the center and radius of the enclosing ball.

As mentioned in [16], there is a one-pass, O((1/ε)�d/2	) space, O((1/ε)�d/2	n)
time streaming algorithm that achieves an approximation factor of 1+ ε by stor-
ing extreme points along O((1/ε)�d/2	) directions. Agarwal and Sharathkumar
[2] obtained another streaming algorithm that reduces the space complexity to

O((d/ε3) log(1/ε)) but has a larger approximation factor of
√
3+1
2 +ε ≈ 1.366+ε.

Chan and Pathak [7] gave a tighter analysis and showed that the algorithm is
1.22-approximate. At the extreme, the algorithm of Zarrabi-Zadeh and Chan
shows that ratio 1.5 is achievable using just the minimum amount of storage
(and in a simple and natural way).

In this paper, we follow the footsteps of [16] and study the two-center prob-
lem under the same specialized streaming model. In other words, at any step
i we only update/store the locations of the two balls and their common radius
ri (using O(d) time), and we scan the data points in one pass. We present a
simple streaming algorithm under this model and show that it is 2- and 5.708-
approximate in the 1d and general d-dimension cases respectively.

Like the 1-center algorithm in [16], our algorithm does not assume any knowl-
edge on the locations of points within the balls. To ensure the continued coverage
of existing points, any covered volume at a step will remain covered in subsequent
steps. We show that any deterministic algorithm, storing only the locations and
radius of the two balls and guaranteeing coverage of existing balls in subsequent
steps, has approximation ratio at least 1.5 and 1.604 for the 1d and d-dimension
cases respectively.

1.2 Related Work

Our problem can be viewed as a variant of clustering problems, the general goal
of which is to group the input points into clusters so as to minimize certain
objective/cost function. There has been a huge body of work on clustering in
the literature. Our investigation here is related to the k-center problem, which
is to find k cluster centers so that the maximum distance of points from their
nearest center is minimized. Our problem is the special case where k = 2.

When the input points are from a metric space, the Doubling Algorithm
of Charikar et al. [8] achieves an approximation ratio of 8 using O(k) space.
McCutchen and Khuller [13], and Guha [10] presented (2 + ε)-approximate al-
gorithms that use O((k/ε) log(1/ε)) space. These streaming algorithms either
have worse approximation ratio or use more space than our algorithm. Charikar
et al. also proposed the Center-Greedy and Diameter-Greedy Algorithms which
are 3-approximate for k = 2. However, their analysis assumes that the points
within each cluster are stored. For d-dimensional Euclidean space, Charikar
et al. proposed the Clique Partition Algorithm that has approximation ratio
4(1 +

√
d/(2d+ 2)), which is 6 for d = 1, 6.3 for d = 2 and 6.83 asymptotically

for large d. Their algorithm has worse approximation ratio than ours although
it works for general k.



Streaming with Minimum Space 271

Regarding lower bounds, Charikar et al. gave several results, assuming that
the algorithms cannot split existing clusters. Note that this is a stronger as-
sumption than ours because we only require an existing ball to remain covered
in subsequent steps but possibly by more than one ball. Their other lower bounds
and those given by Guha [10] are for the metric case, which do not apply to our
model.

Besides k-center, there are other related clustering problems. In particular,
the k-median (resp. k-means) problem is to find k cluster centers so that the
sum of distances (resp. sum of squares of distances) from the input points to
their nearest cluster center is minimized. For these problems, there are streaming
algorithms that achieve (1+ε)-approximation using (1/ε)O(d) space, (e.g. [12,11]).
Finally, we comment that our problem specialized to the case of d = 2 is the
planar two-center problem. This problem under the ordinary (non-streaming)
model is well-studied, with almost linear time solutions, see [5,9,14].

1.3 Some Intuition

While the algorithm for the 1-center case seems very natural, its extension to
the 2-center case is not straightforward. Consider an arbitrary step in which the
algorithm maintains two balls (their centers and the common radius) while a
new point p arrives. Naturally, if p is not too far away from one of the balls, we
can group p into the nearer ball by enlarging the radius. Otherwise, we merge the
two existing balls into one and create a new ball to cover p. To materialize this
idea, one needs to have a criteria to determine when to merge the existing balls;
and some rules to choose the centers. One can easily come up with a few simple
heuristics that look promising. For example, Center-Greedy restricts the centers
to be chosen from the input points seen so far. It treats the new point p as a ball
of radius 0 and merges the two balls whose centers are closest. Diameter-Greedy
minimizes the increase in radius in each step. In the full paper, we show that
they have approximation ratios at least 5.8 in the worst case.

Our algorithm allows the centers to be arbitrary points in the Euclidean space
and minimizes the increase in radius greedily. Note that there is still freedom
in the choice of the centers of the new balls. We will try to keep the two balls
close and yet we do not always minimize the distance between their centers. Our
algorithm is easy to implement but the analysis is non-trivial. One source of
difficulty is due to the fact that the centers of balls need not be chosen from the
input points. The 1-center case presented in [16] is already highly non-trivial.
Added to that is the difficulty in grouping points when we forgot most of the
information about the input points seen so far. We overcome these difficulties
by exploiting the geometric properties preserved at each step. These properties
might be useful for other on-line geometric problems.

2 Some Notations and the Algorithm

Our objective is to minimize the common radius of the two balls that cover
all the input points. The performance is measured by the approximation ratio,



272 C.K. Poon and B. Zhu

defined as the radius of the balls returned by the algorithm over the optimal
two-center radius.

We next present a few notations. For i = 1, 2, . . . , n, at each step i a point
pi is added (scanned). Let ki−1 be the distance of pi from (the surface of) the
nearer ball. Let ri and di be respectively the radius of the balls and the distance
between the two centers after processing point pi. Denote by Bi,1 and Bi,2 the
two balls maintained by our algorithms after pi is processed; and ci,1, ci,2 their
centers respectively.

Our algorithm, which works for all d-dimensions, is presented as follows. At
step i ≥ 3, initially the radius of the two balls and distances between their centers
are ri−1 and di−1 respectively. Without loss of generality, we assume that the new
point pi is never inside Bi−1,1 or Bi−1,2 as we do not need to update anything in
such a case. We compute the distance, ki−1, of the new point pi from the nearer
ball.

Case (1): ki−1 > di−1 (merge step). Merge the existing balls Bi−1,1 and Bi−1,2,
i.e., enclose them with a new ball Bi,1 of minimum radius (= ri−1 + di−1/2).
Create another ball Bi,2 with the same radius and with pi on its surface such
that its center ci,2 is as close to ci,1 as possible. Update ri = ri−1 + di−1/2. In
1d, we additionally have di = ki−1.

Case (2): ki−1 ≤ di−1 (walk step). Move the centers of the two balls Bi−1,1

and Bi−1,2 towards pi by a distance of ki−1/2. Enlarge the common radius by
ki−1/2 and update ri = ri−1 + ki−1/2. Clearly, the nearer ball will touch pi.
Moreover, Bi−1,1 (resp. Bi−1,2) is enclosed by Bi,1 (resp. Bi,2). In 1d, we have
di = di−1 if pi is outside of the convex hull of Bi−1,1 and Bi−1,2 (denoted as
CH(Bi−1,1, Bi−1,2)); otherwise, we have di = di−1 − ki−1.

3 Analysis for the 1d Case

Note that a one-dimensional (1d) ball is just an interval. To facilitate our discus-
sion, we assume in this section that Bi,1 and Bi,2 lie horizontally with Bi,1 on the
left and Bi,2 on the right. We analyze the approximation ratio as follows. After

step 2, we have r2 = 0 and d2 > 0. For i ≥ 3, we have ri = ri−1 +
min{ki−1,di−1}

2
= 1

2 (min{k2, d2}+ · · ·+min{ki−1, di−1}) and di = max{ki−1, di−1} if pi is out-
side of CH(Bi−1,1, Bi−1,2); and di = di−1 − ki−1 otherwise.

Call the interval between two adjacent points a segment. Then after step i,
there are i−1 segments. Due to space limitations, proofs of the following lemmas
are omitted.

Lemma 1. For all i, there exist a point on the left boundary of Bi,1 and another
point on the right boundary of Bi,2.

Lemma 2. After step i, di is no shorter than any segment.

Theorem 1. In 1d the approximation ratio of the algorithm is 2.



Streaming with Minimum Space 273

Proof. Consider step i + 1 for an arbitrary i ≥ 2. Denote by Sj , 1 ≤ j ≤ i − 1,
the j-th segment at the beginning of step i + 1, indexed from left to right; and
denote by sj its corresponding length. We consider three cases according to
whether pi+1 is inside or outside the convex hull of Bi,1 and Bi,2 and whether
ki > di or not.

Case 1: pi+1 outside of CH(Bi,1, Bi,2) and ki > di. Assume without loss of gen-
erality that pi+1 is on the right of S1. By construction of the algorithm, Bi,1 and

Bi,2 are merged into Bi+1,1. So, the new radius is ri+1 = s1+···+si−1

2 . On the other
hand, the optimal solution chooses the best segment Sj to leave out such that

the radius max{ s1+···+sj−1

2 ,
sj+1+···+si−1+ki

2 } is minimized. Let r∗i+1 be the the op-

timal radius for the points p1, p2, . . . , pi+1. Then r∗i+1 ≥ minj{max{ s1+···+sj−1

2 ,
sj+1+···+si−1+ki

2 }} ≥ minj{ 12
ki+s1+···+si−1−sj

2 } ≥ 1
2
s1+···+si−1

2 where the last in-
equality is due to ki > di ≥ sj for any j (Lemma 2).

Case 2: pi+1 outside of CH(Bi,1, Bi,2) and ki ≤ di. Assume without loss of
generality that pi+1 is on the left of S1. There is always a point on the left
boundary of Bi,1 (by Lemma 1) while the rightmost point of Bi,1 may be at
some distance D1 from its right boundary. Then the diameter of Bi,1 is 2ri =
s1+ · · ·+sj+D1 for some j. By design of the algorithm, we enlarge Bi,1 to touch

pi+1. Therefore, ri+1 =
ki+s1+···+sj+D1

2 . On the other hand, the optimal solution
leaves out one segment Sj′ between the leftmost and rightmost point which are
at a distance ki+ s1+ · · ·+ sj +D1+ di apart. Therefore, the optimal radius for

p1, p2, . . . , pi+1 is r∗i+1 ≥ minj′{ 12
ki+(s1+···+sj+D1+di)−sj′

2 } where 1 ≤ j′ ≤ j +1.

Since di ≥ sj′ for all j
′, we have r∗i+1 ≥ 1

2
ki+s1+···+sj+D1

2 .

Case 3: pi+1 inside CH(Bi,1, Bi,2) Without loss of generality, assume pi+1 is
closer to Bi,1 than to Bi,2. In the optimal solution, the point pi+1 is either in
Bi+1,1 or Bi+1,2. In any case, r∗i+1 ≥ ri+1. �
Note that the bound in Theorem 1 is tight. Consider for instance the four points,
p1 = 0, p2 = 1, p3 = 10, p4 = 11. The optimal radius is 1/2 and the solution
returned by our algorithm has radius 1.

4 Analysis for the d-Dimensional Case

Now, we turn to the case of d-dimension where d ≥ 2. Let B∗
1 and B∗

2 be the
optimal balls. So, points are taken from B∗

1 ∪B∗
2 . For the purpose of analysis, we

can assume, by appropriate scaling, that B∗
1 and B∗

2 are unit balls. Therefore, the
optimal radius is 1. We will prove that for any sequence of points from B∗

1 ∪B∗
2 ,

our algorithm will cover them with two balls of radius at most 5.708. However,
we emphasize that our algorithm does not know the optimal radius a priori.

We start with a simple idea. First, note that at any step i, the centers ci,1 and
ci,2 of Bi,1 and Bi,2 must be within the convex hull of B∗

1 and B∗
2 . Therefore,

if d∗ denotes the distance between c∗1 and c∗2, the center of the optimal balls B∗
1



274 C.K. Poon and B. Zhu

and B∗
2 , the distance of any point in B∗

1∪B∗
2 from Bi,1∪Bi,2 is at most 2+d∗−ri

where ri is the current radius of Bi,1 and Bi,2. The next step can only increase
the radius by at most half of this distance, i.e., ri+1 − ri ≤ (2 + d∗ − ri)/2.
After that, the distance of any point in B∗

1 ∪B∗
2 from Bi+1,1 ∪Bi+1,2 is reduced

to at most 2 + d∗ − ri+1. Observe that in this process, the upper bound on
the maximum distance of a point in B∗

1 ∪ B∗
2 from the balls maintained by our

algorithm decreases by the same amount as the increase in the radius of the
balls. Moreover, ri plus this maximum distance is at most 2 + d∗. Hence, the
final radius is at most 2 + d∗, implying a (weak) approximation ratio of 2 + d∗.

To establish a stronger approximation ratio, we prove similar but stronger in-
variants. To this end, we need the following more refined definitions of distances.
For j = 1, 2, let zi,j,1 (resp. zi,j,2) be the maximum distance of a point in B∗

j

from Bi,1 (resp. Bi,2); and let yi,j = min{zi,j,1, zi,j,2}. Thus, yi,j is an upper
bound on the maximum distance of a point in B∗

j from Bi,1 ∪Bi,2.
Also, recall that if step i is a “merge”, we assume Bi−1,1 and Bi−1,2 are

merged into Bi,1 while a new ball Bi,2 is created to touch the point pi causing
the merge. We use (1+ x)B∗

1 (resp. (1− x)B∗
1) to represent the ball obtained by

enlarging (reducing) B∗
1 by a factor of 1 + x (resp. 1− x) at the same center.

4.1 The Invariants

We first make a simple observation.

Lemma 3. At any step i, the radius increases by at most 1.

Proof. This is clearly true if both B∗
1 and B∗

2 overlap with at least one of Bi,1

and Bi,2. If it is not the case, then all the scanned points p1, p2, ..., pi are from
one of B∗

1 or B∗
2 . Without loss of generality, let all of them be from B∗

1 . Then
the centers of both Bi,1 and Bi,2 are within B∗

1 , i.e., the centers are at distance
at most 2 from each other. Hence the increase in radius is at most di/2 ≤ 1. �
Next, we prove some invariants which form the basis for our final proof. As they
apply to both B∗

1 and B∗
2 , we drop the subscript and simply write B∗. Likewise,

we will drop the subscript j in c∗j , zi,j,1 and yi,j, etc.

Lemma 4. Suppose after step i, both centers, ci,1 and ci,2, of Bi,1 and Bi,2 are
in B∗. Then yi + ri + di/2 ≤ 3

√
3/2 ≈ 2.598.

Proof. Consider the plane containing ci,1, ci,2 and c∗ (the center of B∗). The
intersection of the plane and the ball B∗ forms a circle. Without loss of generality,
assume ci,1 and ci,2 lie on the perimeter of the circle. See Figure 1. (Otherwise,
we can move ci,1 or ci,2 to the perimeter along the radial line from c∗ to their
original position. This will not decrease the distances di, zi,1 and zi,2.)

Consider a point q at equal distance L from ci,1 and ci,2. Recall that the
distance between ci,1 and ci,2 is di. We want to find an upper bound on L+di/2.

By basic geometry, L2 =
(

di

2

)2
+
(
1 +
√
1− (di

2 )
2
)2

= 2 + 2

√
1− d2

i

4 . Hence

di/2 = L
√
1− L2/4 and so L + di/2 = L(1 +

√
1− L2/4) which attains a



Streaming with Minimum Space 275

ci,1 ci,2di

c*

B*

q

L L

Fig. 1. Both ci,1 and ci,2 in B∗

maximum of 3
√
3/2 when L =

√
3. Now observe that yi+ ri is at most L. Hence

yi + ri + di/2 ≤ 3
√
3/2 ≈ 2.598. �

Lemma 5. Suppose step i is a merge and pi is in B∗. If ri ≥ 1.611 after the
move in step i, then yi + ri ≤ yi−1 + ri−1.

Proof. Recall that zi−1,1 (resp. zi−1,2) is the maximum distance of a point in
B∗ from Bi−1,1 (resp. Bi−1,2); and yi−1 = min{zi−1,1, zi−1,2}. We will show that
zi,2 + ri ≤ min{zi−1,1, zi−1,2} + ri−1 where zi,2 is the maximum distance of a
point in B∗ from Bi,2 (i.e., the ball that touches pi after the merge step). Hence
yi + ri ≤ zi,2 + ri ≤ yi−1 + ri−1.

We first consider Bi−1,1 and will prove that zi,2+ri ≤ zi−1,1+ri−1. (Applying
the same argument on Bi−1,2, we can prove that zi,2 + ri ≤ zi−1,2 + ri−1. Thus
we omit the detail.) Draw a line connecting ci−1,1 and c∗, the center of Bi−1,1

and B∗ respectively. See Figure 2. Consider the situation before the move in step
i. Let x be the distance of ci−1,1 from B∗. (Note: x ≤ 0 if ci−1,1 lies within B∗.)
Then x+ 2 = ri−1 + zi−1,1.

For convenience, denote by L the distance between ci−1,1 and pi. Since pi
lies within B∗, we have L ≤ x + 2. Let C be the ball of radius di−1/2 centered
at ci−1,1. Recall that ci,1 denotes the center of Bi,1 after the move in step i.
Therefore, ci,1 lies on the surface of C while the newly created ball Bi,2 will
touch pi and have its center lying on the line ci,1pi.

Let q be the intersection of the line ci−1,1pi and the ball C. Then dist(q, pi) ≥
ri−1 + ki−1 − di−1/2 > ri−1 + di−1/2 = ri. Hence the center of the newly
created ball Bi,2 must lie within the conical sector of the ball of radius dist(q, pi),
centered at pi and with the (extended) lateral surface tangential to the ball C.
If the whole cone lies within the ball (1+x)B∗, then the maximum distance of a
point in B∗ fromBi,2 is zi,2 ≤ x+2−ri. Therefore, zi,2+ri ≤ x+2 = zi−1,1+ri−1.
Repeating the same argument for Bi−1,2, we get that zi,2 + ri ≤ zi−1,2 + ri−1.
Therefore, zi,2+ri ≤ min{zi−1,1, zi−1,2}+ri−1 as required and the lemma follows.

To see that the “cone containment property” holds, refer to Figure 2. Let θ
be the angle ∠pici−1,1c

∗. Then

θ ≤ sin−1
( 1
L

)
. (1)



276 C.K. Poon and B. Zhu

−1,1ic

ip

(1+x) *B

q
C

θ

B −1, 1i

c*

B*

q’

φ
c’

Fig. 2. A merge step

Consider the hyper-plane containing the point q and perpendicular to the line
pici−1,1. Let q′ be an arbitrary point on the intersection of this hyper-plane and
the cone. Consider the plane containing q′, q and pi. (Note that this plane may
not be the same as the plane that contains pi, ci−1,1 and c∗.) The projection of
the ball C on this plane forms a circle. Let c′ be the intersection of this circle and
the line q′pi. We let the length of qq′ be ηdi−1/2 for some η < 1. By considering

the right-angled triangles&pic
′ci−1,1 and&piqq

′, we have η =
√

L−di−1/2
L+di−1/2

. Also,

dist(ci−1,1, q
′) = (di−1/2)

√
1 + η2.

Denote by φ the angle ∠q′ci−1,1c
∗. Then φ ≤ θ+(π/4). Figure 2 shows that q′

lies within (1+x)B∗. Suppose to the contrary that q′ lies outside (1+x)B∗. Then

(1 + x)B∗ must have radius less than (dist(ci−1,1, q
′)/2)/ cosφ =

di−1

√
1+η2

4 cosφ .

That is, 1 + x <
di−1

√
1+η2

4 cosφ . By the previous observation that L ≤ 2 + x, we

have L− 1 < di−1

(√
1+η2

4 cosφ

)
, or

θ > cos−1
(di−1

√
1 + η2

4(L− 1)

)
− π

4
. (2)

Combining inequality (1) and (2), we have

cos−1
(di−1

√
1 + η2

4(L− 1)

)
− π

4
< sin−1

( 1
L

)
. (3)

By numerical computation with a computer, when L ≥ 2.586, inequality (3)
cannot be satisfied for any di−1. (Note that we need only consider di−1 ≤ 2
because if Bi−1,1 or Bi−1,2 touches B∗, then di−1 < ki−1 ≤ 2. Otherwise all
points p1, . . . , pi−1 must be from the other optimal ball and hence di−1 ≤ 2.)



Streaming with Minimum Space 277

When L < 2.586, there is a lower bound, denoted d̃(L), on di−1 below which
inequality (3) cannot be satisfied. Since ri + di−1/2 < L, ri < L − d̃(L)/2.
Again, by numerical computation L− d̃(L)/2 ≤ 1.611 for any L < 2.586. Hence
when ri ≥ 1.611, inequality (3) cannot be satisfied and so the cone containment
holds. �

Lemma 6. Suppose step i is a walk and pi is in B∗. If the center ci−1,1 of
Bi−1,1 is on or outside the surface of (1 − x)B∗ for some 0 ≤ x ≤ 1 and

ri−1 ≥
√

x(2 − x) before the move in step i, then zi,1 + ri ≤ zi−1,1 + ri−1. The
same conclusion holds for Bi−1,2.

Proof. First, consider the case where ci−1,1 is on the surface of (1− x)B∗. Con-
sider the plane containing pi, ci−1,1 and c∗. Suppose pi is on the surface of B∗.
Let θ be the angle ∠c∗ci−1,1pi and φ be the angle ∠c∗pici−1,1. See Figure 3.

B*(1−x)

p

B*

c
x

i

θ

Φ

L2

c*
i−1,1

Fig. 3. A walk step

Let L = (1 − x) cos θ. Then (1 − x) sin θ =
√
(1 − x)2 − L2. Hence cosφ =√

1− ((1− x)2 − L2) =
√
2x− x2 + L2. Then dist(ci−1,1, pi) = L + cosφ =

L +
√
2x− x2 + L2. By construction of the algorithm, after the walk in step i,

the center of Bi,1 will be on the line segment ci−1,1pi and at distance ki−1/2
from ci−1,1. If 2L ≥ ki−1/2, then the center of Bi,1 is still in (1− x)B∗. This is
satisfied if 2L ≥ (dist(ci−1,1, pi)− ri−1)/2. But this condition is always satisfied
when ri−1 ≥

√
2x− x2 because 3L+ ri−1 −

√
2x− x2 + L2 ≥ 3L+

√
2x− x2 −√

2x− x2 + L2 ≥ 3L+
√
2x− x2−

√
2x− x2−L ≥ 0. Hence zi,1+ ri ≤ zi−1,1+

ri−1.
Now suppose ci−1,1 is between B∗ and (1−x)B∗. Then ci−1,1 is on the surface

of (1 − x′)B∗ for some 0 ≤ x′ < x. Since
√

x(2 − x) is an increasing function

for 0 ≤ x ≤ 1, we have ri−1 ≥
√

x′(2− x′) as well. Therefore, we can apply the
previous argument. Finally, if ci−1,1 is lying on the surface of (1+x)B∗ for some
x ≥ 0, then ci,1 is always within (1 + x)B∗. �

Corollary 1. Suppose step i is a walk and pi is in B∗. If ri−1 ≥ 1, then yi+ri ≤
yi−1 + ri−1.



278 C.K. Poon and B. Zhu

Proof. If ri−1 ≥ 1, then ri−1 ≥
√

x(2 − x) for any 0 ≤ x ≤ 1. Hence zi,1 + ri ≤
zi−1,1 + ri−1 and zi,2 + ri ≤ zi−1,2 + ri−1. Therefore, yi + ri ≤ yi−1 + ri−1. �

4.2 An Upper Bound of 5.708

Theorem 2. In d-dimension, the approximation ratio of the algorithm is at
most 5.708.

Proof. We consider the earliest step i such that ri ≥ 1.708. By Lemma 3, we
have 0.708 ≤ ri−1 < 1.708. Without loss of generality, assume the first point p1
comes from B∗

1 . Then there are two cases.

Case 1: p1, . . . , pi−1 are all in B∗
1 .

If pi is in B∗
2 , then after step i, yi,2 ≤ 2. Next we bound yi,1+ri. Since p1, . . . , pi−1

are all in B∗
1 , both ci−1,1 and ci−1,2 are in B∗

1 . Then by Lemma 4, we have
yi−1,1+ri−1+di−1/2 ≤ 2.598. Since ri ≤ ri−1+di−1/2 and yi,1 ≤ yi−1,1, we have
yi,1 + ri ≤ 2.598. As ri′ ≥ 1.708 for all i′ ≥ i, we can repeatedly apply Lemma 5
and Corollary 1 to bound the increase in radius after step i. More precisely, the
lemma and corollary guarantee that yi′,1+ yi′,2+ ri′ ≤ yi,1+ yi,2+ ri. Therefore,
the final radius is at most yi,1 + yi,2 + ri ≤ 2.598 + 2 = 4.598.

If pi is still in B∗
1 , then we look for the earliest step i′ such that pi′ is in B∗

2

and apply the above argument.

Case 2: some points among p1, . . . , pi−1 are in B∗
2 .

Then both yi−1,1 and yi−1,2 are at most 2. Consider the move in step i and
let pi be in B∗

j (where j = 1 or 2). If the move is a merge, then by Lemma 5,
yi,j + ri ≤ yi−1,j + ri−1 < 2 + 1.708. Hence yi,1 + yi,2 + ri < 5.708.

Now we assume that the move is a walk. Suppose the center of either Bi−1,1

or Bi−1,2 is within (B∗
j − x) where x = 1−

√
1− 0.7082 ≈ 0.294. Then yi−1,j +

ri−1 ≤ 2 − x. Hence yi,j ≤ yi−1,j ≤ 2 − x − ri−1 ≈ 0.998. As at each step the
radius increases by at most 1 (Lemma 3), we have ri < 2.708. Hence yi,j + ri <
0.998+ 2.708 ≈ 3.706 and yi,1 + yi,2 + ri < 3.706+ 2 = 5.706. Suppose both the
centers of Bi−1,1 and Bi−1,2 are on the surface of or outside (B∗

j −x), then ri−1 ≥
0.708 ≥

√
x(2− x). Applying Lemma 6 twice and using yi,j = min{zi,j,1, zi,j,2},

we have yi,j+ri ≤ yi−1,j+ri−1 < 2+1.708 = 3.708 and so yi,1+yi,2+ri ≤ 5.708.
Thus, whether step i is a merge or walk, we have yi,1 + yi,2 + ri ≤ 5.708. By

repeatedly applying Lemma 5 and Corollary 1 from step i+1 onwards, the final
radius is at most yi,1 + yi,2 + ri ≤ 5.708.

Summarizing case 1 and 2, the approximation ratio of our algorithm is at
most 5.708. �

5 Lower Bounds for the Problems

We first state our computation model precisely. We assume that the radius and
centers are stored as real numbers of infinite precision. However, such an algo-
rithm can make use of the infinite precision power to encode the locations of the



Streaming with Minimum Space 279

points within the two balls. To prevent such pecularities, we also assume that in
each step of any such algorithm, the old balls will be covered by the new balls.

Theorem 3. Under the special streaming model that at any step only the radius
and locations of two balls are remembered and the assumption that the regions
of the old balls have to be covered by the new balls, there is a lower bound of
1.5 in 1d and a lower bound of 1.604 in 2d, on the approximation ratio of any
deterministic algorithm for two-center covering.

For the 1d case, consider the following input. The adversary first specifies three
points, p1 = 0, p2 = 1 and p3 = 10. If the algorithm puts p2 and p3 in the
same interval, then the approximation ratio is greater than 2. So, we assume the
algorithm puts p1 and p2 in one interval and p3 in another. Let D be the length
of the interval. Thus D ≥ 1. Let p3 be at distance α from the closer boundary
of its enclosing interval. So, α ≤ D/2. Now, the adversary adds point p4 so
that it is at distance 1 from p3 and at distance 1− α from the boundary of the
interval containing p3. Then the optimal algorithm can still cover everything with
intervals of length 1. However, the algorithm does not remember the location of
the points within the intervals. So, it has to increase the length of the interval to
D+1−α ≥ D/2+1 ≥ 1.5. Hence the approximation ratio is at least 1.5/1 = 1.5.

For the d-dimensional case, consider the following input in which all the points
lie on a 2d plane. The adversary first specifies three points: p1 = (0,−1), p2 =
(0, 1) and p3 = (100, 0) (i.e., far away from p1, p2). The algorithm has to enclose
p1 and p2 by one circle and p3 by another. Then the adversary presents p4 =
(−1 −

√
2, 0). Again, the algorithm should enclose p1, p2 and p4 by one circle.

Let D be the diameter at this moment. Note that p1, p2, p4 is the collection of
three points used in [16] to prove a lower bound of 2 +

√
2 on the diameter of

the smallest enclosing circle. Thus D ≥ 2 +
√
2.

Now consider the other circle containing p3. Suppose p3 is at distance α from
the nearest point on the perimeter. (So, α ≤ D/2.) Then, the adversary gives
p5 at distance 2

√
2−α from the circle so that p5, p3 and the center of circle are

colinear. The algorithm has to enlarge the diameter of the circle to D+2
√
2−α

≥ D/2 + 2
√
2 ≥ 1 + 1/

√
2 + 2

√
2 while optimal diameter is 2

√
2. Hence the

approximation ratio is at least 1 + 1+1/
√
2

2
√
2

≈ 1.604.

6 Concluding Remarks and Open Problems

One can construct an input for d > 1 on which our algorithm has approximation
ratio 2.5. By numerical computation, one can even improve the lower bound to
2.668. However, we believe that our algorithm has approximation ratio much
smaller than 5.708. Thus, an open problem is to provide a tighter analysis of our
algorithm. It is also interesting to design algorithms with better approximation
ratio for the problem (still under the same model). In fact, in this case even for
covering with one-center, the lower bound for the problem is 1.207 while the
upper bound is only 1.5, see [16]. Another direction is to extend our algorithm
to the general k-center covering problem where k ≥ 2.



280 C.K. Poon and B. Zhu

References

1. Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating extent measures of
points. J. ACM 51(4), 606–635 (2004)

2. Agarwal, P., Sharathkumar, R.: Streaming algorithms for extent problems in high
dimensions. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, pp. 1481–1489 (2010)

3. Bǎdoiu, M., Clarkson, K.: Smaller core-sets for balls. In: Proc. 14th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 801–802 (2003)

4. Bǎdoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proc. 34th Annual ACM Symposium on Theory of Computing, STOC 2002, pp.
250–257 (2002)

5. Chan, T.: More planar two-center algorithms. Comput. Geom. Theory Appls. 13,
189–198 (1999)

6. Chan, T.: Dynamic coresets. In: Proc. 24th Annual ACM Symposium on Compu-
tational Geometry, SoCG 2008, pp. 1–9 (2008)

7. Chan, T.M., Pathak, V.: Streaming and Dynamic Algorithms for Minimum Enclos-
ing Balls in High Dimensions. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS
2011. LNCS, vol. 6844, pp. 195–206. Springer, Heidelberg (2011)

8. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dy-
namic information retrieval. SIAM Journal on Computing 33(6), 1417–1440 (2004)

9. Eppstein, D.: Faster construction of planar two-centers. In: Proc. 8th Annu. ACM-
SIAM Sympos. Discrete Algo., pp. 131–138 (1997)

10. Guha, S.: Tight results for clusering and summarizing data streams. In: Proc. of
12th International Conference on Database Theory, pp. 268–275. ACM (2009)

11. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering.
Discrete Computational Geometry 37, 3–19 (2007)

12. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and
their applications. In: Proc. 36th Annual ACM Symposium on Theory of Comput-
ing, STOC 2004, pp. 291–300 (2004)

13. McCutchen, R.M., Khuller, S.: Streaming Algorithms for k-Center Clustering with
Outliers and with Anonymity. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld,
R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 165–178. Springer,
Heidelberg (2008)

14. Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discrete Com-
put. Geom. 4, 125–134 (1997)

15. Zarrabi-Zadeh, H.: An Almost Space-Optimal Streaming Algorithm for Coresets
in Fixed Dimensions. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS,
vol. 5193, pp. 817–829. Springer, Heidelberg (2008)

16. Zarrabi-Zadeh, H., Chan, T.: A simple streaming algorithm for minimum enclosing
balls. In: Proc. 18th Canadian Conference on Computational Geometry, CCCG
2006, pp. 139–142 (2006)



Online Joint Pricing and Booking Policies

in Airline Revenue Management

Guanqun Ni1,2,3,� and Yinfeng Xu1,2,3

1 School of Management, Xi’an Jiaotong University, Xi’an, 710049, China
2 State Key Lab for Manufacturing Systems Engineering, Xi’an, 710049, China
3 Ministry of Education Key Lab for Process Control & Efficiency Engineering,

Xi’an, 710049, China
guanqun.ni@stu.xjtu.edu.cn, yfxu@mail.xjtu.edu.cn

Abstract. We introduce a model considering the single-leg revenue
management problem from the perspective of online algorithms and com-
petitive analysis. In this model, the price and limitation of bookings are
both decision variables. Assuming the process of the customers meets
the low-before-high manner and the expected value of customer falls in
a closed interval, we analyze the upper bound for deterministic online
joint pricing and booking policy and propose one optimal policy for each
case.

Keywords: joint pricing and booking, revenue management, online al-
gorithms, competitive analysis.

1 Introduction

In practice, airlines usually make series pricing decisions according to the time
before the departure. One airline needs to decide when to adjust price of ticket
based on the quantity sold out at prior price and how much to change the price.
In the field of revenue management (RM), the first question is quantity-based
and the second question is price-based [7]. Most researches on quantity-based
and price-based control policy have been carried out under different assumptions
independently in airline industry, while limited research has been studied based
on integration of pricing and booking [5]. This motivates us to investigate the
joint pricing and booking control policy in RM. At the same time, a critical
assumption made in most academic studies of RM problems is that the demand
function is known to the decision maker. This assumption of “full information”
endows the decision maker with knowledge that she/he does not typically possess
in practice [2]. Moreover, the airline industry itself is undergoing substantial
upheaval, which is leading toward new approaches to defining the airline product
[1]. These reasons motivate us to investigate the joint pricing and booking control
policy from the perspective of online algorithms and competitive analysis (see [3]
for an extensive discussion and [4] for a recent survey) with uncertain demand.

� Corresponding author.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 281–290, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



282 G. Ni and Y. Xu

In [1], the authors first analyzed the online booking policy in RM with uncer-
tain demand from the perspective of competitive analysis and a class of nested
protection-level policies is proposed based on fare-class. In their paper, the classes
of fares are fixed as exogenous variables and the fare class of request is also known
to the airline. This assumption is adopted in most quantity-based RM models.
While, in practice the airline usually do not know the customer’s expected value
whatever the fare she/he pays for the booking is. Moreover, in many price-
based models, the possible price values are approximated to a finite set based
on customer classes [5]. This assumption is technical and in such a formulation
the pricing policy would be handled. However, the assumption about the fare
classes may not cover all the possible kinds of customers. A nature way to intro-
duce the price decision variable would be as a real number on some interval. In
our model, the airline don’t known the customer’s expected value exactly facing
booking and can choose any price from a given fare interval.

The problem considered in this paper can be described as follows. One flight
of the airline has n seats. Before the passenger arriving the airline must post a
price f and the passenger will book the ticket if her/his valuation is at least the
price. We assume that the expected value of every passenger falls in the closed
interval: [f0, fm], and the total number of passengers who want to book a seat
is no less than n. That is, if the fare of seats is set to be f0, the airline may
sell out all the seats which reflects the situation where cheap ticket is in short
supply, especially for “cheap flight” in a boom season. In this paper, we call
this assumption “CTSS” in short. From a practical point of view, we assume
the process of the passengers meets the low-before-high (LBH) manner [6]; i.e.,
demand in lower fare class arrives earlier. Although demand meets the LBH
manner, we assume, the demand or demand function for any kind of fare is
unknown and there is no any information about demand arrive rate. Thus, the
airline has to decide when to adjust price based on the quantity sold out at
prior price and how much to change the price facing the online information of
demand. In practice, if the times of price changing are limited to no more than
k (more times more adjusting cost), the airline has to answer the two questions:
(1) what the ith price should be; and (2) when to change the (i − 1)th price to
the ith price? Additionally, we consider the continuous problem, where the value
of decision variable is not restricted to integer [1] in our model.

Our approach is general in that we do not restrict ourselves to any class
of algorithms, but rather seek the best possible policy. Nonetheless, our results
show that the optimal online policies come from a class, namely, dynamic pricing
policies with booking limited. These policies design series of fares and define
limited bookings for each fare. In this paper we define P (F,Q) a unique policy,
where F = (f1, .., fk) and Q = (q0, q1, ..., qk−1) are the decision vectors of fare
and quantity, respectively. For example, a policy P (F,Q) with F = (600, 750)
and Q = (100, 50) for a flight with 180 seats, the lowest fare f0 = 450 and the
highest fare fm = 800 means: at the beginning, the airline sells tickets at 450
and the bookings for this fare are limited to 100. If the quantity of seats sold
out at 450 equals 100, the airline adjusts the fare from 450 to f1 = 600 and the



Online Joint Pricing and Booking Policies in Airline Revenue Management 283

bookings for fare f1 are limited to 50. Otherwise, do not change the fare. If the
quantity of seats sold out at 600 equals 50, the airline adjusts the fare from 600
to f2 = 750 and then sells the remaining (30) seats at fare f2 till all the seats are
sold out or the flight departs. In this paper all policies are described as the form
P (F,Q). From the analysis in Section 2, we could compute that the competitive
ratio of policy P (F,Q) with F = (600, 750) and Q = (100, 50) for this example is
c = 0.56, and the optimal online policy is P ∗(F ∗, Q∗) with F ∗ = (545.12, 660.35)
and Q∗ = (133.33, 23.33) whose competitive ratio is c∗ = 0.61.

2 Online Joint Pricing and Booking Policies

As described above, the airline should decide: (1) what the ith price should be;
and (2) when to change the (i − 1)th price to the ith price? Before answering
these questions in detail, we first prove two lemmas used in following analysis
from the perspective of online algorithms and competitive analysis.

For any instance, the airline always needs choose a fare as the initial price.
Without loss of generality, we let f ′

0 be the initial fare. Then, we have the fol-
lowing Lemma 1.

Lemma 1. For the continuous online joint pricing and booking problem, the
initial fare f ′

0 is just equal to f0. Otherwise, there is no deterministic online
policy whose competitive ratio is larger than 0.

Proof. If the initial fare f ′
0 is not equal to f0, it will only be the case that f ′

0 > f0
because the expected value of every passenger falls in the closed interval: [f0, fm].
For any online policy P with f ′

0 > f0, we consider the following instance. There
will be more than n requests coming, and all the requests’ expected value is
equal to f0. The resulting revenue of policy P is 0 when applied to this instance.
And the revenue of an optimal offline policy is f0n. Thus, the competitive ratio
is 0. This shows that no deterministic online policy with f ′

0 > f0 can guarantee
for all instances that its competitive ratio is larger than 0.

This gives us the Lemma 1. �
From a practical point of view, all kinds of price adjusting may be an optimal
policy, pricing markup or markdown. Nonetheless, the following Lemma 2 shows
that we need only research the optimal policy in the class of markup policies as
long as there is an optimal online policy indeed.

Lemma 2. If there is an optimal online policy P (F,Q) with the case that fi > fj
for some i < j, we revise the vector of F = (f1, ..., fk) to a non-descending
alternative vector F ′ = (f ′

1, ..., f
′
k) with f ′

i ≤ f ′
j for ∀i < j. Then the alternative

policy P ′(F ′, Q) is still optimal.

Proof. For policy P (F,Q), we assume, without loss of generality, fi > fi+1 for
some i ≥ 1. Let pi(≤ n) be the quantity of bookings accepted with fare fi. If
it is the case that pi > 0, we could adjust fi+1 = fi. And the revenue will not
decrease because of LBH manner. If it is the case that pi = 0, then there will



284 G. Ni and Y. Xu

not be request whose expected value is equal to or bigger than fi based on LBH
manner. Thus, we could adjust fi = fi+1 and the revenue will also not decrease.
And following this analysis, we could prove the lemma for general case where
fi > fj for ∀i < j.

This gives us the Lemma 2. �
Based on the Lemma 2, we only research the optimal one in the class of policies
with fi > fj for ∀i > j.

2.1 Optimal Online Policy for Case k = 1

In this subsection, we first design an online policy P1(F1, Q1) for k = 1 where
the times of price changing are no more than one and then prove the policy has
the best competitive ratio.

We describe the online joint pricing and booking policy P1(F1, Q1) as follows.

Policy P1(F1, Q1) with F1 = (
√
f0fm), and Q1 = ( n

2−
√

f0/fm
):

at the beginning, the airline sells its seats at fare f0. When the quan-
tity of seats sold out at fare f0 equals q0 = n

2−
√

f0/fm
, the airline

adjusts the price to fare f1 =
√
f0fm and sells the remaining seats

at fare f1. Otherwise, the airline doesn’t change the price till the
departure time.

Theorem 1. For the continuous problem with k = 1, the online joint pricing
and booking policy P1(F1, Q1) has the best competitive ratio c = 1

2
√

fm/f0−1
.

Before proving this theorem, we need the following Lemma 3.

Lemma 3. Let u1 = ax+y(n−x)
bn and u2 = ax

yn , where 0 ≤ x ≤ n, and 0 < a <

y ≤ b. Define the function v = min{u1, u2}, we have (x = n

2−
√

a/b
, y =

√
ab) =

argmax v.

Proof. From the definitions of u1 and u2 , we have u1 =
u2y(1−y/a)+y

b and ∂u1

∂u2
=

y(1−y/a)
b < 0, for 0 < a < y ≤ b. Thus, u1 and u2 are inversely related, that is,

u1 = u2 is the necessary condition when v gets maximal value.

Let u1 = u2 = u, we have x = y2n
ab+y2−ay , u = ay

ab+y2−ay and du
dy = a(ab−y2)

(ab+y2−ay)2 .

Because 0 < a < y ≤ b, u reaches maximum value when y =
√
ab, that is, when

x = y2n
ab+y2−ay and y =

√
ab, the function v = min{u1, u2} gets maximum value.

This gives us the Lemma 3. �
Now we prove the Theorem 1 as follows.

Proof. Consider any demand instance I; after applying the online pricing and
booking policy, let R′ be the total revenue of all requests accepted. Let R∗ be
the revenue achieved by the application of an optimal offline policy.



Online Joint Pricing and Booking Policies in Airline Revenue Management 285

For any general online policy P (F,Q) with F = (f1) and Q = (q0), let q1 be
the quantity of seats sold out at fare f1. We know that any q0 ≤ n can be met
because of CTSS assumption. Thus, the online decision-maker will only face two
possible cases: (1) q1 = n− q0, and (2) q1 < n− q0.

Case 1. q1 = n− q0. In this case, R′ = f0q0 + f1q1 = f0q0 + f1(n− q0). Based
on LBH assumption, the “imaginary adversary” [1,3,4] will generate one of worst
requests sequences: there are n requests with expected value f1 followed by n
requests with expected value fm. Thus, the revenue achieved by online policy is
still R′, while the optimal revenue achieved by an offline policy will be R∗ = fmn.
Thus, we have that the ratio for Case 1 is

c1 =
R′

R∗ =
f0q0 + f1(n− q0)

fmn
. (1)

Case 2. q1 < n − q0. In this case, there will be two sub-cases: (2.1) q1 = 0,
and (2.2) q1 > 0.

Sub-case 2.1. q1 = 0. In this case, R′ = f0q0. And there is no request with
expected value equal to or bigger than fare f1 based on LBH assumption. The
“imaginary adversary” will generate one of worst requests sequences: there are
only n requests with expected value equal to (f1 − ε) where ε→ 0+. Thus, the
revenue achieved by online policy is still R′, while the optimal revenue achieved
by an offline policy will be R∗ = (f1 − ε)n→ f1n. Thus, we have that the ratio
for Case 2.1 is

c21 =
R′

R∗ =
f0q0
f1n

. (2)

Sub-case 2.2. q1 > 0. In this case, R′ = f0q0 + f1q1. And because of q1 <
n− q0, the “imaginary adversary” will generate one of worst requests sequences:
there are n requests with expected value (f1 − ε) where ε → 0+ followed by q1
requests with expected value equal to fm. Thus, the revenue achieved by online
policy is still R′, while the optimal revenue achieved by an offline policy will be
R∗ = fmq1 +(f1− ε)(n− q1)→ f1n+(fm− f1)q1. Thus, we have that the ratio
for Case 2.2 is

c22 =
R′

R∗ =
f0q0 + f1q1

f1n+ (fm − f1)q1
. (3)

Now we analyze the relationship between c21 and c22 in Case 2.
If it is the case that f0q0

f1n
≤ f1q1

(fm−f1)q1
, we have c21 ≤ c22. Otherwise, it is the

case that f0q0
f1n

> f1q1
(fm−f1)q1

, and we have c21 > c22. At the same time we find

that c22 = f0q0+f1q1
f1n+(fm−f1)q1

is monotonically decreasing in q1. Thus, the “imaginary

adversary” will design one worst sequence so that q1 is infinitely close to its upper
bound (n − q0) to make sure that c22 reaches its minimum. If the “imaginary
adversary” choose such worst sequence, it is the case that

c22 →
f0q0 + f1(n− q0)

fmn
= c1. (4)



286 G. Ni and Y. Xu

Generally speaking, for the continuous problem with k = 1, any online policy
P (F,Q) with F = (f1) and Q = (q0) will only face two kinds of possible worst
instances which generate two possible worst performances. Thus, there will be
two possible minimal ratios:

c1 =
f0q0 + f1(n− q0)

fmn
(5)

and

c2 =
f0q0
f1n

, (6)

and the online decision-maker need only choose appropriate q0 and f1 based on
the tradeoff between c1 and c2.

Then following the Lemma 3, we complete the proof. �

2.2 Optimal Online Policy for Case k > 1

In this subsection, we mainly research the continuous problem with k > 1. We
also design an online pricing and booking policy Pk(Fk, Qk) and then prove the
policy has the best competitive ratio.

Based on the description about policy P (F,Q) in Section 1, we describe the
online joint pricing and booking policy Pk(Fk, Qk) for k > 1 concisely as follows.

Policy Pk(Fk, Qk) with Fk = (f1, f2, ..., fk) and Qk = (q0, q1, ...,
qk−1) defines q0 = n

1+k−k(
f0
fm

)1/(k+1)
the bookings limited for fare

f0, qi = n

k+[1−(
f0
fm

)1/(k+1)]−1
the bookings limited for fare fi where

1 ≤ i ≤ k−1, and the fare fi = f
(k+1−i)/(k+1)
0 f

i/(k+1)
m for 1 ≤ i ≤ k.

Theorem 2. For the continuous problem with k > 1, the online joint pricing
and booking policy Pk(Fk, Qk) has the best competitive ratio c = 1

(1+k)( fm
f0

)1/(k+1)−k
.

Before proving this theorem, we need the following Lemma 4.

Lemma 4. Let u1 = ax0

y1n
, u2 = ax0+y1x1

y2n
,..., ui =

ax0+
∑i−1

j=1 yjxj

yin
for 2 ≤ i ≤

k and uk+1 =
ax0+

∑k−1
j=1 yjxj+fk(n−

∑k−1
j=0 xj)

bn , where 0 ≤ xi ≤ n,
k−1∑
i=0

xi ≤ n

for 0 ≤ i ≤ k − 1 and 0 < a < y1 < y2 < ... < yk ≤ b. Define the
function v = min{u1, u2, ..., uk, uk+1} , we have (x0 = n

1+k−k( a
b )

1/(k+1) , xi =
n

k+[1−( a
b )

1/(k+1)]−1 , yi = a(k+1−i)/(k+1)bi/(k+1)) = argmax v.

Proof. For convenience, we let y0 = a and yk+1 = b. From the definition of ui

for 1 ≤ i ≤ k + 1, we have x0 = ny1u1

y0
, xi =

n(yi+1ui+1−yiui)
yi

for 1 ≤ i ≤ k − 1,



Online Joint Pricing and Booking Policies in Airline Revenue Management 287

uk+1 =
ykuk+yk(1− y1u1

y0
−
∑k−1

i=1

yi+1ui+1−yiui
yi

)

b , and ∂uk+1

∂ui
= (1 − yi

yi−1
)yk

b < 0 for

1 ≤ i ≤ k. Thus, uk+1 and any ui for 1 ≤ i ≤ k are inversely related, that is,
uk+1 = ui for 1 ≤ i ≤ k is the necessary condition when v gets maximal value.

Let uk+1 = ui = u for 1 ≤ i ≤ k, we have x0 = ny1u
y0

, xi =
n(yi+1−yi)u

yi
for 1 ≤

i ≤ k−1 and u = yk

b+yk[
k−1∑
i=0

(yi+1/yi)−k]

. Then ∂u
∂yi

=
y2
k

{b+yk[
k−1∑
i=0

(yi+1/yi)−k]}2

(yi+1

y2
i
−

1
yi−1

) for 1 ≤ i ≤ k − 1, and ∂u
∂yk

= 1

{b+yk[
k−1∑
i=0

(yi+1/yi)−k]}2

(b − y2
k

yk−1
).

Because 0 < a < y1 < y2 < ... < yk ≤ b, u reaches its maximum value
when y2i = yi−1yi+1 for 1 ≤ i ≤ k, that is, when yi = a(k+1−i)/(k+1)bi/(k+1),
the function v = min{u1, u2, ..., uk, uk+1} gets maximum value. At the same
time, we could compute that xi = [1 − (ab )

1/(k+1)]x0 for 1 ≤ i ≤ k − 1 and
x0 = ny1u

a . Further, let u1 = uk+1, we get that x0 = n
1+k−k( a

b )
1/(k+1) and xi =

n
k+[1−( a

b )
1/(k+1)]−1 for 1 ≤ i ≤ k − 1.

This gives us the Lemma 4. �
Now we prove the Theorem 2 as follows.

Proof. Consider any demand instance I; after applying the online control policy,
let R′ be the total revenue of all requests accepted. Let R∗ be the revenue
achieved by the application of an optimal offline policy.

For the continuous problem with k > 1, consider any general online policy
Pk(Fk, Qk) with F = (f1, f2, ..., fk) and Q = (q0, q1, ..., qk−1), let pi be the
quantity of seats sold out at fare fi. We know that any q0 ≤ n can be met
because of CTSS assumption, that is, it is always the case that p0 = q0. Thus,
the online decision-maker will only face two possible cases after accepting q0
bookings with fare f0: (1) the quantity of seats sold out at fare f1 is less than
q1, that is, p1 < q1 and (2) p1 = q1.

Case 1. p1 < q1. In this case, there will be two possible cases: (1.1) p1 = 0,
and (1.2) 0 < p1 < q1.

Case 1.1. p1 = 0. In this case, R′ = f0q0. And there is no request with
expected value equal to or bigger than fare f1 based on LBH assumption. The
“imaginary adversary” will generate one of worst requests sequences: there are
only n requests with expected value equal to (f1 − ε) where ε→ 0+. Thus, the
revenue achieved by online policy is still R′, while the optimal revenue achieved
by an offline policy will be R∗ = (f1 − ε)n→ f1n. Thus, we have that the ratio
for Case 1.1 is

c11 =
R′

R∗ =
f0q0
f1n

. (7)

Case 1.2. 0 < p1 < q1. In this case, R′ = f0q0 + f1p1. And because of p1 < q1,
the “imaginary adversary” will generate one of worst requests sequences: there
are n requests with expected value (f1−ε) where ε→ 0+ followed by p1 requests
with expected value equal to fm. Thus, the revenue achieved by online policy
is still R′, while the optimal revenue achieved by an offline policy will be R∗ =



288 G. Ni and Y. Xu

fmp1 + (f1 − ε)(n − p1)→ f1n+ (fm − f1)p1. Thus, we have that the ratio for
Case 1.2 is

c12 =
R′

R∗ =
f0q0 + f1p1

f1n+ (fm − f1)p1
. (8)

Consider the relationship between the value of c12 and p1. If the value of c12
is monotonically increasing in p1, the “imaginary adversary” will choose some
instance so that

c12 →
f0q0
f1n

= c11. (9)

Otherwise, the “imaginary adversary” will choose some instance so that the value
of p1 reaches its upper bound q1 to get possible worst performance, and for this
instance, it degenerates into the following Case 2.

Case 2. p1 = q1. In this case, the online decision-maker will also face two
possible cases: (2.1) p2 < q2 and (2.2) p2 = q2.

Case 2.1. p2 < q2. In this case, there will be two sub-cases: (2.1.1) p2 = 0, and
(2.1.2) 0 < p2 < q2.

Sub-case 2.1.1. p2 = 0. In this sub-case, R′ = f0q0 + f1q1. And there is
no request with expected value equal to or bigger than fare f2 based on LBH
assumption. The “imaginary adversary” will generate one of worst requests se-
quences: there are only n requests with expected value equal to (f2 − ε) where
ε→ 0+. Thus, the revenue achieved by online policy is still R′, while the optimal
revenue achieved by an offline policy will be R∗ = (f2 − ε)n → f2n. Thus, we
have that the ratio for Case 2.1.1 is

c211 =
R′

R∗ =
f0q0 + f1q1

f2n
. (10)

Sub-case 2.1.2. 0 < p2 < q2. In this case, R′ = f0q0 + f1q1 + f2p2. And
because of p2 < q2, the “imaginary adversary” will generate one of worst requests
sequences: there are n requests with expected value (f2 − ε) where ε → 0+

followed by p2 requests with expected value equal to fm. Thus, the revenue
achieved by online policy is still R′, while the optimal revenue achieved by an
offline policy will be R∗ = fmp2 + (f2 − ε)(n− p2)→ f2n+ (fm − f2)p2. Thus,
we have that the ratio for Case 2.1.2 is

c212 =
R′

R∗ =
f0q0 + f1q1 + f2p2
f2n+ (fm − f2)p2

. (11)

The same with the analysis for Case 1.2, based on the relationship between c212
and p2, the value of c212 may be equal to c211 or it degenerates into the following
Case 2.2.

Case 2.2. p2 = q2. In this case, the online decision-maker will also face two
possible cases: (2.2.1) p3 < q3 and (2.2.2) p3 = q3.

Case 2.2.1. p3 < q3. In this case, there will be two sub-cases: (2.2.1.1) p3 = 0,
and (2.2.1.2) 0 < p3 < q3.



Online Joint Pricing and Booking Policies in Airline Revenue Management 289

Similar to above analysis, we could get that the ratios for Case 2.2.1.1 and
Case 2.2.1.2 are

c2211 =
R′

R∗ =
f0q0 + f1q1 + f2q2

f3n
(12)

and

c2212 =
R′

R∗ =
f0q0 + f1q1 + f2q2 + f3p3

f3n+ (fm − f3)p3
, (13)

respectively, and the value of c2212 may be equal to c2211 or it degenerates into
the Case 2.2.2 where p3 = q3. Further, we may analyze that there will be only
(k + 1) possible worst-performances:

ci =

∑i−1
j=0 fjqj

fin
for1 ≤ i ≤ k, (14)

and

ck+1 =

k−1∑
j=0

fjqj + fk(n−
k−1∑
j=0

qj)

fmn
(15)

for one possible worst case where pi = qi for 0 ≤ i ≤ k − 1 and pk > 0.
Then following Lemma 4, we complete the proof. �

For the value of optimal competitive ratio, we could find that it is increasing
in k and decreasing in fm/f0. In practice, the airline could adjust price a little
frequently if the discount rate f0/fm is fixed, or increase the discount rate to gain
a better performance from the perspective of online algorithms and competitive
analysis.

3 Conclusion

Using the perspective of online algorithms and competitive analysis, we have pro-
posed new revenue management policies considering uncertain demand. These
policies integrate the pricing and booking control. In these policies, we could
choose any value on some interval as the price decision variable. The present ap-
proach and policies may be useful in high-risk situations, possibly as a safeguard
for more traditional RM policies.

In this paper, all the analysis are based on CTSS assumption. Otherwise, if
there will be less than n passengers who want to book a ticket, it is obvious
that there is no deterministic online policy whose competitive ratio is bigger
than f0/fm. In other words, it is trivial to propose online policy without CTSS
assumption in our model.



290 G. Ni and Y. Xu

Acknowledgements. The authors would like to acknowledge the financial sup-
port of Grants (No. 71071123, IRT1173, and 60921003) from NSF of China.

References

1. Ball, M.O., Queyranne, M.: Toward Robust Revenue Management: Competitive
Analysis of Online Booking. Operations Research 57(4), 950–963 (2009)

2. Besbes, O., Zeevi, A.: Dynamic Pricing Without Knowing the Demand Function:
Risk Bounds and Near-Optimal Algorithms. Operations Research 57(6), 1407–1420
(2009)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

4. Chrobak, M.: Online Algorithms (column 13). ACM SIGACT News 39, 96–121
(2008)

5. Feng, Y., Xiao, B.: Integration of Pricing and Capacity Allocation for Perishable
Products. European Journal of Operational Research 168(1), 17–34 (2006)

6. Littlewood, K.: Forecasting and Control of Passenger Bookings. AGIFORS Annual
Sympos. Proc. 12, 95–117 (1972)

7. Talluri, K., van Ryzin, G.: The Theory and Practice of Revenue Management.
Springer, New York (2005)



Minimizing Total Weighted Completion Time

with Unexpected Machine Unavailability�

Yumei Huo1, Boris Reznichenko1, and Hairong Zhao2

1 Department of Computer Science,
College of Staten Island, CUNY, Staten Island, New York 10314, USA
yumei.huo@csi.cuny.edu, boris.reznichenko@cix.csi.cuny.edu

2 Department of Mathematics, Computer Science & Statistics,
Purdue University Calumet, Hammond, IN 46323, USA

hairong@purduecal.edu

Abstract. In the past two decades, scheduling with machine availabil-
ity constraints has received more and more attention. Until now most
research has focused on the setting where all machine unavailability in-
formation is known at the beginning of scheduling horizon. In real world,
this is impractical in some cases.

In this article, we consider the situation where the scheduler has to
make scheduling decisions without any knowledge of the machine un-
available intervals. In particular, we study the problem of minimizing
the total weighted completion time. When there are two or more un-
available intervals on a single machine, Fu et al. (2009) have shown that
the problem is exponentially inapproximable even when jobs’ weights are
equal to their processing times and one has full knowledge of unavail-
ability. So in this paper we consider the scheduling problem on a single
machine with a single unavailable period. And we assume that every
job has a weight proportional to its processing time. Based on whether
the unavailable interval is due to a breakdown or an emergent job, we
have breakdown model and emergent job model. We first show that no√

5+1
2

-competitive online algorithm exists for breakdown model, and no
11−

√
2

7
-competitive online algorithm exists for emergent job model. Then

we show that the simple LPT (Largest Processing Time first) rule can
give a 2-competitive ratio and 9/5-competitive ratio for breakdown model
and emergent job model, respectively. We show the ratios are tight by
examples. For offline case, we show that First Fit LPT (FF-LPT) rule
can give a tight approximation ratio of 2 and 4/3 for breakdown model
and emergent job model, respectively. Finally, our experimental results
show that in practice, both LPT and FF- LPT perform very well and
the performance improves when the number of jobs n increases. When
n ≥ 50, the worst error ratio of LPT is about 8.7%, and the worst error
ratio of FF-LPT is about 0.7%. So in both cases, the error ratio is quite
far from the theoretical bound.

� This work is supported by PSC-CUNY Research Award.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 291–300, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



292 Y. Huo, B. Reznichenko, and H. Zhao

1 Introduction

In the past two decades, scheduling with machine availability constraints has
receivedmore andmore attention. Until nowmost research has focused on the set-
ting where all machine unavailabilities are known at the beginning of the schedul-
ing horizon. However, this may not be practical in some cases. Unknown machine
unavailability could result from an unexpected breakdown or emergent(high prior-
ity) jobs. Unexpected breakdown becomes a major issue with the advent of paral-
lel/distributed computing where the processing power (idle interval of machines)
is donated by volunteers. On the operational level of production scheduling, un-
known machine unavailability can come from emergent jobs which have to be pro-
cessed immediately. A similar problem occurs in operating systems.

In this article, we study scheduling problems without such knowledge, includ-
ing the start time and the length of the unavailable intervals. In other words,
the scheduler has to schedule tasks on machines in an online fashion.

We consider the problem of minimizing the total weighted completion time.
When there are two or more unavailable intervals on a single machine, Fu et
al. [7] have shown that the problem is exponentially inapproximable even when
jobs’ weights are equal to their processing times and one has full knowledge of
unavailability. So in this paper we concentrate on a single machine with a single
unavailable period. And we assume that the weight of each job is proportional
to its processing time. i.e., for any job Ji with processing time pi and weight wi,
wi = rpi, where r is a given constant number. Without loss of generality we can
assume r = 1. This assumption is also common in reality. Arkin and Roundy [3]
noted that typically, jobs that have longer processing times are larger jobs that
have higher selling prices and, consequently, a higher priority. In many systems
both the processing time and weight of a job are nearly proportional to the job’s
dollar value, resulting in weights that are proportional to processing times.

We differentiate two models of unavailability constraint: the breakdown model
where the unavailability is due to an unexpected breakdown of the machine,
and the emergent job model where the unavailability is due to occurrence of an
emergent job which has to be processed immediately. The main difference is that
in the latter case, the emergent job will contribute to the value of the objective
function. We assume the jobs are non-resumable, i.e., when a job is interrupted
by the unavailable interval, it has to be restarted when the machine is recovered
later. We assume that all the jobs are known and ready to be scheduled at time
0, but the unavailable interval due to breakdown or emergent job is not known
beforehand. Furthermore, when the machine becomes unavailable, the duration
of the interval is also unknown. Using the 3-field notation, our problems can be
denoted as 1, h1, online | nr−a, wi = pi |

∑
wjCj and 1, h1, online | nr−a, wi =

pi, f ixed |
∑

wjCj , respectively.

1.1 Related Work

A lot of research has been done in the area of scheduling with machine unavailabil-
ity constraint. This includes problems under differentmachine environment(single



Minimizing Total Weighted Completion Time 293

machine, parallel machine and flowshop, etc) and with different objective func-
tions. Both resumable and non-resumablemodel, preemptive and non-preemptive
scheduling, have been considered. The complexity results, exact algorithms and
approximation algorithms in single machine, parallel machine, flow shop, open
shop, job shop scheduling environment with different criteria are surveyed in a
recent article [16]. The survey focuses on deterministic availability constraints.
Among all the results surveyed, only one paper ([19]) studies the online problem
where “online” means that the information about the jobs is incomplete, which
is different from our model where the information of the unavailability of the ma-
chines is unknown beforehand. This paper studies makespan minimization on two
identical machines, where eachmachine has a single unavailable period which does
not overlap with the unavailable period of the other machine.

As for our problem in breakdown model, its offline version with arbitrary job
weights, that is, 1, h1 | nr − a |

∑
wjCj , has been studied a lot. The problem is

obviously NP-hard. Lee ([14]) showed that the error bound of applying WSPT
(Weighted Shortest Processing Time) algorithm to this problem can be arbi-
trarily large even if wi = pi. Recently, Kacem and Chu ([11]) show that both
WSPT and MWSPT (Modified Weighted Shortest Processing Time) rules have
a tight error bound of 2 under some conditions. Later, Kacem ([10]) proposes a 2-
approximation offline algorithm with O(n2) time complexity and show that this
bound is tight. Based on this algorithm, a Fast Polynomial Time Approximation
Scheme (FPTAS) is derived in Kacem and Mahjoub [12] with a running time
of O(n2/ε2). Independently, two other FPTASes for the problem are developed
by Kellerer and Strusevich [13] (with a slower running time) and by Fu et al.
[7] (with a faster running time). Corresponding to the emergent job model, the
fixed job model studies offline problems where there is a preassigned job during
some intervals. This model has been studied with the objective of makespan in
[18] and [6], and with the objective of total weighted completion time in [8].
All these algorithms mentioned above except WSPT(whose error ratio can be
arbitrarily large) only work offline under our online unavailability model.

For the unweighted total completion time problem, i.e., 1, h1 | nr − a |
∑

Cj ,
Adiri et al. [1] and Lee and Liman [15] have shown that this problem is NP-
hard, and studied the performance of SPT (shortest processing time first) for
this problem. Lee and Liman [15] proved that SPT has a tight approximation
ratio of 9

7 , instead of 5
4 as shown in Adiri et al. [1]. Later Sadfi et. al [17] gave an

approximation algorithm (modified SPT) with a tight approximation ratio of 20
17 .

Breit [4] developed a parametric O(n logn)-algorithm with which better worst-
case error bounds can be obtained. Also for this problem, He et al. [9] presented
a polynomial time approximation scheme (PTAS). Among all these algorithms,
it should be noted that under our online unavailability framework, SPT rule is
an “online” algorithm while others only work offline. Furthermore, we can use
similar example from Lee and Liman [15] to show that the lower bound of the

competitive ratio for the problem is
√
6
2 . Consider three jobs J1, J2, and J3 with

processing time αM , M and M respectively. If an algorithm schedules J1 first,
then the adversary makes the machine unavailable during the interval [M,M+1].



294 Y. Huo, B. Reznichenko, and H. Zhao

So in this case, the approximation ratio becomes 5+α
4+2α when M goes to infinity.

On the other hand, if an algorithm schedules one of the longer jobs, then the
adversary makes the machine unavailable during the interval [αM,M ]. In this
case the approximation ratio is 6+3α

5+α . Solving the equation, 5+α
4+2α = 6+3α

5+α , we

can get the lower bound of
√
6
2 .

For the online machine unavailability, a probabilistic model where at any
time each machine is unavailable with a constant probability f , has been con-
sidered in Diedrich and Schwarz [5]. This paper studies scheduling problems on
identical machines. Since the non-preemptive case is essentially intractable for
online models, only preemptive schedules are considered. The paper shows that
(1) scheduling independent jobs on identical machines with online failures to
minimize the sum of completion times is (8/7 − ε)-inapproximable, (2) SRPT
(shortest remaining processing time) heuristic yields optimal results for zig-zag
availability pattern.

1.2 New Contribution

From the literature review, we can see that there are no results on deterministic
scheduling with online machine unavailability setting. In this paper, we first show

that no
√
5+1
2 -competitive online algorithm exists for breakdown model, and no

11−
√
2

7 -competitive online algorithm exists for emergent job model. Then we show
that the simple LPT rule can give a 2-competitive ratio and 9/5-competitive
ratio for breakdown model and emergent job model, respectively. We show that
the ratios are tight by examples. For offline case, we show that First Fit LPT
(FF-LPT) rule can give a tight approximation ratio of 2 and 4/3 for breakdown
model and emergent job model respectively. Finally, our experimental results
show that in practice, both LPT and FF- LPT algorithms perform very well and
the performance improves when the number of jobs n increases. When n ≥ 50,
the error ratio of LPT is about 8.7%, and the error ratio of FF-LPT is about
0.7%. So in both cases, the error ratio is quite far from the theoretical bound.

1.3 Organization

Our paper is organized as follows. In Section 2, we give notations and prelimi-
nary results. In Section 3, we give the lower bounds of competitive ratios of any
online algorithm for breakdown model and emergent job model, respectively. In
Section 4, we analyze the competitive ratios of LPT rule for these two models. In
Section 5, we analyze the approximation ratios of FF-LPT in the offline setting.
In Section 6, we give our experimental results. Finally, we draw the conclusion in
Section 7.

2 Notations and Preliminary Results

We consider the problems of scheduling n jobs, J1, J2, · · · , Jn, to a single ma-
chine. Each job Ji, 1 ≤ i ≤ n, has weight wi and processing time pi. The machine



Minimizing Total Weighted Completion Time 295

has an unavailable interval [s, t) which may represent a breakdown or an emer-
gent job, and the values of s and t are unknown before hand. We use B = t− s
to denote the length of the unavailable interval.

For any schedule S of the jobs, let P1, W1 be the total processing time and
the total weight, respectively, of the jobs that finish before t; let P2, W2 be
the total processing time and the total weight, respectively, of jobs that finish
after t. Let I be the length of the idle interval before s in schedule S. The total
weighted completion of schedule S is denoted by Fw(S). One can easily show
the following.

Lemma 1. Let S be a schedule that schedules the jobs in the order of J1, J2, · · · ,
Jn. Then Fw(S) =

∑n
i=1 wipi +

∑
i>j wipj +W2(B + I).

When wi = pi, we have W2 = P2 and thus

Fw(S) =

n∑
i=1

p2i +
∑
i�=j

pipj + P2(B + I) ,

which means that schedules are different from each other only in the third term
of the above formula for Fw(S), P2(B + I).

Let S∗ be an optimal schedule and F ∗
w(S) be its total weighted completion

time. Let I∗ be the length of the idle interval before s, and let P ∗
1 and P ∗

2 be the
total processing time of the jobs that finish before and after t, respectively. Let
Δ = P2 − P ∗

2 . It is easy to see that we also have Δ = P ∗
1 − P1 = I − I∗. When

wi = pi, for every i, the above formula implies that we must have P2 ≥ P ∗
2 , i.e.,

Δ ≥ 0. Thus, we have the following,

Fw(S)− Fw(S
∗) = P2(B + I)− P ∗

2 (B + I∗)

= (P ∗
2 +Δ)(B + I∗ +Δ)− P ∗

2 (B + I∗)

= Δ2 +Δ(P ∗
2 +B + I∗)

Corollary 1. Let S be an arbitrary schedule for 1, h1, online | nr − a, wi = pi |∑
wjCj. Then Fw(S)− Fw(S

∗) = Δ2 +Δ(P ∗
2 +B + I∗)

3 Lower Bounds of Competitive Ratios

Theorem 1. It is impossible to have a
√
5+1
2 -competitive online algorithm for

1, h1, online | nr − a, wi = pi |
∑

wjCj.

Proof. Consider two jobs J1 and J2 such that p1 = w1 = αx (0 < α < 1), and
p2 = w2 = x. Any algorithm A has to decide which job should be scheduled first.
If A schedules the job J1 first, then the adversary can make machine unavailable
during the interval [x, t). Otherwise, if Algorithm A schedules J2, then the ad-
versary can make machine unavailable during the time interval [αx, t]. So J2 has
to be restarted after t. In other words, both jobs have to be scheduled after t .
When t goes to infinity, the approximation ratio becomes 1

α in the former case,

and α+1 in the latter case. Solving the equation, 1
α = α+1, we get α =

√
5−1
2 .

Therefore the competitive ratio of any algorithm must be greater than
√
5+1
2 .



296 Y. Huo, B. Reznichenko, and H. Zhao

Similarly, we can obtain the lower bound of competitive ratio for emergent job
model. Due to space limit, the proof is omitted here.

Theorem 2. It is impossible to have a 11−
√
2

7 -competitive online algorithm for
1, h1, online | nr − a, wi = pi, f ixed |

∑
wjCj.

4 Competitive Ratio of LPT

Before we analyze the competitive ratios of LPT rule when applied to our prob-
lems, we first study some properties of LPT schedule. Let S be the schedule
produced by the LPT rule. It is easy to see that S can be generated in O(n log n)
time. Let Jk be the largest job that finish after t in S and Jl be the largest job
finish after t in the optimal schedule S∗. We must have the following properties
which will be used in our proofs.

1. pk > I. This is obvious due to the nature of LPT rule.
2. Δ < pk ≤ pl. By definition and the first property, Δ < pk. Now we show

that pk ≤ pl. Let us assume by contradiction, pk > pj, for all Jj such that
Jj finishes after t in the optimal schedule S∗. So in S∗, all the jobs with
processing time greater than or equal to pk finish before or at s. Then in the
schedule S which is produced by LPT rule, all the jobs with the processing
time greater than or equal to pk should be able to be scheduled before s. This
contradicts to the fact that job Jk finish after t in S. So we have pk ≤ pl.

3. Δ < P ∗
2 . This is due to Δ < pl and Jl is a job scheduled after t in S∗.

4. Δ < P ∗
1 . This is by definition, Δ = P ∗

1 − P1.

4.1 Breakdown Model

Theorem 3. The competitive ratio of LPT is 2 for 1, h1, online | nr − a, wi =
pi |
∑

wiCi.

Proof. Let S be the schedule produced by the LPT rule and S∗ be an optimal
schedule. By Corollary 1, we have Fw(S)−Fw(S

∗) = Δ2 +Δ(P ∗
2 +B + I∗). All

we need is to prove

Δ2 +Δ(P ∗
2 +B + I∗) ≤ Fw(S

∗) =
n∑

i=1

p2i +
∑
i�=j

pipj + P ∗
2 (B + I∗) .

It is sufficient to prove the following inequalities: (1) Δ2 <
∑n

i=1 p
2
i ; (2) ΔP ∗

2 ≤∑
i�=j pipj ; and (3) Δ(B + I∗) ≤ P ∗

2 (B + I∗).
Let pk be the largest processing time among jobs that finish after t in S. By

the second property of S, pk > Δ. Thus, Δ2 < p2k <
∑n

i=1 p
2
i . Therefore Ineq. (1)

is true. To prove Ineq. (2), we use property (4), Δ < P ∗
1 . Thus, ΔP ∗

2 ≤ P ∗
1 P

∗
2 ≤∑

i�=j pipj . For Ineq. (3), we use property (3).

To show the ratio is tight, consider two jobs J1 and J2 with processing time
of x and x + 1, respectively. The machine is unavailable during [x, x2). LPT
rule will schedule both J2 and J1 after x2. However, in the optimal schedule,
J1 is scheduled at 0 and J2 is scheduled after x2. When x is very large, the
approximation ratio is close to 2.



Minimizing Total Weighted Completion Time 297

4.2 Emergent Job Model

In this subsection, we assume that the unavailable interval is due to an emergent
job which arrives at time s and its length and weight is equal to B = t− s. Due
to its high priority, the emergent job has to be scheduled during interval [s, t).
In this case, the weighted completion time of the emergent job is also part of the
objective value. So, in this case,

Fw(S) =

⎛
⎝ n∑

j=1

wjCj

⎞
⎠+B · t =

n∑
i=1

p2i +
∑
i�=j

pipj +P2(B+ I) +B(P1 + I +B) .

It is obvious that Corollary 1 still applies.
We can prove that LPT algorithm achieves a competitive ratio of 9/5. Due to

space limit, the proof is omitted.

Theorem 4. LPT rule has a 9
5 -competitive ratio for 1, h1, online | nr− a, wi =

pi, f ixed |
∑

wiCi.

To show the ratio is tight, consider the following example. The emergent job ar-
rives at x and must be scheduled at time interval [x, x+ 1). There are x+ 1 jobs
J1, J2, . . ., Jx+1 where p1 = w1 = x + 1 and p2 = w2 = p3 = w3 = . . . =
px+1 = wx+1 = 1. LPT schedules all the jobs after the emergent job. However, in
the optimal schedule, J2, . . ., Jx+1 are scheduled before the emergent job and J1

is scheduled after emergent job. When x is large, the approximation ratio is 9/5.

5 First Fit LPT as Offline Algorithms

In this section, we study the case that the unavailability information is known
beforehand. We are interested in the performance of a modified LPT, First Fit
LPT (FF-LPT), which schedules like LPT, but whenever a job cannot fit in
before the unavailable interval, the largest job which can be scheduled before
the interval will be scheduled. Apparently, FF-LPT can’t be worse than LPT,
but we would like to know if it has better performance than LPT asymptotically.
Unfortunately, this is not the case for 1, h1 | nr − a, wi = pi |

∑
wiCi. Consider

the following example. There are 3 jobs J1, J2, and J3 such that p1 = w1 = x
and p2 = p3 = w2 = w3 = x− 1. The machine is unavailable during the interval
[2x − 2, x2). In this case, LPT and FF-LPT generate the same schedule: J1 is
scheduled before the breakdown, J2 and J3 are scheduled after the breakdown.
The optimal algorithm, however, schedules J2 and J3 before the breakdown and
J1 after the breakdown. When x is large, the approximation ratio is close to 2.
So we have the following theorem.

Theorem 5. FF-LPT rule is a 2-approximation algorithm for 1, h1, | nr −
a, wi = pi |

∑
wiCi.

For the offline version of emergent job model, we can prove that FF-LPT does
have a better performance. The proof is omitted.



298 Y. Huo, B. Reznichenko, and H. Zhao

Theorem 6. FF-LPT rule is a 4
3 -approximation algorithm for 1, h1 | nr −

a, wi = pi, f ixed |
∑

wiCi.

The following example shows that 4
3 is a tight bound of FF-LPT. Suppose that

there is a preassigned job that has to be scheduled during the interval [2x, 2x+t),
and there are three other jobs J1, J2 and J3 with processing time of x + ε, x
and x respectively. FF-LPT schedules job J1 before the preassigned job, and
schedules J2 and J3 after the preassigned job. However, in the optimal schedule,
J2 and J3 are scheduled before the preassigned job and J1 is scheduled after the
preassigned job. When x is large, the approximation ratio is 4/3.

6 Numerical Experiments

We have conducted computational experiments to investigate the performance of
LPT and FF-LPT with randomly generated instances for both breakdown model
and emergent job model. The performance is measured by the ratio of objective
value of the schedule generated by LPT or FF-LPT and that of the optimal
schedule. The optimal solutions can be obtained by dynamic programming, see
[14].

Our data is generated as follows. We first generate jobs. We choose the number
of jobs n ∈ {5, 10, 15, 50, 100, 150, 200, 300}. For each n, we generate two types
of job instances, those consisting of “short jobs” and those consisting of “long
jobs”. Short jobs have processing time drawn from a uniform distribution over
[1, 10], while long jobs have processing time drawn from a uniform distribution
over [1, 100]. For each type, 100 job instances are generated for each n.

Next we generate the non-available intervals [s, t). For each job instance gen-
erated above, let P be the total processing time of all jobs. For each combination
of α and β, where α and β are taken from {0, 0.2, 0.4, 0.6, 0.8}, we generate 100
cases of unavailable interval [s, t) such that s is drawn from a uniform distribution
over [αP, (α+ 0.2)P ], and t = s+B where B is drawn from a uniform distribu-
tion over [βP, (β+0.2)P ]. These unavailable intervals represent breakdowns and
emergent jobs in breakdown model and emergent job models, respectively. So
for both short jobs and long jobs, for each n, we generated 250, 000 problem in-
stances (25(α, β) combinations×100 unavailable intervals ×100 job instances )
in both breakdown model and emergent job model.

We investigated how the performance of LPT and FF-LPT is affected by the
number of jobs n, the length of the jobs’ processing time, the start time and
length of the unavailable intervals which are indicated by α and β, respectively.
For each combination of n, job type (short or long), (α, β), we study both the
worst approximation ratio and the average ratio over 10,000 instances. Due to
space limit, we only show the worst case performance below.

6.1 LPT Algorithm

For each n and job type, we list the worst case performance among 250,000
instances of LPT for both models in the following table.



Minimizing Total Weighted Completion Time 299

Table 1. Worst performance among all instances of LPT

From the table, we can see that for both models, LPT works very well for
both short jobs and large jobs when the number of jobs is 50 or more. The worst
case error ratio is less than 8.7% when n = 50, and it decreases as n increases.
We can predict that when n > 300, the worst case error ratio will be less than
1.34%.

6.2 Summary of FF-LPT

For each n and job type, we list the worst case performance among 250,000
instances of FF-LPT for both models in the following table.

Table 2. Worst performance among all instances of FF-LPT

From the table, we can see that for both models, FF-LPT works very well
both short jobs and large jobs. The performance improves as n increases. The
worst case error ratio is about 8.8% when n = 10 or 15, and becomes 0.8% when
n = 50. When n = 150 or large, it is almost optimal.

7 Conclusion

In this paper we studied the problem of minimizing total weighted completion
time on a single machine with single unavailable period where the start time
and length of the unavailable period is not known beforehand and the scheduler
has to make decision without any knowledge of unavailable period. We give the
lower bound of competitive ratios for any online algorithm for both breakdown
model and emergent job model. We show both theoretically and practically that
LPT and FF-LPT admit very good performance for online and offline case re-
spectively.

There is still a gap between the competitive ratio of LPT and the lower bounds
in both models. For future research, one should try to develop algorithms that
match the lower bounds or improve the lower bounds. Furthermore, it will be
interesting to study other criteria with online unavailable periods.



300 Y. Huo, B. Reznichenko, and H. Zhao

References

1. Adiri, I., Bruno, J., Frostig, E., Rinnooy Kan, A.H.G.: Single machine flowtime
scheduling with a single breakdown. Acta Informatica 26, 679–696 (1989)

2. Albers, S., Schmidt, G.: Scheduling with Unexpected Machine Breakdowns. In:
Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999
and APPROX 1999. LNCS, vol. 1671, pp. 269–280. Springer, Heidelberg (1999)

3. Arkin, R., Roundy, R.: Weighted tardiness scheduling on parallel machines with
proportional weights. Operations Research 39, 64–81 (1991)

4. Breit, J.: Improved approximation for non-preemptive single machine flowtime
scheduling with an availability constraint. European Journal of Operational Re-
search 183(3), 516–524 (2007)

5. Diedrich, F., Schwarz, U.M.: A Framework for Scheduling with Online Availability.
In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641,
pp. 205–213. Springer, Heidelberg (2007)

6. Diedrich, F., Jansen, K.: Improved approximation algorithms for scheduling with
fixed jobs. In: Proceeding of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 675–684 (2009)

7. Fu, B., Huo, Y., Zhao, H.: Exponential inapproximability and FPTAS for scheduling
with availability constraints. Theoretical Computer Science 410, 2663–2674 (2009)

8. Fu, B., Huo, Y., Zhao, H.: Approximation schemes for parallel machine scheduling
with availability constraints. Discrete Applied Mathematics 159(15), 1555–1565
(2011)

9. He, Y., Zhong, W., Gu, H.: Improved algorithms for two single machine scheduling
problems. Theoretical Computer Science 363, 257–265 (2006)

10. Kacem, I.: Approximation algorithm for the weighted flow-time minimization on
a single machine with a fixed non-availability interval. Computers & Industrial
Engineering 54, 401–410 (2008)

11. Kacem, I., Chu, C.: Worst-case analysis of the WSPT and MWSPT rules for single
machine scheduling with one planned setup period. European Journal of Opera-
tional Research 187(3), 1080–1089 (2008)

12. Kacem, I., Mahjoub, R.: Fully polynomial time approximation scheme for the
weighted flow-time minimization on a single machine with a fixed non-availability
interval. Computers & Industrial Engineering 56(4), 1708–1712 (2009)

13. Kellerer, H., Strusevich, V.A.: Fully polynomial approximation schemes for a
symmetric quadratic knapsack problem and its scheduling applications. Algorith-
mica 57(4), 769–795 (2010)

14. Lee, C.Y.: Machine scheduling with an availability constraints. Journal of Global
Optimization 9, 363–382 (1996)

15. Lee, C.Y., Liman, S.D.: Single machine flow-time scheduling with scheduled main-
tenance. Acta Informatica 29(4), 375–382 (1992)

16. Ma, Y., Chu, C., Zuo, C.: A survey of scheduling with deterministic machine avail-
ability constraints. Computers & Industrial Engineering 58(2), 199–211 (2010)

17. Sadfi, C., Penz, B., Rapine, C., Blazewicz, J., Formanowicz, P.: An improved
approximation algorithm for the single machine total completion time schedul-
ing problem with availability constraints. European Journal of Operational Re-
search 161, 3–10 (2005)

18. Scharbrodt, M., Steger, A., Weisser, H.: Approximability of scheduling with fixed
jobs. Journal of Scheduling 2, 267–284 (1999)

19. Tan, Z., He, Y.: Optimal online algorithm for scheduling on two identical machines
with machine availability constraints. Information Processing Letters 83, 323–329
(2002)



Characterizing Mechanisms

in Obnoxious Facility Game

Ken Ibara and Hiroshi Nagamochi

Graduate School of Informatics, Kyoto University, Japan
{ken.ibara,nag}@amp.i.kyoto-u.ac.jp

Abstract. In this paper, we study the (group) strategy-proofness of
deterministic mechanisms in the obnoxious facility game. In this game,
given a set of strategic agents in a metric, we design a mechanism that
outputs the location of a facility in the metric based on the locations
of the agents reported by themselves. The benefit of an agent is the
distance between her location and the facility and the social benefit is
the total benefits of all agents. An agent may try to manipulate outputs
by the mechanism by misreporting strategically her location. We wish
to design a mechanism that is strategy-proof (i.e., no agent can gain her
benefit by misreporting) or group strategy-proof (i.e., there is no coalition
of agents such that each member in the coalition can simultaneously gain
benefit by misreporting), while the social benefit will be maximized. In
this paper, we first prove that, in the line metric, there is no strategy-
proof mechanism such that the number of candidates (locations output
by the mechanism for some reported locations) is more than two. We
next completely characterize (group) strategy-proof mechanisms with
exactly two candidates in the general metric and show that there exists
a 4-approximation group strategy-proof mechanism in any metric.

1 Introduction

In the facility game, given a set of “strategic” agents in a metric, we design
a procedure, called a mechanism, that outputs the location of a facility in the
metric based on reported locations of the agents so that the social cost (or ben-
efit), which is defined to be the sum of individual costs (or benefits) such as
the distance from the facility, is minimized (or maximized). We assume that
the mechanism is known to all the agents before they report their locations and
that an agent may try to manipulate outputs by the mechanism by misreporting
strategically her location so that an output location of the facility will be bene-
ficial to her (we also assume that there is no way of testing whether a reported
location is a misreported one or not). A mechanism is called strategy-proof if
no single agent can gain her benefit by misreporting her location. Moreover, a
mechanism is called group strategy-proof if no coalition of agents can gain benefit
of each member in the coalition simultaneously by misreporting the locations of
the coalition. Then a (group) strategy-proof mechanism may deliver a location
of the facility which is not an optimal solution in terms of the social cost (or ben-
efit). Our game-theoretical goal is to design a (group) strategy-proof mechanism

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 301–311, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



302 K. Ibara and H. Nagamochi

with a good approximation ratio between locations output by the mechanism
and optimal locations.

In mechanism design, we can consider mechanisms that are allowed to make
payments. However, in many settings, money is not used as a medium of com-
pensation due to ethical or legal considerations [12]. For example, in the social
choice literature, mechanisms without payments are commonly studied. Since
the facility game is rather deeply concerned in the social choice, we also design
mechanisms without payments in the facility game.

Moulin [9] and Border and Jordan [3] studied a problem of the social choice
in economics wherein each agent’s preference is a function with a single peak
at the most preferred point in a given space but no objective function to be
optimized is given. Based on the median voter theorem [2], they characterized
the strategy-proof mechanisms in the line and a space of a multidimensional
version of the line, respectively. The traditional facility game is a problem of
social choice together with a social cost that is to be minimized as an objective
function. Schummer and Vohra [11] extended the mechanism [3] to the facility
game on tree networks, and characterized the strategy-proof mechanisms to met-
rics on arbitrary networks containing at least one cycle. Recently strategy-proof
approximation mechanisms for optimization problem have been studied exten-
sively [1,7,8,10]. Alon et al. [1] gave a complete analysis on the approximation
ratio of strategy-proof mechanisms for the facility game in metrics on arbitrary
networks. Currently group strategy-proof mechanisms that attain the optimal
social cost are known up to tree networks.

In this paper, we study the (group) strategy-proofness of deterministic mech-
anisms in the obnoxious facility game. In contrast with the traditional game, we
regard the distance from each agent to the facility as the benefit of the agent in
this game, and the sum of the benefits of all agents will be maximized as the social
benefit. Thus each agent’s preference is no longer represented as a single-peaked
function. This problem setting can be interpreted as a social scenario such that
the mayor of a town plans to build a garbage dump in the town according to a set
of reported home addresses of the local residents, wishing to maximize the sum
of the distances of all residents. Cheng et al. [4] first studied group strategy-proof
mechanisms for the obnoxious facility game in the line metric. They demonstrated
that a mechanism that simply outputs a socially optimal location is not strategy-
proof. They designed a group strategy-proof mechanism which chooses one of two
predetermined locations as an output according to the distribution of reported
locations, and showed that the mechanism is a 3-approximation. They suggested
that the mechanism can be extended to a 3-approximation group strategy-proof
mechanism in tree networks. In this paper, we first prove that there is no strategy-
proof mechanism in the line metric such that the number of candidates (locations
output by the mechanism for some reported locations) is more than two. This sug-
gests that we need to know the specific structure of a given metric if we wish to de-
sign a strategy-proofmechanism with more than two candidates.We next derive a
complete characterization of (group) strategy-proof mechanisms with exactly two
candidates in the general metric.



Obnoxious Facility Game Mechanisms 303

The paper is organized as follows. Section 2 formulates the obnoxious facility
game and reviews the definition of (group) strategy-proofness. Section 3 proves
that the line metric admits no strategy-proof mechanism with more than two
candidates. Section 4 proposes a valid threshold mechanism and proves that a
mechanism with exactly two candidates in the general metric is (group) strategy-
proof if and only if it is a valid threshold mechanism. Section 5 then shows that
there always exists a 4-approximation valid threshold mechanism in any metric.
Finally Section 6 makes some concluding remarks.

2 Preliminaries

Let N and R+ be the sets of nonnegative integers and nonnegative real numbers,
respectively. Let (Ω, d) be a metric such that Ω is a set of points (possibly
an infinite set) and d : Ω × Ω → R+ is a symmetric distance function, i.e.,
d(x, y) = d(y, x) for every two points x, y ∈ Ω and d(x, y) + d(y, z) ≥ d(x, z) for
every three points x, y, z ∈ Ω.

For a set N = {1, 2, . . . , n} of agents, xi ∈ Ω denotes the location reported
by agent i ∈ N and the multiset X = {x1, x2, . . . , xn} of the locations is called
a profile of N . For a location y ∈ Ω of an obnoxious facility, the benefit of agent
i is defined to be the distance between her location and the facility, i.e.,

β(y, xi) = d(y, xi).

The social benefit of a location y ∈ Ω of an obnoxious facility over a profile X is
defined to be the total benefit of n agents

SB(y,X) =

n∑
i=1

β(y, xi).

For a profile X , let OPT(X) denote the optimal obnoxious social benefit, i.e.,
OPT(X) = maxy∈Ω SB(y,X).

In the obnoxious facility game, a deterministic mechanism outputs a facility
location based on a given profile X , where we do not distinguish two profiles
X = {x1, x2, . . . , xn} and X ′ = {x′

1, x
′
2, . . . , x

′
n} of N if there is a bijection

σ : N → N such that xi = x′
σ(i) for all i ∈ N . We write X = X ′ if there is

such a bijection σ. A mechanism is defined to be a function f : Ωn → Ω such
that f(X) = f(X ′) for two profiles X and X ′ of N with X = X ′. We say that
a mechanism f has an approximation ratio γ if

OPT(X) ≤ γSB(f(X), X) for all profiles X ∈ Ωn of N .

In the following we define the strategy-proofness and the group strategy-proofness
of mechanisms. For a profile X = {x1, x2, . . . , xn} of N and an agent set S ⊆ N ,
let XS denote the profile of S obtained from X by eliminating locations xi

such that i ∈ N − S. We denote XN−S simply by X−S. In particular, for
S = {i}, X−S is denoted by X−i = {x1, . . . , xi−1, xi+1, . . . , xn}. Location pro-
file X may be written by 〈xi, X−i〉 or 〈XS , X−S〉. For simplicity, we write
f(xi, X−i) = f(〈xi, X−i〉) and f(XS , X−S) = f(〈XS , X−S〉).



304 K. Ibara and H. Nagamochi

Definition 1. A mechanism f is strategy-proof (SP for short) if no agent can
benefit from misreporting her location. Formally, given an agent i, a profile X =
〈xi, X−i〉 ∈ Ωn and a misreported location x′

i ∈ Ω, it holds that

β(f(xi, X−i), xi) ≥ β(f(x′
i, X−i), xi).

Definition 2. A mechanism f is group strategy-proof (GSP for short) if for
any group of agents, at least one of them cannot benefit from misreporting their
locations simultaneously. Formally, given a non-empty set S ⊆ N , a profile
X = 〈XS , X−S〉 ∈ Ωn and a misreported profile X ′

S ∈ Ω|S| of S, there exists
i ∈ S satisfying

β(f(XS , X−S), xi) ≥ β(f(X ′
S , X−S), xi).

We remark that a stronger notation of group strategy-proofness requires that
any set of misreporting agents with a strict gain contains at least one agent who
strictly loses [6]. Our GSP results in this paper do not hold under the stronger
definition. However, the above weaker definition of group strategy-proofness is
rather common in the social choice, since in the settings without payments an
agent has no incentive to misreport unless it strictly benefits.

For a mechanism f : Ωn → Ω, a point y ∈ Ω is called a candidate if there is a
profile X ∈ Ωn such that f(X) = y, and the set of all candidates of f is denoted
by Cf . A mechanism with |Cf | = p is called by a p-candidate mechanism. Any
1-candidate mechanism is group strategy-proof, but its approximation ratio γ
can be infinitely large.

3 Mechanisms in the Line Metric

This section proves that there is a metric that admits no p-candidate SP mech-
anism for any p ≥ 3. Let (I, d) be the line metric, where I denotes the 1-
dimensional Euclidean space.

Theorem 1. There is no p-candidate SP mechanism for any p ≥ 3 in the line
metric.

We assume that f is a p-candidate SP mechanism with Cf = {c1, c2, . . . , cp} ⊂ I
in (I, d), where c1 < c2 < · · · < cp. We prove Theorem 1 via the next lemma.

Lemma 1. Let X be a profile of N , and X ′
S be a misreported profile of a coalition

S ⊆ N . Then, for a p-candidate SP mechanism f , it holds f(X ′
S , X−S) ≤ c� for

an index 1 ≤ � ≤ p − 1 if f(X) ≤ c� and xi <
f(X)+c�+1

2 for all i ∈ S;

c� ≤ f(X ′
S , X−S) holds for an index 2 ≤ � ≤ p if c� ≤ f(X) and

c�−1+f(X)
2 < xi

for all i ∈ S.

Proof. To derive a contradiction, assume without loss of generality that S =
{1, 2, . . . , k} is a minimal coalition such that f(X) ≤ c� < f(X ′

S, X−S) and xk ≤
· · · ≤ x2 ≤ x1 <

f(X)+c�+1

2 (the other case can be treated symmetrically). Let X i



Obnoxious Facility Game Mechanisms 305

be the profile obtained from X by replacing x1, x2, . . . , xi with x′
1, x

′
2, . . . , x

′
i and

let X0 = X . Since f is SP, it holds by Definition 1 that β(f(xi, (X
i−1)−i), xi) ≥

β(f(x′
i, (X

i−1)−i), xi) for each agent i ∈ S and profile X i−1; i.e.,

|f(X i−1)− xi| ≥ |f(X i)− xi| for i = 1, . . . , k. (1)

By assumption onX and S, it holds f(X i) < c�+1 ≤ f(Xk) for all i ≤ k−1. From
this and inequality (1) with i = k, we have f(Xk−1)+f(Xk)

2 ≤ xk <
f(X0)+c�+1

2 ,
which implies f(Xk−1) < f(X0) (by c�+1 ≤ f(Xk)) and hence k ≥ 2. Now
there is an index 1 ≤ j ≤ k − 1 such that f(Xj) ≤ f(Xk−1) < f(Xj−1). By

inequality (1) with i = j, we have f(Xk−1)+f(Xk)
2 ≤ xk ≤ xj ≤ f(Xj)+f(Xj−1)

2 ,
which contradicts f(Xj) ≤ f(Xk−1) < f(Xj−1) < f(Xk). �

Fix a candidate ct ∈ Cf − {c1, cp}, and let It = {x ∈ I | c1+ct
2 < x <

ct+cp
2 }

(where
c1+cp

2 ∈ It), It,1 = {x ∈ I | c1+ct
2 < x <

c1+cp
2 } and It,p = {x ∈ I |

c1+cp
2 < x <

ct+cp
2 }. For a profile X of N , let Sa(X) = {i ∈ N | xi ≤ c1+ct

2 } and
Sb(X) = {i ∈ N | ct+cp

2 ≤ xi}. We prove Theorem 1 by deriving a contradiction.

Proof of Theorem 1. There is a profile X of N such that f(X) = ct ∈ Cf . Let
X ′ ∈ Int be a profile of N obtained from X by replacing each xi, i ∈ Sa(X)
with a new location x′

i ∈ It,1 and each xj , j ∈ Sb(X) with a new location
x′
j ∈ It,p. Assume that f(X ′) �= c1 (the case of f(X ′) �= cp can be treated

symmetrically). For S = Sa(X), let Xa = 〈X ′
S , X−S〉 denote the profile of N

obtained from X by replacing each xi, i ∈ S with the x′
i ∈ It,1. Since f(X) = ct

and xi ≤ c1+ct
2 < f(X)+ct+1

2 for all i ∈ S, it holds f(Xa) ≤ ct by Lemma 1.
Note that Xa is obtained from X ′ = {x′

1, . . . , x
′
n} by changing the locations of

the agents in Sb(X). For Sb(X), it holds c1+f(X′)
2 ≤ c1+cp

2 < x′
j for all j ∈ Sb(X)

and f(X ′) ≥ c2. By Lemma 1, we have f(Xa) ≥ c2.
Denote Xa = (x̃1, . . . , x̃n). There is a profile Z of N such that f(Z) = c1 ∈

Cf . Then Z is obtained from Xa by misreporting all locations. We know that
c1+f(Xa)

2 ≤ c1+ct
2 < x̃i for all i ∈ N since Sa(Xa) = ∅ and f(Xa) ≤ ct. By

c2 ≤ f(Xa) and Lemma 1, we would have c2 ≤ f(Z), a contradiction. �

4 2-Candidate SP/GSP Mechanisms in the General
Metric

This section gives a complete characterization of 2-candidate SP/GSP mecha-
nisms in the general metric (not necessarily on the basis of particular graphs).
In the following part, we propose valid threshold mechanisms.

For fixed two points a, b ∈ Ω, we partition Ω into three subspaces Ωa = {x ∈
Ω | d(a, x) < d(b, x)}, Ωm = {x ∈ Ω | d(a, x) = d(b, x)} and Ωb = {x ∈ Ω |
d(a, x) > d(b, x)}. For a profile X of N , the set of agents and the number of
agents in Ωa are denoted by Sa and na, respectively, i.e., Sa = {i | xi ∈ Ωa}
and na = |Sa|. Analogously, we denote Sm = {i | xi ∈ Ωm}, nm = |Sm|,
Sb = {i | xi ∈ Ωb} and nb = |Sb|.



306 K. Ibara and H. Nagamochi

For each integer � = 0, 1, . . . , n, let θ� be a function that maps a profile M ∈
Ω�

m of � agents with locations in Ωm to an integer. A mechanism f on N is called
a threshold mechanism if there are two points a, b ∈ Ω and a set {θ0, . . . , θn}
of functions such that f returns a for all profiles X with na < θnm(XSm) and
returns b for the other profiles X , i.e., f is given by

f(X) =

{
a if na < θnm(XSm)
b if θnm(XSm) ≤ na.

A threshold mechanism f is symmetric in terms of a and b in the sense that
f(X) = b if nb < θnm(XSm) and f(X) = a otherwise for the set of complement
functions θ� on Ω�

m, � = 0, 1, . . . , n such that

θ�(M) = n+ 1− �− θ�(M) for M ∈ Ω� and � = 0, 1, . . . , n.

Furthermore a threshold mechanism f is called valid if the set {θ0, . . . , θn} of
functions satisfies the two conditions: (i) θ0(∅) �∈ {0, n + 1} and 0 ≤ θ�(M) ≤
n+1− � for 0 ≤ � ≤ n and M ∈ Ω�

m; and (ii) θ�(M)−1 ≤ θ�+1(〈x,M〉) ≤ θ�(M)
for 0 ≤ � ≤ n − 1, M ∈ Ω�

m and x ∈ Ωm. Note that the set of complement
functions also satisfies the above two conditions.

We show that a 2-candidate mechanism is SP (or GSP) if and only if it is a
valid threshold mechanism via the next two theorems.

Theorem 2. Every valid threshold mechanism is a 2-candidate GSP mecha-
nism.

Theorem 3. Every 2-candidate SP mechanism is a valid threshold mechanism.

For another profile X ′ = {x′
1, . . . , x

′
n} of N , we use the following notation.

The set of agents and the number of agents in Ωa are denoted by S′
a and n′

a,
respectively, i.e., S′

a = {i | x′
i ∈ Ωa} and n′

a = |S′
a|. Analogously, we denote

S′
m = {i | x′

i ∈ Ωm}, n′
m = |S′

m|, S′
b = {i | x′

i ∈ Ωb} and n′
b = |S′

b|. We first
prove Theorem 2.

Proof of Theorem 2. Let f be a valid threshold mechanism. First we show that
Cf = {a, b}. Clearly Cf ⊆ {a, b}. For a profile X of N with na = 0 and nm = 0,
it holds that f(X) = a since na < θ0(∅) ∈ {1, 2, . . . , n}. Similarly, for a profile
X with na = n and nm = 0, we have f(X) = b since na ≥ θ0(∅) ∈ {1, 2, . . . , n}.
Hence Cf = {a, b} holds and it means that f is a 2-candidate mechanism.

Let us show the group strategy-proofness of f , i.e., not all agents in any
coalition S can gain simultaneously by misreporting their locations. Fix a profile
X = {x1, . . . , xn} ofN and a coalition S ⊆ N wherein x′

i denotes the misreported
location of each agent i ∈ S. A misreported profile of S is denoted by X ′

S = {x′
i |

i ∈ S} and we denote X ′ = 〈X ′
S , X−S〉. We prove that there is an agent i ∈ S

such that β(f(X), xi) ≥ β(f(X ′), xi). We consider the case of f(X) = a, i.e.,
na < θnm(XSm) (the other case can be treated symmetrically by considering the
complement functions θ�).

If f(X ′) = a, then β(f(X), xi) = β(f(X ′), xi) for any i ∈ S and we are
done. Assume that f(X ′) = b. If there is an agent i ∈ S − Sa, then for such



Obnoxious Facility Game Mechanisms 307

an agent i it holds d(a, xi) ≥ d(b, xi), i.e., β(f(X), xi) ≥ β(f(X ′), xi), and we
are done. Hence it suffices to prove that S ⊆ Sa implies f(X ′) = a. From
S ⊆ Sa, we have n′

a ≤ na and n′
m ≥ nm. Let k = n′

m − nm (≤ na − n′
a) and

we denote S′
m − Sm = {1, 2, . . . , k} and M ′

i = {x′
1, . . . , x

′
i} ∈ Ωi

m. By repeatedly
applying the second property of functions θ0, . . . , θn, we obtain θnm(XSm)−k ≤
θnm+1(〈M ′

1, XSm〉) − (k − 1) ≤ · · · ≤ θnm+k(〈M ′
k, XSm〉) = θn′

m
(X ′

S′
m
). Then by

k ≤ na − n′
a, it holds that θnm(XSm) − na ≤ θn′

m
(X ′

S′
m
) − n′

a, which implies

n′
a < θn′

m
(X ′

S′
m
) and f(X ′) = a since na < θnm(XSm) now holds by f(X) = a

and the assumption on f . �
We next prove Theorem 3 via the next lemma.

Lemma 2. Let f be a 2-candidate SP mechanism with Cf = {a, b}, and X and
X ′ be two profiles of N with XSm = X ′

S′
m
. Then f(X) = f(X ′) if f(X) = a and

na ≥ n′
a; or f(X) = b and nb ≥ n′

b.

Proof. For a profile X with f(X) = a, if f(x′
i, X−i) = b hold for a misre-

ported location x′
i of some agent i ∈ Sa, then we would have β(f(xi, X−i), xi) =

d(a, xi) < d(b, xi) = β(f(x′
i, X−i), xi), contradicting that β(f(xi, X−i), xi) ≥

β(f(x′
i, X−i), xi) holds for any profile X and agent i ∈ N in an SP f . This

means that if f(X) = a then f(X ′
S , X−S) = a holds no matter how a subset

S ⊆ Sa misreports X ′
S ∈ Ω|S|. Symmetrically if f(X) = b then f(X ′

S , X−S) = b
for any X ′

S ∈ Ω|S| with a subset S ⊆ Sb.
To prove the lemma, we consider the case where f(X) = a and na ≥ n′

a (the
other case can be treated symmetrically). We construct a new profile X ′′ of N
with X ′′

Sm
= XSm by changing the locations of agents i with xi ∈ Ωa as follows.

We choose a set Ta ⊆ Sa of n′
a agents, and let x′′

i = x′
i for each i ∈ Ta, x′′

i

be any location in Ωb for each i ∈ Sa − Ta, and x′′
i = xi for each i ∈ N − Sa.

Since f(X) = a and X ′′ is obtained from X by changing the locations of agents
only in Sa, it holds f(X ′′) = a. Since X ′′ is obtained from X ′ by changing the
locations of agents only in S′

b, it holds that if f(X
′) = b then f(X ′′) = b, i.e., if

f(X ′′) = a then f(X ′) = a. Therefore we have f(X ′) = a. �

Now we give a proof of Theorem 3.

Proof of Theorem 3. Let f be a 2-candidate SP mechanism with Cf = {a, b}. For
an integer 0 ≤ � ≤ n and a set M ∈ Ω�

m of locations, let θ�(M) be the minimum
integer na such that there is a profile X of N such that XSm = M satisfying
f(X) = b, where if f(X) = a (resp., f(X) = b) for all such X then we define
θ�(M) = n + 1 − � (resp., θ�(M) = 0). Then by Lemma 2, f(X) = a holds
for all profiles X such that θ�(M) > na and XSm = M . Thus, f is a threshold
mechanism. Now it suffices to show that f is valid, i.e., the set {θ0, . . . , θn} of
the above functions satisfies θ0(∅) �∈ {0, n + 1} and 0 ≤ θ�(M) ≤ n + 1 − � for
0 ≤ � ≤ n andM ∈ Ω�

m; and θ�(M)−1 ≤ θ�+1(〈x,M〉) ≤ θ�(M) for 1 ≤ � ≤ n−1,
M ∈ Ω�

m and x ∈ Ωm. Note that we have shown that θ�(M) ∈ {0, . . . , n+ 1− �}
for 0 ≤ � ≤ n.

We first show inequality θ�+1(〈x,M〉) ≤ θ�(M) (inequality θ�(M) − 1
≤ θ�+1(〈x,M〉) follows from the inequality θ�+1(〈x,M〉) ≤ θ�(M) on the



308 K. Ibara and H. Nagamochi

complement functions). If θ�(M) ≥ n− �, then θ�+1(〈x,M〉) ≤ θ�(M) is immedi-
ate, since θ�+1(〈x,M〉) ≤ n+1−(�+1) = n−� by definition. Consider the case of
θ�(M) < n− �. Then there is a profile X of N such that XSm = M , na = θ�(M),
f(X) = b and nb ≥ 1. We choose an agent t ∈ Sb and change its location from xt

to an arbitrary location x′
t ∈ Ωm to obtain a new profile X ′ = 〈x′

t, X−t〉 of N . By
Definition 1, it holds that β(f(X), xt) ≥ β(f(X ′), xt), i.e., d(b, xt) ≥ d(f(X ′), xt).
Since d(a, xt) > d(b, xt), f(X

′) = b holds for the profile X ′ such that n′
a = θ�(M)

andX ′
S′
m
= 〈x′

t,M〉 ∈ Ω�+1
m . Recall that θ�+1(〈x′

t,M〉) is the minimum integer na

such that there is a profile X of N such that XSm = 〈x′
t,M〉 satisfying f(X) = b.

Hence we have θ�+1(〈x′
t,M〉) ≤ n′

a = θ�(M).
Finally, we prove that θ0(∅) �= 0 (property θ0(∅) �= n+1 follows from θ0(∅) �= 0

on the complement function). If θ0(∅) = 0, then inequality θ�+1(〈x,M〉) ≤ θ�(M)
(0 ≤ � ≤ n − 1, M ∈ Ω�

m, x ∈ Ωm) inductively implies that θ�(M) = 0 for any
M ∈ Ω�

m and 0 ≤ � ≤ n. This, however, means that f(X) = b for all profiles X
of N , contradicting that Cf = {a, b}. �

5 Approximation Ratio of 2-Candidate Mechanisms

This section analyzes the approximate ratio γ = maxX∈Ωn
OPT(X)

SB(f(X),X) of 2-

candidate SP mechanisms in the general metric.

Upper bound. We first derive an upper bound on the approximate ratio γ. Let
f be a 2-candidate SP mechanism on a set N of n agents in a metric (Ω, d), where
f can be given by choosing two points a, b ∈ Cf and functions θi, i = 0, 1, . . . , n
so that f becomes a valid threshold mechanism by Theorem 3.

Theorem 4. Let f be a 2-candidate mechanism for a set N of n agents. If
Cf = {a, b} is a pair of most distant points in Ω and f is a valid threshold
mechanism by a set {θ0, . . . , θn} of functions, then the approximate ratio γ of f
is less than max{ 2n

θ0(∅) ,
2n

n+1−θ0(∅)}.

Proof. Let d(a, b) = 2r. For a profile X of N with f(X) = a, we derive an upper
bound on γ. We have SB(f(X), X) =

∑
i∈N d(a, xi) > nmr + nbr = (n− na)r,

since d(a, xi) > r for nb agents i ∈ Sb, and d(a, xi) = r for nm agents i ∈ Sm.
Let cX ∈ Ω denote an optimal facility location, i.e., OPT(X) = SB(cX , X).
On the other hand, we see that OPT(X) ≤ 2nr, since d(cX , xi) ≤ 2r for any
location xi ∈ Ω by the choice of a and b. Hence we have γ < 2nr

(n−na)r
= 2n

n−na
.

Since f(X) = a, it holds na < θnm(XSm) ≤ θ0(∅), where we use the property
θ�+1(〈x,M〉) ≤ θ�(M) of functions to get the second inequality. Hence γ <

2n
n+1−θ0(∅) . When f(X) = b, we apply the same argument to the complement

function to obtain γ < 2n
n+1−θ0(∅)

= 2n
θ0(∅) . This proves the theorem. �

The bound max{ 2n
θ0(∅) ,

2n
n+1−θ0(∅)} in Theorem 4 is minimized and γ ≤ 4 holds

when θ0(∅) = �n/2�. In fact, such a valid threshold mechanism f for a set of
n agents can be constructed as follows. For a pair Cf = {a, b} of most distant
points in Ω, let f return f(X) = a if na + nm < nb; f(X) = b otherwise.



Obnoxious Facility Game Mechanisms 309

t1

s

t2 t3
v3

v1
u1

u2

u3

v2

1

Fig. 1. An undirected graph G

Lower Bound. We have shown that every valid threshold mechanism f with
θ0(∅) = �n/2� has an approximation ratio γ = 4. Now we give a tight example
(Ω, d) such that for every choice of a, b ∈ Ω, the approximation ratio γ attained
by a valid threshold mechanism f with Cf = {a, b} and θ0(∅) = �n/2� is at
least 4. Such an example (ΩG, d) is constructed from a graph G as follows. Let
G = (V,E) be the graph with a set V of ten vertices, s and ui, vi, ti (i = 1, 2, 3),
and a set E of 12 edges, tivi, vis, viui−1, viui+1 (i = 1, 2, 3), where we interpret
u4 = u1 and u0 = u3 (see Fig. 1). We regard each edge as a line segment of
length 1, and a point x on an edge e is denoted by x ∈ e. Let ΩG be the set of
points in all edges including the end points. The distance d(x, x′) for two points
x, x′ ∈ ΩG is defined to be the length of a shortest path between x and x′.

Lemma 3. For any two points c1, c2 ∈ ΩG, there are a point c∗ ∈ ΩG and a
shortest path P between c1 and c2 in (ΩG, d) such that

ρ =
max{d(c1, c∗), d(c2, c∗)}+ d(x, c∗)

d(c1, c2)/2
≥ 4

for the middle point x on P .

Proof. Given points c1 and c2, we choose P which does not pass through s if any.
By symmetry, we only need to consider the case where x is on one of edges v3t3,
v3u2 and v3s. We show that c∗ = t1 suffices the lemma. Let d(c2, c

∗) ≥ d(c1, c
∗)

without loss of generality. When d(c1, c2) ≤ 2, we easily see that ρ ≤ 4 since
max{d(c1, c∗), d(c2, c∗)} + d(x, c∗) ≥ 4 and d(c1, c2)/2 ≤ 1. In what follows,
assume that d(c1, c2) > 2 and hence c1 and c2 are in two nonadjacent edges,
respectively. Note that x ∈ v3t3 implies d(c1, c2) ≤ 2. We distinguish two cases.

Case 1. x ∈ v3u2: We do not need to consider the case where one of c1 and
c2, say ci is on edge v3t3, since we can move ci ∈ v3t3 to a point on edge
v3u3 without changing both of the position of x and d(c1, c2) or increasing
max{d(c1, c∗), d(c2, c∗)}. In this case, we can assume that c1 ∈ v3u3 and c2
is on one of edges v2u2, v2u1 and v2t2; or c1 ∈ v1u3 and c2 ∈ v2u2. In any case,
we obtain d(c2, c

∗) + d(c2, x) + d(x, c∗) = 8 + 2α and d(c1, c2)/2 ≤ (3 + α)/2,
where α = d(c2, v2) ≤ 1 when c2 ∈ v2t2 and α = 0 otherwise. Hence we have

ρ ≥ 8+2α−d(c2,x)
d(c1,c2)/2

≥ −1 + 16+4α
3+α = −1 + 4 + 4

3+α ≥ 4.



310 K. Ibara and H. Nagamochi

Case 2. x ∈ v3s: We can assume that c2 is on v3u3, v3u2 or v3t3 and c1 is on
sv1 or sv2, where c1 is not on v1t1 or v1u1 by the choice of P . In addition, we can
assume c1 �∈ sv2 and c2 �∈ v3u2, since we can move c1 ∈ sv2 (resp., c2 ∈ v3u2)
to a point on edge sv1 (resp., v3t3) without changing both of the position of x
and d(c1, c2) or increasing max{d(c1, c∗), d(c2, c∗)}. Then we obtain d(c2, c

∗) +
d(c2, x) + d(x, c∗) = 6+ 2α and d(c1, c2)/2 ≤ (2 +α)/2, where α = d(c2, v3) ≤ 1

when c2 ∈ v3t3 and α = 0 otherwise. Hence we have ρ ≥ 6+2α−d(c2,x)
d(c1,c2)/2

≥ −1 +
12+4α
2+α = −1 + 4 + 4

2+α > 4, as required. �

By Lemma 3, we can get the following theorem.

Theorem 5. For the obnoxious facility game on the above metric (ΩG, d), let f
be a valid threshold mechanism with θ0(∅) = �n/2� of a set N of n agents. Then
for any choice of Cf = {a, b}, the approximation ratio of f is not smaller than
4(1− 4

n+2 ).

Proof. For Cf = {a, b}, there are points c∗,m ∈ ΩG such that d(a,m) = d(b,m)

and ρ = max{d(a,c∗),d(b,c∗)}+d(m,c∗)
d(a,b)/2 ≥ 4 by Lemma 3. We consider the case of

d(a, c∗) > d(b, c∗) (the other case can be treated analogously). For a sufficiently
small ε > 0, let mb ∈ ΩG be a point that is closer to b than a in a neighbor of
m within distance ε; d(a,mb) ≤ d(a,m) + ε and d(mb, c

∗) ≥ d(m, c∗) − ε hold.
Construct a profile X of N such that �n/2� − 1 agents are situated on point a
while the other �n/2�+1 agents on point mb. Since nm = 0 and na = �n/2�−1 <
θ0(∅), we have f(X) = a, SB(f(X), X) = (�n/2� + 1)d(a,mb) ≤ (�n/2� +
1)(d(a, b)/2 + ε) and OPT(X) ≥ SB(c∗, X) = (�n/2� − 1)d(a, c∗) + (�n/2� +
1)d(mb, c

∗) ≥ (�n/2� − 1)(d(a, c∗) + d(m, c∗) − ε). Hence it holds OPT(X)
SB(f(X),X) ≥

(�n/2	+1)(d(a,c∗)+d(m,c∗)−ε)
(�n/2−1)(d(a,b)/2+ε) , which approaches to 4(1− 4

n+2 ) when ε→ 0. �

We remark that it is still open whether there exists an example (Ω, d) such
that for every choice of a, b ∈ Ω, the approximation ratio γ attained by a valid
threshold mechanism f with θ0(∅) �= �n/2� is at least 4.

6 Concluding Remarks

In this paper, we studied SP/GSP mechanisms for the obnoxious facility game.
We first showed that there is a metric that admits no p-candidate SP mech-
anism for any p ≥ 3. We then proved that a valid threshold mechanism is a
complete characterization of (group) strategy-proof mechanisms with exactly
two candidates in the general metric. We also proved that there always exists
a 4-approximation valid threshold mechanism in any metric. Note that for any
integer p ≥ 3, there is a metric (Ω, d) that admits a p-candidate GSP mech-
anism. For example, let (Ω, d) be a metric on a star network with a center vc
and p leaf edges vcvj j = 1, 2, . . . , p of length 1, and f be a p-candidate mech-
anism that returns f(X) = vk for a profile X such that nk = min1≤j≤p nj for
nj = |{i ∈ N | xi ∈ vcvj}|. Then we can prove that this p-candidate mechanism
is GSP and the approximation ratio is at most 2 + 1

p−1 .



Obnoxious Facility Game Mechanisms 311

There are still several open problems on the obnoxious facility game. First,
given a metric (Ω, d), it is important to know the maximum number p(Ω, d) of
candidates such that there exists a p(Ω, d)-candidate SP/GSP mechanism. Also
for such a maximum value p(Ω, d), it is left open whether we can construct a
p′-candidate SP/GSP mechanism in the metric for any p′ < p(Ω, d) or not. The
problem of placing an obnoxious facility when the locations of agents are fixed is
called the 1-maxian problem [5,13]. In the 1-maxian problem, the number of op-
timal locations of an obnoxious facility in a network metric is known to be finite.
It would be interesting to investigate the relationship between solutions of the
1-maxian problem and candidates of SP/GSP mechanisms of the obnoxious fa-
cility game. Also it is another interesting issue to derive a counterpart/extension
of our arguments in randomized mechanisms in the general metric (see [4] for a
randomized 2-candidate GSP mechanism in the line metric).

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation mechanisms for location on networks. CoRR, abs/0907.2049 (2009)

2. Black, D.: On the rationale of group decision-making. Journal of Political Econ-
omy 56, 23–34 (1948)

3. Border, K.C., Jordan, J.S.: Straightforward elections, unanimity and phantom vot-
ers. The Review of Economic Studies 50(1), 153–170 (1983)

4. Cheng, Y., Yu, W., Zhang, G.: Mechanisms for Obnoxious Facility Game on a
Path. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp.
262–271. Springer, Heidelberg (2011)

5. Church, R.L., Garfinkel, R.S.: Locating an obnoxious facility on a network. Trans-
portation Science 12(2), 107–118 (1978)

6. Jain, K., Mahdian, M.: Cost sharing. In: Nisan, N., Roughgarden, T., Tardos, E.,
Vazirani, V. (eds.) Algorithmic Game Theory, ch. 15. Cambridge University Press
(2007)

7. Lu, P., Wang, Y., Zhou, Y.: Tighter Bounds for Facility Games. In: Leonardi, S.
(ed.) WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009)

8. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce, ACM-EC (June 2010)

9. Moulin, H.: On strategy proofness and single peakedness. Public Choice 35, 437–
455 (1980)

10. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce, ACM-EC
(July 2009)

11. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. Journal of Eco-
nomic Theory 104(2), 405–428 (2004)

12. Schummer, J., Vohra, R.V.: Mechanism design without money. In: Nisan, N.,
Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, ch.
10. Cambridge University Press (2007)

13. Zelinka, B.: Medians and peripherians of trees. Archivum Mathematicum 4, 87–95
(1968)



Efficiency of Dual Equilibria

in Selfish Task Allocation to Selfish Machines�

Xujin Chen, Xiaodong Hu, Weidong Ma��, and Changjun Wang

Institute of Applied Mathematics, AMSS
Chinese Academy of Sciences, Beijing 100190, China

{xchen,xdhu,mawd,wcj}@amss.ac.cn

Abstract. In this paper we consider the task allocation problem from a
game theoretic perspective. We assume that tasks and machines are both
controlled by selfish agents with two distinct objectives, which stands in
contrast to the passive role of machines in the traditional model of selfish
task allocation. To characterize the outcome of this new game where two
classes of players interact, we introduce the concept of dual equilibrium.
We prove that the price of anarchy with respect to dual equilibria is 1.4,
which is considerably smaller than the counterpart 2 in the traditional
model. Our study shows that activating more freedom and selfishness in
a game may bring about a better global outcome.

Keywords: Price of anarchy, Selfish task allocation, Selfish scheduling.

1 Introduction

In large-scale communication networks, it is usually impossible to globally man-
age network task allocation. This motivates the study on network task allocation
from a game-theoretic perspective, where each network participant is viewed as
a selfish player in a competitive network game. Under the standard full infor-
mation setting in game theory (e.g., [1,2]), each player is aware of the situation
facing all other players and tries to minimize its cost or maximize its profit, ig-
noring the global objective of the network system. As a typical example of selfish
task allocation (Sta) games, also known as selfish load balancing [10], some com-
panies maintain a number of servers (termed as machines in literature) and offer
content providers to store data (termed as tasks) [1]. The requested stream to
a content provider is directed by the provider to the server that stores its data,
i.e., the data requested, while this provider suffers from a cost of latency expe-
rienced by the request in the stream. Naturally, each content provider (client)
would selfishly choose a server to minimize its own cost.

In this paper, we generalize the above classical model of Sta towards more
realistic settings. The classical model does not consider the welfare of individual

� Supported in part by NNSF of China under Grant No. 10771209, 11021161 and
10928102, 973 Project of China under Grant No. 2011CB80800, and CAS under
Grant No. kjcx-yw-s7.

�� Corresponding author.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 312–323, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Selfish Task Allocation to Selfish Machines 313

servers which are managed by individual profit-minded companies. To make more
money, each server wants to store data as much as possible, and may actively
withdraw its offer to some clients it currently serves so that it has a lower latency,
for a moment, to attract a more profitable client from another server. To put
it differently, every client is undisciplined and seeks an latency lower than it
currently experiences. The client may inquire another server, telling its data
amount and current latency, about the possibility of the server offering a lower
latency. The server being inquired then makes some computation to see whether
or not it can make more money by discarding some clients (possibly none) it
currently serves and giving better offer to the inquiring client. If the server does
find a way to do so, then the corresponding data storage rejection and client
migration follow to benefit both the rejecting server (inquired) and migrating
client (inquiring); in the special case where the server inquired discards nothing,
the migrating client is considered behaving the same as in the classical Sta. We
refer to this generalized model, where both clients and servers are selfish players,
as selfish task allocation to selfish machines (StaSm).

Unlike Sta whose players (tasks) only have a uniform kind of action – mi-
grating from one machine to another, our StaSm model possesses two kinds of
players, tasks and machines, while the machine latter players may take action of
rejecting some of their tasks. Thus, it is natural to think of each action in StaSm

game being taken by a pair of one machine and one task, where the machine
discards some (or none) of its current tasks and the task moves from another
machine to the machine. In such a setting, a natural equilibrium of StaSm is
the state at which no pair of machine player and task player (outside the ma-
chine) has incentive to deviate, given the allocation of other tasks to machines.
We refer to this kind of stable state for both task players and machine players
as a Dual Equilibrium (DE), so as to distinguish it from the classic concept of
pure-strategy Nash Equilibrium (abbreviated to NE throughout the paper). Any
DE of StaSm must be an NE of Sta; in contrast, an NE of Sta is not necessarily
a DE for StaSm. In this sense, DE is more stable than NE, and thus a more
plausible outcome of the competitions among selfish tasks and selfish machines.
More remarkable is the higher social welfare (lower maximum latency) at DE in
comparison with that at NE, as the main result of this paper shows.

The paper is organized as follows. In Section 2, we summarize some related
work and our contribution. In Section 3, we present the model for StaSm on
identical machines, and an example showing the lower bound 1.4 on its price
of anarchy (PoA) – the ratio between the system objective value at the worst
possible NE and the overall optimum. In Section 4, we establish the upper bound
1.4 on the PoA. In Section 5, we conclude with discussion on future work.

2 Related Works and Our Contribution

Traditionally, task allocation, also known as scheduling, was extensively studied
in terms of a coordinator that, given n weighted tasks and m machines possibly
with different speeds, finds an allocation of tasks to machines optimizing certain



314 X. Chen et al.

system objective function: minimizing makespan, the maximum completion time,
or maximizing cover, the minimum completion time. These problems are NP-
hard even for identical speeds [6], thus enormous literature are devoted to the
design of approximation algorithms [7].

Recently, a great deal of research has considered task allocation from the
game-theoretic perspective and modeled the problem as Sta, where each weighted
task is a self-interested player who tries to minimize its own latency, i.e., the la-
tency of the machine processing it, defined as the ratio of machine load (the
total weight on the machine) over speed. Koutsoupias and Papadimitriou [8]
initiated the research on the PoA, and studied Sta for linear latency functions
with respect to mixed Nash equilibrium.

Most relevant results to ours are the existence of NE in Sta [5], and the
PoA of 2− 2/(m+ 1) for Sta on identical machines with respect to the system
objective of minimum makespan (see [9,10]). The proof of the PoA goes back to
the scheduling literature [4] where the same ratio occurs as the approximation
factor of a local search heuristic. Letting m go to infinity gives the overall PoA
of 2 for the problem. For the global objective of maximizing cover, the PoA of
Sta on identical machines was shown to falls within [1.69, 1.7] [3].

The StaSm model introduced in this paper presents the first study of task
allocation, where tasks and machines are both controlled by selfish agents. We
consider the StaSm problem on identical machines under the system objective
of minimum makespan. For the problem, we show that there is an optimal task
allocation which is a DE, and the overall value of the PoA is exactly 1.4. This
improves upon the PoAs of traditional Sta – 2 for minimum makespan [4,9], and
1.7 for maximum cover [3]. The quality of stable outcomes under StaSm is thus
more desirable than that under traditional Sta. It is an interesting phenomenon
that introducing more selfishness brings about better global performance.

3 Model Specification

Given a set T = {1, 2, . . . , n} of n tasks and a set M = {M1,M2, . . . ,Mm} of
m identical machines, each task j ∈ T has a positive weight w(j), and should
be handled by a machine inM. Given any nonempty subset S ⊆ T of tasks, we
write w(S) for

�
j∈S w(j). For convenience, w(∅) is set to be 0. Let σ : T →M

be an allocation of tasks to machines. We abbreviate {σ(j)|j ∈ S} to σ(S), and
set σ(∅) to be ∅. The latency (also called load) of machine Mi ∈ M under σ
equals Li(σ) ≡

�
j:σ(j)=Mi

w(j), and is experienced by every task allocated to

Mi. The makespan of σ is defined as maxmi=1 Li(σ), the maximum latency under
σ; it measures the system performance under σ. We focus on the algorithmic
game model of selfish task allocation to selfish machines (StaSm), where

(3.1) Every task is a selfish player who wishes to select a machine of lowest
latency so that it experiences latency as low as possible.

(3.2) Every machine is a selfish player who wishes to process tasks of total
weight as heavy as possible so that it gets profits as many as possible.



Selfish Task Allocation to Selfish Machines 315

Equilibrium Allocations. Motivated by (3.1), a task j on machine Mh would
migrate to another machine Mi if Mi offers j a latency lower than j’s current
latency Lh(σ). On the other hand, motivated by (3.2), a machineMi would reject
some (possibly none) of its current tasks – with total weight less than w(j) – to
assure attractive offer – lower than Lh(σ) – to the more profitable task j. The
task rejection by machine Mi and the migration of task j from machine Mh to
machine Mi constitute an action (under σ) in StaSm game if and only if

(3.3) σ(j) = Mh �= Mi, there exists S ⊆ {k ∈ T : σ(k) = Mi} such that
w(S) < w(j) and Li(σ)− w(S) + w(j) < Lh(σ).

When (3.3) is satisfied, machineMi and task j would like to take an action, which
is often described as “Mi would reject tasks in S so that j would migrate from
Mh to Mi”, or simply “Mi would reject S to attract j” In case that no action can
be taken under σ, the allocation σ is stable, and referred to as a dual equilibrium
(DE), or simply an equilibrium allocation. The stability of DE in StaSm is
stronger than that of NE (pure-strategy Nash equilibrium) in traditional Sta.
By definition, a DE must be an NE (thinking of the case where machines reject
nothing); on the other hand, an NE may not be a DE.

Price of Selfishness. An allocation with minimum makespan is called optimal.
As usual, we use the ratios between the makespans of DE and optimal allocation
to quantify the (in)efficiency of the equilibrium outcome. Given an instance I
of the StaSm game, let opt denote optimal makespan of I, and let Π denote
maximum makespan among all DEs of I. The price of anarchy (PoA) of I is
defined as the ratio Π/opt. The PoA of the StaSm game is defined as the
supremum of PoAs over all StaSm instances.

Example 1. An infinite set I of StaSm instances with supI∈I (PoA of I) = 1.4.
The set I consists of instances Ip for integers p = 2, 3, 4, . . .. In each Ip, there
are m = 2 + 3p identical machines and n = 7 + 6p tasks. Among these n tasks,
there are seven special tasks that include one task of weight 5, two tasks of weight
2, and four tasks of weight 1. The remaining 6p tasks can be partitioned into p
groups each consisting of 6 tasks. For k = 1, 2, · · · , p, the k-th group consists of
three tasks of weight (3 − k/p) (called leading tasks) and three tasks of weight
(2+k/p) (called following tasks). For Ip, Fig.1(i) and (ii) present an equilibrium
allocation of makespan 7 and an allocation of makespan 5+1/p, respectively. �

Lemma 1. The price of anarchy of StaSm game is at least 1.4. �

Consecutive Rejection. Given an allocation σ : T → M, the limit of compu-
tational capability might need to be taken into account. Facing a query from
task j who asks for a better offer, machine Mi wishes to find a subset S of tasks
satisfying (3.3) which could be rejected for attracting the more profitable task j.
This in general is a NP-complete problem [6]. On the other hand, it is easy for
Mi to determine whether it can do a consecutive rejection specified as follows.
A subset S ⊆ {k ∈ T : σ(k) = Mi} of tasks is called consecutive if their weights
are consecutive in an non-increasing ordering of weights of tasks allocated to Mi



316 X. Chen et al.

by σ. In O(n2) time, Mi can check whether or not the following condition is
satisfied.

(3.3)’ σ(j) = Mh �= Mi, there exists consecutive S ⊆ {k ∈ T : σ(k) = Mi} such
that w(S) < w(j) and Li(σ)− w(S) + w(j) < Lh(σ).

In case that the consecutive set S exists, machine Mi and task j take an action
– Mi “consecutively” rejecting all tasks in S and j migrating from machine Mh

to Mi. Under the new definition of action, the Selfish task allocation to Selfish
machines with Consecutive Rejection is abbreviated to SSCR.

Fig. 1. Two allocations for StaSm instance Ip

Clearly, an action never increases the makespan, so a sequence of actions
applied to the optimal solution will lead to DE that is still socially optimal.

Theorem 1. (i) There is a DE that is optimal for StaSm (resp. SSCR) game.
(ii) The PoA of StaSm game is at most the PoA of SSCR game.
(iii) The PoA of StaSm (resp. SSCR) game is at least 1.4.

Proof. Associate each allocation σ with a vector vσ = (v1, v2, . . . , vm) such
that v1, v2, . . . , vm is a non-increasing ordering of L1(σ), L2(σ), . . . , Lm(σ). Let



Selfish Task Allocation to Selfish Machines 317

σ and ς be two allocations. We say that σ is smaller than ς , denoted as σ ≺ ς ,
if vσ is smaller in the lexicographic order than vς . It is easy to see that every
minimum allocation under ≺ is a socially optimal DE, proving (i).

It is obvious that a DE of StaSm must be a DE of SSCR. This fact along
with Lemma 1 implies (ii) and (iii). �

4 Efficiency Analysis

In this section, we prove the following main result of this paper. Due to limited
space, we only sketch our proof. The omitted details are given in the full paper.

Theorem 2. The price of anarchy of StaSm (resp. SSCR) game is 1.4.

If the PoA of SSCR is at most 1.4, then Theorem 2 follows immediately from
Theorem 1(ii) and (iii). To prove Theorem 2, we assume the contrary:

Assumption 1. There is an SSCR instance I whose PoA is greater than 1.4. �

Let opt denote an optimal allocation for I with makespan opt, and let π
denote a DE whose makespan Π satisfies Π/opt > 1.4. For π, let Ti denote the
set of tasks allocated to Mi; the load Li(π) = w(Ti) of machine Mi is abbreviated
to Li. Suppose that M1 and M2 bear the maximum and minimum loads in π,
respectively. Then L1 = maxi∈[m] Li = Π > w(T )/m > L2 = mini∈[m] Li.

Property 2. (i) Under π, for any pair of distinct h, i ∈ [m], no individual task
allocated to Mh would like to migrate to Mi, i.e., Li ≥ Lh −minj∈Th

w(j).
(ii) The optimal makespan is at least the average load, opt ≥ w(T)/m > L2. �

A task j ∈ T is often called a w(j)-task to indicate its weight. Given a real
interval R, a task of weight in R is called a R-task. For nonnegative number α,
an [α,+∞)-task is abbreviated to an α+-task. Given i ∈ [m], order the tasks in
Ti as 1i, 2i, . . . , �

i
i, where �i = |Ti|, in the nonincreasing order of their weights

w(1i) ≥ w(2i) ≥ · · · ≥ w(�ii). The �-vector (w(1i), w(2i), . . . , w(�ii)) is called the
π-weight (vector) of Mi. For k = 1, 2, . . . , �i, task ki is referred to as the k-th
task of Mi; and particularly, task �ii also as the last task of Mi. For any real
number α ∈ (0, Li], task hi, where 1 ≤ h ≤ �i, is called an α-critical task of Mi

if
�h−1

k=1 w(ki) < α and
�h

k=1 w(ki) ≥ α.
Recall that M1 experiences the maximum load Π in π. Let a ≡ w(T1 − {�11})

denote the weight sum over all tasks but the last one allocated to M1. Setting
b ≡ w(�11), we have a+ b = Π . We often call task �11 the last b-task of M1.

Property 3. (i) Li ≥ a for all i ∈ [m].
(ii) 1 ≤ λ ≡ a/b < 2.5; in particular, a ≥ b.
(iii) opt < 5(1 + λ)b/7 = a+ (5 − 2λ)b/7 ≤ a+ 3b/7 < 2a. �

For any L ⊆ M, let T (L) ≡ ∪i:Mi∈LTi (resp. T o(L)) denote the set of tasks
allocated by π (resp. opt) to machines in L. Particularly, T (∅) ≡ ∅ and T o(∅) ≡ ∅.
We categorize all machines into three types according to task allocation under π.



318 X. Chen et al.

A machine in M with π-weight vector (w1, w2, . . . , w�) is called an A-machine
if w1 ≥ a, a B-machine if w1 < a and

�
k:wk≥b wk ≥ a, and a C-machine if�

k:wk≥b wk < a. In the following, let A, B, and C denote the sets of A-machines,
B-machines and C-machines, respectively. Thus we have the following.

Property 4. (i) M is the disjoint union of A, B and C; and M1 ∈ (A ∪ B) \ C.
(ii) The first two tasks of a B-machine are [b, a)-tasks.
(iii) The first task of a C-machine is a (0, a)-task. �

Property 3(iii) implies that no pair of a+-task and (3b/7)+-task are allocated to
the same machine by opt. By a ≥ b in Property 3(ii) and M = A ∪ B ∪ C in
Property 4, we may assume without loss of generality the following.

Property 5. (i) To each A-machine Mi ∈ A (if any), the optimal allocation opt
allocates a+-task 1i ∈ Ti, but no any other (3b/7)+-task.
(ii) All [3b/7, a)-tasks and the last b-task �11 of M1 are allocated by opt to ma-
chines in B ∪ C. In particular, B ∪ C �= ∅. �

From Property 3(i), we see that every machine Mi ∈ M has load Li at least a
in π, therefore Mi must have a unique a-critical task, which we denote by tii. In
other words, for every i ∈ [m], a-critical task of Mi is its ti-th task.

Property 6. Let (w1, w2, . . . , w�) be the π-weight vector of machine Mi ∈ M.
Suppose that the a-critical task of Mi is its t-th task. The following hold.

(i)
�t−1

k=1 wk < a,
�t

k=1 wk ≥ a and
��

k=t wk ≥ b.

(ii) If Mi ∈ C, then w(ti) = wt < b, 2 ≤ t = ti < � = �i and
��

k=t+1 wk < b. �

Property 7. Li ≥ a+ b/2 for any Mi ∈ C. �

Recall from Property 3(ii) that the ratio λ = a/b ∈ [1, 2.5). The next two
subsections deal with small λ ∈ [1, 4/3) and large λ ∈ [4/3, 5/2), respectively.

4.1 Small λ ∈ [1, 4/3)

The following upper bounds on opt are from a < 4b/3 and Property 3(iii).

2b > a+ b/2 > a+ 3b/7 > opt . (4.1)

Consider opt allocating all tasks in T (C) (if any) to machines in A ∪ B. Then
by Properties 4, 5(ii) and 7, the total load of B-machines and C-machines under
opt is at least (2b)|B|+(a+ b/2)|C|. This is impossible because the average load
of these machines would exceed opt as implied by 2b > a+ b/2 > opt in (4.1).

Therefore, some tasks on C-machines (under π), which we study in Part I,
must be allocated by opt to A-machines, which we study in Part II. In turn,
to ensure no load exceeding opt, the optimal allocation opt has to allocate an
adequate number of tasks from T (A), each of which has a sufficiently “large”
weight, back to B-machines or C-machines (cf. Claim 8). However, the weights
brought by these tasks make the total load of B-machines and C-machines higher



Selfish Task Allocation to Selfish Machines 319

than (|B|+ |C|)opt, which we show in Part III. The contradiction to the optimal
makespan will exclude the possiblility of λ ∈ [1, 4/3).

I. Tasks on C-machines. One of our major approaches is to show that
tasks from T (C) all have a considerable amount of weight such that in opt an
A-machine accommodating any of these tasks enforces the optimal allocation to
transfer enough weight from T (A) to B-machines or C-machines.

Lower Bounds on Task Weights. The next claim says that the last task (and
hence all tasks) of any C-machine cannot be too light.

Claim 1. w(�ii) > (1 + λ)b/7 ≥ 2b/7 and w(�ii) ≥ a+ b− Li for any Mi ∈ C. �

Another central idea is using equilibrium properties of π to show large total
weight of tasks, which would imply difficulties for opt to average the load.

The a-critical Tasks and Their Followers. Claim 1 enables us to show that under
non-increasing weight ordering of tasks allocated to any C-machine (by π), the
a-critical task can be followed by at most two tasks.

Claim 2. �i ≤ ti + 2 for any Mi ∈ C. �

A crucial step in our proof is to establish the next claim, asserting the existence
of a light a-critical task (of weight less than b/2) on some C-machine.

Claim 3. There exists Mi ∈ C such that w(tii) < b/2. �

For each C-machine as in Claim 3, we can show that its a-critical task is followed
by exactly two tasks, a kind of “best possible” in view of Claim 2.

Claim 4. �i = ti + 2 for every Mi ∈ C′ ≡
�
Mi ∈ C |w(tii) < b/2

�
. �

As aforementioned, the average load over B-machines and C-machines exceeds
opt, we next expect “large” loads on A-machines. To obtain a lower bound on
these loads, we think of why a C-machine does not reject its last (lightest) task
for attracting a heavier task from an A-machine.

The Predecessors of the Lightest Task. Let M� ∈ C be the most loaded C-
machine (in π) whose last task ��

�
is lightest and has weight

w(��
�
) = d ≡ min{w(�ii) : Mi ∈ C} < a , (4.2)

where a > d is guaranteed by Property 4. So the predecessors of the lightest task
��
�
has total weight

c = L� − d = L� − w(��
�
) ≡ max{Li − d |Mi ∈ C and w(�ii) = d} . (4.3)

For any Mi ∈ M, Property 2(i) says Li ≥ c; so Mi has a unique c-critical task,
denoted by rii. Using Claim 4, we can show that c is very close to the optimal
makespan opt, and thus a nice lower bound on loads of all machine.



320 X. Chen et al.

Claim 5. (i) opt > c ≥ max{a+ b− 2d, a+ d}. (ii) opt− c < d/3. �

II. Allocations to A-machines. In this part, we investigate the tasks allo-
cated to A-machines. The small gap between c and opt in Claim 5(ii) implies
that all c-critical tasks on A-machines are (d/2)+-tasks, as we show next.

The c-critical Tasks. Recall that every A-machine Mi ∈ A has a unique c-critical

task rii, the ri-th task of Mi, satisfying
�ri−1

k=1 w(ki) < c and
�ri

k=1 w(ki) ≥ c.

Claim 6. (i) w(rii) ≥ d/2 for all Mi ∈ A.
(ii) For any Mi ∈ A, if ri=2, w(2i)<d, w(3i) < d/2, then w(1i) + d > opt. �

c is very close to opt, the lower bound of d/2 on the weights of c-critical tasks
in Claim 6(i) basically says that (0, d/2)-tasks count little in the total load of A-
machines. We will ignore these tasks in our discussion on the optimal allocation
opt. To get a more accurate estimation on the loads of A-machines, we divide A
into four subsets as follows.

A Classification of A-machines. Recall from Claim 1 and (4.2) that d ≥ 2b/7,
and from (4.1) that a + 3b/7 > opt. Given any Mi ∈ A with r = ri, from
Claim 6(i) we see that Mi is precisely of one of the following four types:

- Type A1: r ≥ 2 and w(2i) ≥ d;
⇒ w(1i) + 3 · d/2 ≥ a+ 3d/2 > a+ 3b/7 > opt.

- Type A2: r ≥ 2 and d > w(2i) ≥ w(3i) ≥ d/2;
⇒ w(1i) + 3 · d/2 > opt

- Type A3: r ≥ 2 and d > w(2i) ≥ w(3i) < d/2;
⇒ r = 2 and w(2i) ≥ d/2 by Claim 6(i) ⇒ w(1i) + d > opt by Claim 6(ii).

- Type A4: r = 1;
⇒ w(1i)≥c⇒w(1i) +

d
2 ≥ c+ d

2 ≥a+d+ d
2 by Claim 5 ⇒ w(1i) +

d
2 > opt.

Let Ah denote the set of type Ah machines for h ∈ [4]. Then A is the disjoint
union of A1,A2,A3,A4. Moreover, by Property 5 we have the following.

Claim 7. To any A-machine Mi ∈ A = ∪4
h=1Ah, except for the a+-task 1i of

weight w(1i), the optimal allocation opt allocates
(i) either no d+-task and at most two [d/2, d)-tasks, or exactly one d+-task

and no [d/2, d)-task, when Mi ∈ A1 ∪ A2;
(ii) no d+-task, and at most one [d/2, d)-task when Mi ∈ A3;
(iii) no (d/2)+-tasks when Mi ∈ A4. �

Allocation Transformations. Consider a process in which π is transformed to
opt. As aforementioned, some tasks in T (C) on C-machines (all of them are d+-
tasks) have to be moved to A-machines. Then by the above classification and
Claim 7, an adequate number of d+-tasks and (d/2)+-tasks should be moved out
of A-machines. The following claim makes the idea more precise.

Claim 8. Suppose that opt allocates exactly n0 tasks from T (C) to A-machines.
There exist integers n1 and n2 with n1 + n2/2 ≥ n0 such that opt allocates a
number n1 of d+-tasks and a number n2 of (d/2)+-tasks from T (A) to machines
in B ∪ C =M\A. �



Selfish Task Allocation to Selfish Machines 321

III. A Partial Reallocation In this part, we allocate a subset of tasks in
T o(B∪C) to B-machines or C-machines, so that the resulting partial reallocation
has average load greater than opt, which would give a contradiction.

Let K (⊆ T (A)) denote the set of a number n1 of d+-tasks and a number
n2 of (d/2)+-tasks stated in Claim 8. Then K ⊆ T o(B ∪ C) ∩ T (A), w(K) ≥
(n1 + n2/2)d ≥ n0d and w(j) ≥ d/2 for all j ∈ K, which implies the following.

Claim 9. There is an allocation σ : K → C such that for any Mi ∈ C, if opt
allocates h tasks from Ti ⊆ T (C) to machines in A, then σ allocates h groups of
tasks from K to Mi with total weight at least hd.

Let us extend σ to be an allocation from the disjoint union of K and T o(B ∪
C) ∩ T (B ∪ C) to B ∪ C by the setting in the next claim.

Claim 10. σ(j) = π(j) for any task j ∈ T o(B ∪ C) ∩ T (B ∪ C). �

Recall from the definition of d in (4.2) that all tasks of a C-machine Mi are d+-
tasks. Suppose opt allocates h tasks from Ti to A-machines. Then the remaining
|Ti|−h tasks of Ti belong to T o(B∪C)∩T (C), and thus are allocated by σ to Mi

(by Claim 10). These d+-tasks together with the tasks from K of total weight at
least hd (by Claim 9) give Li(σ) ≥ |Ti|d.

Claim 11. Li(σ) ≥ �id for any C-machine Mi ∈ C. �

Suppose the load of machine Mg ∈ B∪C is minimum under σ. Since K∪(T o(B∪
C) ∩ T (B ∪ C)) ⊆ T o(B ∪ C), it is straightforward that

Claim 12. Lg(σ) = min{Li(σ) : Mi ∈ B ∪ C} ≤ opt. �

By Property 5(i), no b+-task in T \ T (A) is allocated by opt to any A-machine.
So σ allocates every b+-task in T (B ∪ C) to the same machine as π does. In
particular, by Property 4, every B-machine admits at least two b+-task under
both π and σ, and therefore has load at least 2b > opt under σ by (4.1). It
follows from Claim 12 that Mg ∈ C. We then distinguish between two cases
depending on whether w(tgg) is smaller than b/2 or not. In either case, we can
derive a contradiction to Claim 12 and then prove the following lemma.

Lemma 2. λ �∈ [1, 4/3). �

4.2 Large λ ∈ [4/3, 5/2)

Similar to Claim 1, task weights on C-machine are lower bounded as follows.

Claim 13. w(�ii) ≥ (1 + λ)b/7 = (a+ b)/7 for any Mi ∈ C. �

Since opt < 5(1 + λ)b/7 by Property 2(iii), using λ ≥ 4/3 and λ < 5/2, respec-
tively, elementary mathematics gives

b/2 + a > (1 + λ)b/7 + a ≥ 5(1 + λ)b/7 > opt ,

(1 + λ)b/7 + 2b > 5(1 + λ)b/7 > opt .



322 X. Chen et al.

Since every task on a C-machine under π has weight at least (1 + λ)b/7 by
Claim 13, the above two strings of inequalities imply that its weight plus that
of an a+-task or two b+-tasks exceeds opt, implying the following.

Claim 14. In the optimal allocation opt, no task from T (C) can share a machine
with any a+-task, or with two or more other b+-tasks. �
Moreover, λ ≤ 5/2 implies b > (1+λ)b/7. It follows from (1+ λ)b/7+ 2b > opt

that 3b > opt. Thus we have the following.

Claim 15. (i) To the same machine, opt does not allocate three or more b+-tasks.
(ii) For any integers p1>0, p2 with p1≥p2, p1(a+

b
2 )+2p2b>(p1+p2)opt. �

Suppose that in the optimal allocation opt there are m1 machines each of which
admits two b+-tasks from T (A ∪ B). By Property 5(i), these m1 machines all
belong to B ∪ C. Denote the set of these m1 machines by M1. Since B ∩ C = ∅
by Property 4, the next claim follows from Claims 14 and 15(i).

Claim 16. (i) All tasks from T (C) can only be allocated by opt to the remaining
m2 ≡ |B|+ |C| −m1 B-machines or C-machines in M2 ≡ (B ∪ C) \M1.
(ii) Each of these m2 machines in M2 can admit at most one b+-task from
T (A ∪ B) under opt. �
Recall from Property 4(ii) that π allocates two [b, a)-tasks to each B-machine.
Recall the last b-task �11 of machine M1 ∈ (A ∪ B) \ C. In case of �1 ≡ |T1| = 2,
we have w(11) = a, which implies M1 ∈ A. It follows that �11 cannot be the
first or the second task of any B-machine. Hence there are at least a number
2|B| + 1 of b+-tasks in T (A ∪ B) \ {1i : Mi ∈ A}, none of which is allocated
by opt to any A-machine as guaranteed by Property 5(i). By the definition of
M1, opt allocates a number 2m1 of b+ tasks from T (A∪B) to machines inM1.
Therefore we have the following.

Claim 17. The optimal allocation opt allocates at least a number 2|B|+1− 2m1

of b+-tasks in T (A∪B)\{1i : Mi ∈ A} to B-machines or C-machines inM2. �
By Claims 16(ii) and 17, we have 2|B|+ 1− 2m1 ≤ m2, and |B| −m1 ≤ (m2 −
1)/2 < m2/2. Notice from Claim 16(i) that m2 − |C| = |B| −m1. We thus have
m2 − |C| < m2/2 and |C| > m2/2. Applying Claim 15(ii) with p1 = |C| and
p2 = m2 − |C|, we have

|C| · (a+ b/2) + (m2 − |C|) · 2b > m2 · opt . (4.4)

Recall from Property 7 that Li ≥ a+ b/2 for any Mi ∈ C. It is easy to see from
Claims 16(i) and 17 that under opt the total load of the machines in M2 is at
least |C| · (a+ b/2)+ (2|B|+1− 2m1) · b. Suppose Mg ∈M2 is the machine that
has the maximum load under opt in M2. Then obviously

opt ≥ Lg(opt) ≥
|C|·(a+ b

2 )+(2|B|+1−2m1)·b
m2

>
|C|·(a+ b

2 )+(|B|−m1)·2b
m2

.

Substituting m2 − |C| for |B| −m1 in the above inequality, we obtain a contra-
diction to (4.4), which implies the following lemma.



Selfish Task Allocation to Selfish Machines 323

Lemma 3. λ �∈ [4/3, 5/2). �

We are able to complete the proof of Theorem 2. Indeed, Lemmas 2 and 3 assert
λ �∈ [1, 2.5), contradicting Property 3(ii). So Assumption 1 is incorrect. �

5 Concluding Remark

In this paper we extend the existing game model for the optimization problem
of task allocation to machines, Sta with only selfish task agents, to a more
general one, StaSm with not only selfish task agents but also selfish machine
agents. Our study shows that activating machines to choose selfishly between
accepting and rejecting tasks could considerably improve the efficiency of selfish
task allocation in terms of price of anarchy. Thus it is interesting to investigate
what kind of games have such a desirable property that allowing more freedom
and selfishness will bring about better global outcomes.

References

1. Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms.
SIAM J. Comput. 39, 1957–1987 (2010)

2. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans.
Algorithms 3, Article 4 (2007)

3. Epstein, L., Kleiman, E., van Stee, R.: Maximizing the Minimum Load: The Cost
of Selfishness. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 232–243.
Springer, Heidelberg (2009)

4. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT 19(3), 312–320 (1979)

5. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

6. Garey, M.R., Johnson, D.S.: Computers and Intractabilities: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

7. Hall, L.A.: Approximation algorithms for scheduling. In: Hochbaum, D.S. (ed.)
Approximation Algorithms for NP-Hard Problems, pp. 1–45. PWS Publishing,
Boston (1997)

8. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Ti-
son, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg
(1999)

9. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multi-
processor scheduling. INFORMS J. Comput. 19, 52–63 (2007)

10. Vöcking, B.: Selfish load balancing. In: Nisan, N., Roughgarden, T., Tardos, É.,
Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 517–542. Cambridge Univer-
sity Press, Cambridge (2007)



Fast-Mixed Searching on Graphs

Boting Yang

Department of Computer Science, University of Regina
boting@cs.uregina.ca

Abstract. We introduce the fast-mixed search model, which is a combi-
nation of the fast search model and the mixed search model. We establish
relations between the fast-mixed search problem and other graph search
problems. We also establish relations between the fast-mixed search prob-
lem and the induced-path cover problem. We present linear-time algo-
rithms for computing the fast-mixed search number and optimal search
strategies of some classes of graphs, including trees, cacti, and interval
graphs. We prove that the fast-mixed search problem is NP-complete;
and it remains NP-complete for graphs with maximum degree 4.

1 Introduction

Throughout this paper, we only consider finite connected graphs with no loops or
multiple edges. Given a graph in which a fugitive hides on vertices or along edges,
graph search problems are usually to find the minimum number of searchers
required to capture the fugitive. The edge search problem and the node search
problem are two major graph search problems [7,4]. Both search problems are
monotonic [1,5]. Bienstock and Seymour [1] introduced the mixed search problem
that combines the edge search and the node search problems. In the mixed search
problem, there are three actions for searchers, that is, placing (place a searcher
on a vertex), removing (remove a searcher from a vertex) and sliding (slide a
searcher from one endpoint of an edge to the other along the edge). An edge is
cleared if both endpoints are occupied by searchers or cleared by a sliding action.
The mixed search problem is also monotonic. Dyer et al. [2] introduced the fast
search problem, in which there are two actions for searchers, that is, placing and
sliding. In the fast search problem, every edge can be traversed exactly once,
and it is cleared by a sliding action. Some recent development on the fast search
problem can be found in [10,12].

In this paper, we introduce the fast-mixed search model, which combines the
fast search and the mixed search models. Let G be a connected graph with no
loops or multiple edges. In the fast-mixed search model, initially, G contains
no searchers and it contains only one fugitive who hides on vertices or along
edges. The fugitive is invisible to searchers, and he can move at a great speed at
any time from one vertex to another vertex along a searcher-free path between
the two vertices. An edge (resp. a vertex) the fugitive may hide is said to be
contaminated, and an edge (resp. a vertex) the fugitive cannot hide is said to be
cleared. A vertex is said to be occupied if it has a searcher on it. There are two
types of actions for searchers in each step of the fast-mixed search model:

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 324–335, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Fast-Mixed Searching on Graphs 325

– placing a searcher on a contaminated vertex; and

– sliding a searcher along a contaminated edge uv from u to v if v is contami-
nated and all edges incident on u except uv are cleared.

These two actions are different from those in the fast search model or the mixed
search model due to the conditions on performing them. In the fast (or mixed)
search model, a vertex can contain more than one searcher at any moment, but
in the fast-mixed search problem, every vertex can contain at most one searcher.
In the fast (or mixed) search model, if a vertex has two searchers and at least
two contaminated edges incident on it, we can still slide a searcher along one
contaminated edge, but this does not happen in the fast-mixed search problem.

In the fast-mixed search model, a contaminated edge becomes cleared if both
endpoints are occupied by searchers, or a searcher slides along it from one end-
point to the other. An fms-strategy of G is a sequence of actions such that the
final action leaves all edges of G cleared. The graph G is cleared if all edges
are cleared. The minimum number of searchers required to clear G is the fast-
mixed search number of G, denoted by fms(G). An fms-strategy that uses fms(G)
searchers to clear G is called an optimal fms-strategy.

The fast-mixed search problem has a close relation with the induced-path
cover problem. In [6], Le et al. proved that it is NP-complete to decide whether
or not the vertex set of a connected graph can be partitioned into two subsets,
each of which induces a path. In [9], Pan and Chang gave linear-time algorithms
for the induced-path cover problem on block graphs whose blocks are complete
graphs, cycles or complete bipartite graphs.

We use G = (V,E) to denote a graph with vertex set V and edge set E, and we
also use V (G) and E(G) to denote the vertex set and edge set of G respectively.
We use uv to denote an edge with endpoints u and v. Definitions omitted here
can be found in [11].

For a graph G = (V,E) and a vertex v ∈ V , the degree of v, denoted by
degG(v), is the number of edges incident on v. The vertex set {u : uv ∈ E} is
the neighborhood of v, denoted as NG(v). If there is no ambiguity, we use deg(v)
and N(v) without subscripts. Let δ(G) = min{deg(v) : v ∈ V (G)}. For a subset
V ′ ⊆ V , we use G[V ′] to denote the subgraph induced by V ′, which consists of
all vertices of V ′ and all of the edges that connect vertices of V ′ in G. For a
vertex v ∈ V , we use G− v to denote the subgraph induced by V \ {v}.

A path is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that each edge
ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi and each vertex appears exactly once.
We will denote a path by a list of vertices v0v1 . . . vk or by the two ends v0 ∼ vk.
A path v0v1 . . . vk in G is called an induced path if the subgraph induced by the
vertex set {v0, v1, . . . , vk} is a path.

For a graph G, a path cover is a set of vertex-disjoint paths that contain all
the vertices of G. An induced-path cover is a path cover in which every path is
an induced path of G. The induced-path cover problem is to find a minimum
number of vertex-disjoint induced-paths that contain all the vertices of G. This
minimum number is denoted by ipc(G).



326 B. Yang

2 Characterizations

In this section, we give characterizations of graphs G with fms(G) = k. We first
consider graphs that can be cleared by two searchers. For trees, we have the
following characterization.

Theorem 1. For a tree T , the following are equivalent: (i) fms(T ) ≤ 2. (ii) All
vertices of T have degree at most 3; at most two vertices have degree 3; and if T
has two vertices of degree 3, then these two vertices must be adjacent. (iii) T is
one of the graphs in Figure 1.

Fig. 1. Trees with fms ≤ 2, where edges marked by dashed lines can be replaced by a
path of length at least one

A biconnected graph G is outerplanar if it has a planar embedding in which
a single face includes all the vertices of G. The edges of that face are called
boundary edges, and the remaining edges are called chords. An outerplanar graph
is bipolar if there are two boundary edges ab and cd such that every cord has
one endpoint on the path a ∼ c and the other endpoint is on the path b ∼ d (see
Figure 2). Edges ab and cd are called polar edges and vertices a, b, c, d are called
polar vertices.

a

b

c

d

Fig. 2. A bipolar outerplanar graph with two polar edges ab and cd

Definition 1. A graph is called a ladder if it can be obtained from a bipolar
outerplanar graph by attaching at most one path on each polar vertex (if two
polar vertices coincide, then this vertex can be attached by at most two paths).



Fast-Mixed Searching on Graphs 327

Referring to Figure 4(a), a graph is called a standard ladder if it can be obtained
from a grid G2×n by attaching four edges on the four corner vertices of G2×n

respectively.

Theorem 2. For any connected graph G that is not a tree, fms(G) = 2 if and
only if G is a ladder.

Before we give a characterization of graphs G with fms(G) = k, we generalize
ladders as follows.

Definition 2. A graph G = (V,E) is called a k-ladder if k is the smallest integer
such that G can be drawn as follows: Draw k vertex-disjoint paths P1, . . . , Pk

such that ∪k
i=1V (Pi) = V and ∪k

i=1E(Pi) ⊆ E (note that Pi may have length
0). Suppose that all paths are drawn by parallel vertical straight line segments,
and let pi, 1 ≤ i ≤ k, be a moving point on Pi. Initially, each pi is on the
bottom vertex of Pi, and draw edges between the moving points if there is an
edge between them in G. Repeat the following process until all moving point are
located on the top vertices: Pick a moving point pi, 1 ≤ i ≤ k, which is not on
the top vertex of Pi, move pi up to the next vertex on Pi, and then draw edges
between pi and pj (1 ≤ j ≤ k, and j �= i) if there is an edge between them in G.

From Definitions 1 and 2, we know that a ladder is always a 2-ladder, but a
2-ladder is a ladder if it is connected and has at least one cycle.

Theorem 3. For any connected graph G, fms(G) = k if and only if G is a
k-ladder.

3 Relations to the Induced-Path Cover

In this section, we establish a relation between the fast-mixed search problem
and the induced-path cover problem.

Lemma 1. For a graph G = (V,E) that can be cleared by k searchers in an
fms-strategy S, let V1, . . . , Vk be k subsets of V such that each vertex in Vi,
1 ≤ i ≤ k, is visited by the same searcher in the fms-strategy S. Then V1, . . . , Vk

form a partition of V and each Vi induces a path.

Definition 3. In Lemma 1, each induced path G[Vi] is called an fms-path with
respect to S, and the set {G[V1], . . . , G[Vk]} of fms-paths is called an fms-path
cover of G with respect to S.

Corollary 1. For any graph G = (V,E), the number of actions in any fms-
strategy is |V |.

We now consider the subgraph induced by the vertices on any two fms-paths.
Figure 3 illustrates three families of forbidden subgraphs.



328 B. Yang

b’

a

a’

b

b’

a

a’

b

b’

a

a’

b

Fig. 3. Graphs with fms > 2, where edges marked by dashed lines can be replaced by
a path of length at least one

Theorem 4. For an fms-strategy S of a graph G that uses k searchers, k ≥ 2,
let P be an fms-path cover of G with respect to S. For any two paths P1, P2 ∈ P ,
let H be the subgraph of G induced by vertices V (P1)∪V (P2). Then the following
are equivalent: (i) H does not contain any graph in Figure 3, where a, a′ ∈ V (P1)
and b, b′ ∈ V (P2). (ii) H has one of the three patterns: (a) a forest consisting of
two disjoint paths, (b) a tree consisting of two adjacent degree-3 vertices and all
other vertices having degree one or two; and (c) a ladder.

4 Lower Bounds

In this section, we give lower bounds on the fast-mixed search number.

Lemma 2. For any graph G with � leaves, fms(G) ≥ ��/2�.

Lemma 3. Let G be a graph with components G1, . . . , Gk. Then fms(G) ≥∑k
i=1 δ(Gi), where δ(Gi) denotes the minimum vertex degree in Gi.

Lemma 4. For any graph G, fms(G) ≥ ipc(G).

The minimum number of searchers required to clear a graph G in the mixed
search model is called the mixed search number of G, denoted by ms(G). Since
every fms-strategy is also a mixed search strategy, we have the following result.

Lemma 5. For any graph G, fms(G) ≥ ms(G).

It is easy to see that the family of graphs {G : fms(G) ≤ k} is not subgraph-closed
for any integer k ≥ 1. Furthermore, the family of graphs {G: G is connected and
fms(G) ≤ k} is not subgraph-closed either for any integer k ≥ 2. Although the
fast-mixed search number of a graph may be less than that of its subgraph, we
can show that the fast-mixed search number of a graph is always greater than
or equal to that of grid subgraphs or cliques.

Corollary 2. If a graph G contains a grid Gk×� with k rows and � columns,
where 2 ≤ k ≤ �, then fms(G) ≥ k.

Corollary 3. If a graph G contains a clique Kk with k vertices, k ≥ 2, then
fms(G) ≥ k − 1.



Fast-Mixed Searching on Graphs 329

5 Relations to Fast Searching and Mixed Searching

We first consider the relationship between fast-mixed searching and fast search-
ing. The fast search number of a graph G, denoted by fs(G), is the minimum
number of searchers required to clear G in the fast search model.

On one hand, there are graphs whose fast-mixed search number is arbitrarily
bigger than their fast search number. Consider a complete bipartite graph K1,n,
where n ≥ 2. We can show that fms(K1,n) = n − 1 while fs(K1,n) = �n2 �. On
the other hand, there are graphs whose fast-mixed search number is arbitrar-
ily smaller than its fast search number. Consider the standard ladder Ln (see
Figure 4(a)). It is easy to see that fms(Ln) = 2, but fs(Ln) = n+ 2.

(b)(a)

Fig. 4. (a) A standard ladder L4 with fms(L4) = 2 and fs(L4) = 6. (b) A caterpillar
H4 with fms(H4) = 4 and ms(H4) = 2.

We now consider the relationship between fast-mixed searching and mixed
searching. From Lemma 5, we know that the fast-mixed search number is always
greater than or equal to the mixed search number for any graph. However, there
are graphs whose optimal fms-strategies look very different from their optimal
mixed search strategies. Consider a caterpillar Hn with a spine on n vertices,
n ≥ 3, such that each vertex on the spine has two pendent edges (see Figure 4(b)).
The optimal fms-strategy of Hn is to place n searchers on the bottom n leaves
and slide them to the n vertices on the spine, and then slide them to the top n
leaves. But the optimal mixed search strategy of Hn is to place a searcher on
one end vertex of the spine and move it to the other end vertex of the spine
passing through all degree-4 vertices, and meanwhile, place another searcher on
each leaf one by one. The following lemma gives a general case of the difference.

Theorem 5. Given a graph G that contains at least one edge, let G′ be a graph
obtained from G by adding two pendent edges on each vertex. Then fms(G′) =
|V (G)| and ms(G′) = ms(G) + 1.

From Theorem 5, we know that the optimal mixed search strategy of G′ can be
obtained from that of G by using an extra searcher to clear the two pendent
edges of each vertex when the vertex is occupied. However, the optimal fms-
strategy of G′ is always using |V (G)| searchers to clear the two pendent edges
on each vertex of G, which is independent of the optimal fms-strategy of G.



330 B. Yang

6 Special Classes of Graphs

First we have the following results for complete graphs, complete bipartite graphs
and grids.

Lemma 6. (i) For a complete graph Kn (n ≥ 2), fms(Kn) = n− 1.
(ii) For a complete bipartite graph Km,n (n ≥ m ≥ 2), fms(Km,n) = m+n−2.
(iii) For a grid Gk×� with k rows and � columns (2 ≤ k ≤ �), fms(Gk×�) = k.

For trees, we can show the following relation between the fast-mixed search and
the induced-path cover.

Theorem 6. For a tree T , fms(T ) = ipc(T ).

From [8], an optimal path cover of a tree can be computed in linear time. Note
that an optimal path cover of a tree is also an optimal induced-path cover of
the tree. After we obtain an optimal path cover, we can use the method on the
base of the induction used in the proof of Theorem 6 to compute an optimal
fms-strategy in linear time.

Corollary 4. For any tree, the fast-mixed search number and an optimal fms-
strategy can be computed in linear time.

For some planar graphs, the optimal fms-strategy can be very different from
both optimal mixed search strategy and the optimal induced-path cover. For
example, the planar graph G in Figure 5 can be cleared using 6 searchers in the
mixed search model, that is, using 5 searchers to clear the five rows and one more
searcher to clear all degree-2 vertices inside all columns. In the fast-mixed search
model, we can clear G using 9 searchers who clear the nine columns respectively.
For the induced-path cover of G, the five induced paths, which correspond to
the five dashed paths, contains all vertices of G.

Fig. 5. A planar graph G with ms(G) = 6, fms(G) = 9 and ipc(G) ≤ 5

We now consider cacti. A cactus is a connected graph in which any two simple
cycles have at most one vertex in common. Thus, the subgraph induced by any



Fast-Mixed Searching on Graphs 331

pair of induced paths can contain at most one cycle. From Definition 3 and
Theorem 4, we know any induced-path cover of a cactus is also an fms-path cover.
From [9], we have a linear-time algorithm to compute an induced-path cover of
a block graph with every block being a cycle. By modifying the algorithm in [9],
we can compute the fast-mixed search number of cacti in linear time.

Theorem 7. For any cactus, the fast-mixed search number and an optimal fms-
strategy can be computed in linear time.

A graph is chordal if it does not contain an induced cycle of length at least 4. A
graph is an interval graph if it is the intersection graph of a collection of intervals
on the real line. An interval graph is a special chordal graph. It is well known
that a graph G is an interval graph if and only if the maximal cliques of G can
be ordered C1, C2, . . . , Cm such that for any v ∈ V (Ci)∩V (Ck), 1 ≤ i < k ≤ m,
the vertex v is also contained in all Cj , i ≤ j ≤ k.

The fast-mixed search number can be arbitrarily larger than the induced-path
number on interval graphs. For example, for an interval graph Kn, n ≥ 2, from
Lemma 6(i), we know that fms(Kn) = n− 1, but ipc(Kn) = �n/2�.

Theorem 8. Given an interval graph G, let C1, C2, . . . , Cm be the sequence of
the maximal cliques of G such that, for any v ∈ V (Ci)∩ V (Ck), 1 ≤ i < k ≤ m,
the vertex v is also contained in all Cj, i ≤ j ≤ k. If k > 1, then

fms(G) = |V (C1)|+
m−1∑
j=1

max{|V (Cj+1)| − |V (Cj)|, 0}.

Corollary 5. For any interval graph, the fast-mixed search number and an op-
timal fms-strategy can be computed in linear time.

A graph G is a k-tree if and only if either G is a complete graph with k vertices,
or G has a vertex v such that N(v) induces a k-clique, and G− v is a k-tree. A
vertex v of a k-tree G is called simplicial if N(v) induces a k-clique.

Theorem 9. For a k-tree G with more than k vertices, if G has exactly two
simplicial vertices, then fms(G) = k.

A graph G = (V,E) is called fms-maximal if fms(G′) > fms(G) for any graph
G′ = (V,E′), where E′ is a proper superset of E

Theorem 10. Every fms-maximal graph G with fms(G) = k is a k-tree with
exactly two simplicial vertices.

Given two graphs G and H , the Cartesian product of G and H , denoted by
G�H , is the graph whose vertex set is the Cartesian product V (G) × V (H) of
the two vertex sets V (G) and V (H), and in which two vertices (u, v), (u′, v′) ∈
V (G)× V (H) are adjacent in G�H if and only if u = u′ and v is adjacent with
v′ in H , or v = v′ and u is adjacent with u′ in G. We have the following result
for the Cartesian product of two graphs.



332 B. Yang

Theorem 11. For any graphs G and H,

fms(G�H) ≤ min{|V (G)|fms(H), |V (H)|fms(G)}.

7 NP-Completeness

In this section, we will show that the fast-mixed search problem is NP-complete,
and it remains NP-complete even for graphs with maximum degree 4.

Let Gk be a graph with k “legs” as illustrated in Figure 6. We call graph Gk a
variable gadget, which corresponds to a boolean variable that appears k times in
a conjunctive normal form boolean formula. We first show a property of variable
gadgets as follows.

x

1x’2
x 2x 3 x 1

x’3
4x

x’4
x x x x 5

x’5
6

x’6x’7
78

x’8

x’

x’

Fig. 6. A variable gadget Gk with four legs (k = 4)

Lemma 7. Let Gk be a variable gadget as illustrated in Figure 6. Then fms(Gk) =
2k+1; and furthermore, for any optimal fms-strategy of Gk, if a searcher slides
from x to its neighbor, then for each leaf xi (1 ≤ i ≤ 2k) there is a searcher
sliding from x′

i to xi; and if a searcher slides to x from its neighbor, then for
each leaf xi (1 ≤ i ≤ 2k) there is a searcher sliding from xi to x′

i.

a

b’

d

c’

c

d’

b

a’

Fig. 7. A clause gadget



Fast-Mixed Searching on Graphs 333

Let Gc be a graph illustrated in Figure 7. We call graphGc a clause gadget, which
corresponds to a clause c in a conjunctive normal form boolean formula. Note that
Gc has four pairs of leaves that aremarkedusing the samepattern, i.e., solid squares,
hollow squares, solid circles and hollow circles. Gc has the following property.

Lemma 8. Let Gc be a graph as illustrated in Figure 7. Then fms(Gc) = 4 and
in any optimal fms-strategy of Gc, four searchers must be placed on two pairs of
leaves marked with the same pattern.

We now use variable gadgets and clause gadgets to show the NP-completeness
result. The reduction is similar to the one used in [3].

w1c

2c

3c

v

x

z

y

Fig. 8. The graph Gφ constructed for φ = c1 ∧ c2 ∧ c3, where c1 = (v ∨ w ∨ x ∨ y),
c2 = (v ∨ x ∨ y ∨ z) and c3 = (v ∨ w ∨ x ∨ z), where each single circle represents a leg
of a variable gadget and each double circle represents a clause gadget

Theorem 12. The fast-mixed search problem is NP-complete. It remains NP-
complete for graphs with maximum degree 4.

Proof. It is easy to see that the fast-mixed search problem is in NP. We will
show that this problem is NP-hard by a reduction from the planar positive 2-in-
4-SAT problem. From [3], we know that the planar positive 2-in-4-SAT problem
is NP-complete. An instance of the planar positive 2-in-4-SAT problem is defined
as follows. Let φ be a boolean formula in the conjunctive normal form with m
clauses {c1, . . . , cm} and n variables x1, . . . , xn such that each clause contains
exactly four variables. The incident graph of φ is the bipartite graph with vertex
set {c1, . . . , cm, x1, . . . , xn} and edge set {cixj : clause ci contains variable xj}.
φ is planar positive if it contains no negations and its incident graph is planar.
A truth assignment of φ is 2-in-4 satisfying if each clause has exactly two true
variables, and φ is 2-in-4 satisfiable if there is a 2-in-4 satisfying truth assignment.

We now construct an instance of the fast-mixed search problem. For each
clause cj, 1 ≤ j ≤ m, we construct the corresponding clause gadget Gcj such
that leaves marked using the same pattern (i.e., solid squares, hollow circles,
etc.) are corresponding to the same literal in cj (see Figure 7). For each variable
x that appears k times in φ, we construct the corresponding variable gadget Gk

x



334 B. Yang

such that leaves x2i−1 and x2i are corresponding to the i-th occurrence of the
variable x (see Figure 6). If the i-th occurrence of the variable x is in clause
cj , then we use a standard ladder to connect leaves x2i−1 and x2i to the leaves
marked using the same pattern in Gcj . For each clause gadget, all leaves become
degree-2 vertices after they are linked by four standard ladders. In polynomial
time, we can construct a graph with maximum degree 4, denoted by Gφ (see
Figure 8). We will show that the planar positive formula φ is 2-in-4 satisfiable if
and only if fms(Gφ) = n+ 4m.

Suppose that the planar positive formula φ is 2-in-4 satisfiable. Consider a 2-
in-4 satisfying truth assignment of φ. For each variable x whose value is true and
appearing k times in φ, we clear the variable gadgetGk

x by sliding a searcher from
x to x′ to clear all edges on the top row, in the mean time, sliding 2k searchers
from each leaf on the second row to clear edges on the second row, edges between
top and second rows, and edges on all legs, until each leaf xj , 1 ≤ j ≤ 2k, is
occupied by a searcher. We then slide all these 2k searchers along the standard
ladders to all clause gadgets. After we clear all variable gadgets, which correspond
to variables with true value, and all standard ladders linking to them, all clause
gadgets Gc have four searchers on two pairs of leaves marked using the same
pattern, which correspond to the two true literals. From Lemma 8, we can clear
Gc using the four searchers such that the other two pairs of leaves marked using
the same pattern are occupied when Gc is cleared. Note that these two pairs of
leaves correspond to the two false literals. Then we slide all 2k searchers along
standard ladders to all variable gadgets, which correspond to variables with false
value. Finally, we clear each false variable gadget Gk

x by sliding 2k searchers to
clear all leg edges, in the mean time, sliding a searcher from x′ to x to clear
all edges on the top row, edges on the second row, and edges between top and
second rows. Thus, we can use n+4m searchers to clear Gφ. On the other hand,
since Gφ has 2n + 8m leaves, it follows from Lemma 2 that we need at least
n+ 4m searchers to clear Gφ. Hence, fms(Gφ) = n+ 4m.

Conversely, suppose that fms(Gφ) = n+4m. Since Gφ has 2n+8m leaves, we
know that every leaf v must be associated with a searcher who either slides from
v to its neighbor or slides to v from its neighbor. Thus, it follows from Lemma 7
that each variable gadget that has k legs must be cleared by 2k+1 searchers such
that either there is a searcher sliding from x to its neighbor and there is a searcher
sliding from x′

i to xi (1 ≤ i ≤ 2k), or there is a searcher sliding to x from its
neighbor and there is a searcher sliding from xi to x′

i (1 ≤ i ≤ 2k). Furthermore,
no searcher can stay in any vertex of clause gadgets at the end of the whole
searching process. Hence, from Lemma 8, each clause gadget must be cleared
by four searchers and these four searchers must start from two pairs of leaves
marked using the same pattern and end at the other two pairs of leaves marked
using the same pattern. We can assign true to the two literals corresponding
to the two pairs of leaves with four searchers starting, and assign false to the
two literals corresponding to the two pairs of leaves with four searchers ending.
Since fms(Gφ) = n+4m, we can find a satisfying truth assignment of φ without
conflicts. Thus, φ is 2-in-4 satisfiable.



Fast-Mixed Searching on Graphs 335

From the proof of Theorem 12, we also show the following.

Corollary 6. Given a graph G with � leaves and deg(G) ≤ 4, the problem of
determining whether fms(G) = ��/2� is NP-complete.

8 Conclusions

In this paper, we introduced the fast-mixed search model, which is a combination
of the fast search model and the mixed search model. However, the fast-mixed
search number and the optimal fms-strategy can be very different from those
in fast searching and mixed searching. For example, for a complete bipartite
graph K1,n with n ≥ 2, we know that fms(K1,n) = n − 1, fs(K1,n) = �n2 � and
ms(K1,n) = 2. An obvious motivation of the new model is to capture the fugitive
using the minimum number of actions. Another motivation is that the fms-paths
of a graph G form an induced-path cover of G such that each pair of paths induce
a ladder. We gave linear-time algorithms for computing the fast-mixed search
number of some special classes of graphs such as trees, cacti and interval graphs.
We proved that the fast-mixed search problem is NP-complete. We also proved
that, given a graph G with � leaves and deg(G) ≤ 4, the problem of determining
whether fms(G) = ��/2� is NP-complete.

References

1. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algo-
rithms 12, 239–245 (1991)

2. Dyer, D., Yang, B., Yaşar, Ö.: On the Fast Searching Problem. In: Fleischer, R., Xu,
J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008)

3. Kára, J., Kratochv́ıl, J., Wood, D.: On the complexity of the balanced vertex
ordering problem. Discrete Mathematics and Theoretical Computer Science 9, 193–
202 (2007)

4. Kirousis, L., Papadimitriou, C.: Searching and pebbling. Theoretical Computer
Science 47, 205–218 (1986)

5. LaPaugh, A.: Recontamination does not help to search a graph. Journal of ACM 40,
224–245 (1993)

6. Le, H., Le, V., Ganjali, Y., Muller, H.: Splitting a graph into disjoint induced paths
or cycles. Discrete Applied Mathematics 131, 190–212 (2003)

7. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The com-
plexity of searching a graph. Journal of ACM 35, 18–44 (1988)

8. Moran, S., Wolfstahl, Y.: Optimal covering of cacti by vertex-disjoint paths. The-
oretical Computer Science 84, 179–197 (1991)

9. Pan, J., Chang, G.: Induced-path partition on graphs with special blocks. Theo-
retical Computer Science 370, 121–130 (2007)

10. Stanley, D., Yang, B.: Fast searching games on graphs. Journal of Combinatorial
Optimization 22, 763–777 (2011)

11. West, D.B.: Introduction to Graph Theory. Prentice Hall (1996)
12. Yang, B.: Fast edge-searching and fast searching on graphs. Theoretical Computer

Science 412, 1208–1219 (2011)



Inapproximability after Uniqueness Phase

Transition in Two-Spin Systems

Jin-Yi Cai1,�, Xi Chen2,��, Heng Guo1,���, and Pinyan Lu3

1 University of Wisconsin, Madison
2 Columbia University

3 Microsoft Research Asia

Abstract. A two-state spin system is specified by a matrix

A =

[
A0,0 A0,1

A1,0 A1,1

]
=

[
β 1
1 γ

]
(1)

where β, γ ≥ 0. Given an input graph G = (V,E), the partition function
ZA(G) of a system is defined as

ZA(G) =
∑

σ:V→{0,1}

∏
(u,v)∈E

Aσ(u),σ(v). (2)

We prove inapproximability results for the partition function ZA(G) in
the region specified by the non-uniqueness condition from phase transi-
tion for the Gibbs measure. More specifically, assuming NP �= RP, for
any fixed β, γ in the unit square, there is no randomized polynomial-
time algorithm that approximates ZA(G) for d-regular graphs G with
relative error ε = 10−4, if d = Ω(Δ(β, γ)), where Δ(β, γ) > 1/(1 − βγ)
is the uniqueness threshold. Up to a constant factor, this hardness result
confirms the conjecture that the uniqueness phase transition coincides
with the transition from computational tractability to intractability for
ZA(G). We also show a matching inapproximability result for a region
of parameters β, γ outside the unit square, and all our results generalize
to partition functions with an external field.

1 Introduction

Spin systems are well studied in statistical physics and applied probability. We
focus on two-state spin systems. An instance of a spin system is a graph G =
(V,E). A configuration σ : V → {0, 1} assigns to each vertex one of two states.
The contributions of local interactions between adjacent vertices are quantified
by (1), a 2× 2 matrix with β, γ ≥ 0. The partition function ZA(G) of a system
is defined by (2), and we use ω(G, σ) to denote the weight of σ:

ω(G, σ) =
∏

(u,v)∈E Aσ(u),σ(v)

� Supported by NSF CCF-0914969.
�� Supported by NSF CCF-1139915 and start-up funds from Columbia University.

��� Supported by NSF CCF-0914969.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 336–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Inapproximability after Uniqueness Phase Transition 337

Given a fixed A, we are interested in the complexity of computing ZA(G),
where G is given as an input. Many natural combinatorial counting problems
can be formulated as two-state spin systems. For example, with (β, γ) = (0, 1),
ZA(G) is exactly the number of independent sets (or vertex covers) of G. The
definition of ZA(G) in (2) can also be generalized to larger matrices A, and the
problem is known as counting (weighted) graph homomorphisms [1, 2]. On the
other hand, the so-called Ising model is the special case where β = γ.

The exact complexity of computing ZA(G) has been completely solved for any
fixed symmetric A [3–6] and even for not necessarily symmetric A
[7–12] as part of the dichotomy theorems for general counting constraint sat-
isfaction problems (#CSP). When specialized to two-state spin systems, ZA(G)
is #P-hard to compute exactly, except for the two restricted settings of βγ = 1
or β = γ = 0 for which cases ZA(G) is polynomial-time computable. Conse-
quently, the study on two-state spin systems has focused on the approximation
of ZA(G), and this is the subject of the present paper.

Following standard definitions, a fully polynomial-time approximation scheme
(FPTAS) for ZA(G) is an algorithm that, given as input a graph G as well as a
parameter ε > 0, outputs a number Z that satisfies

(1− ε) · ZA(G) ≤ Z ≤ (1 + ε) · ZA(G) (3)

in time poly(|G|, 1/ε). A fully polynomial-time randomized approximation sch-
eme (FPRAS) is a randomized algorithm that, with probability 1 − δ, outputs
a number Z satisfying (3) in time poly(|G|, 1/ε, log(1/δ)).

In a seminal paper [13] Jerrum and Sinclair gave an FPRAS for ZA(·) with
β = γ > 1. It was then further extended to the entire region of βγ > 1 by Gold-
berg, Jerrum and Paterson [14]. We call a two-state spin system ferromagnetic if
βγ > 1 and anti-ferromagnetic if βγ < 1. The approximability of ZA(·) for anti-
ferromagnetic systems is less well understood. Starting with counting indepen-
dent sets in sparse graphs [15], the approximability of ZA(·) in bounded degree
graphs is also widely studied. Significant progress has been made recently on the
algorithmic side, and approximation algorithms for anti-ferromagnetic two-state
spin systems have been developed [16–19], based on the technique of correlation
decay introduced by Bandyopadhyay and Gamarnik [20] and Weitz [16]. Finally
a unified FPTAS was found [19] to approximate ZA(·) for all anti-ferromagnetic
two-state spin systems of either bounded degree graphs or general graphs, when
the system satisfies a uniqueness condition.

The uniqueness condition is named for, and closely related to, phase transi-
tions that occur for the Gibbs measure. It depends on not only β, γ but also the
degree of the underlying graph. Such phase transitions from statistical physics
are believed to frequently coincide with the transitions of computational com-
plexity from tractability to intractability. However, there are only very few ex-
amples where this conjectured link is rigorously proved. One notable example
is for the hardcore gas model (or independent set, with β = 0 and γ = 1), for
which such a conjecture was rigorously proved (for almost all degree bounds)
both for the algorithmic side [16] and for the hardness side [21, 22]. As discussed



338 J.-Y. Cai et al.

above [16–19], for general anti-ferromagnetic two-state spin systems, the algo-
rithmic part of the conjecture has recently been established. In this paper, we
make substantial progress on the hardness part of the conjecture.

Our Results. For 0 ≤ β, γ ≤ 1 except at (β, γ) = (0, 0) and (1, 1), Goldberg,
Jerrum and Paterson proved that the problem does not admit an FPRAS for
general graphs (when there is no degree bound), unless NP = RP [14]. In their
reduction, the degrees of the hard instances are unbounded. This is consistent
with the uniqueness threshold conjecture. However, for any fixed β and γ in the
unit square, the uniqueness condition states that there exists a finite threshold
degree Δ(β, γ) [17–19], which satisfies

Δ(β, γ) >
1 +

√
βγ

1−
√
βγ

=
(1 +

√
βγ)2

1− βγ
≥ 1

1− βγ
(4)

such that the system satisfies the uniqueness condition if the degree d < Δ(β, γ)
and the non-uniqueness condition if d ≥ Δ(β, γ). The paper [19] gives an FPTAS
for graphs with degree bounded by Δ(β, γ). The conjectured coincidence of phase
transition with hardness in complexity suggests that as soon as the degree of the
input graph goes beyond Δ(β, γ), ZA(·) becomes hard to approximate. Towards
this direction, we show that for any fixed β, γ in the unit square, the problem
does not have an FPRAS if the degree of the input graph is Ω(Δ(β, γ)), unless
NP = RP. Our hardness result also holds when restricted to input graphs that
are regular. Formally, we prove the following theorem:

Theorem 1. There exists a positive constant h with the following property. For
any β, γ : 0 ≤ β, γ ≤ 1 such that (β, γ) �= (0, 0), (1, 1) and for any integer d ≥
h/(1−βγ), there is no randomized polynomial-time algorithm that approximates
ZA(G) in d-regular graphs G with relative error ε = 10−4, unless NP = RP.

Note the relation between our degree bound h/(1− βγ) and Δ(β, γ) from (4).
We also make progress on β, γ outside the unit square. While the uniqueness

condition is monotone inside the unit square, its behavior outside is significantly
different. (See more discussions on this difference in the appendix of the full
version [23].) Without loss of generality, we consider the region defined by βγ < 1
with 0 < β < 1 < γ. There is a uniqueness curve (see Figure 1), connecting the
point (1, 1) and the γ-axis. Above the curve, the system satisfies the uniqueness
condition for any graph [18, 19]. Hence, hardness is only possible below the
uniqueness curve. Furthermore, when (β, γ) is outside the unit square but below
this uniqueness curve, there is only a finite range of degrees d for which the sy-
stem does not satisfy the uniqueness condition. This makes it very challenging
to prove a hardness result for them. Previously, the hardness was only obtained
in [14] for a very tiny square 0 ≤ β ≤ η and 1 ≤ γ ≤ 1 + η where η is roughly
10−7, near (0, 1) corresponding to the hardcore gas model (independent set).

We prove the following hardness result for (β, γ) outside the unit square:

Theorem 2. Given β and γ such that 0 < β < 1, γ > 1 and βγ < 1, let



Inapproximability after Uniqueness Phase Transition 339

Uniqueness 
threshold

Βγ=1

New hardness 
region

New hardness 
region

Open 
area

Open 
area

Fig. 1. The new hardness region of Theorem 2

Δ′ =
⌈
−1
/
(ln β + ln γ)

⌉
and Δ∗ =

⌈
1
/
ln γ
⌉
. (5)

When Δ∗ ≥ 8000Δ′, there exists no randomized polynomial-time algorithm that
approximates ZA(G) in regular graphs of degree Δ∗ with relative error ε = 10−4,
unless NP = RP.

The new hardness region is pictured in Figure 1 1 above. Here the two white
squares are the hardness regions acquired by Goldberg, Jerrum, and Paterson
[14]. Beyond the uniqueness threshold, we know that FPTAS exists. Our hard-
ness result, Theorem 2, applies to the region between the vertical line with γ = 1
and the curve to the left of the uniqueness threshold. Let us describe this new
curve in more details. We focus on the region with 0 < β < 1 < γ and βγ < 1.
There is a symmetric curve for 0 < γ < 1 < β. Near the point (1, 1), the con-
dition imposed by Theorem 2 is almost linear. So the new curve is roughly a
line with slope −8000 around (1, 1). When it approaches the line of β = 0, Δ′

becomes 1 and the condition requires γ to be between 1 and roughly 1+1/8000.
Moreover, using a standard translation (see the appendix of the full version

[23]), we can generalize both Theorem 1 and 2 to two-state spin systems with
an external field. Formally, let μ ≥ 0, we have the following two corollaries for

ZA,μ(G) =
∑

σ:V →{0,1}
μ

∣∣{v∈V :σ(v)=0}
∣∣ ∏
(u,v)∈E

Aσ(u),σ(v).

1 The reader should be aware that, for illustration purposes, the picture is not drawn
to actual scale.



340 J.-Y. Cai et al.

Corollary 1. There is a positive constant h with the following property. Given
any non-negative β, γ and μ with βγ < 1, if d is a positive integer that satisfies
γ ≤ μ

1
d ≤ 1/β and d ≥ h/(1− βγ), then there exists no randomized polynomial-

time algorithm that approximates ZA,μ(G) in d-regular graphs with relative error
ε = 10−4, unless NP = RP.

Corollary 2. Given any non-negative β, γ, μ and a positive integer d such that

e
1
d ≤ γ · μ− 1

d < e
1

d−1 or e
1
d ≤ β · μ 1

d < e
1

d−1 ,

if d also satisfies d ≥ 8000 �−1/(lnβ + ln γ)�, then there is no randomized poly-
nomial-time algorithm that approximates ZA,μ(G) in d-regular graphs with rela-
tive error ε = 10−4, unless NP = RP.

Proof Outline. In the proofs of both Theorem 1 and Theorem 2, we use the
phase transition that occurs in the non-uniqueness region to encode a hard-to-
approximate problem. This approach has been used in previous hardness proofs
for the hardcore gas model [15, 21, 24]. To this end, we reduce the approximation
of E2LIN2 to the approximation of partition function in a two-state spin system.
Here an instance of E2LIN2 consists of a set of variables x1, . . . , xn and a set
of equations of the form xi + xj = 0 or 1 over Z2. From [25], it is NP-hard to
approximate the number of satisfiable equations for E2LIN2 within any constant
factor better than 11/12.

Given an E2LIN2 instance with variables x1, . . . , xn, we use a random bipar-
tite regular graph to encode each variable xi. Due to the phase transition and
the fact that we are in a non-uniqueness region, each of these bipartite regular
graphs would be in one of two types of configurations with high probability, if
sampled proportional to its weight in the partition function. This can be used to
establish a correspondence between the configurations of these bipartite graphs
and the assignment of the n boolean variables x1, . . . , xn. Furthermore, we also
add external connections between the random bipartite graphs according to the
set of equations in the E2LIN2 instance. They contribute exponentially to the
total weight in the partition function, according to the total number of equations
that an assignment satisfies. Thus, a sufficiently good approximation to the par-
tition function can be used to decode approximately the maximum number of
equations that an assignment can satisfy.

Our gadget is also randomly constructed, so the probability should also be
over the distribution of the gadgets. It is not hard to show that things work out
beautifully if we simply substitute the expectation for the actual weight. But to
make the proof rigorous, one must first obtain a sufficiently good concentration
result. Such a result is unknown and could be very difficult to prove (assuming
it is true), as it is already a tour-de-force in the special case for the hardcore gas
model [21, 22, 24].

Instead, we use a detour: (1) We prove a lower bound for the weights of the
two types of configurations we expect, guided by the phase transition; and (2)
We prove that the total weight of other configurations is exponentially smaller
compared to the lower bound proved in (1), with probability exponentially close



Inapproximability after Uniqueness Phase Transition 341

to 1. The way we establish the lower bound in (1) is similar to the approach of
Dyer, Frieze, and Jerrum [15]. To prove (2), they [15] used the expectation and
Markov’s inequality. If we use the same approach, we could not get the hardness
result for bounded degree graphs in the same order of the uniqueness bound.
Instead, we use a new approach for (2).

Indeed we first show a high concentration result for an expander property of
the gadgets we use. Then we show that the total weight of other configurations
must be exponentially small, given that the gadgets satisfy that property. This
circumvented our inability to prove a complete concentration result. But we do
need to prove some limited concentration results regarding the random gadget.
This then led us to the hardness results for degrees in the right order conjectured
according to the uniqueness threshold. It remains open whether one can use a
refined version of this reduction along with the proof by Sly [21] to get the exact
right bound. As discussed in the appendix of the full version [23], this random
regular graph follows quite closely the property of phase transition in infinite
d-ary trees, when the parameter is below or beyond the uniqueness condition.

While the high-level idea of our proofs for both Theorem 1 and Theorem 2
are quite clear and similar, it remains a challenge to work out the estimation for
all ranges of parameters and at the same time, make sure that the degree is in
the same order of the uniqueness bound. To this end, technically we need to use
very different approaches for Theorem 1 and Theorem 2. Even within Theorem
1 itself, we need to do the estimation differently for three different subcases.

2 Proof of the Main Theorems

From now on, we will use Z(G) to denote ZA(G) whenever it is clear from the
context. Given positive integers N and Δ, we use H(N,Δ) to denote the follow-
ing probability distribution of Δ-regular bipartite graphs H = (U ∪ V,E) with
bipartition U, V and |U | = |V | = N : H is the union of Δ perfect matchings be-
tween U and V each selected independently and uniformly at random. (Because
these perfect matchings are drawn independently, H may have parallel edges.)

In the proofs of both Theorem 1 and 2, we give a polynomial-time reduction
from E2LIN2 to the approximation of Z(G). An instance of E2LIN2 consists of
m equations over Z2 in n variables x1, . . . , xn. Each equation has exactly two
variables and is of the form xi + xj = b ∈ {0, 1}. Without loss of generality we
may always assume m ≥ n/2; otherwise one of the variables does not appear in
any equation. Given an assignment S of the n variables x1, . . . , xn, we use θ(S)
to denote the number of equations that S satisfies and let θ∗ = maxS θ(S). In
[25] H̊astad showed that it is NP-hard to estimate θ∗ within any constant factor
better than 11/12.

Given an E2LIN2 instance, we construct a random (Δ+Δ′)-regular graph G
as follows, with the two parameters Δ,Δ′ to be specified later. This construction
is used in the proofs of both Theorem 1 and 2:

Construction of G from an instance of E2LIN2. For each variable xi,
i ∈ [n], we let Ui and Vi denote two sets of dim vertices each, where di ≥ 1



342 J.-Y. Cai et al.

denotes the number of equations in which xi appears (thus,
∑

i di = 2m).
Moreover, Ui and Vi can be decomposed into

Ui = Ui,1 ∪ · · · ∪ Ui,di and Vi = Vi,1 ∪ · · · ∪ Vi,di

where each Ui,k and Vi,k contains exactly m vertices. Now enumerate all
the m equations in the E2LIN2 instance one by one. For each of the m
equations do the following:

(1) Let xi + xj = b ∈ {0, 1} denote the current equation. Assume
this is the kth time that xi appears in an equation, and the �th
time that xj appears in an equation so far, where k ∈ [di] and
� ∈ [dj ]. Denote the m vertices in Ui,k by {u1, . . . , um}, vertices in
Vi,k by {v1, . . . , vm}, vertices in Uj,� by {u′

1, . . . , u
′
m} and vertices in

Vj,� by {v′1, . . . , v′m}. All these vertices have degree 0 at this
moment. If b = 0, we add Δ′ parallel edges between (us, v

′
s) and

(vs, u
′
s), for each s ∈ [m]; or if b = 1, we add Δ′ parallel edges

between (us, u
′
s) and (vs, v

′
s), for each s ∈ [m].

By the end of this step, every vertex has degree Δ′. In the next step,

(2) For each i ∈ [n], we add a bipartite graph Hi = (Ui ∪ Vi, Ei)
drawn from H(dim,Δ).

This finishes the construction and we get a (Δ+Δ′)-regular graph G with 4m2

vertices.
We need the following notation. Given an assignment σ : V (G) → {0, 1}, we

use Ui(σ) to denote the number of vertices u ∈ Ui with σ(u) = 0, and use Vi(σ)
to denote the number of v ∈ Vi with σ(v) = 0.

Proof (of Theorem 1). Without loss of generality, assume β, γ : 0 ≤ β ≤ γ ≤ 1.
We can also assume β > 0, as the tight hardness to the exact uniqueness bound
for β = 0 has been shown in [18], by generalizing the tight hardness result for
the hardcore model [21, 22].

Given an assignment S of the n variables, we let Z(G,S) denote the sum of
ω(G, σ) over assignments σ : V (G)→ {0, 1} that satisfy for each i ∈ [n],

Ui(σ) ≤ Vi(σ) if xi = 0 in S; or Ui(σ) ≥ Vi(σ) if xi = 1 in S. (6)

From definition we have Z(G,S) ≤ Z(G) ≤
∑

S Z(G,S). We need the following
key lemma. Its proof can be found in the full version [23]:

Lemma 1. There exists a positive constant h with the following property: For
any β and γ : 0 < β ≤ γ ≤ 1 with (β, γ) �= (1, 1) and for any Δ∗ ≥ h

/
(1 − βγ),

there are D > 1, C > 0 and positive integers Δ and Δ′ with Δ + Δ′ = Δ∗,
that satisfy the following property: given any input instance of E2LIN2 with n
variables x1, . . . , xn and m equations, except for probability ≤ exp(−Ω(m)), the
Δ∗-regular graph G constructed with parameters Δ and Δ′ satisfies



Inapproximability after Uniqueness Phase Transition 343

Cm2 ·Dmθ(S) ≤ Z(G,S) ≤ Cm2 ·Dm
(
θ(S)+0.03m

)
, (7)

for any assignment S of the n variables.

Given β, γ and Δ∗, we let C, D, Δ and Δ′ denote the constants that satisfy the
condition in Lemma 1. Then given an input instance of E2LIN2, (7) holds with
probability 1− exp(−Ω(m)).

Now assume (7) holds. We use θ∗ to denote the maximum number of consistent
equations and use S∗ to denote an assignment that satisfies θ∗ equations. We
also use Y to denote an estimate of Z = Z(G), where |Y/Z − 1| ≤ ε = 10−4.
From (7) and Z(G,S∗) ≤ Z(G) ≤

∑
S Z(G,S), we get

(1 + ε) · 2n · Cm2 ·Dm(θ∗+0.03m) ≥ Y ≥ (1− ε) · Cm2 ·Dmθ∗
(8)

Using Y , we set

Y ′ =
lnY − ln(1 + ε)− n ln 2−m2 lnC − 0.03m2 lnD

m lnD

and we get Y ′ ≤ θ∗ since lnD > 0. We finish the proof by showing that Y ′ >
(11/12) · θ∗. By (8) we get

Y ′ ≥ θ∗ − ln(1 + ε)− ln(1− ε) + n ln 2 + 0.03m2 lnD

m lnD

As θ∗ ≥ m/2 and m ≥ n/2, when m is large enough, Y ′ > (11/12) · θ∗ and the
theorem is proven.

Next, we prove Theorem 2:

Proof (of Theorem 2). For β, γ with 0 < β < 1 < γ and βγ < 1, let Δ′ and
Δ∗ be the two positive integers defined in (5) which satisfy Δ∗ ≥ 8000Δ′. We
set Δ = Δ∗ −Δ′. Given any input instance of E2LIN2 with n variables and m
equations, we let G denote the Δ∗-regular graph constructed using Δ and Δ′.

First we show that to get a good approximation of Z(G), with high probabi-
lity it suffices to sum ω(G, σ) only over assignments σ satisfying the following:

min
(
Ui(σ), Vi(σ)

)
≤ λdim, for all i ∈ [n], where λ = 9× 10−5. (9)

We let Σ denote the set of all such assignments. Formally we prove the following
key lemma in Section 3:

Lemma 2. Let G be the graph constructed from an E2LIN2 instance with n var-
iables x1, . . . , xn and m equations, with parameters Δ,Δ′. Then with probability
1− exp(−Ω(m1/3)), it satisfies∑

σ∈Σ

ω(G, σ) ≤ Z(G) ≤
(
1 + o(1)

)
·
∑
σ∈Σ

ω(G, σ). (10)



344 J.-Y. Cai et al.

Next, given an assignment S over the n variables we use ZΣ(G,S) to denote the
sum of ω(G, σ) over all assignments σ ∈ Σ that satisfy (6) for all i ∈ [n]. We
prove the following lemma in the full version [23]:

Lemma 3. There are C > 0 and D > 1 satisfying the following property: given
any instance of E2LIN2 with n variables and m equations, the Δ∗-regular graph
G constructed with parameters Δ and Δ′ satisfies

Cm2 ·Dmθ(S) ≤ ZΣ(G,S) ≤ Cm2 ·Dm
(
θ(S)+0.04m

)
, (11)

for any assignment S of the n variables.

Let θ∗ ≥ m/2 denote the maximum number of consistent equations, and let S∗

denote an assignment that satisfies θ∗ equations. From these two lemmas we
have with high probability that

Cm2 ·Dmθ∗ ≤ ZΣ(G,S∗) ≤ Z(G) ≤
(
1 + o(1)

)
·
∑

S
ZΣ(G,S)

≤
(
1 + o(1)

)
· 2n · Cm2 ·Dm(θ∗+0.04m)

Theorem 2 then follows from the same argument used in Theorem 1.

3 Proof of Lemma 2

Recall that β and γ satisfy β, γ : 0 < β < 1 < γ and βγ < 1. Let Δ′ and Δ∗ be
the two positive integers defined in Theorem 2, with Δ∗ ≥ 8000Δ′. From their
definitions, we have (βγ)Δ

′ ≤ 1/e and γΔ∗ ≥ e. Set Δ = Δ∗ −Δ′ ≥ 7999Δ′ ≥
7999. By the definition of Δ∗, we have e > γΔ∗−1 ≥ γΔ and thus, γ < 1.001.

Given an E2LIN2 instance with n variables x1, . . . , xn and m equations, we
use G to denote the Δ∗-regular graph constructed with parameters Δ and Δ′,
where Δ∗ = Δ+Δ′. We let Hi denote the bipartite graph in G that corresponds
to xi and use Ui ∪ Vi to denote its vertices, with |Ui| = |Vi| = dim.

Before working on G and Hi, we start by proving a property that a biparti-
te graph sampled from the distribution H(N,Δ) satisfies with very high proba-
bility. Let H be a bipartite graph drawn from H(N,Δ) for some N ≥ 1 and Δ
defined above, with 2N vertices U ∪V . We also use ρ : U ∪V → {0, 1} to denote
an assignment and call it an (a, b)-assignment for some a, b ∈ TN , where

TN =
{
0, 1/N, 2/N, . . . , (N − 1)/N, 1

}
if |u ∈ U : ρ(u) = 0 | = aN and |v ∈ V : ρ(v) = 0 | = bN . We also use IN (a, b),
where a, b ∈ TN , to denote the set of all such (a, b)-assignments, and let

Za,b(H) =
∑

ρ∈IN (a,b)

ω(H, ρ) · γΔ′(2−a−b)N (12)

with Δ′ as defined above. We are interested in the expectation of Za,b(H) when
min(a, b) ≥ λ = 9× 10−5:



Inapproximability after Uniqueness Phase Transition 345

Lemma 4. For large enough N and a, b ∈ TN such that min(a, b) ≥ λ, we have

EH←H(N,Δ)

[
Za,b(H)

]
≤ exp

(
1.21 ·N

)
.

The proof of Lemma 4 can be found in the full version [23]. By Lemma 4 we
can impose the following condition on the graph G constructed from the input
instance of E2LIN2: For all i ∈ [n] and all a, b ∈ Tdim with min(a, b) ≥ λ,

Za,b(Hi) ≤ exp
(
1.22 · dim

)
. (13)

Using Lemma 4, Markov’s inequality and the union bound, it is easy to show
that G satisfies this condition with probability 1− exp(−Ω(m)).

In the rest of the proof, we prove that G satisfies (10) whenever it satisfies
(13). Lemma 2 then follows immediately.

We assume that G satisfies (13). Then to prove (10), we randomly sample an
assignment σ with probability proportional to ω(G, σ). (10) follows if we can
show that σ satisfies (9) with probability 1− o(1). For this purpose we need the
following lemmas that give us properties that σ satisfies with high probability.
Given any set L of vertices in G, we let

Nσ(L) =
{
v ∈ L : σ(v) = 0

}
.

Also recall the definition of Ui,k and Vi,k in the construction of G. Let xi be a
variable and let k ∈ [di], then we have

Lemma 5. Let σ be an assignment drawn according to its weight. Then for any
i ∈ [n] and any k ∈ [di], except for probability exp(−Ω(m1/3)), we have∣∣Nσ(Ui,k)

∣∣ < 1

1 + e
·
(
1 +m−1/3

)
·
∣∣Ui,k

∣∣.
Proof. Pick any partial assignment σ′ over vertices of G except those in Ui,k.
Conditioned on σ′, it is easy to see that the values of vertices in Ui,k are inde-
pendent. Each vertex in Ui,k has Δ+Δ′ neighbors, each of which contributes a
vertex weight of either β or 1 if it is assigned 0, and either 1 or γ if it is assigned
1. Since γ < 1/β, the total weight for assignment 1 is at least γΔ+Δ′ ≥ e times
the weight for assignment 0. The lemma follows from the Chernoff bound.

Given an assignment σ, we use σi to denote its restriction over vertices in Hi,
and σ−i to denote its partial assignment over vertices in G except Hi. We let
Mσ−i(Ui) denote the subset of Ui whose unique neighbor outside of Hi is assigned
1. Using Lemma 5 and the union bound, we have

Corollary 3. Let σ be an assignment drawn according to its weight. Except for
probability exp(−Ω(m1/3)), we have

∣∣Mσ−i(Ui)
∣∣ ≥ ( e

1 + e
−O
(
m−1/3

))
·
∣∣Ui

∣∣, for all i ∈ [n]. (14)



346 J.-Y. Cai et al.

It is also clear that Lemma 5 and Corollary 3 also hold for Vi,k and Vi, respec-
tively, by symmetry. Now we are ready to prove Lemma 2. Let σ = (σi, σ−i)
be an assignment drawn from this distribution. Recall the definition of Σ below
(9). Then by Corollary 3 we have

Pr
[
σ /∈ Σ

]
≤ exp(−Ω(m1/3)) + (15)

Pr
[
σ /∈ Σ

∣∣ σ−i satisfies (14) for both Ui and Vi and for all i ∈ [n]
]

To prove an upper bound for (15) we fix σ−i to be any partial assignment over
the vertices of G except those of Hi, which satisfies (14) for both Ui and Vi. Then
it suffices to prove that the sum of ω(G, σ) over all σ ∈ Σ that are consistent
with σ−i, denoted by Z1, is exponentially larger than the sum of ω(G, σ) over
all σ /∈ Σ that are consistent with σ−i, denoted by Z2.

Let ω(σ−i) denote the product of the edge weights in σ−i over all edges that
have no vertex in Hi. By the definition of Za,b(H) in (12), we have

Z2 ≤ ω(σ−i)
∑

a,b∈Tdim
: a,b≥λ

Za,b(Hi) ≤ ω(σ−i) · (dim)2 · exp
(
1.22 · dim

)
(16)

where the second inequality follows from (13). To get a lower bound for Z1, let

L =
∣∣Mσ−i(Ui)

∣∣ and R =
∣∣Mσ−i(Vi)

∣∣.
Consider all the σ that are consistent with σ−i and Ui(σ) = 0. This gives us

Z1 ≥ ω(σ−i) · γΔ′L · (1 + γΔ+Δ′
)R · (βΔ′

+ γΔ)dim−R.

Plugging in γΔ+Δ′ ≥ e, γΔ ≥ e7999/8000 and the lower bound in (14), we get

Z1 ≥ ω(σ−i) · exp
(
1.22897 · dim

)
and the lemma follows from (16).

References

1. Lovász, L.: Operations with structures. Acta Mathematica Hungarica 18, 321–328
(1967)

2. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)
3. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. In:

Proceedings of the 9th International Conference on Random Structures and Algo-
rithms, pp. 260–289 (2000)

4. Bulatov, A., Grohe, M.: The complexity of partition functions. Theoretical Com-
puter Science 348(2-3), 148–186 (2005)

5. Goldberg, L., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for
partition functions with mixed signs. SIAM Journal on Computing 39(7), 3336–
3402 (2010)

6. Cai, J.Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A di-
chotomy theorem. In: Proceedings of the 37th Colloquium on Automata, Languages
and Programming (2010); To appear in SIAM Journal on Computing



Inapproximability after Uniqueness Phase Transition 347

7. Dyer, M., Goldberg, L., Paterson, M.: On counting homomorphisms to directed
acyclic graphs. Journal of the ACM 54(6) (2007)

8. Cai, J.Y., Chen, X.: A decidable dichotomy theorem on directed graph homo-
morphisms with non-negative weights. In: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science, pp. 437–446 (2010)

9. Bulatov, A.: The complexity of the counting constraint satisfaction problem. In:
Proceedings of the 35th International Colloquium on Automata, Languages and
Programming, pp. 646–661 (2008)

10. Dyer, M., Richerby, D.: On the complexity of #CSP. In: Proceedings of the 42nd
ACM Symposium on Theory of Computing, pp. 725–734 (2010)

11. Cai, J.Y., Chen, X., Lu, P.: Non-negatively weighted #CSP: An effective complex-
ity dichotomy. In: Proceedings of the 26th Annual IEEE Conference on Computa-
tional Complexity, pp. 45–54 (2011)

12. Cai, J.Y., Chen, X.: Complexity of counting CSP with complex weights. In: Pro-
ceedings of the 44th ACM Symposium on Theory of Computing (2012)

13. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the ising
model. SIAM Journal on Computing 22(5), 1087–1116 (1993)

14. Goldberg, L., Jerrum, M., Paterson, M.: The computational complexity of two-
state spin systems. Random Structures and Algorithms 23(2), 133–154 (2003)

15. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs.
SIAM Journal on Computing 31, 1527–1541 (2002)

16. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, pp. 140–149 (2006)

17. Sinclair, A., Srivastava, P., Thurley, M.: Approximation algorithms for two-state
anti-ferromagnetic spin systems on bounded degree graphs. In: Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (2012)

18. Li, L., Lu, P., Yin, Y.: Approximate counting via correlation decay in spin sys-
tems. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (2012)

19. Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems.
arXiv:1111.7064 (2011)

20. Bandyopadhyay, A., Gamarnik, D.: Counting without sampling: Asymptotics of
the log-partition function for certain statistical physics models. Random Structures
and Algorithms 33, 452–479 (2008)

21. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of
the IEEE 51st Annual Symposium on Foundations of Computer Science (2010)

22. Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved inapproxima-
bility results for counting independent sets in the hard-core model. In: Proceedings
of the 15th International Workshop on Randomization and Computation, pp. 567–
578 (2011)

23. Cai, J.Y., Chen, X., Guo, H., Lu, P.: Inapproximability after uniqueness phase
transition in two-spin systems. University of Wisconsin, Madison CS Technical
Report (2011), http://digital.library.wisc.edu/1793/61488

24. Mossel, E., Weitz, D., Wormald, N.: On the hardness of sampling independent sets
beyond the tree threshold. Probability Theory and Related Fields 143, 401–439
(2009)

25. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48, 798–
859 (2001)

http://digital.library.wisc.edu/1793/61488


Dynamic Programming for a Biobjective Search

Problem in a Line

Lúıs Paquete1, Mathias Jaschob2, Kathrin Klamroth2, and Jochen Gorski2

1 CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
paquete@dei.uc.pt

2 Department of Mathematics and Natural Sciences,
University of Wuppertal, Germany
klamroth@math.uni-wuppertal.de

Abstract. In this article we study the performance of multiobjective
dynamic programming for a biobjective combinatorial optimization prob-
lem under several formulations. Based on our theoretical and computa-
tional results we argue that a clever definition of the recursion, allowing
for strong dominance criteria, is crucial in the design of a multiobjective
dynamic programming algorithm.

Keywords: Multiobjective combinatorial optimization, dynamic pro-
gramming, shortest path problems, knapsack problems.

1 Introduction

Motivated by search applications like, for example, the recent search for the
location of the Air France flight AF 447 underwater wreckage [12], we consider
biobjective search problems aiming at the simultaneous maximization of the
success probability and minimization of the search time. We assume that the
search space is partitioned into square or rectangular cells and is equipped with
a probability map. In this situation we consider the problem of planning a mission
of an autonomous vehicle like, for example, an autonomous underwater vehicle
(AUV) for detecting an underwater wreckage. We assume that the search is
performed along lines, and that each line is partitioned into several segments
having known success rates (or scores) according to the underlying probability
map [6,11]. Note that even though this is a common approach in practical search
applications, it is a simplifying assumption which a priori excludes more complex
search patterns. Sodhi et al. [11] gives a continuous formulation of this problem
that can be solved analytically; to the knowledge of the authors, our model is
the first discrete formulation of this problem.

In a mission, the AUV starts from its mother ship at one end of the line,
and travels along the line back and forth while scanning in a subset of the given
segments. The objective is to find those missions that maximize the score and at
the same time minimize the total travel time, where we assume that the travel
time of an AUV is longer when scanning the seabed than without a scan. It is
easy to see that we only need to consider missions having exactly one turning

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 348–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Dynamic Programming for a Biobjective Search Problem in a Line 349

point, and that the AUV performs a scan on the last (furthest) segment, i.e., it
does not travel further than necessary.

In Section 2, we provide three equivalent formulations of the biobjective search
problem in a line (BSPL) and prove intractability and NP-completeness of BSPL.
The first two models are integer linear programming formulations with different
constraint sets. This formulation is closely related to the 0-1 knapsack problem
and is explored for the complexity proof in this article. The third model utilizes
the equivalence to a biobjective shortest path problem. Dynamic programming
formulations are presented for all three models in Section 3, and numerical re-
sults comparing the different approaches are described in Section 4. Our results
indicate that the computational efficiency of multiobjective dynamic program-
ming is to a large extent determined by the strength of the applied dominance
operator. The paper is concluded in Section 5 with a short summary and some
research ideas.

2 Problem Formulations

We define an instance of the BSPL by a quadruple (n, a, b, s), where n ∈ N =
{0, 1, 2, . . .} is the number of line segments, ai ∈ N is the time to travel through
and search in segment i, bi ∈ N is the time to travel through segment i, and
si ∈ N is the score when searching in segment i, for i = 1, . . . , n. We assume
that n > 2 (the cases n = 1, 2 are trivial), ai > bi > 0 and si ≥ 0, i = 1, . . . , n.
In the following we describe three possible formulations of this problem.

2.1 Formulation (BSPL-1)

We introduce the first integer linear programming formulation as follows:

min T (x, z) =

n∑
i=1

(ai − bi)xi + 2bizi

max S(x) =

n∑
i=1

sixi

s.t. zi ≥ xi, i = 1, . . . , n
zi ≥ zi+1, i = 1, . . . , n− 1

xi, zi ∈ {0, 1}, i = 1, . . . , n .

The agent (for example, an AUV) perfoms a search in segment i if xi = 1,
otherwise, xi = 0, and it travels through segment i if zi = 1, otherwise, zi =
0. Hence, travelling through segment i yields time 2bi and null score whereas
searching in segment i yields time ai + bi and score si. (Note that this contains
the return trip on which no search is performed.) The first class of constraints
zi ≥ xi ensures that the agent travels through a segment i when it is searching
in it. The second class of constraints zi ≥ zi+1 ensures that the agent has to
travel through segments 1, . . . , i− 1 in order to travel through segment i.



350 L. Paquete et al.

Let X denote the set of feasible solutions according to Formulation (BSPL-1).
We will mention that a pair (x, z) ∈ X is a mission. The image of X in the time-
score objective space is denoted by Y ⊆ N2. We say that a mission (x, z) domi-
nates another mission (x′, z′) if and only if T (x, z) ≤ T (x′, z′) and S(x) ≥ S(x′),
with at least one strict inequality; if strict inequality holds for both objectives,
then (x, y) strictly dominates (x′, z′). If there is no mission that dominates (x, z),
then we say that (x, z) is an efficient mission; in case there exists no mission
that strictly-dominates (x, z), then this mission becomes weakly efficient. The
set of all efficient missions is denoted by XE. An efficient mission is called sup-
ported efficient, if it is a minimizer of a non-trivial weighted sum problem with
the objectives T (x, z) and −S(x). We say that y ∈ Y is nondominated if there
is some efficient mission (x, z) ∈ XE such that y = (T (x, z), S(x)), according
to Formulation (BSPL-1). We denote the set of all nondominated vectors, the
nondominated set, by Y ND. We refer to [5] for a more detailed introduction to
multiobjective optimization.

2.2 Formulation (BSPL-2)

The second formulation of BSPL reduces the set of feasible missions in the
formulation above, since there may exist missions where the agent travels further
than necessary, as shown in the following example.

Example 1. Let (n, a, b, s) denote an instance according to Formulation (BSPL-1)
with n=3. Then (x, z)=((1, 1, 0), (1, 1, 0)) dominates (x′, z′)=((1, 1, 0), (1, 1, 1)).

Therefore, we only need to consider a subset of missions whose last segment
to be searched in coincides with the last segment to be travelled through. Let
�z := max{0, i | zi = 1, i = 1, . . . , n} denote the index of the last segment the
agent is travelling through. The feasible set of this new formulation is defined as
follows

X := {(x, z) ∈ X | �z < n, x�z = 1 and zk = 0 for �z < k ≤ n}
∪ {(x, z) ∈ X | �z = n, x�z = 1} .

We extend Formulation (BSPL-1) with the following set of constraints:

j∑
i=1

zi ≤ j − 1 +

n∑
i=j

xi, j = 1, . . . , n.

The nondominated set is denoted by Y
ND

. The following result establishes the
relation between the two formulations.

Lemma 1. If mission (x, z) ∈ X \X, then there exists a mission (x′, z′) ∈ X,
such that T (x′, z′) < T (x, z) and S(x′, z′) ≥ S(x, z).

Proof. It holds that bi > 0, i = 1, . . . , n. �
From Lemma 1, we state the following equality.

Theorem 1. Y
ND

= Y ND.



Dynamic Programming for a Biobjective Search Problem in a Line 351

1

3

2 4

5

2n−2

2n−1

2n 2n+1

(a1, s1)

(b1, 0) (b2, 0)

(a2, s2)

(a2, s2)

(b2, 0)

(an, sn)
(∑n

i=1 bi, 0
)

(an, sn)

(0, 0)

(b1, 0)

(b1 + b2, 0)

(∑n−1
i=1 bi, 0

)

Fig. 1. The network of Formulation (BSPL-3)

2.3 Formulation (BSPL-3)

The third formulation recasts Formulation (BSPL-2) as a biobjective shortest
path problem [7]. Let (n, a, b, s) be an instance of BSPL. Let G be a network with
vertex set V = {1, 2, . . . , 2n+ 1}, arc set A and weight function w = (wt, ws) :
A→ N2, representing time and score, respectively. The weight function for each
arc in G, for n > 1, is defined as follows. Let ci := ci−1 + bi, for i = 1, . . . , n and
c0 := 0; for the outgoing arcs of odd nodes 3, 5, . . . , 2n− 3:

w(2i − 1, 2i) := (ai, si) , w(2i − 1, 2i+ 1) := (bi, 0) ,

for i = 1, . . . , n− 1; for the outgoing arcs of even nodes 2, 4, . . . , 2n− 2, n > 2:

w(2i−2, 2i) := (ai, si) , w(2i−2, 2i+1) := (bi, 0) , w(2i−2, 2n+1) := (ci−1, 0) ,

for i = 2, . . . , n− 1; for the remaining arcs:

w(2n− 2, 2n) = w(2n− 1, 2n) := (an, sn) ,

w(2n− 2, 2n+ 1) := (cn−1, 0) , w(2n, 2n+ 1) := (cn, 0) .

Figure 1 illustrates the resulting network, where each mission (x, z) ∈ X corre-
sponds to a directed path from node 1 to node 2n+1. We will identify a directed
path p from node 1 to node 2n + 1 in G both by a sequence of arcs and by a
sequence of nodes. Note that the agent searches in a segment when an even node
is used whereas it travels through it when an odd node is used. Hence, the third
formulation is as follows:

min TG(p) =
∑
α∈p

wt(α)

max SG(p) =
∑
α∈p

ws(α)

s.t. p ∈ P



352 L. Paquete et al.

where P denotes the set of all directed paths from node 1 to node 2n + 1 and
α ∈ p denotes an arc in path p. We will denote the nondominated set by Y ND

G .
We state the equivalence between Formulations (BSPL-2) and (BSPL-3) in the
following theorem.

Theorem 2. Y ND
G = Y

ND
.

Proof. Let (x, z) = (0,0) and p = (1, 2n + 1). Then, T (x, z) = TG(p) = 0 and
S(x) = SG(p) = 0. For the remaining cases, we prove the following statements:

Y ND
G ⊇ Y

ND
: For a given (x′, z′) ∈ X , let k :=

∑n
i=1 z

′
i ≥ 1. Define a directed

path q = (1, v1, . . . , vk, 2n+ 1) by setting vi := 2i if x′
i = 1 and vi := 2i+ 1

if x′
i = 0, for i = 1, . . . , k. By construction TG(q) = T (x′, z′), SG(q) = S(x′),

and q ∈ P hold.

Y ND
G ⊆ Y

ND
: Let q ∈ P \ {p}. Then, q = (1, v1, . . . , vk, 2n+1) for some k ≥ 1.

Set x̄′
i := 1 if vi = 2i and x̄′

i := 0 if vi = 2i+ 1, for i = 1, . . . , k, and x̄′
i := 0

for i = k + 1, . . . , n. By construction T (x̄′, z̄′) = TG(q), S(x̄
′) = SG(q) and

(x̄′, z̄′) ∈ X hold.

�

2.4 Complexity Results

In the following, we show that the problem is intractable (see [5]).

Theorem 3. Sets Y ND, Y
ND

and Y ND
G can be exponentially large in n.

Proof. Given Theorems 1 and 2, we only need to show it for Y
ND

. We give

an instance (n, a, b, s) for which |Y ND| = 2n. Let ai := n2i+1, bi := 1, and
si := 2i−1, for i = 1, . . . , n. Let X := {(xj , zj)}2nj=1, for which it holds that∑n

i=1 2
i−1xj

i = j − 1. Hence, there is a one-to-one correspondence between ele-
ments in X and integers 0, 1, . . . , 2n − 1. Then, the following holds:

S(xj) =

n∑
i=1

six
j
i =

n∑
i=1

2i−1xj
i = j − 1

T (xj , zj) =

n∑
i=1

aix
j
i − bix

j
i + 2biz

j
i = 4n(j − 1) +

n∑
i=1

2zji − xj
i .

Since the following inequalities hold

0 ≤
n∑

i=1

2zji − xj
i ≤ 2n,

for j = 1, . . . , 2n, we have that S(xj) < S(xj+1) and T (xj, zj) < T (xj+1, zj+1),
j = 1, . . . , 2n − 1. Hence, all elements in X are nondominated. �



Dynamic Programming for a Biobjective Search Problem in a Line 353

In addition, we show that Formulation (BSPL-1) is also NP-complete. We intro-
duce the decision version according this formulation.

Definition 1. (Decision version of Formulation (BSPL-1)) For given n > 2, T ,
S ∈ N and a, b, s ∈ Nn satisfying ai > bi > 0, si ≥ 0, i = 1, . . . , n, does there exist
x, z ∈ {0, 1}n with zi ≥ xi, i = 1, . . . , n, and zi+1 ≥ zi, i = 1, . . . , n− 1, such that

n∑
i=1

(ai − bi)xi + 2bizi ≤ T and

n∑
i=1

sixi ≥ S ?

We introduce the decision version of the 0-1 knapsack problem (see, e.g., [9]).

Definition 2. (Decision version of the 0-1 knapsack problem) For given n,
D,E ∈ N and d, e ∈ Nn satisfying di, ei > 0, i = 1, . . . , n, does there exists
x̃ ∈ {0, 1}n such that

n∑
i=1

dix̃i ≤ D and

n∑
i=1

eix̃i ≥ E ?

Finally, we state the following result.

Theorem 4. Problem Formulation (BSPL-1) is NP -complete.

Proof. We give a reduction from the decision version of 0-1 knapsack problem to
the decision version of Formulation (BSPL-1): Let ai := 1 + (2n+ 1)di, bi := 1,
si := ei, for i = 1, . . . , n, T := 2n+ (2n+ 1)D and S := E. �
This result holds for any of the three formulations of the problem.

3 Algorithms

In this section, three algorithms are introduced that are based on multiobjective
dynamic programming. This approach consists of a sequential process based on
the definition of states, recurrence equations and dominance relations [3,8]. It has
been mainly applied to multiobjective knapsack problems (see, e.g, [2,10,13]). For
a multiobjective knapsack problem with n items, the algorithm generates, at each
iteration k, a set of states, each of which representing a solution to the problem
involving k first items only, for k = 1, ..., n. Then, dominance relations are used
to discard those states that cannot lead to other states that represent efficient
solutions. A similar approach will be used for solving the BSPL according to the
three different formulations given in Section 2.

3.1 Notation and Definitions

The sets
M i := {(T (x, z), S(x), �z) | (x, z) ∈ X, �z ≤ i}

correspond to the missions that consist of travelling at most to the end of segment
i, i = 1, . . . , n. Let � = (�T , �S , �z) ∈M i be called a state. By definition,

{(0, 0, 0)} = M0 ⊆ . . . ⊆Mn =: M.



354 L. Paquete et al.

For the sake of the explanation, given two states �, �′ ∈M , � is dominated by �′

(� ≤ �′) if �T ≥ �′T and �S ≤ �′S , and at least one strict inequality holds. In the
following, we introduce the notion of extension of a state.

Definition 3. A state ext(�) = (ext(�)T , ext(�)S , ext(�)z) ∈ M is an extension
of a state � ∈M i, i < n, if

ext(�) =

(
�T +

∑
k∈K

(ak − bk) + 2

j∑
k=�z+1

bk, �S +
∑
k∈K

sk, j

)

where j ∈ {i+ 1, . . . , n} and K ⊆ {i+ 1, . . . , j}.
Index j denotes the last travelled segment and K denotes the set of indices where
a search is performed. Using this definition it is possible to formalize the states
that correspond to either searching or only travelling in the next segment.

Definition 4. An extension t-succ(�) of a state � ∈ M i is called the travel-
successor if j = i + 1 and K = ∅. An extension s-succ(�) of a state � ∈ M i is
called the search-successor if j = i+1 and K = {i+1}. In both cases, state � is
called the predecessor of t-succ(�) and s-succ(�).

By definition, the recursion formula

M i := M i−1 ∪ {t-succ(�), s-succ(�) | � ∈M i−1} (1)

with i = 1, . . . , n holds and the set Mn = M corresponds to the set X of feasible
missions. Given Lemma 1, the smaller set X̄ of feasible missions can be obtained
by the following recursion

N i := N i−1 ∪ {s-succ(�) | � ∈ N i−1} (2)

with i = 1, . . . , n and N0 := M0. The following theorem justifies the use of dy-
namic programming since it derives the principle of optimality for this problem.

Theorem 5. Let �, �′ ∈ M i, 0 ≤ i < n, for which it holds that � ≤ �′. Then, if
one of the following two conditions is verified:

1. �z ≤ �′z
2. �z > �′z and � ≤ (�′T + 2

∑�z
k=�′z+1 bk, �

′
S, �z)

then, for every extension ext(�) ∈M there is an extension ext(�′) ∈M for which
it also holds that ext(�) ≤ ext(�′).

Proof. Condition 1 follows immediately since every extension ext(�) ∈ M is
dominated by a corresponding extension ext(�′) ∈ M where the agent travels
and/or searches on the same segments j for all j ≥ �′z. To show condition 2,
consider an extension ext(�) ∈ M and a corresponding extension ext(�′) ∈ M
where the agent travels and/or searches on the same segments j for all j ≥ �′z.
A simple calculation shows that ext(�′)T ≤ ext(�)T and ext(�′)S ≥ ext(�)S with
at least one strict inequality, and hence ext(�) ≤ ext(�′). �



Dynamic Programming for a Biobjective Search Problem in a Line 355

Algorithm 1. Algorithm for formulation (BSPL-1)

input: A feasible instance (n, a, b, s).
output: Ln

B

Initialize: L0
A := L0

B := {(0, 0, 0)}
for i = 1 to n do

Li
A := ND

({
s-succ(), t-succ() |  ∈ Li−1

A

})
Li

B := ND
(
Li

A ∪ Li−1
B

)
end for

Algorithm 2. Algorithm for formulation (BSPL-2)

input: A feasible instance (n, a, b, s).
output: Ln

Initialize: L0 := {(0, 0, 0)}
for i = 1 to n− 1 do

Li := ND
(
Li−1 ∪

{
s-succ() |  ∈ Li−1

})
end for
Ln := ND

(
Ln−1 ∪

{
s-succ() |  ∈ Ln−1

})

3.2 Algorithm for Formulation (BSPL-1)

The working principle of the dynamic programming algorithm is to generate
interesting subsets of M i, i = 0, . . . , n, by removing states whose extensions do
not correspond to efficient missions. The removal of states takes into account
the first condition of Theorem 5. Algorithm 1 shows the pseudo-code, where
procedure ND removes dominated states. The algorithm uses two lists, Li

A and
Li
B. At each iteration i, list Li

A contains the nondominated states in which the
last segment to be searched has index j ≥ i; this is obtained by generating the
travel and search-successors of each state in Li−1

A and removing the dominated
alternatives from the resulting set of states. Since all states in Li

A have the same
last travelled segment i, only the equality case in the first condition of Theorem
5 is applied. The nondominated states for the first i segments are kept into
list Li

B and are obtained by merging Li−1
B with Li

A and removing the resulting
dominated states.

Some further algorithmic improvements can be obtained. Travel-successors do
not need to be generated in the last iteration since they cannot lead to nondom-
inated states. Moreover, the removal of dominated states can be performed in
linear time, if the states are lexicographically ordered in both lists.

3.3 Algorithm for Formulation (BSPL-2)

Algorithm 2 gives the pseudo-code of the second dynamic programming algo-
rithm. In this algorithm, the states are generated according to the recursion in
Eq.(2) and both conditions in Theorem 5 have to be verified for the removal of
states. Only one list, Li, is needed at each iteration i, i = 0, . . . , n. A search-
successor state is generated at each iteration i for each state in Li−1, since



356 L. Paquete et al.

Algorithm 3. Algorithm for formulation (BSPL-3).

input: A feasible instance (n, a, b, s) and induced digraph G = (V,A).
output: L
Initialize: τ (1) := {(0, 0)} and τ (j) := ∅, for j = 2, . . . , 2n+ 1
for j = 2 to 2n+ 1 do

while (i, j) ∈ A do
τ (j) := τ (j) ∪ {(τt + wt(i, j), τs + ws(i, j) | (τt, τs) ∈ τ (i))}

end while
τ (j) := ND(τ (j))

end for
L := τ (2n+ 1)

travel-successors are always dominated. Furthermore, the states are removed ac-
cording to both conditions of Theorem 5 at iteration i, i = 0, . . . , n − 1, which
is performed by the procedure ND. Finally, at iteration n, dominated states are
removed with procedure ND, as done in Algorithm 1.

This approach has the advantage of only duplicating the current set of states
at each generation. Moreover, the removal of dominated states is performed only
once per iteration. However, since the second condition of Theorem 5 implies
that dominated states have to be kept into list Li, the number of states may
eventually be larger and the removal cannot be performed in linear time.

3.4 Algorithm for Formulation (BSPL-3)

The shortest path algorithm extends the pulling algorithm [1], which is the fastest
approach for finding the single-source single-sink shortest path in acyclic and
topologically ordered networks, as in the graph of Formulation (BSPL-3). This
extended pulling algorithm processes the nodes in the topological order. At each
iteration j, j = 1, . . . , 2n + 1, it calculates the nondominated shortest paths
from node 1 to node j by considering only the distances from each node i that is
incident to j, i < j. Since the network is topologically ordered, the nondominated
shortest paths to node i were already computed.

Algorithm 3 presents the pseudo-code of this approach. A label of a node in
V is a 2-tuple τ = (τt, τs), where τt and τs correspond to the total time and
total score stored at that label, respectively. The set of labels in a node j ∈ V is
denoted by τ(j). Procedure ND removes the dominated labels, as performed in
the previous algorithms.

4 Experimental Analysis

In this section, we report the computational analysis of the three algorithms
described in the previous sections. Of particular interest is to understand the
difference of performance of the three approaches in a wide range of instance sizes
and input data structure. For reducing memory usage, the following changes were



Dynamic Programming for a Biobjective Search Problem in a Line 357

C
P

U
−t

im
e

50 100 200 500 1000 2000

1e−02

1e+00

1e+02

1e+04

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

Size

●

●

Alg. 1
Alg. 2
Alg. 3

#ND

50 100 200 500 1000 2000

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

2e+02

2e+03

2e+04

2e+05

N
um

be
r 

of
 n

on
do

m
in

at
ed

 s
ol

ut
io

ns

Size

Fig. 2. CPU-time of the three algorithms (straight lines - left axis) and the number
of nondominated solutions (dashed lines - right axis) for Type 1 and Type 2 instances
(left and right plot, respectively)

performed: i) At the end of each iteration i of Algorithms 1 and 2, the contents
of Li−1

A , Li−1
B and Li−1 are freed; ii) since keeping all labels of odd nodes in

Algorithm 3 requires a large amount of memory in large instances, the contents
of τ(j−2) and τ(j−3) are deleted and τ(2n+1) is updated with the contents of
τ(j − 1), for each odd j. Other more sophisticated speed-up techniques can also
be implemented in Algorithm 3 [4] but they were not tested in this article. All
implementations were coded in C and used the same data structures. They were
compiled with gcc version 4.2.4. The experiments were performed in a computer
cluster with 6 nodes, each with an AMD Phenom II X6 processor with 3.2GHz
and operating system Ubuntu 8.04.

We generated two types of test-instances (n, a, b, s), where ai > bi > 0 and
si ≥ 0 for all i = 1, . . . , n. All values are assumed to be integer, and are generated
according to a discrete uniform distribution. For i = 1, . . . , n we defined the two
following types of instances:

– Type 1: bi ∈ [1, 1000]∩ N, ai ∈ [1001, 10000]∩ N, si ∈ [1, 1000]∩N.
– Type 2: bi ∈ [1, 1000] ∩ N, ai ∈ [1001, 10000] ∩ N, si ∈ [1, 1000] ∩ N where

ai+1 > ai and si+1 > si for all i = 1, . . . , n− 1.

In instances of Type 1, the search time, the travel time, and the scores are
generated randomly according to a uniform distribution. The instances of Type 2
are generated in a similar manner, but ai and si are sorted in an increasing order.
Then, segments with large scores also have large search time, which induces a
conflict between the two objectives. The algorithms were tested for different sizes,
from n = 50 to 2500. For each type and each size, 30 instances were generated.



358 L. Paquete et al.

Iteration index

0 20 40 60 80 100

0

2000

4000

6000

8000

10000

12000

14000
Alg. 1
Alg. 2
Alg. 3

Iteration index

0 20 40 60 80 100

0

10000

20000

30000

40000

50000
Alg. 1
Alg. 2
Alg. 3

Fig. 3. Number of states generated at each iteration of the three algorithms in an
instance of size 100 of Type 1 (left) and Type 2 (right)

Figure 2 shows the CPU-time in seconds taken by the algorithms to calculate
the nondominated set (left axis), as well as its size (right axis). For each type and
each size n, the results are averaged over 30 instances. The algorithms terminate
if the processor time exceeds 3600 seconds. The experimental results indicate
that the size of the nondominated set increases strongly with instance size. As
expected, the size of the nondominated set is the largest for instances of Type 2.
However, the difference from instances of Type 1 vanishes with growing instance
sizes. The experimental results also suggest that Algorithm 1 (according to the
Formulation (BSPL-1)) is the fastest among the three algorithms, independently
of the instance type and size. Algorithm 2 (according to Formulation (BSPL-2))
is the slowest, not being able to solve instances of type B for n > 1000.

In order to investigate a possible reason for the difference of performance, the
number of states that were generated at the end of each iteration of the three
algorithms was recorded. At each iteration i, the number of states in both Li

B and
Li
A for Algorithm 1, the number of states in Li for Algorithm 2 and the number

of labels related to nodes 2i, 2i+ 1 and 2n+ 1 for Algorithm 3 were considered
in the analysis. Figure 3 shows the results obtained in an instance of size 100 of
Type 1 (left plot) and Type 2 (right plot). The results are consistent with those
of Figure 2, that is, Algorithm 1 keeps the least number of states, followed by
Algorithm 3, which justifies the performance ordering shown in Figure 2. Similar
results were obtained in larger instances.

5 Conclusions

We present three alternative models for a biobjective search problem on a line.
The problem is shown to be intractable and NP-complete. Based on the differ-
ent modelling approaches three alternative dynamic programming formulations
are developed. An extensive numerical analysis provides evidence that a strong



Dynamic Programming for a Biobjective Search Problem in a Line 359

dominance operator plays a central role in the design of a multiobjective dy-
namic programming algorithm, and that this may outweigh the computational
cost of a larger number of stages. Possible generalizations to problems on general
networks are an interesting topic for future research.

Acknowledgments. L. Paquete acknowledges M. Pranzo for his comments on
an earlier version of this manuscript. This work was supported by the bilateral
cooperation project ”Connectedness and Local Search for Multi-objective Com-
binatorial Optimization” founded by the Deutscher Akademischer Austausch
Dienst and Conselho de Reitores das Universidades Portuguesas.

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms and Ap-
plications. Prentice-Hall (1993)

2. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0-1 multi-objective
knapsack problem. Computers & Operations Research 36(1), 260–276 (2009)

3. Brown, T., Strauch, R.: Dynamic programming in multiplicative lattices. Journal
of Mathematical Analysis and Applications 12, 364–370 (1965)

4. Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA
2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)

5. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer (2005)
6. Gaver, D., Jacobs, P., Pilnick, S.: On minefield transit by detection, avoidance

and demining. In: Bottoms, A., Scandrett, C. (eds.) Applications of Technology
to Demining, an Anthology of Scientific Papers 1995-2005, Part 3 – Naval Mine
Countermeasures, Society for Countermine Technology (2005)

7. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Cri-
teria Decision Making, Theory and Application. Lecture Notes in Economics and
Mathematical Systems, vol. 177, pp. 109–127. Springer (1980)

8. Henig, M.: Vector-value dynamic programming. SIAM Journal on Control and
Optimization 21, 490–499 (1983)

9. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
10. Klamroth, K., Wiecek, M.: Dynamic programming approaches to the multiple cri-

teria knapsack problem. Naval Research Logistics 47(1), 57–76 (2000)
11. Sodhi, M., Swaszek, P., Bovio, E.: Stochastic line search using UUVs. In: 9th

International Conference on Information Fusion (ICIF 2006), pp. 1–5 (2006)
12. Stone, L.: In search of AF flight 447. ORMS Today 38(4), 22–31 (2011)
13. Villarreal, B., Karwan, M.: Multicriteria integer programming: A (hybrid) dynamic

programming recursive approach. Mathematical Programming 21, 204–223 (1981)



Characterizing Graphs of Small Carving-Width

Rémy Belmonte1,�, Pim van ’t Hof1,�, Marcin Kamiński2,
Daniël Paulusma3,��, and Dimitrios M. Thilikos4,���

1 Department of Informatics, University of Bergen, Norway
{remy.belmonte,pim.vanthof}@ii.uib.no

2 Département d’Informatique, Université Libre de Bruxelles, Belgium
marcin.kaminski@ulb.ac.be

3 School of Engineering and Computing Sciences, Durham University, UK
daniel.paulusma@durham.ac.uk

4 Department of Mathematics, National & Kapodistrian University of Athens,
Panepistimioupolis, GR-15784, Athens, Greece

sedthilk@math.uoa.gr

Abstract. We characterize all graphs that have carving-width at most k
for k = 1, 2, 3. In particular, we show that a graph has carving-width at
most 3 if and only if it has maximum degree at most 3 and treewidth
at most 2. This enables us to identify the immersion obstruction set for
graphs of carving-width at most 3.

1 Introduction

A call routing tree (or a carving) of a graph G is a tree T with internal vertices of
degree 3 whose leaves correspond to the vertices of G. We say that the congestion
of T is at most k if, for any edge e of T , the communication demands that need
to be routed through e or, more explicitly, the number of edges of G that share
endpoints corresponding to different connected components of T \ e, is bounded
by k (we denote by T \ e the graph obtained from T after the removal of e).
The carving-width of a graph G is the minimum k for which there exists a call
routing tree T whose congestion is bounded by k.

Carving-width was introduced by Seymour and Thomas [15] who proved that
checking whether the carving-width of a graph is at most k is an NP-complete
problem. In the same paper, they proved that there is a polynomial-time algo-
rithm for computing the carving-width of planar graphs. Later, the problem of
designing call routing trees of minimum congestion was studied by Khuller [10],
who presented a polynomial-time algorithm for computing a call routing tree T

� Supported by the Research Council of Norway (197548/F20).
�� Supported by EPSRC (EP/G043434/1) and Royal Society (JP100692).

��� Co-financed by the European Union (European Social Fund - ESF) and Greek
national funds through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) - Research Funding
Program: “Thales. Investing in knowledge society through the European Social
Fund.”

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 360–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Characterizing Graphs of Small Carving-Width 361

whose congestion is within a O(log n) factor from the optimal. In [18] an algo-
rithm was given that decides, in f(k) · n steps, whether an n-vertex graph has
carving width at most k and, if so, also outputs a corresponding call routing
tree. We stress that the values of f(k) in the complexity of the algorithm in [18]
are huge, which makes the algorithm highly impractical even for trivial values
of k.

A graphG contains a graphH as an immersion ifH can be obtained from some
subgraph of G after lifting a number of edges (see Section 2 for the complete
definition). Recently, the immersion relation attracted a lot of attention both
from the combinatorial [1,5] and the algorithmic [8,9] point of view. It can easily
be observed (cf. [18]) that carving-width is a parameter closed under taking
immersions, i.e., the carving-width of a graph is not smaller than the carving-
width of any of its immersions. Combining this fact with the seminal result
of Robertson and Seymour in [13] stating that graphs are well-quasi-ordered
with respect to the immersion relation, it follows that the set Gk of graphs with
carving-width at most k can be completely characterized by forbidding a finite
set of graphs as immersions. This set is called an immersion obstruction set for
the class Gk.

Identifying obstruction sets is a classic problem in structural graph theory,
and its difficulty may vary, depending on the considered graph class. While
obstructions have been extensively studied for parameters that are closed under
minors (see [2,4,7,11,12,14,16,17] for a sample of such results), no obstruction
characterization is known for any immersion-closed graph class. In this paper,
we make a first step in this direction.

The outcome of our results is the identification of the immersion obstruction
set for Gk when k ≤ 3; the obstruction set for the non-trivial case k = 3 is
depicted in Figure 3. Our proof for this case is based on a combinatorial result
stating that G3 consists of exactly the graphs with maximum degree at most 3
and treewidth at most 2. A direct outcome of our results is a linear-time algo-
rithm for the recognition of the class Gk when k = 1, 2, 3. This can be seen as a
“tailor-made” alternative to the general algorithm of [18] for elementary values
of k.

2 Preliminaries

We consider finite undirected graphs that have no self-loops but that may have
multiple edges. For undefined graph terminology we refer to the text-book of
Diestel [6].

Let G = (V,E) be a graph. The set of neighbors of a vertex u is denoted by
N(u) = {v | uv ∈ E}. We denote the number of edges incident with a vertex u by
deg(u); note that deg(u) may be strictly greater than the number of neighbors of
u because we allow G to have multiple edges. We let Δ(G) = max{deg(u) | u ∈
V }. The n-vertex path is the graph with vertices v1, . . . , vn and edges vivi+1 for
i = 1, . . . , n− 1. If vnv1 is also an edge, then we obtain the n-vertex cycle. The
complete graph on k vertices is denoted by Kk.



362 R. Belmonte et al.

Let G = (V,E) be a graph. Then G is called connected if, for every pair of
distinct vertices v and w, there exists a path connecting v and w. A maximal con-
nected subgraph of G is called a connected component of G. A vertex u is called
a cut-vertex of G if the graph obtained after removing u has more connected
components than G. A connected graph is 2-connected if it does not contain a
cut-vertex. A maximal 2-connected subgraph of G is called a biconnected com-
ponent of G.

The edge duplication is the operation that takes two adjacent vertices u and
v of a graph and adds a new edge between u and v. The edge subdivision is the
operation that removes an edge uv of a graph and adds a new vertex w adjacent
(only) to u and v. A series-parallel graph is a 2-connected graph that can be
obtained from a graph consisting of two vertices with two edges between them
by a sequence of edge duplications and edge subdivisions.

The vertex dissolution is the reverse operation of an edge subdivision; it re-
moves a vertex u of degree 2 that has two distinct neighbors v and w, and adds
an edge between v and w. A graph G contains a graph H as a topological minor
if H can be obtained from G by a sequence of vertex deletions, edge deletions,
and vertex dissolutions. Alternatively, G contains H as a topological minor if G
contains a subgraph H ′ that is a subdivision of H , i.e., H ′ can be obtained from
H by a sequence of edge subdivisions. We mention one more equivalent defini-
tion. The graph G has H as a topological minor if G contains a subset S ⊆ VG

of size |VH | that has the following property: there exists a bijection f from VH

to S such that, for each edge e ∈ EH , say with endpoints x and y, there exists
a path Pe from f(x) to f(y), and such that for every two edges e, e′ ∈ EH , the
paths Pe and Pe′ are internally vertex-disjoint.

Let u, v, w be three distinct vertices in a graph such that uv and vw are edges.
The operation that removes the edges uv and vw, and adds the edge uw (even
in the case u and w are already adjacent) is called a lift. A graph G contains a
graph H as an immersion if H can be obtained from G by a sequence of vertex
deletions, edge deletions, and lifts. Alternatively, G contains H as an immersion
if G contains a subset S ⊆ VG of size |VH | that has the following property: there
exists a bijection f from VH to S such that, for each edge e ∈ EH , say with
endpoints x and y, there exists a path Pe from f(x) to f(y), and such that for
every two edges e, e′ ∈ EH , the paths Pe and Pe′ are edge-disjoint. Note that
since any two internally vertex-disjoint paths are edge-disjoint, G contains H as
an immersion if G contains H as a topological minor.

The edge contraction is the operation that takes two adjacent vertices u and v
and replaces them by a new vertex adjacent to exactly those vertices that are a
neighbor of u or v. A graphG contains a graphH as aminor if H can be obtained
from G by a sequence of vertex deletions, edge deletions and edge contractions.

A tree is a connected graph with no cycles and no multiple edges. A leaf of a
tree is a vertex of degree 1. A vertex in a tree that is not a leaf is called an internal
vertex. A tree decomposition of a graph G = (V,E) is a pair (T ,X ), where X is
a collection of subsets of V , called bags, and T is a tree whose vertices, called
nodes, are the sets of X , such that the following three properties are satisfied:



Characterizing Graphs of Small Carving-Width 363

(i)
⋃

X∈X X = V ,
(ii) for each uv ∈ E, there is a bag X ∈ X with u, v ∈ X ,
(iii) for each u ∈ V , the nodes containing u induce a connected subtree of T .

The width of a tree decomposition (T ,X ) is the size of a largest bag in X minus 1.
The treewidth of G, denoted by tw(G), is the minimum width over all possible
tree decompositions of G.

Let G = (V,E) be a graph. Let S ⊂ V be a subset of vertices of G. Then the
set of edges between S and V \ S, denoted by (S, V \ S), is called an edge cut
of G. Let the vertices of G be in 1-to-1 correspondence to the leaves of a tree T
whose internal vertices all have degree 3. The correspondence between the leaves
of T and the vertices of G uniquely defines the following edge weighting w on
the edges of T . Let e ∈ ET . Let C1 and C2 be the two connected components
of T \ e. Let Si be the set of leaves of T that are in Ci for i = 1, 2; note that
S2 = V \ S1. Then the weight w(e) of the edge e in T is the number of edges
in the edge cut (S1, S2) of G. The tree T is called a carving of G, and (T,w)
is a carving decomposition of G. The width of a carving decomposition (T,w) is
the maximum weight w(e) over all e ∈ ET . The carving-width of G, denoted by
cw(G), is the minimum width over all carving decompositions of G. We define
cw(G) = 0 if |V | = 1. We refer to Figure 4 for an example of a graph and a
carving decomposition.

3 The Main Result

The following observation is known and easy to verify by considering the number
of edges in the edge cut ({u}, V \ {u}) of a graph G = (V,E).

Observation 1. Let G be a graph. Then cw(G) ≥ Δ(G).

We also need the following two straightforward lemmas. The first lemma follows
immediately from the observation that any subgraph of a graph is an immersion
of that graph, combined with the observation that carving-width is a parameter
that is closed under taking immersions (cf. [18]). We include the proof of the
second lemma for completeness.

Lemma 1. Let H be a subgraph of G. Then cw(H) ≤ cw(G).

Lemma 2. Let G be a graph with connected components C1, . . . , Cp for some
integer p ≥ 1. Then cw(G) = max{cw(Ci) | 1 ≤ i ≤ p}.

Proof. Lemma 1 implies that max{cw(Ci) | 1 ≤ i ≤ p} ≤ cw(G). Now let (Ti, wi)
be a carving decomposition of Ci of width cw(Ci) for i = 1, . . . , p. We pick an
arbitrary edge ei = xiyi in each Ti and subdivide it by replacing it with edges xizi
and ziyi, where each zi is a new vertex. We add edges zizi+1 for i = 1, . . . , p− 1.
This results in a tree T . The corresponding carving decomposition (T,w) of G
has width max{cw(Ci) | 1 ≤ i ≤ p}. Hence, cw(G) ≤ max{cw(Ci) | 1 ≤ i ≤ p}.
We conclude that cw(G) = max{cw(Ci) | 1 ≤ i ≤ p}. �



364 R. Belmonte et al.

in G : u v w

in G′ : u w

u

x

p
q

v
in T :

u

x

p
in T ′ :

Fig. 1. A schematic illustration of how the tree T ′ in the carving decomposition of
G′ is transformed into a tree T in the proof of Lemma 3 when the edge uw in G′ is
subdivided. The vertex x is an arbitrary vertex of G′, possibly w.

The next lemma is the final lemma we need in order to prove our main result.

Lemma 3. Let G′ be a graph with carving-width at least 2, and let uw be an
edge of G′. Let G be the graph obtained from G′ by subdividing the edge uw.
Then cw(G) = cw(G′).

Proof. Let (T ′, w′) be a carving decomposition of G′ of width cw(G′) ≥ 2, and
let p be the unique neighbor of u in T ′. Let v be the vertex that was used
to subdivide the edge uw in G′, i.e., the graph G was obtained from G′ by
replacing uw with edges uv and vw for some new vertex v. Let T be the tree
obtained from T ′ by replacing the edge pu by edges pq, qu and qv for some
new vertex q; see Figure 1 for an illustration. We first show that the resulting
carving decomposition (T,w) of G has width at most cw(G′), which implies that
cw(G) ≤ cw(G′).

Let e be an edge in T . Suppose that e = pq. By definition, w(e) is the number
of edges between {u, v} and V \ {u, v} in G, which is equal to the number of
edges incident with u in G. The latter number is the weight of the edge up in T ′.
Hence, w(e) ≤ cw(G′). Suppose that e = qu. By definition, w(e) is the number
of edges incident with u in G, which is equal to the number of edges incident
with u in G′. Hence w(e) ≤ cw(G′). Suppose that e = qv. By definition, w(e) is
the number of edges incident with v in G, which is 2. Hence w(e) = 2 ≤ cw(G′).
Finally, suppose that e /∈ {pq, qu, qv}. Let C1 and C2 denote the subtrees of T
obtained after removing e. Let Si be the set of leaves of T in Ci for i = 1, 2.
Then u and v either both belong to S1 or both belong to S2. Without loss of
generality, assume that both u and v belong to S1. By definition, w(e) is the
number of edges between S1 and S2 in G, which is equal to the number of edges
between S1 \ {v} and S2 in G′. The latter number is the weight of the edge e in



Characterizing Graphs of Small Carving-Width 365

T ′. Hence, w(e) ≤ cw(G′). We conclude that (T,w) has width at most cw(G′),
and hence cw(G) ≤ cw(G′).

It remains to show that cw(G) ≥ cw(G′). Let (T ∗, w∗) be a carving decom-
position of G of width cw(G). We remove the leaf corresponding to v from T ∗.
Afterwards, the neighbor of v in T ∗ has degree 2, and we dissolve this vertex.
This results in a tree T ′′. It is easy to see that the corresponding carving decom-
position (T ′′, w′′) of G′ has width at most cw(G). Hence, cw(G) ≥ cw(G′). This
completes the proof of Lemma 3. �

We are now ready to show the main result of our paper.

Theorem 1. Let G be a graph. Then the following three statements hold.

(i) cw(G) ≤ 1 if and only if Δ(G) ≤ 1.
(ii) cw(G) ≤ 2 if and only if Δ(G) ≤ 2.
(iii) cw(G) ≤ 3 if and only if Δ(G) ≤ 3 and tw(G) ≤ 2.

Proof. Let G = (V,E) be a graph. By Lemma 2 we may assume that G is
connected. We prove the three statements separately.

(i) If cw(G) ≤ 1, then Δ(G) ≤ 1 due to Observation 1. If Δ(G) ≤ 1, then G
contains either one or two vertices. Clearly, cw(G) ≤ 1 in both cases.

(ii) If cw(G) ≤ 2, then Δ(G) ≤ 2 due to Observation 1. If Δ(G) = 1, then the
statement follows from (i). If Δ(G) = 2, then G is either a graph consisting of
two vertices with two edges between them, or a path, or a cycle. In all three
cases, it is clear that cw(G) ≤ 2.

(iii) First suppose that cw(G) ≤ 3. Then Δ(G) ≤ 3 due to Observation 1. We
need to show that tw(G) ≤ 2. For contradiction, suppose that tw(G) ≥ 3. It is
well-known that any graph of treewidth at least 3 contains K4 as a minor (see for
example [6], p. 327). It is also well-known that every minor with maximum degree
at most 3 of a graph is also a topological minor of that graph (see [6], p. 20).
This means that G contains K4 as a topological minor. Then, by definition, G
contains a subgraph H such that H is a subdivision of K4. Since cw(K4) = 4, we
have that cw(H) = cw(K4) = 4 as a result of Lemma 3. Since H is a subgraph
of G, Lemma 1 implies that cw(G) ≥ cw(H) = 4, contradicting the assumption
that cw(G) ≤ 3.

For the reverse direction, suppose that Δ(G) ≤ 3 and tw(G) ≤ 2. Bodlaen-
der [3] showed that a graph has treewidth at most 2 if and only if all its bi-
connected components are series-parallel. Hence, we assume that Δ(G) ≤ 3 and
that every biconnected component of G is series-parallel. We use induction on
the number of vertices of G to prove that cw(G) ≤ 3. It is clear that this holds
when |V | ≤ 2, since we assumed Δ(G) ≤ 3.

Let |V | ≥ 3. Suppose that G contains a vertex v of degree 2 that has two
distinct neighbors u and w. Let G′ = (V ′, E′) denote the (connected) graph
obtained from G by dissolving v. Note that G′ has maximum degree at most 3,
and every biconnected component of G′ is series-parallel. Hence, by the induction
hypothesis, cw(G′) ≤ 3. Because |V | ≥ 3, we find that G′ contains at least two



366 R. Belmonte et al.

vertices. If cw(G′) = 1, then Δ(G′) = 1 by Observation 1. This means that G′ is
a path on two vertices. Consequently, G is a path on three vertices, and hence
cw(G) = 2 ≤ 3. If 2 ≤ cw(G′) ≤ 3, then cw(G) = cw(G′) ≤ 3 as a result of
Lemma 3.

From now on, we assume that G contains no vertex of degree 2 that has two
distinct neighbors. Suppose that G contains two vertices u and v with at least
two edges between them. First suppose that u and v are the only vertices of
G. Then cw(G) ≤ 3, because the assumption Δ(G) ≤ 3 implies that u and v
have at most three edges between them. Now suppose that at least one of u, v
has at least one other neighbor outside {u, v} in G, say v has a neighbor t �= u.
Then, because Δ(G) ≤ 3 and there exist at least two edges between u and v
in G, we find that t and u are the only two neighbors of v in G and that the
number of edges between u and v is exactly 2. Let G∗ denote the graph obtained
from G by deleting one edge between u and v. Let G′ denote the graph obtained
from G∗ by dissolving v. Note that G′ has maximum degree at most 3, and that
every biconnected component of G′ is series-parallel. Hence, by the induction
hypothesis, cw(G′) ≤ 3.

If cw(G′) = 1, then, for the same reasons as before, G′ must a path on two
vertices and G∗ must be a path on three vertices, implying that cw(G∗) = 2.
Since G can be obtained from G∗ by adding a single edge, cw(G) ≤ 3 in this case.
Suppose 2 ≤ cw(G′) ≤ 3. Then, by Lemma 3, cw(G∗) = cw(G′) ≤ 3. Moreover,
from the proof of Lemma 3 it is clear that there exists a carving decomposition
(T ∗, w∗) of G∗ of width cw(G∗) such that u and v have a common neighbor q
in T ∗. We consider the carving decomposition (T,w) of G with T = T ∗. Let
e be an edge in T . First suppose that e = uq or e = vq. Then w(e) ≤ 3, as
both u and v have degree at most 3 in G. Now suppose that e /∈ {uq, vq}. Then
w(e) = w∗(e) ≤ cw(G∗) ≤ 3. We conclude that the carving decomposition (T,w)
of G has width at most 3, which implies that cw(G) ≤ 3.

From now on, we assume that G contains no multiple edges. Since we already
assumed G not to contain any vertex of degree 2 that has two distinct neighbors,
this implies that G contains no vertices of degree 2 at all. If G contains no cut-
vertices, then G is 2-connected. Then G must be series-parallel, since we assumed
that every biconnected component of G is series-parallel. Then, by definition, G
contains either a vertex of degree 2 or two vertices with more than one edge
between them. However, we assumed that this is not the case. We conclude that
G contains at least one cut-vertex v.

Because v is a cut-vertex, it has degree at least 2. Since G contains no vertex
of degree 2 and Δ(G) ≤ 3, we find that v has degree 3. Note that the graph
G− v has either two or three connected components. Let D1, D2, D3 denote the
vertex sets of the connected components of G− v, where D3 is possibly empty.
Let G′ be the subgraph of G induced by D1 ∪ {v}. Because v is a cut-vertex of
G, the set of biconnected components of G′ is a subset of the set of biconnected
components of G. Hence, every biconnected component of G′ is series-parallel.
Moreover, since Δ(G) ≤ 3 and G′ is a subgraph of G, we find that Δ(G′) ≤ 3.
Hence, by the induction hypothesis, G′ has carving-width at most 3. Similarly,



Characterizing Graphs of Small Carving-Width 367

the subgraph G′′ of G induced by D2∪D3∪{v} has carving-width at most 3. Let
(T ′, w′) be a carving decomposition of G′ of width cw(G′) ≤ 3, and let (T ′′, w′′)
be a carving decomposition of G′′ of width cw(G′′) ≤ 3. From T ′ and T ′′, we
construct a tree T as follows (see also Figure 2). We first identify the leaves of

v

T ′

v

T ′′

v

pa b

T

Fig. 2. A schematic illustration of how the tree T is constructed from the trees T ′ and
T ′′ in the proof of Theorem 1

T ′ and T ′′ that correspond to v. Let p denote the newly obtained vertex, and
let a and b be the two neighbors of p, where a belongs to T ′ and b′ belongs to
T ′′. We then add a new leaf adjacent to the vertex p in T , and we let this leaf
correspond to the vertex v of G. This completes the construction of T . Below
we show that the corresponding carving decomposition (T,w) of G has width at
most 3.

Let e be an edge of T . Let C1 and C2 be the two subtrees of the forest T − e.
Let S1 and S2 be the set of leaves of T in C1 and C2, respectively. We will also
use S1 and S2 to denote the vertices of G that correspond to the leaves in S1

and S2, respectively. Assume that v ∈ S1. Suppose that e = vp. Then w(e) = 3,
because there are three edges incident with v in G. Suppose that e = ap. Due
to the fact that v is a cut-vertex of G, we find that v is the only vertex in S1

that has at least one neighbor in S2 in G. Since v has degree 3 and D1 is not
empty, v has at most two neighbors in S2. Hence w(e) ≤ 2. Suppose that e = bp.
Then w(e) ≤ 2 by a similar argument as in the previous case. Suppose that
e ∈ ET ′ \ {ap, bp, vp}. Then w(e) = w′(e) ≤ 3, because cw(G′) ≤ 3. Suppose
that e ∈ ET ′′ \ {ap, bp, vp}. Then w(e) = w′′(e) ≤ 3, because cw(G′′) ≤ 3. We
conclude that cw(G) ≤ 3. This completes the proof of Theorem 1. �

Since graphs of treewidth at most 2 can easily be recognized in linear time,
Theorem 1 implies a linear-time recognition algorithm for graphs of carving-
width at most 3.

Thilikos, Serna and Bodlaender [18] proved that for any k, there exists a
linear-time algorithm for constructing the immersion obstruction set for graphs
of carving-width at most k. For k ∈ {1, 2}, finding such a set is trivial. We now
present an explicit description of the immersion obstruction set for graphs of
carving-width at most 3.

Corollary 1. A graph has carving-width at most 3 if and only if it does not
contain any of the six graphs in Figure 3 as an immersion.



368 R. Belmonte et al.

K4 H1 H2 H3 H4 H5

Fig. 3. The immersion obstruction set for graphs of carving-width at most 3

Proof. LetG be a graph.We first show that ifG contains one of the graphs in Fig-
ure 3 as an immersion, then G has carving-width at least 4. In order to see this,
it suffices to observe that the graphs K4, H1, . . . , H4 all have carving-width 4.
Hence, G has carving-width at least 4, because carving-width is a parameter
that is closed under taking immersions (cf [18]).

Now suppose that G has carving-width at least 4. Then, due to Theorem 1,
Δ(G) ≥ 4 or tw(G) ≥ 3. If Δ(G) ≥ 4, then G has a vertex v of degree at least
4. By considering v and four of its incident edges, it is clear that G contains
one of the graphs H1, . . . , H5 as a subgraph, and consequently as an immersion.
Suppose that Δ(G) ≤ 3. Then tw(G) ≥ 3, which means that G contains K4 as
a minor [6]. Moreover, since K4 has maximum degree 3, it is well-known that G
also contains K4 as a topological minor [6], and hence as an immersion. �

From the proof of Corollary 1, we can observe that an alternative version of
Corollary 1 states that a graph has carving-width at most 3 if and only if it does
not contain any of the six graphs in Figure 3 as a topological minor.

u1

u2

u3u4

u5

v1

v2

v3v4

v5

F5

u1 v1

u2

v2

u3v3u4v4

u5

v5

3 3

4

4
4

3

3 4

3 3

4
4

3

34

3 3

Fig. 4. The pentagonal prism F5 and a carving decomposition (T,w) of F5 that has
width 4

4 Conclusions

Extending Theorem 1 to higher values of carving-width remains an open prob-
lem, and finding the immersion obstruction set for graphs of carving-width at
most 4 already seems to be a challenging task. We proved that for any graph G,



Characterizing Graphs of Small Carving-Width 369

cw(G) ≤ 3 if and only if Δ(G) ≤ 3 and tw(G) ≤ 2. We finish our paper by show-
ing that the equivalence “cw(G) ≤ 4 if and only if Δ(G) ≤ 4 and tw(G) ≤ 3”
does not hold in either direction.

To show that the forward implication is false, we consider the pentagonal
prism F5, which is displayed in Figure 4 together with a carving decomposition
(T,w) of width 4. Hence, cw(F5) ≤ 4. However, F5 is a minimal obstruction for
graphs of treewidth at most 3 [3]. Hence, tw(F5) = 4.

To show that the backward implication is false, we consider the graph K−
5 ,

which is the graph obtained from K5 by removing an edge. Note that Δ(K−
5 ) = 4

and tw(K−
5 ) = 3. It is not hard to verify that cw(K5) = 6. Since removing an

edge decreases the carving-width by at most 1, we conclude that cw(K−
5 ) ≥ 5.

References

1. Abu-Khzam, F.N., Langston, M.A.: Graph Coloring and the Immersion Order.
In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 394–403.
Springer, Heidelberg (2003)

2. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM J. Algebraic Discrete Methods 7(2), 305–314 (1986)

3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209(1-2), 1–45 (1998)

4. Bodlaender, H.L., Thilikos, D.M.: Graphs with branchwidth at most three. Journal
of Algorithms 32(2), 167–194 (1999)

5. DeVos, M., Dvořák, Z., Fox, J., McDonald, J., Mohar, B., Scheide, D.: Minimum
degree condition forcing complete graph immersion. CoRR, arXiv:1101.2630 (Jan-
uary 2011)

6. Diestel, R.: Graph Theory, Electronic edn. Springer (2005)
7. Dvořák, Z., Giannopoulou, A.C., Thilikos, D.M.: Forbidden graphs for tree-depth.

European Journal of Combinatorics 33(5), 969–979 (2012)
8. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-

graphs is fixed-parameter tractable. In: Proceedings of STOC 2011, pp. 479–488.
ACM (2011)

9. Kawarabayashi, K., Kobayashi, Y.: List-coloring graphs without subdivisions and
without immersions. In: Proceedings of SODA 2012, pp. 1425–1435. SIAM (2012)

10. Khuller, S., Raghavachari, B., Young, N.: Designing multicommodity flow trees.
Information Processing Letters 50, 49–55 (1994)

11. Koutsonas, A., Thilikos, D.M., Yamazaki, K.: Outerplanar obstructions for matroid
pathwidth. Electronic Notes in Discrete Mathematics 38, 541–546 (2011)

12. Robertson, N., Seymour, P.D., Thomas, R.: Linkless embeddings of graphs in 3-
space. Bull. Amer. Math. Soc. 28, 84–89 (1993)

13. Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion
conjecture. Journal of Combinatorial Theory, Series B 100, 181–205 (2010)

14. Rué, J., Stavropoulos, K.S., Thilikos, D.M.: Outerplanar obstructions for a feed-
back vertex set. European Journal of Combinatorics 33, 948–968 (2012)

15. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

16. Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the
family of graphs with bounded path-width. Discrete Mathematics 127, 293–304
(1994)



370 R. Belmonte et al.

17. Thilikos, D.M.: Algorithms and obstructions for linear-width and related search
parameters. Discrete Applied Mathematics 105, 239–271 (2000)

18. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Constructive Linear Time Algo-
rithms for Small Cutwidth and Carving-Width. In: Lee, D.T., Teng, S.-H. (eds.)
ISAAC 2000. LNCS, vol. 1969, pp. 192–203. Springer, Heidelberg (2000)



Solving the Connected Dominating Set Problem
and Power Dominating Set Problem

by Integer Programming

Neng Fan and Jean-Paul Watson

Discrete Math and Complex Systems Department
Sandia National Laboratories, Albuquerque, NM 87185, USA

{nnfan,jwatson}@sandia.gov

Abstract. In this paper, we propose several integer programming approaches
with a polynomial number of constraints to formulate and solve the minimum
connected dominating set problem. Further, we consider both the power dominat-
ing set problem – a special dominating set problem for sensor placement in power
systems – and its connected version. We propose formulations and algorithms to
solve these integer programs, and report results for several power system graphs.

Keywords: Connected Dominating Set Problem, Power Dominating Set Prob-
lem, Integer Programming, Spanning Tree, Connected Subgraph.

1 Introduction

The minimum dominating set (MDS) problem is stated as follows: For a graph G =
(V,E), a dominating set is a subset D of V such that every vertex not in D is linked to
at least one member of D by some edge. The minimum dominating set problem is to
find a dominating set with smallest cardinality. The decision version of the MDS is a
classical NP-complete problem [1].

The dominating set D of a graph G is a connected dominating set if each vertex in D
can reach any other vertex in D by a path that traverses only vertices within D. That is, D
induces a connected subgraph of G. The minimum connected dominating set (MCDS)
problem is to find a connecting dominating set with the smallest possible cardinality
among all connected dominating sets of G. The concept of a connected dominating set is
quite useful in the analysis of wireless networks, social networks, and sensor networks,
as studied extensively by Du’s group in [2–6]. The MCDS problem was recently studied
in disk graphs [7] and unit ball graphs [8]. For an extensive discussion of heuristic
algorithms for and applications of the MCDS problem, we refer to [9, 10].

Integer programming (IP) approaches for the MCDS problem have attracted less
attention than heuristic methods. In [11, 12], although IP formulations were presented,
the algorithms were still based on heuristic and simulation methods. In [13, 14], mixed
integer programming (MIP) approaches were used to formulate the MCDS, while [15]
introduced a MIP approach with exponential number O(2|V |) of constraints based on
spanning trees to exactly solve this problem.

In this paper, building on the IP formulation for the MDS problem, we add dif-
ferent kinds of constraints to ensure the connectivity of the subgraph induced by D.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 371–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



372 N. Fan and J.-P. Watson

Considering the fact that a graph is connected if and only if it has a spanning tree,
constraints implementing sub-tour elimination, cutset, and other concepts, as reviewed
in [16] for the minimum spanning tree problem, can be leveraged for IP formulations
of the MCDS problem. However, because of the exponential number of constraints,
the computational expense is prohibitive for large graphs. Therefore, we use a poly-
nomial number of constraints to ensure connectivity, leveraging Miller-Tucker-Zemlin
constraints, Martin constraints, and commodity flow constraints.

The power dominating set (PDS) problem was originally proposed for solving a
sensor placement problem in power system graphs, usually referred to as the PMU
placement problem [17, 18]. A power system graph is an undirected graph G = (V,E),
where the vertex set V represents a set of buses, and the edge set E represents a set of
transmission lines. Additionally, there is a subset VZ of V , which represents the set of
zero-injection buses that consist of transhipment buses in the system. A power dominat-
ing set D is obtained by considering the following two physical laws: (i) if v ∈ D, then
v and its neighbors (denoted by N(v)) are all covered (Ohm’s law); (ii) if v ∈ VZ , and
all vertices within the set {v}∪N(v) except one are covered, then the uncovered vertex
in {v}∪N(v) is also covered (Kirchhoff’s current law). The PDS problem is to find a
subset of vertices D with smallest cardinality that covers all vertices in V . This problem
has been widely studied in the power systems literature, as shown in [18], and recently
in the area of general combinatorial optimization [19]. The PDS problem can be ex-
tended to consider connected vertex sets, yielding the connected power dominating set
(CPDS) problem.

The reminder of this paper is organized as follows. In Section 2, we introduce IP for-
mulations for the MDS and MCDS problems. In Section 3, we introduce four types of
connectivity constraints to ensure the connectivity of the subgraph induced by the dom-
inating set. In Section 4, we introduce the power dominating set problem, connected
power dominating set problem, and their associated IP formulations. In Section 5, we
test and compare our formulations and algorithms on several power system graphs. Fi-
nally, we conclude in Section 6 with a summary of our results.

2 Dominating Set Problem

In a graph G = (V,E) with V = {1,2, · · · ,n}, let A = (ai j)n×n be the neighborhood
matrix such that ai j = a ji = 1 if (i, j) ∈ E or i = j, and ai j = a ji = 0 otherwise. Without
loss of generality, we define the edge set E as follows: E = {(i, j) : ai j = 1,∀i, j ∈
V with i < j}.

For i ∈V , let xi ∈ {0,1} be a decision variable such that xi = 1 if vertex i is included
in the dominating set; xi = 0 otherwise. An IP formulation of the MDS problem can
then be given as follows:

[MDS] min ∑
i

xi (1a)

s.t. ∑
j

ai jx j ≥ 1,xi ∈ {0,1},∀i ∈V (1b)



The Connected Dominating Set Problem and the Power Dominating Set Problem 373

Any feasible solution to formulation (1) will form a dominating set D of G by D = {vi :
xi = 1}. Let GD = (D,ED) be the subgraph induced by the dominating set D, where
ED = {(i, j) ∈ E : ai jxix j = 1,∀i, j ∈V with i < j}.

To yield an IP formulation for the related MCDS problem, we must additionally
include connectivity constraints to ensure that the subgraph GD is connected. In next
section, we study four MIP approaches to model the connectivity constraints in the
MCDS for subgraphs GD.

3 Connectivity Constraints of Subgraphs

Definitionally, a graph GD is connected if and only if it has a spanning tree. Therefore,
some methods for solving the minimum spanning tree problem can be leveraged to
formulate efficient MIPs for the MCDS problem.

3.1 Miller-Tucker-Zemlin Constraints

Miller-Tucker-Zemlin constraints were originally proposed for solving the traveling
salesman problem in [20], and were used to eliminate sub-tours when solving the k-
cardinality tree problem in [21].

Following the method proposed in [21], we let Gd = (V ∪ {n+ 1,n+ 2},A) be a
directed graph based on G = (V,E), where A = {(n+1,n+2)}∪

{⋃n
i=1{(n+1, i),(n+

2, i)}
}
∪E∪E ′ and E ′= {( j, i) : a ji = 1,∀i, j ∈V with i > j}. That is, we introduce two

additional vertices n+ 1 and n+ 2, add directed edges n+ 1 and n+ 2 to every i ∈ V
and (n+ 1,n+ 2), and make each edge (i, j) ∈ E bi-directional.

The idea behind Miller-Tucker-Zemlin constraints is to find a directed spanning tree
Td = (V ∪{n+ 1,n+ 2},Ed) of Gd such that n+ 1 is the root connecting to both n+ 2
and those vertices not in the dominating set D, n+ 2 is connected to a vertex vr within
D, and all other vertices are formed a tree with root vr. As shown in Fig. 1, the directed
spanning tree has a connected subgraph (shown within the dashed circle) whose vertices
form the connected dominating set.

Fig. 1. The idea behind Miller-Tucker-Zemlin constraints

For (i, j)∈A, let yi j ∈ {0,1} be a decision variable such that yi j = 1 if (i, j) is selected
into the directed tree Td and yi j = 0 otherwise. Additionally, for i ∈ V ∪{n+ 1,n+ 2},



374 N. Fan and J.-P. Watson

let ui be a non-negative decision variable, as introduced in [20] to eliminate sub-tours.
The Miller-Tucker-Zemlin (MTZ) constraints to ensure connectivity are formulated as
follows:

[MTZ]

∑
i∈V

yn+2,i = 1 (2a)

∑
i:(i, j)∈A

yi j = 1,∀ j ∈V (2b)

yn+1,i+ yi, j ≤ 1,∀(i, j) ∈ E ∪E ′ (2c)

(n+ 1)yi j + ui− u j +(n− 1)y ji ≤ n,∀(i, j) ∈ E ∪E ′ (2d)

(n+ 1)yi j + ui− u j ≤ n,∀(i, j) ∈ A\ (E∪E ′) (2e)

yn+1,n+2 = 1 (2f)

un+1 = 0 (2g)

1≤ ui ≤ n+ 1, i∈V ∪{n+ 2} (2h)

xi = 1− yn+1,i,∀i ∈V (2i)

In the formulation MTZ, Constraint (2a) identifies one vertex as root of the dominating
set D. Constraints (2b) ensure that all vertices within V are connected to some other
vertex. Constraints (2c) require that in any feasible solution either i ∈ V is directly
connected to n+ 1 or else it may be connected to other vertices in D. Without the term
(n− 1)y ji, Constraints (2d) and (2e) are the original Miller-Tucker-Zemlin constraints
[20] to guarantee the solutions have no sub-tours. The added term was proposed in [22]
as an improvement for sub-tour elimination constraints. Constraint (2f) requires that
the edge (n+1,n+2) is in Td . Constraints (2g) and (2h) present the choice of arbitrary
non-negative integers for variables ui. Finally, Constraints (2i) ensure that vertex i is
either connected to n+ 1 or a vertex in the dominating set.

The constraints and variables in formulation MTZ represent a portion of a mixed-
linear program. By solving MDS in conjunction with MTZ, any feasible solution x will
imply a dominating set D, and form a directed spanning tree Td of Gd . The induced
subtree of Td by D has a root, which is connected to n+ 2. Therefore, the connectivity
of the subgraph GD by D can be guaranteed. In MTZ, there are (|V |+ 2)+ (2|E|+
2|V |+1) = O(|E|+ |V |) decision variables and 1+ |V |+2|E|+2|E|+(2|V|+1)+1+
1+ |V |= O(|E|+ |V |) constraints.

3.2 Martin Constraints

In [23], Martin presented a reformulation for solving the minimum spanning tree prob-
lem with a polynomial number of constraints instead of an exponential number of con-
straints. This method was also used in [24] by Yannakakis, and was recently referenced
in [25, 26]. The objective is still to find a (undirected) spanning tree TD = (D,ET ) of
GD = (D,ED).

For i, j ∈ V , let yi j ∈ {0,1} be a decision variable such that yi j = 1 if edge (i, j)
is selected into the tree TD and yi j = 0 otherwise. For i, j,k ∈ V , let zk

i j ∈ {0,1} be a



The Connected Dominating Set Problem and the Power Dominating Set Problem 375

decision variable such that zk
i j = 1 if edge (i, j) is in the tree TD of GD and vertex k is

on side of j (i.e., vertex k is within the resulted component containing j after removal
edge (i, j) from TD), and zk

i j = 0 if edge (i, j) is in the tree and k is not on side of j, or
if edge (i, j) is not in the tree or the pair (i, j) is not an edge.

The Martin constraints to ensure connectivity of GD are formulated as follows:
[MARTIN]

∑
(i, j)∈E

yi j = ∑
i∈V

xi− 1 (3a)

yi j ≤ xi,yi j ≤ x j,∀(i, j) ∈ E (3b)

zk
i j ≤ yi j,z

k
i j ≤ xk,∀(i, j) ∈ E,k ∈V (3c)

zk
ji ≤ yi j,z

k
ji ≤ xk,∀(i, j) ∈ E,k ∈V (3d)

yi j−M(3− xi− x j− xk)≤ zk
i j + zk

ji ≤ yi j +M(3− xi− x j− xk),∀i, j,k ∈V (3e)

1−M(2− xi− x j)≤ ∑
k′∈V\{i, j}

z j
ik′ + yi j ≤ 1+M(2− xi− x j),∀i, j ∈V (3f)

yi j,z
k
i j ∈ {0,1},∀(i, j) ∈ E,k ∈V, yi j = 0,zk

i j = 0,∀i, j,k ∈V,(i, j) /∈ E (3g)

Constraint (3a) ensures that the number of edges within the tree TD is one less than the
number of vertices within TD, and Constraint (3b) ensures that the selection of edges
within ED relies on the selection of its two ends.

If any one, two, or three vertices of i, j,k ∈ V are not part of the tree of GD (i.e.,
one, two, or three of xi,x j,xk become 0), zk

i j = zk
ji = 0 by Constraints (3c)-(3d), and the

Constraints (3e) become non-binding constraints and have no influence on the results
as M is a large positive constant. Similarly, if any one or two of vertices i, j ∈V are not
part of GD, Constraint (3f) become non-binding.

If vertices i, j,k ∈V are within the proposed tree of GD (i.e., i, j,k ∈D and xi = x j =
xk = 1), zk

i j ,z
k
ji ∈ {0,1} by Constraints (3c)-(3d), and Constraints (3e)-(3f) become

zk
i j + zk

ji = yi j, ∑
k∈D\{i, j}

z j
ik + yi j = 1,∀i, j,k ∈ D.

This represents the original formulation of Martin’s constraints, as discussed in [26].
The constraint zk

i j + zk
ji = yi j implies that (i) if (i, j) ∈ ET (i.e., yi j = 1), vertex k is

either on the side of j (zk
i j = 1) or on the side of i (zk

ji = 1); (ii) if (i, j) /∈ET (i.e., yi j = 0),

k is between i, j (zk
i j = 0,zk

ji = 0).

The constraint ∑k∈D\{i, j} z j
ik +yi j = 1 means that (i) if (i, j) ∈ ET (i.e., yi j = 1), edges

(i,k) who connect i are on the side of i (z j
ik = zk

i j = 0 and zk
i j = 1); (ii) if (i, j) /∈ ET (i.e.,

yi j = 0), there must be an edge (i,k) such that j is on the side k (z j
ik = 1 for some k).

The constraints and variables in formulation MARTIN represent a portion of a mixed-
linear program. The number of new decision variables is |V |2 + |V |3 = O(|V |3), while
the number of constraints to ensure connectivity is 1+2|E|+4|E||V |+2|V |3 +2|V |2 =
O(|V |3).



376 N. Fan and J.-P. Watson

3.3 Single-Commodity Flow Constraints

For i ∈ V , let ri ∈ {0,1} be a decision variable such that ri = 1 if vertex i is chosen
to be the root vr of GD for “sending” ∑i∈V xi− 1 unit flow to other vertices within the
dominating D, and ri = 0 otherwise. If each vertex in D except vr consumes exactly one
unit, and the vertices outside D consume none, the connectivity of GD is guaranteed.
This method was used to ensure subgraph connectivity in [27] for solving problems in
wildlife conservation.

For each edge (i, j) ∈ E ∪E ′ (see Section 3.1 for the definition of E ′), let fi j de-
note the amount of flow from vertex i to vertex j. The constraints enforcing single-
commodity flow (SCF) can then be formulated as follows:

[SCF]

∑
i∈V

ri = 1 (4a)

ri ≤ xi,∀i ∈V (4b)

fi j ≥ 0,∀(i, j) ∈ E ∪E ′ (4c)

fi j ≤ xi ∑
k∈V

xk, fi j ≤ x j ∑
k∈V

xk,∀(i, j) ∈ E ∪E ′ (4d)

∑
j

f ji ≤ n(1− ri),∀i ∈V (4e)

∑
j

f ji−∑
j

fi j = xi− ri ∑
j∈V

x j,∀i ∈V (4f)

ri ∈ {0,1},∀i ∈V (4g)

Constraints (4a) and (4b) select one vertex from the dominating set as the root to trans-
mit the single-commodity flow. Constraints (4c) ensure the non-negativity of the flow,
while Constraints (4d) require that the flow of edge (i, j) is 0 if either end of (i, j) is not
selected into the dominating set. Constraints (4e) ensure that the inflow of the selected
root is 0. Finally, Constraints (4f) ensure the balance of flows on each vertex. If vertex
i is the selected root (i.e., ri = 1,xi = 1), the outflow of i is equal to ∑ j∈V x j− 1, i.e.,
one unit is transmitted to each selected vertex. If vertex i is in the dominating set D but
is not the root (i.e., xi = 1,ri = 0), the difference between the inflow and outflow will
equal one, implying that vertex i consumes one unit; otherwise, vertex i is not in D (i.e.,
xi = 0,ri = 0), and all inflows and outflows will be 0.

Any feasible solution to the MDS problem with SCF constraints will guarantee that
every vertex within the dominating set D except the selected root will consume one unit
of flow transmitted from the root, and the connectivity of the subgraph induced by D
will be ensured.

The quadratic terms rix j can be easily linearized by introducing wi j = rix j with con-
straints wi j ≤ ri, wi j ≤ x j, wi j ≥ ri + x j−1, and wi j ≥ 0. Similarly, the quadratic terms
xixk can be linearized by introducing w′ik = xixk.



The Connected Dominating Set Problem and the Power Dominating Set Problem 377

Additionally, the following constraints can be added such that the first appearance of
xi = 1 implies ri = 1:

ri ≤ (n+ 1−
i

∑
i′=1

xi′)/n,∀i ∈V. (5)

Such constraints can reduce the degeneracy of the choice of root vertex within the dom-
inating set. Without loss of generality, assume that ia is first vertex with xia = 1 (i.e.,
xi = 0 for i < ia) and ib is the second one with xib = 1 (i.e., xi = 0 for ia < i < ib). There-
fore, by (5), there are four cases: (i) for i < ia, ri ≤ (n+1−0)/n= 1+1/n and by (4b),
ri = 0; (ii) for i = ia, ria ≤ 1; (iii) for ia < i < ib, ri ≤ 1 and from (4b), ri = 0; (iv) for
i≥ ib, ri ≤ (n+ 1− 2)/n= (n− 1)/n and from (4g), ri = 0. Thus, by (4a), ria = 1.

There are |V |+ 2|E| = O(|E|+ |V |) decision variables and 1+ |V |+ 2|E|+ 4|E|+
|V |+ |V |= O(|E|+ |V |) constraints in the MDS problem with SCF constraints.

3.4 Multi-commodity Flow Constraints

In Section 3.3, the connectivity of GD = (D,ED) is enforced through a single com-
modity flow. In the following, the connectivity of a selected subset D is guaranteed by
associating a separate commodity with each vertex. Assume that vr is the selected root
within D, such that there will be one unit of flow from vr to each selected vertices of
its own commodity type. This method was used to ensure subgraph connectivity in [27]
for solving problems in wildlife conservation.

For each edge (i, j) ∈ E ∪E ′ (see Section 3.1) and k ∈ V \ {vr}, let f k
i j be a decision

variable such that f k
i j! = 0 if edge (i, j) carries flow of type k, and 0 otherwise. The flow

outside of the dominating set should be 0, the flow of type k equals 0 if k is outside D,
and the flow of type vr should be 0, i.e.,

f k
i j ≤ xi, f k

i j ≤ x j, f k
i j ≤ xk, f k

i j ≤ 1− rk, f k
i j ≥ 0,∀(i, j) ∈ E ∪E ′,∀k ∈V.

For the root vr, there is no inflow, and the outflow of type k is xk, i.e.,

∑
j:( j,vr)∈E∪E ′

f k
jvr

= 0, ∑
j:(vr , j)∈E∪E ′

f k
vr j = xk,∀k ∈V \ {vr}.

For vertex i ∈V \ {vr}, the inflow of type i is xi and the outflow of type i is 0, i.e.,

∑
j:( j,i)∈E∪E ′

f i
ji = xi, ∑

j:(i, j)∈E∪E ′
f i
i j = 0,∀i ∈V \ {vr}.

For vertex i ∈V \ {vr}, the flow of type k(k �= i) should be balanced at i, i.e.,

∑
j:( j,i)∈E∪E ′

f k
ji = ∑

j:(i, j)∈E∪E ′
f k
i j ,∀i ∈V \ {vr},∀k,k �= i.

For i ∈V , let ri ∈ {0,1} be a decision variable such that ri = 1 if vertex i is chosen to be
the root of GD, and ri = 0 otherwise. The above constraints by multi-commodity flow
(MCF) to ensure connectivity of GD can be equivalently formulated as follows:



378 N. Fan and J.-P. Watson

[MCF]

f k
i j ≤ xi, f k

i j ≤ x j, f k
i j ≤ xk, f k

i j ≤ 1− rk, f k
i j ≥ 0,∀(i, j) ∈ E ∪E ′,∀k ∈V (6a)

∑
j:( j,i)∈E∪E ′

f k
ji ≤M(1− ri),∀i,k ∈V (6b)

xk− rk−M(1− ri)≤ ∑
j:(i, j)∈E∪E ′

f k
i j ≤ xk− rk +M(1− ri),∀i,k ∈V (6c)

∑
j:( j,i)∈E∪E ′

f i
ji = xi− ri, ∑

j:(i, j)∈E∪E ′
f i
i j = 0,∀i ∈V (6d)

∑
j:(i, j)∈E∪E ′

f k
i j−Mri ≤ ∑

j:( j,i)∈E∪E ′
f k

ji ≤ ∑
j:(i, j)∈E∪E ′

f k
i j +Mri,∀i,k ∈V,k �= i (6e)

∑
i∈V

ri = 1, ri ≤ xi,∀i ∈V (6f)

where M is a sufficiently large positive constant.
Any feasible solution to the MDS problem with MCF constraints will guarantee that

every vertex i within the dominating set D excluding the selected root will consume
one unit of type i flow transmitted from the root, and the connectivity of the subgraph
induced by D will be ensured. There are |V |+ 2|E||V | = O(|E||V |) decision variables
and 8|E||V |+ 2|V |2 + |V |+ |V |2 + 1+ |V | = O(|E||V |) constraints in formulation (6).
Similarly, Constraints (5) can be added to reduce the degeneracy of the selection for the
root.

4 Power Dominating Set Problem and Connected Power
Dominating Set Problem

For a power graph G = (V,E), there is a given subset VZ ⊂V of zero-injection vertices.
As explained in [19], a power dominating set D is obtained by leveraging two physical
laws: (1) if v ∈ D, then v and its neighbors (denoted by N(v)) are all covered (Ohm’s
law); (2) if v ∈ VZ , and all vertices within the set {v}∪N(v) except one are covered,
then the uncovered vertex in {v}∪N(v) is also covered (Kirchhoff’s current law). The
power dominating set (PDS) problem is to find a subset D with smallest cardinality
that covers all vertices in V . The first law applies similarly as that for the dominating
set problem (i.e., a selected vertex covers all neighbors of itself), while the second law
can significantly reduce the dominating number for a given graph. Let the set of zero-
injection vertices be denoted by VZ = {vi ∈ V : Zi = 1}, where the parameter Zi = 1
indicates that vi is a zero-injection vertex; Zi = 0 otherwise.

For i ∈V , let xi ∈ {0,1} be a decision variable such that xi = 1 if vertex i is selected
into the power dominating set and xi = 0 otherwise. For i, j ∈ V , let pi j ∈ {0,1} be a
decision variable such that pi j = 1 if Kirchhoff’s current law applied to zero-injection
vertex i can provide a coverage for vertex j and pi j = 0 otherwise. Following the method
in [18], the PDS problem to find a smallest dominating subset can be formulated as
follows:



The Connected Dominating Set Problem and the Power Dominating Set Problem 379

2 

1 

3 

4 5 

6 7 8 

9 

10 11 
12 

13 14 

Fig. 2. An example graph with 14 vertices

[PDS] min
x,p ∑

i
xi (7a)

s.t. ∑
j

ai jx j +∑
j

ai jZ j p ji ≥ 1,∀i ∈V (7b)

∑
j

ai j pi j = Zi,∀i ∈V (7c)

pi j = 0,∀i, j with ai j = 0 or i /∈VZ (7d)

xi, pi j ∈ {0,1},∀i, j ∈V (7e)

The objective (7a) is to minimize the cardinality of the power dominating set. For each
vertex i ∈ V , the first part of Constraint (7b) follows Ohm’s law while the second part
of (7b) follows Kirchhoff’s current law with possible coverage from its neighbors. In
the PDS problem, all vertices will be covered, and Constraints (7c) denote that every
zero-injection vertex i provides coverage for itself or one of its neighbors. Constraint
(7d) ensures that pi j equals 0 if the pair (i, j) is not an edge or i is not a zero-injection
vertex, and Constrains (7e) ensure the binary choices of the xi and pi j variables.

The PDS formulation is an integer linear program. Similarly, any feasible solution to
the PDS will form a dominating set D of G by D = {vi : xi = 1}. Let GD = (D,ED) be
the subgraph induced by the power dominating set D, where ED = {(i, j)∈ E : ai jxix j =
1,∀i, j ∈ V with i < j}. For the connected power dominating set (CPDS) problem, we
have to add connectivity constraints to ensure that the subgraph GD is connected, fol-
lowing the methods introduced in Section 3.

5 Numerical Experiments

All MIP formulations are implemented in C++ and solved using CPLEX 12.1 via IBM’s
Concert Technology library, version 2.9. All experiments were performed on a Linux
workstation with 4 Intel(R) Xeon(TM) CPU 3.60GHz processors and 8 GB RAM. The
optimality gap was set to be 1%.

First, we consider an illustrative example using a graph with 14 vertices and 20
edges (as shown in Fig. 2). By solving the MDS problem formulated in (1), a minimum



380 N. Fan and J.-P. Watson

Table 1. Minimum objective function values for power graphs

Dominating Set Connected Dominating
Graph Problems Set Problems

Name |V | |E| |VZ | MDS PDS MCDS CPDS
IEEE-14-Bus 14 20 1 4 3 5 4
IEEE-30-Bus 30 41 6 10 7 11 9
IEEE-57-Bus 57 78 15 17 11 31 24
RTS-96 73 108 22 20 14 32 28
IEEE-118-Bus 118 179 10 32 28 43 39
IEEE-300-Bus 300 409 65 87 68 129 112

Note: The column |VZ | denotes the number of zero-injection vertices.

Table 2. Comparison of formulation sizes

Number of MDS(1) PDS(7) MTZ(2) MARTIN(3) SCF(4) MCF(6)
decision var. |V | 2|E|+ |V | O(|E|+ |V |) O(|V |3) O(|E|+ |V |) O(|E||V |)
constraints |V | 2|V | O(|E|+ |V |) O(|V |3) O(|E|+ |V |) O(|E||V |)

dominating set is {2,6,7,9}, with cardinality 4. By solving the MCDS problem as for-
mulated in (1) coupled with any one type of connectivity constraints (2), (3), (4), or (6),
a minimum connected dominating set is {4,5,6,7,9} with cardinality 5.

For the power dominating set of the graph in Fig. 2, assume that the set of zero-
injection vertices is VZ = {7}. A minimum power dominating set is {2,6,9} with car-
dinality 3, obtained by solving the formulation (7). In this dominating set, vertices
2,1,3,4,5 are covered by vertex 2; vertices 6,5,11,12,13 are covered by vertex 6; and
vertices 9,4,7,10,14 are covered by vertex 9. By Kirchhoff’s current law, vertex 8 is
covered because vertices in {7}∪N(7) = {7,4,9,8} are all covered with the exception
of vertex 8. Similarly, the minimum connected power dominating set {4,5,6,9} with
cardinality 4 can be computed using formulation (7) with any one of the constraints (2),
(3), (4), or (6).

Next, we test our models on the six power graphs considered in [28]. First, we re-
moved all parallel edges in these graphs. The objective values for the minimum dom-
inating set, minimum connected dominating set, minimum power dominating set, and
minimum connected power dominating set problems are shown in Table 1, while the
wall clock run-times (in seconds) are reported in Table 3. In Table 1, we also present
statistical information for the test instances, including the number of vertices, edges,
and the number of zero-injection vertices in the case of the power dominating set prob-
lem.

From Table 1, we observe that the cardinality of the minimum power dominating set
is less than the cardinality of minimum dominating set for a given graph. Application
of Kirchhoff’s current law to zero-injection vertices can reduce the dominating number
of a graph. Additionally, minimum connected dominating sets have larger cardinality
than their non-connected counterparts.

In Table 2, we present the number of decision variables and constraints for each
formulation. The four types of constraints we used to ensure set connectivity have at
most O(|V |3) decision variables, and at most O(|V |3) constraints. In contrast to the



The Connected Dominating Set Problem and the Power Dominating Set Problem 381

formulation for sub-tour elimination in [15], which has exponential number O(2|V |)
number of constraints, our proposed methods should yield more tractable computation
for even larger graphs.

Table 3. Solution times for formulations with different connectivity constraints

Dominating Set Minimum Connected Dominating Minimum Connected Power
Graph Name Problems Set Problems Dominating Set Problems

MDS PDS MTZ MARTIN SCF MCF MTZ MARTIN SCF MCF
IEEE-14-Bus 0 0 0.02 0.14 0.15 0.14 0.04 0.12 0.49 0.15
IEEE-30-Bus 0 0 0.22 2.39 299.39 0.89 0.32 1.72 265.10 1.17
IEEE-57-Bus 0.01 0.01 200.59 14671.70 64641.60 6738.05 60.81 5309.74 12448.10 2579.66
RTS-96 0.01 0.03 445.69 >24h >24h 47236.40 55266.10 >24h >24h 53752.20
IEEE-118-Bus 0.01 0.04 699.83 85455.70 >24h 36263.10 50.67 >24h >24h 78715.40
IEEE-300-Bus 0.01 0.27 5033.97 >24h >24h >24h 72437.40 >24h >24h >24h

From Table 3, we observe that it is quite fast to compute optimal solutions to the
dominating set problem without connectivity constraints. In contrast, the imposition
of connectivity constraints significantly impacts computational tractability. The MTZ
constraints (2) yield the best performance. Comparing the two methods with the same
number O(|E|+ |V |) of decision variables, MTZ and SCF, MTZ (with fewer constraints)
yields significantly better performance. The other connectivity formulations are quite
slow requiring more than 24 hours for solving problems arising in large graphs. For
example, there are |V |= 73 vertices and |E|= 108 edges in the RTS-96 graph, yielding
more than 733 binary variables in formulation (3).

6 Conclusions

We presented four optimization models to ensure the connectivity of the subgraph in-
duced by the dominating set of a graph. All models are formulated as mixed integer
programs with a polynomial number of constraints, and were tested on many repre-
sentative graphs. Among these models, the one with Miller-Tucker-Zemlin constraints
to ensure connectivity has the best performance. We further note that the MIP formu-
lations we examine here can be easily extended to solve the minimum spanning tree
problem, the maximum leaf spanning tree problem, the k-cardinality tree problem, and
the Steiner tree problem.

Future research directions include using efficient branch-and-cut methods to further
reduce the computational complexity, and comparing the results obtained by formula-
tions considering an exponential number of constraints. To improve the efficiency of the
methods described in this paper, more valid inequalities should be further studied and
high-performance computing methods should be leveraged. For some graphs, for exam-
ple 1×n grid graphs, the dominating set problem can in theory be solved in polynomial
time and tests should be performed on these cases to verify computational complexity
results.

Acknowledgements. Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed



382 N. Fan and J.-P. Watson

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1979)

2. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time approximation scheme
for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4),
202–208 (2003)

3. Li, Y., Thai, M.T., Wang, F., Yi, C.W., Wan, P.J., Du, D.-Z.: On greedy construction of
connected dominating sets in wireless networks. Wirel. Commun. Mob. Comp. 5, 927–932
(2005)

4. Zhu, X., Yu, J., Lee, W., Kim, D., Shan, S., Du, D.-Z.: New dominating sets in social net-
works. J. Global Optim. 48(4), 633–642 (2010)

5. Wu, W., Gao, X., Pardalos, P.M., Du, D.-Z.: Wireless networking, dominating and packing.
Optim. Lett. 4(3), 347–358 (2010)

6. Ding, L., Gao, X., Wu, W., Lee, W., Zhu, X., Du, D.-Z.: An exact algorithm for minimum
CDS with shortest path constraint in wireless networks. Optim. Lett. 5(2), 297–306 (2011)

7. Thai, M.T., Du, D.-Z.: Connected dominating sets in disk graphs with bidirectional links.
IEEE Commun. Lett. 10(3), 138–140 (2006)

8. Kim, D., Zhang, Z., Li, X., Wang, W., Wu, W., Du, D.-Z.: A better approximation algorithm
for computing connected dominating sets in unit ball graphs. IEEE Trans. Mob. Comp. 9(8),
1108–1118 (2010)

9. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks
and MANET. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization,
pp. 329–369 (2004)

10. Liu, Z., Wang, B., Guo, L.: A Survey on connected dominating set construction algorithm
for wireless sensor networks. Informa. Technol. J. 9, 1081–1092 (2010)

11. Mnif, K., Rong, B., Kadoch, M.: Virtual backbone based on mcds for topology control
in wireless ad hoc networks. In: Proceedings of the 2nd ACM International Workshop on
Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, Quebec,
Canada (2005)

12. Yuan, D.: Energy-efficient broadcasting in wireless ad hoc networks: performance bench-
marking and distributed algorithms based on network connectivity characterization. In: Pro-
ceedings of MSWiM, Quebec, Canada (2005)

13. Morgan, M.J., Grout, V.: Finding optimal solutions to backbone minimisation problems us-
ing mixed integer programming. In: Proceedings of the Seventh International Network Con-
ference (INC 2008), Boston, MA, pp. 53–63 (2008)

14. Wightman, P.M., Fabregasy, A., Labradorz, M.A.: An optimal solution to the MCDS prob-
lem for topology construction in wireless sensor networks. In: 2010 IEEE Latin-American
Conference on Communications (LATINCOM), Belem, Brazil (2010)

15. Simonetti, L., da Cunha, A.S., Lucena, A.: The Minimum Connected Dominating Set Prob-
lem: Formulation, Valid Inequalities and a Branch-and-Cut Algorithm. In: Pahl, J., Reiners,
T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 162–169. Springer, Heidelberg (2011)

16. Pop, P.C.: A survey of different integer programming formulations of the generalized mini-
mum spanning tree problem. Carpathian J. Mathematics 25(1), 104–118 (2009)

17. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs
applied to electric power networks. SIAM J. Disc. Math. 15, 519–529 (2002)



The Connected Dominating Set Problem and the Power Dominating Set Problem 383

18. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., Shahidehpour, M.: Contingency-
constrained PMU placement in power networks. IEEE Trans. Power Syst. 25, 516–523
(2010)

19. Aazami, A.: Domination in graphs with bounded progagation: algorithms, formulations and
hardness results. J. Comb. Optim. 19, 429–456 (2010)

20. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling
salesman problems. J. Assoc. Comp. Mach. 7, 326–329 (1960)

21. Quintao, F.R., da Cunha, A.S., Mateus, G.R., Lucena, A.: The k-cardinality tree problem:
reformulations and lagrangian relaxation. Disc. Appl. Math. 158, 1305–1314 (2010)

22. Desrochers, M., Gilbert, L.: Improvements and extensions to the Miller-Tucker-Zemlin sub-
tour elimination constraints. Oper. Res. Lett. 10, 27–36 (1991)

23. Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations.
Oper. Res. Lett. 10, 119–128 (1991)

24. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J.
Comp. Syst. Sci. 43(3), 441–466 (1991)

25. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial opti-
mization. 4OR (8), 1–48 (2010)

26. Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry Matters for the Sizes of Extended Formu-
lations. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 135–148.
Springer, Heidelberg (2010)

27. Dilkina, B., Gomes, C.P.: Solving Connected Subgraph Problems in Wildlife Conservation.
In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 102–116.
Springer, Heidelberg (2010)

28. IEEE reliability test data (2012), http://www.ee.washington.edu/research/pstca/

http://www.ee.washington.edu/research/pstca/


Measuring Structural Similarities
of Graphs in Linear Time

Zheng Fang, You Li, and Jie Wang

Department of Computer Science, University of Massachusetts, Lowell, MA 01854

Abstract. Measuring graph similarities is an important topic with numerous
applications. Early algorithms often incur quadratic time or higher, making it
unpractical to use for graphs of very large scales. We present in this paper the
first-known linear-time algorithm for solving this problem. Our algorithm, called
Random Walker Termination (RWT), is based on random walkers and time se-
ries. Three major graph models, that is, the Erdős-Rényi random graphs, the
Watts-Strogatz small world graphs, and the Barabási-Albert preferential attach-
ment graphs are used to generate graphs of different sizes. We show that the RWT
algorithm performs well for all three graph models. Our experiment results agree
with the actual similarities of generated graphs. Built on stochastic process, RWT
is sufficiently stable to generate consistent results. We use the graph edge rerout-
ing test and the cross model test to demonstrate that RWT can effectively identify
structural similarities between graphs.

1 Introduction

Detecting similarities between graphs of very large scales, e.g., between online so-
cial networks and knowledge networks, asks for linear-time algorithms. Classical graph
similarity algorithms that measure isomorphism or maximum (or minimum) subgraphs
(or supergraphs) are not suitable for large graphs because they incur high computational
complexity. Approximate measurement on certain graph signatures (e.g., degree distri-
bution), although efficient, may not be able to truly represent structural similarities.

To overcome these problems we devise an effective, linear-time algorithm to detect
structural similarities between graphs. Our algorithm, called Random Walker Termina-
tion (RWT), is based on random walkers and time series. Three major graph models,
namely the Erdős-Rényi random graph, the Watts-Strogatz small world graph and the
Barabási-Albert preferential attachment graph are used to generate synthetic graphs for
performance testing. Experiment results show good agreements with the actual similar-
ities of generated graphs. To study the stochastic nature of the algorithm, we also carry
out a set of self-similarity experiments to show that RWT is stable.

The rest of the paper is organized as follows. In Section 2 we briefly review previous
work on measuring graph similarities. In Section 3 we present a linear-time algorithm
called Random Walker Termination (RWT) based on random walkers and time series
for finding structural similarities for graphs of very large scales. In Section 4 we show
a number of numerical experiment results of the RWT algorithm. In Section 5 we con-
clude the paper.

G. Lin (Ed.): COCOA 2012, LNCS 7402, pp. 384–395, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Measuring Structural Similarities of Graphs in Linear Time 385

2 Related Work

Measuring graph similarities has numerous applications, and a number of algorithms
have been proposed. Isomorphism is the strictest measure of graph similarity. Two
graphs are considered similar if they share a sufficiently large isomorphic component,
or they have a sufficiently small super graph in common. The difference between two
graphs can be represented as edit distance, that is, the number of steps transforming
one graph to another, with minimum editing costs. However, since computing the exact
solution of isomorphism requires exponential time unless P = NP, such algorithms are
not applicable to large-scale graphs of interests.

Another class of similarity algorithms takes a local perspective on similarity, based
on the philosophy that “two nodes in different graphs are considered similar if their
neighboring nodes are also similar”. This recursive definition on similarity naturally
leads to an iterative updating process, in which similarity scores between nodes prop-
agate to neighboring nodes at each time step. Melnik et al. [7] applied a similarity
flooding algorithm in matching of database structures, and attempted to find the corre-
spondence between the nodes of two given graphs. The SimRank algorithm, described
by Jeh and Widom [4], computes the self-similarity of a graph, that is, the similarities
between all pairs of nodes in one graph. A recursive method proposed by Zager and
Verghese [9] introduces the idea of coupling the similarity scores of both nodes and
edges.

Extensive research has been conducted to identify the essential features of graphs and
use them to measure similarities. The key idea is that the features of given graphs, also
referred to as the “signatures”, are expected to be similar if graphs are pairwise similar.
Common graph features include degree distributions, diameters, and graph spectrum
eigenvalues [2]. These methods are usually quite powerful and scale well for large in-
puts, for they map the graphs to several statistical measures that are much smaller in
size than the original graphs. However, such features may not produce desirable results.
For example, the degree distribution, if solely used as the similarity measure, is consid-
ered too loose to truly represent a structural similarity. It is also possible that two graphs
with high similarity may have different numbers of nodes and edges.

3 Random Walker Termination Similarity Measurement

In a thermodynamic system, the expansion of heat content depends on various factors
coming from both internal and external, but mostly from the structure (or shape) of the
object. Consider a cooling process for two objects of the same material with similar
shapes in the same environment. They are expected to have a similar heat transfer pat-
tern. On the other hand, if the two objects have major different structures, the cooling
processes are expected to be significantly different.

Based on this observation, if we assign each node in a graph with an initial energy
associated with its degree, then the whole graph can be thought of as a thermodynamic
object. Energy units can exchange freely between nodes along the edges. When a certain



386 Z. Fang, Y. Li, and J. Wang

node reaches the lower bound of energy threshold, it stops emitting energy while starting
to absorb energy. In this manner, the graph will stochastically “cool down” in time. If two
graphs are structural similar, they are expected to follow a similar cooling process and
the time series for such cooling process can be used for detecting similarities. Random
walkers and stochastic walking would be a natural fit for simulating such process.

3.1 Random Walks on Graphs

Random walks are used in many models in mathematics and physics. The classical the-
ory of random walks deals with random walks on simple, but infinite graphs, such as
grids, and studies their qualitative behaviors: Does a random walk return to its start-
ing point with probability one? Does it return infinitely often? More recently, random
walks on general and finite graphs have received much attention. Extensive studies have
focused more on quantitative properties. A step in a random walk can be defined as fol-
lows:

Definition 1. Random Walk
A one step random walk on an undirected graph G = (V,E) is the movement from node
i to j with probability p( j|i) = 1/di, where (i, j) ∈ E and di is the degree of node i.

A random walk is a finite Markov chain that is time-reversible, and the theory of random
walks on graphs and the theory of finite Markov chains are quite similar [6]. The studies
on the probability of random-walk paths indicate that such a stochastic process may
have deep relations to the spectrum of graphs, especially to a class of natural kernels
based on heat equations, called diffusion kernels [5]. The random-walk approach has
shown great power and flexibility to quantitative properties of graphs.

3.2 RWT Algorithm

We present a new approach to measuring graph structural similarity using a number
of random walkers and time series. In particular, instead of studying the probability of
random-walk paths, we are concerned about the termination rate of random walkers on
a graph with dynamically generated sink nodes (A random walker dies when it reaches
a sink node).

Given an undirected graph G = (V,E), we initially assign di random walkers on each
node i, where di is the degree of node i. Define a sink threshold φ, so that if the number
of walkers on node i is not greater than φ, then node i becomes a sink node. Note that
once a node becomes a sink, it remains as a sink. During each iteration, each walker
randomly chooses one of its neighboring nodes. If the chosen node is not a sink, then
the walker will move to it; otherwise the walker dies. The overall termination rate is
calculated at the end of each iteration. Let k be the number of iterations. Then a k-
Random Walker Termination (k-RWT) algorithm is obtained, as shown in the following
pseudocode.



Measuring Structural Similarities of Graphs in Linear Time 387

CALC RWT (G,k,φ)

� G : input graph, k : number of iterations, φ : sink threshold
1 for each node i in G
2 do walkers[i]← i.degree
3 walkers next[i]← 0
4 total walkers← walkers.sum
5 while (k)
6 do for each node i in G
7 do for each walker on node i
8 do j← randomly pick a neighbor of node i
9 if (walkers[ j]> φ)

10 then walkers next[ j] increases by 1
11 else total walkers decrease by 1
12 � end of for
13 � end of for
14 zero(walkers[])
15 swap(walkers,walkers next)
16 rate← calculate the termination rate
17 RWT.append(rate)
18 k← k− 1
19 � end of while
20 return RWT

We use the k-element vector RWT of termination rates obtained for each graph as
a signature that represents the structure of the graph, and calculate RWTScore with two
RWT s to determine the similarity score between two graphs.

Definition 2. RWT Score
Let U = 〈u1, · · · ,ul〉 and V = 〈v1, · · · ,vm〉 be two RWTs for graphs G and H. Define a
normalization factor N(u,v) as follows: N(u,v) = u+ v if u+ v �= 0 and 1 otherwise.
Let

RWTScore(U,V ) =
k

∑
i=1

|ui− vi|
N(ui,vi)

, where k = min{l,m}.

Note that in the case when U and V have different dimensions, we should calculate
RWTScore by aligning the two with the minimum dimension of U and V . The range of
RWTScore is [0,k], and a smaller score means a better similarity of the two graphs.

Definition 3. α-Similarity
Two graphs G and H are α-similar if RWTscore(G,H)≤ α.

While the selection of the α value would depend on the underlying graphs, in general,
setting α to 0.1 is deemed appropriate.

Note that the similarity measured by RWT scores contains the case of “scale sim-
ilarity”. That is, two graphs are considered scaly similar if they are both generated
using the same model with similar growth parameters, regardless their current sizes.



388 Z. Fang, Y. Li, and J. Wang

Although this kind of similarity is quite useful in some scenarios, e.g., in finding ob-
jects that follow the same growing dynamics but in different time phases, in most cases,
the similarity measurement requires that two similar graphs be of about the same size.
Therefore, we should also apply a secondary filter of edge ratio and vertex ratio on top
of RWT scores, to eliminate any similar pairs with different sizes.

The complexity of the RWT algorithms depends on the total number of random walk-
ers and the number of iterations (which is often a small constant). Thus, the time com-
plexity is linear in terms of the size of the input graph. The linear-time complexity
guarantees that the RWT algorithm is efficient even on large-scale inputs. The RWT
algorithm may also be applied in a distributed environment, since the random walking
of each walker is independent from each other. Through appropriate communications
within a distributed system, the time needed for calculating RWTs can be further re-
duced.

4 Numerical Experiments

In this section, we use randomly generated synthetic graphs to test the accuracy of
the RWT algorithm. Three major graph models, namely, Erdős-Rényi random graphs,
Watts-Strogatz small world graphs, and Barabási-Albert preferential attachment graphs
are used to generate graphs of different sizes. The number of iterations of RWT algo-
rithm is set to 10. To determine the threshold, we first sort node degrees in increasing
order, and pick the first 20% position’s degree as the threshold. Data experiments are
focused on algorithm’s stability, ability to identify similar graphs. Experiment results
show good agreements with the actual similarities of generated graphs. Regarding the
stochastic nature of the algorithm, we also conduct self-similarity experiments to show
that RWT is stable.

4.1 Graph Models

Erdős-Rényi Random Graphs. The Erdős-Rényi model [3] (ER) generates random
graphs with equal probability of creating new edges between nodes, independently of
the other edges. There are two parameters n and p, where the graph initially has n nodes
and each edge is introduced with probability p for each pair of nodes. The expected
number of edges is

(n
2

)
p.

Let D be a random variable that represents the degree of a node in an Erdős-Rényi
graph. Then we have E(D) = (n−1)p and P(D = d) =

(n−1
d

)
pd(1− p)n−1−d. Keeping

the expected degree constraint as n→∞, D can be approximated with a Poisson random
variable with λ= (n−1)p, and P(D = d) = e−λλd/d!. This degree distribution falls off
faster than an exponential in d, and so is not a power-law distribution. Figure 1 shows
an Erdős-Rényi graph of 60 nodes.

Watts-Strogatz Small-World Graphs. The Watts-Strogatz model (WS) [8] generates
graphs with small-world properties, including short average path lengths and high clus-
tering.



Measuring Structural Similarities of Graphs in Linear Time 389

Fig. 1. Erdős-Rényi random graph

Given the number of nodes N, the mean degree K and rewiring probability β, where
N*K* ln(N)* 1, the model constructs an undirected graph with N nodes and NK/2
edges in the following way: first construct a regular ring lattice, a graph with N nodes
each connected to K neighbors K/2 on each side. Then, for every node ni = n0, . . .nN−1

take every edge (ni,n j) with i < j, and rewire it with probability β. Figure 2 shows a
Watts-Strogatz graph of 60 nodes.

Fig. 2. Watts-Strogatz small world graph



390 Z. Fang, Y. Li, and J. Wang

Barabási-Albert Preferential Attachment Graphs. The Barabási-Albert model [1]
(BA) generates at random, scale-free networks using a preferential attachment mech-
anism. By preferential attachment it means that the more connections a node has, the
more likely it is to receive new links. That is, nodes with higher degrees have stronger
ability to attract new connections.

To construct a Barabási-Albert graph, the graph should initially contain m nodes,
where m≥ 2 and the degree of each node in the initial graph should be at least 1. New
nodes are added to the network one at a time. A new node is connected to the existing
nodes with a probability proportional to the number of links that already exist in the
graph. The probability that a new node is connected to node i can be calculated as
follows:

pi =
ki

∑ j k j
,

where ki is the degree of node i and the divisor is the summation of degrees of all ex-
isting nodes. Heavily linked nodes, a.k.a. hubs, tend to accumulate more links quickly,
while nodes with small degrees are unlikely to be chosen to form a new edge. The
new nodes have a preference to attach themselves to the already heavily linked nodes.
Figure 3 shows a Barabási-Albert graph of 60 nodes.

Fig. 3. Barabási-Albert preferential attachment graph

4.2 Self-similarity Stability

Since the RWT algorithm is based on random walks with multiple walkers, the stochas-
tic behavior of the algorithm requires validation of the stability of outputting consistent
results. The most effective way to test the stability is through self similarity.

In a self-similarity test, we generate a graph and apply RWT on it twice. Since the
graphs for comparison are exactly the same, the RWT score is expected to be close
to zero, but not exactly zero because of stochastic behaviors. Using the three graph
models, we randomly generate graphs of nodes ranging from 100 to 3,000, and test the



Measuring Structural Similarities of Graphs in Linear Time 391

similarity of each graph against itself. Figure 4.2 shows the average self-similarity score
and error ranges versus node sizes for all three graph models.

The self-similarity RWT scores in all three models are sufficiently small to conclude
that each graph is similar to itself. The RWT score gradually approaches to zero as
the size of graph increases, which makes sense for the stochastic behavior becomes
smoother on bigger systems. At a 1,000-nodes graph, the average score can be as small
as 0.0036. The consistency of the results shows that the RWT algorithm is stable in
terms of graph types and sizes, and the large input size increases the stability of the
algorithm.

4.3 Graph Edge Rerouting

In this experiment, we test the RWT algorithm for the ability to identify small changes in
a graph. We randomly generate graphs of edges ranging from 50 to 1,000 for each of the
three graph models, and reroute selected edges at random, but maintain graph properties
(such as preferential attachment). The numbers of selected edges ranged from 1 to 50.
The rerouted graph is then compared with the original graph, and the RWT score is
calculated. Figure 4.3 shows the RWT score plotting of edge rerouting on each of the
three models.

Edge rerouting similarity essentially tests the algorithm’s ability to detect gradually
changes in graph structures. In all three models, the two graphs for comparison become
less similar as the number of rerouted edges increases. We also note that edge rerouting
has much bigger impact on Barabási-Albert graphs, with significantly less influence on
Erdős-Rényi graphs.

In an Erdős-Rényi graph, edges are randomly added uniformly between nodes. That
is, every node is in an equivalent state and no edge is more special than the others.
Rerouting edges on such graph is nothing more than removing the edges first and re-
generating edges using the normal generating process. Therefore, the rerouting does not
seem to affect the graph structure too much. Although large portion of edge rerouting
could still result in structural changes, the impact can be expected to be small compared
to the other models.

On the other hand, in a Barabási-Albert graph, edges are created following the pref-
erential attachment, and so the nodes each have different priorities to form new edges.
Since nodes are not in equivalent state, rerouting on a Barabási-Albert graph may put
more impact for low degree nodes and maybe even cause detachment creating orphan
nodes. Certain techniques can be applied during rerouting to avoid creating orphan
nodes, but after certain number of edge reroutings, a significant structural change is
inevitable. Thus, it is not surprised that a large difference exists between the original
graph and its edge rerouted graph.

4.4 Cross Model Test

Finally, we randomly generate graphs of up to 1,000 nodes, and calculate the RWT
score on each graph generated under different models (ER, WS, BA). Table 1 records
the similarity among all generated graphs. We can see that all graph pairs have high
RWT scores and none of them seem similar. This result agrees with the observation on



392 Z. Fang, Y. Li, and J. Wang

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

Number of Nodes

R
W

T
 S

co
re

(a) Erdős-Rényi

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

R
W

T
 S

co
re

Number of Nodes

(b) Watts-Strogatz

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

Number of Nodes

R
W

T
 S

co
re

(c) Barabási-Albert

Fig. 4. Self-similarity and error ranges for three graph models



Measuring Structural Similarities of Graphs in Linear Time 393

1 5 20 50
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Reroute Edges

R
W

T
 S

co
re

 

 

89 edges

207 edges

492 edges

1013 edges

(a) Erdős-Rényi

1 5 20 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Rerouting Edges

R
W

T
 S

co
re

 

 

100 edges

200 edges

500 edges

1000 edges

(b) Watts-Strogatz

1 5 20 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Reroute Edges

R
W

T
 S

co
re

 

 

100 edges

200 edges

500 edges

1000 edges

(c) Barabási-Albert

Fig. 5. Edge rerouting similarity for three graph models



394 Z. Fang, Y. Li, and J. Wang

Table 1. RWT Scores of Cross Model Test

Model 1 vs 2 Vertices Edges 1 Edges 2 RWTScore

ER vs BA

100 263 475 1.1147
200 1046 1900 1.1690
500 6259 11875 1.6337

1000 24872 47500 1.9921

ER vs WS

100 263 200 1.3383
200 1046 400 1.5537
500 6259 1000 1.3569

1000 24872 2000 1.2260

BA vs WS

100 475 200 2.3014
200 1900 400 2.3271
500 11875 1000 2.7603

1000 47500 2000 2.9754

the actual graphs, that none of the graphs from different models should be considered
similar to each other, regardless of their sizes.

5 Conclusion

We devised an effective, linear-time algorithm called Random Walker Termination
(RWT) for finding structural similarities in graphs of very large scales based on ran-
dom walkers and time series. We showed that the algorithm is scalable for a wide range
of input sizes on various randomly generated synthetic graphs. Three major graph mod-
els, namely, the Erdős-Rényi random graphs, the Watts-Strogatz small-world graphs,
and the Barabási-Albert preferential attachment graphs are used to generate graphs
of different sizes. The RWT algorithm performs well on all three graph models, and
the experiment results agree with the actual similarities of generated graphs. Built on
stochastic process, the algorithm is sufficiently stable to generate consistency results.
The graph edge rerouting test and the cross model test also demonstrate good perfor-
mance of identifying similar graphs.

Acknowledgements. We thank Prof. Weibo Gong at University of Massachusetts
Amherst for providing motivation of the RWT algorithm. We thank Jian Lu for helping
us to organize the data and figures.

Z. Fang and Y. Li were supported in part by the NSF under grant CCF-0830314. J.
Wang was supported in part by the NSF under grants CCF-0830314, CNS-0958477,
and CNS-1018422. Points of view in this document are those of the authors and do not
necessarily represent the official position of the NSF.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern
Physics 74(1), 47–97 (2002)



Measuring Structural Similarities of Graphs in Linear Time 395

2. Cha, S.H.: Comprehensive survey on distance / similarity measures between probability den-
sity functions. International Journal of Mathematical Models and Methods in Applied Sci-
ences 1(4), 300–307 (2007)

3. Erdős, P., Rényi, A.: On the evolution of random graphs. Publication of the Methematical
Institute of the Hungarian Academy of Sciences, 17–61 (1960)

4. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2002, pp. 538–543. ACM (2002)

5. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In:
Proceedings of the Nineteenth International Conference on Machine Learning, ICML 2002,
pp. 315–322 (2002)

6. Lovasz, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty 2, 1–46
(1993)

7. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching al-
gorithm and its application to schema matching. In: Proceedings on 18th International Con-
ference on Data Engineering, pp. 117–128 (2002)

8. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393(6684), 440–
442 (1998)

9. Zager, L.A., Verghese, G.C.: Graph similarity scoring and matching. Applied Mathematics
Letters 21(1), 86–94 (2008)



Author Index

Anthony, Barbara M. 257
Arikushi, Karin 103

Belmonte, Rémy 360
Biswas, Sudip 83

Cai, Jin-Yi 336
Cai, Zhipeng 1
Chen, Xi 336
Chen, Xujin 312
Chen, Zhi-Zhong 188
Cheng, Eddie 49
Chung, Christine 257
Couetoux, Basile 73

Ding, Wei 37
Durocher, Stephane 83

El Ouali, Mourad 200
Eto, Hiroshi 234

Fan, Neng 371
Fang, Zheng 384
Frid, Yelena 176

Gorski, Jochen 348
Guo, Fengrui 234
Guo, Heng 336
Gusfield, Dan 176

He, Jing (Selena) 1
Hu, Xiaodong 312
Huo, Yumei 291

Ibara, Ken 301

Jäger, Gerold 200
Jaschob, Mathias 348
Ji, Shouling 1
Jiang, Haitao 127
Jiang, Wei 95

Kamiński, Marcin 360
Kanj, Iyad A. 223

Klamroth, Kathrin 348
Kosowski, Adrian 13
Kranakis, Evangelos 25

Lackner, Martin 115
Li, Minming 212
Li, You 384
Liang, Zhewei 163
Liu, Hong 151
Liu, Tian 95
Lu, Pinyan 336

Ma, Weidong 312
MacQuarrie, Fraser 25
Miyano, Eiji 234
Mondal, Debajyoti 83
Monnot, Jérome 73
Morales-Ponce, Oscar 25

Nagamochi, Hiroshi 301
Navarra, Alfredo 13
Ni, Guanqun 281
Nishat, Rahnuma Islam 83

Pajak, Dominik 13
Pan, Yi 1
Paquete, Lúıs 348
Paulusma, Daniël 360
Pichler, Reinhard 115
Pinotti, Cristina M. 13
Poon, Chung Keung 269
Poon, Sheung-Hung 245

Qiu, Ke 49

Reznichenko, Boris 291
Rümmele, Stefan 115

Shen, Zhizhang 49

Thilikos, Dimitrios M. 360
Tóth, Csaba D. 103
Toubaline, Sonia 73

Ung, Chin-Ting 245



398 Author Index

van ’t Hof, Pim 360

Wang, Changjun 312
Wang, Chaoyi 95
Wang, Jie 384
Wang, Lusheng 188
Watson, Jean-Paul 371
Woltran, Stefan 115
Wu, Weiwei 212

Xia, Ge 223
Xu, Jinhui 138
Xu, Ke 95

Xu, Yinfeng 281
Xue, Guoliang 37

Yang, Boting 324
Yen, William Chung-Kung 245
Yi, Eunjeong 61

Zhang, Chihao 127
Zhang, Kaizhong 163
Zhang, Peng 151
Zhang, Qiang 212
Zhao, Hairong 291
Zhu, Binhai 127, 269
Zhu, Yongding 138


	Title
	Preface
	Organization
	Table of Contents
	Load-Balanced Virtual Backbone Construction for Wireless Sensor Networks
	Introduction
	Problem Formulation
	Network Model
	Problem Definition

	Load Balanced Virtual Backbone Problem
	INP Formulation of MDMIS
	Approximation Algorithm
	Connected Virtual Backbone

	MinMax Valid-Degree Non Backbone Node Allocation
	ILP Formulation of MVBA
	Randomized Approximation Algorithm

	Conclusion
	References

	Maximum Matching in Multi-Interface Networks
	Introduction
	Definitions and Notation
	Polynomial Time Algorithms
	Hardness
	Conclusion
	References

	Stretch Factor inWireless Sensor Networks with Directional Antennae
	Introduction
	Related Work
	Outline and Results of the Paper
	Preliminaries and Notation

	Orientating Small Groups of Sensors
	Merging k-Orientations
	Stretch Factor of k-Orientations
	Forming k-Orientations from Small Groups of Sensors

	Orienting Antennae with Constant Stretch Factor
	Orienting Antennae of Beam Width  with Constant Stretch Factor
	Orienting Antennae of Beam Width /2 <  with Constant Stretch Factor

	Conclusion
	References

	On the Minimum Diameter Cost-Constrained Steiner Tree Problem
	Introduction
	Related Works
	Our Contribution

	Preliminaries
	Illustrate the Realization of Objective Tree
	The Problems and NP-Hardness

	A Pseudo-polynomial-Time Algorithm for MCDCRP
	A Weakly FPTAS for MDCCRP
	Auxiliary Graphs
	Polynomial Time Approximate Testing
	Weakly Fully Polynomial Time Approximation Schemes

	Concluding Remarks
	References

	The Edge-Centered Surface Area of the Arrangement Graph
	Introduction
	Arrangement Graph and Its Vertex Structures
	Derivation of the Surface Area Expression
	Concluding Remarks
	References

	On Zero Forcing Number of Permutation Graphs
	Introduction
	Z(G) versus Z(G)
	Zero Forcing Number of Permutation Graphs on Nearly Complete Graphs and on Complete k-Partite Graphs
	Zero Forcing Number of Permutation Graphs on Cycles
	Zero Forcing Number of Permutation Graphs on Paths
	Open Problems
	References

	Complexity Results for the Empire Problem in Collection of Stars
	Introduction
	Definitions
	The 4-Coloring Problem in 5-Regular Graphs
	Complexity Results for the Empire Problem
	Conclusion
	References

	Hamiltonian Paths and Cycles in Planar Graphs
	Introduction
	Preliminaries
	Hamiltonian Paths in Outerplanar Graphs
	Hamiltonian Cycles in Planar Graphs
	Conclusion
	References

	Feedback Vertex Sets on Tree Convex Bipartite Graphs
	Introduction
	Tree Convex Bipartite Graphs versus Chordal Bipartite Graphs
	Intractability of FVS on Tree Convex Bipartite Graphs
	References

	Crossing Angles of Geometric Graphs
	Introduction
	Graphs with Bounded Crossing Angle Numbers
	Globally Angle-Rigid Graphs with Bounded Degree
	References

	Multicut on Graphs of Bounded Clique-Width
	Introduction
	Preliminaries
	Complexity Results
	Algorithms
	Vertex Multicut with cw(G)+|H| as Parameter
	RVMC with cw(G u H) as Parameter
	Edge Multicut with cw(G)+|H| as Parameter

	Conclusion and Future Work
	References

	Radiation Hybrid Map Construction Problem Parameterized
	Introduction
	Preliminaries
	A Linear Kernel for p-RHMC3
	Good Patterns
	Kernelization Algorithm

	An FPT Algorithm for p-RHMC2
	Conclusing Remarks
	References

	On the Central Path Problem
	Introduction
	Preliminaries
	Algorithms for the Central Path Problem
	References

	On the Generalized Multiway Cut in Trees Problem
	Introduction
	Motivation
	Related Work
	Our Results

	An FPT Algorithm
	Data Reduction Rules
	Problem Kernel and the Algorithm

	Some Observations
	About the Complexity of GMWC(T)
	A Special Case of GMWC(T)
	Counterexamples for Some Heuristics

	Conclusions
	References

	Algorithms for Forest Local Similarity
	Introduction
	Preliminaries
	Forest Edit Similarity
	Sub-Forests Definitions
	Previous Work
	Our Results

	Algorithms for the Local Forest Similarity Problem
	An Algorithm for Finding Two Most Similar Sibling Subforests
	An Algorithm for Finding Two Most Similar Closed Subforests

	Conclusion
	References

	Speedup of RNA Pseudoknotted Secondary Structure Recurrence Computation �with the Four-Russians Method
	Introduction
	The Basic Optimal Folding Problem
	Rivas&Eddy Algorithm
	Rivas&Eddy Recurrences
	Rivas&Eddy Algorithm

	Conceptual Speedup of Rivas&Eddy
	Breaking Up S and W into q Size Vectors
	Encoding

	Precomputing the R Table
	Fast R&E Algorithm
	Asymptotic Analysis of Fast R&E Algorithm

	References

	An Improved Approximation Algorithm for the Bandpass-2 Problem
	Introduction
	Two Useful Lemmas
	The New Algorithm
	Performance Analysis
	References

	The b-Matching Problem in Hypergraphs: Hardness and Approximability
	Introduction
	Definitions and Preliminaries
	Main Result
	Approximation Result
	References

	Resource Scheduling with Supply Constraint and Linear Cost
	Introduction
	Our Results
	Related Work

	Basic Definitions and Notation
	Analysis of Complexity
	Characterizations of the Optimal Schedule
	2-Approximation Algorithm
	Jobs with Limited Sizes
	Conclusions and Discussions
	References

	On Certain Geometric Properties of the Yao-Yao Graphs
	Introduction
	Preliminaries
	YYk Is a Spanner for Civilized UDG
	YY4 Is Not a Spanner
	YY4 Is Not Plane
	Concluding Remarks
	References

	Distance-d Independent Set Problems for Bipartite and Chordal Graphs
	Introduction
	Preliminaries
	Bipartite Graphs
	Planar Bipartite Graphs
	Chordal Bipartite Graphs

	Chordal Graphs
	References

	Domatic Partition on Several Classes of Graphs
	Introduction
	NP-Hardness
	Domatic Partition Algorithms
	Domatic Partition on P4-Sparse Graphs
	Domatic Partition on Tree-Cographs
	3-Domatic Partition on Maximal Planar Graphs

	References

	Online Bottleneck Matching
	Introduction
	Preliminaries
	Analysis of Greedy
	Analysis of Permutation

	Bicriteria Analysis of Greedy
	Bicriteria Analysis of Balance
	Bicriteria Analysis of Permutation
	Conclusion
	References

	Streaming with Minimum Space: An Algorithm for Covering by Two Congruent Balls
	Introduction
	Streaming with Minimum Space
	Related Work
	Some Intuition

	Some Notations and the Algorithm
	Analysis for the 1d Case
	Analysis for the d-Dimensional Case
	The Invariants
	An Upper Bound of 5.708

	Lower Bounds for the Problems
	Concluding Remarks and Open Problems
	References

	Online Joint Pricing and Booking Policies in Airline Revenue Management
	Introduction
	Online Joint Pricing and Booking Policies
	Optimal Online Policy for Case k=1
	Optimal Online Policy for Case k>1

	Conclusion
	References

	Minimizing Total Weighted Completion Time with Unexpected Machine Unavailability
	Introduction
	Related Work
	New Contribution
	Organization

	Notations and Preliminary Results
	Lower Bounds of Competitive Ratios
	Competitive Ratio of LPT
	Breakdown Model
	Emergent Job Model

	First Fit LPT as Offline Algorithms 
	Numerical Experiments
	LPT Algorithm
	Summary of FF-LPT

	Conclusion
	References

	Characterizing Mechanisms in Obnoxious Facility Game
	Introduction
	Preliminaries
	Mechanisms in the Line Metric
	2-Candidate SP/GSP Mechanisms in the General Metric
	Approximation Ratio of 2-Candidate Mechanisms
	Concluding Remarks
	References

	Efficiency of Dual Equilibria in Selfish Task Allocation to Selfish Machines
	Introduction
	Related Works and Our Contribution
	Model Specification
	Efficiency Analysis
	Small [1,4/3)
	Large [4/3, 5/2)

	Concluding Remark
	References

	Fast-Mixed Searching on Graphs
	Introduction
	Characterizations
	Relations to the Induced-Path Cover
	Lower Bounds
	Relations to Fast Searching and Mixed Searching
	Special Classes of Graphs
	NP-Completeness
	Conclusions
	References

	Inapproximability after Uniqueness Phase Transition in Two-Spin Systems
	Introduction
	Proof of the Main Theorems
	Proof of Lemma 2 
	References

	Dynamic Programming for a Biobjective Search Problem in a Line
	Introduction
	Problem Formulations
	Formulation (BSPL-1)
	Formulation (BSPL-2)
	Formulation (BSPL-3)
	Complexity Results

	Algorithms
	Notation and Definitions
	Algorithm for Formulation (BSPL-1)
	Algorithm for Formulation (BSPL-2)
	Algorithm for Formulation (BSPL-3)

	Experimental Analysis
	Conclusions
	References

	Characterizing Graphs of Small Carving-Width
	Introduction
	Preliminaries
	The Main Result
	Conclusions
	References

	Solving the Connected Dominating Set Problem and Power Dominating Set Problem �by Integer Programming
	Introduction
	Dominating Set Problem
	Connectivity Constraints of Subgraphs
	Miller-Tucker-Zemlin Constraints
	Martin Constraints
	Single-Commodity Flow Constraints
	Multi-commodity Flow Constraints

	Power Dominating Set Problem and Connected Power Dominating Set Problem
	Numerical Experiments
	Conclusions
	References

	Measuring Structural Similarities of Graphs in Linear Time
	Introduction
	Related Work
	Random Walker Termination Similarity Measurement
	Random Walks on Graphs
	RWT Algorithm

	Numerical Experiments
	Graph Models
	Self-similarity Stability
	Graph Edge Rerouting
	Cross Model Test

	Conclusion
	References

	Author Index



