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Abstract. Observational determinism has been proposed in the liter-
ature as a way to ensure confidentiality for multi-threaded programs.
Intuitively, a program is observationally deterministic if the behavior
of the public variables is deterministic, i.e., independent of the private
variables and the scheduling policy. Several formal definitions of observa-
tional determinism exist, but all of them have shortcomings; for example
they accept insecure programs or they reject too many innocuous pro-
grams. Besides, the role of schedulers1 was ignored in all the proposed
definitions. A program that is secure under one kind of scheduler might
not be secure when executed with a different scheduler. The existing def-
initions do not always ensure that an accepted program behaves securely
under the scheduler that is used to execute the program.

Therefore, this paper proposes a new formalization of scheduler-specific
observational determinism. It accepts programs that are secure when
executed under a specific scheduler. Moreover, it is less restrictive on
harmless programs under a particular scheduling policy. We discuss the
properties of our definition and argue why it better approximates the
intuitive understanding of observational determinism. In addition, we
also discuss how compliance with our definition can be verified, using
model-checking.

1 Introduction

The success of applications, such as e.g., Internet banking and mobile code, de-
pends for a large part on the kind of confidentiality guarantees that can be given
to clients. Using formal means to establish confidentiality properties of such ap-
plications is a promising approach. Of course, there are many challenges related
to this. Many systems for which confidentiality is important are implemented in
a multi-threaded fashion. Thus, the outcome of such programs depends on the
scheduling policy. Moreover, because of the interactions between threads and
the exchange of intermediate results, also intermediate states can be observed.
Therefore, to guarantee confidentiality for multi-threaded programs, one should

1 Scheduler implements the scheduling policy.
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consider the whole execution traces, i.e., the sequences of states that occur during
program execution.

In the literature, different intuitive definitions of confidentiality are proposed
for multi-threaded programs. We follow the approach advocated by Roscoe [10]
that the behavior that can be observed by an attacker should be deterministic.
To capture this formally, the notion of observational determinism has been in-
troduced. Intuitively, observational determinism expresses that a multi-threaded
program is secure when its publicly observable traces are independent of its confi-
dential data, and independent of the scheduling policy [14]. Several formal defini-
tions are proposed [14,6,13], but none of them capture exactly this intuition.

The first formal definition of observational determinism was proposed by
Zdancewic and Myers [14]. It states that a program is observationally deter-
ministic iff given any two initial stores s1 and s2 that are indistinguishable w.r.t.
the low variables2, any two low location traces are equivalent upto stuttering
and prefixing, where a low location trace is the projection of a trace into a single
low variable location. Zdancewic and Myers consider the traces of each low vari-
able separately. They also argue that prefixing is a sufficiently strong relation,
as this only causes external termination leaks of one bit of information [14].
In 2006, Huisman, Worah and Sunesen showed that allowing prefixing of low
location traces can reveal more secret information — instead of just one bit
of information — even for sequential programs. They strengthened the defini-
tion of observational determinism by requiring that low location traces must be
stuttering-equivalent [6]. In 2008, Terauchi showed that an attacker can observe
the relative order of two updates of the low variables in traces, and derive secret
information from this [13]. Therefore, he proposed another variant of observa-
tional determinism, requiring that all low store traces — which are the projection
of traces into a store containing only all low variables — should be equivalent
upto stuttering and prefixing, thus not considering the variables independently.

However, Terauchi’s definition is also not satisfactory. First of all, the defini-
tion still allows an accepted program to reveal secret information, and second, it
rejects too many innocuous programs because it requires the complete low store
to evolve in a deterministic way.

In addition, the fact that a program is secure under a particular scheduler
does not imply that it is secure under another scheduler. All definitions of ob-
servational determinism proposed so far implicitly assume a nondeterministic
scheduler, and might accept programs that are not secure when executed with a
different scheduler. Therefore, in this paper, we propose a definition of scheduler-
specific observational determinism that overcomes these shortcomings. This def-
inition accepts only secure programs and rejects fewer secure programs under a
particular scheduling policy. It essentially combines the previous definitions: it
requires that for any low variable, the low location traces from initial stores s1
and s2 are stuttering-equivalent. However, it also requires that for any low store

2 For simplicity, we consider a simple two-point security lattice, where the data is di-
vided into two disjoint subsets H and L, containing the variables with high (private)
and low (public) security level, respectively.
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trace starting in s1, there exists a stuttering-equivalent low store trace start-
ing in s2. Thus, any difference in the relative order of updates is coincidental,
and no information can be deduced from it. This existential condition strongly
depends on the scheduler used when the program is actually deployed, because
traces model possible runs of a program under that scheduling policy. In addi-
tion, we also discuss the properties of our formalization. Based on the properties,
we argue that our definition better approximates the intuitive understanding of
observational determinism, which unfortunately cannot be formalized directly.

Of course, we also need a way to verify adherence to our new definition. A
common way to do this for information flow properties is to use a type system.
However, such a type-based approach is insensitive to control flow, and rejects
many secure programs. Therefore, recently, self-composition has been advocated
as a way to transform the verification of information-flow properties into a stan-
dard program verification problem [3,1]. We exploit this idea in a similar way
as in our earlier work [6,4], and translate the verification problem into a model-
checking problem over a model that executes the program to be verified twice,
in parallel with itself. We show that our definition can be characterized by a
conjunction of an LTL [7] and a CTL [7] formula. For both logics, good model
checkers exist that we can use to verify the information flow property. The char-
acterization is done in two steps: first, we characterize stuttering-equivalence,
and prove correctness of this characterization, and second, we use this to char-
acterize our definition of observational determinism.

The rest of this paper is organized as follows. After the preliminaries in Sec-
tion 2, Section 3 formally discusses the existing definitions of observational de-
terminism and their shortcomings. Section 4 gives our new formal definition of
scheduler-specific observational determinism, and discusses its properties. The
two following sections discuss verification of this new definition. Finally, Section 7
draws conclusions, and discusses related and future work.

2 Preliminaries

This section presents the formal background for this paper. It describes syntax
and semantics of a simple programming language, and formally defines equiva-
lence upto stuttering and prefixing.

2.1 Programs and Traces

We present a simple while-language, extended with parallel composition ||, i.e.,
C||C′ where C and C′ are two threads which can contain other parallel composi-
tions. A thread is a sequence of commands that can be scheduled by a scheduler.
The program syntax is not used in subsequent definitions, but we need it to
formulate our examples. Programs are defined as follows, where v denotes a
variable, E a side-effect-free expression involving numbers, variables and binary
operators, b a Boolean expression, and ε the empty (terminated) program.

C ::= skip | v := E | C;C | while (b) do C |
if (b) then C else C | C||C | ε
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Parallel programs communicate via shared variables in a global store. For sim-
plicity, we assume that all variables initially are set to 0. Further, we also assume
an interleaving semantics with the only restriction that two variable accesses
cannot occur simultaneously. We do not consider procedure calls, local memory
or locks. These could be added to the language but this would not essentially
change the technical results.

Let Conf , Com , and Store denote the sets of configurations, programs, and
stores, respectively. A configuration c = 〈C, s〉 ∈ Conf consists of a program
C ∈ Com and a store s ∈ Store, where C denotes the program that remains to
be executed and s denotes the current program store. A store is the current state
of the program memory, which is a map from program variables to values. Let L
be a set of low variables. Given a store s, we use s |L to denote the restriction of
the store where only the variables in L are defined. We say stores s1 and s2 are
low-equivalent, denoted s1 =L s2, iff s1 |L = s2 |L , i.e., the values of all variables
in L in s1 and s2 are the same.

The small-step operational semantics of our program language is standard.
Individual transitions of the operational semantics are assumed to be atomic.
As an example, we have the following rules for parallel composition (with their
usual counterparts for C2):

〈C1, s1〉 → 〈ε, s′1〉
〈C1 || C2, s1〉 → 〈C2, s

′
1〉

〈C1, s1〉 → 〈C′
1, s

′
1〉 C′

1 �= ε

〈C1 || C2, s1〉 → 〈C′
1 || C2, s

′
1〉

We also have a special transition step for terminated programs, i.e., 〈ε, s〉 → 〈ε, s〉,
ensuring that all traces are infinite. Thus, we assume that the attacker cannot
detect termination.

A multi-threaded program executes threads from the set of not-yet terminated
threads. During the execution, a scheduling policy repeatedly decides which
thread is picked to proceed next with the computation. Different scheduling
policies differ in how they make this decision, e.g., a nondeterministic scheduler
chooses threads randomly and hence all possible interleavings of threads are po-
tentially enabled; while a round-robin scheduler assigns equal time slices to each
thread in circular order.

To cover various kinds of schedulers, our formal definition of schedulers as-
sumes that schedulers are history-dependent, i.e., in addition to the current
system configuration, the scheduler’s behavior also depends on the trace leading
to that configuration. Given initial configuration 〈C, s〉, an infinite list of config-
urations T = c0c1c2... ( T : N0 → Conf ) is a trace of the execution of C from
s, denoted 〈C, s〉 ⇓ T , iff c0 = 〈C, s〉 and ∀i ∈ N0. ci → ci+1. Let Trace∗〈C, s〉
denote the set of all finite prefixes of traces that result from the executions of
C from s, i.e., Trace∗〈C, s〉 = {π| π 	 T. 〈C, s〉 ⇓ T } where 	 denotes the prefix
relation on traces. Given a finite trace π ∈ Trace∗〈C, s〉, a scheduler δ which de-
termines a set of next possible configurations Q, Q ⊆ Conf , is formally defined
as follows.
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Definition 1. A scheduler δ for C starting in s is a function δ : Trace∗〈C, s〉 →
2Conf , such that for all finite traces π ∈ Trace∗〈C, s〉, if δ(π) = Q then last(π)
can take a transition to any c belonging to Q. Given π, we write c0 →δ c1 →δ

c2 . . . →δ cn if ci ∈ δ(c0 . . . ci−1) for all 1 ≤ i < |π|.

This model of schedulers is general enough to describe any scheduler that uses
the full history of computation to pick the threads. Given scheduling policy δ,
and configuration 〈C, s〉, a trace of the execution of C from s under the control
of δ is denoted as 〈C, s〉 ⇓δ T . We simply write 〈C, s〉 ⇓ T when the scheduler is
nondeterministic.

Let Ti, for i ∈ N, denote the ith element in the trace, i.e., Ti = ci. We use
T�i to denote the prefix of T upto the index i, i.e., T�i = T0T1 . . . , Ti. When
appropriate, T�i can be considered as an infinite trace stuttering in Ti forever.
Further, we use T |L to denote the projection of a trace to a store containing
only the variables in L. Formally: T |L = map( |L ◦ store)(T ), where map is
the standard higher-order function that applies ( |L ◦ store) to all elements in
T . When L is a singleton set {l}, we simply write T |l . Finally, in the examples
below, when writing an infinite trace that stutters forever from state Ti onwards,
we just write this as a finite trace T = [T0, T1, . . . , Ti−1, Ti].

2.2 Stuttering and Prefixing Equivalences

The key ingredient in the various definitions of observational determinism is trace
equivalence upto stuttering or upto stuttering and prefixing (based on [9,6]). It
uses the auxiliary notion of stuttering-equivalence upto indexes i and j.

Definition 2 (Stuttering-equivalence). Traces T and T ′ are stuttering-equi-
valent upto i and j, written T ∼i,j T ′, iff we can partition T�i and T ′�j into
n blocks such that elements in the pth block of T�i are equal to each other and
also equal to elements in the pth block of T ′�j (for all p ≤ n). Corresponding
blocks may have different lengths.

Formally, T ∼i,j T
′ iff there are sequences 0 = k0 < k1 < k2 < . . . < kn = i+1

and 0 = g0 < g1 < g2 < . . . < gn = j + 1 such that for each 0 ≤ p < n holds:
Tkp = Tkp+1 = · · · = Tkp+1−1 = T ′

gp = T ′
gp+1 = · · · = T ′

gp+1−1.
T and T ′ are stuttering-equivalent, denoted T ∼ T ′, iff ∀i. ∃j. T ∼i,j T ′ ∧

∀j. ∃i. T ∼i,j T
′.

Stuttering-equivalence defines an equivalence relation, i.e., it is reflexive, sym-
metric and transitive.

We say that T and T ′ are equivalent upto stuttering and prefixing, written
T ∼p T ′, iff T is stuttering-equivalent to a prefix of T ′ or vice versa, i.e., ∃i. T ∼
T ′�i ∨ T�i ∼ T ′.

3 Observational Determinism in the Literature

Before presenting our improved definition, this section first discusses the existing
definitions of observational determinism, and their shortcomings.
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3.1 Existing Definitions of Observational Determinism

Given any two initial low-equivalent stores, s1 =L s2, a program C is observa-
tionally deterministic, according to

– Zdancewic and Myers [14]: iff any two low location traces are equivalent
upto stuttering and prefixing, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ ∀l ∈
L. T |l ∼p T ′ |l .

– Huisman et al. [6]: iff any two low location traces are equivalent upto stut-
tering, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ ∀l ∈ L. T |l ∼ T ′ |l .

– Terauchi [13]: iff any two low store traces are equivalent upto stuttering and
prefixing, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ T |L ∼p T ′ |L .

Notice that the existing definitions all have implicitly assumed a nondeterminis-
tic scheduler, without mentioning this explicitly. Zdancewic and Myers, followed
by Terauchi, allow equivalence upto prefixing. The definition of Huisman et al.
is stronger than the one of Zdancewic and Myers, as it only allows stuttering
equivalence. Both definitions of Zdancewic and Myers, and Huisman et al. only
specify equivalence of traces on each single low location separately; they do not
consider the relative order of variable updates in traces, while Terauchi does. In
particular, Terauchi’s definition is stronger than Zdancewic and Myers’ defini-
tion as it requires equivalence upto stuttering and prefixing on low store traces
instead of on low location traces.

3.2 Shortcomings of These Definitions

Unfortunately, all these definitions have shortcomings. Huisman et al. showed
that allowing prefixing of low location traces, as in the definition of Zdancewic
and Myers, can reveal secret information, see [6]. Further, as observed by Ter-
auchi, attackers can derive secret information from the relative order of updates,
see [13]. It is not sufficient to require that only the low location traces are de-
terministic for a program to be secure. Therefore, Terauchi required that all low
store traces should be equivalent upto stuttering and prefixing. However, allow-
ing prefixing of full low store traces still can reveal secret information. Moreover,
the requirement that traces have to agree on updates to all low locations as a
whole is overly restrictive. In addition, all these definitions accept programs
that behave insecurely under some specific schedulers. All these shortcomings
are illustrated below by several examples. In all examples, we assume an obser-
vational model where attackers can access the full code of the program, observe
the traces of public data, and limit the set of possible program traces by choosing
a scheduler.

How Equivalences Upto Prefixing Can Reveal Information

Example 1. Consider the following program. Suppose h ∈ H and l1, l2 ∈ L, h
is a Boolean, 0 or 1,

{if (l1 == 1) then (l2 := h) else skip}
∣
∣
∣
∣ l1 := 1
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For notational convenience, let C1 and C2 denote the left and right operands of
the parallel composition operator in all examples. A low store trace is denoted
by a sequence of low stores, containing the values of the low variables in order,
i.e., (l1, l2). If we execute this program from several low-equivalent stores for
different values of h, we obtain the following low store traces.

Case h = 0 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 0)] execute C2 first

Case h = 1 : T |L =

{

[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 1)] execute C2 first

According to Zdancewic and Myers, and Terauchi, this program is observation-
ally deterministic. However, when h = 1, we can terminate in a state where
l2 = 1. It means that when the value of l2 changes, an attacker can conclude
that surely h = 1; partial information still can be leaked because of prefixing.

We believe that Zdancewic and Myers, and Terauchi defined observational deter-
minism using equivalence upto stuttering and prefixing, because they considered
that termination could only reveal one bit of information (and technically, it sim-
plified the definition of the type systems that they used to verify the property).
However, in our opinion, prefixing allows to leak more than one bit of informa-
tion, as illustrated by Example 1 and by Huisman et al. [6], and therefore only
equivalence upto stuttering should be allowed.

How Too Strong Conditions Reject Too Many Programs. The restric-
tiveness of Terauchi’s definition stems from the fact that no variation in the
relative order of updates is allowed. This rejects many harmless programs.

Example 2. Consider the following program.

l1 := 3 || l2 := 4

If C1 is executed first, we get the following trace, T |L = [(0, 0), (3, 0), (3, 4)];
otherwise, T |L = [(0, 0), (0, 4), (3, 4)].

This program is rejected by Terauchi, because not all low store traces are equiv-
alent upto stuttering and prefixing.

How Scheduling Policies Can Be Exploited by Attackers. In all examples
given so far, a nondeterministic scheduler is assumed. The security of a program
depends strongly on the scheduler’s behavior, and in practice, the scheduler
may vary from execution to execution. Under a specific scheduler, some traces
cannot occur. Because an attacker knows the full code of the program, using an
appropriate scheduler, secret information can be revealed from the limited set
of possible traces. This sort of attack is often called a refinement attack [12,2],
because the choice of scheduling policy refines the set of possible program traces.

Example 3. Consider the following program.

{{if (h > 0) then sleep(n)}; l := 1}
∣
∣
∣
∣ l := 0
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where sleep(n) abbreviates n consecutive skip commands. Under a nondeter-
ministic scheduler, the initial value of h cannot be derived; this program is ac-
cepted by the definitions of Zdancewic and Myers, and Terauchi.

However, suppose we execute this program using a round-robin scheduling
policy, i.e., the scheduler picks a thread and then proceeds to run that thread
for m steps, before giving control to the next thread. If m < n we obtain low
store traces of the following shapes.

Case h ≤ 0 : T |L =

{

[(0), (1), (0)] execute C1 first
[(0), (0), (1)] execute C2 first

Case h > 0 : T |L =

{
[(0), (0), . . . , (0), (1)] execute C1 first
[(0), (0), . . . , (0), (1)] execute C2 first

Thus, only when h ≤ 0, we can terminate in a state where l = 0. Thus, the final
value of l may reveal whether h is positive or not.

Example 4. Consider the following program.

{if (h > 0) then l1 := 1 else l2 := 1}
∣
∣
∣
∣{l1 := 1; l2 := 1}

∣
∣
∣
∣{l2 := 1; l1 := 1}

This program is secure under a nondeterministic scheduler, and it is accepted
by the definitions of Zdancewic and Myers, and Huisman et al. However, when
an attacker chooses a scheduler which always executes the leftmost thread first,
he gets only two different kinds of traces, corresponding to the values of h: when
h > 0, T |L = [(0, 0), (1, 0), (1, 1), . . .]; otherwise, T |L = [(0, 0), (0, 1), (1, 1), . . .].

This program is accepted by the definitions of Zdancewic and Myers, and
Huisman et al. but it is not secure under this scheduler: attackers can learn
information about h by observing whether l1 is updated before l2. Notice that
the problem of relative order of updates was shown by Terauchi [13].

To conclude, the examples above show that all the existing definitions of obser-
vational determinism allow programs to reveal private data because they allow
equivalence upto prefixing, as in the definitions of Zdancewic and Myers, and
Terauchi, or do not consider the relative order of updates, as in the definitions
of Zdancewic and Myers, and Huisman et al. The definition of Terauchi is also
overly restrictive, rejecting many secure programs. Moreover, all these definitions
are not scheduler-specific. They accept programs behaving insecurely under a
specific scheduling policy. This is our motivation to propose a new definition of
scheduler-specific observational determinism. This definition on one hand only
accepts secure programs, and on the other hand is less restrictive on innocuous
programs w.r.t. a particular scheduler.

4 Scheduler-Specific Observational Determinism

To overcome the problems discussed above, we propose a new definition of
scheduler-specific observational determinism. The definition has two conditions:
(1) any two location traces for each low variable should be stuttering-equivalent
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and (2) given a low store trace starting in store s1, for any low-equivalent store s2
there exists a low store trace starting in s2 such that these traces are stuttering-
equivalent. Formally, it is defined as follows.

Definition 3 (δ-specific observational determinism (SSOD))
Given a scheduling policy δ, a program C is δ-specific observationally deter-

ministic w.r.t. L iff for all initial low-equivalent stores s1, s2, s1 =L s2, condi-
tions (1) and (2) are satisfied.

∀T, T ′. 〈C, s1〉 ⇓δ T ∧ 〈C, s2〉 ⇓δ T
′ ⇒ ∀l ∈ L. T |l ∼ T ′ |l .(1)

∀T. 〈C, s1〉 ⇓δ T. ∃T ′. 〈C, s2〉 ⇓δ T
′ ∧ T |L ∼ T ′ |L .(2)

Notice that the execution of a program under a nondeterministic scheduler con-
tains all possible interleavings of threads. Thus, given any scheduling policy δ,
the set of possible program traces under δ is a subset of the set of program traces
under a nondeterministic scheduler.

We claim that this definition approximates the intuitive notion of security even
better than the earlier definitions. First of all, it does not allow information to be
leaked because of prefixing. Second, all location traces for each low location must
be stuttering-equivalent, thus a programmust enforce an ordering on the accesses
to a single low location, i.e., the sequence of operations performed at a single
low location is deterministic [14]. Requiring only that a stuttering-equivalent low
location trace exists is not sufficient, as in the following example.

Example 5. Consider the following program, where h is a Boolean,

if (h) then {l := 0; l := 1} || l := 0 else {l := 0; l := 1} || {l := 0; l := 0}

This program leaks information under a nondeterministic scheduler, because
when h is 1, l is more likely to contain 1 than 0 in the final states. However,
there always exists a matching low location trace for l. Therefore, we require
instead that the low location traces are deterministic.

It should be noted that a consequence of the requirement that low location traces
are deterministic is that programs such as l:=0||l:=1 are also rejected, because
its set of traces cannot be distinguished from the traces of Example 5.

Third, using the second condition, we ensure that differences in the relative
order of updates are independent of private data. This makes our definition
more relaxed than Terauchi’s, accepting programs as Example 2, but rejecting
programs such as if (h) then {l1:=1;l2:=2} else {l2:=2;l1:=1} (exam-
ple from Terauchi [13]), where the relative order of updates reveals information
about h.

Finally, it should be stressed that SSOD is scheduler-specific. Security is only
guaranteed under a particular scheduler; executing the program under a different
scheduler might change the program’s security. This is in particular relevant for
condition (2): existence of a matching trace depends on the scheduler that is
chosen.
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If we quantify Definition 3 over all possible schedulers, we obtain a scheduler-
independent definition of observational determinism. Essentially, this boils down
to the following requirement: for any two low-equivalent initial stores, any two
low store traces obtained from the execution of a program under a nondetermin-
istic scheduler are stuttering-equivalent.

To conclude, we explicitly list the different properties of SSOD.

Property 1 (Deterministic low location traces). If a program is accepted by Def-
inition 3, no secret information can be derived from the observable location
traces. It is required that the low locations individually evolve deterministically,
and thus, private data may not affect the values of low variables.

Property 2 (Relative order of updates). If a program is accepted by Definition 3,
the relative order of updates is independent from the private data. This is ensured
by the requirement that there always is a matching low store trace (for any
possible low-equivalent initial store).

Notice that the insecure programs in Examples 1 and 3 are rejected by our
definition under the scheduler that is used to execute the program. The program
in Example 4 is secure under a nondeterministic scheduler and it is accepted
by our definition instantiated accordingly. However, it is insecure under more
specific schedulers that have a smaller set of possible traces. For example, if it,
is executed under a scheduler that always chooses the leftmost thread to execute
first then it is rejected by Definition 3.

Property 3 (Less restrictive on harmless programs). Compared with Terauchi’s
definition, Definition 3 is more permissive: it allows some freedom in the order
of individual updates, as long as they are independent of private data.

For example, Example 2 and 4, which are secure, are accepted by our definition
instantiated with a nondeterministic scheduler, but rejected by Terauchi.

After having presented an improved definition of observational determinism,
the next sections discuss an approach how this definition can be verified formally.

5 A Temporal Logic Characterization
of Stuttering-Equivalence

For the verification of the SSOD property, we choose to characterize the property
as a model-checking problem. The most difficult part of this characterization is to
express stuttering-equivalence in temporal logic. This section first discusses our
general approach to verification, and then it shows how stuttering-equivalence
is characterized in temporal logic. The next section then uses this to express
observational determinism as a model-checking problem.

5.1 Self-composition to Verify Information Flow Properties

A common approach to check information flow properties is to use a type sys-
tem. However, the type-based approach is not suitable to verify Definition 3.
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First, type systems for multi-threaded programs often aim to prevent secret in-
formation from affecting the thread timing behavior of a program, e.g., secret
information can be derived from observing the internal timing of actions [14].
Therefore, type systems that have been proposed to enforce confidentiality for
multi-threaded programs are often very restrictive. This restrictiveness makes
the application programming become impractical; many intuitively secure pro-
grams are rejected by this approach, i.e., h := l; l := h. Besides, it is difficult
to enforce stuttering-equivalence via type-based methods without being overly
restrictive [13]. In addition, type systems are not suitable to verify existential
properties, as the one in Definition 3.

Instead, we use self-composition. This is a technique [3,1] to transform the
verification of information flow properties into a verification problem. It means
that we compose a program C with its copy, denoted C′, i.e., we execute C and
C′ in parallel, and consider C||C′ as a single program (called a self-composed
program). Notice that C′ is program C, but with all variables renamed to make
them distinguishable from the variables in C [1]. In this model, the original two
programs still can be distinguished, and therefore we can express the information
flow property as a property over the execution of the self-composed program.

Concretely, in this paper we characterize SSOD with a temporal logic formula.
The essence of observational determinism is stuttering-equivalence of execution
traces. Therefore, we first investigate the characteristics of stuttering-equivalence
and discuss which extra information is needed to characterize this in temporal
logic. Based on the idea of self-composition and the extra information, we define
a model over which we want the temporal logic formula to hold. After that, a
temporal logic formula that characterizes stuttering-equivalence is defined. This
formula can be instantiated in different ways, depending on the equivalence
relation that is used in the stuttering-equivalence. SSOD is expressed in terms
of the stuttering-equivalence characterization. This results in a conjunction of
an LTL and a CTL formula (for the syntax and semantics of LTL and CTL, see
[7]). Both formulas are evaluated over a single execution of the self-composed
program. We show that validity of these formulas is equivalent to the original
definition, thus the characterization as a model-checking problem is sound and
complete.

5.2 Characteristics of Stuttering-Equivalence

First we look at the characteristics of stuttering-equivalence. Let symbols a,b, c,
etc. represent states in traces. Given T ∼ T ′ as follows,

index: 0 1 2 3 4 5 . . .
T = a b c d d d . . .

nr of state changes in T : 0 1 2 3 3 3

T ′ = a a b b c d . . .
nr of state changes in T ′: 0 0 1 1 2 3

The top row indicates the indexes of states. The row below each trace indi-
cates the total numbers of state changes, counted from the first state, that
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happened in the trace. Based on this example, we can make some general obser-
vations about stuttering-equivalence that form the basis for our temporal logic
characterization.

– Any state change that occurs first in trace T at index i, i.e., Ti, will also
occur later in trace T ′ at some index j ≥ i.

– For any index r between such a first and second occurrence of a state change,
i.e., i ≤ r < j, at state T ′

r, the total number of state changes is strictly smaller
than the total number of state changes at Tr.

– Similarly for any change that occurs first in trace T ′.

Notice that these properties exactly characterize stuttering-equivalence (see Ap-
pendix A.2 of [5]).

5.3 State Properties

To characterize stuttering-equivalence in temporal logic, we have to come up with
a temporal logic formula over a combined trace. As a convention, we use T 1 and
T 2 to denote the two component traces. Thus, the ith state of the combined trace
contains both T 1

i and T 2
i . The essence of stuttering-equivalence is that any state

change occurring in one trace also has to occur in the other trace. Therefore, we
have to extend the state with extra information that allows us to determine for a
particular state (1) whether the current state is different from the previous one,
(2) whether a change occurs first or second, and (3) how many state changes
have already happened.

State Changes. To determine whether a state change occurred, we need to
know the previous state. Therefore, we define a memorizing transition relation,
remembering the previous state of each transition.

Definition 4 (Memorizing Transition Relation). Let →⊆ (State×State) be
a transition relation. The memorizing transition relation →m⊆ (State×State)×
(State × State) is defined as: (c1, c

′
1) →m (c2, c

′
2) ⇔ c1 → c2 ∧ c′2 = c1.

Thus, (c1, c
′
1) makes a memorizing transition to (c2, c

′
2) if (1) c1 makes a transi-

tion to c2 in the original system, and (2) c′2 remembers the old state c1. We use
accessor functions current and old to access the components of the memorized
state, such that current(c1, c

′
1) = c1 ∧ old(c1, c

′
1) = c′1. A state change can be

observed by comparing old and current components of a single state.

The Order of State Changes. To determine whether a state change occurs
for the first time or has already occurred in the other trace, we use a queue of
states, denoted q. Its contents represents the difference between the two traces.
We have the following operations and queries on a queue: add , adds an element
to the end of the queue, remove, removes the first element of the queue, and
first , returns the first element of the queue. In addition, we use an extra state
component lead , that indicates which component trace added the last state in
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q, i.e., lead = m (m = 1, 2) if the last element in q was added from Tm. Initially,
the queue is empty (denoted ε), and lead is 0.

The rules to add/remove a state to/from the queue are the following. When-
ever a state change occurs for the first time in Tm, the current state is added to
the queue and lead becomes m. When this state change occurs later in the other
trace, the element will be removed from the queue. When a state change in one
trace does not match with the change in the other trace, both q and lead become
undefined, denoted ⊥, indicating a blocked queue. If q = ⊥ (and lead = ⊥), the
component traces are not stuttering-equivalent, and therefore we do not have to
check the remainders of the traces. Therefore, operations add and remove are
not defined when q and lead are ⊥.

Formally, these rules for adding and removing are defined as follows. Initially,
q is ε and lead is 0. Whenever q �= ⊥ and Tm

i �= Tm
i−1 (m = 1, 2),

– if lead = 3−m and Tm
i = first(q), then remove(q). If q = ε, set lead = 0.

– if lead = m or lead = 0, then add(q, Tm
i ) and set lead = m.

– otherwise, set q = ⊥ and lead = ⊥.

The Number of State Changes. To determine the number of state changes
that have happened, we extend the state with counters nr ch1 and nr ch2.
Initially, both nr ch1 and nr ch2 are 0, and whenever a state change occurs,
i.e., Tm

i �= Tm
i−1 (m = 1, 2), then nr chm increases by one. Thus, the number

of state changes at T 1
i and T 2

i can be determined via the values of nr ch1 and
nr ch2, respectively.

5.4 Program Model

Next we define a model over which a temporal logic formula should hold. Given
program C and two initial stores s, s′, we take the parallel composition of C
and its copy C′. In this model, the store of C || C′ can be considered as the
product of the two separate stores s and s′, ensuring that the variables from the
two program copies are disjoint, and thus that updates are done locally, i.e., not
affecting the store of the other program copy. First, we define the elements of
the program model.

States. A state of a composed trace is of the form (〈C1 || C2, (s1, s2)〉, 〈C3 ||
C4, (s3, s4)〉, χ), where 〈C3 || C4, (s3, s4)〉 remembers the old configuration (via
the memorizing transition relation of Definition 4), and χ is extra information, as
discussed above, of the form (nr ch1, nr ch2, q, lead). We define accessor func-
tions conf1, conf2, and extra to extract (〈C1, s1〉, 〈C3, s3〉), (〈C2, s2〉, 〈C4, s4〉),
and χ, respectively.

Thus, in our model, the original two program copies still can be distinguished
and the updates of program copies are done locally. Therefore, if T is a trace
of the composed model, then we can decompose it into two individual traces by
functions Π1 and Π2, respectively, defined as Πm = map(confm). Thus, given a
state Ti = (〈C1 || C2, (s1, s2)〉, 〈C3 || C4, (s3, s4)〉, χ) of the composed trace, then
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lead = 2 c = first(q) nr ch1′ = nr ch1 + 1 q ′ = remove(q) lead ′ = 1

(nr ch1,nr ch2, q , lead)
c
↪→ (nr ch1′,nr ch2′, q ′, lead ′)

lead ∈ {0, 1} lead ′ = 1 nr ch1′ = nr ch1 + 1 q ′ = add(q , c)

(nr ch1,nr ch2, q , lead)
c
↪→ (nr ch1′,nr ch2′, q ′, lead ′)

lead �∈ {0, 1} c �= first(q) nr ch1′ = nr ch1 + 1 q ′ = ⊥ lead ′ = ⊥
(nr ch1,nr ch2, q , lead)

c
↪→ (nr ch1′,nr ch2′, q ′, lead ′)

Fig. 1. Definition of ↪→

(Π1(T ))i = (〈C1, s1〉, 〈C3, s3〉) and (Π2(T ))i = (〈C2, s2〉, 〈C4, s4〉). The current
configuration of program copy m can be extracted by function Γm, defined as
Γm = map(current) ◦ Πm. Thus, (Γ1(T ))i = 〈C1, s1〉 and (Γ2(T ))i = 〈C2, s2〉.
Finally, extra(Ti)(x) denotes the value of the extra information x at Ti, for
x ∈ {nr ch1, nr ch2, q, lead}.
Transition Relation. The transition relation →χ,δ is defined as the compo-
sition of a relation on the operational semantics, and a relation on the extra
information. More precisely, the first component is the memorizing transition
relation →m (cf. Definition 4), derived from the transition relation induced by
the operational semantics of programs executed under scheduler δ. The second
component is a relation ↪→ ⊆ χ×Conf ×χ that describes how the extra infor-
mation evolves, following the rules in Figure 1. Notice that ↪→ is parametric on
the concrete equality relation used. Concretely, →χ,δ is defined by rules such
as (with similar rules for when C1 terminates, i.e., 〈C1, s1〉 → 〈ε, s1〉, and the
symmetric counterparts for C2):

(〈C1 || C2, (s1, s2)〉, c2) →m (〈C′
1 || C2, (s

′
1, s2)〉, 〈C1 || C2, (s1, s2)〉) χ

〈C′
1,s

′
1〉

↪→ χ′

(〈C1 || C2, (s1, s2)〉, c2, χ) →χ,δ (〈C′
1 || C2, (s

′
1, s2)〉, 〈C1 || C2, (s1, s2)〉, χ′)

Notice that above we studied stuttering-equivalence in a generic way, where
two traces could make a state change simultaneously. However, in the model of
the self-composed program, the operational semantics of parallel composition
ensures that in every step, either C1 or C2, but not both, make a transition.
Therefore, for any trace T , state changes do not happen simultaneously in both
Π1(T ) and Π2(T ). This also means that it can never happen that in one step,
both add and remove are applied simultaneously on the queue.

Atomic Propositions and Valuation. Next we define the atomic propositions
of our program model, together with their valuation. Notice that their valuation
is parametric on the concrete equality relation used. Below, when characterizing
SSOD, we instantiate this in different ways, to define stuttering-equivalence on
a low location trace, and on a low store trace, respectively.
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We define the following atomic propositions (for m = 1, 2):

– fst chm denotes that a state change occurs for the first time in program copy
m.

– snd chm denotes that a state change occurs in program copy m, while pro-
gram copy 3−m has already made this change.

– nr chm < nr ch3−m denotes that the number of state changes made by
program copy m is less than the total number of state changes made by
program copy 3−m.

The valuation function λ for these atomic propositions is defined as follows. Let
c denote a state of the composed trace.

fst chm ∈ λ(c) ⇔ current(confm(c)) �= old(confm(c)) and

extra(c)(lead) = m or extra(c)(lead ) = 0

snd chm ∈ λ(c) ⇔ current(confm(c)) �= old(confm(c)) and

extra(c)(lead) = 3−m and

current(confm(c)) = first(extra(c)(q))

nr chm < nr ch3−m ∈ λ(c) ⇔ extra(c)(nr chm) < extra(c)(nr ch3−m)

Program Model. Using the definitions above, we define a program model,
encoding the behavior of a self-composed program under a scheduler δ. The
characterizations are expressed over this model.

Definition 5 (Program Model). Given a scheduler δ, let C be a program,
and s1 and s2 be stores. The program model Mδ

C,s1,s2
is defined as

(Σ, →χ,δ , AP, λ, I) where:
– Σ denotes the set of all configurations, obtained by executing from the initial

configuration under δ, including the extra information, as defined above;
– AP is the set of atomic propositions defined above, and λ is their valuation;
– I = {〈C || C′, (s1, s2)〉} is the initial configuration of the composed trace.

5.5 Characterization of Stuttering-Equivalence

Based on the observations and program model above, we characterize stuttering-
equivalence by an LTL formula φ.

φ = G
( ∧

m∈{1,2}
fst chm ⇒ nr ch3−m < nr chm U snd ch3−m

)

.

This formula expresses the characteristics of stuttering-equivalence: any state
change occurring in one component trace will occur later in the other compo-
nent trace; and in between these changes, the number of state changes at the
intermediate states in the latter is strictly smaller than in the first.

We prove formally that φ characterizes stuttering-equivalence.

Theorem 1. Let T be a composed trace that can be decomposed into T 1 and T 2

with T 1
0 = T 2

0 , then T 1 ∼ T 2 ⇔ T |= φ.

Proof. See Appendix A.2 of [5].
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6 Temporal Logic Characterization of SSOD

Based on the results above, this section defines a temporal logic formula char-
acterizing scheduler-specific observational determinism. The formula consists of
two parts: one that expresses stuttering-equivalence of low location traces, and
one that expresses stuttering-equivalence of low store traces. Both are instanti-
ations of the formula characterizing stuttering-equivalence defined above.

6.1 Atomic Propositions

To support the characterization of stuttering-equivalence in different ways, we
define different atomic propositions. To characterize stuttering-equivalence over
low location traces, we use atomic propositions fst chm

l , snd chm
l , and nr chl

m <
nr ch3−m

l for each l ∈ L. To characterize stuttering-equivalence over low store
traces, we use atomic propositions fst chm

L , snd chm
L , and nr chL

m < nr ch3−m
L .

The formal definitions are as defined in the previous section, where equality
is instantiated as =l (for l ∈ L) and =L, respectively.

6.2 Characterization of SSOD

Now we can characterize the SSOD property in temporal logic. A program C
is observationally deterministic under δ iff for any two low-equivalent stores s1
and s2, the following formula holds on the traces of Mδ

C,s1,s2
.

(
∧

l∈L

φl

)

∧ φL, where

φl = G
( ∧

m∈{1,2}
fst chm

l ⇒ nr chl
3−m < nr chm

l U snd ch3−m
l

)

φL = AG
( ∧

m∈{1,2}
fst chm

L ⇒ E(nr chL
3−m < nr chm

L U snd ch3−m
L )

)

Notice that φl is an LTL and φL a CTL formula.
For a program with n low variables, we thus have n + 1 verification tasks:

n tasks relate to low location traces and one task relates to low store traces.
For each task, we instantiate the extra information χ and the equality relation
differently.

Theorem 2. Given program C and initial stores s1 and s2 such that s1 =L s2,
C is observationally deterministic under δ iff

Mδ
C,s1,s2 |=

(
∧

l∈L

φl

)

∧ φL.

Proof. See Appendix A.3 of [5].
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7 Conclusion

This paper presents a new scheduler-specific definition of observational deter-
minism: the SSOD property. We claim that it captures the intuitive definition
of observational determinism more precisely than the existing definitions. If a
program is accepted under a specific scheduler, no secret information can be
derived from the publicly observable location traces and the relative order of
updates.

Compliance with SSOD can be verified via a characterization as a temporal
logic formula. The characterization is developed in two steps: first we characterize
stuttering-equivalence, which is the basis of the definition of scheduler-specific
observational determinism, and then we characterize the SSOD property itself.
The characterization is an important step towards model-checking observational
determinism properties.

Related Work. The idea of observational determinism originates from the no-
tion of noninterference, which only considers input and output of programs. We
refer to [12,6] for a more detailed description of noninterference, its verification,
and a discussion why it is not appropriate for multi-threaded programs.

Roscoe [10] was the first to state the importance of determinism to ensure se-
cure information flow of multi-threaded programs. The work of Zdancewic and
Myers, Huisman et al., and Terauchi [14,6,13] has been mentioned above. They
all propose different formal definitions of observational determinism, with dif-
ferent verification methods. In particular, Zdancewic and Myers, and Terauchi
propose type systems. Huisman et al. characterize observational determinism
in CTL*, using a special non-standard synchronous composition operator, and
also in the polyadic modal μ-calculus (a variation of the modal μ-calculus). The
idea of using self-composition was first proposed by Barthe et al. and Darvas et
al. [1,3]. The way self-composition is used here, with a temporal logic character-
ization, also bears resemblance with temporal logic characterizations of strong
bisimulation [8]. Finally, Russo and Sabelfeld take a different approach to en-
sure security of a multi-threaded program. They propose to restrict the allowed
interactions between threads and scheduler [11]. This allows them to present a
compositional security type system which guarantees confidentiality for a wide
class of schedulers. However, the proposed security specification is similar to
noninterference, just considering input and output of a program.

Future Work. As future work, we plan to apply the approach on realistic pro-
grams. This paper gives a theoretical and general description how the property
can be verified. However, in the model-checking literature, also specialized algo-
rithms exist to verify stuttering-equivalence. We will investigate if we can adapt
these algorithms to make the verification more efficient. Ultimately, we would
like to implement the algorithm as part of an existing model checker tool.

An additional challenge is to make the program model parametric, so that
properties can be expressed for varying initial values. This step will be necessary
to scale to large applications.
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Notice that observational determinism is a possibilistic secure information flow
property: it only considers the non-determinism that is possible in an execution,
but it does not consider the probability that a step will take place. In a separate
line of work, we will also study how probability can be used to guarantee secure
information flow.
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