
High-Coverage Symbolic Patch Testing

Paul Dan Marinescu and Cristian Cadar

Department of Computing, Imperial College London
London, United Kingdom

{p.marinescu,c.cadar}@imperial.ac.uk

Abstract. Software patches are often poorly tested, with many of them
containing faults that affect the correct operation of the software. In this
paper, we propose an automatic technique based on symbolic execution,
that aims to increase the quality of patches by providing developers with
an automated mechanism for generating a set of comprehensive test cases
covering all or most of the statements in a software patch.

Our preliminary evaluation of this technique has shown promising
results on several real patches from the lighttpd web server.

1 Introduction

Writing correct software patches is a difficult task because developers have to
ensure that new code not only executes correctly in itself but also interoperates
flawlessly with already existing code, often written by other developers. That
is, patches have to produce the expected behavioral changes without interfering
with existing correct behavior, which is difficult to accomplish without thor-
oughly testing the patch. As a result, patches have a high rate of introducing
failures [20,31,33]; for example, a recent study of software updates in commercial
and open-source operating systems has shown that at least 14.8% to 25% of fixes
are incorrect and have affected end-users [31].

Poor testing of patch code is therefore one of the main reasons for the high
number of incorrect software updates. Most projects contain large amounts of
untested code, and even those that come with regressions suites achieving rela-
tively high patch coverage only test each statement on a limited number of paths
and input values.

In this paper, we propose a practical technique that aims to improve the
quality of software updates by providing an automatic way to generate test
suites that achieve high coverage of software patches. Our approach is based on
dynamic symbolic execution, a technique that has gathered a lot of attention
recently, due to its ability to automatically generate complex test cases and find
deep errors in the code under test.

In our approach, we enhance symbolic execution with the ability to focus on
the lines of code affected by a patch. This is accomplished in two ways: first,
we implement a new exploration strategy that prioritizes execution paths based
on their distance from the patch, and has the ability to revert to an early state

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 7–21, 2012.
� Springer-Verlag Berlin Heidelberg 2012



8 P.D. Marinescu and C. Cadar

when the patch cannot be reached under the current path condition. Second,
we make use of existing concrete runs in order to quickly find program paths
that reach, or are close to reaching, the patch. This latter enhancement is based
on the observation that software developers sometimes accompany submitted
patches with a test case that partially exercises the new code, and this test case
could be easily used as a starting point for the symbolic exploration.

We envision a system in which program patches are comprehensively tested
at the press of a button. For example, our approach could be embedded into a
continuous integration system so that each update would trigger the generation
of a set of test cases covering all or most of the statements in the patch being
submitted.

The rest of the paper is structured as follows: Section 2 gives a high-level
overview of our approach, while Section 3 presents our technique in more detail.
Then, Section 4 discusses the most important implementation choices that we
made, and Section 5 presents our preliminary results. Finally, we conclude with
a discussion on related work in Section 6 and future work in Section 7.

2 Overview

The standard approach for ensuring that software updates do not introduce bugs
is to enhance the program’s regression suite with tests that cover the newly
added code. The tests are either added in the same revision with, or shortly
after, the patch; or, following agile development methods, before the patch is
even written [2]. The technique is powerful because the tests encode developer
knowledge about the program structure and past bugs, but requires discipline
and manual effort to write the tests.

Symbolic execution-based testing, on the other hand, is an automatic tech-
nique that can systematically explore paths through a program, enabling high
coverage test generation without manual effort. However, the technique inher-
ently suffers from path explosion, the roughly exponential increase in number of
execution paths through a program relative to the program size.

In this paper, we propose an approach that adapts symbolic execution to
perform high-coverage regression testing. Our approach is motivated by the fol-
lowing two insights:

1. Testing patches requires exhaustive exploration of patch code but not of
the entire program. The fact that patches are most of the time orders of
magnitude smaller than the entire code base can be exploited to significantly
improve testing scalability.

2. Developer regression tests usually execute the patch partially but do not
cover all statements and corner cases. Therefore, we can effectively use them
as a starting point for symbolic exploration, which then drives program ex-
ecution towards uncovered code.



High-Coverage Symbolic Patch Testing 9

Our approach relies on prioritizing paths based on their distance from the patch
code and on their compatibility with the patch context requirements, i.e. the con-
ditions which have to hold in order for execution to flow towards the patch code.
In addition, the approach leverages existing regressions tests to seed symbolic
execution. The main contributions of our approach are:

1. A novel dynamic technique for guiding symbolic execution towards instruc-
tions of interest;

2. A prototype implementation of our technique based on the klee symbolic
execution engine [6] and the zesti testing tool [19];

3. A case study of the application of our technique to real patches from the
lighttpd1 web server.

3 Design

The main goal of our technique is to construct program inputs that execute
the uncovered parts of a patch. For the purpose of this presentation, we use
line coverage as the coverage metric, but the technique can be easily adapted
to other metrics as well. For simplicity of presentation, we consider that inputs
are constructed for one instruction—the target—at a time. One can then simply
apply the algorithm in turn to each uncovered instruction to cover the entire
patch.

Synthesizing inputs which cover a target is an essential problem in automated
test generation and debugging [1, 16, 27, 29, 30, 32]. While we borrow ideas from
the state of the art in these areas, and combine symbolic execution, static anal-
ysis and various heuristics, our approach differs by treating the task as an opti-
mization problem with the goal of exploring paths that minimize the estimated
distance to the target. Given a suitable distance metric (which we discuss at the
end of this section), a solution is found when minimizing the distance to zero.

Our patch discovery technique uses an iterative process, starting from an ex-
isting program input—the seed—obtained from the program test suite, standard
symbolic execution, or a random input. For best results, this input should ex-
ercise instructions near the target. Intuitively, the approach attempts to steer
execution off the path exercised by the seed input towards the target, guided by
the estimated distance to it.

We begin by executing the program on the seed input, and remembering all
branch points that depend on symbolic input, together with the symbolic path
condition collected up to that point.2 We refer to these branch points as symbolic
branch points.

Then, at each iteration, we select the symbolic branch point whose unexplored
side S is closest to the target (according to the estimated distance) and attempt
to explore this side. If the current path condition allows S to be reached, we
eagerly explore it, in what we call a greedy exploration step. Otherwise, if S is

1 http://www.lighttpd.net/
2 More details on how this process works can be found in [19].

http://www.lighttpd.net/


10 P.D. Marinescu and C. Cadar

1 void log(char input) {
2 int file = open("access.log", O WRONLY|O APPEND);
3 if (input >= ’�’ && input <= ’~’) { // printable characters
4 write(file, &input, 1);
5 } else {
6 char escinput = escape(input);
7 write(file, &escinput, 1);
8 }
9 close(file);

10 }

Fig. 1. Example showcasing the greedy exploration step. Lines 5–8 represent the patch.
Error handling code ommited for brevity.

1 if (0 == strcmp(requestVerb, "GET")) { ... }
2 . . .
3 for (char� p = requestVerb; �p; p++) {
4 log(�p);

Fig. 2. Example showcasing the execution regeneration step. As in Figure 1, the patch
is on lines 5–8 of the log function.

infeasible under the current path condition, we enter the informed path regen-
eration mode, in which we travel back to the last symbolic branch point that
made S unreachable and take there the other side of the branch. At this point,
our current strategy is to explore the program path that preserves as much as
possible from the initial path condition, in an attempt to quickly reach the de-
sired branch side S. However, in future work, we plan to improve our technique
by exploring multiple paths to S.

To illustrate our algorithm, we use the code snippet in Figure 1, which is
based on a patch introduced in revision 2660 of lighttpd. The log function
takes a single character as input and writes it into a text file. The function was
initially always writing the character unmodified, but was patched in order to
escape sensitive characters that could corrupt the log file. However, the program
was tested only with printable character inputs and thus the patch was never
executed. After seeding the analysis with such an input containing only printable
characters, our technique determines that the else side of the symbolic branch
point at line 3 is the unexplored branch side closest to the patch (in fact, it is
part of the patch), and goes on to explore it (in a greedy exploration step) by
negating the condition on line 3.

To understand when informed path regeneration is necessary, consider the
example in Figure 2, in which the log function of Figure 1 is called for each
character of the requestVerb string. Assuming that the seed request contains the
GET verb, the comparison at line 1 constrains this input to the value GET for the
remainder of the execution. Changing any of the characters in the requestVerb

is impossible after this point because it would create an inconsistent execution,



High-Coverage Symbolic Patch Testing 11

and thus on this path we cannot follow the else side of the branch in the log

function.
Instead, our informed path regeneration step travels back just before the ex-

ecution of the symbolic branch point that introduced the constraint that makes
the patch unreachable, and then explores the other side of that branch point. In
our example, that symbolic branch point is the one at which requestVerb[2] was
constrained to be ‘T’, and thus our technique takes here the other side of the
branch, in which requestVerb[2] is constrained to be different from ‘T’. With
this updated path condition, execution reaches again line 3 of the log function,
where execution is allowed to take the else path and thus cover the patch.

We end this section with a discussion of our distance estimation function for
the interested reader.

Our technique uses a context-sensitive, path-insensitive static analysis [21]
to compute an approximation of the actual distance between two instructions.
The distance is then further refined at runtime using callstack information. This
analysis is used by klee itself to implement the search heuristic that mini-
mizes the distance to an uncovered instruction, and works as follows. At the
intra-procedural level, we define the distance between two instructions A and
B contained in basic blocks BBA, respectively BBB as the minimum distance
between BBA and BBB in the program control flow graph (CFG). Extending
this definition to the inter-procedural level is not immediate; while edges can be
introduced for function call instructions in the inter-procedural CFG, matching
them statically with return edges is not trivial.

The solution to this problem involves two steps. First, we statically introduce
two edges for each call instruction: one pointing to the called function with an
associated weight of zero and another pointing to the instruction immediately
following the call with a weight equal to the shortest path from the beginning
to the end of the called function. These edges are modelling the two possible
situations that can be encountered: the target is found before returning from
the call or after. We call the resulting graph the statically augmented CFG and
the shortest path between two of its nodes, their static distance.

Second, we add at runtime the return edges corresponding to the current
call stack. While the resulting graph could be used directly to determine the
minimum distance using a standard shortest path algorithm, this would add a
significant overhead. Instead, we avoid running the full algorithm at runtime
by observing that the target can be reached either by taking the shortest path
in the statically augmented CFG or by returning from the current function and
continuing on the shortest path. The minimum distance to the target is therefore
the minimum between these two alternatives: the static distance to the target
and the sum between the static distance to the closest return statement plus the
distance from the associated call site to the target.

More formally, given the set of program instructions I, a callstack represented
as an instruction vector [I1, I2, . . . , In] ∈ In, the static distance from an instruc-
tion to the target D : I → N, and the static distance from an instruction to the



12 P.D. Marinescu and C. Cadar

closest return instruction R : I → N, the context-sensitive minimum distance to
the target is recursively defined as:

CSD([]) = ∞
CSD([I1, I2, . . . , In]) = min(D(In), R(In) + CSD([I1, . . . , In−1])

Because functions D and R do not depend on the context, our analysis computes
them once per program. The CSD is computed at each iteration of our algo-
rithm for each candidate state, but note that the computation is independent of
program size, depending linearly only on the size of the state’s callstack.

4 Implementation

Our prototype implementation is built on top of the klee symbolic execution
engine [6] and inherits the code responsible for combining concrete inputs with
symbolic program exploration from zesti [19]. The LLVM infrastructure [17] is
used to enable integration with klee and facilitate the static and dynamic
analyses.

Compared to klee and zesti, our prototype implementation maintains only
the last path explored instead of a tree containing all paths explored so far.
While this simplifies the implementation, it makes our prototype miss targets
which can only be reached via paths in which the distance to the target does not
monotonically decrease, e.g., a target that is accessible only after a few iterations
through a loop. We did not find such cases in the lighttpd revisions considered,
but intend to handle this case in future work.

We also decided to execute at each iteration through our algorithm a batch
of instructions, instead of a single one. This offers the advantage of generating
more states from which to choose at the next iteration, with only a small time
penalty, effectively providing a form of look-ahead. In certain scenarios, this
compensates for the underestimation of the distance between two instructions, by
permitting the execution of longer paths than dictated by the static estimation.
Our implementation currently uses batches of 10,000 instructions during both
the greedy exploration and the informed path regeneration steps.

5 Experimental Evaluation

We evaluated our protype implementation on the lighttpd web server, an ef-
ficient lightweight open-source server used by services such as YouTube and
SourceForge. lighttpd is a mature system consisting at revision 2631—the earli-
est used in our experiments—of 37,517 effective lines of code, as reported by the
CLOC3 line counting tool, and containing a good test suite achieving 64.1% line
coverage. We examined in detail three revisions from the last two years, period
in which the number of lines of code and the coverage were largely unchanged.
We ran all tests on a 64bit Ubuntu 10.04 i5-650 machine with 8GB of RAM.

3 http://cloc.sourceforge.net/

http://cloc.sourceforge.net/


High-Coverage Symbolic Patch Testing 13

Table 1. Patches examined in our evaluation; total effective lines of code (ELOC),
ELOC covered by the regression suite, and ELOC covered by our tool. Revision 2660
contains 6 ELOC of dead code and 3 ELOC inaccessible in the test configuration.

Revision ELOC Covered ELOC
Regression test Our tool

2631 20 15 (75%) 20 (100%)

2660 33 9 (27%) 24 (72%)

2747 10 4 (40%) 10 (100%)

In the following, we present three case studies in which we analyze the patches
associated with lighttpd revisions 2631, 2660 and 2747. Our tool was able to
cover all patch code accessible in the server test configuration. In the process,
we found dead code in one of the patches, which turned out to be a bug. We
reported the bug to the lighttpd developers, who promptly fixed it.4

The starting input for the analysis was manually chosen; we used the test case
added with the patch for revision 2631 and a generic HTTP request from the
core-request.t tests for the other two revisions, where no specific test existed.

Table 1 presents an overview of the three revisions, along with the number
of new or modified effective lines of code (ELOC column). The lines are further
placed into two categories: lines covered by the test suite and lines covered by our
tool. It can be seen that for revision 2660, nine lines of code are not covered by
our tool. Upon manual analysis, we discovered that six are dead code and three
are unreachable in the server test configuration. Table 2 presents a summary
of the additional code covered by our technique in each of the three revisions,
with lines grouped by basic block. For each basic block, we report the number of
iterations and the time needed to generate an input which covers it. We generate
a total of 13 new inputs which added to the regression suite leave its execution
time virtually unchanged at 6.6 seconds.

Revision 2631

Revision 2631 introduced the ability to handle requests for absolute URLs, e.g.:

GET http://www.example.com/ HTTP/1.0

The patch contains code which handles separately HTTP and HTTPS URLs but
none of the existing regression tests contains absolute URLs. Furthermore, the
test added with the patch only contains an HTTP request. Our tool successfully
derives from it a new request for an HTTPS resource, exercising the previously
uncovered code. We reproduce in Figure 3 the relevant part of the code.5

4 See http://redmine.lighttpd.net/issues/1551 for more details.
5 The patch contains an additional, unrelated line of code not covered by the regression
tests—line 566. This line was covered in our experiments by virtue of the modified
order in which we sent requests to the server.

http://redmine.lighttpd.net/issues/1551


14 P.D. Marinescu and C. Cadar

Table 2. Number of greedy and path regeneration iterations and time in seconds
needed by our tool to generate inputs covering the lines of code not executed by
lighttpd’s test suite. Lines are grouped by basic block.

Location Greedy Path regeneration Time
(line numbers) iterations iterations (seconds)

Revision 2631

461 3 2 329

462,463,465 3 2 329

566 0 0 131

Revision 2660

168 1 1 68

176,177 2 1 68

179,180 2 1 68

185,186 2 1 68

188,189 2 1 68

192-197 1 0 55

Revision 2747

172 1 1 82

173 1 1 82

175,177 1 1 82

202,204 1 1 81

The target code is between lines 461 and 465—the other lines are already
covered by the regression tests. We consider line 462 to show how our tech-
nique derives an input to cover new code from an existing test suite input.
Table 3 presents the five derivation steps performed to transform the seed input
http://zzz.example.com/ into https://zz.example.com/, which covers the
newly added code. We briefly explain how these steps relate to our algorithm.

(1) Our technique attempts to reach the else statement at line 460 and sets
the 7th input character to an arbitrary value different from ‘/’. The string
comparison on line 454 no longer returns 0 and the else branch is reached.

(2) Our technique attempts to satisfy the first part of the condition at line 460
and detects that the 5th input character must be ‘s’. However, it cannot
directly set it to this value because it would create an inconsistent path;
the strncmp function call at line 454 already compared this character to
‘:’ and witnessed equality. Therefore, our technique travels just before this
comparison and sets the 5th character to ‘s’.

(3) We continue to modify the input to satisfy the first part of the condition at
line 460 and directly sets the 6th input character to ‘:’.

(4) We continue to modify the input to satisfy the first part of the condition at
line 460 and directly sets the 7th input character to ‘/’.

(5) We continue to modify the input to satisfy the first part of the condition at
line 460 and directly sets the 8th input character to ‘/’.

http://zzz.example.com/
https://zz.example.com/


High-Coverage Symbolic Patch Testing 15

454 if (0 == strncmp(uri, "http://", 7) &&
455 NULL != (nuri = strchr(uri + 7, ’/’))) {
456 reqline host = uri + 7;
457 reqline hostlen = nuri − reqline host;
458
459 buffer copy string len(con−>request.uri, nuri, proto − nuri − 1);
460 } else if (0 == strncmp(uri, "https://", 8) &&
461 NULL != (nuri = strchr(uri + 8, ’/’))) {
462 reqline host = uri + 8;
463 reqline hostlen = nuri − reqline host;
464
465 buffer copy string len(con−>request.uri, nuri, proto − nuri − 1);
466 } else {

Fig. 3. Part of lighttpd revision 2631, which handles absolute request URLs. The
patch is represented by lines 456, 457 and 460–465.

Table 3. Input derivation chain for covering the basic block containing target line 462
in lighttpd revision 2631. � represents a path regeneration iteration and → represents
a greedy iteration.

Step Input Type Condition

http://zzz.example.com/

(1) http:/?zzz.example.com/ � url[6] != ’/’

(2) https/?zzz.example.com/ � url[4] == ’s’

(3) https:?zzz.example.com/ → url[5] == ’:’

(4) https:/zzz.example.com/ → url[6] == ’/’

(5) https://zz.example.com/ → url[7] == ’/’

The input obtained after step 5 exercises the target line (462) and the algorithm
terminates. As it can be seen, the newly found input is similar to the original, and
not a pathological case, which we believe developers would prefer to incorporate
into the regression suite.

Revision 2660

Revision 2660 was responsible for fixing a bug in the accesslog module. This
module is responsible for logging all the requests made to the server so that they
can be later viewed or processed by web analytics software. The log is maintained
as text records, with space-separated fields. Remotely-provided data is quoted to
allow automatic parsing of the file; this requires in turn special treatment of all
quote (") characters. For example, a request with the referrer set to foo" "bar"

would create the record:

127.0.0.1 − − [18/Apr/2012:02:14:44 +0100] "GET /index.html HTTP/1.0" 200
4348 "foo" "bar" "-"

http://zzz.example.com/
http:/?zzz.example.com/
https/?zzz.example.com/
https:?zzz.example.com/
https:/zzz.example.com/
https://zz.example.com/


16 P.D. Marinescu and C. Cadar

165 if (str−>ptr[i] >= ’�’ && str−>ptr[i] <= ’~’) {
166 /� printable chars �/
167 buffer append string len(dest, &str−>ptr[i], 1);
168 } else switch (str−>ptr[i]) {
169 case ’"’:
170 BUFFER APPEND STRING CONST(dest, "\\\"");
171 break;

Fig. 4. Part of lighttpd revision 2660, which escapes senstive characters before logging
them. The patch includes all of the lines shown.

The unpatched code detects a record with ten fields, the last three being foo, bar
and -, while the correct interpretation is a record with nine fields, the last two
being foo" "bar and -. The fix attempts to treat separately the quote and other
control characters by escaping them. Figure 4 shows the relevant part of the
patch. Printable characters are handled on line 167, on the then branch, while
special characters are handled on the else branch. However, the else branch
was not tested because no special characters were used in the regression tests.
It turned out that the patch was incorrect because lines 170 and 171 are dead
code; the quote character always satisfies the if condition on line 165 causing
it to be always treated as a regular character. Another piece of dead code was
handling the carriage return character, which cannot exist in the input because
the request parsing code strips these caracters when breaking the request into
lines.

Our tool covered all code accessible in the test server configuration, by gener-
ating appropriate HTTP requests. The rest of the code could have been reached
by allowing our technique to change the server configuration file.

Revision 2747

Revision 2747 optimizes the accesslog module by introducing output buffering;
instead of writing characters one by one, they are accumulated in an internal
buffer and flushed when one of two events are encountered: a control character
is logged or the end of the input is reached. Figure 5 shows the relevant code.
As in the previous case, none of the regression tests contains control characters
in the logged fields and the code associated with this event is never executed.
Our tool successfully synthesizes the inputs needed to cover this code.

6 Related Work

Our technique fits within the paradigms of longitudinal and differential program
analysis [22, 28], in which the testing effort is directed toward the parts of a
program that have changed from one version to the next, i.e. software patches.
In particular, differential symbolic execution [23] introduces a general framework



High-Coverage Symbolic Patch Testing 17

167 for (ptr = start = str−>ptr, end = str−>ptr + str−>used − 1; ptr <
end; ptr++) {

168 if (�ptr >= ’�’ && �ptr <= ’~’) {
169 /� nothing to change, add later as one block �/
170 } else {
171 /� copy previous part �/
172 if (start < ptr) {
173 buffer append string len(dest, start, ptr − start);
174 }
175 start = ptr + 1;
176
177 switch (�ptr) {

Fig. 5. Part of lighttpd revision 2747, which introduces output buffering for the access
log. The patch includes all of the lines shown.

for using symbolic execution to compute the behavioral characterization of a
program change, and discusses several applications, including regression test
generation.

Xu and Rothermel [30] introduced directed test suite augmentation, in which
existing test suites are combined with dynamic symbolic execution to execute
uncovered branches in a patch. Given an uncovered branch si → di and a test
case that reaches si, the technique uses dynamic symbolic execution to try to
generate a test case that executes the branch, and then repeats this process until
no more branches can be covered. The technique depends on the availability of
tests that reach the source node of an uncovered branch and do not constrain
the input to take only the already covered branch, while our approach tries to
actively steer execution toward the patch by combining the greedy exploration
and the informed path regeneration techniques.

eXpress [27] improves on directed test suite augmentation by pruning CFG
branches which provably do not lead to the patch. While eXpress does not depend
on having existing test cases that reach the source node of an uncovered branch
and its algorithm allows it to prune significant parts of the search space, it does
not actively try to steer execution toward the patched code. Statically-directed
test generation [1] addresses this issue by guiding symbolic execution using a
heuristic which includes the static instruction distance to the target and the size
of the target’s backward slice reachable from the current point. This heuristic
roughly corresponds to our greedy exploration stage, but our approach is more
robust due to its path regeneration component.

In addition to dynamic symbolic execution techniques to improve regression
testing, the problem of generating inputs that reach a specific program point
or execution path has been addressed through various other techniques and in
different application scenarios. In the context of answering programmer queries
regarding reachability, Ferguson and Korel [11] employ data dependence analysis
to find test cases that reach a specified statement. They start with an initial



18 P.D. Marinescu and C. Cadar

random guess, and then iteratively refine the guess to discover a path likely to
hit the desired statement. Gupta et al. [14] use a combination of static analysis
and generated test cases to hit a specified path. They define a loss function
consisting of “predicate residuals” which roughly measures by “how much” the
branch conditions for that path were not satisfied and then use a numerical
solver to find test case values that can trigger the given path.

Research on automatic generation of filters based on vulnerability signa-
tures [4, 5, 8, 9] addresses the problem of executing a specific target from a
different angle. Given an existing input which exploits a program vulnerabil-
ity, the goal is to infer the entire class of inputs which have the same behavior.
Similarly, generating inputs with the same effect as a crashing input but which
do not leak sensitive data, is used in bug reporting to preserve user privacy [7].
In the context of automated debugging, execution synthesis [32] and path opti-
mization [16] attempt to solve a similar problem: generating an input or a path
starting from a set of ‘waypoints’ through which execution has to pass.

While orthogonal to our approach, the software engineering community stud-
ied extensively test suite prioritization and selection techniques, e.g. [3,10,18,24].
These techniques are particularly useful for very large projects where running
the entire test suite at each change of the system is infeasible (for example in the
Windows operating system testing infrastructure [26]). Our approach is different
in that it attempts to discover new test inputs but can leverage these techniques
to choose the initial seeds.

Also orthogonal to our work, research on test suite augmentation requirements
has used the differences between two program versions to derive requirements
that test suites have to meet in order to ensure proper patch testing [15, 25].
While we currently only use simple coverage metrics to guide our analysis, it
should be possible to combine our approach with such requirements.

A different approach for covering specific program points is to use genetic algo-
rithms [12,29]. Such algorithms usually encode program paths as binary strings,
each bit representing the outcome of a branch condition evaluation, and then
define a fitness function and crossover and mutation operators operating on this
encoding. While such algorithms proved effective when testing several protocols,
it is unclear whether this approach yields good results on larger systems. The
main concern is that the solution encoding does not naturally lend itself to effec-
tive crossover; in particular, given two paths which get close to the target (high
fitness), alternating branch decisions from the first path with decisions from the
second, does not generally yield a better path. Subsequent experiments [13] di-
rectly comparing genetic algorithms with directed search found that the latter
generally performs better for this problem.

7 Discussion and Future Work

Motivated by the large number of buggy software patches, we have designed a
new technique for patch testing, which successfully synthesized inputs to cover
all accessible patch code in three case studies from the lighttpd web server. We



High-Coverage Symbolic Patch Testing 19

defined the code-covering challenge as an optimization problem for which we
employed a novel heuristic based on two complementary components: a greedy
path exploration, and an informed regeneration stage. The key aspect of our
approach is the informed path regeneration stage, a technique that when the
greedy exploration stage gets stuck, can derive a modified path which allows the
greedy search to make progress.

Given the promising results obtained on our lighttpd case study, we plan to
validate the algorithm by applying it to more patches across multiple systems.
For best results, we also intend to remove all limitations discussed in the paper,
in particular the ability to deal with the case when the static distance to the
target must temporarily increase in order to reach the patch code.

Another aspect which we wish to address is automation. While our technique
currently requires the manual specification of a seed input for each basic block in
the patch, it would be desirable to automatically select the most promising input
from the set of regression tests. This would be valuable for large patches, espe-
cially those touching multiple code areas. To this purpose, we envision leveraging
test selection techniques [24]. Furthermore, we plan to improve our prototype by
allowing it to automatically infer the patch location from a diff file.

Finally, we intend to evaluate the effectiveness of our technique in exercising
uncovered program code. While we designed our approach for patch testing, one
can immediately apply it to a standalone system version by considering all code
not covered by the regression tests to be “patch”.

Acknowledgments. We would like to thank the SPIN program committee
chairs, Alastair Donaldson and David Parker, for their invitation to write this
paper. We would further like to thank Alastair for his valuable comments on the
text. This research has been supported by EPSRC through a DTA studentship
and the grant EP/J00636X/1.

References

1. Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic
automated test generation. In: Proc. of the International Symposium on Software
Testing and Analysis, ISSTA 2011 (July 2011)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley
(1999)

3. Binkley, D.: Semantics guided regression test cost reduction. IEEE Transactions
on Software Engineering (TSE) 23(8) (1997)

4. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proc. of the IEEE Symposium on
Security and Privacy, IEEE S&P 2006 (May 2006)

5. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures us-
ing weakest preconditions. In: Proceedings of the 20th IEEE Computer Security
Foundations Symposium, CSF 2007 (July 2007)



20 P.D. Marinescu and C. Cadar

6. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. of the 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2008 (De-
cember 2008)

7. Castro, M., Costa, M., Martin, J.P.: Better bug reporting with better privacy. In:
Proc. of the 14th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2009 (March 2009)

8. Costa, M., Castro, M., Zhou, L., Zhang, L., Peinado, M.: Bouncer: securing software
by blocking bad input. In: Proc. of the 21st ACM Symposium on Operating Systems
Principles, SOSP 2007 (October 2007)

9. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: end-to-end containment of Internet worms. In: Proc. of the 20th ACM
Symposium on Operating Systems Principles, SOSP 2005 (October 2005)

10. Elbaum, S., Kallakuri, P., Malishevsky, A.G., Rothermel, G., Kanduri, S.: Un-
derstanding the effects of changes on the cost-effectiveness of regression testing
techniques. Software Testing Verification and Reliability 12 (2003)

11. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Transactions on Software Engineering Methodology (TOSEM) 5(1), 63–86
(1996)

12. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. Int. J. Softw. Tools Technol. Transf. 6(2), 117–127 (2004)

13. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proc. of the Conference on Programing Language Design and Implementation,
PLDI 2005 (June 2005)

14. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an
iterative relaxation method. In: Proc. of the ACM Symposium on the Foundations
of Software Engineering, FSE 1998 (November 1998)

15. Gupta, R., Jean, M., Mary, H., Soffa, L.: Program slicing-based regression testing
techniques. Software Testing Verification and Reliability 6, 83–112 (1996)

16. Lal, A., Lim, J., Polishchuk, M., Liblit, B.: Path Optimization in Programs and
Its Application to Debugging. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924,
pp. 246–263. Springer, Heidelberg (2006)

17. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: Proc. of the International Symposium on Code Generation
and Optimization, CGO 2004 (March 2004)

18. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case pri-
oritization. IEEE Transactions on Software Engineering (TSE) 33(4) (2007)

19. Marinescu, P.D., Cadar, C.: make test-zesti: A symbolic execution solution for
improving regression testing. In: Proc. of the 34th International Conference on
Software Engineering, ICSE 2012 (June 2012)

20. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Technical
Journal 5(2), 169–180 (2000)

21. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Publishing Company, Incorporated (2010)

22. Notkin, D.: Longitudinal program analysis. In: Proceedings of the ACM Workshop
on Program Analysis for Software Tools and Engineering, PASTE 2002 (November
2002)

23. Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic execu-
tion. In: Proc. of the ACM Symposium on the Foundations of Software Engineering,
FSE 2008 (November 2008)



High-Coverage Symbolic Patch Testing 21

24. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering (TSE) 22 (1996)

25. Santelices, R., Chittimalli, P.K., Apiwattanapong, T., Orso, A., Harrold, M.J.:
Test-suite augmentation for evolving software. In: Proc. of the 23rd IEEE Inter-
national Conference on Automated Software Engineering, ASE 2008 (September
2008)

26. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development en-
vironment. In: Proc. of the International Symposium on Software Testing and
Analysis, ISSTA 2002 (July 2002)

27. Taneja, K., Xie, T., Tillmann, N., de Halleux, J.: eXpress: guided path exploration
for efficient regression test generation. In: Proc. of the International Symposium
on Software Testing and Analysis, ISSTA 2011 (July 2011)

28. Winstead, J., Evans, D.: Towards differential program analysis. In: Workshop on
Dynamic Analysis, WODA 2003 (May 2003)

29. Xu, Z., Cohen, M.B., Rothermel, G.: Factors affecting the use of genetic algorithms
in test suite augmentation. In: Proc. of the 12th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2010 (July 2010)

30. Xu, Z., Rothermel, G.: Directed test suite augmentation. In: Proc. of the 16th
Asia-Pacific Software Engineering Conference, ASPEC 2009 (December 2009)

31. Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes
become bugs? In: Proc. of the Joint Meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering,
ESEC/FSE 2011 (September 2011)

32. Zamfir, C., Candea, G.: Execution synthesis: A technique for automated software
debugging. In: Proc. of the 5th European Conference on Computer Systems, Eu-
roSys 2010 (April 2010)

33. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering (TSE) 28(2), 183–200 (2002)


	High-Coverage Symbolic Patch Testing
	Introduction
	Overview
	Design
	Implementation
	Experimental Evaluation
	Related Work
	Discussion and Future Work
	References




