
Opening Personalization to Partners:
An Architecture of Participation for Websites

Cristóbal Arellano, Oscar Díaz, and Jon Iturrioz

ONEKIN Research Group, University of the Basque Country (UPV/EHU),
San Sebastián, Spain

{cristobal.arellano,oscar.diaz,jon.iturrioz}@ehu.es
http://www.onekin.org/

Abstract. Open innovation and collaborative development are
attracting considerable attention as new software construction models.
Traditionally, website code is a “wall garden” hidden from partners. In
the other extreme, you can move to open source where the entirety
of the code is disclosed. A middle way is to expose just those parts
where collaboration might report the highest benefits. Personalization
can be one of those parts. Partners might be better positioned to
foresee new ways to adapt/extend your website based on their own
resources and knowledge of their customer base. We coin the term
“Open Personalization” to refer to those practises and architectures that
permit partners to inject their own personalization rules. We identify
four main requirements for OP architectures, namely, resilience (i.e.
partner rules should be sheltered from website upgrades, and vice
versa), affordability (easy contribution), hot deployment (anytime rule
addition), and scalability. The paper shows the approach’s feasibility
using .NET.

Keywords: Personalization, Open Development, .NET, MEF.

1 Introduction

Web personalization refers to making a Web site more responsive to the unique
and individual needs of each user [4]. It accounts for important usability
and productivity gains, specifically for organizational websites. Here, it is
important to notice that organizations seldom work in isolation. Organizations
establish (contractual) relationships with their partners to achieve their goals.
Suppliers, collaborators, associates and the like are common terms to reflect
these ecosystems. Hence, it is just natural that these relationships commonly
surface the website of these organizations. Corporate websites tend to include
data about the logistics, payment or providers, which do not represent the kernel
of the corporate activity but collaborate to fulfil the corporate’s objectives.
Even an ephemeral activity such as a conference organization includes in its
website, data about hotel partners, proceeding publishers or sponsors which
might all be subject to contractual agreements. In this setting, this work

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 91–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



92 C. Arellano, O. Díaz, and J. Iturrioz

addresses the following research question: How is Web personalization affected by
the collaborative nature of the organization activities to which the website gives
support to?

Traditional personalization assumes a centralized approach. The website
master (the “who”) decides the personalization rules (the “what”), normally at
the inception of the website (the “when”). In this context, partners tend to be
mere stakeholders who do not actively participate in the development of the
website. However, personalization opportunities might be difficult to foresee by
the website master. Indeed, as documented in [2], a large rate of interesting
innovations comes from the users/partners once the system is in operation. This
scenario is also akin to open innovation [8], and the client-shared-source software
model where vendors let partners access the source code through a common
platform [14]. By its very nature, personalization is a perfect candidate for being
subject to “open innovation”. In addition, resource scarcity makes the website
master only incorporate major enhancements while a more active participation
of the partners could also serve the long tail.

Therefore, we want custom extensions to be built by any partner instead
of being left only to the web master. We introduce the notion of Open
Personalization (OP) as a means for partners to collaborate in the
personalization of the website. The premise is that owners might be willing
to open their websites provided (1) minimal additional burden is required and
(2), ability of partners to contribute with valuable and up-to-date content for
the website users (even if outside the website business model). OP might lead
to new business models where openness might be subject to agreements on
how to split potential revenues similar to the way Google AdWords works. This
model can be of interest when partner relationships surface the website of the
host. This includes online portals that offer third-party products such as travel
agencies (with partnership with resorts and air carriers) or department stores
(with partnership with logistic companies).

This paper’s main contribution rests on proving the technical feasibility of
such approach by introducing an OP architecture for .NET. First, we identify
a set of quality criteria for OP architectures (Section 3). Next, we address
the realization of OP from the partners’ perspective (i.e. definition of their
own personalization strategies) and the host viewpoint (i.e. how to safely
disclose code) in Sections 4 and 5, respectively. Section 6 revises the OP
architecture along the requirements previously set. We start by confronting
“closed personalization” versus “open personalization”.

2 “Closed Personalization” versus “Open Personalization”

Typically, Web design methods define three main models: the Domain Model,
in which the structure of the domain data is defined; the Navigation Model, in
which the structure and behaviour of the navigation view over the domain data is
defined, and finally, the Presentation Model, in which the layout of the generated
hypermedia presentation is defined. On these grounds, personalization rules are



Opening Personalization to Partners 93

defined that adapt any of the three models based on the characteristics of the
current user. This implies the introduction of two additional models: the User
Model (e.g. demographic data, relevant behaviour while interacting with the
site, etc.) and the Personalization Model. Broadly, the Personalization Model
commonly resembles that of condition-action rules. The condition basically
checks the state of the Domain Model and the current User Model. The action
impacts the navigation structure and presentation, and might also update the
user information specified in the User Model.

Distinct commercial tools (e.g. ILog JRules, LikeMinds, WebSphere, Rainbow,
Infusionsoft) help to define and manage the personalization strategy. These tools
might play the role of frameworks (providing an enhanced container where to run
your code) or IDEs (helping in generating the code). No matter the approach,
the generated code commonly follows the Model-View-Controller pattern. For
the case of .NET, the mapping goes as follows: (1) the Domain Model is realized
as a set of C# classes, (2) the User Model is kept in a special class known
as the ProfileBase; (3) the Navigation Model is supported through Controller
classes which can check the Model classes (including ProfileBase) and decide
which content to pass to the View through ViewData, a system-defined variable
for Controller-View data passing; (4) the Presentation Model is realized as a
set of Web Forms which provide the appropriate renderings for the data kept
in ViewData. In this setting, a personalization rule commonly ends up being
realized as part of the Controller, and impacting the View.

As an example, consider the ICWE’09 conference website. The website
basically contains standard information for conferences, i.e. papers, keynotes,
accommodations, etc. It is a one-size-fits-all solution where all attendees get
the very same content. We have extended the original site with login so that
role-based personalization is now possible based on whether the current user is
a PC member, a session chair or an author. For instance, additional banquet
information can be displayed when login as an attendee with a full passport.
This example illustrates “closed personalization”: the Web administrator (the
“who”) decides the personalization rules (the “what”), normally at the inception
of the website (the “when”). More sophisticated approaches such as those based
on configurations or detection of access patterns (i.e. adaptive and adaptable
techniques [3]) are a step ahead but they are still centrally foreseen and developed
by the host designer. Of course, partners can participate as stakeholders, and
contribute with some personalization scenarios. Some examples follow for the
ICWE website:

– Barceló Resorts FACILITATES a 50% discount on room booking over the
weekend, PROVIDED the attendee holds a full passport,

– Springer-Verlag FACILITATES a 10% discount on books authored by the
seminars’ speakers, PROVIDED the attendee is registered for this seminar,

– The Tourism Information Office FACILITATES information about cultural
activities on the city during the free slots left by the conference program.

Supporting (and maintaining) these scenarios still rests on the host’s shoulders.
This setting is not without bumps. First, owner’s lack of motivation. The website



94 C. Arellano, O. Díaz, and J. Iturrioz

owner might regard previous scenarios as not aligned with its business model
(e.g. room offers might not attract more conference attendees) and hence, not
paying-off the effort. Second, partnership might be dynamic, being set once
the website is in operation (e.g. pending agreements with the publisher). For
instance, the aforementioned rule by Springer-Verlag might require updating
not just the View but also the Controller, and even the User Model if seminar
attendance is not recorded. As a result, partner rules might end up not being
supported by the website. This is not good for any of the actors. End users lose:
they will not get the discounts or overlook interesting data. Partners lose: they
miss an opportunity to drive more customers to their services. Website owners
lose: the website reduces its “stickiness”, missing the chance to become a true
data hub for the subject at hand (e.g. the ICWE conference).

Open Personalization (OP) pursuits to engage external partners in the
personalization endeavour: partners introduce their rules on their own with
minimal impact on the owner side. This arrangement makes more economical
sense. Partners might regard OP as a chance to increase their own revenues by
personalizing their offerings in those websites that serve as a conduit for their
products/services (e.g. room offers when booked through the conference website).
On the other side, the owner can be willing to facilitate (rather than develop)
such initiatives for the good of its customers as long as its involvement is limited.
However, OP should not be viewed only as a way to share the maintenance
cost but as an enabler of and means for truly collaborative solutions and lasting
partner relationships. In this paper however, we focus on the technical feasibility
of OP.

3 Open Personalization: Requirements

Open APIs are one of the hallmarks of the Web2.0 whereby Web applications
disclosure their data silos. However, “opening data” is not the same that “opening
personalization”. Personalization requires not only access to the data but also
adaptation in the content/navigation/layout of the website. OP would then
mean to offer (controlled) access to the User/Domain Model (better said, their
implementation counterparts) and the (regulated) introduction of the partners’
personalization rules (hereafter referred to as “mods”). This basically calls for
“an architecture of participation”. This term was coined by Tim O’Reilly “to
describe the nature of systems that are designed for user contribution” [12].
O’Reilly writes that “those that have built large development communities have
done so because they have a modular architecture that allows easy participation
by independent or loosely coordinated developers”. OP is then about creating a
community with your partners.

Based on these observations, we introduce the following quality criteria (and
driven requirements) for “an architecture of participation” for OP:

– Resilience. Mods should be shelter from changes in the underlying website,
and vice versa, partners’ code should not make the website break apart.



Opening Personalization to Partners 95

– Extensibility. OP departs from some model-driven approaches where
personalization is decided at design time and captured through models.
Mods can be added/deleted as partnership agreements change throughout
the lifetime of the website.

– Scalability. Growing amount of mods should be handled in a capable
manner.

– Affordability. Partner effort should be minimized. Designs based on widely
adopted programming paradigms stand the best chance of success. Intricate
and elaborated programming practices might payoff when used internally,
but the advantage can be diluted when partners face a steep learning curve.
The more partners you expect to attract, the simpler it must be and the
more universal the required tools should be.

As a proof of concept, next section introduces “an architecture of participation”
for .NET driven by the aforementioned requirements.

4 Open Personalization: Specification

OP is about disclosing code for partners to inlay their mods. Therefore, we
risk existing mods to fall apart when the underlying website is upgraded (i.e.
the code changes), hence putting an additional maintenance cost on partners.
Isolation solutions should be sought to ensure that the evolution of the website
has minimal impact on the existing mods. Among .NET artefacts (i.e. the Model
classes, the Web Forms and the Controller classes), Model classes are certainly
the most stable part of a Web application. Therefore, mods pivot around Model
classes. Those classes that are amenable to participate in a mod are said to
support a Modding Concept.

A Modding Concept is a Model Class whose rendering realization (i.e.
Web Forms) is amenable to be leveraged by a partner through a mod ,
i.e. an HTML fragment to be injected into the appropriate Web Forms.

The latter still suggests that mods might be affected by changes in Web
Forms. To ensure decoupling, all interactions between Web Forms and mods are
conducted through events. Model classes are manipulated through traditional
set/get methods. In addition, those classes playing the role of Modding Concepts
have an additional interface, the Modding Interface, which holds1:

– Publishing Events, which notify about instances of Modding Concepts
(e.g. Accommodation) being rendered by the website. For instance, the event
LoadAccommodation is produced by the host everytime an accommodation
is rendered. This event can be consumed by a mod through a handler (a.k.a.
listener).

1 The terminology of “processing events” and “publishing events” is widely used for
event-based components such as portlets [10].



96 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 1. Domain classes annotated to become Modding Concepts

– Processing Events (a.k.a. actions), which are those that output an HTML
fragment. For instance, the event AddViewModAccommodation provides
a HTML fragment to be injected in those places where Accommodation
instances are rendered. Therefore, mods can decide what to add but
not where to add it. The latter is up to the host. For instance, the
AddViewModAccommodation event is produced by a mod but it is let to
the host decide where to handle it.

This notion of Modding Concept aims at minimizing the impact of OP for owners
and partners alike. This is the topic of the next subsections.

4.1 Impact on the Host: Making a Website Mod-Aware

The additional effort required for a traditional website to become mod-aware
is: (1) annotating the Model classes and (2), introducing place holders to locate
mod output in Views (i.e. Web Forms).

Annotating Model Classes. Model classes can be decorated with the
annotation [ModdingConcept]. Figure 1 shows the case for the ICWE website:
the class Accommodation becomes a Modding Concept. [ModdingConcept]



Opening Personalization to Partners 97

Fig. 2. Mod-aware Views: the ASPX includes a place holder that accesses the
AccommodationMod (line 8)

annotations produce Modding Interfaces. These interfaces are termed after
the annotated class (e.g. the Accommodation class will generate the
IModdingConceptAccommodation interface). This interface collects all the
events to mod Accommodation. Event names are obtained from the event
type (Load) plus the class name as a suffix (e.g. LoadAccommodation,
AddViewModAccommodation). Each annotation introduces an event type. So
far, publishing events are limited to “Load” whereas processing events include
“AddViewMod”. The latter outputs an HTML fragment hence, its payload is
HTML-typed [15]. For instance, modding an “Accommodation” is set to be
of type HTMLTableCellElement, meaning that mods to Accommodation need
to be compliant with this type. This introduces a type-like mechanism for
modding regulation. It can then be checked whether this payloadType is fulfilled,
and if not so, ignores the mod but still renders the rest of the page. If
Accommodation is rendered in different Views with different HTML requirements
then, different AddViewModAccommodation events can be defined associated
with distinct HTML types. It is also worth noticing that not all properties of a
modding class might be visible. Properties available for mods are annotated as
[ModdingProperty].

Introducing Place Holders in Views. A View is mod-aware if it foresees
the existence of mods that can produce additional HTML fragments to be
inlayed in the View. This is so achieved using place holders. Commonly, Views
that render Modding Concepts should cater for this situation, though this is
up to the host. Figure 2 provides a View that renders Accommodation data.
Since Accommodation is a Modding Concept, this View introduces a place
holder (line 8). In .NET, data passing between the Controller and the View
is achieved through the system variable ViewData. This variable holds an array
for each possible type of data that can be passed. By convention, this array is
indexed based on the type of the variable (e.g. ViewData[“Accommodations”]
conveys accommodations). Likewise, we use the convention of adding the prefix
“AddViewMod” to the concept (e.g. AddViewModAccommodation) to refer to the
information passed from the mod to the View (through the Controller). In this
case, the content is an HTML fragment. The View retrieves this fragment, and



98 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 3. Mods as plugins that import Modding Interfaces (line 8)

places it as appropriate. The only aspect known in advance is the type of the
HTML fragment as indicated in the event payload when annotating the Modding
Concepts.

4.2 Impact on Partners: Defining Mods

Unlike the open-source approach, OP restricts code access through the Modding
Interfaces. Mod expressiveness is that of monotonic additions to the content of
the host. Deletions are not permitted. Implementation wise, this means mods
can extend the content of existing Views, and add new Views & Controllers.

Extending Existing Views. The programming model for mods is event-based.
First, a mod subscribes to publishing events to collect data about the User Model
and the Domain Model that is going to be rendered. Second, a mod signals
processing events to indicate the availability of an HTML fragment ready to
be injected in the current View. Therefore, the mod is totally unaware of all,
the Model classes, the Controllers and the Web Forms that are in operation.
From the mod perspective, the website is wrapped as a set of Modding Concepts
and their corresponding events. Figure 3 shows the mod to be provided by the
hotel partner for the rule: “a 50% discount on room booking over the weekend is
offered, provided the attendee holds a full passport”:



Opening Personalization to Partners 99

Fig. 4. A mod that introduces a new View & Controller. In the up side, the host’s
View links to the partner’s View and the rendering of the partner’s View. In the down
side the partner’s View code refers to the host template (i.e. MasterPageFile).

– a mod works upon Modding Concepts (e.g. Accommodation and Profile).
This implies obtaining the classes for the corresponding interfaces
(e.g. IModdingConceptAccommodation and IModdingConceptProfile, line 6).
These classes’ instances are obtained dynamically using dependency injection
(see next section). This explains the [ImportingConstructor] annotation.

– a mod can subscribe to Publishing Events
(e.g. LoadProfile, LoadAccommodation). This entails associating a handler
to each Publishing Event of interest (lines 11, 12).

– a mod can signal Processing Events (e.g. AddViewModAccommodation).
This signal is enacted in the context of a personalization rule. This rule
is just a method (e.g. barceloPersonalization) which proceeds along three
stages: (1) checks the pertinent aspects of the User Model and Domain
Model as obtained from the Publishing Events (e.g. variables “profile” and
“accommodation”); (2) constructs the event payload (i.e. an HTML fragment)
and creates the event at hand; and finally (3), signals the Processing Event.

Adding New Views and Controllers. In the previous example, the output of
the mod could have contained links to Views with additional information (e.g.
room pictures). Figure 4 provides an example. These Views are kept as part of the
ICWE website but they are provided by the partners. This requires the partner
not only to extend host Views with “hooks” (i.e. a link to the partner View), but
also to facilitate his own View and Controller. Partners’ Controllers are like host
Controllers. Partners’ Views are like any other View except that they refer to the
(rendering) template of the host so that the look&feel and non-contextual links of
the hosting site are preserved (see Figure 4). This permits the partner’s Views to
link back to the rest of the website.



100 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 5. Decoupling the Core from the Periphery : a model of the involved concepts

5 Open Personalization: Architecture

This section introduces the main architectural elements that ground the
semantics of the [ModdingConcept] annotation. That is, the artefacts and
associations to be generated as a result of a Domain Concept being turned
into a Modding Concept. Specifically, each annotation automatically outputs the
following types of artefacts: Wrappers, Crosscuts and Modding Interfaces.

Figure 5 outlines the main artefacts and conceptual relationships of our
architecture. An Open Application contains a Core, a Frontier and a
Periphery. The Core stands for the traditional architecture along the Model-
View-Controller pattern. The Periphery includes the Mods provided by the
Partners. Finally, the Frontier mediates between the Core and the Periphery
through Modding Interfaces. Modding Interfaces encapsulates Model classes
through events. Publishing Events are <consumed> by the Mods but
<produced> by the Core. Alternatively, Processing Events are <produced>
by Mods but <consumed> by the Core.

Mods impact on the Core. This impact is supported by different means
depending on the nature of the artefact at hand. For Model class, the impact
is in terms of a Wrapper: a class that becomes a Modding Concept is
encapsulated so that only modding properties can become event payloads. For
Controller classes, the impact is supported as a Crosscut for each of the class
methods. Each method handles a Web Form (i.e. denoted in the code as “return
View(webFormName)”). The Crosscut is “an aspect” that extends the base
method with an “after advice” with two duties: (1) raising a Publishing event
for each concept instance to be loaded by the Web Form (e.g. hotel Barceló),
and (2), handling the Processing Events raised by the mods. Finally, the View
(i.e. the Web Forms) requires the introduction of PlaceHolders where the mod
output is to be injected.



Opening Personalization to Partners 101

So far, the description seems to suggest that the Core knows in advance the
mods to be instantiated. However, this is not the case: mods can be added
at anytime. This implies hot deployment, i.e. the ability of adding new mods
to a running Web server without causing any downtime or without restarting
the server. The Core cannot have an explicit dependency on mods. Inversion
of Control and Dependency Injection are two related ways to break apart
dependencies in your applications [6]. Inversion of Control (IoC) means that
objects do not create other objects on which they rely to do their work. Instead,
they get the objects that they need from an outside source. Dependency Injection
(DI) means that this is done without the object intervention, usually by the
“assembler” that passes constructor parameters and set properties. The assembler
is a lightweight object that assembles different components in the system, in
order to produce a cohesive and useful service.

In our architecture, Controllers are the component in charge of instantiating
the mods. However, these instantiation are not achieved directly by the
Controllers but through an assembler. That is, Controllers become IoC compliant
components (a.k.a. parts), i.e. they do not go off and get other components
that they need in order to do their job. Instead, a Controller declares these
dependencies, and the assembler supplies them. Hence, the name Hollywood
Principle: “do not call us, we will call you”. The control of the dependencies for
a given Controller is inverted. It is no longer the Controller itself that establishes
its own dependencies on the mods, but the assembler.

6 Revising the OP Requirements

Resilience. Mods should be resilient to View upgrades. This is the rationale of
the Modding Interface: changes in the content or layout of a View should not
impact the mod. Even if a concept (e.g. Accommodation) is no longer rendered,
the mod will still raise the event, but no View will care for it. No dangling
references come up. The mod becomes redundant but not faulty. And vice versa,
new Views can be introduced where Accommodation data is rendered. This has
no impact in the mod. Just the payload of the signalled event (i.e. the HTML
fragment) will now start being injected in the place holder of the new View. This
place holder should accept HTML fragments of the type being outputted by the
mod. Otherwise, some disruption might occur that might eventually impact the
rendering.

Extensibility. Mods can dynamically be added/deleted as partnership
agreements change. Existing Model classes left outside partner agreements in the
first round, might become Modding Concepts by just adding the corresponding
annotations. However, this will require stopping the website to update the
annotations and re-compile the code. This also raises the need for authorization
mechanism so that not all partners will have access to all modding events. Grant
and revoke privileges would be issued by the owner based on agreements with
his partners. This is not yet available.



102 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 6. Latency introduced by distinct OP factors (clockwise from bottom left):
#Processing Events, #Publishing Events, #Plugins, and finally, the combined effect
of all three

Scalability. Mods should not deteriorate the site performance. OP rests on a
flexible architecture where (1) mods are installed dynamically and (2), mods
interact with the Core through events. Both mechanisms trade flexibility for
efficiency. Specifically, satisfying a URL request for a particular page now
requires four additional steps: (1) instantiating the mod plugins at hand, (2)
generating a publishing event for each Modding Concept in this page, (3) issuing
a processing event for each mod that wants to contribute, and (4), capturing such
processing events by the Controller at hand. As a general rule, end users should
not pay a performance penalty for mods that are installed but not used during
the current request. This section describes the results of a stress testing (a.k.a.
load testing) of the OP architecture. The study evaluates the additional latency
introduced when the ICWE site becomes mod-aware.

Stress testing entails a process of creating a demand on service, and
measuring its response. Specifically, we measure the service that outputs the
“Accommodation” page. The ICWE application has been deployed in an IIS
7.0 on Intel Core2 Duo T7500 2.2 GHz CPU with 4GB of memory. The
test is conducted through Microsoft Web Capacity Analysis Tool (WCAT), a
free lightweight HTTP load generation tool which is used to test performance



Opening Personalization to Partners 103

and scalability of IIS and ASP.NET applications [7]. WCAT is configured as
follows: 30 seconds to warmup (no data collection)2, 120 seconds of duration
of simultaneous requests, 10 seconds to cooldown (no data collection), range of
{1, 50, 100} virtual clients (concurrent clients over the same page), and finally,
request stands for the petition of the “Accommodation” page.

The experiment is parameterized along the number of mods, the number of
publishing event occurrences and the number of processing event occurrences for
the request at hand. Figure 6 depicts the "time to last byte" metric for these
three factors. For the ICWE-with-no-modding, the “Accommodation” request
accounts for 2 msec. On top of it, OP introduces some affordable overheads.
As suggested by the bottom right chart about the combined effect of the three
factors, the event-based mechanism has minimal impact (i.e. the plateau in the
charts stands for increases in the #events but keeping the #plugins constant).
By contrast, the #plugins reveals itself as the factor with larger impact. Along
the lines of IoC, each request implies to instantiate the involved plugins for
the Controller at hand. For a hundred simultaneous requests, the impact of 1,
10, 20 plugins account for an increase of 5%, 33% and 64%, respectively. To
be perfectly honest, we seldom envisage a scenario where a page is subject to
over 20 plugins. We do not foresee more than 3/4 plugins per page on average,
and this would represent a 15% penalty. Notice, that this number is just for
satisfying the request, not to be confused to the elapsed time that the end user
experiments. If normalized with the elapsed time (typically around 1300 msec.),
the OP architecture represents around a 2% of increment for the most common
envisaged scenarios.

Affordability. Mods should be easy to develop and maintain. Mods follow an
event-driven style of programming. That is, the logic is split between event
handlers and event producers. This is particularly helpful in our context where
these event roles can be naturally split between partners and owners: partners
focus on what should be the custom reaction (i.e. processing events) for the
rendering of Modding Concepts, while owners focus on signalling when Modding
Concepts are displayed (i.e. the Publishing events). This certainly leads to
cleaner code. On the downside, the flow of the program is usually less obvious.

7 Related Work

Extensible architectures are a long-standing aim in software [11,5]. As a first
requirement for in-house development, extensibility is becoming a must to
integrate code from third parties. The motivation here is “to integrate and build
on existing work, by writing only the specialized code that differentiates them
from their competition” [1]. The ability to respond quickly to rapid changes

2 WCAT uses a “warm-up” period in order to allow the Web Server to achieve steady
state before taking measurements of throughput, response time and performance
counters. For instance there is a slight delay on first request on ASP.NET sites when
Just-In-Time (JIT) compilation is performed.



104 C. Arellano, O. Díaz, and J. Iturrioz

in requirements, upgradeability, and support for integrating other vendors’
components at any time, all create an additional push for flexible and extensible
applications, and grounds the work of Web architectures such as PLUX .NET
[9], that resembles MEF, the .NET library we utilize to support OP. In the Java
realm, the Open Services Gateway Initiative (OSGI) [16] framework propose
a dynamic component model for Java, i.e. a way for components (known as
bundles) to be started, stopped, updated and uninstalled without the need to
reboot the system. OSGI also includes a way to define dependencies between
bundles but it does not preclude any communication mechanism between
components. Compared with an OSGI-like architecture, our approach rests on
a "core component" (i.e. the website) and a set of "satellite components" where
the interaction is only permitted from the core to the satellites. From this
perspective, our approach is more rigid but it reflects the asymmetric relationship
between the website owner and the third parties.

More akin with the OP vision is SAFE [13] an architecture of Web Application
extensibility aimed at permitting users to personalize websites. SAFE is based
on a hierarchical programming model based on f-units (the component model).
An f-unit clusters all code fragments for a specific functionality within a web
page, including the business logic, the visual appearance, and the interaction
with users or other f-units. A web page is modelled as a so-called “activation
tree” in which f-units are organized hierarchically, and activation flows top-down
(naturally corresponding to the hierarchical DOM structure of an HTML page).
Thus, a user who would like to personalize an application simply has to replace an
existing f-unit with a new f-unit of her choice. Such customizations are dynamic
in that f-units are registered and activated without stopping the running system.
F-units contain SQL statements and this serves to support an implicit interaction
between f-units sharing the same data. The bottom line is that SAFE proposes
a more innovative mean for open participation by introducing a hierarchical
model to web programming. This is simultaneously the main benefit, but also
jeopardy, of SAFE. By contrast, we advocate for a more evolutionary approach.
OP only makes the assumption of the MVC pattern and code annotation,
and uses the well-known event-based programming model as the interaction
mechanism. Capitalizing on existing techniques and programming models will
certainly facilitate partner participation. The challenge is not only on pluggable
components/f-units/mods but also affordable, risk-controlled technology that
facilitates partner engagement. We use an existing technology (.NET ) and
use annotations to leverage from the general-purpose technology to domain-
specific concepts. This motivates the conceptual leveragement of Model Classes
into Modding Concepts. The notion of Modding Concept attempts to reduce
the conceptual gap for partners and owners to understand each other while
maximising decoupling by using events as the interaction mean.

8 Conclusions

Fostering a win-win relationship between website owners and partners,
substantiates the efforts of Open Personalization (OP). This paper’s goal was



Opening Personalization to Partners 105

to demonstrate that OP is feasible with existing technologies such as .NET.
Though proving feasibility requires focusing on a specific platform, the approach
is easily generalizable to any framework that supports “Inversion of Control”. As
future development, we plan to look into ways for partners to extend the User
Model (i.e. the profile base). The profile base as designed by the host, might be
insufficient to conduct some mods. Permitting partners to seamless define and
collect additional user information through the website is certainly a challenge.
Besides the technical challenges, OP also introduces new business models that
need to be investigated.

Acknowledgements. This work is co-supported by the Spanish Ministry
of Education, and the European Social Fund under contract TIN2011-23839
(Scriptongue).

References

1. Birsan, D.: On Plug-ins and Extensible Architectures. ACM Queue 3, 40–46 (2005)
2. Bloomberg, J.: Events vs. services. ZapThink white paper (2004)
3. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Modeling

and User Adapted Interaction 6, 87–129 (1996)
4. Cingil, I., Dogac, A., Azgin, A.: A Broader Approach to Personalization.

Communications of the ACM 43, 136–141 (2000)
5. Erl, T.: A Comparison of Goals - Increased Extensibility. In: SOA Principles of

Service Design, p. 451. Prentice Hall (2007)
6. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern

(January 2004), http://martinfowler.com/articles/injection.html
7. Friedman, E.M., Rosenberg, J.L.: Web Load Testing Made Easy: Testing with

WCAT and WAST for Windows Applications. In: Proceesings of the 29th
International CMG Conference, Dallas, Texas, USA, pp. 57–82 (December 2003)

8. Hippel, E.V.: Open source software projects as user innovation networks. In:
Proceedings of the Open Source Software: Economics, Law and Policy, Toulouse,
France (June 2002)

9. Jahn, M., Wolfinger, R., Mössenböck, H.: Extending Web Applications with Client
and Server Plug-ins. In: Software Engineering, pp. 33–44 (2010)

10. JCP: JSR 168: Portlet Specification Version 1.0 (2003),
http://www.jcp.org/en/jsr/detail?id=168

11. Oberndorf, P.: Community-wide Reuse of Architectural Assets. In: Software
Architecture in Practice. Addison-Wesley (1997)

12. O’Reilly, T.: The Architecture of Participation (June 2004), http://oreilly.com/
pub/a/oreilly/tim/articles/architecture_of_participation.html

13. Reischuk, R.M., Backes, M., Gehrke, J.: SAFE Extensibility for Data-Driven Web
Applications. In: Proceedings of the 21st World Wide Web Conference, Lyon,
France, pp. 799–808 (April 2012)

14. Riepula, M.: Sharing Source Code with Clients: A Hybrid Business and
Development Model. IEEE Software 28, 36–41 (2011)

15. Robie, J., Hors, A.L., Nicol, G., Hégaret, P.L., Champion, M., Wood, L., Byrne,
S.: Document Object Model (DOM) Level 2 Core Specification. Tech. rep., W3C
(2000)

16. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4.3 (2011)

http://martinfowler.com/articles/injection.html
http://www.jcp.org/en/jsr/detail?id=168
http://oreilly.com/pub/a/oreilly/tim/articles/architecture_of_participation.html 
http://oreilly.com/pub/a/oreilly/tim/articles/architecture_of_participation.html 

	Opening Personalization to Partners:
An Architecture of Participation for Websites
	Introduction
	``Closed Personalization'' versus ``Open Personalization''
	Open Personalization: Requirements
	Open Personalization: Specification
	Impact on the Host: Making a Website Mod-Aware
	Impact on Partners: Defining Mods

	Open Personalization: Architecture
	Revising the OP Requirements
	Related Work
	Conclusions
	References




