Reusable Awareness Widgets for Collaborative
Web Applications — A Non-invasive Approach

Matthias Heinrich!, Franz Josef Griineberger!,
Thomas Springer?, and Martin Gaedke?

1 SAP Research, Germany
{matthias.heinrich,franz.josef.grueneberger}@sap.com
2 Department of Computer Science,

Dresden University of Technology, Germany
thomas.springer@tu-dresden.de
3 Department of Computer Science,

Chemnitz University of Technology, Germany
martin.gaedke@cs.tu-chemnitz.de

Abstract. Creating awareness about other users’ activities in a shared
workspace is crucial to support efficient collaborative work. Even though
the development of awareness widgets such as participant lists, telepoint-
ers or radar views is a costly and complex endeavor, awareness wid-
get reuse is largely neglected. Collaborative applications either integrate
specific awareness widgets or leverage existing awareness toolkits which
require major source code adaptations and thus, are not suited to rapidly
enrich existing web applications.

Therefore, we propose a generic awareness infrastructure promoting
an accelerated, cost-efficient development of awareness widgets as well as
a non-invasive integration of awareness support into existing web applica-
tions. To validate our approach, we demonstrate the integration of three
developed awareness widgets in four collaborative web editors. Further-
more, we expose insights about the development of reusable awareness
widgets and discuss the limitations of the devised awareness infrastruc-
ture.

1 Introduction

Collaborative web applications such as Google Docs have become pervasive in
our daily lives since they expose a rich feature set, provide broad device sup-
port and offer instant accessibility without inducing time-consuming installation
procedures. Commonly, those collaborative real-time applications allow mul-
tiple users to edit the same document concurrently which requires workspace
awareness support. Workspace awareness is defined as the “up-to-the-moment
understanding of another person’s interaction with the shared space” [I] and in
essence, it enables effective collaborative work [2] by answering the “who, what,
and where” questions (e.g. who is in the workspace, what are the other partic-
ipants doing, where are they working). Examples of widely adopted awareness

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 1-[[{, 2012.
© Springer-Verlag Berlin Heidelberg 2012

2 M. Heinrich et al.

Abstract
Generic Awareness g — z
|
Semantic Cursor (Google Docs) Telepointer (Codoxware) Feb 8, 11:02 AM
| |
g e = ™ — LB
B| I |U|<@ |35 @[O|C|@}| 100% [+]|{2 Jack Restore this revision
Lo e Feb 8, 9:27 AM
borative real-time applications allow John .
geographically dispersed teams | =
Input Highlighting incl. Participant List (EtherPad) Document History (Google Docs) Radar View (Codoxware)

Fig. 1. Screenshots of application-specific awareness widgets extracted from Google
Docs, Codoxware and EtherPad

widgets supporting collaborative work are participant lists, telepointers, radar
views, etc. (cf. Figure [T).

Even though multi-user applications largely offer the same set of aware-
ness widgets (e.g. most collaborative applications provide some kind of par-
ticipant list) and software reuse has been advocated for decades [3], there are no
web frameworks accommodating out-of-the-box awareness support and promot-
ing a non-invasive integration approach. Thus, developers re-implement aware-
ness widgets for each collaborative web application or face massive source code
changes adopting awareness toolkits, in particular, if existing applications are
enriched. Both approaches entail major development efforts and costs.

Therefore, we devised a generic awareness infrastructure (GAI) that on the
one hand side simplifies the development of awareness widgets by providing
basic awareness services. On the other hand side, the GAI promotes the reuse of
awareness widgets facilitating a non-invasive integration approach. The widget
reuse is achieved by anchoring the GAI in various W3C specifications (e.g. CSS
Object Model [4], DOM Core [5] or DOM Events specification [6]). Consequently,
standards-based web applications are able to leverage the GAI including the
library of reusable awareness widgets.

The main contributions of this paper are three-fold:

— We propose a generic awareness infrastructure facilitating non-invasive
awareness support for standards-based web applications.

— We expose a development blueprint supporting developers to devise novel
reusable awareness widgets for web applications.

— We evaluate the generic awareness infrastructure by incorporating three im-
plemented awareness widgets into four collaborative web applications and
discuss the limitations of the proposed approach.

The rest of this paper is organized as follows: Section 2 elaborates on the chal-
lenges devising reusable awareness widgets. Section 3 illustrates the GAI archi-
tecture and introduces the development blueprint for novel reusable awareness
widgets. While Section 4 presents the validation of the GAI approach, Section 5
carves out strengths and limitations. Section 6 compares our work to the state-
of-the-art and Section 7 exhibits conclusions.

Reusable Awareness Widgets for Collaborative Web Applications 3

2 Challenges

Devising a generic solution instead of an application-specific one imposes addi-
tional challenges since universal solutions have to abstract from certain specifics
to aspects that hold for an entire class of applications. Characteristics that
are especially challenging while developing generic awareness support for web-
applications are

1. the diversity of collaborative web applications,
2. the multitude of available browsers, and
3. the proliferation of web-enabled devices.

The diversity of collaborative web applications embraces aspects like the tar-
geted runtime engine (e.g. standards-based browser runtime or plug-in technol-
ogy based one) and the addressed application domain (e.g. text editing, graphics
editing, etc.). Considering the variety of plug-in technologies (e.g. Adobe Flash,
Java Applets or Microsoft Silverlight) and their slipping importance with re-
spect to web engineering, we will primarily try to tackle this challenge for W3C
standards-based applications.

Another aspect that a generic awareness solution should take into account are
the various browser implementations. Since the set of available browsers in its
entirety also encompasses peculiar implementations such as text browsers (e.g.
Lynx) we will focus on modern browsers (e.g. Apple Safari 5, Google Chrome
16, Mozilla Firefox 10) that cover a wide range of novel HTML5 features.

In the age of tablets and smartphones, the third challenge — supporting a
myriad of web-enabled devices — becomes even more important since an ever
increasing share of web traffic is generated by tablets and mobile devices. Because
awareness widgets are part of the application’s user interface, device aspects such
as screen size and interaction mode (e.g. touch, mouse or keyboard interaction)
are the crucial ones which have to be considered by a generic awareness solution.

3 Generic Awareness Infrastructure

In this section, we introduce an approach enabling application-agnostic aware-
ness support which is materialized by the generic awareness infrastructure. Fur-
thermore, we expose a specific development blueprint for developing reusable
awareness widgets.

To devise an approach for generic awareness support, we set out to identify
an abstract editor architecture and carved out the editor components depicted
in Figure 2(a). All web-based editors, except plug-in based solutions, adhere to
this architecture that divides the application stack in application-specific and
application-agnostic artifacts. While the editor components (e.g. the user inter-
face) and the associated editor APIs are specific to each editor, the standardized
W3C APIs (e.g. DOM API [0]) and the underlying document object model
(DOM) are application-agnostic. Awareness widgets using editor APIs directly
(e.g. to keep track of document changes) turn out to be application-specific. In

4 M. Heinrich et al.

Client Server Client
icati pecific

Approach Editor Editor Editor
Devise individual
EWEITEREES Wil Editor AP Editor API Editor AP
using a specific API

W3C APIs W3C APIs| GAA | < HTTP —» [ARGTENESS | o rrp 5 | GAA | wicC APIS
Generic Approach DOM
Devise generic aware- €---- HTTP ---p Sync Service <€---- HTTP ---p
ness widgets using
standardized W3C APIs DOM DOM DOM
E] Application-specific Components D Generic Awareness Infrastructure Components
[] Application-agnostic Components <€ Awareness Service <«-- Synchronization Service

(@) ‘ (b)

Fig. 2. a) Abstract architecture of web-based editors as well as approaches to anchor
awareness support and b) Overview of the generic awareness infrastructure for web
applications

contrast, awareness widgets leveraging the standardized W3C APT layer (cf. Fig-
ure [Z(a)) are application-agnostic and consequently capable of serving multiple
web editors.

Therefore, we claim that anchoring awareness support at a standardized layer
is the key to create an application-agnostic solution. Moreover, taking into ac-
count that W3C APIs are implemented in most modern browsers for PCs, tablets
or even smartphones and that recently developed collaborative web-applications
are predominantly standards-based, we conclude that the aforementioned chal-
lenges can be overcome.

The proposed approach to link awareness support to well-established W3C
APIs is embodied in the generic awareness infrastructure illustrated in
Figure 2(b). The distributed collaboration system consists of a server and an
arbitrary number of clients. Clients comprise the very same application stack
shown in Figure [J(a) associated with one additional component denoted as the
generic awareness adapter (GAA). The GAA comprises registered awareness
widgets and is devoted to execute three essential tasks:

1. Initializing registered awareness widgets.

2. Pushing collected awareness information from registered awareness widgets
to the server.

3. Receiving, interpreting and eventually visualizing awareness information
from other clients by means of registered awareness widgets.

To distribute awareness information among all clients, the central server prop-
agates the respective data sets. Additionally, the server provides concurrency
control services encompassing the synchronization of various DOM instances as
well as a conflict resolution mechanism which is able to resolve potential con-
flicts arising if numerous participants change the same document artifacts (e.g.
a graphic or a phrase) simultaneously. Even though the generic DOM synchro-
nization service is a crucial part of the collaboration system, details which were
specified in [7] are beyond the scope of the paper.

Reusable Awareness Widgets for Collaborative Web Applications 5

<html> The <div> node and its
child nodes are rendered

<head.> " E—— G as editable since the
<scrip)) oot Elemen "contenteditable" attribute
type="text/javascript"” <htmi> is set to "true".
src="gaa.js"> T !]
</script> Element Element
</head> <head> <body>
<body>

<div contenteditable="true" id="root">

<hl id="header">Reusable Awareness Widgets</h1l> Element Eleglent

<p id="text">Figure 1 shows a Radar View.</p> SESEEE sdv>

</div>
</body> Element Element
</html> <h1l> <p>

Fig. 3. HTML page of a minimal web editor and the corresponding DOM tree

3.1 Generic Awareness Adapter

The generic awareness adapter depicted in Figure 2I(b) is the key component of
the GATI and primarily in charge of accommodating awareness widgets as well as
providing essential services to those widgets. Arbitrary widgets (e.g. telepoint-
ers, radar views) that adhere to a specific development blueprint (cf. Section [3.2))
can be registered at the GAA. Once the registration is successful, awareness wid-
gets have to be initialized before they actually capture and visualize awareness
information.

In the following paragraphs, we illustrate the integration of the GAA into
existing web applications and describe the setup as well as the operation’s mode
of the GAA.

Integration: The GAA pursues a lightweight integration approach to ease the
process of converting existing editors to awareness-enabled editors. To accom-
plish the integration, a specific JavaScript file named “gaa.js” has to be em-
bedded in the HTML code of the original web application (cf. Figure [B)). The
awareness integration process operates non-invasively meaning that the original
JavaScript source code is not subject to changes. That implies that develop-
ers don’t have to become familiar with the internal source code of the original
application and can thus accomplish the integration of awareness support in a
lightweight and rapid fashion.

Setup: Once the “gaa.js” is successfully embedded in the HTML application
and the browser loaded the modified collaborative application, the GAA will be
initialized. The initialization phase comprises the following tasks:

— Setup an HTTP communication channel connecting client and server to allow
pushing and receiving awareness information.

— Establish session and user management (e.g. assign a color to each partici-
pant to create a color coding adoptable by telepointers and other widgets).

6 M. Heinrich et al.

— Generate global identifiers for all relevant DOM nodes to have a uniform
referencing mechanism (e.g. a newly inserted text node can therefore be
addressed using the very same identifier at all sites).

— Initialize registered awareness widgets.

Operation: After the initialization, the GAA switches into its operation’s
mode where awareness information captured by different widgets is serialized
and propagated to the server. Besides sending awareness messages, the recep-
tion of awareness-related data is also accomplished by the GAA. Received data
is deserialized and forwarded to registered awareness widgets. All message ex-
changes are based on the JavaScript Object Notation (JSON) which is beneficial
since it is a standardized format [8] with standardized methods for serialization
(JSON.stringify()) and deserialization (JSON.parse()). Note that messages
sent from the GAA are propagated by the server (cf. Figure (b)) to all clients
except the sender client.

3.2 Awareness Widget Blueprint

The awareness widget blueprint serves as a guideline for awareness widget devel-
opers. We have adopted this blueprint for our widget development but it may also
serve other web developers. The blueprint divides each widget in three compo-
nents (initialization, capturing and visualization component) and reassures that
implemented widgets are reusable. The widget implementation is illustrated pro-
viding a concrete example revisiting the minimal text editor shown in Figure [Bl
The text editor allows to modify the text of the <h1> and <p> elements because
the contenteditable attribute of the embracing <div> element is set to true.

Initialization Component: As stated before, the blueprint divides each aware-
ness widget into three building blocks whereas the initialization component is in
charge of the following tasks:

— Visualization Setup: Create a visualization context for the awareness widget
and render an initial visualization[]

— Event Listener Registration: Add event listeners to the awareness root (iden-
tified by the GAA) to record modifications in the shared workspace.

Setting up the initial visualization for awareness widgets demands the creation
and positioning of an additional <div> container that acts as an encapsulated
awareness model which is not interwoven with the actual document model. All

! The Separation of Concerns (SoC) principle [9] has to be enforced to prevent syn-
chronization issues. The document model accommodating the content artifacts (e.g.
text or graphical shapes) is subject to continuous synchronizations to assure all
participants are working on a consistent document. In contrast, the visualization of
awareness widgets is client-specific (e.g. the radar view depends on the local scrolling
position) and therefore should be encapsulated and excluded from all sync processes.

Reusable Awareness Widgets for Collaborative Web Applications 7

awareness-related visualizations (e.g. the telepointer cursor, the input highlight-
ing, etc.) are drawn onto this special overlay. Besides the creation of the visual-
ization layer, additional tasks required by specific awareness widgets are executed
upon request. For instance, a radar view widget might copy a DOM subtree into
its visualization layer (i.e. the extra <div> element) to build a miniature view
or a highlighting widget for SVG [10] tools might clone the SVG root element
to build up a special SVG tree for shapes highlighting remotely created shapes.

To keep track of modifications in the shared workspace, awareness widgets
have to register event listeners. As mentioned before, compatibility with the ma-
jority of web applications has to be ensured in order to devise a reusable solution.
Therefore, awareness widgets directly leverage standardized DOM Events [6]. We
identified three groups of DOM events (1) mouse events (e.g. click,
mouseover), (2) keyboard events (e.g. keydown, keyup) and (3) mutation events
(e.g. DOMNodeInserted, DOMAttrModified) that are relevant since they trigger
important awareness-related application updates. For example, semantic cursors
have to be adapted upon DOMCharacterDataModified events, telepointer posi-
tions have to be updated on mousemove events and document history widgets
have to be refreshed if DOMNodeInserted events are fired. The setup of event han-
dlers can be accomplished by means of the element.addEventListener(...)
method.

Suppose we want to enrich the text editor depicted in Figure [}l with a prim-
itive awareness widget that highlights newly entered characters at all remote
clients. This entails the following implementation tasks. First, an additional
<div> container encapsulating the visualization artifacts has to be created which
is straightforward (document .createElement ("div")). Second, the insertion of
characters has to be monitored and therefore event handlers have to be attached
to the <div> node which is illustrated in Figure [(a). Note that the listener
registration does not require to add listeners to each individual DOM node since
installed event listeners also listen to changes of the respective child nodes. In
our example, the attached event handler would also listen to modifications of
the <h1> or <p> node.

Capturing Component: After the initialization, local changes are recorded
by a capture component that gathers changes for dedicated awareness widgets.
The main objectives of the capture component are:

— Awareness Information Filtering: Retrieve essential awareness information
from the vast set of data provided by registered event handlers

— Data Preparation: Prepare relevant awareness information for the message
transfer.

Gathering and filtering awareness-related information is accomplished by event
handlers registered during the initialization. As soon as event handlers are called,
awareness information is prepared according to the requirements of awareness
widgets. In some cases, the information capturing is trivial since Event objects [6]
directly expose the required properties. For example, a telepointer could capture

8 M. Heinrich et al.

captureChanges = function() {
range = document.getSelection().getRangeAt(Q);
//serialize range information into JSON

Y

document.getElementById("root").addEventListener(
"DOMCharacterDataModified", captureChanges, true);

(a) Initialize Implementation

{

start : {
parentNode : range.startContainer.parentNode.id,
relPos : getRelativePos(parentNode, startContainer),
offset : range.startOffset

1

end : {
parentNode : range.endContainer.parentNode.id,
relPos : getRelativePos(parentNode, endContainer),
offset : range.endOffset

}

}

(b) Capture Implementation

highlightChanges = function (json) {

startContainer = resolveNode(json.start.parentNode, json.start.relPos);
endContainer = resolveNode(json.end.parentNode, json.end

range = document.createRange();
range.setStart(startContainer, json.start.offset);
range.setEnd(endContainer, json.end.offset + 1);

rect = range.getBoundingClientRect();

div = document.createElement("div");
style = {
"top" : rect.top,
"left" : rect.left,
"height" : rect.height,
"width" : rect.width,
"background" : red,
"pointer-events" : none
}
div.css(style);
document.body.appendChild(div);

H

(c) Visualize Implementation

Fig. 4. Minimal awareness implementation capable of highlighting local text changes
at all remote clients

the X- and Y-coordinates by retrieving the screenX and screenY attributes from
the MouseEvent object. However, this is only appropriate for strict what you see
is what I see (WYSIWIS) tools [I1] where all clients share the same window
size, viewport, etc. In relaxed WYSIWIS environments [I1] where participants
might have different viewports, zoom levels, etc., the information capturing is
much more complex and cannot leverage window coordinates (e.g. highlighting
a word at zoom level 100 covers a different screen area than highlighting the
same word at a zoom level of 200 percent). Therefore, advanced mechanisms are
required to calculate positions. A robust way to capture fine grained positioning
values is offered by the HTML Editing APT [12]. It defines selections in HTML
documents that can be obtained using the window.getSelection() method.
The call returns a Selection object that exposes either the caret position or
the text selection potentially spanning across multiple elements. It can comprise
one or more Range objects [I3] (indicated by the rangeCount property). Each
Range object represents a contiguous part of the selection. In order to reconstruct
selections or caret positions, the start and end of every Range object have to be
transmitted to other clients.

The preparation of update messages is the second important capture task.
Awareness information has to be serialized before the data transmission can take
place. Therefore, JSON-compliant objects are employed as data containers com-
bining all relevant awareness information. These JSON objects are then passed
to the GAA which eventually serializes these objects and sends out awareness
update messages.

Regarding the example of the minimal text editor, the capture mechanism
would be triggered upon text modifications affecting the <h1> or <p> node.
This capture mechanism is defined in the captureChanges function depicted
in Figure Mi(a). First, the getSelection method retrieves a list of Range ob-
jects representing currently selected DOM elements. If the caret resides in the
<h1> or <p> node, there is only one Range instance that is retrieved through

Reusable Awareness Widgets for Collaborative Web Applications 9

getRangeAt (0). This Range instance is exploited to create a JSON object as
illustrated in Figure @{(b). The JSON message contains information about the
affected node (id), the caret position (offset), etc. After the message construc-
tion, the JSON string is transferred to the server.

Visualization Component: The third building block of the proposed blueprint
is the visualization component which processes and eventually renders incoming
awareness information. In detail, this component carries out the following tasks:

— Awareness Information Processing: Distribute, interpret and render received
awareness information.

— Awareness Information Re-Rendering: Refresh Uls of awareness widgets
upon local change events.

Awareness widgets receive its data via JSON-compliant data exchange objects
that were created by the GAA during the deserialization of awareness mes-
sages. Data exchange objects contain awareness information collected by the
capturing component. For example, a data object dedicated for an input high-
lighting widget might carry information about the captured range of newly
inserted characters. If this information has been passed to the specific widget,
the visualization process can start. First, a new Range object has to be created
(document . createRange ()). Second, the start and end of the range have to be
set invoking range.setStart(startNode, startOffset) and range.setEnd
(endNode, endOffset) respectively. The start and end nodes can be obtained
via document . getElementById(. ..) using the identifiers stored in the data ex-
change object. After these two initial steps, the visualization engine can profit
from the rich APIs specified in the CSS Object Model Standard [4]. It
enriches existing DOM interfaces like Document, Window or Element with so-
phisticated functions like caretPositionFromPoint (), getClientRects (), etc.
The range.getClientRects() method, for instance, returns a collection of
ClientRect objects that serve as a representation for the range’s occupied screen
area. Each rectangle exposes read-only left, top, right and bottom properties.
These properties and its assigned values are used as CSS properties for the es-
tablished <div> overlay element. Note, that this <div> element can be styled
according to your application’s look and feel since solely CSS properties have
to be changed. The defined procedure ensures the correct handling of relaxed
WYSIWIS situations, because abstract awareness information is interpreted lo-
cally and therefore adapted to the local environment (e.g. zoom level, viewport,
etc.). For graphics tools a rectangular highlighting of the modified DOM ele-
ment might not be appropriate. In particular, inline SVG graphics embedded in
the DOM tree require advanced highlighting mechanisms. A compelling way to
highlight SVG elements is to first clone the affected SVG element to the <div>
overlay container of the corresponding awareness widget. Afterwards the cloned
SVG element can be styled, i.e. its properties (e.g. fill or stroke color) are cleared
and then a new stroke is created. Setting the stroke-width and stroke-color
properties completes the sophisticated SVG highlighting.

10 M. Heinrich et al.

If local changes occur (e.g. window size modifications, scrolling, etc.) the
awareness visualization has to be re-rendered to adapt to the updated envi-
ronment. To keep track of those local changes, additional event listeners have to
be registered while initializing the awareness widget.

In the introduced example, the simple awareness widget has to highlight the
characters recently entered by the remote user. Figure l(c) illustrates the re-
quired steps. In summary, a new rectangular <div> element is constructed that
has the same dimensions and coordinates as the newly created characters. Di-
mensions and coordinates fetched from the deserialized Range object are applied
to the created <div> by assigning a CSS style.

4 Validation

To assess the reusability of awareness widgets which were devised leveraging the
GAI approach, we opted for a two-step validation. First, we implemented three
example widgets according to the presented architecture blueprint (cf. Section [3)).
Second, we incorporated these awareness widgets bundled with the configured
GAA into four collaborative web editors.

In the first step aiming to produce exemplary awareness widgets — due to
resource restrictions — we had to choose three awareness widgets from the mul-
titude of common widgets. Therefore, we based our selection on a classification
dividing widgets in extrinsic and intrinsic ones. Extrinsic awareness widgets are
encapsulated in a single Ul container and do not intermingle with the UI rep-
resenting the document content (e.g. participant list, radar view or document
history). Intrinsic awareness widgets are intermingled with the UI representing
the document content (e.g. input highlighting, semantic cursor or telepointer).
Besides taking into account the classification, we also wanted to cover the preva-
lent application domains (i.e. shared editing and shared drawing). Therefore, we
decided to build widgets exposing the following characteristics: (1) intrinsic for
shared editing as well as (2) intrinsic for shared drawing and (3) extrinsic for
arbitrary collaborative applications. Correspondingly, we developed (1) an input
highlighting widget for text editors as well as (2) an input highlighting widget
for graphics editors and (3) a generic participant list.

To test the three developed awareness widgets, we set out to find collabo-
rative editors lacking awareness support. Existing multi-user editors were not
appropriate since they already offer awareness features to some extent. Hence,
we chose to convert available single-user applications into multi-user applica-
tions and leveraged the transformation approach described in [7] that produces
shared editing tools featuring document synchronization and conflict resolution.
The produced collaborative web editors were suitable test applications since they
did not provide any awareness support. According to our proposition, we trans-
formed editors from different application domains including two text editors and
two graphics editors. In the following paragraph, we briefly introduce the four
web applications that were successfully converted to collaborative applications.

Reusable Awareness Widgets for Collaborative Web Applications 11

Q& BIU=xx & EEEE=E @
= | Fo - . Sl A A Bi@ =
Abstract
Collaborative real-time applications allow gragﬁaphaoalh_,h dspaiseateagns to
work simultaneously in a virtual workspacq In order to enable efﬁclentr ———————— Highlighted Text
4
‘l Jack LIJH"EF ________________________________ Participant List
(a) CKEditor
(= R | I U | Styles ~ Paragraph v FontFamily + FontSize

F RN T M | LdEF@m |FHO KB A-¥-

= | | | —2E = x Q@ H=|4|mw|=

= LR R

Abstract

Collaborative real-time applications allow geo fiGa Ly ol iS22 6 Skt @iia1 Sa

to work simultaneously in a virtual workspacel In order to enable efﬁt:lentr—— Highlighted Text

Path: p » strong Words:138

.'. Jack "Jnne |. ________________________________ Participant List

(b) TinyMCE

Fig. 5. User interfaces of the web-based text editors CKEditor [I4] and TinyMCE [15]
enriched with awareness support (changes by the remote user Jane are highlighted red)

CKEditor [14] and TinyMCE [I5] are two popular web-based text editors
offering common features such as text formatting, image insertion or text align-
ment. Both editors were enhanced with the very same participant list widget
as well as an input highlighting widget (cf. Figure [). Input highlighting is ac-
complished by adding a colored overlay to newly created characters for a certain
period of time. The color overlay corresponds to the color coding established in
the participant list. SVG-edit [16] and FNISVGEditor [1T] are editors for scal-
able vector graphics providing common graphics tools to accomplish reoccurring
drawing tasks such as create lines, ellipses or rectangles. Both editors incorpo-
rated a participant list widget and an input highlighting widget (cf. Figure [G).
Note that the input highlighting widget differs from the text input highlight-
ing. In contrast to emphasizing newly created characters, in this case, recently
created shapes (e.g. circles, rectangles) are subject to highlighting.

Eventually, we could show that it is feasible to reuse awareness widgets by in-
corporating them non-invasively in four distinct collaborative applications. The
editor screenshots depicted in Figure Bl and Figure [0l demo the achieved aware-
ness support. Furthermore, the resulting collaborative editors are demonstrated
on our GAI demo page http://vsr.informatik.tu-chemnitz.de/demo/GAI/.
Note that during the widget integration some issues were encountered. One class

http://vsr.informatik.tu-chemnitz.de/demo/GAI/

12 M. Heinrich et al.

Participant List Highlighted Curve Participant List Highlighted Curve
1 1 1
: 1 1
dio I i i : I
S e : o ol T 1
PR, Su— ! !
1 1] r I:
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1] 1 1
1 1 1 1 1
1 1 1 [P 1
1 1 :
:. _________ : # objects selecfd
(a) SVG-edit (b) FNISVGEditor

Fig. 6. User interfaces of the graphics editors SVG-edit [16] and FNISVGEditor [I7]
enriched with awareness support (changes by the remote user Jane are highlighted red)

of issues was related to the positioning of highlighted ranges. Since the document
viewport establishes an extra coordinate system that is embedded in the browser
window coordinate system, coordinate calculations have to take offsets into ac-
count. Another identified issue was discovered incorporating the participant list
widget. The proposed approach to draw the participant list on an extra overlay
layer requires an empty window portion which is not always the case. Therefore,
the participant list has to be embedded directly into the application layer. The
outlined issues could all be solved configuring the GAI accordingly.

5 Discussion

In our validation, we illustrated the strength of the GAI approach. A major
advantage is the provisioning of awareness support at infrastructure level. Once
implemented, the awareness features supported by our GAI are reusable by nu-
merous applications from different domains. Moreover, the creation of awareness
widgets is also simplified. Widgets can exploit awareness information supplied
by the GAA and mediated by the GAI. Therefore, development effort and time
for awareness widget implementations are significantly reduced in contrast to
conventional approaches.

We also showed in our validation the non-invasive integration of awareness
widgets into existing collaborative applications. Extrinsic as well as intrinsic
widgets were successfully integrated without having to change the source code of
the original application. Moreover, the devised awareness widgets were adopted
in different applications of the same domain and even across domains which
demonstrates the high reusability of GAA widgets.

However, the gained experience developing numerous GAA-compliant aware-
ness widgets revealed two critical limitations that are immanent to the proposed
GAI approach:

Reusable Awareness Widgets for Collaborative Web Applications 13

Application Model not Represented in the DOM: The defined GAI implemen-
tation and in particular the information capturing components rely on standard-
ized DOM events that are fired if the DOM is manipulated. If this notification
mechanism is somehow bypassed and not actively producing events anymore,
the GAI information tracking cannot operate properly and eventually, regis-
tered awareness widgets are affected since required awareness information is not
supplied. For example, if one part of the application is implemented using a
plug-in technology (e.g. Adobe Flash or Microsoft Silverlight), changes affecting
a plug-in internal data structure do not emanate DOM events and thus aware-
ness information cannot be retrieved. Therefore, it is mandatory that the editor
document and its content (e.g. the text of a text editor or the shapes of a graphics
editor) are represented as a part of the DOM.

Crross-Browser Inconsistencies: Differing browser engines (e.g. Apple Safari,
Google Chrome, etc.) are not fully consistent with respect to their model rep-
resentation (i.e. the DOM) even though they request and render the very same
serialized HTML file (e.g. an element is represented as one single node in one
browser engine and as multiple nodes in another browser engine). This can break
the global identification scheme and impair the awareness information associa-
tion. For instance, adding a line break to a text embedded in an HTML textarea
results in a Text node split. Removing this line break once again is handled dif-
ferently by different browser engines. While some engines merge the text nodes,
other browser engines keep two separate text nodes.

Even though the GAI approach entails some limitations, we argue that a
standards-based solution such as the GAI can efficiently tackle the aforemen-
tioned challenges (cf. Section). In particular in the light of the HTML5 move-
ment where standards are aggressively pushed and rapidly adopted.

6 Related Work

Our GAI approach is related to work in two major research domains, namely full-
fledged collaboration frameworks and user interface (UI) toolkits accommodating
also awareness support.

UT toolkits like the Multi-User Awareness UI Toolkit (MAUI Toolkit) [1§],
WatchMyPhone [19] or GroupKit [20] provide sets of awareness-ready Ul com-
ponents and also facilitate document synchronization. Most of the approaches
are tailored to a particular runtime environment. While the MAUI Toolkit tar-
gets the Java runtime, WatchMyPhone is a solution dedicated for the Android
platform. Even though some toolkits encapsulate functionality like the distribu-
tion of awareness information into generic components, there is a tight coupling
between UI controls and awareness support. Thus, reusability of awareness wid-
gets is achieved at the design phase rather than at the runtime phase. Developers
have to become familiar with the applications’ source code and eventually are
asked to replace standard UI controls with their collaborative counterparts. In
contrast, our non-invasive GAI approach allows to incorporate awareness fea-
tures in a rapid and cost-efficient manner since it only involves the integration
of an extra JavaScript file without requiring source code changes.

14 M. Heinrich et al.

Advanced frameworks for the development of collaborative applications like
Apache Wave [21], BeWeeVee [22] or CEFX [23] focus on the provisioning of
concurrency control mechanisms but neglect the aspect of awareness support.
In our approach the generic awareness support is embedded into the GAI which
decouples the UI layer from the awareness support. This increases reusability of
awareness support and results in reduced effort for developing awareness widgets
on top of the GAIL

7 Conclusion

Workspace awareness is a key feature for collaborative real-time applications
enabling effective collaborative work. At the present time, well-established and
pervasively available collaborative web applications like Google Docs implement
awareness features in an application-specific manner, even if the same set of
awareness widgets could be shared among various applications. As a result, the
time and resource consuming task of implementing and testing awareness widgets
is repeated again and again.

In this paper, we presented an application-agnostic approach for the creation
of out-of-the-box awareness widgets which are reusable in collaborative web ap-
plications. Our solution is based on the idea to anchor basic awareness support
at the application-independent level of standardized W3C APIs. The proposed
generic awareness infrastructure captures information about user interactions at
this generic level and mediates it to all participating users via a server host-
ing the awareness service as well as the concurrency control service. As part
of the generic awareness infrastructure, generic awareness adapters are able to
incorporate arbitrary awareness widgets which have to be developed following a
predefined development blueprint.

To validate our approach, we implemented a set of awareness widgets which
have been integrated into four collaborative web editors for text and graphics. As
demonstrated in our validation, created awareness widgets cannot only be used
for the development of new collaborative web-applications; in particular, they are
tailored for the incorporation into existing ones. Since awareness widgets can be
adopted within several applications of the same domain (e.g. input highlighting
widget) or even across application domains (e.g. generic participant list) our
approach ensures reusability of awareness features to a large extent.

In future work, we will extend the set of available awareness widgets to create a
base for performance and user studies. Especially, the quality/impact of provided
awareness features will be explored in detail.

References

1. Gutwin, C., Greenberg, S.: A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Computer Supported Cooperative Work 11(3-4), 411-446
(2002)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Reusable Awareness Widgets for Collaborative Web Applications 15

. Gutwin, C., Stark, G., Greenberg, S.: Support for Workspace Awareness in Edu-

cational Groupware. In: CSCL, pp. 147-156 (1995)

. Sommerville, I.: Software Engineering, 9th edn. Addison Wesley (2010)
. van Kesteren, A.: CSSOM View Module, http://wuw.w3.org/TR/2011/

WD-cssom-view-20110804/| (working draft August 4, 2011)

. Hors, A.L., Hégaret, P.L.: Document Object Model (DOM) Level 3 Core Specifi-

cation (2004), http://www.w3.org/TR/DOM-Level-3-Core/

. Schepers, D., Rossi, J.: Document Object Model (DOM) Level 3 Events Specifica-

tion (2011), http://www.w3.org/TR/DOM-Level-3-Events/

. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web

applications for shared editing: a generic transformation approach. In: WWW, pp.
1057-1066 (2012)

. Crockford, D.: The application/json Media Type for JavaScript Object Notation

(JSON). RFC 4627 (Informational) (July 2006)

. Hiirsch, W.L., Lopes, C.V.: Separation of Concerns. Technical report (1995)
. Ferraiolo, J.: Scalable Vector Graphics (SVG) 1.0 Specification (2001),

http://www.w3.org/TR/SVG10/

Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., Tatar, D.: WYSIWIS Revised:
Early Experiences with Multiuser Interfaces. ACM Trans. Inf. Syst. 5, 147-167
(1987)

Gregor, A.: HTML Editing APIs, Work in Progress.
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html| (last update Jan-
uary 19, 2012)

Kesselman, J., Robie, J., Champion, M., Sharpe, P., Apparao, V., Wood, L.:
Document Object Model (DOM) Level 2 Traversal and Range Specification (2000),
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/

CKSource: CKEditor - WYSIWYG Text and HTML Editor for the Web (2011),
http://ckeditor.com/

Moxiecode Systems: TinyMCE - JavaScript WYSIWYG Editor (2011),
http://www.tinymce.com/

Schiller, J., Rusnak, P.: SVG-edit - A Complete Vector Graphics Editor in the
Browser (2011),

http://code.google.com/p/svg-edit/

Leppa, A.: FNISVGEditor - JavaScript-based Online Editor for SVG Graphics
(2010), http://code.google.com/p/fnisvgeditor/

Hill, J., Gutwin, C.: The MAUI Toolkit: Groupware Widgets for Group Awareness.
In: Computer-Supported Cooperative Work, pp. 5—6 (2004)

Bendel, S., Schuster, D.: Providing Developer Support for Implementing Collab-
orative Mobile Applications. In: Third International Workshop on Pervasive Col-
laboration and Social Networking, PerCol 2012 (2012)

Roseman, M., Greenberg, S.: Building Real-Time Groupware with GroupKit, a
Groupware Toolkit. ACM Trans. Comput.-Hum. Interact. 3, 66-106 (1996)
Apache Software Foundation: Apache Wave (2011),
http://incubator.apache.org/wave/

BeWeeVee: BeWeeVee - Life Collaboration Framework (2011),
http://wuw.beweevee.com

Gerlicher, A.: Collaborative Editing Framework for XML (2009),
http://sourceforge.net/projects/cefx/

http://www.w3.org/TR/2011/WD-cssom-view-20110804/
http://www.w3.org/TR/2011/WD-cssom-view-20110804/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/SVG10/
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/
http://ckeditor.com/
http://www.tinymce.com/
http://code.google.com/p/svg-edit/
http://code.google.com/p/fnisvgeditor/
http://incubator.apache.org/wave/
http://www.beweevee.com
http://sourceforge.net/projects/cefx/

	Reusable Awareness Widgets for Collaborative
Web Applications – A Non-invasive Approach
	Introduction
	Challenges
	Generic Awareness Infrastructure
	Generic Awareness Adapter
	Awareness Widget Blueprint

	Validation
	Discussion
	Related Work
	Conclusion
	References

