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Abstract. We describe an extension of the Spin model checker that al-
lows us to take advantage of the increasing number of cpu-cores available
on standard desktop systems. Our main target is to speed up the verifi-
cation process for safety properties, the mode used most frequently, but
we also describe a small modification of the parallel search algorithm,
called the piggyback algorithm, that is remarkably effective in catching
violations for an interesting class of liveness properties at little cost.
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1 Introduction

We build on the infra-structure provided by the model checker Spin [5]. Although
the model checker targets the analysis of multi-threaded software applications,
until recently the tool itself performed its analyses single-threaded, using just a
single cpu. In 2005 a modification was introduced that allowed for the execution
of the depth-first search analysis on multiple cpu-cores [6]. This extension was
chosen because it can support both safety and liveness properties, yet for live-
ness properties the depth-first algorithm could only take advantage of parallel
execution on no more than two cpu-cores.

Parallelization of breadth-first search is often considered simpler, and could
lead to greater gains, so it is attractive to support also this option, even if it
means restricting it to the verification of safety properties alone. The parallel
version of the breadth-first search described in this paper requires virtually no
tuning or user adjustments and succeeds in providing an impressive performance
improvement in the model checking process. We also show that a simple exten-
sion of this algorithm suffices to support also the verification of an interesting
class of liveness properties without measurable overhead.

The remainder of this paper is organized as follows. In Section 2 we describe
the basic breadth-first search algorithm that is used in Spin. In Section 3 we
describe the parallelization of this algorithm, where we focus on the key issues
of load balancing, lock avoidance, and partial order reduction. In Section 4 we
discuss an extension that supports checks for liveness properties with a bounded
cycle search option.
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Section 5 presents documents the performance of the new algorithm when
applied to a range of verification problems. Section 6, concludes the paper and
summarizes the key results.

2 Breadth-First Search

Figure 1 gives the basic sequential algorithm for performing a breadth-first in a
reachability graph, as used in the Spin model checker. The algorithm uses three
sets of states: S, Q[0], and Q[1]. Set S is the set of visited states, which is initially
empty. Every new state that is encountered during the search is entered into this
set, to avoid duplicate work when the state is revisited later. Set S is typically
implemented as a hashtable.

1 global t = 0 // toggle bit 0..1

2 global S = {} // statespace set

3 global Q[0] = {} // successor set

4 global Q[1] = {} // successor set

5 safety property f

6

7 add s0 to Q[0] and to S // initial state

8

9 Search()

10 do {

11 for each s in Q[t]

12 { delete s from Q[t]

13 for each successor s’ of s

14 { if s’ not in S

15 { add s’ to S

16 if s’ violates f

17 { report safety violation

18 } else

19 { add s’ to Q[1-t]

20 } } } }

21 t = 1 - t

22 } while (Q[t] is non-empty)

23 }

Fig. 1. Sequential breadth-first search

The breadth-first search proceeds by repeatedly generating the set of successor
states (the ’next’ generation) for a given set of states (the ’current’ generation).
These two sets are stored in successor sets Q[0] and Q[1]. As soon as all states
in the ’current’ generation of states have been processed, the roles of Q[0] and
Q[1] switch, and what was the ’next’ generation of states becomes the new
’current’ generation, and the now empty former ’current’ generation becomes
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the temporary holding place for the new ’next’ generation of states. In Figure 1
this switch happens by toggling the value of t on line 21.

Every new state that is processed (i.e., each successor to one of the states
from the ’current’ generation of states) is first checked for its presence in S (line
14). If new, one or more safety properties can be checked for this state (line 16),
and violations reported (line 17). In the absence of a violation, the state is added
to the ’next’ generation (line 19) for the future exploration of its successors.

The order in which the states from the current generation are processed (which
is determined in Figure 1 by the selection on lines 11-12) is not important. This
makes the parallelization of successor generation and processing simpler than it
is in a depth-first search.

3 Parallel Breadth-First Search

One direct way to parallelize the search would be to keep the algorithm from
Figure 1 as is, and to simply run it in parallel on all available cores. Clearly,
access to the three shared sets S, Q[0], and Q[1], will then have to be protected
with semaphores or locks, to avoid data corruption, but the main flow of the
algorithm could remain unchanged. All cores then compete for states to process
from the ’current’ generation, and they coordinate their access to state S to
lookup (line 13) and add states (line 14), and to include new states into the
’next’ generation (line 18) when appropriate.

This strategy can be expected to achieve good load balancing, since all workers
share a common work-queue, but it can also be expected to suffer from major
delays in the wait for locks, which can significantly affect the overall performance
of the algorithm, and can even make it run slower on multiple cores than it would
run on a single core. The overhead of locking can be expected to get worse with
every new core added to the system. This type of solution can therefore not be
expected to scale.

3.1 Lock Avoidance

Our first goal is therefore to design the algorithm and its data structures in such
a way that we can avoid the need for most locks, and achieve maximal decoupling
between cpu cores.

To achieve lock avoidance we must be able to arrange that each core can
retrieve states from a data structure that, at that point in the search, is not
shared with any other core, and that it can deposit states for processing in the
next round of the search into a data structure that, at that point in the search, is
not shared with other cores. The key phrase here is ”at that point in the search,”
and it can be achieved in a fairly simple manner.

The Q[0] and Q[1] data structures from Figure 1 are most naturally imple-
mented as linked lists. Every element in the list holds the data associated with
one unique state, plus a pointer to the next state in the list, or NULL if there is
no next state. As noted, the ordering of states within the list is irrelevant to the
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correct functioning of the algorithm: there is no distinction or ordering implied
between successor states that are part of the same generation of states (i.e., that
are reachable in the same number of steps from the initial system state(s)).

This means that on an N-core system we can split each of the sets Q[0] and
Q[1] into NxN subsets, with each subset reserved for the use of only one specific
core to transmit states to one specific other core. When a successor state is
generated we now have to choose which subset of the ’next’ generation the new
state is assigned to. Load balancing can be achieved here by simply randomly
selecting this subset. Even though we must now support a quadratic number of
sets (NxN on an N-core system), this does not impact the memory requirements
in a significant way: the sets are merely linked lists, and we need only 2xNxN
pointers instead of two. On a 32 core system this adds 2048 64-bit pointers, or 16
KB of memory: an insignificant amount compared to the Gigabytes of memory
that are used to store the states of set S and the various subsets of Q for larger
problem sizes. By sacrificing a relative small amount of memory we can reduce
the runtime overhead with simple contention-free and lock-free data structures.

Figure 2 illustrates the main structure of the parallel version of the algorithm
for N cores. The current and next generation of states are now stored in subsets of
Q[0] and Q[1]. When the current generation is t, core w has uncompeted access to
all subsets Q[t][w][1..N] from the current generation and subsets Q[1-t][1..N][w]
from the next generation. As before, once all states have been processed, the
current and next generations can be switched, but this time this switch has to
be coordinated among all workers to make sure that the global breadth-first
search discipline is maintained.

Note that while candidate states in subset Q[t][w][q] are being processed (lines
14-25) no further states can be added to this subset, and once the set is empty it
will remain empty at least until all states in the current generation of successor
states have been processed.

There are three places in the algorithm where coordination among the worker
cores is required in the parallel version of the algorithm.

1. Access to the shared global state space S (lines 18 and 19) now has to be
protected, to make sure that the entries cannot be corrupted by simultaneous
access of different cores. To avoid a global lock, we can use a fine-grained
strategy that avoids waits, using compare-and-swap instructions. We have
adopted a lockless hashtable for this, as first described in [7], which has these
properties.

2. The switch from one generation to the next (line 33) must be synchronized
between the cores to make sure that a breadth-first search discipline is main-
tained and, importantly, also that exclusive access of each worker to its des-
ignated subsets of Q[0] and Q[1] is guaranteed. We explore this further in
Section 3.2.

3. Finally, we need to be able to determine when all states have been explored
and the cores can stop executing (line 30 and 39). This point too is explored
further in Section 3.2.
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1 global done = false

2 global t = 0

3 global S = {} // statespace set

4 global Q[0][1..N][1..N] = {} // successor set

5 global Q[1][1..N][1..N] = {} // successor set

6 global idle[1..N] = false // all elements

7 safety property f

8

9 add s0 to Q[0][1][1] and to S // initial state

10

11 Search(w: 1..N) // N workers

12 { local ot = t

13 do {

14 for each q in 1..N

15 { for each s in Q[t][w][q]

16 { delete s from Q[t][w][q]

17 for each successor s’ of s

18 { if s’ not in S

19 { add s’ to S

20 if s’ violates f

21 { report error

22 } else

23 { w’ = choose random 1..N

24 add s’ to Q[1-t][w’][w]

25 } } } } }

26 idle[w] = true // one element

27 if (w == 1)

28 { wait until all idle[1..N] == true

29 { if (all Q[1-t][1..N][1..N] empty)

30 { done = true

31 } else

32 { idle[1..N] = false // all elements

33 t = 1 - t

34 } }

35 } else

36 { wait until t != ot or done

37 ot = t

38 }

39 } while !done

40 }

Fig. 2. Parallel breadth-first search for N cores



160 G.J. Holzmann

3.2 Synchronization and Termination

We designate one core to be the master of ceremony for each parallel verification
run. It decides when all cores can advance from one generation of states to the
next, and when the verification process can be terminated because all states
have been processed. The core in charge is the same core that starts up all other
worker processes (processes, not threads) at the start of the verification run.

The ’master’ core (which is the core with (w==1)) checks if either type of
synchronization is required when it has completed processing all states that
were assigned to it in the last round, i.e., when it reaches line 26 in Figure 2.

The master core can reliably tell that all states from the current generation
have been processed if all cores have set their idle flag to true (line 28).

When this condition is met, no further work can be performed by any of the
cores and it is safe to switch the value of t (line 33) to make all states stored in
the ’next’ generation available as the new ’current’ generation.

Before changing the value of the toggle variable t though, the master core
checks if the search can be terminated. If the ’next’ generation of states is empty
at this point, then clearly there are no further states to be processed by any of
the cores, and the search can be concluded. This termination check occurs on
line 29.

All cores other than the master that conclude their processing of the current
generation of states simply wait for either t to change or the global variable done
to become true (line 36). Only the master core has write-access to global vari-
ables t and done, so race conditions on these variables cannot occur. Similarly,
there can be no conflict on access to the global variable array idle, because
simultaneous access by multiple cores is not possible.

3.3 Partial Order Reduction

Significant savings in the number of states that must be processed to perform
an exhaustive search can be obtained with partial order reduction strategies.
These methods were added to Spin in 1994 for the depth-first search [4], and
later extended to cover also breadth-first search [3].

For the parallel version of the breadth-first search, the algorithm from [3]
remains valid, the only difference being that states in the ’new’ generation of
states can now be found in multiple queues instead of a single one. A minor
modification of the state storage method suffices: we only need to store one
additional bit of information that indicates whether or not the state is currently
open (i.e., is present in one of the ’next’ queues) or closed (present only in hash-
table S). The processing is minimal. Also here, we sacrifice a small amount of
memory to store the additional information in return for potentially large savings
in runtime.
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4 An Extension for Liveness

Correctness properties are commonly divided into two broad categories: safety
and liveness. As first shown in [1], properties of both categories can be combined
to formulate virtually any type of correctness requirement.

In Manna and Pnueli’s paper [9] it was argued that only three basic types
of requirements could ”cover the majority of properties one would ever wish
to verify.” In linear temporal logic, these three types of requirements from [9]
correspond to the following types of formula:

1. []p (invariance),
2. [](p -> Xq) (response), and
3. [](p -> (q U r) (precedence).

The first two properties can be classified as safety properties, and the last prop-
erty as a liveness property.

Curiously, today we would normally formalize the response property differ-
ently from what was proposed in [9], namely as: [](p -> <> q). When formal-
ized in this way, though, the response property becomes a liveness rather than
a safety property. The difference is important because safety properties are sim-
pler and less costly to verify than liveness properties. In Spin the difference can
be quantified more precisely still: the verification of a liveness property with the
nested depth-first search algorithm can increase the runtime by up to a factor
of two [5].

No algorithm of comparable efficiency is known for the verification of liveness
properties with a breadth-first search. Most attempts that have been explored
to date carry a cost that can increase the cost up to quadratic (exploring up to
N2 reachable states instead of up to 2 N), which puts it beyond reach for larger
problem sizes.

A linear time algorithm that can verify even a small sub-set of the liveness
properties with a breadth-first search discipline can therefore be attractive. We
will describe a small extension of the parallel breadth-first search algorithm
that can do so. The subset that is covered is restricted, but the computational
overhead required is so small that it can make a useful addition to a model
checker’s search capabilities.

In defining this method we take our clues from Manna and Pnueli’s paper [9],
where a small change of the formalization of the response property turns it from
a liveness into a safety property. The resulting sub-class of liveness is known as
bounded liveness.

We could modify the search to check for the satisfaction of a bounded liveness
property with bound n, i.e., within n steps, but this also risks increasing the
cost of verification by up to n. Instead we can also bound the search for ω-
acceptance cycles to cycles of maximal length n. In this case we can make the
extension without increasing the size of the search space significantly. Successor
states of an ω-accepting state are tagged with the ’seed’ (accepting) state and a
counter that is initialized to n. With every new successor generation along this
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path the counter is decremented until either the seed state is revisited or the
counter reaches zero, at which point the search stops. The counter itself is not
stored in the state space, thus avoiding the n-fold increase. This choice comes
down to a trade-off between precision and efficiency; we’ll return to this shortly.

The extended algorithm, called the piggyback algorithm, is shown in Figure 3
as an extension of the sequential breadth-first search from Figure 1. The exten-
sion of the parallel version of the algorithm from Figure 2 is similar.

The lines with key changes from the algorithm shown in Figure 1 are marked
with a asterix in the left margin.

Instead of storing single states in sets S, Q[0], and Q[1], we now store triples
consisting of two states and a count (e.g., lines 20 and 32). The first element
of each triple is the original successor state s’ that was generated. The second
element is a count, which measures the maximum length of the acceptance cycle
that is checked to satisy a liveness property. The third element of the triple is
the target accepting state that forms the ’seed’ for the acceptance cycle search.
The full value of this triple is stored in the queues Q[0] and Q[1] (line 32), so
that it can propagate from one level in the search to the next (lines 12-13), but
we abstract the value of the counter to one bit when the triple is stored in state
space S, to indicate only if the counter is running or not running (line 20). Only
this boolean result is now of relevance in the state matching (line 19).

The critical check is started at every accepting state that is reached (line 15)
to see if that state can be revisited within BOUND steps (line 16). The counter,
however, is only started if no cycle search is already in progress (line 21). We
will return to the potential implications of this choice below.

Once the counter is set, it is decremented with each new generation of suc-
cessor states generated (line 26). The counter is reset to zero when a match of
the target accepting state is found (line 24), or it is left at zero when the count
returns to its default value of zero.

It is not hard to see that the piggyback algorithm can indeed find violations of
liveness properties, but it will also be clear that it will not be able to guarantee
finding all such violations. In the version of the algorithm presented here, it
could well be that a search for an accepting state that is not part of a cycle is in
progress and prevents a new search for a different accepting state from starting
(line 15), even if that second accepting state could turn out to be part of a
cycle. We thus trade simplicity and low complexity for the potential of search
incompleteness. The maximal increase in cost can be a factor of two, as in the
nested-depth first search. Note that states could be visited up to twice if they are
reachable within n steps both from an accepting state and from a non-accepting
state.

Whether or not the piggyback algorithm succeeds can also subtly depend on
the order in which states are explored, i.e., one cpu-core could generate inter-
mediate states that are part of a cycle before the core exploring the cycle can
reach those states and proceed towards the target seed state.

In all measurements we have done, the actual overhead of the algorithm tends
to be near zero. We have also not yet encountered an example where a possible
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1 global t = 0 // toggle bit 0..1

2 global S = {} // statespace set

3 global Q[0] = {} // successor set

4 global Q[1] = {} // successor set

5 safety property f

6

7 add (s1, 0, 0) to Q[0] and to S // initial state

8

9 Search()

10 {

11 do {

12 for each (s,b,z) in Q[t]

13 { delete (s,b,z) from Q[t]

14 for each successor s’ of s

15* { if s’ accepting ∧ b == 0

16* { b = BOUND

17* z = s’

18* }

19 if (s’,(b>0),0) not in S

20 { add (s’,(b>0),z) to S

21* if b > 0

22* { if s’ == z ∧ b < BOUND

23* { report liveness violation

24* b = 0

25* } else

26* { b = b-1

27* if b == 0 { z = 0 }

28* } }

29 if s’ violates f

30 { report safety violation

31 } else

32 { add (s’,b,z) to Q[1-t]

33 } } }

34 }

35 t = 1 - t

36 } while (Q[t] is non-empty)

37 }

Fig. 3. Piggyback Algorithm for Limited Liveness Detection
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liveness violation was not reported by the piggyback algorithm, although knowing
the specifics of the algorithm it would not be too difficult to construct such a
case.

As noted, the choice made here is between a complete solution with an unac-
ceptably high overhead (e.g., the potential for a quadratic increase in the size of
the statespace), which is of very limited practical value, and a bolder algorithm
that is well-behaved for all problem sizes, but that cannot guarantee success in
all cases. The piggyback algorithm is in this sense comparable in its tradeoff to
the bitstate hashing algorithm, introduced in 1987 (cf. [5]), which has proven to
be of significant value in large model-checking applications despite its potential
incompleteness.

We provide performance data for the piggyback algorithm in Section 5.4.

5 Measurements

5.1 Beem Models

We first perform a comparison with the performance of the two leading compet-
ing tools in distributed model checking: the Divine model checker [2] and the
Ltsmin tool [7],[8]. We have used the latest available version of each tool: Di-
vine version 2.5.2 and Ltsmin version 1.7.1, in our comparison with Spin version
6.2.0. Each tool was compiled and installed on the same Ubuntu 11.10 system,
with 32-cores (using two AMD 16-core chips) and 64 GBytes of main memory,
to make sure that the performance results are directly comparable. Generally
in our tests we avoid using all available cores for a verification run, to avoid
boundary effects that may be introduced by the operating system performing
unrelated tasks on the system. We leave at least one cpu-core free for such tasks,
reducing the maximum number of cores used in these tests to 31.

Naturally, there are many differences between the three tools, with each sup-
porting a different specification language. Spin’s specification language is the
most general, which requires implementation choices that can affect overall per-
formance. We measure the basic performance of each tool on models that lie
within the intersection of the input languages of the three tools, and that have
closely comparable complexity (measured as the number of reachable states that
must be searched to complete a exhaustive verification).

We focus here on three models taken from the BEEM database [10], that
were selected in [7] (Fig. 2), to compare the performance of Divine, Ltsmin,
and the earlier multi-core version of Spin version 5.2.4 using parallel depth-first
search [6]. The measurements from [7] showed a decisive advantage for Ltsmin.

The three models that were selected for comparison in [7] were

1. anderson.6: a queue lock mutual exclusion algorithm with 6 processes,
2. at.5: a timing-based mutual exclusion algorithm with 5 processes, and
3. bakery.7: a model for Lamport’s bakery algorithm with 7 processes.
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Table 1. Anderson.6 – RunTimes in seconds

#Cores 1 2 4 8 16 31

Divine 88.10 56.88 38.49 23.31 14.01 20.14

LTSmin Unix time 51.82 33.06 21.24 14.73 12.80 11.88
LTSmin self-reported 44.23 25.14 13.21 6.74 4.72 3.95

Spin Unix time 42.55 27.74 16.01 10.61 7.31 6.69
Spin self-reported 42.20 27.30 15.70 10.20 6.06 4.63

Linear 42.20 21.10 10.55 5.28 2.64 1.36

Table 2. At.5 – RunTimes in seconds

#Cores 1 2 4 8 16 31

Divine 146.20 91.83 57.79 33.47 21.12 19.38

LTSmin Unix time 58.09 35.34 21.00 14.72 11.81 10.28
LTSmin self-reported 52.02 28.77 14.57 8.29 5.16 3.76

Spin Unix time 74.55 50.97 28.29 18.81 13.38 11.38
Spin self-reported 74.10 50.40 27.90 18.10 11.80 8.42

Linear 74.10 37.05 18.53 9.26 4.63 2.39

Table 1 reports the time taken by Divine, Ltsmin, and Spin to complete the
safety verification of the anderson.6 protocol as measured by the standard Unix
’time’ tool.

Both Ltsmin and Spin (but not Divine) also report the time taken by each
tool for the search itself, leaving out unrelated tasks, e.g., to clean up and release
shared memory. If we use these self-reported times, the results look slightly
different, as also shown in Table 1. Curiously, for Unix wall-clock times Spin can
be seen to perform the best, but for the self-reported times Ltsmin comes out
first.

Table 2 shows the results for the at.5 protocol, and Table 3 similarly for the
bakery.7 model. The results for the bakery.7 protocol are similar to those for
the anderson.6 model, with the best performance differing for wall-clock and
self-reported runtimes. For the at.5 protocol Ltsmin has an edge for the Unix
wall-clock times, and a larger advantage for the self-reported times.

Both the Ltsmin and the Spin tool scale reasonably well with increasing num-
bers of cores, though not perfectly. The Divine tool shows good scaling behavior
as well, though the runtimes are longer, with a single anomaly for the anderson.6
protocol on 31 cpu cores.

5.2 Additional Spin Models

We measured the performance of the parallel breadth-first search algorithm on
five additional verification models from the standard Spin distribution, and on
four larger verification models that were also used in previous studies. The mod-
els from the Spin distribution are:



166 G.J. Holzmann

Table 3. Bakery.7 – RunTimes in seconds

#Cores 1 2 4 8 16 31

Divine 42.59 34.48 31.84 25.97 31.59 24.84

LTSmin Unix time 56.64 33.77 22.48 15.82 13.60 12.46
LTSmin self-reported 48.60 26.09 14.06 7.51 5.13 4.20

Spin Unix time 43.73 31.71 19.20 11.89 8.94 9.28
Spin self-reported 43.20 30.90 18.70 11.10 7.12 5.94

Linear 43.20 21.60 10.80 5.40 2.70 1.39

1. a leader election protocol with 8 processes,
2. Peterson’s algorithm with with 4 processes,
3. a sliding window protocol with window size 5,
4. a dining philosophers model with 9 processes,
5. a model of a telephone switch (tpc).

Each of these models were also used for measurements reported in our earlier
work, e.g., [6].

In each data set recorded, we compare the performance with the one that
would be achieved with the theoretically optimum scaling performance: linear
scaling, indicated by a dashed curve. The results are summarized in Figure 4 by
showing the relative speedup-ratios that are achieved in each of these tests.

The measurements for these applications are fairly consistent. They show
good, though not perfect, scaling behavior.

All applications show a drop in performance near the maximum number of cpu
cores. Earlier (cf. [6]) we noticed the same phenomenon on a smaller system with
just 8 cores, and a similar effect can be seen when measurements are performed
on a 12 core system. We observed the same general effect for the examples we
verified with the Ltsmin and Divine tools so we suspect a more general trend that
is independent of the specific verification method used. In all cases though, the
best performance, i.e., the shortest overall runtime, is realized when the largest
number of cores is used.

Background Load. To study the tapering off of performance near the max-
imum number of cores in more detail we performed some additional tests. For
this test we used the at.5 model also used in the measurements from Section 5.1.
We earlier measured the reduction in runtimes when between 1 and 31 cores
are used to perform the parallel breadth-first search. In the new experiment we
again run between 1 and 31 cores, but we arrange it such that only one of the
cores will perform all state explorations, by assigning all successor states in each
successive generation of states back to itself.

We should expect to see a flat performance curve, since the same work is done
by the same cpu-core in each run, with all other cpu-cores (from 1 to 30) merely
waiting for states to process that never arrive. We see a different effect of this
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Fig. 4. Speedup ratios for the five additional Spin models

background load though, that may be caused by interference on shared memory
usage e.g., for polling the shared queues for states.

The experiment shows a notable increase in the time to process states from
71.9 seconds with one process running to 101 seconds with 31 processes running.
Most of the increase occurs when more than 8 cpu-cores are used, as shown
in Figure 5. This background effect influences how well our search method can
scale under ideal conditions, and it could mean that the speedup ratios shown
in Figure 4 are near the maximum that can be obtained on the hardware used.

5.3 Larger Models

The four large verification models represent additional applications where a par-
allel search technique can prove most valuable in practice. They are:

1. a verification model of the DEOS operating system developed at Honeywell
Laboratories,

2. a large call processing application (CP),
3. a model of and ad hoc network structure developed by a Spin user (Gurdag),
4. a model of an autonomous planning subsystem that was used on NASA’s

EO1 spacecraft.

Each of these larger models was also used in the measurements in [6].
The results for the larger models is summarized in Figure 6. To make it easier

to interpret the scaling behavior for these models with very different runtime
requirements, we captured the number of reachable states that is processed per
second, normalized to the same base for all models, as was also done in [6], to
obtain the speedup ratios.

Also here we see performance drop as we near the system capacity of 32 cores,
and very good scaling up to eight cores (cf. Figure 4 and Figure 5). In the two
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Fig. 5. Runtime Decay when other processes are present and idling

best cases (for the DEOS and CP verification model) the improvement measured
was a speedup of 9-fold on 31 cores. In the worst case (for the EO1 model) only
a 6-fold speedup was measured.

For comparison, in our earlier work on the parallelization of the depth-first
search algorithm of safety properties, we measured a speedup of 7.8x for the EO1
model on an 8-core system [6], outperforming the parallel breadth-first search
from this paper.

For the DEOSmodel though, the parallel depth-first search achieved a speedup
of no more than 1.6-fold on 8 cores, where the parallel breadth-first method from
this paper achieves a 6-fold speedup on 8 cores.

5.4 Liveness

To study the capabilities of the piggyback liveness detection algorithm we con-
sider two examples from the BEEM database of models that were also studied
in [2] (Table 1). The only model studied in [2] that contains an acceptance cycle
is the anderson.6 model. We earlier reported measurements for this model in
Table 1.

The LTL property for this model, in Spin syntax, is [](<>(P[2]@CS)), which
states that process P[2] (arbitrarily chosen) can always eventually enter its crit-
ical section.

An exhaustive exploration of this model visits about 49 Million reachable
system states (which is about three times the number of states reached without
applying the LTL property), and takes 151 seconds of cpu-time. An exhaustive
run of the nested-depth first search algorithm (executed on one single cpu, and
without stopping at the first cycle detected) explores the same state space, but
each state can now be visited up to twice, which increases the runtime to 222
seconds. An acceptance cycle can of course be detected early or late in the search.
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Fig. 6. Measured speedup ratios for four large verification models – using normalized
performance captured as the total number of reachable states processed per second

In this case, the nested depth-first search algorithm detects a first accept-cycle
after having explored just 142,027 states in 0.31 seconds.

The parallel breadth-first search algorithm, when applied to the same model
and LTL property also explores about 49 Million states. On 31 cpu-cores it takes
44.5 seconds to do so, with the scaling behavior on fewer cores again matching
that for pure safety properties, cf. Table 1.

If we add the piggyback liveness detection method, the number of reachable
states that is explored in the parallel search does not change, and neither does the
runtime. For an exhaustive run that is not stopped at the first counter-example
the time measured 43.8 seconds, which is close to the earlier measurement with-
out liveness detection enabled.

The piggyback algorithm discovers a first acceptance cycle relatively late in
the search in this case, after having explored nearly all 49 Million states. But
as can be expected, the cycle that is uncovered in the parallel search is shorter
than the one found in the depth-first search: 28 steps instead of 58 steps in this
case, and therefore potentially of greater interest. The most interesting aspect
of this search is that it does not measurably increase the runtime. We see this
effect repeated also in cases where there is no acceptance cycle to be found: the
case where the nested depth-first search algorithm can incur up to a doubling of
its runtime.

The second example model from [2], with no acceptance cycles, is the eleva-
tor2.3 model. The LTL property given in the BEEM database states that after
the elevator has been called at level 0, the elevator passes that level at most
once without serving it. The property is satisfied for the model provided, so no
counter-example acceptance cycles exist.
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Fig. 7. Performance of Parallel Bounded Liveness Detection Algorithm for larger mod-
els with (left) and without (right) acceptance cycles

An exhaustive exploration of the model with a standard depth-first search
visits a total of approximately 27 Million states in 81.1 seconds, on a single cpu.
If instead we use the nested depth-first search algorithm, the same number of
states is explored, but some are visited twice. As a result, the runtime for the
depth-first search increases to 145 seconds.

With the parallel breadth-first search algorithm the number of states explored
in an exhaustive search remains approximately 27 Million states. On 31 cpu-
cores the runtime required to complete this search is 36.6 seconds, and again
the scaling behavior on fewer cores is similar to that reported before. With
the piggyback algorithm added, the number of explored states and the runtime
remain unchanged. We measured 37.2 seconds for this search. The results are
illustrated in Figure 7.

6 Conclusion

We have described the design and implementation of a new parallel breadth-
first search option for the Spin model checker. The original motivation for this
algorithm was that most properties of interest that model checkers are used for
are safety properties. These types of properties, including those specified in linear
temporal logic, can readily be verified with a breadth-first search algorithm. The
breadth-first search option has the additional advantage of locating the shortest
possible counter-examples.

We also described a relatively simple extension of the breadth-first search
that can allow us to intercept not only safety properties but also an interesting
class of liveness properties, Fig. 3. The algorithm, which is based on a bounded
search for cycles, can catch any liveness violation (not just violations of bounded
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liveness properties), provided that there exists a cycle shorter than the bound
given. The extension carries no significant computational overhead, but cannot
guarantee completeness. In the tests we performed the algorithm succeeded in
locating non-trivial counter-examples in a broad range of applications, which
can make it of some practical interest.

We have shown that the performance of the new parallel breadth-first search
algorithm scales reasonably well with increasing numbers of cpu-cores, cf. Figs. 4
and 6, and is comparable to, and in some cases better than, that of other leading
tools, e.g. [2] and [7].

We have also identified a factor that limits the benefit that can be obtained
from multi-core algorithms, cf. Figure 5. The effect is especially pronounced for
larger numbers of cpu-cores.
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