Semantic Collaborative Tagging
for Web APIs Sharing and Reuse

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Dept. of Information Engineering University of Brescia
Via Branze, 38 - 25123 Brescia, Italy
{bianchin,deantone,melchior}@ing.unibs.it

Abstract. Sharing and reuse of Web APIs for fast development of Web
applications require advanced searching facilities to enable Web design-
ers to find the Web APIs they need. In this paper we describe a Web
API semantic collaborative tagging system to be implemented on top of
the public ProgrammableWeb Web API repository. The system is de-
signed to be used in a social context: the designers can take actively part
in the semantic tagging of Web APIs, thus sharing their experience in
developing their own Web applications. Moreover, they can exploit new
searching facilities to find out relevant Web APIs according to different
search scenarios and reuse them for fast deployment of new applications.
To this aim, they rely in an hybrid fashion on the semantic tags and on
the collective knowledge derived from past designers’ experiences. Proper
matching and ranking metrics are defined and applied during Web API
searching.

1 Introduction

Sharing and reuse of Web APIs is becoming a very popular way to quickly
develop Web mashups, that is, low-cost, personalized Web applications, designed
and implemented to be used for short periods of time (also referred as situational
applications). To this aim, the ProgrammableWeb API public repository has
been made available, where Web API providers share their own components
and Web designers can look for Web APIs they need to compose new Web
applications without implementing them from scratch. The repository registers
almost 5,800 Web APIs (a number that is continuously growingE) and presents
methods to programmatically retrieve the registered Web APIs and also to track
all the mashups which have been developed starting from them. Currently, the
repository contains more than 6,600 Web mashups.

In this context, enabling Web designers to effectively find Web APIs they need
is becoming a more and more crucial asset. Some solutions propose the definition
of component models [I2] to support fast Web application development. Other
solutions suggest the introduction of a Web API semantic characterization to

! See http://www.programmableweb.com/: the last access on April 30th, 2012 counts
5,792 Web APIs.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 76-P0, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 7

face issues such as the heterogeneity across Web APT descriptions [3]. However,
the use of new Web API models on top of the ProgrammableWeb repository,
although improves Web API retrieval and composition, introduces an additional
learning effort for Web API providers who must adopt the models. Such an
additional requirement is often not feasible in a social scenario, where the average
skill of Web designers prevents from using complex models other than common
Web programming technologies. In this paper we propose a lightweight semantic
tagging system to be deployed on top of the ProgrammableWeb repository to be
used in a social context. Web designers can take actively part in the semantic
tagging of Web APIs, thus sharing their experience in developing their own
Web applications, going beyond the limitations of traditional tags, which lack
in facing ambiguities such as polisemy and omonyms. Moreover, Web designers
can also exploit the search facilities of the system to find out relevant Web APIs
according to different search scenarios and reuse them for fast deployment of
new applications. To this aim, they rely in an hybrid fashion on the semantic
tags and on the collective knowledge derived from past designers’ experiences in
developing mashups.

In the next section we describe the scenarios which motivated our work.
Section [l contains a formalization of proper matching and ranking metrics based
on the Web API semantic tags and collective knowledge to be applied during
search. In Section [4] we describe the implementation of the proposed system.
Section Bl shows a preliminary validation of the system and a comparison with
the state of the art. Section [d closes the paper.

2 DMotivations and Open Issues

Consider a simple example. Danielle is a designer who aims at building a Web
application for her friends, to share pictures by posting photos on the Web site
and showing with marks on a map the locations where photos have been taken.
Danielle does not want to implement the Web application from scratch, since,
for instance, the design of a Web interface for displaying points on a map is a
time-consuming task and Danielle does not have time and the required advanced
skills. Nevertheless, already available Web APIs, such as the Google Maps APIs,
have been implemented for this purpose. She has to search for existing Web
APIs to post pictures and personalize maps and has to properly wire them in
the mashup. She inspects the ProgrammableWeb repository (see Figure[Il), where
she can: (i) find Web APIs by specifying keywords that will be matched against
the descriptions associated with available Web APIs in the repository; (ii) filter
available Web APIs according to their category, the company which proposed
the APIs, the adopted protocols and data formats; (iii) find mashups composed
of the available Web APIs. On ProgrammableWeb Danielle can not:

1. specify both the features of the Web APIs to search for and of the Web
mashups which the Web APIs will be used in, to perform more advanced
search; for instance, Danielle can not specify that she needs a mapping Web

78 D. Bianchini, V. De Antonellis, and M. Melchiori

File Modifica Visualizza Cronologia Segnalibri Strumenti Aiuto

¥ API Directory - Programmablew... B3

(% programmableweb.com [RE K Q| @
Home APl News API Directory Mashups Community How-to Contests Subscribe ! . ' T 1
Dashboard | Directory | Mewest MostPopular By Category APlScorecard Add API

Web Services Directory [subscribe to get the latest APls ¢ M A S H E R Y
Hide Fllters e Sortby: [[EE Date |Popularity| Category \ The Promier API Management Solution
Keywords Category Company Protocols / Styles

Mapping H Google H H
Data Format Date Managed By
Ell |an El Filter This List CI d A
Viewing 1to 11 of 11 APIs T 24X7|
[| Get Instant Alerts! 2@ Sigmap T5day Tal
API Description Category Updated
Google Directions Driving directions web service Mapping 2010-05-19
sscale
Google Earth Mapping and 3D geo visualization Mapping 2008-06-01 5 = 4
- s

Google Gears User geographical positioning service Mapping 2008-08-24 \

Geolocation API Manage}"?n‘t

Google Geocoding Google Maps Geocoding Service Mapping 2010-12-09 \.,‘ m

Google Latitude Location sharing service Mapping 2010-05-21 / - Up 10/50,000 Hits per Day

Google Maps Mapping services Mapping 2005-12-05

Fig. 1. An example of Web API search on ProgrammableWeb.com

API to be used in combination with a Web API for posting pictures; if she
looks for a mapping Web API, the system returns about 210 results, which
can be restricted to 11 results by selecting the most famous Google company
(see Figure[I]), but not all the returned APIs enable the definition of markers
for displaying points on a map;

2. avoid limitations of traditional tag-based search, specifically false positives
and false negatives due to the tag polisemy (that is, the same tag refers
to different concepts) and tag omonyms (i.e., the same concept is pointed
out using different tags); false positives are APIs incorrectly included among
the search results, they are affected by polisemy; false negatives are APIs
incorrectly excluded from search results, they are affected by omonyms;

3. be assisted in more articulated developing scenarios, where Danielle needs a
proactive support for her search; for instance, let us suppose that Danielle
already has at her disposal a Web mashup which combines a Web API for
searching sightseeing locations and a Web API to display them on a map;
ProgrammableWeb is neither able to proactively suggest different APIs that
can be substituted to the sightseeing search API and properly wired with the
map API (thus minimizing the efforts required to adapt the new Web API
into the existing mashup) nor can suggest other Web APIs (e.g., a Twitter
API) to be added to the mashup, because of many existing mashups where
Web designers put together such kinds of Web APIs.

3 Semantic and Social Characterization of Web APIs

Given the open issues highlighted above, we inferred the need of both a se-
mantic characterization of Web APIs, to face polisemy and omonyms problems,

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 79

and a social characterization of Web APIs, to rely on the past experiences of
Web designers and enable the support for more articulated developing scenarios
(see point 3 in Section [). Formally, we denote a Web API description W as
Wsems Wsoe), where Wgep, and W, are the semantic and social characteri-
zation of W, respectively.

3.1 Semantic Characterization

The semantic characterization of a Web API W is defined as follows:

Wsem = (ew, {tw}, {mw}) (1)

The elements of such a characterization are discussed in the following and are
extracted both from the contents of the ProgrammableWeb repository and from
the information provided by the designers.

Web API category cyy. It is used to provide a high level classification of
the Web API. We rely on the classification of Web APIs provided by Pro-
grammableWeb, composed of 67 categories such as mapping, payment, search.

‘Web API semantic tags tyy. Tags are used to provide a fine-grained semantic
characterization of the Web API. To this purpose, we rely on tags defined by the
designers who adopted the Web API. During the assignment of such tags, sense
disambiguation techniques based on the WordNet [4] lexical system are applied.
In WordNet the meaning of terms is defined by means of synsets. Each synset
has a human readable definition and a set of synonyms. In our model, a Web
API semantic tag tyy is a triple, composed of: (i) the term itself (namely, ¢9,,)
extracted from WordNet; (ii) the set 3" of all the terms in the same synset
of #9,; (iii) the human readable definition ¢, associated with the synset. The
designer is supported in the selection of the synset to better specify the meaning
of a tag as shown in Section [l

‘Web mashup semantic tags myy. When the Web API is tagged, the designer
is also required to add a set of semantic tags myy that describe the Web mashup
where the Web APT has been used. The semantic tags myy has the same struc-
ture of semantic tags in {tyy}.

An example of semantic characterization of the Flickr Web API to be used
in a file sharing application could be the following:

Flickrsem = (Photos, {(photo, {photograph, exposure, picture, pic}, ”a representation of a person
or scene in the form of a print or transparent slide or in digital format”)},
{(file, {date file}, "a set of related records (either written or electronic) kept together”),

(sharing, {}, "using or enjoying something jointly with others”)}

Web API category, semantic tags in {tyy} and Web mashup semantic tags in
{mw} will be used to empower the Web API search by applying advanced
matching techniques described in Section 3.4

80 D. Bianchini, V. De Antonellis, and M. Melchiori
3.2 Social Characterization

In a Web 2.0 context, the suggestion of a Web API to be used in a mashup should
also consider as relevant past experiences of the designers who adopted the Web
APIs in their mashups. We denote these aspects as the social characterization
of the Web API W:

WS’OC = {d€Dw|d = <Ua H,y {Wk}>} (2)

where, for each designer deDyy, who used the Web API W, ¢ is the designer’s
skill for developing Web applications and pu is a quantitative rating (within the
range [0,1]) given by the designer to the Web API W. Social characterization
of the Web API W is further refined by asking the designer, during semantic
tagging, to specify other Web APIs Wy, that he/she used together with W in the
same Web mashup. It is worth mentioning that if a Web API has been adopted
by designers with high skill, the system should better rank such Web API with
respect to the other ones among the search results. The skill o is collected during
designer’s registration to the system (see SectionH]). A set of options are proposed
to be selected by the designer, ranging from unexperienced to expert, and are
uniformly mapped into the [0,1] range, with unexperienced=0 and expert=I.
The capability of the system to automatically update the designers’ skills on the
basis of the number of developed mashups and their complexity (for instance,
based on the size of developed mashups as the number of included APIs) will
be investigated as future work. Also the set {Wj;} could be loaded directly from
the mashups stored on ProgrammableWeb if the Web designer is registered on
the repository Web site.

The value of u is selected by the designer according to the 9-point Scoring
Systenﬂ This scoring system has few rating options (only nine) to increase
potential reliability and consistency and with sufficient range and appropriate
anchors to encourage designers to use the full scale. During the rating, we pro-
vided the designer with the set of options that are mapped into the [0,1] range,
as shown in Table[I]

Table 1. The 9-point Scoring System for the classification of designers’ Web API rating

Rating (additional guidance on strengths/weaknesses) Score
POOR (completely useless and wrong) 0.2
MARGINAL (several problems during execution) 0.3
FAIR (slow and cumbersome) 0.4
SATISFACTORY (small performance penalty) 0.5
GoOD (minimum application requirements are satisfied) 0.6
VERY GOOD (good performance and minimum application requirements are satisfied) 0.7
EXCELLENT (discreet performance and satisfying functionalities) 0.8
OUTSTANDING (very good performances and functionalities) 0.9
EXCEPTIONAL (very good performances and functionalities and easy to use) 1.0

2 http://www.nhlbi.nih.gov/funding/policies/nine point scoring system and
program project review.htm.

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 81

An example of social characterization of two photo sharing Web APIs, Flickr
and 23hq. com, used in Web applications like the one described in the motivating
scenarios, is the following:

Flickr di = (1 (expert), 0.7 (excellent), {GoogleMaps, del.icio.us})
da = (1 (expert), 0.6 (very good), {GoogleMaps})
23hq.com d3 = (1 (expert), 0.4 (satisfactory), {GoogleMaps, SilverlightStreaming, YouTube})
d4 = (0.5 (medium), 0.6 (very good), {YouTube, Twitter, GoogleMaps, del.icio.us, Amazon})

In the example, Flickr has been rated as excellent and very good by two
experts, while 23hq. com as satisfactory by an expert and very good by a medium-
skilled designer. All the designers used these Web APIs in past applications
together with the Google Maps API. Social characterization of the available Web
APIs in the ProgrammableWeb repository is exploited for ranking purposes after
search. Given a set of Web APIs among search results, they are ranked according
to the ratings of other designers that used such APIs in the past, taking into
account their skills. Ranking metrics will be detailed in Section 3.4]

3.3 Web APIs Search Scenarios

The semantic and social characterization of Web APIs described above enable
to match a request W" against the Wsep, and Wg, of available Web APIs in
the repository and to rank the search results with respect to designers’ skills and
ratings. Formally, we define a request W" for a Web API as follows:

W™ = (e, {tw s {mw}s {Wah) 3)

where ¢}, is the requested category, {t},} is a set of semantic tags specified for
the Web API to search for, {m},,} is a set of semantic tags featuring the Web
mashup in which the Web APT to search for should be used, if any, {W}} is the
set of Web APIs already included in such a mashup, if any, which the Web API
to search for should be wired with. We distinguish two different search scenarios:

— in the first scenario, Danielle is looking for a Web API to start the devel-
opment of a new Web mashup; to this aim, she specifies a category cj}, and
a set of semantic tags {t}, }; Danielle has not in mind any mashup where
the Web API to search for should be used; the request is formalized as
WI = (ciy, {t}y}); we denote this scenario as simple search; a variant of this
scenario is the one where Danielle has already in mind a set of semantic tags
{m}, } which denote the mashup where the Web API to search for should be
used; the request is formalized as W5 = (¢}, {t}y }, {m},,}) and we denote
this variant as advanced search;

— in a second scenario, Danielle has already built or started the construction
of a Web mashup, composed of a set of Web APIs {W;}, but she has to
complete it and the system could suggest the best Web API that can be
wired with the other Web APIs already within the mashup; the request is
formalized as W5 = (¢}, {t\ }, {miy }, {Whr}) and we denote it as completion
search; in a variant of this scenario, Danielle has no preferences on the Web

82 D. Bianchini, V. De Antonellis, and M. Melchiori

APT to search for (i.e., {t})} is empty) and she totally relies on the system
that should proactively suggest to Danielle which APIs could be added on the
basis of the semantic tags {m},,} on the mashup that is being developed, the
set {Wy} of Web APIs already included in the mashup and past experiences
of mashups, registered within the repository; in this case, the request is
formalized as Wy = ({mjy }, {Ws}) and we denote it as proactive completion
search.

For instance, an example of request formulated in the completion search scenario
to find a Web API in the category Photos to be used for picture sharing together
with the Google Maps Web API can be represented as follows:

WT = (Photos, {(picture, {photograph, photo, exposure, pic}, ”a representation of a person
or scene in the form of a print or transparent slide or in digital format”)},
{(picture, {photograph, photo, exposure, pic}, ”a representation of a person
or scene in the form of a print or transparent slide or in digital format”),

(sharing, {}, "using or enjoying something jointly with others”)}, {GoogleMaps})

where {t],,} = {picture} and {mj, } = {picture, sharing}. The designer is
supported in the formulation of the request by the same sense disambiguation
techniques used during semantic tagging, as explained in Section [l

3.4 Web APIs Matching and Ranking

The search scenarios introduced above can be satisfied by applying a set of
metrics that are used to compare the affinity between categories, semantic tags
and mashups in which the Web APIs must be included. The matching and
ranking model we adopted in our system is defined by the following elements:

I = (W, {W}, target, Sim(), p) (4)

where W is the request, {WW} is the set of semantic and social characterization
of available Web APIs W in the repository (W = (Wsem, Wsoc)), target is the
kind of search (simple, advanced, completion, proactive completion), Sim(W", W)
is the similarity measure used to evaluate candidate Web APIs as search re-
sults and p is the ranking function for search results. The matching measure
Sim(W", W) is based on the semantic characterization Wgen, of W and is com-
posed of the following elements.

Category similarity. The similarity between the category cj,, of W" and the
category cyy of Wgen, is inferred from the ProgrammableWeb repository; since
no hierarchies are defined among the available categories, advanced semantic-
driven techniques (such as category subsumption checking) can not be used;
nevertheless, we consider the two categories as more similar as the number of
Web APIs that are categorized in both the categories, denoted with |c},,Ncyy],
increases with respect to the overall number of Web APIs classified in cjy,,

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 83

denoted with |c},,|, and in ¢y, denoted with |cyy|; formally, the category simi-
larity is defined as follows:

. _ 2-|yNew]

Ssz(CW7CW) |C;\)| + |CW| (5)
Semantic tag affinity. Semantic tag affinity applied between two tags t; and
ta, denoted with T'agSim(ty,t2)€[0,1], is used to state how much similar they
are with respect to the WordNet lexical system. In WordNet the synsets used to
define the meaning of terms are related by eighteen different kinds of relation-
ships. Some relationships have been designed to refine search capabilities and
enhance the navigation of the net of terms in the lexical system. In particular,
hyponymy/hypernymy relations are used to represent the specialization/general-
ization relationship between two terms: for instance, station wagon is a more
specific term with respect to automobile; this means that there is a semantic
affinity between station wagon and automobile, that is, if a user is looking for
an automobile, also those resources that have been tagged with the station wagon
term can be considered relevant. According to this viewpoint, we state that the
affinity between two tags t; and to is maximum if the tags belong to the same
synset; otherwise, if they belong to different synsets, a path of hyponymy/hy-
pernymy relations which connects the two synsets is searched: the highest the
number of relationships in this path, the lowest is semantic tag affinity, that is:

1 if t1 and t2 belong to the same synset
TagSim(t1,t2) = { 0.8 if there are L hyponymy/hypernymy relations between t1 and to
0 otherwise

(6)
The value 0.8 has been proved to be optimal in our experiments on WordNet
terms affinity [5]. Nevertheless, it can be parameterized (within the range [0,1])
and set by the designer. The affinity between two semantic tags ¢1 and 5 is eval-
uated considering ¢ and t9, while the list of synonyms and the human readable
description in the t; and to definitions are used to speed up TagSim evaluation
and to enable the identification of the synsets within WordNet. The tag affinity
between two sets of semantic tags 71 and 75 is evaluated by computing the se-
mantic tag affinity between each pairs of tags, one from 7; and one from 75 by
applying the Dice formula [6]:

234 eTntpet, TagSim(ty, t2)

(7)
This is used to evaluate the total affinity Sim.({t], }, {tw}) between semantic
tags used to annotate the Web APIs and Sim;({mj,}, {mw}) between seman-
tic tags used to annotate the mashups. Pairs to be considered for the Sim,
computation are selected according to a maximization function that relies on
the assignment in bipartite graphs. For instance, there exists a path of length
L = 2 between terms picture and file in WordNet, therefore Sim.({picture,
sharing},{file, sharing}) is evaluated as [2 - (0.8% + 1.0)]/4 = 0.82.

84 D. Bianchini, V. De Antonellis, and M. Melchiori

The final matching measure Sim(W", W) is computed as:

Sim(W"™, W) = wq - Sime(cy, ew) + wa - Sime({thy, }, {tw}) (8)
+ws - Simy({m3y}, {mw}) € [0,1]

where 0<w;<1, withi = 1,2, 3, and Z?:l w; = 1 are weights set according to the
target, as shown in Table[2l Setup experiments showed that the category is only
a coarse-grained entry point to look for Web APIs in the repository (this explains
the low values for wy weight). For instance, the Sim(W", Flickr) between the
sample request W' shown in Section and the Flickrge, characterization
shown in Section [B.1]is computed as follows:

2.1.0
Sim(W' Flickr) =0.2-1.0+04-0.82+04- " = = 0928 (9)

Table 2. The setup of w; weights for computation of matching measure Sim (W™, W)

Target Request W" Weights setup

Simple W1 = (e, {tw}) w1 = 0.4, wy = 0.6, wz = 0.0
Advanced W3 = (e, {tin), {miy }) w; =0.2, wy =ws =04
Completion W3 = (e, {tiw }, {miy 3 {Wh}) w1 =0.2, wo = w3 =04
Proactive completion Wy = ({myy}, {Whn}) w1 =wz = 0.0, w3 =1.0

The Web APIs included in the search results (which we denote with {W'}C{W})
are those whose overall similarity is equal or greater than a threshold v exper-
imentally set. The Web APIs {W’} are ranked according to the social charac-
terization of each W'. In particular, the ranking function p : {W'} — [0,1]
takes into account the past experiences of designers in using the W' Web API
(p1(W’)) and the ratings given by the designers to W’ (p2(W')). Depending on
the declared skills, past experiences and ratings of more expert designers are
considered as more relevant for ranking search results. In particular, we define
pW') =a-pt(W') + 8- p2(W'). In the performed preliminary experiments, the
weights a and 3 are both set to 0.5 to give the same relevance to the two aspects.

The computation of p(W’) is different if the request W contains the set
{Wp} of the Web APIs already included in the mashup in which the Web APT to
search for should be used (completion or proactive completion search scenarios)
or not (simple/advanced search scenarios). In the first case, let be {Wi} the
Web APIs included by the i-th designer d*€Dyy» in the same mashup where
he/she used W'. We use the degree of overlapping between {W,} and {W;}, to
quantify the closeness of mashup in which W’ has been used and the mashup
where W will be used, through the same rationale applied to category similarity
in formula (), that is:

_ 2 [N

Simm ({Wh}, {Wllc}) = WL} + |{W}€}|

€ [0,1] (10)

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 85

where |-| denotes the number of Web APIs in the set and [{W), }N{W} }| denotes
the number of common Web APIs in the two sets. The computation of p; (W')
is then performed as follows:

>2i(1 =03 - Simpm ({Wa}, {W;}))

WHy=1-
POV Dy

€1[0,1] (11)
where o; is the declared skill of designer d’€Dy . The formula above ensures
that the past experiences of more expert designers have a higher impact on
the p1 (W') computation. Intuitively, the closest the o; and Sim,,,({Wx}, {W;})
values to 1 (maximum value) for all the designers d’, the closest the second
member in formula () to zero, that is, the ranking p;(W’) assumes the best
value. For instance:

2:1.0 2:1.0
p1(Flickr) =1 — (1-10-7);(1 LO-757) 0.833 (12)
The value p;(23hg.com) is computed in the same way and is equal to 0.334.
If we consider the simple or advanced search scenario, where {Wy,} = 0, we
simplify formula () by putting Sim.,({Wn},{Wi}) to 1, that is, py(W') =
1—[>;(1 —0:)]/|Dwr|. The Web APT W' is ranked better if all the designers
who adopted it have high development skill.

The computation of pa(W') follows the same rationale, considering in this

case the rating p; given by the designer d’ to the Web API W', that is:

>l =0 ;)

Wy =1—
POV Dy

€ [0,1] (13)
For instance, po(Flickr) =1 —[(1 —0.7) 4+ (1 — 0.6)]/2 = 0.65.

4 The System Implementation

A designer can access our system using the search facilities to find out relevant
Web APIs according to the search scenarios introduced above. Alternatively,
he/she can register himself/herself in the system and he/she can take actively
part in the semantic and social characterization of Web APIs he/she used. The
architectural overview of our system is shown in Figure Bl The Web API Se-
mantic Tagging and Search interfaces are PHP pages accessed through the Web
browser and interact with: (i) the ProgrammableWeb APIs for retrieving basic
information on Web APIs and Web mashups from the repositoryﬁ; (ii) the Web
API Storage module, where semantic and social characterization of Web APIs
are stored together with designers’ development skills and ratings and match-
ing and ranking routines are implemented; (iii) the WordNet lexical system for
sense disambiguation. We rely on a WordNet version made available for J2EE

3 api.programmableweb.com/.

86 D. Bianchini, V. De Antonellis, and M. Melchiori

platform, therefore we implemented the sense disambiguation module as a Web
service to enable communication between PHP pages and Java classes. Interac-
tions with the other modules are managed with the AJAX technology to ensure
good performances of the Web interfaces.

fffff) ProgrammableWeb

‘ AdAX |Programmableweb|, .
Web API

I Semantic

| Tagging
interface

I
I Sense [|

= == = W Disambiguation f#— WordNet
fffff /': Module ‘
I

|

WebAPI |
search MY == = = = = = = = = = =

|

|

interface | Web API

|
|
| |
| Similarity |
|
- _ Evaluate&Rank
C \ \ R |
T Web API |
i E
|
|

| Web API Registry
| Manager

Designer's
browser Web API Storage module |

Fig. 2. Architecture of the Web API semantic collaborative tagging system

4.1 The Web API Semantic Collaborative Tagging

The Web API Semantic Tagging interface is implemented to manage the inter-
action of the designer during the semantic and social characterization of Web
APIs after registration and authentication. Designer’s registration is required
to setup the development skill, authentication enables the system to associate
the characterization of the Web API with the designer’s profile. The designer
is guided in a set of steps in the semantic and social characterization of the
Web API (see Figure). On the top, the details of the Web APT extracted from
ProgrammableWeb are shown, together with the category which the Web API
belongs to. On the bottom, four tabs which correspond to the four steps of the
Web API semantic and social characterization are shown: the specification of se-
mantic tags on the Web API; the optional specification of semantic tags on the
Web mashup which the Web API has been used in; the optional specification of
other Web APIs, among the ones registered in ProgrammableWeb, which have
been used together with the current one in the Web mashup; the rating of the
Web API, mapped into the numeric scores as shown in Table Il In particular,
the figure shows the first step. A text field is provided to enter the tag. As the
designer inputs the characters of the term he/she wants to specify for tagging,
the system provides an automatic completion mechanism based on the set of
terms contained in WordNet. Starting from the tag specified by the designer,
the Sense Disambiguation Module queries WordNet and retrieves all the synsets
that contain that term and shows the semantic tags list.

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 87

€@ [Iocalhost v @| [*Bv wordnet al &

Web API details

[Name: [Flickr

[Description |[The Flickr API can be used to retrieve photos from the Flickr photo sharing service using a variety of feeds - public photos and videos, favorites, friends, group pools, discussions, and more. The
API can also be used to upload photos and video. The Flickr API supports many protocols including REST, SOAR, XML-RPC. Responses can be formatted in XML, XML-RPC, JSON and PHP.
Documentation is included for 14 API Kit libraries.

[URL Ihttp://code.flickr.com

[Data format XML, JSON, JSONP, PHP

[Categories |[Photos

Blog
laddress
[Forum
laddress
[Provider | [nttp://flickr.com

Inttp://code. flickr.com/blog/

Ihttp://www.flickr.com/groups/api

Web API semantic and social characterization area
‘Web API semantic tagging Web mashup semantic tagging [optional] Web mashup composition [optional] Web API rating Summat

The Web API category is Photos

Please enter tag WordNet NOUN options: collapse
search Perform sense Disambiguation search, hunt, hunting (the activity of looking thoroughly in order to find

something or someone)
search (an investigation seeking answers) "a thorough search of the ledgers
revealed nothing"; "the outcome justified the search"
search, lookup (an operation that determines whether one or more of a set of
items has a specified property) “they wrote a program to do a table lookup"
search (the examination of alternative hypotheses) "his search for a move that
would avoid checkmate was unsuccessful®
search (boarding and inspecting a ship on the high seas) “right of search"”

WordNet VERB options: expand

Fig. 3. The Web API Semantic Tagging interface

4.2 The Web API Search Interface

The Web API Search interface presents the same steps described for the Web
API Semantic Tagging interface (except for the rating step) to specify the request
W". The designer can be either authenticated in the system or not, to execute a
semantic tagging-based search. The designer’s authentication could be explored
to provide targeted search results, adapted to the skill and past Web mashups
developed by the designer. This functionality has not been developed yet, but we
plan to introduce it into future versions of the system. Different search modalities
(basic, advanced, completion, proactive completion) can be chosen by the designer
to enable/disable the tabs for specifying the W" elements.

5 Related Work and Evaluation Issues

Some authors proposed the use of models to define Web APIs and the way they
are composed in a Web mashup to empower their reuse and sharing. In [7] an
abstract component model and a composition model are proposed, expressed
by means of an XML-based language, for the construction of dashboards. In
particular, components abstract the descriptions of enterprise internal services,
public APIs and Web resources from technical details. Other efforts based their
recommendations upon models. In [§] the formal model based on Datalog rules
defined in [I] is proposed to capture all the aspects of a mashup component
(called mashlet). In this model authors also consider the mashups that have
been implemented using the Web API which is being modeled, but do not rely
on other social aspects such as ratings and designers’ expertise: when the designer

88 D. Bianchini, V. De Antonellis, and M. Melchiori

selects a mashlet, the system suggests other mashlets to be connected on the ba-
sis of recurrent patterns of components in the existing mashups. In [3] semantic
annotations have been proposed to enrich Web API modeling in presence of high
heterogeneity and proper metrics based on such annotations have been defined
to improve recommendations on Web API retrieval and aggregation. This model
has been extended in [9] with traditional API tagging to exploit collective knowl-
edge for Web API recommendation, but also in this case ratings and designers’
expertise are not taken into account. Although such models enable more precise
metrics for Web API retrieval and the (semi)automatic generation of the glue
code for deploying the final mashup, their use is not always feasible in a social
context, where Web designers’ expertise is mainly focused on Web programming
technologies, and the ever growing addition of new Web APIs which present an
high heterogeneity hampers the definition of proper wrappers to load Web API
descriptions inside the model itself. In such a context, the adoption of Datalog
rules to describe Web APIs and mashups [I] or of XML-based, abstract models
for Web API description and composition [3I7] should be further investigated.
In [10], a faceted classification of unstructured Web APIs and a ranking algo-
rithm to improve their retrieval are proposed. The classification and searching
solutions are based on IR techniques. The proposal provides a coarse-grained
discovery mechanism and adopts components descriptions as published on Pro-
grammableWeb, without any further semantic characterization of components.
In this paper, we also rely on the information stored on ProgrammableWeb,
but we extend Web API descriptions with additional facets based on semantic
tagging and on the past experiences of designers who adopted the Web APIs
in their own mashups. With respect to approaches on semantic tagging of Web
pages [I1] and social search engines, such as Yahoo My Web 2.0, the semantic
and social characterization of Web APIs on top of ProgrammableWeb must take
into account not only each single resource (i.e., Web API) to be recommended,
but also the way they are wired together within Web applications or mashups,
thus raising additional aspects also related to the Web 3.0 context.

Preliminary evaluation. We performed an initial evaluation on the precision
of the semantic tagging system in retrieving relevant Web APIs and on the rank-
ing procedure. We focused on the application domain of the running example:
we considered a subset of 395 Web APIs grouped in the Entertainment, File
Sharing, Mapping and Photos categories of ProgrammableWeb repository; we
collected a subset of mashups from the same repository, among the ones built
with the selected Web APIs, and the corresponding developers (for example, the
Flickr Web API has been used in about 602 mashups owned by 302 developers,
while 23hq.com has been used by 4 developers in 8 mashups); we performed
semantic tagging starting from the keywords extracted from the Web APIs and
Web mashups descriptions; finally, we classified developers’ skills on the basis
of the number of mashups and APIs they own. After semantic and social char-
acterization, we performed four different kinds of search, corresponding to the
four search scenarios. We manually built twelve requests W” like the sample one

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 89

Table 3. Search results collected during the preliminary evaluation of the system (PW
= ProgrammableWeb)

Search tags # of retrieved Precision Recall Relevant APIs in the
APIs first 20 results

photo, 83 APIs 85% 79% 15

sharing (233 on PW) (33% on PW) (40% on PW) (9 on PW)

picture, 83 APIs 85% 79% 15

sharing (30 on PW) (22.5% on PW) (19% on PW) (6 on PW)

shown in Section and we manually classified relevant Web APIs by carefully
analyzing Web API descriptions in the ProgrammableWeb repository and the
mashups where Web APIs have been used. We performed search experiments
on our systems and directly on ProgrammableWeb, using the first elements in
{t}»} and {m], } as normal keywords without considering synonyms and human-
readable descriptions. The obtained results are like the ones presented in Table[3]
where we showed the output for the request W used in Section

We evaluated the precision (number of relevant results among the retrieved
ones) and the recall (number of relevant results that are retrieved). Experiments
showed as our system presents better search results and, in particular, presents
relevant results in the first positions of the search outcome. Increased precision
is due to the adoption of sense disambiguation techniques, that enable to discard
not relevant Web APIs, while increased recall is obtained thanks to the inclusion
among search results of those Web APIs that have been annotated with tags that
are synonyms of the ones specified during search. For example, it is interesting
to underline that, if we change the search tag photo with picture, the perfor-
mances of our system do not change due to the exploitation of synsets, while
ProgrammableWeb returns worse search results (e.g., it does not return Flickr
Web API). More in-depth tests with designers will be performed in future work,
after a long-term interactions of designers with the system.

6 Conclusions

In this paper we described the functional architecture of a Web API seman-
tic tagging system to be deployed on top of the public ProgrammableWeb API
repository. The system is designed to be used in a social context: the designers
can take actively part into the semantic tagging of Web APIs, thus sharing their
experience in developing their own Web applications. Moreover, they can exploit
the search facilities of the system to find out relevant Web APIs according to
different search scenarios and reuse them for fast deployment of new applica-
tions. To this aim, they rely in an hybrid fashion on the semantic tags and on
the collective knowledge derived from past designers’ experiences. The proposed
system does not require the application of complex models for Web API descrip-
tion, while ensuring extensibility, for example by adding further features beyond
the semantic ones (such as the one defined in [10]) or additional sources for sense
disambiguation (such as DBPedia), thus improving the precision and recall of

90

D. Bianchini, V. De Antonellis, and M. Melchiori

the searching procedure. The final product will be a Web API and Web mashup
sharing and reuse system, built on top of common social applications, in Web
2.0 and Web 3.0 contexts.

References

10.

11.

. Abiteboul, S., Greenshpan, O., Milo, T.: Modeling the Mashup Space. In: Proc. of

the Workshop on Web Information and Data Management, pp. 87-94 (2008)

. Bislimovska, B., Bozzon, A., Brambilla, M., Fraternali, P.: Graph-Based Search

over Web Application Model Repositories. In: Auer, S., Diaz, O., Papadopoulos,
G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 90-104. Springer, Heidelberg (2011)

. Bianchini, D., De Antonellis, V., Melchiori, M.: Semantics-Enabled Web API Or-

ganization and Recommendation. In: De Troyer, O., Bauzer Medeiros, C., Billen,
R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS,
vol. 6999, pp. 34-43. Springer, Heidelberg (2011)

. Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge

(1998)

. Bianchini, D., De Antonellis, V., Melchiori, M.: Flexible Semantic-based Service

Matchmaking and Discovery. World Wide Web Journal 11(2), 227-251 (2008)

. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)
. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,

C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Diaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152-166.
Springer, Heidelberg (2011)

. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for Mashups. In: Proc. of

the 35th Int. Conference on Very Large DataBases (VLDB 2009), Lyon, France,
pp. 538-549 (2009)

. Melchiori, M.: Hybrid techniques for Web APIs recommendation. In: Proceedings

of the 1st International Workshop on Linked Web Data Management, pp. 17-23
(2011)

Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A., Verma, K.: A Faceted
Classification Based Approach to Search and Rank Web APIs. In: Proc. of Inter-
national Conference on Web Services (ICWS 2008), Beijing, China, pp. 177-184
(2008)

Marchetti, A., Tesconi, M., Ronzano, F., Rosella, M., Minutoli, S.: SemKey: A
Semantic Collaborative Tagging System. In: Proc. of WWW 2007 Workshop on
Tagging and Metadata for Social Information Organization, Banff, Canada (2007)

	Semantic Collaborative Tagging
for Web APIs Sharing and Reuse
	Introduction
	Motivations and Open Issues
	Semantic and Social Characterization of Web APIs
	Semantic Characterization
	Social Characterization
	Web APIs Search Scenarios
	Web APIs Matching and Ranking

	The System Implementation
	The Web API Semantic Collaborative Tagging
	The Web API Search Interface

	Related Work and Evaluation Issues
	Conclusions
	References

