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Preface

This volume contains the proceedings of the 19th International SPIN Workshop
on Model Checking of Software, held at the University of Oxford, during 23–24
July, 2012. The SPIN workshop series is an annual forum for researchers and
practitioners interested in verification of software systems. The traditional focus
of SPIN has been on explicit-state model checking techniques, as implemented
in SPIN and other tools. While such techniques are still of key interest to the
workshop, its scope has broadened over recent years to cover techniques for
verification and formal testing of software systems in general.

SPIN 2012 features three invited talks, from Tom Ball, Andrey Rybalchenko
and Andreas Zeller. Tom Ball (Microsoft Research) is one of the pioneers of prac-
tical software verification, especially through his work on the SLAM project. His
talk and associated invited paper (co-authored with colleagues at Microsoft Re-
search) provide an overview of recent advances in SMT solving at Microsoft
Research related to fixed points, interpolants, automata and polynomials. An-
drey Rybalchenko (TU Munich) is an expert in theories, algorithms and tools for
improving the quality of software. One of his major interests, and the topic of his
SPIN talk, is automatic synthesis of software verification tools. Andreas Zeller
(Saarland University) is well known for his work on analysis of large software
systems and their development process, particularly through repository mining
techniques. His talk at SPIN was on the challenge of modular verification for
legacy systems, using mining to discover specifications automatically.

The workshop also featured an invited tutorial from Cristian Cadar (Imperial
College London): “How to Crash Your Code Using Dynamic Symbolic Execu-
tion.” Cristian is an expert on software testing and bug-finding using dynamic
symbolic execution and related techniques, and is one of the authors of the
widely used KLEE system. In addition to the tutorial, Cristian contributed an
invited paper, “High-Coverage Symbolic Patch Testing,” co-authored with Paul
Marinescu.

SPIN 2012 received 30 submissions, from which the the Program Committee
accepted 11 regular papers and 5 tool demonstration papers. All papers received
at least three reviews, with the majority receiving at least four. Program Com-
mittee members with conflicts of interest were excluded from all discussions of
relevant submissions. The reviewers discussed papers with neither overwhelm-
ingly positive or negative reviews until a consensus was reached. In some of
these cases, papers were accepted subject to a shepherding process in which
the Chairs ensured that authors revised their papers to incorporate particular
changes recommended by reviewers. In all such instances, the authors obliged
and the papers were accepted. The editors are extremely grateful to the mem-
bers of the Program Committee and their subreviewers for working under a tight
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deadline, and to the authors of the accepted papers for the quick turnaround in
producing camera-ready copies.

We are indebted to the members of the SPIN Steering Committee, especially
Gerard Holzmann and Stefan Leue, and the Chairs of SPIN 2011, Alex Groce
and Madanlal Musuvathi, for their advice related to the organization of this
workshop. Thanks also to Gerard Holzmann for designing this year’s workshop
poster. We are also very grateful to Elizabeth Walsh at the University of Oxford
for invaluable assistance with local organization. The submission, review and
revision processes, as well as the collation of the workshop proceedings, were all
supported by the EasyChair conference management system; we are extremely
grateful to the authors and maintainers of EasyChair for this free service. Fi-
nally, we offer our sincere thanks to ARM, Codeplay, Microsoft Research and
Monoidics, who generously provided financial support to SPIN 2012.

July 2012 Alastair Donaldson
David Parker
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Beyond First-Order Satisfaction: Fixed Points,

Interpolants, Automata and Polynomials

Thomas Ball, Nikolaj Bjørner, Leonardo de Moura,
Kenneth L. McMillan, and Margus Veanes

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{tball,nbjorner,leonardo,kenmcmil,margus}@microsoft.com

Abstract. In the last decade, advances in satisfiability-modulo-theories
(SMT) solvers have powered a new generation of software tools for ver-
ification and testing. These tools transform various program analysis
problems into the problem of satisfiability of formulas in propositional
or first-order logic, where they are discharged by SMT solvers, such as
Z3 from Microsoft Research. This paper briefly summarizes four initia-
tives from Microsoft Research that build upon Z3 and move beyond
first-order satisfaction: Fixed points—μZ is a scalable, efficient engine
for discharging fixed point queries over recursive predicates with logical
constraints, integrated in Z3; Interpolants—Interpolating Z3 uses Z3’s
proof generation capability to generate Craig interpolants in the first-
order theory of uninterpreted functions, arrays and linear arithmetic;
Automata—The symbolic automata toolkit lifts classical automata anal-
yses to work modulo symbolic constraints on alphabets; Polynomials—a
new decision procedure for the existential theory of the reals allows effi-
cient solving of systems of non-linear arithmetic constraints.

1 Introduction

Automated reasoning about logical formulas has a long and rich history. Starting
with propositional logic, we have seen great advances in data structures and
algorithms such as binary decision diagrams [5] and satisfiability solvers [23],
which have powered finite-state symbolic model checking [20], bounded model
checking [1], and symbolic execution [6]. Satisfiability-modulo theories (SMT)
solvers [25], such as Z3 from Microsoft Research (MSR) [10], extend the power
of SAT solvers to a variety of first-order theories, such as linear arithmetic,
algebraic data types, arrays, and quantifiers. Z3 powers many software tools,
ranging from tools for formal design (FORMULA [17]) and program verification
(Boogie [4], Daphny [19], VCC [11], F* [27]), to program analysis (HAVOC [2],
SLAM [3], Yogi [26]) and program testing (Pex, SAGE [12]).

So, what’s beyond first-order satisfiability and SMT solvers such as Z3?

First, there are queries other than satisfiability that programmers of software
tools would like help with:

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 T. Ball et al.

– Fixpoints. μZ is a new engine for computing fixed points over recursive
predicates with logical constraints, integrated with Z3 [14]. Developers of
program analysis tools can query μZ programmatically or via a Datalog
input format to establish facts that hold along all possible program execution
paths. (See Section 2).

– Interpolants. The automated computation of interpolants has numerous ap-
plications, including abstraction refinement and invariant generation. Inter-
polating Z3 extends Z3 to enable the generation of interpolants for various
theories [22]. (See Section 3).

Second, we can consider theories that would be useful to many users but that
are traditionally outside the realm of SMT solvers:

– Automata. The symbolic automata toolkit lifts classical automata analyses
to work modulo symbolic constraints on alphabets, using Z3, enabling the
precise analysis of programs that manipulate strings [29]. A distinguishing
feature of the toolkit is its use of and operations over symbolic constraints,
unlike representations based on classical automata theory that assume a
concrete finite alphabet. (See Section 4).

– Polynomials. A new decision procedure for the existential theory of the reals
allows Z3 to efficiently solve systems of non-linear arithmetic constraints [18].
The applications of this algorithm are many, ranging from hybrid systems
to virtual reality environments. (See Section 5).

2 Fixed Points and μZ

In the realm of program analysis and many other domains, the computation of a
fixed point, a (least or greatest) solution to a set of mutually recursive equations,
is a basic need [8].

How do we get from programs to such equations? In program analysis, we
wish to compute a set of facts that holds along all paths from the start of a
program to a designated statement (or set of statements). Generally, the facts
that hold after execution of a statement s are a function of the facts that hold
before execution of s, and can be expressed by a transfer function (or transition
relation) fs. Loops and recursive procedures in programs naturally gives rise to
a set of mutually recursive transfer functions.

Additionally, a key part of any analysis framework is the definition of the
abstract domain(s) over which the fixed point solution ranges [9]. The represen-
tation of the abstract domain and operations on it must be carefully designed
for efficiency. Furthermore, there are many domain-independent transformations
and optimizations that can be applied to the recursive set of equations to convert
them into a form that is more efficiently evaluable. All these requirements can
add up to a massive design and engineering challenge for the creators of program
analysis tools.

μZ is a scalable, efficient engine for discharging fixed point queries over re-
cursive predicates with logical constraints expressed as rules (Horn clauses),
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integrated in Z3 [14]. The μZ engine contains numerous optimizations specific
to the computation of fixed points and is extensible with new abstract domains.
The engine transforms the rules to avoid large intermediate results, applies the
classical magic sets transformation to specialize the rules with respect to a query,
and carefully plans the order of join operations to minimize time/space overhead.

3 Interpolants

Given a valid implication P → Q, an interpolant I is a formula, expressed using
the common vocabulary of formulas P and Q, such that P → I and I → Q.

Interpolants are very useful for the automated refinement of abstractions via
counterexamples [13] and generation of invariants [21]. Consider formulas P and
Q such that P ∧¬Q is unsatisfiable (equivalently, P → Q is valid). In the context
of counterexample-guided abstraction refinement, P represents an underapprox-
imation of the set of states reachable from the initial state of a program C,
and formula Q represents a set of good states (that we wish to prove that all
executions of C stay inside).

Using an SMT solver, if can show that P ∧ ¬Q is unsatisfiable, then the set
of states P does not contain a bad state (a state outside of Q). An interpolating
SMT solver allows us to take the proof of unsatisfiability of P ∧ ¬Q and learn
from it facts that could help prove the correctness of program C in general (all
reachable states of program C are in Q). An interpolant I is weaker than P
(since P → I), and so represents more states than P (abstracting P ), while
staying within the set of good states (since I → Q).

Stated another way, interpolation is a way to derive a generalization about
the unbounded behaviors of a system from an analysis of its bounded behaviors,
with the goal of finding and inductive invariant that is strong enough to prove
a property of the system.

A major difficulty in extracting interpolants from SMT solvers lies in the fact
that the proofs generated by efficient solvers such as Z3 may not contain sufficient
detail to produce an interpolant. Rather than attempt to directly interpolate the
proofs from Z3, interpolating Z3 uses the proofs as a guide for a secondary and
much simpler interpolating prover [22]. The Z3 proofs are translated into a proof
calculus that admits interpolation but in which the proofs may contain “gaps”
that must be discharged by the secondary interpolating prover. Furthermore,
because of the translation, the second prover need not implement all the theories
supported by Z3.

4 Symbolic Automata

Finite-state automata (FSA) have many uses in software. FSA are the basis
of lexical analysis for compilers, regular expression matching for data process-
ing, string sanitization for web pages, among other uses. Classical algorithms
for manipulating and analyzing FSA based on explicit representations can break
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down as the size of the FSA increases. For example, if the alphabet over which
an FSA is defined is very large then the FSA itself may be very large, with a huge
number of transitions leaving each state. In such cases, a symbolic representation
of the alphabet and transitions can yield substantial reductions in the size of
the automata, as transitions can be labelled with symbolic constraints over the
alphabet.

The symbolic automata toolkit [29] lifts classical automata analyses to work
modulo symbolic constraints on alphabets (using Z3). In practice, these symbolic
algorithms outperform classical algorithms, often by orders of magnitude, when
alphabets are large [16]. Additionally, symbolic automata can work with infinite
alphabets, leveraging Z3 theories such as arithmetic, algebraic data-types, and
arrays. Symbolic automata have been used in concolic testing of applications
that make use of regular expression matching in predicates [24].

The toolkit also allows the definition of symbolic finite-state transducers, a
form of input/output automata [30]. Such transducers are very useful for ana-
lyzing and synthesizing string manipulating functions, with applications to the
correctness of string sanitization routines [15].

5 Polynomials

When Tarski showed that the theory of real closed fields admits elimination of
quantifiers, it became clear that a general decision procedure for solving poly-
nomial constraints was possible [28]. Unfortunately, Tarski’s procedure has non-
elementary complexity, making it totally impractical. The first relatively effective
method of quantifier elimination over the reals, cylindrical algebraic decompo-
sition (CAD) [7], has a doubly-exponential worst-case behavior that remains a
serious impediment to its use.

A new decision procedure for the existential theory of the reals (R) [18] per-
forms a backtracking search for a model in R, where the backtracking is powered
by a novel conflict resolution procedure. The approach takes advantage of the
fact that each conflict encountered during the search is based on the current as-
signment and generally involves only a few constraints, a conflicting core. When
in conflict, the new algorithm algorithm projects only the polynomials from the
conflicting core (using CAD) and explains the conflict in terms of the current
model.

A new solver called nlsat, incorporated in Z3, has been experimentally com-
pared to three classes of solvers that perform reasonably well on fragments of
nonlinear arithmetic: (1) the SMT solvers Z3, CVC3, and MiniSmt; (2) the quan-
tifier elimination based solvers Mathematica 8.0, QEPCAD, Redlog-CAD and
Redlog-VTS; (3) the interval based iSAT solver. The main take away from these
experiments is that nlsat is consistently one of the best solvers for a variety of
sets of benchmarks: nlsat manages to solve the most problems and in much faster
time.
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Abstract. Software patches are often poorly tested, with many of them
containing faults that affect the correct operation of the software. In this
paper, we propose an automatic technique based on symbolic execution,
that aims to increase the quality of patches by providing developers with
an automated mechanism for generating a set of comprehensive test cases
covering all or most of the statements in a software patch.

Our preliminary evaluation of this technique has shown promising
results on several real patches from the lighttpd web server.

1 Introduction

Writing correct software patches is a difficult task because developers have to
ensure that new code not only executes correctly in itself but also interoperates
flawlessly with already existing code, often written by other developers. That
is, patches have to produce the expected behavioral changes without interfering
with existing correct behavior, which is difficult to accomplish without thor-
oughly testing the patch. As a result, patches have a high rate of introducing
failures [20,31,33]; for example, a recent study of software updates in commercial
and open-source operating systems has shown that at least 14.8% to 25% of fixes
are incorrect and have affected end-users [31].

Poor testing of patch code is therefore one of the main reasons for the high
number of incorrect software updates. Most projects contain large amounts of
untested code, and even those that come with regressions suites achieving rela-
tively high patch coverage only test each statement on a limited number of paths
and input values.

In this paper, we propose a practical technique that aims to improve the
quality of software updates by providing an automatic way to generate test
suites that achieve high coverage of software patches. Our approach is based on
dynamic symbolic execution, a technique that has gathered a lot of attention
recently, due to its ability to automatically generate complex test cases and find
deep errors in the code under test.

In our approach, we enhance symbolic execution with the ability to focus on
the lines of code affected by a patch. This is accomplished in two ways: first,
we implement a new exploration strategy that prioritizes execution paths based
on their distance from the patch, and has the ability to revert to an early state

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 7–21, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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when the patch cannot be reached under the current path condition. Second,
we make use of existing concrete runs in order to quickly find program paths
that reach, or are close to reaching, the patch. This latter enhancement is based
on the observation that software developers sometimes accompany submitted
patches with a test case that partially exercises the new code, and this test case
could be easily used as a starting point for the symbolic exploration.

We envision a system in which program patches are comprehensively tested
at the press of a button. For example, our approach could be embedded into a
continuous integration system so that each update would trigger the generation
of a set of test cases covering all or most of the statements in the patch being
submitted.

The rest of the paper is structured as follows: Section 2 gives a high-level
overview of our approach, while Section 3 presents our technique in more detail.
Then, Section 4 discusses the most important implementation choices that we
made, and Section 5 presents our preliminary results. Finally, we conclude with
a discussion on related work in Section 6 and future work in Section 7.

2 Overview

The standard approach for ensuring that software updates do not introduce bugs
is to enhance the program’s regression suite with tests that cover the newly
added code. The tests are either added in the same revision with, or shortly
after, the patch; or, following agile development methods, before the patch is
even written [2]. The technique is powerful because the tests encode developer
knowledge about the program structure and past bugs, but requires discipline
and manual effort to write the tests.

Symbolic execution-based testing, on the other hand, is an automatic tech-
nique that can systematically explore paths through a program, enabling high
coverage test generation without manual effort. However, the technique inher-
ently suffers from path explosion, the roughly exponential increase in number of
execution paths through a program relative to the program size.

In this paper, we propose an approach that adapts symbolic execution to
perform high-coverage regression testing. Our approach is motivated by the fol-
lowing two insights:

1. Testing patches requires exhaustive exploration of patch code but not of
the entire program. The fact that patches are most of the time orders of
magnitude smaller than the entire code base can be exploited to significantly
improve testing scalability.

2. Developer regression tests usually execute the patch partially but do not
cover all statements and corner cases. Therefore, we can effectively use them
as a starting point for symbolic exploration, which then drives program ex-
ecution towards uncovered code.
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Our approach relies on prioritizing paths based on their distance from the patch
code and on their compatibility with the patch context requirements, i.e. the con-
ditions which have to hold in order for execution to flow towards the patch code.
In addition, the approach leverages existing regressions tests to seed symbolic
execution. The main contributions of our approach are:

1. A novel dynamic technique for guiding symbolic execution towards instruc-
tions of interest;

2. A prototype implementation of our technique based on the klee symbolic
execution engine [6] and the zesti testing tool [19];

3. A case study of the application of our technique to real patches from the
lighttpd1 web server.

3 Design

The main goal of our technique is to construct program inputs that execute
the uncovered parts of a patch. For the purpose of this presentation, we use
line coverage as the coverage metric, but the technique can be easily adapted
to other metrics as well. For simplicity of presentation, we consider that inputs
are constructed for one instruction—the target—at a time. One can then simply
apply the algorithm in turn to each uncovered instruction to cover the entire
patch.

Synthesizing inputs which cover a target is an essential problem in automated
test generation and debugging [1, 16, 27, 29, 30, 32]. While we borrow ideas from
the state of the art in these areas, and combine symbolic execution, static anal-
ysis and various heuristics, our approach differs by treating the task as an opti-
mization problem with the goal of exploring paths that minimize the estimated
distance to the target. Given a suitable distance metric (which we discuss at the
end of this section), a solution is found when minimizing the distance to zero.

Our patch discovery technique uses an iterative process, starting from an ex-
isting program input—the seed—obtained from the program test suite, standard
symbolic execution, or a random input. For best results, this input should ex-
ercise instructions near the target. Intuitively, the approach attempts to steer
execution off the path exercised by the seed input towards the target, guided by
the estimated distance to it.

We begin by executing the program on the seed input, and remembering all
branch points that depend on symbolic input, together with the symbolic path
condition collected up to that point.2 We refer to these branch points as symbolic
branch points.

Then, at each iteration, we select the symbolic branch point whose unexplored
side S is closest to the target (according to the estimated distance) and attempt
to explore this side. If the current path condition allows S to be reached, we
eagerly explore it, in what we call a greedy exploration step. Otherwise, if S is

1 http://www.lighttpd.net/
2 More details on how this process works can be found in [19].

http://www.lighttpd.net/
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1 void log(char input) {
2 int file = open("access.log", O WRONLY|O APPEND);
3 if (input >= ’�’ && input <= ’~’) { // printable characters
4 write(file, &input, 1);
5 } else {
6 char escinput = escape(input);
7 write(file, &escinput, 1);
8 }
9 close(file);

10 }

Fig. 1. Example showcasing the greedy exploration step. Lines 5–8 represent the patch.
Error handling code ommited for brevity.

1 if (0 == strcmp(requestVerb, "GET")) { ... }
2 . . .
3 for (char� p = requestVerb; �p; p++) {
4 log(�p);

Fig. 2. Example showcasing the execution regeneration step. As in Figure 1, the patch
is on lines 5–8 of the log function.

infeasible under the current path condition, we enter the informed path regen-
eration mode, in which we travel back to the last symbolic branch point that
made S unreachable and take there the other side of the branch. At this point,
our current strategy is to explore the program path that preserves as much as
possible from the initial path condition, in an attempt to quickly reach the de-
sired branch side S. However, in future work, we plan to improve our technique
by exploring multiple paths to S.

To illustrate our algorithm, we use the code snippet in Figure 1, which is
based on a patch introduced in revision 2660 of lighttpd. The log function
takes a single character as input and writes it into a text file. The function was
initially always writing the character unmodified, but was patched in order to
escape sensitive characters that could corrupt the log file. However, the program
was tested only with printable character inputs and thus the patch was never
executed. After seeding the analysis with such an input containing only printable
characters, our technique determines that the else side of the symbolic branch
point at line 3 is the unexplored branch side closest to the patch (in fact, it is
part of the patch), and goes on to explore it (in a greedy exploration step) by
negating the condition on line 3.

To understand when informed path regeneration is necessary, consider the
example in Figure 2, in which the log function of Figure 1 is called for each
character of the requestVerb string. Assuming that the seed request contains the
GET verb, the comparison at line 1 constrains this input to the value GET for the
remainder of the execution. Changing any of the characters in the requestVerb

is impossible after this point because it would create an inconsistent execution,
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and thus on this path we cannot follow the else side of the branch in the log

function.
Instead, our informed path regeneration step travels back just before the ex-

ecution of the symbolic branch point that introduced the constraint that makes
the patch unreachable, and then explores the other side of that branch point. In
our example, that symbolic branch point is the one at which requestVerb[2] was
constrained to be ‘T’, and thus our technique takes here the other side of the
branch, in which requestVerb[2] is constrained to be different from ‘T’. With
this updated path condition, execution reaches again line 3 of the log function,
where execution is allowed to take the else path and thus cover the patch.

We end this section with a discussion of our distance estimation function for
the interested reader.

Our technique uses a context-sensitive, path-insensitive static analysis [21]
to compute an approximation of the actual distance between two instructions.
The distance is then further refined at runtime using callstack information. This
analysis is used by klee itself to implement the search heuristic that mini-
mizes the distance to an uncovered instruction, and works as follows. At the
intra-procedural level, we define the distance between two instructions A and
B contained in basic blocks BBA, respectively BBB as the minimum distance
between BBA and BBB in the program control flow graph (CFG). Extending
this definition to the inter-procedural level is not immediate; while edges can be
introduced for function call instructions in the inter-procedural CFG, matching
them statically with return edges is not trivial.

The solution to this problem involves two steps. First, we statically introduce
two edges for each call instruction: one pointing to the called function with an
associated weight of zero and another pointing to the instruction immediately
following the call with a weight equal to the shortest path from the beginning
to the end of the called function. These edges are modelling the two possible
situations that can be encountered: the target is found before returning from
the call or after. We call the resulting graph the statically augmented CFG and
the shortest path between two of its nodes, their static distance.

Second, we add at runtime the return edges corresponding to the current
call stack. While the resulting graph could be used directly to determine the
minimum distance using a standard shortest path algorithm, this would add a
significant overhead. Instead, we avoid running the full algorithm at runtime
by observing that the target can be reached either by taking the shortest path
in the statically augmented CFG or by returning from the current function and
continuing on the shortest path. The minimum distance to the target is therefore
the minimum between these two alternatives: the static distance to the target
and the sum between the static distance to the closest return statement plus the
distance from the associated call site to the target.

More formally, given the set of program instructions I, a callstack represented
as an instruction vector [I1, I2, . . . , In] ∈ In, the static distance from an instruc-
tion to the target D : I → N, and the static distance from an instruction to the
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closest return instruction R : I → N, the context-sensitive minimum distance to
the target is recursively defined as:

CSD([]) =∞
CSD([I1, I2, . . . , In]) = min(D(In), R(In) + CSD([I1, . . . , In−1])

Because functions D and R do not depend on the context, our analysis computes
them once per program. The CSD is computed at each iteration of our algo-
rithm for each candidate state, but note that the computation is independent of
program size, depending linearly only on the size of the state’s callstack.

4 Implementation

Our prototype implementation is built on top of the klee symbolic execution
engine [6] and inherits the code responsible for combining concrete inputs with
symbolic program exploration from zesti [19]. The LLVM infrastructure [17] is
used to enable integration with klee and facilitate the static and dynamic
analyses.

Compared to klee and zesti, our prototype implementation maintains only
the last path explored instead of a tree containing all paths explored so far.
While this simplifies the implementation, it makes our prototype miss targets
which can only be reached via paths in which the distance to the target does not
monotonically decrease, e.g., a target that is accessible only after a few iterations
through a loop. We did not find such cases in the lighttpd revisions considered,
but intend to handle this case in future work.

We also decided to execute at each iteration through our algorithm a batch
of instructions, instead of a single one. This offers the advantage of generating
more states from which to choose at the next iteration, with only a small time
penalty, effectively providing a form of look-ahead. In certain scenarios, this
compensates for the underestimation of the distance between two instructions, by
permitting the execution of longer paths than dictated by the static estimation.
Our implementation currently uses batches of 10,000 instructions during both
the greedy exploration and the informed path regeneration steps.

5 Experimental Evaluation

We evaluated our protype implementation on the lighttpd web server, an ef-
ficient lightweight open-source server used by services such as YouTube and
SourceForge. lighttpd is a mature system consisting at revision 2631—the earli-
est used in our experiments—of 37,517 effective lines of code, as reported by the
CLOC3 line counting tool, and containing a good test suite achieving 64.1% line
coverage. We examined in detail three revisions from the last two years, period
in which the number of lines of code and the coverage were largely unchanged.
We ran all tests on a 64bit Ubuntu 10.04 i5-650 machine with 8GB of RAM.

3 http://cloc.sourceforge.net/

http://cloc.sourceforge.net/
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Table 1. Patches examined in our evaluation; total effective lines of code (ELOC),
ELOC covered by the regression suite, and ELOC covered by our tool. Revision 2660
contains 6 ELOC of dead code and 3 ELOC inaccessible in the test configuration.

Revision ELOC Covered ELOC
Regression test Our tool

2631 20 15 (75%) 20 (100%)

2660 33 9 (27%) 24 (72%)

2747 10 4 (40%) 10 (100%)

In the following, we present three case studies in which we analyze the patches
associated with lighttpd revisions 2631, 2660 and 2747. Our tool was able to
cover all patch code accessible in the server test configuration. In the process,
we found dead code in one of the patches, which turned out to be a bug. We
reported the bug to the lighttpd developers, who promptly fixed it.4

The starting input for the analysis was manually chosen; we used the test case
added with the patch for revision 2631 and a generic HTTP request from the
core-request.t tests for the other two revisions, where no specific test existed.

Table 1 presents an overview of the three revisions, along with the number
of new or modified effective lines of code (ELOC column). The lines are further
placed into two categories: lines covered by the test suite and lines covered by our
tool. It can be seen that for revision 2660, nine lines of code are not covered by
our tool. Upon manual analysis, we discovered that six are dead code and three
are unreachable in the server test configuration. Table 2 presents a summary
of the additional code covered by our technique in each of the three revisions,
with lines grouped by basic block. For each basic block, we report the number of
iterations and the time needed to generate an input which covers it. We generate
a total of 13 new inputs which added to the regression suite leave its execution
time virtually unchanged at 6.6 seconds.

Revision 2631

Revision 2631 introduced the ability to handle requests for absolute URLs, e.g.:

GET http://www.example.com/ HTTP/1.0

The patch contains code which handles separately HTTP and HTTPS URLs but
none of the existing regression tests contains absolute URLs. Furthermore, the
test added with the patch only contains an HTTP request. Our tool successfully
derives from it a new request for an HTTPS resource, exercising the previously
uncovered code. We reproduce in Figure 3 the relevant part of the code.5

4 See http://redmine.lighttpd.net/issues/1551 for more details.
5 The patch contains an additional, unrelated line of code not covered by the regression
tests—line 566. This line was covered in our experiments by virtue of the modified
order in which we sent requests to the server.

http://redmine.lighttpd.net/issues/1551
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Table 2. Number of greedy and path regeneration iterations and time in seconds
needed by our tool to generate inputs covering the lines of code not executed by
lighttpd’s test suite. Lines are grouped by basic block.

Location Greedy Path regeneration Time
(line numbers) iterations iterations (seconds)

Revision 2631

461 3 2 329

462,463,465 3 2 329

566 0 0 131

Revision 2660

168 1 1 68

176,177 2 1 68

179,180 2 1 68

185,186 2 1 68

188,189 2 1 68

192-197 1 0 55

Revision 2747

172 1 1 82

173 1 1 82

175,177 1 1 82

202,204 1 1 81

The target code is between lines 461 and 465—the other lines are already
covered by the regression tests. We consider line 462 to show how our tech-
nique derives an input to cover new code from an existing test suite input.
Table 3 presents the five derivation steps performed to transform the seed input
http://zzz.example.com/ into https://zz.example.com/, which covers the
newly added code. We briefly explain how these steps relate to our algorithm.

(1) Our technique attempts to reach the else statement at line 460 and sets
the 7th input character to an arbitrary value different from ‘/’. The string
comparison on line 454 no longer returns 0 and the else branch is reached.

(2) Our technique attempts to satisfy the first part of the condition at line 460
and detects that the 5th input character must be ‘s’. However, it cannot
directly set it to this value because it would create an inconsistent path;
the strncmp function call at line 454 already compared this character to
‘:’ and witnessed equality. Therefore, our technique travels just before this
comparison and sets the 5th character to ‘s’.

(3) We continue to modify the input to satisfy the first part of the condition at
line 460 and directly sets the 6th input character to ‘:’.

(4) We continue to modify the input to satisfy the first part of the condition at
line 460 and directly sets the 7th input character to ‘/’.

(5) We continue to modify the input to satisfy the first part of the condition at
line 460 and directly sets the 8th input character to ‘/’.

http://zzz.example.com/
https://zz.example.com/
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454 if (0 == strncmp(uri, "http://", 7) &&
455 NULL != (nuri = strchr(uri + 7, ’/’))) {
456 reqline host = uri + 7;
457 reqline hostlen = nuri − reqline host;
458
459 buffer copy string len(con−>request.uri, nuri, proto − nuri − 1);
460 } else if (0 == strncmp(uri, "https://", 8) &&
461 NULL != (nuri = strchr(uri + 8, ’/’))) {
462 reqline host = uri + 8;
463 reqline hostlen = nuri − reqline host;
464
465 buffer copy string len(con−>request.uri, nuri, proto − nuri − 1);
466 } else {

Fig. 3. Part of lighttpd revision 2631, which handles absolute request URLs. The
patch is represented by lines 456, 457 and 460–465.

Table 3. Input derivation chain for covering the basic block containing target line 462
in lighttpd revision 2631. � represents a path regeneration iteration and → represents
a greedy iteration.

Step Input Type Condition

http://zzz.example.com/

(1) http:/?zzz.example.com/ � url[6] != ’/’

(2) https/?zzz.example.com/ � url[4] == ’s’

(3) https:?zzz.example.com/ → url[5] == ’:’

(4) https:/zzz.example.com/ → url[6] == ’/’

(5) https://zz.example.com/ → url[7] == ’/’

The input obtained after step 5 exercises the target line (462) and the algorithm
terminates. As it can be seen, the newly found input is similar to the original, and
not a pathological case, which we believe developers would prefer to incorporate
into the regression suite.

Revision 2660

Revision 2660 was responsible for fixing a bug in the accesslog module. This
module is responsible for logging all the requests made to the server so that they
can be later viewed or processed by web analytics software. The log is maintained
as text records, with space-separated fields. Remotely-provided data is quoted to
allow automatic parsing of the file; this requires in turn special treatment of all
quote (") characters. For example, a request with the referrer set to foo" "bar"

would create the record:

127.0.0.1 − − [18/Apr/2012:02:14:44 +0100] "GET /index.html HTTP/1.0" 200
4348 "foo" "bar" "-"

http://zzz.example.com/
http:/?zzz.example.com/
https/?zzz.example.com/
https:?zzz.example.com/
https:/zzz.example.com/
https://zz.example.com/
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165 if (str−>ptr[i] >= ’�’ && str−>ptr[i] <= ’~’) {
166 /� printable chars �/
167 buffer append string len(dest, &str−>ptr[i], 1);
168 } else switch (str−>ptr[i]) {
169 case ’"’:
170 BUFFER APPEND STRING CONST(dest, "\\\"");
171 break;

Fig. 4. Part of lighttpd revision 2660, which escapes senstive characters before logging
them. The patch includes all of the lines shown.

The unpatched code detects a record with ten fields, the last three being foo, bar
and -, while the correct interpretation is a record with nine fields, the last two
being foo" "bar and -. The fix attempts to treat separately the quote and other
control characters by escaping them. Figure 4 shows the relevant part of the
patch. Printable characters are handled on line 167, on the then branch, while
special characters are handled on the else branch. However, the else branch
was not tested because no special characters were used in the regression tests.
It turned out that the patch was incorrect because lines 170 and 171 are dead
code; the quote character always satisfies the if condition on line 165 causing
it to be always treated as a regular character. Another piece of dead code was
handling the carriage return character, which cannot exist in the input because
the request parsing code strips these caracters when breaking the request into
lines.

Our tool covered all code accessible in the test server configuration, by gener-
ating appropriate HTTP requests. The rest of the code could have been reached
by allowing our technique to change the server configuration file.

Revision 2747

Revision 2747 optimizes the accesslog module by introducing output buffering;
instead of writing characters one by one, they are accumulated in an internal
buffer and flushed when one of two events are encountered: a control character
is logged or the end of the input is reached. Figure 5 shows the relevant code.
As in the previous case, none of the regression tests contains control characters
in the logged fields and the code associated with this event is never executed.
Our tool successfully synthesizes the inputs needed to cover this code.

6 Related Work

Our technique fits within the paradigms of longitudinal and differential program
analysis [22, 28], in which the testing effort is directed toward the parts of a
program that have changed from one version to the next, i.e. software patches.
In particular, differential symbolic execution [23] introduces a general framework
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167 for (ptr = start = str−>ptr, end = str−>ptr + str−>used − 1; ptr <
end; ptr++) {

168 if (�ptr >= ’�’ && �ptr <= ’~’) {
169 /� nothing to change, add later as one block �/
170 } else {
171 /� copy previous part �/
172 if (start < ptr) {
173 buffer append string len(dest, start, ptr − start);
174 }
175 start = ptr + 1;
176
177 switch (�ptr) {

Fig. 5. Part of lighttpd revision 2747, which introduces output buffering for the access
log. The patch includes all of the lines shown.

for using symbolic execution to compute the behavioral characterization of a
program change, and discusses several applications, including regression test
generation.

Xu and Rothermel [30] introduced directed test suite augmentation, in which
existing test suites are combined with dynamic symbolic execution to execute
uncovered branches in a patch. Given an uncovered branch si → di and a test
case that reaches si, the technique uses dynamic symbolic execution to try to
generate a test case that executes the branch, and then repeats this process until
no more branches can be covered. The technique depends on the availability of
tests that reach the source node of an uncovered branch and do not constrain
the input to take only the already covered branch, while our approach tries to
actively steer execution toward the patch by combining the greedy exploration
and the informed path regeneration techniques.

eXpress [27] improves on directed test suite augmentation by pruning CFG
branches which provably do not lead to the patch. While eXpress does not depend
on having existing test cases that reach the source node of an uncovered branch
and its algorithm allows it to prune significant parts of the search space, it does
not actively try to steer execution toward the patched code. Statically-directed
test generation [1] addresses this issue by guiding symbolic execution using a
heuristic which includes the static instruction distance to the target and the size
of the target’s backward slice reachable from the current point. This heuristic
roughly corresponds to our greedy exploration stage, but our approach is more
robust due to its path regeneration component.

In addition to dynamic symbolic execution techniques to improve regression
testing, the problem of generating inputs that reach a specific program point
or execution path has been addressed through various other techniques and in
different application scenarios. In the context of answering programmer queries
regarding reachability, Ferguson and Korel [11] employ data dependence analysis
to find test cases that reach a specified statement. They start with an initial
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random guess, and then iteratively refine the guess to discover a path likely to
hit the desired statement. Gupta et al. [14] use a combination of static analysis
and generated test cases to hit a specified path. They define a loss function
consisting of “predicate residuals” which roughly measures by “how much” the
branch conditions for that path were not satisfied and then use a numerical
solver to find test case values that can trigger the given path.

Research on automatic generation of filters based on vulnerability signa-
tures [4, 5, 8, 9] addresses the problem of executing a specific target from a
different angle. Given an existing input which exploits a program vulnerabil-
ity, the goal is to infer the entire class of inputs which have the same behavior.
Similarly, generating inputs with the same effect as a crashing input but which
do not leak sensitive data, is used in bug reporting to preserve user privacy [7].
In the context of automated debugging, execution synthesis [32] and path opti-
mization [16] attempt to solve a similar problem: generating an input or a path
starting from a set of ‘waypoints’ through which execution has to pass.

While orthogonal to our approach, the software engineering community stud-
ied extensively test suite prioritization and selection techniques, e.g. [3,10,18,24].
These techniques are particularly useful for very large projects where running
the entire test suite at each change of the system is infeasible (for example in the
Windows operating system testing infrastructure [26]). Our approach is different
in that it attempts to discover new test inputs but can leverage these techniques
to choose the initial seeds.

Also orthogonal to our work, research on test suite augmentation requirements
has used the differences between two program versions to derive requirements
that test suites have to meet in order to ensure proper patch testing [15, 25].
While we currently only use simple coverage metrics to guide our analysis, it
should be possible to combine our approach with such requirements.

A different approach for covering specific program points is to use genetic algo-
rithms [12,29]. Such algorithms usually encode program paths as binary strings,
each bit representing the outcome of a branch condition evaluation, and then
define a fitness function and crossover and mutation operators operating on this
encoding. While such algorithms proved effective when testing several protocols,
it is unclear whether this approach yields good results on larger systems. The
main concern is that the solution encoding does not naturally lend itself to effec-
tive crossover; in particular, given two paths which get close to the target (high
fitness), alternating branch decisions from the first path with decisions from the
second, does not generally yield a better path. Subsequent experiments [13] di-
rectly comparing genetic algorithms with directed search found that the latter
generally performs better for this problem.

7 Discussion and Future Work

Motivated by the large number of buggy software patches, we have designed a
new technique for patch testing, which successfully synthesized inputs to cover
all accessible patch code in three case studies from the lighttpd web server. We
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defined the code-covering challenge as an optimization problem for which we
employed a novel heuristic based on two complementary components: a greedy
path exploration, and an informed regeneration stage. The key aspect of our
approach is the informed path regeneration stage, a technique that when the
greedy exploration stage gets stuck, can derive a modified path which allows the
greedy search to make progress.

Given the promising results obtained on our lighttpd case study, we plan to
validate the algorithm by applying it to more patches across multiple systems.
For best results, we also intend to remove all limitations discussed in the paper,
in particular the ability to deal with the case when the static distance to the
target must temporarily increase in order to reach the patch code.

Another aspect which we wish to address is automation. While our technique
currently requires the manual specification of a seed input for each basic block in
the patch, it would be desirable to automatically select the most promising input
from the set of regression tests. This would be valuable for large patches, espe-
cially those touching multiple code areas. To this purpose, we envision leveraging
test selection techniques [24]. Furthermore, we plan to improve our prototype by
allowing it to automatically infer the patch location from a diff file.

Finally, we intend to evaluate the effectiveness of our technique in exercising
uncovered program code. While we designed our approach for patch testing, one
can immediately apply it to a standalone system version by considering all code
not covered by the regression tests to be “patch”.
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Software complexity is growing, so is the demand for software verification. Soon,
perhaps within a decade, wide deployment of software verification tools will be
indispensable or even mandatory to ensure software reliability in a large num-
ber of application domains, including but not restricted to safety and security
critical systems. To adequately respond to the demand we need to eliminate
tedious aspects of software verifier development, while providing support for the
accomplishment of creative aspects.

We believe that the next generation of software verifiers will be constructed
from logical specifications designed by quality/verification engineers with exper-
tise in the application domain. Given a specification describing a verification
method, a corresponding software verifier will be obtained by implementing a
frontend that translates software source code into constraints according to the
specification and then coupling the frontend with a highly-tuned general-purpose
constraint solver, thus eliminating the need for algorithmic implementation ef-
forts from the ground up. I will discuss the necessary methodology, solving al-
gorithms, and tools for building verifiers of the future [1, 2].

Joint work with Sergey Grebenshchikov, Nuno Lopes, and Corneliu Popeea.
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Abstract. Modern Model Checking techniques can easily verify advanced prop-
erties in complex software systems. Specifying these models and properties is as
hard as ever, though. I present techniques to extract models from legacy systems—
models that are precise and complete enough to serve as specifications, and which
open the door to modular verification.

Automated validation of software systems has made tremendous progress over the past
decade. But all validation, be it static, dynamic, or manual, depends on a specification to
be validated against. Where shall we get these specifications from? It is easy to specify
that a pointer be not null, that a buffer shall not overflow, or that a number may stay
within a specific range (and it is hard enough to validate such claims!). But if we want
to validate more complex patterns of behavior, we will have to deal with specifying
these patterns first. This is not so much a technical challenge, but a social challenge:
We can easily incorporate our validation knowledge into automatic verifiers, which can
then be used as black boxes even by laymen. But how shall we teach programmers how
to specify behavior—at a time when entire domains like the Web have programming
languages designed by amateurs and programs written by amateurs? Our only luck so
far is that the exploits are written by amateurs as well.

One attempt to improve the situation is to mine models from existing systems—
models that are precise and concise enough that they can serve as specifications for
building, validating, or even synthesizing new systems. This is motivated by two key
observation: First, it is easier to read (and possibly extend) a given specification rather
than develop one from scratch. Second, the past 40 years of programming have encoded
lots of knowledge into existing programs that is in daily usage, and possibly a more
trustworthy source than any specification I can write from scratch.

Specification mining is hard, however. First, we need accurate approaches: Static
approaches suffer from overapproximation: they encode more behavior than is actually
possible. Dynamic approaches suffer from underapproximation, as they can learn only
from a finite number of executions. Second, the language by which we express speci-
fications needs to be general, such that it can be easily understood, yet specific for the
project at hand, such that we can exploit the abstractions of the domain. Third, there is
an unlimited number of properties one can mine; and we need to find out which of these
are relevant for the functionality—and for the programmer. In this SPIN 2012 invited
keynote, I present some solutions for these challenges and highlight the potential of
model mining, up to a vision of seamless integration of specification and programming.
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Abstract. Since counterexamples generated by model checking tools are
only symptoms of faults in the model, a significant amount of manual
work is required in order to locate the fault that is the root cause for the
presence of counterexamples in the model. In this paper, we propose an
automated method for explaining counterexamples that are symptoms of
the occurrence of deadlocks in concurrent systems. Our method is based
on an analysis of a set of counterexamples that can be generated by a
model checking tool such as SPIN. By comparing the set of counterex-
amples with the set of correct traces that never deadlock, a number of
sequences of actions are extracted that aid the model designer in locating
the cause of the occurrence of a deadlock. We first argue that the obvious
approach to extract such sequences which is by sequential pattern mining
and by contrasting patterns that are typical for the deadlocking coun-
terexample traces but not typical for non-deadlocking traces, fails due
to the inherent complexity of the problem. We then propose to extract
substrings of specific length that only occur in the set of counterexam-
ples for explaining the occurrence of deadlocks. We use a number of case
studies to show the effectiveness of our approach and to compare it with
an alternative approach to the counterexample explanation problem.

Keywords: model checking, deadlocks, counterexample explanation,
anomaly detection, concurrency bugs.

1 Introduction

Model checking is an established technique for the automated analysis of hard-
ware and software systems. A model checker systematically checks whether a
formal model M of the system satisfies a formalized property P [2]. If M con-
tains a fault so that M does not satisfy P , as a symptom of the fault in the
model, the model checker generates a counterexample to the satisfaction of P .
Given that counterexamples are only symptoms of faults in the model, a sig-
nificant amount of manual analysis is required in order to locate a fault that
constitutes a root cause for the presence of the counterexample in the model.
Model designers need to inspect lengthy counterexamples of sometimes up to
thousands of events in order to understand the cause of the violation of P by M .
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Since this manual inspection is time consuming and error prone, an automatic
method for explaining counterexamples that assist model designers in localizing
faults in their models is highly desirable.

In this paper we aim at developing an automated method for explaining coun-
terexamples indicating the occurrence of deadlocks in concurrent systems. Our
method is based on an analysis of a set of counterexamples that can be generated
by a model checking tool such as SPIN [14]. When SPIN explores exhaustively
the state space of a model in order to locate all property violating states, it can
generate a set of counterexamples. We refer to the set of counterexamples that
show how the model violates a property, as the bad dataset. With the aid of
SPIN, it is also possible to produce a set of execution traces that do not violate
the property. We refer to this set of non-violating traces as the good dataset.

By examining the differences in the traces of the good and bad datasets, we
extract a number of sequences of actions that aid the model designer in locating
the cause of the occurrence of a deadlock. Since the extracted sequences of
actions are those that are common in the bad dataset but not common in the
good dataset, we refer to them as anomalies. In fact, examining the differences
between faulty and successful runs is a widely used approach for locating faults
in program codes [26]. Lewis’ theory of causality and counterfactual reasoning
provides justification for this type of fault localization approaches [16].

A widely adopted paradigm for the semantics of concurrent systems is that of
an interleaving, which gives rise to a nondeterministic choice between activities
of the concurrently executing processes [2]. In fact, the interleaving semantics de-
termines in which order the actions of the processes that run concurrently in the
system are executed. System designers tend to think sequentially when designing
the model of a system. In concurrent systems it is therefore highly probable that
they have not foreseen some interleavings that their model encompasses. As a
consequence, one of the main sources of failure in concurrent systems is unfore-
seen interleavings resulting in undesired behavior or unexpected results [2]. The
anomalies produced by our method, which are given in the form of sequences
of actions, can reveal to the model designer unforeseen interleavings that lead
the system to a deadlock state. Deadlocks occur in a concurrent system when
processes wait in a circular, non-preemptive fashion for each other and cannot
make progress [13]. Proving the absence of deadlocks is one of the first sanity
checks undertaken in the analysis of concurrent systems.

Although, in this work we only apply our method on the deadlocking coun-
terexamples, we maintain that it can easily be extended to other types of reach-
ability properties [2]. Our method is not complete which means that it may not
be able to hint at some causes for the occurrence of a deadlock. It can mainly
explain an occurrence of a deadlock which is due to an unexpected order of
execution of actions.

Related Work. There are a number of works on automatically explaining coun-
terexamples using different technical approaches and having different objectives.
The work documented in [5] using the notion of causality introduced by Halpern
and Pearl [12] formally defines a set of causes for the failure of a property on
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a given counterexample trace. For the explanation of a counterexample, this
method deals with what values on the counterexample cause it to falsify the
property. In [22] Wang et al. focus on explaining the class of assertion violation
failures. Their method uses an efficient weakest precondition algorithm which
is executed on a single concrete counterexample in order to extract a mini-
mal set of contradicting word-level predicates. Groce et al. [10] developed a tool
called explain, which extends the CBMC model checker [15], for assisting users
in understanding and isolating errors in ANSI C programs based on Lewis’ coun-
terfactual causality reasoning. Given a counterexample, explain finds the most
similar successful execution based on a distance metric on execution traces. The
differences (Δ s) between the most successful execution and the counterexample,
after being refined by a slicing step, is given to the programmer as an explana-
tion. The distance between executions a and b is measured based on the number
of the variables to which a and b assign different values. In contrast to the three
methods cited above, our counterexample analysis method does not consider
any values that are assigned to variables, instead only the order of execution of
actions inside execution traces are taken into account. Therefore, we are able to
give explanations to counterexamples in which the violation of a property is due
to a specific order of execution of actions. Moreover, the other methods are based
on an analysis of one single counterexample while in our method for extracting
commonalities we use non-singleton sets of counterexamples.

The work by Ball et al. [3] compares a counterexample with a set of similar
correct traces in order to extract single program statements that are only ex-
ecuted in the counterexample. These program statements are reported to the
user as the suspicious parts of the program code that are likely to be the cause
of the violation of the property. In this method, if a counterexample violates
a property at some control location c of the program code, then the execution
traces that reach to c without violating the property are considered as similar
correct traces. The method has been implemented in the context of the SLAM
project in which a software model checker that automatically verifies temporal
safety properties of C programs has been developed [4]. Since this method only
considers single program statements, it cannot express counterexamples in which
the violation of a property is due to a specific order of execution of actions. The
criteria they use for finding similar correct traces are similar to those used by
the method in [11]. In fact, the method in [11] is most closely related to ours, so
we provide a detailed comparison of this method with ours in Sect. 6.

There are a few fault localization techniques based on testing which are anal-
ogous to ours and consider the actual order of execution of the statements in
the program in order to locate the fault in the program code [18] [6]. The work
of [6] had an important influence on our method.

Structure of the Paper. Section 2 presents a detailed example to show how an
unforeseen interleaving can cause a deadlock to occur in the model of a concur-
rent system. Section 3 argues that a sequential pattern mining based approach
for extracting sequences that can explain the occurrence of a deadlock will fail
due to the inherent complexity of the problem. Section 4 describes our proposed
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method based on an extraction of substrings of a specific length that only oc-
cur in the set of counterexamples for explaining the occurrence of deadlocks.
We then present the experimental results in Section 5, followed by a detailed
comparison of our method with the work by Groce and Visser [11] in Section 6.
Finally Section 7 concludes with a note on future work.

2 A Motivating Example

In this section, using an example case study we illustrate how a deadlock can
occur due to the specific order of execution of a set of actions in the model
of a concurrent system. The model we use in this example is taken from the
BEnchmarks for Explicit Model checkers (BEEM) [20]. It is a Real-time Ethernet
protocol named Rether. This protocol is a contention-free token bus protocol for
the data-link layer of the ISO protocol stack. Its purpose is to provide guaranteed
bandwidth, deterministic and periodic network access to multimedia applications
over commodity Ethernet hardware. In order to make the original model taken
from [20] smaller and simpler, we have reduced the values of its parameters as
follows:

N = 2 Number of the nodes
Slots = 3 Number of slots (a bandwidth)
RT slots = 1 Maximum number of slots for real-time transmission

(should be smaller than Slots)
The Promela code of this model consists of three proctypes:

1. The Bandwidth proctype, which manages the access of the nodes to the
real-time transmission. It allocates and frees the real-time transmission slots
upon receiving reserve and release messages from the nodes.

2. The Token proctype, which guarantees deterministic and periodic access to
the bandwidth by handing in a token to the nodes in turn.

3. The Node proctype, which corresponds to a node in the protocol. It com-
municates with the Token and Bandwidth proctypes in order to access the
bandwidth slots. In our example, only two instances of this proctype, which
are named Node 0 and Node 1, are created at run time.

In Fig. 1, the last 32 events of a counterexample with 72 events which shows how
the Rether model goes to a deadlock state are given. The events in this figure are
displayed along with the name of the proctypes to which they belong. The events
are, in fact, Promela statements [14]. The name of the events are separated by a
“.” from the name of the proctype to which they belong.

By manual inspection and using knowledge of the functioning of the model we
can identify a subsequence of 10 events of the counterexample that can explain
the occurrence of the deadlock. These 10 events are highlighted by arrows on
the left hand side of the trace in Fig. 1. In order to understand how this sub-
sequence leads the system into a deadlock state we need to inspect the parts
of the Promela code of the model which include the statements corresponding
to the 10 events identified above. These parts are given in Fig. 2 in which the
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Fig. 1. The last 32 events of a counterexample in the Rether model

statements corresponding to the spotted 10 events are displayed in bold font.
The numbers inside parenthesis in front of these statements show the number
of the corresponding event from Fig. 1. When events 4 and 5 in Fig. 1, which
correspond to line 7 of the Bandwidth and line 20 of the Node 0 proctypes, are
executed, line 8 of the Bandwidth and line 17 of the Node 0 proctypes become
enabled simultaneously. In the trace from Fig. 1, line 17 of the Node 0 proctype,
which corresponds to event 6 in this figure is chosen for execution. Following the
execution of event 30 in Fig. 1, corresponding to line 7 of the Node 0 proctype,
control is transfered to line 10 of this proctype which is an if statement. Lines
11 and 12 of this if statement are enabled simultaneously since line 12 is a goto
statement and the guard of line 11, granted == 0, is true. The value of granted is
set to zero at event 2 in Fig. 1 and remains unchanged up to event 30. As Fig. 1
shows, if line 11, which corresponds to event 31 in this figure, is executed, then
a deadlock will occur.

One interesting characteristic of the identified subsequence in Fig. 1 is that
the 10 events belonging to it do not occur adjacently inside the counterexam-
ple. While the first and the last five events occur next to each other, between
these two groups of events there is a gap of 21 events. This is due to the non-
deterministic scheduling of concurrent events due to the interleaving semantics
implemented in SPIN. As we have seen above, although line 8 of the Bandwidth
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Fig. 2. Parts of the Promela code of the Rether model

proctype was enabled after event 5, due to the non-deterministic execution of
concurrent actions its execution is deferred to step 32. Dashed lines and thick
arrows on the right hand side of the Fig. 1 illustrate the gap between the position
in the trace in which the statement Bandwidth.in RT[i]=0 becomes enabled, and
the position in which it is actually executed.

The identified subsequence in Fig. 1 explaining the deadlock is an example
of an unforeseen interleaving. The presumed intention of the model designer is
that event 5 and 32 be executed in an atomic step, which means they could
not be interleaved with the actions of other proctypes. However, the proctype
was implemented in a faulty way, so that its concurrent execution with other
proctypes allowed the two mentioned events to be executed as a non-atomic
sequence of events, and hence a deadlock occurred.

3 Mining Sequential Patterns for Counterexample
Explanation

As we have seen above, in an interleaved trace of concurrent events, the events
belonging to a sequence which reveals an unforeseen interleaving do not neces-
sarily occur next to each other. To the contrary, they can occur at an arbitrary,
unbounded distance from each other. It therefore seems an obvious choice to use
sequence or sequential pattern mining algorithms [1] [8] in order to devise error
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explaining subsequences of concurrent system executions. However, as we will
argue in this section, this at first sight promising tool fails due to the inherent
complexity of the problem.

3.1 Sequential Pattern Mining

We first define a subsequence relationship amongst sequences.

Definition 1. A sequence η = 〈a0, a1, a2, ..., am〉 is a subsequence of another
sequence ρ = 〈α0, α1, α2, ..., αn〉, which is denoted by η � ρ, if there exist integers
0 ≤ i0 < i1 < i2 < i3... < im ≤ n where a0 = αi0 , a1 = αi1 , ..., am = αim [17].

When applying a sequential pattern mining algorithm we consider a dataset of
sequences, S, and a user defined threshold to decide whether a subsequence is
frequent or not. The support of a sequence α is defined as the number of the
sequences of S that α is a subsequence of:

Definition 2. supports(α) = |{s|s ∈ S ∧ α � s}|.
The sequence α is considered a sequential pattern or a frequent subsequence if
its support is above a user defined threshold: supports(α) ≥ threshold.

By contrasting the sequential patterns of the bad and the good datasets, we
can extract patterns that are only frequent in the bad dataset. These patterns
that are only frequent or common in the bad dataset, reveal anomalies, and
hence can be indicative to the cause of the occurrence of deadlock,

anomalies = sequential patterns of the bad dataset\
sequential patterns of the good dataset

(1)

3.2 Challenges in Applying Sequential Pattern Mining Algorithms

In general, it can be shown that the problem of mining sequential patterns from
a dataset of sequences is NP-hard. The complete proof is given in [24], [25]. The
proof uses the following essential premises and lemmas:

1. In order to show that the sequential pattern mining problem is NP-hard, it
is sufficient to prove that the frequent itemsets mining problem [9], which is
the problem of mining frequent itemsets from a dataset of transactions, is
NP-hard. This is because the latter problem can be reduced to the former
one. In the frequent itemsets mining problem, transactions are sets of items.
An itemset, which is also a set of items, is frequent if the number of the
transactions of which the itemset is a subset is above a user defined threshold.

2. In the frequent itemsets mining problem, the dataset of transactions can
be represented as a bipartite graph G = (U, V,E). U and V , which are the
two distinct vertex sets of G, correspond to the set of items and the set of
transactions, respectively. The edge set E = {(u, v)|u ∈ U and v ∈ V } of G
represents all the (item, transaction) pairs.
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3. The problem of enumerating all maximal frequent itemsets from a dataset
of transactions corresponds to the task of enumerating all maximal bipar-
tite cliques in a bipartite graph. A bipartite clique is a complete bipartite
subgraph of a bipartite graph.

4. Determining the number of maximal bipartite cliques in a bipartite graph is
a #P-complete problem [21]. #P-completeness is used to capture the notion
of the hardest counting problems, just as the concept of NP-completeness
characterizes the hardest decision problems.

The above complexity arguments are based on worst-case complexity consider-
ations [24]. A number of sequential pattern mining algorithms have been devel-
oped that have proven to be efficient in practice with respect to various test
datasets [1], [23], [19]. However, the datasets that these algorithms have been
evaluated on are sparse, with an average sequence length of less than 100. The
densest dataset that an efficient sequential pattern mining algorithm, BIDE, can
mine with a high support threshold of 90% has an average sequence length of
258 [23].

The characteristics of the bad and the good datasets of a number of Promela
modeling case studies of concurrent systems are given in Table 1. In this table,
the first four case studies are taken from [20]. The POTS model was developed
by us as a sample model with numerous deadlock problems. This model is a
non-trivial example of a telephony switch which comprises four concurrently
executing proctypes corresponding to two users and two phone handlers. Each
user in this model talks to a phone handler for making calls. The phone handlers
are communicating with each other in order to switch and route user calls. In
Table 1, the column “#seq.” gives the number of the sequences in the bad and
the good datasets and the columns “avg. seq. len.” and “max seq. len.” represent
average and maximum sequence lengths in these datasets, respectively.

It can be inferred from Table 1 that the bad and the good datasets are highly
dense with the average sequence length of more than 1000. We conclude that
mining sequential patterns from the dataset of counterexamples generated from
typical concurrent system models is intractable due to lengthy sequences and
dense datasets.

Table 1. Dataset characteristics

Model
#seq. avg. seq. len. max seq. len.

bad ds. good ds. bad ds. good ds. bad ds. good ds.

Brp 660 25671 5985 10539 5580 10501

Rether 1061 26249 73263 134629 63201 134629

lann 989 20838 5737 12612 6369 12617

gear 614 10174 1994 4512 3837 4547

POTS 4109 11316 2995 7977 6134 6736
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4 Counterexample Explanation Method

To address the complexity challenges we encountered in mining sequential pat-
terns from the bad and the good datasets, we abandon the feature of arbitrary
distance between the events of a subsequence that we consider to reveal anoma-
lies pointing at the causes for the occurrence of a deadlock. As an approximation
we extract sequences that consist of consecutive events. These sequences are, in
fact, substrings of the execution traces contained in the good and bad datasets.
Even though, as we have seen in the example of Sect. 2, a sequence that explains
how a deadlock occurs is not necessarily the substring of a counterexample, it
may contain portions which actually occur as substrings of a counterexample. In
the example of Sect. 2, the sequences 〈1, 2, 3, 4, 5〉 and 〈27, 28, 29, 30, 31〉, which
are portions of the identified subsequence for explaining the occurrence of a
deadlock, are substrings of the counterexample. As we will explain in this Sec-
tion, by extracting substrings from the counterexamples we can reveal parts of
the sequences that give hints at why a deadlock occurs.

The basis of our method is that we extract the common substrings of length l
from the bad dataset and contrast them with those of the good dataset in order
to reveal anomalies that explain the occurrence of deadlocks,

anomalies = substrings of length l of the bad dataset\
substrings of length l of the good dataset

(2)

The length of the substrings, l, which is the parameter of the method, can take
various values. Since substrings of length l can be extracted from a sequence
of length n in O(n) time, we avoid scalability problems. As we will see when
presenting the experimental evaluation, the small value of l = 2 is adequate for
explaining counterexamples using a fairly large set of case studies. To further
justify this point, consider how a relatively short substring of length two can be
indicative for the cause of a deadlock occurrence. In Fig. 3, the counterexample
of Fig. 1 is given along with a non-failing trace on the right hand side. The given
traces in this figure only differ in the last two events. The events above the
horizontal black line are the same both in the counterexample and in the non-
failing trace, and only the two events below the line are different. Therefore, the
small substring 〈30, 31〉 only occurs in the counterexample. Although 〈30, 31〉
is only a small part of the spotted sequence which explains the occurrence of
deadlock, 〈1, 2, 3, 4, 5, 27, 28, 29, 30, 31〉, it can greatly help the model designer
by using the knowledge about the functioning of the model to identify the other
eight events of this anomalous subsequence in the counterexample. In particular,
the substring 〈30, 31〉 shows that the variables Node 0.rt and Node 0.granted
have the values 1 and 0, respectively. The statements which affect the values of
these two variables, can be easily found in the counterexample. The value of the
variable Node 0.granted becomes 0 at step 2 and remains unchanged until the
end of the trace. The value 1 of the variable Node 0.rt is due to the value 1 of
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Fig. 3. Part of a counterexample on the left, its corresponding part from a good trace
on the right

the variable in RT[0] while the value of this variable should be changed to 0 at
the same step that the variable Node 0.granted gets the value 0.

Mainly based on what we have seen above, we assume that the substrings that
only occur in the bad dataset, such as 〈30, 31〉 in the above example, can aid
the model designer to find the cause of the deadlock occurrence. The following
subsections describe in detail the steps of our method.

4.1 Generation of the Good and the Bad Datasets

For generating the good and the bad datasets, we use the explicit state SPIN
model checking tool [14]. The default search algorithm that SPIN uses for the
exhaustive exploration of the state space is depth first search. When SPIN lo-
cates the first violating state, it stops the search and reports the path from the
initial state to the violating state as a counterexample. The presence of one
counterexample is sufficient to show that the model does not comply with the
specification.

There is also an option in SPIN to not stop the search after locating the first
violating state [14]. With this option, SPIN continues the search up to a given
depth limit or until all states have been reached in order to locate all property
violating states. Our current strategy for generating the bad dataset is to use
this option of SPIN in order to explore the complete state space of the model
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and to detect all the violating states and their corresponding counterexamples.
Since the default depth limit in SPIN is 10,000, we increase the depth limit until
we can be certain that the complete state space has been explored. Since DFS is
used by SPIN for exploring the state space, each violating state is visited once
and so only one counterexample per violating state is generated.

Since the bad dataset contains the traces that violate some φ, the good dataset
should include the traces that satisfy φ. Such traces can be generated by produc-
ing counterexamples to ¬φ because a counterexample that shows the violation
of the negation of a property actually satisfies that property. This is justified by
the following lemma:

Lemma 1. For an execution π, if π satisfies ϕ, which is denoted as π |= ϕ, then
it holds that π |= ϕ⇔ π �|= ¬ϕ [2].

Since the reachability property we consider in this paper is deadlock-freedom,
we need to find a way to formalize the negation of that property in SPIN.
Notice that while the absence of deadlock is a safety property, its negation, which
claims the presence of deadlocks, is a liveness property. As a consequence, the
counterexamples to the presence of deadlocks are lasso-shaped infinite traces [14].

We specify the presence of deadlock property in Promela, the modelling lan-
guage of the SPIN model checker, by using a special state predicate named
timeout. It becomes true when the system blocks, i. e., when no statement in
the model is executed. We then specify the presence of deadlock property as
always eventually there will be a deadlock, which can be expressed as requiring
that always eventually the timeout predicate will become true. SPIN tries to
generate a counterexample for this property. The resultant counterexample will
be a lasso-shaped infinite trace that never deadlocks. For the generation of the
good dataset we also use the SPIN option to not stop the search after generating
the first counterexample for this property.

4.2 Contrasting Sequence Sets

Substrings of length l can be extracted from an execution trace by sliding a
window of size l over it. Fig. 4 shows the nine possible substrings of length two
that can be extracted from a trace of length 10 by sliding a window of size two
over it. This set of substrings of length two, in fact, shows which two events
occur next to each other in an execution trace.

Definition 3. Sequence sets can be formally defined as follows: Let
execution(S) = 〈α1, ..., αn〉, if the window is l actions wide, the set P (S, l)
of observed windows are the substrings of length l of S:
P (S, l) = {w|w is a substring of S ∧ |w| = l} [6].

As an example, consider S = 〈abcabcdc〉 and a window of size l = 2 slid over
S. The resulting set of sequences of length two, P(S,2), will be: P (S, 2) =
{ab, bc, ca, cd, dc} [6].
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Fig. 4. Original trace with nine extracted short sequences of length two

The two following formulas define how to extract common substrings of length
l from the bad and good datasets, respectively.

seq sets(bad, l) =
⋃

1≤i≤n

{Pi(Si, l)|Si ∈ bad, n = |bad|} (3)

seq sets(good, l) =
⋃

1≤i≤m

{Pi(Si, l)|Si ∈ good,m = |good|} (4)

The result set of the method, which is the set of substrings of length l that only
occur in the bad dataset, is generated as follows:

anomalies = seq sets(bad, l)− seq sets(good, l) (5)

The length of the short substrings, l, is the only parameter in computing the
result set. We shall discuss the impact of choosing different values for l in the
experimental results section.

After generating anomalies by using (5), we take the following steps to facili-
tate the interpretation of the resulting anomalies for the user.

1. Since each substring can occur in multiple counterexamples, we extract for
each substring the counterexample in which it occurs earlier than in other
counterexamples. Each substring is only a portion of a sequence that explains
the occurrence of a deadlock, so the model designer needs to identify other
events of that anomalous sequence in the counterexample in order to under-
stand how a deadlock occurs and consequently to localize the faulty part of
the model. Intuitively, we assume that the substrings that occur earlier are
closer to the beginning of such anomalous sequences in the counterexamples,
and hence the user needs to inspect less events in order to identify them.

2. We rank the substrings based on their location in the extracted counterex-
amples in the previous step. Those that occur earlier in a counterexample
will be ranked higher. It will be easier for the user to locate the sequence that



36 S. Leue and M. Tabaei

explains the occurrence of a deadlock in counterexamples that are ranked
higher than in those ranked lower.

3. Since multiple substrings can occur in a counterexample extracted in step
one, for each counterexample we also list all the substrings that occur in it.

The output of the method will be a ranked list of tuples of the form 〈{ssi|0 ≤ i
≤ max}, ce〉 in which ssi is a set of substrings generated by (5), max is the
number of the substrings generated by (5) and ce is a counterexample containing
the ssis.

Like all other debugging activities in which a check, analyze, fix loop is iterated
until all the bugs are fixed, our method should also be used as an iterative
process.

Evaluation Score. To evaluate the quality of the outputs generated by our
method we propose a quantitative measure that enables us to compare different
outputs. We define a score based on the amount of the effort that is required for
locating a sequence that explains a deadlock occurrence in a counterexample by
using the output of our method. Since these sequences directly allow the user to
identify the faulty part of the model, as we assumed above, the computed score
also reflects the amount of manual effort required for locating the faulty part of
the model.

The output of our method consists of a number of substrings, so we first define
a score for individual substrings. The score of the output will then be the score
of the substring which is ranked first in the output. The score of a substring is
defined based on the distance in terms of the number of the events between the
location of the substring in a counterexample and the first event of a sequence
that explains the occurrence of a deadlock in the same counterexample. This
number, in fact, represents the maximum number of events that the user needs
to inspect in the counterexample in order to find a sequence that explains the
occurrence of a deadlock. Referring to the example of Sect. 2, the identification of
such deadlock explaining sequences and their beginnings in the counterexamples
is done manually by the user. Therefore, the score of a substring depends on
the manually determined beginning of the deadlock explaining sequence. We
normalize this distance with respect to the counterexample length.

The following formulas define how a score is computed for an output of the
method. In these formulas, explanatory sequence refers to a manually deter-
mined sequence that explains the occurrence of a deadlock. If Locce(substring)
and Locce(explanatory sequence) represent the location of a substring and the
location of the start event of an explanatory sequence in a counterexample, re-
spectively, and |counterexample| shows the length of the counterexample, the
score of a substring will be:

distance = Locce(substring)− Locce(explanatory sequence)

scoresubstring = 1− distance

|counterexample| (6)
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For the substring 〈30, 31〉 in the example of Sect. 2, the score will be 30
72 , where 30

is the number of the events between the location of 〈30, 31〉 and the start of the
spotted sequence in the counterexample, and 72 is the length of the counterex-
ample. If substring1 shows the first ranked substring in the output, we define
the score of the output as:

scoreoutput = scoresubstring1
(7)

5 Experimental Results

In this section, we present a number of experiments in which we apply our
counterexample explanation method to the Promela models of a number of con-
current systems which we took from [20]. The experiments were performed on a
2.67 GHz PC with 8 GB RAM and Windows 7 64-bit operating system. In fact,
the experimental results illustrate how the outputs of our method can aid the
user to identify the sequences of events in the counterexamples that explain the
occurrence of a deadlock. We assume that the identified sequences directly allow
the user to identify the faulty part of the model. This assumption is true for all
case studies that we used as well as for the example presented in Sect. 2.

In Table 2, the results of applying our method to six case studies when l = 2
are given along with the corresponding scores. The name of the corresponding
Promela file is given inside parentheses in front of the name of the model. The
average running time of the method for these case studies is 52.44 sec. In this
table, the last column shows the number of the root causes that can be detected
by the model designer with the aid of the generated substrings of length two.
As the numbers in this column show, with this method it is possible to detect
multiple causes for the occurrence of deadlocks at the same time. Referring to the
method of the generation of the bad dataset in Sect. 4.1, the counterexamples in
the bad dataset may represent different causes for the occurrence of a deadlock.
Therefore, the substrings generated by our method may hint at several causes
for the occurrence of a deadlock. For example, as Table 2 shows for the Brp
model, the model designer with the aid of the extracted 6 substrings can detect
3 different causes for the occurrence of a deadlock. It is, in fact, up to the user
to realize whether the extracted substrings refer to the same fault or multiple
faults.

Table 2. Summary of the results of the method

Model #l = 2 substrings Score #causes

Brp(brp.3.pm) 6 1 3

Modified Brp 6 1 2

Rether(rether.4.pm) 24 0.27 15

lann(lann.1.pm) 8 0.97 2

gear(gear.1.pm) 21 0.66 14

train-gate(train-gate.1.pm) 27 0.78 9
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By increasing the value of parameter l, the number of the generated substrings
will also be increased. Consequently, the model designer needs more effort for
examining them. In Table 3, the numbers of the generated substrings for l = 2
and l = 3 for five case studies are given in the columns “#substrings l = 2”
and “#substrings l = 3”, respectively. The last column in this table shows the
percentage of increase in the number of the generated substrings. We can see
in this table that for the last three case studies, the number of the generated
substrings of length three is significantly larger than those with length two.
Therefore, the substrings of length three increase the amount of manual effort
required for inspecting them. From Table 3 we can infer that substrings of length
two impose less inspection effort on the model designer when analyzing the
counterexamples. As a consequence, the generation of substrings of length three
is only done when no substrings of length two can be generated by (5).

Table 3. Comparison of the number of the substrings with l = 2 and l = 3

Model
#substrings

rel. increase
l = 2 l = 3

Brp(brp.3.pm) 6 6 %0

Rether(rether.4.pm) 24 24 %0

lann(lann.1.pm) 8 29 %262.5

gear(gear.1.pm) 21 35 %66

train-gate(train-gate.1.pm) 29 62 %113.8

In Table 2, the Brp model has the highest score of 1 which means that the
first ranked substring in the output coincides with the start of a sequence that
explains a deadlock occurrence. Notice that we use the proposed method as part
of an iterative debugging process. After each run of the method, aided by the
generated substrings, the user will try to remove as many causes of deadlock as
possible. In case the model still contains a deadlock after being modified, the user
will apply the method again. This procedure can be iterated until all deadlocks
in the model have been removed. As an example, after the first iteration on the
Brp model the total number of counterexamples was reduced from 660 to 182
due to the removal of the root cause of some deadlock. The results achieved by
applying the method to the modified version of the Brp model in the second
iteration are given in the second row of Table 2.

6 Comparison with the Work by Groce and Visser

The most closely related work to ours is that of Groce and Visser [11]. It ex-
tends Java PathFinder with error explanation facilities. Given a counterexam-
ple, their method generates a set of negatives, which are multiple variations of
that counterexample in which the error occurs, and a set of positives, which are
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variations in which the error does not occur. They analyze the common features
of each set and the differences between the sets in order to provide an explanation
for the counterexample. The focus of their work is on finite counterexamples
demonstrating the violation of safety properties such as assertion violation and
deadlock.

To compare our work with theirs, we implemented the algorithm proposed
in [11] for the generation of a set of positives for a given counterexample inside the
Spinja [7] toolset. The main problem we encountered in applying this algorithm
to our case studies was that we could not always generate a non-empty set of
positives. This occurred, for instance, in our experiments with the Brp model.
Notice that the potential emptiness of the positive set is also mentioned as a
potential difficulty in practice in [11]. In our method, on the other hand, we
consider the complete set of good traces that can be generated with the aid of
SPIN, and hence we cannot encounter the problem of an empty positive set for
any case study that does at all reveal a “good” behavior.

The work in [11] proposes three different analyses for explaining counterexam-
ples, namely transition analysis, invariant analysis and minimal transformation
analysis between negatives and positives. Among these three analyses, only the
third one, which takes the order of execution of actions into account, is similar
to our method and can be used for revealing concurrency problems such as un-
foreseen interleavings. In this analysis, the authors of [11] compare a negative
and a positive in order to determine the divergent sections of what they refer
to as a state-action path. These divergent sections along with the associated
positive and negative form a transformation. In Fig. 5, a negative with 64 events
along with a positive with 473 events derived for the Rether case study [20], are
given. Due to space limitations, only the first 20 events and the last 15 events
of these traces are shown in this figure. The first 19 events are identical both
in the positive and in the negative, thus the divergent sections start from event
20 in both traces. These divergent sections last until the end of the positive
and the negative since they do not share a common portion at the end of their
traces. Therefore, the transformation generated by [11] will consist of two traces
with 45 and 454 events. However, in our method two substrings of length two,
〈369.9, 375.9〉 and 〈375.9, 9.0〉, as well as the negative itself with 64 events are
given to the model designer for further analysis. We conclude that while with
the transformation analysis of [11] the model designer needs to inspect traces of
45 and 454 events, in our method the model designer needs to inspect at most 48
events in order to understand how a deadlock occurs. 48 is, in fact, the number
of events between the location of 〈369.9, 375.9〉 and the event “2.1” which is the
beginning of the sequence that explains the occurrence of the deadlock in the
trace. These two locations in the trace are 62 and 15, respectively, and in Fig. 5
they are connected by arrows and straight lines. In conclusion, our method ap-
pears, at least for the case study we considered here, to require less effort on
behalf of the model designer in order to understand the reason for the occurrence
of a deadlock than the equivalent analysis according to the work in [11].
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Fig. 5. A negative and a positive in the Rether case study

7 Conclusion

We have presented an automated method for the explanation of model check-
ing counterexamples demonstrating the occurrence of deadlocks in concurrent
system models. In particular, we have focussed on deadlock detection using the
SPIN model checker. By comparing a set of counterexamples with a set of cor-
rect traces that never deadlock, we extract a number of ordered sequences of
actions that prove to point to the root cause of the deadlock occurrence in the
model. Experimental results showed the effectiveness of our method and dis-
cussed measures to reduce the effort of the model designer when localizing the
root cause for the occurrence of a deadlock in the model. We also compared
our work extensively to related work, in particular the approach by Groce and
Visser.

In future work we plan to reduce the computational effort that our method
entails by generating subsets of good and bad traces based on some similarity
measure. We also plan to extend our method to safety properties other than
deadlock.



Counterexample Explanation by Anomaly Detection 41

Finally, we plan to investigate how to apply the proposed method to large
models where a complete state space exploration is impossible.
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Abstract. The sweep-line method is an explicit-state model checking
technique that uses a notion of progress to delete states from internal
memory during state space exploration and thereby reduce peak mem-
ory usage. The sweep-line algorithm relies on the use of a priority queue
where the progress value assigned to a state determines the priority of the
state. In earlier implementations of the sweep-line method the progress
priority queue is kept in internal memory together with the current layer
of states being explored. In this paper we investigate a scheme where
the current layer is stored in internal memory while the priority queue
is stored in external memory. From the perspective of the sweep-line
method, we show that this combination can yield a significant reduction
in peak memory usage compared to a pure internal memory implemen-
tation. On an average of 60 example instances, this combination reduced
peak memory usage by a factor of 25 at the cost of an increase in exe-
cution time by a factor of 2.5. From the perspective of external memory
state space exploration, we demonstrate experimentally that the state
deletion performed by the sweep-line method may reduce the I/O over-
head induced by duplicate detection compared to a pure external memory
state space exploration method.

Keywords: Algorithms and storage methods for explicit-state model
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1 Introduction

A large collection of explicit state space-based methods for software verification
has been developed relying on various paradigms to make the approach feasible
in presence of the inherent state explosion problem. Of particular relevance in
the context of this paper are methods that delete states from internal memory
to free storage resources during state space exploration, and methods that use
external memory to increase the storage resources available.
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Deleting states from memory during state space exploration to free storage
resources is the paradigm underlying state caching [20], the to-store-or-not-store
method [6], and the sweep-line method [9]. The basic idea of the sweep-line
method is to exploit a notion of progress exhibited by many systems. Exploiting
progress makes it possible to explore all reachable states while storing only small
fragments of the state space in internal memory at a time. This means that the
peak memory usage is reduced. Progress in a system can originate from, e.g.,
phases in a transaction protocol, sequence numbers, control flow, and retrans-
mission counters. The foundation of the sweep-line method has been developed
in several papers [9,17,23] and the method has been implemented in the ASAP
verification platform [30] and the LoLA tool [27]. The sweep-line method has
been applied for the software verification, in particular in the domain of pro-
tocols [18,19,21,28]. Algorithms based on directed model checking [12] are also
related to the sweep-line method in that a value is associated with each state to
determine the search order. In the case of directed model checking, this value is
used to obtain a heuristic for how close a state is to goal (error) state.

Increasing the resources available for storing the set of visited states is the
paradigm underlying external memory model checking algorithms. Checking
whether a newly encountered state has already been explored (i.e., perform-
ing duplicate detection) then ultimately involves costly I/O operations. Most
external memory algorithms are based on the idea of delayed duplicate detec-
tion: duplicate detections are not interleaved with state explorations but instead
grouped together to reduce I/O overhead. From an I/O perspective this replaces
multiple “random” accesses by a single file scan. Breadth-first search [10] is a
typical exploration algorithm that can be efficiently coupled with that strategy.
Another approach to reducing the I/O overhead of duplicate detection is to use
partitioning [3] and store the set of currently visited states (and unprocessed
states) in a set of files (e.g., one file for each partition). A single partition is then
loaded into memory at a time. When no more processing is possible for the cur-
rently loaded partition, it is moved to external-memory and another partition is
loaded into memory for processing. Both the breadth-first and partitioning ap-
proaches will be compared to our new algorithm in this paper. We discuss further
the relationship to external-memory directed model checking when presenting
the implementation of the new sweep-line algorithm.

The primary contribution of this paper is the idea of combining the sweep-line
method with the use of external memory, and to conduct an extensive experi-
mental evaluation based on an implementation in the ASAP platform [30]. Our
experimental results show that our approach can be viewed as both an improve-
ment of the sweep-line method (reducing peak memory usage) and of external
memory algorithms (reducing I/O overhead). A secondary contribution is the
identification and experimental evaluation of an external memory priority queue
[7] in the context of explicit state model checking. Our algorithm can also be
viewed as a state space partitioning algorithm that uses the progress notion
of the sweep-line method to partition the state space, but this partitioning is
used internally in the external memory priority queue in contrast to the explicit
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partitioning approach of [3]. We thus do not have to deal with it explicitly in
contrast to other external memory model checking algorithms.

Outline. In Sect. 2, we introduce the required background on the sweep-line
method and external memory algorithms, and we present some initial experi-
mental results that made us pursue the combination of the sweep-line method
with the use of an external memory priority queue. In Sect. 3 we present the
sweep-line algorithm that uses external memory, the data structure used to re-
alise the priority queue in external memory, and we give a theoretical analysis
of the I/O complexity of the algorithm. Section 4 presents the results from the
experimental evaluation of our algorithm. Finally, in Sect. 5, we sum up the
conclusions and discuss future work. The reader is assumed to be familiar with
the basic ideas of explicit state space exploration methods.

2 The Sweep-Line Method and Motivation

For the presentation, we assume a universe of system states S, an initial state
s0 ∈ S, and a successor function succ : S → 2S . We want to explore the state
space implied by these parameters, i.e., the triple (R,E, s0) such that R ⊆ S is
the set of reachable states and E ⊆ R×R is the set of edges defined by:

R = {s0} ∪ { s ∈ S | ∃s1, . . . , sn ∈ S with s = sn ∧
∀i ∈ {0, . . . , n− 1} : si+1 ∈ succ(si)}

E = {(s, s′) ∈ R×R | s′ ∈ succ(s)}
The progress exploited by the sweep-line method is formalised by providing a
progress measure as defined below.

Definition 1 (Progress Measure). A progress measure is a tuple P =
(O,�, ψ) such that O is a set of progress values, � is a total order on O, and
ψ : S → O is a progress mapping. P is monotonic if ∀(s, s′) ∈ E : ψ(s) �
ψ(s′). Otherwise, P is non-monotonic ��

A progress mapping implies a partition of edges upon progress edges marking a
system step that increase the progress value (i.e., edges (s, s′) with ψ(s) � ψ(s′));
stationary edges connecting states having the same progress value; and regress
edges that decrease the progress value (i.e., edges (s, s′) with ψ(s′) � ψ(s)).

The progress measure used by the sweep-line method can either be obtained
based on a structural analysis of the model or it can be provided by the
user/analyst based on knowledge about the modelled system. It is important
to note that the sweep-line method can use any mapping from states to progress
values. In particular, there is no proof obligation associated with a provided
progress measure for the sweep-line method to work.

The operation of the sweep-line method is illustrated in Fig. 1 which depicts a
generic snapshot during state space exploration. The progress mapping partitions
the state space into layers where all states in a given layer shares the same
progress values. State space exploration starts from the initial state s0 and states
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Fig. 1. Snapshot illustrating basic principle of sweep-line state space exploration

are processed (i.e., successor states calculated) in a least-progress first-order using
a priority queue to store states that are still to be processed. At any given
moment, the state space being explored is divided into three regions: past layers
(where all states have been processed), current layer , and future layers . The
heuristic assumption underlying the sweep-line method is that the system makes
progress which means that no states in future layers have edges going back to
states in the current or past layers. This means that once all states in the current
layer n have been processed, then these can be deleted from memory, and the
states in layer n+ 1 can now be processed. This heuristic assumption is indeed
valid if the progress measure used is monotonic (which can be checked on-the-fly
during the state space exploration). If the progress measure is non-monotonic,
i.e., there exists regress edges leading from a state s to a state s′ such that the
progress value of s is larger than the progress value of s′, then the sweep-line
method marks s′ as persistent which means that it can never be deleted again.
The sweep-line method then uses multiple explorations (called sweeps) of the
state space where new persistent states added in the current sweep are used as
roots in the subsequent sweep. In case of non-monotonic progress measures, the
sweep-line method may therefore explore parts of the state space multiple times.
As proved in [23], complete state space coverage and termination is guaranteed.

Peak memory usage is reduced with the sweep-line method compared to con-
ventional state space exploration due to the fact that states in past layers are
not stored in memory. The actual peak experienced with the use of the sweep-
line method is influenced by the number of states in each layer, the number of
states generated in future layers, and the number of persistent states. A heuris-
tic for getting a low peak memory usage is to keep the layers small and also
ensure locality so that not too many states are pushed into future layers as these
also need to be stored in memory. The initial hypothesis underlying the work
presented in this paper was that in many cases the individual layers contains
few states, but a substantial number of the states stored in memory are states
in future layers that will not be processed until much later in the state space
exploration. It would therefore be potentially useful to store the states in future
layers in external memory instead of internal memory.
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Fig. 2. Measuring memory usage of the sweep-line algorithm

As an initial investigation of this hypothesis, we report below on some statis-
tics we collected using the ASAP [30] verification tool. We ran the sweep-line
algorithm on a number of models from the BEEM database [25] and recorded
for each run:

– Mc+p+f — The peak memory usage during the state space exploration1.
– Mc+p — The peak memory usage when not counting states in future layers.
– Mc — The peak memory usage when not counting states in future layers

and persistent states in past layers.

Hence, Mc+p is insensitive to the quantity of states in future layers while Mc

is also insensitive to the quantity of persistent states found so far. Obviously it
holds that Mc+p+f > Mc+p > Mc.

We have plotted in Fig. 2, the values Mc+p and Mc for a number of models.
Both values are expressed relatively to Mc+p+f which is given a value of 1.
For instance, for model pgm protocol.8, we have Mc+p ≈ Mc ≈ 0.11 ·Mc+p+f .
Table 1 also gives, for each of these models, the proportion of regress (Reg.),
forward (Fwd.) and stationary (Sta.) edges. Figure 2 shows that there is indeed
some room for improvement. For example, the state space of model needham.4
has 6, 525, 019 states. The progress measure used is very successful in clustering
the state space as attested by the fact that the largest layer only contains 420
states. However, the peak memory usage of the algorithm still reaches 1, 339, 178
states and since the state space does not have any regress edges, this means that
a huge proportion of states memorised by the algorithm are states belonging to

1 Throughout this paper, we use as a memory usage measure the number of states
present in memory at a given step rather than actual memory sizes. This is due to
implementation issues that prevent us from easily measuring memory usage during a
run. Moreover, this measure has the advantage of being implementation independent.
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Table 1. Edge distribution for the models of Fig 2

Model Edges
Reg. Fwd. Sta.

bopdp.3 0.0 % 27.6 % 72.4 %
brp.3 3.3 % 38.6 % 58.1 %

cambridge.6 3.5 % 39.8 % 56.7 %
extinction.4 0.0 % 22.5 % 77.5 %
firewire link.7 0.0 % 13.4 % 86.6 %
iprotocol.4 0.0 % 2.4 % 97.6 %
lann.5 2.0 % 17.3 % 80.7 %

lamport.5 2.9 % 19.4 % 77.6 %
leader election.5 0.0 % 29.9 % 70.1 %

Model Edges
Reg. Fwd. Sta.

leader filters.5 0.0 % 9.1 % 90.9 %
lifts.7 0.5 % 2.4 % 97.1 %
lup.4 17.3 % 82.7 % 0.0 %
mcs.6 0.0 % 40.2 % 59.8 %

needham.4 0.0 % 30.5 % 69.5 %
peterson.4 1.8 % 46.7 % 51.5 %

pgm protocol.8 0.0 % 27.9 % 72.1 %
rether.6 5.5 % 47.4 % 47.1 %
synapse.6 14.7 % 60.7 % 24.6 %

future layers that will not be processed immediately. Moreover, the distribution
of edges indicates that even in the extreme case where we only keep in memory
the states of the current layer (i.e., with a peak memory usage of 420 states),
only 30.5% of the edges will generate an I/O since 69.5% of edges connects states
within the same layer and that should be simultaneously present in memory.
Note that this distribution is somehow surprising since we would expect from
the small layer sizes to instead have a large majority of forward edges.

The initial investigations reported above indicated that states stored in fu-
ture layers can be a main determining factor in terms of peak memory usage
and that storing future layers instead in external memory would be beneficial
(Fig. 2). Furthermore, compared to a pure external memory state space explo-
ration algorithm, the deletion of states in the past layers would potentially be
able to reduce the I/O overhead as there would be fewer states for which dupli-
cate detection needs to be performed (Table 1). The latter is certainly the case
when the progress measure is monotonic, and in case of non-monotonic progress
measure the I/O overhead may be reduced in cases where there are not too many
states being re-explored.

3 Using an External Memory Priority Queue

We introduce in this section a new algorithm that combines the sweep-line
method with the use of external memory. Details are also given on the external
priority queue data structure we use, as this represents a central component of
our algorithm. Moreover, the description of this data structure is required to
have a better insight on the I/O complexity of our algorithm which is examined
in the last part of this section.

3.1 Description of the Algorithm

Algorithm 1 presents a sweep-line algorithm that uses an external priority queue
Q to store future layers and persistent states. The algorithm maintains the fol-
lowing data structures:
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– The disk files AP , P , and NP contain, respectively, the set of All Persistent
states found so far; the set of Persistent states discovered by the current
sweep; and the set of New Persistent states obtained by as the difference of
the two first ones.

– An internal memory hash table H contains, during a sweep, states of the
currently processed layer and a set U ⊆ H contains states to be processed
by the algorithm. Both are present in internal memory.

– An external memory priority queue Q stores, during a sweep, states in future
layers. This structure also has some internal memory part as described later
in this section.

The main procedure alternates between sweeps exploring the state space and de-
tection of new persistent states. A sweep may indeed find new persistent states
through the exploration of regress edges and the purpose of procedure detect-
NewPersistent is to determine whether these are actually new or have already
been found during previous sweep(s). This set of new persistent states, NP , is
computed by removing all persistent states found during previous sweeps (AP)
from the set of persistent states discovered during the last sweep (P). It is then
inserted into AP and all its elements put in the priority queue Q to serve as root
states during the next sweep. The difference of the two sets can be efficiently
implemented by first loading P into H, and then reading states from AP one by
one to remove them from the table. If P is too large to fit in memory an alterna-
tive is to first sort the states in P which can be done efficiently in O(N · log2N)
I/O operations [1] and then merge the two files.

An iteration of procedure sweep first loads in an internal memory hash table
H all states of Q sharing the same minimal progress value. These states are also
added to U to be processed by procedure expandLayer. Once this procedure has
finished, sweep can terminate if the priority queue has been emptied or otherwise
move to the next layer. Procedure expandLayer works as a basic exploration
algorithm operating on a queue of unprocessed states U and storing visited in
an hash table H. The only difference is that when a state s′ has a different
progress value than the one of the state s it is generated from, s′ is put in the
priority queue Q if it belongs to a future layer or in the set of persistent set P
if it belongs to a past layer.

3.2 External Priority Queue Data Structure

A priority queue is a data structure that must support two operations: an insert
operation; and a deleteMin operation that removes and returns from a queue the
smallest state (i.e., with the smallest progress measure in our case). We use an
external-memory data structure called external array heaps [7]. Our choice is
mainly motivated by the simplicity of this data structure and the fact that
it achieves a nearly optimal I/O complexity. External-memory directed model
checking also relies on the use of a priority queue, and an external-memory
priority queue designed for this context was presented in [22]. The data structure
of [22] was not considered appropriate for our purposes as it may store all states
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Algorithm 1. A sweep-line algorithm designed for external memory priority queues

1: procedure externalSweep is
2: AP := ∅
3: Q := {s0}
4: while Q �= ∅ do
5: sweep ()
6: detectNewPersistent ()
7: procedure sweep is
8: P := ∅
9: while Q �= ∅ do

10: H := ∅
11: U := ∅
12: φ := minProgress (Q)
13: while φ = minProgress (Q) do
14: s := deleteMin (Q)
15: if s /∈ H then
16: H := H ∪ {s′}
17: U := U ∪ {s′}
18: expandLayer ()

19: procedure detectNewPersistent is
20: NP := P \ AP
21: AP := AP ∪ NP
22: Q := ∅
23: for s ∈ NP do
24: Q := Q ∪ {s}
25: procedure expandLayer is
26: while U �= ∅ do
27: pick and delete s from U
28: for s′ ∈ succ(s) do
29: if ψ(s′) = ψ(s) then
30: if s′ /∈ H then
31: H := H ∪ {s′}
32: U := U ∪ {s′}
33: else if ψ(s′) � ψ(s) then
34: P := P ∪ {s′}
35: else
36: Q := Q ∪ {s′}

with the same heuristic value (i.e., the progress measure in our case) in a single
file. Since the ideal progress measure clusters the state space into many small
progress layers, storing each layer in a single file is not desirable.

The external array heaps structure [7] is a two level data structure with small-
est states being kept in internal memory and others in external memory. Figure 3
is a graphical representation of its organisation. The internal part can be im-
plemented with any data structure that efficiently supports insert, deleteMin
and deleteMax operations. For instance, a balanced binary tree matches these
requirements and we will assume this choice hereafter. The internal memory part
is split in two parts: one balanced tree Tins storing states put in the queue via
the insert operation and one balanced tree Tdel used as a buffer to store the last
states read from external memory and filled in by the deleteMin operation. It is
an invariant property that a state stored in external memory cannot be smaller
than a state stored in internal memory (in Tins or Tdel).

The insert operation puts the new state in Tins. If the size of Tins exceeds
a specified threshold denoted T , we remove the B largest states from this tree
and write them into a new disk file as described below. The deleteMin operation
removes and returns the smallest state kept in internal memory in one of the
two balanced trees Tins or Tdel. If the state is taken from Tdel the deletion can
then trigger disk accesses as described below.

Let us now describe the organisation of the external memory part of this
data structure. It consists of an array of disk files. Each disk file is a sorted list
of states, the smallest state first. This array is organised in levels. Each level
consists of μ disk files: level 0 contains files 0, . . . , μ − 1, level 1 contains files
μ, . . . , 2 ·μ−1 and so on. Following an insert operation, we may have to write B
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Tins = Balanced tree with
new inserted states

Tdel = Balanced tree with
smallest disk states
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Fig. 3. Organisation of the external memory priority queue with μ = 3. Dashed arrows
indicate operations triggered when tree Tins reaches the bound of T states: merging of
the 3 files of level 1 in an available slot of level 2 (op. 1), same operation for level 0
merged into a newly available slot of level 1 (op. 2), and writing of the B largest states
of Tins in the first slot of level 0 (op. 3).

sorted states to a disk file of level 0. If there is no free slot at this level, all files
of level 0 are merged resulting in a new sorted list that is written to a disk file of
level 1. If level 1 is also full, we first have to merge level 1 into a new disk file of
level 2 and so on. Hence, a disk file of level l ≥ 0 always contains at most B · μl

states. The next unprocessed K states (i.e., to be removed from the queue via
the deleteMin operation) of every file are kept in internal memory in the binary
tree Tdel. If, following a deleteMin operation, Tdel does not contain anymore any
state of a specific disk file, the K next states of this file are read and inserted in
Tdel. The correctness of deleteMin stems from the fact that (1) files are sorted
and (2) all the smallest unprocessed states stored in external memory are in Tdel.

The dashed arrow of Fig. 3 describes the operation sequence performed after
a state insertion. If the memory tree become full, i.e., contains T states after the
insertion, the largest B states must be sorted and written in a disk file associated
with a slot of level 0. Since this level is full, we first have to merge its slots in
a slot of level 1, which for the same reason implies to merge the slots of level 1
in the last slot of level 2 which is free (arrow 1). We can then merge level 0 in
the first slot freed by the previous operation (arrow 2) and finally write the B
largest states of Tins in the first slot of level 0 (arrow 3).

This data structure occupies at most T+K ·f states in internal memory where
f is the maximal number of disk files simultaneously in use (T for Tins and K ·f
for Tdel). Although f is theoretically unbounded, it grows logarithmically, hence
it is not a problem in practice.

3.3 I/O complexity

We now examine the I/O complexity of our algorithm.

Theorem 1. Let F be the number of forward edges, P be the number of per-
sistent states computed by Alg. 1 (i.e., set AP) and w be the number of sweeps
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performed by the algorithm (i.e., calls to procedure sweep). Algorithm 1 with the
external priority queue data structure presented in Sect. 3.2 and parametrised
by levels of size μ and an internal memory buffer of size B performs at most
P · (w + 2) + w · F · 2 · logμ

(
F
B + 1

)
state I/Os.

Proof. A persistent state is read and written once in NP . It is then read from
AP during each subsequent call to procedure detectNewPersistent (invoked once
for every sweep). This procedure thus performs at most P · (w + 2) state I/Os.

Since only forward edges generate states put in the priority queue Q, the size
of this structure is bounded by F . The largest level containing disk files is the
smallest integer lm satisfying: μ ·

∑
i∈[0..lm] μ

i · B ≥ F where μi · B denotes the

number of states stored in each disk file of level i. Since
∑

i∈[0..lm] μ
i = μlm+1−1

μ−1 ,

it follows that μ · μ
lm+1−1
μ−1 ≥ F

B and that lm ≥ logμ

(
F
B ·

μ−1
μ + 1

)
− 1. Now let

l = logμ
(
F
B + 1

)
− 1 > lm. The destination state of a forward edge is written

once in a file of level 0 and then due to level merging, it can be moved l times
from any level i ∈ {0, . . . , l − 1} to level i + 1. This implies at most 2 · (l + 1)
I/Os per state. Since each sweep performed by the algorithm can explore all the
F forward edges, it follows that the overall number of state I/Os performed to
maintain the priority queue is bounded by w · F · 2 · logμ

(
F
B + 1

)
. ��

For the sake of comparison, we give in Table 2 the I/O complexity of two other
external memory algorithms: BFSext, the external memory breadth-first search
from [10] and PART, a state space partitioning based algorithm from [3]. Using
BFSext, a state will be written once in external memory when first met, and
then read once during each of the subsequent duplicate detections. Since the
algorithm performs exactly one duplicate detection per BFS level, a state s will
be read at most h times where h is the height of the graph, i.e., the number of
BFS levels.

An important parameter for the I/O complexity of PART is the number of
cross edges implied by the partitioning function mapping states to partitions. A
cross edge is an edge linking to states belonging to different partitions. To give a
better insight of its complexity we recall that the principle of algorithm PART is
to cluster the state space using a partition function and to store each partition in
a single disk file. During the exploration, only one partition is loaded in memory

Table 2. Comparison of I/Os bound of three external memory algorithms

Algorithm Source State I/Os bound

BFSext [10] S · (1 + h)
PART [3] S · (1 + Cmax)
SLext This work P · (w + 2) + w · F · 2 · logμ

(
F
B

+ 1
)

S = states in the graph Cm = max. over all partitions p of cross edges
with a destination in p

F = forward edges P = persistent states computed by Alg. 1
h = height of the graph w = sweeps performed by Alg. 1
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at a time. Any cross edge (s, s′) visited by the algorithm is eventually followed by
the reading of the disk file associated with the partition of s′ to check whether
s′ is a new state or not. With this algorithm, a state will be written once in
external memory when first met and then read again each time the partition
it is stored in is loaded in memory, hence at most Cm times where Cm is the
maximum over all partitions p of cross edges with a destination in p.

In the case of BFSext, the bound given is usually close to the number of I/Os
actually performed while the practical I/O complexity of PART is in general
much smaller than the theoretical bound we give here. The proportion of cross
edges has nevertheless a large impact on its performance. Similarly, the bound of
Algorithm 1 may seem high at first sight since the number of sweeps performed by
the algorithm is bounded by the number of regress edges. However, in practice,
w is usually low, typically less than 10. This is precisely why the sweep-line
method works well in practice for a wide range of models. First because the
progress measure provided usually generates few regress edges. Second because
it is very seldom that a single sweep identifies only one new persistent state which
in turn means that the number of iterations performed is usually not correlated
to the number of regress edges. Moreover, the upper bound we give here does not
take into account caching effects that might further decrease the amount of disk
accesses. This occurs when the destination state s of a forward edge is already
present in Tins when the edge is explored. Then the queue is unchanged.

4 Experimental Evaluation

We have implemented the external memory algorithm introduced in Sect. 3
in the ASAP verification platform [30] and experimented with models of the
BEEM database [25]. We automatically derived a progress measure based on an
off-line analysis of the full state spaces. Our progress measures project the state
vector of the system to a subset of its components. This subset is selected in
an heuristic way: each progress measure generated has a level ranging from 1 to
6 corresponding to a bound on the proportion of regress edges. At level 1 the
progress measure is guaranteed to be monotonic and the proportion increases
with the level to reach 20% at level 6.

We compared our external algorithm (denoted SLext) to the internal memory
sweep-line algorithm of [23] (denoted SL) and to the external memory algorithms
BFSext [10] and PART [3] combined with the dynamic partitioning strategy we
introduced in previous work [15]. For each model, we first ran SL and SLext,
and then BFSext and PART giving them the same memory amount that was
used by SLext. The priority queue of SLext has been parametrised as follows:
μ = 10, T = 20, 000, B = 10, 000 and K = 1, 000. We recall that the memory
usage of the priority queue data structure is bounded by T +K · f where f is
the maximal number of files simultaneously in use. We also experimented with
different comparable (wrt. memory usage) parameter configurations but since
this had few consequences we selected the configuration above.
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The 43 instances we selected all have between 1,000,000 and 50,000,000 states
and each instance has from 1 to 6 progress measures. This selection resulted in
125 pairs (model instance, progress measure) analysed. Out of these 125 pairs
we only kept those for which SLext consumed significantly less memory than SL
(selected to be 5 times less the consumption of SL) and leave out the other pairs.
Keeping instances for which both algorithms consumed a comparable amount of
memory would indeed not be relevant to study the performances of SLext and
may moreover lead to a biased analysis. This second filtering resulted in 60 pairs
of which we picked out a representative set of 16 instances to be presented in
this section. These models are listed in Table 3 together with some experimental
results obtained with algorithm SLext. Peak memory corresponds to the maximal
number of states stored in internal memory during the search (regardless of their
location). Revisit factor is the number of states visited by algorithm SLext relative
to the number of states in the state space (i.e., column States). Columns Visited
gives the number of edges visited by algorithm SLext. It may then be larger than
the number of edges in the state space if the revisit factor is larger than 1.
The last three columns give the distribution of these visited edges upon regress,
forward and stationary edges.

Comparison of Memory Usage and Disk Access. Figure 4 compares SLext

to SL with respect to peak memory usage and to PART with respect to state
I/Os. We deliberately left out data of algorithm BFSext in Fig. 4 (and Fig. 5). As
attested by Table 4, BFSext was not competitive on these models and including
its results in the figures would have reduced their readability. We gave the data

Table 3. Statistics on selected models with experimental results of SLext

Results of SLext

Model States Peak Revisit Edges
memory factor Visited Reg. Fwd. Sta.

bakery.6 11,845,035 30,119 1.305 52,406,033 11.3 % 51.0% 37.6%
bopdp.7 15,236,725 32,244 2.566 100,779,572 1.0 % 37.6% 61.4%
brp.4 12,068,447 43,892 1.122 27,752,570 1.1 % 40.3% 58.6%

cambridge.6 3,354,295 39,392 12.360 106,771,249 3.5 % 39.8% 56.7%
elevator2.3 7,667,712 30,811 1.172 64,737,253 0.3 % 88.4% 11.2%
extinction.7 20,769,427 85,764 1.215 92,560,320 1.8 % 35.3% 62.9%
firewire link.5 18,553,032 128,620 1.000 59,782,059 0.0 % 6.9% 93.1%
firewire tree.5 3,807,023 22,837 1.000 18,226,963 0.2 % 80.8% 19.0%
iprotocol.6 41,387,484 89,480 1.724 239,771,446 3.8 % 22.8% 73.5%

leader election.5 4,803,952 32,400 1.000 28,064,092 0.5 % 53.5% 46.0%
needham.4 6,525,019 30,420 1.000 22,203,081 0.0 % 30.5% 69.5%
peterson.4 1,119,560 38,338 5.286 19,974,479 1.8 % 46.7% 51.5%

pgm protocol.10 29,679,589 25,142 1.324 81,985,078 2.5 % 55.7% 41.8%
plc.4 3,763,999 2,447 1.043 6,358,220 1.1 % 11.3% 87.5%

rether.6 5,919,694 31,599 1.496 11,902,295 5.5 % 47.4% 47.1%
synapse.7 10,198,141 203,448 1.333 24,201,729 11.2 % 66.9% 21.9%
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observed with SL or PART a reference value of 1. For example, with instance
firewire tree.5, SLext used 5–6% of the internal memory used by SL and performed
10–12% of the state I/Os performed by PART.

The conclusions we can draw from Fig. 4 are rather positive as the general
trend in that SLext consumes significantly less memory than SL while performing
less disk accesses than PART. The comparison of SL and SLext confirm our initial
intuition that SL is sometimes unable to significantly reduce the peak memory
usage although the progress measure used efficiently divides the state space
upon multiple progress layers. Out of the 16 instances we selected, our algorithm
performed a comparable number of I/Os with respect to PART on 2 instances:
elevator2.3 and synapse.7. The high proportion of forward edges (that increases
disk accesses performed by SLext) combined with the special shape of their state
space (wide and short) which makes them especially suited for PART can explain
this difference. The figure indeed attests that the shape of the graph has an
impact on the disk accesses performed by the two algorithms. The advantage of
SLext over PART is more significant when the state space is long and narrow, e.g.,
for instances plc.4 or rether.6. If we only consider disk accesses, the performances
of PART degrade for these models while SLext is insensitive to that parameter.
For some models like cambrige.6 and (to a lesser extent) bopdp.7, Table 3 shows
that, it is likely that the relatively high amount of state I/Os performed stems
from the revisit factor of algorithm SLext (whereas PART does not revisit states).

Comparison of Execution Times. Figure 5 gives the execution times of al-
gorithms SL, PART and SLext on the same instances. For each model we gave
to the slowest algorithm a reference value of 1, and the execution times of the
two other algorithms are expressed relatively to this one. We see a correlation
between the disk accesses we previously observed and the execution times of
SLext over PART. For most instances on which SLext performed significantly less
disk accesses it outperformed PART. This is the case for instances brp.4, plc.4
or rether.6. Models firewire link.5 and firewire tree.5 go against this trend for rea-
sons explained below. Nevertheless, the conclusions are somewhat disappointing
in that the clear advantage of SLext over PART with respect to disk accesses is
less significant when it comes to execution times even though we will see be-
low that SLext is, on the average, faster than PART. One reason is that SLext

visits more states that PART and the visit of a state implies some non-trivial
operations like the computation of enabled events and the generation of suc-
cessor states. We also profiled the code of some instances, and found out that
comparing states according to their progress values — operations that are not
performed by PART — contribute to degrade the relative performances of SLext.
This operation is performed not only during state exploration but also during the
merging of files operated for maintaining the priority queue. This explains the
divergence between disk accesses and execution times for models firewire link.5
and firewire tree.5. On these two models, internal memory operations are the
most time consuming operations and disk accesses play a lesser role.
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performed by SLext compared to PART [3] on the instances of Table 3
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Summary of Experiments. We conclude this analysis with Table 4 that com-
pares SLext to the three other algorithms we experimented with. Each cell gives
for a specific parameter (Time, I/Os per state, or Memory usage) the result of
a specific algorithm averaged on our 60 problem instances and with respect to
SLext. For example, on the average of our 60 instances, SLext has been 8.29 times
faster than BFSext.

As we previously mentioned, the table shows that BFSext is not competitive
with other algorithms. This observation must however be nuanced by the fact
that several heuristics have been proposed [5,14,24] in order to reduce the impact
of duplicate detection (i.e., checking whether newly generated states are already
present in previous BFS layers), which is clearly the most costly operation per-
formed by BFSext. These are highly effective for long graphs that are the worst
candidates for BFSext. A detailed comparison with BFSext based on the more
advanced heuristics is part of future work.

PART generates significantly more disk accesses than SLext but the latter is
only approximately twice faster than PART for the reasons given above. The
table also shows that keeping the priority queue and the persistent states in
external memory does not bring an intolerable increase of the run time especially
if we relate the increase of the execution time to the important memory usage
reduction we observe. This suggests that SLext can be an interesting alternative
when the I/O overhead of PART is too severe and SL fails to reduce peak memory
usage even if the progress measure efficiently splits the state space upon multiple
small layers. Figures 4 and 5 show that models like brp.4, plc.4 or rether.6 are
good application examples for our algorithm.

Table 4. Summary of performance on 60 problem instances

SLext SL PART BFSext

Time × 1.00 × 0.40 × 1.88 × 8.29
I/Os per state × 1.00 × 0.00 × 9.27 × 217.50
Memory usage × 1.00 × 27.74 × 1.00 × 1.00

5 Conclusions and Future Work

In this paper we have explored the combination of the sweep-line method and
the use of external memory. The key to this combination is the use of an exter-
nal memory priority queue for storing states that are not in the current layer of
states being processed. Using the benchmark suite of examples from the BEEM
database, we have experimentally demonstrated that the combined approach
significantly reduced peak memory usage (compared to the conventional RAM-
based sweep-line method) and that the combination in many cases also reduces
I/O operations (compared to a conventional external memory state space ex-
ploration). Furthermore, the reduction in peak memory usage comes with an
acceptable run-time penalty caused by the external memory priority queue. A
nice property of the combined approach is its compatibility with all existing
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sweep-line based algorithms as none of these rely on a particular implementa-
tion of the progress priority queue. In particular, it can therefore be used in the
context of safety model checking [23]. We discuss below three areas of future
work originating from the results presented in this paper.

LTL Model Checking. Checking LTL properties is, in an automata-based
approach [29], reduced to a cycle detection problem and classical in-memory al-
gorithms uses a depth-first search (DFS) for this purpose. Unfortunately DFS
is not compatible with delayed duplicate detection in that the next state be-
ing processed is always the last generated. Hence, a variety of algorithms, that
often come from the world of distributed memory model checking, have been
designed for external-memory LTL model checking: [4,5,11,13]. The sweep-line
LTL algorithm of [16] also follows the automata-theoretic approach. It searches
for accepting cycles by using a variation of the MAP algorithm [8] that is com-
patible with our progress-first search order, and also combines well with any
type of priority queue. A direct research perspective is thus to experimentally
evaluate how well the sweep-line LTL algorithm of [16] equipped with an exter-
nal memory priority queue competes with other external-memory algorithms for
LTL model checking.

Quality of Progress Measures. With the use of an external memory priority
queue our experiments demonstrate that we are able to unleash more of the
potential of the sweep-line method and that reduction in peak memory usage
can be significant. A follow-up research question is therefore whether the sweep-
line method has more potential memory reduction that can be leveraged, i.e.,
how close are the provided/computed progress measures in terms of being opti-
mal? For progress measures that are monotonic, the size of the largest strongly
connected component is a lower bound on the reduction that can be obtained
since all states belonging to a strongly connected component must have the same
progress measure. For non-monotonic progress measures it is less obvious how
to compute a good lower bound since the presence of regress edges must also be
taken into account, and since optimality now needs to take into account both
space (peak memory usage) and time (due to re-exploration caused by regress
edges). Computing optimal progress measure hence remains an open and rele-
vant aspect to explore as part of future work.

External-Memory Queues. In this paper we made the choice of external
array-heaps [7] adapted from [2] to implement our algorithm. This was motivated
by the simplicity of this data structure and its nearly optimal IO complexity. It
is clearly of relevance to investigate the use of other forms of external priority
queues. In that perspective, a first option is to combine our algorithm with the
sequence heaps data structure [26] that according to [26] is a re-engineering of
external array-heaps that is more efficient with respect to both I/Os and memory
usage thanks to the explicit use of the different levels of memory. Second, external
radix-heaps [7] seem to achieve better performance in practice than external
array-heaps by relaxing the pre-requisites of the priority queue specification. Its
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design indeed makes the assumption that the priority queue is monotonic in the
sense that the successive calls to deleteMin return a sorted sequence of items.
Since a sweep explores states with increasing progress measures this assumption
holds in our case and this structure thus seems to be an interesting alternative.
Finally, we also observe that for preserving termination, it is only required that
persistent states are identified during a sweep, put in a separate set, and ignored
by the current sweep. The sweep-line can hence move backward and forward
during a sweep. As long as regress edges are taken care of, the sweep-line will
eventually converge and the sweep will terminate. This means that any form
of queue can theoretically be used although a “strict” priority queue ensures
that a sweep cannot revisit states (although states can then be visited multiple
times during different sweeps). Starting from this observation, another research
direction is to evaluate whether relaxing the priority queue requirements can
further help reduce disk accesses. This can naturally come at the cost of state
revisits meaning that a trade-off would have to be made.
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Abstract. This paper presents a compositional minimization approach
with efficient state space reductions for verifying non-trivial asynchronous
designs. These reductions can result in a reduced model that contains the
exact same set of observably equivalent behavior in the original model,
therefore no false counter-examples result from the verification of the
reduced model. This approach allows designs that cannot be handled
monolithically or with partial-order reduction to be verified without dif-
ficulty. The experimental results show significant scale-up of the compo-
sitional minimization approach using these reductions on a number of
large asynchronous designs.

Keywords: model checking, compositional verification, minimization,
abstraction.

1 Introduction

Compositional verification is essential to address the state explosion problem
in model checking large systems. The compositional methods can be roughly
classified into compositional reasoning or compositional minimization. Assume-
guarantee based compositional reasoning [2,8,13,14,18] does not construct the
global state space. Instead, the verification of a system is broken into separate
analyses for each module of the system. The result for the entire system is derived
from the results of the verified individual modules. When verifying each module,
assumptions about the environments with which the modules interact are needed
for sound verification, and must be discharged later.

The success of compositional reasoning relies on the discovery of appropri-
ate environment assumptions for every module. This is typically done by hand.
If the modules have complex interactions with their environments, generating
accurate environment assumptions can be challenging. Therefore, the require-
ment of manually finding assumptions has been a factor limiting the practical
use of compositional reasoning. In recent years, various approaches to auto-
mated assumption generation for compositional reasoning have been proposed.
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In the learning-based approaches, assumptions represented by deterministic fi-
nite automata are generated with the L∗ learning algorithm and analysis of local
counter-examples [20,1,9,11,5]. The learned assumptions can result in orders of
magnitude reduction in verification complexity. However, these approaches may
generate assumptions with too many states and fail verification in some cases
[20,1]. An automated interface refinement method is presented in [23] where the
models of the system modules are refined, and the extra behavior is removed
by extracting the interface interactions among these modules. Although the ca-
pability of these methods has been demonstrated by verifying large examples,
it is difficult for them to handle inherently global properties such as deadlock
freedom.

Compositional minimization [4,12,16], on the other hand, iteratively con-
structs the local model for each component in a system, minimizes it, and com-
poses it with the minimized models of other components. Eventually, a reduced
global model is formed for the entire system where verification is performed. To
contain the size of the intermediate results, user-provided context constraints
are required. The need for the user-provided context constraints may also be a
problem because the user-provided constraints may be overly restrictive, thus
resulting in real design errors escaping detection. Similar work is also described
in [6,7].

The key to the success of compositional minimization is state space reduction.
In the most existing work, reduction is conservative in that more behavior may
be introduced, but no essential behavior may be removed during reduction. This
is necessary since no real errors can be missed when verifying the reduced model.
However, false errors may be introduced by reduction in the same time. When
an error is found while verifying such a reduced model, it needs to be checked
whether this error is real, typically done on the concrete model. This can be very
time-consuming. If reduction is too conservative, the number of false errors may
become too excessive, and checking these false errors can become the bottleneck.

In [22,27,28], methods are described for compositionally verifying asyn-
chronous designs based on Petri-net reduction. These methods simplify Petri-net
models of asynchronous designs either following the design partitions or directed
by the properties to be verified, then verification is done on the reduced Petri-
nets. However, these methods are limited to certain types of Petri-nets, and not
easily extended to other formalisms.

This paper presents a number of state space reductions that can be used with
compositional minimization. In this method, a design is modeled as a parallel
composition of state graphs derived from the high-level descriptions of the com-
ponents in a design. Before composing the component state graphs to form a
global model for verification, these state graphs are reduced to lower the com-
plexity. The reductions remove certain state transitions and states from a state
graph in such a way that the observable behavior on the interface remains the
same. At the end, a reduced state graph for the entire design, which is equivalent
to the concrete model of the design in terms of observable behavior, is produced
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for verification. This method is sound and complete in that the reduced model
is verified to be correct if and only if the concrete model is correct.

The reduction method presented in this paper is similar, in some degree, to
the partial order reduction method[15] as both try to identify and remove certain
transitions to eliminate equivalent paths. Partial order reduction determines the
independent transitions such that the order of executing these transitions does
not affect the verification results, and it removes all but one independent tran-
sition in each state during the state space traversal to avoid generating states
and transitions that correspond to some equivalent paths. However, determining
which transitions are independent requires the information of the global state
space, which is not available during the state space traversal, therefore, the in-
dependent transitions are computed conservatively to ensure soundness of the
verification results. This causes partial order reduction to be less effective or
even useless in some situations. On the other hand, our method can effectively
remove all transitions that correspond to equivalent paths in state space models
because it considers the generated state space models where the necessary infor-
mation is available for such reduction. Furthermore, our method can also remove
states that do not affect the observable behavior after the equivalent paths are
removed, while partial order reduction only tries to avoid generating the equiv-
alent paths. Another difference is that partial order reduction is applied to the
whole design, while the method in this paper builds a reduced global state space
model compositionally.

This paper is organized as follows. Section 2 gives a brief overview of the mod-
eling and verification of asynchronous designs. Section 3 presents the set of state
space reductions for our compositional verification method. Section 3.1 describes
a state space reduction approach that preserves the same observably equiva-
lent behavior. Section 3.2 describes a set of techniques that remove redundant
states and state transitions to augment the reduction presented in Section 3.1.
Section 4 demonstrates our method on a number of non-trivial asynchronous
design examples, and it analyzes the obtained results. The last section concludes
the paper and points out some future work that can improve this method.

2 Preliminaries

2.1 State Graphs

This paper uses state graphs (SGs) to model asynchronous systems. The defini-
tion of state graphs is given as follows.

Definition 21 (State Graphs). A state graph G is a tuple (A, S, R, init)
where

1. A is a finite set of actions,
2. S is a finite non-empty set of states,
3. R ⊆ S ×A× S is the set of state transitions,
4. init ∈ S is the initial state.
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For an SG, A = AI ∪ AO ∪ AX . AI is the set of actions generated by an
environment of a system such that the system can only observe and react. AO

is the set of actions generated by a system responding to its environment. AX

represents the internal behavior that is invisible at the interface, and it is usually
denoted as ζ. In the above definition, S also includes a special state π which
denotes the failure state of a SG, and it represents violations of some prescribed
safety properties. The failure state π does not have any outgoing transitions. The
set of actions enabled at a state s ∈ S is denoted as enb(s) = {a | (s, a, s′) ∈ R}.
The set of state transitions leaving a state s, {(s, a, s′) ∈ R}, is denoted by
out(s). In the remainder of this paper, R(s, a, s′) also denotes that (s, a, s′) ∈ R.

A path ρ of G is a sequence of alternating states and actions of G, ρ =
(s0, a0, s1, a1, s2, · · · ) such that si ∈ S, ai ∈ A, and (si, ai, si+1) ∈ R for all
i ≥ 0. A state sj ∈ S is reachable from a state si ∈ S if there exists a path
ρ = (si, · · · , sj , · · · ) in G. A state s is reachable in G if s is reachable from
the initial state init. The trace of path ρ, denoted by σ(ρ), is the sequence of
actions (a0, a1, · · · ). Given a trace σ(ρ) of a path ρ = (s0, a0, . . . , si, ai, . . .), its
finite prefix, denoted by σ(ρ, i), is (a0, . . . , ai). Two traces σ = (a0, a1, · · · ) and
σ′ = (a′0, a

′
1, · · · ) are equivalent, denoted by σ = σ′, iff ∀i≥0 ai = a′i. The set of

all paths of G forms the language of G, denoted by L(G).
Given a trace σ = (a0, a1, . . .), its projection onto A′ ⊆ A, denoted by σ[A′],

is obtained by removing from σ all the actions a �∈ A′ as shown below.

σ[A′] =
{
a0 ◦ σ′[A′] if a0 ∈ A′,
σ′[A′] otherwise.

where σ′ = (a1, ...), and ◦ is the concatenation operator.
Given two paths, their equivalence is defined as follows.

Definition 22. Let ρ = (s0, a0, s1, a1, · · · ) and ρ′ = (s′0, a′0, s′1, a′1, · · · ) be two
paths of G. ρ and ρ′ are equivalent, denoted as ρ ∼ ρ′, iff σ(ρ) = σ(ρ′).

The SG of a system is obtained by composing the component SGs asynchronously.
Asynchronous parallel composition is defined as follows. This definition is similar
to that in [3] except that more rules are created for situations involving π. Given
G1 = (A1, S1, R1, init1) and G2 = (A2, S2, R2, init2), the parallel composition
of G1 and G2, G1‖G2 = (A, S, R, init), is defined as follows.

1. A = A1 ∪ A2,
2. S ⊆ S1\π × S2\π ∪ {π}.
3. R ⊆ S ×A× S such that all the following conditions hold:

(a) For each ((s1, s2), a, (s
′
1, s

′
2)) ∈ R,

i. a ∈ A1 −A2 ⇒ R1(s1, a, s
′
1) ∧ s′2 = s2,

ii. a ∈ A2 −A1 ⇒ R2(s2, a, s
′
2) ∧ s′1 = s1,

iii. a ∈ A1 ∩A2 ⇒ R1(s1, a, s
′
1) ∧R2(s2, a, s

′
2),

(b) For each ((s1, s2), a, π) ∈ R,

i. a ∈ A1 −A2 ⇒ R1(s1, a, π),
ii. a ∈ A2 −A1 ⇒ R2(s2, a, π),
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iii. a ∈ A1 ∩ A2 ⇒ ((R1(s1, a, π) ∧ a ∈ enb(s2)) ∨ ((R2(s2, a, π) ∧ a ∈
enb(s1)),

4. init = (init1, init2).

In the above definition, the composite state is the failure state if either compo-
nent state is the failure state. When several components execute concurrently,
they synchronize on the shared actions, and proceed independently on their in-
visible actions. If any individual SG makes a state transition to the failure state,
there is a corresponding state transition to the failure state in the composite SG.
In the actual implementation, when composing two SGs, a reachability analysis
algorithm is performed from the initial composite state following the definition
for transition relation R, and therefore, the resulting composite SG contains only
the reachable states.

2.2 Correctness Definition

A path is referred to as a failure if it leads to the failure state π. The set of
all failures in G is denoted as F(G) such that F(G) ⊆ L(G) holds. A system is
correct if F(G) = ∅.

Given a failure ρ′ = (s′0, a0, · · · , s′i, ai, π), the non-failure prefix of its trace is
σ(ρ′, i). If another path ρ has the same non-failure prefix of ρ′, ρ is also regarded
as a failure. In such cases, path ρ is said to be failure equivalent to ρ′.

Definition 23. Let ρ = (s0, a0, . . .) and ρ′ = (s′0, a′0, . . .) be two paths. If
∃i>0 σ(ρ, i) = σ(ρ′, i)∧ s′i+1 = π holds, then ρ is failure equivalent to ρ′, denoted
as ρ ∼F ρ′.

The definition of the abstraction relation between two SGs is given as follows.

Definition 24 (Abstraction). Given SGs G and G1, G1 is an abstraction of
G, denoted as G � G1, if and only if the following conditions hold:

1. AI = AI
1 and AO = AO

1 .
2. For every path ρ ∈ L(G), there exists a path ρ1 ∈ L(G1) such that ρ[A′] ∼

ρ1[A′] or ρ[A′] ∼F ρ1[A′] where A′ = AI ∪ AO.

The abstraction relation defines that for any path in G, there exists a path in
G1 such that they are observably equivalent. For any failure in G, there exists
an equivalent failure in G1.

The equivalence relation between two SGs is more restricted than the abstrac-
tion relation.

Definition 25 (Equivalence). Let G and G1 be SGs. G is equivalent to G1,
denoted as G ≡ G1, if and only if G � G1 and G1 � G.

The equivalence relation defines that two SGs contain the same set of observably
equivalent paths. Therefore, if G ≡ G1, the following property holds.

F(G) = ∅ ⇔ F(G1) = ∅. (1)
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Intuitively, the above property states that the concrete model G is correct if G1

is correct, and vice versa.
After a SG is generated, model checking can be applied for various properties

to decide if they hold. In particular, our method checks the properties of safety
and deadlock freedom of an asynchronous design. The correctness of a design is
defined as the absence of failures caused by the violations of these properties.
The failure state π in our method can be used to capture violations of various
safety properties. A design is safe if π is unreachable. A design is said to deadlock
if it cannot make progress in some state. It is defined as follows.

Definition 26 (Deadlock). A SG is said to have a deadlock if ∃s∈S enb(s) = ∅.
A design is free of deadlock if no deadlock exists.

3 State Graph Reductions

In this method, it is assumed that a design consists of n components, the state
graphs Gi(1 ≤ i ≤ n) for these components are obtained using the method
described in [25]. The state graph for the whole design is obtained by compos-
ing the two component SGs in parallel at a time for all components. However,
directly composing Gi for verification defeats the purpose of compositional con-
struction in that the interleaving of the invisible state transitions in Gi can
explode quickly during the parallel composition. Therefore, this section presents
a number of state space reductions to simplify the component SGs and the inter-
mediate SGs generated during the composition process before they are composed
to control the complexity. The reduced state graphs are observably equivalent to
the original ones, which implies that any properties hold or fail in the reduced
SGs if, and only if, they hold or fail in the original ones. These reductions remove
the redundant paths from the original SG but do not introduce any extra paths
that do not exist in the original SG. They play an important role in compo-
sitional minimization. The end of this section compares these reductions with
another existing state space abstraction approach.

3.1 Observably Equivalent Reduction

Given a component, some of its outputs may become invisible to its neighbors
when it is plugged into a larger system. In this case, the corresponding state
transitions on these outputs in its SG can be converted to invisible transitions.
The traditional abstraction techniques collapse the invisible state transitions into
single states [6]. This may cause extra behaviors and thus may introduce false
failures. This section provides a different reduction approach that compresses a
sequence of invisible state transitions into a single visible state transition. This
approach has certain desirable features over the previous approaches.

Let (si, ζ, si+1, ζ, · · · , sj−1, ζ, sj , aj, sj+1) be a subpath of a path in a SG G.
After reduction, the whole subpath is replaced with state transition (si, aj , sj+1).
This reduction is referred to as an observably equivalent reduction. This reduction
is different from the previous approaches in the following ways.
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1. Since the sequence of invisible state transitions on a path is replaced by a
visible state transition, the number of reachable states of the reduced graph
G may be reduced if some states have all their incoming state transitions
on the invisible action. However, this may not always be the case, and the
number of state transitions may be increased significantly.

2. This reduction shortens the existing paths, but no new paths are created.
Therefore, no new failure traces are introduced.

3. Non-determinism may be introduced into the SG after reduction. Consider
two subpaths (si,ζ,· · · , sj−1,ζ,sj ,aj ,sj+1) and (si,ζ, · · · ,sk−1, ζ, sk, aj , sk+1).
They are reduced to (si, aj , sj+1) and (si, aj , sk+1), respectively. This causes
nondeterminism even though the original SG is deterministic. However, the
nondeterministic transitions may be eliminated if sj+1 or sk+1 is redundant
as described in the next section.

Let reduce(G) be a procedure for the observably equivalent reduction on a SG G
as shown in Algorithm 1. The SG produced by reduce(G) in Algorithm 1 inher-
its every element of G except the updated R and S. The algorithm reduce(G)
checks each invisible state transition (s1, a1, s2) in G, and calls another function
oer(G, s1, s2) if the start state s1 of that invisible state transition has at least
one incoming state transition that is visible. Function oer(G, s1, s2), as shown
in Algorithm 2, searches forward bypassing each invisible state transition from
s2 in the depth-first manner until a visible transition or the failure state π is
encountered. Then, new visible transitions are created to replace the sequences
of invisible state transitions, and they are added into R. After all invisible tran-
sitions are handled, they are removed from G. Consequently, some other states
and transitions may become unreachable, and they are also removed from G.

Algorithm 1. reduce (G)

foreach (s1, a1, s2) ∈ R do1

if a1 = ζ ∧ s2 �= π then2

if ∃(s,a,s1)∈R a �= ζ then3

oer(G, s1, s2);4

Remove all invisible state transitions from G;5

Remove unreachable states and state transitions from G;6

Fig. 1 shows an example how a SG in Fig. 1(a) is reduced by the observably
equivalent reduction to become the one as shown in Fig. 1(b). In this example,
suppose all invisible transitions are denoted by ζ. Then, for each visible transition
in states si+1, sj+1, and sk+1, a new transition on the same action is created for
states si, sj , and sk, respectively. Four new state transitions are added to preserve
the same observable behavior. In this case, only three invisible transitions are
removed. Therefore, without further reduction, the reduced SGs can actually
be more complex with more transitions added. In the next section, redundancy
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Algorithm 2. oer (G, s1, s2)

foreach (s2, a2, s
′
2) ∈ R do1

if a2 = ζ ∧ s′2 �= π then2

oer(G, s1, s
′
2);3

else4

R = R ∪ {(s1, a2, s
′
2)};5

return;6
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Fig. 1. (a) An example SG with invisible state transitions. (b) The SG from (a) after
the observably equivalent reduction.

in the SGs is defined, and algorithms are described to identify and remove the
redundancy to actually reduce the complexity of the SGs.

The following lemma asserts that reduce(G) is equivalent to G.

Lemma 1. Given a SG G, G ≡ reduce(G).

Proof: The proof is based on how procedure reduce(G) works. It is straight-
forward to see that for every path ρ in G that does not include any invis-
ible transitions, the same path also exists in reduce(G). For a path ρ =
(s1, a1, . . . , si, ζ, si+1, ai+1, . . .), there exists a path ρ′ = (s1, a1, . . . , si, ai+1, . . .)
in reduce(G), and ρ ∼ ρ′ or ρ ∼F ρ′.

Conversely, for every path ρ′ = (s1, a1, . . . , si, ai+1, . . .) in reduce(G), either
the same path exists in G, or it is reduced from a path ρ = (s1, a1, . . . , si, ζ, si+1,
ai+1, . . .) in G, and ρ′ ∼ ρ or ρ′ ∼F ρ. This satisfies the conditions of the
equivalence relation, therefore G ≡ reduce(G).

3.2 Redundancy Removal

From the example shown in the last section, it can be seen that the observably
equivalent reduction can introduce nondeterminism. Nondeterminism exists if
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there are two state transitions (s, a, s1) and (s, a, s2) such that s1 �= s2. This is
a result from reduction while preserving observable equivalence. However, the
introduced nondeterminism can potentially contain redundancy, and removing
the redundancy can simplify the complexity of SGs.

If the failure state is involved in nondeterminism, redundant state transitions
are identified based on the following understanding: if an action in a state may
or may not cause a failure nondeterministically, it is always regarded as causing
a failure. It is formalized as failure equivalent state transitions in the following
definition.

Definition 31. Given two state transitions (s, a1, s1) and (s, a2, π) of a SG,
(s, a1, s1) is failure equivalent to (s, a2, π) if a1 = a2.

The failure equivalent transitions are redundant in that their existence does
not affect the verification results, therefore, they can simply be removed. After
removing the failure equivalent state transitions, it is possible that some other
states become unreachable leading to more reduction.

The following lemma states that the SG resulting from removing failure equiv-
alent transitions is equivalent to the original SG.

Lemma 2. Let G and G′ be a SG and the one after removing failure equivalent
transitions. G ≡ G′.

Proof : The following proof is drawn based on how the failure equivalent reduc-
tion works. First, all paths in G also exist in G′ except for paths ρ = (s1, a1,
. . . , si, ai, si+1, . . .) in G such that there also exists a (si, ai, π) in G. In other
words, for every path ρ = (s1, a1, . . . , si, ai, si+1, . . .) in G, if (si, ai, π) is also in
G, there exists a path ρ′ = (s1, a1, . . . , si, ai, π), and we can see ρ ∼F ρ′. This
shows G � G′.

Now, for every path ρ′ in G′, the path also exists in G if it does not end in
the failure state. If ρ′ ends in the failure state, the same path also exists in G.
This shows that G′ � G. Therefore, G ≡ G′ holds.

Fig. 2 shows an example of failure equivalent transitions. Fig. 2(a) is an example
SG. After observably equivalent reduction is applied, the reduced SG is shown
in Fig. 2(b). In this reduced SG, transition (sj , aj , sk) is failure equivalent to
(sj , aj , π). After removing this failure equivalent transition, state sk becomes
unreachable, and it is also removed including all its outgoing transitions. The
final reduced SG is shown in Fig. 2(c).

Next, a restricted case of redundancy is described. Let incoming(s) be the
set of state transitions (s′, a, s) such that R(s′, a, s) holds.

Definition 32. Let G be a SG, and s, s1, and s2 be states of G. If the following
conditions hold, then one of s1 and s2 is redundant.

– For every (s, a, s1) ∈ incoming(s1), there exists a (s, a, s2) ∈ incoming(s2).
– For every (s, a, s2) ∈ incoming(s2), there exists a (s, a, s1) ∈ incoming(s1).

If such redundant states exist, one of them and its incoming and outgoing tran-
sitions can be removed as follows. Suppose s1 is selected to remove.
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Fig. 2. (a) An example SG. (b) The SG from (a) after the observably equivalent reduc-
tion. (c) The SG from (b) after removing the failure equivalent transition (sj , aj , sk)
and the unreachable state.

– For each (s1, a1, s
′
1) ∈ outgoing(s1), add (s2, a1, s

′
1) into R.

– Remove all state transitions in incoming(s1) and outgoing(s1).

– Remove s1.

Therefore, removing redundant states always results in a smaller number of
states and state transitions. It is also obvious to see that G ≡ G′ where G′ is
the SG after redundant states are removed from G.

In the remaining part of this section, a more general definition of redundancy
is given by checking all possible behaviors originating from two states. Basically,
if all possible behaviors originating from these two states are equivalent, these
two states are regarded as equivalent. Therefore, one of them is redundant, and
can be removed. The state equivalence is formally defined as follows.

Definition 33. Let s and s′ be two states of a SG. s and s′ are equivalent,
denoted as s ≡ s′, if the following conditions hold.

– For each path ρ = (s0, a0, s1, a1, . . . , ) such that s0 = s, there exists another
path ρ′ = (s′0, a0, s

′
1, a1, . . . , ) such that s′0 = s′, ρ ∼ ρ′ or ρ ∼F ρ′.

– For each path ρ′ = (s′0, a0, s′1, a1, . . . , ) such that s′0 = s′, there exists another
path ρ = (s0, a0, s1, a1, . . . , ) such that s0 = s, ρ ∼ ρ′ or ρ ∼F ρ′.

Fig. 3 shows two examples of SGs which contain equivalent states that possibly
result from the reduction described in the previous section. In Fig.3(a), there
are two loops. State si on one loop is equivalent to state s′i on the other loop
since the paths out of these states are equivalent. Similarly, the successor states
of these two states are also equivalent. It can be shown that every state in one
loop is equivalent to a corresponding state in the other loop. Fig. 3(b) shows a
different case where equivalence exists. It can be shown that state s0 is equivalent
to sk since each of these two states is the starting state of a path, and these two
paths are equivalent.
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Fig. 3. Examples of equivalent states that can be resulted from reductions. States si
and s′i in (a) and s0 and sk in (b) are equivalent since the paths coming out of these
states are equivalent.

The above observation directly leads to an algorithm to find equivalent states.
To simplify the presentation, assume a SG with AX = ∅ after observably equiva-
lent reduction is applied. The algorithm works as follows. Initially, the set Eq of
all pairs of states is found such that for each (s, s′) ∈ Eq, the following conditions
hold.

– ∀(s,a,s1)∈outgoing(s) ∃(s′,a′,s′1)∈outgoing(s′) a = a′.
– ∀(s′,a′,s′1)∈outgoing(s′) ∃(s,a,s1)∈outgoing(s) a = a′.

Two states are obviously not equivalent if one has some enabled action that is
not enabled in another state. This step excludes these obviously inequivalent
states, and keeps the pairs that are potentially equivalent. Then, the algorithm
iteratively removes from the set Eq any pairs (s, s′), until a fixpoint is reached,
if one of the following conditions holds

∃s1∈succ(s)∀s′1∈succ(s′) (s1, s
′
1) �∈ Eq (2)

∃s′1∈succ(s′)∀s1∈succ(s) (s1, s
′
1) �∈ Eq (3)

where succ(s) includes all states that are reachable in one transition from s.
Finally, if Eq is not empty, then states in every pair (s, s′) ∈ Eq are equivalent.
The correctness of the above algorithm is stated and proved in the following
lemma.

Lemma 3. For each pair (s, s′) ∈ Eq, s ≡ s′.

Proof: Suppose (s, s′) is an arbitrary pair in Eq.
Let ρ = (s0, a0, s1, a1, . . .) be an arbitrary path such that s0 = s. Since

(s, s′) ∈ Eq, there exists (s′, a0, s′1) ∈ outgoing(s′) corresponding to (s, a0, s1).
Additionally, (s1, s

′
1) ∈ Eq because (s, s′) ∈ Eq. Repeat the above argument
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Fig. 4. SGs for the examples with redundant states in Fig. 3 after being reduced

for (s1, s
′
1) and their successors recursively, we can construct another path ρ′ =

(s′, a0, s′1, a1, . . .), and it is straightforward to see that for any path from s, there
is another path ρ′ such that ρ ∼ ρ′.

Next, let ρ′ = (s′0, a0, s
′
1, a1, . . .) be an arbitrary path such that s′0 = s′. By

following the above steps similarly, we can conclude that for any path from s′,
there is another path ρ such that ρ ∼ ρ′.

Therefore, for every pair (s, s′) ∈ Eq, s ≡ s′ by Definition 33.

If Eq(s, s′) is not empty, for every pair (s, s′) in the set, either s or s′ and its
outgoing transitions can be safely removed, and its incoming transitions are re-
directed to s′ or s. In this case, the interface behavior of the transformed SG
remains the same as that of the original one according to the definition of the
state equivalence. The examples shown in Fig. 3 after being reduced are shown
in Fig. 4.

3.3 Comparison between Reduction and Abstraction

Efficient and effective state space reductions are key to the success of composi-
tional minimization. In [26], a different abstraction technique is presented. This
section briefly compares it with the presented reductions in this paper.

The state-based abstraction in [26] removes every invisible state transition
(si, ζ, sj) ∈ R from an SG, and merges si and sj to form a merged state sij .
All state transitions entering si and sj now enter sij , and all state transitions
leaving si or sj now leave sij . To preserve failure traces, if sj is the failure
state π, then the merged state sij is also the failure state. This abstraction can
remove all invisible state transitions from an SG, which is illustrated in Fig. 5. It
is efficient to simply remove one invisible transition at a time without checking
any conditions as required in the paper. However, it may introduce a lot of extra
behavior including failures. In Fig. 5(b), there is a path ρ = (. . . , ak, sij , ai, . . .)
that does not exist in the SG in Fig. 5(a). This extra path causes a false failure
in the final reduced SG.
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Fig. 5. Comparison of a traditional state space abstraction technique with the ob-
servably equivalent reduction. (a) An example SG. (b) The SG after the state space
abstraction. (c) The SG after the observably equivalent reduction.

The observably equivalent reduction presented in this paper removes invisible
state transitions while keeping the exact same set of observable paths in the
original SG. Another example of this reduction is shown in Fig. 5(c). For an
invisible state transition (si, ζ, sj) ∈ R, this reduction adds a new state tran-
sition (si, aj , sh) into R for every (sj , aj, sh) ∈ outgoing(sj). Then, it removes
(si, ζ, si+1). In Fig. 5(a), there exists a path ρ = (. . . , si, ζ, sj , aj , sh, . . .), and in
Fig. 5(c) there exists a path ρ′ = (. . . , si, aj , sh, . . .), and ρ[A′] ∼ ρ′[A′] where
A′ = AI ∪AO. For all other paths that do not involve (si, ζ, si+1), they are pre-
served after the reduction. This reduction does not introduce any extra paths
that do not exist in the original. On the other hand, it may introduce a large
number of redundant paths that may cause the reduced SG to be much larger
than the original one. Fortunately, the redundancy removal techniques presented
in this paper can help to remove a lot of these redundancy introduced by the
observably equivalent reduction to significantly simplify the complexity of SGs.

4 Experimental Results

We have implemented a prototype of the automated compositional verification
with the reductions described in this paper in a concurrent system verification
tool Platu, an explicit state model checker. This model checker is programmed
in Java, and can perform traditional depth-first search and compositional veri-
fication. Experiments have been performed on several non-trivial asynchronous
circuit designs obtained from previously published papers. To verify a design us-
ing the compositional minimization method in this paper, all components in the
design need to be converted to SGs first. The component SGs can be obtained
using a compositional reachability analysis method as shown in [25]. Detailed de-
scription of this method is out of scope of this paper. In this paper, it is assumed
that the component SGs are already obtained somehow.

The first three designs are a self-timed first-in-first-out (FIFO) design [17],
a tree arbiter (ARB) of multiple cells [10], and a distributed mutual exclusion
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Table 1. Comparison of the results from using the monolithic, partial-order reduction
and the reduction methods. Time is in seconds, and memory is in MBs. |S| is the
numbers of states found. For the results under CompMin, |S| is the number of states
of the largest SG encountered during the whole course of compositional minimization.

Designs Monolithic SPIN CompMin

Name |V | Time Mem |S| Time Mem |S| Time Mem |S|
fig3a 6 0.044 2.7 20 0 2.195 20 0.037 3.14 10

arbN3 26 0.315 2.4 3756 0.015 2.781 3756 0.087 3.89 52

arbN5 44 8.105 61.538 227472 1.65 71.695 227472 0.18 4.3 52

arbN7 62 − − − − − − 0.46 6.61 52

arbN9 80 − − − − − − 0.89 7.43 52

arbN15 134 − − − − − − 1.33 9.87 52

fifoN3 14 0.119 4.8 644 0 2.195 644 0.015 3.39 20

fifoN5 22 0.733 16.253 20276 0.08 6.593 20276 0.017 3.62 20

fifoN8 34 199.353 845 3572036 30.2 1087.211 3572036 0.11 4.03 20

fifoN10 42 − − − − − − 0.08 4.38 20

fifoN20 82 − − − − − − 0.11 4.7 20

fifoN50 202 − − − − − − 0.35 6.14 20

fifoN100 402 − − − − − − 0.76 7.67 20

fifoN200 802 − − − − − − 1.56 11.1 20

fifoN300 1202 − − − − − − 3.02 14.3 20

dmeN3 33 3.589 26.1 267, 999 0.265 19.706 117270 0.71 4.44 248

dmeN4 44 1235 1032 15.7M 15.5 553.421 4678742 0.8 5.74 248

dmeN5 55 − − − − − − 2.23 10.19 248

dmeN8 88 − − − − − − 3.57 16.4 447

dmeN9 99 − − − − − − 5.86 20.9 900

dmeN10 110 − − − − − − 58.9 46.6 3211

TU 48 − − − 4.37 144.984 786672 0.219 5.085 278

PC 50 − − − − − − 0.842 7.567 864

MMU 55 − − − − − − 0.688 10.143 2071

element (DME) consisting of a ring of DME cells [10]. Despite all these designs
having regular structures to be scaled easily, the regularity is not exploited in our
method, and all components are treated as black boxes. The fourth example is a
tag unit circuit (TU) from Intel’s RAPPID design [21]. This example is an un-
optimized version of the actual circuit used in RAPPID with higher complexity,
which is more interesting for experimenting with our methods. The fifth example
is a pipeline controller (PC) for an asynchronous processor TITAC2 [24]. The
last example is a circuit implementation of a memory management unit (MMU)
from [19]. All examples are too large for traditional monolithic approaches to
complete on a typical workstation.

In the experiments, DME, arbiter, and FIFO examples are partitioned ac-
cording to their natural structures. In other words, each cell is a component. For
the TU example, it is partitioned into three components, where the middle five
blocks form a component, and gates on the sides of the component in the middle
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form the other two. The PC example is partitioned into five components, each
of which contains ten gates. The MMU example is partitioned by following the
structure provided in [19] such that each component defines an output that are
used by other components.

All experiments are performed on a Linux workstation with an Intel dual-core
CPU and 2 GB memory. The results are shown in Table 1. In Table 1, the first
two columns show the design names and the number of variables used in the
corresponding models. Since all examples are asynchronous circuits, the type of
the variables used in the models is Boolean. Three different methods are used in
the experiments for better comparison. The columns under Monolithic show the
results from using the traditional DFS search method on the whole designs. The
columns under SPIN show the results from using the SPIN model checker with
the partial-order reduction turned on. The last three columns under CompMin
show the results from using the compositional minimization method described
in this paper. In these columns, Time is the total runtime, Mem is the total
memory used, and |S| shows the total number of states found. Specifically, the
column |S| under CompMin shows the total number of states in the largest SG
found during the entire course of the compositional minimization process. The
largest SGs are recorded because their sizes in general determine whether the
whole process of compositional minimization can be finished or not, therefore,
their sizes need to be carefully controlled. For examples which use too much
memory, the corresponding entries are filled with −.

From Table 1, it can be seen that the traditional monolithic search method
fails to finish quickly for most of the designs. This is understandable due to the
state explosion problem. However, it is surprising to see that SPIN with partial-
order reduction does not do any better. For all ARB and FIFO examples, SPIN
cannot find any reduction, and the numbers of states found by SPIN are exactly
the same as those found by the monolithic approaches for ARB and FIFO. For
DME and TU, SPIN does slightly better in terms of reduction in of the number
of states found. On the other hand, SPIN quickly blows up the 2 GB memory
for most of the examples too. One possible explanation is that the partial-order
reduction implemented in SPIN relies on the information about the independence
among transitions, and this information is obtained by examining the structures
of the Promela models. Since these examples are asynchronous circuit designs,
the models for these examples are connections of descriptions of basic logic gates,
and they may be difficult for SPIN to extract sufficient independence information
for effective reduction.

On the other hand, the compositional minimization approach with all reduc-
tions described in this paper can finish all examples in the table quickly. For ARB
and FIFO examples, the total runtime and memory usage grow polynomially in
the number of components in the examples. For DME examples, the runtime
and memory usage show a similar growth curve until the examples become too
large. For dmeN10, there is a big jump on runtime and memory usage. This
growth is due to an intermediate SG that contains too many state transitions
after the equivalent reduction, and it takes a big part of total runtime to identify
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the equivalent states. The results for dmeN11 are not shown as the runtime for
this example exceeds the 5 minute threshold. On the other hand, the memory
usage still grows polynomially as the design size grows. For the three irregular
designs, TU, PC and MMU, where SPIN also fails, they are finished with com-
positional minimization using very small amount of runtime and memory. For
the PC example, a safety failure is found. The same safety failure is also found
by the monolithic approach after about 30 minutes on a much more powerful
machine.

From these results, one may conclude that compositional minimization works
much better than partial-order reduction. This is true to some degree. For designs
that do not contain any flaws, compositional minimization can prove the cor-
rectness very efficiently. On the other hand, for designs that contain one or more
bugs, compositional minimization can also finish and return counter-examples
quickly. However, as a lot of design details are removed during the minimization
process, the returned counter-examples are very abstract, therefore not very use-
ful for users to understand the causes of the bugs. In this case, concrete counter-
examples corresponding to those returned by compositional minimization need
to be generated. This can be done by the traditional search on the whole de-
sign guided by the returned counter-examples. Since these counter-examples are
so abstract, the step of generating the concrete counter-examples may, in some
cases, be as difficult as searching the state space of the whole design.

5 Conclusion

This paper presents a compositional minimization approach with a number of
state graph reductions to lower the verification complexity while not introducing
extra paths that might cause false failures nor reducing any essential behaviors.
In other words, the reduction methods are sound and complete. Based on initial
experimental results, these reductions work well on a number of asynchronous
circuit examples. In the future, it is necessary to experiment on more diverse
examples including communication protocols and multithreaded programs to
fully demonstrate its potential. Additionally, it is necessary to develop efficient
approaches that make abstract counter-examples in the reduced SG be concrete
by recovering the reduced information for better debugging.
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Abstract. Multi- and many-core hardware platforms are today widely
accessible and used to significantly accelerate many computationally de-
manding tasks. In this paper we describe a parallel approach to solve
Boolean Equation Systems (BESs) in the context of model checking.
We focus on the applicability of state-of-the-art, shared-memory par-
allel hardware – multi-core CPUs and many-core GPUs – to speed up
the resolution procedure for BESs. In this setting, we experimentally
show the scalability and competitiveness of our approach, compared to
an optimized sequential implementation, based on a large benchmark
suite containing models of software systems and protocols from industry
and academia.

Keywords: formal verification, parallel model checking, boolean equa-
tion systems.

1 Introduction

In this paper we propose and evaluate a parallel approach to the resolution
of Boolean Equation Systems (BESs) on parallel, shared memory systems, i.e.,
utilizing state-of-the-art multi-core and many-core processors – though not in
a hybrid setting. Our goals are to (i) evaluate the scalability of our parallel
approach with respect to an increasing number of parallel processing units (PUs),
and (ii) prove its competitiveness in comparison with an optimized sequential
algorithm, which we implemented as described in [1].

Motivation. Today, hardware manufacturers no longer increase clock rates but
the number of available PUs of processors. Along with the evolving massively
parallel, throughput oriented hardware architectures [13], this has led to an in-
creasing interest in the parallelization of software. Indeed, this trend has already
found its way into the field of software verification and model checking years
ago [5,16,17] and must be considered further in order to push the limits of verifi-
cation techniques further towards industrial strength, allowing one to deal with
larger state spaces and providing rapid feedback to developers.

Modern processors can be divided into two main branches: (i) CPU-based
multi-core processors with up to tens of cores and (ii) GPU-based many-core
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processors with up to several hundreds of cores. The key differences are (i) the
ability to efficiently deal with control flow at the expense of lower data through-
put and, respectively, (ii) the ability to provide high data throughput rates at
the expense of a lack of efficient, control-flow guided execution. We assume the
trend to continue – see e.g., Intel’s “Terra Scale Computing”1 project – suggest-
ing future hardware to consist of more, yet simpler PUs. With respect to parallel
algorithms, current hardware development favors approaches that are geared to-
wards the single instruction multiple data (SIMD) paradigm, since they can most
easily take advantage of this type of parallel hardware. Therefore, it is inevitable
to consider the applicability of massively parallel, SIMD-based (i.e., many-core)
systems in our experiments.

Background. The standard model checking problem [9], M |= ϕ, can be en-
coded by a BES [23], where the solution of the BES is equivalent to the solution
of the underlying model checking problem. The BES is obtained by the syn-
chronous composition of a Labeled Transition System (LTS), corresponding to
M , and a property ϕ (e.g., deadlock freedom) that is to be checked for this
LTS. Consequently, the data dependencies within the resulting BES are closely
related to the structure of the LTS from which it was generated. For our evalua-
tion we rely on the well established VLTS benchmark,2 which provides 40 LTSs
– originating from academia and industry – that can be checked for deadlocks
and livelocks, i.e., our resulting benchmark suite consists of a total of 80 BESs.

The average branching factor, i.e., the average number of outgoing edges per
vertex, over all 40 LTSs in the benchmark is 5.73. With respect to parallelization,
this number can be interpreted as an upper bound for the potential parallelism
that is inherent to an LTS, as in our setting information needs to be propagated
along edges. For workset based (i.e., bag of tasks) producer-consumer paralleliza-
tions [2] this means that (i) for each work item processed only few new work
items are expected to be added to the workset, and (ii) synchronization is needed
for concurrent operations on the dynamic data structure used to store the work
items.

Due to this, our approach is not based on the producer-consumer paradigm
that propagates only essential information, but on a more naive fixed point it-
eration. This promises a much higher potential for the utilization of parallel
hardware as it does not require dynamic data structures. In our particular set-
ting, data operations can even be implemented lock-free. Furthermore we do not
have to populate a workset since we propagate all possible changes during a
fixed point iteration, at the price of computational overhead, which is negligible
considering the ever growing number of parallel PUs.

Cilk Plus and CUDA. Our approach is based on data-parallelization, which
is commonly referred to as fine-grained parallelization (in contrast to task-
parallelization, i.e., “coarse grained” parallelization). To efficiently parallelize
this type of problem the choice of framework is very important, because it most

1 http://techresearch.intel.com/ResearchAreaDetails.aspx?Id=27
2 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html
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significantly influences the overhead connected to context switches. In case of our
multi-core parallelization the overhead of manual thread maintenance is not neg-
ligible since the amount of productive work per thread invocation is very limited.
Therefore, the naive use of multi-threading environments, such as PThreads [26],
is very likely to nullify the gain we expect from the parallelization itself. For this
reason we chose Intel’s Cilk Plus framework3 which offers a work stealing based
thread-pool and internally employs efficient scheduling and load balancing mech-
anisms. The scheduling of workers is not explicit and more lightweight than the
manual management of threads.

For general purpose programming on GPUs, NVIDIA’s Compute Unified De-
vice Architecture (CUDA)4 is the de facto standard framework for parallel com-
putation. It provides an Application Programming Interface (API), allowing the
utilization of NVIDIA’s GPUs for massively parallel, throughput oriented ap-
plications beyond the scope of rendering graphics. Since the CUDA framework
is tailored to applications with many data-parallel threads, light-weight compu-
tations per thread and frequent context switches [13], it is well suited for our
application.

Contributions and Related Work. In the area of software model check-
ing [9], the sizes of input problems become exceptionally large. For this reason,
much research has been put into the development of techniques that can reduce
the problem sizes by, e.g., applying abstractions, using efficient data structures
such as Binary Decision Diagrams (BDDs) [8], or limiting the exploration of the
problem domain to relevant parts only.

The approach advocated by us in this paper does not aim at reducing the
problem size, but instead at exploiting modern parallel hardware for speeding-
up the model checking of large problems. We parallelize a simple fixed point
algorithm for BES solving on multi-core (CPU) and many-core (GPU) architec-
tures. While our parallel approach is largely straightforward and its correctness
is easy to understand, it gives rise to algorithms that – in the GPU case but not
the CPU case – outperform an optimized sequential algorithm [1]. This standard
algorithm for solving BESs is based on a workset data structure that propagates
information during fixed point computation; however, in a parallel setting, syn-
chronizations on this workset would lead to unacceptable overheads. In contrast,
our approach does not require this workset; its higher computational costs are
met by the higher number of PUs and their efficient utilization by us.

We extensively evaluate the performance of our workset-less multi-core and
many-core algorithms when model checking deadlock and livelock properties on
the large examples of the VLTS benchmark. More precisely, we used the tool
“evaluator” distributed with the CADP toolset [24] to generate the BESs for
our benchmark suite from the VLTS examples and the desired deadlock and
liveness properties expressed as temporal logic formulae in the alternation-free
μ-calculus [19]. For convenience, we restrict ourselves to the evaluation of the

3 http://software.intel.com/en-us/articles/intel-cilk-plus/
4 http://developer.download.nvidia.com/compute/cuda/4 0/toolkit/docs/

CUDA C Programming Guide.pdf
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solution step in the model checking process, since there exist several efficient and
even parallel approaches for the construction of compact data representations in
our setting [4,5,20], which can be used for preprocessing of input data.

Regarding closely related work, only two approaches on the parallel resolution
of BESs are known to us. The first one [28] is based on a multi-core parallelization
of the “Gaussian Elimination” as proposed in [23], which turns out not to be
viable in practice due to its exponential space complexity. The second one [18]
is tailored to distributed systems and aims at the resolution of extremely large
BES instances. There exist further distributed implementations [7,14,16,22] but
their general goal is, in contrast to our approach, to increase the total amount of
memory in order to deal with larger problem instances, rather than to improve
on their run-time performance, as network latency typically degrades the overall
performance significantly.

The experimental evaluation of the parity-game based approach presented
in [27], which performs a parallel resolution of μ-formulae on shared-memory
multi-core systems, provides scalability results for up to eight workers. Yet, the
range of examples is restricted to three Sliding Window Protocol (SWP) and
two randomly generated instances, and their run-times are not related to ex-
isting sequential algorithms. In contrast, we present a parallel, shared-memory
model checking approach that is based on a fixed point iteration used for the
parallel resolution of BESs (cf. Sec. 3). Even though this approach is targeted
at large BES instances, we are not only concerned about the capability to check
large models, but also the improvement of run-time performance. The evalua-
tion of our multi-core implementation confirms the scalability results presented
in [27], extends them to a much larger set of different benchmark examples and,
most importantly, puts them in relation to an optimized sequential BES solver
(cf. Sec. 2). In addition, we show that our approach also scales on many-core
architectures, boosting the run-time performance by one order of magnitude and
outperforming the optimized sequential baseline significantly (cf. Sec. 4).

2 Fixed Points and Boolean Equation Systems

Fixed Points and the μ-Calculus. The μ-calculus [19] is a powerful formal-
ism, e.g., subsuming the temporal logics LTL, CTL and CTL* [11], for expressing
temporal properties. It features fixed point operators to express temporal prop-
erties such as liveness (i.e., something good will eventually happen) and safety
(i.e., something bad will never happen). The following intuition describes the
meaning of the least (μ) and greatest (ν) fixed point operators in the context
of temporal-logic based model checking: μ is used to express liveness properties
with the initial assumption that every state violates this property, and ν is used
to express safety properties with the initial assumption that every state satisfies
this property.

The syntax of the μ-calculus is defined by the following grammar:

ϕ ::= �|⊥|x|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|[a]ϕ|〈a〉ϕ|νx.ϕ|μx.ϕ
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Property – deadlock freedom: νx.([−]x ∧ 〈−〉true)

LTSunsat

x1 x2 x3

Resulting BES

νx1 = x2 ∧ � = x2

νx2 = x1 ∧ x3 ∧ � = x1 ∧ x3

νx3 = � ∧ ⊥ = ⊥

LTSsat

x1 x2 x3

Resulting BES

νx1 = x2 ∧ � = x2

νx2 = x1 ∧ x3 ∧ � = x1 ∧ x3

νx3 = x1 ∧ � = x1

Fig. 1. Interpretation of μ-formula over LTSs

where V ar is a set of propositional variables with x ∈ V ar, and Act is a set of
actions with a ∈ Act. In our setting, μ-formulae are used to express properties
over LTSs as exemplary depicted in Fig. 1.

Boolean Equation Systems. BESs are sets of equations, resembling mono-
tonic functions over the Boolean lattice {false < true}, of the form σx = ϕ. Here,
the left hand side (LHS) x is a Boolean variable from the set of propositional
variables, σ ∈ {μ, ν} is the least or the greatest fixed point operator, and the
right hand side (RHS) is of the form ϕ ::= �|⊥|x|ϕ ∧ ϕ|ϕ ∨ ϕ.

In the context of model checking, BESs are the result of the interpretation
of a μ-formula over an LTS. Since the formula has to be verified for every state
of the LTS, the resulting BES is of size |LTS| x |ϕ|k, i.e., the size of the BES
is proportional to the size of the LTS and exponential in the complexity of the
μ-formula, where k is the alternation depth of φ which, roughly speaking, is the
number of alternations of different fixed point operator types binding the same
variables. Each fixed point operator of the formula is resembled by a so called
block in the resulting BES, containing the set of equations associated with this
operator. As is illustrated in Fig. 1, the resulting BESs for the deadlock freedom
property with respect to the two displayed LTSs only contain one block, with
three equations. This is because the corresponding formula only consists of one
fixed point operator and each LTS comprises three states.

While equations may be reordered arbitrarily within a block, this is not the
case for the ordering of blocks corresponding to alternating fixed point operators,
as it may lead to the computation of a wrong fixed point. The order in which
blocks have to be processed is defined by their nesting within the μ-formula.
In this paper, we consider only alternation-free μ-formulae where the nesting of
different fixed point operators binding the same variables is not allowed. Thus,
dependencies between blocks form a tree [7] that can easily be constructed and
yields the order (from leaves to root) in which the blocks have to be solved.
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Optimized Sequential Resolution of BESs. To be able to conduct a fair
evaluation of our parallel implementations for BES solving in terms of run-
time competitiveness, we have implemented an optimized, sequential CPU-based
algorithm in the style of the “chasing ones” as proposed in [1]. This approach
is workset based and uses a queue to store work items, where a work item
is equivalent to one equation of the BES. The computation in this algorithm
starts at those equations where the LHS is directly assigned value true (�) or
false (⊥), and propagates this information to all equations relying on the value
of these particular LHSs. For this purpose, equations must be enriched with
information about such backward dependencies. As space and time complexity
of this approach are linear in the size of the BES, it is well suited as a baseline
for comparison with our parallel implementations.

3 Basic Fixed Point Algorithm and Parallelization

While a lot of effort has been put into the development and optimization of se-
quential model checking algorithms so as to fight computational complexity and
state space explosion, our aim is to investigate whether a parallel approach can
be more efficient and provide scalability not only on multi-core (CPU) architec-
tures but also on many-core (GPU) architectures. For this purpose, we chose a
fixed point iteration based algorithm, which we show to be well suited for such
a parallelization. In this section we first present the algorithmic background of
our approach, followed by the concepts of our parallel implementations.

Basic Fixed Point Algorithm. The listing of Algorithm 1 illustrates the fun-
damental idea of the fixed point computation that we employ for the resolution
of BESs in our multi-core and many-core implementations.

Algorithm 1: FixedPoint algorithm

Input : BES
Output: Solution of BES

1 Initialization of LHSs // true for σ = ν; false for σ = μ

2 foreach block B do // block order matters

3 do
4 variablesChanged ← false

5 foreach equation E ∈ B do // equation order does not matter

6 LHS ← evalRHS(E)
7 if LHSChanged then
8 variablesChanged ← true

9 while variablesChanged

This algorithm consists of two nested loops, the outer one over the BES-blocks
(line 2) and the inner one over all equations within a block (line 5). The outer
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loop processes blocks in a sensible order, corresponding to the dependencies
within the μ-formula (cf. Sec. 2). The inner loop computes the value of the LHS
of an equation according to the evaluation of its respective RHS, where the RHS
either consists of a terminal value (i.e., true or false) or LHS variables connected
by Boolean operators. In the beginning, all LHSs are initialized depending on
their associated fixed point operator σ, i.e., false in case σ = μ and true in case
σ = ν (line 1). This initial approximation is derived from the Knaster-Tarksi
fixed point theorem [29], where μf =

⊔
{f i(false) : i ∈ N} and νf =

�
{f i(true) :

i ∈ N}. The termination of the fixed point computation is detected by a marker
variable, indicating whether one or more LHSs have changed during an iteration
(line 9).

The time complexity of Algorithm 1 is quadratic with respect to the size of
the BES since, in the worst case, only one LHS is changed per iteration (one
execution of the inner loop), whence the maximum number of iterations is equal
to the total number of equations, where each iteration performs a linear amount
of work.

Parallel Fixed Point Computation. The core idea for the parallelization of
the basic fixed point algorithm is based on the parallel resolution of individual
blocks by executing the inner loop of Algorithm 1 (line 5), computing the LHS
value of an equation, in parallel. It is important to note that the order in which
equations are evaluated does not matter within the loop, as our parallel frame-
works are not aimed at the explicit scheduling of threads. Considering the fact
that this operation needs to be executed for all equations during each iteration
step, this approach exposes much potential for parallel computation, even within
one iteration step, as we expect the number of equations to be very large, e.g., the
largest LTS in the benchmark contains 33,949,609 states. The soundness of the
approach is guaranteed by the fact that BESs resemble monotonic functions, i.e.,
even if the evaluation of a RHS depends on several other LHS variables – which
in a parallel setting are potentially modified concurrently – the updated value of
each LHS is available and thus can be propagated in the subsequent iteration.
For complex μ-formulas the tree structure of BES-blocks can be exploited to
increase the level of parallelization even further by processing all “leave blocks”
in parallel.

Multi-core Data Structure. Data structures for multi-core systems have to
follow two main objectives. On the one hand, they have to provide good data
locality, i.e., data necessary for a computation should be closely grouped so that
it can, ideally, be stored in the same cache line of a CPU. On the other hand,
unrelated data should be separated in such a way that it does not interfere with
each other in order to avoid harmful effects, such as cache thrashing, where
independent data sets depend on and thus compete for the same cache lines.
Due to these two factors and the structure of our input data (variable(s) ∈
equation(s) ∈ block(s) ∈ BES) we have decided to use a nested data structure,
where each aforementioned component is modeled by a structured type. In this
layout, all data needed to evaluate one equation – the most frequent operation
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in our algorithm – is stored in a single structure resembling an equation, thus,
accounting for good data locality. Clearly, this also provides good separation,
and any further improvement would require machine dependent optimizations.

Multi-core Parallelization. For the parallelization of Algorithm 1 on CPUs
we employ the Cilk Plus framework provided by the Intel C/C++ compiler.5

We chose Cilk Plus because it is well suited for problems with fine-grained data-
parallelism and irregular structure, as shown in [12], which also is the case in
our setting. Cilk Plus maintains a pool of workers, each of which is mapped to a
thread during execution, and supports work stealing, i.e., taking over work that
was initially assigned to another worker. This is in contrast to having to create,
manage and delete threads manually, inducing a much higher overhead.

The key idea of our multi-core implementation is the parallelization of the
inner for-loop, iterating over the equations, by employing Cilk Plus’ parallel
version of a for-loop, cilk for. The reasons why we do not require any locking
and further modifications are (i) the monotonicity of the Boolean function, as
mentioned before, and (ii) the fact that the variable variablesChanged indicating
a change of LHSs is only reset outside the parallel loop (Algorithm 1, line 4) and
set uniformly (only to true) inside the parallel loop (Algorithm 1, line 8), i.e.,
any worker that has observed a changing variable assigns this value and, thus,
the value cannot become inconsistent.

Many-Core Data Structure. Data structures used for CUDA accelerated
computation must be specially designed for this purpose. They must support
independent thread-local data processing and, at the same time, they must also
be compact enough to enable good data locality. This is to avoid high latency
device-memory access and generally to reduce the usage of device-memory band-
width that may otherwise become a performance bottleneck [21].

BES

x0 = x1 ∧ x3

x1 = x3 ∨ x2

x2 = false

x3 = x4 ∧ x1

x4 = x1 ∨ x2

Adjacency Matrix

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
1 0 0 0 1
0 1 1 0 0

⎞
⎟⎟⎟⎟⎠

CSR Vector

Ai

Ae

0 2 4 4 6 8

1 3 3 2 4 0 1 2

Fig. 2. Generation of adjacency list representation from BES

A BES may be interpreted as a directed graph where the LHSs are vertices
and the dependencies on the RHSs are edges. Such a graph can be encoded as an
adjacency matrix and stored using two vectors in compressed sparse row (CSR)
format, as depicted in Fig. 2. Since this data structure has been demonstrated
to be efficient for graph based algorithms in the context of CUDA accelerated

5 http://software.intel.com/en-us/articles/intel-compilers/
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computation [3,6,15] we employ it to store BESs. Each vertex stores the follow-
ing information: a unique index, its value along with a flag indicating whether
the Boolean value is already computed, and the type of Boolean operator (con-
junction or disjunction).

In more detail, our representation uses two one-dimensional arrays Ai and Ae

to encode the directed graph. For all vertices v0 to vn, the sum of outgoing edges
is stored in Ai, such that the number of outgoing edges from a particular vertex
vj can be computed by Ai[j + 1] − Ai[j]. The idea of this encoding is that the
value of an element Ai[j] serves as an index to the second array Ae. The array
Ae is a concatenation of ordered lists of target vertices of outgoing edges from
individual graph vertices.

The sizes of the arrays Ai and Ae correspond to the sizes of the vertex set
and the edge set of the graph, respectively. The array Ai does not only store the
indices to the array Ae but also the aforementioned information (index, Boolean
value, flag and type). Since the on-board memory of GPUs is very limited, we
store this additional information in unused bits of Ai, thereby reducing the space
requirement to 4 bytes per vertex.

Many-Core Parallelization. For our many-core parallelization we employ the
CUDA framework, in which programs consist of two parts (i) host code that runs
on the CPU and (ii) device code that runs on the GPU, the so called kernels.
A kernel is executed concurrently in many independent data-parallel threads,
where a group of threads, called a warp, executes on the same processor in a
lock-step manner. When several warps are scheduled on a processor, memory
latencies and pipeline stalls are hidden by switching to the execution of another
warp. The CUDA framework is optimized for large numbers of simple parallel
computations without explicit scheduling of threads.

For this reason the work-flow of our CUDA-accelerated fixed-point computa-
tion is divided into two parts. The host code, executing on the CPU, iterates over
the outer loop, i.e., the loop over all BES-blocks, and calls the CUDA kernels
executing on the GPU from within this loop. Each of the kernels is computing
the solution for one LHS, i.e., evaluating one RHS. The CUDA kernel is invoked
as long as LHSs change. Its pseudo code is provided in Algorithm 2.

This approach exposes fine-grained data-parallelism, requiring a dedicated
thread to be executed for each vertex (LHS) of the graph (each item of Array
Ai). Each thread first loads the data of a vertex from Array Ai (stored in global
memory) into a local copy (line 1) and checks if the corresponding LHS has
already been solved (line 2). Then, it processes all immediate successors (loop
on line 6), representing the RHS of the corresponding equation. The algorithm
employs a lazy evaluation of the equations. In case that a value within a RHS
immediately determines the value of the LHS (i.e., the RHS is a purely disjunc-
tive term where at least one variable is true, or a purely conjunctive term where
at least one variable is false), the loop is broken (line 10). Finally, the Boolean
value of the evaluation of the RHS (stored in mySucc.value) is compared to the
Boolean value stored in the corresponding LHS (line 11). If the two values differ,
the result of the evaluation is assigned to the respective LHS, written back to
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Algorithm 2: FixedPoint kernel – run in parallel for each LHS variable

Input : g(lobal)Ae, g(lobal)Ai, fixedPointFound

1 myVertex ← gAi[tid] // tid ∈ [0, 1, ..., n] where n = sizeof(BES-block)

2 if myVertex.solved then
3 return

4 first ← myVertex.index
5 last ← gAi[tid + 1].index
6 foreach index ∈ first, . . . , last do
7 targetVertex ← gAe[index]
8 mySucc ← gAi[targetVertex]
9 if mySucc.value �= myVertex.type then // type ∨ ≡ 0 and type ∧ ≡ 1

10 break

11 if myVertex.value �= mySucc.value then
12 myVertex.solved ← true

13 myVertex.value ← mySucc.value
14 gAi[tid] ← myVertex
15 fixedPointFound ← false

Array Ai (line 14), and the fixed point flag is set to false indicating that the
fixed point is not yet reached.

Many-Core Optimizations. For the GPU-based implementation we have ex-
perimented with two optimizations.

The first one is the so called “intra-warp fixed point iteration.” It is based on
the observation that all threads within a warp have to load the required data
from global memory into local copies. All operations are performed on the local
copies, which are written back to global memory at the end of the execution
of the warp. This means that updated LHSs do not become visible to other
threads until the next iteration step and, thus, changes can only be propagated
one step per iteration. The intra-warp fixed point iteration is intended to increase
the number of propagations by performing multiple iterations on the equations
bundled in a warp and thereby propagating changes of LHSs within this warp.

The second optimization is an extension to the intra-warp fixed point itera-
tion. It utilizes the GPU’s shared memory, which provides a fast local memory
for single threads or warps, allowing the intermediate storage of data. We use
this shared memory to optimize the execution of the kernel by copying the LHS
variables contained in a RHS from global memory to shared memory. When the
data of a LHS is required by the kernel, the copy in shared memory is utilized
instead of the one in global memory. When the kernel returns, the copy is written
back from shared to global memory. However, the indirection on line 8 poten-
tially requires further LHSs; this data can either be read from global memory as
before or also be copied to shared memory. This reduces access to global memory
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but requires additional load and store operations before and after each thread
invocation.

4 Experimental Evaluation

In this section we experimentally evaluate the scalability of our parallel approach
in its CPU and GPU variants and demonstrate the competitiveness of the GPU
version when compared to the optimized sequential algorithm, using the VLTS
benchmark suite.6 We double-check the correctness of our implementations by
observing that the results obtained from our sequential and parallel algorithms
match those computed by CADP’s sequential “bes solve” tool [24].

To provide an outlook on the generality of our results, we also extend our
evaluation using randomly generated BESs, thus analyzing the influence of the
specific way in which BESs are derived from model checking problems. Fur-
thermore, we evaluate the structure and density of the BESs generated from the
benchmark suite. Besides the run-time based comparison we provide insights into
the specifics of BESs in the context of model checking, i.e., we present heuristics
for the order in which equations are to be solved, which may yield significant
speed-ups for BES resolution in this context.

Benchmark Suite. Our experiments were conducted using the VLTS bench-
mark suite that was compiled within a joint project of CWI7 and INRIA8. It
consists of 40 examples from academia and industry, provided as LTSs with
numbers of states ranging from 289 up to 33,949,609. The four largest examples
of the benchmark were solved for the first time in 2005 [16].

Table 1. μ-Formulae of Properties

Property μ-formula

Deadlock freedom νX.([−]X ∧ 〈−〉true)
Livelock μX.(〈−〉X ∨ νY.(〈τ 〉Y ))

The backgrounds of the benchmark examples vary greatly; thus, different
properties may be checked for individual examples. For our evaluation we use
two representative properties, namely deadlock freedom and livelock, which can
be checked for all examples of the benchmark suite (cf. Table 1 for their for-
malization). For these properties, results are also provided by the authors of the
benchmark, thus allowing a direct verification of the correctness of the results
obtained by our implementations.

The images of some exemplary BESs, as depicted in Fig. 3, show the significant
variance in structure and density of the LTSs provided in the benchmark. The

6 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html
7 http://www.cwi.nl/
8 http://vasy.inria.fr/
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(a) Example 10 (b) Example 22 (c) Example 34 (d) Rnd2

Fig. 3. Visualization of benchmark examples as adjacency matrices

images are visualizations of the adjacency matrices of the respective BESs, with
their origins, i.e., the LTSs’ initial states, displayed on the top left.

In contrast to intuition, our experiments suggest that this information about
structure and density does not usefully correlate with the scalability and/or run-
time performance of our approach. This is the case for the following reasons:
(i) the run-time generally depends on the question whether the property, for
which the LTS is checked, is fulfilled or violated; (ii) our approach does not
favor local propagation of changing variables, but globally propagates all possible
changes during an iteration; (iii) our algorithms perform best in cases that expose
large numbers of concurrent changes rather than sequential chains of changes,
which in addition to a BES’s structure depends on the initial distribution of
terminal values. Unfortunately, none of these factors can be estimated sensibly
nor be extracted from a BES in reasonable time, i.e., when compared to the time
it takes to solve the BES.

Hardware. Our experiments were carried out on different hardware platforms
for (i) the CPU and (ii) the GPU version of the implementation: (i) two intercon-
nected Intel XEON E7-4830 processors @ 2,13 GHz, each with 8 physical cores
and Hyper-Threading enabled (i.e., a total of 32 logical PUs) and 64 GB DDR3
RAM @ 1333 MHz, running Windows 7 64-bit, and (ii) one AMD Phenom II X4
940 processor @ 3,0 GHz, 8 GB DDR2 RAM @ 1066 MHz along with (a) one
NVIDIA GeForce GTX 280 GPU with 1 GB of global memory, 16KB of shared
memory per multiprocessor, providing 240 CUDA cores, and (b) one NVIDIA
GeForce GTX 480 GPU with 1.5 GB of global memory, 48KB of shared memory
per multiprocessor, providing 480 CUDA cores, running Debian 6.0 64-bit on
kernel 2.6.39. Although the systems use different CPU types this fact does not
affect our results since we did not evaluate a hybrid approach but only pure
CPU and GPU versions of the respective algorithms.

Overview. Table 2 provides an overview of the run-times of the following al-
gorithms: (i) the optimized sequential workset-based CPU implementation (the
baseline for our comparison), (ii) the parallel Cilk Plus based CPU implementa-
tion, (iii) the unoptimized GPU implementation without any optimization, (iv)
the GPU implementation with intra-warp iteration, and (v) the GPU implemen-
tation utilizing shared memory. In case of the GTX 280 GPU, we omitted the
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Table 2. Overview of Run-Times for CPU and GPU Implementations [ms]

Algorithm
Benchmark Example Random

10 21 22 31 32 33 34 35 39 Rnd1 Rnd2

CPU
(i) sequential 1 19 18 573 475 737 1 704 901 3891 7801

(ii) parallel 2538 77 611 1564 1786 2764 279 4325 8170 7966 40576

GPU (iii) unoptimized 1336 17 68 217 113 359 51 242 290 350 1840

GTX 280 (iv) intra-warp 104 22 69 320 149 528 52 404 344 493 2594

GPU
GTX 480

(iii) unoptimized 703 6 33 75 46 105 6 98 125 178 992

(iv) intra-warp 40 7 28 109 63 157 6 152 158 248 1391

(v) shared mem 38 40 59 659 341 862 48 190 227 315 1800

results for (iv), the shared memory implementation, since this GPU does not
provide a sufficient amount of shared memory for this optimization. Note that
in the case of parallel CPU implementation we list the best runtimes available
among the numbers of cores that have been utilized.

Because of layouting limitations, we restrict our selection of benchmark ex-
amples in Table 2 to those for which the run-time of the GPU implementation
is sensibly measurable, i.e., larger than 5 [ms]; nonetheless we conducted our
experiments for the entire benchmark suite. The numbering of the benchmark
examples refers to their position in the table provided on the VLTS website,9

which is sorted in ascending order relative to the number of states of the LTS;
thus, Example 10 is vasy 25 25, Example 21 is vasy 166 651, Example 22 is
cwi 214 684, Example 31 is vasy 2581 11442, Example 32 is vasy 4220 13944,
Example 33 is vasy 4338 15666, Example 34 is vasy 6020 19353, Example 35 is
vasy 6120 11031 and Example 39 is vasy 12323 27667. In this naming scheme,
the first number is the number of states divided by 1000, and the second number
is the number of transitions divided by 1000.

Furthermore, all examples in Table 2 are checked for the deadlock freedom
property since only eight of the 40 LTSs contain livelocks. Nonetheless, our
general statements about scalability and competitiveness have been evaluated
and are valid for the entire benchmark suite. To check whether the specific ways
in which BESs were generated for and included in the VLTS benchmark have
an influence on our performance results, we extend our evaluation to randomly
generated BESs. We evaluate a total of five random examples with the number
of states ranging from 1 to 10 million; Rnd1 and Rnd2 are two representatives
illustrating our observations for this class of BESs.

We omit memory consumptions of our implementations in the table, since (i)
our parallel versions operate on a static data structure that is linear in the size
of the input BES (ranging from approximately 90 KB up to 4.5 GB) and (ii) it
is not our aim to evaluate or optimize memory efficiency within the scope of this
paper, especially since all benchmark examples easily fit our systems’ memory.

9 http://cadp.inria.fr/resources/benchmark bcg.html#section-5
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Multi-core Performance. The results in Table 2 clearly show that our multi-
core implementation is outperformed significantly by the optimized sequential
baseline. The reason for this is the low total number of parallel PUs (32 log-
ical cores) and, thus, the computational overhead of the fixed point iteration
is too large when compared to the amount of productive work and cannot be
compensated by parallel processing power. This observation is supported by the
two graphs in Fig. 4, which show the overall scalability of our CPU-based ap-
proach for an increasing number of parallel workers. This result is in accordance
with [27] and extends their results to our much larger benchmark suite.
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(a) Deadlock freedom (b) Livelock

Fig. 4. Scalability of our multi-core implementation

The data for the two graphs in Fig. 4 is based on the median values of 10 runs
for each of the 40 benchmark examples. It is evaluated separately for the two
properties: deadlock freedom (Fig. 4(a)) and livelock (Fig. 4(b)). The average
scalability (avg) is compiled from all 40 benchmark examples and is below linear
for both properties. However the scalability is observable for up to eight workers,
which corresponds to the number of physical cores of one CPU in our system. For
the sake of completeness we also include the standard deviation for the average
scalability, along with maximum (max) and minimum (min) scalability.

It is important that the shape of the two graphs, which suggests better scala-
bility for LTSs that have been checked for the no deadlock property, is affected
by the fact that there are 20 examples containing deadlocks, while only 8 exam-
ples contain livelocks. In the case of the trivial examples, i.e., those that do not
contain deadlocks/livelocks, our algorithm needs to perform only one iteration,
which has significant impact on scalability.

The super-linear speed-up in Fig. 4(a) can be explained by the parallel execu-
tion of workers. As the Cilk Plus framework may schedule the evaluation order
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of equations differently from the order in the BES, this may lead to a faster
propagation of updated LHSs, requiring less iterations and thus result in the
seemingly above linear boost in performance.

Many-Core Performance. The evaluation of our many-core implementation
is aimed more at the competitiveness of our approach when compared to the op-
timized sequential baseline than at its scalability. Indeed, the scalability analysis
is more difficult than for the multi-core implementation because we had to use
different GPU devices that are not comparable with respect to some important
specifications. Not only did the number of CUDA cores double from the GTX
280 to the GTX 480, but also the clock rate and the available amount of memory
increased significantly. For this reason we did not evaluate the scalability aspect
beyond the scope provided in Table 2, which shows a significant boost in per-
formance for the GTX 480. Further evaluations of scalability, e.g., on clusters of
GPUs, are subject to future work.

The main limitation of the GPU parallelization is the length of the chain of
propagations of LHS values. Example 10 in the benchmark suite contains an
artificially long chain of dependencies from the initial state to the last state
(cf. Fig. 3(a)). For this example, the number of iterations for the unoptimized
version of our many-core implementation is equal to the number of states , yet
the example is a prime candidate to benefit from the intra-warp iteration as
the changes can be propagated ideally within the equations of a warp. However,
the remaining benchmark examples do not have such an extreme structure and,
therefore, the intra-warp iteration, on average, does not provide any advantage
but rather induces overhead as the comparison of run-times in Table 2 shows.

Since the efficiency of our shared memory optimization is tightly coupled to
the intra-warp iteration, it can only improve the performance of the many-core
implementation in those cases in which the intra-warp iteration actually works.
Due to this reason, the results for this optimization in Table 2 are, not surpris-
ingly, even worse than for the intra-warp iteration because the transfer times
from and to shared memory degrade the run-time performance even further.
Moreover, in order to use the shared memory, the required data (i.e., the part of
a BES corresponding to a block) has to fit the limited size of the GPUs shared
memory. The size of the data that has to be stored in the shared memory is
given by the block size, the number of vertices in one block and the number of
their successors. In case the average out-degree (i.e., the average number of RHS
variables per equations) is high, we have to decrease the group size. This can
lead to underutilization or low occupancy of the individual multiprocessors and,
thus, significantly reduces the performance of our algorithm.

As documented in Table 2, our GPU implementation of BES resolution pro-
vides significant speed-ups for most cases of the benchmark examples and espe-
cially for the randomly generated BESs. Surprisingly, the GPU implementation
with no optimizations yields the best results, since in most cases the structure
of the inspected BESs does not allow one to benefit from our optimizations.

Ordering Heuristics. Table 3 provides a comprehensive overview of the total
number of iterations for those examples of the benchmark, which have been
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Table 3. Impact of Heuristics [Total Number of Iterations]

Heuristic
Benchmark Example

4 5 7 10 15 16 18 19 21 22 25 27 30 31 32 33 35 37 38 39

Original 64 19 7 25219 19 33 23 18 33 208 24 7 56 32 23 34 33 20 29 29

Vectorized 64 19 7 25219 23 37 23 19 37 213 24 7 56 37 25 37 34 20 29 29

Reverse 2 4 3 2 7 8 8 5 8 8 10 2 3 7 4 6 4 5 5 5

Random 20 9 5 25219 10 12 6 11 11 63 7 3 6 8 5 8 16 10 9 9

checked for deadlocks and for which the initial approximation is not equal to the
final solution, i.e., the total number of iterations is larger than one. Even though
the available number of PUs increases with each hardware generation, it is still
far from the point where a full iteration step can be computed fully in parallel.
Thus, the processing order of equations within a block has a significant influence
on the total number of iterations needed to compute the fixed point. Yet, our
evaluation yields an interesting insight for an ideal “vectorized” parallelization,
assuming that a fully parallel iteration step is possible; we model this by delaying
the visibility of a changed LHSs until the next iteration step. Note that the lack
of a suitable hardware architecture allowing such fully-parallel processing is the
reason why we list the number of iterations instead of run-times in Table 3.
Naturally the number of iterations is proportional to the run-times.

Our evaluation shows that this “Vectorized” approach does not increase the
total number of iterations significantly, when compared to the “original” order-
ing, where equations are evaluated in their given order and changes of LHSs are
directly visible in the following computations of the iteration (cf. Table 3). This
result demonstrates that the penalty for a fully parallel computation is negligible
regarding the total number of iterations needed to reach the fixed point.

As the application of advanced heuristics would require preprocessing of the
data – causing a potentially high computational overhead – we restrict our evalu-
ation to two simple cases that do not introduce any overhead. The first heuristics
is called “Reverse” in Table 3 and takes the reverse order of equations within a
BES-block, as proposed in [27]. It yields a significant improvement with respect
to the total number of iteration needed to compute the fixed point (cf. Table 3).
Yet, according to our observations, this heuristics only works for the examples
generated from the benchmark’s LTSs, but not for randomly generated BESs.
This could be due to the way in which state spaces are enumerated in the CADP
toolset, which in turn determines the order of equations in the VLTS examples.

The second heuristics, called “Random” in Table 3, is the randomized evalu-
ation of equations within a BES-block. In our observations, this heuristics leads
to a decrease in the number of iterations needed to solve a BESs when com-
pared to the given (“Original”) ordering. This result is of practical relevance as
our parallel implementations rely on parallelizations in which the order of RHS
evaluations is not under our control, but is determined by the runtime environ-
ment of CUDA and Cilk Plus. Thus, we expect an additional performance boost
rather than a degradation, due to the parallelization frameworks.
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5 Conclusions and Future Work

We implemented an approach to the parallel resolution of BESs on multi- and
many-core systems, and evaluated them with respect to scalability and run-time
performance in comparison to an optimized sequential algorithm. Our measure-
ments confirm the scalability results of [27] for our multi-core implementation,
yet this implementation’s overall performance is not competitive when com-
pared to our optimized sequential implementation. In contrast, the utilization
of many-core hardware, not considered in [27], yields a significant speed-up and
outperforms the optimized sequential implementation for most instances of the
benchmark by almost one order of magnitude. Furthermore, the scalability of
our many-core approach with respect to increasing numbers of PUs was demon-
strated by us by (i) comparing the multi-core and many-core implementations
and (ii) evaluating the many-core implementation for two GPU cards with 240
and 480 CUDA cores, respectively.

Future work will include further evaluation of the scalability results of the
many-core implementation, e.g., by its distribution over a cluster of GPUs. Since
BESs are not restricted to model checking, it is also promising to evaluate input
BESs from other applications, such as data-flow analyzes in optimizing compil-
ers [10]. Furthermore, the recently proposed many-core parallelization of graph
algorithms [25] should be evaluated with respect to its suitability and potential
impact on our work.
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5. Barnat, J., Brim, L., Ročkai, P.: Scalable Multi-core LTL Model-Checking. In:
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Alternation-Free μ-Calculus. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS,
vol. 2318, pp. 128–147. Springer, Heidelberg (2002)

8. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)



Parallel Resolution of Boolean Equation Systems 97

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
10. Gallardo, M.d.M., Joubert, C., Merino, P.: On-the-Fly Data Flow Analysis Based

on Verification Technology. In: COCV. ENTCS, vol. 190, pp. 33–48 (2007)
11. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook

of Theoretical Computer Science, vol. B, ch. 16, pp. 995–1072. Elsevier (1990)
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Abstract. We present several methods to improve the run times of
probabilistic model checking on general-purpose graphics processing
units (GPUs). The methods enhance sparse matrix-vector multiplica-
tions, which are in the core of the probabilistic model checking algo-
rithms. The improvement is based on the analysis of the transition
matrix structures corresponding to state spaces of a selection of examples
from the literature.

Our first method defines an enumeration of the matrix elements
(states of the Markov chains), based on breadth-first search which can
lead to a more regular representation of the matrices. We introduce
two additional methods that adjust the execution paths and memory
access patterns of the individual processors of the GPU. They exploit
the specific features of the transition matrices arising from probabilis-
tic/stochastic models as well as the logical and physical architectures of
the device.

We implement the matrix reindexing and the efficient memory access
methods in GPU-PRISM, an extension of the probabilistic model checker
PRISM. The experiments with the prototype implementation show that
each of the methods can bring a significant run time improvement -
more than four times compared to the previous version of GPU-PRISM.
Moreover, in some cases, the methods are orthogonal and can be used in
combination to achieve even greater speed ups.

1 Introduction

Probabilistic model checking (e.g. [18,2,3]) was introduced for the analysis of
systems that contain inherently probabilistic components. It has been applied
to a broad spectrum of systems, ranging from communication protocols, like
FireWire and Bluetooth, to various biological networks.

Unlike in standard model checking, in probabilistic model checking the cor-
rectness of the verified properties is quantified with some probabilities. Such
properties are expressed in special logics which are extensions of traditional tem-
poral logics. As a result, probabilistic model checking algorithms overlap with
conventional ones in the sense that they require computing reachability of the
underlying transition systems. Still, there are also important differences because
numerical methods are used to compute the probabilities.
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Modern General Purpose Graphics Processing Units (GPUs) are no longer
dedicated only to graphics applications. Instead a GPU can be seen as a general
purpose manycore processor. The idea to use GPUs for model checking in gen-
eral, and for probabilistic model checking in particular, was put forth in [8,9].
The main goal was to speed up the numerical components of the algorithms.
More precisely, it turned out that one can harness the massively parallel process-
ing power of GPUs to accelerate linear algebraic operations, like sparse matrix
vector multiplication (SpMV) and its derivatives, which are at the core of the
algorithms. Significant speed ups, often of more than ten times in comparison
to the sequential analogues, can easily be achieved.

In this paper, we describe three novel methods to improve SpMV and re-
lated algorithms. The methods exploit the specific structures of the matrices
that arise in probabilistic model checking. The matrices contain transition prob-
abilities for the underlying Markov chains, which are actually the state spaces
of the probabilistic models. Therefore we first present an overview of the tran-
sition matrices/state spaces based on the examples that occur in the standard
distribution of the probabilistic model checker PRISM [17].

The efficiency of the GPU computations crucially depends on the usage of the
various types of memory that are on the device. The difference in speed between
various memories can be up to 100 times. Therefore, we strive to achieve so called
coalesced memory access, i.e. the active processors of the GPUs fetch data from
addresses which are physically close to one another. It turns out that to obtain
such efficient memory access patterns it is advantageous to have elements of the
matrix grouped as close as possible to the main diagonal. To achieve this we
develop a heuristic that assigns indices to the states of the Markov Chains based
on breadth-first search.

We also present two new SpMV methods, each consisting of a new matrix
storage format and accompanying SpMV algorithm. These are geared towards
maximizing coalesced memory access, in particular for matrices stemming from
probabilistic model checking problems.

In the first method, each thread processes one row of the matrix. The al-
gorithm groups the threads in segments of rows that conform nicely with the
logical and physical architecture of the GPU. The specially tailored storage for-
mat ensures efficient access to contiguous memory locations. The second method
also groups the rows in segments, with the difference that each row is pro-
cessed by two threads working in parallel. Again, its specific storage format
ensures coalesced memory access of all threads accessing a row in the same
segment.

We implemented the new methods in GPU-PRISM [10], an extension of the
probabilistic model checker PRISM. Each of the efficient memory access methods
can achieve runtime improvements with regard to the previous version of GPU-
PRISM of at least factor 2, and improvements of factor 4.5 have been recorded
too.
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2 GPU Preliminaries

Harnessing the power of GPUs is facilitated by specific Application Programming
Interfaces. In this paper, we assume a concrete NVIDIA GPU architecture and
the Compute Unified Device Architecture (CUDA) interface [13]. Nevertheless,
the algorithms that we present here can be straightforwardly extended to a
more general context, i.e., for an architecture which provides massive hardware
multithreading, supports the single instruction multiple thread (SIMT) model,
and relies on coalesced access to the memory.

CUDA is an interface by NVIDIA which is used to programGPUs. CUDA pro-
grams are basically extended C programs. To this end CUDA features extensions
like: special declarations to explicitly place variables in some of the memories
(e.g., shared, global, local), predefined keywords (variables) containing the block
and thread IDs, synchronization statements for cooperation between threads, run
time API for memory management (allocation, deallocation), and statements to
launch functions on GPU. In this section we give only a brief overview of CUDA.
More details can be found in, for instance, [8].

CUDA Programming Model. A CUDA program consists of a host program which
runs on the Central Processing Unit (CPU) and a CUDA kernel. The kernel,
which describes the parallel part of the program, is executed many times in
parallel by different threads on the GPU device, and is launched from the host
program, which comprises the sequential part. Each GPU thread executes the
same code. GPU threads are grouped in blocks. Each thread block is uniquely
identified by its block ID and analogously each thread is uniquely identified by
its thread ID within its block. The dimensions of the thread and the thread
block are specified at the time of launching the kernel. The grid can be one- or
two-dimensional and the blocks are at most three-dimensional.

CUDA Memory Model. Threads have access to different kinds of memory. Each
thread has its own on-chip registers and off-chip local memory, which is quite
slow. Threads within a block cooperate via shared memory which is on-chip and
very fast. If multiple blocks are executed in parallel then the shared memory is
equally split between them. All blocks have access to the device memory which is
large (up to 6GB), but slow since, like the local memory, it is not cached. The host
(CPU program) has read and write access to the global memory (Video RAM, or
VRAM), but cannot access the other memories (registers, local, shared). Thus,
the global memory is used for communication between the host and the kernel.
CUDA Execution Model. A GPU performs computations in SIMT (Single In-
struction Multiple Threads) manner, which means that each thread is executed
independently with its own instruction address and local state (registers and
local memory). The threads of a block are executed in groups of 32 called warps.
The threads in a warp execute instructions in a synchronous manner. These
instructions can be different, but if they are all the same, the runtime is pos-
itively affected. Hence, our goal is to avoid execution divergence, i.e., to make
the threads perform the same instructions as long as possible. Memory accesses
of the threads in a single warp are also done simultaneously whenever possible,
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and if these accesses can be grouped together physically, i.e. if the accesses are
coalesced, this greatly improves the runtime. For this reason, achieving as much
coalesced memory access as possible in SpMV is the main objective throughout
this paper. We developed algorithms where the memory accesses of threads in a
warp can be grouped together.

3 Structures of Transition Probability Matrices and BFS
Reindexing

To exploit the specifics of the transition matrices that arise in probabilistic model
checking, we analyze some case studies from the literature. In particular, we con-
sider the examples of probabilistic and stochastic models that are part of the
standard distribution of PRISM. In the literature probabilistic and stochastic
model checking often are used interchangeably. Usually a more clear distinction
is made by relating the adjectives probabilistic and stochastic to the underlying
model: discrete- (DTMC) and continuous-time Markov chain (CTMC), respec-
tively. For the sake of simplicity in this paper our focus is on discrete-time
Markov chains (DTMC), so we opted for consistently using the qualification
“probabilistic”. Nevertheless, the concepts and algorithms that we present here
can be applied as well to continuous-time Markov chains. For the time being we
do not consider models of the Markov decision processes type.

Since PRISM is probably the most widely applied probabilistic model checker,
the examples that we consider give a fair representation of models that are used in
applications. There are models from different areas, like probabilistic algorithms,
queuing theory, chemistry, and biology.

Our first goal is to structurally examine the state spaces. Therefore, we make
plots of the corresponding transition probability matrices. The existence of a
probability greater than zero, i.e., a transition in the underlying Markov chain
represented by the matrix element, is represented with a dot. The plots of the
transition matrices are given on the left hand side of each pair of plots in Figures 2
and 3. Such plots can help identifying patterns in the elements which could be
exploited in the algorithms.

In PRISM each state is given a number between 0 and n − 1, where n is
the number of states in the underlying Markov chain. The plots on the left-
hand side are based on the original indexing of the states as it is produced by
(GPU-)PRISM. We explain below the plots on the right-hand side.

One can observe that there is often some regularity in the distribution of the
non-zero elements. In most of the examples one can notice diagonal grouping
of the elements. The diagonals are either parallel to the main matrix diagonal
or they close some angle with it. The most notable in that regard are cluster,
tandem, cell, and molecules, but also in the other examples (except herman)
the diagonal structure is prevailing. The most remarkable of all is the matrix for
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herman which has some sort of “fractal” structure, reminiscent of the Sierpinski
carpet or similar examples.1

3.1 Breadth-First Search Reindexing of the States

A diagonal grouping, similar to the one exhibited by the PRISM examples, has
been exploited before in algorithms for SpMV to improve the runtimes [6,7,20].
This was based on the advantageous memory access pattern which arises from
the distribution of the non-zero elements. Because of the diagonal structure,
threads that belong to the same block access locations in the main memory
which are close to each other. In the coalesced access the threads (preferably
of the same block) access consecutive memory locations. This minimizes the
number of accesses that are needed to provide data to all threads in the block.
In the ideal case, all necessary data can be fetched simultaneously for all threads
in the block.

For illustration, consider matrix M given in Fig. 1a in which the non-null and
null elements are denoted with • and ◦, respectively.

0
1
2
3
4
5

0 1 2 3 4 5⎛
⎜⎜⎜⎜⎜⎜⎝

• • ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦
◦ • • • ◦ ◦
◦ ◦ • • • ◦
◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • •

⎞
⎟⎟⎟⎟⎟⎟⎠

thread ID 0 1 2 3 4 5
iteration 0 [ 0 0 1 2 3 4 ]
iteration 1 [ 1 1 2 3 4 5 ]
iteration 2 [ ∗ 2 3 4 5 ∗ ]

(a) (b)

Fig. 1. (a) An example of a diagonally shaped matrix M . (b) A memory access pattern
corresponding to the matrix.

We want to multiply M with a vector x. For simplicity, suppose that we use
a kernel with a one dimensional grid. The grid consists of one block that con-
tains six threads. Further, let each thread process one row in the multiplication
algorithm by performing the inner product of the row with the vector. We as-
sume that thread IDs range from 0 to 5 and that thread i processes row i, for
0 ≤ i ≤ 5.

During the execution, we can observe the memory access pattern given in
Fig. 1b. The top row of the pattern contains the thread IDs. The rest of the
rows represent the access to the vector elements during the computation of the
matrix vector product. Each of these rows corresponds to an iteration. In each
row, the entry in a column corresponding to thread i contains the index of

1 It would be worth investigating where this structure comes from and if there are
also other examples of Markov chains, not necessarily in probabilistic model check-
ing, that have this kind of a “fractal” structure. Considering that the fractals have
been used for image compression, maybe one could develop an efficient compact
representation of the transition matrices.
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the element of vector x that is accessed in the iteration corresponding to the
row. The special entry “*” denotes that the corresponding thread accesses no
element during the iteration. In one iteration the thread k, corresponding to row
k, computes the product of some non-zero element M [k, l] of row k with element
x[l]. For example, during iteration 0, both thread 0 and thread 1 access x[0]. For
2 ≤ i ≤ 5, thread i uses x[i− 1]. Element x[5] is not used during iteration 0. The
other rows of the pattern are interpreted in an analogous way. One can see that
in most of the cases threads with consecutive ID numbers access consecutive

Fig. 2. Plots of transition matrices of models from the PRISM standard distribution.
For each model two plots are given: the transition matrix produced by PRISM (left)
and the transition matrix after the BFS reindexing (right). The numbers in the model
names denote the values of the model parameters in the order they are asked by PRISM.
The model names are (from left to right and top to bottom, respectively): cluster,
tandem, cell, molecules knac, polling, dice, firewire impl, and embedded.
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indices – and therefore consecutive memory locations – that correspond to the
elements of vector x.

However, the access to the memory locations corresponding to the matrix
elements is not contiguous. As we show in Section 4, contiguous access can be
achieved to a significant extent by using an appropriate memory storage format
for the matrix.

Considering the potential benefits of the diagonal structure, a natural idea
is to try to permute the indices of the matrix such that a diagonal structure
is obtained. The approach that we use for that purpose is to re-enumerate the
states of the underlying graph of the Markov chain in breadth-first search (BFS)
order. The rational behind this is to exploit the locality of the Markov chains,
i.e., the fact that most of the states are connected to their immediate neighbors
and that there are not too big transition “jumps” between states. This would
ensure that the differences between the row and column indices of the non-zero
elements of the matrix stay within a predefined interval, i.e., that they stay
within some relatively narrow strip around the main diagonal.

Fig. 3. (continued) Plots of transition matrices of models from the PRISM standard
distribution. For each model two plots are given: the transition matrix produced by
PRISM (left) and the transition matrix after the BFS reindexing (right). The numbers
in the model names denote the values of the model parameters in the order they
are asked by PRISM. The model names are (from left two right and top to bottom,
respectively): kanban, brp, two dice, leader synch, fms, and herman.



Improving GPU Sparse Matrix-Vector Multiplication 105

The plots of the matrices after the BFS reindexing are given on the right-hand
sides in Figs. 2 and 3. At least in two cases (brp and leader) the structure of
the matrix has been “diagonalized”, in the sense that different lines/diagonals
are brought closer to each other. In the case of leader, the original “staircase”
structure is transformed into a line parallel to the main diagonal. The matrices
of kanban and two dice have become more compact, in the sense that there
are fewer “islands” in the state space. Such a grouping of the indices positively
affects memory access in SpMV, similar to clustering around the main diagonal.
Matrices such as cluster, tandem, cell, and polling, which already had a
diagonal structure, maintained it. Finally, the “fractal” example, herman, stays
the same under reindexing, as well as the small example dice.

4 Coalescing Matrix Data Access

As we saw in the previous section, by grouping the non-zero elements of the
matrix in diagonal shapes, a contiguous access to the elements of the vector is
made possible. However, to actually achieve this in practice, the matrix should
be stored in a suitable way in the memory of the GPU. Once we have convenient
storage formats, corresponding algorithms must be developed that can efficiently
exploit these new data structures. In this section, we present two new storage
methods and their accompanying algorithms.

4.1 Sparse Matrix Representation

The storage size of a matrix is O(n2), where n is the number of rows. Sparse ma-
trices, however, can be significantly compressed. Matrix compression is a stan-
dard technique used for probabilistic model checking. For this, special matrix
storage formats are used. In this section, we build on the so-called modified
sparse row/column format (MSR) [16,5]. We illustrate this format with the ex-
ample in Fig. 4.

The non-zero elements of the matrix are linearly stored in the array non-zeros.
Elements belonging to the same row are stored in consecutive cells. The

0
1
2
3
4
5
6

0 1 2 3 4 5 6⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a b 0 0 0 0
0 0 c d 0 0 0
0 0 0 0 e 0 0
f 0 0 g 0 0 0
0 0 0 0 h 0 0
i j 0 0 0 0 0
0 0 k 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

row-starts 0 2 4 5 7 8 10 11

cols 1 2 2 3 4 0 3 4 0 1 2
non-zeros a b c d e f g h i j k

Fig. 4. An example of the MSR storage format. The letters denote the non-zero ele-
ments of the matrix. On the right-hand side is the MSR representation of the matrix.
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beginning of each row is given by the array row-starts. Array cols contains the
column indices of the corresponding elements in non-zeros.

Algorithm 1 is the basic kernel of an SpMV algorithm that is executed by each
of the threads. This kernel was developed based on the sequential implementation
of PRISM (cf. [8,9]).

In this paper, we only present the kernels, i.e., the parts of the algorithms
that are executed on the GPUs, since the host program, the CPU parts, are
fairly standard. A generic host program can be found in its integral form in our
previous papers on GPU model checking [8]. Such a host program can be used
as is for all algorithms presented in this section.

Algorithm 1. Standard SpMV Kernel for MSR Matrices

Require: row-starts, cols, non-zeros, n, x, x′, BlockId, BlockSize, ThreadId
1: i := BlockId · BlockSize+ ThreadId;
2: if (i < n) then
3: d := 0;
4: l := row-startsi; // start of row
5: h := row-startsi+1; // end of row
6: for (j = l; j < h; j ++) do
7: d := d+ non-zerosj · xcolsj ;
8: x′

i := d;

Algorithm 1 assumes the MSR memory storage format. Therefore, the input
is an MSR representation (in three separate arrays) of a matrix, followed by the
matrix size n, the vector x, as well as the GPU bookkeeping IDs, i.e. the ID of
the current thread and the block to which the thread belongs, and the size of
each block. Vector x′, which is the output of the algorithm, is the result of the
matrix-vector multiplication.

In line 1, the ‘absolute’ thread ID is computed since ThreadId is relative to the
block. Variable i is used to determine the row that is processed by the thread.
Line 2 is just a check whether this row number is within the matrix bounds.
Variable d contains the temporary value of the inner product sum of the row i
with vector x. In lines 4 and 5, we determine the start and the end, respectively,
of the non-zero elements in non-zeros belonging to the designated row. The
iteration in lines 6 and 7 computes the inner product which is stored in d and
eventually assigned, in line 8, to the i-th element of the result x′.

A drawback of Algorithm 1 in combination with the MSR format is that, when
the former is executed by the threads of a given block in parallel, the elements of
array non-zeros, which are accessed by the threads, are not stored in consecutive
memory locations. In the above example, assume a block size 4. Threads 0, 1, 2,
and 3 of block 0, in their first iteration, need access to the elements of non-zeros
which are the first elements of the corresponding rows. These are the elements
a, c, e, and f , (at positions 0, 2, 4, and 5), respectively. As a result of such a
non-contiguous access, several cycles might be needed to fetch all elements of
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non-zeros. In contrast, if the elements were in consecutive positions, i.e., if they
could have been accessed in a coalesced way, just a single access cycle would
have been sufficient.

Note that this problem occurs also with the diagonally shaped matrices dis-
cussed in the previous section. Although the elements of x, which are processed
in the same iteration by the threads of the same block, can be accessed in a
coalesced way, this is still not the case with the non-zeros elements, i.e., with
the standard MSR format.

4.2 A Full-Warp SpMV Algorithm

To coalesce the memory accesses in SpMV, we focus on the fact that the GPU
groups the launched threads into warps. If threads in the same warp can access
the memory in a coalesced way, data fetching will be done for all those threads
in a single cycle.

To achieve coalesced access of the elements in a matrix within a warp of
threads, we reorder the MSR representation of the matrix such that the elements
accessed in a warp are next to each other. First of all, to explicitly group the
threads in warps, we introduce a new array named seg-starts, which partitions
the matrix into segments, each containing as many consecutive rows as the warp
size (apart from the last segment, possibly). Say the warp size is 4, then the
example given earlier will now be rewritten as given below. The double vertical
lines indicate the warp boundaries. Note that some “dummy” elements need to
be added to keep the elements of the same row on equidistant intervals. However,
as we will see later in the experiments, this increase of memory is usually of no
significance, and it is amply compensated by improved runtimes.

seg-starts 0 8 14

cols 1 2 4 0 2 3 - 3 4 0 2 - 1 -
non-zeros a c e f b d 0.0 g h i k 0.0 j 0.0

To exploit the modified matrix storage format, we introduce Algorithm 2.
The new algorithm is a modification of Algorithm 1 and features the same input
and output, except for the fact that the matrix dimension n is replaced by two
numbers ns and nrem . The former is the predefined number of segments, i.e. n
divided by the number of threads in a warp, whereas nrem is the number of rows
in the last segment. The last segment does not necessarily have the same size as
the other segments, depending on whether or not n is divisible by the warp size.
If we assume for our running example matrix that we have just one block and a
warp size 4, then this will result in ns = 2 and nrem = 3.

Like in Algorithm 1, we begin by computing the ‘absolute’ thread ID, which
also determines the index of the processed row. Besides that, in line 2 the segment
ID segid is computed. As mentioned above, for our running example we will have
two segments. In line 3, lane is computed which is an index of the thread within
the warp, or in our case, since the warp and segment size are the same, it is also
an index within the segment. In line 4 the matrix dimension n is recovered from
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Algorithm 2. SpMV Kernel for MSR Matrices reordered into warp segments

Require: seg-starts, non-zeros, ns, nrem , x, x′, BlockId, BlockSize, ThreadId
1: i := BlockId · BlockSize+ ThreadId;
2: segid := i/WarpSize; // segment index
3: lane := ThreadId & (WarpSize− 1); // thread index in warp
4: n = (ns − 1) ·WarpSize+ nrem ;
5: if (i < n) then
6: d := 0;
7: if segid < ns − 1 then // determine segment size
8: skip := WarpSize;
9: else
10: skip := nrem ;
11: l := seg-startssegid; // start of segment

12: h := seg-startssegid+1
; // end of segment

13: for (j = l + lane; j < h; j = j + skip) do
14: d := d+ non-zerosj · xcolsj ;
15: x′

i := d;

the input values ns and nrem . The next difference compared to Algorithm 1 is in
lines 7-10. This is because, unlike in the original MSR format, in the new format
the non-zeros elements, belonging to the same row (and therefore are accessed
by the same thread), are not stored contiguously. Instead they are dispersed
regularly in the non-zeros array, i.e., separated by equal skip intervals. Note
that in line 8 the skip for the last segment is set to nrem , to take the possibly
different size of the last segment into account. The start and end of the for loop
are computed in lines 11 and 12, respectively, and they coincide with the start
and end of the segment containing row i. The for loop in line 13 is started with
offset lane to take into account the relative position of the thread within the
segment and the loop counter j is increased with step skip to ensure that each
thread i fetches the elements of row i.

One can see that for our running example with one block and two segments
of size 4, threads 0, 1, 2, and 3 of the first segment will access in the first
iteration through the for loop the first four elements of non-zeros, a, c, e, and
f , respectively, i.e. the first elements of rows 0, 1, 2, and 3.

4.3 A Half-Warp SpMV Algorithm

The same coalescing approach can be used to obtain a matrix representation
supporting multiple threads per row. If we set the segment size to half the warp
size, assigning a warp of threads to each segment allows us to use two threads per
row. This should be taken into account when rewriting the MSR representation
of a matrix, in order to ensure that the elements of rows in a warp are grouped
in pairs, as shown in the following example:
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seg-starts 0 4 8 12 14

cols 1 2 2 3 4 - 0 3 4 - 0 1 2 -
non-zeros a b c d e 0.0 f g h 0.0 i j k 0.0

Algorithm 3. SpMV Kernel for MSR Matrices reordered into half warp seg-
ments
Require: seg-starts, non-zeros, ns, nrem , x, x′, BlockId, BlockSize, ThreadId
1: shared volatile double shared[ThreadsPerBlock/2]; // to store results
2: i := BlockId · BlockSize+ ThreadId;
3: segid := i/WarpSize; // segment index
4: lane := ThreadId & (WarpSize− 1); // thread index in warp
5: row := i/2 // row id
6: n = (ns − 1) · (WarpSize/2) + nrem ;
7: if (row < n) then
8: d := 0;
9: if segid < ns − 1 then // determine segment size
10: skip := WarpSize;
11: else
12: skip := nrem · 2;
13: l := seg-startssegid; // start of segment

14: h := seg-startssegid+1
; // end of segment

15: for (j = l + lane; j < h; j = j + skip) do
16: d := d+ non-zerosj · xcolsj ;
17: if lane % 2 then // determine thread id in row
18: shared[ThreadId/2] := d;
19: if !(lane % 2) then // accumulate results
20: x′

row := d+ shared[ThreadId/2];

Corresponding to the new storage format is the half-warp based Algorithm 3.
This algorithm requires the same data as its full-warp counterpart, except that
it is assumed that the matrix is stored in the “half-warp” storage format Algo-
rithm 2. In line 1, array shared, which resides in the shared memory, is defined.
Recall that the shared memory is accessible by all threads that belong to the
same block and it is around two orders of magnitude faster than the main GPU
memory in which both the matrix and the vector are stored. In this algorithm,
the inner product of one row with the vector is done by two threads, so the final
result should be the sum of the two partial sums produced by each of the thread.
This requires communication between the threads assigned to the same row, and
the shared array is used for this purpose.

The assignments in lines 2-4 are the same as in Algorithm 2, only this time,
since two threads are processing one row, i does not correspond to the row
index. We compute the latter in line 5, such that two threads are assigned to
each row. The lines 6-16 are as in Algorithm 2, the only subtlety being that the
segment size is halved, and the skip for the last segment is set to nrem · 2. The
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main difference with Algorithm 2 is in lines 17-20. This piece of code actually
checks if lane, the index of the thread within the segment, is even or odd. If the
index is odd, then the end result (partial sum of the inner product) is saved in
shared at the position corresponding to the row. Otherwise, the end result for
the row is produced by adding the partial result from shared (of the other thread
processing the same row) to the partial result obtained by this thread. There are
no race conditions when accessing shared, since the threads in a warp execute
their instructions in a synchronous manner, so the writing to shared is strictly
done before the reading starts.

Again, one can see that the algorithm in combination with the matrix storage
ensures coalesced accesses to the matrix elements of the threads within a segment.

5 Experimental Results

The BFS reindexing as well as the half and full-warp methods were implemented
in GPU-PRISM 4.0 [10],2 an extension of the model checker PRISM version 4.0.
We conducted a number of experiments with our implementations on a 64-bit
computer running Ubuntu 10.10 with CUDA version 4.1, both the Software
Development Kit and the driver. It runs on an AMD Athlon(tm) 64 X2 Dual-
Core Processor 3800+ running at 2 GHz with 4 GB RAM, and has an NVIDIA
GPU GeForce GTX 480 with 1.5 GB global memory and 480 cores running at
1.4 GHz. As block size, we used 512 threads.

The data of the experiments were both represented in MSR format, and in
the special compact MSR (CMSR) format [16], which was specifically designed
to efficiently store matrices representing probabilistic models. These matrices
tend to be not only sparse, but also contain a relatively small number of distinct
values. This is exploited in CMSR by keeping these values in a separate array,
and storing pointers to these values, instead of the values themselves, in the
non-zeros array. In [16], it is remarked that besides memory benefits, CMSR
also tends to speed up the computations, due to caching effects. Intuitively, in
the GPU setting, the use of the CMSR format instead of the MSR format reduces
the potential for coalesced memory access; the best one can do is reorder the
pointers to the values, not the values themselves. Since CMSR is used by default
in PRISM, and SpMV on a CPU with the CMSR format usually outperforms
SpMV with MSR, it is crucial that we test the efficiency of the half- and full-warp
methods with CMSR, as well.

All models that we used in our experiments were taken from the standard
distribution of PRISM. Table 1 shows the common characteristics of the experi-
ments. The first and the second column, respectively, contain the name and the
instance (depending on the parameter values) of the model. The third column
denotes the number of the property in the property file that comes with each
model. The last two columns give the number of reachable states and the number
of iterations required to solve the system of linear equations represented by the
combination of the model and the property to check, using the Jacobi method.

2 http://www.win.tue.nl/~awijs/software.html

http://www.win.tue.nl/~awijs/software.html
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Table 1. Information on the protocol properties

Model Inst. Prop. n Iterations

herman 15/5 3 32,768 245

cluster 320 1 3,704,340 5,107

cluster 464 1 7,776,660 23,932

tandem 1,023 1 2,096,128 16,326

tandem 2,047 1 8,386,560 24,141

kanban 5 1 2,546,432 663

fms 7 1 1,639,440 1,258

fms 8 1 4,459,455 1,438

polling 17 4 3,342,336 4,732

polling 18 4 7,077,888 4,880

Table 2 presents the results obtained when using standard GPU SpMV on
both the original MSR matrices, as produced by PRISM, and the BFS-reindexed
ones. As in the previous table, the first two columns give the name and instance
of the model. The next column gives the consumed memory which is the same in
both cases, since the data storage format is unchanged. Columns 4 and 5 contain
the times with the PRISM and reindexed matrix, respectively. The last column
gives the speed up factor which is obtained by dividing the original time with
the time obtained with the reindexed matrix.

Table 2. Performance of standard SpMV on MSR and BFS-reindexed MSR data

Model Inst. mem. orig. time +BFS time Factor

herman 15 165 15.50 12.46 1.24

cluster 320 305 45.45 44.79 1.01

cluster 464 642 440.16 443.06 0.99

tandem 1,023 139 39.56 43.91 0.90

tandem 2,047 559 228.18 255.57 0.89

kanban 5 347 14.78 15.34 0.96

fms 7 198 15.18 15.08 1.01

fms 8 560 52.14 50.28 1.04

polling 17 295 77.25 66.21 1.17

polling 18 646 184.12 160.77 1.15

In most of the cases there is some speed up which is probably due to the
coalesced access to the vector elements. On the other hand, the best result is
achieved for an instance of herman, which has the ‘fractal’ structure and it is
invariant under the reindexing. This could be due to the fact that during the
reindexing, the matrix and the correspondingly permuted vector are copied to
a new data structure. Although the new structures are conceptually identical
to the original MSR-based structures of PRISM, they might provide a faster
memory access. Obviously, a more thorough analysis is needed to explain this
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Table 3. Performance of SpMV(WL) and SpMV(HWL) on MSR data

Model Inst. Original matrix BFS reindexed matrix

SpMV(WL) SpMV(HWL) Factor SpMV(WL) SpMV(HWL) Factor

mem. time mem. time (max.) mem. time mem. time (max.)

herman 15 692 9.90 520 3.43 4.51 692 5.60 520 3.43 4.52

cluster 320 372 21.47 386 26.52 2.12 320 18.35 434 25.50 2.48

cluster 464 781 211.65 811 259.69 2.08 669 178.94 909 247.81 2.46

tandem 1,023 132 27.18 144 24.73 1.60 144 29.90 192 41.00 1.32

tandem 2,047 528 159.38 577 96.15 2.37 576 172.07 769 234.40 1.32

kanban 5 384 2.98 390 3.29 4.99 406 3.25 467 3.52 4.55

fms 7 248 3.88 242 4.30 3.91 261 3.93 261 4.30 3.86

fms 8 700 12.87 684 13.82 4.05 746 12.73 745 13.43 4.10

polling 17 329 20.43 329 23.31 3.78 496 25.86 505 30.42 2.99

polling 18 717 46.62 718 51.77 3.95 1,090 58.63 1,110 67.79 3.14

phenomenon. In general, although the results are not conclusive, it seems that
the reindexing itself is able to produce some modest speed up.

Table 3 shows the results when applying the new algorithms using row seg-
ments to coalesce memory access. SpMV(WL) and SpMV(HWL) denote the
algorithms with full- and half-warp segment size, respectively. For both algo-
rithms, the memory use in megabytes, and run time in seconds are shown. The
last column contains the maximal speed up factor with respect to the standard
GPU-PRISM (without BFS reindexing), which can be found in Table 2.

For the original matrices, again the best speed up of 4.51 is obtained with
herman, but this time this is paired with around the same factor of memory
increase. The speed ups with the other models though are achieved with quite
acceptable price in memory. It is important to note that the half-warp algorithm
produces the best results only for the herman case; in all other cases the full-
warp algorithm is the fastest. The hermanmatrices are relatively dense compared
to the others, which supports the observation in related work, e.g. [6], that
further parallelisation of individual row-vector multiplications, i.e. using multiple
threads per row, often does not pay off for sparse matrices. In [6], this is related to
assigning warps to rows, but here, even two threads per row does not outperform
one thread per row, when typical sparse matrices of probabilistic models are used.

Table 3 also contains the results when using combinations of the new algo-
rithms, i.e. first reindexing the matrix using BFS, and then partitioning the rows
into segments. One can see that the results with herman are unaffected by the
reindexing. This is in accord with our intuition since the transition matrix of this
model is virtually invariant under the BFS reindexing. The results for cluster
show that with the full-warp version of the algorithm, the BFS reindexing results
in some gain in memory. Also the reindexing results in some additional speedup.
For the other examples though, the reindexing causes deterioration of both the
speed ups and the memory usage, suggesting that BFS reindexing is a technique
which does not combine well with the improved SpMV methods.
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Table 4. Performance of standard SpMV on CMSR and BFS-reindexed CMSR data

Model Inst. mem. orig. time +BFS time Factor

herman 15 55 8.70 8.62 1.01

cluster 320 146 20.81 19.66 1.06

cluster 464 308 203.05 197.19 1.03

tandem 1,023 71 22.77 23.77 0.98

tandem 2,047 287 124.17 135.17 0.92

kanban 5 146 4.81 5.20 0.93

fms 7 86 5.75 5.76 1.00

fms 8 240 19.70 19.13 1.03

polling 17 189 35.65 41.44 0.86

polling 18 414 80.43 96.29 0.84

Table 5. Performance of SpMV(WL) and SpMV(HWL) on CMSR data

Model Inst. Original matrix BFS reindexed matrix

SpMV(WL) SpMV(HWL) Factor SpMV(WL) SpMV(HWL) Factor

mem. time mem. time (max.) mem. time mem. time (max.)

herman 15 231 5.48 173 3.56 2.44 692 5.60 520 3.43 2.54

cluster 320 159 17.05 164 24.57 1.22 142 15.09 152 23.93 1,38

cluster 464 335 175.40 346 255.72 1.16 298 162.17 319 253.89 1.25

tandem 1,023 64 23.77 68 39.34 0.96 68 25.22 68 39.85 0.90

tandem 2,047 256 139.42 273 230.46 0.89 272 146.78 273 231.25 0.85

kanban 5 152 2.18 154 2.84 2.21 159 2.37 161 3.05 2.03

fms 7 98 3.03 96 3.89 1.90 102 3.08 102 3.87 1.87

fms 8 276 9.92 271 12.64 1.99 291 9.69 291 12.06 2.03

polling 17 208 18.32 209 26.63 1.95 204 19.37 207 27.50 1.84

polling 18 455 37.89 456 58.48 2.12 447 42.89 453 58.16 1.88

Tables 4 and 5 show the results for the same model instances as Tables 2
and 3, but now using the CMSR data storage format. As expected, overall, the
achieved speedups are not as high as when using MSR. BFS reindexing even
shows a negative effect in combination with standard SpMV. It seems that the
reindexing disturbs the optimization introduced by the CMSR storage format.
Further research is required to determine the exact cause. The full-warp algo-
rithm, however, still produces in most cases a speedup of two times. For the
models cluster and tandem, it does not result in a speedup, which seems to be
related to the fact that their matrices are perfect diagonals, and therefore prob-
ably already lead to relatively coalesced data access in SpMV. Finally, as when
using MSR, the half-warp algorithm only outperforms the full-warp algorithm
for the herman case.
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6 Conclusions, Prospects and Related Work

We gave an overview and analysis of the state spaces that arise in probabilistic
model checking, as represented by their corresponding transition probability
matrices. Most of them show regular patterns and diagonally shaped matrices
are prevailing. Based on this analysis, we suggested three methods for improving
the run times of the model checking algorithms. All methods were implemented
in GPU-PRISM, an extension of the probabilistic model checker PRISM.

Our first method performs a BFS-based reindexing of the states, which poten-
tially leads to more compact representations of the matrices. The experiments
with our implementation show that for some models the BFS reindexing can
accelerate the model checking algorithms on GPUs.

Additionally, we proposed two methods that group the threads in segments.
By choosing the segment size to coincide with a full or half-warp size, together
with appropriate modifications of the data representation, one can achieve a
coalesced access to the main GPU memory. The experiments showed that in
some cases the model checking algorithms can be accelerated more than four
times. Also combinations of the two coalescing methods with the BFS reindexing
can produce some additional speed ups, but in most cases, the two techniques
do not agree.

We intend to performmore experiments with different models from the PRISM
set of examples as well as from other sources. It would also be worthwile to fur-
ther investigate the state spaces structures. A special challenge in that direction
could be the fractal-like structures which were observed in one of the examples.
These can potentially be used to optimize the storage of the state spaces as well
as the run times of the algorithms.

Related work. GPU model checking was a logical continuation of the concept of
multi-core model checking [15]. Besides the above mentioned introductory papers
on GPU (probabilistic) model checking [8,9,10], several algorithms for SpMV,
which exist in the literature, were recently tested in the context of probabilistic
model checking [12]. This work complements our previous work in [8,9] to a
significant extent. The paper seems to confirm our hypothesis presented there
that our algorithms for GPU probabilistic model checking from [8] are superior
to the class of Krylov methods, representatives of which were tested in [12].

An overview of algorithms for SpMV can be found in [20]. Several methods for
SpMV were discussed in [6,7]. Among them are methods for diagonally shaped
sparse matrices, which could play an important rôle in probabilistic model check-
ing. They consider algorithms which are analogous with our half-warp algorithm,
in which several threads process one row. They conclude that this really gives
results only if the matrices are dense. This is confirmed by our results with the
half-warp algorithm. Often we do not get any improvement, even though a row
is processed by only two threads. Compared to our work, they do not consider
BFS reindexing, but the most important difference is that we group the rows in
segments of one- and half-warp sizes, which is not the case in their work. Also
our matrix and vector memory storage differs from the ones used by them.
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In [19] the authors propose to speed up probabilistic model checking, by ex-
ploiting the structure of the underlying Markov chains, for sequential algorithms.
It might be interesting to investigate a combination of the findings about the
structure of the state spaces presented in this paper and theirs in the GPU
context.

Previous algorithms for parallel probabilistic model checking were almost ex-
clusively designed for distributed architectures, i.e., clusters [5,11]. They were
focused on increasing the state spaces of the models instead of the run times
and minimizing the communication overhead between the threads instead of the
memory latency. In [1], a shared memory algorithm is introduced for CTMC
construction, but the algorithms employed there are quite different from our
approach.

There are other publications that deal with other kinds of model checking on
GPUs that do not involve probabilities (e.g.,[4,14]). They use algorithms which
are quite different from the ones presented in this paper, since they do not
focus on parallelizing a numerical computation, but on parallelizing state space
exploration.
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Abstract. This paper discusses several different ways to model the well-
known gossiping girls problem in promela. The highly symmetric nature
of the problem is exploited using plain promela, topspin (an extension
to Spin for symmetry reduction), and by connecting Spin to bliss (a tool
to compute canonical representations of graphs). The model checker Spin
is used to compare the consequences of the various modelling choices.

This – tutorial style – paper is meant as a road map of the various
ways of modelling symmetric systems that can be explored.

1 Introduction

In the early 1970s, the following puzzle (popularized by Paul Erdös) was circu-
lated among mathematicians [12]:

There are n girls, each of whom knows a unique piece of initial infor-
mation. They communicate by telephone calls, and whenever two speak
they share all the gossip that they know. The goal is to determine the
minimum number of calls necessary for all of the girls to learn all of the
initial information.

A number of researchers have independently proven that 2n−4 calls are necessary
and sufficient to achieve the goal. See [12] for an overview. A solution for 2n− 4
is straightforward. From [9]: “For n ≥ 4, 2n− 4 conversations suffice. For four
personsA, B, C andD, say, take conversationsAB , and CD , followed by AC and
BD . For every additional person P , schedule one conversation AP , before A, B,
C andD interchange their knowledge, and another conversationAP afterwards.”

Given the optimal 2n− 4 solution, it is clear that we are not really interested
in using a model checker to compute this optimal solution. But given the highly
symmetric nature of this problem, it is interesting to see whether the model
checker Spin can cope with this. And if not, what options do we have to im-
prove Spin’s performance? We also want to explore different ways to model this
problem. The first thing that comes to mind is to model each girl by a process
and a telephone call by sending and receiving messages. But, as we will see, there
are many ways to model the exchange of gossips between the girls.

Using the gossiping girls problem as a running example, we will show how
a symmetric model can be analyzed with Spin. Our goal is to inspire other

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 117–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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verification engineers – when facing modelling challenges – to explore alternative
modelling routes, especially in the case of a problem with apparent symmetries.
The paper tries to retain the tutorial style of presentation of [18,20] to make
the techniques easy to be adopted by intermediate to advanced Spin users. The
effectiveness of the techniques is illustrated by some experiments.

Related Work. In [22], Frits Vaandrager uses the gossiping girls problem to
introduce the uppaal model checker. In [11], Joost-Pieter Katoen describes the
gossiping girls problem as an example of gossiping networks. The paper itself
focuses on the performance evaluation of such networks. Curiously, Katoen writes
in a footnote: “The solution to instances of the gossiping girls example, e.g., can
easily be computed using off-the-shelf model checkers in a few seconds.” This
might be true for small instances of the problem, i.e., n ≤ 6, but does not scale
up for slightly larger n, as we will see in this paper.

In [16], Arend Rensink reports on experiments with the groove tool set on
various highly symmetrical problems, including the gossiping girls problem. We
will discuss groove in more detail in Sec. 6, where we compare our results with
groove.

Two extensions to Spin which exploit symmetry reductions for promela
models should be mentioned: symmspin [1], a tool which lets the user specify
symmetries through scalarsets and topspin [2,28], a tool which can automati-
cally detect symmetries in promela models. In Sec. 4, we will use topspin on
a promela model of the gossiping girls.

Overview. Sec. 2 presents two straightforward promela specifications which
model the problem. We also explain how to obtain the optimal solution to the
problem with Spin. In Sec. 3 we report on our most optimal model in vanilla
promela, i.e., without using external tools and/or embedded C code. Sec. 4
discusses a promela model which we feed to topspin. In Sec. 5 we use Spin’s
embedded C extensions to connect our promela model to bliss , a tool which
computes canonical representations of graphs. Sec. 6 discusses the experiments
that we performed with Spin. Sec. 7 concludes the paper.

Source Code. This paper presents several promela specifications which model
the gossiping girls problem. All promela models consider the problem for
n = 4 girls. Of course, the models that we have used for our benchmark ex-
periments have been parameterized in n, i.e., using the m4 macro processor [21].
All promela models and the verification results as discussed in this paper are
available from http://ruwise.nl/spin-2012/.

2 Initial Attempts

In this section we will discuss two straightforward approaches to model the
gossiping girls problem in plain promela. We will also explain how to find the
minimal solution of the problem with Spin.

http://ruwise.nl/spin-2012/
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byte knows[4] ; /* bit vector of gossips */
chan phone = [0] of { byte } ; /* phone connections */
byte calls ; /* number of telephone calls */

proctype Girl(byte x) {
byte y;
do
:: atomic { phone ! x }
:: d_step { phone ? y ->

if
:: knows[x] != knows[y] ->

knows[x] = knows[x] | knows[y];
knows[y] = knows[x];
calls++;

:: else
fi;
y=0;

}
od

}

init {
atomic {

knows[0]=1<<0; knows[1]=1<<1;
knows[2]=1<<2; knows[3]=1<<3;
run Girl(0); run Girl(1); run Girl(2); run Girl(3);

}
}

Fig. 1. Promela model girl-processes

Girl Processes. Fig. 1 shows the promela model girl-processes. The proc-
type Girl models the behavior of a single girl. The knowledge of a girl i is stored
in the global bitvector knows[i]. If the j-th position (from the right) in knows[i]
is set, it means that girl i knows the j-th gossip. Within init, the initial gossips
are set using the bitshift-operator <<.

Each girl uses the channel phone to call one of the other girls. When two girls
are connected, the mutual knowledge in knows[x] (the callee) and knows[y]

(the caller) is exchanged and the total number of calls is updated; but only
when new information has been exchanged. Exchanging the gossips themselves
is easy: a simple bitwise-or (|) of the bitvectors suffices.

Due to the interleaving semantics of Spin all possible sequences of calls be-
tween the Girl processes will be considered.

Single Process. A drawback of the girl-processes model is that, for each
proctype instance, Spin will allocate memory in the state vector. This is not
really necessary as we are only interested in all possible configurations of the
knows array.

In the model single-process as listed in Fig. 2 we resolve this drawback
by exploiting Spin’s non-deterministic choice to generate all possible scenarios.
There is only a single process allgirls which contains a do-loop. Each choice
in the do-loop represents a call between two girls that do not yet share the same
knowledge about the gossips. In this model the array of bitvectors is named k.
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byte k[4]; /* bit vector of gossips */
byte calls; /* number of telephone calls */

active proctype allgirls() {
k[0]=1<<0; k[1]=1<<1; k[2]=1<<2; k[3]=1<<3;
do
:: d_step { k[0] != k[1] -> k[0]=k[0] | k[1]; k[1]=k[0]; calls++; }
:: d_step { k[0] != k[2] -> k[0]=k[0] | k[2]; k[2]=k[0]; calls++; }
:: d_step { k[0] != k[3] -> k[0]=k[0] | k[3]; k[3]=k[0]; calls++; }
:: d_step { k[1] != k[2] -> k[1]=k[1] | k[2]; k[2]=k[1]; calls++; }
:: d_step { k[1] != k[3] -> k[1]=k[1] | k[3]; k[3]=k[1]; calls++; }
:: d_step { k[2] != k[3] -> k[2]=k[2] | k[3]; k[3]=k[2]; calls++; }
:: else -> break
od;

}

Fig. 2. Promela model single-process

Another drawback of girl-processes is that we cannot easily express and
exploit the fact that an exchange between girls i and j is not really different
from an exchange between girls j and i. The single-process model easily allows
to express this by always choosing girls i and j with i < j. This cuts away half
of the outgoing transitions of a state, and consequently the number of states
matched.

Finding the Optimal Solution. If we feed one of the promela models to
Spin, a safety run will generate all possible states of the models. And due to
Spin’s smart static analysis, the statement calls++; and the variable calls

will even be removed from the model, as the variable calls is never used in the
model.1

We can also use Spin to find an optimal sequence of calls in the sense that
the number of calls is minimal [20]. From Sec. 1 we know that for this optimal
sequence the following holds: calls == 2*N-4. For the Promela models, we
have defined a boolean expression ALLKNOW which is true when all girls know all
gossips. For example, for the single-process model, this expression could be
defined as follows (remember that n = 4, and 15 is decimal for 1111 binary):

#define ALLKNOW (k[0] == 15 && k[1] == 15 && k[2] == 15 && k[3] == 15)

The logical formula ‘ALLKNOW ⇒ calls >= 2*N-4’ is invariant and holds for
all states. To get an error trail to a state where calls == 2*N-4 and ALLKNOW

both hold we could define the following promela process:

#define P (ALLKNOW && calls == 2*N-4)
active proctype monitor() { atomic { P -> assert(!P)} }

The property P corresponds with the goal state. The process monitor is blocked
on this condition P. At the moment P becomes true, the atomic sequence can

1 One should not replace the statement calls++; by the semantically equivalent
calls=calls+1; though. Spin regards this latter statement as a usage of the
variable calls and will thus retain the variable and statement in the system. With
a blow-up of the number of states as a result.
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be taken and the assert of the negation of P will trigger an error. If we had
used assert(!P) instead of the atomic sequence, this would have doubled the
number of states. See [19] for details.

The safety check using the proctype with the assert will potentially visit all
states, as Spin has to check the property for all states. We can do better though.
Instead of a safety check, we can also use Spin’s liveness mode and check the
following ltl property:

(!ALLKNOW) U (calls > 2*N-4)

The property corresponds with paths where condition ALLKNOW remains false
until we reach a state where calls > 2*N-4. This property will be violated on
paths where we reach a state where ALLKNOW is true and calls > 2*N-4 is false ,
i.e., our goal state. The reason why this liveness property should be preferred
over the safety check is the following: for each execution path for which the
until-formula holds, Spin will stop searching as soon as it hits a state for which
call > 2*N-4 holds.

Care should be taken when choosing the options for checking this liveness
property: the until-operator in Spin is the strong until-operator. This means that
the property p U q is violated on an infinite path where q never becomes true. In
our girl-processes model there are infinite paths where the property call >

2*N-4 never becomes true: paths containing ‘calls’ where no new information is
being exchanged. For this reason, we should check the above ltl formula with
‘acceptance cycle checking’ disabled. Due to the monotonic nature of the variable
calls, it is safe to do so: the state space has the shape of a tree, with self-loops
for the calls that do not exchange information.

We could also have used the monotonic nature of calls in combination with
Spin’s breadth-first-search (bfs) mode. In the presence of the process monitor,
Spin’s bfs would then stop searching when the condition ALLKNOW && calls

== 2*N-4 is reached, without exploring any states where calls > 2*N-4. In
practice, however, when searching for the optimal solution the bfs mode is typi-
cally slower than Spin’s default depth-first-search (dfs) exploration. The reason
for this is that there are many ‘symmetric’ paths corresponding to an optimal
solution; Spin’s dfs will hit one such solution much faster than Spin’s bfs can
generate all states, for which calls < 2*N-4 holds.

The techniques above use standard promela and vanilla Spin to find the
optimal solution. Alternatively, one could use directed model checking techniques
to find the optimal solution. A directed model checker use heuristic estimates
and algorithms to direct the search into a specific error situation. In the realm of
Spin, hsf-spin [3] would have been a suitable candidate. We are, however, not
really interested in getting the optimal solution as fast as possible; we are more
interested in developing alternative, efficient promela models for the problem
at hand.

Preliminary Results. Table 1 shows the verification results of all promela
models of this paper and will be discussed in full in Sec. 6. For now, we are only
interested in the first two columns of Table 1 which show the results of verifying
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the girl-processes and single-process model. It is interesting to see that
the number of states grows very fast as the number of girls increase. Spin still
manages to generate all states for n ≤ 6. For greater n, the problem is infeasible
for Spin (when limited to 2GB of memory). This is remarkable as the problem
at hand seems rather simple.

It should be clear that there is a lot of symmetry in these models. In fact,
if we have found a solution, any permutation on the set of girls gives rise to
new solution that is isomorphic to the original one. The tool to exploit this is
symmetry reduction, which we will further explore in Sec. 4. Before we do that,
we explore another line of reasoning to abstract from girl identity.

3 Channel of Knowledge

In the initial phase of our study, we constrained ourselves to ‘pure’ promela
models and ‘vanilla’ Spin. When experimenting with Spin trying to solve the
problem more effectively, we noticed that there are many ways to incorporate
some notion of symmetry reduction into the model. In this section we discuss
our best approach – in vanilla promela – so far. The central observation for
this model is that if girls i and j have the same knowledge,

– a conversation between girl i and girl j is not going to add anything
– a conversation between girl i and any girl k with different knowledge is the

same as a conversation between girl j and girl k

So we might as well model equivalence classes of girls with the same knowl-
edge. If we do so, we only have to record the number of girls in the equivalence
class. Denoting the size of an equivalence class with knowledge k by size(k),
an exchange between girls with knowledge ki and kj then results in size(ki)--,
size(kj)-- and size(ki|kj) = size(ki|kj)+2. From an error trace with Spin, we
can easily produce a trace of girls within each equivalence class.

Fig. 3 lists the promela model chan-groups. Central to this solution
is the channel groups. The channel groups is a compressed representation
of the bitvector array knows of girl-processes: groups contains tuples
(knowledge , size). The knowledge-part is the bitvector representation of the gos-
sips. The size-part specifies how many girls have this knowledge. For example,
the tuple (5,2) means that two girls have the knowledge 101. The channel
groups is used as a sorted channel. In this way we get a canonical representa-
tion of the knowledge information.

As with single-process, the do-loop is responsible for generating all possible
conversations between the girls. In the two select-statements2, the variables i
and j are non-deterministically set to indices of elements within the groups

channel.
The subsequent invocations of the getgroup macro remove these tuples from

the channel and set the information of the tuples to (ki,si) and (kj,sj),

2 The statement select is new in Spin version 6. The statement select(i:
n..m); sets i non-deterministically to a value in the range n . . .m.
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#include "chan-inlines.h"

chan groups = [4] of {short,byte}; /* fields: (knowledge, size) */
byte maxgroup = 3; /* is equal to len(groups)-1 */
byte calls; /* number of calls */

/* local, temporary variables of the process Girls: */
hidden byte i, j, ii, ki, kj, si, sj, kk, sk, kc, sc;

proctype Girls() {
do
:: if

:: len(groups) == 1 -> break;
:: else -> atomic {

select(i: 0..maxgroup-1);
select(j: i+1..maxgroup);
getgroup(i, ki, si);
getgroup(j-1, kj, sj);

kc = ki | kj;
if
:: kj == kc -> /* only i has changed */

remove(ki,si);
groups !! kj,sj+1

:: else -> /* i and j have changed */
remove(ki,si);
remove(kj,sj);
if
:: groups ?? [eval(kc),sc] -> /* existing group */

groups ?? eval(kc),sc;
groups !! kc,sc+2;

:: else -> /* new group */
groups !! kc,2;
maxgroup++

fi
fi;
calls++;
i=0; j=0; ii=0; ki=0; si=0; kj=0; sj=0;
kk=0; sk=0; kc=0; sc=0;

}
fi

od
}

init {
groups !! 1<<0,1; groups !! 1<<1,1; groups !! 1<<2,1; groups !! 1<<3,1;
run Girls();

}

Fig. 3. Promela model chan-groups

respectively. After exchanging the gossips, the most elaborate part of the process
is storing the new knowledge back into groups. Note that due to fact that
groups is sorted, kc will always be different from ki. When both the knowledge
associated with i and j have changed, we use Spin’s random receive operator (??)
to inspect whether there is already a tuple in groups which has the knowledge
kc. If this is the case, two girls will be added to this tuple. Otherwise, a new
tuple (kc,2) is added to groups.
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inline getgroup(ix, kx, sx)
{

ii=0;
do
:: ii < ix -> groups ? kk, sk;

groups ! kk, sk; /* put at the end */
ii++;

:: ii == ix -> groups ? kx, sx;
do /* move remaining elements to end */
:: ii < len(groups) -> groups ? kk, sk;

groups ! kk, sk;
ii++

:: else -> break
od;
break;

od;
ii=0; kk=0; sk=0;

}

inline remove(kx, sx)
{

if
:: sx > 1 -> groups !! kx,sx-1
:: else -> maxgroup--
fi

}

Fig. 4. Include file chan-inlines.h

Fig. 4 lists the definitions of the inline macros getgroup and remove. The
macro getgroup is hairy as we need to get the i-th element out of the sorted
fifo-channel groups. The first 0 . . . (ix − 1) elements of groups are copied to
the end of groups using Spin’s regular send operation. Then, the ix-th element
is stored into (kx,sx). Finally, the remaining elements are copied to the end of
groups. In this way we keep the channel sorted without the need of an extra
channel.3 The macro remove removes one girl from the tuple (kx,sx). That is,
if there are still remaining girls with knowledge kx, the tuple will be put back
with sx-1. If sx==1, nothing will be put back into groups.

Semantically, the hidden variables i . . . sc are local variables of the proctype
Girls. They are only used within the atomic clause to compute the new groups.
By defining these variables as hidden variables, they will not be stored in the
state vector, and thus reducing each state by 12 bytes.

The model chan-groups is more effective than the previous attempts in
the sense that it minimizes the outgoing transitions of states. Given two tu-
ples (k1, s1) and (k2, s2) in groups, only a single conversation between a girl
with knowledge k1 and a girl with knowledge k2 will be considered. Whereas in
the corresponding state of the previous models, s1 × s2 conversations would be
considered.

Although this model outperforms the models of the previous section, it still
does too much work. Even though we have abstracted from the identity of girls

3 For our experiments we replaced the two calls to getgroup in chan-groups by a
call to a more efficient (but even more verbose) macro getgroups which retrieves
both tuples in a single walk over groups.
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in the exchange part, we still are left with a symmetry in the identity of the
gossips exchanged, which is encoded in the knowledge bitvectors. Although we
tried hard, we did not succeed in exploiting this symmetry in a plain promela
model.

Finally, it should be noted that our approach bears similarities with the
counter abstraction work of, e.g., [4,5,13,14]. In their approaches, however, the
processes that are in the same location are being counted, whereas in our ap-
proach the variables that have the same values are being counted.

4 TopSPIN

In this section we will report on our ventures with topspin to solve the gossiping
girls problem. topspin [2,28] is an automatic symmetry reduction tool for the
Spin model checker. topspin is applied to a promela model, and – provided
that the model adheres to some restrictions – uses computational group theory
to automatically determine a group of component symmetries associated with
the specification. The tool automatically modifies the model checking algorithm
employed by Spin to exploit these symmetries during verification. We also con-
sidered the older symmspin package [1] but preferred topspin because the tool
is fully automatic and gives helpful explanations in cases when the tool cannot
find symmetries in the model.

topspin uses the gap [24] computational algebra system to effectively de-
tect state space symmetry from the associated promela model. Furthermore,
topspin uses a prototype extension of the saucy program [26], which is used
to compute symmetries of directed graphs. As mentioned, topspin places some
restrictions on the promela model, including:

– All processes should be instantiated using run statements within init.
– The current version of topspin does not support arrays of channels.
– topspin is not yet compatible with the verification of liveness properties.
– For symmetry to be detected, it is important for proctypes to use their

built-in pid variable rather than a user-defined process identifier.
– topspin does not support bitvectors in the sense that it recognizes a byte

being used as an array from pid to bool.

Especially the last two restrictions forced us to rethink the representation of
knowledge within our model. Fig. 5 lists the promela model symm-girls. This
model is a variation of the original girl-processes model. The behavior of
each girl is represented by a Girl process. However, instead of using an arbitrary
number to identify the girls, we now use the process identifier (pid) of a Girl

process to identify the gossip that she originally knew.
Instead of using bitvectors to store the knowledge of the girls, we now encode

the knowledge in sorted channels of pid’s. For each Girl with pid i, a channel
ki is defined, which holds the pids of all gossips that this girl knows. When the
processes are instantiated in the init process, the channel ki is passed to the
Girl-process which will get pid i. This channel is stored in the Girl’s know
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chan phone = [0] of { chan };
chan k1 = [4] of { pid }; /* ki = knowledge of Girl with pid i */
chan k2 = [4] of { pid };
chan k3 = [4] of { pid };
chan k4 = [4] of { pid };
chan tmp = [4] of { pid }; /* temporary channel */
byte calls; /* number of telephone calls */

proctype Girl(chan know) {
pid p;
bool newinfo;
chan friend = know; /* outside of d_step, friend == know */

know ! _pid;
do
:: atomic { phone ! know; }
:: d_step {

phone ? friend;
newinfo=false;
do /* 1. move elements from friend to tmp */
:: empty(friend) -> break
:: nempty(friend) -> friend?p; tmp!p;

if
:: know ?? [eval(p)] -> skip
:: else -> newinfo=true
fi

od;
do /* 2. move elements from know to tmp */
:: empty(know) -> break
:: nempty(know) -> know?p;

if
:: tmp ?? [eval(p)] -> skip
:: else -> tmp!p; newinfo=true;
fi;

od;
do /* 3. move elements from tmp to friend and know */
:: empty(tmp) -> break;
:: nempty(tmp) -> tmp?p; friend!!p; know!!p
od;
if
:: newinfo -> calls++
:: else
fi;
p=0; friend=know; newinfo=false;

}
od

}

init { atomic { run Girl(k1); run Girl(k2); run Girl(k3); run Girl(k4); } }

Fig. 5. Promela model symm-girls

variable. Now, in combination with the symmetric version of the process Girl,
topspin will recognize that these channels can safely be permuted. As with
the chan-groups model, we keep these channels sorted to obtain a canonical
representation of the knowledge.

As before, the girls exchange information through the rendez-vous channel
phone. The girls offer their own knowledge channel know on this channel phone.
The receiving girl makes sure that knowledge is exchanged and that both her
own knowledge channel (know) and the knowledge channel of the other girl
(friend) get updated. Updating know and friend requires three steps. Firstly,
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all elements of friend are copied to the temporary channel tmp. Secondly, all
elements of know which are not yet in tmp are copied to tmp. Now tmp contains
the combined knowledge of the original friend and know channels. Thirdly,
all elements of tmp are copied to friend and know using Spin’s sorted send
operation. Note that we only update the variable calls if the conversation
between the two girls revealed new information. At the end of the d step we
again reset all local variables.

The symmetric model for topspin comes with a price, though. With respect
to the information in the state vector, the symm-girls model is quite expensive,
compared to the previous models. Instead of using an efficient array of bitvectors,
n+1 channels of length of n are being used. Furthermore, exchanging information
has become an expensive operation. Instead of using a single bitwise operator,
a single conversation requires the copying of three of those channels.

As mentioned above, the current version of topspin cannot yet deal with live-
ness properties. Therefore, for the verification runs to find the optimal solution
to the problem, we had to resort to the slightly less effective assert statement.

5 Bliss

In this section we exploit Spin’s embedded C code extensions to encode the
symmetries ourselves. This section assumes a working knowledge of Spin’s C
code extensions, i.e., chapter of 17 of [6]. Basic knowledge of graph isomorphism
theory is also assumed. The approach taken for this model is based on the
abstraction techniques of [7].

The original promela models of Sec. 2 use an array knows of bitvectors
to store the knowledge within the system. This array knows is essentially the
adjacency matrix of a graph representation of the knowledge: if a girl i knows
the gossip of girl j, there is a directed edge from i to j. For this final promela
model, we exploit this graph representation. We will use the bliss tool to find
the canonical representatives for these graphs.

bliss [10,23] is a tool for computing automorphism groups and canonical forms
of graphs. It has both a command line user interface as well as C/C++ program-
ming language apis. Naturally, bliss does not use a polynomial-time algorithm
for computing the authomorphism group of the graph (otherwise it would imme-
diately imply a polynomial-time algorithm for the graph isomorphism problem).
However, compared to other well-known tools for checking graph isomorphisms
(e.g., nauty and saucy), bliss seems to perform quite well [10].

Two features of bliss which make the tool ideal for our purposes are the
following: (i) bliss can work with directed graphs, and (ii) bliss can compute a
canonical representation of the automorphism group of a graph. Given a graph
G and its canonical representative graph ρ(G) the following holds: for all graphs
G′ that are isomorphic with G, bliss will return the same representative graph,
i.e., ρ(G) = ρ(G′).

Fig. 6 shows the promela model bliss. The model is a variation of the
single-process model: there is a single process allgirls, which enumerates
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c_decl { \#include "bitmatrix.h" }
c_code {

unsigned int automorph_partition[4];
BitMatrix stack_adjmat;
BitMatrix canonical_adjmat;

}
c_track "&automorph_partition" "sizeof(unsigned int)*4" "StackOnly"
c_track "stack_adjmat.pbv" "((4*4)/8+((4*4)%8>0))" "StackOnly"
c_track "canonical_adjmat.pbv" "((4*4)/8+((4*4)%8>0))"

#define SINGLE_CALL(x,y) \
c_expr { designated_partners(&stack_adjmat, \

automorph_partition, x, y) } -> \
calls++; \
c_code { \

merge_rows(&stack_adjmat, x, y); \
comp_canonical(&stack_adjmat, &canonical_adjmat); \

};

byte calls=0;
active proctype allgirls() {

c_code {
init_bit_matrix(&stack_adjmat, 4);
init_bit_matrix(&canonical_adjmat, 4);

};

do
:: c_code { comp_automorph_partition(&stack_adjmat,

automorph_partition); };
if
:: d_step { SINGLE_CALL(0,1) }
:: d_step { SINGLE_CALL(0,2) }
:: d_step { SINGLE_CALL(0,3) }
:: d_step { SINGLE_CALL(1,2) }
:: d_step { SINGLE_CALL(1,3) }
:: d_step { SINGLE_CALL(2,3) }
:: else -> break
fi;

od;
}

Fig. 6. Promela model bliss

all possible calls between the girls in a do-loop. We use an efficient bitmatrix to
store the knowledge of the girls. In fact, we use two bit matrices: stack adjmat

and canonical adjmat. The definition of the typedef BitMatrix can be found
in Fig. 7. The stack adjmat is the adjacency matrix of the directed graph that
we work with in the body of the proctype allgirls. When a conversation
takes place between two girls, this adjacency matrix gets updated. However,
this adjacency matrix is never saved in the state space: it is only used in the
current state. Hence the decoration "StackOnly" next to the c track declara-
tion of stack adjmat. Instead of stack adjmat, we store the adjacency matrix
of its canonical graph: canonical adjmat. Note that canonical adjmat does
not have the "StackOnly" decoration within its declaration. In terms of [7],
canonical adjmat is the abstract graph.

The BitMatrix library of Fig. 7 needs some more explanation. Essentially,
a BitMatrix is an efficient implementation of an array of bitvectors in C. The
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typedef struct BitMatrix {
char* pbv; /* pointer to bitvector */
int dim; /* dimension of matrix */

} BitMatrix;

void init_bit_matrix(BitMatrix* g, int width);
void free_bit_matrix(BitMatrix* g);
void print_bit_matrix(BitMatrix* g);
int all_bits_set(BitMatrix* g);
int same_rows(BitMatrix* g, int v1, int v2);
void merge_rows(BitMatrix* g, int v1, int v2);

void comp_canonical(BitMatrix* src, BitMatrix* dst);
void comp_automorph_partition(BitMatrix* src,

unsigned int automorph_partition[]);
int designated_partners(BitMatrix* src,

unsigned int automorph_partition[], int v1, int v2);

Fig. 7. Header file bitmatrix.h

first five functions of Fig. 7 are basic functions on a BitMatrix. The function
same rows checks whether the bitvector rows of v1 and v2 are the same; or in
graph terms: whether the outgoing edges of v1 and v2 lead to the same nodes.
The function merge rows performs the familiar bitwise-or operator on the rows
of v1 and v2. The last three functions of Fig. 7 implement the connection with
bliss , and will be discussed in some more detail below.

Let us look at the macro SINGLE CALL. The knowledge of the two girls x
and y is merged using merge rows. The function comp canonical computes
the canonical representation of stack adjmat. First, in this function, the ad-
jacency matrix of stack adjmat is converted to bliss ’s internal graph repre-
sentation. Then, bliss ’s function to compute the canonical representation of a
graph is called. Finally, the internal graph representation is converted back to
our BitMatrix representation.

An important part of SINGLE CALL is the call to designated partners. Con-
verting the adjacency matrix to bliss ’ graph representation (and vice-versa), and
especially the computation of the canonical representation of a graph are time-
consuming procedures. To improve the running time of the verification with
Spin, it is important to eliminate, when possible, calls between girls that are
guaranteed to lead to a canonical graph that has or will be covered by con-
necting two other girls. Given two potential partners x and y, the function
designated partners returns true, when:

– the knowledge of x and y is different
(i.e., the rows of the bitvectors x and y differ), and

– if x and y belong to the same cell of the partition of the automorphism
group, then x and y should both have the lowest indices of this cell, or

– if x and y belong to different cells of the partition of the automorphism
group, they both should have the lowest indices within their respective cells.

A partition of a set V is a set of disjoint non-empty subsets of V whose union is V .
The elements of a partition are called cells. Given a graph G, the automorphism
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group Aut(G) of G can be represented by a partition P (G) of the nodes V of
G: the nodes in each cell of P (G) can be permuted. For example, in the initial
state of the model, when all girls only know their own gossip, the partition of the
automorphism group consists of a single cell containing all nodes. It is enough to
only consider a single conversation between two nodes of this cell. After the first
transition, the partition consist of two cells: cell c1 contains the two girls which
just exchanged their gossips and cell c2 contains the other girls. It is enough to
only consider a conversation between two nodes of c2 and a conversation between
a node of c1 and a node of c2.

The partition is computed in comp automorph partition. Within this func-
tion, bliss ’ find automorphisms function is called, which returns a set of gen-
erators for the automorphism group of the graph. Given this set of generators
the cells can be computed. In Fig. 6 these cells are stored in the "StackOnly"

array automorph partition. If two nodes n1 and n2 belong to the same cell,
automorph partition[n1] == automorph partition[n2].

Implementation. Although bliss has a well documented api, connecting the tool
to Spin took some considerable effort. Roughly 300 lines of C code were needed
for this interface.

6 Experiments

This section discusses the experiments that we conducted with Spin on the vari-
ous promela models. During our study, we carried out two types of experiments
with Spin: ‘exhaustive’ experiments where we used Spin’s standard safety mode
to generate all reachable states for the given promela model, and ‘find the op-
timal sequence’ experiments where we used Spin’s liveness mode to find a 2n−4
solution to the gossiping girls problem.

We only report on the ‘exhaustive’ experiments. The ‘find the optimal se-
quence’ experiments show similar results though; except for the fact that in
some cases Spin could still find the optimal sequence where the corresponding
‘exhaustive’ experiment would run out of memory. These results, however, de-
pend on Spin’s default dfs exploration order. Since version 5.1.x, Spin supports
several C compile time options (e.g., -DREVERSE, -DRANDOMIZE) which change
the order of selecting outgoing transitions. Running the ‘find the optimal se-
quence’ experiments with any of these options will thus show different results.
Therefore we decided that including the results of the second type of experi-
ments was not very meaningful. Instead, we report on our experiments with the
swarm tool [8,27] to ‘find the optimal sequence’.

Settings. All experiments were run on an Apple MacBook 2.66GHz Intel Core
2 Duo, with 8GB of RAM, running Mac OS X 10.6.8 (in single-user, console
mode) and gcc 4.2.1. We used Spin version 6.1.0 for all experiments, except for
the topspin experiments for which we used Spin version 5.2.5. We used topspin
version 2.2.5, bliss version 0.50 and groove version 4.4.5. For the topspin
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Table 1. Summary of exhaustive benchmark experiments
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sv (bytes) 64 20 44 104 104 20

states, stored 190 192 140 251 42 45

states, matched 2,080 670 83 2,391 394 33n = 4
time (sec) 0 0 0 0 0 0

memory (MB) 131 131 131 131 131 131

sv (bytes) 72 20 44 120 120 20

states, stored 9,153 9,155 2,468 10,234 540 321

states, matched 173,889 67,139 3,659 186,098 9,897 753
n = 5

time (sec) 0.08 0.01 0.01 0.36 0.06 0.03

rate (s/sec) 114k no data no data 28k 9.0k 11k

memory (MB) 131 131 131 132 131 131

sv (bytes) 80 20 52 136 136 20

states, stored 1,092,474 1,092,476 91,348 1,150,478 18,316 6,505

states, matched 31,681,718 13,311,818 252,039 32,818,752 525,940 31,400
n = 6

time (sec) 13.4 3.0 0.8 70.5 4.8 1.2

rate (s/sec) 81k 369k 114k 16k 3.8k 5.2k

memory (MB) 197 172 137 272 133 131

sv (bytes) 88 20 52 216 216 20

states, stored > 28 e6 > 37 e6 6,588,212 > 13 e6 1,334,922 279,985

states, matched > 11.4 e8 > 6.6 e8 29,214,527 > 5.3 e8 54,525,101 2,201,294
n = 7

time (sec) 541 195 96 1460 815 87

rate (s/sec) 52k 191k 69k 9.0k 1.6k 3.2k

memory (MB) o.o.m. o.o.m. 533 o.o.m. 325 142

sv (bytes) 60 240 20

states, stored > 27 e6 > 11 e6 23,461,597

states, matched > 17 e7 > 62 e7 267,185,640
n = 8

time (sec) 595 14,300 11,100

rate (s/sec) 47k 0.8k 2.1k

memory (MB) o.o.m. o.o.m. 1026

exhaustive, solution found n ≤ 7 n ≤ 7 n ≤ 7 n ≤ 7 n ≤ 7 n ≤ 8

swarm, solution found n ≤ 8 n ≤ 8 n ≤ 10 n.a. n ≤ 6 n ≤ 10

modelling time < 1 hour < 1 hour ≈ 4 days ≈ 2 days ≈ 8 days

experiments we used topspin’s default fast symmetry reduction strategy (which
is indeed fast, but does not yield canonical representations). For each verification
run we reserved 2GB of memory. To compile Spin’s pan verifiers for safety runs
we used the following options for gcc:4

gcc -O2 -o pan -DSAFETY -DNOCLAIM -DMEMLIM=2048 pan.c

Furthermore, for topspin and bliss , we linked pan to the respective libraries, of
course. We executed all pan verifiers using the following command-line:

./pan -m50000 -c1 -w24

Due to -w24, pan will always reserve 128MB of memory for the hash table.

4 By default, Spin’s powerful and automatic partial-order-reduction (por) optimiza-
tion gets enabled. However, as there is no parellellism in the promela models which
por can utilize, nothing is gained in terms of the number of states.
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Effort. The last row of Table 1 shows an estimate of the modelling time for the
various promela models. Parameterizing the models in n (using the m4 macro
processor) and setting up all experiments took us more than a week. Finally,
all experiments can be executed in roughly 28 hours. All promela models and
verification results are available from http://ruwise.nl/spin-2012/.

Exhaustive experiments. Table 1 lists the results of letting Spin compute all
reachable states for the various models: we let Spin perform safety verification
runs where we only checked for invalid end-states. The columns correspond with
the promela models that have been discussed in this paper. The symm-girls
model has been verified with both vanilla Spin and with topspin.

The rows ‘time (sec)’ list the elapsed time as reported by Spin. The rows
‘rate (s/sec)’ list the number of states per second, again as reported by Spin.
When Spin does not have enough memory to finish the verification, this is indi-
cated with ‘o.o.m.’ (out-of-memory). We still report the output by Spin though.
For topspin and bliss the ‘rate (s/sec)’ column needs clarification. Symmetry
reduction involves computing a canonical representative for every state that is
encountered. Every time topspin or bliss processes a state, the tool is really
processing a whole equivalence class of states.

From Table 1 we learn that our two initial promela models are fast. Espe-
cially, the rate of the single-process model is high, compared to the rates of
the other models. This is obvious as a transition in single-process only con-
sists of a bitwise-or operation and two assignments. Moreover, the state vector
of single-process consists of only 20 bytes.

Our best vanilla promela model chan-groups behaves quite well. Compared
to the two straightforward models, it succeeds in lowering the number of states
without becoming too slow. It succeeds for n = 7.

Due to n processes and the n + 1 channels of length n, the state vector of
the symm-girls model is large. We see that symm-girls exhibits poor results
when veryfying the model with vanilla Spin. Due to the expensive computation
involving the knowledge channels, the rate is also quite low. On the other hand,
in combination with topspin, the symm-girls model fares quite well for n ≤ 6.
The rate is even lower, but this is no surprise due to the computation of canonical
representatives. For n ≥ 7 this computational overhead becomes significant.5

The ‘winner’ of our experiments is the bliss model. It is the only model
which succeeds in generating all states for n = 8, albeit slowly. Spin needs
only slightly more than 1GB of memory to verify this model for n = 8. As
with the topspin model, we see that with increasing n, the verification rate for
this model deteriorates. This is not surprising given all the operations that are
executed within a single transition. Of these operations, with increasing n, the
automorphism detection becomes the most dominant factor.

5 We have discussed these verification results with Alastair Donaldson, the developer
of topspin. He suspects that the current version of topspin does not handle sorted
send channels in the most efficient way. A future version of topspin should fix this.

http://ruwise.nl/spin-2012/
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Table 2. Summary of experiments with groove

gossip-priorities gossip-nested

#girls states trans. time memory states trans. time memory

n = 4 55 253 0.3s 6kB 13 66 0.2s 0.2MB

n = 5 382 1,852 1.1s 0.5MB 52 418 1.0s 0.3MB

n = 6 4,458 22,492 4.0s 1.5MB 361 4,749 3.2s 0.5MB

n = 7 80,459 409,372 44.7s 17.1MB 3,703 71,804 18.9s 2.6MB

n = 8 4,157,679 22,684,164 3099s 899MB 62,982 1,790,230 519s 54.9MB

Swarm. swarm [8,27] is a tool, which – given a promela model and some ver-
ification settings – generates a script that performs many small verification jobs
with Spin in parallel, that can increase the problem coverage for very large ver-
ification problems. swarm’s verification jobs use Spin’s bitstate hashing mode.

We have used swarm on the promela models to ‘find the optimal sequence’
using the ltl property as discussed in Sec. 2. For each promela model (and for
each n ∈ {4, . . . , 10}) we first performed a test run with Spin to get an estimate
for the speed and the hash factor. These settings were then used to let swarm
run 60 minutes on each n-th version of the promela models. We let swarm
terminate as soon as one of the parallel verifications would find an error trail
(i.e., option -e). For n ≤ 6 swarm would come up with an error trail within a
few seconds. For n ≥ 7 it took longer.

The one-but-last row of Table 1 summarizes our experiments with swarm. For
both chan-groups and bliss, swarm succeeds in finding an optimal sequence
for n = 10. Curiously, on symm-girls, the combination swarm and topspin
only finds an error for n ≤ 6. Perhaps the large state vector in combination
with the slow speed are responsible for this. Obviously, if swarm would have
been given more time, it would probably have found more errors trails. This
experiment just illustrates the power of swarm in dealing with promela models
where exhaustive verification is not an option.

Groove. As mentioned in Sec. 1, the groove tool set [15,25] has also been used
for experiments with the gossiping girls problem [16]. groove [25] is a project
centered around the use of simple graphs for modelling several structures object-
oriented systems, and graph transformations as a basis for model transformation
and operational semantics. The groove tool set includes an editor, a simulator,
a generator for automatically exploring state spaces and a model checker.

One of the key features of the groove tool set is its underlying, very efficient
algorithm for isomorphy checking of graphs. With a symmetric model, such as
the one for the gossiping girls, you get your symmetry reductions for free.

On the same machine that we ran our Spin experiments, we have also ran the
groove generator to compute the state space. We allocated 2GB of memory for
the jvm and used groove’s dfs mode. Table 2 shows the results of the groove
experiments. The results for gossip-priorities correspond with groove models
which use rule priorities [16], whereas the gossip-nested results correspond with
improved groove models which use a rule system with nested rules [17]. This
rule system with nested rules has recently been added to groove. We see that
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groove does not have any problems with n = 7 and clearly outperforms our
promela models for the exhaustive experiments.

7 Conclusions

We have explored several ways to model the gossiping girls problem along dif-
ferent points of view, trying to exploit the inherent symmetries of the problem.
The main point of the paper is that alternative modelling routes with Spin can
lead to substantial better verification results.

We have seen that straightforward promela models are easy to construct and
show reasonable results, but are not very efficient in the terms of the number
of states. However, we have also seen that even in vanilla promela we can im-
plement symmetry reductions to lower the number of states. Remember though
that it took several modelling efforts to come up with the final chan-groups
model that we discuss in this paper.

topspin is a fully automatic, user-friendly tool, but it requires some basic
knowledge of group theory. And although topspin outperforms vanilla Spin
on the gossiping girls problem, for larger n one has to have patience. topspin
requires a truly symmetric model. This might mean that you either have to
rework your model or that you have to identify the symmetries yourself.

Although our promela model which uses bliss shows the best results, it took
quite some programming effort to get there. For the occassional symmetric model
this route is therefore not recommended. However, whenever a very memory
efficient model is required, this approach could be an option.

Due to its efficient algorithm for checking isomorphy, groove performs best
on the gossiping girls problem. The groove tool set also includes ctl and ltl
model checkers. So, if you have to verify a highly symmetric model – and you
are not afraid to learn a new modelling formalism – groove should be high on
your list of potential candidates.

Finally, we witnessed the power of swarm. The tool succeeds in finding the
optimal sequence in promela models where exhaustive verification surely would
have failed. The results are not uniform for all promela models though. More
research with swarm is needed.

We also intend to apply our modelling approach to other, larger symmetric
problems to see in howfar our results can be generalised. Furthermore, we intend
to extend our comparison with other model checkers.
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Abstract. In recent studies, hierarchically distributed non-intrusive
agent aided transmission line distance relaying protection scheme has
been proposed. This scheme is meant to provide the distance relays with
situational awareness and improve their robustness against hidden fail-
ures. Distance relaying protection scheme is a part of safety critical cyber
physical system (in particular, power system) and it operates with strin-
gent timing requirements to remove the faulted line out of service. Before
putting into practice, it is better to formally verify that the agent based
relay supervisory scheme meets the specifications and its usage gives in-
tended results and doesn’t carry any negative side effects. Therefore, in
this paper agent based relay supervision scheme is formally modelled, val-
idated and its properties are verified using UPPAAL - a timed automata
based formal verification tool.

1 Introduction

Power grid transmission lines are usually protected by distance relays which
comprises of local primary relays (Zone 1), secondary relays (Zone 2) and re-
mote back up relays (Zone 3) [1]. The main objective of the protection system
is to isolate a fault as soon as possible to minimize the negative impact of the
fault on the grid and also to minimize the amount of load shed because of the
relay induced disconnection of lines. Remote back up relay is preferred to a
local backup as a local backup shares the same electrical and communication
infrastructure with primary relay; hence vulnerable to “Common Mode Fail-
ure” [2] [3]. Remote back up relay and primary relay are usually located in
different substations and thus are less vulnerable to “Common Mode Failures”.
Compared with primary relays, remote backup relays operate with longer fault
clearing times and also its operation to remove a fault may lead to larger area
of load shedding. Therefore, transmission line distance relaying protection sys-
tem is designed in such a way that the remote back up relay doesn’t trip unless
it is absolutely necessary i.e. when both zone 1 and zone 2 relays fail or their
associated sensors or breakers simultaneously fail to clear the fault. After a thor-
ough analysis of historical blackouts such as 1965 Great North-east blackout,
1977 New York blackout and the 1996 western blackout, North American Elec-
tric Reliability Council (NERC) concluded that a Zone 3 relay mis-operation
is one of the major causes of cascading outages leading to blackout events [4].

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 137–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Zones of Protection

Horowitz et. al. reanalyzed the distance relaying protection scheme and con-
cluded that Zone 3 relay cannot be abandoned as its absence will put a power
system at risk [2].

Zone 3 relays can incorrectly trip a line due to hidden failures [5][6]. A hid-
den failure is a defect (incorrect relay setting or software or hardware error) in
a relay which may go unidentified for a long time and gets excited by another
event leading to erroneous removal of circuit elements [7]. Because of hidden
failures, Zone 3 relays may be extra sensitive to temporary line overloading due
to transients, mistake it as a fault in a line and mis-trip even though it is not
recognized as a faulty condition by Zone 1 or Zone 2 relay. At this instance, if
power system is operating under stressed conditions, the hidden failure induced
Zone 3 relay mis-trip may initiate other line trips leading to catastrophic failures
like blackouts. One of the main objectives of the smart grid is that the power
system will be enabled with communication and networking infrastructure to
an unprecedented level, and wide area measurements and controls will provide
the power system (transmission and distribution) with unprecedented robust-
ness and prevent untoward incidents such as blackouts. In [8] an agent based
relay supervision scheme is proposed to reduce the probability of hidden failure
induced trips. Agents are hierarchically distinguished as master and slave agents.
The real time communication between the master and slave agents aid Zone 3
relays to classify a fault as a true fault or a hidden failure induced fault and
respectively to trip or not to trip.

In this paper we use UPPAAL [9] - a formal verification tool to formally ver-
ify and validate the agent based distance relaying protection scheme. Because
of strict timing requirements (section 2) for the proper functioning of distance
relays, time based formal models are needed, and UPPAAL allows us to model
these in the form of timed automata, and allows model checking of timed prop-
erties on the models. To the best of our knowledge this is the first instance
of applying formal verification to the protection scheme in a power system. Re-
mainder of the paper is organized as follows. Section 2 explains distance relaying
protection scheme. Summary of related research work is provided in section 3.
Section 4 explains modelling of agent based distance relay protection scheme
in UPPAAL. Section 5 discusses verification results and some observations are
discussed in section 6. Section 7 concludes the paper.
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Fig. 2. Elements of a Protection System

2 Distance Relaying Protection Scheme

Distance relays operate based on the principle of impedance ratio, which is the
ratio of the magnitude of voltage to that of the magnitude of current. The current
and the voltage values measured respectively by current transformer (CT) and
voltage transformer (VT) are communicated to the relay. With the current and
voltage values as input, relay executes the relaying algorithm and concludes
about the presence of a fault. If there is a fault then relay communicates with
the breaker to trip the line out of service. If there is no fault, relay repeats the
above procedure with the next set of current and voltage values. To account
for the inaccuracies in sensing equipment (CT and VT), uncertainty in distance
setting of relays and to make sure that there are no blind spots, multiple zones
of protection (Zone 1, Zone 2) are employed for each transmission line. In the
presence of a fault if the breaker associated with the Zone 1 or Zone 2 relay
doesn’t trip (due to a failure in CT, VT, relay or breaker), faulted line cannot
be isolated from the system. Therefore a backup relay or Zone 3 relay is placed in
the remote substation (bus). Thus there exists three different zones of protection
i.e. Zone 1, Zone 2 and Zone 3 relays protecting a transmission line. It is already
explained above that the remote back up relay is preferred to a local backup relay
as the latter can be a victim of “common mode failure” along with the primary
relay (Zone 1). Please refer to Fig 1 to see a pictorial representation of zones of
protection. As shown in Fig 1 each transmission line is protected by relays at
both ends. The internal circuitry of each of the rectangular boxes in Fig 1 is as
shown in Fig 2. Dashed line shows protection in one direction of the transmission
line and solid line in the other direction of the transmission line. In order to
remove a faulted line out of service relays at both ends should trip. Zone 1 relay
operates instantaneously i.e. within 2 cycles (32 ms). A coordination delay of 20
cycles (300 ms) is allowed before Zone 2 relay operates. Zone 3 relay or remote
back up relay is allowed to operate with a coordination delay of 1 s(1000 ms).
Coordination delays not only provide selectivity in isolating a faulted section
but also ensure reliability of operation of the distance protection scheme [10].
Detailed explanation of zones of protection is out of the scope of this paper.
Interested readers are referred to [1].
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3 Previous Work

This section provides a brief summary of related previous research work. In [8]
an agent based Zone 3 relay supervision scheme is proposed to reduce the prob-
ability of hidden failure induced trips. As explained in section 2, a fault in a
single transmission line can be sensed by multiple relays under different zones of
protection. In the proposed scheme each relay is associated with an agent(slave)
which has the ability to sense and communicate fault status information to other
agents. Fault status indicates if there is a fault in the transmission line protected
by the relay or not. Based on the responsibilities assigned to them agents are
hierarchically distinguished in a master/slave relationship. At any given instance
the master agent has the complete information about the fault status sensed by
all the relays (communicated by agents) protecting a transmission line. When-
ever a relay senses a fault, its associated slave agent records it and queries the
master agent to find out if the sensed fault is a true fault or a falsely perceived
fault. Master agent compares the queried slave agent relay’s fault status with the
other slave agent relays protecting the same transmission line. In order to per-
form this comparison, master agent must know ahead of time which set of relays
are protecting the transmission line. [11] provides an algorithm for the master
agent to find out the set of relays protecting a transmission line. If majority
of the other relays also sense fault, master agent classifies the fault as a true
fault and acknowledges the queried slave agent relay to trip. On the other hand
if majority of the other relays protecting the transmission line doesn’t sense a
fault, master agent categorizes the condition as non-faulty and sends a message
to the Zone 3 slave agent relay not to trip. Thus, with the help of agent commu-
nication a relay can distinguish a true fault from a hidden failure induced fault.
The entire process of sensors sensing the current and voltage values, relay algo-
rithm execution to find the existence of fault, slave agent recording a fault and
querying the master agent, master agent comparing fault statuses of different
relays protecting a transmission line and acknowledging the queried slave agent
relay has to be finished within the relay fault clearing time i.e. 1 s, 300 ms and
32 ms respectively for Zone 3, Zone 2 and Zone 1 relay. With the current state
of the art in communication and networking technologies it may be difficult to
meet the timing requirements of Zone 1 and Zone 2 relays but Zone 3 relay time
constraint may be met. Hence we restrict our analysis to Zone 3 relay supervision
i.e. only Zone 3 slave agent relay queries are answered by the master agent.

It is possible that a larger bus system is geographically wide spread around
100’s to 1000’s of miles. If a single master agent is employed to serve queries
from all the Zone 3 slave agents in such a large power grid, the round trip
communication delay over large distances can exceed the Zone 3 fault clearing
time. This deceives the purpose of the agent based distance relaying protection
scheme. To overcome this issue, in [12] a methodology is provided to divide a
power system network into sub-networks with the objective of minimizing the
number of master agents required to serve queries from all the Zone 3 slave
agents such that the round trip communication timing requirements are met.
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4 Modelling Behaviour

In UPPAAL the model of system’s behaviour is expressed as the composition
of the behaviour models of its individual components. The main components of
the agent aided distance relaying protection scheme are sensors (CT and VT),
Zone 1 relay, Zone 2 relay, Zone 3 relay, breakers, slave and master agents. There
exist two different models for both the sensor and the breaker. The reason for
this is as follows: Zone 3 relay operates when both Zone 1 and Zone 2 relay fail
and/or their associated both breakers or sensors fail simultaneously. Practically
it is possible that the Zone 3 relay and its sensor and breaker equipment can fail
but we didn’t consider this scenario in our model. The main reason being the
probability of Zone 1, Zone 2 and Zone 3 relays failing simultaneously is very low.
Moreover Zone 3 is the only backup available. If we consider the case where Zone
3 relay also fails along with Zone 1 and Zone 2 relay we cannot successfully verify
the distance relaying scheme. Hence the case of either Zone 3 relay or its sensor
or breaker failure is not considered. Therefore the Sensor 1 and the Breaker 1
models have failed state whereas the Sensor 2 and the Breaker 2 models do not
have failed state. Sensor 1 and Breaker 1 model the behaviour of the sensor and
the breaker associated with Zone 1 and Zone 2 relays. Whereas the behaviour of
the sensor and the breaker of the Zone 3 relay are respectively presented in the
Sensor 2 and the Breaker 2 automata.

Fig. 3. Sensor1 automaton
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Fig. 4. Sensor2 automaton

A reset transition moves an automaton from any state to the start state.
The following two reset transitions are used by all the automatons described
in this section. These two reset transitions are used multiple times to explain
the behaviour of all the automata. Instead of rewriting these transitions many
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times they are just explained once here. At this point they may or may not be
clearly understood but by the end of this section their relevance should become
apparent.

1. Reset I : In our system model, when breakers at both ends of the line trip, a
reset signal is sent via the broadcast channel d to all automatons to move to
the start state. As shown in Fig 1 a transmission line is protected by Zone
1, Zone 2 and Zone 3 relays in both the directions. At least two relays i.e.
one relay per direction have to trip in order to remove a faulted line out of
service. In total there are at least six relays protecting a transmission line.
Depending on which relay out of these six relays trip’s last, any of the six
breakers can send a reset signal via the urgent broadcast channel d to reset
the whole system.

2. Reset II : If any of the Zone 3 relay senses no fault, then it moves from the
location calculate to nofault transmitting a nofault signal via the broadcast
channel nf. The remaining Zone 1, Zone 2 and Zone 3 relays receive the signal
via the broadcast channel nf and move to nofault state. Zone 3 relay moves
from nofault to start state by transmitting a reset signal on the broadcast
channel h. All the automata move from their current location to start state
after receiving a reset signal on the broadcast channel h.

In the following description of timed automata words “state” and “location” are
used interchangeably and they both mean the state of an automaton.

a) Sensor 1: Both the current and the voltage transformer are modelled as
a single sensor. Timed automaton model of Sensor 1 is as shown in figure 3. It
uses the clock x to measure time. Sensor 1 moves from initial state start to the
sensing state via the urgent channel go if the boolean variable zone3==0. If
zone3==0 it is an indication that all automatons are in start state. Also during
this transition integer variables m and n are set to zero. These two variables are
used by the master agent. If Sensor 1 is functioning correctly, it senses the current
and the voltage values within ts2 ms and moves from the state sensing to sensed.
On the other hand if Sensor 1 is malfunctioned it will make a transition from
the sensing state to the failed state in the time interval (ts2,ts1). Automaton
can move from failed to start state via Reset I or Reset II. If Sensor 1 makes
transition from the location sensing to sensed, within ts2 ms it sends the voltage
and the current values to the respective relay via the synchronization channel
a and moves to the committed location communicated. In networks of timed
automata describing a system if any automaton is in a committed location next
transition is from that location. Committed location is used in the execution of
atomic sequence. From the committed location communicated, Sensor1 makes
a transition to the wait state via the urgent channel go. Automaton can move
from the wait to start state via Reset I or Reset II.

b) Sensor 2: The behaviour of the Sensor 2 is similar to that of the Sensor 1
except that the former doesn’t have the failed state. Timed automaton of the
Sensor 2 is as shown in figure 4.
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Fig. 5. Zone 1 Relay automaton

c) Zone 1 Relay: Timed automaton of Zone 1 Relay is as shown in figure 5. It
uses the clock z to measure time. It receives the current and the voltage values
from the Sensor 1 via the synchronization channel a and moves to the calculate
state from the start state. Relay consumes tz2 to tz3 ms of processing time to
find out if the transmission line protected by it is faulty or not. If there is a
fault in the transmission line, Zone 1 relay moves from the state calculate to
faulty within the time interval (tz2,tz3). During this transition boolean variables
fault1, fault2 are set and a fault signal is sent to the slave agent associated with
the relay via the communication channel e. It is aforementioned that in order
to remove a faulted line out of service relays at both ends of the line have to
sense and respective breakers have to trip. The Boolean variables fault1 and
fault2 provide the fault status of the relays at both ends of the line. Initially
both fault1 and fault2 are set to zero indicating a no fault condition. Whenever
system (relay) senses a fault both fault1 and fault2 are set to one. The breaker
trip at one end of the line resets fault1 while the breaker trip at the other end
of the line sets fault2 to zero which removes the fault from the system.

On the flip side if there is no fault then relay makes a transition from the state
calculate to nofault via Reset II if the Boolean variable fault1 is not set. If fault1
is already set, it is an indication that the system has already detected the fault
via Zone 2 or Zone 3 relay and Zone 1 relay cannot move to nofault state. Zone
1, Zone 2 and Zone 3 relays all operate simultaneously until fault detection stage
and detect the fault within the time interval (tz2,tz3). The main difference in
Zone 1, Zone 2 and Zone 3 relay models is the time instance at which they send
tripping signal to their respective breakers. So, in the presence of a transmission
line fault it is hard to predict which relay can first detect that fault and set
the fault1 variable. Thus it is necessary to check if fault1 is set before moving
from the state calculate to the state nofault. If Zone 1 Relay is malfunctioned,
it does not respond in the time interval (tz2,tz3) and makes a transition to the
failed state in time interval (tz3,tz1) and sets the Boolean variable failed1 giving
an indication that the relay has failed. Relay makes transition from the failed
state to the start state when it receives a reset signal on the broadcast channel
d via Reset I. During this transition it resets the Boolean variable failed1. A
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communication delay of tz4 ms is involved in sending a trip signal from a relay
to the breaker. So, with a delay of tz4 ms Zone 1 Relay automaton moves from
the state faulty to communicated sending a trip signal to its breaker via the
synchronization channel b, then moves to the wait state via the urgent channel
go. Automaton then makes a transition from the wait to the start state via Reset
I.

d) Zone 2 Relay: Timed automaton of Zone 2 Relay is as shown in figure 6.
It uses the clock z2 to measure time. Transitions from the state start to faulty
are similar to that of Zone 1 Relay with few changes. First, the Boolean variable
failed1 is replaced with the Boolean variable failed2. Second, the faulty state is a
committed location. From the faulty state automaton makes a transition to the
wait1 state. If the breaker of Zone 1 Relay trips and resets the fault1 variable,
it is an indication that the system is fault free and Zone 2 relay moves to start
state in time interval [0, t2) ms by transmitting a signal via the urgent channel zk
or by receiving a Reset I. If the breaker associated with Zone 1 relay doesn’t trip
within a communication delay of t2 Zone 2 Relay moves to the communicating
state from the wait1 state to send a trip signal to its breaker. Zone 2 Relay
automaton makes a transition from the communicating to the communicated
state with a delay of tz4 ms. During this transition Zone 2 Relay sends a trip
signal to its breaker via the synchronization channel b, and then moves to the
wait2 state via the urgent channel go. Automaton then makes a transition from
wait to the start state via Reset I.

e) Zone 3 Relay: Timed automaton of Zone 3 Relay is as shown in figure 7. It
uses the clock z3 to measure time. Zone 3 relay automaton behaviour is almost
similar to that of Zone 2 Relay, except that it doesn’t have failed state. The other
change is that the variable t2 is replaced with the variable t3. When Zone 3 relay
is in wait1 state, within the coordination delay [0, t3) if the breaker associated
with either the Zone 1 or Zone 2 relay doesn’t trip, Zone 3 relay moves to the
communicating state and sends a signal to its breaker to trip the line out of
service.
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f) Breaker 1: Timed automaton of Breaker 1 is as shown in figure 8. Automa-
ton uses the clock y to measure time. Breaker 1 is initially in the start location.
Automaton receives a trip signal from its associated relay via the channel b and
makes a transition from the location start to received. After receiving the trip
signal from the relay, breaker and its associated electromechanical machinery
trips a line out of service with a delay of tb1 ms. So, assuming that the breaker
is functioning correctly automaton moves from the state received to the com-
mitted location intermediate in tb1 ms and resets the fault1 variable, indicating
that the line is tripped. If a transmission line is faulty then breakers at both
ends of the line have to trip to remove the line out of service. So, to make a
transition from the state intermediate to tripped, automaton performs a check
to find out if the breaker on the other end of the line has tripped or not. If it
is tripped fault2 is reset otherwise fault2 is set. Irrespective of whether fault2 is
set or reset automaton makes a transition from location intermediate to tripped.
But if fault2 is reset, automaton while making a move from the state interme-
diate to tripped transmits a faultfree signal via the channel c to the observer
automata, giving an indication that the system is free of fault. When automaton
is in received state, if the breaker doesn’t respond for more than tb2 ms then
it moves to failed state in time interval [tb2, tb1). From the failed state breaker
can make transition to the start state via Reset I. Transition from the location
tripped to start occurs when both the Boolean variables fault1 and fault2 are
reset. Also during this transition automaton sends a reset signal via Reset I.

g) Breaker 2: Timed automaton of Breaker 2 is approximately similar to that
of Breaker 1 with the only change being Breaker 2 doesn’t have a failed state. It
is as shown in figure 9.

h) Observer automaton (OA): Observer automata captures the high level
behaviour of the distance relaying protection scheme i.e. whether the system is
faultfree or faulty. As shown in figure 10(a) observer automata has only 2 states
i.e. faultfree and faulty. Automaton is initially in faultfree location. When Zone
1 or Zone 2 or Zone 3 Relay senses fault, they transmit fault signal n channel e.
OA listen’s it and moves to the faulty location. Transition from the state faulty
to faultfree occurs when the automaton receives a reset signal via Reset I.
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i) Helper automaton: As shown in figure 10(b) helper automaton has two tran-
sitions and one state. Whenever any automata has to make an urgent transition,
helper automata sends a signal via the urgent channel go and other automata
listens and makes a transition. Similarly Zone 2 and Zone 3 Relay make an ur-
gent transition from the state wait1 to the start state via the urgent channel
zk.

j) Slave agent: Similar to the sensor and the breaker models there exist two
different models for the slave agent. Slave agent 1 is used to model the behaviour
of the agent located at Zone 1 and Zone 2 relay. Timed automaton of the slave
agent 1 is as shown in figure 11(a). Slave agent 1 records the outcome of the relay
execution algorithm, records it and reports it to the master agent so that the lat-
ter’s database is up to date. The current state of the art relays can communicate
at 30 times/s i.e. they can transmit new fault status every 33 ms. Therefore the
master agent receives a new fault status from a slave agent 1 every delay1 = 33
ms. In our model we declared a global variable afault for each slave agent and it
is updated with a delay of 33 ms. As slave agent’s afault variable is declared as
global, master agent also has access to it. By declaring afault variable as global,
model is simplified as fault status value passing is avoided between the master
agent and the slave agent.
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Timed automaton of Slave agent 2 is as shown in figure 12. The behaviour of
the agent associated with Zone 3 relay is modelled by the Slave agent 2. Slave
agent 2 makes a transition from the state start to received1 after receiving a fault
signal from the Zone 3 relay. Similar to the Slave agent 1 fault variable afault
of the Slave agent 2 is updated with a delay of delay1 = 33 ms. Automaton
moves from the location received1 to the committed location sent with a delay
of 33 ms and sends a fault status update signal via the synchronization channel
f to master agent. Then Slave agent 2 makes a transition from the committed
location sent to the normal location wait. In the wait state automaton waits for
the reply from master agent to confirm if the fault sensed by the Zone 3 relay
associated with the Slave agent 2 is a true fault or a hidden failure induced fault.
When automaton is in the wait1 state, there is a possibility of three different
transitions.
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1. If either the Zone 1 or Zone 2 relay clears fault, Slave agent 2 makes a
transition to the start state. When the master agent sends a signal to the
Slave agent 2 via the synchronization channel g about whether the fault is
a true fault or a hidden failure based fault, Slave agent 2 listens and moves
from the location wait to the committed location received 2. Slave agent
2 then moves from the committed location received2 to start. During the
transition from the state wait to received2 boolean variable fault1 is updated
by function1(). If the fault is a hidden failure induced fault, function1()
resets fault1 variable and if the fault is a true fault, fault1 variable is set. It
is aforementioned that a fault in a transmission line can be sensed by atleast
six different relays. As each relay has a slave agent associated with it, atleast
six slave agents report to the master agent about the fault status in a line. In
function1() boolean variable afault of Slave agent 2 is compared with afault
variables of five other slave agents. If at least half (3 out of 6) afault variables
are set to 1, it is an indication that the transmission line is faulty and the
boolean variable fault1 is set to 1 and the breaker associated with the Zone
3 Relay can trip if both the Zone 1 and the Zone 2 relay breakers fail to trip.
On the other hand if more than half (>3 out of 6) of the afault variables
are set to zero, it is an indication that there is no fault in the line then the
Boolean variable fault1 is set to zero and it is not required for the Zone 3
relay’s breaker to trip. If the sensor or the relay fails the respective slave
agent’s afault variable is not taken into consideration in the above decision
making which is implemented by function1().

2. If Slave agent 2 is waiting for an acknowledgement from the master agent,
it is possible that a breaker associated with the Zone 1 or Zone 2 relay to
trip. Therefore it is not required by the slave agent 2 to wait for the fault
classification signal from master agent. In this case the transition from wait
to start can occur in two different ways. If Zone 3 relay interprets that either
the Zone 1 or Zone 2 relay has tripped and fault1==0, slave agent 2 receives
a reset signal on the urgent broadcast channel zk and it moves from wait to
start state. This is known as Zone 3 Reset. item The transition from wait
to start state can occur via Reset I.

k) Master Agent: The behaviour of the master agent is modelled using two
timed automatons. The master agent stores the requests in a queue as they are
received and processes them based on the first in first out (FIFO) order. As
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shown in figure 11(b) the master agent receives requests from Slave agent 2
via the synchronization channel f and appends it to queue using the enqueue()
function. The received request is processed by the master agent task execution
timed automaton shown in figure 13. Whenever a request is received, length of
the queue len is greater than zero and automaton moves from the initial location
start to evaluate. There are three possible transitions from evaluate state:

1. While Slave agent 2 of Zone 3 relay is waiting to receive a trip/no trip signal
from the master agent, breakers associated with either the Zone 1 relay or
Zone 2 relay at both ends of the line may trip and reset fault1 and fault2
variables. In this case the master agent deletes from its queue the Zone 3
relay Slave agent 2 queries at both ends of the line and moves from the send
to start state.

2. A slave agent is capable of transmitting new fault variable every 33 ms. There-
fore a maximum delay of 33 ms is allowed for master agent to process a request.
Also, a database query time of 100 ms is assumed in OPNET simulations [12].
A detailed justification is provided in [12] for the selection of database query
and master agent service time. Hence the total master agent delay in process-
ing a single query is 133 ms. Therefore the master agent automaton moves
from evaluate to send state approximately in 133 ms.

3. The third possible transition is from evaluate to start state via the Zone 3
Reset.

Table 1. Timing values

Parameter Before Scaling After Scaling

ts1 2 -

ts2 1 -

tb1 21 -

tb2 20 -

tz1 8 -

tz2 2 -

tz3 6 -

tz4 4 -

t2 268 33

t3 968 121

delay 133 17

delay1 75 10
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Automaton can move from the send state to start state via four different tran-
sitions.

1. Within delay1 ms, master agent processes the next query in queue and sends
a reset signal on the channel g.

2. The second possible transitions is via Reset I.
3. The other two possible transitions are due to Zone 3 Reset.

5 Verification

The description of the complete model can be downloaded from
www.filebox.vt.edu /users/gshra09/agents.zip. This section explains the
properties of the agent based Zone 3 relay supervision scheme that are verified.
In UPPAAL Timed Computation Tree Logic (TCTL) is used to specify system
properties. Sensor1t(2t,3t) and Breaker1t(2t,3t) are the sensor and the breaker
associated with the Zone1t (Zone2t,Zone3t) relay protecting the line at one end
whereas Sensor1f(2f,3f) and Breaker1f (2f,3f) are the sensor and the breaker
associated with the Zone1f(Zone 2f,Zone3f) relay protecting the line at the
other end. afault[0],afault[1],afault[2],afault[3],afault[4] and afault[5] are fault
status recorded by slave agents of Zone1t, Zone1f, Zone2t, Zone2f, Zone3t and
Zone3f respectively. The following properties are verified.
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Fig. 12. Slave agent 2 automaton

Safety Property
a) A [] no deadlock i.e. system is deadlock free.
Bounded Liveness Property
b) System.faulty −→ ((System.faultfree) and (System.w ≤ 153)) i.e. System is
fault free within 153 ms. If there is a large range in timing, UPPAAL leads to
state space explosion. Therefore timing values in slave agent to master agent
communication, Zone 2 and Zone 3 waiting times are scaled by a factor of 8.
Actually the system should be fault free within the Zone 3 fault clearing time
of 1 s. A Zone 3 slave agent should receive a response from master agent within
968 ms, scaling this by 8 results in 121 ms. Remaining time of around 32 ms is
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lost in communication delays between sensor and relay, relay and breaker. These
values are not scaled as they are low. Not scaling these values doesn’t have any
effect on the scaled agent communication delays. Hence the total time available
for the system to be fault free is (121 + 32 = 153ms). The timing values before
and after scaling are as shown in Table 1. ‘-’ indicate that those values are not
scaled.
Model Correctness Properties
c) ((Sensor1t.failed or Z1t.failed or Breaker1t.failed ) and (Sensor2t.failed or
Z2t.failed or Breaker2t.failed) and (afault[4] == 1) and (n < m)) −→ (not
(Breaker3f.tripped)). Here ‘n’ is the number of slave agents with afault = 1 and
‘m’ is the number of slave agents with afault = 0. If Sensor1t or Zone1t relay
or Breaker1t failed and Sensor2t or Zone2t or Breaker2t failed and Zone3t relay
slave agent’s Boolean variable afault[4] is set to 1 then Zone 3 breaker cannot
trip if n < m.
d) ((Sensor1f.failed or Z1f.failed or Breaker1f.failed ) and (Sensor2f.failed or
Z2f.failed or Breaker2t.failed) and (n < m) and (afault[5] == 1)) −→ (not
(Breaker3t.tripped)).
This property is similar to property c) but this is verified at the other end of the
line.
e) ((Sensor1t.failed or Z1t.failed or Breaker1t.failed ) and (Sensor2t.failed or
Z2t.failed or Breaker2t.failed) and (afault[4] == 1) and (n ≥ m)) −→
Breaker3t.tripped.
If Sensor1t or Zone1t relay or Breaker t1 failed and Sensor2t or Zone2t or
Breaker2t failed and Zone3t relay slave agent’s Boolean variable afault[4] is set
to 1 then Zone 3 breaker can trip if n ≥ m and both n is greater than one.
(n > 1) indicates that atleast one relay (Zone1 or Zone2 or Zone3) from both
ends of line sense that there is a fault.
f) ((Sensor1f.failed or Z1f.failed or Breaker1f.failed ) and (Sensor2f.failed or
Z2f.failed or Breaker2f.failed) and (afault[5] == 1) and (n ≥ m) and (n > 1) )
−→ Breaker3f.tripped. This property is similar to e) but this is verified at the
other end of the line.

The main aim of the agent based distance relaying scheme is to aid Zone 3 relays
to prevent hidden failure induced trips. Properties c,d,e,f prove that the model
presented in this paper satisfies this criteria. Also the addition of agents should
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not disturb the actual operation of distance relaying scheme i.e. it should be
deadlock free and be able to isolate faulted line within 1 s. Properties a,b verify
that these two requirements are met. Therefore the above described six logical
properties are sufficient to guarantee the correctness of our model.

6 Observations

In the above two sections agent based Zone 3 relay supervision scheme is for-
mally modelled and verified for the simplest scenario of a single transmission line
being protected by two Zone 3 relays. Depending on the power system network
topology, it is possible that more than two Zone 3 relays may be protecting a
transmission line. The following observations discusses how to handle this sce-
nario.

1. Observation 1: The number ‘N’ of Zone 3 slave agent requests a master
agent with an average service time of ts can handle at any given time is
upper bounded by N ≤ (1000 − tr)/(ts). Where tr is the maximum round
trip communication delay between any slave agent and master agent in the
network. It is possible that a Zone 3 slave agent may not receive acknowl-
edgement from the master agent with in its fault clearing time of 1 s. The
two main reasons for this are network congestion and length of the queue
at the master agent. In order to mitigate the network congestion problem,
in OPNET simulations we designed the network with sufficient bandwidth
[12]. Therefore the problem of network congestion can be neglected. As men-
tioned earlier, from OPNET simulations the average ts is assumed to be 133
ms and tr is 150 ms which results in N ≤ 6.4.
It is well known that the transmission line fault occurrence is a rare event.
Further the probability of a fault occurring simultaneously in more than
one transmission line is very low. Therefore we restrict this analysis to a
single transmission line fault. Also it is mentioned earlier that we restrict
our analysis to Zone 3 relay supervision scheme. As discussed above, with
ts = 133ms the maximum number of slave agent queries answered by a
master agent in 1 s is 6. Table 2 shows the percentage of transmission lines
in five different bus system networks protected by more than six Zone 3
relays. The percentage is around 18 for a 30 bus system and for remaining
bus systems the percentage is less than 8. As the percentage of transmission
lines with more than six Zone 3 relays is high, the master agent should be
capable of handling more than 6 queries in a second. This can be achieved
by doubling the query processing capacity of the server or arranging an
extra server for query processing at the master agent. Either of these can
result in the maximum number of slave agent queries answered by a master
agent to be 12. It can be observed from Table 2 that the percentage of
transmission lines in a given power system network protected by more than
twelve Zone 3 relays is zero. Therefore for the power system networks shown
in Table 2, a master agent capable of answering 12 queries per sec should be
sufficient to meet the stringent timing requirements of Zone 3 relays. If the
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Fig. 14. Slave agent communication with multiple master agents

above discussed issues are taken into consideration, the formal models can
be easily extended to a power system network of any size.

Table 2. Percentage of Zone 3 relays protecting a transmission line

Bus System % of lines with N > 6 % of lines with N > 12

14 0 0

30 17.7 0

57 5.75 0

118 7 0.0025

127 3.25 0

2. Observation 2: It is aforementioned in section 3 that a larger bus system
requires more than one master agent to answer queries from Zone 3 slave
agents. Therefore a power system network is divided into sub-networks and
a master agent is assigned to each sub-network to acknowledge queries from
Zone 3 slave agents in that sub-network. It is possible that a network parti-
tioned into sub-networks can be as shown in figure 14. If we can prove that
both the sub-networks are disjoint, then the above described formal models
and observation I can be applied to them to prove that both the sub-networks
independently satisfy the properties verified in section 5. Therefore the entire
power system network consisting of both these sub-networks can be assumed
to satisfy the properties mentioned in section 5 . The only connection be-
tween the two sub-networks shown in figure 14 is that there exists some
slave agent relays that are considered as a part of both these sub-networks.
If these relays sense a fault, they can send queries to the master agents in
both the sub-networks and fault classification depends upon the response
from both the master agents. Thus, there exists some interconnection be-
tween both the sub-networks. The interconnection can be avoided by using
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directional relays at the buses that are common to both the sub-networks.
The directional relays can distinguish the fault i.e. in which sub-network the
fault exists and based on that it can communicate with the corresponding
master agent. Thus, the two sub-networks can be proved to be disjoint. If
there are more than two sub-networks in a network, the same approach can
be used to negotiate the interconnection between different sub-networks. As
the sub-networks in a network are proved to be disjoint, each sub-network
can satisfy the verification properties discussed in section 5 and observation I.
Therefore the entire network can satisfy the properties discussed in section 5.

7 Conclusion

In this paper we used a formal verification tool called UPPAAL to formally ver-
ify and validate agent based back up relay supervision scheme for transmission
line protection system. Time based abstract formal models that capture the be-
haviour of sensors, breakers, relays, master and slave agent are described. The in-
formal requirements of the agent supervised transmission line protection system
are formalized in 6 logical properties and are verified and validated successfully.
To the best of our knowledge this is a first attempt to use formal verification in
power system protection. One of the future plans include modelling the proba-
bilistic behaviours of the relays and find the reliability with which the Zone 3
relay provides protection in the event of Zone 1 and Zone 2 failures. We plan to
use PRISM model checker for this.
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Abstract. We describe an extension of the Spin model checker that al-
lows us to take advantage of the increasing number of cpu-cores available
on standard desktop systems. Our main target is to speed up the verifi-
cation process for safety properties, the mode used most frequently, but
we also describe a small modification of the parallel search algorithm,
called the piggyback algorithm, that is remarkably effective in catching
violations for an interesting class of liveness properties at little cost.

Keywords: parallelism, concurrency, multi-core, model checking, Spin,
breadth-first search, safety, liveness, bounded search, software verification.

1 Introduction

We build on the infra-structure provided by the model checker Spin [5]. Although
the model checker targets the analysis of multi-threaded software applications,
until recently the tool itself performed its analyses single-threaded, using just a
single cpu. In 2005 a modification was introduced that allowed for the execution
of the depth-first search analysis on multiple cpu-cores [6]. This extension was
chosen because it can support both safety and liveness properties, yet for live-
ness properties the depth-first algorithm could only take advantage of parallel
execution on no more than two cpu-cores.

Parallelization of breadth-first search is often considered simpler, and could
lead to greater gains, so it is attractive to support also this option, even if it
means restricting it to the verification of safety properties alone. The parallel
version of the breadth-first search described in this paper requires virtually no
tuning or user adjustments and succeeds in providing an impressive performance
improvement in the model checking process. We also show that a simple exten-
sion of this algorithm suffices to support also the verification of an interesting
class of liveness properties without measurable overhead.

The remainder of this paper is organized as follows. In Section 2 we describe
the basic breadth-first search algorithm that is used in Spin. In Section 3 we
describe the parallelization of this algorithm, where we focus on the key issues
of load balancing, lock avoidance, and partial order reduction. In Section 4 we
discuss an extension that supports checks for liveness properties with a bounded
cycle search option.
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Section 5 presents documents the performance of the new algorithm when
applied to a range of verification problems. Section 6, concludes the paper and
summarizes the key results.

2 Breadth-First Search

Figure 1 gives the basic sequential algorithm for performing a breadth-first in a
reachability graph, as used in the Spin model checker. The algorithm uses three
sets of states: S, Q[0], and Q[1]. Set S is the set of visited states, which is initially
empty. Every new state that is encountered during the search is entered into this
set, to avoid duplicate work when the state is revisited later. Set S is typically
implemented as a hashtable.

1 global t = 0 // toggle bit 0..1

2 global S = {} // statespace set

3 global Q[0] = {} // successor set

4 global Q[1] = {} // successor set

5 safety property f

6

7 add s0 to Q[0] and to S // initial state

8

9 Search()

10 do {

11 for each s in Q[t]

12 { delete s from Q[t]

13 for each successor s’ of s

14 { if s’ not in S

15 { add s’ to S

16 if s’ violates f

17 { report safety violation

18 } else

19 { add s’ to Q[1-t]

20 } } } }

21 t = 1 - t

22 } while (Q[t] is non-empty)

23 }

Fig. 1. Sequential breadth-first search

The breadth-first search proceeds by repeatedly generating the set of successor
states (the ’next’ generation) for a given set of states (the ’current’ generation).
These two sets are stored in successor sets Q[0] and Q[1]. As soon as all states
in the ’current’ generation of states have been processed, the roles of Q[0] and
Q[1] switch, and what was the ’next’ generation of states becomes the new
’current’ generation, and the now empty former ’current’ generation becomes
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the temporary holding place for the new ’next’ generation of states. In Figure 1
this switch happens by toggling the value of t on line 21.

Every new state that is processed (i.e., each successor to one of the states
from the ’current’ generation of states) is first checked for its presence in S (line
14). If new, one or more safety properties can be checked for this state (line 16),
and violations reported (line 17). In the absence of a violation, the state is added
to the ’next’ generation (line 19) for the future exploration of its successors.

The order in which the states from the current generation are processed (which
is determined in Figure 1 by the selection on lines 11-12) is not important. This
makes the parallelization of successor generation and processing simpler than it
is in a depth-first search.

3 Parallel Breadth-First Search

One direct way to parallelize the search would be to keep the algorithm from
Figure 1 as is, and to simply run it in parallel on all available cores. Clearly,
access to the three shared sets S, Q[0], and Q[1], will then have to be protected
with semaphores or locks, to avoid data corruption, but the main flow of the
algorithm could remain unchanged. All cores then compete for states to process
from the ’current’ generation, and they coordinate their access to state S to
lookup (line 13) and add states (line 14), and to include new states into the
’next’ generation (line 18) when appropriate.

This strategy can be expected to achieve good load balancing, since all workers
share a common work-queue, but it can also be expected to suffer from major
delays in the wait for locks, which can significantly affect the overall performance
of the algorithm, and can even make it run slower on multiple cores than it would
run on a single core. The overhead of locking can be expected to get worse with
every new core added to the system. This type of solution can therefore not be
expected to scale.

3.1 Lock Avoidance

Our first goal is therefore to design the algorithm and its data structures in such
a way that we can avoid the need for most locks, and achieve maximal decoupling
between cpu cores.

To achieve lock avoidance we must be able to arrange that each core can
retrieve states from a data structure that, at that point in the search, is not
shared with any other core, and that it can deposit states for processing in the
next round of the search into a data structure that, at that point in the search, is
not shared with other cores. The key phrase here is ”at that point in the search,”
and it can be achieved in a fairly simple manner.

The Q[0] and Q[1] data structures from Figure 1 are most naturally imple-
mented as linked lists. Every element in the list holds the data associated with
one unique state, plus a pointer to the next state in the list, or NULL if there is
no next state. As noted, the ordering of states within the list is irrelevant to the
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correct functioning of the algorithm: there is no distinction or ordering implied
between successor states that are part of the same generation of states (i.e., that
are reachable in the same number of steps from the initial system state(s)).

This means that on an N-core system we can split each of the sets Q[0] and
Q[1] into NxN subsets, with each subset reserved for the use of only one specific
core to transmit states to one specific other core. When a successor state is
generated we now have to choose which subset of the ’next’ generation the new
state is assigned to. Load balancing can be achieved here by simply randomly
selecting this subset. Even though we must now support a quadratic number of
sets (NxN on an N-core system), this does not impact the memory requirements
in a significant way: the sets are merely linked lists, and we need only 2xNxN
pointers instead of two. On a 32 core system this adds 2048 64-bit pointers, or 16
KB of memory: an insignificant amount compared to the Gigabytes of memory
that are used to store the states of set S and the various subsets of Q for larger
problem sizes. By sacrificing a relative small amount of memory we can reduce
the runtime overhead with simple contention-free and lock-free data structures.

Figure 2 illustrates the main structure of the parallel version of the algorithm
for N cores. The current and next generation of states are now stored in subsets of
Q[0] and Q[1]. When the current generation is t, core w has uncompeted access to
all subsets Q[t][w][1..N] from the current generation and subsets Q[1-t][1..N][w]
from the next generation. As before, once all states have been processed, the
current and next generations can be switched, but this time this switch has to
be coordinated among all workers to make sure that the global breadth-first
search discipline is maintained.

Note that while candidate states in subset Q[t][w][q] are being processed (lines
14-25) no further states can be added to this subset, and once the set is empty it
will remain empty at least until all states in the current generation of successor
states have been processed.

There are three places in the algorithm where coordination among the worker
cores is required in the parallel version of the algorithm.

1. Access to the shared global state space S (lines 18 and 19) now has to be
protected, to make sure that the entries cannot be corrupted by simultaneous
access of different cores. To avoid a global lock, we can use a fine-grained
strategy that avoids waits, using compare-and-swap instructions. We have
adopted a lockless hashtable for this, as first described in [7], which has these
properties.

2. The switch from one generation to the next (line 33) must be synchronized
between the cores to make sure that a breadth-first search discipline is main-
tained and, importantly, also that exclusive access of each worker to its des-
ignated subsets of Q[0] and Q[1] is guaranteed. We explore this further in
Section 3.2.

3. Finally, we need to be able to determine when all states have been explored
and the cores can stop executing (line 30 and 39). This point too is explored
further in Section 3.2.
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1 global done = false

2 global t = 0

3 global S = {} // statespace set

4 global Q[0][1..N][1..N] = {} // successor set

5 global Q[1][1..N][1..N] = {} // successor set

6 global idle[1..N] = false // all elements

7 safety property f

8

9 add s0 to Q[0][1][1] and to S // initial state

10

11 Search(w: 1..N) // N workers

12 { local ot = t

13 do {

14 for each q in 1..N

15 { for each s in Q[t][w][q]

16 { delete s from Q[t][w][q]

17 for each successor s’ of s

18 { if s’ not in S

19 { add s’ to S

20 if s’ violates f

21 { report error

22 } else

23 { w’ = choose random 1..N

24 add s’ to Q[1-t][w’][w]

25 } } } } }

26 idle[w] = true // one element

27 if (w == 1)

28 { wait until all idle[1..N] == true

29 { if (all Q[1-t][1..N][1..N] empty)

30 { done = true

31 } else

32 { idle[1..N] = false // all elements

33 t = 1 - t

34 } }

35 } else

36 { wait until t != ot or done

37 ot = t

38 }

39 } while !done

40 }

Fig. 2. Parallel breadth-first search for N cores



160 G.J. Holzmann

3.2 Synchronization and Termination

We designate one core to be the master of ceremony for each parallel verification
run. It decides when all cores can advance from one generation of states to the
next, and when the verification process can be terminated because all states
have been processed. The core in charge is the same core that starts up all other
worker processes (processes, not threads) at the start of the verification run.

The ’master’ core (which is the core with (w==1)) checks if either type of
synchronization is required when it has completed processing all states that
were assigned to it in the last round, i.e., when it reaches line 26 in Figure 2.

The master core can reliably tell that all states from the current generation
have been processed if all cores have set their idle flag to true (line 28).

When this condition is met, no further work can be performed by any of the
cores and it is safe to switch the value of t (line 33) to make all states stored in
the ’next’ generation available as the new ’current’ generation.

Before changing the value of the toggle variable t though, the master core
checks if the search can be terminated. If the ’next’ generation of states is empty
at this point, then clearly there are no further states to be processed by any of
the cores, and the search can be concluded. This termination check occurs on
line 29.

All cores other than the master that conclude their processing of the current
generation of states simply wait for either t to change or the global variable done
to become true (line 36). Only the master core has write-access to global vari-
ables t and done, so race conditions on these variables cannot occur. Similarly,
there can be no conflict on access to the global variable array idle, because
simultaneous access by multiple cores is not possible.

3.3 Partial Order Reduction

Significant savings in the number of states that must be processed to perform
an exhaustive search can be obtained with partial order reduction strategies.
These methods were added to Spin in 1994 for the depth-first search [4], and
later extended to cover also breadth-first search [3].

For the parallel version of the breadth-first search, the algorithm from [3]
remains valid, the only difference being that states in the ’new’ generation of
states can now be found in multiple queues instead of a single one. A minor
modification of the state storage method suffices: we only need to store one
additional bit of information that indicates whether or not the state is currently
open (i.e., is present in one of the ’next’ queues) or closed (present only in hash-
table S). The processing is minimal. Also here, we sacrifice a small amount of
memory to store the additional information in return for potentially large savings
in runtime.
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4 An Extension for Liveness

Correctness properties are commonly divided into two broad categories: safety
and liveness. As first shown in [1], properties of both categories can be combined
to formulate virtually any type of correctness requirement.

In Manna and Pnueli’s paper [9] it was argued that only three basic types
of requirements could ”cover the majority of properties one would ever wish
to verify.” In linear temporal logic, these three types of requirements from [9]
correspond to the following types of formula:

1. []p (invariance),
2. [](p -> Xq) (response), and
3. [](p -> (q U r) (precedence).

The first two properties can be classified as safety properties, and the last prop-
erty as a liveness property.

Curiously, today we would normally formalize the response property differ-
ently from what was proposed in [9], namely as: [](p -> <> q). When formal-
ized in this way, though, the response property becomes a liveness rather than
a safety property. The difference is important because safety properties are sim-
pler and less costly to verify than liveness properties. In Spin the difference can
be quantified more precisely still: the verification of a liveness property with the
nested depth-first search algorithm can increase the runtime by up to a factor
of two [5].

No algorithm of comparable efficiency is known for the verification of liveness
properties with a breadth-first search. Most attempts that have been explored
to date carry a cost that can increase the cost up to quadratic (exploring up to
N2 reachable states instead of up to 2 N), which puts it beyond reach for larger
problem sizes.

A linear time algorithm that can verify even a small sub-set of the liveness
properties with a breadth-first search discipline can therefore be attractive. We
will describe a small extension of the parallel breadth-first search algorithm
that can do so. The subset that is covered is restricted, but the computational
overhead required is so small that it can make a useful addition to a model
checker’s search capabilities.

In defining this method we take our clues from Manna and Pnueli’s paper [9],
where a small change of the formalization of the response property turns it from
a liveness into a safety property. The resulting sub-class of liveness is known as
bounded liveness.

We could modify the search to check for the satisfaction of a bounded liveness
property with bound n, i.e., within n steps, but this also risks increasing the
cost of verification by up to n. Instead we can also bound the search for ω-
acceptance cycles to cycles of maximal length n. In this case we can make the
extension without increasing the size of the search space significantly. Successor
states of an ω-accepting state are tagged with the ’seed’ (accepting) state and a
counter that is initialized to n. With every new successor generation along this
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path the counter is decremented until either the seed state is revisited or the
counter reaches zero, at which point the search stops. The counter itself is not
stored in the state space, thus avoiding the n-fold increase. This choice comes
down to a trade-off between precision and efficiency; we’ll return to this shortly.

The extended algorithm, called the piggyback algorithm, is shown in Figure 3
as an extension of the sequential breadth-first search from Figure 1. The exten-
sion of the parallel version of the algorithm from Figure 2 is similar.

The lines with key changes from the algorithm shown in Figure 1 are marked
with a asterix in the left margin.

Instead of storing single states in sets S, Q[0], and Q[1], we now store triples
consisting of two states and a count (e.g., lines 20 and 32). The first element
of each triple is the original successor state s’ that was generated. The second
element is a count, which measures the maximum length of the acceptance cycle
that is checked to satisy a liveness property. The third element of the triple is
the target accepting state that forms the ’seed’ for the acceptance cycle search.
The full value of this triple is stored in the queues Q[0] and Q[1] (line 32), so
that it can propagate from one level in the search to the next (lines 12-13), but
we abstract the value of the counter to one bit when the triple is stored in state
space S, to indicate only if the counter is running or not running (line 20). Only
this boolean result is now of relevance in the state matching (line 19).

The critical check is started at every accepting state that is reached (line 15)
to see if that state can be revisited within BOUND steps (line 16). The counter,
however, is only started if no cycle search is already in progress (line 21). We
will return to the potential implications of this choice below.

Once the counter is set, it is decremented with each new generation of suc-
cessor states generated (line 26). The counter is reset to zero when a match of
the target accepting state is found (line 24), or it is left at zero when the count
returns to its default value of zero.

It is not hard to see that the piggyback algorithm can indeed find violations of
liveness properties, but it will also be clear that it will not be able to guarantee
finding all such violations. In the version of the algorithm presented here, it
could well be that a search for an accepting state that is not part of a cycle is in
progress and prevents a new search for a different accepting state from starting
(line 15), even if that second accepting state could turn out to be part of a
cycle. We thus trade simplicity and low complexity for the potential of search
incompleteness. The maximal increase in cost can be a factor of two, as in the
nested-depth first search. Note that states could be visited up to twice if they are
reachable within n steps both from an accepting state and from a non-accepting
state.

Whether or not the piggyback algorithm succeeds can also subtly depend on
the order in which states are explored, i.e., one cpu-core could generate inter-
mediate states that are part of a cycle before the core exploring the cycle can
reach those states and proceed towards the target seed state.

In all measurements we have done, the actual overhead of the algorithm tends
to be near zero. We have also not yet encountered an example where a possible
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1 global t = 0 // toggle bit 0..1

2 global S = {} // statespace set

3 global Q[0] = {} // successor set

4 global Q[1] = {} // successor set

5 safety property f

6

7 add (s1, 0, 0) to Q[0] and to S // initial state

8

9 Search()

10 {

11 do {

12 for each (s,b,z) in Q[t]

13 { delete (s,b,z) from Q[t]

14 for each successor s’ of s

15* { if s’ accepting ∧ b == 0

16* { b = BOUND

17* z = s’

18* }

19 if (s’,(b>0),0) not in S

20 { add (s’,(b>0),z) to S

21* if b > 0

22* { if s’ == z ∧ b < BOUND

23* { report liveness violation

24* b = 0

25* } else

26* { b = b-1

27* if b == 0 { z = 0 }

28* } }

29 if s’ violates f

30 { report safety violation

31 } else

32 { add (s’,b,z) to Q[1-t]

33 } } }

34 }

35 t = 1 - t

36 } while (Q[t] is non-empty)

37 }

Fig. 3. Piggyback Algorithm for Limited Liveness Detection
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liveness violation was not reported by the piggyback algorithm, although knowing
the specifics of the algorithm it would not be too difficult to construct such a
case.

As noted, the choice made here is between a complete solution with an unac-
ceptably high overhead (e.g., the potential for a quadratic increase in the size of
the statespace), which is of very limited practical value, and a bolder algorithm
that is well-behaved for all problem sizes, but that cannot guarantee success in
all cases. The piggyback algorithm is in this sense comparable in its tradeoff to
the bitstate hashing algorithm, introduced in 1987 (cf. [5]), which has proven to
be of significant value in large model-checking applications despite its potential
incompleteness.

We provide performance data for the piggyback algorithm in Section 5.4.

5 Measurements

5.1 Beem Models

We first perform a comparison with the performance of the two leading compet-
ing tools in distributed model checking: the Divine model checker [2] and the
Ltsmin tool [7],[8]. We have used the latest available version of each tool: Di-
vine version 2.5.2 and Ltsmin version 1.7.1, in our comparison with Spin version
6.2.0. Each tool was compiled and installed on the same Ubuntu 11.10 system,
with 32-cores (using two AMD 16-core chips) and 64 GBytes of main memory,
to make sure that the performance results are directly comparable. Generally
in our tests we avoid using all available cores for a verification run, to avoid
boundary effects that may be introduced by the operating system performing
unrelated tasks on the system. We leave at least one cpu-core free for such tasks,
reducing the maximum number of cores used in these tests to 31.

Naturally, there are many differences between the three tools, with each sup-
porting a different specification language. Spin’s specification language is the
most general, which requires implementation choices that can affect overall per-
formance. We measure the basic performance of each tool on models that lie
within the intersection of the input languages of the three tools, and that have
closely comparable complexity (measured as the number of reachable states that
must be searched to complete a exhaustive verification).

We focus here on three models taken from the BEEM database [10], that
were selected in [7] (Fig. 2), to compare the performance of Divine, Ltsmin,
and the earlier multi-core version of Spin version 5.2.4 using parallel depth-first
search [6]. The measurements from [7] showed a decisive advantage for Ltsmin.

The three models that were selected for comparison in [7] were

1. anderson.6: a queue lock mutual exclusion algorithm with 6 processes,
2. at.5: a timing-based mutual exclusion algorithm with 5 processes, and
3. bakery.7: a model for Lamport’s bakery algorithm with 7 processes.
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Table 1. Anderson.6 – RunTimes in seconds

#Cores 1 2 4 8 16 31

Divine 88.10 56.88 38.49 23.31 14.01 20.14

LTSmin Unix time 51.82 33.06 21.24 14.73 12.80 11.88
LTSmin self-reported 44.23 25.14 13.21 6.74 4.72 3.95

Spin Unix time 42.55 27.74 16.01 10.61 7.31 6.69
Spin self-reported 42.20 27.30 15.70 10.20 6.06 4.63

Linear 42.20 21.10 10.55 5.28 2.64 1.36

Table 2. At.5 – RunTimes in seconds

#Cores 1 2 4 8 16 31

Divine 146.20 91.83 57.79 33.47 21.12 19.38

LTSmin Unix time 58.09 35.34 21.00 14.72 11.81 10.28
LTSmin self-reported 52.02 28.77 14.57 8.29 5.16 3.76

Spin Unix time 74.55 50.97 28.29 18.81 13.38 11.38
Spin self-reported 74.10 50.40 27.90 18.10 11.80 8.42

Linear 74.10 37.05 18.53 9.26 4.63 2.39

Table 1 reports the time taken by Divine, Ltsmin, and Spin to complete the
safety verification of the anderson.6 protocol as measured by the standard Unix
’time’ tool.

Both Ltsmin and Spin (but not Divine) also report the time taken by each
tool for the search itself, leaving out unrelated tasks, e.g., to clean up and release
shared memory. If we use these self-reported times, the results look slightly
different, as also shown in Table 1. Curiously, for Unix wall-clock times Spin can
be seen to perform the best, but for the self-reported times Ltsmin comes out
first.

Table 2 shows the results for the at.5 protocol, and Table 3 similarly for the
bakery.7 model. The results for the bakery.7 protocol are similar to those for
the anderson.6 model, with the best performance differing for wall-clock and
self-reported runtimes. For the at.5 protocol Ltsmin has an edge for the Unix
wall-clock times, and a larger advantage for the self-reported times.

Both the Ltsmin and the Spin tool scale reasonably well with increasing num-
bers of cores, though not perfectly. The Divine tool shows good scaling behavior
as well, though the runtimes are longer, with a single anomaly for the anderson.6
protocol on 31 cpu cores.

5.2 Additional Spin Models

We measured the performance of the parallel breadth-first search algorithm on
five additional verification models from the standard Spin distribution, and on
four larger verification models that were also used in previous studies. The mod-
els from the Spin distribution are:
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Table 3. Bakery.7 – RunTimes in seconds

#Cores 1 2 4 8 16 31

Divine 42.59 34.48 31.84 25.97 31.59 24.84

LTSmin Unix time 56.64 33.77 22.48 15.82 13.60 12.46
LTSmin self-reported 48.60 26.09 14.06 7.51 5.13 4.20

Spin Unix time 43.73 31.71 19.20 11.89 8.94 9.28
Spin self-reported 43.20 30.90 18.70 11.10 7.12 5.94

Linear 43.20 21.60 10.80 5.40 2.70 1.39

1. a leader election protocol with 8 processes,
2. Peterson’s algorithm with with 4 processes,
3. a sliding window protocol with window size 5,
4. a dining philosophers model with 9 processes,
5. a model of a telephone switch (tpc).

Each of these models were also used for measurements reported in our earlier
work, e.g., [6].

In each data set recorded, we compare the performance with the one that
would be achieved with the theoretically optimum scaling performance: linear
scaling, indicated by a dashed curve. The results are summarized in Figure 4 by
showing the relative speedup-ratios that are achieved in each of these tests.

The measurements for these applications are fairly consistent. They show
good, though not perfect, scaling behavior.

All applications show a drop in performance near the maximum number of cpu
cores. Earlier (cf. [6]) we noticed the same phenomenon on a smaller system with
just 8 cores, and a similar effect can be seen when measurements are performed
on a 12 core system. We observed the same general effect for the examples we
verified with the Ltsmin and Divine tools so we suspect a more general trend that
is independent of the specific verification method used. In all cases though, the
best performance, i.e., the shortest overall runtime, is realized when the largest
number of cores is used.

Background Load. To study the tapering off of performance near the max-
imum number of cores in more detail we performed some additional tests. For
this test we used the at.5 model also used in the measurements from Section 5.1.
We earlier measured the reduction in runtimes when between 1 and 31 cores
are used to perform the parallel breadth-first search. In the new experiment we
again run between 1 and 31 cores, but we arrange it such that only one of the
cores will perform all state explorations, by assigning all successor states in each
successive generation of states back to itself.

We should expect to see a flat performance curve, since the same work is done
by the same cpu-core in each run, with all other cpu-cores (from 1 to 30) merely
waiting for states to process that never arrive. We see a different effect of this
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Fig. 4. Speedup ratios for the five additional Spin models

background load though, that may be caused by interference on shared memory
usage e.g., for polling the shared queues for states.

The experiment shows a notable increase in the time to process states from
71.9 seconds with one process running to 101 seconds with 31 processes running.
Most of the increase occurs when more than 8 cpu-cores are used, as shown
in Figure 5. This background effect influences how well our search method can
scale under ideal conditions, and it could mean that the speedup ratios shown
in Figure 4 are near the maximum that can be obtained on the hardware used.

5.3 Larger Models

The four large verification models represent additional applications where a par-
allel search technique can prove most valuable in practice. They are:

1. a verification model of the DEOS operating system developed at Honeywell
Laboratories,

2. a large call processing application (CP),
3. a model of and ad hoc network structure developed by a Spin user (Gurdag),
4. a model of an autonomous planning subsystem that was used on NASA’s

EO1 spacecraft.

Each of these larger models was also used in the measurements in [6].
The results for the larger models is summarized in Figure 6. To make it easier

to interpret the scaling behavior for these models with very different runtime
requirements, we captured the number of reachable states that is processed per
second, normalized to the same base for all models, as was also done in [6], to
obtain the speedup ratios.

Also here we see performance drop as we near the system capacity of 32 cores,
and very good scaling up to eight cores (cf. Figure 4 and Figure 5). In the two
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Fig. 5. Runtime Decay when other processes are present and idling

best cases (for the DEOS and CP verification model) the improvement measured
was a speedup of 9-fold on 31 cores. In the worst case (for the EO1 model) only
a 6-fold speedup was measured.

For comparison, in our earlier work on the parallelization of the depth-first
search algorithm of safety properties, we measured a speedup of 7.8x for the EO1
model on an 8-core system [6], outperforming the parallel breadth-first search
from this paper.

For the DEOSmodel though, the parallel depth-first search achieved a speedup
of no more than 1.6-fold on 8 cores, where the parallel breadth-first method from
this paper achieves a 6-fold speedup on 8 cores.

5.4 Liveness

To study the capabilities of the piggyback liveness detection algorithm we con-
sider two examples from the BEEM database of models that were also studied
in [2] (Table 1). The only model studied in [2] that contains an acceptance cycle
is the anderson.6 model. We earlier reported measurements for this model in
Table 1.

The LTL property for this model, in Spin syntax, is [](<>(P[2]@CS)), which
states that process P[2] (arbitrarily chosen) can always eventually enter its crit-
ical section.

An exhaustive exploration of this model visits about 49 Million reachable
system states (which is about three times the number of states reached without
applying the LTL property), and takes 151 seconds of cpu-time. An exhaustive
run of the nested-depth first search algorithm (executed on one single cpu, and
without stopping at the first cycle detected) explores the same state space, but
each state can now be visited up to twice, which increases the runtime to 222
seconds. An acceptance cycle can of course be detected early or late in the search.
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Fig. 6. Measured speedup ratios for four large verification models – using normalized
performance captured as the total number of reachable states processed per second

In this case, the nested depth-first search algorithm detects a first accept-cycle
after having explored just 142,027 states in 0.31 seconds.

The parallel breadth-first search algorithm, when applied to the same model
and LTL property also explores about 49 Million states. On 31 cpu-cores it takes
44.5 seconds to do so, with the scaling behavior on fewer cores again matching
that for pure safety properties, cf. Table 1.

If we add the piggyback liveness detection method, the number of reachable
states that is explored in the parallel search does not change, and neither does the
runtime. For an exhaustive run that is not stopped at the first counter-example
the time measured 43.8 seconds, which is close to the earlier measurement with-
out liveness detection enabled.

The piggyback algorithm discovers a first acceptance cycle relatively late in
the search in this case, after having explored nearly all 49 Million states. But
as can be expected, the cycle that is uncovered in the parallel search is shorter
than the one found in the depth-first search: 28 steps instead of 58 steps in this
case, and therefore potentially of greater interest. The most interesting aspect
of this search is that it does not measurably increase the runtime. We see this
effect repeated also in cases where there is no acceptance cycle to be found: the
case where the nested depth-first search algorithm can incur up to a doubling of
its runtime.

The second example model from [2], with no acceptance cycles, is the eleva-
tor2.3 model. The LTL property given in the BEEM database states that after
the elevator has been called at level 0, the elevator passes that level at most
once without serving it. The property is satisfied for the model provided, so no
counter-example acceptance cycles exist.
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Fig. 7. Performance of Parallel Bounded Liveness Detection Algorithm for larger mod-
els with (left) and without (right) acceptance cycles

An exhaustive exploration of the model with a standard depth-first search
visits a total of approximately 27 Million states in 81.1 seconds, on a single cpu.
If instead we use the nested depth-first search algorithm, the same number of
states is explored, but some are visited twice. As a result, the runtime for the
depth-first search increases to 145 seconds.

With the parallel breadth-first search algorithm the number of states explored
in an exhaustive search remains approximately 27 Million states. On 31 cpu-
cores the runtime required to complete this search is 36.6 seconds, and again
the scaling behavior on fewer cores is similar to that reported before. With
the piggyback algorithm added, the number of explored states and the runtime
remain unchanged. We measured 37.2 seconds for this search. The results are
illustrated in Figure 7.

6 Conclusion

We have described the design and implementation of a new parallel breadth-
first search option for the Spin model checker. The original motivation for this
algorithm was that most properties of interest that model checkers are used for
are safety properties. These types of properties, including those specified in linear
temporal logic, can readily be verified with a breadth-first search algorithm. The
breadth-first search option has the additional advantage of locating the shortest
possible counter-examples.

We also described a relatively simple extension of the breadth-first search
that can allow us to intercept not only safety properties but also an interesting
class of liveness properties, Fig. 3. The algorithm, which is based on a bounded
search for cycles, can catch any liveness violation (not just violations of bounded
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liveness properties), provided that there exists a cycle shorter than the bound
given. The extension carries no significant computational overhead, but cannot
guarantee completeness. In the tests we performed the algorithm succeeded in
locating non-trivial counter-examples in a broad range of applications, which
can make it of some practical interest.

We have shown that the performance of the new parallel breadth-first search
algorithm scales reasonably well with increasing numbers of cpu-cores, cf. Figs. 4
and 6, and is comparable to, and in some cases better than, that of other leading
tools, e.g. [2] and [7].

We have also identified a factor that limits the benefit that can be obtained
from multi-core algorithms, cf. Figure 5. The effect is especially pronounced for
larger numbers of cpu-cores.
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Abstract. Many model checking techniques are based on enumerative graph
search, a procedure that is known to be prohibitively time and memory con-
suming. Modern multi-core processors rely on parallelism instead of raw clock
speed to provide increased performance, so it is necessary to leverage this paral-
lelism to achieve better performance in model checking. In this work, we com-
pare hash-distributed search, a well-known parallel search technique for model
checking, with an algorithm from the automated planning and heuristic search
community called Parallel Structured Duplicate Detection (PSDD). We show
that PSDD has two major advantages over hash-distributed search for multi-core
model checking. First, PSDD is able to perform full partial-order reduction where
hash-distributed search must be conservative and subsequently miss reduction
opportunities in many cases, causing it to search a much larger space. Second,
PSDD performs duplicate detection on states immediately, avoiding the need to
store duplicate states for inter-thread communication. We have implemented and
compared both techniques in the Spin model checker; our results show that PSDD
uses significantly less memory than hash-distributed search, can be faster and give
better parallel speedup than both hash-distributed search and Spin’s built-in par-
allel depth-first search. Finally, we show how PSDD can use external memory,
such as disk storage, to greatly reduce its internal memory requirements.

Introduction

Model checking is a fundamental tool used in the creation and verification of asyn-
chronous and distributed systems. Since the actions performed by each component of
such a system may be interleaved in many ways, there can be a large number of config-
urations of the system as a whole. Given an abstract model of a system, a model checker
can enumerate all reachable configurations of the model in order to aid in verification
of its correctness. During enumeration, the model checker can ensure that the model
does not exhibit any invalid behaviors or reach any invalid states. If such an error is
found then a trace of the actions leading to it can be reported back to the user. This trace
information is invaluable when creating and debugging a new system. Additionally, if
the model checker is unable to find any invalid behaviors then it is evidence that the
system is in fact correct.

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 172–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To enumerate all possible states of an asynchronous system, many popular model
checkers treat the configuration space as an implicitly defined graph where nodes cor-
respond to system states and edges are the possible transitions of each component. A
path through this graph gives one possible interleaving of the actions that the system
may perform. Once the graph is defined, an exhaustive search algorithm can then ex-
plore all reachable states of the system looking for ones that violate certain properties.
As is typical with implicit graphs, however, there can be a very large number of nodes
causing the search to take a prohibitive amount of time or memory.

The model checking community, the heuristic search and automated planning com-
munities have all been quite successful in developing new search frameworks that take
advantage of modern multi-core processors. These frameworks have enabled them to
improve the performance of their algorithms and have also been shown to be successful
at offloading a significant portion of the memory requirement of a large graph search
to external storage devices such as hard disks. However, some of the most successful
techniques used by the heuristic search and planning communities have yet to be tested
for model checking. Because of their success on other types of search problems, we
would like to compare these approaches to those commonly used to parallelize search
in model checking.

We have implemented two techniques for parallelizing breadth-first search in the
Spin model checker [7]. The first technique is based on a common approach for par-
allel model checking that distributes states among different searching threads by using
a hash function [18,12]. We call our implementation of this algorithm hash-distributed
breadth-first search (HD-BFS). The second method comes from the heuristic search and
planning communities called parallel structured duplicate detection (PSDD) [20]. We
show that PSDD has some major advantages over hash-distributed search for model
checking. First, HD-BFS uses delayed duplicate detection [16,13] and must store du-
plicate search nodes temporarily while they are being communicated between threads.
PSDD is able to detect duplicate states immediately after they are generated thus abol-
ishing the need to use extra memory in order to store them. Second, PSDD is able to
preserve Spin’s ability to perform partial-order reduction – a technique used by model
checkers to decrease the size of the search space. This means that, when using multiple
threads, PSDD is often able to search a significantly smaller space than both HD-BFS
and Spin’s built-in multi-core depth-first search, both of which must be more conser-
vative when performing partial-order reduction. Overall, the results of our experiments
demonstrate that PSDD is faster and able to achieve greater parallel speedup than both
HD-BFS and Spin’s state-of-the-art multi-core depth-first search.

In addition to improving the performance of breadth-first search, we show some
preliminary results demonstrating that PSDD can also successfully reduce the memory
requirements of model checking by making use of external storage devices. In one
experiment PSDD is able to reduce the memory requirement of the search by over
500% when using a hard disk to supplement internal memory.

Depth-First versus Breadth-First Search

Two of the most well-known graph search algorithms are depth-first search and breadth-
first search. Depth-first search generates the successors of nodes in the graph (we call
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the generation of successors of a node ‘expanding the node’) in deepest-first order.
This means that one of the most recently generated nodes will be the next node that
is expanded. Breadth-first search, on the other hand, expands nodes in shallowest-first
order. Spin uses depth-first search by default as it is able to check both safety properties
(typically used to verify that something undesirable will not happen) and liveness prop-
erties (typically used to verify that something desirable will eventually happen) whereas
Spin’s breadth-first search algorithm is only able to verify safety properties.

Breadth-first search for model checking is guaranteed to find shortest counterexam-
ples if the model violates a safety property. This is significant because, many important
properties of an asynchronous system are safety properties and when debugging a sys-
tem one must understand the counterexample provided by the model checker in order
to determine why the system is not behaving as desired. Depth-first search pays no
heed to the number of steps used to reach a node in the state space and therefore may
produce a counterexample that is many steps longer than necessary. These long traces
can be extremely hard to interpret as they may contain a lot of transitions that are not
necessary to produce the faulty behavior. To put this in perspective, on one model we
have observed that depth-first search finds a deadlock and provides a trace consisting of
9,992 steps where breadth-first search finds a trace for the deadlock with the smallest
number of possible steps: 42.

While breadth-first search cannot be used directly to verify liveness properties, there
has been work on efficient translations of liveness checking problems into safety
checking problems, which can subsequently be verified by breadth-first reachability
analysis [1,17]. Given depth-first search’s inherently sequential nature [15], checking
liveness property using a breadth-first, instead of depth-first, strategy can better lever-
age the latest multi-core processors for greater parallel speedups.

Hash-Distributed Breadth-First Search

Burns et al. [3] discuss the difficulties in parallelizing best-first search algorithms such
as breadth-first search1 and they show that many naı̈ve implementations of parallel
search actually perform worse than their serial counterparts.

In order to successfully search a graph in parallel the graph should be divided in a
way that each thread performing the search can operate on an independent portion of
the graph. A simple way to achieve this is to divide the nodes of the graph statically
using a hash function; as each new node is generated, its hash value is computed and it
is distributed to the thread with the thread ID equal to the hash value modulo the number
of threads. If a node is generated multiple times, each duplicate will be assigned to the
same thread so duplicate detection can be performed locally within each thread. This
framework is called hash-distributed search and was originally proposed as a method
for parallelizing the A∗ algorithm [6] and was later discovered by Stern and Dill [18]
in the context of model checking and then by Kishimoto et al. [12] who called the
algorithm hash-distributed A* (HDA∗) and applied it to automated planning problems.

We have implemented a hash-distributed breadth-first algorithm, based on HDA∗.
We call this algorithm hash-distributed breadth-first search (HD-BFS). HD-BFS works

1 Breadth-first search can be viewed as a special best-first search where all edges have unit cost.
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in layers by expanding the nodes at a given depth from the root in parallel until all nodes
at the current depth have been expanded. When a depth layer has been completely
expanded, all threads proceed synchronously to the next depth and begin searching
there.

Each HD-BFS thread uses a pair of queues to represent the search frontier. One
queue, called the current queue, contains all nodes assigned to the thread that are at
the current search depth. The second queue, called the next queue, contains all nodes
assigned to the current thread that are at the next search depth. Each thread also has a
hash table containing all nodes that it has previously expanded. This table is used to
prevent the search from expanding the same nodes multiple times. Note that, because
all duplicates of a search node will be assigned to the same thread by the hash function,
no node resides in more than a single hash table.

When searching, each thread expands the nodes from its current queue one-at-a-time.
When a successor node is assigned by the hash function to a different thread than the
one that generated it, it must be sent there using inter-thread communication. Other-
wise, when a successor node is assigned back to the same thread that generated it, it is
immediately checked for membership in the local hash table to determine if it is a du-
plicate and if it is not a duplicate then it is added to the next queue for the local thread;
no communication is required. Our implementation of HD-BFS uses the communica-
tion scheme from Burns et al. [3] to send nodes between threads asynchronously using
shared-memory queues.

After receiving a new node sent from a different thread, the receiving thread checks
to see if the node is a duplicate by testing it for membership in its local hash table.
If the node is not a duplicate then it is placed on the thread’s next queue. This is the
appropriate queue because all threads are expanding nodes at the same depth from the
root and therefore any generated node resides at the next depth regardless of which
thread generated it.

If all threads have empty current queues and no nodes are in transit between threads,
then the current depth layer has been completely expanded. When this happens, all
threads synchronously swap their next queue with their current queue and begin search-
ing nodes at the next depth. If all current queues are still empty after swapping to the
next depth then the search space has been exhausted and the algorithm terminates.

Disadvantages

We have found that there are two major disadvantages to hash-distributed search when
applied to model checking. The first is that hash-distributed search delays the detection
of duplicate nodes when they are communicated between threads. When nodes are sent
to another thread they are placed on the receiving queue for that thread and sit there
until they are eventually received and checked against the receiving thread’s hash table.
This delayed detection of duplicate nodes can cause the search to require more mem-
ory as the duplicates reside in the receiving queue instead of immediately having their
memory freed for reuse. As we will see, the extra memory overhead created by delaying
duplicate detection can be quite substantial.

The second disadvantage of hash-distributed search is that it must be conserva-
tive when applying partial-order reduction [9], a technique used in model checking to
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reduce the size of the search graph. When expanding a node while using partial-order re-
duction, only a subset of the successors are considered and the rest are discarded. While
performing breadth-first search with partial-order reduction, Spin uses a test called the
Q proviso [2] to prevent reduction in cases where completeness cannot be ensured.

The Q proviso tests if a newly generated node is placed on the breadth-first search
queue or if it was already on the queue from a previous generation. If the Q proviso is
satisfied then the reduction can take place, otherwise the full expansion must happen.
Bos̆nac̆ki et al. [2] proved that this simple test allows breadth-first search to remain
complete under partial-order reduction when searching for safety property violations
and deadlocks.

With hash-distributed search, the successors of a node may not be assigned to the
expanding thread. When this happens, the expanding thread does not have the ability
to test if the successors are on or end up on the queue because this queue is owned
by a different thread. To preserve completeness, HD-BFS must be conservative and
assume that all nodes that are sent to different threads do not pass the Q proviso. This
reduces the chances of successfully performing partial-order reduction because, in order
to reduce, a thread must generate a successor that is assigned to itself and also passes the
Q proviso. As we will show in our experimental results, with a greater number of threads
the chance that successors will not be assigned to the expanding thread increases, so as
the number of threads increases the size of the search space will increase too. Because of
this, HD-BFS using multiple threads can actually perform worse than a serial breadth-
first search because the former must search a significantly larger space to guarantee
completeness.

Abstraction-Based Hashing

Both of the previous issues with hash-distributed search stem from the fact that the
hash function used to assign nodes to threads is designed to uniformly distribute the
nodes. This is beneficial from a load balancing perspective, however, it means that it is
uncommon for the successors of a node to be assigned to the thread that generated them.
Burns et al. [3] present a novel modification to hash-distributed search that can be used
to help alleviate this issue at the cost of possibly decreasing load balancing. Instead of
using a hash function that distributes the nodes uniformly, a homomorphic abstraction
function can be used to distribute the nodes in a more structured fashion. Each thread is
responsible for a set of nodes in an abstract representation of the search graph. When a
node is generated, its abstract representation is computed and it is assigned to the thread
responsible for this abstract node.

The advantage of this approach, when using a carefully created abstraction, is that
the successors of a search node will tend to be assigned back to the same thread that
generated them. This means that the need for communication is reduced as newly gen-
erated nodes can often be handled locally. The disadvantage is that the search load may
not be evenly balanced among the threads. Burns et al. show that, in practice, using
an abstraction instead of a uniformly distributed hash function can greatly increase the
performance of HDA∗ on puzzle solving and planning problems.
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For model checking, fewer communications mean fewer duplicate nodes that reside
in memory. It also means that there are more chances to perform partial-order reduc-
tion. As we will see, this approach can greatly reduce the memory requirements and
the size of the search space explored by hash-distributed search. Unfortunately, because
the nodes are no longer distributed uniformly among the threads, this abstraction-based
implementation of HD-BFS (which we call AHD-BFS) gives very brittle performance
for different numbers of threads. We suspect that the nodes tend to be distributed un-
evenly causing some threads to be very busy and some threads to starve for work. This
behavior hinders the ability of the search to fully exploit the available parallelism.

Parallel Structured Duplicate Detection

Instead of assigning nodes to threads a priori by using a hash function, Zhou et al.
[20] developed a framework called Parallel Structured Duplicate Detection (PSDD)
that allows threads to dynamically divide the search effort. PSDD uses a homomorphic
abstraction to map nodes in the search graph to nodes in an abstract representation of
the search graph. The abstraction is a many-to-one mapping that is typically created by
projecting away some of the state information of each search node. The abstract node to
which a search node maps is called the image of the search node under the abstraction.

Given a search graph and a homomorphic abstraction function, an abstract graph is
constructed as follows.

1. The set of nodes, called abstract nodes, in the abstract graph corresponds to the set
of abstract states.

2. An abstract node y′ is a successor of an abstract node y if and only if there exist
two states x′ and x, such that

a. x′ is a successor of x, and
b. y′ and y are images of x′ and x, respectively.

The abstract graph is used during search to locate portions of the search space that are
disjoint. More formally, let abstract node y = φ(x) be the image of state x under a
homomorphic abstraction function φ(·) and let succ(y) be the set of abstract successor
nodes of y in the abstract graph.

Definition 1. The duplicate-detection scope of a state x under a homomorphic abstrac-
tion function φ(·) corresponds to the union of sets of stored nodes that map to an ab-
stract node y′ such that y′ ∈ succ(φ(x)), that is,

⋃
y′∈ succ(φ(x))

φ−1(y′)

where φ−1(y′) is the set of stored nodes that are pre-images of y′.

Proposition 1. The duplicate-detection scope of a node contains all stored duplicates
of the successors of the node.
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Definition 2. The duplicate-detection scopes of states x1 and x2 are disjoint under a
homomorphic abstraction function φ(·), if and only if the set of abstract successors of
x1’s image is disjoint from the set of abstract successors of x2’s image in the abstract
graph, that is, succ(φ(x1)) ∩ succ(φ(x2)) = ∅.

Proposition 2. Two states cannot share a common successor if their duplicate-detection
scopes are disjoint.

Proposition 2 provides an important guarantee that a parallel model checker can lever-
age to reduce the amount of synchronization needed in parallel graph search. In par-
ticular, multiple threads can search disjoint portions of the graph, which correspond to
disjoint duplicate-detection scopes, without the need for communication. Unlike HD-
BFS, duplicate states are detected in PSDD as soon as they are generated.

As with HD-BFS, the search proceeds in layers. Each node in the abstract graph has
two queues, one for the current depth-layer and one for the next. These queues contain
the frontier nodes of the search graph that map to the given abstract node. Each abstract
node also has a hash table containing all of the previously expanded search nodes that
map to it.

Threads acquire access to expand all of the search nodes at the current depth for a
single abstract node at a time. Because the abstraction is homomorphic, the successors
of a search node will either map to the same abstract node or to one of the successors in
the abstract graph. By claiming exclusive access to an abstract node and its successors,
a thread can expand from the abstract node and perform immediate duplicate detection
on the generated successors using only the data structures to which it has exclusive
access. We call the set of nodes corresponding to an abstract node and its successors a
duplicate detection scope (see Def. 1) or just a scope for short.

The left image in Fig. 1 shows an example graph in light gray with a possible ab-
straction of the graph drawn in dark black on top of it. This abstraction groups together
sets of four nodes. There is an edge in the abstract graph between each pair of abstract
nodes for which there exists a pair of nodes in the underlying graph that are connected
by an edge and whose images correspond to each respective abstract state. The right
image in Fig. 1 shows two duplicate detection scopes in this graph, each defined by the
gray nodes and surrounded by a dashed line. Both duplicate detection scopes consist of
the gray nodes and all nodes that map to the successors of their image in the abstract
graph. When expanding any of the gray nodes, all successors will correspond to a node
that resides in the same duplicate detection scope.

To perform parallel search, each thread will use the abstract graph to locate a du-
plicate detection scope that does not overlap the scopes being used by other threads.
Given Proposition 2, these disjoint duplicate detection scopes may be searched in par-
allel without requiring communication. With this scheme, the only time that threads
must synchronize is when multiple threads require access to the abstract graph at the
same time. Only a single mutex is required to serialize access to the abstract graph and
operations on the abstract graph tend to be quick.

The two duplicate detection scopes shown on the right half of Fig. 1 are disjoint as
they do not share any nodes.
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Fig. 1. A graph along with one of its possible abstractions (left) and two disjoint duplicate detec-
tion scopes of this graph (right)

When a thread completes the expansion of all open search nodes mapping to its
current abstract node, it can release its duplicate detection scope, marking all abstract
nodes in the scope as free to be re-acquired. Then the thread can try to acquire a new
scope to search. If there are no free scopes with open search nodes at the current depth
then the thread attempting to acquire a new scope must wait until another thread finishes
expanding and releases its abstract nodes. This wait time can be reduced by using a
finer-grained abstraction with sufficiently many disjoint duplicate detection scopes. In
practice, we find that abstractions can typically be made large enough that wait times
are insignificant.

Eventually, as open search nodes become exhausted in the current depth-layer, there
will be only a single thread actively searching as the other threads wait for abstract
nodes to become free. When the final non-waiting thread releases its duplicate detection
scope and finds that there are no free scopes with open nodes it will progress the search
to the next depth layer. To do this, the current and next queues for each abstract node
are swapped, all abstract nodes with open nodes in their new current layer are marked
as free, waiting threads are woken up and the search resumes. If the new depth-layer
contains no open search nodes then the search space has been exhausted and the threads
can terminate.

PSDD provides at least two advantages over hash-distributed search: 1) there may be
less synchronization between threads in PSDD because threads only need to synchro-
nize access to the abstract graph when releasing and acquiring a new duplicate detection
scope and 2) duplicates can be checked immediately instead of using extra memory to
store duplicate nodes before they can be checked against the hash table.

PSDD provides an additional benefit when applied to model checking: it does not
need to be conservative when performing partial-order reduction. Recall that HD-BFS
did not have access to test if successor nodes reside on the breadth-first queue when the
successors were not assigned to the expanding thread. In PSDD, however, the expanding
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thread has exclusive access to the data structures for the duplicate detection scope of
the abstract node from which it is expanding. This means that PSDD is able to test if
the successors that it is generating pass the Q proviso and therefore it does not need to
be conservative when doing partial-order reduction. As we will see, this gives PSDD a
major advantage over both HD-BFS and Spin’s multi-core depth-first search on many
models.

Abstraction for Model Checking

PSDD requires an abstract representation of the state-space graph in order to exploit
the local structure of the space. Since the state space is not explicitly represented in
memory, this abstraction must be a function that can be computed on each node. In
Spin, each state in the search space consists of the set of processes whose executions are
being modeled. Each process is represented by a finite automaton which has a current
state and a set of transitions. The abstraction that we used in our implementation of
PSDD is: given any state, consider only the process type and the automaton state of
a fixed subset of the process IDs. For example, consider a state with seven processes
numbered 0–6. One possible abstraction is to consider only the automaton states of the
first two process IDs. This effectively ‘projects away’ process IDs 2–6, leading to a
much smaller set of abstract nodes.

We use the transitions of the finite automaton to determine the predecessor and suc-
cessor relations in the abstract graph. Because only the state of a single component
automaton will transition between a node and its successors2, the successors in the ab-
stract graph are all of the possible single transitions of the process IDs that have not
been removed in the abstraction. For efficiency, we generate the abstract graph lazily
as needed during the search. This provides the benefit of only instantiating the portions
of the graph that are actually used and it also constructs the graph in parallel with the
execution of the search instead of doing it serially as a pre-processing step.

Experimental Results

In this section we present the results of a set of experiments that we performed to eval-
uate the two methods of parallelizing breadth-first search. In addition, we compare to
Spin’s built-in multi-core depth-first search where applicable. The machine used in our
experiments has two 3.33GHz Xeon 5680 processors, each having six cores, and 96GB
of RAM.

Multi-core Depth-First Search

Spin comes, by default, with a state-of-the-art multi-core depth-first search algorithm
[8]. The algorithm connects each of the threads performing the search in a ring. Nodes

2 For Spin, this is not strictly true when using ‘never claims.’ Our implementation requires that
never claims are not considered by the abstraction, thus ensuring that only a single component
automaton will change across a transition.
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may be passed from one thread to another around the ring in a single direction. Each
thread is then responsible for expanding all of the nodes that fall within a particular
depth-interval. When the successors of a node fall outside of an interval assigned to the
current thread, the newly generated successors must be passed to the neighboring thread
along the ring using a shared memory queue. This neighboring thread may then receive
the nodes from the queue and begin expanding them.

Using this technique, Holzmann et al. [8] were able to achieve speedups of just over
1.6x at two threads on a set of benchmark models and almost perfect linear speedup
for two threads on a reference model that provided a set of tunable parameters. In their
results, however, they show that this technique must be conservative when doing partial-
order reduction. So, as with HD-BFS, the performance of multi-core depth-first search
can actually be worse than serial search when partial-order reduction is used.

In the following experiments, we compare to Spin’s multi-core depth-first search
on models that do not contain safety property violations. The reason is that, on models
with safety violations, depth-first search may find these violations via suboptimal paths,
whereas breadth-first search must return optimal-length traces and thus may be forced to
perform significantly more work. This renders the comparison unfair. On models with-
out safety property violations, however, all algorithms must exhaust the search space
and therefore will do a comparable amount of search.

Spin provides many parameters that may be tweaked to tune the search performance
for different models. We compiled the multi-core depth-first with the

-DFULL_TRAIL -DSAFETY -DMEMLIM=64000

options on all models. For each individual model we also used any additional parameter
settings that were recommended by Spin after running with the default parameter set.

Effect of Delaying Duplicate Detection

To compare the effects of the immediate duplicate detection of PSDD with the delayed
duplicate detection of HD-BFS we looked at the memory usage of the two algorithms.
Our hypothesis was that HD-BFS would require more memory in order to store dupli-
cate search nodes during communication before they can be checked against the hash
table by the receiving thread. The model that we choose for this experiment is a model
of the dining philosophers problem with 10 philosophers. The model is constructed to
avoid the classic deadlock situation and therefore the entire search space will be ex-
hausted by the search algorithms. This removes the effects of tie-breaking that may
be encountered when searching a model that contains an error. Also, with this model,
the same number of states are expanded by all algorithms regardless of whether or not
partial-order reduction is used and therefore we can conclude that any difference in
memory usage must be attributed to immediate detection of duplicate nodes or lack
thereof.

Figure 2 shows the memory usage reported by Spin for the 10 philosophers problem.
The x axis gives the number of threads from 1–12 and the y axis shows the number of
Gigabytes used to complete the search. Each line gives the mean of five runs at each
thread count and the error bars (which are so tight that they are hardly even visible in
this plot) show 95% confidence intervals on the mean. Breadth-first search only uses a
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Fig. 2. Memory usage of PSDD, HD-BFS, AHD-BFS and BFS

single thread but we have extended the line for its single threaded performance across
the x axis to ease comparison.

From this figure, we can see that breadth-first search and PSDD both used less than
3 Gigabytes of memory. The memory usage for PSDD remained nearly constant in the
number of threads that performed the search. HD-BFS, however, required significantly
more memory on this model when run with more than a single thread. The amount of
memory required by HD-BFS increased sharply for up to six threads where it begun
to even out. As mentioned above, this can be attributed to the fact that HD-BFS was
required to store duplicate nodes in memory during communication instead of detecting
them immediately. Due to the reduction in inter-thread communication, AHD-BFS used
less memory than HD-BFS, however it still required more memory than breadth-first
search and PSDD for more than two threads.

In addition to the results shown here, we have observed that HD-BFS required a lot
more memory on all of the models that we have used in our experiments. Presumably,
this is because of duplicate nodes, however, for other models the conservative partial-
order reduction may also be a factor as we will see next.

Effect of Conservative Partial-Order Reduction

To evaluate the performance degradation that hash-distributed search and Spin’s multi-
core depth-first search suffer from due to conservative partial-order reduction we per-
formed an experiment using a model of the semaphore implementation from the “Plan
9 from Bell Labs” operating system (Plan 9) [14]3. The model is of particular interest

3 The model was available from http://swtch.com/spin/

http://swtch.com/spin/
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Fig. 3. States expanded and memory used by PSDD, HD-BFS and BFS

because, unlike the philosopher model used in the previous experiments, the semaphore
model was taken from a real-world model checking problem. Partial-order reduction
is able to reduce the size of the state space of this model by approximately a factor of
three, so failure to perform the full reduction has a significant impact on performance.

Figure 3 shows the number of states expanded (left) and the amount of memory used
(right) by PSDD, HD-BFS, breadth-first search and Spin’s multi-core depth-first search
on the semaphore model with four separate processes contending for the semaphore.
The format of the plot is the same as that of Fig. 2. We can see that breadth-first search
expanded the fewest nodes and used the least amount of memory in order to exhaust
the configuration space of this model. PSDD expanded only slightly more nodes than
breadth-first search and used approximately the same amount of memory. The reason
that PSDD and breadth-first search expanded slightly different numbers of nodes is that
they may expand nodes within the same depth layer in a different order. This differ-
ence in tie-breaking can have a small effect on the partial-order reduction by slightly
increasing or decreasing the number of nodes that must be expanded.

With a single thread, HD-BFS expanded about the same number of nodes and used
about the same amount of memory as breadth-first. As the number of threads was
increased, however, the number of expansions and memory requirement of HD-BFS
rapidly increased. HD-BFS required almost 80GB of memory when run with 12 threads.
The reason for the steep increase is that HD-BFS required more communications as the
nodes were divided up between more threads. Each time a node is communicated the
search conservatively assumed that it could not perform partial-order reduction and
therefore many redundant paths were explored that were not pursued by the other two
algorithms. The plot also shows this same effect happens with Spin’s multi-core depth-
first search. The depth-first search suffers from the same conservative partial-order re-
duction as HD-BFS and for more than a single thread it expanded many more states
than PSDD and breadth-first search.
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Fig. 4. Parallel speedup for PSDD, HD-BFS, AHD-BFS, and parallel depth-first search

Overall Performance

Next we show the overall performance in terms of parallel speedup and wall-clock
time for the different algorithms on four models. For PSDD and AHD-BFS, which
both require an abstraction, we choose the fixed subset of processor IDs used in the
projection experimentally. For each model we ran the algorithms using a small set of
hand-chosen process ID sequences from 0–n and 1–n for small values of n (up to 7).
The sequence that gave the best performance for each model was used in the following
comparisons. We believe that the good performance exhibited by PSDD in the following
results when using such a simple abstraction is strong evidence that finding a good
abstraction for PSDD is not a difficult task.

Figure 4 shows the parallel speedup and Figure 5 shows the total wall-clock time
that the algorithms required to search four different models using 1–12 threads. As in
the previous plots, each line shows the mean performance across five runs with error
bars giving the 95% confidence intervals. The x axis show the number of threads used
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Fig. 5. Wall-clock seconds for PSDD, HD-BFS, AHD-BFS, parallel depth-first search, and serial
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from 1–12 and in Fig. 5 the performance of breadth-first search is drawn across the x
axis of each plot even though it was only run serially. The models used were the dining
philosopher problem with 10 philosophers and no deadlock, the dining philosophers
problem with 15 philosophers and a deadlock which is reachable in 42 steps, the Plan
9 semaphore with 4 contending processes, and the 0-level abstraction of the GNU i-
Protocol model from Dong et al. [4]4 which contains a live-lock that is reachable in
72 steps, modified to avoid rendezvous as Spin complains that these do not maintain
completeness with breadth-first search. Spin’s multi-core depth-first search algorithm
is not shown on the 15 philosopher model or the i-Protocol model because they both
exhibit errors for which depth-first search does not find shortest counterexamples and
therefore does not perform a comparable amount of search.

4 Available from http://www.cs.sunysb.edu/˜lmc/iproto/

http://www.cs.sunysb.edu/~lmc/iproto/
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Figure 4 shows the parallel speedup of PSDD, HD-BFS, AHD-BFS and depth-first
search, computed as the single-threaded time divided by the time required for the num-
ber of threads given on the x axis. Speedup is perhaps one of the most important metrics
when comparing parallel algorithms as it is indicative of how well the algorithm will
perform as the parallelism increases. The diagonal line in each of the speedup plots
shows perfect linear speedup which is typically unachievable in practice, however, it
can provide a useful reference point. The closer that the performance of an algorithm
is to the diagonal line, the closer that its performance is to a perfect linear speedup. We
can see from these figures that PSDD came the closest to linear speedup on all of these
models; it always provided better speedup than the other parallel algorithms.

Figure 5 shows the wall-clock time, that is the actual time in seconds, required by
each algorithm for the four models. We can see from this figure that for greater than
three threads, PSDD was able to solve all of these models more quickly than the other
algorithms. On the two ‘real-world’ models, the semaphore and i-Protocol models, HD-
BFS actually required more time than serial breadth-first search when using more than
a single thread. This is because its conservative use of partial-order reduction caused
it to search a much larger graph (c.f., Fig. 3). Spin’s multi-core depth-first search also
suffered from this same issue, however, it seems to have made better use of parallelism
and with greater than four threads it was faster than serial breadth-first search on the
semaphore model. Finally, we can see that AHD-BFS gives very erratic performance
across different numbers of threads. We attribute this to poor load balancing among the
threads due to use of the abstraction instead of uniform node distribution.

External-Memory PSDD

Our results have demonstrated that PSDD requires less memory on model checking
problems than hash-distributed search and it gives better parallel speedup and faster
search times than both hash-distributed search and Spin’s multi-core depth-first search.
PSDD is also able to act as an external-memory search algorithm where external storage
such as a hard disk is used to supplement core memory. In fact, the PSDD framework
was originally developed by Zhou et al. for external-memory search [19]. External-
memory PSDD [20] (external PSDD for short) works just like PSDD, however, when
an abstract node is not in use by one of the threads, it can be pushed off to external
storage. This reduces the memory usage of the search algorithm from that of the entire
search graph to just the size of the duplicate detection scopes acquired by each thread.

As a preliminary experiment, we implemented external PSDD in Spin and used it to
solve the deadlock-free 10 philosophers model. We ran on a machine with eight cores
and four disks configured in a RAID 0 array. A limitation of our setup was that I/O
operations were serialized via a single disk controller, therefore when using all eight
cores external PSDD did not benefit from parallelism. When using a single thread,
standard PSDD used an average of 233 seconds to complete its search and external
PSDD required 1,764 seconds on average (both times had very little variance). With
a more sophisticated machine, external PSDD will show improved performance when
using parallelism, for example, Zhou and Hansen [20] show performance improvements
for up to four threads with external PSDD for automated planning. Even given this
limitation with our experimental setup, the real benefit of external PSDD is still realized:
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external PSDD was able to reduce the memory usage of search from 2.5 Gigabytes
with standard PSDD down to around half of a Gigabyte when using a single thread.
This is a 500% reduction in the memory requirement of the search. In many cases this
reduction in the memory requirement is much more important than reducing the search
time because it is easier to wait longer for the search to complete, however, it may not
be possible to add more memory. Because of this, the memory requirement is often
the limiting factor determining whether or not a model can be validated with a model
checker.

Discussion and Related Work

In a preliminary experiment we have seen that external-memory PSDD is able to reduce
the memory requirement of search by a substantial amount. The penalty for external-
memory PSDD, however, is that it can take a lot longer than serial search as it has to
access hard disk storage. We suspect that the performance of external PSDD can be
increased substantially by using multiple RAID arrays in order to exploit parallelism.

In our current implementation, external PSDD uses more memory when run with
more than a single thread as each thread must have its own duplicate detection scope
in RAM. With eight cores, external PSDD used around the same amount of memory
as standard PSDD which does not use hard disk storage at all. A new technique called
edge partitioning [22] may be able to fix this problem. Edge partitioning reduces the
size of a duplicate detection scope to be only those search nodes that map to a single
abstract node. This can be a very significant reduction that will enable external PSDD
to use multiple threads while still having a very small memory footprint.

Until now, we have not discussed, in detail, how the chosen abstraction effects the
performance of PSDD. For our experiments, the abstraction was selected by evaluating
a small set of different abstractions on each model and choosing the one that gave the
best performance. If the abstract graph is too small or is too strongly connected then
PSDD can suffer as it will be unable to find a sufficient number of disjoint scopes to
search in parallel. We have found that the simple abstractions used in our experiments
have provided a sufficient amount of parallelism. Recent work, however, has shown that
PSDD can greatly benefit from a dynamic search space partitioning that changes the ab-
straction during search [21]. By using dynamic partitioning, the algorithm would be able
to select an abstraction that is more balanced, reducing the peak memory requirement
of external search, and less connected, increasing its ability to exploit parallelism.

Given its rising importance, search parallelization has been the subject of focus for
a number of related work done in the field of model checking. In [11], Jabbar and
Edelkamp describe a parallel extension of External A*, which is a disk-based heuristic
search algorithm. Like HD-BFS, Parallel External A* also uses delayed duplicate de-
tection, which can be less efficient than structured duplicate detection for reasons dis-
cussed in this paper. Unlike both HD-BFS and PSDD, Parallel External A* is designed
only for directed model checking, since it relies on both the g-value (the distance from
the start state) and the h-value (an estimate on the distance to go) of a state to parti-
tion the search space. Thus, depending on whether an informative heuristic function is
available, Parallel External A* can sometimes be less efficient. On the other hand, since
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PSDD makes no assumption about the availability of a heuristic function, it is applica-
ble to both directed and undirected model checking. Furthermore, Parallel External A*
seems inherently disk-based, since “all communication between different processes [of
Parallel External A*] is done through shared files” (page 7 of [11]). Thus, whether there
exists an efficient implementation of Parallel External A* that only uses RAM remains
to be seen. As for PSDD, since it does not rely on any file system for inter-process
communication, both internal and external-memory versions of PSDD have been suc-
cessfully applied to STRIPS planning, as shown in [20]. Fortunately, the same is true
for model checking, as we show in this paper.

Besides systematic approaches, non-systematic parallel search techniques such
as [5,10] have also been proposed and successfully applied to model checking large
verification problems. In [5], the Parallel Randomized State-space Search (PRSS) tech-
nique was shown to reduce the cost of finding an error in Java code by factors ranging
from 2 to well over 1,000. In [10], experiments show the Swarm Tool can dramatically
reduce runtime and increase coverage over the standard method of a single depth or
breadth first search. Both PRSS and Swarm parallelize search by isolating the threads,
allowing them to search independently without any communication. It is this isolation,
however, that makes it difficult for either technique to prove the correctness of a model.
In the absence of communication, the only time either algorithm will converge (i.e.,
declare the model is bug-free) is if a single thread exhausts the entire search space – a
rarity for large verification problems. On the other hand, a systematic search technique
such as PSDD can detect global convergence and terminate both in the presence of bugs
or in their absence.

Conclusion and Future Work

We have compared two techniques for parallelizing the breadth-first search algorithm
used to find deadlocks and safety property violations in model checking. Our results
showed that Parallel Structured Duplicate Detection provides benefits over both hash-
distributed search and Spin’s multi-core depth-first search because it gives better paral-
lel speedup and it requires significantly less memory. We have also demonstrated that
external PSDD can reduce the memory requirements of model checking even further by
taking advantage of cheap secondary storage such as hard disks. As CPU performance
relies more on parallelism than raw clock speed, the techniques presented in this paper
enable model checking to better exploit the full capabilities of modern hardware.

Partial-order reduction is a widely used technique for tackling the state-space ex-
plosion problem found in model checking. However, combining it with parallelization
techniques has been a challenge in the past. In this paper, we show that not only PSDD is
effective for parallel reachability analysis, but it also preserves the full power of Spin’s
partial-order reduction algorithm. As for future work, we will apply PSDD to other
model checkers to show its generality and effectiveness in speeding up search with full
partial-order reduction.
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2. Bošnački, D., Holzmann, G.J.: Improving Spin’s Partial-Order Reduction for Breadth-First
Search. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 91–105. Springer, Heidel-
berg (2005)

3. Burns, E., Lemons, S., Ruml, W., Zhou, R.: Best-first heuristic search for multicore ma-
chines. Journal of Artificial Intelligence Research 39, 689–743 (2010)

4. Dong, Y., Du, X., Holzmann, G.J., Smolka, S.A.: Fighting livelock in the GNU i-Protocol:
A case study in explicit-state model checking. International Journal on Software Tools for
Technology Transfer (STTT) 4(4), 505–528 (2003)

5. Dwyer, M.B., Elbaum, S., Person, S., Purandare, R.: Parallel randomized state-space search.
In: Proceedings of the 29th International Conference on Software Engineering, ICSE 2007,
pp. 3–12 (2007)

6. Evett, M., Hendler, J., Mahanti, A., Nau, D.: PRA* - massively-parallel heuristic-search.
Journal of Parallel and Distributed Computing 25(2), 133–143 (1995)

7. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
(2004)
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Abstract. Multi-thread programs are prone to bugs due to concurrency.
Concurrency bugs are hard to find and reproduce because of the large
number of interleavings. Most non-deadlock concurrency bugs are atom-
icity violation bugs due to unprotected accesses of shared variables by
multiple threads. This paper presents a dynamic prediction tool named
McPatom for predicting atomicity violation bugs involving a pair of
threads accessing a shared variable using model checking. McPatom uses
model checking to ensure the completeness in predicting any possible
atomicity violation captured in the abstract thread model extracted from
an interleaved execution. McPatom can predict atomicity violations in-
volving more than three accesses and multiple subroutines, and supports
all synchronization primitives. We have applied McPatom in predicting
several known bugs in real world systems including one that evades sev-
eral other existing tools. We provide evaluations of McPatom in terms of
atomicity violation predictability and performance with additional im-
provement strategies.

1 Introduction

Multi-core hardware is a growing industry trend, for both high performance
servers and low power mobile devices. Multi-thread programs can exploit multi-
core processors at their full potential. In the real world, most servers and high-
end critical software are multi-thread. Unfortunately, multi-thread programs are
prone to bugs due to the inherent complexity caused by concurrency. It is difficult
to detect concurrency bugs due to the huge number of possible interleavings.
Many concurrency bugs escape from testing into software releases and cause some
of the most serious computer-related accidents in history, including a blackout
leaving tens of millions of people without electricity [1].

Among different types of concurrency bugs, atomicity violation bugs are the
most common one. Atomicity violation bugs are caused by violations to the
atomicity of certain code regions without proper synchronization. They widely
exist in the real world systems and contributed to about 70% of the examined
non-deadlock concurrency bugs [2]. Therefore, techniques for detecting atomicity
violation bugs are extremely important.

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 191–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This paper presents a dynamic prediction tool McPatom to predict atomicity
violation bugs involving a pair of threads accessing a shared variable using model
checking, based on binary executables that use POSIX thread library. McPatom
uses memory access patterns instead of subroutine atomicity. The only input
needed by McPatom is a binary executable, while source code is optional for
locating bugs.

The McPatom framework contains the following major steps: (1) using Pin [3]
to instrument an interleaved execution of a multi-thread program and to record
an interleaved trace containing only atomicity violation impacting events includ-
ing all shared variable accesses and all synchronization routines (locks, condition
variables, barriers and thread management events); (2) projecting the single in-
terleaved trace into a partial order thread model of abstract threads, which
maintains the causal relation within actual threads imposed by the synchroniza-
tion routines; (3) automatically translating the partial order thread model into
a Promela program for model checking in Spin [4]; (4) defining a complete set
of atomicity violation patterns involving a pair of threads accessing every single
shared variable and automatically translating them into temporal logic formulas;
(5) using Spin to model check the atomicity violation patterns; and (6) mapping
the violation reported in Spin to the execution trace in the original multi-thread
program. Figure 1 gives an overview of McPatom framework.

Fig. 1. Overview of McPatom Framework to predict atomicity violation bugs using
model checking

Our work makes the following contributions:

1. A method to extract a thread model from an instrumented interleaved trace
that only records events related to atomicity violations. Such an interleaved
trace is much smaller than the program behavior in a complete execution.
Furthermore the extracted thread model enables the checking of all alterna-
tive traces with the same causal relationships as the interleaved trace. The
completeness of instrumented interleaved traces and the extracted thread
models is proved.
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2. A complete set of the patterns of unserializable interleavings involving two
threads (most concurrency bugs involve only two threads [5]) containing any
number of accesses to a shared variable (either user defined or every word
sized dynamically allocated memory accessed by multiple threads). These
patterns generalize and cover the three accesses proposed in [2][6]. These
atomicity violation patterns become property specifications to be checked.

3. A unique prediction tool - McPatom, for detecting atomicity violation bugs
through model checking. McPatom instruments interleaved executions, ex-
tracts thread models from interleaved traces, automatically converts (1)
thread models into Promela programs and (2) atomicity violation patterns
into property specifications. By constraining the checking within a pair of
threads involving one shared variable at a time, the interleaving space to
be checked is vastly reduced. As a result, McPatom is applicable to large
software systems. McPatom can predict atomicity violations that do not
manifest during testing or runtime.

We applied McPatom to predict several known atomicity violations in real world
systems as well as an atomicity violation that cannot be detected by several ex-
isting tools. We obtained favorable experimental results with regard to atomicity
violation predictability, accuracy and performance of using McPatom. McPatom
ignores data-flow in the thread model, thus may report false positives.

2 Extracting Partial Order Thread Models from
Multi-thread Program Executions

2.1 Description of the Partial Order Thread Model

A multi-thread program has a set of threads and a set of shared variables. Shared
variables are addresses of global variables and every word sized dynamically al-
located memory accessed by multiple threads. The same memory address is con-
sidered as another shared variable if it is released and reallocated through the
invocations of memory functions. An execution σ = s1, ..., sn of a multi-thread
program P is a sequence of executed statements. A trace is the projection of
an execution to a sequence of annotated shared variable accesses and synchro-
nization events. Formally, a trace, τ = e1, ..., em is a sequence of events where
each event ei(1 ≤ i ≤ m) is a tuple 〈tidi, timestampi, actioni〉 in which tidi is
a thread handle, timestampi is a time stamp based on real time and actioni

is one of the following: (read/write, a shared variable), (a synchronization rou-
tine, a synchronization variable) or (a thread management operation, a thread
handle). McPatom uses POSIX Threads in which a synchronization routine is
a routine related to semaphores, mutex locks, condition variables and barriers,
does not handle user-defined synchronization primitives. McPatom also assumes
a shared variable as a synchronization variable if it is accessed by synchronization
routines, thus does not treat its accesses as shared variable accesses.
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Lemma 1. A trace τ = e1, ..., em extracted from an execution sequence σ =
s1, ..., sn is sound and complete with respect to σ in terms of atomicity violation
predictability.

Proof sketch. (1) Soundness: An atomicity violation revealed in τ must exist in
σ. This is obvious since τ is a projection of σ. An atomicity violation pattern
appearing in τ exists in σ.

(2) Completeness: Any existing atomicity violation in σ remains in τ . Since
atomicity violations do not depend on general program states, and only depend
on the execution orders of shared variable accesses and synchronization events,
that are completely captured in τ .

Definition 1. Given a trace τ = e1, ..., em containing shared variable accesses
and synchronization events, a partial order thread model (Eτ ,≺) is defined as
follows:

1. Eτ = {ei | ei in τ}
2. ≺ is a partial order relation such that, for any ei, ej ∈ E (i �= j), ei ≺ ej iff

(a) tidi = tidj and i < j, or
(b) tidi �= tidj, actioni = (Signal, cvar), actionj = (Wait, cvar) and ∀k �

((j < k < i) ∧ (actionk �= (Signal, cvar)) in which cvar is a condition
variable, or

(c) tidi �= tidj, actioni = (Wait, bvar) and (i < j)∧∃k �((tidk = tidj)∧(k <
j) ∧ actionk = (Wait, bvar) ∧ ∀h � ((tidh = tidk) ⇒ ¬(k < h < j))) in
which bvar is a barrier variable, or

(d) tidi �= tidj, actioni = (Create, tidj), or
(e) tidi �= tidj, actionj = (Join, tidi).

3. Mutual exclusion: for any ei, ej, em, en ∈ E (i �= j �= m �= n), ej ≺ em or
en ≺ ei iff
(a) tidi = tidj, actioni = (Lock, lvar), actionj = (Unlock, lvar), and
(b) tidm = tidn, actionm = (Lock, lvar), actionn = (Unlock, lvar).

The above partial order relation (or simply causal relation) is similar to the
happened-before relation given in [7]. From the above definition, we have (1)
shared variable accesses within the same thread are ordered, and (2) a pair of
shared variable accesses from two different threads are only ordered if and only
if they are constrained by some intermediate synchronization events such as one
thread creating the other.

While the partial order thread model (Eτ ,≺) respects the causal relation in
trace τ , it captures an equivalent class of alternative traces that obey the same
causal relation as τ , in which each alternative trace τ ′ is a result of rearranging
some shared variable accesses not constrained by ≺. The partial order thread
model allows us to explore all possible alternative traces that correspond to a
set of feasible interleavings in a multi-thread program, however, the model pro-
vides an over-approximation without considering data-flow, thus cannot guaran-
tee each permissible trace in the model is covered by some feasible interleaved
execution in the multi-thread program P.
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2.2 Implementation of the Partial Order Thread Model

Capturing Runtime Traces and Related Source Code. McPatom uses
Pin binary instrumentation framework [3] to collect runtime trace information,
specifically including, every access to every shared variable and every synchro-
nization event using POSIX Thread (locks, condition variables, barriers, thread
joining and etc.). For each collected event, McPatom also finds the correspond-
ing source code information including file name and line number. The source
code information can be used to help locating the predicted bugs. A sample of
a partial trace is shown in Fig. 2.

3047143104 , 1, thread.c-624, Read , threads
3047143104 , 1, thread.c-172, Create , 3020999536
3020999536 , 1, thread.c-240, Lock , init_lock
3020999536 , 1, thread.c-241, Read , init_count
3020999536 , 1, thread.c-241, Write , init_count
3020999536 , 1, thread.c-242, Signal , init_cond
3020999536 , 1, thread.c-243, Unlock , init_lock

Fig. 2. A Sample of a Partial Trace (The format of each line: thread handle, timestamp,
file name - line number, action)

Automatically Encoding Traces to Promela Code. McPatom uses Spin
model checker to detect atomicity violations in a partial order thread model.
This section shows how we realize a partial order thread model from a recorded
trace in Spin’s underlying language Promela.

Defining Shared Variable Accesses. McPatom defines every shared variable v as
a short in Promela, automatically assigns a unique value for all reading accesses
and a unique value for all writing accesses in each thread. Formally, let rw ∈
{r, w} and tid be thread ID, each access of v is defined as v=rw+tid. Since
the maximum number of threads per process is limited to 64 in POSIX threads,
McPatom sets r to 0, and w to 64. For example, given two threads: t1(tid=1) and
t2(tid=2), and a shared variable v, McPatom makes the following assignments :

1. v = 64+1 for each writing access of v in thread t1,
2. v = 1 for each reading access of v in thread t1,
3. v = 64+2 for each writing access of v in thread t2,
4. v = 2 for each reading access of v in thread t2.

Defining Synchronization Primitives. McPatom automatically generates Promela
code for all synchronization primitives. Due to space limit, we only present
Promela code for mutex locks. McPatom models synchronization events to cap-
ture the causal relationships between threads, to prune infeasible interleav-
ings. The Promela code shown in Fig. 3 models the POSIX Thread routines
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pthread_mutex_lock and pthread_mutex_unlock. The atomic construct groups
indivisible statements together to ensure no interleaving within an atomic se-
quence. Lock inline function accepts a lock l as its argument. If lock l is not
locked, Lock function locks it and sets the owner to the thread that is the pre-
defined variable _pid for the executing process in Promela. If lock l is in locked
status, no guards are executable so that the thread is blocked until lock l is avail-
able according to Promela semantics. Unlock inline function simply sets lock l
to unlocked status. It is exactly what is required to model locking and unlocking
of a mutex lock.

#define NUM_LOCKS 100
short locked[NUM_LOCKS ] = -1;
inline Lock(l) {
if
:: atomic {( locked[l] == -1) -> locked[l] = _pid }
fi;

}
inline Unlock(l) {
assert(locked[l] == _pid );
locked[l] = -1;

}

Fig. 3. Promela Code Modeling Mutex Locks

Defining Threads. All events with regard to a particular thread from the recorded
trace are grouped into a Promela process in which each event is represented by its
corresponding Promela code defined in previous steps as shown in Fig. 4. Since
the maximum number of threads per process in POSIX threads is 64, which is
well below the maximum number (256) of processes allowed in Promela, we do
not have problem to encode all possible threads occurring in a recorded trace.
The interleaved execution of processes in the Promela program generates all
alternative permissible traces in the partial order thread model.

3 Defining and Encoding Unserializable Interleaving
Patterns between Two Threads

Atomicity is a semantic correctness property for concurrent programs. A thread
interleaving is serializable if and only if it is equivalent to a serial execution,
which executes a code region without other threads interleaved in between. The
code region is typically enforced as atomic explicitly in the code. When proper
synchronization is missing to enforce atomicity, atomicity violation bugs may
occur. [8] proved that a thread interleaving is serializable if and only if its conflict
graph is acyclic.
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proctype t1() { ... }
proctype t2()
{

Lock (init_lock ); /* thread.c - 240 */
init_count = 0 + 2; /* thread.c - 241 */
init_count = 64 + 2; /* thread.c - 241 */
Signal(init_cond ); /* thread.c - 242 */
Unlock(init_lock ); /* thread.c - 243 */
...

}
init
{

run t2 (); /* thread.c - 172 */
...

}

Fig. 4. A Sample of Partial Promela Code

Most concurrency bugs involve two threads, instead of a large number of
threads, based on the study in [5], in which 101 out of 105 bugs involved only
two threads. Thus atomicity violation bugs in a multi-thread program can be
explored through every pair of threads. Our work is inspired by the works in
[2][6], which addressed a special case of unserializable interleavings with three
accesses of the same shared variable. However, as Fig. 5 shows, there are real
world bugs involving four accesses of the same shared variable. Furthermore,
there can be more accesses involved, such as reading accesses of a shared variable
for logging purpose. The patterns given in this paper cover atomicity violation
bugs involving any number of accesses of a shared variable between a pair of
threads.

3.1 Three-Access and Four-Access Atomicity Violation

Many recent works focused on three-access atomicity violations [2][6][5], which
involve one shared variable, two threads and three accesses to the variable. For
simplicity, two threads are referred as a local thread (Thread 1) and a remote
thread (Thread 2), the opposite view is also explored during the detection pro-
cess. If two consecutive accesses of a shared variable in a local thread are inter-
leaved with an access to the variable from a remote thread, the interleaving is
a potential unserializable one. In practice, unserializable interleavings indicate
the presence of atomicity violation bugs. The explanation of unserializable in-
terleavings of three accesses and many real world atomicity violation bugs can
be found in [2].

Three-access atomicity violations are chosen by tools above because (1) there
are many real world atomicity violation bugs involving only three accesses, and
(2) checking only two accesses (current access and previous access) in a thread
can reduce the complexity of algorithms. However, some atomicity violation bugs
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involve more than three accesses. A real world example [9] is shown in Fig. 5.
The shared variable accesses in Thread 1 must be in an atomic region; otherwise,
a possible interleaving may result in HandleEvent function of Thread 2 returning
with a missing event. PSet [9] detected this bug (incorrect interleaving 1) since
PSet keeps track of either the last writer or the set of last readers for every
memory location. However PSet cannot detect the mutant of the bug (incorrect
interleaving 2) because in PSet’s view the mutant only involves a set of last
readers and the current reading access. AVIO [2] cannot detect this bug because
it involves more than three accesses.

Fig. 5. A four-access atomicity violation bug [9] in Mozilla (Incorrect interleaving 1
was detected by PSet [9] and missed by AVIO [2], while incorrect interleaving 2 cannot
be detected by either PSet or AVIO)

3.2 Patterns of Two-Thread Atomicity Violations involving any
Number of Accesses

In the sequel, a two-thread atomicity violation refers to a two-thread atomic-
ity violation involving any number of accesses of a shared variable, and A ∈
{Read, Write}, R = Read, W = Write, A∗ denotes zero or more A, A+ denotes
one or more A, R∗ denotes zero or more R and R+ denotes one or more R.
This section gives a set of patterns covering all possible two-thread atomicity
violations.

Figure 6 shows all possible scenarios of unserializable interleavings with only
one access from Thread 2. If any of the unserializable interleaving patterns is
matched, it indicates a potential atomicity violation.

Theorem 1. The set of patterns in Fig. 6 is complete, i.e. they cover all possible
unserializable interleavings between two threads.

Proof. Let At1
1 , At2

2 , ..., Atn
n be a sequence of atomic accesses in an interleaved

execution of two threads, in which Ati

i (ti ∈ {1, 2}, Ati

i ∈ {Read, Write}, 1 ≤
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Fig. 6. Unserializable Interleavings with two threads. In (1)(2)(3)(5), W in Thread 2
unexpectedly changes the value; In (4), An intermediate value in Thread 1 is read by
Thread 2.

i ≤ n) denotes an atomic access from thread ti to the same shared variable.
Let every subsequence of At1

1 , At2
2 , ..., Atn

n be of the form B1
1 , B2

2 , B1
3 where B1

1

and B1
3 of Thread 1 are sequences of Ati

i (ti = 1), B2
2 of Thread 2 is a sequence

of Ati

i (ti = 2). Let Pi be pattern i. B2
2 is assumed to be or can be reduced to

a single access A2
2. If B1

1 , A2
2, B

1
3 does not match with any of the patterns in

Fig. 6, B1
1 , A2

2, B
1
3 satisfies ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 ∧ ¬P5. Since operator ∧ is

commutative, we can select a specific order and carry out an incremental analysis
of possible B1

1 , A2
2, B

1
3 based on each of Pi(1 ≤ i ≤ 5).

1. B1
1 , A2

2, B
1
3 satisfies ¬P1. B1

1 , A2
2, B

1
3 can only be one of the following:

(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A+

(b) B1
1 = A+, A2

2 = W , B1
3 = A∗WA∗

(c) B1
1 = A+, A2

2 = R, B1
3 = A+

2. B1
1 , A2

2, B
1
3 satisfies ¬P1 ∧ ¬P2. B1

1 , A2
2, B

1
3 can only be one of the following:

(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A∗WA∗

(b) B1
1 = A+, A2

2 = W , B1
3 = A∗WA∗

(c) B1
1 = A+, A2

2 = R, B1
3 = A+

3. B1
1 , A2

2, B
1
3 satisfies ¬P1 ∧ ¬P2 ∧ ¬P3. B1

1 , A2
2, B

1
3 can only be one of the

following:
(a) B1

1 = A∗WA∗, A2
2 = W , B1

3 = A∗WA∗

(b) B1
1 = A∗WA∗, A2

2 = W , B3 = A∗WA∗ which is equivalent to above
one.

(c) B1
1 = A+, A2

2 = R, B1
3 = A+

4. B1
1 , A2

2, B
1
3 satisfies ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4. B1

1 , A2
2, B

1
3 can only be one of

the following:
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(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A∗WA∗

(b) B1
1 = R+, A2

2 = R, B1
3 = A+

(c) B1
1 = A+, A2

2 = R, B1
3 = R+

5. B1
1 , A2

2, B
1
3 satisfies ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 ∧ ¬P5. B1

1 , A2
2, B

1
3 can only be

one of the following:
(a) B1

1 = R+, A2
2 = R, B1

3 = A+

(b) B1
1 = A+, A2

2 = R, B1
3 = R+

According to the Serializability Theorem [8], an interleaved sequence is serializ-
able if and only if its conflict graph is acyclic. Either 5(a) B1

1 = R+, A2
2 = R,

B1
3 = A+ or 5(b) B1

1 = A+, A2
2 = R, B1

3 = R+ is serializable. Therefore, the
completeness of the set of patterns in Fig. 6 is proved.

3.3 Automatically Encoding Atomicity Violation Patterns into
Linear Time Temporal Logic (LTL) Formulas

For every shared variable and every pair of threads t1 and t2, McPatom auto-
matically defines a LTL formula (3.1) for each pattern in Fig. 6 and another LTL
formula (3.2) reversing the view of t1 and t2. Let v be a shared variable, r = 0
and w = 64 as defined in section 2.2, Ai ∈ {r, w}, and tidi , tidi ∈ {1, 2}.

[]! <> ((v == A1 + tid1)&&
X((v == A2 + tid2)U((v == A3 + tid3)&& (3.1)
X((v == A4 + tid4)U(v == A5 + tid5)))))

[]! <> ((v == A1 + tid1)&&

X((v == A2 + tid2)U((v == A3 + tid3)&& (3.2)

X((v == A4 + tid4)U(v == A5 + tid5)))))

where “[]” denotes Always, “!” denotes Logical Negation, “<>” denotes Eventu-
ally, “X” denotes Next and “U” denotes Until. These formulas specify that the
atomicity violation patterns do not occur.

Using Fig. 6 (2) as a concrete example, one formula in LTL is shown below:

[]! <> ((v == w + 1)&&
X((v == r + 1)U((v == w + 2)&& (3.3)
X((v == w + 2)U(v == r + 1)))))

(v == w+2)U(v == r+1) is true if and only if v == w+2 holds until v == r+1
is true or simply v == r + 1 holds without v == w + 2 holds. This subformula
captures W ∗

2 R+
1 in which W ∗

2 means zero or more writing accesses from Thread 2,
R+

1 means one or more reading accesses from Thread 1. Furthermore, (v == w+
2)&&X((v == w+2)U(v == r+1)) captures W+

2 R+
1 and (v == r+1)U((v ==

w + 2)&&X((v == w + 2)U(v == r + 1))) reflects R∗
1W

+
2 R+

1 . Therefore, (3.3)
captures []! <> W1R

∗
1W

+
2 R+

1 and ensures that pattern W1R
∗
1W2R

+
1 in Fig. 6

(2) does not occur in the partial order thread model. The reason that the LTL
formula contains W+

2 instead of W2 is that there can be synchronization events
between W2 and R+

1 , for each of those events, W2 needs to hold.
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4 Predictive Analysis of Atomicity Violation Using
Model Checking

In this section, we discuss McPatom framework’s general merits in terms of its
soundness and completeness as well as specific ways in using Spin model checker
[4] to show its applicability.

4.1 Soundness and Completeness of McPatom

An important feature of a prediction method is its capability to predict as many
violations as possible. Since the majority of existing prediction methods uses an
abstract model extracted from one interleaved execution at a time from a multi-
thread program, a prediction method’s capability rests on the quality of the
abstract model built and its thoroughness in exploring the permissible traces in
the abstract model. McPatom extracts the least constrained partial order thread
model respecting the causal relation from the observed interleaved execution and
uses model checking to explore all permissible traces in the partial order thread
model.

Theorem 2. McPatom ensures the completeness of its prediction - any possible
atomicity violation involving a pair of threads accessing one shared variable in
the partial order thread model can be detected.

Proof sketch. McPatom encodes all possible atomicity violation patterns involv-
ing a pair of threads accessing one shared variable (Theorem 1) into linear time
temporal logic formulas. McPatom uses model checking to exhaustively check
whether any temporal logic formula fails in the partial order thread model. Thus
none of possible atomicity violation will be undetected.

In general, McPatom cannot guarantee the soundness of its prediction, i.e.,
each predicted atomicity violation is covered by a feasible execution, since data-
flow is ignored in the partial order thread model.

One major potential problem using model checking is the state explosion
problem. Fortunately, the state explosion problem will not occur in atomicity
violation prediction due to the following reasons (1) the partial order thread
model (capturing only shared variable accesses and synchronization events) used
for model checking is drastically smaller compared to the original multi-thread
program, (2) each atomicity violation pattern to be checked involves only one
shared variable, and (3) checking each atomicity violation pattern does not de-
pend on the value of the shared variable. Another possible problem with model
checking is the potential exponential number of possible interleavings due to the
number of threads involved and the number of shared variable accesses. This
problem is partially resolved (1) due to our focus on checking atomicity viola-
tions involving only two threads, (2) due to the constraints imposed by causal
relations that drastically reduce the number of potential interleavings generated
by the number of shared variable accesses, and (3) due to our implementation
strategies of grouping all reading event sequences in each thread into atomic
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blocks in Spin to achieve partial order reductions and enforcing the wait/signal
order of condition variables in the observed execution while exploring alternative
interleavings. Our experiment results show very good performance using model
checking.

4.2 Using Spin Model Checker to Find Atomicity Violation Traces

McPatom selects Spin model checker [4] based on its maturity, popularity, and
capability. Spin is used to check every atomicity violation freedom property
involving every pair of threads accessing every single shared variable one at a
time in the partial order thread model extracted from a single interleaved trace
recorded through instrumentation using Pin. Based on the partial order thread
model encoded in Promela in section 2.2, and the atomicity violation freedom
property encoded in LTL formulas in section 3.3, McPatom uses Spin to find
atomicity violation traces or report no atomicity violations. Figure 7 gives an
example of atomicity violation reported by Spin, which is mapped to real code
in the original program.

70: proc 2 (t13) spin_av.pml :551 (state 28) [sharedvariable
= (0+13)]

72: proc 3 (t48) spin_av.pml :591 (state 31) [sharedvariable
= (64+48) ]

76: proc 2 (t13) spin_av.pml :552 (state 29) [sharedvariable
= (0+13)]

Fig. 7. A Sample of Atomicity Violation Trace Reported by Spin

Spin can be configured to search all errors or stop at the first error. McPatom
chooses to stop at the first error, thus McPatom reports no atomicity violation
if there exists no atomicity violation; when McPatom reports some atomicity
violation traces, there may be additional atomicity violations not yet reported,
which can be detected by re-running McPatom after grouping the previously
reported violation related accesses into an atomic region so that it will not cause
a new violation in the next run. For each shared variable and each pair of threads,
an atomicity violation is recorded in a Spin trail file for each pattern if it exists.
The Spin trail file can be simulated by Spin to give a clear view of those accesses
involved in the atomicity violation, as shown in Fig. 7.

4.3 Mapping the Violations Reported in Spin to the Original
Program

Atomicity violations reported in Spin, as shown in Fig. 7 as an example, are
mapped to real code in original program. McPatom automatically identifies the
related lines in Promela files, in which the comments of each line in Promela are
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file names and line numbers of the corresponding source code. Figure 8 shows
the Promela code at the left and the corresponding real code at the right, for
the atomicity violation in Fig. 7.

sharedvar=0+13; /*mod_log_config.c -1353*/ |if (len+buf->outcnt>LOG_BUFSIZE)
sharedvar=64+48; /*mod_log_config.c -1373*/| buf ->outcnt += len;

sharedvar=0+13; /*mod_log_config.c -1369*/ |s = &buf->outbuf[buf->outcnt]

Fig. 8. Promela code and the corresponding real code in the original program

5 Evaluation

We have used several real-world systems with known bugs listed in Table 1
(the issue numbers are the IDs in corresponding Bugzilla Databases) ([2],[9])
to examine our tool’s bug prediction capability, as well as four programs [2]
without atomicity violations in SPLASH-2 parallel benchmark suite [10] to test
the accuracy of our tool (no false positives are reported).

Table 1. Bug List

Bug # Program Issue Number
1 Apache 25520
2 Apache 21287
3 Apache 21285
4 MySQL 644
5 MySQL 791
6 Mozilla-extract Fig. 5

Table 2. Performance

Program Program Input
Trace
Size
(MB)

Time
to

Check
(mins)

Number
of

Shared
Vari-
ables

Number
of Prop-
erties

Average
Time per
Property

(secs)

1 fft -p2 -m1024 4.3 304 3656 36560 0.499

2 fmm Particles : 64
Processors : 2 10.8 183 1248 12480 0.88

3 lu -p2 -n16 0.3 0.44 5 50 0.53
4 radix -p2 -n10 3.7 328 3094 30940 0.636

5 Apache 2 concurrent
httperf 9.4 15.68 151 3360 0.005
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Table 3. Performance (Continue)

Program The Shared Variable with Maximum Number of Accesses
Number of Accesses Maximum Number of States Time to Check (secs)

1 fft 1041 3294 0.04
2 fmm 20064 9996 0.08
3 lu 282 941 0.02
4 radix 81 433 0.01
5 Apache 1415 16 less than 0.01

Bug Prediction Capability. McPatom has successfully predicted all the
known bugs listed in Table 1, especially bug number 6 - an extraction of a
real world atomicity violation bug reported in [9], which evades PSet [9] because
this bug involves a set of last readers and the current reading access, and AVIO
[2] because this bug involves more than three accesses.

Accuracy. We have chosen four programs (also used in [2]) without atomicity
violations in SPLASH-2 parallel benchmark suite [10] to test whether McPatom
produces violation predictions, which would certainly be false positives. Mc-
Patom passed this test without reporting any violations.

Performance. Since McPatom framework uses model checking as the underly-
ing atomicity violation prediction method and relies on a third party tool, Spin,
to perform the model checking, it is extremely important to demonstrate the
applicability of McPatom. We conducted the experiments1 on a PC with dual
core 2.33GHz CPU and 2GB memory. Performance data are given in Table 2
and Table 3, where time to check included automatically running Spin, com-
piling generated pan.c and model checking properties for all shared variables.
There are ten properties to check for each pair of threads accessing a shared
variable based on five violation patterns and their mutants. Apache program
contains more than two threads and results in more properties to be checked.
Instrumentation overhead was similar to that given in [2]. Table 3 shows the
shared variable with maximum number of accesses in each program. From Table
2 and Table 3, it shows that the number of states does not explode when the
number of accesses increases since checking the shared variable with maximum
number of accesses took less than 0.01 seconds (not including the time to run
Spin and compile generated pan.c) while checking any shared variable on average
took 0.005 seconds. These preliminary experimental results are very encourag-
ing and demonstrate the scalability of McPatom. These results also confirm our
belief that although the total number of possible interleavings to check can ex-
plode quickly as the number of accesses increase; however, the number of actual
interleavings are drastically smaller due to the constraints imposed by causal
1 Data available at
http://users.cs.fiu.edu/~rzeng001/spin12/
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relationships between threads. Other major reasons, which also vastly reduce
the possible interleavings, are that McPatom takes advantage of the nature of
atomicity violations and considers only a pair of threads and accesses to a single
shared variable at one time, groups all reading event sequences in each thread
into atomic blocks in Spin to achieve partial order reductions , and enforces the
wait/signal order of condition variables in the observed execution while explor-
ing alternative interleavings. Table 2 and Table 3 show that the experiment with
Apache has even better performance than others, due to Apache’s heavy use of
condition variables. Since atomicity violations involving a single shared variable
can be checked independently from violations involving other shared variables,
we can significantly reduce the duration (not the cumulative time) of model
checking by using multiple machines.

6 Related Works

There are many recent works on tackling atomicity violations. Some works pro-
posed techniques to detect atomicity violations on actual program executions
through testing [11] or runtime monitoring ([2], [12], and [13]). Other works
developed methods to predict atomicity violations that may evade testing and
runtime monitoring. In this section, we mention some recent works most rele-
vant to ours on dynamically predicting atomicity violations. Most of these works
share the following fundamental process: (1) instruments a multi-thread program
P to record atomicity relevant events, (2) extracts a trace τ of atomicity rele-
vant events from an interleaved execution σ of P , (3) projects trace τ into a
partial order model M based on a causal relation defined on P , (4) explores
various alternative trace τ ′ in M to predict potential atomicity violations in a
possible corresponding interleaved execution σ′ in P. Various methods and their
supporting tools differ with regard to the strategies used in the above process.

How to abstract a partial order model M from a trace τ is critical. If the
model is too restrictive, many feasible atomicity violations cannot be explored.
If the model is too permissible, the prediction may not be sound, i.e. a predicted
atomicity violation may not be a feasible interleaved execution of P. Penelope
[14] ignores some causal relationships in building a partial order model and thus
requires additional feasibility checking of a predicted atomicity violation. Fu-
sion [6] abstracts a partial order model called concurrent trace program (CTP)
that ignores the causal relation between different threads. Linearized atomicity
violation traces in CTP are symbolically checked with additional order infor-
mation from source codes to ensure their feasibility. In [15], a theoretical study
was conducted to analyze the complexity of predicting atomicity violations, in
which two simplified partial order models are considered. The first one ignores all
synchronization and the second one only considers lock-based synchronization.
It shows the tradeoffs between efficiency and accuracy. jPredictor [16] defines a
partial order model based on a concept of sliced causality and lock-atomicity,
which may predict some infeasible violations. Our work abstracts a partial or-
der model respecting the causal relationships imposed by all synchronization
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constructs, but without considering data-flow, our work also may produce some
infeasible violations.

A variety of techniques have been proposed to explore atomicity violation
traces from an abstract partial order model. CTrigger [5] and Penelope [14]
developed different algorithms to generate potential violation schedules and to
prune away many infeasible ones. However these algorithms may report infeasible
atomicity violation traces as well as miss feasible ones. jPredictor [16] uses model
checking to exhaustively check a property in the partial order model and is
capable to predict other concurrency bugs in addition to atomicity violations.
Fusion [6] encodes the partial order model, the source program, and three access
atomicity violation patterns into a logic formula; and uses a satisfiability modulo
theory solver to check the feasible interleavings for atomicity violations. Our work
converts the partial order model into a Promela program, defines a complete set
of atomicity violation patterns as temporal logic formulas, and then uses Spin
model checker to produce atomicity violation traces.

7 Conclusion

Concurrency bugs are extremely hard to detect using testing techniques due
to huge interleaving space. This paper presents a tool McPatom using model
checking to predict atomicity violation concurrency bugs. McPatom is powerful
and can explore a vast interleaving space of a multi-thread program based on a
small set of instrumented test runs. McPatom is applicable to large real-world
systems.

McPatom focuses on atomicity violations involving each single shared variable,
and thus cannot find atomicity violations involving multiple variables. Another
limitation is that redundant model checking may be performed if two recorded
interleaved traces yield the same partial order thread model.
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under award HRD-0833093.
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Abstract. Concurrent data structures are provided in libraries such as
Intel Thread Building Blocks and Java.util.concurrent to enable efficient
implementation of multi-threaded programs. Their efficiency is achieved
by using fine grained synchronization which creates less constrained in-
teraction between the threads. This leads to a large number of possible
interleavings and makes concurrent data structures hard to verify. In
this paper, we describe our key insights from Murphi based parameter-
ized model checking of these data structures. In particular, we describe
the first model checking based framework to handle an unbounded num-
ber of threads for these data structures. This framework uses the CMP
(CoMPositional) method which has been used in verifying cache coher-
ence protocols. The CMP method requires the user to supply lemmas
for abstraction refinement. A further contribution of our work is to show
how a significant subset of these lemmas can be generated automatically.

1 Introduction

Concurrent data structures are provided in libraries such as Intel Thread Build-
ing Blocks [18] and Java.util.concurrent (JSR-166 [12]) to enable efficient imple-
mentation of multi-threaded programs. The efficiency of these data structures is
achieved by either making them lock free or by using fine grained synchronization
between the threads, i.e., by locking parts of the data structure instead of locking
the entire data structure while making updates. This results in less constrained
interaction between the threads and thus increases the number of possible inter-
leavings. The large number of possible interleavings make these data structures
highly error prone, as exemplified by bugs witnessed in published algorithms [16].

Given the large number of possible interleavings, model checking these data
structures is non-trivial. Consequently, existing model checking based efforts [3,
23–25] address the verification of concurrent data structures for only a small
number of threads. This motivated our work on model checking these data struc-
tures for an unbounded number of threads by applying parameterized model
checking techniques. In particular, we leverage the CMP (CoMPositional) method
[4], a parameterized verification technique which enables verifying correctness of
a system with unbounded number of threads by constructing an abstract model
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which consists of only a small number of threads and an environment thread.
This technique has been successfully used in verifying message passing systems
like cache coherence protocols [17, 19]. The CMP method is discussed below:

1.1 The CMP Method

The CMP method is used to verify symmetric parameterized systems. A sym-
metric parameterized system, P (N), consists of N identical threads with ids
1..N . The properties which we verify on these systems using the CMP method
are candidate invariants of the form ∀i ∈ [1..N ].Φ(i), where Φ(i) is a proposi-
tional logic formula on the variables of thread i and shared variables. The CMP
method first constructs an abstract model which consists of one thread from the
original system (say thread 1 since the system is symmetric) and an abstract
thread (named Other) that over-approximates the remaining threads (the envi-
ronment). Then, if the property Φ(1) holds on thread 1 in the abstract model,
∀i ∈ [1..N ].Φ(i) holds for P (N) by symmetry. The verification of the abstract
model is done by using a model checker (in our case Murphi).

Since the constructed abstract model is an over approximation, the model
checker may report spurious counterexamples. In order to remove these coun-
terexamples, the user needs to refine the model by coming up with candidate
lemmas which constrain the abstraction.

While the CMP method requires human guidance in the form of supplying
candidate lemmas, it essentially uses a model checker as an assistant and trans-
fers most of the proof burden to it. The key difference between the CMP method
and theorem proving based techniques then is that the former leverages a model
checker. Thus, the lemmas supplied to the CMP method need not be inductive.
Theorem proving techniques on the other hand require that all the invariants
together with the properties under check be inductive. Further, in practice far
fewer lemmas have to be supplied while using the CMP method [19]. The CMP
method has been successfully used to verify large scale industrial cache coherence
protocols which are significantly larger than the distributed protocols handled
by pure theorem proving methods [17].

Mining Candidate Lemmas. To reduce the manual effort of supplying can-
didate lemmas on the user and to accelerate the proof convergence, we show
how several of the candidate lemmas required to refine the abstract model can
be mined from the execution trace of a single thread. We use Daikon [6] for
this purpose. Daikon takes in program execution traces and infers a collection
of candidate invariants for the program that are based on invariant templates.
Note that while the candidate lemmas generated using Daikon might be false,
the CMP method also checks the lemmas used. Any false candidates are elimi-
nated without affecting the soundness of the proof [11]. It is this feature of the
CMP method that allows us to use an off-the-shelf invariant generator without
compromising soundness.
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1.2 Framework Description

The experimental framework which we use is shown in Figure 1. The input
data structure encoded in Murphi (discussed in Section 2) is first augmented by
Daikon generated candidate lemmas. These candidate lemmas are generated by
analyzing the trace of a single thread (discussed in Section 4). The augmented
model then enters the CMP loop (discussed in Section 3). In the CMP loop,
the model is automatically abstracted by using the tool Abster [19]. Then, in
case a proof of correctness or a real counterexample is found, the loop finishes.
In case a spurious counterexample is found, the model is updated by either
adding more lemmas to or by removing previously added (incorrect) lemmas
from the original program, and then re-abstracting the program. This approach
is shown in Figure 1 and detailed in Section 3. While lemmas are added to
refine the model, the CMP method does not provide any formal guarantees for
the eventual termination of the loop. In practice the number of extra lemmas
required to be added were reduced due to the initial addition of Daikon generated
lemmas (detailed in Section 5).
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Fig. 1. The Experimental Framework

1.3 Main Contributions

Through this case study of applying the CMP method to verify concurrent data
structures, we make the following contributions:

– Unbounded threads : We show how concurrent list based set data structures
with an unbounded number of threads accessing them can be model checked
by the CMP method. Further, these data structures allocate memory dy-
namically which leads to subtle issues causing a memory usage blowup as
the number of threads accessing the data structure increase. We show how
the CMP method addresses this.

– Mining candidate lemmas : We show how the burden of supplying candidate
lemmas to the CMP method can be reduced by mining a significant subset
of these lemmas automatically by analyzing the execution trace of a single
thread. We use the invariant generator Daikon for this.
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– Experiments : We describe our insights in verifying several well known concur-
rent data structures: Fine-grained , Lock Free [7,15], Optimistic and Lazy [8]
list based sets. We were also able to find the error in a known buggy ver-
sion of the Lock Free list based set algorithm. Finally, we also describe the
particular candidate lemmas we added in detail.

Limitations (1)We assume that the size of the data structure is fixed. We believe
that this CMP method based approach, which handles unbounded number of
threads, can be extended to handle unbounded sized data structures as well, by
using an appropriate finite abstraction for the data structure. (2) Daikon gen-
erates invariants by using invariant templates to determine the structure of the
invariant. These templates are provided by the user. While user-supplied, these
templates were the same for the class of algorithms we verified, thus reducing
the burden of creating them.

1.4 Related Work

Verification of concurrent data structures has received significant attention lately
[1–3,5,20,21,23–25]. These verification efforts can be broadly classified as manual,
model checking based and separation logic based, as detailed below:

Manual: Vafeiadis et al. [21] verified concurrent data structures using a mechan-
ical proof assistant. They specified the interference between concurrent threads
using rely and guarantee conditions. They were not able to handle the Lazy
algorithm. In [5] Colvin et al. proposed using a forward-backward simulation
based approach for the Lazy algorithm. These approaches allow both an arbi-
trary number of accessing threads and an arbitrary number of elements but they
are manual effort intensive. Our approach, on the other hand, aims for increased
automation by leveraging model checkers. Our framework is also able to handle
the Lazy algorithm.

Model checking based: Vechev et al. [23] describe their experience with verify-
ing Linearizability using the SPIN model checker. While this approach handles
algorithms with unknown linearization points, they do not scale to more than a
small number of threads and a small list size. Similarly, Zhang et al. [24,25] and
Liu et al. [13] used model checking to verify concurrent data structures. They
used a naive refinement based approach which does not scale to more than a
small number of threads and list size. A different approach is taken by Alur et
al. [3]: they treat a list as a string and the thread as an automaton and then
derive conditions on the automaton to prove decidability of Linearizability for
lists of arbitrary length. The key focus of their work is on decidability instead
of scalability; hence they too do not scale to more than 2-3 threads. In contrast,
our method is able to handle an unbounded number of threads.

Separation logic based: Verification approaches have been developed for pro-
grams specified in RGSep, a logic which combines separation logic with rely-
guarantee reasoning [2,20,22]. While their approach is automatic for a subset of
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RGSep, the designer still needs to specify concurrent actions which model the
inter-thread interference, just like in rely-guarantee reasoning, for proving as-
sertions. Further, this approach requires the designer to have an understanding
of RGSep. In contrast, our tool requires the user to specify candidate lemmas,
which are propositional logic formulas. Further, the CMP method automatically
checks the candidate lemmas as well, so any false lemmas will be weeded out.

2 Encoding Concurrent Data Structures as Parameterized
Systems

In this section, we describe how to encode a concurrent data structure as a
Murphi model.

We model a concurrent data structure as a program P with N identical
threads with ids 1..N , where N is arbitrary but fixed. Each thread i has a
set of l finite local variables Li. There is also a set of s finite shared variables
S. The domain of these variables is independent of N , with the exception of the
locks, which also store the thread id information, as discussed in Section 2.2.

The action (in this paper we assume that every line in the pseudocode corre-
sponds to an action) of each thread i is modeled as a rule of the form ρ ⇒ a,
where ρ is the guard over variables in Li ∪ S and the action a is a set of as-
signments to variables in Li ∪ S. Further, instead of writing out rules that are
identical modulo thread ids or list node ids, we use quantified rules (called Rule-
sets in Murphi language). For instance, we can write

Ruleset i : Thread; p : node
Rule (ρ) ⇒ Begin

a;
End; to represent the set of rules obtained by plugging in all possible values

of i and p in the rule ρ⇒ a.
The semantics of this guarded-command format are straight-forward: at every

time step, the guards of all the rules are checked to see which of the rules are
enabled. The Murphi model checker then non-deterministically picks an enabled
rule and fires it. Since each thread i has a separate set of rules, the multi-threaded
execution follows interleaving semantics.

2.1 Running Example: Lazy List Based Concurrent Set

We demonstrate our approach on a concurrent data structure implementing a
standard set interface, with Add, Remove and Contains methods. These methods
have semantics expected of a standard sequential set SeqSet (Figure 2).

Our example follows the Lazy list based concurrent set data structure (or Lazy
set for brevity) defined in [21]. The underlying representation of the Lazy set is
a linked list, which stores the elements of the set in a (strictly) increasing order
with each node of the linked list having the following fields: 1) a key holding the
element’s value, 2) a next pointer for accessing the next node in the list 3) a
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SeqContains(e) : {SeqResult := e ∈ SeqSet;
return SeqResult; }

SeqAdd(e) : {SeqResult := e /∈ SeqSet;
SeqSet := SeqSet ∪ e;
return SeqResult; }

SeqRemove(e) : {SeqResult := e ∈ SeqSet;
SeqSet := SeqSet \ e;
return SeqResult; }

Fig. 2. Methods of the sequential set SeqSet

marked bit to indicate if the node is a part of the set or not, and 4) a lock field
representing whether that node is currently locked. In addition, there are two
special nodes, the first node Head and the last node Tail, that can neither be
added nor be removed. All the nodes that are reachable from Head and do not
have the marked bit set are considered part of the set, denoted by ConcSet.

As shown in Figure 3, the methods of this data structure traverse the linked
list using pointers curr and pred which are local to the methods. For the Add
method, the local pointer entry is used to store the address of the newly allocated
node being added to the list. For the Remove method, this pointer is used to
store the value of the next field of the curr pointer while removing the node
pointed by curr. Note that in this work, we assume that each numbered line of
the pseudocode shown in Figure 3 executes atomically.

Verifying Correctness. Linearizability [10] is the widely accepted correctness
criterion for concurrent data structures. Intuitively, Linearizability implies that
the execution of every access method for the concurrent data structure appears
to occur at some point, the linearization point, between the invocation and the
response of the method. The linearization points for the Lazy set are marked
with a ∗ in Figure 3.

As described in [21], Linearizability can be proved by using a refinement based
approach. Thus, the Linearizability of the algorithm is established by comparing
the results of the concurrent access methods against the results of the access
methods of the sequential set, SeqSet, with access methods shown in Figure 2.
This comparison is done by embedding the calls to SeqSet in the implementa-
tion at the linearization point. For instance, the linearization point for Remove
in case the call is successful is marked with [*SeqRemove(key)] on Line 3 in
Figure 3d. Similarly, [*SeqRemove(key) ] on Line 8 denotes the linearization
point in the failing case. If the results returned by concurrent methods and
the embedded sequential methods match, the concurrent data structure is Lin-
earizable. Formally, for each Method ∈ {Add,Remove,Contains}, we check that
Method(key)⇔ SeqMethod(key).

Further, to check if ConcSet refines SeqSet, we also check if their contents
match; i.e. ∀v.v ∈ SeqSet⇔ v ∈ ConcSet holds at all times.

The Contains method needs special treatment, because its linearization point
depends on the return value of the method. If the element is found in the set,
the Contains method is linearized at Line 5 in Figure 3a. If the item is not in
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Contains (key)
1: node curr := Head;
2: while (curr.key < key)
3: curr := curr.next;
4: if (curr.key = key &
5: !curr.marked) then

[*SeqContains(key)]
6: return true;
7: else
8: return false;

(a)

Add (key)
1: node pred, curr := Locate (key);
2: if (curr.key �= key) then
3: entry := new node();
4: entry.key := key;
5: entry.next := curr;
6: pred.next := entry;

[*SeqAdd(key)]
7: result := true;
8: else
9: result := false;

[*SeqAdd(key)]
10: pred.unlock();
11: curr.unlock();
12: return result;

(b)

Locate (key)
1: while (true)
2: pred := Head;
3: curr := pred.next;
4: while (curr.key < key)
5: pred := curr;
6: curr := curr.next;
7: pred.lock();
8: curr.lock();
9: if (!pred.marked &
10: !curr.marked &
11: pred.next = curr) then
12: return pred, curr;
13: else
14: pred.unlock();
15: curr.unlock();

(c)

Remove (key)
1: node pred, curr := Locate (key);
2: if (curr.key = key) then
3: curr.marked := true;

[*SeqRemove(key)]
4: entry := curr.next;
5: pred.next := entry;
6: result := true;
7: else
8: result := false;

[*SeqRemove(key)]
9: pred.unlock();
10: curr.unlock();
11: return result;

(d)

Fig. 3. Pseudo-code for linked list based Lazy set algorithm. The linearization points
are marked with a ∗.



Parameterized Model Checking of Fine Grained Concurrency 215

the set, however, the linearization point is dependent on the history and cannot
be statically determined. To prove Linearizability for this case, we proceed as
follows: for every invocation of Contains such that it returns false, we need to
determine a point between the invocation and response points such that a call to
SeqContains also returns false. In other words, find a point where the abstract
set SeqSet does not contain the element sought, say v. If for some invocation,
no such point is found then the Contains method is not Linearizable.

To check if such a point exists is simple: we keep a history variable auxv that is
set to false initially when Contains(v) is invoked. If at any point the SeqSet does
not contain v then auxv is updated to true. Then, when Contains(v) returns
false we just have to check if auxv is true or not. Thus, by checking the candidate
invariant (Contains(v) = false)⇒ auxv, we can determine the Linearizability
of Contains .

2.2 Encoding the Lazy Set in Murphi

The state space of the Lazy set can be encoded in Murphi as follows. The shared
state consists of the linked list and the SeqSet which can be encoded as the
shared variables S. In particular, the linked list is stored as an array list of nodes
(which are essentially structs). Each node holds records with fields next,marked,
key and lock, which correspond to the fields of the node discussed in Section 2.1.
We encode locks such that they store both their state (locked/unlocked) as well
as the thread id of the lock owner.

The local state of each thread which needs to be encoded consists of the
variables curr, pred and entry, as shown in Figure 3. We encode these local
variables as arrays with domain as thread id, [1..N ] and range from 0 to an
upper fixed value T . (T corresponds to memory size and is chosen by the user.)
Thus, curr[i], pred[i] and entry[i] store the corresponding local variables for
thread i. Then, list[curr[i]].key (or curr[i].key for brevity) is the value of the
key of the node pointed by the curr pointer in thread i. Further, in order to do
the refinement proof, we need a mechanism to store the result of the call to the
access method of SeqSet embedded at the linearization point. We store this in
Seqresult[i] for thread i, as shown in Figure 4.

Figure 4 shows the Murphi encoding of the Remove method for thread i. (Due
to space restrictions, we do not show the encoding of the entire algorithm.) Each
rule in the figure corresponds to a statement of the Remove method in Figure 3d.
In order to enforce the sequential order of the statements, we added the local
variable pc[i]. This variable serves as a local program counter and is used in the
guards of the rules. The code executes in sequential order starting from top left
rule (pc = 1) to the bottom right rule (pc = 11).

Since the concurrent algorithm needs to be proved correct for an arbitrary
set of calls to its interface functions, we encode the threads accessing the data
structure such that it non-determinstically selects a key, and a method (Add,
Remove or Contains) for execution. It then executes the method on the key and
then restarts after finishing execution.
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Ruleset i : Thread
Rule (pc[i] = 1) ⇒ Begin

pred[i], curr[i] :=
Locate(key); 1

pc[i] + +;
End;

Ruleset i : Thread
Rule (pc[i] = 2) ⇒ Begin

if (curr[i].key = key)
then pc[i] + +;
else pc[i] = 7;

End;

Ruleset i : Thread; Ncurr : node;
Rule (pc[i] = 3
& Ncurr = curr[i]) ⇒ Begin

Ncurr.marked := true;
pc[i] + +;
Seqresult[i] :=
SeqRemove(key);

End;

Ruleset i : Thread; Ncurr : node
Rule (pc[i] = 4) ⇒ Begin

entry[i] := curr[i].next; pc[i] + +;
End;

Ruleset i : Thread; Npred : node
Rule (pc[i] = 5 & Npred = pred[i]

& Nentry = entry[i]) ⇒ Begin

Npred.next := Nentry; pc[i] + +;
End;

Ruleset i : Thread
Rule (pc[i] = 6) ⇒ Begin

result[i] := true;
pc[i] := pc[i] + 2;

End;

Ruleset i : Thread
Rule (pc[i] = 7) ⇒ Begin

[else] pc[i] + +;
End;

Ruleset i : Thread
Rule (pc[i] = 8) ⇒ Begin

result[i] := false; pc[i] + +;
End;

Ruleset i : Thread; Npred : node;
Rule (pc[i] = 9 &
Npred = pred[i]) ⇒ Begin

Npred.unlock(i); pc[i] + +;
End;

Ruleset i : Thread; Ncurr : node
Rule (pc[i] = 10 &
Ncurr = curr[i]) ⇒ Begin

Ncurr.unlock(i); pc[i] + +;
End;

Ruleset i : Thread
Rule (pc[i] = 11) ⇒ Begin

return result[i];
End;

Fig. 4. Murphi model for method Remove for thread i: each rule corresponds to a line
in the Remove method shown in Figure 3.

1 The method Locate is shown in pseudocode format in Figure 3.
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Memory Allocation/Garbage Collection. The Lazy set allocates new nodes
when it adds elements and removes references when it removes elements. This
requires allocation and potential deallocation of memory.

We encode the memory as an array of size T of shared variables (i.e. list
nodes) in the Murphi model. This memory size T is chosen by the user. For a
given number of set elements, we can check if the memory of size T is sufficient
to model the algorithm or not: if memory is insufficient, a memory allocation
error will occur when the Add method tries to allocate a new node.

It is non-trivial to manually manage the memory for this algorithm by deleting
nodes which are removed. This is because another thread might be accessing the
node removed by the Remove method, making deletion of the node at the time
of removal incorrect [23]. This makes the implementation of a garbage collector
essential.

Since Murphi does not provide support for dynamic memory management, we
implemented the garbage collector as a function which is called when a new list
node is allocated. The function returns true if it finds a list node in the memory
array which has no references to it. This function can count the references since
it has global access to the pointers of all the threads in the model.

Specifying Linearizability. As discussed in Section 2.1, we need to check
Method(key)⇔ SeqMethod(key), where Method is Add , Remove or Contains .
Then, the condition (i.e. candidate invariant) to check Linearizability in the
Murphi encoding is:

∀i ∈ [1..N ].Seqresult[i] = result[i].

The above condition involves variables of a single thread i, universally quantified
over all threads. Similarly, the other properties which need to be checked can
be specified either as a formula of the above form or as a propositional logic
formula on the shared state. As discussed in Section 3, this structure is essential
for constructing the CMP abstraction.

3 Parameterized Model Checking Using the CMP
Method

In this section we describe the CMP method and then show how it applies to
the Lazy set.

Given a symmetric parameterized system P (N) with threads 1..N and a prop-
erty involving a small constant number c of threads, the CMP method first con-
structs a finite abstract model that can be checked using a model checker. The
abstraction typically used, called data type reduction [14], keeps c threads un-
changed and creates one abstract thread Other representing threads [c+ 1..N ].
The abstraction operation involved in constructing Other is syntactic and fast:
it essentially involves throwing away all the state variables of threads [c+ 1..N ]
and over-approximating expressions involving them. To do the abstraction syn-
tactically, the first step is to reduce the domains of all state variables holding
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array indices from [1..N ] to [1..c]. Next, in the Murphi program, thread indices
c+1..N are replaced with o (which is the id we use for the Other thread) wher-
ever they appear. For instance an expression pc[i] = 8 for i ∈ [c+ 1..N ] reduces
to pc[o] = 8. Consequently, since the Other thread has no state, pc[o] becomes
meaningless and so pc[o] = 8 is replaced by true or false (depending on which
replacement leads to an over-abstraction). This syntactic abstraction operation
is implemented in Abster [19].

Since the abstract thread Other is completely unconstrained, model checking
the abstract model may lead to spurious counterexamples. If this happens, the
user refines the system by adding candidate lemmas which are conjoined to the
guards of the rules. Formally, suppose that the candidate lemma L is used. Now
consider a rule r of the program P defined as: ρ ⇒ a. Then, refining P with L
involves changing this rule to ρ∧L⇒ a and then re-abstracting the new program
with the new rule obtained. Observe that in this refinement approach, no extra
state gets added to the abstract model. This is important for the efficiency of the
CMP method based verification. The abstraction refinement procedure is also
explained through an example in Section 3.1.

If this refined system passes the model checker, the property is proven. If, on
the other hand, there is another counterexample for the refined system, the user
must distinguish between three possible cases by examining the counterexample.
1) The counterexample is valid. 2) The counterexample is not valid and the
candidate lemma is correct, in which case further refinement is required. 3) The
counterexample is not valid and a candidate lemma is incorrect, in which case
the incorrect candidate lemma must be removed or modified.

A useful heuristic for determining if the counterexample is due to an incorrect
candidate lemma is that it fails for the (concrete) system with a small number
of threads (one or two for the data structures we verified). This can either be
detected by manual examination of the system (for concurrent data structures
we verified, manual examination was sufficient due to relatively short counterex-
amples). Or, this may also be done by model checking the candidate lemma
on the system for a small number of threads. (Before manual examination, we
model checked all the lemmas for a model with a single thread.)

One key advantage of the CMP method is that the candidate lemmas used
for strengthening are also checked during the process and any false candidate
lemma that is added will be detected by the model checker [11]. This guarantees
that the refinement step does not affect the soundness of the proof.

3.1 Verifying the Lazy Set Algorithm

Linearizability for the Lazy set can be specified as a propositional formula over
a single thread (and so has c = 1), as discussed in Section 2.2. The abstracted
system therefore contains the rules from the concrete thread shown in Figure 4
as well as the rules from the abstract thread as shown in Figure 5.

To understand the abstraction in detail, consider the rule from the concrete
thread i for pc = 5:
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% For pc = 3
Ruleset Ncurr : node
Rule (true) ⇒ Begin

Ncurr.marked := true;
SeqRemove(key);

End;

% For pc = 5
Ruleset Npred : node;

Nentry : node
Rule (true) ⇒ Begin

Npred.next := Nentry;
End;

% For pc = 9
Ruleset Npred : node
Rule (true) ⇒ Begin

Npred.unlock(o);
End;

% For pc = 10
Ruleset Ncurr : node
Rule (true) ⇒ Begin

Ncurr.unlock(o);
End;

% For pc = 1,2,4,6,7,8,11
Ruleset

Rule (true) ⇒ Begin

no-op
End;

Fig. 5. Abstracted thread for Remove method

Ruleset i : Thread; Npred,Nentry : node;
Rule (pc[i] = 5 & NPred = pred[i] & Nentry = entry[i]) ⇒ Begin

Npred.next := Nentry; pc[i] + +;
End;

For thread 1 this ruleset will be preserved as it is. But for the Other thread
the ruleset will be abstracted to

Ruleset Npred, Nentry : node;
Rule (true) ⇒ Begin

Npred.next := Nentry;
End;

This is because expressions pc[i] = 5, Npred = pred[i].next and Nentry =
entry[i] will be conservatively over-approximated to true. Similarly, the assign-
ment pc[i] + + becomes a no-op. Since i no longer appears in the body of the
ruleset, it can be dropped from the ruleset quantifiers as well. A model con-
structed in this way is an abstraction of the original system.

The above abstract rule is highly unconstrained and so may lead to spurious
counterexamples. It can, for example, pick an arbitrary node in the linked list and
set its next field to another arbitrary node. The next step in the CMP method
is refinement of the abstract model using lemmas. One lemma that the user can
add is that entry[i] is the successor of curr[i] which is the successor of pred[i].
This lemma can be expressed as pred[i].next = curr[i] & curr[i].next = entry[i],
or in terms of ruleset Npred.next = Ncurr & Ncurr.next = Nentry. Thus, the
strengthened ruleset is now:
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Ruleset i : Thread; Npred,Nentry,Ncurr : node
Rule (pc[i] = 5 & Npred = pred[i] & Nentry = entry[i] & Ncurr = curr[i]

& Npred.next = Ncurr & Ncurr.next = Nentry) ⇒ Begin

Npred.next := Nentry; pc[i] + +;
End;

Re-abstracting this strengthened rule leads to the abstract rule below which
is more constrained than before, thus ruling out some spurious behaviors.

Ruleset Npred, Nentry, Ncurr : node
Rule (true & Npred.next = Ncurr & Ncurr.next = Nentry) ⇒ Begin

Npred.next := Nentry;
End;

Observe that the above candidate lemma reflects the sequential behavior of the
Remove method: it expresses the relationship between pred, curr and entry vari-
ables which is easily inferred if the sequential behavior of the thread is analyzed.

Finally, note that in the above rules, Ncurr.next is used instead of using
curr[i].next. This is because using curr[i].next hides the fact that it is a shared
variable (accessed by local pointer curr[i]) and not a local variable. This can
cause the abstraction tool Abster to go astray as it operates purely syntactically.

Bounding Memory Usage Blowup. In the concrete model, as the number of
threads increase, the number of memory nodes which may have been removed by
some Remove method but are still referenced by some other Contains method
may also increase rapidly. These nodes cannot be garbage collected as they are
not unreferenced. This is a challenge for model checking since the system state
for such algorithms can grow quickly with increasing number of threads. A model
with only 2 threads accessing set with at most 2 elements can require as many
as 10 nodes [23].

In the CMP abstraction, since the local pointers of the abstract thread are
thrown away, a node in the abstract model can only have references from the
concrete thread. This naturally bounds the number of nodes which may have
been removed from the list and cannot be garbage collected to three (one po-
tentially for curr, one for pred and one for entry), solving the memory usage
blowup problem.

4 Automatic Generation of Candidate Lemmas

As discussed in Section 3, a parameterized model may initially be too abstract
to prove the desired properties. In this case, candidate lemmas must be added
to constrain the model. This step often requires human effort and expertise.

However, since the CMP method is sound and checks candidate lemmas for
correctness, candidate lemmas can be mined from the execution traces. We used
Daikon [6] for this purpose. Daikon learns invariants from execution traces, which
we generated by sequentially executing one thread. The form of the lemmas
learnt by Daikon depends on the templates it uses. For example, we discovered
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that templates which compared variables with constants tended to produce false
candidate lemmas. This is because these lemmas are learnt from a single trace
and did not generalize to other traces that well. On the other hand, templates
which included comparison of integer variables and checking for equality, tended
to produce good candidate lemmas, and were therefore used in all following
experiments. The templates can be tuned to infer additional lemmas which had
to be manually added. Tuning of templates is a way of adding domain knowledge
and thus speeding up verification of similar algorithms.

Since the front end of Daikon does not accept Murphi, we used Java imple-
mentations of the code available at the accompanying website of [9]. While this
adds to the mechanical burden of running a tool on a different front end, this
does not affect the soundness of our approach: if Daikon finds wrong lemmas or
we make a mistake while translating them back to Murphi, the CMP method
will still catch this. We plan to automate this step in the future.

5 Experiments

We verified the Fine-grained , Optimistic, Lazy and Lock Free algorithms pre-
sented in [9] using our framework. These algorithms are briefly described below:

Fine-grained Set: The Fine-grained set uses hand-in-hand locking for travers-
ing the list: the thread traversing the list releases the lock on a node only when
it has locked the successor. Finally, during addition or removal of a node to the
list, the thread keeps the two successive vertices locked.

Optimistic Set: Since hand-in-hand locking uses locks to traverse the list,
it creates contention between threads. The Optimistic algorithm reduces this
contention by traversing the list without locking. For correctness, on finding the
location to add or remove a node, the thread locks the nodes and then validates
that the node it locked is reachable from the Head node by re-traversing the list.

Lazy Set: The Optimistic algorithm re-traverses the list to validate the node
it locked: the Lazy implementation eliminates this overhead by maintaining a
marked field in each node. The algorithm maintains the invariant that an un-
marked node is reachable from Head . Another advantage of having the marked
field is that the Contains method no longer needs to acquire a lock.

Lock Free Set: The Lock Free implementation eliminates the usage of lock and
uses compare and swap instead for synchronization. This implementation also
uses a marked field like the Lazy algorithm; we refer the reader to [9] for further
details.

The linearization points for most of the methods considered in this paper are
known. When they are not known, we use the aux variable approach described
in Section 2.1. Further, the ConcSet for all these algorithms is the set of nodes
reachable from Head , except for Lazy and Lock Free where the nodes have to be
unmarked as well.
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Performance. For our experiments, we used a 4-core, 2.4 GHz Intel processor
with 3.7 GB RAM. Figure 6 shows the model checking results. In the figure, the
number of items represent the number of elements in the set and the number of
list nodes represent the list size in the implementation. We model checked the
correctness (Linearizability) of the implementation for a maximum of two items
in the set. Note that the number of items does not include the Head , Tail and
memory leak nodes. For example, for the Lock Free algorithm, even for two items
in the list, the total number of list nodes can go up to 10. In order to cut down
the state space and speedup the verification of Lazy and Lock Free algorithms,
we canonicalized the linked list in their implementation: all marked nodes were
shifted to the end.

Algorithm #Items #List Nodes Time(s)
Required

Fine-grained 1 3 0.11
Fine-grained 2 4 3.73
Optimistic 1 3 0.83
Optimistic 2 4 114.39

Lazy 1 5 18
Lazy 2 8 29554

Lock Free 1 7 1.62
Lock Free 2 10 401.14

Lock Free(Buggy) 1 7 0.63

Fig. 6. Model Checking Results

We were initially surprised by the better performance for Lock Free algorithm,
especially since it is known to be the hardest for verification. We think that this
is probably due to the fact that the Other thread of Lock Free algorithm does
not have lock() and unlock() calls (which we observed significantly slowed down
the Lazy algorithm); the abstract model then has only 5 statements. This leads
to fewer interleavings and thus a speedup despite the 10 nodes in the list.

The Lazy algorithm was the slowest among all. We believe that this is because
it uses a large number of list nodes (8 for the two item case) and also has
significant interference from the Other thread due to locks.

5.1 Verification Experience: Candidate Lemmas

We now describe our experience in verifying these algorithms using Daikon gen-
erated candidate lemmas. Since Daikon learns candidate lemmas as clauses for
each program location (each candidate lemma then is a conjunction of clauses),
we compare the number of clauses in the manually added candidate lemmas
with the number of clauses inferred automatically. Further, in what follows, we
will consider only those clauses which are left after an initial pruning by model
checking for a single thread.
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Fine-grained Set. For the Fine-grained algorithm, 15 clauses were inferred
by Daikon, 9 of which were correct. We manually had to add an additional 9
clauses. These 9 clauses were added as 4 candidate lemmas: of these 2 restrained
the abstract statements from accessing the shared state when it was not locked
by Other and one constrained that modifications be done to shared state only if
the nodes pointed by the local pointers curr and pred are reachable from Head .

Optimistic Set. For the Optimistic set, 15 clauses were generated by Daikon,
of which 2 were spurious. 13 clauses were added manually; these were added as
5 candidate lemmas. Similar to the Fine-grained algorithm case, two of these
constrained accesses to happen only in locked region and two constrained the
local pointers to be reachable from Head .

Lazy Set. For the Lazy set, Daikon generated 39 clauses out of which 1 was
spurious. We manually added 9 clauses as 5 candidate lemmas. Three of these
constrained accesses to happen only in the locked region and one constrained
the local pointers to be reachable from Head .

Lock Free Set. In the Lock Free case, our candidate lemma generation scheme
had limited success: we had a large number of spurious clauses. The total number
of generated clauses which model check for single thread case is 29. Out of
these, only 7 carried through and thus are of help in the proof. The rest of the
clauses were falsified. The total number of manually added clauses was 23, from
5 manually added candidate lemmas.

Specific Candidate Lemmas for Lazy Remove: We now describe the spe-
cific lemmas which we added for the Remove method of the Lazy set algorithm
shown in Figure 3d. As can be seen from the pseudocode, the Remove method
modifies the shared state (list nodes) in lines 3 and 5. Since the CMP method dis-
cards all the local updates in constructing the environment abstraction (shown
in Figure 5), lemmas are needed only for the rules corresponding to these lines
for refinement.

The first set of candidate lemmas are the ones which describe the relationships
between the thread variables while making updates. As discussed in the previous
section, such lemmas are learned by using Daikon. For example, an important
lemma in this category is that when the rule corresponding to line 3 of the
Remove method is fired, the node pointed by curr is next to that pointed by
pred and that by entry is next to curr. Other examples include lemmas which
compare the values of the key fields of nodes pointed by pred, curr and entry
variables.

The second set of candidate lemmas are concerned with synchronization. For
the rules corresponding to line number 3 and 5, the variables pred and curr must
be locked by the calling thread at the time of execution of the rules. While these
lemmas had to be added manually, they can potentially be added automatically
since the only information required is whether the variables should be locked or
not. For concurrent data structures, the lock scopes are known statically.
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Finally, the last candidate lemma which we had to manually add was for the
rule corresponding to line 5. This lemma stated that when the node pointed by
curr is being removed from the list, it should be marked.

Discussion. We observed that the manually added candidate lemmas, par-
ticularly for Fine-grained , Lazy and Lock Free algorithms, had a very similar
structure, and had information which could be inferred from a single thread.
This strongly motivates further research on exploring even better techniques for
inferring lemmas from a single thread.

6 Conclusion and Future Work

In this paper we presented a case study of parameterized model checking of con-
current data structures. In particular, we have shown how concurrent list based
set data structures can be model checked for an unbounded number of threads
by leveraging an important parameterized model checking based technique. We
have also shown how the manual effort involved in the parameterized model
checking using the CMP method can be reduced by mining invariants from the
execution trace of a single thread.

Our work opens up interesting future research directions. First, it suggests
experimental exploration for better invariant generation approaches which can
capture most of the lemmas required by the CMP method based verification
loop. In particular, we believe that better candidate lemmas can be generated
by leveraging higher level specifications like those used for program sketching.
Second, it highlights the need for generic data structure abstractions, which can
be integrated with the CMP method to model check the data structures for an
unbounded size and with an unbounded number of threads accessing them. This
is essential for full formal verification.
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Abstract. Modest is a high-level compositional modelling language for
stochastic timed systems with a formal semantics in terms of stochastic
timed automata, an overarching formalism of which several well-studied
models are special cases. The emphasis of Modest is to make use of
existing analysis techniques and tools in a single-formalism, multiple-
solution approach. In this paper, we focus on networks of timed automata
as supported by Uppaal. We report on extensions made to Modest and
Uppaal that allow the transformation of a rich subset of Modest models
to Uppaal timed automata and enable connections to further tools and
formalisms. We present our Modest-to-Uppaal tool chain mctau, which
allows both a fully automated analysis as well as model transformation,
and we compare its performance with the existing mcpta tool.

1 Introduction

Modest, the “modelling and description language for stochastic timed sys-
tems” [6], is a compositional modelling language that combines expressive and
powerful syntax-level features—such as recursive process definitions, loops, ar-
rays, exception handling and user-defined data structures—with a formal seman-
tics in terms of stochastic timed automata (STA). STA span a very rich spectrum
of semantic models, supporting continuous and discrete probability distributions
as well as nondeterminism. Well-known and extensively studied submodels of
STA are probabilistic timed automata (PTA) [15], timed automata (TA) [1],
and generalised semi-Markov processes (GSMP) [11]. Most of the submodels are
easily identifiable on the syntactic level.

Modest has been used in a wide variety of application studies, ranging from
wireless sensor networks [2,18] and communication protocols [13] to architectural
dependability models [5], industrial production scheduling [16] and electric power
grid management [4]. The principle idea behind the formalism and its supporting
tools is to provide a single-formalism, multiple-solution approach to modelling
and analysis, using existing analysis engines and algorithms where available to
avoid unnecessary reimplementations.
� This work has been supported by the European Union FP7-ICT projects Quasimodo,
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Fig. 1. How the new mctau tool fits in the Modest Toolset

Started in 2008, the Modest Toolset constitutes the second generation [7]
of tools with this philosophy, currently including (i) mcpta [12,13], which en-
ables model checking of networks of PTA using the Prism [14] probabilistic
model checker in the background, (ii) modes [5,12], a discrete-event simulator
that primarily targets GSMP models but in fact is enhanced to handle certain
nondeterministic models in a sound way, and (iii) mime as a graphical user in-
terface that seamlessly integrates the analysis tools into a Modest source code
editor with syntax and error highlighting. The tools are usable and robust.

In this paper, we present a new member of the Modest Toolset family:
mctau, providing visualisation and analysis of networks of timed automata. It
does so by connecting to the real-time model checker Uppaal [3]. Although
mcpta already includes support for TA as a special case of PTA, we will see that
mctau allows a more efficient analysis; in addition to this, the way we bridge
several semantic gaps between Modest and Uppaal will be of practical use
beyond just the mctau tool. Figure 1 provides a toolset overview.

2 Bridging the Gap

A connection between Modest and Uppaal had been planned for a long time [7],
but several fundamental differences between the two modelling languages have
prevented this up to now:

Time Constraints. Constraints on the flow of time are specified as location
invariants in Uppaal, while Modest uses deadlines (or urgency constraints [8]).
As an example, if location l has invariant c ≤ 3 (where c is a clock variable),
time can pass while in l as long as c ≤ 3 holds. Deadlines, on the other hand,
are associated to edges in an automaton, and specify that some edge must be
taken out of a location once the deadline of one outgoing edge becomes satisfied.
Invariant c ≤ 3 can thus be expressed as deadline c ≥ 3 on some edge leaving l.

Deadlines are more flexible in parallel composition and synchronisation, easily
allowing, for example, a synchronising edge to be taken as soon as possible in all
components. While there are deadlines that cannot be transformed into a single
invariant (mainly equality comparison deadlines like c = 3 and equivalents) and
vice-versa, we have recently shown how to transform all practically relevant
deadlines into invariants [12], and this transformation is implemented in mctau.

Assignments. The assignments associated to an edge in Uppaal are performed
sequentially: x := y, y := x will result in x and y both having the same value.
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In Modest, variables are assigned new values in function of their previous ones
atomically. x := y, y := x will thus result in swapping x and y. Uppaal 4.1.5
now implements this semantics as an option (-M at the command line and the
Modest checkbox in the option menu of the graphical interface).

Synchronisation. Both Uppaal and Modest support the notion of parallel
composition, where a number of independent processes run in parallel. How-
ever, the synchronisation mechanisms differ fundamentally: Modest supports
a CSP/LOTOS-style multi-way synchronisation where processes synchronise on
edges with the same action label that is part of the intersection of the action
alphabets α of the processes. For example, if α(P1) = {a, b} and α(P2) = {b, c}
then P1 (P2) is free to take action a (c), but P1 and P2 must synchronise to take
action b. Uppaal, on the other hand, provides CCS-style binary synchronisa-
tion where exactly two processes synchronise on a matching pair of actions (e.g.
a! and a?) and I/O-automata inspired broadcast synchronisation where all pro-
cesses able to perform an a? action synchronise with one sender performing a!.

Although it is possible, with some effort, to encode binary using only multi-
way synchronisation [17], we are not aware of any way to do the opposite in a
semantically sound way and without introducing additional intermediate states
in ways that would make the state-space explosion problem significantly worse.
We thus resolved this discrepancy in a practical manner by adding multi-way
synchronisation to Uppaal 4.1.5 and extending Modest with broadcast and
binary synchronisation. These extensions also open Uppaal and Modest for a
large number of further tool connections that were previously infeasible such as
connecting Uppaal with CSP-style tools, notably CADP [10] or PRISM.

3 The mctau Tool

mctau is our new addition to the Modest Toolset that, at its core, performs
the translation of Modest models to the XML-based input language of Uppaal,
including advanced features of Modest such as user-defined functions and data
types. It supports all types of properties that are already supported by Uppaal.
mctau is available as a command-line executable and as a fully-integrated analysis
engine inside mime. It has two modes of operation:

Export Mode: A .modest input file is transformed into a .xml file with the
automata and a .q file with the properties to be analysed. These can be
opened in the Uppaal graphical interface for analysis or further modifica-
tion.

Analysis Mode: Uppaal is completely hidden from the user: The model trans-
formation as well as the analysis of the properties, using Uppaal’s command-
line verifyta executable, is performed by mctau in a fully automated way.
This is also the way that mctau is used from within mime.

Since Modest is a text-based formalism while Uppaal is based on a graphical
automata notation, mctau incorporates a set of graph layout algorithms, based on
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action put, get;
process Channel() {

clock c;
put {= c = 0 =};
invariant(c <= TD) alt {

:: get
:: tau

}; Channel() }

⇒

Fig. 2. A Modest process and its Uppaal automaton

the Graph# library1 and adapted for timed automata with all their location and
edge labels, to generate easily useable Uppaal models. Figure 2 shows a simple
communication channel in Modest and the Uppaal automaton generated by
mctau based on the LinLog layout algorithm.

Aside from TA, mctau can also cope with networks of PTA: When given a
model with probabilistic branching, mctau generates (and analyses) an overap-
proximation that is obtained by replacing all probabilistic with nondeterministic
branching (making sure to discard branches with probability zero). This neither
adds nor removes paths through the model, but all probabilities are lost. Still,
it is useful for a fast qualitative analysis. mctau then also replaces probabilistic
properties by a set of purely timed ones to determine whether the probability
is exactly zero or one. For example, property Pmax(♦ e) to determine the max-
imum probability (over all schedulers) of eventually reaching a state satisfying
expression e is replaced by ∀�¬e and ∀♦ e: If the first property is satisfied, the
original probability must be zero; if the second property is satisfied, it must be
one; otherwise, it may be any number in the closed interval [0, 1].

This handling of PTA models greatly improves the usability and applicability
of mctau since it allows the user to write a single model to subsequently use
three different tools—mctau, mcpta and modes—with vastly different background
technologies, all of that optionally within the graphical interface of mime.

Tool availability. The Modest Toolset, which includes mctau, and Uppaal
are both freely available for academic users at www.modestchecker.net and
www.uppaal.org, respectively.

4 Evaluation

mctau is able to analyse (the nondeterministic overapproximations of) the three
original mcpta PTA case studies [13], without requiring any changes to the mod-
els. In all cases where mctau reports probability 0 or 1, mcpta does so as well.
For the BRP model in particular, we see that whenever mctau reports [0, 1], the
actual probability as reported by mcpta is in ]0, 1[, as shown in Table 1 (model
parameters (N,MAX ,TD) and property names are as in [13]). This shows how
mctau can be of great help in model debugging and for sanity checking of prob-
abilistic models.
1 http://graphsharp.codeplex.com/

www.modestchecker.net
www.uppaal.org
http://graphsharp.codeplex.com/
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Table 1. Results of mctau and mcpta for the probabilistic BRP model (16, 2, 1)

property TA1 TA2 PA PB P1 P2 Dmax

mctau true true 0 0 [0, 1] [0, 1] [0, 1]

mcpta true true 0 0 4.233 · 10−4 2.645 · 10−5 9.996 · 10−1

Table 2. Performance of mctau and mcpta on the nonprobabilistic BRP model

standard properties time-bounded properties
tool model states time memory states time memory

mctau
(using Uppaal)

(16, 2, 1) 880 1 s 27 MB 831 1 s 19 MB

(64, 5, 4) 8 317 2 s 30 MB 8 091 1 s 21 MB

mcpta
(using PRISM)

(16, 2, 1) 3 972 2 s 167 MB 170 371 20 s 253 MB

(64, 5, 4) 304 785 13 s 187 MB 4 914 666 284 s 686 MB

The BRP model has also been studied as a pure TA model before [9] with some
properties that had not been transferred to the PTA model. We were able to re-
construct that TA model in Modest and check all properties with mctau. The
corresponding model file is included in the Modest Toolset download. We also
compared the performance of mctau andmcpta (using the digital clocks engine2) on
a nonprobabilistic versionof the originalModestBRPmodel. Table 2 summarises
the results3; as expected (since mcpta/PRISM are not designed for nonprobabilis-
tic models), the more specialised tool shows significantly improved performance.

5 Conclusion

We have presented mctau, a tool providing a link between the Modest and Up-
paal modelling formalisms. The newly established connection opens the door
to a powerful tool chain that gives Modest modellers access to the editor and
simulator of Uppaal and reinforces the single-formalism, multiple-solution ap-
proach of Modest. This approach might one day provide a possible solution to
one of the obstacles that, in our experience, new users seeking to apply model-
checking in their subject area face: the daunting number of different modelling
languages which makes for low flexibility and a steep learning curve.

mctau was only possible because of recent results and implementation ef-
forts that allowed the semantic gap between the two formalisms to be overcome.
The implemented bridge spans a practically disturbing gap between CCS and
I/O automata on the one side and CSP and LOTOS on the other. The inclu-
sion of multi-way synchronisation in Uppaal 4.1.5 is a key enabler for further
connections with prominent verification tools such as Prism or Cadp.
2 Use of PRISM’s game-based engine was not possible due to its restrictions concerning

the use of global variables and the access to other modules’ local variables.
3 Linux VM on Intel Core i5, /usr/bin/time -v for time and memory measurement;

“states” is the number of zones explored by Uppaal for mctau and the number of reach-
able discrete states (including discretised clock valuations) for mcpta.
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Uppaal nowadays also contains an efficient statistical model checking en-
gine, which we currently do not make use of since it relies on an entirely new
and different semantics for timed automata. An investigation of the relationship
between this “stochastic” semantics and Modest is planned as future work.
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Abstract. We present FAuST, an extensible framework for Formal veri-
fication, Automated debugging, and Software Test generation. Our frame-
work uses a highly customizeable Bounded Model Checking (BMC)
algorithm for formal reasoning about software programs and provides dif-
ferent applications, e.g., property checking, functional equivalence check-
ing, test case generation, and fault localization. FAuST supports dynamic
execution and parallel symbolic reasoning using the LLVM compiler in-
frastructure and an abstraction layer for decision procedures.

Keywords: Formal verification, Debugging, SAT.

1 Introduction

Bounded Model Checking (BMC) [3,7] is a technique to check whether finite-state
systems conform to their specifications. BMC searches for counterexamples of
bounded length and successively increases the bound until either a counterexam-
ple is found or the system’s correctness can be guaranteed. The BMC problem is
represented symbolically as multiple instances of the Satisfiability (SAT) prob-
lem. In practice BMC serves as a refutation technique because BMC problems
often exhaust a resource limit before the system is proven correct. The instances
are then solved using a corresponding Decision Procedures (DP), called Satisfi-
ability Modulo Theories (SMT) solver.

More recently, BMC is used in software verification [6,12]: the behavior of
a program is extracted from its source code and modeled using logic formu-
lae. Today, flexible compilers like the Low Level Virtual Machine (LLVM) [14]
compiler allow for program analysis and verification directly on the compiler’s
intermediate representation.

We present FAuST, an extensible framework for Formal verification, Automated
debugging, and Software Test generation. FAuST offers a tool bench for different

� This work was supported by the German Research Foundation (DFG, grant no. FE
797/6-1).
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verification and debugging applications exploiting their similarities. The input of
each FAuST tool is a software program. The output depends on its application.
For instance, in fault-based test generation [22] the output is a test suite and in
fault localization [23] the output is a set of potentially faulty program locations.
The core engine of each tool is a highly customizable BMC algorithm.

The conceptual architecture of FAuST is built in three layers: (1) in the pro-
gram layer FAuST deals with analyzing and transforming the input program.
(2) In the application layer FAuST chooses a suitable background theory and
builds a SAT problem from the transformed program depends on the applica-
tion. (3) In the logic layer the SAT problem is simplified and solved using SAT
and SMT solvers.

Figure 1 shows the flow of the BMC tool in the FAuST framework for property
checking. Dashed boxes denote objects and solid boxes denote transformations
on those objects. In the program layer we leverage the LLVM compiler to lower
the input program to LLVM’s intermediate representation, LLVM-IR. In the appli-
cation layer we instantiate an encoder with respect to the application, i.e., a cus-
tomized BMC algorithm which generates a SAT instance from the transformed
program. In the logic layer we use metaSMT [10] as a generic API interface to
different SAT and SMT solvers. Other FAuST tools operate similarly.

Transform

Program
Compiler
frontend

LLVM-IR Encode Logic DP
UNSAT

SAT

Program layer
Application layer

Logic layer

Fig. 1. Flow of the BMC tool within the FAuST framework for property checking

FAuST is the first tool bench which integrates formal verification, automatic
debugging, and test generation into a unified framework. The main features
are: (1) state-of-the-art compiler technology built on the LLVM compiler infras-
tructure, (2) dynamic execution using Just-In-Time (JIT) compilation, (3) an
abstraction layer for decision procedures leveraging metaSMT, and (4) parallel
solving using multiple SAT and SMT solvers simultaneously.

The remainder of the paper is structured as follows: In Section 2 we describe
the BMC-based approach to formalize LLVM-IR into logic. In Section 3 we discuss
the applications currently integrated into FAuST. In Section 4 we present related
work. In Section 5 concludes the paper.

2 Formalizing LLVM-IR into Logic Using BMC

We use a BMC approach to formalize LLVM-IR into logic: given an impera-
tive, non-concurrent program P and an unrolling bound k, we unroll loops and
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recursive functions in the program with respect to k and transform the unrolled
program into Static Single Assignment (SSA) [24] form. The transformations for
loop unrolling and to establish SSA form are provided by the LLVM compiler
infrastructure.

The resulting program consists of global program variables and a set of func-
tions with one entry function. A function f defines a Control Flow Graph (CFG)
CFG(f) := (Vf , Ef ) with nodes Vf and edges Ef . The nodes v ∈ Vf correspond
to basic blocks and the edges e ∈ Ef correspond to possible control flow trans-
fers between basic blocks. Each basic block is a sequence of instructions over
program variables and constant values and has a unique label. We write Pred(v)
and Inst(v) to denote the set of predecessors and the set of instructions of the
basic block v.

Suppose P is a program consisting of functions fi, 0 ≤ i ≤ n, with the entry
function f0 we encode the program into a logic formula,

p :=

n∧
i=0

∧
b∈Vfi

⎡
⎣ ∨
b′∈Pred(b)

eb′,b ↔
∧

s∈Inst(b)

Encode(s)

⎤
⎦ ∧ ef0 ,

i.e., an instance of the SAT problem. We introduce a logic variable with corre-
sponding data type for each program variable and a constant symbol for each
constant value in P . The program is encoded by formalizing the semantics of
each function, each basic block, and each instruction. The LLVM-IR instruction
set is discussed in detail in the LLVM Language Reference Manual [15]. Encoding
the individual instruction types is straightforward, i.e,. either the logic of choice
provides a corresponding word-level operation or we use an approach similar
to Tseitin’s encoding [25] to lower the operation to a semantically equivalent

0.;<label>:1
1. %2 = icmp slt i32 %a, %b
2. br i1 %2, label %3, label %4
3.
4.;<label>:3
5. br label %5
6.
7.;<label>:4
8. br label %5
9.

10.;<label>:5
11. %c = phi i32 [%a, %3], [%b, %4]

0.(set-logic QF_BV)
1.(declare-fun |%a| () (_ BitVec 32))
2.(declare-fun |%b| () (_ BitVec 32))
3.(declare-fun |%c| () (_ BitVec 32))
4.(declare-fun |%2| () Bool)
5.(declare-fun |-->%1| () Bool)
6.(declare-fun |%1-->%3| () Bool)
7.(declare-fun |%1-->%4| () Bool)
8.(declare-fun |%3-->%5| () Bool)
9.(declare-fun |%4-->%5| () Bool)

10.(assert (=> |-->%1|
11. (= |%2| (bvslt |%a| |%b|))))
12.(assert (=> |-->%1|
13. (and (=> |%2| |%1-->%3|)
14. (=> (not |%2|) |%1-->%4|))))
15.(assert (= |%1-->%3| |%3-->%5|))
16.(assert (= |%1-->%4| |%4-->%5|))
17.(assert (=> (or |%3-->%5| |%4-->%5|)
18. (= |%c| (ite |%3-->%5| |%a| |%b|))))

Fig. 2. A fragment of an LLVM program (on the left) and the corresponding logic
formula in SMT-LIB version 2 format (on the right)
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logic formula using Boolean connectives. We write Encode(s) to denote the logic
formula obtained from encoding instruction s.

In order to encode the control flow of a program, we introduce one Boolean
variable for each edge in a CFG(fi), 0 ≤ i ≤ n, and additional Boolean variables
for each function call and return from a function to the callers site. The value
of a Boolean variable corresponds to a control flow transfer in the program, i.e.,
the value is true if the control flow transfers when the program is executed and
false otherwise. We write eb′,b to denote the Boolean variable which corresponds
to the control flow transfer from basic block b′ to basic block b and we write efi
to denote the Boolean variable which corresponds to the entry of function fi.

Each satisfying assignment of the resulting logic formula p corresponds to a
possible assignment to the program variables in P and determines an execution
of the program. Figure 2 shows a fragment of an LLVM program and the logic
formula in SMT-LIB version 2 [1] format. The program stores the minimum of
two given program variables a and b in program variable c.

3 Applications

In this section we outline the applications currently implemented as FAuST tools
and list their runtimes for the ANSI-C programTCAS from the Software-Artifact
Infrastructure Repository (SIR) using specific SMT solvers. However, FAuST
supports a large set of different SAT and SMT solvers via API calls and can
pass formulae to any interactive SMT solver supporting SMT-LIB version 2
format. We mainly use FAuST to deal with C and C++ programs. However,
FAuSTcan be used for other programming language if an LLVM compiler front-
end is available which transforms programs into LLVM-IR. In order to use any
tool from FAuST, a user has to mark the program’s input variables with special
function calls FAuST input. The program variables are then treated as open
variables with non-deterministic values when encoded. Moreover, the user has
to pass the name of the entry function to be checked to a tool.

3.1 Formal Verification

FAuST provides a standard BMC tool for formal verification which supports
property checking and functional equivalence checking. In the former case the
user has to provide local assertions in the program’s source code. In the latter
case a reference implementation serves as the formal specification. Then, the user
has to mark corresponding pairs of program variables in the two implementations
to be compared with a special function call FAuST output. Counterexamples
can either be viewed on LLVM-IR or mapped back to the source code passed to
the LLVM compiler front-end utilizing LLVM metadata. Optionally, FAuST allows
for validation of counterexamples on the real program using LLVM’s JIT compiler
and execution engine, i.e., a test driver with the values of the counterexample
is automatically synthesized, compiled, and executed. Functional equivalence
checking of TCAS takes 0.18 seconds using Z3 as SMT solver which is comparable
to state-of-the-art BMC tools.
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3.2 Automatic Debugging

FAuST provides an extension of the BMC tool for automatic debugging. Given
a program that does not conform to its formal specification, the tool computes
statements which are potentially faulty. Basically, two strategies are supported:
Model-Based Diagnosis (MBD) [21,8] and Error Explanation (EE) [9]. The MBD
strategy computes program variables which when replaced with open variables
in the SAT instance correct the program. The EE strategy selects a counterex-
ample and compares the values assigned to the program variables to the values
assigned in the most similar execution trace which does not refute the formal
specification. Different values indicate potentially faulty statements. In contrast
to the Explain [9] tool, FAuST does not use a Pseudo Boolean (PB) solver but
solves the optimization problem as a binary search over logic variables utilizing
incremental SAT. For 41 mutants of TCAS, we computed potentially faulty pro-
gram locations using both strategies [23]: on average the computation takes 4.37
seconds with strategy MBD and 39.29 seconds with strategy EE using Boolector
as SMT solver.

3.3 Test Generation

FAuST provides a mutation-based test generator [22]: a given LLVM-IR program
is seeded with artificial faults. The fault seeding is implemented as an LLVM
compiler pass. The resulting program, called meta-mutant, contains all faults
each guarded with a condition. FAuST instantiates the BMC tool to generate a
counterexample for each fault by successively asserting a single guard condition
to be true, respectively. From each counterexample a test case is extracted.

Other recent test generators are FShell [11], KLEE [4], and KLOVER [16].
KLEE and KLOVER use a symbolic execution procedure. FShell is a front-end
to CBMC and provides a query engine for formulating testing goals. All three
tools focus on test case generation subject to traditional coverage criteria. In
contrast, our test generator is fault-based, i.e., it imposes constraints that a
fault has to be reached, the program state has to be infected, and the infected
program state has to propagated to an observable program output. The strength
of mutation-based testing criteria was investigated by Offutt and Voes [19]. They
outlined that mutation-based criteria subsume several other coverage criteria
including Modified Condition/Decision Coverage (MC/DC) when a certain set
of standard mutations is used.

4 Related Work

Today, BMC is a well established technique for searching bugs in hardware and
software. Clarke et al. [6] introduced the C Bounded Model Checker (CBMC)
which implements BMC considering finite-state systems given as ANSI-C pro-
grams. However, CBMC uses its own ANSI-C language parser and relies on a
custom-made intermediate representation, called GOTO programs. Our BMC
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core engine is similar to CBMC but uses LLVM-IR as intermediate representa-
tion. A program in LLVM-IR is similar to a GOTO program which makes tools
based on LLVM-IR neither less efficient nor more abstract than CBMC. However,
LLVM-IR is the compiler’s intermediate representation which is finally translated
into the target code which makes it more suitable for verification and debugging.
For instance, it provides the additional capability to detect bugs after certain op-
timizing transformations are applied to the source code. Also, the LLVM compiler
provides a rich tool support for LLVM-IR including a compiler, linker, optimizer,
disassembler, and debugger.

Researchers proposed prototype tools based on LLVM [4,17,20,5,16,13,18] for
applications like symbolic execution, test generation, and BMC. The most recent
BMC tool is LLBMC [18] which focuses entirely on detecting bugs in C/C++
programs either checking for assertions provided by the user or built-in checks,
e.g., for overflow detection or memory consistency. However, FAuST is a frame-
work for different applications additionally allowing for test case generation and
automatic debugging.

CPAChecker [2] is a configuration software verification platform and follows
the idea of having a unified framework for different, formal applications. Pro-
grams written in the C and C++ programming language are parsed and trans-
formed into Control Flow Automata (CFA) utilizing Eclipse’s CDT plugin.
However, the existing procedures implemented for CPAChecker target software
verification similar to CBMC.

5 Conclusions

We have presented FAuST, an extensible framework for Formal verification,
Automated debugging, and Software Test generation. The framework offers a
tool bench for different verification and debugging applications. FAuST utilizes
the LLVM compiler infrastructure for analyzing and transforming programs and
metaSMT as a generic API interface to different SAT and SMT solvers.
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Abstract. We report on the application of SPIN for model-checking C
source code which is generated out of a textual domain-specific language
(DSL). We have built a tool which automatically generates the necessary
SPIN wrapper code using (meta-)information available at the DSL level.
The approach is part of a larger tool-chain for developing mission critical
applications. The main purpose of SPIN is for bug-finding where error
traces resulting from SPIN can be automatically replayed at the DSL
level and yield concise explanations in terms of a temporal specification
DSL. The tool-chain is applied in some large scale industrial applications.

1 Introduction

The SPIN model checker [4] supports the embedding of native C source code for
verification purposes. This has the advantage that there is no need to re-model
the application in the PROMELA modeling language and the potentially error-
prone model-to-model transformation step from a source model to PROMELA
can be avoided entirely. As discussed in [5], the method is the easiest to apply
in the verification of single-threaded code, with well-defined input and output
streams. Our interest here is in the verification of synchronously executed C
source code which perfectly matches these criteria.

The C source code we intend to model check is generated out of a textual
domain-specific language (DSL) which is part of a DSL-based tool-chain for
software development of mission critical systems. Figure 1 provides a summary.
Our focus so far was on implementation and testing. What has been missing is
static verification. To close this gap, we have integrated SPIN in our tool chain
to guarantee a smooth integration between SPIN for model-checking and our
DSL-based software development approach. See Figure 2.

The important point is that all testing and verification steps are performed
at the C source code level where the C source code is generated out of the DSL.
Hence, there is no need to validate the transformation step from DSL to C source
code. The purpose of the DSL is to support ’higher-level’ application/domain
abstractions which in our experience has significant advantages compared to
’low-level’ programming at the C source code level.

In this paper, we provide an overview of the purpose of the DSLs and their in-
tegration with SPIN. The particular contribution is the SPINRunner tool which
effectively represents the SPIN-DSL integration described in Figure 2. Further
details of the SPINRunner tool, e.g. the implementation (DSLs and tools) as
well as some example from the Automotive area, are freely available via

http://ww2.cs.mu.oz.au/~sulzmann/spin-dsls.html

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 241–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 DSL Tool-Chain Overview

First, we review the various DSLs and their interaction in terms of implementa-
tion and testing. See Figure 1. For implementation we use a rule-based DSL in
spirit of the Atom DSL [3] where in each cycle every rule is tried sequentially.
Our DSL code generator translates each rule into straight-forward C code, in
essence, simple if-then statements. Similar to SCADE [8], we generate a func-
tion rules init() to initialize state variables and a periodically executed func-
tion rules process(). All DSL variable declarations, e.g. input, output, state
and local, are declared as global C variable declarations. Thus, we can ensure
predictable memory consumption.

For testing, we use a DSL to specify use cases to stimulate the application. The
stimulation is weaved together with the C code of the application and yields a
test executable. Running the test executable yields a finite program trace which
is then matched against a property DSL which describes linear temporal logic
(LTL) [7] specifications. LTL trace matching yields a detailed test report based
on the method described in [9].

The DSLs have been applied with success in some large scale industrial ap-
plications in the Aerospace& Defense area. An important feature is the ability
to customize the DSLs to specific application needs. For example, we have built

Fig. 1. DSL Tool-Chain Overview – Implementation and Testing
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numerous extensions such as Software Cost Reduction (SCR) [2] style mode
and output tables, safe state-charts a la SCADE and new forms of LTL pattern
abstractions [1] etc. Such extensions can be fairly quickly integrated in our ap-
proach thanks to our use of internal DSLs. The advantage of an internal DSL is
that we can make use of the host language, in our case Haskell, to specify new
constructs as ’library’ extensions. That is, at the Haskell level, new constructs
are mapped to existing constructs without having to implement new parsers,
code generators etc.

3 SPIN-DSL Integration

Figure 2 gives an overview of the SPIN-DSL integration. The C source code gen-
erated out of the rule-based DSL is literally embedded into a PROMELA model
which includes the LTL specification and a closed world model of the environ-
ment specified at the DSL level. The environment is represented by the input
variables of the DSL model. To obtain a closed world model, we must set these
inputs. For example, we can define equivalence classes among the set of input
variables to reduce the state space. We also provide for a number of optional
automatic optimizations by for example reducing the set of input variables to
those used in the currently checked LTL property. The entire process of generat-
ing the PROMELA model out of the DSLs and performing the model checking
is done automatically by the SPINRunner tool. That is, the user is freed from
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Fig. 2. SPIN-DSL Integration for Verification
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any low-level model checker interaction and can focus on the high-level DSL
modeling part.

In our experience, this approach works fairly well for medium-sized examples.
For example, we can fully model check a realistic example taken from the Au-
tomotive domain. For many real-world applications, the state space is simply
too big such that model checking would yield an answer within some reasonable
amount of time. For us this is not a serious issue. Our main use of SPIN is for
bug-finding rather than fully static verification. In our experience, model check-
ing often reveals many simple but tedious to spot coding errors by producing
error traces.

The error trace can then be used to reach the point in the application where
the violation occurs. Additionally, we can provide explanations in terms of the
LTL specification which has been violated. Our tool automatically transforms
the SPIN error trace into a test case of the UseCase DSL. Thus, we stimulate the
application to obtain a program trace which is then matched against the LTL
specification. Our constructive LTL matching algorithm provides a detailed test
report which includes explanations which parts of the LTL specification have
been violated.

active process ModelWrapper(){

atomic{

c_code { rules_init(); push_state(); }

}

do

::atomic{

stimulate_inputs();

c_code { pop_state(); rules_process(); push_state(); log_state(); }

}

od

}

Fig. 3. DSL-Generated SPIN Wrapper Process

Highlights of Model Checker Generator. Model Checker Generator (MCG)
is the central component of the SPIN integration into our tool-chain. The MCG
tool takes the DSL description of the model, specification, and some environment
constraints to automatically generate the input for SPIN model checking:

1. LTL DSL statements in SPIN expression format.
2. Bit-optimal representation of DSL variables.
3. A wrapper process to execute the rule-based DSL model.

For brevity, we ignore the first two points which are fairly straightforward. For
example, the bit-optimal representation of DSL variables reduces memory con-
sumption and thus may allow ’longer’ model-checker runs.
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Figure 3 shows the central components of the SPIN wrapper code to execute
the DSL model (i.e. its C code representation). We first atomically initialize the
DSL model by executing rules_init() followed by repeated non-deterministic
atomic execution of rules_process().

Functions push_state() and pop_state() exchange state information be-
tween SPIN and the C interface of our DSL model. We only need to keep track
of DSL variables which represent state and global input and output. Any locally
declared DSL variable can be ignored because such variables are functionally
defined by the surrounding context.

Function stimulate_inputs() represents the environment model for closed-
loop verification. We non-deterministically select global input values. To reduce
the set of input combinations, and thus the state-space of model-checking, we
build equivalence classes of input values (as discussed in [6]). The definition of
equivalence classes can be specified at the DSL level and has the consequence
that model-checking is potentially incomplete. That is, depending on the rep-
resentative of the equivalence class, an actual violation of an LTL specification
might remain undetected. As already mentioned, our main motivation for the
integration of DSL is for bug-finding and the ability to replay error traces at the
DSL level. Hence, the incompleteness issue is not of major concern for us.

The trace logger function log_state() is activated during simulation of SPIN
error trails. This function transforms the internal representation of valuations of
input, output and state variables to a format readable for the subsequent steps
of our tool chain.

4 Industrial Case Study: Motor-Start Stop (MSA)

MSA is application is an example from the Automotive area whose purpose is
depending on the state of the vehicle to either switch on or switch off the engine
(e.g. to save fuel, if the vehicle is not moving).

MSA consists of nine input variables, e.g. measuring the speed, brake pressure
etc. There are three output variables to indicate the status of the MSA (on/off),
engine recommendation (on/off) and MSA LED status (on/off).

The entire application is formalized by nine LTL statements. Here is a fairly
simple statement which states that the LED shall be set if the MSA is active.

always $

(valueOut msaStatus .==. constE MSA_Active)

.=>.
(valueOut msaLed .==. constE On)

Our DSLs are implemented as internal DSLs which come come with a bit of
syntactic overhead because we re-use the syntax of the host language. Extra
combinators such as valueOut and constE are required to embed the DSL into
Haskell. The significant advantage of internal DSLs is that we quickly build new
DSL extensions as libraries.

The implementation of the MSA application makes use of SCR [2] style mode
and output tables. These extensions are mapped to the simple rule’s construct
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Table 1. Time / memory usage for different properties

List of SPIN options used for benchmark:
Option 1: depth first search -DSFH -DBFS -DSAFETY

Option 2: safety with optimizations -DSAFETY -DSFH

Option 3: safety -DSAFETY

Option 4: acceptance

Option 1 Option 2 Option 3 Option 4
time [s] [kbytes] time [s] [kbytes] time [s] [kbytes] time [s] [kbytes]

Engine Off 34.900 1,690,020 24.400 345,713 27.200 345,713 60.300 689,036
Engine On1 41.000 1,690,117 - - - - - -
Engine On1b 7.030 402,840 1.830 345,518 1.780 345,518 1.960 688,841
Engine On2 3.370 116,062 0.340 345,518 0.420 345,518 1.400 688,841
LED Off 1.940 116,062 0.340 345,518 0.617 345,518 0.895 688,841
LED On 2.400 116,062 0.605 345,518 0.315 345,518 1.620 688,841
MSA Active 43.200 1,690,117 22.100 345,616 30.500 345,616 41.300 688,939
MSA Inactive1 42.900 1,690,117 13.000 345,518 10.800 345,518 25.200 688,841
MSA Inactive2 1.900 116,062 0.245 345,518 0.240 345,518 0.615 688,841

which provides the basis of the Rules DSL. The entire MSA application boils
down to about 67 primitive rules.

Table 1 shows some benchmark results for our MSA example. The Tables
show model-checking time / memory usage for different LTL properties. We
have applied the optimizations mentioned in the previous sections. The results
are obtained on a Dell Latitude E5510, Intel Core i5 CPU 2.67 GHz, 4GB Main
Memory running with Windows 7 32-Bit. To get comparable results SPIN was
run in single CPU mode only.

Acknowledgments. We thank the reviewers for their comments.
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Abstract. Craig interpolation is an active research topic and has be-
come a powerful technique in verification. We present SMTInterpol, an
interpolating SMT solver for the quantifier-free fragment of the combi-
nation of the theory of uninterpreted functions and the theory of linear
arithmetic over integers and reals. SMTInterpol is SMTLIB 2 compliant
and available under an open source software license (LGPL v3).

1 Introduction

For many years, satisfiability modulo theories (SMT) solvers have been used
by verification tools. Recently, many verification tools use Craig interpolants to
create abstractions from state spaces or derive loop invariants. We present SMT-
Interpol, an SMT solver able to produce Craig interpolants for the quantifier-
free fragment of the (combination of the) theories of uninterpreted functions,
and linear arithmetic over integers and reals, i.e., the SMTLIB logics QF UF,
QF LIA, QF LRA, QF UFLIA, and QF UFLRA. It is SMTLIB 2 compliant, im-
plemented in Java, and available under an open source license (LGPL v3) from its
website http://ultimate.informatik.uni-freiburg.de/smtinterpol/. The
solver is proof producing and can extract an unsatisfiable core, or inductive
sequences of Craig interpolants [16] from its resolution proofs. Furthermore, in-
terpolants for different partitions can be generated as needed for model checking
of recursive programs [14].

SMTInterpol participated in the main and in the application track of the
SMT-COMP 2011 [1], the annual competition for SMT solvers. In the logics
QF UFLIA and QF UFLRA, SMTInterpol could solve as many problems as
the winning solver. This shows that, while not (yet) as fast as other solvers,
SMTInterpol provides decent performance.

Related Work. Other interpolating solvers that read SMTLIB are MathSAT [13],
Princess [4], OpenSMT [5], and the interpolating version of Z3 [17]. OpenSMT
does not support linear integer arithmetic. MathSAT, Princess, and interpolating
Z3 (iZ3) are evaluated in Section 5.

� This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS).

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 248–254, 2012.
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Besides the tools mentioned above, there are other tools that do not read
SMTLIB but are able to produce interpolants. Foci [15] can produce interpolants
for the combination of uninterpreted functions (EUF) with linear real arithmetic
(LRA) or integer difference logic, CSISat [3] supports the combination of EUF
and LRA but is unsound for linear integer arithmetic (LIA). CLPProver [20]
only supports the conjunctive fragment of EUF and LRA. In contrast to these
three solvers, SMTInterpol supports the combination of EUF and LIA.

2 Architecture of SMTInterpol

In this section, we will shortly explain the different components of SMTInterpol
and the techniques implemented by these components.

User Interaction. SMTInterpol supports the SMTLIB [2] script language and
provides a Java API modeled after the commands of this language through its
Script interface. Users can either give commands via an SMTLIB file or the
standard input channel of the solver, or use the API.

CNF Conversion. Every asserted formula gets converted into Conjunctive Nor-
mal Form (CNF), which is a conjunction of disjunctions of literals. SMTInterpol
uses a variant of the encoding proposed by Plaisted and Greenbaum [19] to con-
vert a formula into CNF.

DPLL Core. SMTInterpol follows the DPLL(T ) [12] paradigm. The DPLL
engine serves as a truth enumerator and communicates with a set of satellite
theories.

Satellite Theories. SMTInterpol currently contains two satellite solvers: one
for uninterpreted functions and one for linear arithmetic. The solver for the the-
ory of uninterpreted functions is based on congruence closure [9]. The solver for
linear arithmetic implements a variant of simplex [11]. Additionally, it uses the
“cuts from proofs” [10] technique to deal with integer or mixed integer problems.
Theories are combined using model-based theory combination [18].

Models and Proofs. SMTInterpol can produce models for satisfiable formulas
and resolution proofs for unsatisfiable formulas. From these proofs, SMTInterpol
can extract unsatisfiable cores or Craig interpolants.

Interpolants. The architecture of the interpolation engine follows roughly the
DPLL(T ) paradigm: A core interpolator produces partial interpolants for the
resolution steps while theory specific interpolators [15,6] produce partial inter-
polants for T -lemmas. In the presence of mixed literals, i.e., literals that do not
occur in any block of the interpolation problem, special mixed literal interpola-
tors combine partial interpolants.

3 How to Use SMTInterpol

SMTInterpol is written in Java and runs on any computer with a recent Java
installation. After downloading, it can be started from the command line with
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java -jar smtinterpol.jar and reads input in the SMTLIB [2] format. We
refer to the SMTLIB tutorial [7] for more information on the standard and the
logical foundations.

SMTInterpol also provides a Java API1, which allows it to be integrated
as a library inside other tools. The API reflects the commands provided by
the SMTLIB standard, and it includes a minimal interface for the construc-
tion of terms and sorts. During term construction SMTInterpol checks for well-
typedness and reports type errors.

4 Interpolation for SMTLIB Logics

Given a pair (φ1, φ2) of formulas such that φ1 ∧ φ2 is unsatisfiable, a Craig
interpolant [8] is a formula ψ that (1) is implied by φ1, (2) is inconsistent with
φ2, and (3) only contains symbols shared between φ1 and φ2. Given a sequence
of formulas φ1, . . . , φn, an inductive sequence of interpolants (in the sense of
McMillan [16]) is a sequence of formulas ψ0, . . . , ψn such that (1) ψ0 ≡ �, (2)
ψn ≡ ⊥, (3) ψi−1 ∧ φi implies ψi for 0 < i ≤ n, and (4) ψi for 0 < i < n
contains only symbols shared between the first i formulas and the remaining
n− i formulas.

SMTInterpol produces inductive sequences of interpolants for the SMTLIB
logics QF UF, QF LRA, QF UFLRA, QF LIA, and QF UFLIA. Since the inte-
ger logics defined in the SMTLIB standard are not closed under interpolation,
SMTInterpol extends these logics with the division and modulo operators with
constant divisor. With these two additional operators it is possible to express
the floor and ceil operators used in other interpolation algorithms [13].

To support interpolation, SMTInterpol extends the SMTLIB standard with
the get-interpolants command. This command expects as parameters at least
two names of named top-level formulas, i.e., formulas that were asserted using
the command (assert (! formula :named Name)), or the conjunction of such
names. If more than two parameters are supplied, an inductive sequence of in-
terpolants is computed. The command can be used after a satisfiability check
returned unsat and before a pop command changed the assertion stack of the
solver. Interpolant computation can be redone with a different partition by call-
ing get-interpolants again with different arguments. This is needed, e.g., to
compute nested interpolants for recursive programs [14]. Since SMTInterpol ex-
tracts interpolants from proofs, users have to set the option :produce-proofs

to true to enable interpolant computation.
Figure 1 shows how to compute interpolants with SMTInterpol. The left-

hand side of the figure shows the API usage and the right-hand side shows
the corresponding SMTLIB 2 commands. The example asserts the formula x >
y ∧ x = 0 ∧ y > 0, checks satisfiability, computes an inductive sequence of
interpolants between the individual conjuncts, and an interpolant between x = 0
and x > y ∧ y > 0.

1 The documentation for the Java API is available at the website.
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Script s = new SMTInterpol(Logger.getRootLogger(), true);
s.setOption(":produce-proofs", true);
s.setLogic(Logics.QF_LIA);
s.declareFun("x", new Sort[0], s.sort("Int"));
s.declareFun("y", new Sort[0], s.sort("Int"));
s.assertTerm(s.annotate(

s.term(">",s.term("x"), s.term("y")),
new Annotation(":named", "phi_1")));

s.assertTerm(s.annotate(
s.term("=", s.term("x"), s.numeral("0")),
new Annotation(":named", "phi_2")));

s.assertTerm(s.annotate(
s.term(">", s.term("y"), s.numeral("0")),
new Annotation(":named", "phi_3")));

if (s.checkSat() == UNSAT) {
Term[] interpolants;
interpolants = s.getInterpolants(new Term[] {
s.term("phi_1"),
s.term("phi_2"),
s.term("phi_3") } );

... /* Do something ... */
interpolants = s.getInterpolants(new Term[] {
s.term("phi_2"),
s.term("and", s.term("phi_1"), s.term("phi_3"))
} );

... /* Do something ... */
}

(set-option :produce-proofs true)
(set-logic QF_LIA)
(declare-fun x () Int)
(declare-fun y () Int)
(assert (!

(> x y)
:named phi_1))

(assert (!
(= x 0)
:named phi_2))

(assert (!
(> y 0)
:named phi_3))

(check-sat)

(get-interpolants
phi_1
phi_2
phi_3)

(get-interpolants
phi_2
(and phi_1 phi_3))

Fig. 1. Two different ways to compute Craig interpolants using SMTInterpol. The left-
hand side shows the Java code using the Script interface. The right-hand side shows
the corresponding SMTLIB script.

The interpolation procedure for mixed literals (literals containing symbols of
more than one interpolation block) is loosely based on the method of Yorsh et
al [21]. The basic idea of the approach used in SMTInterpol is to virtually purify
each mixed literal using an auxiliary variable, to restrict the places where the
variable may occur in partial interpolants, and to use special resolution rules to
eliminate the variable when the mixed literal is used as a pivot. In essence, for
convex theories, this approach can be seen as a lazy version of the method of
Yorsh et al. The approach also works for non-convex theories using disjunctions
in the interpolants. The technical details are yet to be published and out of the
scope of this paper.

5 Experiments

SMTInterpol participated in the SMT-COMP [1] 2011, the annual competition
for SMT solvers. While SMTInterpol is not yet as good as the state-of-the-art
solvers Z3 and MathSAT, it can still solve most of the problems in the compe-
tition. We compared the interpolation engine in SMTInterpol to MathSAT [13]
and interpolating Z3 on a set of benchmarks provided by McMillan [17]. The
original benchmark set was converted to SMTLIB 2 format. We did not consider
non-SMTLIB solvers. Table 1 compares the runtime of SMTInterpol, MathSAT,
and iZ3 on a standard laptop2. We restricted the comparison to these solvers

2 Running a 64-bit Linux on an Intel Core2 Duo 2.4GHz with 4 GB of RAM.
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Table 1. Comparison between SMTInterpol, MathSAT, and interpolating Z3 (iZ3) on
the benchmark suite from McMillan [17], and some small benchmarks. (ok) denotes
that the solver produced a quantified interpolant, NA denotes that the solver does not
support the logic used in this benchmark.

SMTInterpol
MathSAT iZ3

Solving Interpol.

fdc 1 28.61 s 0.13 s 17.53 s 4.79 s

fdc 2 34.26 s 0.11 s 14.01 s 3.72 s

fdc 3 34.87 s 0.10 s 15.53 s 4.28 s

mouserA 1 2.63 s 0.04 s 0.54 s 0.16 s

mouserA 2 2.97 s 0.02 s 0.92 s 0.27 s

mouserA 3 4.89 s 0.02 s 0.79 s 0.28 s

mouserB 1 105.33 s 0.15 s 104.58 s 12.20 s

mouserB 2 92.28 s 0.08 s 59.41 s 16.63 s

mouserB 3 103.32 s 0.20 s 64.35 s 17.68 s

ndisprot 1 5.75 s 0.20 s 1.34 s 0.50 s

ndisprot 2 29.84 s 2.72 s error 6.68 s

serial 1 32.03 s 0.01 s 7.41 s 3.72 s

serial 2 27.23 s 0.02 s 6.41 s 2.47 s

wmm 1 1.45 s 0.03 s 0.26 s 0.21 s

SMT- Math- Prin-
Interpol SAT iZ3 cess

uf001 ok ok ok ok

uf002 ok ok ok (ok)

lia001 ok NA ok (ok)

uflia001 ok NA ok (ok)

uflia002 ok NA ok (ok)

uflia003 ok NA ok (ok)

uflia004 ok NA ok (ok)

uflra001 ok NA NA NA

uflra002 ok NA NA NA

uflra003 ok NA NA NA

since they were used in the original paper, and are, to our knowledge, the only
solvers that can handle these benchmarks. While Princess supports QF UFLIA,
it crashes with a stack overflow on these benchmarks. For SMTInterpol we dis-
tinguish between the time for solving and the time for interpolation. While SMT-
Interpol is not as fast as the other two solvers, it can produce interpolants for
all these problems while MathSAT produces an error on ndisprot 2. The exam-
ple also shows that computing interpolants is usually much faster than solving,
which is consistent with McMillan’s observation [17].

Additionally, some small benchmarks for the interpolation of reals, inte-
gers, and uninterpreted functions are published at the website of SMTInterpol.
OpenSMT, FOCI, CLPProver, and CSISat do not support most of the theories
used in these benchmarks, MathSAT does not fully support interpolation for
linear arithmetic, interpolating Z3 and Princess do not support linear real arith-
metic benchmarks, while SMTInterpol is able to produce interpolants for all of
them.

6 Future Work

We plan to extend the solver to more expressive logics containing quantifiers
and arrays. Additionally, the computation of nested interpolants [14] should be
directly supported by a modified version of the get-interpolants command.
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7 Conclusion

We have presented SMTInterpol, an interpolating SMT solver that is complete
for the combination of the theories of uninterpreted functions and linear arith-
metic. Thus, SMTInterpol can produce interpolants in some theory combinations
not supported by any other solver. Since SMTInterpol is shipped under LGPL
v3 and is written in a platform independent language, it is ideal to be integrated
into model checkers.
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Abstract. SPIN and NuSMV are the two most widely-used model checkers. Be-
cause they have different characters, it makes sense to have a translator from
SPIN models to NuSMV models. In this paper we describe a tool named S2N
which builds a bridge from SPIN to NuSMV. With S2N users could choose the
appropriate ways as needed to build and check their models.This work can also
be thought as a study on the model transformation.
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1 Introduction

Model checking [1] is an important verification method. People have developed many
model checkers, including the widely-used SPIN and NuSMV. SPIN [2] provides a
higher-level modeling language Promela with C-like syntax, that makes the models easy
to build and read. NuSMV [3] provides a relative lower language for describing state
transition systems. On the other hand, SPIN supports only LTL to describe properties,
while NuSMV can check LTL properties, as well as CTL properties.

SPIN and NuSMV are impressive and successful in their respective fields. Making
their advantage merged would be helpful for modeling to some extent. Here we present
a tool S2N which can translate models in Promela to the language of NuSMV. In this
case we get various benefits. On one side, modeling complicated systems in NuSMV is
hard and error-prone, but with S2N we could have a higher-level language for the work.
On the other side, S2N works as it extends SPIN system with the ability to check CTL
and other properties NuSMV supports. [4] reported a similar idea, but the project seems
abandoned without producing a workable tool. Now we have a preliminary version of
S2N whose homepage is located at http://code.google.com/p/s2n. With S2N,
SPIN 6.1.0 and NuSMV 2.5.4, we have carried out some experiments, which indicate
that for some problems SPIN is more efficient, but sometimes NuSMV works better.
The link between the two checkers appears meaningful. Due to the space, we leave
more details in a report on the S2N’s homepage.

2 Translation Techniques

Assume the Promela program being translated is S. S2N generates from S a program
N which should be acceptable as the input of NuSMV. In Promela, processes are the
� Supported by NNSFC grand no. 90718002,61100061.

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 255–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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running instances of proctypes; on the other hand, in the input language of NuSMV, a
process is an instance of a module generated with the keyword ‘process’. When S2N
translates S to N , it translates a proctype in S to a module in N .

In some detail, for each proctype in S, we use distinct integers to mark each of the
statements. In the corresponding module in N , we introduce a variable pc and let its
value run over these mark integers. Other variables in the module will be modified
according to the current value of pc. The key is to guarantee that the changing history
of pc is consistent with the flow of S. Moreover, S2N generates some extra modules
to simulate channels in Promela. For each channel type in S, S2N generates a module,
and the channel IO will be made as the state transition of the instances of these channel
modules.

As a result, what S2N produces is a set of nested modules, one of which is the main
module. Each module consists of three parts sequentially: the variable declarations, the
initialization and transition, and the constraint expression:

MODULE name
VAR

... -- variable declarations of this module
pc : ... -- program counter of associated process

ASSIGN
init(...) := ...
... -- initialization of variables in this module
next(...) := ...
... -- transition of variables

TRANS
... -- constraints about pc and scheduling

2.1 Marking

A process in a Promela program could be thought as an independent state transition
system, so we mark each proctype in the program independently. In a proctype, we
mark each of the elementary statements, including assignments, expressions, channel
IOs, goto statements and break statements. And for the nondeterminism, we also mark
if-selection and do-repetition statements.

Here is a simple proctype with marks, in which we use identifiers of the form
“M+mark” to represent marks and use a ‘@’ sign to separate them from statements.

mtype = {p1, p2, p3};
chan queue = [3]of{mtype};
active proctype enqueue ()
{

mtype ele;
M1 @ do

:: M2 @ if
:: M3 @ ele = p1;
:: M4 @ ele = p2;
:: M5 @ ele = p3;
fi;
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M6 @ queue ! ele;
od;

}

The statements will be represented by their marks during the translation. For the exam-
ple above, given that pc is 3 in the current state, we know that the next statement to
execute in this process will be “ele = p1”. According to the type of this statement, S2N
knows how to perform the next transition.

2.2 Variable Declaration

We translate all the global variables in the Promela program to variables in the main
module of the resulting NuSMV program, and the local variables in Promela proc-
types to variables in the corresponding modules. Each NuSMV module produced from
a proctype will have its own variable pc.

For the data types, bit and bool in Promela are translated to boolean type in
NuSMV; mtype is naturally translated to enumeration type; pid, byte, short, int
and unsigned are all translated to signed word type with 32 bits. Channel variables are
translated to instances of some module standing for the channel type.

There are some constraints about types in S2N. Boolean and enumeration type are
isolated with other types, thus boolean or enumeration variables can be operated only
with variables of the same type.

2.3 Initialization and Transition

At the first state all the variables should be initialized. The state transition happens
only on the assignments and channel IOs, while the other statements have no effect on
variables. Every transition has at least one condition, which says that variablepc should
be equal to the mark of the corresponding statement.

As the example above, part of the translation involving variable ele will be

init(ele) := p1;
next(ele) := case

pc = 3 : p1;
pc = 4 : p2;
pc = 5 : p3;
...

esac;

2.4 Constraint Expression

The constraint expression usually has the form as follows:

( running & (
pc = ... & ... & next(pc) = ...

...
| pc = ... & ... & next(pc) = ...
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)
| !running & next(pc) = pc
) -- constraint of program counter

& ( pc = ... & ...
| pc = ... & ...
...
) -> running

& ( pc = ... & ...
| pc = ... & ...
...
) -> !running -- constraint of scheduling

This expression is a conjunction of three literals. The first branch defines the transition
of variable pc while the rest is for scheduling. The transition rules for pc are built
based on the flow of the Promela program. When the current module is blocked, the
value of pc doesn’t change. For atomic sequences in SPIN , the output module should
keep running among the sequences as atomic steps. On contrary, modules should not be
scheduled to run in some cases, like when the current statement is not executable.

3 Tool and Experiments

In this section, we give some details of the tool, especially the features of SPIN that are
currently supported. After that, we discuss some experiments and results.

3.1 Features Supported

Currently S2N has supported large part of the most important features of Promela. It
translates one proctype at a time, so the complexity of translation is linear to the number
of proctypes in the SPIN model. Features as follows are supported by current version.

Types and Variables. S2N supports all data types in Promela. Channels can be either
global or local, but they could not be passed as parameters or message data in
other channels. In other words, users of S2N should declare channels with initial-
ization and only use them to send and receive message. S2N supports rendezvous
communication.

Expressions. S2N supports the common boolean and arithmetic operations, const,
variable reference, and operations about channels including empty, nempty, full,
nfull, len. S2N also supports dynamic processes launched by run command.

Statements. S2N supports assignment, standard channel IO, expression, break, goto,
skip, as well as flow controlling including selection, repetition, sequence, labeling,
atomic, and unless. It also supports weak d step, which has the same affect with
atomic except that it can’t escape from the sequence of d step in unless.

Others. S2N supports C-style macros and init, while typedef, inline and pid

are not supported yet. The array indexes must be numeric constants, which is a
severe limitation, and we will try to remove this shortage in the future. S2N does
not support translation of the property claims yet, so users should add manually
their properties to the NuSMV model.
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Fig. 1. Execution with different numbers of clients in Sleep-Wakeup Process Scheduling
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Fig. 2. Execution with different capacities in Queue

3.2 Experiments

We have done many experiments. Here we give two examples with statistic data to show
the usage and features of S2N. We take the examples from existing SPIN work.

Sleep-Wakeup Process Scheduling. This algorithm was proposed by Ruane [5]. In
one implementation [6] which we use here, several client processes compete for some
resource, and one server takes responsibility for waking up asleep processes when the
resource is available. We transform the model written in Premela to a NuSMV model,
and check the property that the resource is accessed by at most one process all the time.
The statistics are depicted in Fig. 1.

In this example, SPIN model runs faster than NuSMV model from seven clients on-
wards, and the memory usage of NuSMV increases slower than SPIN from eight clients
onwards. This is probably because of SPIN’s on-the-fly and partial order reduction strat-
egy, and NuSMV stores states with BDD trading memory use for time. It shows that for
small models, NuSMV model transformed from S2N could work as well as SPIN .

Queue. Queue is a widely used data structure. To model a queue with some fixed ca-
pacity, it is not easy using NuSMV since we have to consider the move of elements after
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dequeue or enqueue operations. However, using SPIN to write the model is convenient
as SPIN’s channel feature. Moreover, with the C-style macro we can change the queue’s
capacity without rebuild the model. We implement in SPIN a queue model and trans-
form it to a NuSMV model using S2N, and compare the building time and the memory
usage for these two models. The results are depicted in Fig. 2.

As shown, NuSMV is much faster and consumes less memory than SPIN in building
the same model. For bigger queues, the differences become even large. This is because
SPIN has to traverse the states, thus the DFS stack takes up more memory, though
nothing is checked here. By contrast, the NuSMV’s BDD reduces the storage. This
example shows that our strategy for translating channels to module is efficient.

4 Conclusion and Future Work

This paper is not intend to entail that SPIN can be replaced by NuSMV. Instead, S2N
provides a way for users to choose the appropriate model checker for their problems.
There are at least two cases where S2N may help:

– If we build an SPIN model and want to check some properties that is beyond the
functions of SPIN but within NuSMV’s domain.

– If the model is difficult to build in NuSMV, we can consider building the model
using SPIN ’s modeling language Promela first.

S2N can be improved in several ways. One of the future work is to extend S2N to sup-
port the remaining features of Promela, such as claims and typedef. In fact, the S2N
tool is similar as a compiler from a high-level language to a low-level language. There
should be many possibilities for optimizations. The S2N work is only a preliminary
attempt in this direction. There is a lot of work to do on exploring the language de-
sign and implementation techniques for the formal modeling, because this field is much
unmature in comparison with the filed of practical programming.
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