Rich Communication Patterns for Mashups

Stefan Pietschmann, Martin Voigt, and Klaus Meifiner

Technische Universitat Dresden
01062 Dresden, Germany
{Stefan .Pietschmann,Martin.Voigt,Klaus. Meissner}@tu—dresden. de

Abstract. Mashups imply the lightweight combination of distributed
web resources — a paradigm which can be also applied to the presentation
layer to build interactive web applications. However, current solutions are
limited to very basic composition patterns and do not reflect the coor-
dination needs of the user interface. To tackle this problem, we propose
a novel approach for modeling rich communication patterns as part of a
mashup composition model, which supports the synchronization between
widgets, asynchronous data requests to backend services, and interaction
techniques like drag-and-drop. The concepts were realized and validated
with a number of sample applications.

1 Introduction

Mashups have become a prominent approach for building web applications from
distributed web resources, which has resulted in a multitude of mashup plat-
forms. Recently, research has addressed both formal, platform-independent mod-
els and the integration of user interface (UI) parts as first-class citizens into
mashups, e.g. in mashArt [I] or CRUISe [5]. However, the current solutions are
very limited when it comes to the “glue”, i. e., the means to connect the resources.
The latter are typically loosely coupled by “wiring” their outputs and inputs with
unidirectional links mapped on a publish/subscribe system, which is supposed to
offer the highest flexibility [2]. This results in a “fire-and-forget” communication,
which is simple at the first sight, but leads to more complex models when data
requests and synchronization between components are needed.

In the light of “universal composition” approaches, which equally integrate
backend and frontend components, new communication and coordination re-
quirements arise: The seamless integration of backend services as well as the
synchronization within the presentation layer are just two examples, which are
hard to realize with prevalent solutions.

To emphasize the requirements, we introduce a use case which serves as a
reference scenario throughout this paper. The application StockMash shown
in Fig. [gives an overview of stock indexes (1) (2), allows for comparing stock
performance (4) and managing a personal depot (3) (5). The most basic coordi-
nation need is resembled by the green arrows: unidirectional connections, e.g.,
to notify (2) when the stock index in (1) changes. Further, the stock selection in

may serve as input for different components, e. g., for comparison using (4).

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 315322 2012.
© Springer-Verlag Berlin Heidelberg 2012

316 S. Pietschmann, M. Voigt, and K. Meifiner

As the “target” depends on the context, the user needs to decide where to direct
the data (blue arrows). This can be achieved by platform-specific techniques,
like drag-and-drop. As the data is supplied by backend services, Ul components
must be able to actively request it and receive asynchronous updates (to prevent
extensive polling). Finally, the stock comparison using (4) underlines the need
for the synchronization of components, e.g., to adjust the time frame in both
views (brown arrow).

total costs: 0.00 €

@ intraday | 1 Wonth ||1 vear @ 4 onth | 1 vear, 15:
o
g 3 £ 100

& Atanz

g0 Sayer

35 -100
Oct10 Jami1 Apri1 Jur1 Octil Oct10 Jamt1 Apri1 JuM1 Octnt

months months
dax
BAY = 52

SI7.14€
Bayer 4TME S0 2602610€

total value: 2454324 €

Fig. 1. Coordination relations in the use case StockMash

The contributions of this paper are twofold. First, we present an advanced
communication model comprising different coordination types, which are mod-
eled as extensions of an event-based composition model. Second, we discuss its
interpretation and application within an existing composition infrastructure, and
show how drag-and-drop interaction can be mapped to this model.

Our paper is structured as follows: In Sect. 2] we introduce the design-time
concepts to model rich communication. Then, Sect. B presents the runtime con-
cepts and realization, including the communication system and extensions to-
wards drag-and-drop, with the help of our reference scenario. In Sect. [we
conclude this paper and give an outlook on future work.

2 Modeling Rich Coordination in Mashup Applications

Our solution builds on the universal composition approach of CRUISe, which fa-
cilitates the model-driven development and deployment of adaptive, composite
web applications. Therefore, we rely on its event-based component and compo-
sition models described in [5]. Therein, components of a mashup are described
declaratively with the Semantic Mashup Component Description Language (SM-
CDL) using three abstractions, namely Property, Fvent, and Operation. Based
on these abstractions, developers can compose interactive mashup applications
using the Mashup Composition Model (MCM).

Facilitating Rich Communication in Mashups 317

In the following, we present an extension of these concepts to foster the above-
mentioned coordination needs.

2.1 Modeling Static Communication Patterns with Links

Communication and coordination in mashup systems are usually expressed by
“wiring” inputs and outputs of components. In our solution, those wires are
called links which connect n events with m operations in case their parameters
are semantically compatible. Thus, when one component issues an event indi-
cating a state change, all operations registered at the same link are invoked with
the event data. Since the link acts as a mediator between events and operations,
all components remain loosely-coupled.

To support unidirectional, bidirectional and synchronization connections, we
introduce different link types, which are discussed in the next few paragraphs.

Links represent the basic type of unidirectional communication as supported
by the majority of composition approaches. They allow for connecting n events
with m operations, so the data of an event is published to all registered oper-
ations. A response is not expected, thus, a one-way communication is estab-
lished. Every link is implicitly typed by the data, i.e., the parameters it carries.
Hence, only events and operations whose parameter signatures are semantically
equal can be linked. The MCM does offer means for manipulating and mapping
parameter signatures, yet, those concepts are out of the scope of this paper.

BackLinks represent bidirectional, i. e., request-response connections between
components, as usually required for data requests to backend components. As
illustrated by Fig. 21, BackLinks indicate an implicit callback (link) created at
runtime, which returns requested information to the publisher of the initial link.
To avoid ambiguities between the returning messages, BackLinks are established
between n requesters (events) and only one replier (operation).

As soon as an event is published on a BackLink, the target operation is in-
voked, just as with a Link. However, upon completion, it issues a CallbackEvent
with a return message, which is routed to invoke the CallbackOperation of the

1) Component A Component B

Event EAI(Pw) BackLink—> Operatiop Op(Pxs)
callBackOperation ‘ ‘ callBackEvent
\ 4 \ 4
Operation Ox(P.ys) <€—implicit callback—— Event Eg(P.ys)
2) Component A Component B
-~ Property A, € PropertyLink —» Property B,
) Event L Operation
| propertyChanged(P.,) implicit link setProperty(P.y.) |
H I
i Operation L Event
" setProperty(Pxs) implicit callback propertyChanged(P.,,)
|

Fig. 2. Communication using Back- or PropertyLinks

318 S. Pietschmann, M. Voigt, and K. Meifiner

initial event. Consequently, to model such a connection, the information about
callback events and operations must be available at design time. Therefore, we
extended the SMCDL with these two cross references, indicating the implicit
connections between incoming and outgoing messages of a component.

By default, the implicit response channel is closed after the callback message
has been sent (single pull). However, it can be kept open by the replier to facil-
itate asynchronous updates (active push). This needs to be explicitly supported
by the replying component as expressed by the operation attribute (syncable)
within its SMCDL. Using the attribute syncThreshold of the BackLink, model
authors may set the minimum time interval (in s) between new updates, e. g., to
limit the communication and performance overhead.

PropertyLinks allow for the synchronization of the stateful components by
connecting their properties. This is especially useful for multiple views on shared
data, which necessitates their filters to be synchronized. In our reference scenario,
this is exemplified by the stock details component showing different stocks, yet
in a synchronized time interval.

As illustrated in Fig. B2, PropertyLinks can be seen as an abstraction layer
on top of the event model. They connect properties — something end-users can
more easily understand — but are actually mapped to the corresponding change
events and setter operations automatically. The synchronization works mutually,
so all participants of this pattern are uniformly modeled as SyncTargets.

The introduction of PropertyLinks does not only reduce the complexity and
redundancy in the MCM by replacing n! Links with only one PropertyLink with
n SyncTargets. Even more importantly, it allows runtime platforms to handle
cycles, which would result from using normal Links (A = B = A).

2.2 On-Demand Coordination

If the static definition of a mashup’s internal data flow is either not desirable
or not possible, on-demand coordination becomes necessary. With regard to our
reference scenario, this is the case for the stock details components (4). As the
stock list (1) has only one output — the selected stock — it cannot be connected
with both detail views without both of them showing the same data. Thus, the
choice, which stock to show in which view, is to be made on-demand at runtime
by the user, e. g., by drag-and-drop or other techniques available.

To support this, components need to specify a dataSource as part of their in-
terface description. As with any property, it comprises a number of semantically
typed parameters representing the data to be shared. Potential targets of an
interaction are already specified in the form of operations, as they define which
data can be consumed by components, regardless of how it is invoked.

The basic idea of on-demand coordination is: If a dataSource of a component
is active, e.g., upon a drag or voice command, any compatible operation within
the mashup may act as data sink. The detection of the trigger as well as the
coordination between the data source and sink is up to the platform, which hides
components from the peculiarity of specific interaction techniques.

Facilitating Rich Communication in Mashups 319

2.3 Modeling the Reference Scenario

To prove the feasibility and practicability of our model and composition system,
we built several composite applications, one of which represents the use case
introduced in Sect. [l Fig. Blillustrates the coordination of its stock details com-
ponents (4) as modeled in the MCM. As soon as a stock has been selected, they
request its data via a BackLink and from this point receive updated values every
5s. Further, a PropertyLink connects the interval property of both instances,
so that the time span shown in both views is always the same.

]/ intervall (——H interval [

‘ stockSelected [» stockSelected \

| |
‘ update L,,,J BackLink L,,‘ update

> stockOflnterest

StockService

L _ callbackEvent- — —

stockDetails

Fig. 3. Coordination links within the sample application

This practical example also illustrates the simplification of the MCM: In com-
parison with a traditional version, where requests and synchronizations were
mapped to normal Links, the novel model allowed for a reduction of connections
from 19 to 8, not even considering the additional possibilities of permanent,
asynchronous updates and the handling of cycles.

3 Supporting Rich Communication Patterns at Runtime

As mashup components are developed independently and can be composed dyna-
mically, realizing the above-mentioned communication patterns is a challenging
task. In the following, we sketch the basic principles of a corresponding commu-
nication system, which was implemented as extension of the CRUISe platform.

3.1 Message Format

To realize the data exchange between components developed by different vendors
with different technologies a uniform vocabulary is needed. Therefore, all com-
ponents must adhere to a platform-independent message format. The universal
composition implies the communication between components of different appli-
cation layers and complexity, so the format we have developed is generic, simple,

320 S. Pietschmann, M. Voigt, and K. Meifiner

yet extensible. It is divided in control information and the actual payload. The
latter forms the body of a message and contains the actual data represented by
event and operation parameters. The control information in the header includes
— among others — the following elements:

Status indicates the success or failure of message distribution and data transfer.
To this end, we adopt the HT'TP status codes.
Name equals the event name which, combined with the component name, re-
sults in a unique ID is used to resolve link subscriptions for the message.
CallbackID is an identifier for a certain bidirectional connection. It is auto-
matically added by the MRE, forwarded by replying components and thus
used to identify associated messages and subscribers on the BackLink.

SyncThreshold is an optional parameter which defines a threshold for per-
manent updates (cf. Sect. 2l). For unidirectional messages, this field is left
blank, while any other numeric value defines the minimum time interval
between two updates to be enforced by the channel.

3.2 Link Interpretation and Realization

To support the different link types at runtime, we employ the broker pattern
[3], which nicely fits with the event-based nature of the model. The Event
Broker — a module of the mashup platform — is responsible for managing all
the channels specified in the MCM. Further, it offers an API to create, configure
and send messages. Thereby, components can easily create and send messages,
including life-cycle events, change-events for properties, as well as “ordinary”
events specified in the SMCDL. Apart from message and type validations, the
Event Broker’s main responsibility lies in distributing messages according to the
links in the MCM, as discussed in the following.

Links can be mapped directly to the existing infrastructure: Components simply
create a new message and publish it, using the broker’s API. Using the combi-
nation of event and component name as unique ID, the message can be assigned
to all the Links it is part in. Following optional mediation steps (cf. [4]), it is
then used to invoke all the operations registered with the Link. Upon comple-
tion, the broker returns a message to the publishing component, which includes
a status code to indicate the success of the data transfer. It is up to component
developers if and how this information is interpreted.

BackLinks pose additional challenges to the communication architecture. While
the initialization and distribution of messages follow the workflow described for
Links, the handling of the response requires additional steps. This is, where the
CallbackID from Sect. Bl comes into play. It is added by the broker to every
message published on a BackLink and forwarded by the replier in the Callback-
Event. Thereby, returning messages can be distinguished from “ordinary” ones
published by a component and can be forwarded to the CallbackOperation of
the initial requester (cf. Fig. @}1). Asynchronous updates published via Call-
backEvents are handled likewise; however, the broker additionally enforces the
syncThreshold defined in the MCM.

Facilitating Rich Communication in Mashups 321

Overall, the BackLink is a simple yet effective mechanism to realize data re-
quests between Ul and backend components. In our use case scenario, both the
automatic update of stock and index information as well as of the depot data can
be realized this way. Instead of polling the information, the data is permanently
updated from the backend by keeping the channel open.

PropertyLinks offer an abstraction to the event model and are thus harder
to interpret. Basically, they are mapped to Links between change events and
setter operations of the corresponding properties. However, the following chal-
lenges must be handled: (1) The synchronization affects all participants of the
PropertyLink, including the trigger component. Thus, in order to prevent the
distribution of a state change to the originator, the latter must be filtered out by
the broker dynamically. (2) Once the new property value is set for all registered
components, they send change events in return. To prevent communication over-
head, the broker caches the state of a PropertyLink, i.e., the current property
value. If the payload of an update message equals the cached state, the distribu-
tion of this message is skipped. 3) Finally, property changes may overlap, which
may lead to data loss if change events are issued while the previous synchroniza-
tion has not been finished. Thus, the Event Broker employs a FIFO queue, which
saves incoming updates and delays them, until the current update is finished.

With regard to our reference scenario, PropertyLinks can be used to realize the
synchronization of the time interval (property) in the stock detail components
(4 to improve the comparability of the stocks charts.

3.3 Supporting On-Demand Coordination

Realizing on-demand coordination using device- or platform-specific interaction
techniques poses additional challenges. On the one hand, the trigger interaction
is generally recognized by the source component itself. However, as it has no
knowledge of the surrounding platform and components, the platform needs to
handle the coordination by mapping the interaction to the link model, so that
the target component remains independent from any technological peculiarities.
This mediation is carried out as follows:

Starting point of an on-demand coordination is a dataSource (Sect. 2.2]) which
is defined in the SMCDL and, thus, represented in the MCM. If a component
detects the trigger interaction, e. g., dragging of data, it publishes a correspond-
ing event. The message contains a reference to the dataSource and its typed
parameters. As a result, the MRE creates invisible data sinks, e.g. drop zones.
Sinks are only enabled for such components that comprise at least one opera-
tion compatible with the dataSource. Finally, when the end of the interaction
is detected, e.g., a tangible has been placed, the platform usually receives a
corresponding system event. If the target component offers more than one ap-
propriate operation, the user may select the action to take. Then, the data sinks
are removed and the platform realizes the data flow: Therefore, it requests the
data in question from the source component and invokes the selected operation
of the target component.

322 S. Pietschmann, M. Voigt, and K. Meifiner

4 Conclusion and Future Work

Recently, mashup development has moved towards the presentation layer, result-
ing in universal mashups which enable the lightweight combination of distributed
backend and frontend resources. However, current solutions are limited to basic
communication patterns and do not support the coordination needs implied by
the Ul e.g., data requests to backend services, synchronization of widgets, and
on-demand coordination using interaction techniques, such as drag-and-drop.

In this paper, we have introduced a novel concept for modeling advanced
communication patterns as part of a universal composition model. In contrast
to prevalent solutions, it supports active pull and push connections as well as
component synchronization. Further, we have shown, how to support on-demand
coordination, e. g., using drag-and-drop, and how all these types of coordination
can be mapped to common event-based coordination mechanisms.

By realizing the use case scenario, among others, the solutions could be vali-
dated and proved to be feasible and practicable. They both simplify the modeling
effort and allow unleashing the full potential of universal composition, as they
enhance its coordination capabilities with respect to the needs implied by the
interactivity of the applications.

Currently, we are working on mechanisms to support end-users in dynamically
establishing coordination, i.e., property links, themselves. After that, we plan
to conduct extensive user studies, which include the on-demand coordination
concepts described here.

Acknowledgments. The work of Martin Voigt is funded by the German Fed-
eral Ministry of Education and Research under promotional reference number
01IA09001C. Further, we would like to thank our student Robert Wende for his
valuable contributions to this work.

References

1. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428-443. Springer, Heidelberg (2009)

2. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114-131 (2003)

3. Gamma, E.;, Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (March 1995)

4. Pietschmann, S., Radeck, C., Meifiner, K.: Semantics-based discovery, selection and
mediation for presentation-oriented mashups. In: Proc. of the 5th Intl. WS on Web
APIs and Service Mashups. ACM (September 2011)

5. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meifiner, K.: A
metamodel for context-aware component-based mashup applications. In: Proc. of the
12th Intl. Conf. on Information Integration and Web-based Applications & Services.
ACM (November 2010)

	Rich Communication Patterns for Mashups

	Introduction
	Modeling Rich Coordination in Mashup Applications
	Modeling Static Communication Patterns with Links
	On-Demand Coordination
	Modeling the Reference Scenario

	Supporting Rich Communication Patterns at Runtime
	Message Format
	Link Interpretation and Realization
	Supporting On-Demand Coordination

	Conclusion and Future Work
	References

